WorldWideScience

Sample records for volume fraction grain

  1. Quantitative grain-scale ferroic domain volume fractions and domain switching strains from three-dimensional X-ray diffraction data

    DEFF Research Database (Denmark)

    Oddershede, Jette; Majkut, Marta; Caosyd, Qinghua

    2015-01-01

    A method for the extension of the three-dimensional X-ray diffraction technique to allow the extraction of domain volume fractions in polycrystalline ferroic materials is presented. This method gives access to quantitative domain volume fractions of hundreds of independent embedded grains within...

  2. Grain boundary diffusion in terms of the tempered fractional calculus

    Energy Technology Data Exchange (ETDEWEB)

    Sibatov, R.T., E-mail: ren_sib@bk.ru [Ulyanovsk State University, 432017, 42 Leo Tolstoy str., Ulyanovsk (Russian Federation); Svetukhin, V.V. [Ulyanovsk State University, 432017, 42 Leo Tolstoy str., Ulyanovsk (Russian Federation); Institute of Nanotechnology and Microelectronics of the Russian Academy of Sciences, 115487, 18 Nagatinskaya str., Moscow (Russian Federation)

    2017-06-28

    Mathematical treatment of grain-boundary diffusion based on the model first proposed by Fisher is usually formulated in terms of normal diffusion equations in a two-component nonhomogeneous medium. On the other hand, fractional equations of anomalous diffusion proved themselves to be useful in description of grain-boundary diffusion phenomena. Moreover, the most important propagation regime predicted by Fisher's model demonstrates subdiffusive behavior. However, the direct link between fractional approach and the Fisher model and its modifications has not found yet. Here, we fill this gap and show that solution of fractional subdiffusion equation offers general properties of classical solutions obtained by Whipple and Suzuoka. The tempered fractional approach is a convenient tool for studying precipitation in granular materials as the tempered subdiffusion limited process. - Highlights: • The link connected fractional diffusion approach and Fisher's model of grain-boundary diffusion is derived. • The subdiffusion exponent of grain-boundary diffusion can differ from 1/2. • Nucleation in granular materials is modeled by the process limited by tempered subdiffusion.

  3. Effects of grain size distribution on the packing fraction and shear strength of frictionless disk packings

    Science.gov (United States)

    Estrada, Nicolas

    2016-12-01

    Using discrete element methods, the effects of the grain size distribution on the density and the shear strength of frictionless disk packings are analyzed. Specifically, two recent findings on the relationship between the system's grain size distribution and its rheology are revisited, and their validity is tested across a broader range of distributions than what has been used in previous studies. First, the effects of the distribution on the solid fraction are explored. It is found that the distribution that produces the densest packing is not the uniform distribution by volume fractions as suggested in a recent publication. In fact, the maximal packing fraction is obtained when the grading curve follows a power law with an exponent close to 0.5 as suggested by Fuller and Thompson in 1907 and 1919 [Trans Am. Soc. Civ. Eng. 59, 1 (1907) and A Treatise on Concrete, Plain and Reinforced (1919), respectively] while studying mixtures of cement and stone aggregates. Second, the effects of the distribution on the shear strength are analyzed. It is confirmed that these systems exhibit a small shear strength, even if composed of frictionless particles as has been shown recently in several works. It is also found that this shear strength is independent of the grain size distribution. This counterintuitive result has previously been shown for the uniform distribution by volume fractions. In this paper, it is shown that this observation keeps true for different shapes of the grain size distribution.

  4. Fractionation and Characterization of Brewers' Spent Grain Protein Hydrolysates

    OpenAIRE

    Celus, Inge; BRIJS, Kristof; Delcour, Jan

    2009-01-01

    Protein hydrolysates with a low and high degree of hydrolysis were enzymatically produced from brewers' spent grain (BSG), the insoluble residue of barley malt resulting from the manufacture of wort in the production of beer. To that end, BSG protein concentrate (BPC), prepared by alkaline extraction of BSG and subsequent acid precipitation, was enzymatically hydrolyzed with Alcalase during both 1.7 and 120 min. Because these hydrolysates contained many different peptides, fractionation of th...

  5. Absorbed fractions for electrons in ellipsoidal volumes

    Science.gov (United States)

    Amato, E.; Lizio, D.; Baldari, S.

    2011-01-01

    We applied a Monte Carlo simulation in Geant4 in order to calculate the absorbed fractions for monoenergetic electrons in the energy interval between 10 keV and 2 MeV, uniformly distributed in ellipsoids made from soft tissue. For each volume, we simulated a spherical shape, four oblate and four prolate ellipsoids, and one scalene shape. For each energy and for every geometrical configuration, an analytical relationship between the absorbed fraction and a 'generalized radius' was found, and the dependence of the fit parameters from electron energy is discussed and fitted by proper parametric functions. With the proposed formulation, the absorbed fraction for electrons in the 10-2000 keV energy range can be calculated for all volumes and for every ellipsoidal shape of practical interest. This method can be directly applied to evaluation of the absorbed fraction from the radionuclide emission of monoenergetic electrons, such as Auger or conversion electrons. The average deposited energy per disintegration in the case of extended beta spectra can be evaluated through integration. Two examples of application to a pure beta emitter such as 90Y and to 131I, whose emission include monoenergetic and beta electrons plus gamma photons, are presented. This approach represent a generalization of our previous studies, allowing a comprehensive treatment of absorbed fractions from electron and photon sources uniformly distributed in ellipsoidal volumes of any ellipticity and volume, in the whole range of practical interest for internal dosimetry in nuclear medicine applications, as well as in radiological protection estimations of doses from an internal contamination.

  6. Effect of volume fraction on granular avalanche dynamics.

    Science.gov (United States)

    Gravish, Nick; Goldman, Daniel I

    2014-09-01

    We study the evolution and failure of a granular slope as a function of prepared volume fraction, ϕ(0). We rotated an initially horizontal layer of granular material (0.3-mm-diam glass spheres) to a 45° angle while we monitor the motion of grains from the side and top with high-speed video cameras. The dynamics of grain motion during the tilt process depended sensitively on ϕ(0)∈[0.58-0.63] and differed above or below the granular critical state, ϕ(c), defined as the onset of dilation as a function of increasing volume fraction. For ϕ(0)-ϕ(c)avalanche. Precursor compaction events began at an initial angle θ(0)=7.7±1.4° and occurred intermittently prior to the onset of an avalanche. Avalanches occurred at the maximal slope angle θ(m)=28.5±1.0°. Granular material at ϕ(0)-ϕ(c)>0 did not experience precursor compaction prior to avalanche flow, and instead experienced a single dilational motion at θ(0)=32.1±1.5° prior to the onset of an avalanche at θ(m)=35.9±0.7°. Both θ(0) and θ(m) increased with ϕ(0) and approached the same value in the limit of random close packing. The angle at which avalanching grains came to rest, θ(R)=22±2°, was independent of ϕ(0). From side-view high-speed video, we measured the velocity field of intermittent and avalanching flow. We found that flow direction, depth, and duration were affected by ϕ(0), with ϕ(0)-ϕ(c)0. Our study elucidates how initial conditions-including volume fraction-are important determinants of granular slope stability and the onset of avalanches.

  7. The influence of temperature and grain boundary volume on the resistivity of nanocrystalline nickel

    Energy Technology Data Exchange (ETDEWEB)

    Darnbrough, J. E., E-mail: J.E.Darnbrough@bristol.ac.uk; Flewitt, P. E. J. [Interface Analysis Centre, School of Physics, University of Bristol, H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL (United Kingdom); Roebuck, B. [National Physical Laboratory, Hampton Rd, Teddington, Middlesex, TW11 0LW (United Kingdom)

    2015-11-14

    The thermal stability and modes of recrystallisation of nanocrystalline nickel has been observed through a conduction-based non-destructive test. Resistivity measurements have been utilised to quantify grain boundary volume fraction and microstructure. This observation makes clear the distinction of the factors that contribute to resistivity and demonstrates that these contributions are related to microstructure, either directly or in-directly. In static systems, the contribution of ordered grains and low-order grain boundary atomic arrangements in small grained material has been measured and correlated with resistivity. Measurements of in-situ resistivity conducted at high temperature gives changes with time which are related to grain growth, during heat treatment. This shows that resistivity can be used as a technique for observing the microstructure and grain growth of small grained material.

  8. Three-dimensional simulations of microstructural evolution in polycrystalline dual-phase materials with constant volume fractions

    DEFF Research Database (Denmark)

    Poulsen, Stefan Othmar; Voorhees, P.W.; Lauridsen, Erik Mejdal

    2013-01-01

    The microstructural evolution of a polycrystalline dual-phase material with a constant volume fraction of the phases was investigated using large-scale three-dimensional phase-field simulations. All materials parameters are taken to be isotropic, and microstructures with volume fractions of 50....../50 and 40/60 were examined. After an initial transient, the number of grains decrease from ∼2600 to ∼500. It was found that the mean grain size of grains of both phases obeyed a power law with an exponent of 3, and the microstructural evolution was found to be controlled by diffusion. Steady...... with the topology of single-phase grain structures as determined by experiment and simulation. The evolution of size and number of faces for the minority and majority phase grains in the 40/60 volume fraction simulation is presented and discussed. Non-constant curvature across some interphase boundaries...

  9. [Protein fraction distribution in milling and screened physical fractions of grain amaranth].

    Science.gov (United States)

    Búcaro Segura, María Ester; Bressani, Ricardo

    2002-06-01

    The purpose of the study was to establish the protein distribution based on solubility in physical fractions of amaranth flour, in particular between the flour from the germ and that from the perisperm. The protein distribution was obtained applying a series of solvents sequentially utilized in the classical methodology of Osborne & Mendel. The sample of A. cruentus weighing 2000 g was divided into 4 subsamples of 500 g each. One was left as the control while the other 3 were ground individually with a mill. Each flour was screened through 18, 20, 30 and 40 mesh screens, so that 5 fractions were obtained from each of the whole grain flours. Samples of each screened fractions were observed by stereoscopy and analyzed for moisture, fat and protein. This characterization suggested that the fraction above the 30 mesh screen and the flour which passed the 40 mesh screen probably were the perisperm and germ respectively. The 30 mesh sample contained 2.34 fat and 9.05% protein while the 40 mesh contained 16.18% fat and 26.46% protein. The extraction and partitioning of the proteins indicated that the most important fractions in germ and perisperm were the water soluble and glutelins measured by Kjeldahl. The relationship of the water soluble + globulin to glutelins ratio was 2.1 to 1 in the whole grain, 1.9 to 1 in the perisperm and 1.7 to 1 in the germ. The distribution of proteins was very much alike between germ and perisperm. The levels of prolamines were quite low. The protein extraction of the perisperm proteins retained on the 30 mesh screen was low (71.1%) measured by Kjeldahl and 47.4% with the Bradford method to measure protein.

  10. Effect of grain moisture content during milling on pasting profile and functional properties of amaranth fractions.

    Science.gov (United States)

    Kumar, K Vishnuswamy Preetham; Dharmaraj, Usha; Sakhare, Suresh D; Inamdar, Aashitosh A

    2016-05-01

    Evaluation of functional properties of milled fractions of grain amaranth may be useful to decide the end uses of the grain. Hence, pasting profiles of amaranth fractions obtained by milling the grains at different moisture contents were studied in relation with their starch profile and also with their swelling power and solubility indices. It was observed that, for flour fraction, the viscosity parameters were lowest at 14-16 % moisture content. Swelling power and solubility indices of the samples varied as a function of grain moisture content. The middling fraction also showed similar pasting pattern with the variation of grain moisture content. The seed coat fractions showed higher gelatinization temperature compared to that of fine flour and middling fractions. However, starch content of the fine seed coat fraction was comparable with that of the flour and middling fractions. The coarse seed coat fraction showed lower viscosity parameters than the other samples. Viscosity parameters correlated well among themselves while, they did not show significant correlation with the starch content. However, the viscosity parameters showed negative correlation with the soluble amylose content. The study revealed that, the fractions obtained by milling the grains at different moisture content show differential pasting profiles and functional properties.

  11. Grain Boundary (GB) Studies in Nano- and Micro- Crystalline Materials

    OpenAIRE

    Tanju, Mst Sohanazaman

    2011-01-01

    Polycrystalline materials are composed of grains and grain boundaries. The total volume of occupied grain boundaries in polycrystalline material depends on the grain size. When grain size decreases the volume fraction of grain boundaries increases. For example, when grain size is 10 nm grain boundary volume fraction is ~ 25%. In polycrystalline materials, different properties (mechanical, electrical, optical, magnetic) are affected by the size of their grains and by the atomic structure of...

  12. Biological activity of ethanolic extract fractions of Dracaena arborea against infestation of stored grains by two storage insect pests.

    Science.gov (United States)

    Epidi, T T; Udo, I O

    2009-07-01

    As part of on-going efforts to use eco-friendly alternatives to chemical pesticides, ethanolic extract of dried leaves of Dracaena arborea (Willd.) Link (Dragon tree; Dracaenaceae) dissolved in distilled water and partitioned between equal volumes of n-hexane, chloroform, ethyl acetate and butanol was assessed in the laboratory against infestation by Sitophillus zeamais Motsch. and Callosobruchus maculatus Walp. in stored maize and cowpea, respectively. One hundred grams each of maize grains and cowpea seeds were treated with 400 mg kg(-1) of each extract fraction to evaluate contact toxicity, damage assessment, effect on eggs and immature stages and progeny production in both insect species. Contact toxicity by topical application, toxicity upon filter paper application and repellency using area preference method were carried out on the two insect species. Results showed that the extract fraction caused significant (p against S. zeamais. Grain damage was significantly (p grains were inhibited. The extract fractions evoked a strong repellent action against S. zeamais but moderate action against C. maculatus. The full potentials of using extract fractions of D. arborea as grain protectant against infestation by insect pests is discussed.

  13. Measurement and analysis of grain boundary grooving by volume diffusion

    Science.gov (United States)

    Hardy, S. C.; Mcfadden, G. B.; Coriell, S. R.; Voorhees, P. W.; Sekerka, R. F.

    1991-01-01

    Experimental measurements of isothermal grain boundary grooving by volume diffusion are carried out for Sn bicrystals in the Sn-Pb system near the eutectic temperature. The dimensions of the groove increase with a temporal exponent of 1/3, and measurement of the associated rate constant allows the determination of the product of the liquid diffusion coefficient D and the capillarity length Gamma associated with the interfacial free energy of the crystal-melt interface. The small-slope theory of Mullins is generalized to the entire range of dihedral angles by using a boundary integral formulation of the associated free boundary problem, and excellent agreement with experimental groove shapes is obtained. By using the diffusivity measured by Jordon and Hunt, the present measured values of Gamma are found to agree to within 5 percent with the values obtained from experiments by Gunduz and Hunt on grain boundary grooving in a temperature gradient.

  14. Lamb Wave Assessment of Fiber Volume Fraction in Composites

    Science.gov (United States)

    Seale, Michael D.; Smith, Barry T.; Prosser, W. H.; Zalameda, Joseph N.

    1998-01-01

    Among the various techniques available, ultrasonic Lamb waves offer a convenient method of examining composite materials. Since the Lamb wave velocity depends on the elastic properties of a material, an effective tool exists to evaluate composites by measuring the velocity of these waves. Lamb waves can propagate over long distances and are sensitive to the desired in-plane elastic properties of the material. This paper discusses a study in which Lamb waves were used to examine fiber volume fraction variations of approximately 0.40-0.70 in composites. The Lamb wave measurements were compared to fiber volume fractions obtained from acid digestion tests. Additionally, a model to predict the fiber volume fraction from Lamb wave velocity values was evaluated.

  15. Mechanical behavior of LC4 alloy in semisolid state at high volume fractions of solid

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The mechanical behavior of LC4 alloy in the semisolid state at high volume fractions of solid has been studied through unconstrictive compressing test. The results show that peak stress mainly depends on grain boundary's cohesion and instantaneous strain rate sensitivity in the semisolid state, which is similar to that in the solid state. Analyses on microstructures and status of compressive stress of specimen demonstrate that segregation of liquid-solid phase is mainly affected by strain rate and deformation temperature. There are mainly two kinds of flow in liquid phase: either from the region with relatively large hydrostatic compressive stress to the region with relatively small hydrostatic compressive stress or from the grain boundaries perpendicular to the compression axis to the grain boundaries with a certain directional angle to the compression direction. Based on the above results, compressive deformation mechanism mainly depends on deformation temperature, strain rate and stress state.

  16. Perfusion systems that minimize vascular volume fraction in engineered tissues.

    Science.gov (United States)

    Truslow, James G; Tien, Joe

    2011-06-01

    This study determines the optimal vascular designs for perfusing engineered tissues. Here, "optimal" describes a geometry that minimizes vascular volume fraction (the fractional volume of a tissue that is occupied by vessels) while maintaining oxygen concentration above a set threshold throughout the tissue. Computational modeling showed that optimal geometries depended on parameters that affected vascular fluid transport and oxygen consumption. Approximate analytical expressions predicted optima that agreed well with the results of modeling. Our results suggest one basis for comparing the effectiveness of designs for microvascular tissue engineering.

  17. Grain size fraction of heavy metals in soil and their relationship with land use

    Directory of Open Access Journals (Sweden)

    M. H. Sayadi

    2017-03-01

    Full Text Available The aim of the present study was to investigate the distribution of heavy metals (Pb, Ni, Cr and Cd in different grain-size fractions of the surface soils. The soil samples of different land uses were taken from 20 cm depth at 12 stations where is located at Amir Abad of Birjand city, Iran. The air-dried samples were passed through sieves of different sizes to collect the fractions lesser than 63 μm, 63-125 μm, 125-250 μm, 250-500 μm, 500-1000 μm and 1000-2000 μm. The samples were digested by perchloric acid and nitric acid; and the concentrations of heavy metals were determined using Atomic Absorption Spectrophotometer (model AAcontr700. The highest concentrations for Pb, Cr, Ni and Cd (139.5, 195.4, 98.4 and 3.15 mg/kg respectively were obtained in the fractions less than 63 μm from the road-side soils. The contamination factor values for the fractions less than 63 μm were higher than other fractions. The comparison of different toxic metals concentration from various grain-size fractions demonstrated higher Cr levels, especially in the 63-125 μm size fractions from the road-side lands. Thus, the comparison of grain size factors from different soils revealed that Cr exhibited highest values in relation to the other toxic elements studied.

  18. Laser-induced incandescence: Towards quantitative soot volume fraction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tzannis, A.P.; Wienbeucker, F.; Beaud, P.; Frey, H.-M.; Gerber, T.; Mischler, B.; Radi, P.P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Laser-Induced Incandescence has recently emerged as a versatile tool for measuring soot volume fraction in a wide range of combustion systems. In this work we investigate the essential features of the method. LII is based on the acquisition of the incandescence of soot when heated through a high power laser pulse. Initial experiments have been performed on a model laboratory flame. The behaviour of the LII signal is studied experimentally. By applying numerical calculations we investigate the possibility to obtain two-dimensional soot volume fraction distributions. For this purpose a combination of LII with other techniques is required. This part is discussed in some extent and the future work is outlined. (author) 4 figs., 3 refs.

  19. Gamma ray densitometry techniques for measuring of volume fractions

    Energy Technology Data Exchange (ETDEWEB)

    Affonso, Renato Raoni Werneck; Silva, Ademir Xavier da; Salgado, Cesar Marques, E-mail: raoniwa@yahoo.com.br, E-mail: ademir@nuclear.ufrj.br, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Knowledge of the volume fraction in a multiphase flow is of key importance in predicting the performance of many systems and processes. It is therefore an important parameter to characterize such flows. In the context of nuclear techniques, the gamma ray densitometry is promising and this is due to its non-invasive characteristics and very reliable results. It is used in several applications for multiphase flows (water-oil-air), which are employed tools such as: computational fluid dynamics, artificial neural networks and statistical methods of radiation transport, such as the Monte Carlo method. Based on the gamma radiation techniques for measurements of volume fractions, the aim of this paper is to present several techniques developed for this purpose. (author)

  20. MORPHOMETRIC CHARACTERIZATION OF THE SAND FRACTION IN A SAND GRAIN IMAGE CAPTURE SYSTEM1

    Directory of Open Access Journals (Sweden)

    Lucimar Arruda Viana

    Full Text Available ABSTRACT Morphology studies assume significant importance in analysis of phenomena of granular systems packaging, in particular with a view to the use of the technique of soil stabilization named particle size correction in forest roads. In this context, this study aimed to develop and operationalize a Sand Grain Image Capture System and, hereby, determine the morphological indices of the sand fractions of two sandy soils called João Pinheiro (JP and Cachoeira da Prata (CP. Soil samples, air-dried, were sieved (2.0 mm nominal mesh size for removal of gravels. The materials that passed through the sieve were subjected to dispersion, washing in 0.053 mm nominal mesh size sieve, removal of organic matter and iron oxides to obtain the clean sand fractions. Subsequently, each soil sample was sieved for separation into twelve classes, between the diameters of 0.149 mm and 1.190 mm, using a Rotap shaker. Next, tests were carried out to characterize the morphometric attributes of the twelve classes of sand fractions of the soils studied. For validation of the performance of the Sand Grain Image Capture System, the results were compared to those obtained using a standard procedure for image analysis. The analysis of the results led to the following conclusions: (i the sand fraction of the JP soil presented higher values for the morphometric indices roundness, elongation and compactness compared to sand fraction of the CP soil; and (ii the Sand Grain Image Capture System worked properly, with practicality.

  1. Estimation of liquid volume fraction using ultrasound transit time spectroscopy

    Science.gov (United States)

    Al-Qahtani, Saeed M.; Langton, Christian M.

    2016-12-01

    It has recently been proposed that the propagation of an ultrasound wave through complex structures, consisting of two-materials of differing ultrasound velocity, may be considered as an array of parallel ‘sonic rays’, the transit time of each determined by their relative proportion; being a minimum (t min) in entire higher velocity material, and a maximum (t max) in entire lower velocity material. An ultrasound transit time spectrum (UTTS) describes the proportion of sonic rays at an individual transit time. It has previously been demonstrated that the solid volume fraction of a solid:liquid composite, specifically acrylic step-wedges immersed in water, may be reliably estimated from the UTTS. The aim of this research was to investigate the hypothesis that the volume fraction of a two-component liquid mixture, of unequal ultrasound velocity, may also be estimated by UTTS. A through-transmission technique incorporating two 1 MHz ultrasound transducers within a horizontally-aligned cylindrical tube-housing was utilised, the proportion of silicone oil to water being varied from 0% to 100%. The liquid volume fraction was estimated from the UTTS at each composition, the coefficient of determination (R 2%) being 98.9  ±  0.7%. The analysis incorporated a novel signal amplitude normalisation technique to compensate for absorption within the silicone oil. It is therefore envisaged that the parallel sonic ray concept and the derived UTTS may be further applied to the quantification of liquid mixture composition assessment.

  2. Volume Fraction of Graphene Platelets in Copper-Graphene Composites

    Science.gov (United States)

    Jagannadham, K.

    2013-01-01

    Copper-graphene composite films were deposited on copper foil using electrochemical deposition. Four electrolyte solutions that each consist of 250 mL of graphene oxide suspension in distilled water and increasing volume of 0.2 M solution of CuSO4 in steps of 250 mL were used to deposit the composite films with and without a magnetic stirrer. Graphene oxide in the films was reduced to graphene by hydrogen treatment for 6 hours at 673 K (400 °C). The samples were characterized by X-ray diffraction for identification of phases, scanning electron microscopy for distribution of graphene, energy dispersive spectrometry for evaluation of elemental composition, electrical resistivity and temperature coefficient of electrical resistance and thermal conductivity. Effective mean field analysis (EMA) was used to determine the volume fraction and electrical conductivity of graphene and interfacial thermal conductance between graphene and copper. The electrical resistivity was reduced from 2.031 to 1.966 μΩ cm and the thermal conductivity was improved from 3.8 to 5.0 W/cm K upon addition of graphene platelets to electrolytic copper. The use of stirrer during deposition of the films increased the average size and the thickness of the graphene platelets and as a result the improvement in electrical conductivity was lower compared to the values obtained without the stirrer. Using the EMA, the volume fraction of graphene platelets that was responsible for the improvement in the electrical conductivity was found to be lower than that for the improvement in the thermal conductivity. The results of the analysis are used to determine the volume fraction of the thinner and the thicker graphene platelets in the composite films.

  3. Interactions of a lignin-rich fraction from brewer's spent grain with gut microbiota in vitro.

    Science.gov (United States)

    Niemi, Piritta; Aura, Anna-Marja; Maukonen, Johanna; Smeds, Annika I; Mattila, Ismo; Niemelä, Klaus; Tamminen, Tarja; Faulds, Craig B; Buchert, Johanna; Poutanen, Kaisa

    2013-07-10

    Lignin is a constituent of plant cell walls and thus is classified as part of dietary fiber. However, little is known about the role of lignin in gastrointestinal fermentation. In this work, a lignin-rich fraction was prepared from brewer's spent grain and subjected to an in vitro colon model to study its potential bioconversions and interactions with fecal microbiota. No suppression of microbial conversion by the fraction was observed in the colon model, as measured as short-chain fatty acid production. Furthermore, no inhibition on the growth was observed when the fraction was incubated with strains of lactobacilli and bifidobacteria. In fact, the lignin-rich fraction enabled bifidobacteria to survive longer than with glucose. Several transiently appearing phenolic compounds, very likely originating from lignin, were observed during the fermentation. This would indicate that the gut microbiota was able to partially degrade lignin and metabolize the released compounds.

  4. Connecting the grain-shearing mechanism of wave propagation in marine sediments to fractional calculus

    CERN Document Server

    Pandey, Vikash

    2015-01-01

    An analogy is drawn between the diffusion-wave equations derived from the fractional Kelvin-Voigt model and those obtained from Buckingham's grain-shearing (GS) model [J. Acoust. Soc. Am. 108, 2796-2815 (2000)] of wave propagation in saturated, unconsolidated granular materials. The material impulse response function from the GS model is found to be similar to the power-law memory kernel which is inherent in the framework of fractional calculus. The compressional wave equation and shear wave equation derived from the GS model turn out to be the Kelvin-Voigt fractional-derivative wave equation and the fractional diffusion-wave equation respectively. Also, a physical interpretation of the characteristic fractional-order present in the Kelvin-Voigt fractional derivative wave equation and time-fractional diffusion-wave equation is inferred from the GS model. The shear wave equation from the GS model predicts both diffusion and wave propagation in the fractional framework. The overall goal is intended to show that...

  5. VOFI - A library to initialize the volume fraction scalar field

    Science.gov (United States)

    Bnà, S.; Manservisi, S.; Scardovelli, R.; Yecko, P.; Zaleski, S.

    2016-03-01

    The VOFI library has been developed to accurately calculate the volume fraction field demarcated by implicitly-defined fluid interfaces in Cartesian grids with cubic cells. The method enlists a number of algorithms to compute the integration limits and the local height function, that is the integrand of a double Gauss-Legendre integration with a variable number of nodes. Tests in two and three dimensions are presented to demonstrate the accuracy of the method and are provided in the software distribution with C/C++ and FORTRAN interfaces.

  6. Tidal River Elbe - a sediment budget for the grain size fraction of medium sand

    Science.gov (United States)

    Winterscheid, Axel

    2016-04-01

    Human interventions have a historic and ongoing impact on estuarine sediment budgets across many estuaries worldwide. An early inference was the construction of embankments resulting in a constant loss of intertidal flats. Additionally, settlement activities and large scale land use changes in the upstream catchment areas had also an effect on sediment inflow rates. Today, the navigation channels in estuaries have been deepened for larger and more efficient vessels to reach a well-developed infrastructure of harbors and industrial areas often located far inland. In the past few years and just within the North-East Atlantic, the total annual amount of dredged sediments dumped at sea varied from 80 to 130 million tons (OSPAR Commission). In most estuaries across Europe the resulting human impact on the sediment fluxes and morphodynamics is significant. A good understanding of estuarine processes is essential for determining useful and meaningful measures to mitigate negative effects and to improve the current situation. Maintenance dredging and its environmental effects are therefore in the focus of public attention. Against this background, it is the aim of the presentation to identify and therefore to separate the particular effect that maintenance dredging has on sediment fluxes and budgets in the estuarine environment. Case study is the Tidal River Elbe in Germany, and here we set the focus on the grain size fraction of medium sand. In the past, river engineering measures forced the natural dynamics to form a concentrated stream flow along a fixed channel, except at a number of locations where side channels still exist. In addition to that, the main channel was deepened several times. The last deepening was in 1999/2000. The most significant deepening, however, took place from 1957 to 1962. Until then, an erosion-stable layer of marine clay (in German called "Klei") formed a flat bottom along most sections of the main channel. After removal of this layer of

  7. Technical Note: Stored grain volume measurement using a low density point cloud

    Science.gov (United States)

    The mass of stored grain is often determined from volume measurements by crop insurers, government auditors, and stored grain managers conducting inventories. Recent increases in bin size have accentuated the difficulty of accounting for irregularities and variations in surface conditions in calcula...

  8. Modified algorithm for generating high volume fraction sphere packings

    Science.gov (United States)

    Valera, Roberto Roselló; Morales, Irvin Pérez; Vanmaercke, Simon; Morfa, Carlos Recarey; Cortés, Lucía Argüelles; Casañas, Harold Díaz-Guzmán

    2015-06-01

    Advancing front packing algorithms have proven to be very efficient in 2D for obtaining high density sets of particles, especially disks. However, the extension of these algorithms to 3D is not a trivial task. In the present paper, an advancing front algorithm for obtaining highly dense sphere packings is presented. It is simpler than other advancing front packing methods in 3D and can also be used with other types of particles. Comparison with respect to other packing methods have been carried out and a significant improvement in the volume fraction (VF) has been observed. Moreover, the quality of packings was evaluated with indicators other than VF. As additional advantage, the number of generated particles with the algorithm is linear with respect to time.

  9. Determination of Acetonitrile Volume Fraction in Mobile Phase by HPLC

    Institute of Scientific and Technical Information of China (English)

    WU Yi; WANG Zhi-wu; GU Jing-kai; WANG Ying-wu

    2008-01-01

    This paper reports the development and validation of an assay for the determination of acetonitrile in the recycled mobile phase using high performance liquid chromatography(HPLC).The method is based on that the retention in reversed-phase liquid chromatography increases with decreasing concentration of organic phase in the mobile phase.The natural logarithm of the capacity ratio for a given solute is linearly related to the volume fraction of the organic modifier in the mobile phase.For dimethylphthalate and diethylphthalate,the linearity range is 30%--60%,and for biphenyl and terphenyl,the range is 60%-95%.Precision values(RSD) were both <1% and the accuracy(RE) was in the range of ±1%.The assay was successfully applied to the determination of acetonitrile concentration of recycled mobile phase after the distillation of the column eluent in our laboratory.

  10. Distribution of carotenoids in endosperm, germ, and aleurone fractions of cereal grain kernels.

    Science.gov (United States)

    Ndolo, Victoria U; Beta, Trust

    2013-08-15

    To compare the distribution of carotenoids across the grain, non-corn and corn cereals were hand dissected into endosperm, germ and aleurone fractions. Total carotenoid content (TCC) and carotenoid composition were analysed using spectrophotometry and HPLC. Cereal carotenoid composition was similar; however, concentrations varied significantly (paleurone layer had zeaxanthin levels 2- to 5-fold higher than lutein among the cereals. Positive significant correlations (paleurone layer. Our findings suggest that the aleurone of wheat, oat, corn and germ of barley have significantly enhanced carotenoid levels.

  11. Determination of degradation rates of organic substances in the unsaturated soil zone depending on the grain size fractions of various soil types

    Science.gov (United States)

    Fichtner, Thomas; Stefan, Catalin; Goersmeyer, Nora

    2015-04-01

    Rate and extent of the biological degradation of organic substances during transport through the unsaturated soil zone is decisively influenced by the chemical and physical properties of the pollutants such as water solubility, toxicity and molecular structure. Furthermore microbial degradation processes are also influenced by soil-specific properties. An important parameter is the soil grain size distribution on which the pore volume and the pore size depends. Changes lead to changes in air and water circulation as well as preferred flow paths. Transport capacity of water inclusive nutrients is lower in existing bad-drainable fine pores in soils with small grain size fractions than in well-drainable coarse pores in a soil with bigger grain size fractions. Because fine pores are saturated with water for a longer time than the coarse pores and oxygen diffusion in water is ten thousand times slower than in air, oxygen is replenished much slower in soils with small grain size fractions. As a result life and growth conditions of the microorganisms are negatively affected. This leads to less biological activity, restricted degradation/mineralization of pollutants or altered microbial processes. The aim of conducted laboratory column experiments was to study the correlation between the grain size fractions respectively pore sizes, the oxygen content and the biodegradation rate of infiltrated organic substances. Therefore two columns (active + sterile control) were filled with different grain size fractions (0,063-0,125 mm, 0,2-0,63 mm and 1-2 mm) of soils. The sterile soil was inoculated with a defined amount of a special bacteria culture (sphingobium yanoikuae). A solution with organic substances glucose, oxalic acid, sinaphylic alcohol and nutrients was infiltrated from the top in intervals. The degradation of organic substances was controlled by the measurement of dissolved organic carbon in the in- and outflow of the column. The control of different pore volumes

  12. Aspects of the Coarse-Grained-Based Approach to a Low-Relativistic Fractional Schr\\"odinger Equation

    CERN Document Server

    Weberszpil, J; Cherman, A; Helayël-Neto, J A

    2012-01-01

    The main goal of this paper is to set up the coarse-grained formulation of a fractional Schr\\"odinger equation that incorporates a higher (spatial) derivative term which accounts for relativistic effects at a lowest order. The corresponding continuity equation is worked out and we also identify the contribution of the relativistic correction the quantum potential in the coarse-grained treatment. As a consequence, in the classical regime, we derive the sort of fractional Newtonian law with the quantum potential included and the fractional conterparts of the De Broglies's energy and momentum relations.

  13. Distribution of Lipids in the Grain of Wheat (cv. Hereward) Determined by Lipidomic Analysis of Milling and Pearling Fractions.

    Science.gov (United States)

    González-Thuillier, Irene; Salt, Louise; Chope, Gemma; Penson, Simon; Skeggs, Peter; Tosi, Paola; Powers, Stephen J; Ward, Jane L; Wilde, Peter; Shewry, Peter R; Haslam, Richard P

    2015-12-16

    Lipidomic analyses of milling and pearling fractions from wheat grain were carried out to determine differences in composition that could relate to the spatial distribution of lipids in the grain. Free fatty acids and triacylglycerols were major components in all fractions, but the relative contents of polar lipids varied, particularly those of lysophosphatidylcholine and digalactosyldiglyceride, which were enriched in flour fractions. By contrast, minor phospholipids were enriched in bran and offal fractions. The most abundant fatty acids in the analyzed acyl lipids were C16:0 and C18:2 and their combinations, including C36:4 and C34:2. Phospholipids and galactolipids have been reported to have beneficial properties for breadmaking, whereas free fatty acids and triacylglycerols are considered detrimental. The subtle differences in the compositions of fractions determined in the present study could therefore underpin the production of flour fractions with optimized compositions for different end uses.

  14. Texture, local misorientation, grain boundary and recrystallization fraction in pipeline steels related to hydrogen induced cracking

    Energy Technology Data Exchange (ETDEWEB)

    Mohtadi-Bonab, M.A., E-mail: m.mohtadi@usask.ca; Eskandari, M.; Szpunar, J.A.

    2015-01-03

    In the present study, API X60 and X60SS pipeline steels were cathodically charged by hydrogen for 8 h using 0.2 M sulfuric acid and 3 g/l ammonium thiocyanate. After charging, SEM observations showed that the hydrogen induced cracking (HIC) appeared at the center of cross section in the X60 specimen. However, HIC did not appear in the X60SS steel. Therefore, electron backscatter diffraction (EBSD) technique was used to analyze the center of cross section of as-received X60SS, X60 and HIC tested X60 specimens. The results showed that the HIC crack not only can propagate through 〈100〉||ND oriented grains but also its growth may happen in various orientations. In HIC tested X60 specimen, an accumulation of low angle grain boundaries around the crack path documented that full recrystallization was not achieved during hot rolling. Kernel Average Misorientaion (KAM) histogram illustrated that the deformation is more concentrated in as-received and HIC tested X60 specimens rather than in as-received X60SS specimen. Moreover, the concentration of coincidence site lattice (CSL) boundary in HIC tested X60 specimen was very low compared with other samples. The recrystallization area fraction in X60SS steel was very high. This high amount of recrystallization fraction with no stored energy is one of the main reasons for high HIC resistance of this steel to HIC. The orientation distribution function (ODF) of the recrystallized, substructured and deformed fractions in as-received X60SS and X60 steel showed relative close orientations in both as-received specimens.

  15. Coarsening in high volume fraction nickel-base alloys

    Science.gov (United States)

    Mackay, R. A.; Nathal, M. V.

    1990-01-01

    The coarsening behavior of the gamma-prime precipitate has been examined in high volume fraction nickel-base alloys aged at elevated temperatures for times of up to 5000 h. Although the cube rate law was observed during coarsening, none of the presently available coarsening theories showed complete agreement with the experimental particle size distributions (PSDs). These discrepancies were thought to be due to elastic coherency strains which were not considered by the available models. Increasing the Mo content significantly influenced the PSDs and decreased the coarsening rate of the gamma-prime cubes, as a result of increasing the magnitude of the lattice mismatch. After extended aging times, the gamma-prime cubes underwent massive coalescence into plates at a rate which was much faster than the cuboidal coarsening rate. Once the gamma-prime plates were formed, further coarsening was not observed, and this stabilization of the microstructure was attributed to the development of dislocation networks at the gamma-gamma-prime interfaces.

  16. The Effects of Fibre Volume Fraction on a Glass-Epoxy Composite Material

    Directory of Open Access Journals (Sweden)

    Ciprian LARCO

    2015-09-01

    Full Text Available This paper focuses on the analysis of the longitudinal mechanical properties of Glass Fibre Reinforce Plastic (GFRP plates with different fibre volume fraction, Vf, by considering both analytical and experimental methods. The laminate is 0/90 E-glass/epoxy woven composite material made by hand lay-up technique. Fiber volume fraction, determined by ignition loss method, has a direct influence on the ultimate strength and modulus of elasticity of the composite plate. Tensile tests on specimens with different volume fractions allow the identification of the mathematical relationship between the fibre volume fraction and the longitudinal elastic modulus.

  17. PREDICTION OF CARBON CONCENTRATION AND FERRITE VOLUME FRACTION OF HOT-ROLLED STEEL STRIP DURING LAMINAR COOLING

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A phase transformation model was presented for predicting the phase fraction transformed and the carbon concentration in austenite for austenite to ferrite transformation during laminar cooling on run-out table in hot rolling strip mill. In this model, the parameter k in Avrami equation was developed for carbon steels. The wide range of chemical composition, the primary austenite grain size, and the retained strain were taken into account. It can be used to predict the ferrite volume fraction and the carbon concentration in austenite of hot-rolled steel strip during laminar cooling on run-out table. The coiling temperature controlling model was also presented to calculate the temperature of steel strip. The transformation kinetics of austenite to ferrite and the evolution of carbon concentration in austenite at different temperatures during cooling were investigated in the hot rolled Q235B strip for thickness of 9.35, 6.4, and 3.2mm. The ferrite volume fraction along the length of the strip was also calculated. The calculated ferrite volume fraction was compared with the log data from hot strip mill and the calculated results were in agreement with the experimental ones. The present study is a part of the prediction of the mechanical properties of hot-rolled steel strip, and it has already been used on-line and off-line in the hot strip mill.

  18. The rheology of hard sphere suspensions at arbitrary volume fractions: An improved differential viscosity model.

    Science.gov (United States)

    Mendoza, Carlos I; Santamaría-Holek, I

    2009-01-28

    We propose a simple and general model accounting for the dependence of the viscosity of a hard sphere suspension at arbitrary volume fractions. The model constitutes a continuum-medium description based on a recursive-differential method where correlations between the spheres are introduced through an effective volume fraction. In contrast to other differential methods, the introduction of the effective volume fraction as the integration variable implicitly considers interactions between the spheres of the same recursive stage. The final expression for the viscosity scales with this effective volume fraction, which allows constructing a master curve that contains all the experimental situations considered. The agreement of our expression for the viscosity with experiments at low- and high-shear rates and in the high-frequency limit is remarkable for all volume fractions.

  19. Inert gases in a terra sample - Measurements in six grain-size fractions and two single particles from Lunar 20.

    Science.gov (United States)

    Heymann, D.; Lakatos, S.; Walton, J. R.

    1973-01-01

    Review of the results of inert gas measurements performed on six grain-size fractions and two single particles from four samples of Luna 20 material. Presented and discussed data include the inert gas contents, element and isotope systematics, radiation ages, and Ar-36/Ar-40 systematics.

  20. Inert gases in a terra sample - Measurements in six grain-size fractions and two single particles from Lunar 20.

    Science.gov (United States)

    Heymann, D.; Lakatos, S.; Walton, J. R.

    1973-01-01

    Review of the results of inert gas measurements performed on six grain-size fractions and two single particles from four samples of Luna 20 material. Presented and discussed data include the inert gas contents, element and isotope systematics, radiation ages, and Ar-36/Ar-40 systematics.

  1. Tutorial for Collecting and Processing Images of Composite Structures to Determine the Fiber Volume Fraction

    Science.gov (United States)

    Conklin, Lindsey

    2017-01-01

    Fiber-reinforced composite structures have become more common in aerospace components due to their light weight and structural efficiency. In general, the strength and stiffness of a composite structure are directly related to the fiber volume fraction, which is defined as the fraction of fiber volume to total volume of the composite. The most common method to measure the fiber volume fraction is acid digestion, which is a useful method when the total weight of the composite, the fiber weight, and the total weight can easily be obtained. However, acid digestion is a destructive test, so the material will no longer be available for additional characterization. Acid digestion can also be difficult to machine out specific components of a composite structure with complex geometries. These disadvantages of acid digestion led the author to develop a method to calculate the fiber volume fraction. The developed method uses optical microscopy to calculate the fiber area fraction based on images of the cross section of the composite. The fiber area fraction and fiber volume fraction are understood to be the same, based on the assumption that the shape and size of the fibers are consistent in the depth of the composite. This tutorial explains the developed method for optically determining fiber area fraction performed at NASA Langley Research Center.

  2. Accuracy of cancellous bone volume fraction measured by micro-CT scanning

    DEFF Research Database (Denmark)

    Ding, Ming; Odgaard, A; Hvid, I

    1999-01-01

    Volume fraction, the single most important parameter in describing trabecular microstructure, can easily be calculated from three-dimensional reconstructions of micro-CT images. This study sought to quantify the accuracy of this measurement. One hundred and sixty human cancellous bone specimens...... which covered a large range of volume fraction (9.8-39.8%) were produced. The specimens were micro-CT scanned, and the volume fraction based on Archimedes' principle was determined as a reference. After scanning, all micro-CT data were segmented using individual thresholds determined by the scanner...

  3. Determination of fractionation of oxygen isotopes between rice grain and environmental water

    Science.gov (United States)

    Kaushal, R.; Ghosh, P.

    2013-12-01

    Oxygen isotopic composition (δ18O) of plant organic matter (POM) serves as a valuable proxy for paleoclimatic studies [1].The δ18O of POM emulates the isotopic composition of the source water [2]. Rice crop cultivation goes back to 12,000 years, when rice was first domesticated in China and the earliest cultivation of rice observed in India was during 3000- 2500 BC. Presently rice is cultivated in many countries around the world including India where the prerequisite of saturated soil water condition for optimum growth of rice crop is provided by the South west monsoons. Earlier studies on δ18O of rice have been limited to its geographic characterization [3]. However, detailed investigations to determine fractionation of oxygen isotopes in water, in different parts of a rice plant, with rice seed organic matter is the primary objective of this work. This is important for understanding the mechanism responsible for the transfer of source water signature to the seed organics and can facilitate understanding of past monsoonal regime using well preserved rice grain remains from archaeological sites. Water from the leaves and culms was extracted by means of heating and cryogenic distillation in a vacuum extraction system [4]. The source water and the water extracted from plant parts were analysed by CO2 equilibration method using Gas Bench peripheral. Rice seed powder, after removal of husk, is composed primarily of starch and were analysed using High Temperature Conversion-Elemental Analyser. Both these peripherals were coupled to an Isotope Ratio Mass spectrometer- MAT253 (Thermo Finnigan). Experimental results discussed here were based on greenhouse and field based studies of water and seed organic composition. The water fed to the plant in the green house showed an average δ18O value of -0.50‰ whereas the field water from irrigation covering the time of grain filling ranges between -1.03‰ and -3.08‰. Figure 1 displays the extent of enrichment recorded in

  4. The dependencies of phase velocity and dispersion on volume fraction in cancellous-bone-mimicking phantoms.

    Science.gov (United States)

    Wear, Keith A

    2009-02-01

    Frequency-dependent phase velocity was measured in eight cancellous-bone-mimicking phantoms consisting of suspensions of randomly oriented nylon filaments (simulating trabeculae) in a soft-tissue-mimicking medium (simulating marrow). Trabecular thicknesses ranged from 152 to 356 mum. Volume fractions of nylon filament material ranged from 0% to 10%. Phase velocity varied approximately linearly with frequency over the range from 300 to 700 kHz. The increase in phase velocity (compared with phase velocity in a phantom containing no filaments) at 500 kHz was approximately proportional to volume fraction occupied by nylon filaments. The derivative of phase velocity with respect to frequency was negative and exhibited nonlinear, monotonically decreasing dependence on volume fraction. The dependencies of phase velocity and its derivative on volume fraction in these phantoms were similar to those reported in previous studies on (1) human cancellous bone and (2) phantoms consisting of parallel nylon wires immersed in water.

  5. Influence of fibre volume fraction and temperature on fatigue life of glass fibre reinforced plastics

    Directory of Open Access Journals (Sweden)

    Konrad Wegener

    2016-07-01

    Full Text Available The influence of fibre volume fraction and temperature on fatigue life of continuous glass fibre reinforced plastics is investigated in detail. The physical causes of the two effects on the slope of the S-N-curve in fibre direction at R = 0.1 are researched and can be explained with help of micrographs. A new phenomenological approach is presented to model both effects in fibre dominated laminates with different stacking sequences using only the static ultimate strength as an input. Static and fatigue tests of different layups and fibre volume fractions are performed at different temperatures to validate the fatigue life predictions. Additionally it is derived that there is an optimal fibre volume fraction regarding a minimum damage sum. This fibre volume fraction is dependent on a given loading spectra and can be calculated using the phenomenological model.

  6. Centrifugal Step Emulsification can Produce Water in Oil Emulsions with Extremely High Internal Volume Fractions

    Directory of Open Access Journals (Sweden)

    Friedrich Schuler

    2015-08-01

    Full Text Available The high throughput preparation of emulsions with high internal volume fractions is important for many different applications, e.g., drug delivery. However, most emulsification techniques reach only low internal volume fractions and need stable flow rates that are often difficult to control. Here, we present a centrifugal high throughput step emulsification disk for the fast and easy production of emulsions with high internal volume fractions above 95%. The disk produces droplets at generation rates of up to 3700 droplets/s and, for the first time, enables the generation of emulsions with internal volume fractions of >97%. The coefficient of variation between droplet sizes is very good (4%. We apply our system to show the in situ generation of gel emulsion. In the future, the recently introduced unit operation of centrifugal step emulsification may be used for the high throughput production of droplets as reaction compartments for clinical diagnostics or as starting material for micromaterial synthesis.

  7. Effect of spray volume on the moisture of stored corn and wheat grains

    Directory of Open Access Journals (Sweden)

    Javier Alberto Vásquez-Castro

    2008-06-01

    Full Text Available The goal of this work was to evaluate the effect of spray volume on the moisture of the stored grains of the corn and wheat. Two kg of each type of the grain were placed into the plastic bags and sprayed with the theoretical doses of 0, 1, 3, 5, 8, and 10 liters of water / ton of the grain. The grain moisture content was evaluated 24 h after the spray operation by the oven method. The increase in the grain moisture was quadratic and showed the same trend in both the corn and wheat. The grain moisture after spraying 10 L.t-1 showed little increase (0.8 % as compared to the initial moisture content. Thus, the application of any spray volume as used in this study made no difference for a possible better uniformity in the distribution of insecticide throughout the sprayed material.A pulverização de inseticidas é o principal método de controle preventivo das pragas dos grãos armazenados. O objetivo deste trabalho foi avaliar o efeito do volume de pulverização na umidade de grãos de milho e trigo armazenados. Foram acondicionados 2 kg de grãos em sacos plásticos e pulverizados com doses teóricas de zero, 1, 3, 5, 8 e 10 litros de água / tonelada de grão. A avaliação do teor de umidade dos grãos foi feita 24 horas após a pulverização mediante o método da estufa. O acréscimo na umidade dos grãos em função do volume de água pulverizado, foi quadrático e teve a mesma tendência tanto para o milho como para o trigo. A umidade dos grãos após a pulverização de 10 L.t-1 teve pequeno acréscimo (0,8 % quando comparado com o teor inicial. Desse modo, é indiferente o uso de qualquer volume estudado, visando a maior uniformidade de distribuição do inseticida na massa de grãos.

  8. Evaluating Volume Fractions of the Elements for Composite Laminates by Using Dielectric Properties

    Institute of Scientific and Technical Information of China (English)

    周胜; 储才元; 严灏景

    2001-01-01

    A series and parallel model for investigating the capacity of composite laminates and the relationship between the dielectric properties of the composites and its constituents are presented. Volume fractions of the constituents are considered in this study. The expression of the complex dielectric constants for evaluating volume fractions under discrete frequencies is established and the general solutions for the resultant linear simultaneous equations for system are also exploited.The results show that the high accuracy of proposed method is obtained.

  9. The coupled effect of fiber volume fraction and void fraction on hydraulic fluid absorption of quartz/BMI laminates

    Science.gov (United States)

    Hurdelbrink, Keith R.; Anderson, Jacob P.; Siddique, Zahed; Altan, M. Cengiz

    2016-03-01

    Bismaleimide (BMI) resin with quartz (AQ581) fiber reinforcement is a composite material frequently used in aerospace applications, such as engine cowlings and radomes. Various composite components used in aircrafts are exposed to different types of hydraulic fluids, which may lead to anomalous absorption behavior over the service life of the composite. Accurate predictive models for absorption of liquid penetrants are particularly important as the composite components are often exposed to long-term degradation due to absorbed moisture, hydraulic fluids, or similar liquid penetrants. Microstructural features such as fiber volume fraction and void fraction can have a significant effect on the absorption behavior of fiber-reinforced composites. In this paper, hydraulic fluid absorption characteristics of quartz/BMI laminates fabricated from prepregs preconditioned at different relative humidity and subsequently cured at different pressures are presented. The composite samples are immersed into hydraulic fluid at room temperature, and were not subjected to any prior degradation. To generate process-induced microvoids, prepregs were conditioned in an environmental chamber at 2% or 99% relative humidity at room temperature for a period of 24 hours prior to laminate fabrication. To alter the fiber volume fraction, the laminates were fabricated at cure pressures of 68.9 kPa (10 psi) or 482.6 kPa (70 psi) via a hot-press. The laminates are shown to have different levels of microvoids and fiber volume fractions, which were observed to affect the absorption dynamics considerably and exhibited clear non-Fickian behavior. A one-dimensional hindered diffusion model (HDM) was shown to be successful in predicting the hydraulic fluid absorption. Model prediction indicates that as the fabrication pressure increased from 68.9 kPa to 482.6 kPa, the maximum fluid content (M∞) decreased from 8.0% wt. to 1.0% wt. The degree of non-Fickian behavior, measured by hindrance coefficient (

  10. Accumulation of Protein Fractions during Grain Filloing of Wheat Genotypes Differing in Protein Content and Baking Quality

    Institute of Scientific and Technical Information of China (English)

    LiuXiaobing; LiWenxiong; 等

    1995-01-01

    The accumulation of protein fractions was analyzed on developing and mature wheat grains of three cultivars differing in protein content and baking quality.There was a slight difference in the accumulation of cytoplasmic proteins in the cultivars used.The high yield but low protein cultivar showed a consistent decline of protein content during grain filling but the high-protein cultivars increascd their psotein contant after 25 days post-anthesis.The accumulation of storage proteins was different from that of cytoplasmic protein.and there were also cultivar variations,However,all cultivars reached their.Maximum-synthesizing capacity for storage proteins at maturity.The relationship between the protein fractions or their ratio and baking quality was also discussed.

  11. In Situ Void Fraction and Gas Volume in Hanford Tank 241-SY-101 as Measured with the Void Fraction Instrument

    Energy Technology Data Exchange (ETDEWEB)

    CW Stewart; G Chen; JM Alzheimer; PA Meyer

    1998-11-10

    The void fraction instrument (WI) was deployed in Tank 241-SY-101 three times in 1998 to confm and locate the retained gas (void) postulated to be causing the accelerating waste level rise observed since 1995. The design, operation, and data reduction model of the WI are described along with validation testing and potential sources of uncertainty. The test plans, field observations and void measurements are described in detail, including the total gas volume calculations and the gas volume model. Based on 1998 data, the void fraction averaged 0.013 i 0.001 in the mixed slurry and 0.30 ~ 0.04 in the crust. This gives gas volumes (at standard pressure and temperature) of 87 t 9 scm in the slurry and 138 ~ 22 scm in the crust for a total retained gas volume of221 *25 scm. This represents an increase of about 74 scm in the crust and a decrease of about 34 scm in the slurry from 1994/95 results. The overall conclusion is that the gas retention is occurring mainly in the crust layer and there is very little gas in the mixed slurry and loosely settled layers below. New insights on crust behavior are also revealed.

  12. GEANT4 simulation of water volume fraction measurement in dehydrated crude oil

    Institute of Scientific and Technical Information of China (English)

    JING Chunguo; XING Guangzhong; LIU Bin

    2007-01-01

    Online measurement of water volume fraction (WVF) in dehydrated crude oil is a difficult task due to very little water in dehydrated crude oil and high precision requirements. We presents a method to measure water volume fraction in dehydrated crude oil with γ-ray densitometry. The Monte Carlo computer simulation packet GEANT4 was used to analyze the WVF measuring sensitivity of the γ-ray densitometry at different γ-ray energies, and effects of temperature, pressure, salinity and oil components on WVF measurement. The results show that the γ-ray densitome-try has high sensitivity in γ-ray energy ranges of 16~25 keV, and it can distinguish WVF changes of 0.0005. The calculated WVF decreases about 0.0002 with 1 ℃ of temperature increase and they have approximately linear relation with temperature when water volume fraction remains the same. Effects of pressure, salinity and oil components on water volume fraction can be neglected. Experiments were done to analyze sensitivity of the γ-ray densitometry. The results, as compared with simulations, demonstrate that simulation method is reliable and it is feasible to gauge low water volume fraction using low energy γ-rays.

  13. Connecting the grain-shearing mechanism of wave propagation in marine sediments to fractional order wave equations.

    Science.gov (United States)

    Pandey, Vikash; Holm, Sverre

    2016-12-01

    The characteristic time-dependent viscosity of the intergranular pore-fluid in Buckingham's grain-shearing (GS) model [Buckingham, J. Acoust. Soc. Am. 108, 2796-2815 (2000)] is identified as the property of rheopecty. The property corresponds to a rare type of a non-Newtonian fluid in rheology which has largely remained unexplored. The material impulse response function from the GS model is found to be similar to the power-law memory kernel which is inherent in the framework of fractional calculus. The compressional wave equation and the shear wave equation derived from the GS model are shown to take the form of the Kelvin-Voigt fractional-derivative wave equation and the fractional diffusion-wave equation, respectively. Therefore, an analogy is drawn between the dispersion relations obtained from the fractional framework and those from the GS model to establish the equivalence of the respective wave equations. Further, a physical interpretation of the characteristic fractional order present in the wave equations is inferred from the GS model. The overall goal is to show that fractional calculus is not just a mathematical framework which can be used to curve-fit the complex behavior of materials. Rather, it can also be derived from real physical processes as illustrated in this work by the example of GS.

  14. The effect of strain path change on subgrain volume fraction determined from in situ X-ray measurements

    DEFF Research Database (Denmark)

    Wejdemann, Christian; Poulsen, Henning Friis; Lienert, U.

    2009-01-01

    The evolution of dislocation structures in individual bulk grains in copper during strain path changes is studied with a new in situ synchrotron technique which combines high angular resolution with fast three-dimensional reciprocal space mapping. Deformed copper contains regions with vanishing...... dislocation density called subgrains bounded by dislocation rich walls. With the new technique reciprocal space maps, consisting of sharp peaks arising from the subgrains superimposed on a cloud of lower intensity arising from the dislocation walls, are obtained, which allows properties such as subgrain...... volume fraction to be quantified. The studied strain path changes are tension-tension sequences. Polycrystalline copper sheets are pre-deformed in tension to 5% strain, and tensile samples are cut with varying angles between the first and second loading axis. The second tensile deformation up...

  15. A Novel Semiautomated Fractional Limb Volume Tool for Rapid and Reproducible Fetal Soft Tissue Assessment.

    Science.gov (United States)

    Mack, Lauren M; Kim, Sung Yoon; Lee, Sungmin; Sangi-Haghpeykar, Haleh; Lee, Wesley

    2016-07-01

    The purpose of this study was to document the reproducibility and efficiency of a semiautomated image analysis tool that rapidly provides fetal fractional limb volume measurements. Fifty pregnant women underwent 3-dimensional sonographic examinations for fractional arm and thigh volumes at a mean menstrual age of 31.3 weeks. Manual and semiautomated fractional limb volume measurements were calculated, with the semiautomated measurements calculated by novel software (5D Limb Vol; Samsung Medison, Seoul, Korea). The software applies an image transformation method based on the major axis length, minor axis length, and limb center coordinates. A transformed image is used to perform a global optimization technique for determination of an optimal limb soft tissue boundary. Bland-Altman analysis defined bias with 95% limits of agreement (LOA) between methods, and timing differences between manual versus automated methods were compared by a paired t test. Bland-Altman analysis indicated an acceptable bias with 95% LOA between the manual and semiautomated methods: mean arm volume ± SD, 1.7% ± 4.6% (95% LOA, -7.3% to 10.7%); and mean thigh volume, 0.0% ± 3.8% (95% LOA, -7.5% to 7.5%). The computer-assisted software completed measurements about 5 times faster compared to manual tracings. In conclusion, semiautomated fractional limb volume measurements are significantly faster to calculate when compared to a manual procedure. These results are reproducible and are likely to reduce operator dependency. The addition of computer-assisted fractional limb volume to standard biometry may improve the precision of estimated fetal weight by adding a soft tissue component to the weight estimation process.

  16. Effects of volume fraction condition on thermodynamic restrictions in mixture theory

    Institute of Scientific and Technical Information of China (English)

    牛永红; 苗天德

    2002-01-01

    Volume fraction condition is a true constraint that must be taken into consideration in deducing the thermodynamic restrictions of mixture theory applying the axiom of dissipation. For a process to be admissible, the constraints imposed by the volume fraction condition include not only the equation obtained by taking its material derivative with respect to the motion of a given phase, but also those by taking its spatial gradient. The thermodynamic restrictions are deduced under the complete constraints, the results obtained are consistent for the mixtures with or without a compressible phase,and in which the free energy of each phase depends on the densities of all phases.

  17. Analysis of the Microstructure and Permeability of the Laminates with Different Fiber Volume Fraction

    Institute of Scientific and Technical Information of China (English)

    MA Yue; LI Wei; LIANG Zi-qing

    2008-01-01

    Microstmctures of laminates produced by epoxy/ carbon fibers with different fiber volume fraction were studied by analyzing the composite cross-sections. The main result of the compaction of reinforcement is the flatting of bundle shape, the reducing of gap and the embedment of bundles among each layer. The void content outside the bundle decreased sharply during the compoction until it is less than that inside the bundle when the fiber volume fraction is over 60%. The resin flow velocity in the fiber tow is 102-104 times greater than the flow velocity out the fiber tow no matter the capillary pressure is taken into account or not.

  18. Vibrations of FGM thin cylindrical shells with exponential volume fraction law

    Institute of Scientific and Technical Information of China (English)

    Abdul Ghafar Shah; Tahir Mahmood; Muhammad Nawaz Naeem

    2009-01-01

    In this paper,the influence of an exponential volume fraction law on the vibration frequencies of thin functionally graded cylindrical shells is studied. Material properties in the shell thickness direction are graded in accordance with the exponential law. Expressions for the strain-displacement and curvature-displacement relationships are taken from Love's thin shell theory. The Rayleigh-Ritz approach is used to derive the shell eigenfrequency equation. Axial modal dependence is assumed in the characteristic beam functions. Natural frequencies of the shells are observed to be dependent on the constituent volume fractions. The results are compared with those available in the literature for the validity of the present methodology.

  19. Prediction of volume fractions in three-phase flows using nuclear technique and artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Marques Salgado, Cesar [Instituto de Engenharia Nuclear, DIRA/IEN/CNEN, Rio de Janeiro, CEP.: 21945-970-Caixa Postal 68550 (Brazil)], E-mail: otero@ien.gov.br; Brandao, Luis E.B. [Instituto de Engenharia Nuclear, DIRA/IEN/CNEN, Rio de Janeiro, CEP.: 21945-970-Caixa Postal 68550 (Brazil); Schirru, Roberto [Universidade Federal do Rio de Janeiro, PEN/COPPE-DNC/EE-CT, Rio de Janeiro, CEP.: 21941-972-Caixa Postal 68509 (Brazil); Pereira, Claudio M.N.A. [Instituto de Engenharia Nuclear, DIRA/IEN/CNEN, Rio de Janeiro, CEP.: 21945-970-Caixa Postal 68550 (Brazil); Silva, Ademir Xavier da [Universidade Federal do Rio de Janeiro, PEN/COPPE-DNC/EE-CT, Rio de Janeiro, CEP.: 21941-972-Caixa Postal 68509 (Brazil); Ramos, Robson [Instituto de Engenharia Nuclear, DIRA/IEN/CNEN, Rio de Janeiro, CEP.: 21945-970-Caixa Postal 68550 (Brazil)

    2009-10-15

    This work presents methodology based on nuclear technique and artificial neural network for volume fraction predictions in annular, stratified and homogeneous oil-water-gas regimes. Using principles of gamma-ray absorption and scattering together with an appropriate geometry, comprised of three detectors and a dual-energy gamma-ray source, it was possible to obtain data, which could be adequately correlated to the volume fractions of each phase by means of neural network. The MCNP-X code was used in order to provide the training data for the network.

  20. Viscosity of water-in-oil emulsions. Variation with temperature and water volume fraction

    Energy Technology Data Exchange (ETDEWEB)

    Farah, Marco A.; Caldas, Jorge Navaes [Petroleo Brasileiro S.A., Rua General Canabarro, 500, Maracana, Rio, CEP 2057-900 (Brazil); Oliveira, Roberto C. [Petroleo Brasileiro S.A., Cenpes, Cidade Universitaria (Brazil); Rajagopal, Krishnaswamy [LATCA-Laboratorio de Termodinamica e Cinetica Aplicada-Escola de Quimica, Departamento de Engenharia Quimica, Universidade Federal do Rio de Janeiro, UFRJ, Cidade Universitaria, C.P. 68452, CEP 21949-900, Rio de Janeiro (Brazil)

    2005-09-15

    Water-in-oil emulsions are important in the petroleum industry in production operations, where the water content of the emulsion can be as high as 60% in volume, also in petroleum refining operations where generally the water content is low. The effective viscosity of water-in-oil emulsions depends mainly on the volume fraction of dispersed phase and temperature, along with several minor effects, such as shear rate, average droplet size, droplet size distribution, viscosity and density of oil. Using six different crude oils, the effective viscosities of several synthetic water-in-oil emulsions are measured at atmospheric pressure using a dynamic viscosimeter for different shear rates, temperatures and volume fractions of the dispersed phase. The ASTM equation, method D-341, for describing viscosity as a function of temperature is extended to include the variation of dispersed phase volume fraction. The proposed equation gives good correlation between the measured viscosities of water-in-oil emulsions as a function of temperature and the volume fraction of water.

  1. Imaging air volume fraction in sea ice using non-destructive X-ray tomography

    Directory of Open Access Journals (Sweden)

    O. Crabeck

    2015-09-01

    Full Text Available Although the presence of a gas phase in sea ice creates the potential for gas exchange with the atmosphere, the distribution of gas bubbles and transport of gases within the sea ice are still poorly understood. Currently no straightforward technique exists to measure the vertical distribution of air volume fraction in sea ice. Here, we present a new fast and non-destructive X-ray computed tomography technique to quantify the air volume fraction and produce separate 3-D images of air-volume inclusions in sea ice. The technique was performed on relatively thin (4–22 cm sea ice collected from an experimental ice tank. While most of the internal layers showed air-volume fractions 5 mm. While micro bubbles were the most abundant type of air inclusions, most of the air porosity observed resulted from the presence of large and macro bubbles. The ice microstructure (granular and columnar as well as the permeability state of ice are important factors controlling the air volume fraction. The technique developed is suited for studies related to gas transport and bubble migration and can help considerably improving parameterization of these processes in sea ice biogeochemical models.

  2. Imaging air volume fraction in sea ice using non-destructive X-ray tomography

    Science.gov (United States)

    Crabeck, Odile; Galley, Ryan; Delille, Bruno; Else, Brent; Geilfus, Nicolas-Xavier; Lemes, Marcos; Des Roches, Mathieu; Francus, Pierre; Tison, Jean-Louis; Rysgaard, Søren

    2016-05-01

    Although the presence of a gas phase in sea ice creates the potential for gas exchange with the atmosphere, the distribution of gas bubbles and transport of gases within the sea ice are still poorly understood. Currently no straightforward technique exists to measure the vertical distribution of air volume fraction in sea ice. Here, we present a new fast and non-destructive X-ray computed tomography technique to quantify the air volume fraction and produce separate images of air volume inclusions in sea ice. The technique was performed on relatively thin (4-22 cm) sea ice collected from an experimental ice tank. While most of the internal layers showed air volume fractions bubbles (Ø bubbles (1 mm bubbles (Ø > 5 mm). While micro bubbles were the most abundant type of gas bubbles, most of the air porosity observed resulted from the presence of large and macro bubbles. The ice texture (granular and columnar) as well as the permeability state of ice are important factors controlling the air volume fraction. The technique developed is suited for studies related to gas transport and bubble migration.

  3. Application of fine-grained coke breeze fractions in the process of iron ore sintering

    Directory of Open Access Journals (Sweden)

    M. Niesler

    2014-01-01

    Full Text Available The testing cycle, described in the paper, included fine-grained coke breeze granulation tests and iron concentrate sintering tests with the use of selected granulate samples. The use of granulated coke breeze in the sintering process results in a higher process efficiency, shorter sintering duration and fuel saving.

  4. Influence of bress laminate volume fraction on electromechanical properties of externally laminated coated conductor tapes

    Energy Technology Data Exchange (ETDEWEB)

    Bautista, Zhierwinjay M.; Shin, Hyung Seop [Dept. of Mechanical Design Engineering, Andong National University, Andong (Korea, Republic of); Lee, Jae Hun; Lee, Hun Ju; Moon, Seung Hyun [SuNAM Co Ltd., Anseong (Korea, Republic of)

    2016-09-15

    The enhancement of mechanical properties of coated conductor (CC) tapes in practical application are usually achieved by reinforcing through lamination or electroplating metal layers on either sides of the CC tape. Mechanical or electromechanical properties of the CC tapes have been largely affected by the lamination structure under various loading modes such as tension, bending or even cyclic. In this study, the influence of brass laminate volume fraction on electromechanical properties of RCE-DR processed Gadolinium-barium-copper-oxide (GdBCO) CC tapes was investigated. The samples used were composed of single-side and both-side laminate of brass layer to the Cu-stabilized CC tape and their Ic behaviors were compared to those of the Cu-stabilized CC tape without external lamination. The stress/strain dependences of Ic in laminated CC tapes under uniaxial tension were analyzed and the irreversible stress/strain limits were determined. As a result, the increase of brass laminate volume fraction initially increased the irreversible strain limit and became gradual. The corresponding irreversible stress limit, however, showed no difference even though the brass laminate volume fraction increased to 3.4. But the irreversible load limit linearly increased with the brass laminate volume fraction.

  5. Spinal cord tolerance to single-fraction partial-volume irradiation: a swine model

    NARCIS (Netherlands)

    Medin, P.M.; Foster, R.D.; Kogel, A.J. van der; Sayre, J.W.; McBride, W.H.; Solberg, T.D.

    2011-01-01

    PURPOSE: To determine the spinal cord tolerance to single-fraction, partial-volume irradiation in swine. METHODS AND MATERIALS: A 5-cm-long cervical segment was irradiated in 38-47-week-old Yucatan minipigs using a dedicated, image-guided radiosurgery linear accelerator. The radiation was delivered

  6. Carboxypeptidase I from triticale grains and the hydrolysis of salt-soluble fractions of storage proteins.

    Science.gov (United States)

    Drzymała, Adam; Prabucka, Beata; Bielawski, Wiesław

    2012-09-01

    Carboxypeptidase I was purified from triticale grains (×Triticosecale Wittm.) by a 5-step purification procedure including gel filtration, cation-exchange chromatography and affinity chromatography. The enzyme was purified 595.9 fold with a 1.58% recovery. Triticale carboxypeptidase I is a homodimer with a molecular weight of 124.2 kDa and a subunit weight of 55.2 kDa. Each subunit is composed of two polypeptide chains (33.4 and 21.3 kDa). Serine was found in the active site of triticale carboxypeptidase I; DFP (diisopropylflourophosphate) and other applied inhibitors of serine proteases inhibited the enzyme activity. Triticale carboxypeptidase I hydrolyzes N-CBZ-dipeptide (N-carbobenzoxy-dipeptide) substrates at low pH. N-CBZ-Phe-Ala, N-CBZ-Phe-Leu and N-CBZ-Ala-Met were hydrolyzed with the highest rates. The lowest K(m) value and the highest k(cat)/K(m) ratio were observed for hydrolysis of N-CBZ-Phe-Ala. Studies on the amino acid sequence revealed that the purified enzyme is homologous to carboxypeptidase I from barley. Analyses of conserved regions in the sequence of triticale carboxypeptidase I revealed the presence of Ser, Asp and His that compose the catalytic triad. Intact storage proteins were poor substrates for carboxypeptidases. Carboxypeptidase I together with carboxypeptidase III effectively degraded albumins proteolytically modified by endopeptidase EP8. Modified globulins were degraded at a slower rate, and all three carboxypeptidases were required for a significantly increased activity. Studies of the expression of the carboxypeptidase I gene revealed that the synthesis of the enzyme occurs mainly in the scutellum of the grain. The enzyme is also expressed in the aleurone layer of the grains, although its function in this tissue is unknown.

  7. Determination of volume fractions of texture components with standard distributions in Euler space

    Science.gov (United States)

    Cho, Jae-Hyung; Rollett, A. D.; Oh, K. H.

    2004-03-01

    The intensities of texture components are modeled by Gaussian distribution functions in Euler space. The multiplicities depend on the relation between the texture component and the crystal and sample symmetry elements. Higher multiplicities are associated with higher maximum values in the orientation distribution function (ODF). The ODF generated by Gaussian function shows that the S component has a multiplicity of 1, the brass and copper components, 2, and the Goss and cube components, 4 in the cubic crystal and orthorhombic sample symmetry. Typical texture components were modeled using standard distributions in Euler space to calculate a discrete ODF, and their volume fractions were collected and verified against the volume used to generate the ODF. The volume fraction of a texture component that has a standard spherical distribution can be collected using the misorientation approach. The misorientation approach means integrating the volume-weighted intensity that is located within a specified cut-off misorientation angle from the ideal orientation. The volume fraction of a sharply peaked texture component can be collected exactly with a small cut-off value, but textures with broad distributions (large full-width at half-maximum (FWHM)) need a larger cut-off value. Larger cut-off values require Euler space to be partitioned between texture components in order to avoid overlapping regions. The misorientation approach can be used for texture's volume in Euler space in a general manner. Fiber texture is also modeled with Gaussian distribution, and it is produced by rotation of a crystal located at g 0, around a sample axis. The volume of fiber texture in wire drawing or extrusion also can be calculated easily in the unit triangle with the angle distance approach.

  8. Determination of volume fractions in two-phase flows from sound speed measurement

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, Anirban [Los Alamos National Laboratory; Sinha, Dipen N. [Los Alamos National Laboratory; Osterhoudt, Curtis F. [University of Alaska

    2012-08-15

    Accurate measurement of the composition of oil-water emulsions within the process environment is a challenging problem in the oil industry. Ultrasonic techniques are promising because they are non-invasive and can penetrate optically opaque mixtures. This paper presents a method of determining the volume fractions of two immiscible fluids in a homogenized two-phase flow by measuring the speed of sound through the composite fluid along with the instantaneous temperature. Two separate algorithms are developed by representing the composite density as (i) a linear combination of the two densities, and (ii) a non-linear fractional formulation. Both methods lead to a quadratic equation with temperature dependent coefficients, the root of which yields the volume fraction. The densities and sound speeds are calibrated at various temperatures for each fluid component, and the fitted polynomial is used in the final algorithm. We present results when the new algorithm is applied to mixtures of crude oil and process water from two different oil fields, and a comparison of our results with a Coriolis meter; the difference between mean values is less than 1%. Analytical and numerical studies of sensitivity of the calculated volume fraction to temperature changes and calibration errors are also presented.

  9. Tumor classification using perfusion volume fractions in breast DCE-MRI

    Science.gov (United States)

    Lee, Sang Ho; Kim, Jong Hyo; Park, Jeong Seon; Park, Sang Joon; Jung, Yun Sub; Song, Jung Joo; Moon, Woo Kyung

    2008-03-01

    This study was designed to classify contrast enhancement curves using both three-time-points (3TP) method and clustering approach at full-time points, and to introduce a novel evaluation method using perfusion volume fractions for differentiation of malignant and benign lesions. DCE-MRI was applied to 24 lesions (12 malignant, 12 benign). After region growing segmentation for each lesion, hole-filling and 3D morphological erosion and dilation were performed for extracting final lesion volume. 3TP method and k-means clustering at full-time points were applied for classifying kinetic curves into six classes. Intratumoral volume fraction for each class was calculated. ROC and linear discriminant analyses were performed with distributions of the volume fractions for each class, pairwise and whole classes, respectively. The best performance in each class showed accuracy (ACC), 84.7% (sensitivity (SE), 100%; specificity (SP), 66.7% to a single class) to 3TP method, whereas ACC, 73.6% (SE, 41.7%; SP, 100% to a single class) to k-means clustering. The best performance in pairwise classes showed ACC, 75% (SE, 83.3%; SP, 66.7% to four class pairs and SE, 58.3%; SP, 91.7% to a single class pair) to 3TP method and ACC, 75% (SE, 75%; SP, 75% to a single class pair and SE, 66.7%; SP, 83.3% to three class pairs) to k-means clustering. The performance in whole classes showed ACC, 75% (SE, 83.3%; SP, 66.7%) to 3TP method and ACC, 75% (SE, 91.7%; 58.3%) to k-means clustering. The results indicate that tumor classification using perfusion volume fractions is helpful in selecting meaningful kinetic patterns for differentiation of malignant and benign lesions, and that two different classification methods are complementary to each other.

  10. Changes in the arabinoxylan fraction of wheat grain during alcohol production.

    Science.gov (United States)

    Kosik, Ondrej; Powers, Stephen J; Chatzifragkou, Afroditi; Prabhakumari, Parvathy Chandran; Charalampopoulos, Dimitris; Hess, Linde; Brosnan, James; Shewry, Peter R; Lovegrove, Alison

    2017-04-15

    Laboratory produced DDGS samples were compared with commercial samples from a distillery and a biofuel plant. Changes in structure, solubility and content of arabinoxylan (AX) was determined. The distillation process results in a relative increase of AX content compared to the starting material. The heating and drying processes involved in the production of DDGS lead to an increased solubility and viscosity of water-extractable AX. Production of DDGS results in structural changes to the AX. There is a decrease in 2- and 3-linked arabinose oligosaccharides, that contributes to around a 50% reduction in arabinosylation in DDGS compared with the starting grains. The current study shows that laboratory-scale DDGS provide an accurate representation of the commercial scale and that the AX composition of DDGS is consistently uniform irrespective of starting material. The uniformity of DDGS and thin stillage makes them a good potential source of AX for production of prebiotics or other novel products.

  11. The equivalent electrical permittivity of gas-solid mixtures at intermediate solid volume fractions.

    Energy Technology Data Exchange (ETDEWEB)

    Torczynski, John Robert; Ceccio, Steven Louis; Tortora, Paul Richard

    2005-07-01

    Several mixture models are evaluated for their suitability in predicting the equivalent permittivity of dielectric particles in a dielectric medium for intermediate solid volume fractions (0.4 to 0.6). Predictions of the Maxwell, Rayleigh, Bottcher and Bruggeman models are compared to computational simulations of several arrangements of solid particles in a gas and to the experimentally determined permittivity of a static particle bed. The experiment uses spherical glass beads in air, so air and glass permittivity values (1 and 7, respectively) are used with all of the models and simulations. The experimental system used to measure the permittivity of the static particle bed and its calibration are described. The Rayleigh model is found to be suitable for predicting permittivity over the entire range of solid volume fractions (0-0.6).

  12. Volume fraction prediction in biphasic flow using nuclear technique and artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, Cesar M.; Brandao, Luis E.B., E-mail: otero@ien.gov.br, E-mail: brandao@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The volume fraction is one of the most important parameters used to characterize air-liquid two-phase flows. It is a physical value to determine other parameters, such as the phase's densities and to determine the flow rate of each phase. These parameters are important to predict the flow pattern and to determine a mathematical model for the system. To study, for example, heat transfer and pressure drop. This work presents a methodology for volume fractions prediction in water-gas stratified flow regime using the nuclear technique and artificial intelligence. The volume fractions calculate in biphasic flow systems is complex and the analysis by means of analytical equations becomes very difficult. The approach is based on gamma-ray pulse height distributions pattern recognition by means of the artificial neural network. The detection system uses appropriate broad beam geometry, comprised of a ({sup 137}Cs) energy gamma-ray source and a NaI(Tl) scintillation detector in order measure transmitted beam whose the counts rates are influenced by the phases composition. These distributions are directly used by the network without any parameterization of the measured signal. The ideal and static theoretical models for stratified regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the network. The detector also was modeled with this code and the results were compared to experimental photopeak efficiency measurements of radiation sources. The proposed network could obtain with satisfactory prediction of the volume fraction in water-gas system, demonstrating to be a promising approach for this purpose. (author)

  13. Immunological evaluation of the alcohol-soluble protein fraction from gluten-free grains in relation to celiac disease.

    Science.gov (United States)

    Bergamo, Paolo; Maurano, Francesco; Mazzarella, Giuseppe; Iaquinto, Gaetano; Vocca, Immacolata; Rivelli, Anna Rita; De Falco, Enrica; Gianfrani, Carmen; Rossi, Mauro

    2011-08-01

    Celiac disease (CD) is a gluten-sensitive enteropathy with an immune basis. We established the immune reactivity of the alcohol-soluble fraction from two minor cereals (tef and millet) and two pseudocereals (amaranth and quinoa) which are believed to be nontoxic based on taxonomy. Grains were examined in intestinal T-cell lines (iTCLs), cultures of duodenal explants from HLA-DQ2(+) CD patients and HLA-DQ8 transgenic mice for signs of activation. Our data indicated that tef, millet, amaranth, and quinoa did not show any immune cross-reactivity toward wheat gliadin, and therefore confirming their safety in the diet of CD patients. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Modeling the Effect of Glass Microballoon (GMB) Volume Fraction on Behavior of Sylgard/GMB Composites.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Judith Alice [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Long, Kevin Nicholas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    This work was done to support customer questions about whether a Sylgard/Glass Microballoon (GMB) potting material in current use could be replaced with pure Sylgard and if this would significantly change stresses imparted to internal components under thermal cycling conditions. To address these questions, we provide micromechanics analysis of Sylgard/GMB materials using both analytic composite theory and finite element simulations to better understand the role of the GMB volume fraction in determining thermal expansion coefficient, elastic constants, and behavior in both confined and unconfined compression boundary value problems. A key finding is that damage accumulation in the material from breakage of GMBs significantly limits the global stress magnitude and results in a plateau stress behavior over large ranges of compressive strain. The magnitude of this plateau stress is reduced with higher volume fractions of GMBs. This effect is particularly pronounced in confined compression, which we estimate bears the most similarity to the application of interest. This stress-limiting damage mechanism is not present in pure Sylgard, however, and the result is much higher stresses under confined compression. Thus, we recommend that some volume fraction greater than 10% GMBs be used for confined deformation applications.

  15. Fiber Volume Fraction Influence on Fiber Compaction in Tapered Resin Injection Pultrusion Manufacturing

    Science.gov (United States)

    Masuram, N. B.; Roux, J. A.; Jeswani, A. L.

    2016-06-01

    Liquid resin is injected into the tapered injection chamber through the injection slots to completely wetout the fiber reinforcements in a resin injection pultrusion process. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the centerline causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to effectively penetrate through the fibers and achieve complete wetout. Fiber volume fraction in the final pultruded composite is a key to decide the mechanical and/or chemical properties of the composite. If the fiber volume fraction is too high, more fibers are squeezed together creating a fiber lean region near the wall and fiber rich region away from the wall. Also, the design of the injection chamber significantly affects the minimum injection pressure required to completely wet the fibers. A tapered injection chamber is considered such that wetout occurs at lower injection pressures due to the taper angle of the injection chamber. In this study, the effect of fiber volume fraction on the fiber reinforcement compaction and complete fiber wetout for a tapered injection chamber is investigated.

  16. Salinity independent volume fraction prediction in water-gas-oil multiphase flows using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, C.M.; Pereira, Claudio M.N.A.; Brandao, Luis E.B., E-mail: otero@ien.gov.b, E-mail: cmnap@ien.gov.b, E-mail: brandao@ien.gov.b [Instituto de Engenharia Nuclear (DIRA/IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Radiofarmacos

    2011-07-01

    This work investigates the response of a volume fraction prediction system for water-gas-oil multiphase flows considering variations on water salinity. The approach is based on gamma-ray pulse height distributions pattern recognition by means the artificial neural networks (ANNs). The detection system uses appropriate fan beam geometry, comprised of a dual-energy gamma-ray source and two NaI(Tl) detectors adequately positioned outside the pipe in order measure transmitted and scattered beams. An ideal and static theoretical model for annular flow regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the ANN. More than 500 simulations have been done, in which water salinity have been ranged from 0 to 16% in order to cover a most practical situations. Validation tests have included values of volume fractions and water salinity different from those used in ANN training phase. The results presented here show that the proposed approach may be successfully applied to material volume fraction prediction on watergas- oil multiphase flows considering practical (real) levels of variations in water salinity. (author)

  17. Stereological evaluation of the volume and volume fraction of newborns' brain compartment and brain in magnetic resonance images.

    Science.gov (United States)

    Nisari, Mehtap; Ertekin, Tolga; Ozçelik, Ozlem; Cınar, Serife; Doğanay, Selim; Acer, Niyazi

    2012-11-01

    Brain development in early life is thought to be critical period in neurodevelopmental disorder. Knowledge relating to this period is currently quite limited. This study aimed to evaluate the volume relation of total brain (TB), cerebrum, cerebellum and bulbus+pons by the use of Archimedes' principle and stereological (point-counting) method and after that to compare these approaches with each other in newborns. This study was carried out on five newborn cadavers mean weighing 2.220 ± 1.056 g with no signs of neuropathology. The mean (±SD) age of the subjects was 39.7 (±1.5) weeks. The volume and volume fraction of the total brain, cerebrum, cerebellum and bulbus+pons were determined on magnetic resonance (MR) images using the point-counting approach of stereological methods and by the use of fluid displacement technique. The mean (±SD) TB, cerebrum, cerebellum and bulbus+pons volumes by fluid displacement were 271.48 ± 78.3, 256.6 ± 71.8, 12.16 ± 6.1 and 2.72 ± 1.6 cm3, respectively. By the Cavalieri principle (point-counting) using sagittal MRIs, they were 262.01 ± 74.9, 248.11 ± 68.03, 11.68 ± 6.1 and 2.21 ± 1.13 cm3, respectively. The mean (± SD) volumes by point-counting technique using axial MR images were 288.06 ± 88.5, 275.2 ± 83.1, 19.75 ± 5.3 and 2.11 ± 0.7 cm3, respectively. There were no differences between the fluid displacement and point-counting (using axial and sagittal images) for all structures (p > 0.05). This study presents the basic data for studies relative to newborn's brain volume fractions according to two methods. Stereological (point-counting) estimation may be accepted a beneficial and new tool for neurological evaluation in vivo research of the brain. Based on these techniques we introduce here, the clinician may evaluate the growth of the brain in a more efficient and precise manner.

  18. White matter microstructure asymmetry: effects of volume asymmetry on fractional anisotropy asymmetry.

    Science.gov (United States)

    Takao, H; Hayashi, N; Ohtomo, K

    2013-02-12

    Diffusion tensor imaging (DTI) provides information regarding white matter microstructure; however, macroscopic fiber architectures can affect DTI measures. A larger brain (fiber tract) has a 'relatively' smaller voxel size, and the voxels are less likely to contain more than one fiber orientation and more likely to have higher fractional anisotropy (FA). Previous DTI studies report left-to-right differences in the white matter; however, these may reflect true microscopic differences or be caused purely by volume differences. Using tract-based spatial statistics, we investigated left-to-right differences in white matter microstructure across the whole brain. Voxel-wise analysis revealed a large number of white matter volume asymmetries, including leftward asymmetry of the arcuate fasciculus and cingulum. In many white matter regions, FA asymmetry was positively correlated with volume asymmetry. Voxel-wise analysis with adjustment for volume asymmetry revealed many white matter FA asymmetries, including leftward asymmetry of the arcuate fasciculus and cingulum. The voxel-wise analysis showed a reduced number of regions with significant FA asymmetry compared with analysis performed without adjustment for volume asymmetry; however, the overall trend of the results was unchanged. The results of the present study suggest that these FA asymmetries are not caused by volume differences and reflect microscopic differences in the white matter.

  19. Physical aging and structural recovery in a colloidal glass subjected to volume-fraction jump conditions

    Science.gov (United States)

    Peng, Xiaoguang; McKenna, Gregory B.

    2016-04-01

    Three important kinetic phenomena have been cataloged by Kovacs in the investigation of molecular glasses during structural recovery or physical aging. These are responses to temperature-jump histories referred to as intrinsic isotherms, asymmetry of approach, and memory effect. Here we use a thermosensitive polystyrene-poly (N -isopropylacrylamide)-poly (acrylic acid) core-shell particle-based dispersion as a colloidal model and by working at a constant number concentration of particles we use temperature changes to create volume-fraction changes. This imposes conditions similar to those defined by Kovacs on the colloidal system. We use creep experiments to probe the physical aging and structural recovery behavior of colloidal glasses in the Kovacs-type histories and compare the results with those seen in molecular glasses. We find that there are similarities in aging dynamics between molecular glasses and colloidal glasses, but differences also persist. For the intrinsic isotherms, the times teq needed for relaxing or evolving into the equilibrium (or stationary) state are relatively insensitive to the volume fraction and the values of teq are longer than the α -relaxation time τα at the same volume fraction. On the other hand, both of these times grow at least exponentially with decreasing temperature in molecular glasses. For the asymmetry of approach, similar nonlinear behavior is observed for both colloidal and molecular glasses. However, the equilibration time teq is the same for both volume-fraction up-jump and down-jump experiments, different from the finding in molecular glasses that it takes longer for the structure to evolve into equilibrium for the temperature up-jump condition than for the temperature down-jump condition. For the two-step volume-fraction jumps, a memory response is observed that is different from observations of structural recovery in two-step temperature histories in molecular glasses. The concentration dependence of the dynamics

  20. Carbon Isotopic Fractionation During Formation of Macromolecular Organic Grain Coatings via FTT Reactions

    Science.gov (United States)

    Nuth, J. A.; Johnson, N. M.; Elsila-Cook, J.; Kopstein, M.

    2011-01-01

    Observations of carbon isotopic fractionation of various organic compounds found in meteorites may provide useful diagnostic information concerning the environments and mechanisms that were responsible for their formation. Unfortunately, carbon has only two stable isotopes, making interpretation of such observations quite problematic. Chemical reactions can increase or decrease the C-13/C-12 ratio by various amounts, but the final ratio will depend on the total reaction pathway followed from the source carbon to the final product, a path not readily discernable after 4.5 billion years. In 1970 Libby showed that the C-13/C-12 ratios of terrestrial and meteoritic carbon were similar by comparing carbon from the Murchison meteorite to that of terrestrial sediments. More recent studies have shown that the C-13/C-12 ratio of the Earth and meteorites may be considerably enriched in C-13 compared to the ratio observed in the solar wind [2], possibly suggesting that carbon produced via ion-molecule reactions in cold dark clouds could be an important source of terrestrial and meteoritic carbon. However, meteoritic carbon has been subjected to parent body processing that could have resulted in significant changes to the C-13/C-12 ratio originally present while significant variation has been observed in the C-13/C-12 ratio of the same molecule extracted from different terrestrial sources. Again we must conclude that understanding the ratio found in meteorites may be difficult.

  1. INFLUENCE OF ABNORMAL AUSTENITE GRAIN GRAIN GROWTH IN QUENCHED ABNT 5135 STEEL

    Directory of Open Access Journals (Sweden)

    Camila de Brito Ferreira

    2015-03-01

    Full Text Available Grain size in the steels is a relevant aspect in quenching and tempering heat treatments. It is known that high austenitizing temperature and long time provide an increase in austenitic grain sizes. Likewise, after hardening of low alloy steel, the microstructure consists of martensite and a volume fraction of retained austenite. This paper evaluates the influence of austenite grain size on the volume fraction of retained austenite measured by metallographic analyses and X-ray diffraction. The Mi and Mf temperatures were calculated using an empirical equation and experimentally determined by differential thermal analysis. The mechanical behavior of the steel was evaluated by Vickers microhardness testing. Differently from other results published in the literature that steel hardenability increases with the austenite grain size, it was observed that the increase in austenite grain promotes greater volume fraction of retained austenite after water quenching.

  2. The respective effects of soil heavy metal fractions by sequential extraction procedure and soil properties on the accumulation of heavy metals in rice grains and brassicas.

    Science.gov (United States)

    Xiao, Ling; Guan, Dongsheng; Peart, M R; Chen, Yujuan; Li, Qiqi

    2017-01-01

    This study was carried out to examine heavy metal accumulation in rice grains and brassicas and to identify the different controls, such as soil properties and soil heavy metal fractions obtained by the Community Bureau of Reference (BCR) sequential extraction, in their accumulation. In Guangdong Province, South China, rice grain and brassica samples, along with their rhizospheric soil, were collected from fields on the basis of distance downstream from electroplating factories, whose wastewater was used for irrigation. The results showed that long-term irrigation using the electroplating effluent has not only enriched the rhizospheric soil with Cd, Cr, Cu, and Zn but has also increased their mobility and bioavailability. The average concentrations of Cd and Cr in rice grains and brassicas from closest to the electroplating factories were significantly higher than those from the control areas. Results from hybrid redundancy analysis (hRDA) and redundancy analysis (RDA) showed that the BCR fractions of soil heavy metals could explain 29.0 and 46.5 % of total eigenvalue for heavy metal concentrations in rice grains and brassicas, respectively, while soil properties could only explain 11.1 and 33.4 %, respectively. This indicated that heavy metal fractions exerted more control upon their concentrations in rice grains and brassicas than soil properties. In terms of metal interaction, an increase of residual Zn in paddy soil or a decrease of acid soluble Cd in the brassica soil could enhance the accumulation of Cd, Cu, Cr, and Pb in both rice grains and brassicas, respectively, while the reducible or oxidizable Cd in soil could enhance the plants' accumulation of Cr and Pb. The RDA showed an inhibition effect of sand content and CFO on the accumulation of heavy metals in rice grains and brassicas. Moreover, multiple stepwise linear regression could offer prediction for Cd, Cu, Cr, and Zn concentrations in the two crops by soil heavy metal fractions and soil properties.

  3. A fast 3D surface reconstruction and volume estimation method for grain storage based on priori model

    Science.gov (United States)

    Liang, Xian-hua; Sun, Wei-dong

    2011-06-01

    Inventory checking is one of the most significant parts for grain reserves, and plays a very important role on the macro-control of food and food security. Simple, fast and accurate method to obtain internal structure information and further to estimate the volume of the grain storage is needed. Here in our developed system, a special designed multi-site laser scanning system is used to acquire the range data clouds of the internal structure of the grain storage. However, due to the seriously uneven distribution of the range data, this data should firstly be preprocessed by an adaptive re-sampling method to reduce the data redundancy as well as noise. Then the range data is segmented and useful features, such as plane and cylinder information, are extracted. With these features a coarse registration between all of these single-site range data is done, and then an Iterative Closest Point (ICP) algorithm is carried out to achieve fine registration. Taking advantage of the structure of the grain storage being well defined and the types of them are limited, a fast automatic registration method based on the priori model is proposed to register the multi-sites range data more efficiently. Then after the integration of the multi-sites range data, the grain surface is finally reconstructed by a delaunay based algorithm and the grain volume is estimated by a numerical integration method. This proposed new method has been applied to two common types of grain storage, and experimental results shown this method is more effective and accurate, and it can also avoids the cumulative effect of errors when registering the overlapped area pair-wisely.

  4. Effect of volume fraction of Polypropylene Fiber on Mechanical Properties of Concrete

    Directory of Open Access Journals (Sweden)

    R. S. Rajguru,

    2014-06-01

    Full Text Available In this study, the result of polypropylene fiber on mechanical properties of concrete is studied. Polypropylene fibers of 12mm cut length and 6 denier were added at volume fraction of 0%, 0.25%, 0.50%, 0.75% & 1 %.The cube, cylinder and beams wear tested under two point loads on UTM. The results showed that the addition of polypropylene fiber significantly improved the compressive strength, split tensile strength, flexural strength, reserve strength and ductility of fiber reinforced concrete.

  5. Study of the free volume fraction in polylactic acid (PLA) by thermal analysis

    Science.gov (United States)

    Abdallah, A.; Benrekaa, N.

    2015-10-01

    The poly (lactic acid) or polylactide (PLA) is a biodegradable polymer with high modulus, strength and thermoplastic properties. In this work, the evolution of various properties of PLA is studied, such as glass transition temperature, mechanical modules and elongation percentage with the aim of investigating the free volume fraction. To do so, two thermal techniques have been used: the dynamic mechanical analysis (DMA) and dilatometry. The results obtained by these techniques are combined to go back to the structural properties of the studied material.

  6. A randomized trial comparing bladder volume consistency during fractionated prostate radiation therapy

    LENUS (Irish Health Repository)

    Mullaney, L.

    2014-01-10

    Organ motion is a contributory factor to the variation in location of the prostate and organs at risk during a course of fractionated prostate radiation therapy (RT). A prospective randomized controlled trial was designed with the primary endpoint to provide evidence-based bladder-filling instructions to achieve a consistent bladder volume (BV) and thus reduce the bladder-related organ motion. The secondary endpoints were to assess the incidence of acute and late genitourinary (GU) and gastrointestinal (GI) toxicity for patients and patients’ satisfaction with the bladder-filling instructions.

  7. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)

    Science.gov (United States)

    Li, Calvin H.; Peterson, G. P.

    2006-04-01

    An experimental investigation was conducted to examine the effects of variations in the temperature and volume fraction on the steady-state effective thermal conductivity of two different nanoparticle suspensions. Copper and aluminum oxide, CuO and Al2O3, nanoparticles with area weighted diameters of 29 and 36 nm, respectively, were blended with distilled water at 2%, 4%, 6%, and 10% volume fractions and the resulting suspensions were evaluated at temperatures ranging from 27.5 to 34.7 °C. The results indicate that the nanoparticle material, diameter, volume fraction, and bulk temperature, all have a significant impact on the effective thermal conductivity of these suspensions. The 6% volume fraction of CuO nanoparticle/distilled water suspension resulted in an increase in the effective thermal conductivity of 1.52 times that of pure distilled water and the 10% Al2O3 nanoparticle/distilled water suspension increased the effective thermal conductivity by a factor of 1.3, at a temperature of 34 °C. A two-factor linear regression analysis based on the temperature and volume fraction was applied and indicated that the experimental results are in stark contrast to the trends predicted by the traditional theoretical models with respect to both temperature and volume fraction. The available models are reviewed and the possible reasons for the unusually high effective thermal conductivity of nanofluids are analyzed and discussed.

  8. Identification of Highly Fractionated (18)O-Rich Silicate Grains in the Queen Alexandra Range 99177 CR3 Chondrite

    Science.gov (United States)

    Nguyen, A. N.; Keller, L. P.; Messenger, S.; Rahman, Z.

    2015-01-01

    Carbonaceous chondrites contain a mixture of solar system condensates, presolar grains, and primitive organic matter. The CR3 chondrite QUE 99177 has undergone minimal al-teration [1], exemplified by abundant presolar silicates [2, 3] and anomalous organic matter [4]. Oxygen isotopic imaging studies of this meteorite have focused on finding submicrometer anomalous grains in fine-grained regions of thin sections. Here we present re-sults of an O isotopic survey of larger matrix grains.

  9. Solid volume fraction estimation of bone:marrow replica models using ultrasound transit time spectroscopy.

    Science.gov (United States)

    Wille, Marie-Luise; Langton, Christian M

    2016-02-01

    The acceptance of broadband ultrasound attenuation (BUA) for the assessment of osteoporosis suffers from a limited understanding of both ultrasound wave propagation through cancellous bone and its exact dependence upon the material and structural properties. It has recently been proposed that ultrasound wave propagation in cancellous bone may be described by a concept of parallel sonic rays; the transit time of each ray defined by the proportion of bone and marrow propagated. A Transit Time Spectrum (TTS) describes the proportion of sonic rays having a particular transit time, effectively describing the lateral inhomogeneity of transit times over the surface aperture of the receive ultrasound transducer. The aim of this study was to test the hypothesis that the solid volume fraction (SVF) of simplified bone:marrow replica models may be reliably estimated from the corresponding ultrasound transit time spectrum. Transit time spectra were derived via digital deconvolution of the experimentally measured input and output ultrasonic signals, and compared to predicted TTS based on the parallel sonic ray concept, demonstrating agreement in both position and amplitude of spectral peaks. Solid volume fraction was calculated from the TTS; agreement between true (geometric calculation) with predicted (computer simulation) and experimentally-derived values were R(2)=99.9% and R(2)=97.3% respectively. It is therefore envisaged that ultrasound transit time spectroscopy (UTTS) offers the potential to reliably estimate bone mineral density and hence the established T-score parameter for clinical osteoporosis assessment.

  10. Prediction of Shrinkage Pore Volume Fraction Using a Dimensionless Niyama Criterion

    Science.gov (United States)

    Carlson, Kent D.; Beckermann, Christoph

    2009-01-01

    A method is presented to use a dimensionless form of the well-known Niyama criterion to directly predict the amount of shrinkage porosity that forms during solidification of metal alloy castings. The main advancement offered by this method is that it avoids the need to know the threshold Niyama value below which shrinkage porosity forms; such threshold values are generally unknown and alloy dependent. The dimensionless criterion accounts for both the local thermal conditions (as in the original Niyama criterion) and the properties and solidification characteristics of the alloy. Once a dimensionless Niyama criterion value is obtained from casting simulation results, the corresponding shrinkage pore volume fraction can be determined knowing only the solid fraction-temperature curve and the total solidification shrinkage of the alloy. Curves providing the shrinkage pore volume percentage as a function of the dimensionless Niyama criterion are given for WCB steel, aluminum alloy A356, and magnesium alloy AZ91D. The present method is used in a general-purpose casting simulation software package to predict shrinkage porosity in three-dimensional (3-D) castings. Comparisons between simulated and experimental shrinkage porosity results for a WCB steel plate casting demonstrate that this method can reasonably predict shrinkage. Additional simulations for magnesium alloy AZ91D illustrate that this method is applicable to a wide variety of alloys and casting conditions.

  11. A MATHEMATICAL MODEL OF OPTIMIZATION OF THE VOLUME OF MATERIAL FLOWS IN GRAIN PROCESSING INTEGRATED PRODUCTION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Baranovskaya T. P.

    2014-06-01

    Full Text Available The article suggests a mathematical model of optimization of the volume of material flows: the model for the ideal conditions; the model for the working conditions; generalized model of determining the optimal input parameters. These models optimize such parameters of inventory management in technology-integrated grain production systems, as the number of cycles supply, the volume of the source material and financial flows. The study was carried out on the example of the integrated system of production, processing and sales of wheat (bread with the full technological cycle

  12. Fractionated Mercury Isotopes in Fish: The Effects of Nuclear Mass, Spin, and Volume

    Science.gov (United States)

    Das, R.; Odom, A. L.

    2007-12-01

    .3, and thus more than one mass-independent isotope effect is inferred. MIF of mercury can be caused by the nuclear volume effect. Schauble, 2007 has calculated nuclear volume fractionation scaling factors for a number of common mercury chemical species in equilibrium with Hg° vapor. From his calculations the nuclear field shift effect is larger in Δ199Hg than in Δ201Hg by approximately a factor of two. The predominant mercury chemical species in fish is methylmercury cysteine. From the experimental studies of Buchachenko and others (2004) on the reaction of methylmercury chloride with creatine kinase it seems reasonable to predicted that the thiol functional groups of cysteine gets enriched in 199Hg and 201Hg. Here the magnetic isotope effect (MIE) produces a kinetic partial separation of isotopes with non-zero nuclear spin quantum numbers from the even-N isotopes. The ratio of enrichment of Δ201Hg /Δ199Hg is predicted from theory to be 1.11, which is the ratio of the magnetic moments of 199Hg and 201Hg. Because mercury possesses two odd-N isotopes, it is possible to detect and evaluate the effects of two distinct, mass-independent isotope fractionating processes. From the data obtained on fish samples, we can deconvolute the contributions of the isotope effects of nuclear mass, spin and volume. For these samples the role of spin or the magnetic isotope effect is the most dominant.

  13. Microchemostat array with small-volume fraction replenishment for steady-state microbial culture.

    Science.gov (United States)

    Park, Jaewon; Wu, Jianzhang; Polymenis, Michael; Han, Arum

    2013-11-07

    A chemostat is a bioreactor in which microorganisms can be cultured at steady-state by controlling the rate of culture medium inflow and waste outflow, thus maintaining media composition over time. Even though many microbial studies could greatly benefit from studying microbes in steady-state conditions, high instrument cost, complexity, and large reagent consumption hamper the routine use of chemostats. Microfluidic-based chemostats (i.e. microchemostats) can operate with significantly smaller reagent consumption while providing accurate chemostatic conditions at orders of magnitude lower cost compared to conventional chemostats. Also, microchemostats have the potential to significantly increase the throughput by integrating arrays of microchemostats. We present a microchemostat array with a unique two-depth culture chamber design that enables small-volume fraction replenishment of culture medium as low as 1% per replenishment cycle in a 250 nl volume. A system having an array of 8 microchemostats on a 40 × 60 mm(2) footprint could be automatically operated in parallel by a single controller unit as a demonstration for potential high throughput microbial studies. The model organism, Saccharomyces cerevisiae, successfully reached a stable steady-state of different cell densities as a demonstration of the chemostatic functionality by programming the dilution rates. Chemostatic functionality of the system was further confirmed by quantifying the budding index as a function of dilution rate, a strong indicator of growth-dependent cell division. In addition, the small-volume fraction replenishment feature minimized the cell density fluctuation during the culture. The developed system provides a robust, low-cost, and higher throughput solution to furthering studies in microbial physiology.

  14. Solidification of Suspended Sediments with Two Characteristic Grain Sizes

    Science.gov (United States)

    Zarski, G.; Borja, R. I.

    2010-12-01

    We use mixture theory to formulate the problem of solidification of sediments with two characteristic grain sizes in a suspension. The formulation involves a mixture of larger grains in a thick fluid, where the thick fluid is a mixture of smaller particles in a host fluid. This mixture within a mixture description resembles a double porosity representation in unsaturated soil mechanics. Two independent variables of interest include the volume fraction of the larger grains relative to the total volume of the mixture, and the volume fraction of the smaller grains relative to the volume of the thick fluid. The two volume fractions are coupled by a constitutive law based on the Richardson-Zaki equation. The governing partial differential equations describing the settling velocities of the two solid groups are solved simultaneously in space and time using the finite element method.

  15. A transient method for measuring the gas volume fraction in a mixed gas-liquid flow using acoustic resonance spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper, the feasibility of measuring the gas volume fraction in a mixed gas-liquid flow by using an acoustic resonant spectroscopy (ARS) method in a transient way is studied theoretically and experimentally. Firstly, the effects of sizes and locations of a single air bubble in a cylindrical cavity with two open ends on resonant frequencies are investigated numerically. Then, a transient measurement system for ARS is established, and the trends of the resonant frequencies (RFs) and resonant amplitudes (RAs) in the cylindrical cavity with gas flux inside are investigated experimentally. The measurement results by the proposed transient method are compared with those by steady-state ones and numerical ones. The numerical results show that the RFs of the cavity are highly sensitive to the volume of the single air bubble. A tiny bubble volume perturbation may cause a prominent RF shift even though the volume of the air bubble is smaller than 0.1% of that of the cavity. When the small air bubble moves, the RF shift will change and reach its maximum value as it is located at the middle of the cavity. As the gas volume fraction of the two-phase flow is low, both the RFs and RAs from the measurement results decrease dramatically with the increasing gas volume, and this decreasing trend gradually becomes even as the gas volume fraction increases further. These experimental results agree with the theoretical ones qualitatively. In addition, the transient method for ARS is more suitable for measuring the gas volume fraction with randomness and instantaneity than the steady-state one, because the latter could not reflect the random and instant characteristics of the mixed fluid due to the time consumption for frequency sweeping. This study will play a very important role in the quantitative measurement of the gas volume fraction of multiphase flows.

  16. MHD flow of dusty nanofluid over a stretching surface with volume fraction of dust particles

    Directory of Open Access Journals (Sweden)

    Sandeep Naramgari

    2016-06-01

    Full Text Available In this study we analyzed the momentum and heat transfer behavior of MHD nanofluid embedded with conducting dust particles past a stretching surface in the presence of volume fraction of dust particles. The governing equations of the flow and heat transfer are transformed into nonlinear ordinary differential equations by using similarity transformation and then solved numerically using Runge–Kutta based shooting technique. The effect of non-dimensional governing parameters on velocity and temperature profiles of the flow are discussed and presented through graphs. Additionally friction factor and the Nusselt number have also been computed. Under some special conditions, numerical results obtained by the present study were compared with the existed studies. The result of the present study proves to be highly satisfactory. The results indicate that an increase in the interaction between the fluid and particle phase enhances the heat transfer rate and reduces the friction factor.

  17. Volume fraction instability in an oscillating non-Brownian iso-dense suspension.

    Science.gov (United States)

    Roht, Y. L.; Gauthier, G.; Hulin, J. P.; Salin, D.; Chertcoff, R.; Auradou, H.; Ippolito, I.

    2017-06-01

    The instability of an iso-dense non-Brownian suspension of polystyrene beads of diameter 40 μm dispersed in a water-glycerol mixture submitted to a periodic square wave oscillating flow in a Hele-Shaw cell is studied experimentally. The instability gives rise to stationary bead concentration waves transverse to the flow. It has been observed for average particle volume fractions between 0.25 and 0.4, for periods of the square wave flow variation between 0.4 and 10 s and in finite intervals of the amplitude of the fluid displacement. The study shows that the wavelength λ increases roughly linearly with the amplitude of the oscillatory flow; on the other hand, λ is independent of the particle concentration and of the period of oscillation of the flow although the minimum threshold amplitude for observing the instability increases with the period.

  18. In situ synthesis of calcium phosphate-polycaprolactone nanocomposites with high ceramic volume fractions.

    Science.gov (United States)

    Makarov, C; Gotman, I; Jiang, X; Fuchs, S; Kirkpatrick, C J; Gutmanas, E Y

    2010-06-01

    Biodegradable calcium phosphate-PCL nanocomposite powders with unusually high ceramic volume fractions (80-95%) and uniform PCL distribution were synthesized by a non-aqueous chemical reaction in the presence of the dissolved polymer. No visible polymer separation occurred during processing. Depending on the reagents combination, either dicalcium phosphate (DCP) or Ca-deficient HA (CDHA) was obtained. CDHA-PCL composite powders were high pressure consolidated at room temperature yielding dense materials with high compressive strengths. Such densification route provides the possibility of incorporating drug and proteins without damaging their biological activity. The CDHA-PCL composites were tested in osteoblastic and endothelial cell line cultures and were found to support the attachment and proliferation of both cell types.

  19. Diffusion characteristics and extracellular volume fraction during normoxia and hypoxia in slices of rat neostriatum.

    Science.gov (United States)

    Rice, M E; Nicholson, C

    1991-02-01

    1. Diffusion properties of submerged, superfused slices from the rat neostriatum were measured by quantitative analysis of concentration-time profiles of tetramethylammonium (TMA+) introduced by iontophoresis. TMA+ was sensed at an ion-selective microelectrode (ISM) positioned 100-150 microns from the source pipette. Slice viability was assessed from the extracellular field potentials evoked by intrastriatal electrical stimulation. 2. Under normoxic conditions the extracellular volume fraction (alpha) was 0.21 (range 0.18-0.24), and the tortuosity (lambda) was 1.54, in slices with good field potentials. In slices with poor field potentials, alpha was 0.09-0.16. Extraction of correct alpha and lambda in the slice required evaluation of nonspecific uptake, k', which was 1 x 10(-2) s-1. 3. Slices were made hypoxic by superfusing physiological saline equilibrated with 95% N2-5% CO2 for 10-30 min. Synaptic components of field potentials were inhibited after 3-4 min in hypoxic media. In some experiments extracellular K+ concentration [( K+]o) was monitored with ISMs. During hypoxia, [K+]o rose from an average baseline of 5.1 mM to 7-10 mM. After reoxygenation, [K+]o transiently fell below the original level. 4. The average value for alpha during hypoxia was 0.13 (a 38% decrease), which was significantly different from control (P less than 0.001) and increased progressively during hypoxic exposure. In contrast, tortuosity and k' were unchanged by this treatment. 5. These data represent the first characterization of the diffusion properties of the rat striatal slice and of changes in extracellular volume fraction during hypoxia in a brain slice preparation.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Dependence of microwave absorption properties on ferrite volume fraction in MnZn ferrite/rubber radar absorbing materials

    Energy Technology Data Exchange (ETDEWEB)

    Gama, Adriana M., E-mail: adrianaamg@iae.cta.br [Divisao de Materiais (AMR), Instituto de Aeronautica e Espaco (IAE), Departamento de Ciencia e Tecnologia Aeroespacial - DCTA (Brazil); Rezende, Mirabel C., E-mail: mirabelmcr@iae.cta.br [Divisao de Materiais (AMR), Instituto de Aeronautica e Espaco (IAE), Departamento de Ciencia e Tecnologia Aeroespacial - DCTA (Brazil); Dantas, Christine C., E-mail: christineccd@iae.cta.br [Divisao de Materiais (AMR), Instituto de Aeronautica e Espaco (IAE), Departamento de Ciencia e Tecnologia Aeroespacial - DCTA (Brazil)

    2011-11-15

    We report the analysis of measurements of the complex magnetic permeability ({mu}{sub r}) and dielectric permittivity ({epsilon}{sub r}) spectra of a rubber radar absorbing material (RAM) with various MnZn ferrite volume fractions. The transmission/reflection measurements were carried out in a vector network analyzer. Optimum conditions for the maximum microwave absorption were determined by substituting the complex permeability and permittivity in the impedance matching equation. Both the MnZn ferrite content and the RAM thickness effects on the microwave absorption properties, in the frequency range of 2-18 GHz, were evaluated. The results show that the complex permeability and permittivity spectra of the RAM increase directly with the ferrite volume fraction. Reflection loss calculations by the impedance matching degree (reflection coefficient) show the dependence of this parameter on both thickness and composition of RAM. - Highlights: > Permeability and permittivity spectra of a MnZn ferrite RAM (2-18 GHz) are given. > Higher MnZn volume fraction favors increase of RAM/'s permeability and permittivity. > Minimum RL as a function of frequency, thickness and MnZn volume fraction given. > Higher thicknesses imply better absorption; optimum band shifts to lower frequencies. > For higher volume fractions, smaller thickness might offer better absorption (>10 GHz).

  1. Studying the Effect of Volume Fraction of Glass Fiberson the Thermal Conductivity of the Polymer Composite Materials

    Directory of Open Access Journals (Sweden)

    Mohammed Sellab Hamza

    2008-01-01

    Full Text Available In this study the effect of fiber volume fraction of the glass fiber on the thermal conductivity of the polymer composite material was studied. Different fiber volume fraction of glass fibers were used (3%, 6%, 9%, 12%, and 15%. Specimens were made from polyester which reinforced with glass fibers .The fibers had two arrangements according to the direction of the thermal flow. In the first arrangement the fibers were parallel to the direction of the thermal flow, while the second arrangement was perpendicular; Lee's disk method was used for testing the specimens. The experimental results proved that the values of the thermal conductivity of the specimens was higher when the fibers arranged in parallel direction than that when the fibers arranged in the perpendicular direction. The percentage of increasing of experimental thermal conductivity was 96.91% for parallel arrangement and 13.33% for perpendicular arrangement comparison with its original value before the using of glass fibers. Also the experimental results indicated that the thermal conductivity increases with the increasing of the fiber volume fraction. Minimum value was (0.172 W/m.C for perpendicular arrangement at fiber volume fraction 3% and maximum value was (0.327 W/m.C for parallel arrangement at fiber volume fraction 15%.

  2. RESOLVE Survey Photometry and Volume-limited Calibration of the Photometric Gas Fractions Technique

    CERN Document Server

    Eckert, Kathleen D; Stark, David V; Moffett, Amanda J; Norris, Mark A; Snyder, Elaine M; Hoversten, Erik A

    2015-01-01

    We present custom-processed UV, optical, and near-IR photometry for the RESOLVE survey, a volume-limited census of stellar, gas, and dynamical mass within two subvolumes of the nearby universe (RESOLVE-A and -B), complete down to baryonic mass ~10^9.1-9.3 Msun. In contrast to standard pipeline photometry (e.g., SDSS), our photometry uses optimal background subtraction, avoids suppressing color gradients, and includes systematic errors. With these improvements, we measure brighter magnitudes, larger radii, bluer colors, and a real increase in scatter around the red sequence. Combining stellar masses from our photometry with the RESOLVE-A HI mass census, we create volume-limited calibrations of the photometric gas fractions (PGF) technique, which predicts gas-to-stellar mass ratios (G/S) from galaxy colors and optional additional parameters. We analyze G/S-color residuals vs. potential third parameters, finding that axial ratio is the best independent and physically meaningful third parameter. We define a "modi...

  3. Elastic modulus of Al-Si/SiC metal matrix composites as a function of volume fraction

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh Kumar, S; Rajasekharan, T [Powder Metallurgy Group, Defence Metallurgical Research Laboratory, Kanchanbagh PO, Hyderabad-500 058 (India); Seshu Bai, V [School of Physics, University of Hyderabad, Central University PO, Hyderabad-500 046 (India); Rajkumar, K V; Sharma, G K; Jayakumar, T, E-mail: dearsanthosh@gmail.co [Non-Destructive Evaluation Division, Indira Gandhi Center for Atomic Research, Kalpakkam, Chennai-603 102 (India)

    2009-09-07

    Aluminum alloy matrix composites have emerged as candidate materials for electronic packaging applications in the field of aerospace semiconductor electronics. Composites prepared by the pressureless infiltration technique with high volume fractions in the range 0.41-0.70 were studied using ultrasonic velocity measurements. For different volume fractions of SiC, the longitudinal velocity and shear velocity were found to be in the range of 7600-9300 m s{sup -1} and 4400-5500 m s{sup -1}, respectively. The elastic moduli of the composites were determined from ultrasonic velocities and were analysed as a function of the volume fraction of the reinforcement. The observed variation is discussed in the context of existing theoretical models for the effective elastic moduli of two-phase systems.

  4. Experimental determination of grain density function of AZ91/SiC composite with different mass fractions of SiC and undercoolings using heterogeneous nucleation model

    Directory of Open Access Journals (Sweden)

    J. Lelito

    2011-02-01

    Full Text Available The grain density, Nv, in the solid state after solidification of AZ91/SiC composite is a function of maximum undercooling, ΔT, of a liquid alloy. This type of function depends on the characteristics of heterogeneous nucleation sites and number of SiC present in the alloy. The aim of this paper was selection of parameters for the model describing the relationship between the grain density of primary phase and undercooling. This model in connection with model of crystallisation, which is based on chemical elements diffusion and grain interface kinetics, can be used to predict casting quality and its microstructure. Nucleation models have parameters, which exact values are usually not known and sometimes even their physical meaning is under discussion. Those parameters can be obtained after mathematical analysis of the experimental data. The composites with 0, 1, 2, 3 and 4wt.% of SiC particles were prepared. The AZ91 alloy was a matrix of the composite reinforcement SiC particles. This composite was cast to prepare four different thickness plates.They were taken from the region near to the thermocouple, to analyze the undercooling for different composites and thickness plates and its influence on the grain size. The microstructure and thermal analysis gave set of values that connect mass fraction of SiC particles, and undercooling with grain size. These values were used to approximate nucleation model adjustment parameters. Obtained model can be very useful in modelling composites microstructure.

  5. Effect of volume fraction of ramie cloth on physical and mechanical properties of ramie cloth/UP resin composite

    Institute of Scientific and Technical Information of China (English)

    LEI Wen-guang; REN Chao

    2006-01-01

    Ramie cloth/UP resin composite was formed at 0.2 MPa and cured at room temperature for 24 h and treated at 80 ℃ for2 h. The physical and mechanical properties of the composites with different volume fractions of ramie cloth were studied. The results show that,with the increase of the volume fraction of the ramie cloth,densities of the composites become greater and greater,though all lower than the theoretical values,the linear shrinkage during the formation decreases from 1.20% of the original UP resin to 0.18% of the composite with 30% of ramie cloth in volume,all the composites also absorb more water than UP resin casting,greater volume fraction of the fiber,more water will be absorbed,but the increase in water absorption becomes smaller and smaller with time. As regards some mechanical properties,the tensile strength,flexural strength,flexural modulus and impact strength are all improved when more ramie fiber is added. Compared with those of pure UP resin casting,the mechanical properties are increased by 93.93%,76.20%,190.18% and 227.26% respectively when the volume fraction of the ramie cloth in the composite is 30%. The differential scanning calorimetry results show that only one peak will appear for the sample without or with less ramie fiber while two peaks will appear when more ramie cloth is added.

  6. A Method for Out-of-autoclave Fabrication of High Fiber Volume Fraction Fiber Reinforced Polymer Composites

    Science.gov (United States)

    2012-07-01

    increasing the fiber-volume fraction by vacuum-assisted resin transfer molding ( VARTM ) in order to produce composite structures with aerospace-grade...processed composites. Using a combination of viscosity control, ARL- based VARTM techniques, and a pressure control system, we increased the fiber-volume...content from 50% (ARL’s normal processing range for a particular material system and VARTM process) to over 60%. Future work will focus on

  7. Two catesories of fractal models of rock and soil expressing volume and size-distribution of pores and grains

    Institute of Scientific and Technical Information of China (English)

    TAO GaoLiang; ZHANG JiRu

    2009-01-01

    Based on the Sierpinski carpet and Menger sponge models, two categories of fractal models of rock and soil which are composed of the volume fractal model of pores, the volume fractal model of grains, pore-size or particle-size distribution fractal models are established and their relations are clarified in this paper. Through comparison and analysis, it is found that previous models can be unified by the two categories of fractal models, so the unified fractal models are formed. Experimental results presented by Katz indicate that the first category of fractal models can be used to express the fractal behavior of sandstone. A scanning electron microscope (SEM) will be used to study the microstructure of soft clay and it will be testified that the fractal behavior of soft clay suits the second category of fractal models.

  8. Ceramic Translations. Volume 41. Grain Boundaries and Interfacial Phenomena in Electronic Ceramics

    Science.gov (United States)

    1994-01-01

    15 2 v,96ov V (V/GRAIN) -3 T(=b T )c Wl,= 2 0 Ns , "V 0.7 .1 v,=10ov Fig.7 Calculated C/C _-V curve for .4 , I , I I rectangular D( E5 ). 10- 100 1o2...temperatures of 870"C for 10 h. Ag foil substrates were coated on both sides with the 񓣄" powder by a painting technique utilising an HPMC binder. Total

  9. Composite circumstellar dust grains

    Science.gov (United States)

    Gupta, Ranjan; Vaidya, Dipak B.; Dutta, Rajeshwari

    2016-10-01

    We calculate the absorption efficiencies of composite silicate grains with inclusions of graphite and silicon carbide in the spectral range 5-25 μm. We study the variation in absorption profiles with volume fractions of inclusions. In particular we study the variation in the wavelength of peak absorption at 10 and 18 μm. We also study the variation of the absorption of porous silicate grains. We use the absorption efficiencies to calculate the infrared flux at various dust temperatures and compare with the observed infrared emission flux from the circumstellar dust around some M-type and asymptotic giant branch stars obtained from IRAS and a few stars from Spitzer satellite. We interpret the observed data in terms of the circumstellar dust grain sizes, shape, composition and dust temperature.

  10. Composite Circumstellar Dust Grains

    CERN Document Server

    Gupta, Ranjan; Dutta, Rajeshwari

    2016-01-01

    We calculate the absorption efficiencies of composite silicate grains with inclusions of graphite and silicon carbide in the spectral range 5--25$\\rm \\mu m$. We study the variation in absorption profiles with volume fractions of inclusions. In particular we study the variation in the wavelength of peak absorption at 10 and 18$\\rm \\mu m$. We also study the variation of the absorption of porous silicate grains. We use the absorption efficiencies to calculate the infrared flux at various dust temperatures and compare with the observed infrared emission flux from the circumstellar dust around some M-Type \\& AGB stars obtained from IRAS and a few stars from Spitzer satellite. We interpret the observed data in terms of the circumstellar dust grain sizes; shape; composition and dust temperature.

  11. The effect of graphene nanoplatelet volume fraction on water graphene nanofluid thermal conductivity and viscosity

    Science.gov (United States)

    Bahaya, Bernard

    The aim of this thesis is to study the improvement of heat transfer in graphene-water nanofluids. Experiments were conducted with graphene nanoplatelets (GNP) to study the relative benefit of the thermal conductivity improvement in relationship to the potential detriment when considering the effect that more GNP dispersed in the water increases the viscosity of the resulting suspension relative to that of the water. A maximum enhancement ratio for GNP nanofluid thermal conductivity over water was 1.43 at a volume fraction of 0.014. Based upon GNP aspect ratios confirmed in sizing measurements, the DEM model presented by Chu et al., (2012) appears to describe the experimental results of this study when using a fitted interfacial resistance value of 6.25 E -8 m2 K W-1. The well-known Einstein viscosity model for spheres dispersed in fluids was shown to under predict the experimental data. Adjusting the intrinsic model term for spheres from a value of 2.5 to a fitted value of 1938 representative for the GNP of this study provided much closer agreement between measured and predicted values. Heat transfer is a nonlinear function of viscosity and thermal conductivity and heat transfer is predicted to decrease for GNP nanofluids when compared to water alone. Hence the use of nanofluids to enhance heat transfer processes appears not to be viable.

  12. Properties of High Volume Fraction Fly Ash/Al Alloy Composites Produced by Infiltration Process

    Science.gov (United States)

    Kountouras, D. T.; Stergioudi, F.; Tsouknidas, A.; Vogiatzis, C. A.; Skolianos, S. M.

    2015-09-01

    In the present study, pressure infiltration is employed to synthesize aluminum alloy 7075-fly ash composites. The microstructure and chemical composition of the fly ash and the produced composite material was examined using optical and scanning electron microscopy, as well as x-ray diffraction. Several properties of the produced composite material were examined and evaluated including macro-hardness, wear, thermal expansion, and corrosion behavior. The wear characteristics of the composite, in the as-cast conditions, were studied by dry sliding wear tests. The corrosion behavior of composite material was evaluated by means of potentiodynamic corrosion experiments in a 3.5 wt.% NaCl solution. The composite specimens exhibit a homogeneous distribution of fly ash particles and present enhanced hardness values, compared to the matrix material. The high volume fraction of the fly ash reinforcement (>40%) in the composite material led to increased wear rates, attributed to the fragmentation of the fly ash particles. However, the presence of fly ash particles in the Al alloy matrix considerably decreased the coefficiency of thermal expansion, while resulting in an altered corrosion mechanism of the composite material with respect to the matrix alloy.

  13. Mapping Bone Mineral Density Obtained by Quantitative Computed Tomography to Bone Volume Fraction

    Science.gov (United States)

    Pennline, James A.; Mulugeta, Lealem

    2017-01-01

    Methods for relating or mapping estimates of volumetric Bone Mineral Density (vBMD) obtained by Quantitative Computed Tomography to Bone Volume Fraction (BVF) are outlined mathematically. The methods are based on definitions of bone properties, cited experimental studies and regression relations derived from them for trabecular bone in the proximal femur. Using an experimental range of values in the intertrochanteric region obtained from male and female human subjects, age 18 to 49, the BVF values calculated from four different methods were compared to the experimental average and numerical range. The BVF values computed from the conversion method used data from two sources. One source provided pre bed rest vBMD values in the intertrochanteric region from 24 bed rest subject who participated in a 70 day study. Another source contained preflight vBMD values from 18 astronauts who spent 4 to 6 months on the ISS. To aid the use of a mapping from BMD to BVF, the discussion includes how to formulate them for purpose of computational modeling. An application of the conversions would be used to aid in modeling of time varying changes in vBMD as it relates to changes in BVF via bone remodeling and/or modeling.

  14. Left ventricular ejection fraction and left ventricular end-diastolic volume in patients with diastolic dysfunction.

    Science.gov (United States)

    Jovin, Ion S; Ebisu, Keita; Liu, Yi-Hwa; Finta, Laurie A; Oprea, Adriana D; Brandt, Cynthia A; Dziura, James; Wackers, Frans J

    2013-01-01

    Diastolic dysfunction can be diagnosed on equilibrium radionuclide angiocardiography (ERNA) by a low peak filling rate (PFR) in the setting of a normal left ventricular ejection fraction (LVEF). The authors evaluated the relationship between diastolic dysfunction, LVEF, and end-diastolic volume (EDV). A total of 408 predominantly asymptomatic patients with an LVEF ≥50% by ERNA were studied. LVEF of patients with a low PFR was compared with the LVEF of patients with a normal PFR. Correlation analyses to evaluate the association between PFR and EDV were also performed. The LVEF of patients with a low PFR was lower than the LVEF of patients with normal PFR (59±7 vs 63%±7%; PPFR (r=-0.04; P=.32). The results did not change when the EDV indices were used. In patients who had repeat scans, there was no correlation between the change in EDV and the change in PFR (r=0.16; P=.2). In asymptomatic patients undergoing ERNA who have normal systolic function, a low PFR can be associated with a lower LVEF, but it is not associated with changes in EDV. This suggests that diastolic dysfunction is associated with mild systolic dysfunction.

  15. A framework of whole heart extracellular volume fraction estimation for low-dose cardiac CT images.

    Science.gov (United States)

    Chen, Xinjian; Nacif, Marcelo S; Liu, Songtao; Sibley, Christopher; Summers, Ronald M; Bluemke, David A; Yao, Jianhua

    2012-09-01

    Cardiac CT (CCT) is widely available and has been validated for the detection of focal myocardial scar using a delayed enhancement technique in this paper. CCT, however, has not been previously evaluated for quantification of diffuse myocardial fibrosis. In our investigation, we sought to evaluate the potential of low-dose CCT for the measurement of myocardial whole heart extracellular volume (ECV) fraction. ECV is altered under conditions of increased myocardial fibrosis. A framework consisting of three main steps was proposed for CCT whole heart ECV estimation. First, a shape-constrained graph cut (GC) method was proposed for myocardium and blood pool segmentation on postcontrast image. Second, the symmetric demons deformable registration method was applied to register precontrast to postcontrast images. So the correspondences between the voxels from precontrast to postcontrast images were established. Finally, the whole heart ECV value was computed. The proposed method was tested on 20 clinical low-dose CCT datasets with precontrast and postcontrast images. The preliminary results demonstrated the feasibility and efficiency of the proposed method.

  16. Surface area and volume fraction of random open-pore systems

    Science.gov (United States)

    Hermann, H.; Elsner, A.; Stoyan, D.

    2013-12-01

    For the first time, explicit approximate formulas are presented for the volume fraction and specific surface area of random open-pore systems with poly-disperse pore size distributions. It is shown that the formulas are valid for broad classes of models for porous media characterized by tunable pore size distributions and a variable degree of inter-penetrability of pores. The formulas for the poly-disperse case are based on expressions derived previously for mono-disperse penetrable-sphere models. The results are obtained by analysis of a series of open-pore models, which are prepared by computer simulation of systems of randomly packed partially penetrable spheres with various poly-disperse size distributions such as gamma, lognormal, and Gaussian. The formulas are applied in a study of atomic layer deposition processes on open-pore systems, and the effective Young's modulus and the effective thermal conductivity of Al2O3 coated porous polypropylene electrodes for lithium ion batteries are predicted.

  17. Role of cardiac CTA in estimating left ventricular volumes and ejection fraction

    Institute of Scientific and Technical Information of China (English)

    Robin; Man; Singh; Balkrishna; Man; Singh; Jawahar; Lal; Mehta

    2014-01-01

    Left ventricular ejection fraction(LVEF)is an impor-tant predictor of cardiac outcome and helps in makingimportant diagnostic and therapeutic decisions suchas the treatment of different types of congestive heartfailure or implantation of devices like cardiac resynchro-nization therapy-defibrillator.LVEF can be measuredby various techniques such as transthoracic echo-cardiography,contrast ventriculography,radionuclidetechniques,cardiac magnetic resonance imaging andcardiac computed tomographic angiography(CTA).Thedevelopment of cardiac CTA using multi-detector rowCT(MDCT)has seen a very rapid improvement in thetechnology for identifying coronary artery stenosis andcoronary artery disease in the last decade.During theacquisition,processing and analysis of data to studycoronary anatomy,MDCT provides a unique opportunityto measure left ventricular volumes and LVEF simulta-neously with the same data set without the need foradditional contrast or radiation exposure.The develop-ment of semi-automated and automated software to measure LVEF has now added uniformity,efficiency and reproducibility of practical value in clinical practice rather than just being a research tool.This article will address the feasibility,the accuracy and the limitations of MDCT in measuring LVEF.

  18. Considerations regarding the volume fraction influence on the wear behavior of the fiber reinforced composite systems

    Science.gov (United States)

    Caliman, R.

    2017-08-01

    This paper contains an analysis of the factors that have an influence on the tribological characteristics of the composite material sintered with metal matrix reinforced with carbon fibers. These composites are used generally if it’s needed the wear resistant materials, whereas these composites have high specific strength in conjunction with a good corrosion resistance at low densities and some self-lubricating properties. Through the knowledge of the better tribological properties of the materials and their behavior to wear, can be generated by dry and the wet friction. Thus, where necessary the use of high temperature resistant material with low friction between the elements, carbon fiber composite materials are very suitable because they have: mechanical strength and good ductility, melting temperature on the higher values, higher electrical and thermal conductivity, lower wear speed and lower friction forces. For this purpose, this paper also contains an experimental program based on the evidence of formaldehyde resin made from fiber reinforced Cu-carbon with the aim to specifically determine the volume of fibers fraction for the consolidation of the composite material. In order to determine the friction coefficient and the wear rates of the various fiber reinforced polymer mixtures of carbon have been used special devices with needle-type with steel disc. These tests were conducted in the atmosphere at the room temperature without external lubrication study taking into consideration the sliding different speeds with constant loading task.

  19. Non-monotonic dependence of Pickering emulsion gel rheology on particle volume fraction.

    Science.gov (United States)

    Kaganyuk, M; Mohraz, A

    2017-03-29

    The microstructure of Pickering emulsion gels features a tenuous network of faceted droplets, bridged together by shared monolayers of particles. In this investigation, we use standard oscillatory rheometry in conjunction with confocal microscopy to gain a more comprehensive understanding of the role particle bridged interfaces have on the rheology of Pickering emulsion gels. The zero-shear elastic modulus of Pickering emulsion gels shows a non-monotonic dependence on particle loading, with three separate regimes of power-law and linear gel strengthening, and subsequent gel weakening. The transition from power-law to linear scaling is found to coincide with a peak in the volume fraction of particles that participate in bridging, which we indirectly calculate using measureable quantities, and the transition to gel weakening is shown to result from a loss in network connectivity at high particle loadings. These observations are explained via a simple representation of how Pickering emulsion gels arise from an initial population of partially-covered droplets. Based on these considerations, we propose a combined variable related to the initial droplet coverage, to be used in reporting and rationalizing the rheology of Pickering emulsion gels. We demonstrate the applicability of this variable with Pickering emulsions prepared at variable fluid ratios and with different-sized colloidal particles. The results of our investigation have important implications for many technological applications that utilize solid stabilized multi-phase emulsions and require a priori knowledge or engineering of their flow characteristics.

  20. A framework of whole heart extracellular volume fraction estimation for low dose cardiac CT images

    Science.gov (United States)

    Chen, Xinjian; Summers, Ronald M.; Nacif, Marcelo Souto; Liu, Songtao; Bluemke, David A.; Yao, Jianhua

    2012-02-01

    Cardiac magnetic resonance imaging (CMRI) has been well validated and allows quantification of myocardial fibrosis in comparison to overall mass of the myocardium. Unfortunately, CMRI is relatively expensive and is contraindicated in patients with intracardiac devices. Cardiac CT (CCT) is widely available and has been validated for detection of scar and myocardial stress/rest perfusion. In this paper, we sought to evaluate the potential of low dose CCT for the measurement of myocardial whole heart extracellular volume (ECV) fraction. A novel framework was proposed for CCT whole heart ECV estimation, which consists of three main steps. First, a shape constrained graph cut (GC) method was proposed for myocardium and blood pool segmentation for post-contrast image. Second, the symmetric Demons deformable registrations method was applied to register pre-contrast to post-contrast images. Finally, the whole heart ECV value was computed. The proposed method was tested on 7 clinical low dose CCT datasets with pre-contrast and post-contrast images. The preliminary results demonstrated the feasibility and efficiency of the proposed method.

  1. The Effect of Type and Volume Fraction (Vf) of Steel Fiber on the Mechanical Properties of Self-Compacting Concrete

    DEFF Research Database (Denmark)

    Ghanbarpour, S.; Mazaheripour, H.; Mirmoradi, S. H.;

    2010-01-01

    is to investigate the effects of type and volume fraction of steel fiber on the compressive strength, split tensile strength, flexural strength and modulus of elasticity of steel fiber reinforced self-compacting concrete (SFRSCC). Design/methodology/approach – For this purpose, Micro wire and Wave type steel fibers...

  2. Effect of particle volume fraction on the settling velocity of volcanic ash particles: implications for ash dispersion models

    Science.gov (United States)

    Del Bello, E.; Taddeucci, J.; De'Michieli Vitturi, M.; Scarlato, P.; Andronico, D.; Scollo, S.; Kueppers, U.

    2015-12-01

    We present the first report of experimental measurements of the enhanced settling velocity of volcanic particles as function of particle volume fraction. In order to investigate the differences in the aerodynamic behavior of ash particles when settling individually or in mass, we performed systematic large-scale ash settling experiments using natural basaltic and phonolitic ash. By releasing ash particles at different, controlled volumetric flow rates, in an unconstrained open space and at minimal air movement, we measured their terminal velocity, size, and particle volume fraction with a high-speed camera at 2000 fps. Enhanced settling velocities of individual particles increase with increasing particle volume fraction. This suggests that particle clustering during fallout may be one reason explaining larger than theoretical depletion rates of fine particles from volcanic ash clouds. We provide a quantitative empirical model that allows to calculate, from a given particle size and density, the enhanced velocity resulting from a given particle volume fraction. The proposed model has the potential to serve as a simple tool for the prediction of the terminal velocity of ash of an hypothetical distribution of ash of known particle size and volume fraction. This is of particular importance for advection-diffusion transport model of ash where generally a one-way coupling is adopted, considering only the flow effects on particles. To better quantify the importance of the enhanced settling velocity in ash dispersal, we finally introduced the new formulation in a Lagrangian model calculating for realistic eruptive conditions the resulting ash concentration in the atmosphere and on the ground.

  3. Effects of diluents on soot surface temperature and volume fraction in diluted ethylene diffusion flames at pressure

    KAUST Repository

    Kailasanathan, Ranjith Kumar Abhinavam

    2014-05-20

    Soot surface temperature and volume fraction are measured in ethylene/air coflowing laminar diffusion flames at high pressures, diluted with one of four diluents (argon, helium, nitrogen, and carbon dioxide) using a two-color technique. Both temperature and soot measurements presented are line-of-sight averages. The results aid in understanding the kinetic and thermodynamic behavior of the soot formation and oxidation chemistry with changes in diluents, ultimately leading to possible methods of reducing soot emission from practical combustion hardware. The diluted fuel and coflow exit velocities (top-hat profiles) were matched at all pressures to minimize shear effects. In addition to the velocity-matched flow rates, the mass fluxes were held constant for all pressures. Addition of a diluent has a pronounced effect on both the soot surface temperature and volume fraction, with the helium diluted flame yielding the maximum and carbon dioxide diluted flame yielding minimum soot surface temperature and volume fraction. At low pressures, peak soot volume fraction exists at the tip of the flame, and with an increase in pressure, the location shifts lower to the wings of the flame. Due to the very high diffusivity of helium, significantly higher temperature and volume fraction are measured and explained. Carbon dioxide has the most dramatic soot suppression effect. By comparing the soot yield with previously measured soot precursor concentrations in the same flame, it is clear that the lower soot yield is a result of enhanced oxidation rates rather than a reduction in precursor formation. Copyright © 2014 Taylor & Francis Group, LLC.

  4. Specimen Preparation for Metal Matrix Composites with a High Volume Fraction of Reinforcing Particles for EBSD Analysis

    Science.gov (United States)

    Smirnov, A. S.; Belozerov, G. A.; Smirnova, E. O.; Konovalov, A. V.; Shveikin, V. P.; Muizemnek, O. Yu.

    2016-07-01

    The paper deals with a procedure of preparing a specimen surface for the EBSD analysis of a metal matrix composite (MMC) with a high volume fraction of reinforcing particles. Unlike standard procedures of preparing a specimen surface for the EBSD analysis, the proposed procedure is iterative with consecutive application of mechanical and electrochemical polishing. This procedure significantly improves the results of an indexed MMC matrix in comparison with the standard procedure of specimen preparation. The procedure was verified on a MMC with pure aluminum (99.8% Al) as the matrix, SiC particles being used as reinforcing elements. The average size of the SiC particles is 14 μm, and their volume fraction amounts to 50% of the total volume of the composite. It has been experimentally found that, for making the EBSD analysis of a material matrix near reinforcing particles, the difference in height between the particles and the matrix should not exceed 2 µm.

  5. Scale effect and geometric shapes of grains

    Institute of Scientific and Technical Information of China (English)

    GUO Hui; GUO Xing-ming

    2007-01-01

    The rule-of-mixture approach has become one of the widely spread ways to investigate the mechanical properties of nano-materials and nano-structures, and it is very important for the simulation results to exactly compute phase volume fractions. The nanocrystalline (NC) materials are treated as three-phase composites consisting of grain core phase, grain boundary (GB) phase and triple junction phase, and a two-dimensional three-phase mixture regular polygon model is established to investigate the scale effect of mechanical properties of NC materials due to the geometrical polyhedron characteristics of crystal grain. For different multi-sided geometrical shapes of grains, the corresponding regular polygon model is adopted to obtain more precise phase volume fractions and exactly predict the mechanical properties of NC materials.

  6. In vivo gastroprotective effect of nanoparticles: influence of chemical composition and volume fraction.

    Science.gov (United States)

    Bueno, Kelly; Adorne, Marcia D; Jornada, Denise S; da Fonseca, Francisco Noé; Guterres, Sílvia S; Pohlmann, Adriana R

    2013-01-01

    In nanomedicine, different nanomaterials and nanoparticles have been proposed as therapeutic agents or adjuvants, as well as diagnosis devices. Considering that the principal cause of the ulcerations is the imbalance among the gastric juice secretion and the protection provided by the mucosal barrier and the neutralization of the gastric acid, as well as that nanoparticles are able to accumulate in the gastro-intestinal tissues, we proposed a 2(2) factorial design to evaluate the influence of the chemical composition and the volume fraction of the dispersed phase on the gastric protective effect against ulceration induced by ethanol. Cocoa-theospheres (CT) and lipid-core nanocapsules (LNC) (two different kinds of surfaces: lipid and polymeric, respectively) prepared at two different concentrations of soft materials: 4% and 12% (w/v) were produced by high pressure homogenization and solvent displacement methods, respectively. Laser diffraction showed volume-weighted mean diameters ranging from 133 to 207 nm, number median diameters lower than 100 nm and specific surfaces between 41.2 and 51.2 m(2) g(-1). The formulations had pH ranging from 4.7 to 6.3; and zeta potential close to -9 mV due to their coating with polysorbate 80. The ulcer indexes were 0.40 (LNC(4)) and 0.48 (CT(4)) for the lower total administered areas (3.3 and 4.1 m(2)g(-1), respectively), and 0.09 (LNC(12) and CT(12)) for the higher administered areas (10.0 and 12.0 m(2) g(-1), respectively). LNC(4), LNC(12) and CT(12) showed lower levels in the lipid peroxidation assay when compared either to the negative control (saline) or to CT(4). LNC(12) and CT(12) showed similar TBARS levels, as well as CT(4) was similar to the negative control. SEM analysis of the stomach mucosa showed coatings more homogenous and cohesive when LNC formulations were administered compared to the correspondent CT formulations. The higher total area of administered nanoparticles showed film formation. Moreover, LNC(12

  7. Studies on Single Cell Culture in vitro in Wheat--The variation of grain protein content and its fractions from regenerated plants

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    On the basis of previous studies dealing with the variation of major agronomic and yield characteristics of regenerated plants derived from single cell culture in vitro of common wheat (Triticum aestivum L.Cultivar NE 7742), the grain protein content and its fractions from regenerated plants with stable agronomic characteristics were studied from 1992 to 1995. The results showed that the variation of grain protein content and its fractions in somaclones from single cell culture in vitro were very significant and the range was very wide (11.53~17.70%). Several types of variation were found in the studies, especially the type with higher protein content than that of cultivar NE 7742 (non-culture parent). Among them, -20.69% of lines the grain protein content was significantly higher than that of NE 7742 and combined with high yielding potential. The tendency of variation of the four protein fractions showed that the variation of albumin was not obvious and maintained the same level as NE7742, the content of gliadin increased in some somaclones and decreased in others. However, the percentages both globulin and glutenin tended to increase. The variation of total amount of structural protein and the ratio between globulin and glutenin tended to increase. The variation of total amount of structural protein and the ratio between globulin and albumm was mainly influenced by globulin under the condition of culture in vitro. The variation of total amount of storage protein and the ratio between gliadin and glutenin was mainly affected by glutenin. The results mentioned above demonstrated that the induction and screening of somaclonal variation could be an effective way in wheat improvement in combining high protein content with high yield.

  8. Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience

    Directory of Open Access Journals (Sweden)

    Kellman Peter

    2012-09-01

    Full Text Available Abstract Background Diffuse myocardial fibrosis, and to a lesser extent global myocardial edema, are important processes in heart disease which are difficult to assess or quantify with cardiovascular magnetic resonance (CMR using conventional late gadolinium enhancement (LGE or T1-mapping. Measurement of the myocardial extracellular volume fraction (ECV circumvents factors that confound T1-weighted images or T1-maps. We hypothesized that quantitative assessment of myocardial ECV would be clinically useful for detecting both focal and diffuse myocardial abnormalities in a variety of common and uncommon heart diseases. Methods A total of 156 subjects were imaged including 62 with normal findings, 33 patients with chronic myocardial infarction (MI, 33 with hypertrophic cardiomyopathy (HCM, 15 with non-ischemic dilated cardiomyopathy (DCM, 7 with acute myocarditis, 4 with cardiac amyloidosis, and 2 with systemic capillary leak syndrome (SCLS. Motion corrected ECV maps were generated automatically from T1-maps acquired pre- and post-contrast calibrated by blood hematocrit. Abnormally-elevated ECV was defined as >2SD from the mean ECV in individuals with normal findings. In HCM the size of regions of LGE was quantified as the region >2 SD from remote. Results Mean ECV of 62 normal individuals was 25.4 ± 2.5% (m ± SD, normal range 20.4%-30.4%. Mean ECV within the core of chronic myocardial infarctions (without MVO (N = 33 measured 68.5 ± 8.6% (p  Conclusions ECV mapping appears promising to complement LGE imaging in cases of more homogenously diffuse disease. The ability to display ECV maps in units that are physiologically intuitive and may be interpreted on an absolute scale offers the potential for detection of diffuse disease and measurement of the extent and severity of abnormal regions.

  9. Measurement of Soot Volume Fraction and Temperature for Oxygen-Enriched Ethylene Combustion Based on Flame Image Processing

    Directory of Open Access Journals (Sweden)

    Weijie Yan

    2017-05-01

    Full Text Available A method for simultaneously visualizing the two-dimensional distributions of temperature and soot volume fraction in an ethylene flame was presented. A single-color charge-coupled device (CCD camera was used to capture the flame image in the visible spectrum considering the broad-response spectrum of the R and G bands of the camera. The directional emissive power of the R and G bands were calibrated and used for measurement. Slightly increased temperatures and reduced soot concentration were predicted in the central flame without self-absorption effects considered, an iterative algorithm was used for eliminating the effect of self-absorption. Nine different cases were presented in the experiment to demonstrate the effects of fuel mass flow rate and oxygen concentration on temperature and soot concentration in three different atmospheres. For ethylene combustion in pure-air atmosphere, as the fuel mass flow rate increased, the maximum temperature slightly decreased, and the maximum soot volume fraction slightly increased. For oxygen fractions of 30%, 40%, and 50% combustion in O2/N2 oxygen-enhanced atmospheres, the maximum flame temperatures were 2276, 2451, and 2678 K, whereas combustion in O2/CO2 atmospheres were 1916, 2322, and 2535 K. The maximum soot volume fractions were 4.5, 7.0, and 9.5 ppm in oxygen-enriched O2/N2 atmosphere and 13.6, 15.3, and 14.8 ppm in oxygen-enriched O2/CO2 atmosphere. Compared with the O2/CO2 atmosphere, combustion in the oxygen-enriched O2/N2 atmosphere produced higher flame temperature and larger soot volume fraction. Preliminary results indicated that this technique is reliable and can be used for combustion diagnosis.

  10. Mechanical behaviors of the dispersion nuclear fuel plates induced by fuel particle swelling and thermal effect I: Effects of variations of the fuel particle volume fractions

    Science.gov (United States)

    Wang, Qiming; Yan, Xiaoqing; Ding, Shurong; Huo, Yongzhong

    2010-05-01

    A new method of modeling the in-pile mechanical behaviors of dispersion nuclear fuel elements is proposed. Considering the irradiation swelling together with the thermal effect, numerical simulations of the in-pile mechanical behaviors are performed with the developed finite element models for different fuel particle volume fractions of the fuel meat. The effects of the particle volume fractions on the mechanical performances of the fuel element are studied. The research results indicate that: (1) the maximum Mises stresses and equivalent plastic strains at the matrix increase with the particle volume fractions at each burnup; the locations of the maximum first principal stresses shift with increasing burnup; at low burnups, the maximum first principal stresses increase with the particle volume fractions; while at high burnups, the 20% volume fraction case holds the lowest value; (2) at the cladding, the maximum equivalent plastic strains and the tensile principal stresses increase with the particle volume fractions; while the maximum Mises stresses do not follow this order at high burnups; (3) the maximum Mises stresses at the fuel particles increase with the particle volume fractions, and the particles will engender plastic strains until the particle volume fraction reaches high enough.

  11. Theoretical and experimental analysis of a multiphase screw pump, handling gas-liquid mixtures with very high gas volume fractions

    Energy Technology Data Exchange (ETDEWEB)

    Raebiger, K. [LEISTRITZ Pumpen GmbH, Nuremberg (Germany); Faculty of Advanced Technology, University of Glamorgan, Pontypridd, Wales (United Kingdom); Maksoud, T.M.A.; Ward, J. [Faculty of Advanced Technology, University of Glamorgan, Pontypridd, Wales (United Kingdom); Hausmann, G. [Department of Mechanical Engineering and Building Services Engineering, University of Applied Sciences, Nuremberg (Germany)

    2008-09-15

    In the investigation of the pumping behaviour of multiphase screw pumps, handling gas-liquid mixtures with very high gas volume fractions, theoretical and experimental analyses were performed. A new theoretical screw pump model was developed, which calculates the time-dependent conditions inside the several chambers of a screw pump as well as the exchange of mass and energy between these chambers. By means of the performed experimental analysis, the screw pump model was verified, especially at very high gas volume fractions from 90% to 99%. The experiments, which were conducted with the reference fluids water and air, can be divided mainly into the determination of the steady state pumping behaviour on the one hand and into the analysis of selected transient operating conditions on the other hand, whereas the visualisation of the leakage flows through the circumferential gaps was rounded off the experimental analysis. (author)

  12. Research on Cellular Instabilities of Lean Premixed Syngas Flames under Various Hydrogen Fractions Using a Constant Volume Vessel

    Directory of Open Access Journals (Sweden)

    Hong-Meng Li

    2014-07-01

    Full Text Available An experimental study of the intrinsic instabilities of H2/CO lean (φ = 0.4 to φ = 1.0 premixed flames at different hydrogen fractions ranging from 0% to 100% at elevated pressure and room temperature was performed in a constant volume vessel using a Schlieren system. The unstretched laminar burning velocities were compared with data from the previous literature and simulated results. The results indicate that excellent agreements are obtained. The cellular instabilities of syngas-air flames were discussed and critical flame radii were measured. When hydrogen fractions are above 50%, the flame tends to be more stable as the equivalence ratio increases; however, the instability increases for flames of lower hydrogen fractions. For the premixed syngas flame with hydrogen fractions greater than 50%, the decline in cellular instabilities induced by the increase in equivalence ratio can be attributed to a reduction of diffusive-thermal instabilities rather than increased hydrodynamic instabilities. For premixed syngas flames with hydrogen fractions lower than 50%, as the equivalence ratio increases, the cellular instabilities become more evident because the enhanced hydrodynamic instabilities become the dominant effect. For premixed syngas flames, the enhancement of cellular instabilities induced by the increase in hydrogen fraction is the result of both increasing diffusive-thermal and hydrodynamic instabilities.

  13. Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone.

    Science.gov (United States)

    Bevill, Grant; Eswaran, Senthil K; Gupta, Atul; Papadopoulos, Panayiotis; Keaveny, Tony M

    2006-12-01

    Large-deformation bending and buckling have long been proposed as failure mechanisms by which the strength of trabecular bone can be affected disproportionately to changes in bone density, and thus may represent an important aspect of bone quality. We sought here to quantify the contribution of large-deformation failure mechanisms on strength, to determine the dependence of these effects on bone volume fraction and architecture, and to confirm that the inclusion of large-deformation effects in high-resolution finite element models improves predictions of strength versus experiment. Micro-CT-based finite element models having uniform hard tissue material properties were created from 54 cores of human trabecular bone taken from four anatomic sites (age = 70+/-11; 24 male, 27 female donors), which were subsequently biomechanically tested to failure. Strength predictions were made from the models first including, then excluding, large-deformation failure mechanisms, both for compressive and tensile load cases. As expected, strength predictions versus experimental data for the large-deformation finite element models were significantly improved (p deformation models in both tension and compression. Below a volume fraction of about 0.20, large-deformation failure mechanisms decreased trabecular strength from 5-80% for compressive loading, while effects were negligible above this volume fraction. Step-wise nonlinear multiple regression revealed that structure model index (SMI) and volume fraction (BV/TV) were significant predictors of these reductions in strength (R2 = 0.83, p deformation failure mechanisms on trabecular bone strength is highly heterogeneous and is not well explained by standard architectural metrics.

  14. Determination of the steam volume fraction in the event of loss of cooling of the spent fuel storage pool

    Science.gov (United States)

    Sledkov, R. M.; Galkin, I. Yu.; Stepanov, O. E.; Strebnev, N. A.

    2017-01-01

    When one solves engineering problems related to the cooling of fuel assemblies (FAs) in a spent fuel storage pool (SFSP) and the assessment of nuclear safety of FA storage in an SFSP in the initial event of loss of SFSP cooling, it is essential to determine the coolant density and, consequently, steam volume fractions φ in bundles of fuel elements at a pressure of 0.1-0.5 MPa. Such formulas for calculating φ that remain valid in a wide range of operating parameters and geometric shapes of channels and take the conditions of loss of SFSP cooling into account are currently almost lacking. The results of systematization and analysis of the available formulas for φ are reported in the present study. The calculated values were compared with the experimental data obtained in the process of simulating the conditions of FA cooling in an SFSP in the event of loss of its cooling. Six formulas for calculating the steam volume fraction, which were used in this comparison, were chosen from a total of 11 considered relations. As a result, the formulas producing the most accurate values of φ in the conditions of loss of SFSP cooling were selected. In addition, a relation that allows one to perform more accurate calculations of steam volume fractions in the conditions of loss of SFSP cooling was derived based on the Fedorov formula in the two-group approximation.

  15. Rheological Characterisation of the Flow Behaviour of Wood Plastic Composites in Consideration of Different Volume Fractions of Wood

    Science.gov (United States)

    Laufer, N.; Hansmann, H.; Koch, M.

    2017-01-01

    In this study, the rheological properties of wood plastic composites (WPC) with different polymeric matrices (LDPE, low-density polyethylene and PP, polypropylene) and with different types of wood filler (hardwood flour and softwood flour) have been investigated by means of high pressure capillary rheometry. The volume fraction of wood was varied between 0 and 60 %. The shear thinning behaviour of the WPC melts can be well described by the Ostwald - de Waele power law relationship. The flow consistency index K of the power law shows a good correlation with the volume fraction of wood. Interparticular interaction effects of wood particles can be mathematically taken into account by implementation of an interaction exponent (defined as the ratio between flow exponent of WPC and flow exponent of polymeric matrix). The interaction exponent shows a good correlation with the flow consistency index. On the basis of these relationships the concept of shear-stress-equivalent inner shear rate has been modified. Thus, the flow behaviour of the investigated wood filled polymer melts could be well described mathematically by the modified concept of shear-stress-equivalent inner shear rate. On this basis, the shear thinning behaviour of WPC can now be estimated with good accuracy, taking into account the volume fraction of wood.

  16. Quasiclassical Coarse Graining and Thermodynamic Entropy

    CERN Document Server

    Gell-Mann, Murray; Gell-Mann, Murray; Hartle, James

    2006-01-01

    Our everyday descriptions of the universe are highly coarse-grained, following only a tiny fraction of the variables necessary for a perfectly fine-grained description. Coarse graining in classical physics is made natural by our limited powers of observation and computation. But in the modern quantum mechanics of closed systems, some measure of coarse graining is inescapable because there are no non-trivial, probabilistic, fine-grained descriptions. This essay explores the consequences of that fact: Quantum theory allows for various coarse-grained descriptions some of which are mutually incompatible. For most purposes, however, we are interested in the small subset of ``quasiclassical descriptions'' defined by ranges of values of averages over small volumes of densities of conserved quantities such as energy and momentum and approximately conserved quantities such as baryon number. The near-conservation of these quasiclassical quantities results in approximate decoherence, predictability, and local equilibriu...

  17. [Automatic calculation of left ventricular volume and ejection fraction from gated myocardial perfusion SPECT--basic evaluation using phantom].

    Science.gov (United States)

    Kinoshita, Y; Nanbu, I; Tohyama, J; Ooba, S

    1998-02-01

    We evaluated accuracy of Quantitative Gated SPECT Program that enabled calculation of the left ventricular (LV) volume and ejection fraction by automatically tracing the contour of the cardiac surface. Cardiac phantoms filled with 99mTc-solution were used. Data acquisition was made by 180-degree projection in L type and 360-degree projection in opposed type. Automatic calculation could be done in all processes, which required 3-4 minutes. Reproducibility was sufficient. The adequate cut off value of a prefilter was 0.45. At this value LV volume was 93% of the actual volume in L type acquisition and 95.9% in opposed type acquisition. The LV volume obtained in L type was smaller than that obtained in opposed type (p defects was fair, on the cardiac phantoms with all of 90-degree defects and 180-degree defects of the septal and lateral wall. The LV volume was estimated to be larger on the phantom with 180-degree defect of the anterior wall, and to be smaller on the phantom of 180-degree defect of the inferoposterior wall. Because tracing was deviated anteriorly at the defects. In the patients with similar conditions to 180-degree defect of the anterior wall or inferoposterior wall, the LV volume should be carefully evaluated.

  18. Automatic calculation of left ventricular volume and ejection fraction from gated myocardial perfusion SPECT. Basic evaluation using phantom

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Yoshimi; Nanbu, Ichirou [Nagoya Daini Red Cross Hospital (Japan); Tohyama, Junko; Ooba, Satoru

    1998-02-01

    We evaluated accuracy of Quantitative Gated SPECT Program that enabled calculation of the left ventricular (LV) volume and ejection fraction by automatically tracing the contour of the cardiac surface. Cardiac phantoms filled with {sup 99m}Tc-solution were used. Data acquisition was made by 180-degree projection in L type and 360-degree projection in opposed type. Automatic calculation could be done in all processes, which required 3-4 minutes. Reproducibility was sufficient. The adequate cut off value of a prefilter was 0.45. At this value LV volume was 93% of the actual volume in L type acquisition and 95.9% in opposed type acquisition. The LV volume obtained in L type was smaller than that obtained in opposed type (p<0.05). The tracing of the defects was fair, on the cardiac phantoms with all of 90-degree defects and 180-degree defects of the septal and lateral wall. The LV volume was estimated to be larger on the phantom with 180-degree defect of the anterior wall, and to be smaller on the phantom of 180-degree defect of the inferoposterior wall. Because tracing was deviated anteriorly at the defects. In the patients with similar conditions to 180-degree defect of the anterior wall or inferoposterior wall, the LV volume should be carefully evaluated. (author)

  19. Correlation between Cohesive Energy Density, Fractional Free Volume, and Gas Transport Properties of Poly(ethylene-co-vinyl acetate Materials

    Directory of Open Access Journals (Sweden)

    Piotr Kubica

    2015-01-01

    Full Text Available The transport properties of the poly(ethylene-co-vinyl acetate (EVA materials to He, N2, O2, and CO2 are correlated with two polymer molecular structure parameters, that is, cohesive energy density (CED and fractional free volume (FFV, determined by the group contribution method. In our preceding paper, the attempt was made to approximate EVA permeability using a linear function of 1/FFV as predicted by the free volume theory. However, the deviations from this relationship appeared to be significant. In this paper, it is shown that permeation of gas molecules is controlled not only by free volume but also by the polymer cohesive energy. Moreover, the behavior of CO2 was found to differ significantly from that of other gases. In this instance, the correlation is much better when diffusivity instead of permeability is taken into account in a modified transport model.

  20. Grain- and Pore-level Analysis of Drainage in Fractionally-wet Granular Media using Synchrotron X-ray Computed Microtomography

    Science.gov (United States)

    Willson, C. S.; Bradley, S.; Thompson, K. E.

    2011-12-01

    Numerous lab- and field-scale experimental studies have shown the strong impact of wettability on multiphase flow constitutive relations and how increased water repellency can lead to preferential flow paths and a heterogeneous water distribution. In conjunction, theoretical and pore-scale modeling work has been performed seeking to improve our understanding of the impact of grain-level wettability properties. Advances in high-resolution X-ray computed tomography (XCT) techniques now make it possible to nondestructively image opaque materials providing previously hard-to-observe qualitative and quantitative data and information. Furthermore, the characteristics of synchrotron X-rays make it possible to monochromatize the incident energy allowing for both k-edge absorption differencing and segmentation of fluids and materials that have even slightly different chemical composition. Concurrent with these advances has been the development of methods to extract granular packing and pore network structure data from XCT images. In this talk, we will present results from a series of experiments designed to obtain grain-, pore- and fluid-scale details during the drainage of water in fractionally-wet glass bead systems. Here, two sets of glass beads were used each having slightly different chemical compositions and thus, different X-ray absorption properties. One set was treated so that the bead surface was water neutral while the other set remained hydrophilic. Three sets of drainage experiments were conducted on three fractionally-wet systems: 100, 90, and 75% hydrophilic by weight. First, traditional lab-scale drainage experiments were performed to obtain a baseline set of characteristic drainage curves for the three systms. Next, a set of tomography-scale (i.e., 5.5 mm inner diameter column) drainage experiments were conducted in the lab to ensure that the drainage curves in the smaller columns were consistent with the lab-scale curves. Finally, tomography-scale drainage

  1. Effective thermal conductivity of metal and non-metal particulate composites with interfacial thermal resistance at high volume fraction of nano to macro-sized spheres

    Energy Technology Data Exchange (ETDEWEB)

    Faroughi, Salah Aldin, E-mail: salah-faroughi@gatech.edu [School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332-0340 (United States); Huber, Christian [School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta 30332-0340 (United States)

    2015-02-07

    In this study, we propose a theoretical model to compute the effective thermal conductivity of metal and dielectric spherical particle reinforced composites with interfacial thermal resistance. We consider a wide range of filler volume fraction with sizes ranging from nano- to macro-scale. The model, based on the differential effective medium theory, accounts for particle interactions through two sets of volume fraction corrections. The first correction accounts for a finite volume of composite and the second correction introduces a self-crowding factor that allows us to develop an accurate model for particle interaction even for high volume fraction of fillers. The model is examined to other published models, experiments, and numerical simulations for different types of composites. We observe an excellent agreement between the model and published datasets over a wide range of particle volume fractions and material properties of the composite constituents.

  2. Optimization of the fractionated irradiation scheme considering physical doses to tumor and organ at risk based on dose–volume histograms

    Energy Technology Data Exchange (ETDEWEB)

    Sugano, Yasutaka [Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan); Mizuta, Masahiro [Laboratory of Advanced Data Science, Information Initiative Center, Hokkaido University, Kita-11, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0811 (Japan); Takao, Seishin; Shirato, Hiroki; Sutherland, Kenneth L. [Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Date, Hiroyuki, E-mail: date@hs.hokudai.ac.jp [Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan)

    2015-11-15

    Purpose: Radiotherapy of solid tumors has been performed with various fractionation regimens such as multi- and hypofractionations. However, the ability to optimize the fractionation regimen considering the physical dose distribution remains insufficient. This study aims to optimize the fractionation regimen, in which the authors propose a graphical method for selecting the optimal number of fractions (n) and dose per fraction (d) based on dose–volume histograms for tumor and normal tissues of organs around the tumor. Methods: Modified linear-quadratic models were employed to estimate the radiation effects on the tumor and an organ at risk (OAR), where the repopulation of the tumor cells and the linearity of the dose-response curve in the high dose range of the surviving fraction were considered. The minimization problem for the damage effect on the OAR was solved under the constraint that the radiation effect on the tumor is fixed by a graphical method. Here, the damage effect on the OAR was estimated based on the dose–volume histogram. Results: It was found that the optimization of fractionation scheme incorporating the dose–volume histogram is possible by employing appropriate cell surviving models. The graphical method considering the repopulation of tumor cells and a rectilinear response in the high dose range enables them to derive the optimal number of fractions and dose per fraction. For example, in the treatment of prostate cancer, the optimal fractionation was suggested to lie in the range of 8–32 fractions with a daily dose of 2.2–6.3 Gy. Conclusions: It is possible to optimize the number of fractions and dose per fraction based on the physical dose distribution (i.e., dose–volume histogram) by the graphical method considering the effects on tumor and OARs around the tumor. This method may stipulate a new guideline to optimize the fractionation regimen for physics-guided fractionation.

  3. Calculating Cross Sections of Composite Interstellar Grains

    CERN Document Server

    Voshchinnikov, N V; Voshchinnikov, Nikolai V.; Mathis, John S.

    1999-01-01

    Interstellar grains may be composite collections of particles of distinct materials, including voids, agglomerated together. We determine the various optical cross sections of such composite grains, given the optical properties of each constituent, using an approximate model of the composite grain. We assume it consists of many concentric spherical layers of the various materials, each with a specified volume fraction. In such a case the usual Mie theory can be generalized and the extinction, scattering, and other cross sections determined exactly. We find that the ordering of the materials in the layering makes some difference to the derived cross sections, but averaging over the various permutations of the order of the materials provides rapid convergence as the number of shells (each of which is filled by all of the materials proportionately to their volume fractions) is increased. Three shells, each with one layer of a particular constituent material, give a very satisfactory estimate of the average cross...

  4. Optical dating of Holocene tidal deposits from the southwestern coast of the South Yellow Sea using different grain-size quartz fractions

    Science.gov (United States)

    Gao, Lei; Long, Hao; Shen, Ji; Yu, Ge; Liao, Mengna; Yin, Yong

    2017-03-01

    The tidal flat deposit provides ideal sedimentary records for paleoenvironmental studies. Reliable chronology is crucial to utilize this archive for deciphering the history of environmental changes. In this study, we applied optically stimulated luminescence (OSL) dating method to a Holocene tidal flat sequence using both coarse-grained (CG, 90-200 μm) and fine-grained (FG, 4-11 μm) quartz extracts from a sedimentary core (YZ07) in western coast of the South Yellow Sea. The luminescence characteristics of the two grain-size fractions were investigated and then their resulting OSL ages were systematically compared. The results suggested that most tidal flat deposits are well bleached and their FG quartz ages are generally consistent with CG quartz ages, while some samples have CG ages underestimated compared with FG, likely resulted from the K-feldspar contamination for CG quartz. Hence, we applied post-IR OSL dating and pulsed OSL dating techniques; they could overcome the problems caused by feldspar contamination, and yielded identical dates as FG OSL ages. All OSL ages are generally in stratigraphic order; in contrast, the 14C ages are much more disorder and characterized with severe inversions. Finally, the age framework of the tidal flat sequence under this study was constructed based on the 30 OSL ages and one acceptable radiocarbon age. According to the age-depth model, three main periods of sedimentation-rate (SR) variation were identified. These SR changes are probably associated with sea-level rise/fall history, and the depocenter landward/seaward movement as well as the transition of depositional process within the Holocene delta initiation. The depositional environment changes were also reflected in sedimentological features of the tidal flat deposits in our study area.

  5. Fractional watt Vuillemier cryogenic refrigerator program engineering notebook. Volume 1: Thermal analysis

    Science.gov (United States)

    Miller, W. S.

    1974-01-01

    The cryogenic refrigerator thermal design calculations establish design approach and basic sizing of the machine's elements. After the basic design is defined, effort concentrates on matching the thermodynamic design with that of the heat transfer devices (heat exchangers and regenerators). Typically, the heat transfer device configurations and volumes are adjusted to improve their heat transfer and pressure drop characteristics. These adjustments imply that changes be made to the active displaced volumes, compensating for the influence of the heat transfer devices on the thermodynamic processes of the working fluid. Then, once the active volumes are changed, the heat transfer devices require adjustment to account for the variations in flows, pressure levels, and heat loads. This iterative process is continued until the thermodynamic cycle parameters match the design of the heat transfer devices. By examing several matched designs, a near-optimum refrigerator is selected.

  6. Grain growth of Al-4Cu-Mg alloy during isothermal heat treatment

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The microstructure of an Al-4Cu-Mg alloy during isothermal heat treatment in the Strain Induced Melt Activation (SIMA)process was investigated and the kinetics of grain growth was analyzed. The grain growth during isothermal heat treatment of the Al4Cu-Mg alloy coincided with the Ostwald ripening theory. During isothermal heat treatment, both grain shape and the high volume fraction of solid phase have significant effects on grain growth. Therefore, a new grain growth model based on the Ostwald ripening theory was proposed taking into consideration the grain shape and the volume fraction of solid phase. By comparing the calculated results with the experimental results, it was confirmed that the present model could be applied to grain growth during isothermal heat treatment of the Al-4Cu-Mg alloy in the SIMA process.

  7. Effects of porosity distribution and porosity volume fraction on the electromechanical properties of 3-3 piezoelectric foams

    Science.gov (United States)

    Nguyen, B. V.; Challagulla, K. S.; Venkatesh, T. A.; Hadjiloizi, D. A.; Georgiades, A. V.

    2016-12-01

    Unit-cell based finite element models are developed to completely characterize the role of porosity distribution and porosity volume fraction in determining the elastic, dielectric and piezoelectric properties as well as relevant figures of merit of 3-3 type piezoelectric foam structures. Eight classes of foam structures which represent structures with different types and degrees of uniformity of porosity distribution are identified; a Base structure (Class I), two H-type foam structures (Classes II, and III), a Cross-type foam structure (Class IV) and four Line-type foam structures (Classes V, VI, VII, and VIII). Three geometric factors that influence the electromechanical properties are identified: (i) the number of pores per face, pore size and the distance between the pores; (ii) pore orientation with respect to poling direction; (iii) the overall symmetry of the pore distribution with respect to the center of the face of the unit cell. To assess the suitability of these structures for such applications as hydrophones, bone implants, medical imaging and diagnostic devices, five figures of merit are determined via the developed finite element model; the piezoelectric coupling constant (K t ), the acoustic impedance (Z), the piezoelectric charge coefficient (d h ), the hydrostatic voltage coefficient (g h ), and the hydrostatic figure of merit (d h g h ). At high material volume fractions, foams with non-uniform Line-type porosity (Classes V and VII) where the pores are preferentially distributed perpendicular to poling direction, are found to exhibit the best combination of desirable piezoelectric figures of merit. For example, at about 50% volume fraction, the d h , g h , and d h g h figures of merit are 55%, 1600% and 2500% higher, respectively, for Classes V and VII of Line-like foam structures compared with the Base structure.

  8. Determination of respirable mass concentration using a high volume air sampler and a sedimentation method for fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.

    1995-12-31

    A preliminary study of a new method for determining respirable mass concentration is described. This method uses a high volume air sampler and subsequent fractionation of the collected mass using a particle sedimentation technique. Side-by-side comparisons of this method with cyclones were made in the field and in the laboratory. There was good agreement among the samplers in the laboratory, but poor agreement in the field. The effect of wind on the samplers` capture efficiencies is the primary hypothesized source of error among the field results. The field test took place at the construction site of a hazardous waste landfill located on the Hanford Reservation.

  9. Theoretical Model for Volume Fraction of UC, 235U Enrichment, and Effective Density of Final U 10Mo Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Hu, Shenyang Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); McGarrah, Eric J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)

    2016-04-12

    The purpose of this document is to provide a theoretical framework for (1) estimating uranium carbide (UC) volume fraction in a final alloy of uranium with 10 weight percent molybdenum (U 10Mo) as a function of final alloy carbon concentration, and (2) estimating effective 235U enrichment in the U 10Mo matrix after accounting for loss of 235U in forming UC. This report will also serve as a theoretical baseline for effective density of as-cast low-enriched U 10Mo alloy. Therefore, this report will serve as the baseline for quality control of final alloy carbon content

  10. Effect of heat treatment on the distribution and volume fraction of Mg2Si in structural aluminum alloy 6063

    Science.gov (United States)

    Al-Marahleh, G.

    2006-05-01

    The structure and properties of an aluminum alloy after extrusion in cast and homogenized states are studied. Commercial billets are melted in a horizontal continuous casting installation. After homogenizing the billets are used for fabricating shapes of specified form in an extrusion press. The shapes are subjected to final aging. The volume fraction and the distribution of the second Mg2Si phase are determined after different kinds of treatment. The structure and mechanical properties of shapes obtained from cast and homogenized billets are compared after aging and without aging. The effect of homogenizing on the properties of the alloy after extrusion is analyzed.

  11. Non-invasive measurement of stroke volume and left ventricular ejection fraction. Radionuclide cardiography compared with left ventricular cardioangiography

    DEFF Research Database (Denmark)

    Kelbaek, H; Svendsen, Jesper Hastrup; Aldershvile, J;

    2011-01-01

    The stroke volume (SV) was determined by first passage radionuclide cardiography and the left ventricular ejection fraction (LVEF) by multigated radionuclide cardiography in 20 patients with ischemic heart disease. The results were evaluated against those obtained by the invasive dye dilution...... or thermodilution and left ventricular cardioangiographic techniques. In a paired comparison the mean difference between the invasive and radionuclide SV was -1 ml (SED 3.1) with a correlation coefficient of 0.83 (p less than 0.01). Radionuclide LVEF values also correlated well with cardioangiographic measurements...

  12. Effect of Hot Torsion Parameters on Development of Ultrafine Ferrite Grains in Microalloyed Steel%Effect of Hot Torsion Parameters on Development of Ultrafine Ferrite Grains in Microalloyed Steel

    Institute of Scientific and Technical Information of China (English)

    B Eghbali; M Shaban

    2012-01-01

    Hot torsion testing was performed on a low carbon Nb-Ti microalloyed steel to study the effects of hot tor- sion parameters, strain and strain rate, on ultrafine ferrite grains production through dynamic strain-induced trans- formation, at a deformation temperature just above At3. The initiation and evolution of ultrafine ferrite grains were studied. The results show that the amount of strain and strain rate has conversely effect on the volume fraction and grain size of ultrafine ferrite grains. With increasing strain, the interior of austenite grains become activated as nucle- ation sites for fine ferrite grains. As a result, ferrite grains continuously nucleate not only at the former austenite grain boundaries but also inside the austenite grains which leads to a rapid increase in volume fraction of ultrafine grains. Increasing of strain rate reduces the tendency of ferrite grains coarsening so that ultrafine ferrite grains are achieved, while the volume fraction of ultrafine grains decreases at the same strain level.

  13. Prediction of the Soil Water Characteristic from Soil Particle Volume Fractions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Tuller, Markus

    2012-01-01

    Modelling water distribution and flow in partially saturated soils requires knowledge of the soil-water characteristic (SWC). However, measurement of the SWC is challenging and time-consuming, and in some cases not feasible. This study introduces two predictive models (Xw-model and Xw......*-model) for the SWC, derived from readily available soil properties such as texture and bulk density. A total of 46 soils from different horizons at 15 locations across Denmark were used for models evaluation. The Xw-model predicts the volumetric water content as a function of volumetric fines content (organic matter...... (organic matter, clay, silt, fine and coarse sand), variably included in the model depending on the pF value. The volumetric content of a particular soil particle size fraction was included in the model if it was assumed to contribute to the pore size fraction still occupied with water at the given p...

  14. A glimpse beneath Antarctic sea ice: observation of platelet-layer thickness and ice-volume fraction with multifrequency EM

    Science.gov (United States)

    Hoppmann, Mario; Hunkeler, Priska A.; Hendricks, Stefan; Kalscheuer, Thomas; Gerdes, Rüdiger

    2016-04-01

    In Antarctica, ice crystals (platelets) form and grow in supercooled waters below ice shelves. These platelets rise, accumulate beneath nearby sea ice, and subsequently form a several meter thick, porous sub-ice platelet layer. This special ice type is a unique habitat, influences sea-ice mass and energy balance, and its volume can be interpreted as an indicator of the health of an ice shelf. Although progress has been made in determining and understanding its spatio-temporal variability based on point measurements, an investigation of this phenomenon on a larger scale remains a challenge due to logistical constraints and a lack of suitable methodology. In the present study, we applied a lateral constrained Marquardt-Levenberg inversion to a unique multi-frequency electromagnetic (EM) induction sounding dataset obtained on the ice-shelf influenced fast-ice regime of Atka Bay, eastern Weddell Sea. We adapted the inversion algorithm to incorporate a sensor specific signal bias, and confirmed the reliability of the algorithm by performing a sensitivity study using synthetic data. We inverted the field data for sea-ice and platelet-layer thickness and electrical conductivity, and calculated ice-volume fractions within the platelet layer using Archie's Law. The thickness results agreed well with drillhole validation datasets within the uncertainty range, and the ice-volume fraction yielded results comparable to other studies. Both parameters together enable an estimation of the total ice volume within the platelet layer, which was found to be comparable to the volume of landfast sea ice in this region, and corresponded to more than a quarter of the annual basal melt volume of the nearby Ekström Ice Shelf. Our findings show that multi-frequency EM induction sounding is a suitable approach to efficiently map sea-ice and platelet-layer properties, with important implications for research into ocean/ice-shelf/sea-ice interactions. However, a successful application of this

  15. Comparative study of bulk metallic glass composites with high-volume-fractioned dendritic and spherical b. c. c. phase precipitates

    Directory of Open Access Journals (Sweden)

    Guo-yuan Sun

    2015-05-01

    Full Text Available A dendritic β-phase reinforced bulk metallic glass (BMG composite named as D2 was prepared by rapid quenching of a homogenous Zr60Ti14.67Nb5.33Cu5.56Ni4.44Be10 melt, and characterized by means of X-ray diffraction (XRD, scanning electron microscopy (SEM observation and room-temperature compression test. The microstructure and mechanical properties were compared with those of the spherical β-phase reinforced composite named as composite S2. It was found that the composite D2 contains β-phase dendrites up to 56% in volume-fraction, and exhibits a ductile compressive behavior with plastic strain of 12.7%. As the high-volume-fractioned β-phase dendrites transferred to coarse spherical particles of about 20 μm in diameter in the composite S2, a much improved plastic strain up to 20.4% can be achieved. Micrographs of the fractured samples reveal different interaction modes of the propagating shear bands with the dendritic and spherical β phase inclusions, resulting in different shear strains in the composite samples. The matrix of composite S2 undergoes a significantly larger shear strain than that of the composite D2 before ultimate failure, which is thought to be mainly responsible for the greatly increased global plastic strain of the S2 relative to D2.

  16. Rheological Properties of Nanoparticle Silica-Surfactant Stabilized Crude Oil Emulsions: Influence of Temperature, Nanoparticle Concentration and Water Volume Fraction"

    Science.gov (United States)

    Kinsey, Erin; Pales, Ashley; Li, Chunyan; Mu, Linlin; Bai, Lingyun; Clifford, Heather; Darnault, Christophe

    2016-04-01

    Oil in water emulsions occur during oil extraction due to the presence of water, naturally-occurring surface-active agents and mechanical mixing in pipelines or from oil spillage. Emulsions present difficulties for use of oil in fuel and their rheological properties are important to treat environmental impacts of spills. The objective of this study is to assess the rheological characteristics of oil in water emulsions stabilized by 5% NaCl brine, Tween 20 surfactant and silica nanoparticles to gain knowledge about the behavior of oil flow in pipelines and characterize them for environmental applications. Rheological behaviors such as shear rate, shear stress, and viscosity of Prudhoe Bay crude oil emulsions were analyzed with varying percent of water volume fractions (12.5, 25 and 50%), varying weight percent of silica nanoparticles (0.001, 0.01 and 0.1 weight %), with and without 2 CMC Tween 20 nonionic surfactant. Emulsions with varying water volume fractions were analyzed at 20, 40 and 60 degrees Celsius. Flow curve analysis of the emulsions was performed using an Anton-Paar rheometer. Preliminary findings indicate that increased temperature and increasing the concentration of nanoparticles both produced lower shear stress and that the addition of surfactant decreased the viscosity and shear stress of the emulsions.

  17. Grain coarsening in polymineralic contact metamorphic carbonate rocks: The role of different physical interactions during coarsening

    DEFF Research Database (Denmark)

    Brodhag, Sabine; Herwegh, Marco; Berger, Alfons

    2011-01-01

    ) and microstructures with considerable second-phase volume fractions of up to 0.5. The variations might be of general validity for any polymineralic rock, which undergoes grain coarsening during metamorphism. The new findings are important for a better understanding of the initiation of strain localization based...... on the activation of grain size dependent deformation mechanisms....

  18. Molecular Dynamic Simulation of Lattice Distortion Region Produced by Rounded Grain Boundary in Nanocrystalline Materials

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The distortion structure in nanocrystalline NiAl is studied using molecular dynamics simulation. The rounded grain boundaries in these nanograins are a direct source for the observed lattice distortion. The change of grain size affects directly the volume fraction of the distorted lattice in the nanograin.

  19. Agreement of left ventricular ejection fraction and volumes between adenosine stress TL-201 gated SPECT and echocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Pai, M. S. [College of Medicine, Univ. of Ewha, Seoul (Korea, Republic of); Moon, D. H.; Kim, H. M.; Yang, Y. J.; Kang, D. H. [Asan Medical Center, Seoul (Korea, Republic of)

    2003-07-01

    Electrocardiogram-gated TI-201 SPECT measurements of left ventricular ejection fraction (EF), end-diastolic volume (EDV), and end-systolic volume (ESV) have shown high correlation with conventional methods. However, how much these parameters measured by TI-201 gated SPECT differ from those by echocardiography has not been assessed. Adenosine stress (Ad-G) and redistribution TI-201 gated SPECT (Re-G) and resting echocardiography were conducted in 337 patients (184 male, 153 female). EDV, ESV and LVEF measured by QGS software were compared with the results by echocardiography. Patients with arrhythmia (atrial fibrillation or frequent premature contractions) or evidence of fixed or reversible perfusion defects on TI-201 SPECT were excluded. EF, EDV and ESV measured by Ad-G (63.3{+-}9.8,73.8{+-}30.2,29.1{+-}20.1) and Re-G (65.2{+-}11.6,69.1{+-}30.1,26.5{+-}20.3) correlated well with those by Echo (61.4{+-}7.9,78.3{+-}2.7, 30.7{+-} 17.5 ; r of Ad-G=0.547, 0.850, 0.827, p<0.001 ; r of Re-G=0.585, 0.838, 0.819, p<0.001). However the difference (mean, SD, SEE of Echo - gated SPECT) was statistically significant (EF: Ad-G=1.71, 8.92, 0.48, Re-G=3.59, 10.39, 0.56, p<0.001 ; EDV: Ad-G=4.75, 16.21, 0.88, Re-G=9.53, 16.77, 0.91, p<0.001 ; ESV: Ad-G=1.75, 11.35, 0.61, p<0.05, Re-G=4.29, 11.7, 0.63, p<0.001). Bland-Altman plots showed that the difference of EDV and ESV did not vary in any systematic way over the range of measurement, whereas the difference of EF increased with increasing average EF by Echo and gated-SPECT. The difference of EF, EDV, and ESV between Ad-G and Echo was significantly smaller than those between Re-G and Echo (p<0.001). Gated TI-201 SPECT underestimates EDV and ESV over a wide range of volume. As a result, EF by gated TI-201 SPECT is overestimated especially in patients with small LV volume. Ad-G is preferable to Re-G in assessing left ventricular ejection fraction and volume in place of Echo because of smaller bias.

  20. Quantitative sodium MRI of the human brain at 9.4 T provides assessment of tissue sodium concentration and cell volume fraction during normal aging.

    Science.gov (United States)

    Thulborn, Keith; Lui, Elaine; Guntin, Jonathan; Jamil, Saad; Sun, Ziqi; Claiborne, Theodore C; Atkinson, Ian C

    2016-02-01

    Sodium ion homeostasis is a fundamental property of viable tissue, allowing the tissue sodium concentration to be modeled as the tissue cell volume fraction. The modern neuropathology literature using ex vivo tissue from selected brain regions indicates that human brain cell density remains constant during normal aging and attributes the volume loss that occurs with advancing age to changes in neuronal size and dendritic arborization. Quantitative sodium MRI performed with the enhanced sensitivity of ultrahigh-field 9.4 T has been used to investigate tissue cell volume fraction during normal aging. This cross-sectional study (n = 49; 21-80 years) finds that the in vivo tissue cell volume fraction remains constant in all regions of the brain with advancing age in individuals who remain cognitively normal, extending the ex vivo literature reporting constant neuronal cell density across the normal adult age range. Cell volume fraction, as measured by quantitative sodium MRI, is decreased in diseases of cell loss, such as stroke, on a time scale of minutes to hours, and in response to treatment of brain tumors on a time scale of days to weeks. Neurodegenerative diseases often have prodromal periods of decades in which regional neuronal cell loss occurs prior to clinical presentation. If tissue cell volume fraction can detect such early pathology, this quantitative parameter may permit the objective measurement of preclinical disease progression. This current study in cognitively normal aging individuals provides the basis for the pursuance of investigations directed towards such neurodegenerative diseases.

  1. Prospects for Improving the Critical Current Density of Superconducting Nb3Sn Strands via Optimization of Nb3Sn Fraction, Stoichiometry, and Grain Size

    Science.gov (United States)

    Xu, Xingchen

    determined by three factors: the fraction of current-carrying Nb3Sn phase in a subelement, the irreversibility field Birr which mainly depends on the Nb3Sn phase composition (i.e., Sn content), doping, and strain state, and the flux-line pinning characteristics (including the maximum pinning force Fp,max and the pinning force peak field) which mainly depend on grain size. Then these three factors will be addressed in three chapters. In chapter 3, the question "how to improve Nb 3Sn fraction in a subelement" is investigated. A model is developed to predict the phase fractions in reacted strands based on the starting amounts of precursors. In chapter 4, a model is developed to find out what essentially determines the composition of non-stoichiometric compounds formed by diffusion reactions. It can be used as a guide for controlling the Sn content of the Nb3Sn phase formed in Sn source/Nb3Sn/Nb diffusion reaction couples. Finally, chapter 5 demonstrates that the subelement structures can be carefully modified to enable the internal oxidation of Nb-Zr alloy, so that fine ZrO2 precipitates are formed in Nb3Sn; these ZrO2 particles can significantly refine Nb3Sn grain size and improve the high-field Jc.

  2. Grain Size Dependence of Exchange-Coupling Interaction between Magnetically Soft-Hard Grains and Effective Anisotropy

    Institute of Scientific and Technical Information of China (English)

    韩广兵; 高汝伟; 傅爽; 刘汉强; 冯维存; 陈伟

    2004-01-01

    Taking α-Fe and Nd2Fe14B grains as example, the grain size dependence of the exchange-coupling interaction and effective anisotropy and also their variations depending on the ratio of magnetically soft and hard grain sizes, Ds∶ Dh, were investigated. When grain size D>Lex, the grain's anisotropy is the statistic value of the coupled and uncoupled part. The anisotropy constant of uncoupled part is the common value K1 and that of coupled part varies with the distance to the grain surface. The effective anisotropy constant between magnetically soft and hard grains, Keff, can be expressed as the sum of the products of volume fractions for soft and hard grains, respectively, and the corresponding mean anisotropy constants. The calculation results indicate that the exchange-coupling interaction is enhanced with the reduction of grain size, and the effective anisotropy decreases with reducing grain size and increasing ratio of Ds∶ Dh. In order to get high effective anisotropy constant, Keff, in composite magnetically soft-hard grains, the hard grain size should be larger than 30 nm and the soft grain size should be about 10 nm.

  3. Chromium Distribution and Spatial Variations in the Finer Sediment Grain Size Fraction and Unfractioned Surficial Sediments on Nyanza Gulf, of Lake Victoria (East Africa

    Directory of Open Access Journals (Sweden)

    Job Mwamburi

    2016-01-01

    Full Text Available Surficial sediments collected from the Nyanza Gulf of Lake Victoria (East Africa were used to determine spatial concentrations of Cr and determine differences in contents of the unfractioned (whole sediment and the finer grain size sediments, establishing any changes in Cr enrichment and potential ecological risks using sediment quality guidelines. A single pollution index was also used to evaluate level of Cr contamination. The spatial mean Cr contents in the <63 µm (silt-clay fraction were found to be significantly lower than those in the unfractioned sediments, but with a strong linear positive correlation. The study results show decreasing spatial amounts of Cr in surficial sediments of the Nyanza Gulf, when compared to a study done 20 years earlier. However, the 95% confidence limits of the overall mean Cr in unfractioned sediments exceed the threshold effect concentration (TEC, indicating the potential for Cr remobilization from sediments. In general the sediment enrichment is evidence of possible dominance of lithogenous sources of Cr in the surface lake sediments, with potential anthropogenic sources from the drainage system and nearshore urban areas. The sediments are unpolluted with respect to geoaccumulation index, and sediment enrichment factors suggest a minor to moderate enrichment of Cr in surficial sediments of three sites around the Nyanza Gulf zones and around the river mouth in the main lake.

  4. 2D and 3D milled surface roughness of high volume fraction SiCp/Al composites

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2015-06-01

    Full Text Available This paper presents a study on surface roughness generated by high speed milling of high volume fraction (65% silicon carbide particle-reinforced aluminum matrix (SiCp/Al composites. Typical 2D (Ra and Rz and 3D (Sa and Sq surface roughness parameters were selected to evaluate the influence of the milling parameters on the surface quality in comparison with aluminum alloy. The 3D topography of the milled surface was studied as well. The results indicate that 3D parameters (Sa and Sq are more capable to describe the influence of the milling parameters on the surface quality, and among them Sq is preferable due to its good sensitivity. Sq decreases with milling speed and increases with feed rate. The influence of axial depth of cut (ADOC is negligible.

  5. Projections of Demand for Waterborne Transportation, Ohio River Basin, 1980, 1990, 2000, 2020, 2040. Volume 7. Group V. Grains.

    Science.gov (United States)

    1980-12-01

    Primary Study Areas for grains was the result of an extensive and thorough process. RRNA , in conjunction with a grain commodity expert familiar with the...30 33 37 n04 055 055 055 50 41 56 79 1I1 ( Ib 049 047 111 Ill 12 11 14 19 23 ?b 04 n7 137 117 37 37 41 57 64 71 o q ( 5S 137 137 10 9 11 16 17 1- n4 A47

  6. Measurements of γ/γ' Lattice Misfit and γ' Volume Fraction for a Ru-containing Nickel-based Single Crystal Superalloy

    Institute of Scientific and Technical Information of China (English)

    X.P. Tan; J.L. Liu; X P Song; T. Jin; X.F. Sun; Z.Q. Hu

    2011-01-01

    A conventional X-ray difFractometer has been used to determine the -y/y' lattice misfit and γ' volume fraction for a Ru-containing nickel-based single crystal superalloy at room temperature. The rocking curve was used to characterize the distribution of subgrains. The diffraction peaks obtained by w-20 scan were used to determine the γ/γ' lattice misfit and γ' volume fraction. A three peaks fitting model was proposed. The peak fitting results are in good agreement with the model. The X-ray diffraction results indicate that the nickel-based single crystal superalloy was not a perfect monocrystalline material, which is comprised of many subgrains; and each subgrain also consists of large numbers of mosaic structures. In addition, two anomalous reflection phenomena were found during the experiment and discussed with respect to their occurrence and impact on the measurement. The experimental results show that the γ/γ' lattice misfit and ~/r volume fraction will be various at the different regions of its dendritic microstructure. The average γ/γ' lattice misfit and γ' volume fraction of the experimental alloy are approximately-0.2% and 70%, respectively. Furthermore, the γ' volume fraction calculated by atom microprobe (AP) data is also basically consistent with the experimental results.

  7. Effect of oral alcohol on left ventricular ejection fraction, volumes, and segmental wall motion in normals and in patients with recent myocardial infarction.

    Science.gov (United States)

    Gould, L; Gopalaswamy, C; Yang, D; Patel, D; Kim, B S; Patel, C; Becker, W H

    1985-11-01

    A first-pass nuclear angiogram and a multiple-gated acquisition study were obtained in 10 normal physicians and in 10 patients with a 7-to-10 day old transmural myocardial infarction. After the scan the subjects drank 2 oz. of whiskey. After 60 minutes, the multiple-gated acquisition study was repeated. In the normal group the left ventricular ejection fraction was 68% before and 72% after alcohol. The left ventricular end-diastolic volume increased from 89 to 97 ml while the left ventricular end-systolic volume decreased from 29 to 27 ml. The stroke volume rose from 61 to 70 ml/beat (p less than 0.05). The cardiac output increased from 4.0 to 5.0 l/min (p less than 0.05). In the infarction group, the left ventricular ejection fraction was 58% before and 56% after alcohol administration. The left ventricular end-diastolic volume fell from 111 to 96 ml, while the left ventricular end-systolic volume declined from 50 to 44 ml. The stroke volume fell from 61 to 52 ml/beat, while the cardiac output fell from 4.5 to 3.8 l/min. In the left ventricular infarction zones, alcohol produced in 9 of the 10 cardiac patients a decline in the left ventricular regional ejection fraction. In the normal group, alcohol produced no significant changes in the regional ejection fraction. The normal and the postinfarction patients responded differently to alcohol.

  8. A fractional transient model for the viscoplastic response of polymers based on a micro-mechanism of free volume distribution

    Science.gov (United States)

    Spathis, G.; Kontou, E.

    2017-06-01

    In the present work, the nonlinear viscoelastic/viscoplastic response of polymeric materials is described by introducing essential modifications on a model developed in previous works. A constitutive equation of viscoelasticity, based on the transient network theory, is introduced in a more generalized form, which takes into account volume changes during deformation. This time-dependent equation accounts for the nonlinearity and viscoplasticity at small elastic and finite plastic strain regime. The present description was proved to be more flexible, given that it contains a relaxation function that has been derived by considering instead of first order kinetics a fractional derivative that controls the rate of molecular chain detachment from their junctions. Therefore, the new equation has a more global character, appropriate for cases where heavy tails are expected. On the basis of the distributed nature of free volume, a new functional form of the rate of plastic deformation is developed, which is combined with a proper kinematic formulation and leads to the separation of the total strain into the elastic and plastic part. A three-dimensional constitutive equation is then derived for an isotropic, compressible medium. This analysis was proved to be capable of capturing the main aspects of inelastic response as well as the instability stage taking place at the tertiary creep, related to the creep failure.

  9. Dynamic contrast-enhanced MRI assessment of hyperemic fractional microvascular blood plasma volume in peripheral arterial disease: initial findings.

    Directory of Open Access Journals (Sweden)

    Bas Versluis

    Full Text Available OBJECTIVES: The aim of the current study was to describe a method that assesses the hyperemic microvascular blood plasma volume of the calf musculature. The reversibly albumin binding contrast agent gadofosveset was used in dynamic contrast-enhanced magnetic resonance imaging (DCE MRI to assess the microvascular status in patients with peripheral arterial disease (PAD and healthy controls. In addition, the reproducibility of this method in healthy controls was determined. MATERIALS AND METHODS: Ten PAD patients with intermittent claudication and 10 healthy control subjects were included. Patients underwent contrast-enhanced MR angiography of the peripheral arteries, followed by one DCE MRI examination of the musculature of the calf. Healthy control subjects were examined twice on different days to determine normative values and the interreader and interscan reproducibility of the technique. The MRI protocol comprised dynamic imaging of contrast agent wash-in under reactive hyperemia conditions of the calf musculature. Using pharmacokinetic modeling the hyperemic fractional microvascular blood plasma volume (V(p, unit: % of the anterior tibial, gastrocnemius and soleus muscles was calculated. RESULTS: V(p was significantly lower for all muscle groups in PAD patients (4.3±1.6%, 5.0±3.3% and 6.1±3.6% for anterior tibial, gastrocnemius and soleus muscles, respectively compared to healthy control subjects (9.1±2.0%, 8.9±1.9% and 9.3±2.1%. Differences in V(p between muscle groups were not significant. The coefficient of variation of V(p varied from 10-14% and 11-16% at interscan and interreader level, respectively. CONCLUSIONS: Using DCE MRI after contrast-enhanced MR angiography with gadofosveset enables reproducible assessment of hyperemic fractional microvascular blood plasma volume of the calf musculature. V(p was lower in PAD patients than in healthy controls, which reflects a promising functional (hemodynamic biomarker for the

  10. U-Th-Ra variations in Himalayan river sediments (Gandak river, India): Weathering fractionation and/or grain-size sorting?

    Science.gov (United States)

    Bosia, Clio; Chabaux, François; Pelt, Eric; France-Lanord, Christian; Morin, Guillaume; Lavé, Jérôme; Stille, Peter

    2016-11-01

    Understanding the origin of U-Th-Ra variations in the Ganga river sediments is a prerequisite for correctly using U-series nuclides to constrain the sediment transport times in Himalayan rivers. For this purpose, U, Th, and Ra concentrations, along with 238U-234U-230Th-226Ra radioactive disequilibria, were analyzed in bank, bedload and suspended sediments from the Gandak river, one of the main tributaries of the Ganga river. The data confirm that U and Th budgets of the Himalayan sediments are significantly influenced by minor resistant minerals, such as zircon, garnet and Ti-bearing minerals, the dissolution of which required the use of a high-pressure acid digestion process. Most importantly, the results indicate that the variations in (238U/232Th) and (230Th/232Th) activity ratios and 238U-234U-230Th-226Ra disequilibria in sediments along the river alluvial plain mainly reflect modifications in the mineralogical and grain-size compositions rather than the degree of weathering during transport. The (238U/232Th) and (230Th/232Th) activity ratios in the bank and bed sediments are related to variations in the minor primary minerals strongly enriched in U and Th (i.e., zircon, REE-bearing minerals and Ti-bearing minerals), whereas the activity ratios in the suspended load are related to variations in the proportions of clay, Fe-oxyhydroxides and the silt-sand fraction, which contains U- and Th-bearing minor minerals. The data also indicate that 238U-234U-230Th-226Ra disequilibria are strongly influenced by secondary mineral phases: the 230Th budget is likely mainly controlled by Fe-oxyhydroxides, and the 226Ra budget is likely mainly controlled by clay minerals. Therefore, the variations in the 238U-234U-230Th-232Th system in the sediments of the Gandak river cannot simply be interpreted as the result of fractionation due to chemical transformation of the bulk sediment during its transport within the alluvial plain and/or the result of radioactive decay. Consequently

  11. Stratification of carbon fractions and carbon management index in deep soil affected by the Grain-to-Green Program in China.

    Science.gov (United States)

    Zhao, Fazhu; Yang, Gaihe; Han, Xinhui; Feng, Yongzhong; Ren, Guangxin

    2014-01-01

    Conversion of slope cropland to perennial vegetation has a significant impact on soil organic carbon (SOC) stock in A horizon. However, the impact on SOC and its fraction stratification is still poorly understood in deep soil in Loess Hilly Region (LHR) of China. Samples were collected from three typical conversion lands, Robinia psendoacacia (RP), Caragana Korshinskii Kom (CK), and abandoned land (AB), which have been converted from slope croplands (SC) for 30 years in LHR. Contents of SOC, total nitrogen (TN), particulate organic carbon (POC), and labile organic carbon (LOC), and their stratification ratios (SR) and carbon management indexes (CMI) were determined on soil profiles from 0 to 200 cm. Results showed that the SOC, TN, POC and LOC stocks of RP were significantly higher than that of SC in soil layers of 0-10, 10-40, 40-100 and 100-200 cm (P2.0 in most cases of RP, CK and AB. Moreover, CMI values of RP, CK, and AB increased by 11.61-61.53% in soil layer of 100-200 cm compared with SC. Significant positive correlations between SOC stocks and CMI or SR values of both surface soil and deep soil layers indicated that they were suitable indicators for soil quality and carbon changes evaluation. The Grain-to-Green Program (GTGP) had strong influence on improving quantity and activity of SOC pool through all soil layers of converted lands, and deep soil organic carbon should be considered in C cycle induced by GTGP. It was concluded that converting slope croplands to RP forestlands was the most efficient way for sequestering C in LHR soils.

  12. Validation of Interstitial Fractional Volume Quantification by Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Porcine Skeletal Muscles.

    Science.gov (United States)

    Hindel, Stefan; Söhner, Anika; Maa, Marc; Sauerwein, Wolfgang; Baba, Hideo Andreas; Kramer, Martin; Lüdemann, Lutz

    2017-01-01

    The aim of our study was to assess the accuracy of fractional interstitial volume determination in low perfused and low vascularized tissue by using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The fractional interstitial volume (ve) was determined in the medial thigh muscle of 12 female pigs by using a 3-dimensional gradient echo sequence with k-space sharing and administering gadolinium-based contrast agent (gadoterate meglumine). Analysis was performed using 3 pharmacokinetic models: the simple Tofts model (TM), the extended TM (ETM), and the 2-compartment exchange model (2CXM). We investigated the effect of varying acquisition durations (ADs) on the model parameter estimates of the 3 models and compared the ve values with the results of histological examinations of muscle sections of the medial thigh muscle. Histological measurements yielded a median value (25%-75% quartile) of 4.8% (3.7%-6.2%) for ve. The interstitial fractional volume determined by DCE-MRI was comparable to the histological results but varied strongly with AD for the TM and ETM. For the TM and the ETM, the results were virtually the same. Choosing arterial hematocrit to Hcta = 0.4, the lowest median ve value determined by DCE-MRI was 5.2% (3.3%-6.1%) for the ETM at a 6-minute AD. The maximum ve value determined with the ETM at a 15-minute AD was 7.7% (4.5%-9.0%). The variation with AD of median ve values obtained with the 2CXM was much smaller: 6.2% (3.1%-9.2%) for the 6-minute AD and 6.3% (4.3%-9.8%) for the 15-minute AD. The best fit for the 2CXM was found at the 10-minute AD with ve values of 6.6% (3.7%-8.2%). No significant correlation between the histological and any DCE-MRI modeling results was found. Considering the expected accuracy of histological measurements, the medians of the MR modeling results were in good agreement with the histological prediction. A parameter determination uncertainty was identified with the use of the TMs. This is due to underfitting and

  13. Research Update for: A Method for Out-of-autoclave Fabrication of High Fiber Volume Fraction Fiber Reinforced Polymer Composites (ARL-TR-6057)

    Science.gov (United States)

    2012-10-01

    increasing the fiber-volume fraction by Vacuum Assisted Resin Transfer Molding ( VARTM ) in order to produce composite structures with aerospace grade...processed composites. Using a combination of viscosity control, U.S. Army Research Laboratory (ARL) based VARTM techniques, and a pressure control...system, we have shown an increase in fiber-volume content from 50% (ARL’s normal processing range for a particular material system and VARTM process) to

  14. Dose fractionated gamma knife radiosurgery for large arteriovenous malformations on daily or alternate day schedule outside the linear quadratic model: Proof of concept and early results. A substitute to volume fractionation.

    Science.gov (United States)

    Mukherjee, Kanchan Kumar; Kumar, Narendra; Tripathi, Manjul; Oinam, Arun S; Ahuja, Chirag K; Dhandapani, Sivashanmugam; Kapoor, Rakesh; Ghoshal, Sushmita; Kaur, Rupinder; Bhatt, Sandeep

    2017-01-01

    To evaluate the feasibility, safety and efficacy of dose fractionated gamma knife radiosurgery (DFGKRS) on a daily schedule beyond the linear quadratic (LQ) model, for large volume arteriovenous malformations (AVMs). Between 2012-16, 14 patients of large AVMs (median volume 26.5 cc) unsuitable for surgery or embolization were treated in 2-3 of DFGKRS sessions. The Leksell G frame was kept in situ during the whole procedure. 86% (n = 12) patients had radiologic evidence of bleed, and 43% (n = 6) had presented with a history of seizures. 57% (n = 8) patients received a daily treatment for 3 days and 43% (n = 6) were on an alternate day (2 fractions) regimen. The marginal dose was split into 2 or 3 fractions of the ideal prescription dose of a single fraction of 23-25 Gy. The median follow up period was 35.6 months (8-57 months). In the three-fraction scheme, the marginal dose ranged from 8.9-11.5 Gy, while in the two-fraction scheme, the marginal dose ranged from 11.3-15 Gy at 50% per fraction. Headache (43%, n = 6) was the most common early postoperative complication, which was controlled with short course steroids. Follow up evaluation of at least three years was achieved in seven patients, who have shown complete nidus obliteration in 43% patients while the obliteration has been in the range of 50-99% in rest of the patients. Overall, there was a 67.8% reduction in the AVM volume at 3 years. Nidus obliteration at 3 years showed a significant rank order correlation with the cumulative prescription dose (p 0.95, P value 0.01), with attainment of near-total (more than 95%) obliteration rates beyond 29 Gy of the cumulative prescription dose. No patient receiving a cumulative prescription dose of less than 31 Gy had any severe adverse reaction. In co-variate adjusted ordinal regression, only the cumulative prescription dose had a significant correlation with common terminology criteria for adverse events (CTCAE) severity (P value 0.04), independent of age, AVM volume

  15. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    Science.gov (United States)

    Meng, Yiqing; Lucas, Gary P.

    2017-05-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water

  16. Effect of particle volume fraction on the settling velocity of volcanic ash particles: insights from joint experimental and numerical simulations

    Science.gov (United States)

    Del Bello, Elisabetta; Taddeucci, Jacopo; de’ Michieli Vitturi, Mattia; Scarlato, Piergiorgio; Andronico, Daniele; Scollo, Simona; Kueppers, Ulrich; Ricci, Tullio

    2017-01-01

    Most of the current ash transport and dispersion models neglect particle-fluid (two-way) and particle-fluid plus particle-particle (four-way) reciprocal interactions during particle fallout from volcanic plumes. These interactions, a function of particle concentration in the plume, could play an important role, explaining, for example, discrepancies between observed and modelled ash deposits. Aiming at a more accurate prediction of volcanic ash dispersal and sedimentation, the settling of ash particles at particle volume fractions (ϕp) ranging 10‑7-10‑3 was performed in laboratory experiments and reproduced by numerical simulations that take into account first the two-way and then the four-way coupling. Results show that the velocity of particles settling together can exceed the velocity of particles settling individually by up to 4 times for ϕp ~ 10‑3. Comparisons between experimental and simulation results reveal that, during the sedimentation process, the settling velocity is largely enhanced by particle-fluid interactions but partly hindered by particle-particle interactions with increasing ϕp. Combining the experimental and numerical results, we provide an empirical model allowing correction of the settling velocity of particles of any size, density, and shape, as a function of ϕp. These corrections will impact volcanic plume modelling results as well as remote sensing retrieval techniques for plume parameters.

  17. Effect of particle volume fraction on the settling velocity of volcanic ash particles: insights from joint experimental and numerical simulations

    Science.gov (United States)

    Del Bello, Elisabetta; Taddeucci, Jacopo; de’ Michieli Vitturi, Mattia; Scarlato, Piergiorgio; Andronico, Daniele; Scollo, Simona; Kueppers, Ulrich; Ricci, Tullio

    2017-01-01

    Most of the current ash transport and dispersion models neglect particle-fluid (two-way) and particle-fluid plus particle-particle (four-way) reciprocal interactions during particle fallout from volcanic plumes. These interactions, a function of particle concentration in the plume, could play an important role, explaining, for example, discrepancies between observed and modelled ash deposits. Aiming at a more accurate prediction of volcanic ash dispersal and sedimentation, the settling of ash particles at particle volume fractions (ϕp) ranging 10−7-10−3 was performed in laboratory experiments and reproduced by numerical simulations that take into account first the two-way and then the four-way coupling. Results show that the velocity of particles settling together can exceed the velocity of particles settling individually by up to 4 times for ϕp ~ 10−3. Comparisons between experimental and simulation results reveal that, during the sedimentation process, the settling velocity is largely enhanced by particle-fluid interactions but partly hindered by particle-particle interactions with increasing ϕp. Combining the experimental and numerical results, we provide an empirical model allowing correction of the settling velocity of particles of any size, density, and shape, as a function of ϕp. These corrections will impact volcanic plume modelling results as well as remote sensing retrieval techniques for plume parameters. PMID:28045056

  18. DNS of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction

    CERN Document Server

    Kidanemariam, Aman G; Doychev, Todor; Uhlmann, Markus

    2013-01-01

    We have performed direct numerical simulation of turbulent open channel flow over a smooth horizontal wall in the presence of finite-size, heavy particles. The spherical particles have a diameter of approximately 7 wall units, a density of 1.7 times the fluid density and a solid volume fraction of 0.0005. The value of the Galileo number is set to 16.5, while the Shields parameter measures approximately 0.2. Under these conditions, the particles are predominantly located in the vicinity of the bottom wall, where they exhibit strong preferential concentration which we quantify by means of Voronoi analysis and by computing the particle-conditioned concentration field. As observed in previous studies with similar parameter values, the mean streamwise particle velocity is smaller than that of the fluid. We propose a new definition of the fluid velocity "seen" by finite-size particles based on an average over a spherical surface segment, from which we deduce in the present case that the particles are instantaneousl...

  19. The flow past a circular patch of vegetation with a low submergence depth and low solid volume fractions

    Science.gov (United States)

    Kirkil, Gokhan

    2016-11-01

    The effect of the Solid Volume Fraction (SVF) on the flow structure within and past a circular array of surface-mounted cylinders that extends over 75% of the water depth, h is investigated using Detached Eddy Simulation (DES). This set up mimics the case of a submerged patch of rigid vegetation in a channel. The diameter of the cylinders in the array is d = 0.02D, where D is the diameter of the circular array. The channel Reynolds number is close to 20,000 and the Reynolds number defined with D is around 24,000. DES is conducted for SVF = 10% and 25%. It is found that as the SVF increases, fairly strong horseshoe vortex system forms around the upstream face of the vegetation patch, the strength of the separated shear layers on the sides of the vegetation patch increases and the length of the recirculation region behind the patch decreases. While an increase of the SVF results in a large increase of the turbulent kinetic energy in the wake, the opposite is observed within the porous vegetation patch.

  20. A mathematical model for the effects of volume fraction and fiber aspect ratio of biomass mixture during enzymatic hydrolysis

    Science.gov (United States)

    Jamil, Norazaliza Mohd; Wang, Qi

    2017-09-01

    Renewable energy or biofuel from lignocellulosic biomass is an alternative way to replace the depleting fossil fuels. The production cost can be reduced by increasing the concentration of biomass particles. However, lignocellulosic biomass is a suspension of natural fibres, and processing at high solid concentration is a challenging task. Thus, understanding the factors that affect the rheology of biomass suspension is crucial in order to maximize the production at a minimum cost. Our aim was to develop a mathematical model for enzymatic hydrolysis of cellulose by combining three scales: the macroscopic flow field, the mesoscopic particle orientation, and the microscopic reactive kinetics. The governing equations for the flow field, particle stress, kinetic equations, and particle orientation were coupled and were simultaneously solved using a finite element method based software, COMSOL. One of the main results was the changes in rheology of biomass suspension were not only due to the decrease in volume fraction of particles, but also due the types of fibres. The results from the simulation model agreed qualitatively with the experimental findings. This approach has enables us to obtain better predictive capabilities, hence increasing our understanding on the behaviour of biomass suspension.

  1. HOT ROLLING OF A FERRITIC STAINLESS STEEL IN A STECKEL MILL: THERMOMECHANICAL AND MICROSTRUCTURAL CARACTERIZATION AND MATHEMATICAL MODELLING OF THE EVOLUTION OF RECRYSTALLIZED VOLUME FRACTION OF FERRITE

    Directory of Open Access Journals (Sweden)

    Willy Schuwarten Júnior

    2013-10-01

    Full Text Available A thermomechanical and a microstructure caracterization and a mathematical model of the evolution of the recrystallized volume fraction of ferrite in hot rolling in a Steckel mill have been carried out here. The proposed model is able to reasonably predict the observed in hot rolling, that is, there is 100% recrystallization of ferrite after roughing and partial recrystallization only after finishing

  2. Pre-chemotherapy values for left and right ventricular volumes and ejection fraction by gated tomographic radionuclide angiography using a cadmium-zinc-telluride detector gamma camera

    DEFF Research Database (Denmark)

    Haarmark, Christian; Haase, Christine; Jensen, Maria Maj

    2016-01-01

    BACKGROUND: Estimation of left ventricular ejection fraction (LVEF) using equilibrium radionuclide angiography is an established method for assessment of left ventricular function. The purpose of this study was to establish normative data on left and right ventricular volumes and ejection fractio...

  3. A Computer Simulation of the Effect of the Inert Gas Volume Fraction in Low-Caloric Biogas on the Performance of an Engine

    Directory of Open Access Journals (Sweden)

    Choong Hoon Lee

    2015-10-01

    Full Text Available A computer simulation of a gas engine was performed to investigate the effects of the inert gas volume fraction in biogas on engine performance, specifically the engine torque and the brakespecific fuel consumption (BSFC using GT-Power®. The engine speeds used in the simulation were 900 and 1800 rpm, while the simulated engine loads were 25, 50, 75 and 100%. The volume fraction of the inert gas N2 in the biogas was varied from 20 to 80% with an interval of 10%. In a simulation of a naturally aspirated gas engine which is operated with an 80% volume fraction of N2 in biogas, the optimal air-fuel ratio in terms of the fuel economy and brake power generation was 3.5. In a simulation of a turbo intercooler gas engine operated with an 80% volume fraction of N2 in biogas, the optimal air-fuel ratios with regard to the fuel economy and brake power generation were 5.0 and 3.5, respectively.

  4. Impact of ribs on flow parameters and laminar heat transfer of water–aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel

    Directory of Open Access Journals (Sweden)

    Omid Ali Akbari

    2015-11-01

    Full Text Available This article aims to study the impact of ribs on flow parameters and laminar heat transfer of water–aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel. To this aim, compulsory convection heat transfer of water–aluminum oxide nanofluid in a rib-roughened microchannel has been numerically studied. The results of this simulation for rib-roughened three-dimensional microchannel have been evaluated in contrast to the smooth (unribbed three-dimensional microchannel with identical geometrical and heat–fluid boundary conditions. Numerical simulation is performed for different nanoparticle volume fractions for Reynolds numbers of 10 and 100. Cold fluid entering the microchannel is heated in order to apply constant flux to external surface of the microchannel walls and then leaves it. Given the results, the fluid has a higher heat transfer with a hot wall in surfaces with ribs rather than in smooth ones. As Reynolds number, number of ribs, and nanoparticle volume fractions increase, more temperature increase happens in fluid in exit intersection of the microchannel. By investigating Nusselt number and friction factor, it is observed that increase in nanoparticle volume fractions causes nanofluid heat transfer properties to have a higher heat transfer and friction factor compared to the base fluid used in cooling due to an increase in viscosity.

  5. Determination of the Surface and Volume Porosity, on the Basis of the Main Fraction of the Polifractional Matrix of Moulding and Core Sands

    Directory of Open Access Journals (Sweden)

    Dańko R.

    2016-12-01

    Full Text Available The aim of the hereby paper is to present the developed model of determining the volume and surface porosity based on the main fraction of polifractional materials, its experimental verification and utilisation for the interpretation of effects accompanying the formation of a moulding sand apparent density, porosity and permeability in the blowing processes of the core and moulds technology.

  6. Measurement of oil volume fraction and velocity distributions in vertical oil-in-water flows using ERT and a local probe

    Institute of Scientific and Technical Information of China (English)

    LI Hua; WANG Mi; WU Ying-xiang; MA Yi-xin; WILLIAMS Richard

    2005-01-01

    This paper presents the use of a high performance dual-plane electrical resistance tomography (ERT) system and a local dual-sensor conductance probe to measure the vertical upward oil-in-water pipe flows in which the mean oil volume fraction is up to 23.1%.A sensitivity coefficient back-projection (SBP) algorithm was adopted to reconstruct the flow distributions and a cross correlation method was applied to obtain the oil velocity distributions. The oil volume fraction and velocity distributions obtained from both measurement techniques were compared and good agreement was found, which indicates that the ERT technique can be used to measure the low fraction oil-water flows. Finally, the factors affecting measurement precision were discussed.

  7. Measurement and Modeling of Resistivity as a Microscale Tool to Quantify the Volume Fraction of Lenticular (alpha)' Particles in a Partially Transformed (delta)-phase Pu-Ga Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Haslam, J J; Wall, M A; Johnson, D L; Mayhall, D J; Schwartz, A J

    2005-07-13

    We have measured and modeled the change in electrical resistivity due to partial transformation to the martensitic {alpha}{prime}-phase in a {delta}-phase Pu-Ga matrix. The primary objective is to relate the change in resistance, measured with a 4-probe technique during the transformation, to the volume fraction of the {alpha}{prime} phase created in the microstructure. Analysis by finite element methods suggests that considerable differences in the resistivity may be anticipated depending on the orientational and morphological configurations of the {alpha}{prime} particles. Finite element analysis of the computed resistance of an assembly of lenticular shaped particles indicates that series resistor or parallel resistor approximations are inaccurate and can lead to an underestimation of the predicted amount of {alpha}{prime} in the sample by 15% or more. Comparison of the resistivity of a simulated network of partially transformed grains or portions of grains suggests that a correction to the measured resistivity allows quantification of the amount of {alpha}{prime} phase in the microstructure with minimal consideration of how the {alpha}{prime} morphology may evolve. It is found that the average of the series and parallel resistor approximations provide the most accurate relationship between the measured resistivity and the amount of {alpha}{prime} phase. The methods described here are applicable to any evolving two-phase microstructure in which the resistance difference between the two phases is measurable.

  8. Nature, distribution and origin of clay minerals in grain size fractions of sediments from manganese nodule field, Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.; Nath, B.N.

    -rich montmorillonite). Montmorillonite is present in all size fractions of sediments, whereas Fe-rich montmorillonite is present only in 1 and 1-2 mu m fractions of siliceous and 1 mu m fractions of pelagic clays. Distribution of clay minerals suggests that illite...

  9. Advanced fractional crystallisation and homogenization of large-volume rhyolite before the Oraefajokull 1362 AD plinian eruption, SE Iceland

    Science.gov (United States)

    Selbekk, R. S.; Tronnes, R. G.

    2007-12-01

    In the 50 km wide Icelandic rift zones rhyolite magma is generated by partial melting of hydrated metabasaltic crust, subsiding under the weight of the growing volcanic pile. This mechanism of silicic melt formation is indicated by the basalt-rhyolite bimodality and rhyolite O-isotope composition. The low 18/16O-isotope ratios of rift zone rhyolites trace the high-latitude meteoric water component of the subsiding hydrated basalts [1]. The rhyolites of the volcanic flank zones (VFZ), however, have generally as heavy oxygen as the associated alkaline to transitional basalts and intermediate volcanics [2,3]. The minor volcanic loading of the older, thicker and stronger VFZ crust is insufficient for significant subsidence, and less pronounced basalt-rhyolite bimodality combined with other geochemical features support silicic melt generation by fractional crystallization. An extreme case in Icelandic, as well as global, perspective is the rhyolite magma of the plinian eruption from the large VFZ-volcano, Oraefajokull, in 1362 AD [4]. Glass, mineral and bulk tephra analyses show no chemical variation exceeding the analytical precision for the entire erupted volume of 2 km3 DRE. This applies even to the glass shards from distant locations in Greenland, Norway and Ireland. The total phenocryst content is 0.5-1 wt percent, with oligoclase (An14 Ab81 Or5.5), fayalite (Fa99.7 Fo0.3) and hedenbergite (Wo44.7 En2.6 Fs52.7) constituting 50- 80, 10-25 and 10-25 percent of the total phenocrysts, respectively. The extreme mineral compositions (especially pure fayalite and hedenbergite) resemble those of the granophyres in the Skaergaard and Bushveld complexes and differ from all other investigated rhyolites. The advanced fractionation and homogenisation to form the erupted 2 km3 DRE rhyolite is petrogenetically challenging, and a parental magma chamber of 20-40 km3 seems like a conservative estimate. The time-scale of the historic magma chamber evolution under Oraefajokull is

  10. Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables.

    Science.gov (United States)

    Maquer, Ghislain; Musy, Sarah N; Wandel, Jasmin; Gross, Thomas; Zysset, Philippe K

    2015-06-01

    As our population ages, more individuals suffer from osteoporosis. This disease leads to impaired trabecular architecture and increased fracture risk. It is essential to understand how morphological and mechanical properties of the cancellous bone are related. Morphology-elasticity relationships based on bone volume fraction (BV/TV) and fabric anisotropy explain up to 98% of the variation in elastic properties. Yet, other morphological variables such as individual trabeculae segmentation (ITS) and trabecular bone score (TBS) could improve the stiffness predictions. A total of 743 micro-computed tomography (μCT) reconstructions of cubic trabecular bone samples extracted from femur, radius, vertebrae, and iliac crest were analyzed. Their morphology was assessed via 25 variables and their stiffness tensor (CFE) was computed from six independent load cases using micro finite element (μFE) analyses. Variance inflation factors were calculated to evaluate collinearity between morphological variables and decide upon their inclusion in morphology-elasticity relationships. The statistically admissible morphological variables were included in a multiple linear regression model of the dependent variable CFE. The contribution of each independent variable was evaluated (ANOVA). Our results show that BV/TV is the best determinant of CFE(r(2) adj  = 0.889), especially in combination with fabric anisotropy (r(2) adj  = 0.968). Including the other independent predictors hardly affected the amount of variance explained by the model (r(2) adj  = 0.975). Across all anatomical sites, BV/TV explained 87% of the variance of the bone elastic properties. Fabric anisotropy further described 10% of the bone stiffness, but the improvement in variance explanation by adding other independent factors was marginal (variables do not bring any further contribution. These overall conclusions remain to be confirmed for specific bone diseases and postelastic properties.

  11. Bone volume fraction explains the variation in strength and stiffness of cancellous bone affected by metastatic cancer and osteoporosis.

    Science.gov (United States)

    Nazarian, Ara; von Stechow, Dietrich; Zurakowski, David; Müller, Ralph; Snyder, Brian D

    2008-12-01

    Preventing nontraumatic fractures in millions of patients with osteoporosis or metastatic cancer may significantly reduce the associated morbidity and reduce health-care expenditures incurred by these fractures. Predicting fracture occurrence requires an accurate understanding of the relationship between bone structure and the mechanical properties governing bone fracture that can be readily measured. The aim of this study was to test the hypothesis that a single analytic relationship with either bone tissue mineral density or bone volume fraction (BV/TV) as independent variables could predict the strength and stiffness of normal and pathologic cancellous bone affected by osteoporosis or metastatic cancer. After obtaining institutional review board approval and informed consent, 15 patients underwent excisional biopsy of metastatic prostate, breast, lung, ovarian, or colon cancer from the spine and/or femur to obtain 41 metastatic cancer specimens. In addition, 96 noncancer specimens were excised from 43 age- and site-matched cadavers. All specimens were imaged using micro-computed tomography (micro-CT) and backscatter emission imaging and tested mechanically by uniaxial compression and nanoindentation. The minimum BV/TV, measured using quantitative micro-CT, accounted for 84% of the variation in bone stiffness and strength for all cancellous bone specimens. While relationships relating bone density to strength and stiffness have been derived empirically for normal and osteoporotic bone, these relationships have not been applied to skeletal metastases. This simple analytic relationship will facilitate large-scale screening and prediction of fracture risk for normal and pathologic cancellous bone using clinical CT systems to determine the load capacity of bones altered by metastatic cancer, osteoporosis, or both.

  12. A study of fiber volume fraction effects in notched unidirectional SCS-6/Ti-15V-3Cr-3Al-3Sn composite. Ph.D. Thesis Final Report

    Science.gov (United States)

    Covey, Steven J.

    1993-01-01

    Notched unidirectional SCS-6/Ti-15-3 composite of three different fiber volume fractions (vf = 0.15, 0.37, and 0.41) was investigated for various room temperature microstructural and material properties including: fatigue crack initiation, fatigue crack growth, and fracture toughness. While the matrix hardness is similar for all fiber volume fractions, the fiber/matrix interfacial shear strength and matrix residual stress increases with fiber volume fraction. The composite fatigue crack initiation stress is shown to be matrix controlled and occurs when the net maximum matrix stress approaches the endurance limit stress of the matrix. A model is presented which includes residual stresses and presents the composite initiation stress as a function of fiber volume fraction. This model predicts a maximum composite initiation stress at vf approximately 0.15 which agrees with the experimental data. The applied composite stress levels were increased as necessary for continued crack growth. The applied Delta(K) values at crack arrest increase with fiber volume fraction by an amount better approximated using an energy based formulation rather than when scaled linear with modulus. After crack arrest, the crack growth rate exponents for vf37 and vf41 were much lower and toughness much higher, when compared to the unreinforced matrix, because of the bridged region which parades with the propagating fatigue crack. However, the vf15 material exhibited a higher crack growth rate exponent and lower toughness than the unreinforced matrix because once the bridged fibers nearest the crack mouth broke, the stress redistribution broke all bridged fibers, leaving an unbridged crack. Degraded, unbridged behavior is modeled using the residual stress state in the matrix ahead of the crack tip. Plastic zone sizes were directly measured using a metallographic technique and allow prediction of an effective matrix stress intensity which agrees with the fiber pressure model if residual stresses

  13. Enhanced ionic transport in fine-grained scandia-stabilized zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Abdala, Paula M.; Lamas, Diego G. [CINSO (Centro de Investigaciones en Solidos), CONICET-CITEFA, J.B. de La Salle 4397 (B1603ALO) Villa Martelli, Pcia. de Buenos Aires (Argentina); Custo, Graciela S. [Gerencia de Area Seguridad Nuclear y Ambiente, Gerencia Quimica, Departamento Quimica Analitica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Av. Constituyentes 1499 (B1650KNA) San Martin, Pcia. de Buenos Aires (Argentina)

    2010-06-01

    In this work, the transport properties of fine-grained scandia-stabilized zirconia ceramics with low Si content have been investigated. These materials were prepared from ZrO{sub 2}-6 mol% Sc{sub 2}O{sub 3} nanopowders synthesized by a nitrate-lysine gel-combustion route. High relative densities and excellent electrical properties were obtained, even for sintering temperatures as low as 1350 C. Our electrochemical impedance spectroscopy study showed that both the volume fraction of grain boundaries and the specific grain-boundary conductivity are significantly enhanced with decreasing grain size, resulting in a higher total ionic conductivity. (author)

  14. Microstructures of an Ultrafine Grained SS400 Steel in an Industrial Scale

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The microstructures of a SS400 steel after thermomechanical control process (TMCP) in an industrial production were observed by optical microscope, scanning electron microscope (SEM) and transmission electron microscope (TEM). The results indicated that the size of ferrite grains was 4~5μm, and the volume fraction of ferrite was around 70%. The types of the ultrafine ferrite grains were analyzed and the strengthening mechanisms were discussed. The results show that the ultrafine ferrite grains came from three processes, i.e.deformation induced ferrite transformation (DIFT), dynamic recrystallization of ferrite and accelerated cooling process. The increase in the strength of the material was mainly due to the grain refining.

  15. Composite grains: Application to circumstellar dust

    Directory of Open Access Journals (Sweden)

    D. B. Vaidya

    2011-09-01

    Full Text Available Using the discrete dipole approximation (DDA we calculate the absorption efficiency of the composite grain, made up of a host silicate spheroid and inclusions of graphite, in the spectral region 5.0-25.0μm. We study the absorption as a function of the voulume fraction of the inclusions. In particular, we study the variation in the 10.0μm and 18.0μm emission features with the volume fraction of the inclusions. Using the extinction efficiencies, of the composite grains we calculate the infrared fluxes at several dust temperatures and compare the model curves with the observed infrared emission curves (IRAS-LRS, obtained for circumstellar dust shells around oxygen rich M-type stars.

  16. Nanoparticle volume fraction with heat and mass transfer on MHD mixed convection flow in a nanofluid in the presence of thermo-diffusion under convective boundary condition

    Science.gov (United States)

    Kandasamy, R.; Jeyabalan, C.; Sivagnana Prabhu, K. K.

    2016-02-01

    This article examines the influence of thermophoresis, Brownian motion of the nanoparticles with variable stream conditions in the presence of magnetic field on mixed convection heat and mass transfer in the boundary layer region of a semi-infinite porous vertical plate in a nanofluid under the convective boundary conditions. The transformed boundary layer ordinary differential equations are solved numerically using Maple 18 software with fourth-fifth order Runge-Kutta-Fehlberg method. Numerical results are presented both in tabular and graphical forms illustrating the effects of these parameters with magnetic field on momentum, thermal, nanoparticle volume fraction and solutal concentration boundary layers. The numerical results obtained for the velocity, temperature, volume fraction, and concentration profiles reveal interesting phenomenon, some of these qualitative results are presented through plots. It is interesting to note that the magnetic field plays a dominant role on nanofluid flow under the convective boundary conditions.

  17. Wear Behavior of Al-Mg2Si Cast In-situ Composite: Effect of Mg2Si Different Volume Fractions

    Science.gov (United States)

    Ghiasinejad, J.; Emamy, M.; Ghorbani, M. R.; Malekan, A.

    2010-06-01

    Al-Mg2Si in situ composites are great candidates for automobile brake discs due to their low density, reasonably high young's modulus and low thermal expansion coefficient. Thus, understanding wear properties of this composite is of a great importance. In this study wear behavior of an in-situ Al-Mg2Si composite, prepared from a simple casting route, has been investigated using a pin-on-disc configuration concerning the effect of Mg2Si volume fractions, 15, 20 and 25% respectively. It was found that the weight loss increases with increase in reinforce volume fraction which can be due to a coarse morphology of primary Mg2Si particles. It was found that the variations of weight loss with sliding distance comprise different regimes of which the mechanisms are discussed.

  18. Large volume TENAX {sup registered} extraction of the bioaccessible fraction of sediment-associated organic compounds for a subsequent effect-directed analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, K.; Brack, W. [UFZ - Helmholtz Centre or Environmental Research, Leipzig (Germany). Dept. of Effect-Directed Analysis

    2007-06-15

    Background, Aim and Scope: Effect-directed analysis (EDA) is a powerful tool for the identification of key toxicants in complex environmental samples. In most cases, EDA is based on total extraction of organic contaminants leading to an erroneous prioritization with regard to hazard and risk. Bioaccessibility-directed extraction aims to discriminate between contaminants that take part in partitioning between sediment and biota in a relevant time frame and those that are enclosed in structures, that do not allow rapid desorption. Standard protocols of targeted extraction of rapidly desorbing, and thus bioaccessible fraction using TENAX {sup registered} are based only on small amounts of sediment. In order to get sufficient amounts of extracts for subsequent biotesting, fractionation, and structure elucidation a large volume extraction technique needs to be developed applying one selected extraction time and excluding toxic procedural blanks. Materials and Methods: Desorption behaviour of sediment contaminants was determined by a consecutive solid-solid extraction of sediment using TENAX {sup registered} fitting a tri-compartment model on experimental data. Time needed to remove the rapidly desorbing fraction trap was calculated to select a fixed extraction time for single extraction procedures. Up-scaling by about a factor of 100 provided a large volume extraction technique for EDA. Reproducibility and comparability to small volume approach were proved. Blanks of respective TENAX {sup registered} mass were investigated using Scenedesmus vacuolatus and Artemia salina as test organisms. Results: Desorption kinetics showed that 12 to 30 % of sediment associated pollutants are available for rapid desorption. t{sub r}ap is compound dependent and covers a range of 2 to 18 h. On that basis a fixed extraction time of 24 h was selected. Validation of large volume approach was done by the means of comparison to small method and reproducibility. The large volume showed a good

  19. How large grains increase bulk friction in bi-disperse granular chute flows

    Science.gov (United States)

    Staron, Lydie; Phillips, Jeremy C.

    2016-07-01

    In this contribution, we apply contact dynamics discrete simulations to explore how the mechanical properties of simple bi-dimensional granular chute flows are affected by the existence of two grain sizes. Computing partial stress tensors for the phases of small and large grains, we show that the phase of large grain exhibits a much larger shear strength than the phase of small grains. This difference translates in terms of the flow internal friction: adopting the μ (I) dependence to describe the flow frictional properties, we establish that the flow mean friction coefficient increases with the volume fraction of large grains. Hence, while the presence of large grains may induce lubrication in 3D unconfined flows due to the self-channelisation and levées formation, the effect of large grains on the bulk properties is to decrease the flow mobility.

  20. Axon diameter and intra-axonal volume fraction of the corticospinal tract in idiopathic normal pressure hydrocephalus measured by q-space imaging.

    Directory of Open Access Journals (Sweden)

    Kouhei Kamiya

    Full Text Available PURPOSE: Previous studies suggest that compression and stretching of the corticospinal tract (CST potentially cause treatable gait disturbance in patients with idiopathic normal pressure hydrocephalus (iNPH. Measurement of axon diameter with diffusion MRI has recently been used to investigate microstructural alterations in neurological diseases. In this study, we investigated alterations in the axon diameter and intra-axonal fraction of the CST in iNPH by q-space imaging (QSI analysis. METHODS: Nineteen patients with iNPH and 10 age-matched controls were recruited. QSI data were obtained with a 3-T system by using a single-shot echo planar imaging sequence with the diffusion gradient applied parallel to the antero-posterior axis. By using a two-component low-q fit model, the root mean square displacements of intra-axonal space ( =  axon diameter and intra-axonal volume fraction of the CST were calculated at the levels of the internal capsule and body of the lateral ventricle, respectively. RESULTS: Wilcoxon's rank-sum test revealed a significant increase in CST intra-axonal volume fraction at the paraventricular level in patients (p<0.001, whereas no significant difference was observed in the axon diameter. At the level of the internal capsule, neither axon diameter nor intra-axonal volume fraction differed significantly between the two groups. CONCLUSION: Our results suggest that in patients with iNPH, the CST does not undergo irreversible axonal damage but is rather compressed and/or stretched owing to pressure from the enlarged ventricle. These analyses of axon diameter and intra-axonal fraction yield insights into microstructural alterations of the CST in iNPH.

  1. The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid)

    Energy Technology Data Exchange (ETDEWEB)

    Amrollahi, A; Hamidi, A A [Faculty of Engineering, University of Teheran, PO Box 11365-4563, Teheran (Iran, Islamic Republic of); Rashidi, A M [Gas Division of Research Institute of Petroleum Industry, PO Box 18745-4163, Tehran (Iran, Islamic Republic of)], E-mail: rashidiam@ripi.ir

    2008-08-06

    In this investigation, nanofluids of carbon nanotubes are prepared and the thermal conductivity and volumetric heat capacity of these fluids are measured using a thin layer technique as a function of time of ultrasonication, temperature, and volume fraction. It has been observed that after using the ultrasonic disrupter, the size of agglomerated particles and number of primary particles in a particle cluster was significantly decreased and that the thermal conductivity increased with elapsed ultrasonication time. The clustering of carbon nanotubes was also confirmed microscopically. The strong dependence of the effective thermal conductivity on temperature and volume fraction of nanofluids was attributed to Brownian motion and the interparticle potential, which influences the particle motion. The effect of temperature will become much more evident with an increase in the volume fraction and the agglomeration of the nanoparticles, as observed experimentally. The data obtained from this work have been compared with those of other studies and also with mathematical models at present proven for suspensions. Using a 2.5% volumetric concentration of carbon nanotubes resulted in a 20% increase in the thermal conductivity of the base fluid (ethylene glycol).The volumetric heat capacity also showed a pronounced increase with respect to that of the pure base fluid.

  2. The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid).

    Science.gov (United States)

    Amrollahi, A; Hamidi, A A; Rashidi, A M

    2008-08-06

    In this investigation, nanofluids of carbon nanotubes are prepared and the thermal conductivity and volumetric heat capacity of these fluids are measured using a thin layer technique as a function of time of ultrasonication, temperature, and volume fraction. It has been observed that after using the ultrasonic disrupter, the size of agglomerated particles and number of primary particles in a particle cluster was significantly decreased and that the thermal conductivity increased with elapsed ultrasonication time. The clustering of carbon nanotubes was also confirmed microscopically. The strong dependence of the effective thermal conductivity on temperature and volume fraction of nanofluids was attributed to Brownian motion and the interparticle potential, which influences the particle motion. The effect of temperature will become much more evident with an increase in the volume fraction and the agglomeration of the nanoparticles, as observed experimentally. The data obtained from this work have been compared with those of other studies and also with mathematical models at present proven for suspensions. Using a 2.5% volumetric concentration of carbon nanotubes resulted in a 20% increase in the thermal conductivity of the base fluid (ethylene glycol).The volumetric heat capacity also showed a pronounced increase with respect to that of the pure base fluid.

  3. The effect of the volume fraction and viscosity on the compression and tension behavior of the cobalt-ferrite magneto-rheological fluids

    Directory of Open Access Journals (Sweden)

    H. Shokrollahi

    2016-03-01

    Full Text Available The purpose of this work is to investigate the effects of the volume fraction and bimodal distribution of solid particles on the compression and tension behavior of the Co-ferrite-based magneto-rheological fluids (MRFs containing silicon oil as a carrier. Hence, Co-ferrite particles (CoFe2O4 with two various sizes were synthesized by the chemical co-precipitation method and mixed so as to prepare the bimodal MRF. The X-Ray Diffraction (XRD analysis, Fourier Transform Infrared Spectroscopy (FTIR, Laser Particle Size Analysis (LPSA and Vibrating Sample Magnetometer (VSM were conducted to examine the structural and magnetic properties, respectively. The results indicated that the increase of the volume fraction has a direct increasing influence on the values of the compression and tension strengths of fluids. In addition, the compression and tension strengths of the mixed MRF sample (1.274 and 0.647 MPa containing 60 and 550 nm samples were higher than those of the MRF sample with the same volume fraction and uniform particle size of 550 nm.

  4. Microstress evolution during in situ loading of a superalloy containing high volume fraction of {gamma}{sup '} phase

    Energy Technology Data Exchange (ETDEWEB)

    Ma, S.; Rangaswamy, P.; Majumdar, B.S

    2003-03-03

    Pulsed neutron diffraction under in situ mechanical loading was used to monitor microstrain evolution in individual phases of a polycrystalline {gamma}/{gamma}{sup '} superalloy, CM 247 LC. The load partitioning and yielding of differently oriented grains and phases were evaluated. The critical resolved shear stresses of individual phases were obtained and are compared with dislocation models.

  5. Folding of Pollen Grains

    Science.gov (United States)

    Katifori, Eleni; Alben, Silas; Cerda, Enrique; Nelson, David; Dumais, Jacques

    2008-03-01

    At dehiscence, which occurs when the anther reaches maturity and opens, pollen grains dehydrate and their volume is reduced. The pollen wall deforms to accommodate the volume loss, and the deformation pathway depends on the initial turgid pollen grain geometry and the mechanical properties of the pollen wall. We demonstrate, using both experimental and theoretical approaches, that the design of the apertures (areas on the pollen wall where the stretching and the bending modulus are reduced) is critical for controlling the folding pattern, and ensures the pollen grain viability. An excellent fit to the experiments is obtained using a discretized version of the theory of thin elastic shells.

  6. Bioactive compounds in whole grain wheat

    OpenAIRE

    Mateo Anson, N.

    2010-01-01

    Bread can be healthier! Consuming whole-grain foods can prevent cardiovascular diseases, type-2 diabetes and metabolic syndrome. This is due to bioactive compounds in whole grain, such as antioxidants and anti-inflammatory compounds. We found that the different fractions of a wheat grain vary much in their content. The external fractions of the grain, the bran and specially the aleurone, are the richest. We observed that processing the bran in whole-grain breads increased three times the leve...

  7. Dependence of coercivity on phase distribution and grain size in nanocomposite Nd2Fe14B/α-Fe magnets

    Institute of Scientific and Technical Information of China (English)

    Feng Wei-Cun; Gao Ru-Wei; Li Wei; Han Guang-Bing; Sun Yan

    2005-01-01

    The dependence of coercivity on the grain size in nanocomposite Nd2Fe14B/α-Fe magnets with different distributions of magnetically soft and hard phases is investigated by means of statistical mean. The calculations show that when there exists no soft phase, the coercivity of magnets decreases monotonically with hard grain size reducing. For a given volume fraction of hard phase, the coercivity of nanocomposite Nd2Fe14B/α-Fe magnets with a random distribution of soft and hard grains shows a peak value as a function of hard grain size. When the hard grain size is larger than an optimum value of soft grain size (15nm), the nanocomposite Nd2Fe14B/α-Fe magnets with the multilayer structure of soft and hard grains can possess a higher coercivity than that with the random distribution of soft and hard grains.

  8. Effect of Coarse Particle Volume Fraction on the Yield Stress of Muddy Sediments from Marennes Oléron Bay

    Directory of Open Access Journals (Sweden)

    A. Pantet

    2010-01-01

    Full Text Available Coastal erosion results from a combination of various factors, both natural and humaninduced, which have different time and space patterns. In addition, uncertainties still remain about the interactions of the forcing agents, as well as on the significance of non-local causes of erosion. We focused about the surface sediments in the Marennes Oléron bay, after a general description of the site that has many various activities. The superficial sediments show a mechanical behavior, mainly depends on the fine fraction for a composition that contains up to 60% of sandy material. Fine sediments fraction has a typical yield stress depending naturally of concentration or water content. This yield could be modified slightly or significantly by adding silt or sand. As a result, the rheological measurement sensitivity allows us to characterize five typical sediments that correlate with solid fraction and fine fraction.

  9. A Tri-modal 2024 Al -B4C composites with super-high strength and ductility: Effect of coarse-grained aluminum fraction on mechanical behavior

    Directory of Open Access Journals (Sweden)

    Alireza Abdollahi

    2014-12-01

    Full Text Available In this study, ultrafine grained 2024 Al alloy based B4C particles reinforced composite was produced by mechanical milling and hot extrusion. Mechanical milling was used to synthesize the nanostructured Al2024 in attrition mill under argon atmosphere up to 50h. A similar process was used to produce Al2024-5%wt. B4C composite powder. To produce trimodal composites, milled powders were combined with coarse grained aluminum in 30 and 50 wt% and then were exposed to hot extrusion at 570°C. The microstructure of hot extruded samples were studied by optical microscope, Transmission electron microscope (TEM and scanning electron microscope (SEM equipped with EDS spectroscopy. The mechanical properties of samples were compared by using tensile, compression and hardness tests. The results showed that the strength, after 50 h milling and addition of 5wt% B4C, increased from 340 to 582 MPa and the hardness increased from 87 HBN to 173 HBN, but the elongation decreased from 14 to 0.5%. By adding the coarse-grained aluminum powder, the strength and hardness decreased slightly, but the increases in return. Ductility increase is the result of increase in dislocation movements and strength increase is the result of restriction in plastic deformation by nanostructured regions. Furthermore, the strength and hardness of trimodal composites were higher, but their ductility was lower.

  10. Microcomputed tomographic analysis of human condyles in unilateral condylar hyperplasia: increased cortical porosity and trabecular bone volume fraction with reduced mineralisation.

    Science.gov (United States)

    Karssemakers, L H E; Nolte, J W; Tuinzing, D B; Langenbach, G E J; Raijmakers, P G; Becking, A G

    2014-12-01

    Unilateral condylar hyperplasia or hyperactivity is a disorder of growth that affects the mandible, and our aim was to visualise the 3-dimensional bony microstructure of resected mandibular condyles of affected patients. We prospectively studied 17 patients with a clinical presentation of progressive mandibular asymmetry and an abnormal single-photon emission computed tomographic (SPECT) scan. All patients were treated by condylectomy to arrest progression. The resected condyles were scanned with micro-CT (18 μm resolution). Rectangular volumes of interest were selected in 4 quadrants (lateromedial and superoinferior) of the trabecular bone of each condyle. Variables of bone architecture (volume fraction, trabecular number, thickness, and separation, degree of mineralisation, and degree of structural anisotrophy) were calculated with routine morphometric software. Eight of the 17 resected condyles showed clear destruction of the subchondral layer of cortical bone. There was a significant superoinferior gradient for all trabecular variables. Mean (SD) bone volume fraction (25.1 (6) %), trabecular number (1.69 (0.26) mm(-1)), trabecular thickness (0.17 (0.03) mm), and degree of mineralisation (695.39 (39.83) mg HA/cm(3)) were higher in the superior region. Trabecular separation (0.6 (0.16) mm) and structural anisotropy (1.84 (0.28)) were higher in the inferior region. The micro-CT analysis showed increased cortical porosity in many of the condyles studied. It also showed a higher bone volume fraction, greater trabecular thickness and trabecular separation, greater trabecular number, and less mineralisation in the condyles of the 17 patients compared with the known architecture of unaffected mandibular condyles.

  11. Computational study of textured ferroelectric polycrystals: Texture development during templated grain growth

    Science.gov (United States)

    Zhou, Jie E.; Yan, Yongke; Priya, Shashank; Wang, Yu U.

    2017-02-01

    Quantitative relationships between processing, microstructure, and properties in textured ferroelectric polycrystals and the underlying responsible mechanisms are investigated by phase field modeling and computer simulation. This study focuses on three important aspects of textured ferroelectric ceramics: (i) grain microstructure evolution during templated grain growth processing, (ii) crystallographic texture development as a function of volume fraction and seed size of the templates, and (iii) dielectric and piezoelectric properties of the obtained template-matrix composites of textured polycrystals. Findings on the first two aspects are presented here, while an accompanying paper of this work reports findings on the third aspect. In this paper, grain microstructure evolution in the polycrystalline matrix with different template volume fractions and seed sizes is simulated. To quantitatively characterize the crystallographic texture development during templated grain growth processing, a numerical algorithm is developed to compute the diffraction peak intensities and Lotgering factor of the simulated polycrystals during grain microstructure evolution. This novel approach provides a direct link between phase field simulation and diffraction experiment. This computational study clarifies the effects of the template volume fraction and template seed size on the final grain microstructure and texture. It is found that, while the degree of crystallographic texture generally increases with increasing template volume fraction, it is the average distance between template seeds that plays an important role. This finding suggests that reducing the template seed size and shortening the seed distance is an effective way to achieve higher texture at a lower template volume fraction, which is highly desired for enhancing the piezoelectric properties of ferroelectric polycrystals. The computational results are compared with complementary experiments, where good agreement is

  12. Global fractional anisotropy and mean diffusivity together with segmented brain volumes assemble a predictive discriminant model for young and elderly healthy brains: a pilot study at 3T

    Science.gov (United States)

    Garcia-Lazaro, Haydee Guadalupe; Becerra-Laparra, Ivonne; Cortez-Conradis, David; Roldan-Valadez, Ernesto

    2016-01-01

    Summary Several parameters of brain integrity can be derived from diffusion tensor imaging. These include fractional anisotropy (FA) and mean diffusivity (MD). Combination of these variables using multivariate analysis might result in a predictive model able to detect the structural changes of human brain aging. Our aim was to discriminate between young and older healthy brains by combining structural and volumetric variables from brain MRI: FA, MD, and white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) volumes. This was a cross-sectional study in 21 young (mean age, 25.71±3.04 years; range, 21–34 years) and 10 elderly (mean age, 70.20±4.02 years; range, 66–80 years) healthy volunteers. Multivariate discriminant analysis, with age as the dependent variable and WM, GM and CSF volumes, global FA and MD, and gender as the independent variables, was used to assemble a predictive model. The resulting model was able to differentiate between young and older brains: Wilks’ λ = 0.235, χ2 (6) = 37.603, p = .000001. Only global FA, WM volume and CSF volume significantly discriminated between groups. The total accuracy was 93.5%; the sensitivity, specificity and positive and negative predictive values were 91.30%, 100%, 100% and 80%, respectively. Global FA, WM volume and CSF volume are parameters that, when combined, reliably discriminate between young and older brains. A decrease in FA is the strongest predictor of membership of the older brain group, followed by an increase in WM and CSF volumes. Brain assessment using a predictive model might allow the follow-up of selected cases that deviate from normal aging. PMID:27027893

  13. Identification of myocardial diffuse fibrosis by 11 heartbeat MOLLI T 1 mapping: averaging to improve precision and correlation with collagen volume fraction.

    Science.gov (United States)

    Vassiliou, Vassilios S; Wassilew, Katharina; Cameron, Donnie; Heng, Ee Ling; Nyktari, Evangelia; Asimakopoulos, George; de Souza, Anthony; Giri, Shivraman; Pierce, Iain; Jabbour, Andrew; Firmin, David; Frenneaux, Michael; Gatehouse, Peter; Pennell, Dudley J; Prasad, Sanjay K

    2017-06-12

    Our objectives involved identifying whether repeated averaging in basal and mid left ventricular myocardial levels improves precision and correlation with collagen volume fraction for 11 heartbeat MOLLI T 1 mapping versus assessment at a single ventricular level. For assessment of T 1 mapping precision, a cohort of 15 healthy volunteers underwent two CMR scans on separate days using an 11 heartbeat MOLLI with a 5(3)3 beat scheme to measure native T 1 and a 4(1)3(1)2 beat post-contrast scheme to measure post-contrast T 1, allowing calculation of partition coefficient and ECV. To assess correlation of T 1 mapping with collagen volume fraction, a separate cohort of ten aortic stenosis patients scheduled to undergo surgery underwent one CMR scan with this 11 heartbeat MOLLI scheme, followed by intraoperative tru-cut myocardial biopsy. Six models of myocardial diffuse fibrosis assessment were established with incremental inclusion of imaging by averaging of the basal and mid-myocardial left ventricular levels, and each model was assessed for precision and correlation with collagen volume fraction. A model using 11 heart beat MOLLI imaging of two basal and two mid ventricular level averaged T 1 maps provided improved precision (Intraclass correlation 0.93 vs 0.84) and correlation with histology (R (2) = 0.83 vs 0.36) for diffuse fibrosis compared to a single mid-ventricular level alone. ECV was more precise and correlated better than native T 1 mapping. T 1 mapping sequences with repeated averaging could be considered for applications of 11 heartbeat MOLLI, especially when small changes in native T 1/ECV might affect clinical management.

  14. The Effect of Volume Fraction of Single-Walled Carbon Nanotubes on Natural Frequencies of Polymer Composite Cone-Shaped Shell Made from Poly(Methyl Methacrylate

    Directory of Open Access Journals (Sweden)

    A. H. Meysami

    2017-01-01

    Full Text Available In this paper, the effect of volume fraction of single-walled carbon nanotubes on natural frequencies of polymer composite cone-shaped shells made from Poly(Methyl Methacrylate (PMMA is studied. In order to determine the characterization of materials reinforced with nanoparticles, the molecular dynamics and mixture rule has been used. The motion equations of composite shell based on the classical thin shells theory using Hamilton’s principle are obtained. Then, using the Ritz method, approximate analytical solution of the natural frequency is presented. Results indicate that the nanotubes have a noticeable effect on the natural frequencies.

  15. On the influence of local fluctuations in volume fraction of constituents on the effective properties of nonlinear composites. Application to porous materials

    Science.gov (United States)

    Gărăjeu, M.; Suquet, P.

    2007-04-01

    Composite materials often exhibit local fluctuations in the volume fraction of their individual constituents. This paper studies the influence of such small fluctuations on the effective properties of composites. A general asymptotic expansion of these properties in terms of powers of the amplitude of the fluctuations is given first. Then, this general result is applied to porous materials. As is well-known, the effective yield surface of ductile voided materials is accurately described by Gurson's criterion. Suitable extensions for viscoplastic solids have also been proposed. The question addressed in the present study pertains to nonuniform distributions of voids in a typical volume element or in other words to the presence of matrix-rich and pore-rich zones in the material. It is shown numerically and analytically that such deviations from a uniform distribution result in a weakening of the macroscopic carrying capacity of the material.

  16. The influence of physicochemical parameters on bioaccessibility-adjusted hazard quotients for copper, lead and zinc in different grain size fractions of urban street dusts and soils.

    Science.gov (United States)

    Dehghani, Sharareh; Moore, Farid; Vasiluk, Luba; Hale, Beverley A

    2017-06-09

    When the hazard quotient for ingestion (HQI) of a trace element in soil and dust particles is adjusted for the element's bioaccessibility, the HQI is typically reduced as compared to its calculation using pseudo-total element concentration. However, those studies have mostly used bulk particles (bioaccessible metal may not be similar among particle size fractions, the possibility probed by the present study of street dusts and soils collected in Tehran. The highest Cu, Pb and Zn near-total concentrations occurred in the finest particles of dusts and soils. Bioaccessible concentrations of Cu, Pb and Zn in the particles (mg kg(-1)) were obtained using simple bioaccessibility extraction test (SBET). The bioaccessibility (%) did not vary much among near-total concentrations. In the bulk (bioaccessible concentration of Cu and Pb increased as the pH of sample increased, while Zn bioaccessibility (%) in the bulk particles was influenced by organic matter and cation exchange capacity. X-ray diffraction identified sulfide and sulfate minerals in all of the size-fractionated particles, which are insoluble to slightly soluble in acidic conditions and included most of the Cu and Pb in the samples. The only Zn-bearing mineral identified was hemimorphite, which would be highly soluble in the SBET conditions. The calculated HQI suggested potential non-carcinogenic health risk to children and adults from ingestions of soils and dusts regardless of particle size consideration, in the order of Zn > Pb ≥ Cu. The HQI calculated from near-total metal was not much different for particle size classes relative to bulk particles; however, the bioaccessibility percent-adjusted HQI for Pb was higher for the smaller particles than the bulk. This work is novel in its approach to compare HQI for a bulk sample of particles with its composite particle size fractions.

  17. The prediction of the evolution of grain size of land-gear forging during the die-forging process

    Directory of Open Access Journals (Sweden)

    Lin Gao

    2015-01-01

    Full Text Available The land-gear forgings are the most important structure parts, made of high strength steel 300M. Because of the bad service environment, the microstructure and performance of the part are very strict requirements. In this article the evolution of grain size during the die-forging process is predicted, the volume fraction of dynamic recrystallization, grain refinement and development of grain size in-homogeneity, and the affection of billet shape on the grain size distribution are analyzed. The simulated results show that the grain size differences on the different billet positions are very large at the deformation beginning. But in final forging stage, the difference of the average grain size is smaller. At some center zones of the part the maximum difference of grain size is bigger than 100 μm.

  18. GrainSpotter

    DEFF Research Database (Denmark)

    Schmidt, Søren

    2014-01-01

    A new approach for indexing multigrain diffraction data is presented. It is based on the use of a monochromatic beam simultaneously illuminating all grains. By operating in sub-volumes of Rodrigues space, a powerful vertex-finding algorithm can be applied, with a running time that is compatible...... with online analysis. The resulting program, GrainSpotter, is sufficiently fast to enable online analysis during synchrotron sessions. The program applies outlier rejection schemes, leading to more robust and accurate data. By simulations it is shown that several thousand grains can be retrieved. A new method...... to derive partial symmetries, called pseudo-twins, is introduced. Uniquely, GrainSpotter includes an analysis of pseudo-twins, which is shown to be critical to avoid erroneous grains resulting from the indexing....

  19. 3-D Numerical Simulation and Analysis of Complex Fiber Geometry RaFC Materials with High Volume Fraction and High Aspect Ratio based on ABAQUS PYTHON

    Science.gov (United States)

    Jin, BoCheng

    2011-12-01

    Organic and inorganic fiber reinforced composites with innumerable fiber orientation distributions and fiber geometries are abundantly available in several natural and synthetic structures. Inorganic glass fiber composites have been introduced to numerous applications due to their economical fabrication and tailored structural properties. Numerical characterization of such composite material systems is necessitated due to their intrinsic statistical nature, which renders extensive experimentation prohibitively time consuming and costly. To predict various mechanical behavior and characterizations of Uni-Directional Fiber Composites (UDFC) and Random Fiber Composites (RaFC), we numerically developed Representative Volume Elements (RVE) with high accuracy and efficiency and with complex fiber geometric representations encountered in uni-directional and random fiber networks. In this thesis, the numerical simulations of unidirectional RaFC fiber strand RVE models (VF>70%) are first presented by programming in ABAQUS PYTHON. Secondly, when the cross sectional aspect ratios (AR) of the second phase fiber inclusions are not necessarily one, various types of RVE models with different cross sectional shape fibers are simulated and discussed. A modified random sequential absorption algorithm is applied to enhance the volume fraction number (VF) of the RVE, which the mechanical properties represents the composite material. Thirdly, based on a Spatial Segment Shortest Distance (SSSD) algorithm, a 3-Dimentional RaFC material RVE model is simulated in ABAQUS PYTHON with randomly oriented and distributed straight fibers of high fiber aspect ratio (AR=100:1) and volume fraction (VF=31.8%). Fourthly, the piecewise multi-segments fiber geometry is obtained in MATLAB environment by a modified SSSD algorithm. Finally, numerical methods including the polynomial curve fitting and piecewise quadratic and cubic B-spline interpolation are applied to optimize the RaFC fiber geometries

  20. Impact of epoetin alfa on left ventricular structure, function, and pressure volume relations as assessed by cardiac magnetic resonance: the heart failure preserved ejection fraction (HFPEF) anemia trial.

    Science.gov (United States)

    Green, Philip; Babu, Benson A; Teruya, Sergio; Helmke, Stephen; Prince, Martin; Maurer, Mathew S

    2013-01-01

    Anemia, a common comorbidity in older adults with heart failure and a preserved ejection fraction (HFPEF), is associated with worse outcomes. The authors quantified the effect of anemia treatment on left ventricular (LV) structure and function as measured by cardiac magnetic resonance (CMR) imaging. A prospective, randomized single-blind clinical trial (NCT NCT00286182) comparing the safety and efficacy of epoetin alfa vs placebo for 24 weeks in which a subgroup (n=22) had cardiac magnetic resonance imaging (MRI) at baseline and after 3 and 6 months to evaluate changes in cardiac structure and function. Pressure volume (PV) indices were derived from MRI measures of ventricular volume coupled with sphygmomanometer-measured pressure and Doppler estimates of filling pressure. The end-systolic and end-diastolic PV relations and the area between them as a function of end-diastolic pressure, the isovolumic PV area (PVAiso), were calculated. Patients (75±10 years, 64% women) with HFPEF (EF=63%±15%) with an average hemoglobin of 10.3±1.1 gm/dL were treated with epoetin alfa using a dose-adjusted algorithm that increased hemoglobin compared with placebo (PHFPEF resulted in a significant increase in hemoglobin, without evident change in LV structure, function, or pressure volume relationships as measured quantitatively using CMR imaging.

  1. Fractional rate of change of swim-bladder volume is reliably related to absolute depth during vertical displacements in teleost fish.

    Science.gov (United States)

    Taylor, Graham K; Holbrook, Robert Iain; de Perera, Theresa Burt

    2010-09-06

    Fish must orient in three dimensions as they navigate through space, but it is unknown whether they are assisted by a sense of depth. In principle, depth can be estimated directly from hydrostatic pressure, but although teleost fish are exquisitely sensitive to changes in pressure, they appear unable to measure absolute pressure. Teleosts sense changes in pressure via changes in the volume of their gas-filled swim-bladder, but because the amount of gas it contains is varied to regulate buoyancy, this cannot act as a long-term steady reference for inferring absolute pressure. In consequence, it is generally thought that teleosts are unable to sense depth using hydrostatic pressure. Here, we overturn this received wisdom by showing from a theoretical physical perspective that absolute depth could be estimated during fast, steady vertical displacements by combining a measurement of vertical speed with a measurement of the fractional rate of change of swim-bladder volume. This mechanism works even if the amount of gas in the swim-bladder varies, provided that this variation occurs over much longer time scales than changes in volume during displacements. There is therefore no a priori physical justification for assuming that teleost fish cannot sense absolute depth by using hydrostatic pressure cues.

  2. Dosimetric consequences of tumor volume changes after kilovoltage cone-beam computed tomography for non-operative lung cancer during adaptive intensity-modulated radiotherapy or fractionated stereotactic radiotherapy

    Institute of Scientific and Technical Information of China (English)

    Jian Hu; Ximing Xu; Guangjin Yuan; Wei Ge; Liming Xu; Aihua Zhang; Junjian Deng

    2015-01-01

    Objective The aim of this study was to investigate tumor volume changes with kilovoltage cone-beam computed tomography (kV-CBCT) and their dosimetric consequences for non-operative lung cancer during intensity-modulated radiotherapy (IMRT) or fractionated stereotactic radiotherapy. Methods Eighteen patients with non-operative lung cancer who received IMRT consisting of 1.8-2.2 Gy/fraction and five fractions per week or stereotactic radiotherapy with 5-8 Gy/fraction and three fractions a week were studied. kV-CBCT was performed once per week during IMRT and at every fraction during stereotactic radiotherapy. The gross tumor volume (GTV) was contoured on the kV-CBCT images, and adaptive treatment plans were created using merged kV-CBCT and primary planning computed tomogra-phy image sets. Tumor volume changes and dosimetric parameters, including the minimum dose to 95%(D95) or 1% (D1) of the planning target volume (PTV), mean lung dose (MLD), and volume of lung tissue that received more than 5 (V5), 10 (V10), 20 (V20), and 30 (V30) Gy were retrospectively analyzed. Results The average maximum change in GTV observed during IMRT or fractionated stereotactic radio-therapy was -25.85% (range, -13.09% --56.76%). The D95 and D1 of PTV for the adaptive treatment plans in all patients were not significantly different from those for the initial or former adaptive treatment plans. In patients with tumor volume changes of >20% in the third or fourth week of treatment during IMRT, adap-tive treatment plans offered clinically meaningful decreases in MLD and V5, V10, V20, and V30; however, in patients with tumor volume changes of 20% in the third or fourth week of treatment.

  3. County-Level Climate Uncertainty for Risk Assessments: Volume 20 Appendix S - Historical Sea Ice Area Fraction

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M; Walker, La Tonya Nicole; Roberts, Barry L; Malczynski, Leonard A.

    2017-06-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.

  4. County-Level Climate Uncertainty for Risk Assessments: Volume 21 Appendix T - Forecast Sea Ice Area Fraction.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M; Walker, La Tonya Nicole; Roberts, Barry L; Malczynski, Leonard A.

    2017-06-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.

  5. Fracionamento do grão de Amaranthus cruentus brasileiro por moagem e suas características composicionais Fractionation by milling of the Brazilian grain amaranth (Amaranthus cruentus. Compositional characteristics

    Directory of Open Access Journals (Sweden)

    Roberto Marcílio

    2003-12-01

    Full Text Available O grão de amaranto é geralmente consumido na sua forma integral. Este estudo teve como objetivo avaliar o efeito da moagem do grão de amaranto (Amaranthus cruentus brasileiro na composição química, nutricional, a estabilidade à oxidação e cor da farinha. Os grãos foram pré-condicionados para umidades entre 9,2 e 13,7% e fracionados em moinho para cereais. O aumento da umidade de 9,2 para 13,7% resultou na diminuição progressiva do rendimento da farinha, de 39 para 14%. A farinha refinada (quebra + redução, com 9,2% de umidade, mostrou teores de proteína total de 13,9%, contra 16,2% da farinha integral. O teor de lipídeos totais no amaranto integral (9,2% de umidade variou de 6,78, para 6,11% na farinha refinada e o teor de fibra nos farelos diminuiu de 3,6 para 3,1%, ao passo que a cor da farinha se tornou mais atraente. Conclui-se que o fracionamento da farinha do grão de amaranto, apesar de produzir uma farinha com melhor aparência e alto teor protéico, apresenta rendimento baixo e não mostra diminuição substancial no teor de óleo da farinha refinada como para garantir uma maior estabilidade à autooxidação.Grain amaranth is normally consumed whole. The effect of milling on the chemical and nutritional composition, stability to oxidation and color of the flours of the Brazilian grain amaranth (Amaranthus cruentus has been assessed. Grains of the cv Japônica were pre-conditioned to moistures from 9.2 to 13.7% and fractionated in a cereal mill. Increasing the moisture resulted in a pronounced decrease of flour yield from 39 to 14%. The refined flour (break and reduction fractions combined of the 9.2% moisture grain showed a total protein content of 13.9%, against the 16.2% of the whole flour, whereas the total lipid content fell from 6.78 to 6.11% with no detectable change in oxidative stability after refining. The fiber content was reduced slightly, from 4.6 to 3.8% for the highest and the lowest moisture contents

  6. How do jet time, pressure and bone volume fraction influence the drilling depth when waterjet drilling in porcine bone?

    Science.gov (United States)

    den Dunnen, Steven; Dankelman, Jenny; Kerkhoffs, Gino M M J; Tuijthof, Gabrielle J M

    2016-09-01

    Using water jets for orthopedic procedures that require bone drilling can be beneficial due to the absence of thermal damage and the always sharp cut. Previously, the influence of the water jet diameter and bone architectural properties on the drilling depth have been determined. To develop water jet instruments that can safely drill in orthopedic surgery, the impact of the two remaining primary factors were determined: the jet time (tjet [s]) and pressure (P [MPa]). To this end, 84 holes were drilled in porcine tali and femora with water jets using Ø 0.4mm nozzle. tjet was varied between 1, 3 and 5s and P between 50 and 70MPa. Drilling depths Lhole (mm), diameters Dhole (mm) and the volume of mineralized bone per unit volume (BV/TV) were determined with microCT scans. A non-linear regression analysis resulted in the predictive equation: Lhole= 0.22 * tjet(0.18) * (1.2-BV/TV) * (P-29) (R(2)=0.904). The established relation between the machine settings and drilling depth allows surgeons to adjust jet time and pressure for the patient׳s BV/TV to drill holes at a predetermined depth. For developers, the relation allows design decisions to be made that influence the dimensions, flexibility and accuracy of water jet instruments. For a pressure of 50MPa, the potential hole depth spread indicated by the 95% confidence interval is drilling can be applied in orthopedic surgery to drill holes in bone with controlled depth.

  7. Grain boundary wetness of partially molten dunite

    Science.gov (United States)

    Mu, S.; Faul, U.

    2013-12-01

    The grain scale melt distribution plays a key role for physical properties of partially molten regions in Earth's upper mantle, but our current understanding of the distribution of basaltic melt at the grain scale is still incomplete. A recent experimental study shows that wetted two-grain boundaries are a common feature of partially molten dunite at small melt fractions (Garapic et al., G3, 2013). In early ideal models which assume isotropic surface energy, the grain scale melt distribution is uniquely determined by knowing the melt fraction and the dihedral angle between two crystalline grains and the melt (von Bargen and Waff, JGR, 1986). Olivine is anisotropic in surface energy, hence the grain scale melt distribution at given melt fraction cannot be characterized by the dihedral angle alone. The grain boundary wetness, which is defined as the ratio of solid-liquid boundary area over the total interfacial area (Takei, JGR, 1998), is a more objective measure of the grain scale melt distribution. The aim of this study is to quantify the relationship between grain size, melt fraction, temperature and grain boundary wetness of partially molten dunite under dry conditions. We annealed olivine-basalt aggregates with melt fractions from 0.03% to 6% at a range of temperatures and 1 GPa in a piston cylinder for 1 to 336 hours, with resulting mean grain sizes of 10 to 60 μm. The samples were sectioned, polished and imaged at high resolution by using a field emission SEM. Each image had a size of 2048 x 1536 pixels with a resolution of 0.014 to 0.029 μm/pixel, depending on magnification. For each sample, depending on grain sizes, we made mosaics of 3 x 3 or 6 x 6 overlapping images. Measurements of melt fraction, grain boundary wetness and grain size were carried out on these high resolution mosaics by using ImageJ software. Analyses of mosaics show that grain boundary wetness increases with increasing melt fraction at constant grain size to values well above those

  8. Radiobiological restrictions and tolerance doses of repeated single-fraction hdr-irradiation of intersecting small liver volumes for recurrent hepatic metastases

    Directory of Open Access Journals (Sweden)

    Wust Peter

    2010-05-01

    Full Text Available Abstract Background To assess radiobiological restrictions and tolerance doses as well as other toxic effects derived from repeated applications of single-fraction high dose rate irradiation of small liver volumes in clinical practice. Methods Twenty patients with liver metastases were treated repeatedly (2 - 4 times at identical or intersecting locations by CT-guided interstitial brachytherapy with varying time intervals. Magnetic resonance imaging using the hepatocyte selective contrast media Gd-BOPTA was performed before and after treatment to determine the volume of hepatocyte function loss (called pseudolesion, and the last acquired MRI data set was merged with the dose distributions of all administered brachytherapies. We calculated the BED (biologically equivalent dose for a single dose d = 2 Gy for different α/β values (2, 3, 10, 20, 100 based on the linear-quadratic model and estimated the tolerance dose for liver parenchyma D90 as the BED exposing 90% of the pseudolesion in MRI. Results The tolerance doses D90 after repeated brachytherapy sessions were found between 22 - 24 Gy and proved only slightly dependent on α/β in the clinically relevant range of α/β = 2 - 10 Gy. Variance analysis showed a significant dependency of D90 with respect to the intervals between the first irradiation and the MRI control (p 90 and the pseudolesion's volume. No symptoms of liver dysfunction or other toxic effects such as abscess formation occurred during the follow-up time, neither acute nor on the long-term. Conclusions Inactivation of liver parenchyma occurs at a BED of approx. 22 - 24 Gy corresponding to a single dose of ~10 Gy (α/β ~ 5 Gy. This tolerance dose is consistent with the large potential to treat oligotopic and/or recurrent liver metastases by CT-guided HDR brachytherapy without radiation-induced liver disease (RILD. Repeated small volume irradiation may be applied safely within the limits of this study.

  9. 结实期叶面施锌对扬麦16号和扬辐麦2号籽粒不同部位锌含量的影响%The Effect of Foliar Zn Application at Grain Filling Stage on Zn Content in Grain Fractions of Winter Wheat Yangmai 16 and Yangfumai 2

    Institute of Scientific and Technical Information of China (English)

    齐义涛; 张庆; 周三妮; 杨晓晨; 杨连新; 王云霞

    2013-01-01

    (WAF),the second and third application were at 2 WAF and 3 WAF,respectively.The plants in control plots received clean water.The results showed that foliar Zn application of 0.2% and 0.4% ZnSO4 increased grain Zn concentration by 58% and 125%,respectively.Wheat grains were further separated by Sedimat Laboratory Mill into bran,shorts and flour,and Zn concentration in each grain fraction were analyzed by ICP-AES.Zn concentration in different milling fractions followed the order of bran > shorts > flour,and Zn concentration in bran was 8 times higher than in flour.Compared with control,foliar 0.2% ZnSO4 application increased Zn concentration in bran,shorts and flour by 64%,54% and 36%,respectively; and 0.4% ZnSO4 treatments increased Zn concentration in bran,shorts and flour by 117%,110% and 92%,respectively; As the case of Zn concentration in grain fractions,Zn contents in bran,shorts and flour showed same trend in the response to foliar Zn application at grain filling stage.However,foliar Zn application at grain filling stage did not affect Zn distribution in different milling fractions of mature grains.Compared within cultivars,foliar Zn application had greater effect on Yangmai 16 than Yangfumai 2,as showed by most measured parameters.These results indicate that suitable cultivar selection accompanied with foliar Zn applications at grain filling stage improve Zn level of wheat flour,which will have beneficial effect on human health.

  10. Synthesis and characterization of high volume fraction Al-Al{sub 2}O{sub 3} nanocomposite powders by high-energy milling

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu, B. [Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, Orlando, FL 32816-2450 (United States); Suryanarayana, C. [Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, Orlando, FL 32816-2450 (United States)]. E-mail: csuryana@mail.ucf.edu; An, L. [Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, Orlando, FL 32816-2450 (United States); Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, FL 32816-2455 (United States); Vaidyanathan, R. [Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, Orlando, FL 32816-2450 (United States); Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, FL 32816-2455 (United States)

    2006-06-15

    Al-Al{sub 2}O{sub 3} metal matrix composite (MMC) powders with volume fractions of 20, 30, and 50% Al{sub 2}O{sub 3} were synthesized by high-energy milling of the blended component powders. The particle sizes of Al{sub 2}O{sub 3} studied were 50 nm, 150 nm, and 5 {mu}m. A uniform distribution of the Al{sub 2}O{sub 3} reinforcement in the Al matrix was successfully obtained after milling the powders for a period of 20 h at a ball-to-powder ratio of 10:1 in a SPEX mill. The uniform distribution of Al{sub 2}O{sub 3} in the Al matrix was confirmed by characterizing these nanocomposite powders by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray mapping, and X-ray diffraction (XRD) techniques.

  11. Temperature dependence of pin solar cell parameters with intrinsic layers made of pm-Si:H and low crystalline volume fraction {mu}c-Si:H

    Energy Technology Data Exchange (ETDEWEB)

    Hamadeh, H. [AECS, Physics Department, P.O. Box 6091, Damascus (Syria)

    2010-07-15

    A comparison of the temperature dependence of the IV characteristics parameters of hydrogenated silicon pin solar cells with intrinsic layers made of polymorphous silicon (pm-Si:H) and of {mu}c-Si:H with low crystalline volume fraction has been performed. When using pm-Si:H, higher efficiency and higher filling factors are achieved over a wide temperature range. Diode quality factors of both types of cells show similar temperature dependence. Recombination processes over the whole intrinsic layer dominates the forward current. A change of the cell parameters under illumination is also observed. The transport mechanism of both cells is similar in the temperature range that is important for most applications. Due to its optical and transport properties, pm-Si:H poses a very interesting alternative to {mu}c-Si:H and a-Si:H in the temperature range of normal terrestrial applications. (author)

  12. Temperature, Oxygen, and Soot-Volume-Fraction Measurements in a Turbulent C2H4-Fueled Jet Flame

    Energy Technology Data Exchange (ETDEWEB)

    Kearney, Sean P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Guildenbecher, Daniel Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Winters, Caroline [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Farias, Paul Abraham [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grasser, Thomas W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hewson, John C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    We present a detailed set of measurements from a piloted, sooting, turbulent C 2 H 4 - fueled diffusion flame. Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (CARS) is used to monitor temperature and oxygen, while laser-induced incandescence (LII) is applied for imaging of the soot volume fraction in the challenging jet-flame environment at Reynolds number, Re = 20,000. Single-laser shot results are used to map the mean and rms statistics, as well as probability densities. LII data from the soot-growth region of the flame are used to benchmark the soot source term for one-dimensional turbulence (ODT) modeling of this turbulent flame. The ODT code is then used to predict temperature and oxygen fluctuations higher in the soot oxidation region higher in the flame.

  13. Revisiting the Lick Observatory Supernova Search Volume-Limited Sample: Updated Classifications and Revised Stripped-envelope Supernova Fractions

    CERN Document Server

    Shivvers, Isaac; Zheng, Weikang; Filippenko, Alexei V; Silverman, Jeffrey M; Liu, Yuqian; Matheson, Thomas; Pastorello, Andrea; Graur, Or; Foley, Ryan J; Chornock, Ryan; Smith, Nathan; Leaman, Jesse; Benetti, Stefano

    2016-01-01

    We re-examine the classifications of supernovae (SNe) presented in the Lick Observatory Supernova Search (LOSS) volume-limited sample with a focus on the stripped-envelope SNe. The LOSS volumetric sample, presented by Leaman et al. (2011) and Li et al. (2011b), was calibrated to provide meaningful measurements of SN rates in the local universe; the results presented therein continue to be used for comparisons to theoretical and modeling efforts. Many of the objects from the LOSS sample were originally classified based upon only a small subset of the data now available, and recent studies have both updated some subtype distinctions and improved our ability to perform robust classifications, especially for stripped-envelope SNe. We re-examine the spectroscopic classifications of all events in the LOSS volumetric sample (180 SNe and SN impostors) and update them if necessary. We discuss the populations of rare objects in our sample including broad-lined Type Ic SNe, Ca-rich SNe, SN 1987A-like events (we identify...

  14. Effects of nano anatase-rutile TiO2 volume fraction with natural dye containing anthocyanin on the dye sensitized solar cell performance

    Science.gov (United States)

    Agustini, S.; Wahyuono, R. A.; Sawitri, D.; Risanti, D. D.

    2013-09-01

    Since its first development, efforts to improve efficiency of Dye Sensitized Solar Cell (DSSC) are continuously carried out, either through selection of dye materials, the type of semiconductor, counter electrode design or the sandwiched structure. It is widely known that anatase and rutile are phases of TiO2 that often being used for fabrication of DSSC. Rutile is thermodynamically more stable phase having band-gap suitable for absorption of sunlight spectrum. On the other hand, anatase has higher electrical conductivity, capability to adsorp dye as well as higher electron diffusion coefficient than those of rutile. Present research uses mangosteen pericarp and Rhoeo spathacea extracted in ethanol as natural dye containing anthocyanin. These dyes were characterized by using UV-Vis and FTIR, showing that the absorption maxima peaks obtained at 389 nm and 413 nm, for mangosteen and Rhoeo spathacea, respectively. The nano TiO2 was prepared by means of co-precipitation method. The particle size were 9-11 nm and 54.5 nm for anatase and rutile, respectively, according to Scherrer's equation. DSSCs were fabricated in various volume fractions of anatase and rutile TiO2. The fabricated DSSCs were tested under 17 mW/cm2 of solar irradiation. The current-voltage (I-V) characteristic of DSSCs employing 75%: 25% volume fraction of anatase and rutile TiO2 have outstanding result than others. The highest conversion efficiencies of 0.037% and 0.013% are obtained for DSSC employing natural dye extract from mangosteen pericarp and Rhoeo spathacea, respectively.

  15. Enhanced mechanical stability of ultrafine grained steel through intercritical annealing cold rolled martensite

    Institute of Scientific and Technical Information of China (English)

    Huifang LAN; Xianghua LIU; Linxiu DU

    2012-01-01

    The ultrafine grained ferritic steels possess high strength but low ductility due to the shortage of work hardening.Fine grained ferrite-martensite dual phase microstructure was obtained in a microalloyed steel and low carbon steels through intercritical annealing of the cold rolled martensite.The dual phase microstructure was uniform and the ferrite grain size was smaller in the microalloyed steel resulted from the pinning effect of microalloyed precipitates.But ferrite grown apparently and the volume fraction of the martensite was much higher without the addition of microalloying elements.By introducing martensite into the fine grained ferrite,the work hardening was effectively improved,leading to better mechanical stability.As a result of the fine ferrite grain size as well as uniform distribution of the martensite,the work hardening was enhanced,showing better strength-ductility balance in the microalloyed dual phase steel.

  16. Different nano-particles volume fraction and Hartmann number effects on flow and heat transfer of water-silver nanofluid under the variable heat flux

    Science.gov (United States)

    Forghani-Tehrani, Pezhman; Karimipour, Arash; Afrand, Masoud; Mousavi, Sayedali

    2017-01-01

    Nanofluid flow and heat transfer composed of water-silver nanoparticles is investigated numerically inside a microchannel. Finite volume approach (FVM) is applied and the effects of gravity are ignored. The whole length of Microchannel is considered in three sections as l1=l3=0.151 and l2=0.71. The linear variable heat flux affects the microchannel wall in the length of l2 while a magnetic field with strength of B0 is considered over the whole domain of it. The influences of different values of Hartmann number (Ha=0, 10, 20), volume fraction of the nanoparticles (ɸ=0, 0.02, 0.04) and Reynolds number (Re=10, 50, 200) on the hydrodynamic and thermal properties of flow are reported. The investigation of slip velocity variations under the effects of a magnetic field are presented for the first time (to the best knowledge of author) while the non-dimensional slip coefficient are selected as B=0.01, 0.05, 0.1 at different states.

  17. Combined effects of grain size, flow volume and channel width on geophysical flow mobility: three-dimensional discrete element modeling of dry and dense flows of angular rock fragments

    Science.gov (United States)

    Cagnoli, Bruno; Piersanti, Antonio

    2017-02-01

    We have carried out new three-dimensional numerical simulations by using a discrete element method (DEM) to study the mobility of dry granular flows of angular rock fragments. These simulations are relevant for geophysical flows such as rock avalanches and pyroclastic flows. The model is validated by previous laboratory experiments. We confirm that (1) the finer the grain size, the larger the mobility of the center of mass of granular flows; (2) the smaller the flow volume, the larger the mobility of the center of mass of granular flows and (3) the wider the channel, the larger the mobility of the center of mass of granular flows. The grain size effect is due to the fact that finer grain size flows dissipate intrinsically less energy. This volume effect is the opposite of that experienced by the flow fronts. The original contribution of this paper consists of providing a comparison of the mobility of granular flows in six channels with a different cross section each. This results in a new scaling parameter χ that has the product of grain size and the cubic root of flow volume as the numerator and the product of channel width and flow length as the denominator. The linear correlation between the reciprocal of mobility and parameter χ is statistically highly significant. Parameter χ confirms that the mobility of the center of mass of granular flows is an increasing function of the ratio of the number of fragments per unit of flow mass to the total number of fragments in the flow. These are two characteristic numbers of particles whose effect on mobility is scale invariant.

  18. Effect of Second Phase Particles on Grain Growth for Nanocrystalline AZ31 Mg Alloy by Phase Field Methods

    Directory of Open Access Journals (Sweden)

    Wu Yan

    2015-01-01

    Full Text Available The grain growth of nanocrystalline AZ31 magnesium alloy containing spherical particles with different sizes is simulated by phase field methods. It is shown that the role of pinning effect of the second phase particles during grain growth is interesting. There is a critical particle size to affect the grain growth in nanostructure. If the size of particles is lower than the critical value, the effect of pinning for grain growth will be increased with further decreasing the size. If the size is larger than the critical value, the particles nearly have no pinning effects. The critical value is 200 nm when the content of particles is 10%. It is found that the grain growth exponents in kinetic equation decrease when the sizes of particles increase in nanostructure with the same volume fraction of the particles, and the pinning effect of particles on the grain growth is decreased as well.

  19. Cerebral white matter fractional anisotropy and tract volume as measured by MR imaging are associated with impaired cognitive and motor function in pediatric posterior fossa tumor survivors.

    Science.gov (United States)

    Rueckriegel, Stefan M; Bruhn, Harald; Thomale, Ulrich W; Hernáiz Driever, Pablo

    2015-07-01

    Disease and therapy cause brain damage and subsequent functional loss in pediatric patients with posterior fossa tumors. Treatment-related toxicity factors are resection in patients with pilocytic astrocytoma (PA) and, additionally, cranio-spinal irradiation together with chemotherapy in patients with medulloblastoma (MB). We tested whether damage to white matter (WM) as revealed by diffusion tensor MR imaging (DTI) correlated with specific cognitive and motor impairments in survivors of pediatric posterior fossa tumors. Eighteen MB (mean age ± SD, 15.2 ± 4.9 y) and 14 PA (12.6 ± 5.0 y) survivors were investigated with DTI on a 3-Tesla-MR system. We identified fractional anisotropy (FA) of WM, the volume ratio of WM to gray matter and cerebrospinal fluid (WM/GM + CSF), and volume of specific frontocerebellar tracts. Ataxia was assessed using the International Cooperative Ataxia Rating Scale (ICARS), while the Wechsler Intelligence Scale for Children determined full-scale intelligence quotients (FSIQ). Amsterdam Neuropsychological Tasks (ANT) was used to assess processing speed. Handwriting automation was analyzed using a digitizing graphic tablet. The WM/GM + CSF ratio correlated significantly with cognitive measures (IQ, P = 0.002; ANT baseline speed, P = 0.04; ANT shifting attention, P = 0.004). FA of skeletonized tracts correlated significantly with FSIQ (P = 0.008), ANT baseline speed (P = 0.028) and ANT shifting attention (P = 0.045). Moreover, frontocerebellar tract volumes correlated with both the FSIQ (P = 0.011) and ICARS (P = 0.007). DTI provides a method for quantification of WM damage by tumor and by therapy-associated effects in survivors of pediatric posterior fossa tumors. DTI-derived WM integrity may be a representative marker for cognitive and motor deterioration. © 2015 Wiley Periodicals, Inc.

  20. Bioactive compounds in whole grain wheat

    NARCIS (Netherlands)

    Mateo Anson, N.

    2010-01-01

    Bread can be healthier! Consuming whole-grain foods can prevent cardiovascular diseases, type-2 diabetes and metabolic syndrome. This is due to bioactive compounds in whole grain, such as antioxidants and anti-inflammatory compounds. We found that the different fractions of a wheat grain vary much

  1. Bioactive compounds in whole grain wheat

    NARCIS (Netherlands)

    Mateo Anson, N.

    2010-01-01

    Bread can be healthier! Consuming whole-grain foods can prevent cardiovascular diseases, type-2 diabetes and metabolic syndrome. This is due to bioactive compounds in whole grain, such as antioxidants and anti-inflammatory compounds. We found that the different fractions of a wheat grain vary much i

  2. Bioactive compounds in whole grain wheat

    NARCIS (Netherlands)

    Mateo Anson, N.

    2010-01-01

    Bread can be healthier! Consuming whole-grain foods can prevent cardiovascular diseases, type-2 diabetes and metabolic syndrome. This is due to bioactive compounds in whole grain, such as antioxidants and anti-inflammatory compounds. We found that the different fractions of a wheat grain vary much i

  3. T2’-Imaging to Assess Cerebral Oxygen Extraction Fraction in Carotid Occlusive Disease: Influence of Cerebral Autoregulation and Cerebral Blood Volume

    Science.gov (United States)

    Deichmann, Ralf; Pfeilschifter, Waltraud; Hattingen, Elke; Singer, Oliver C.; Wagner, Marlies

    2016-01-01

    Purpose Quantitative T2'-mapping detects regional changes of the relation of oxygenated and deoxygenated hemoglobin (Hb) by using their different magnetic properties in gradient echo imaging and might therefore be a surrogate marker of increased oxygen extraction fraction (OEF) in cerebral hypoperfusion. Since elevations of cerebral blood volume (CBV) with consecutive accumulation of Hb might also increase the fraction of deoxygenated Hb and, through this, decrease the T2’-values in these patients we evaluated the relationship between T2’-values and CBV in patients with unilateral high-grade large-artery stenosis. Materials and Methods Data from 16 patients (13 male, 3 female; mean age 53 years) with unilateral symptomatic or asymptomatic high-grade internal carotid artery (ICA) or middle cerebral artery (MCA) stenosis/occlusion were analyzed. MRI included perfusion-weighted imaging and high-resolution T2’-mapping. Representative relative (r)CBV-values were analyzed in areas of decreased T2’ with different degrees of perfusion delay and compared to corresponding contralateral areas. Results No significant elevations in cerebral rCBV were detected within areas with significantly decreased T2’-values. In contrast, rCBV was significantly decreased (pperfusion delay and decreased T2’. Furthermore, no significant correlation between T2’- and rCBV-values was found. Conclusions rCBV is not significantly increased in areas of decreased T2’ and in areas of restricted perfusion in patients with unilateral high-grade stenosis. Therefore, T2’ should only be influenced by changes of oxygen metabolism, regarding our patient collective especially by an increase of the OEF. T2’-mapping is suitable to detect altered oxygen consumption in chronic cerebrovascular disease. PMID:27560515

  4. Grain charging in protoplanetary discs

    CERN Document Server

    Ilgner, Martin

    2011-01-01

    Recent work identified a growth barrier for dust coagulation that originates in the electric repulsion between colliding particles. Depending on its charge state, dust material may have the potential to control key processes towards planet formation such as MHD (magnetohydrodynamic) turbulence and grain growth which are coupled in a two-way process. We quantify the grain charging at different stages of disc evolution and differentiate between two very extreme cases: compact spherical grains and aggregates with fractal dimension D_f = 2. Applying a simple chemical network that accounts for collisional charging of grains, we provide a semi-analytical solution. This allowed us to calculate the equilibrium population of grain charges and the ionisation fraction efficiently. The grain charging was evaluated for different dynamical environments ranging from static to non-stationary disc configurations. The results show that the adsorption/desorption of neutral gas-phase heavy metals, such as magnesium, effects the ...

  5. Effects of Carbides on the Microstructural Evolution in Sub-micron Grain 9310 Steel During Isothermal Heat Treatment

    Science.gov (United States)

    Kozmel, Thomas; Tin, Sammy

    2015-07-01

    Recent interest in bulk ultra-fine-grained microstructures has given rise for the necessity to quantify their behavior during heat treatment should any subsequent thermal processing of the material be necessary after forming. The present study showed that the microstructure of 9310 steel forgings containing varying fractions of sub-micron grains retained some degree of stability after 4 hours of heat treatment between the temperatures of 522 K and 866 K (249 °C and 593 °C, respectively). The behavior of the microstructure during heat treatment was largely influenced by both the carbide volume fraction and distribution, which affected the level of Zener Drag present. This in effect controlled the type of growth behavior exhibited by the ferrite grains and the ability to retain the fine-grained structure.

  6. Effects of Alloying Elements on the Volume Fraction of Ordered α2 Phase Precipitated in Ti-Al-Sn-Zr Alloys

    Institute of Scientific and Technical Information of China (English)

    Jun ZHANG; Na PENG; Xinan WANG; LI Li; Qingjiang WANG

    2007-01-01

    An ideal method has been established for calculating the precipitation of α2 ordered phase in near-α titanium alloys based on the theory on the critical electron concentration for the precipitation of α 2 ordered phase in near-α titanium alloys. With complete precipitation of α2 phase in near-α titanium alloys, the alloys can be considered to be composed of two parts: (1) the α2 ordered phase with the stoichiometric atomic ratio of Ti3X; (2) the disorder solid solution with the critical composition in which the α2 ordered phase is just unable to precipitate. By using this method, the volume fractions of α2 ordered phase precipitated in Ti-Al, Ti-Sn,Ti-Al-Sn-Zr alloys with various Al, Sn and/or Zr contents have been calculated. The influences of Al and Sn on the precipitation of α2 ordered phase are discussed. The calculating results show substantial agreement with the experimental ones.

  7. Native T1 Relaxation Time and Extracellular Volume Fraction as Accurate Markers of Diffuse Myocardial Fibrosis in Heart Valve Disease - Comparison With Targeted Left Ventricular Myocardial Biopsy.

    Science.gov (United States)

    Kockova, Radka; Kacer, Petr; Pirk, Jan; Maly, Jiri; Sukupova, Lucie; Sikula, Viktor; Kotrc, Martin; Barciakova, Lucia; Honsova, Eva; Maly, Marek; Kautzner, Josef; Sedmera, David; Penicka, Martin

    2016-04-25

    The aim of our study was to investigate the relationship between the cardiac magnetic resonance (CMR)-derived native T1 relaxation time and myocardial extracellular volume (ECV) fraction and the extent of diffuse myocardial fibrosis (DMF) on targeted myocardial left ventricular (LV) biopsy. The study population consisted of 40 patients (age 63±8 years, 65% male) undergoing valve and/or ascending aorta surgery for severe aortic stenosis (77.5%), root dilatation (7.5%) or valve regurgitation (15%). The T1 relaxation time was assessed in the basal interventricular septum pre- and 10-min post-contrast administration using the modified Look-Locker Inversion recovery sequence prior to surgery. LV myocardial biopsy specimen was obtained during surgery from the basal interventricular septal segment matched with the T1 mapping assessment. The percentage of myocardial collagen was quantified using picrosirius red staining. The average percentage of myocardial collagen was 22.0±14.8%. Both native T1 relaxation time with cutoff value ≥1,010 ms (sensitivity=90%, specificity=73%, area under the curve=0.82) and ECV with cutoff value ≥0.32 (sensitivity=80%, specificity=90%, area under the curve=0.85) showed high accuracy to identify severe (>30%) DMF. The native T1 relaxation time showed significant correlation with LV mass (P<0.01). Native T1 relaxation time and ECV at 10 min after contrast administration are accurate markers of DMF. (Circ J 2016; 80: 1202-1209).

  8. Influence of the Metal Volume Fraction on the permanent dent depth and energy absorption of GLARE plates subjected to low velocity impact

    Science.gov (United States)

    Bikakis, GSE; Savaidis, A.; Zalimidis, P.; Tsitos, S.

    2016-11-01

    Fiber-metal laminates are hybrid composite materials, consisting of alternating metal layers bonded to fiber-reinforced prepreg layers. GLARE (GLAss REinforced) belongs to this new family of materials. GLARE is the most successful fiber-metal laminate up to now and is currently being used for the construction of primary aerospace structures, such as the fuselage of the Airbus A380 air plane. Impact properties are very important in aerospace structures, since impact damage is caused by various sources, such as maintenance damage from dropped tools, collision between service cars or cargo and the structure, bird strikes and hail. The principal objective of this article is to evaluate the influence of the Metal Volume Fraction (MVF) on the low velocity impact response of GLARE fiber-metal laminates. Previously published differential equations of motion are employed for this purpose. The low velocity impact behavior of various circular GLARE plates is predicted and characteristic values of impact variables, which represent the impact phenomenon, are evaluated versus the corresponding MVF of the examined GLARE material grades. The considered GLARE plates are subjected to low velocity impact under identical impact conditions. A strong effect of the MVF on the maximum impact load and a significant effect on the maximum plate deflection of GLARE plates has been found.

  9. Influence of the Metal Volume Fraction on the maximum deflection and impact load of GLARE plates subjected to low velocity impact

    Science.gov (United States)

    Bikakis, GSE; Savaidis, A.; Zalimidis, P.; Tsitos, S.

    2016-11-01

    Fiber-metal laminates are hybrid composite materials, consisting of alternating metal layers bonded to fiber-reinforced prepreg layers. GLARE (GLAss REinforced) belongs to this new family of materials. GLARE is the most successful fiber-metal laminate up to now and is currently being used for the construction of primary aerospace structures, such as the fuselage of the Airbus A380 air plane. Impact properties are very important in aerospace structures, since impact damage is caused by various sources, such as maintenance damage from dropped tools, collision between service cars or cargo and the structure, bird strikes and hail. The principal objective of this article is to evaluate the influence of the Metal Volume Fraction (MVF) on the low velocity impact response of GLARE fiber-metal laminates. Previously published differential equations of motion are employed for this purpose. The low velocity impact behavior of various circular GLARE plates is predicted and characteristic values of impact variables, which represent the impact phenomenon, are evaluated versus the corresponding MVF of the examined GLARE material grades. The considered GLARE plates are subjected to low velocity impact under identical impact conditions. A strong effect of the MVF on the maximum impact load and a significant effect on the maximum plate deflection of GLARE plates has been found.

  10. The Debye temperature of YBa sub 2 Cu sub 3 O sub 7-. delta. and its dependence on the volume fraction of superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, R.A.; Phillips, N.E. (Lawrence Berkeley Lab., CA (United States)); Gordon, J.E. (Lawrence Berkeley Lab., CA (United States) Amherst Coll., MA (United States). Dept. of Physics)

    1991-12-01

    Specific-heat measurements, on polycrystalline samples of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}, YBCO, have shown sample-to-sample variations in the volume fraction of superconductivity, f{sub s}, which is correlated with the concentration of Cu{sup 2+} magnetic moments in the YBCO lattice. At low temperatures the lattice specific heat also varies with f{sub s}, but these variations do not persist above {approximately}20K. The low-temperature data show that {Theta}{sub 0}{sup {minus}3} varies linearly with f{sub 3}, and give values of 520 and 390K for {Theta}{sub o} for fully-superconducting and fully-normal'' YBCO, respectively. These results suggest that the long wavelength phonon modes are altered when Cu{sup 2+} magnetic moments are present in the lattice. The fact that different samples have the same lattice specific heat at {approximately}20K and above T{sub c} indicates that the higher energy phonon modes are insensitive to these Cu{sup 2+} moments.

  11. The Debye temperature of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} and its dependence on the volume fraction of superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, R.A.; Phillips, N.E. [Lawrence Berkeley Lab., CA (United States); Gordon, J.E. [Lawrence Berkeley Lab., CA (United States)]|[Amherst Coll., MA (United States). Dept. of Physics

    1991-12-01

    Specific-heat measurements, on polycrystalline samples of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}, YBCO, have shown sample-to-sample variations in the volume fraction of superconductivity, f{sub s}, which is correlated with the concentration of Cu{sup 2+} magnetic moments in the YBCO lattice. At low temperatures the lattice specific heat also varies with f{sub s}, but these variations do not persist above {approximately}20K. The low-temperature data show that {Theta}{sub 0}{sup {minus}3} varies linearly with f{sub 3}, and give values of 520 and 390K for {Theta}{sub o} for fully-superconducting and ``fully-normal`` YBCO, respectively. These results suggest that the long wavelength phonon modes are altered when Cu{sup 2+} magnetic moments are present in the lattice. The fact that different samples have the same lattice specific heat at {approximately}20K and above T{sub c} indicates that the higher energy phonon modes are insensitive to these Cu{sup 2+} moments.

  12. Large-scale three-dimensional phase-field simulations for phase coarsening at ultrahigh volume fraction on high-performance architectures

    Science.gov (United States)

    Yan, Hui; Wang, K. G.; Jones, Jim E.

    2016-06-01

    A parallel algorithm for large-scale three-dimensional phase-field simulations of phase coarsening is developed and implemented on high-performance architectures. From the large-scale simulations, a new kinetics in phase coarsening in the region of ultrahigh volume fraction is found. The parallel implementation is capable of harnessing the greater computer power available from high-performance architectures. The parallelized code enables increase in three-dimensional simulation system size up to a 5123 grid cube. Through the parallelized code, practical runtime can be achieved for three-dimensional large-scale simulations, and the statistical significance of the results from these high resolution parallel simulations are greatly improved over those obtainable from serial simulations. A detailed performance analysis on speed-up and scalability is presented, showing good scalability which improves with increasing problem size. In addition, a model for prediction of runtime is developed, which shows a good agreement with actual run time from numerical tests.

  13. Phenomenology of Abnormal Grain Growth in Systems with Nonuniform Grain Boundary Mobility

    Science.gov (United States)

    DeCost, Brian L.; Holm, Elizabeth A.

    2017-06-01

    We have investigated the potential for nonuniform grain boundary mobility to act as a persistence mechanism for abnormal grain growth (AGG) using Monte Carlo Potts model simulations. The model system consists of a single initially large candidate grain embedded in a matrix of equiaxed grains, corresponding to the abnormal growth regime before impingement occurs. We assign a mobility advantage to grain boundaries between the candidate grain and a randomly selected subset of the matrix grains. We observe AGG in systems with physically reasonable fractions of fast boundaries; the probability of abnormal growth increases as the density of fast boundaries increases. This abnormal growth occurs by a series of fast, localized growth events that counteract the tendency of abnormally large grains to grow more slowly than the surrounding matrix grains. Resulting abnormal grains are morphologically similar to experimentally observed abnormal grains.

  14. Validation of Blood Volume Fraction Quantification with 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Porcine Skeletal Muscle.

    Science.gov (United States)

    Hindel, Stefan; Söhner, Anika; Maaß, Marc; Sauerwein, Wolfgang; Möllmann, Dorothe; Baba, Hideo Andreas; Kramer, Martin; Lüdemann, Lutz

    2017-01-01

    The purpose of this study was to assess the accuracy of fractional blood volume (vb) estimates in low-perfused and low-vascularized tissue using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The results of different MRI methods were compared with histology to evaluate the accuracy of these methods under clinical conditions. vb was estimated by DCE-MRI using a 3D gradient echo sequence with k-space undersampling in five muscle groups in the hind leg of 9 female pigs. Two gadolinium-based contrast agents (CA) were used: a rapidly extravasating, extracellular, gadolinium-based, low-molecular-weight contrast agent (LMCA, gadoterate meglumine) and an extracellular, gadolinium-based, albumin-binding, slowly extravasating blood pool contrast agent (BPCA, gadofosveset trisodium). LMCA data were evaluated using the extended Tofts model (ETM) and the two-compartment exchange model (2CXM). The images acquired with administration of the BPCA were used to evaluate the accuracy of vb estimation with a bolus deconvolution technique (BD) and a method we call equilibrium MRI (EqMRI). The latter calculates the ratio of the magnitude of the relaxation rate change in the tissue curve at an approximate equilibrium state to the height of the same area of the arterial input function (AIF). Immunohistochemical staining with isolectin was used to label endothelium. A light microscope was used to estimate the fractional vascular area by relating the vascular region to the total tissue region (immunohistochemical vessel staining, IHVS). In addition, the percentage fraction of vascular volume was determined by multiplying the microvascular density (MVD) with the average estimated capillary lumen, [Formula: see text], where d = 8μm is the assumed capillary diameter (microvascular density estimation, MVDE). Except for ETM values, highly significant correlations were found between most of the MRI methods investigated. In the cranial thigh, for example, the vb medians

  15. Validation of Blood Volume Fraction Quantification with 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Porcine Skeletal Muscle

    Science.gov (United States)

    Söhner, Anika; Maaß, Marc; Sauerwein, Wolfgang; Möllmann, Dorothe; Baba, Hideo Andreas; Kramer, Martin; Lüdemann, Lutz

    2017-01-01

    The purpose of this study was to assess the accuracy of fractional blood volume (vb) estimates in low-perfused and low-vascularized tissue using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The results of different MRI methods were compared with histology to evaluate the accuracy of these methods under clinical conditions. vb was estimated by DCE-MRI using a 3D gradient echo sequence with k-space undersampling in five muscle groups in the hind leg of 9 female pigs. Two gadolinium-based contrast agents (CA) were used: a rapidly extravasating, extracellular, gadolinium-based, low-molecular-weight contrast agent (LMCA, gadoterate meglumine) and an extracellular, gadolinium-based, albumin-binding, slowly extravasating blood pool contrast agent (BPCA, gadofosveset trisodium). LMCA data were evaluated using the extended Tofts model (ETM) and the two-compartment exchange model (2CXM). The images acquired with administration of the BPCA were used to evaluate the accuracy of vb estimation with a bolus deconvolution technique (BD) and a method we call equilibrium MRI (EqMRI). The latter calculates the ratio of the magnitude of the relaxation rate change in the tissue curve at an approximate equilibrium state to the height of the same area of the arterial input function (AIF). Immunohistochemical staining with isolectin was used to label endothelium. A light microscope was used to estimate the fractional vascular area by relating the vascular region to the total tissue region (immunohistochemical vessel staining, IHVS). In addition, the percentage fraction of vascular volume was determined by multiplying the microvascular density (MVD) with the average estimated capillary lumen, π(d2)2, where d = 8μm is the assumed capillary diameter (microvascular density estimation, MVDE). Except for ETM values, highly significant correlations were found between most of the MRI methods investigated. In the cranial thigh, for example, the vb medians (interquartile range

  16. Correction to "What is a fractional derivative?" by Ortigueira and Machado [Journal of Computational Physics, Volume 293, 15 July 2015, Pages 4-13. Special issue on Fractional PDEs

    Science.gov (United States)

    Katugampola, Udita N.

    2016-09-01

    There is a debate among contemporary mathematicians about what it really means by a fractional derivative. The question arose as a consequence of introducing a 'new' definition of a fractional derivative in [1]. In a reply, Ortigueira and Machado [2] came up with several very important criteria to determine whether a given derivative is a fractional derivative. According to their criterion, the new fractional derivative, called conformable fractional derivative, introduced by Khalil et al. [1] turns out not to be a fractional derivative, but rather a controlled or conformable derivative. In proving the claim the authors in [2] use an example [2, p. 6]. It turns out that the explanation given there needs some corrections and it is the sole purpose of this note.

  17. Relationship among grain size, annealing twins and shape memory effect in Fe-Mn-Si based shape memory alloys

    Science.gov (United States)

    Wang, Gaixia; Peng, Huabei; Zhang, Chengyan; Wang, Shanling; Wen, Yuhua

    2016-07-01

    In order to clarify the relationship among grain size, annealing twins and the shape memory effect in Fe-Mn-Si based shape memory alloys, the Fe-21.63Mn-5.60Si-9.32Cr-5.38Ni (weight %) alloy with a grain size ranging from 48.9 μm-253.6 μm was obtained by adjusting the heating temperature or heating time after 20% cold-rolling. The densities of grain boundaries and annealing twins increase with a decrease in grain size, whereas the volume fraction and width of stress-induced ɛ martensite after 9% deformation at Ms + 10 K decrease. This result indicates that grain refinement raises the constraint effects of grain boundaries and annealing twins upon martensitic transformation. In this case, the ability to suppress the plastic deformation and facilitate the stress-induced ɛ martensite transformation deteriorates after grain refinement owing to the enhancement of the constraint effects. It is demonstrated by the result that the difference at Ms + 10 K between the critical stress for plastic yielding and that for inducing martensitic transformation is smaller for the specimen with a grain size of 48.9 μm than for the specimen with a grain size of 253.6 μm. Therefore, the shape memory effect declined by decreasing the grain size.

  18. The effect of oxide particles on the strength and ductility of bulk iron with a bimodal grain size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Casas, C.; Tejedor, R. [Department of Materials Science and Metallurgical Engineering, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Rodríguez-baracaldo, R. [Department of Mechanical Engineering, Universidad Nacional de Colombia, Bogotá. Colombia (Colombia); Benito, J.A., E-mail: Josep.a.benito@upc.edu [Department of Materials Science and Metallurgical Engineering, EUETIB, Universitat Politècnica de Catalunya, Comte d' Urgell 187, 08036 Barcelona (Spain); Fundació CTM Centre Tecnològic de Manresa, Plaça de la Ciencia, 2, 08243 Manresa (Spain); Cabrera, J.M. [Department of Materials Science and Metallurgical Engineering, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Fundació CTM Centre Tecnològic de Manresa, Plaça de la Ciencia, 2, 08243 Manresa (Spain)

    2015-03-11

    The strength and ductility of bulk nanostructured and ultrafine-grained iron containing 0.39% oxygen by weight was determined by tensile tests. Samples were obtained by consolidation of milled iron powder at 500 °C. Heat treatments were designed to cover a wide range of grain sizes spanning from 100 to 2000 nm with different percentages of coarse and nanostructured grain areas, which was defined as a bimodal grain size distribution. Transmission electron microscopy was used to determine the diameter, volume fraction and location of oxides in the microstructure. The strength was analysed following two approaches. The first one was based on the strong effect of oxides and involved the use of a mixed particle-grain boundary strengthening model, and the second one was based on simple grain boundary strengthening. The mixed model underestimated the strength of nanostructured samples, whereas the simple grain boundary model worked better. However, for specimens with a bimodal grain size, the fitting of the mixed model was better. In this case, the more effective particle strengthening was related to the dispersion of oxides inside the large ferrite grains. In addition, the bimodal samples showed an acceptable combination of strength and ductility. Again, the ferrite grains containing oxides promoted strain hardening due to the increase in dislocation activity.

  19. [Grain Size Distribution Characteristics of Suspended Particulate Matter as Influenced by the Apparent Pollution in the Eutrophic Urban Landscape Water Body].

    Science.gov (United States)

    Gong, Dan-yan; Pan, Yang; Huang, Yong; Bao, Wei; Li, Qian-qian

    2016-03-15

    Grain size distribution characteristics of suspended particulate matter (SPM) reflects the apparent polluted condition of the urban landscape water. In order to explore the internal relationship between the eutrophication of urban landscape water's apparent pollution and grain size distribution of SPM, and its influencing factors, this paper selected five representative sampling sites in Feng Jin River which is a typical eutrophication river in Suzhou City, measured the grain size distribution of SPM, sensation pollution index (SPI) and water quality index, and analyzed their correlation. The results showed that: The rich nutrient water possessed a similar characteristics in grain size distribution. The grain size distribution of SPM in water was multimodal, and the the peak position was roughly the same; the grain size distribution of SPM was composed by multiple components. It could be roughly divided into six parts with the particle size range of every group being 516 µm. The component III was superior (with an average volume fraction of 38.3%-43.2%), and its volume fraction had a significant positive relation with the SPI value and the Chl-a content. The increase of component III volume fraction was the reflection of particle size's result of increasing SPI value. The increase of component III volume fraction was mainly derived from the increasing algal content. The volume fraction of group IV + group VI + group V was significantly higher under the condition of exogenous enter. When there was no exogenous component, the volume fraction of group IV + group VI + group V had a significant negative correlation with SPI value; when there were exogenous components, the volume fraction of group IV + group VI + group V had a weak positive correlation with SPI value, but the correlation did not reach a significant level. Environmental factors (Fv/Fm and DO) and exogenous factors had an influence by functioning on the algal content which signified the polluted material

  20. Assessment of changes in vascularity and blood volume in canine sarcomas and squamous cell carcinomas during fractionated radiation therapy using quantified contrast-enhanced power Doppler ultrasonography: a preliminary study.

    Science.gov (United States)

    Ohlerth, Stefanie; Bley, Carla Rohrer; Laluhová, Dagmar; Roos, Malgorzata; Kaser-Hotz, Barbara

    2010-10-01

    Radiation therapy does not only target tumour cells but also affects tumour vascularity. In the present study, changes in tumour vascularity and blood volume were investigated in five grade 1 oral fibrosarcomas, eight other sarcomas (non-oral soft tissue and bone sarcomas) and 12 squamous cell carcinomas in dogs during fractionated radiation therapy (total dose, 45-56 Gy). Contrast-enhanced power Doppler ultrasound was performed before fraction 1, 3, 6, 8, 10, 12, 14 and 15 or 16 (sarcomas) or 17 (squamous cell carcinomas). Prior to treatment, median vascularity and blood volume were significantly higher in squamous cell carcinomas (P=0.0005 and 0.001), whereas measurements did not differ between oral fibrosarcomas and other sarcomas (P=0.88 and 0.999). During the course of radiation therapy, only small, non-significant changes in vascularity and blood volume were observed in all three tumour histology groups (P=0.08 and P=0.213), whereas median tumour volume significantly decreased until the end of treatment (P=0.04 for fibrosarcomas and other sarcomas, P=0.008 for squamous cell carcinomas). It appeared that there was a proportional decrease in tumour volume, vascularity and blood volume. Doppler measurements did not predict progression free interval or survival in any of the three tumour groups (P=0.06-0.86). However, the number of tumours investigated was small and therefore, the results can only be considered preliminary.

  1. Impact of the target volume (prostate alone vs. prostate with seminal vesicles) and fraction dose (1.8 Gy vs. 2.0 Gy) on quality of life changes after external-beam radiotherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Eble, Michael J. [Dept. of Radiotherapy, RWTH Aachen (Germany); Pinkawa, Michael; Piroth, Marc D.; Fischedick, Karin; Holy, Richard; Klotz, Jens; Nussen, Sandra; Krenkel, Barbara

    2009-11-15

    Purpose: to evaluate the impact of the clinical target volume (CTV) and fraction dose on quality of life (QoL) after external-beam radiotherapy (EBRT) for prostate cancer. Patients and methods: a group of 283 patients has been surveyed prospectively before, at the last day, at a median time of 2 months and 15 months after EBRT (70.2-72 Gy) using a validated questionnaire (Expanded Prostate Cancer Index Composite). FBRT of prostate alone (P, n = 70) versus prostate with seminal vesicles (PS, n = 213) was compared. Differences of fraction doses (1.8 Gy, n = 80, vs. 2.0 Gy, n = 69) have been evaluated in the patient group receiving a total dose of 72 Gy. Results: significantly higher bladder and rectum volumes were found at all dose levels for the patients with PS versus P within the CTV (p < 0.001). Similar volumes resulted in the groups with different fraction doses. Paradoxically, bowel function scores decreased significantly less 2 and 15 months after EBRT of PS versus P. 2 months after EBRT, patients with a fraction dose of 2.0 Gy versus 1.8 Gy reported pain with urination ({>=} once a day in 12% vs. 3%; p = 0.04) and painful bowel movements ({>=} rarely in 46% vs. 29%; p = 0.05) more frequently. No long-term differences were found. Conclusion: the risk of adverse QoL changes after EBRT for prostate cancer cannot be derived from the dose-volume histogram alone. Seminal vesicles can be included in the CTV up to a moderate total dose without adverse effects on QoL. Apart from a longer recovery period, higher fraction doses were not associated with higher toxicity. (orig.)

  2. Solidification microstructures in a short fiber reinforced alloy composite containing different fiber fractions

    Directory of Open Access Journals (Sweden)

    JING Qing-xiu

    2006-02-01

    Full Text Available The solidification microstructures and micro-segregation of a fiber reinforced Al-9 Cu alloy, containing different volume fractions of Al2O3 short fibers about 6 μm diameter and made by squeeze casting have been studied. The results indicate that as volume fraction of fiber Vf increases, the size of final grains becomes finer in the matrix. If λf /λ>1, the fibers have almost no influence on the solidification behavior of the matrix, so the final grains grow coarse, where λf is the average inter-fiber spacing and λ is the secondary dendrite arm spacing. While if λf /λ<1, the growth of crystals in the matrix is affected significantly by the fibers and the grain size is reduced to the value of the inter-fiber spacing. The fibers influence the average length of a solidification volume element L of the matrix and also influence the solidification time θt of the matrix. As a result of fibers influencing L and θt, the micro-segregation in the matrix is improved when the composite contains more fibers, although the level of the improvement is slight. The Clyne-Kurz model can be used to semi-quantitatively analyze the relationship between Vf and the volume fraction fe of the micro-segregation eutectic structure.

  3. Contracts for Grain Biosecurity and Grain Quality

    OpenAIRE

    Abougamos, Hoda; White, Benedict; Sadler,Rohan

    2012-01-01

    The export of grain from Western Australia depends upon a grain supply network that takes grain from farm to port through Cooperative Bulk Handling receival and storage sites. The ability of the network to deliver pest free grain to the port and onto ship depends upon the quality of grain delivered by farmers and the efficacy of phosphine based fumigation in controlling stored grain pests. Phosphine fumigation is critical to the grain supply network because it is the cheapest effective fumiga...

  4. Influence of second-phase particles on grain growth in AZ31 magnesium alloy during equal channel angular pressing by phase field simulation

    Science.gov (United States)

    He, Ri; Wang, Mingtao; Zhang, Xiangang; Yaping Zong, Bernie

    2016-06-01

    A phase-field model was established to simulate the refinement effect of different morphological factors of second-phase particles such as Al2O3 on the grain growth of AZ31 magnesium alloy during equal channel angular pressing (ECAP) in realistic spatiotemporal evolution. The simulation results agreed well with limited existing experimental data for the ECAP-processed AZ31 magnesium alloy and were consistent with the law of Zener. Simulations were performed to evaluate the influences of the fraction, size, distribution, and shape of incoherent second-phase particles. The simulation results showed that during high-temperature ECAP processes, the addition of 2 wt.% Al2O3 particles resulted in a strong refinement effect, reducing the grain size by 28.7% compared to that of the alloy without the particles. Nevertheless, when the fraction of particles was greater than 4 wt.%, adding more particles had little effect. In AZ31 Mg alloy, it was found that second-phase particles should have a critical size of 0.5-0.8 μm for the grain refinement effect to occur. If the size is smaller than the critical size, large particles will strongly hinder grain growth; in contrast, if the size is larger than the critical size, large particles will exhibit a weaker hindering effect than small particles. Moreover, the results showed that the refinement effect increased with increasing particle fraction located at grain boundaries with respect to the total particle content. However, the refinement effect was less pronounced when the fraction of particles located at boundaries was greater than 70%. Further simulations indicated that spherical second-phase particles hindered grain growth more than ellipsoid particles and much more than rod-shaped particles when the volume fraction of reinforcing particles was 2%. However, when the volume fraction was greater than 8%, rod-shaped particles best hindered grain growth, and spherical particles exhibited the weakest effect.

  5. Determination of volume fraction in biphasic flows oil-gas and water-gas using artificial neural network and gamma densitometry; Determinacao de fracoes de volume em fluxos bifasicos oleo-gas e agua-gas utilizando redes neurais artificiais e densitometria gama

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Philippe Netto Belache

    2016-07-01

    This study presents a methodology based on the principles of gamma ray attenuation to identify volume fractions in biphasic systems composed of oil-gas-water and gas which are found in the offshore oil industry. This methodology is based on the acknowledgment counts per second on the photopeak energy using a detection system composed of a NaI (Tl) detector, a source of {sup 137}Cs without collimation positioned at 180 ° relative to the detector on a smooth stratified flow regime. The mathematical modeling for computational simulation using the code MCNP-X was performed using the experimental measurements of the detector characteristics (energy resolution and efficiency), characteristics of the material water and oil (density and coefficient attenuation) and measurement of the volume fractions. To predict these fractions were used artificial neural networks (ANNs), and to obtain an adequate training the ANNs for the prediction of volume fractions were simulated a larger number of volume fractions in MCNP-X. The experimental data were used in the set data necessary for validation of ANNs and the data generated using the computer code MCNP-X were used in training and test sets of the ANNs. Were used ANNs of type feed-forward Multilayer Perceptron (MLP) and analyzed two functions of training, Levenberg-Marquardt (LM) and gradient descent with momentum (GDM), both using the Backpropagation training algorithm. The ANNs identified correctly the volume fractions of the multiphase system with mean relative errors lower than 1.21 %, enabling the application of this methodology for this purpose. (author)

  6. Cinética ruminal das frações de carboidratos, produção de gás, digestibilidade in vitro da matéria seca e NDT estimado da silagem de milho com diferentes proporções de grãos Ruminal kinetic of carbohydrate fractions, gas production, dry matter in vitro digestibility and estimated TDN of corn silage with different grain proportions

    Directory of Open Access Journals (Sweden)

    Luciano da Silva Cabral

    2002-11-01

    ,03 a 28,47 mL, 62,19 a 83,21 e 56,08 a 81,40%, respectivamente.The objectives of this work were to evaluate the chemical composition alteration, the nitrogen and carbohydrate fractions changes, to estimate the digestion rate of non-fiber carbohydrate (NFC and fiber carbohydrate (FC, to determine the in vitro dry matter digestibility (IVDMD and to estimate the TDN of corn silage with different grain proportions. The silage were done in the following proportions: 0, 15, 30, 45 e 60% of grain. The amount of dry matter (DM, nitrogen compounds (N, ether extract (EE, ash, neutral detergent fiber (NDF and acid detergent fiber (ADF, as well the non-protein nitrogen compounds (NPN and the B1+B2, B3 and C nitrogen fractions, were determined. The amount of non-fiber carbohydrate (NFC and of potentially digestible (B2 and indigestible (C fractions of NDF were also determined. The rate digestion of NFC and B2 fraction of carbohydrate were estimated by mean of gas production technique. IVDMD was determined by the two-stage technique and the TDN content was estimated by the chemical composition. The addition of grain to the corn silage showed linear increase in DM, N and NFC contents and reduced the ash, NDF, ADF and lignin. The NPN and B3 and C fractions ranged from 34.04 to 54.62, from 6.63 to 2.61 and from 7.83 to 1.32% of the total N. The amount of the NFC and B2 and C fractions of carbohydrate were linearly influenced by grain addition in the corn silage, that ranged from 135.55 to 558.10, 489.57 to 203.29 and from 233.50 to 85.51 g/kg of DM. The digestion rate of the NFC and B2 fraction were quadraticly affected, and the maximum estimated values were of 0.2723 and 0.02771 h-1, for the silage with 40.08 and 14.57% of grains, respectively. The total gas production, IVDMD and TDN increased linearly as a function of grain percentage, that ranged from 20.03 to 28.47, from 62.19 to 83.21 and from 56.08 to 81.40, respectively.

  7. Measuring of Volume Fraction for SiC Particles in SiCP/Al Composite%SiC颗粒增强铝基复合材料中SiC颗粒体积分数的测定

    Institute of Scientific and Technical Information of China (English)

    木二珍; 李强

    2013-01-01

    利用金相法和XRD定量分析法对SiC颗粒增强铝基复合材料的SiC颗粒体积分数进行测定.用定量金相法测得SiC增强铝基复合材料SiC颗粒的体积分数为58.6%,用XRD定量分析法测得的体积分数为62.7%.%The volume fraction for SiC particle was measured by metallographic method and XRD quantitative analysis.The volume fraction for SiC particles is 56.1% for metallographic method and 62.7% for XRD quantitative analysis.

  8. Myocardial Extracellular Volume Fraction with Dual-Energy Equilibrium Contrast-enhanced Cardiac CT in Nonischemic Cardiomyopathy: A Prospective Comparison with Cardiac MR Imaging.

    Science.gov (United States)

    Lee, Hye-Jeong; Im, Dong Jin; Youn, Jong-Chan; Chang, Suyon; Suh, Young Joo; Hong, Yoo Jin; Kim, Young Jin; Hur, Jin; Choi, Byoung Wook

    2016-07-01

    Purpose To evaluate the feasibility of equilibrium contrast material-enhanced dual-energy cardiac computed tomography (CT) to determine extracellular volume fraction (ECV) in nonischemic cardiomyopathy (CMP) compared with magnetic resonance (MR) imaging. Materials and Methods This study was approved by the institutional review board; informed consent was obtained. Seven healthy subjects and 23 patients (six with hypertrophic CMP, nine with dilated CMP, four with amyloidosis, and four with sarcoidosis) (mean age ± standard deviation, 57.33 years ± 14.82; 19 male participants [63.3%]) were prospectively enrolled. Twelve minutes after contrast material injection (1.8 mL/kg at 3 mL/sec), dual-energy cardiac CT was performed. ECV was measured by two observers independently. Hematocrit levels were compared between healthy subjects and patients with the Mann-Whitney U test. In per-subject analysis, interobserver agreement for CT was assessed with the intraclass correlation coefficient (ICC), and intertest agreement between MR imaging and CT was assessed with Bland-Altman analysis. In per-segment analysis, Student t tests in the linear mixed model were used to compare ECV on CT images between healthy subjects and patients. Results Hematocrit level was 43.44% ± 1.80 for healthy subjects and 41.23% ± 5.61 for patients with MR imaging (P = .16) and 43.50% ± 1.92 for healthy subjects and 41.35% ± 5.92 for patients with CT (P = .15). For observer 1 in per-subject analysis, ECV was 34.18% ± 8.98 for MR imaging and 34.48% ± 8.97 for CT. For observer 2, myocardial ECV was 34.42% ± 9.03 for MR imaging and 33.98% ± 9.05 for CT. Interobserver agreement for ECV at CT was excellent (ICC = 0.987). Bland-Altman analysis between MR imaging and CT showed a small bias (-0.06%), with 95% limits of agreement of -1.19 and 1.79. Compared with healthy subjects, patients with hypertrophic CMP, dilated CMP, amyloidosis, and sarcoidosis had significantly higher myocardial ECV at dual

  9. Grain Spectroscopy

    Science.gov (United States)

    Allamandola, L. J.

    1992-01-01

    Our fundamental knowledge of interstellar grain composition has grown substantially during the past two decades thanks to significant advances in two areas: astronomical infrared spectroscopy and laboratory astrophysics. The opening of the mid-infrared, the spectral range from 4000-400 cm(sup -1) (2.5-25 microns), to spectroscopic study has been critical to this progress because spectroscopy in this region reveals more about a materials molecular composition and structure than any other physical property. Infrared spectra which are diagnostic of interstellar grain composition fall into two categories: absorption spectra of the dense and diffuse interstellar media, and emission spectra from UV-Vis rich dusty regions. The former will be presented in some detail, with the latter only very briefly mentioned. This paper summarized what we have learned from these spectra and presents 'doorway' references into the literature. Detailed reviews of many aspects of interstellar dust are given.

  10. Influence of T-semi attached rib on turbulent flow and heat transfer parameters of a silver-water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel

    Science.gov (United States)

    Alipour, Habibollah; Karimipour, Arash; Safaei, Mohammad Reza; Semiromi, Davood Toghraie; Akbari, Omid Ali

    2017-04-01

    This study aimed at exploring influence of T-semi attached rib on the turbulent flow and heat transfer parameters of a silver-water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel. For this purpose, convection heat transfer of the silver-water nanofluid in a ribbed microchannel was numerically studied under a constant heat flux on upper and lower walls as well as isolated side walls. Calculations were done for a range of Reynolds numbers between 10,000 and 16,000, and in four different sorts of serrations with proportion of rib width to hole of serration width (R/W). The results of this research are presented as the coefficient of friction, Nusselt number, heat transfer coefficient and thermal efficiency, four different R/W microchannels. The results of numerical modeling showed that the fluid's convection heat transfer coefficient is increased as the Reynolds number and volume fraction of solid nanoparticle are increased. For R/W=0.5, it was also maximum for all the volume fractions of nanoparticle and different Reynolds numbers in comparison to other similar R/W situations. That's while friction coefficient, pressure drop and pumping power is maximum for serration with R/W=0 compared to other serration ratios which lead to decreased fluid-heat transfer performance.

  11. Fetal cardiac ventricular volume, cardiac output, and ejection fraction determined with four-dimensional ultrasound using Spatio-Temporal Image Correlation (STIC) and Virtual Organ Computed-aided AnaLysis (VOCAL™)

    Science.gov (United States)

    Hamill, Neil; Yeo, Lami; Romero, Roberto; Hassan, Sonia S.; Myers, Stephen A.; Mittal, Pooja; Kusanovic, Juan Pedro; Balasubramaniam, Mamtha; Chaiworapongsa, Tinnakorn; Vaisbuch, Edi; Espinoza, Jimmy; Gotsch, Francesca; Goncalves, Luis F.; Lee, Wesley

    2011-01-01

    Objective To quantify fetal cardiovascular parameters with Spatio-Temporal Image Correlation (STIC) and Virtual Organ Computed-aided AnaLysis (VOCAL™) utilizing the sub-feature: “Contour Finder: Trace”. Study Design A cross-sectional study was designed consisting of patients with normal pregnancies between 19 and 40 weeks of gestation. After STIC datasets were acquired, analysis was performed offline (4DView) and the following cardiovascular parameters were evaluated: ventricular volume in end systole and end diastole, stroke volume, cardiac output, and ejection fraction. To account for fetal size, cardiac output was also expressed as a function of head circumference, abdominal circumference, or femoral diaphysis length. Regression models were fitted for each cardiovascular parameter to assess the effect of gestational age and paired comparisons were made between the left and right ventricles. Results 1) Two hundred and seventeen patients were retrospectively identified, of whom 184 had adequate STIC datasets (85% acceptance); 2) ventricular volume, stroke volume, cardiac output, and adjusted cardiac output increased with gestational age; whereas, the ejection fraction decreased as gestation advanced; 3) the right ventricle was larger than the left in both systole (Right: 0.50 ml, IQR: 0.2 – 0.9; vs. Left: 0.27 ml, IQR: 0.1 – 0.5; p<0.001) and diastole (Right: 1.20 ml, IQR: 0.7 – 2.2; vs. Left: 1.03 ml, IQR: 0.5 – 1.7; p<0.001); 4) there were no differences between the left and right ventricle with respect to stroke volume, cardiac output, or adjusted cardiac output; and 5) the left ventricular ejection fraction was greater than the right (Left: 72.2%, IQR: 64 – 78; vs. Right: 62.4%, IQR: 56 – 69; p<0.001). Conclusion Fetal echocardiography, utilizing STIC and VOCAL™ with the sub-feature: “Contour Finder: Trace”, allows assessment of fetal cardiovascular parameters. Normal fetal cardiovascular physiology is characterized by ventricular

  12. Nanoindentation hardness and elastic modulus of nano-grained titanium produced by asymmetric and symmetric rolling.

    Science.gov (United States)

    Li, Zhiming; Fu, Liming; Fu, Bin; Yang, Xiaoping; Shan, Aidang

    2014-10-01

    To understand the nanomechanical properties of nano-grained (NG) Ti produced by combination of asymmetric and symmetric rolling, nanoindentation hardness (H(n)) and elastic modulus (E(n)) of different planes within the NG Ti specimens were measured using continuous stiffness measurement mode at room temperature. For comparison, the nanomechanical properties of the as-received hot-rolled coarse-grained (CG) Ti and ultrafine-grained (UFG) Ti with only asymmetric rolling process were also investigated. It was found that H(n) of the Ti samples increased significantly with the decrease of grain sizes, while E(n) exhibited a slight decrease as the grain sizes decreased from CG to NG regime. The increase of H(n) was expected to be caused by higher density of dislocations and finer grains attained by severer plastic deformation, while the slight decrease of E(n) was considered as a result of the increased density of lattice defects and volume fraction of the grain boundary atoms. Furthermore, the nanomechanical properties of different planes of the Ti specimen exhibited a little difference which can be expressed as H(n(RD-TD)) > H(n(N-RD)) > H(n(TD-ND)) and E(n(RD-TD)) > E(n(ND-RD)) > E(n(TD-ND)). These differences were ascribed to crystallographic textures formed by rolling deformation.

  13. Comportamento do sorgo granífero em função de diferentes frações da água disponível no solo Grain sorghum responses under several fractions of plant available water

    Directory of Open Access Journals (Sweden)

    Marcia Xavier Peiter

    1996-04-01

    Full Text Available O comportamento morfológico e fisiológico das plantas de sorgo em relação à diferentes níveis de déficit hídrico tem sido caracterizado extensivamente. Entretanto, as respostas são dependentes do grau de severidade e duração do déficit. O objetivo desse experimento foi analisar o comportamento da cultura do sorgo quando submetida a diferentes frações da água disponível no solo. O experimento foi desenvolvido no ano agrícola de 1993/94, em lisímetros de drenagem, protegidos das precipitações pluviométricas através de uma cobertura móvel. A cultivar Agroceres 3001 foi submetida a quatro tratamentos de irrigação. Irrigações foram aplicadas quando a fração da água disponível (FAD, medida na profundidade do solo explorado pelo sistema radicular das plantas, atingia valores inferiores a 0,95, 0,85, 0,75, e 0,65 da FAD, com três repetições. A altura de plantas e o índice de área foliar foram semelhantes para os tratamentos de 0,75, 0,85 e 0,95 da FAD. O manejo da irrigação com a manutenção da FAD a 0,75 e 0,85 apresentaram valores semelhantes para todas as variáveis analisadas. A manutenção da FAD a 0,65 resultou em um menor crescimento das plantas de sorgo, indicando a ocorrência de déficit hídrico.The morphological and physiological behaviour of grain sorghum plants submitted to different water deficit levels has been extensively characterized. However, plant responses are extremelly dependents of the severity and duration of lhe stress. The objective of this experiment was to evaluate the performance of sorghum crop when submitted to different irrigation management levels. This experiment was conducted during 1993/94 growing season in a set of drainage lysimeters under a rain shelter. The sorghum variety Agroceres 3001 was submitted to four irrigation treatments. Irrigations were aplyied when the fraction of plant available water (PAW were lower than 0.95, 0.85, 0.75 and 0.65, with three replications

  14. A method to estimate the fractional fat volume within a ROI of a breast biopsy for WAXS applications: Animal tissue evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Robert Y., E-mail: rx-tang@laurentian.ca [Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6 (Canada); McDonald, Nancy, E-mail: mcdnancye@gmail.com; Laamanen, Curtis, E-mail: cx-laamanen@laurentian.ca [Department of Physics, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6 (Canada); LeClair, Robert J., E-mail: rleclair@laurentian.ca [Department of Physics, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada and Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6 (Canada)

    2014-11-01

    Purpose: To develop a method to estimate the mean fractional volume of fat (ν{sup ¯}{sub fat}) within a region of interest (ROI) of a tissue sample for wide-angle x-ray scatter (WAXS) applications. A scatter signal from the ROI was obtained and use of ν{sup ¯}{sub fat} in a WAXS fat subtraction model provided a way to estimate the differential linear scattering coefficient μ{sub s} of the remaining fatless tissue. Methods: The efficacy of the method was tested using animal tissue from a local butcher shop. Formalin fixed samples, 5 mm in diameter 4 mm thick, were prepared. The two main tissue types were fat and meat (fibrous). Pure as well as composite samples consisting of a mixture of the two tissue types were analyzed. For the latter samples, ν{sub fat} for the tissue columns of interest were extracted from corresponding pixels in CCD digital x-ray images using a calibration curve. The means ν{sup ¯}{sub fat} were then calculated for use in a WAXS fat subtraction model. For the WAXS measurements, the samples were interrogated with a 2.7 mm diameter 50 kV beam and the 6° scattered photons were detected with a CdTe detector subtending a solid angle of 7.75 × 10{sup −5} sr. Using the scatter spectrum, an estimate of the incident spectrum, and a scatter model, μ{sub s} was determined for the tissue in the ROI. For the composite samples, a WAXS fat subtraction model was used to estimate the μ{sub s} of the fibrous tissue in the ROI. This signal was compared to μ{sub s} of fibrous tissue obtained using a pure fibrous sample. Results: For chicken and beef composites, ν{sup ¯}{sub fat}=0.33±0.05 and 0.32 ± 0.05, respectively. The subtractions of these fat components from the WAXS composite signals provided estimates of μ{sub s} for chicken and beef fibrous tissue. The differences between the estimates and μ{sub s} of fibrous obtained with a pure sample were calculated as a function of the momentum transfer x. A t-test showed that the mean of the

  15. A method to estimate the fractional fat volume within a ROI of a breast biopsy for WAXS applications: animal tissue evaluation.

    Science.gov (United States)

    Tang, Robert Y; McDonald, Nancy; Laamanen, Curtis; LeClair, Robert J

    2014-11-01

    To develop a method to estimate the mean fractional volume of fat (ν¯fat) within a region of interest (ROI) of a tissue sample for wide-angle x-ray scatter (WAXS) applications. A scatter signal from the ROI was obtained and use of ν¯fat in a WAXS fat subtraction model provided a way to estimate the differential linear scattering coefficient μs of the remaining fatless tissue. The efficacy of the method was tested using animal tissue from a local butcher shop. Formalin fixed samples, 5 mm in diameter 4 mm thick, were prepared. The two main tissue types were fat and meat (fibrous). Pure as well as composite samples consisting of a mixture of the two tissue types were analyzed. For the latter samples, νfat for the tissue columns of interest were extracted from corresponding pixels in CCD digital x-ray images using a calibration curve. The means ν¯fat were then calculated for use in a WAXS fat subtraction model. For the WAXS measurements, the samples were interrogated with a 2.7 mm diameter 50 kV beam and the 6° scattered photons were detected with a CdTe detector subtending a solid angle of 7.75 × 10(-5) sr. Using the scatter spectrum, an estimate of the incident spectrum, and a scatter model, μs was determined for the tissue in the ROI. For the composite samples, a WAXS fat subtraction model was used to estimate the μs of the fibrous tissue in the ROI. This signal was compared to μs of fibrous tissue obtained using a pure fibrous sample. For chicken and beef composites, ν¯fat=0.33±0.05 and 0.32 ± 0.05, respectively. The subtractions of these fat components from the WAXS composite signals provided estimates of μs for chicken and beef fibrous tissue. The differences between the estimates and μs of fibrous obtained with a pure sample were calculated as a function of the momentum transfer x. A t-test showed that the mean of the differences did not vary from zero in a statistically significant way thereby validating the methods. The methodology to

  16. Characterization of abnormal grain coarsening in Alloy 718

    Directory of Open Access Journals (Sweden)

    Watson Richard

    2014-01-01

    Full Text Available Even though the phenomenon of abnormal grain coarsening (AGC or “exploded grains” has been known to occur in Alloy 718 industrial forgings there is still no satisfactory explanation for it. For this reason, detailed microstructure analysis has been carried out in normal and abnormal regions. Electron Backscatter Diffraction (EBSD was employed to determine grain size, boundary distribution and measure stored energy, while backscattered imagining in a FEGSEM was used to measure δ precipitate size and morphology. It was found that abnormal regions show almost 3 times as many twin boundaries compared to a normal region. In addition, the δ phase morphologies differ very significantly when comparing these two different regions. Normal regions display δ phase with a plate like nature, whereas in abnormal regions, δ particles appear to be more spherical. Furthermore, there are clear indications of differences in δ volume fractions between the two regions. Whilst in normal regions the δ phase is found predominantly at grain boundaries, in abnormal regions the δ is also found within grains. Both backscatter images and EBSD scans indicate that there are higher levels of stored energy within the normal regions, compared to the abnormal regions. These observations suggest that AGC occurs in regions where dynamic recrystallization does not happen and where recrystallization during solution heat treatment is affected by the local particle distribution.

  17. Influence of inhomogeneity of grain-boundary region of nanocrystalline materials on elastic properties

    Institute of Scientific and Technical Information of China (English)

    Stepanov; Y.; N.; Alymov; M.; I.

    2005-01-01

    Experimental data indicate that Young's modulus of materials decreases with the decreasing of the grain size. Obviously, the primary factor of this decrease is presence of grain-boundary region, which Young's modulus other than in the bulk of crystallites. There is a set of various expressions for calculation of Young's modulus of polycrystals, obtained under the assumption, that it is possible to consider a polycrystal as a composite consisting of a crystalline matrix and a intercrystalline layers (grain-boundary region). Calculations showed incorrectness of application of a majority of these expressions and a large error in the calculations for the nanocrystalline materials. By us, on the basis of the same assumptions, is also obtained analytical expression for calculating Young's modulus of materials with grain size more than 30 nm, which is more exact, than all others.It is necessary to consider under the calculation of effective Young's modulus nanocrystalline materials with grain size of less than 30nm, that grain-boundary region itself is not uniform. It is reliably established,that the triple joints of grain boundaries have a structure and properties, different from the structure and the properties of grain boundaries, which these joints connect. For nanocrystalline materials the volume fraction of the triple joints in the grain-boundary region can reach 50% and even more. Therefore assumption was made, that the nanocrystalline materials should be represented as consisting of three phases (triple joints,grain boundary between the triple joints and crystallite). On the basis of this idea is obtained analytical expression for calculating of Young's modulus nanocrystalline materials. The analysis shows that Young's modulus calculated by this analytical expression coordinated with the theory and the experiment.

  18. Solidification microstructures in a short fiber reinforced alloy composite containing different fiber fractions

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The solidification microstructures and micro-segregation of a fiber reinforced Al-9 Cu alloy, containing different volurne fractions of Al2O3 short fibers about 6μm diameter and made by squeeze casting have been studied. The results indicate that as volume fraction of fiber Vf increases, the size of final grains becomes finer in the matrix. If λf/λ> 1, the fibers have almost no influence on the solidification behavior of the matrix, so the final grains grow coarse, where λf is the average inter-fiber spacing and λ is the secondary dendrite arm spacing. While if λf/λ< 1, the growth of crystals in the matrix is affected significantly by the fibers and the grain size is reduced to the value of the inter-fiber spacing. The fibers influence the average length of a solidification volume element L of the matrix and also influence the solidification time θt of the matrix. As a result of fibers influencing L and θt, the micro-segregation in the matrix is improved when the composite contains more fibers, although the level of the improvement is slight. The Clyne-Kurz model can be used to semi-quantitatively analyze the relationship between Vf and the volume fraction fe of the micro-segregation eutectic structure.

  19. Influence of retained austenite on the grain size of austenite after reaustenitization of steels for heavy forgings

    Energy Technology Data Exchange (ETDEWEB)

    Peters, H.J.; Tacke, G.; Hougardy, H.P.

    1989-01-01

    In this investigation the grain size of austenite reaustenitization of different microstructures containing different volume fractions of retained austenite was determined. The austenite grain size after austenitization of martensite and lower bainite was coarse for heating rates lower than a minimum value, which is dependent on the chemical composition. In this case, the austenite forms by rapid growth of retained austenite in the initial microstructure. At heating rates higher than the critical value, formation of austenite starts at the ferrite-carbide phase boundaries giving a fine austenite grain. The formation of austenite from microstructures free of retained austenite, such as pearlite, always occurred by nucleation on the ferrite-carbide interphase resulting in fine austenite grains. (orig.).

  20. Automated quantification of aortic regurgitant volume and regurgitant fraction using the digital colour Doppler velocity profile integration method in patients with aortic regurgitation

    OpenAIRE

    Miyake, Y.; Hozumi, T; Mori, I.; Sugioka, K; Yamamuro, A; Akasaka, T; Homma, S; Yoshida, K.; Yoshikawa, J

    2002-01-01

    Background: The recently introduced automated cardiac flow measurement (ACM) technique provides a quick and an accurate automated calculation of stroke volume and cardiac output. This is obtained by spatio-temporal integration of digital Doppler velocity profile data.

  1. 含掺合料混凝土水化产物体积分数计算及其影响因素%Calculation of concrete with mineral admixture hydration products volume fraction and its influential factors

    Institute of Scientific and Technical Information of China (English)

    吴福飞; 董双快; 宫经伟; 陈亮亮; 李东生; 侍克斌

    2016-01-01

    Powers theory proposes calculation method for the pure volume of cement hydration products, which does not apply to calculate the volume of cementitious materials with mineral admixture. The formula of cementitious materials volume was proposed that based on the basic principles of cement and mineral admixture hydration, and the proposed method of reliability was verified by the results of Powers theoretical model and volume fraction of cement hydration products. On this basis, the factor such as water-cement ratio, the ratio of admixture and types was further researched for the volumes of cementitious materials hydration products. Mixture in test were designed 2 water-cement ratio (0.30 and 0.40, respectively), two content (20% and 60%, respectively) of mineral admixture, and 3 kinds of mineral admixture (lithium slag, fly ash and steel slag, respectively), forming paste that was stirred according with the designed ratio in 5 mL centrifuge tube in a blender and curing to 1, 7, 14, 28, 60 and 90 d in curing room (temperature was (20±1)℃, humidity was not less than 95%), and then testing reaction extent of cement and mineral admixture (such as fly ash, steel slag. lithium slag) according with the chemical bound water and HCl dissolution method. The results showed that hydration extent of lithium slag, fly ash and steel slag at 28d decreased by 46.63%, 69.56% and 74.82% (P<0.05) when mineral admixture content varied from 20% to 60% and water-cement ratio was 0.30. Hydration extent of cement at 28 d was increased by 7.25% when water-cement ratio increased from 0.30 to 0.40. When mineral admixture content varied from 20% to 60%, hydration extent of lithium slag, fly ash and steel slag at 28 d increased by 24.14% 18.56%, 17.61% and 8.84%, 12.21%, and 29.37% (P<0.05), respectively. In contrast, the influence of the mineral admixture content was bigger than water-cement ratio for the hydration extent of composite cementitious materials. In different water-cement ratio

  2. Interior seeding combined with top seeding for the fabrication of single grain REBCO bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Gyoun [Korea Polytechnic University, Siheung (Korea, Republic of)

    2017-06-15

    This study presents three dimensional (3-D) seeding technique which is a modification of interior seeding. 3-D seeding is beneficial for shortening the processing period and enhancing the magnetic properties of REBCO bulk superconductors fabricated by melt growth. Oxygen channels were provided by using divided powder compacts instead of by using a rubber insert. Microstructure observations revealed that the grains grown from the seeds impinged each other and formed low angle grain boundaries of (001)/(001). It has been shown that the 3-D seeding technique reduces the volume fraction of a-c growth sector and thereby maximizes the area of a-b growth sector which attribute to the high magnetic characteristics of single grain REBCO bulk superconductors.

  3. Shaping of the axial power density distribution in the core to minimize the vapor volume fraction at the outlet of the VVER-1200 fuel assemblies

    Science.gov (United States)

    Savander, V. I.; Shumskiy, B. E.; Pinegin, A. A.

    2016-12-01

    The possibility of decreasing the vapor fraction at the VVER-1200 fuel assembly outlet by shaping the axial power density field is considered. The power density field was shaped by axial redistribution of the concentration of the burnable gadolinium poison in the Gd-containing fuel rods. The mathematical modeling of the VVER-1200 core was performed using the NOSTRA computer code.

  4. Effects of rolling temperature and subsequent annealing on mechanical properties of ultrafine-grained Cu–Zn–Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiangkai [Educational Key Laboratory of Nonferrous Metal Materials Science and Engineering, School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Yang, Xuyue, E-mail: yangxuyue@csu.edu.cn [Educational Key Laboratory of Nonferrous Metal Materials Science and Engineering, School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Institute for Materials Microstructure, Central South University, Changsha 410083 (China); Chen, Wei [Educational Key Laboratory of Nonferrous Metal Materials Science and Engineering, School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Qin, Jia [Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Changsha 410083 (China); Fouse, Jiaping [State of Hawaii, Department of Health/Environmental Division, Clean Water Branch (United States)

    2015-08-15

    The effects of rolling temperature and subsequent annealing on mechanical properties of Cu–Zn–Si alloy were investigated by using X-ray diffraction, transmission electron microscope, electron back scattered diffraction and tensile tests. The Cu–Zn–Si alloy has been processed at cryogenic temperature (approximately 77 K) and room temperature up to different rolling strains. It has been identified that the cryorolled Cu–Zn–Si alloy samples show a higher strength compared with those room temperature rolled samples. The improved strength of cryorolled samples is resulted from grain size effect and higher densities of dislocations and deformation twins. And subsequent annealing, as a post-heat treatment, enhanced the ductility. An obvious increase in uniform elongation appears when the volume fraction of static recrystallization grains exceeds 25%. The strength–ductility combination of the annealed cryorolled samples is superior to that of annealed room temperature rolled samples, owing to the finer grains, high fractions of high angle grain boundaries and twins. - Highlights: • An increase in hardness of Cu–Zn–Si alloy is noticed during annealing process. • Thermal stability is reduced in Cu–Zn–Si alloy by cryorolling. • An obvious enhancement in UE is noticed when fraction of SRX grains exceeds 25%. • A superior strength–ductility combination is achieved in the cryorolling samples.

  5. Fractional Echoes

    CERN Document Server

    Karras, G; Billard, F; Lavorel, B; Siour, G; Hartmann, J -M; Faucher, O; Gershnabel, Erez; Prior, Yehiam; Averbukh, Ilya Sh

    2016-01-01

    We report the observation of fractional echoes in a double-pulse excited nonlinear system. Unlike standard echoes which appear periodically at delays which are integer multiple of the delay between the two exciting pulses, the fractional echoes appear at rational fractions of this delay. We discuss the mechanism leading to this phenomenon, and provide the first experimental demonstration of fractional echoes by measuring third harmonic generation in a thermal gas of CO2 molecules excited by a pair of femtosecond laser pulses.

  6. FRACTIONAL BANKING

    OpenAIRE

    Maria Klimikova

    2010-01-01

    Understanding the reasons of the present financial problems lies In understanding the substance of fractional reserve banking. The substance of fractional banking is in lending more money than the bankers have. Banking of partial reserves is an alternative form which links deposit banking and credit banking. Fractional banking is causing many unfavorable economic impacts in the worldwide system, specifically an inflation.

  7. FRACTIONAL BANKING

    OpenAIRE

    Maria Klimikova

    2010-01-01

    Understanding the reasons of the present financial problems lies In understanding the substance of fractional reserve banking. The substance of fractional banking is in lending more money than the bankers have. Banking of partial reserves is an alternative form which links deposit banking and credit banking. Fractional banking is causing many unfavorable economic impacts in the worldwide system, specifically an inflation.

  8. Fractional randomness

    Science.gov (United States)

    Tapiero, Charles S.; Vallois, Pierre

    2016-11-01

    The premise of this paper is that a fractional probability distribution is based on fractional operators and the fractional (Hurst) index used that alters the classical setting of random variables. For example, a random variable defined by its density function might not have a fractional density function defined in its conventional sense. Practically, it implies that a distribution's granularity defined by a fractional kernel may have properties that differ due to the fractional index used and the fractional calculus applied to define it. The purpose of this paper is to consider an application of fractional calculus to define the fractional density function of a random variable. In addition, we provide and prove a number of results, defining the functional forms of these distributions as well as their existence. In particular, we define fractional probability distributions for increasing and decreasing functions that are right continuous. Examples are used to motivate the usefulness of a statistical approach to fractional calculus and its application to economic and financial problems. In conclusion, this paper is a preliminary attempt to construct statistical fractional models. Due to the breadth and the extent of such problems, this paper may be considered as an initial attempt to do so.

  9. 导流介质对VARTM复合材料纤维分布及空隙率的影响%Effects of Infusion Media on Fiber Volume Fraction Distribution and Void Content in Vacuum Assisted Resin Transfer Molding

    Institute of Scientific and Technical Information of China (English)

    赖家美; 陈显明; 王德盼; 鄢冬冬; 王科

    2014-01-01

    Effects of the size of infusion media on resin flow behavior,fiber volume fraction distribution and void content in vacuum assisted resin transfer molding(VARTM) were studied.The results showed that with the increase of infusion media size, the resin flow rate increased exponentially;the fiber volume fraction showed a tendency to increase after the first decrease,and the infusion media boundary was just the high and low fiber volume fraction line;the void content increased first and then decreased and increased tremendously at last,varied from 3.86% to 19.92%.%研究了导流介质尺寸对真空辅助树脂传递模塑(VARTM)工艺中树脂流动行为的影响,以及对复合材料制品中纤维分布和空隙率的影响。结果表明,随着导流介质尺寸的增加,树脂在增强体中的流动速度加快,并呈现指数加速趋势;制品中纤维体积含量呈现先减少后增大的趋势,并且以导流介质边界为纤维体积含量高低的分界线;复合材料制品的空隙率范围在3.86%~19.92%,空隙率呈现先增大后减小再加速增大的趋势。

  10. Grain growth of cast-multicrystalline silicon grown from small randomly oriented seed crystal

    Science.gov (United States)

    Prakash, Ronit R.; Sekiguchi, Takashi; Jiptner, Karolin; Miyamura, Yoshiji; Chen, Jun; Harada, Hirofumi; Kakimoto, Koichi

    2014-09-01

    Multicrystalline silicon was grown from seeds with small grains of random orientation and the growth mechanism was studied with respect to grain size, shape, boundary character and orientation. The average grain size perpendicular to growth direction increased steadily initially, became constant and then increased steadily again. Grain size parallel to growth direction increased rapidly with growth due to grain elongation in the growth direction. Grain shape with respect to growth direction changed from spherical to columnar with growth. Initially non-CSL grain boundary fraction was very high but decreased with growth as the Σ3 grain boundary fraction increased. A simple model was proposed to explain the results.

  11. 钢纤维掺量对活性粉末混凝土力学性能的影响%On the Influence of Steel Fiber Volume Fraction on Mechanical Properties of Reactive Powder Concrete

    Institute of Scientific and Technical Information of China (English)

    鞠彦忠; 王德弘; 李秋晨; 贾玉琢; 肖琦

    2011-01-01

    Basic mechanical properties such as compressive strength, splitting tensile strength and flexural strength of reactive powder concrete were experimentally investigated.The influence of steel fiber volume fraction on mechanical properties of RPC was analyzed.A fitted relation expression between flexural strength and splitting tensile strength was obtained.A mathematical expression for compressive stress-strain curve of reactive powder concrete was established for different steel fiber volume fractions based on experimental analysis.Results show that compressive strength, splitting tensile strength and flexural strength of reactive powder concrete specimens increase along with the steel fiber content increase when the steel fiber volume fraction is in the range from 1.0 % to 3.5 %.When the steel fiber volume fraction is higher than 3.5%, its compressive strength decreases, the splitting tensile strength increases slightly, however, its flexural strength increases obviously.%通过实验研究了活性粉末混凝土的基本力学性能(杭压强度、劈拉强度和杭折强度),分析了钢纤维掺量对活性粉末混凝土力学性能的影响,拟合得到了杭折强度与劈拉强度之间的关系表达式.在实验分析的基础上,建立了不同钢纤维体积含量活性粉末混凝土受压应力-应变全曲线的数学表达式.研究结果表明:钢纤维体积含量在1.0%~3.5%之间时,活性粉末混凝土的抗压强度、臂拉强度和抗折强度均随着钢纤维掺量的增加而增大;当钢纤维体积含量超过3.5%后,活性粉末混凝土杭压强度下降,臂拉强度略有提高,而杭折强度仍有明显的提高.

  12. Mean nuclear volume

    DEFF Research Database (Denmark)

    Mogensen, O.; Sørensen, Flemming Brandt; Bichel, P.

    1999-01-01

    We evaluated the following nine parameters with respect to their prognostic value in females with endometrial cancer: four stereologic parameters [mean nuclear volume (MNV), nuclear volume fraction, nuclear index and mitotic index], the immunohistochemical expression of cancer antigen (CA125...

  13. Fractional thermoelasticity

    CERN Document Server

    Povstenko, Yuriy

    2015-01-01

    This book is devoted to fractional thermoelasticity, i.e. thermoelasticity based on the heat conduction equation with differential operators of fractional order. Readers will discover how time-fractional differential operators describe memory effects and space-fractional differential operators deal with the long-range interaction. Fractional calculus, generalized Fourier law, axisymmetric and central symmetric problems and many relevant equations are featured in the book. The latest developments in the field are included and the reader is brought up to date with current research.  The book contains a large number of figures, to show the characteristic features of temperature and stress distributions and to represent the whole spectrum of order of fractional operators.  This work presents a picture of the state-of-the-art of fractional thermoelasticity and is suitable for specialists in applied mathematics, physics, geophysics, elasticity, thermoelasticity and engineering sciences. Corresponding sections of ...

  14. Results of volume-staged fractionated Gamma Knife radiosurgery for large complex arteriovenous malformations: obliteration rates and clinical outcomes of an evolving treatment paradigm.

    Science.gov (United States)

    Franzin, Alberto; Panni, Pietro; Spatola, Giorgio; Vecchio, Antonella Del; Gallotti, Alberto L; Gigliotti, Carmen R; Cavalli, Andrea; Donofrio, Carmine A; Mortini, Pietro

    2016-12-01

    OBJECTIVE There are few reported series regarding volume-staged Gamma Knife radiosurgery (GKRS) for the treatment of large, complex, cerebral arteriovenous malformations (AVMs). The object of this study was to report the results of using volume-staged Gamma Knife radiosurgery for patients affected by large and complex AVMs. METHODS Data from 20 patients with large AVMs were prospectively included in the authors' AVM database between 2004 and 2012. A staging strategy was used when treating lesion volumes larger than 10 cm(3). Hemorrhage and seizures were the presenting clinical feature for 6 (30%) and 8 (40%) patients, respectively. The median AVM volume was 15.9 cm(3) (range 10.1-34.3 cm(3)). The mean interval between stages (± standard deviation) was 15 months (± 9 months). The median margin dose for each stage was 20 Gy (range 18-25 Gy). RESULTS Obliteration was confirmed in 8 (42%) patients after a mean follow-up of 45 months (range 19-87 months). A significant reduction (> 75%) of the original nidal volume was achieved in 4 (20%) patients. Engel Class I-II seizure status was reported by 75% of patients presenting with seizures (50% Engel Class I and 25% Engel Class II) after radiosurgery. After radiosurgery, 71.5% (5/7) of patients who had presented with a worsening neurological deficit reported a complete resolution or amelioration. None of the patients who presented acutely because of hemorrhage experienced a new bleeding episode during follow-up. One (5%) patient developed radionecrosis that caused sensorimotor hemisyndrome. Two (10%) patients sustained a bleeding episode after GKRS, although only 1 (5%) was symptomatic. High nidal flow rate and a time interval between stages of less than 11.7 months were factors significantly associated with AVM obliteration (p = 0.021 and p = 0.041, respectively). Patient age younger than 44 years was significantly associated with a greater than 75% reduction in AVM volume but not with AVM obliteration (p = 0

  15. Influence of fibre distribution and grain size on the mechanical behaviour of friction stir processed Mg–C composites

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, A., E-mail: anne.mertens@ulg.ac.be [Université de Liège, Faculty of Applied Science, A& M Department, Metallic Materials Science Unit (Belgium); Simar, A. [Université catholique de Louvain, Institute of Mechanics, Materials and Civil Engineering (Belgium); Adrien, J.; Maire, E. [Institut National des Sciences Appliquées de Lyon (INSA Lyon), MATEIS Laboratory (France); Montrieux, H.-M. [Université de Liège, Faculty of Applied Science, A& M Department, Metallic Materials Science Unit (Belgium); Delannay, F. [Université catholique de Louvain, Institute of Mechanics, Materials and Civil Engineering (Belgium); Lecomte-Beckers, J. [Université de Liège, Faculty of Applied Science, A& M Department, Metallic Materials Science Unit (Belgium)

    2015-09-15

    Short C fibres–Mg matrix composites have been produced by friction stir processing sandwiches made of a layer of C fabric stacked between two sheets of Mg alloy AZ31B or AZ91D. This novel processing technique can allow the easy production of large-scale metal matrix composites. The paper investigates the microstructure of FSPed C fibre–Mg composites in relation with the fragmentation of the C fibres during FSP and their influence on the tensile properties. 3D X-ray tomography reveals that the fibres orient like onion rings and are more or less fragmented depending on the local shear stress during the process. The fibre volume fraction can be increased from 2.3% to 7.1% by reducing the nugget volume, i.e. by using a higher advancing speed in AZ31B alloy or a stronger matrix alloy, like AZ91D alloy. A higher fibre volume fraction leads to a smaller grain size which brings about an increase of the composite yield strength by 15 to 25%. However, a higher fibre volume fraction also leads to a lower fracture strain. Fracture surface observations reveal that damage occurs by fibre/matrix decohesion along fibres oriented perpendicularly to the loading direction. - Graphical abstract: Display Omitted - Highlights: • C–Mg MMCs were produced by FSP sandwiches made of a C fabric between Mg sheets. • Fibre fragmentation and erosion is larger when the temperature reached during FSP is lower. • A lower advancing speed brings a lower fibre volume fraction and a lower grain size. • X-ray tomography reveals that fibres orient along the FSP material flow. • The fibres and grain size reduction increase the yield strength by 15 to 25%.

  16. Applied Thermodynamics: Grain Boundary Segregation

    Directory of Open Access Journals (Sweden)

    Pavel Lejček

    2014-03-01

    Full Text Available Chemical composition of interfaces—free surfaces and grain boundaries—is generally described by the Langmuir–McLean segregation isotherm controlled by Gibbs energy of segregation. Various components of the Gibbs energy of segregation, the standard and the excess ones as well as other thermodynamic state functions—enthalpy, entropy and volume—of interfacial segregation are derived and their physical meaning is elucidated. The importance of the thermodynamic state functions of grain boundary segregation, their dependence on volume solid solubility, mutual solute–solute interaction and pressure effect in ferrous alloys is demonstrated.

  17. Simulation of cooling channel rheocasting process of A356 aluminum alloy using three-phase volume averaging model

    Institute of Scientific and Technical Information of China (English)

    T. Wang; B.Pustal; M. Abondano; T. Grimmig; A. B(u)hrig-Polaczek; M. Wu; A. Ludwig

    2005-01-01

    The cooling channel process is a rehocasting method by which the prematerial with globular microstructure can be produced to fit the thixocasting process. A three-phase model based on volume averaging approach is proposed to simulate the cooling channel process of A356 Aluminum alloy. The three phases are liquid, solid and air respectively and treated as separated and interacting continua, sharing a single pressure field. The mass, momentum, enthalpy transport equations for each phase are solved. The developed model can predict the evolution of liquid, solid and air fraction as well as the distribution of grain density and grain size. The effect of pouring temperature on the grain density, grain size and solid fraction is analyzed in detail.

  18. Causality Between Market Liquidity and Depth for Energy and Grains

    NARCIS (Netherlands)

    R. Sari (Ramazan); S.M. Hammoudeh (Shawkat); C-L. Chang (Chia-Lin); M.J. McAleer (Michael)

    2011-01-01

    textabstractThis paper examines the roles of futures prices of crude oil, gasoline, ethanol, corn, soybeans and sugar in the energy-grain nexus. It also investigates the own- and cross-market impacts for lagged grain trading volume and open interest in the energy and grain markets. According to the

  19. Simulation of grain growth in nanocrystalline nickel induced by ion irradiation

    CERN Document Server

    Voegeli, W; Hahn, H

    2003-01-01

    Molecular dynamics simulations of 5 keV cascades in nanocrystalline nickel with grain sizes of 5 and 10 nm are presented. If the spike volume is exceeding the grain size or overlapping the grain boundary (GB) area we observe ion-beam induced grain growth for both grain sizes. In contrast cascades located in the grain volume lead to the formation of vacancies and interstitials, where the latter are mostly accommodated by the GBs upon annealing. Finally, we show that ion-beam induced grain growth is a direct result of recrystallisation of the thermal spike and therefore inherently different to grain growth observed in long time thermal annealing simulations.

  20. On grain growth kinetics in two-phase polycrystalline materials through Monte Carlo simulation

    Indian Academy of Sciences (India)

    K R Phaneesh; Anirudh Bhat; Gautam Mukherjee; K T Kashyap

    2013-08-01

    Monte Carlo Potts model simulation was carried out on a 2D square lattice for various surface fractions of second phase particles for over 50,000 iterations. The observations are in good agreement with known theoretical and experimental results with respect to both growth kinetics as well as grain size distribution. Further, the average grain size and the largest grain size were computed for various surface fractions which have indicated normal grain growth and microstructure homogeneity. The surface fraction of the second phase particles interacting with the grain boundaries (), hitherto not computed through the simulation route, is shown to vary inversely as the average grain size due to Zener pinning.

  1. Infrared Emission from the Composite Grains: Effects of Inclusions and Porosities on the 10 and 18 $\\mu m$ Features

    CERN Document Server

    Vaidya, D B

    2011-01-01

    In this paper we study the effects of inclusions and porosities on the emission properties of silicate grains and compare the model curves with the observed infrared emission from circumstellar dust. We calculate the absorption efficiency of the composite grain, made up of a host silicate oblate spheroid and inclusions of ice/graphite/or voids, in the spectral region 5.0-25.0$\\mu m$. The absorption efficiencies of the composite spheroidal oblate grains for three axial ratios are computed using the discrete dipole approximation (DDA). We study the absorption as a function of the volume fraction of the inclusions and porosity. In particular, we study the variation in the $10\\mu m$ and $18\\mu m$ emission features with the volume fraction of the inclusions and porosities. We then calculate the infrared fluxes for these composite grains at several dust temperatures (T=200-350K) and compare the model curves with the average observed IRAS-LRS curve, obtained for circumstellar dust shells around oxygen rich M-type st...

  2. Ethanol-gasoline volume fraction estimation of vehicles%车用乙醇汽油体积分数估计

    Institute of Scientific and Technical Information of China (English)

    郑太雄; 王波; 李永福; 陈琳

    2015-01-01

    为获得精确的乙醇体积分数,在发动机进气模型的基础上,设计了高增益观测器估计歧管压力,并对观测器误差进行了收敛性和稳定性分析。设计PI控制器对空燃比进行控制,使过量空气系数趋于理论值。利用PI控制器输出的燃油反馈信号,通过积分清零运算得出化学计量空燃比(Rs ),根据 Rs 与乙醇体积分数的关系计算得出乙醇体积分数估计值。仿真结果表明:乙醇体积分数估计时间在2s以内,估计误差绝对值小于1%,满足汽车的排放性和经济性要求。%For acquiring a precise estimation of ethanol proportion , based on the engine air charge model ,the high gain observer was designed to estimate the manifold absolute pressure ,and property of convergence and stability were analyzed to the observer errors .PI controller was proposed to con‐trol the air to fuel ratio ,which compelled the excess air coefficient to the theoretical value .After‐wards ,the fuel feedback signal from the PI control was utilized ,and the stoichiometric air‐to‐fuel rati‐o (Rs ) was achieved through the integral zero clearing operation .At last ,ethanol volume fracrion es‐timation value was calculated based on the relationship between the Rs and the ethanol volume fracri‐on .Simulation results show that the estimated time of the ethanol volume fracrion is within 2 s ,and the absolute value of the estimated error is less than 1% ,w hich meets the emissions and fuel economy of the vehicles .

  3. Effects of slice orientation on reproducibility of sequential assessment of right ventricular volumes and ejection fraction: short-axis vs transverse SSFP cine cardiovascular magnetic resonance.

    Science.gov (United States)

    D'Errico, Luigia; Lamacie, Mariana M; Jimenez Juan, Laura; Deva, Djeven; Wald, Rachel M; Ley, Sebastian; Hanneman, Kate; Thavendiranathan, Paaladinesh; Wintersperger, Bernd J

    2016-09-22

    Test-retest reproducibility is of utmost importance in follow-up of right ventricular (RV) volumes and function; optimal slice orientation though is not yet known. We compared test-retest reproducibility and intra-/inter-observer variability of right ventricular (RV) volumes and function assessed with short-axis and transverse cardiovascular magnetic resonance (CMR). Eighteen volunteers underwent cine CMR for RV assessment obtaining ventricular coverage in short-axis and transverse slice orientation. Additional 2D phase contrast flow imaging of the main pulmonary artery (MPA) was performed. After complete repositioning repeat acquisitions were performed. Data sets were contoured by two blinded observers. Statistical analysis included Student's t-test, Bland-Altman plots, intra-class correlation coefficient (ICC) and 2-way ANOVA, SEM and minimal detectable difference calculations. Heart rates (65.0 ± 7.4 vs. 67.6 ± 9.9 bpm; P = 0.1) and MPA flow (89.8 ± 16.6 vs. 87.2 ± 14.9 mL; P = 0.1) did not differ between imaging sessions. EDV and ESV demonstrated an inter-study bias of 0.4 %[-9.5 %,10.3 %] and 2.1 %[-12.3 %,16.4 %] for short-axis and 1.1 %[-7.3 %,9.4 %] and 0.8 %[-16.0 %,17.6 %] for transverse orientation, respectively. There was no significant interaction between imaging orientation and interstudy reproducibility (p = 0.395-0.824), intra-observer variability (p = 0.726-0.862) or inter-observer variability (p = 0.447-0.706) by 2-way ANOVA. Inter-observer agreement by ICC was greater for short axis versus transverse orientation for all parameters (0.769-0.986 vs. 0.625-0.983, respectively). Minimal detectable differences for short axis and transverse orientations were 10.1 mL/11.5 mL for EDV, 8.3 mL/8.4 mL for ESV and 4.1 % vs. 4.7 % for EF, respectively. Short-axis and transverse orientation both provide reliable and reproducible measures for follow-up of RV volumes and global function. Therefore

  4. Fractional motions

    Energy Technology Data Exchange (ETDEWEB)

    Eliazar, Iddo I., E-mail: eliazar@post.tau.ac.il [Holon Institute of Technology, P.O. Box 305, Holon 58102 (Israel); Shlesinger, Michael F., E-mail: mike.shlesinger@navy.mil [Office of Naval Research, Code 30, 875 N. Randolph St., Arlington, VA 22203 (United States)

    2013-06-10

    Brownian motion is the archetypal model for random transport processes in science and engineering. Brownian motion displays neither wild fluctuations (the “Noah effect”), nor long-range correlations (the “Joseph effect”). The quintessential model for processes displaying the Noah effect is Lévy motion, the quintessential model for processes displaying the Joseph effect is fractional Brownian motion, and the prototypical model for processes displaying both the Noah and Joseph effects is fractional Lévy motion. In this paper we review these four random-motion models–henceforth termed “fractional motions” –via a unified physical setting that is based on Langevin’s equation, the Einstein–Smoluchowski paradigm, and stochastic scaling limits. The unified setting explains the universal macroscopic emergence of fractional motions, and predicts–according to microscopic-level details–which of the four fractional motions will emerge on the macroscopic level. The statistical properties of fractional motions are classified and parametrized by two exponents—a “Noah exponent” governing their fluctuations, and a “Joseph exponent” governing their dispersions and correlations. This self-contained review provides a concise and cohesive introduction to fractional motions.

  5. Cooking Has Variable Effects on the Fermentability in the Large Intestine of the Fraction of Meats, Grain Legumes, and Insects That Is Resistant to Digestion in the Small Intestine in an in Vitro Model of the Pig's Gastrointestinal Tract.

    Science.gov (United States)

    Poelaert, Christine; Despret, Xavier; Sindic, Marianne; Beckers, Yves; Francis, Frédéric; Portetelle, Daniel; Soyeurt, Hélène; Théwis, André; Bindelle, Jérôme

    2017-01-18

    This study aimed to evaluate the fermentation in the large intestine of indigestible dietary protein sources from animal, insect, and plant origin using an in vitro model of the pig's gastrointestinal tract. Protein sources were used raw and after a cooking treatment. Results showed that the category of the ingredient (meats, insects, or grain legumes) exerts a stronger impact on enzymatic digestibility, fermentation patterns, and bacterial metabolites such as short-chain fatty acids (SCFA) and hydrogen sulfide (H2S) than the cooking treatment. The digestibility and the fermentation characteristics of insects were more affected by the cooking procedure than the other categories. Per gram of consumed food, ingredients from animal origin, namely, meats and insects, were associated with fewer fermentation end-products (gas, H2S, SCFA) than ingredients from plant origin, which is related to their higher small intestinal digestibility.

  6. A Coupled Mean Field / Gurson-Tvergaard Micromechanical Model For Ductile Fracture In Multiphase Materials With Large Volume Fraction of Voids

    Science.gov (United States)

    Van Hoof, Thibaut; Piérard, Olivier; Lani, Frédéric

    2007-04-01

    In the framework of the European project PROHIPP (New design and manufacturing processes for high pressure fluid power product — NMP 2-CT-2004-50546), CENAERO develops a library of constitutive models used to predict the mechanical response of a family of cast iron. The present contribution focuses on one particular microstructure, corresponding to a ferrite matrix containing spheroidal graphite and isolated inclusions of pearlite. An incremental mean field homogenisation scheme such as the one developed by Doghri and Ouaar is used. In the present application, the ferrite matrix is described by a Gurson type constitutive law (porous plasticity) while the pearlite inclusions are assumed to obey the classical isotropic J2 plasticity. The predictions of the micromechanical model are compared to the results of Finite Element simulations performed on three-dimensional representative volume elements (RVEs).

  7. Decoupling crystalline volume fraction and V{sub OC} in microcrystalline silicon pin solar cells by using a {mu}c-Si:F:H intrinsic layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q.; Johnson, E.V.; Djeridane, Y.; Abramov, A.; Roca i Cabarrocas, P. [LPICM-CNRS, Ecole Polytechnique, Palaiseau (France)

    2008-08-15

    Microcrystalline silicon thin film pin solar cells with a highly crystallized intrinsic {mu}c-Si:F:H absorber were prepared by RF-plasma enhanced chemical vapour deposition using SiF{sub 4} as the gas precursor. The cells were produced with a vacuum break between the doped layer and intrinsic layer depositions, and the effect of different subsequent interface treatment processes was studied. The use of an intrinsic {mu}c-Si:H p/i buffer layer before the first air break increased the short circuit current density from 22.3 mA/cm{sup 2} to 24.7 mA/cm{sup 2}. However, the use of a hydrogen-plasma treatment after both air breaks without an interface buffer layer improved both the open circuit voltage and the fill factor. Although the material used for the absorber layer showed a very high crystalline fraction and thus an increased spectral response at long wavelengths, an open-circuit voltage (V{sub OC}) of 0.523 V was nevertheless observed. Such a value of V{sub OC} is higher than is typically obtained in devices that employ a highly crystallized absorber as reported in the literature (see abstract figure). Using a hydrogen-plasma treatment, a single junction {mu}c-Si:F:H pin solar cell with an efficiency of 8.3% was achieved. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Infiltration techniques for suppressing grain growth during the densification of submicron and nanophase alumina composites

    Science.gov (United States)

    Vernon, Deborah Marshall

    -mixing techniques illustrated the superiority of this processing method. It was determined that liquid-phase infiltration processing produced a greater number of evenly distributed inclusions than traditional powder-mixing. The distribution and greater number of particles at the same volume fraction of zirconia created a greater drag force on the alumina grain boundaries, which resulted in increased grain growth suppression.

  9. Polymer fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Hadermann, A. F.

    1985-04-09

    Soluble polymers are fractionated according to molecular weight by cryogenically comminuting the polymer and introducing the polymer particles, while still in the active state induced by cryogenic grinding, into a liquid having a solvent power selected to produce a coacervate fraction containing high molecular weight polymer species and a dilute polymer solution containing lower molecular weight polymer species. The coacervate may be physically separated from the solution and finds use in the production of antimisting jet fuels and the like.

  10. Reconciling transport models across scales: The role of volume exclusion

    Science.gov (United States)

    Taylor, P. R.; Yates, C. A.; Simpson, M. J.; Baker, R. E.

    2015-10-01

    Diffusive transport is a universal phenomenon, throughout both biological and physical sciences, and models of diffusion are routinely used to interrogate diffusion-driven processes. However, most models neglect to take into account the role of volume exclusion, which can significantly alter diffusive transport, particularly within biological systems where the diffusing particles might occupy a significant fraction of the available space. In this work we use a random walk approach to provide a means to reconcile models that incorporate crowding effects on different spatial scales. Our work demonstrates that coarse-grained models incorporating simplified descriptions of excluded volume can be used in many circumstances, but that care must be taken in pushing the coarse-graining process too far.

  11. Effect of second phase particles topology on the onset temperature of abnormal grain growth in Fe - 3%Si steels

    Directory of Open Access Journals (Sweden)

    Stoyka, V.

    2008-01-01

    Full Text Available The relations between regimes of dynamic annealing, state of secondary particles system and the onset temperature of abnormal grain growth are investigated. Two distinguish types of Fe-3%Si grain-oriented steels, after one and two stage cold rolling, were studied. The second phase particles remain unaffected in first type of steel during the heat treatment. Vice versa, the increased density of second phases was observed after annealing in the second type of the investigated materials. It is shown that start/onset of abnormal grain growth strongly depends on both volume fraction of second phase particles and annealing temperature. Texture and magnetic properties of the investigated samples are investigated within the current study.

  12. Dielectric-constant measurements in a system of NbC grains near the percolation threshold

    Science.gov (United States)

    McLachlan, D. S.; Oblakova, I. I.; Pakhomov, A. B.

    1994-06-01

    Measurements of the complex dielectric constant (ε‧ + iε″) on a series on NbC-KCl composites in a wide range of concentrations are performed as a function of φ (the volume fraction of the 1-3 μm NbC grains) at frequencies of 10 2, 10 3, 10 4 and 10 5 Hz. Frequency scaling of ε = ε‧ + iε″ at the metal-insulator transition is different from one which follows from the scaling theory of an ideal percolation system. We observe two different values of the critical volume fraction of metal. The first critical concentration, φ c1, is a cross-over point where the dielectric-constant frequency dependence changes and the loss factor is on the order of unity. The temperature behavior of the complex dielectric constant below the superconducting transition temperature Tc reveals a transformation of a system of isolated NbC grains into a system of weakly coupled tunneling junctions at φ c1. The expected divergence of ε‧ is observed as the second critical volume concentration φ c2 > φ c1 is approached. At this concentration a cross-over from the capacitive tunneling junction medium to a truly metallic state occurs. At φ > φ c2, ε‧ decreases rapidly as a function of φ and becomes negative at φ - φ c2∼0.01, due to the negative effective real dielectric constant of the percolation metallic cluster which spans the system.

  13. Meso-microstructural computational simulation of the hydrogen permeation test to calculate intergranular, grain boundary and effective diffusivities

    Energy Technology Data Exchange (ETDEWEB)

    Jothi, S., E-mail: s.jothi@swansea.ac.uk [College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom); Winzer, N. [Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstraße 11, 79108 Freiburg (Germany); Croft, T.N.; Brown, S.G.R. [College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom)

    2015-10-05

    Highlights: • Characterized polycrystalline nickel microstructure using EBSD analysis. • Development meso-microstructural model based on real microstructure. • Calculated effective diffusivity using experimental electrochemical permeation test. • Calculated intergranular diffusivity of hydrogen using computational FE simulation. • Validated the calculated computation simulation results with experimental results. - Abstract: Hydrogen induced intergranular embrittlement has been identified as a cause of failure of aerospace components such as combustion chambers made from electrodeposited polycrystalline nickel. Accurate computational analysis of this process requires knowledge of the differential in hydrogen transport in the intergranular and intragranular regions. The effective diffusion coefficient of hydrogen may be measured experimentally, though experimental measurement of the intergranular grain boundary diffusion coefficient of hydrogen requires significant effort. Therefore an approach to calculate the intergranular GB hydrogen diffusivity using finite element analysis was developed. The effective diffusivity of hydrogen in polycrystalline nickel was measured using electrochemical permeation tests. Data from electron backscatter diffraction measurements were used to construct microstructural representative volume elements including details of grain size and shape and volume fraction of grains and grain boundaries. A Python optimization code has been developed for the ABAQUS environment to calculate the unknown grain boundary diffusivity.

  14. Real-time three-dimensional echocardiographic left ventricular ejection fraction and volumes assessment: comparison with cardiac computed tomography; Comparacao entre a afericao da fracao de ejecao e dos volumes do ventriculo esquerdo, medidos com ecocardiografia tridimensional em tempo real e com tomografia computadorizada ultra-rapida

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Marcelo L.C.; Nomura, Cesar H.; Tranchesi Junior, Bernardino; Oliveira, Wercules A. de; Naccarato, Gustavo; Serpa, Bruna S.; Cury, Alexandre; Passos, Rodrigo B.D.; Nobrega, Marcel V. da; Funari, Marcelo B.G.; Pfefermam, Abhaham; Makdisse, Marcia; Fischer, Claudio H.; Morhy, Samira S., E-mail: luiz766@terra.com.br [Hospital Israelita Albert Einstein, Sao Paulo, SP (Brazil)

    2008-10-15

    Background and objective: Few studies addressed the comparison between real-time 3D echocardiography (RT3DE) and cardiac computed tomography (CCT) concerning left ventricular ejection fraction and volumes assessment. We sought to compare both techniques regarding left ventricle (LV) ejection fraction function and volumes analysis. Methods: we studied by RT3DE (Philips IE 33, And, MA, USA) and by CCT (Toshiba, 64-slice, Otawara, Japan) 41 consecutive patients (29 males, 58 ± 11 yrs). We analysed by both techniques LVEF, LVEDV, LVESV. RT3DE and CCT data were compared by coefficients of determination (r: Pearson), Bland and Altman test and linear regression, 95% CI. Results: RT3DE data: LVEF ranged from 56.7 to 78.9 % (65.3 + 5.7 ); LVEDV ranged from 49.6 to 178.2 (88 + 27.5) mL; LVESV from 11.4 to 78 ( 33.9 + 13.7) mL. CCT data: LVEF ranged from 53 to 86 % (67.3 + 7.9 ); LVEDV ranged from 51 to 186 (106.4 + 30.7) mL; LVESV from 7 to 72 ( 35.1 + 13.8) mL. Correlations relative to RT3DE and CCT were: LVEF (r: 0. 7877, p<0.0001, 95 % CI 0.6327 to 0.8853 ); LVEDV (r:0.7671, p<0.0001, 95 % CI 0.5974 to 0.8745); LVESV (r: 0.8121, p<0.0001, 95 % CI 0.6659 to 0.8957). Conclusions: it was observed adequate correlation between real-time 3D echocardiography and cardiac computed tomography concerning ejection fraction and volumes assessment. (author)

  15. Comparison of multi-echo dixon methods with volume interpolated breath-hold gradient magnetic resonance imaging in fat-signal fraction quantification of paravaertebral muscle

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Yeon Hwa; Kim, Hak Sun; Lee, Young Han [Dept. of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); and others

    2015-10-15

    To assess whether multi-echo Dixon magnetic resonance (MR) imaging with simultaneous T2{sup *} estimation and correction yields more accurate fat-signal fraction (FF) measurement of the lumbar paravertebral muscles, in comparison with non-T2{sup *}-corrected two-echo Dixon or T2{sup *}-corrected three-echo Dixon, using the FF measurements from single-voxel MR spectroscopy as the reference standard. Sixty patients with low back pain underwent MR imaging with a 1.5T scanner. FF mapping images automatically obtained using T2{sup *}-corrected Dixon technique with two (non-T2{sup *}-corrected), three, and six echoes, were compared with images from single-voxel MR spectroscopy at the paravertebral muscles on levels L4 through L5. FFs were measured directly by two radiologists, who independently drew the region of interest on the mapping images from the three sequences. A total of 117 spectroscopic measurements were performed either bilaterally (57 of 60 subjects) or unilaterally (3 of 60 subjects). The mean spectroscopic FF was 14.3 ± 11.7% (range, 1.9-63.7%). Interobserver agreement was excellent between the two radiologists. Lin's concordance correlation between the spectroscopic findings and all the imaging-based FFs were statistically significant (p < 0.001). FFs obtained from the T2*-corrected six-echo Dixon sequences showed a significantly better concordance with the spectroscopic data, with its concordance correlation coefficient being 0.99 and 0.98 (p < 0.001), as compared with two- or three-echo methods. T2{sup *}-corrected six-echo Dixon sequence would be a better option than two- or three-echo methods for noninvasive quantification of lumbar muscle fat quantification.

  16. Understanding Multiplication of Fractions.

    Science.gov (United States)

    Sweetland, Robert D.

    1984-01-01

    Discussed the use of Cuisenaire rods in teaching the multiplication of fractions. Considers whole number times proper fraction, proper fraction multiplied by proper fraction, mixed number times proper fraction, and mixed fraction multiplied by mixed fractions. (JN)

  17. Extended T2-IVIM model for correction of TE dependence of pseudo-diffusion volume fraction in clinical diffusion-weighted magnetic resonance imaging

    Science.gov (United States)

    Jerome, N. P.; d'Arcy, J. A.; Feiweier, T.; Koh, D.-M.; Leach, M. O.; Collins, D. J.; Orton, M. R.

    2016-12-01

    The bi-exponential intravoxel-incoherent-motion (IVIM) model for diffusion-weighted MRI (DWI) fails to account for differential T 2 s in the model compartments, resulting in overestimation of pseudodiffusion fraction f. An extended model, T2-IVIM, allows removal of the confounding echo-time (TE) dependence of f, and provides direct compartment T 2 estimates. Two consented healthy volunteer cohorts (n  =  5, 6) underwent DWI comprising multiple TE/b-value combinations (Protocol 1: TE  =  62-102 ms, b  =  0-250 mm-2s, 30 combinations. Protocol 2: 8 b-values 0-800 mm-2s at TE  =  62 ms, with 3 additional b-values 0-50 mm-2s at TE  =  80, 100 ms scanned twice). Data from liver ROIs were fitted with IVIM at individual TEs, and with the T2-IVIM model using all data. Repeat-measures coefficients of variation were assessed for Protocol 2. Conventional IVIM modelling at individual TEs (Protocol 1) demonstrated apparent f increasing with longer TE: 22.4  ±  7% (TE  =  62 ms) to 30.7  ±  11% (TE  =  102 ms) T2-IVIM model fitting accounted for all data variation. Fitting of Protocol 2 data using T2-IVIM yielded reduced f estimates (IVIM: 27.9  ±  6%, T2-IVIM: 18.3  ±  7%), as well as T 2  =  42.1  ±  7 ms, 77.6  ±  30 ms for true and pseudodiffusion compartments, respectively. A reduced Protocol 2 dataset yielded comparable results in a clinical time frame (11 min). The confounding dependence of IVIM f on TE can be accounted for using additional b/TE images and the extended T2-IVIM model.

  18. Nanoscale grain boundary channels in fracture cement enhance flow in mudrocks

    Science.gov (United States)

    Landry, Christopher J.; Eichhubl, Peter; Prodanović, Maša.; Wilkins, Scott

    2016-05-01

    Hydrocarbon production from mudrock or shale reservoirs typically exceeds estimates based on mudrock laboratory permeability measurements, with the difference attributed to natural fractures. However, natural fractures in these reservoirs are frequently completely cemented and thus assumed not to contribute to flow. We quantify the permeability of nanoscale grain boundary channels with mean apertures of 50-130 nm in otherwise completely cemented natural fractures of the Eagle Ford Formation and estimate their contribution to production. Using scanning electron imaging of grain boundary channel network geometry and a digital rock physics workflow of image reconstruction and direct flow modeling, we estimate cement permeability to be 38-750 nd, higher than reported permeability of Eagle Ford host rock (~2 nd) based on laboratory measurements. Our results suggest that effective fracture-parallel mudrock permeability can exceed laboratory values by upward of 1 order of magnitude in shale reservoirs of high macroscopic cemented fracture volume fraction.

  19. Mystery Fractions

    Science.gov (United States)

    Bhattacharyya, Sonalee; Namakshi, Nama; Zunker, Christina; Warshauer, Hiroko K.; Warshauer, Max

    2016-01-01

    Making math more engaging for students is a challenge that every teacher faces on a daily basis. These authors write that they are constantly searching for rich problem-solving tasks that cover the necessary content, develop critical-thinking skills, and engage student interest. The Mystery Fraction activity provided here focuses on a key number…

  20. Mystery Fractions

    Science.gov (United States)

    Bhattacharyya, Sonalee; Namakshi, Nama; Zunker, Christina; Warshauer, Hiroko K.; Warshauer, Max

    2016-01-01

    Making math more engaging for students is a challenge that every teacher faces on a daily basis. These authors write that they are constantly searching for rich problem-solving tasks that cover the necessary content, develop critical-thinking skills, and engage student interest. The Mystery Fraction activity provided here focuses on a key number…

  1. Microbiota of kefir grains

    Directory of Open Access Journals (Sweden)

    Tomislav Pogačić

    2013-03-01

    Full Text Available Kefir grains represent the unique microbial community consisting of bacteria, yeasts, and sometimes filamentous moulds creating complex symbiotic community. The complexity of their physical and microbial structures is the reason that the kefir grains are still not unequivocally elucidated. Microbiota of kefir grains has been studied by many microbiological and molecular approaches. The development of metagenomics, based on the identification without cultivation, is opening new possibilities for identification of previously nonisolated and non-identified microbial species from the kefir grains. Considering recent studies, there are over 50 microbial species associated with kefir grains. The aim of this review is to summarise the microbiota composition of kefir grains. Moreover, because of technological and microbiological significance of the kefir grains, the paper provides an insight into the microbiological and molecular methods applied to study microbial biodiversity of kefir grains.

  2. Hydrolysis of Brewers' Spent Grain by Carbohydrate Degrading Enzymes

    NARCIS (Netherlands)

    Forssell, P.; Kontkanen, H.; Schols, H.A.; Hinz, S.W.A.; Eijsink, V.G.H.; Treimo, J.; Robertson, J.A.; Waldron, K.W.; Faulds, C.B.; Buchert, J.

    2008-01-01

    In this work four commercial cellulase-hemicellulase mixtures with different activity profiles were used for solubilization of carbohydrates from brewers' spent grain (BSG). After the enzyme treatment, both the solubilised fraction and the unhydrolysed residue were characterized. Treatment with

  3. Utilization of Different Corn Fractions by Broilers

    Directory of Open Access Journals (Sweden)

    SIFR Costa

    2015-09-01

    Full Text Available ABSTRACTThis study was conducted to evaluate the nutritional values of fractions of damaged corn. One hundred and eighty 22-d-old Cobb 500 male broilers were distributed in batteries according to a completely randomized design with six treatments of six replicates each. The treatments consisted of diets containing five corn fractions, classified as sound, fermented, insect-damaged, mold-damaged, or reference corn. The test diets consisted of 60% of reference diet + 40% of each corn fraction. Only the reference corn fraction included all the fractions at different proportions (0.8% fermented, 0.05% insect-damaged, 3.3% mold-damaged, and 95.85% sound grains. The method of total excreta collection was used to determine AMEn values and metabolizability coefficients of dry matter (MDM, crude protein (MCP, ether extract (MEE, and gross energy (MGE of the reference corn and its fractions. The density values of the corn fractions were used to calculate the correlations among the evaluated parameters. The evaluated corn fractions presented different compositions values. The insect-damaged and mold-damaged grains presented higher CP level, lower density, and MDM and MCP coefficients compared with the other fractions. However, calculated AMEn values were not significantly different (p>0.05 among corn fractions. A low correlation between density and AMEn content (r0.8 were calculated. Although the evaluated corn fractions presented different nutritional values, there were no marked differences in their utilization by broilers.

  4. Concurrent fractional and equilibrium crystallisation

    Science.gov (United States)

    Sha, Lian-Kun

    2012-06-01

    This paper proposes the concept of concurrent fractional and equilibrium crystallisation (CFEC) in a multi-phase magmatic system in light of experimental results on diffusivities of elements and other species in minerals and melts. A group of equations are presented to describe how the concentrations of an element or isotope change in fractionated solid, equilibrated solid, melt, liquid, and gas phases, as well as in magma, as a function of distribution coefficients and mass fractions during the CFEC process. CFEC model is a generalised and unified formulation that is valid, not only for pure fractional crystallisation (FC) and perfect equilibrium crystallisation (EC) singly, as two of its limiting end-member cases, but also for the geologically more important process of concurrent fractional and equilibrium crystallisation. The concept that both fractional and equilibrium crystallisation can operate concurrently in a magmatic system, for a given element, among different minerals, and even within different-sized crystal grains of the very same mineral phase, is of fundamental importance in deepening our current understanding of magmatic differentiation processes. CFEC probably occurs more frequently in the natural world than either pure fractional or perfect equilibrium crystallisation alone, as a result of the interplay of varying diffusivities of elements under diverse physicochemical conditions, different residence time and growth rates of mineral phases in magmas, and varying grain sizes within each phase and among different phases. The marked systematic variations in trace element concentrations in the melts of the Bishop Tuff have long been perplexing and difficult to reconcile with existing models of differentiation. CFEC, which is able to better explain the scatter trends in a systematic way than fractional crystallisation, is considered to be the cause.

  5. Fraction Reduction through Continued Fractions

    Science.gov (United States)

    Carley, Holly

    2011-01-01

    This article presents a method of reducing fractions without factoring. The ideas presented may be useful as a project for motivated students in an undergraduate number theory course. The discussion is related to the Euclidean Algorithm and its variations may lead to projects or early examples involving efficiency of an algorithm.

  6. Characterizing 3D grain size distributions from 2D sections in mylonites using a modified version of the Saltykov method

    Science.gov (United States)

    Lopez-Sanchez, Marco; Llana-Fúnez, Sergio

    2016-04-01

    conclusion of this work is that both the Saltykov and the two-step methods are accurate and simple enough to be useful in practice in rocks, alloys or ceramics with near-equant grains and expected lognormal distributions. The Saltykov method is particularly suitable to estimate the volumes of particular grain fractions, while the two-step method to quantify the full GSD (mean and standard deviation in log grain size). The two-step method is implemented in a free, open-source and easy-to-handle script (see http://marcoalopez.github.io/GrainSizeTools/).

  7. Differentiation between focal malignant marrow-replacing lesions and benign red marrow deposition of the spine with T2{sup *}-corrected fat-signal fraction map using a three -echo volume interpolated breath-hold gradient echo dixon sequence

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Pyo; Kim, Sung Jun; Chung, Tae Sub; Yoo, Yeon Hwa; Yoon, Choon Sik [Dept. of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Kanneengiesser, Stephan [MR Applications Development, Siemens AG, Healthcare Sector, Erlangen (Germany); Paek, Moon Young [Siemens Ltd., Seoul (Korea, Republic of); Song, Ho Taek; Lee, Young Han; Suh, Jin Suck [Dept. of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2014-12-15

    To assess the feasibility of T2{sup *}-corrected fat-signal fraction (FF) map by using the three-echo volume interpolated breath-hold gradient echo (VIBE) Dixon sequence to differentiate between malignant marrow-replacing lesions and benign red marrow deposition of vertebrae. We assessed 32 lesions from 32 patients who underwent magnetic resonance imaging after being referred for assessment of a known or possible vertebral marrow abnormality. The lesions were divided into 21 malignant marrow-replacing lesions and 11 benign red marrow depositions. Three sequences for the parameter measurements were obtained by using a 1.5-T MR imaging scanner as follows: three-echo VIBE Dixon sequence for FF; conventional T1-weighted imaging for the lesion-disc ratio (LDR); pre- and post-gadolinium enhanced fat-suppressed T1-weighted images for the contrast-enhancement ratio (CER). A region of interest was drawn for each lesion for parameter measurements. The areas under the curve (AUC) of the parameters and their sensitivities and specificities at the most ideal cutoff values from receiver operating characteristic curve analysis were obtained. AUC, sensitivity, and specificity were respectively compared between FF and CER. The AUCs of FF, LDR, and CER were 0.96, 0.80, and 0.72, respectively. In the comparison of diagnostic performance between the FF and CER, the FF showed a significantly larger AUC as compared to the CER (p = 0.030), although the difference of sensitivity (p = 0.157) and specificity (p = 0.157) were not significant. Fat-signal fraction measurement using T2{sup *}-corrected three-echo VIBE Dixon sequence is feasible and has a more accurate diagnostic performance, than the CER, in distinguishing benign red marrow deposition from malignant bone marrow-replacing lesions.

  8. Grain productivity and nitrogen fractions of maize under organic fertilization in semiarid region BrazilProdutividade de grãos e frações nitrogenadas do milho submetido a manejo de adubos orgânicos na região semiárida

    Directory of Open Access Journals (Sweden)

    Dário Costa Primo

    2011-12-01

    Full Text Available The objective of this study was to evaluate the effects of different organic fertilization treatments on maize grain productivity and nitrogen fractions in semi-arid NE Brazil. The experimental plots were established in a Entissol in randomized blocks in a factorial design (2 x 3 + 2 that included two methods of fertilizer application (surface applied or incorporated and three types of organic fertilization (15 t.ha-1 of animal manure, 15 t.ha-1 of Gliricidia sepium prunings, 15 t.ha-1 of Croton sonderianus prunings and control plots without fertilization. The method of application and the three types of organic fertilizer had different effects on maize grain productivity and nutrition. For example, all types of organic fertilizers, when surface applied, significantly increased maize grain productivity and N concentration. Maize leaf N content was greater after surface application of G. sepium prunings. Surface application of manure increased leaf P concentration, but leaf K was greater after incorporation of C. sonderianus prunings. Maize leaf N fractions were inversely related to grain productivity.Visou-se avaliar, neste trabalho, a aplicação de adubos orgânicos sobre as frações nitrogenadas e a sua relação com a produtividade do milho na região semiárida. O milho foi cultivado em um Neossolo Flúvico em parcelas distribuídas em blocos ao acaso com quatro repetições e oito tratamentos arranjados em esquema fatorial (2 x 3 + 2, incluindo dois métodos de aplicação dos adubos (incorporado ou em superfície e quatro tipos de adubação (15 t.ha-1 de biomassa de gliricidia, 15 t.ha-1 de biomassa de marmeleiro, 15 t.ha-1 de esterco e parcelas controle sem adubação. Os adubos orgânicos e os modos de aplicação ao solo influenciaram de forma diferente a produtividade de grãos e a nutrição do milho. Os três tipos de adubos, quando aplicados em superfície, incrementaram produtividade de grãos e os teores de N nos grãos. O teor

  9. Simulating the Entropic Collapse of Coarse-Grained Chromosomes

    Science.gov (United States)

    Shendruk, Tyler N.; Bertrand, Martin; de Haan, Hendrick W.; Harden, James L.; Slater, Gary W.

    2015-02-01

    Depletion forces play a role in the compaction and de-compation of chromosomal material in simple cells but it remains debatable whether they are sufficient to account for chromosomal collapse. We present coarse-grained molecular dynamics simulations, which reveal that depletion-induced attraction is sufficient to cause the collapse of a flexible chain of large structural monomers immersed in a bath of smaller depletants. These simulations use an explicit coarse-grained computational model that treats both the supercoiled DNA structural monomers and the smaller protein crowding agents as combinatorial, truncated Lennard-Jones spheres. By presenting a simple theoretical model, we quantitatively cast the action of depletants on supercoiled bacterial DNA as an effective solvent quality. The rapid collapse of the simulated flexible chromosome at the predicted volume fraction of depletants is a continous phase transition. Additional physical effects to such simple chromosome models, such as enthalpic interactions between structural monomers or chain rigidity, are required if the collapse is to be a first-order phase transition.

  10. Mechanical properties of fine-grained dual phase low-carbon steels based on dynamic transformation

    Institute of Scientific and Technical Information of China (English)

    Haiwei Xu; Wangyue rang; Zuqing Sun

    2008-01-01

    The fine grained dual phase (FG-DP) steel with ferrite grains of 2-4.5 μm and martensite islands smaller than 3 μm was obtained through the mechanism of deformation-enhanced ferrite transformation (DEFT). Mechanical properties of the steel were tested at room temperature. The results indicated that with a similar volume fraction of martensite (about 20vol%), FG-DP steel ex-hibited a superior combination of higher strength and more rapid strain hardening at low strains compared with the coarse-grained dual phase (CG-DP) steel obtained by critical annealing. The combination of higher strength, large elongation, and more rapid strain hardening of FG-DP steel can be attributed to the fine ferrite grain and finely dispersed martensite islands. In addition, the uniformly distributed martensite islands in FG-DP steel have smaller interspaeing compared with that of CG-DP steel. So, at the initial plastic deformation stage, the plastic deformation of ferrite was restrained and more pronounced load was transferred from ferrite to marten-site. The plastic deformation of martensite in FG-DP steel started earlier.

  11. Diffusion-Based Coarse Graining in Hybrid Continuum--Discrete Solvers: Applications in CFD--DEM

    CERN Document Server

    Sun, Rui

    2014-01-01

    In this work, a coarse graining method previously proposed by the authors based on solving diffusion equations is applied to CFD--DEM simulations, where coarse graining is used to obtain solid volume fraction, particle phase velocity, and fluid--particle interaction forces. By examining the conservation requirements, the variables to solve diffusion equations for in CFD--DEM simulations are identified. The algorithm is then implemented to a CFD--DEM solver based on OpenFOAM and LAMMPS, the former being a general-purpose, three-dimensional CFD solver based on unstructured meshes. Numerical simulations are performed for a fluidized bed by using the CFD--DEM solver with the diffusion-based coarse graining algorithm. Converged results are obtained on successively refined meshes, even for meshes with cell sizes comparable to or smaller than the particle diameter. This is a critical advantage of the proposed method over many existing coarse graining methods, and would be particularly valuable when small cells are r...

  12. Effect of Methanol Volume Fractions in Gasoline on Anti-Swelling Property of Rubber Materials%甲醇体积分数不同的甲醇汽油对橡胶材料膨胀性的影响

    Institute of Scientific and Technical Information of China (English)

    熊娥; 闫锋; 张文鹏

    2013-01-01

    Because of inherent characters of rubber materials,there exists some differences on anti-swelling property of rubber materials in gasoline with different methanol volume fraction.Immersion tests in gasoline 93# or gasoline with different methanol proportions are conducted to show the anti-swelling property of 3 rubber materials commonly used in motor vehicles.The results show that silicone rubber has better anti-swelling property in gasoline with high methanol proportion; on the contrary,fluorine rubber has good resistance to swelling in low-proportion-methanol gasoline; Nitrile Rubber has good antiswelling property in all gasoline with different proportion of methanol.%由于橡胶材料自身的特性不同,对甲醇体积分数不同的甲醇汽油的抗膨胀性存在差异,采用汽车上常见的3种橡胶材料分别在93#汽油和不同甲醇体积分数的甲醇汽油中进行浸泡实验.试验结果表明,硅橡胶在高比例甲醇汽油中抗膨胀性较好,氟橡胶在低比例甲醇汽油中抗膨胀性较好,而丁腈类橡胶在不同比例甲醇汽油中均有很好的抗膨胀性.

  13. Effect of the Volume Fraction of Jute Fiber on the Interlaminar Shear Stress and Tensile Behavior Characteristics of Hybrid Glass/Jute Fiber Reinforced Polymer Composite Bar for Concrete Structures

    Directory of Open Access Journals (Sweden)

    Chan-Gi Park

    2016-01-01

    Full Text Available Hybrid glass/jute fiber reinforced polymer (HGJFRP composite bars were manufactured for concrete structures, and their interlaminar shear stress and tensile performance were evaluated. HGJFRP composite bars were manufactured using a combination of pultrusion and braiding processes. Jute fiber was surface-treated with a silane coupling agent. The mixing ratio of the fiber to the vinyl ester used in the HGJFRP composite bars was 7 : 3. Jute fiber was used to replace glass fiber in proportions of 0, 30, 50, 70, and 100%. The interlaminar shear stress decreased as the proportion of jute fiber increased. Fractures appeared due to delamination between the surface-treated component and the main part of the HGJFRP composite bar. Tensile load-strain curves with 50% jute fiber exhibited linear behavior. With a jute fiber volume fraction of 70%, some plastic deformation occurred. A jute fiber mixing ratio of 100% resulted in a display of linear elastic brittle behavior from the fiber; however, when the surface of the fiber was coated with poly(vinyl acetate, following failure, the jute fiber exhibited partial load resistance. The tensile strength decreased as the jute fiber content increased; however, the tensile strength did not vary linearly with jute fiber content.

  14. A new database sub-system for grain-size analysis

    Science.gov (United States)

    Suckow, Axel

    2013-04-01

    Detailed grain-size analyses of large depth profiles for palaeoclimate studies create large amounts of data. For instance (Novothny et al., 2011) presented a depth profile of grain-size analyses with 2 cm resolution and a total depth of more than 15 m, where each sample was measured with 5 repetitions on a Beckman Coulter LS13320 with 116 channels. This adds up to a total of more than four million numbers. Such amounts of data are not easily post-processed by spreadsheets or standard software; also MS Access databases would face serious performance problems. The poster describes a database sub-system dedicated to grain-size analyses. It expands the LabData database and laboratory management system published by Suckow and Dumke (2001). This compatibility with a very flexible database system provides ease to import the grain-size data, as well as the overall infrastructure of also storing geographic context and the ability to organize content like comprising several samples into one set or project. It also allows easy export and direct plot generation of final data in MS Excel. The sub-system allows automated import of raw data from the Beckman Coulter LS13320 Laser Diffraction Particle Size Analyzer. During post processing MS Excel is used as a data display, but no number crunching is implemented in Excel. Raw grain size spectra can be exported and controlled as Number- Surface- and Volume-fractions, while single spectra can be locked for further post-processing. From the spectra the usual statistical values (i.e. mean, median) can be computed as well as fractions larger than a grain size, smaller than a grain size, fractions between any two grain sizes or any ratio of such values. These deduced values can be easily exported into Excel for one or more depth profiles. However, such a reprocessing for large amounts of data also allows new display possibilities: normally depth profiles of grain-size data are displayed only with summarized parameters like the clay

  15. Field measurements for food grain packing factors in US

    Science.gov (United States)

    Grain is commonly stored in tall bins, often exceeding 30 m deep, in commercial storage facilities. Grain can support the large overbearing pressure without crushing; however, it yields somewhat to compaction due to the overbearing pressure leading to an increase in bulk density and change in volume...

  16. A unified model of grain alignment: Radiative Alignment of Interstellar Grains with magnetic inclusions

    CERN Document Server

    Hoang, Thiem

    2016-01-01

    The radiative torque (RAT) alignment of interstellar grains with ordinary paramagnetic susceptibilities has been supported by a number of earlier studies. The alignment of such grains depends on the so-called RAT parameter $q^{\\max}$ that is determined by the grain shape. For interstellar grains with a broad range of $q^{\\max}$, a significant fraction of grains is expected to get aligned with low angular momentum at the so-called low-J attractor points, which entail degrees of alignment between 20 or 30 percent, irrespectively of the strength of RATs. The latter value may not be sufficient for explaining the observed interstellar alignment in the diffuse medium. In this paper, we elaborate our model of radiative alignment for grains with enhanced magnetic susceptibility due to magnetic inclusions, such that both Magnetic torque and RAdiative Torque (MRAT) play a role in grain alignment. Such grains can get aligned with high angular momentum at the so-called high-J attractor points, which achieve a high degree...

  17. Coarsening kinetics of topologically highly correlated grain boundary networks

    Science.gov (United States)

    Tang, Ming; Reed, Bryan W.; Kumar, Mukul

    2012-08-01

    We apply phase-field simulations in two dimensions to study the thermal coarsening of grain boundary (GB) networks with high fractions of twin and twin-variant boundaries, which for example are seen in grain-boundary-engineered FCC materials. Two types of grain boundary networks with similar starting special boundary fractions but different topological features were considered as initial conditions for the grain growth simulations. A lattice Monte Carlo method creates polycrystalline microstructures (Reed and Kumar (RK)), which exhibit hierarchical organization of random and special coincidence site lattice boundaries. The other type of microstructures (randomly distributed (RD)) contains random distributions of special boundaries subject only to crystallographic constraints. Under the assumption that random boundaries have larger energy and much higher mobility than special boundaries, simulations show that increasing the initial special boundary fraction in both microstructures slows down grain growth. However, the two starting microstructures exhibit very different behavior in the evolution of GB character and triple junction (TJ) distributions. The RD networks coarsened more slowly than the RK networks with comparable initial fractions of special boundaries. The observed trend in the evolution of the RK microstructures is explained by an extended von Neumann-Mullins analysis. This study demonstrates that the special boundary fraction is not a sufficient indicator of the coarsening behavior of twinned GB networks; the network topology must also be considered to correctly predict the grain growth kinetics.

  18. The fractionation of adipose tissue procedure to obtain stromal vascular fractions for regenerative purposes

    NARCIS (Netherlands)

    van Dongen, Joris A.; Stevens, Hieronymus P.; Parvizi, Mojtaba; van der Lei, Berend; Harmsen, Martin C.

    2016-01-01

    Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be obt

  19. The Fractionation of Adipose Tissue (FAT) procedure to obtain stromal vascular fractions for regenerative purposes

    NARCIS (Netherlands)

    van Dongen, Joris A; Stevens, Hieronymus P; Parvizi, Mojtaba; van der Lei, Berend; Harmsen, Martin C

    2016-01-01

    Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be obt

  20. The fractionation of adipose tissue procedure to obtain stromal vascular fractions for regenerative purposes

    NARCIS (Netherlands)

    van Dongen, Joris A.; Stevens, Hieronymus P.; Parvizi, Mojtaba; van der Lei, Berend; Harmsen, Martin C.

    2016-01-01

    Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be obt

  1. Fractional complex transforms for fractional differential equations

    National Research Council Canada - National Science Library

    Ibrahim, Rabha W

    2012-01-01

    The fractional complex transform is employed to convert fractional differential equations analytically in the sense of the Srivastava-Owa fractional operator and its generalization in the unit disk...

  2. Influence of porosity on densification and grain growth kinetics of Ce0.9Gd0.1O1.95 tape

    DEFF Research Database (Denmark)

    Ni, De Wei; Esposito, Vincenzo; Foghmoes, Søren Preben Vagn;

    Gadolinium doped-ceria (CGO) is an important material that offers high stability, tolerance against harsh environments and high ionic and electronic conductivity at high temperatures. For most of its applications, CGO is applied as a thin dense layer on a porous support structure. However, highly...... porous layer allowing gas flow is necessary in catalytic and in gas purification devices. During the sintering with shrinkage, the total solid volume is maintained to be a constant value but the shape and size of each particle change with the formation of grain boundaries. This change in solid particles...... is accompanied by the change of shape, size and fraction of pores in a given volume. Therefore, porosity can be treated as an extra phase during sintering study. In this work, we presented the densification and grain growth behaviour of Ce0.9Gd0.1O1.95 tape cast layers with different percentage of porosity...

  3. Kinetic Modeling of Sunflower Grain Filling and Fatty Acid Biosynthesis

    Science.gov (United States)

    Durruty, Ignacio; Aguirrezábal, Luis A. N.; Echarte, María M.

    2016-01-01

    Grain growth and oil biosynthesis are complex processes that involve various enzymes placed in different sub-cellular compartments of the grain. In order to understand the mechanisms controlling grain weight and composition, we need mathematical models capable of simulating the dynamic behavior of the main components of the grain during the grain filling stage. In this paper, we present a non-structured mechanistic kinetic model developed for sunflower grains. The model was first calibrated for sunflower hybrid ACA855. The calibrated model was able to predict the theoretical amount of carbohydrate equivalents allocated to the grain, grain growth and the dynamics of the oil and non-oil fraction, while considering maintenance requirements and leaf senescence. Incorporating into the model the serial-parallel nature of fatty acid biosynthesis permitted a good representation of the kinetics of palmitic, stearic, oleic, and linoleic acids production. A sensitivity analysis showed that the relative influence of input parameters changed along grain development. Grain growth was mostly affected by the specific growth parameter (μ′) while fatty acid composition strongly depended on their own maximum specific rate parameters. The model was successfully applied to two additional hybrids (MG2 and DK3820). The proposed model can be the first building block toward the development of a more sophisticated model, capable of predicting the effects of environmental conditions on grain weight and composition, in a comprehensive and quantitative way. PMID:27242809

  4. Against the Grain

    DEFF Research Database (Denmark)

    Pedersen, Peter Ole

    2016-01-01

    Katalog-tekst til udstillingen Against the Grain om atomar-fotografi og det antropocæne. Kurateret af Peter Ole Pedersen på Galleri Image, august-oktober 2016.......Katalog-tekst til udstillingen Against the Grain om atomar-fotografi og det antropocæne. Kurateret af Peter Ole Pedersen på Galleri Image, august-oktober 2016....

  5. Grain destruction in shocks in the interstellar medium

    Science.gov (United States)

    Jones, A. P.; Tielens, A. G. G. M.; Hollenbach, D. J.; McKee, C. F.

    1994-10-01

    Destruction of interstellar dust occurs predominantly in supernova shock waves in the warm neutral/ionized medium (density approximately = 0.25/cu cm, temperature approximately = 104 K). Recent theoretical developments and laboratory data for sputtering processes and grain-grain collisional vaporization allows us to better evaluate the grain destruction rate in interstellar shocks in the warm medium. We find that, independent of composition, grain destruction in supernova blast waves is dominated by nonthermal sputtering for shock velocities greater than 50 km/s and less than or equal to 150 km/s and thermal sputtering at higher shock velocities. We use a detailed scheme for the vaporization of grains colliding at high velocities (vs greater than or equal to 20 km/s) and show that the grain-grain collision destruction process is only dominant for shock velocities of less than or equal to 50-80 km/s and is less important than previously assumed. Nevertheless, the grain-grain destruction rates are of order 30%-90% of the sputtering rates at vs greater than 100 km/s and less than 200 km/s and are important in vaporizing the cores of grains. Detailed results for grain destruction as a function of grain size and composition are presented. We also present results for silicon carbide, iron, ice, and porous test particles. For carbonaceous grains we find that the fractional destruction is less than or equal to 0.29, and for silicate it is less than or equal to 0.45, for vs less than or equal to 200 km/s. We have calculated grain lifetimes, using the three-phase model of the interstellar medium, and find lifetimes of 4 x 108 yr for carbonaceous grains and 2.2 x 108 yr for silicate grains. Given that the typical stardust injection timescale of 2.5 x 109 yr, we conclude that efficient mechanisms for grain growth in the interstellar medium must exist in order that a significant fraction of the refractory elements be incorporated in dust, as observed. Therefore, although our

  6. 前处理对高体积分数SiCp/Al复合材料化学镀镍的影响∗%Influence of pretreatment on electroless nickel plating on high volume fraction SiCp/Al composite

    Institute of Scientific and Technical Information of China (English)

    张建云; 张灿铭; 李普同; 崔霞

    2014-01-01

    对高体积分数 SiCp/Al 复合材料进行前处理,再化学镀镍。研究了除油、粗化、活化对 SiCp/Al复合材料化学镀镍的影响。分析了镀镍层的显微组织。结果表明,有机溶剂除油比碱液除油效果好。H2 O2系粗化比 HF 系粗化更为适宜。在由醋酸镍、次亚磷酸钠和乙醇组成的活化剂中室温浸润,然后160℃温度下热还原30 min,化学镀镍镀速较高。前处理后在 SiCp/Al 复合材料表面化学镀镍可沉积上致密、均匀、结合良好的镀镍层。%The high volume fraction SiCp/Al composite was processed by pretreatment,then it was proceeded by electroless nickel plating.The influence of deoiling,roughening,activating on electroless nickel plating on SiCp/Al composite was investigated.The microstructure of electroless nickel plating on composite was ana-lyzed.The results show that organic solvent was better than alkaline solvent for deoiling.H2 O2 system was more appropriate than HF system for roughening.Infiltrating in activation solution consisted nickel acetate,so-dium hypophosphite and alcohol at room temperature,then thermo deoxidizing at 160 ℃ temperature for 30 min,the procedure makes electroless nickel plating rate higher.After pretreatment,electroless nickel plating deposited on SiCp/Al composite surface was dense,uniform,firmly combined.

  7. Fractional complex transform for fractional differential equations

    National Research Council Canada - National Science Library

    Lİ, Zheng Biao; HE, Ji Huan

    2010-01-01

    Fractional complex transform is proposed to convert fractional differential equations into ordinary differential equations, so that all analytical methods devoted to advanced calculus can be easily...

  8. Physics of Grain Alignment

    CERN Document Server

    Lazarian, A

    2000-01-01

    Aligned grains provide one of the easiest ways to study magnetic fields in diffuse gas and molecular clouds. How reliable our conclusions about the inferred magnetic field depends critically on our understanding of the physics of grain alignment. Although grain alignment is a problem of half a century standing recent progress achieved in the field makes us believe that we are approaching the solution of this mystery. I review basic physical processes involved in grain alignment and show why mechanisms that were favored for decades do not look so promising right now. I also discuss why the radiative torque mechanism ignored for more than 20 years looks right now the most powerful means of grain alignment.

  9. Biofortification and localization of zinc in wheat grain.

    Science.gov (United States)

    Cakmak, I; Kalayci, M; Kaya, Y; Torun, A A; Aydin, N; Wang, Y; Arisoy, Z; Erdem, H; Yazici, A; Gokmen, O; Ozturk, L; Horst, W J

    2010-08-25

    Zinc (Zn) deficiency associated with low dietary intake is a well-documented public health problem, resulting in serious health and socioeconomic problems. Field experiments were conducted with wheat to test the role of both soil and foliar application of ZnSO4 in Zn concentration of whole grain and grain fractions (e.g., bran, embryo and endosperm) in 3 locations. Foliar application of ZnSO4 was realized at different growth stages (e.g., stem elongation, boot, milk, dough stages) to study the effect of timing of foliar Zn application on grain Zn concentration. The rate of foliar Zn application at each growth stage was 4 kg of ZnSO4·7H2O ha(-1). Laser ablation (LA)-ICP-MS was used to follow the localization of Zn within grain. Soil Zn application at a rate of 50 kg of ZnSO4·7H2O ha(-1) was effective in increasing grain Zn concentration in the Zn-deficient location, but not in the locations without soil Zn deficiency. In all locations, foliar application of Zn significantly increased Zn concentration in whole grain and in each grain fraction, particularly in the case of high soil N fertilization. In Zn-deficient location, grain Zn concentration increased from 11 mg kg(-1) to 22 mg kg(-1) with foliar Zn application and to 27 mg kg(-1) with a combined application of ZnSO4 to soil and foliar. In locations without soil Zn deficiency, combination of high N application with two times foliar Zn application (e.g., at the booting and milk stages) increased grain Zn concentration, on average, from 28 mg kg(-1) to 58 mg kg(-1). Both ICP-OES and LA-ICP-MS data showed that the increase in Zn concentration of whole grain and grain fractions was pronounced when Zn was sprayed at the late growth stage (e.g., milk and dough). LA-ICP-MS data also indicated that Zn was transported into endosperm through the crease phloem. To our knowledge, this is the first study to show that the timing of foliar Zn application is of great importance in increasing grain Zn in wheat, especially in

  10. Fine-grained concrete with organomineral additive

    Directory of Open Access Journals (Sweden)

    Solovyov Vitaly

    2016-01-01

    Full Text Available The article deals with the issues concerning the formation of the structure and properties of fine-grained concrete with organomineral additive produced through mechanochemical activation of thermal power plant fly ash together with superplasticizer. The additive is produced in a high-speed activator at the collision particles’ speed of about 80 m/s. The use of the additive in fine-grained concrete in the amounts of 0.5-1% increased the strength by 30-50% and reduced the size and volume of pores. The cement consumption in such concrete is close to the cement consumption in common concrete of equal resistance.

  11. Contactless electrical conductivity measurement of metallic submicron-grain material: Application to the study of aluminum with severe plastic deformation.

    Science.gov (United States)

    Mito, M; Matsui, H; Yoshida, T; Anami, T; Tsuruta, K; Deguchi, H; Iwamoto, T; Terada, D; Miyajima, Y; Tsuji, N

    2016-05-01

    We measured the electrical conductivity σ of aluminum specimen consisting of submicron-grains by observing the AC magnetic susceptibility resulting from the eddy current. By using a commercial platform for magnetic measurement, contactless measurement of the relative electrical conductivity σn of a nonmagnetic metal is possible over a wide temperature (T) range. By referring to σ at room temperature, obtained by the four-terminal method, σn(T) was transformed into σ(T). This approach is useful for cylinder specimens, in which the estimation of the radius and/or volume is difficult. An experiment in which aluminum underwent accumulative roll bonding, which is a severe plastic deformation process, validated this method of evaluating σ as a function of the fraction of high-angle grain boundaries.

  12. Modification of computer simulation of normal grain growth

    Institute of Scientific and Technical Information of China (English)

    李剑; 李世晨; 郑子樵; 刘祖耀; 陈大钦

    2004-01-01

    A set of principles on transition probability was supplied for the physical process of grain growth. In accord with these principles, a modified transition probability considering the influence of temperature was put forward to simulate the normal grain growth relying on temperature and second phase particles. The modified transition probability correctly reflects the dependence of grain growth on the temperature. The effect of different shapes of second phase particles on the grain growth process was taken into account using the modified transition probability.The relationship between the area fraction of second phase particles and the limit of grain size of the matrix was given. The microstructural evolution patterns employed to 2-D were given. The results agree well with the real grain growth process. All these suggest that the modified transition probability is better than the conventional one.

  13. Abnormal Grain Growth Suppression in Aluminum Alloys

    Science.gov (United States)

    Hales, Stephen J. (Inventor); Claytor, Harold Dale (Inventor); Alexa, Joel A. (Inventor)

    2015-01-01

    The present invention provides a process for suppressing abnormal grain growth in friction stir welded aluminum alloys by inserting an intermediate annealing treatment ("IAT") after the welding step on the article. The IAT may be followed by a solution heat treatment (SHT) on the article under effectively high solution heat treatment conditions. In at least some embodiments, a deformation step is conducted on the article under effective spin-forming deformation conditions or under effective superplastic deformation conditions. The invention further provides a welded article having suppressed abnormal grain growth, prepared by the process above. Preferably the article is characterized with greater than about 90% reduction in area fraction abnormal grain growth in any friction-stir-welded nugget.

  14. Caracterização, fracionamento protéico, degradabilidade ruminal e digestibilidade in vitro da matéria seca e proteína bruta do resíduo de cervejaria úmido e fermentado = Characterization, protein fractioning, dry matter and crude protein rumen degradability and in vitro digestibility of wet and fermented brewer’s grain

    Directory of Open Access Journals (Sweden)

    Luiz Juliano Valério Geron

    2007-07-01

    Full Text Available Foram avaliadas as frações da proteína e dos carboidratos, a degradabilidade ruminal efetiva (DE da matéria seca (MS e proteína bruta (PB, a digestibilidade ruminal in vitro (DRIV da MS e PB, a digestibilidade intestinal in vitro (DIIV da proteína nãodegradadano rúmen (PNDR e os perfis de aminoácidos (AA e de ácidos graxos (AG do resíduo de cervejaria úmido (RCU e fermentado (RCF. O RCF foi obtido pelo processo de fermentação microbiana do RCU. Para determinar a DE da MS e PB do RCU e RCF, foram utilizados três novilhos da raça Holandesa, portadores de cânula ruminal. A DIIV daPNDR foi obtida pelo método de três estágios. Os dados obtidos para DE da MS e PB foram submetidos à análise de variância, em elineamento inteiramente casualizado. A fração A da PB do RCU foi de 7,9% e do RCF de 13,1% da PB. A DE da PB a 5% h-1 não diferiu (p The study evaluated the protein and carbohydrate fraction, dry matter (DM and crude protein (CP effective rumen degradability (ED, DM and CP in vitro ruminal digestibility (RDIV, rumen-undegradable protein (RUDP in vitro intestinal digestion (IDIV and amino-acid (AA and fatty acid (FA profile of the wet brewer’s grain (WBG, andfermented brewer’s grain (FBG. FBG was obtained from WBG fermentation. The DM and CP ED of WBG and FBG were determined in three Holstein steers with ruminal cannula. The IDIV of RUDP was obtained by the three-stage method. The values obtained for DM and CP ED were submitted to variance analysis, in a randomized design. The Afraction of WBG CP was 7.9%, and for FBG 13.1% of CP. The CP RD in a rate of 5% h-1 did not differ (p > 0.05 between WBG and FBG. The crude protein RDIV of FBG was 8.7% and IDIV of RUDP of WBG and FBG were of 70.5% and 72.5%, respectively. The AA and FA profile of WBG and FBG were similar. The anaerobic fermentation process did not change the nutritional characteristics of the WBG.

  15. Thermomagnetic Stability in Pseudo Single Domain Grains

    Science.gov (United States)

    Nagy, Lesleis; Williams, Wyn; Muxworthy, Adrian; Fabian, Karl; Conbhuí, Pádraig Ó.

    2016-04-01

    The reliability of paleomagnetic remanences are well understood for fine grains of magnetite that are single-domain (SD, uniformly magnetized). In particular Néel's theory [1] outlined the thermal energies required to block and unblock magnetic remanences. This lead to determination of thermal stability for magnetization in fine grains as outlined in Pullaiah et. al. [2] and a comprehensive understanding of SD paleomagnetic recordings. It has been known for some time that single domain magnetite is possible only in the grain size range 30 - 80nm, which may only account for a small fraction of the grain size distribution in any rock sample. Indeed rocks are often dominated by grains in the pseudo single domain (PSD) size range, at approximately 80 - 1000nm. Toward the top end of this range multi-domain features begin to dominate. In order to determine thermomagnetic stability in PSD grains we need to identify the energy barriers between all possible pairs of local energy minima (LEM) domain states as a function of both temperature and grain size. We have attempted to do this using the nudged elastic band (NEB) method [3] which searches for minimum energy paths between any given pair of LEM states. Using this technique we have determined, for the first time, complete thermomagnetic stability curves for PSD magnetite. The work presented is at a preliminary stage. However it can be shown that PSD grains of magnetite with simple geometries (e.g. cubes or cuboctahedra) have very few low energy transition paths and the stability is likely to be similar to that observed for SD grains (as expected form experimental observations). The results will provide a basis for a much more rigorous understanding of the fidelity of paleomagnetic signals in assemblages of PSD grains and their ability to retain ancient recordings of the geomagnetic field. References: [1] Néel, Louis. "Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres

  16. Parsing abnormal grain growth in specialty aluminas

    Science.gov (United States)

    Lawrence, Abigail Kremer

    Grain growth in alumina is strongly affected by the impurities present in the material. Certain impurity elements are known to have characteristic effects on abnormal grain growth in alumina. Specialty alumina powders contain multiple impurity species including MgO, CaO, SiO2, and Na 2O. In this work, sintered samples made from alumina powders containing various amounts of the impurities in question were characterized by their grain size and aspect ratio distributions. Multiple quantitative methods were used to characterize and classify samples with varying microstructures. The grain size distributions were used to partition the grain size population into subpopulations depending on the observed deviation from normal behavior. Using both grain size and aspect ratio a new visual representation for a microstructure was introduced called a morphology frequency map that gives a fingerprint for the material. The number of subpopulations within a sample and the shape of the distribution on the morphology map provided the basis for a classification scheme for different types of microstructures. Also using the two parameters a series of five metrics were calculated that describe the character of the abnormal grains in the sample, these were called abnormal character values. The abnormal character values describe the fraction of grains that are considered abnormal, the average magnitude of abnormality (including both grain size and aspect ratio), the average size, and variance in size. The final metric is the correlation between grain size and aspect ratio for the entire population of grains. The abnormal character values give a sense of how different from "normal" the sample is, given the assumption that a normal sample has a lognormal distribution of grain size and a Gaussian distribution of aspect ratios. In the second part of the work the quantified measures of abnormality were correlated with processing parameters such as composition and heat treatment conditions. A

  17. Direct observation of 3-D grain growth in Al–0.1% Mn

    DEFF Research Database (Denmark)

    Schmidt, Søren; Olsen, Ulrik Lund; Poulsen, Henning Friis

    2008-01-01

    Grain growth in an Al-0.1% Mn sample has been measured non-destructively using a three-dimensional X-ray diffraction (3DXRD) microscope. The 3-D grain morphology as well as the crystallographic orientation was determined for 483 grains in the illuminated volume prior to annealing. After annealing...

  18. Percolation of open grain boundaries and change in electrical conductivity

    Science.gov (United States)

    Watanabe, T.

    2016-12-01

    Numerical experiments were conducted on the percolation of open grain boundaries to study the percolation threshold and evolution of connectivity. Open grain boundaries are a major component of pores in crustal materials. Electrical conductivity and permeability are highly sensitive to the connectivity of open brain boundaries. The length and size of the largest cluster was surveyed in a 3D array of cubic grains for various fractions of open grain boundary. For sufficiently large size of array, the percolation threshold was found to be 0.25. If more than 25% of grain boundaries are open, an interconnected network of open grain boundaries is formed. If the aggregate is saturated with brine, the electrical conduction can occur through open grain boundaries. The connectivity of open grain boundaries steeply increases to 1 around the threshold. The electrical conductivity is also expected to increase steeply. The crack density parameter for the percolation threshold is estimated to be 0.1. The large change in electrical conductivity for a small change in crack density parameter is thus expected around crack density parameter of 0.1. Simultaneous measurements on elastic wave velocity and electrical conductivity in a brine saturated granitic rock (Watanabe and Higuchi, 2015) showed a steep change in electrical conductivity around the crack density parameter of 0.1. XCT images show that open grain boundaries are the dominant pores in the sample. The steep change in conductivity must thus be related to the percolation of open grain boundaries.

  19. Strength of Rocks Affected by Deformation Enhanced Grain Growth

    Science.gov (United States)

    Kellermann Slotemaker, A.; de Bresser, H.; Spiers, C.

    2005-12-01

    modeling package ELLE. Synthetic olivine samples that were heat treated without straining showed only minor grain growth. Presumably, the second phase (enstatite) and/or porosity remaining in the starting material after densification slowed down or inhibited SED-GBM in the static situation. In contrast, samples heat treated and deformed for time durations similar to those of the static tests demonstrated, at identical temperature, an increase in grain size with increasing strain up to a value twice that of the static counterpart. This grain coarsening was associated with continuous hardening of the material, witnessed by the stress-strain curves. A random lattice preferred orientation combined with a low stress sensitivity (n~2) suggested dominant GSS creep controlled by grain boundary sliding. A dynamic grain growth model involving an increase in the fraction of non-hexagonal grains, related to grain neighbor switching, appears applicable to the observed grain growth that is held responsible for the hardening. The ELLE numerical modeling demonstrated that a combination of SED-GBM and geometrical deformation of a 2D grain aggregate can indeed result in enhanced grain growth compared to static grain growth tests. The fraction of non-hexagonal grains was found to remain more or less constant during static grain growth but increased during deformation. We suggest that the application of the dynamic grain growth model to the long-term microstructural evolution of fine-grained lithospheric shear zones can further improve our understanding of the transient or permanent character of strain localizations and related rheological behavior.

  20. Meadow based Fraction Theory

    OpenAIRE

    Bergstra, Jan A.

    2015-01-01

    In the context of an involutive meadow a precise definition of fractions is formulated and on that basis formal definitions of various classes of fractions are given. The definitions follow the fractions as terms paradigm. That paradigm is compared with two competing paradigms for storytelling on fractions: fractions as values and fractions as pairs.

  1. Effect of grain size on optical transmittance of birefringent polycrystalline ceramics

    Science.gov (United States)

    Wen, Tzu-Chien

    Polycrystalline ceramics are increasingly used for fabricating windows and domes for the mid infra-red regime (3-5 mum) due to their superior durability as compared to glass and the lower cost of their fabrication and finishing relative to single crystals without significant compromise in optical properties. Due to the noncubic structure, MgF2 and Al2O3 are birefringent ceramics. Birefringence causes scatter of light at the grain boundaries and diminishes in-line transmittance and optical performance. This dissertation presents experimental results and analyses of the grain-size and wavelength dependence of the in-line transmittance of polycrystalline MgF2 and Al2O3. Chapter 2 presents experimental results and analyses of light transmission in polycrystalline MgF2 as a function of the mean grain size at different wavelengths. The scattering coefficient of polycrystalline MgF 2 increased linearly with the mean grain size and inversely with the square of the wavelength of light. These trends are consistent with theoretical models based on both a limiting form of the Raleigh-Gans-Debye theory of particle scattering and light retardation theories that take refractive-index variations along the light path. Chapter 3 investigates the applicability of particle light scattering theories to light attenuation in birefringent polycrystalline ceramics by measuring light transmittance in a model two-phase system. The system consisted of microspheres of silica dispersed in a solution of glycerol in water. It was found that RGD theory showed the systematic deviation for higher particle volume fraction (φ > 0.2) and larger particle size (d p > 1 mum). This result suggested that light scattering models based on single particle scattering are unlikely to provide viable physical explanation for the effect of grain size on light transmittance in birefringent polycrystalline ceramics due to the high volume fraction in dense polycrystalline ceramics. Chapter 4 analyses light

  2. Effect the addition of 10% (volume fraction) chromium on the mechanical properties of NiAlCr processed by powder metallurgy; Efecto de la adicion de un 10% en volumen de cromo en el comportamiento a traccion de aleaciones pulvimetalurgicas NiAlCr

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Barriocanal, J.; Garces, G.; Perez, P.; Adeva, P.

    2005-07-01

    The mechanical properties of Ni{sub 3}Al-Cr reinforced with 10% in volume fraction of chromium particles produced by powder metallurgy have been studied. For this purpose, milled powders with composition of Ni-20.9Al-8Cr-0.49B (% st.) with and without the addition of 10% in volume fraction of chromium particles have been produced. Both alloys were consolidated by hot isostatic pressing (HIP). After HIP, heat treatment was applied to homogenize the microstructure. The chromium reinforcement has an important effect in the yield strength and ultimate strength increase. The reinforced alloy presents a yield strength of 1300 MPa at room temperature with respect to 800 MPa for the un-reinforced material. After heat treatment, the yield strength of both alloys does not change significantly. However, a decrease in ductility and ultimate tensile strength have been observed. (Author) 4 refs.

  3. T1 mapping of the myocardium: intra-individual assessment of post-contrast T1 time evolution and extracellular volume fraction at 3T for Gd-DTPA and Gd-BOPTA

    Directory of Open Access Journals (Sweden)

    Kawel Nadine

    2012-04-01

    Full Text Available Abstract Purpose Myocardial T1 relaxation time (T1 time and extracellular volume fraction (ECV are altered in patients with diffuse myocardial fibrosis. The purpose of this study was to perform an intra-individual assessment of normal T1 time and ECV for two different contrast agents. Methods A modified Look-Locker Inversion Recovery (MOLLI sequence was acquired at 3 T in 24 healthy subjects (8 men; 28 ± 6 years at mid-ventricular short axis pre-contrast and every 5 min between 5-45 min after injection of a bolus of 0.15 mmol/kg gadopentetate dimeglumine (Gd-DTPA; Magnevist® (exam 1 and 0.1 mmol/kg gadobenate dimeglumine (Gd-BOPTA; Multihance® (exam 2 during two separate scanning sessions. T1 times were measured in myocardium and blood on generated T1 maps. ECVs were calculated as ΔR1myocardium/ΔR1blood*1−hematocrit. Results Mean pre-contrast T1 relaxation times for myocardium and blood were similar for both the first and second CMR exam (p > 0.5. Overall mean post-contrast myocardial T1 time was 15 ± 2 ms (2.5 ± 0.7% shorter for Gd-DTPA at 0.15 mmol/kg compared to Gd-BOPTA at 0.1 mmol/kg (p  0.05. Between 5 and 45 minutes after contrast injection, mean ECV values increased linearly with time for both contrast agents from 0.27 ± 0.03 to 0.30 ± 0.03 (p pre-contrast myocardial T1 relaxation time (CV 4.5% [exam 1] and 3.0% [exam 2], respectively. ECV with Gd-DTPA was highly correlated to ECV by Gd-BOPTA (r = 0.803; p  Conclusion In comparison to pre-contrast myocardial T1 relaxation time, variation in ECV values of normal subjects is larger. However, absolute differences in ECV between Gd-DTPA and Gd-BOPTA were small and rank correlation was high. There is a small and linear increase in ECV over time, therefore ideally images should be acquired at the same delay after contrast injection.

  4. Organic Wheat Farming Improves Grain Zinc Concentration.

    Science.gov (United States)

    Helfenstein, Julian; Müller, Isabel; Grüter, Roman; Bhullar, Gurbir; Mandloi, Lokendra; Papritz, Andreas; Siegrist, Michael; Schulin, Rainer; Frossard, Emmanuel

    2016-01-01

    Zinc (Zn) nutrition is of key relevance in India, as a large fraction of the population suffers from Zn malnutrition and many soils contain little plant available Zn. In this study we compared organic and conventional wheat cropping systems with respect to DTPA (diethylene triamine pentaacetic acid)-extractable Zn as a proxy for plant available Zn, yield, and grain Zn concentration. We analyzed soil and wheat grain samples from 30 organic and 30 conventional farms in Madhya Pradesh (central India), and conducted farmer interviews to elucidate sociological and management variables. Total and DTPA-extractable soil Zn concentrations and grain yield (3400 kg ha-1) did not differ between the two farming systems, but with 32 and 28 mg kg-1 respectively, grain Zn concentrations were higher on organic than conventional farms (t = -2.2, p = 0.03). Furthermore, multiple linear regression analyses revealed that (a) total soil zinc and sulfur concentrations were the best predictors of DTPA-extractable soil Zn, (b) Olsen phosphate taken as a proxy for available soil phosphorus, exchangeable soil potassium, harvest date, training of farmers in nutrient management, and soil silt content were the best predictors of yield, and (c) yield, Olsen phosphate, grain nitrogen, farmyard manure availability, and the type of cropping system were the best predictors of grain Zn concentration. Results suggested that organic wheat contained more Zn despite same yield level due to higher nutrient efficiency. Higher nutrient efficiency was also seen in organic wheat for P, N and S. The study thus suggests that appropriate farm management can lead to competitive yield and improved Zn concentration in wheat grains on organic farms.

  5. Estimation of critical current density and grain connectivity in superconducting MgB 2 bulk using Campbell’s method

    Science.gov (United States)

    Ni, B.; Morita, Y.; Liu, Z.; Liu, C.; Himeki, K.; Otabe, E. S.; Kiuchi, M.; Matsushita, T.

    2008-09-01

    Many recent reports on the critical current density ( Jc) in superconducting MgB 2 bulks indicated that improving the grain connectivity is important, since the obtained Jc values were generally much lower than those in other metallic superconductors and it was ascribed to the poor connectivity between grains in polycrystalline MgB 2. In this study, we focused on the estimation of the global critical current density, super-current path, grain connectivity and their relationships with the faults volume fraction in the MgB 2 bulks prepared by a modified PIT (powder in tube) method. Campbell’s method was applied for the purpose of obtaining the penetrating AC flux profile and the characteristic of AC magnetic field vs. penetration depth from the sample’s surface. A computer simulation on the penetrating AC flux profile in MgB 2 bulks with randomly distributed voids, oxidized grains and other faults was also carried out. Jc obtained by Campbell’s method turned out to be smaller than that obtained from the SQUID measurement, implying that the global super-current was reduced by the existence of various faults and the lack of the electrical connectivity. It was verified that the relationship between the global critical current characteristics and the faults contained in MgB 2 samples can be quantitatively clarified by comparing the simulated critical current densities and other factors with the experimental results.

  6. An experimental and modeling study of grain-scale uranium desorption from field-contaminated sediments and the potential influence of microporosity on mass-transfer

    Science.gov (United States)

    Stoliker, D.; Liu, C.; Kent, D. B.; Zachara, J. M.

    2012-12-01

    bulk sediment sample. Volumes of pores less than 2.4 nm, quantified using nitrogen adsorption-desorption isotherms, were the same for all size fractions < 2 mm, nearly double that of the 2-8 mm size fraction. Similarity in the observed pore volumes and multi-rate mass-transfer parameters across all size fractions <2 mm suggest the importance of pores in this size class in controlling slow grain-scale U(VI) desorption rates. Models like these provide a means for testing the influence of grain-scale mass-transfer on the persistence of U(VI) plume at the site.

  7. 激光熔注中增强相颗粒对晶粒生长影响的CA模拟∗%Simulation of effect of reinforcement particles on grain growth during laser melt inj ection based on CA

    Institute of Scientific and Technical Information of China (English)

    赵明娟; 邓志成; 赵龙志

    2015-01-01

    基于元胞自动机法,结合 Moore 型邻居定义和晶粒生长理论,建立了增强相颗粒 SiC 对镁合金激光熔注中表层316L不锈钢晶粒生长的影响模型,模型考虑了晶界迁移率和晶界能等因素,实现了不同增强相颗粒体积分数和颗粒尺寸对晶粒生长影响的计算机模拟.结果表明,所建立的模型能较好的模拟晶粒生长过程,所得晶粒生长指数为0.42;增强相颗粒体积分数含量越高,晶粒生长越慢,晶粒尺寸越小;增强相颗粒尺寸越小,晶粒生长的越慢,晶粒尺寸越小,组织越均匀.%Based on the cellular automaton method,the definition of Moore neighbor type and the grain growth theory,a model of simulation for the grain growth process was established,which simulated the influence of the SiC reinforcement particles and 316L stainless steel reinforced the surface of magnesium alloy by laser melt inj ection.Many factors such as grain boundary mobility and grain boundary energy were considered in the mod-el.Simulated the influence of different volume fraction and size of reinforcement particles on the grain growth process were obtained.The results show that:the grain growth process can be simulated very well by the meth-od,the grain growth index can be obtained as 0.42;the higher volume fraction of the particles,the slower the speed of the grain growth,the smaller grain size;the smaller the particles size is,the slower the grain grows, the smaller grain size and the microstructure is more uniform.

  8. Patterns of sand fractions influence on microalgae of the marine coast

    Directory of Open Access Journals (Sweden)

    Anastasiya Snigirova

    2015-04-01

    Full Text Available To study effect of grain size on microalgae a new method is proposed: sand of different fractions is glued to the surface of microscope slides. Microalgae abundance was higher on fine sand grains (<0,25 mm. To forecast microalgae abundance the pattern is proposed depending on size of sand grains

  9. The influence of grain boundary structure on the penetration of gallium into aluminum grain boundaries

    Science.gov (United States)

    Hugo, Richard Charles

    1998-12-01

    Liquid Metal Embrittlement is a form of environmental embrittlement that dramatically reduces the fracture toughness of many metals and alloys. It occurs when surfaces of certain solid metals are wet by certain liquid metals. The Al-Ga system provides a remarkable example of intergranular attack. The Al-Ga equilibrium phase diagram reveals no intermetallic compounds and very limited mutual solubilities, which implies that interactions between Al and Ga should be minimal. Yet when liquid Ga wets the surface of an unstressed Al specimen, the Ga will penetrate the Al grain boundaries, replacing each boundary with a liquid layer. The driving force is generally considered to be the reduction in energy when a grain boundary is replaced by two Ga-Al interfaces. Once an Al sample has been penetrated by Ga, it fails at almost no load. In this dissertation, in-situ Transmission Electron Microscope (TEM) studies are presented that elucidate the physical nature of the Ga penetration front. Although many of the TEM specimens were bicrystals, all but one of the grain boundaries studied were "general" boundaries; that is, they were low symmetry boundaries with high-index rotation axes, and no low-index planes common to both grains. Since the atomic structure of these grain boundaries cannot be resolved experimentally, atomistic computer models were constructed to assist in interpreting TEM results. TEM observations indicated that the penetration front is a line defect, possessing a stress field that interacts with lattice dislocations. The penetration front was also observed to interact with structural variations within the grain boundary. Interactions with lattice dislocations were used to estimate the penetration front thickness. Penetration speeds were not found to be determined by grain boundary energy or grain boundary excess volume. Penetration speeds were, however, found to depend qualitatively on the presence of penetration barriers in the grain boundary.

  10. Influence of grain charge gradients on the dynamics of macroparticles in an electrostatic trap

    Energy Technology Data Exchange (ETDEWEB)

    Vaulina, O. S., E-mail: olga.vaulina@bk.ru [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2017-03-15

    An analytical model of anomalous heating of charged dust grains (macroparticles) caused by their stochastic motion in a bounded plasma volume is proposed. Analytical expressions allowing one to describe the pumping (heating) of interacting grains with additional stochastic energy due to grain charge gradients are derived. The analytical results are verified by numerical simulation of the problem. It is shown that spatial variations in the charges of dust grains can lead to their anomalous heating in laboratory plasma.

  11. Fingering phenomena during grain-grain displacement

    Science.gov (United States)

    Mello, Nathália M. P.; Paiva, Humberto A.; Combe, G.; Atman, A. P. F.

    2016-05-01

    Spontaneous formation of fingered patterns during the displacement of dense granular assemblies was experimentally reported few years ago, in a radial Hele-Shaw cell. Here, by means of discrete element simulations, we have recovered the experimental findings and extended the original study to explore the control parameters space. In particular, using assemblies of grains with different geometries (monodisperse, bidisperse, or polydisperse), we measured the macroscopic stress tensor in the samples in order to confirm some conjectures proposed in analogy with Saffman-Taylor viscous fingering phenomena for immiscible fluids. Considering an axial setup which allows to control the discharge of grains and to follow the trajectory and the pressure gradient along the displacing interface, we have applied the Darcy law for laminar flow in fluids in order to measure an "effective viscosity" for each assembly combination, in an attempt to mimic variation of the viscosity ratio between the injected/displaced fluids in the Saffman-Taylor experiment. The results corroborate the analogy with the viscous fluids displacement, with the bidisperse assembly corresponding to the less viscous geometry. But, differently to fluid case, granular fingers only develop for a specific combination of displaced/injected geometries, and we have demonstrated that it is always related with the formation of a force chain network along the finger direction.

  12. Development of fine-grain size titanium 6Al–4V alloy sheet material for low temperature superplastic forming

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tuoyang [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan (China); Liu, Yong, E-mail: yonliu@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan (China); Sanders, Daniel G. [Boeing Research and Technology, Seattle, WA (United States); Liu, Bin; Zhang, Weidong; Zhou, Canxu [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan (China)

    2014-07-01

    Fine-grained titanium 6Al–4V alloy, which typically has a grain size of about 1–2 μm, can be made to superplastic form at around 800 °C with special processing. The normal temperature for superplastic forming (SPF) with conventional titanium 6Al–4V sheet material is 900 °C. The lower temperature performance is of interest to the Boeing Company because it can be exploited to achieve significant cost savings in processing by reducing the high-temperature oxidation of the SPF dies, improving the heater rod life for the hot presses, increasing operator safety and replacing the chemical milling operation to remove alpha case contamination with a less intensive nitric hydrofluoric acid etchant (pickle). In this report, room temperature tensile tests and elevated temperature constant strain rate tensile tests of fine-grained Ti–6Al–4V sheets provided by the Baoti Company of Xi'an, China, were conducted according to the test method standards of ASTM-E8 and ASTM-E2448. The relationships among the processing parameters, microstructure and superplastic behavior have been analyzed. The results show that two of the samples produced met the Boeing minimum requirements for low-temperature superplasticity. The successful material was heat-treated at 800 °C subsequent to hot rolling above the beta transus temperature, T{sub β}-(150–250 °C). It was found that the sheet metal microstructure has a significant influence on superplastic formability of the Ti–6Al–4V alloy. Specifically, fine grains, a narrow grain size distribution, low grain aspect ratio and moderate β phase volume fraction can contribute to higher superplastic elongations.

  13. Granular gases of rod-shaped grains in microgravity.

    Science.gov (United States)

    Harth, K; Kornek, U; Trittel, T; Strachauer, U; Höme, S; Will, K; Stannarius, R

    2013-04-05

    Granular gases are convenient model systems to investigate the statistical physics of nonequilibrium systems. In the literature, one finds numerous theoretical predictions, but only few experiments. We study a weakly excited dilute gas of rods, confined in a cuboid container in microgravity during a suborbital rocket flight. With respect to a gas of spherical grains at comparable filling fraction, the mean free path is considerably reduced. This guarantees a dominance of grain-grain collisions over grain-wall collisions. No clustering was observed, unlike in similar experiments with spherical grains. Rod positions and orientations were determined and tracked. Translational and rotational velocity distributions are non-Gaussian. Equipartition of kinetic energy between translations and rotations is violated.

  14. Effects of aging treatment on the microstructure and superelasticity of columnar-grained Cu71Al18Mn11 shape memory alloy

    Science.gov (United States)

    Liu, Ji-li; Huang, Hai-you; Xie, Jian-xin

    2016-10-01

    The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu71Al18Mn11 shape memory alloy (SMA) at the temperature ranging from 250°C to 400°C was investigated. The microstructure evolution during the aging treatment was characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results show that the plate-like bainite precipitates distribute homogeneously within austenitic grains and at grain boundaries. The volume fraction of bainite increases with the increase in aging temperature and aging time, which substantially improves the martensitic transformation critical stress of the alloy, whereas the bainite only slightly affects the superelasticity. This behavior is attributed to a coherent relationship between the bainite and the austenite, as well as to the bainite and the martensite exhibiting the same crystal structure. The variations of the martensitic transformation critical stress and the superelasticity of columnar-grained Cu71Al18Mn11 SMA with aging temperature and aging time are described by the Austin-Rickett equation, where the activation energy of bainite precipitation is 77.2 kJ·mol-1. Finally, a columnar-grained Cu71Al18Mn11 SMA with both excellent superelasticity (5%-9%) and high martensitic transformation critical stress (443-677 MPa) is obtained through the application of the appropriate aging treatments.

  15. Calculated Grain Size-Dependent Vacancy Supersaturation and its Effect on Void Formation

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Foreman, A. J. E.

    1974-01-01

    In order to study the effect of grain size on void formation during high-energy electron irradiations, the steady-state point defect concentration and vacancy supersaturation profiles have been calculated for three-dimensional spherical grains up to three microns in size. In the calculations...... of vacancy supersaturation as a function of grain size, the effects of internal sink density and the dislocation preference for interstitial attraction have been included. The computations show that the level of vacancy supersaturation achieved in a grain decreases with decreasing grain size. The grain size...... dependence of the maximum vacancy supersaturation in the centre of the grains is found to be very similar to the grain size dependence of the maximum void number density and void volume swelling measured in the central regions of austenitic stainless steel grains. This agreement reinforces the interpretation...

  16. Multi-Fraction Bayesian Sediment Transport Model

    Directory of Open Access Journals (Sweden)

    Mark L. Schmelter

    2015-09-01

    Full Text Available A Bayesian approach to sediment transport modeling can provide a strong basis for evaluating and propagating model uncertainty, which can be useful in transport applications. Previous work in developing and applying Bayesian sediment transport models used a single grain size fraction or characterized the transport of mixed-size sediment with a single characteristic grain size. Although this approach is common in sediment transport modeling, it precludes the possibility of capturing processes that cause mixed-size sediments to sort and, thereby, alter the grain size available for transport and the transport rates themselves. This paper extends development of a Bayesian transport model from one to k fractional dimensions. The model uses an existing transport function as its deterministic core and is applied to the dataset used to originally develop the function. The Bayesian multi-fraction model is able to infer the posterior distributions for essential model parameters and replicates predictive distributions of both bulk and fractional transport. Further, the inferred posterior distributions are used to evaluate parametric and other sources of variability in relations representing mixed-size interactions in the original model. Successful OPEN ACCESS J. Mar. Sci. Eng. 2015, 3 1067 development of the model demonstrates that Bayesian methods can be used to provide a robust and rigorous basis for quantifying uncertainty in mixed-size sediment transport. Such a method has heretofore been unavailable and allows for the propagation of uncertainty in sediment transport applications.

  17. Matrix fractional systems

    Science.gov (United States)

    Tenreiro Machado, J. A.

    2015-08-01

    This paper addresses the matrix representation of dynamical systems in the perspective of fractional calculus. Fractional elements and fractional systems are interpreted under the light of the classical Cole-Cole, Davidson-Cole, and Havriliak-Negami heuristic models. Numerical simulations for an electrical circuit enlighten the results for matrix based models and high fractional orders. The conclusions clarify the distinction between fractional elements and fractional systems.

  18. Whole Grains and Fiber

    Science.gov (United States)

    ... whole grains. Does not contain partially hydrogenated oils. Dietary Fiber Dietary fiber is the term for several materials that make ... water. When eaten regularly as part of a diet low in saturated fat and trans fat soluble fiber has been associated with increased diet quality and ...

  19. Formation on grain surfaces

    NARCIS (Netherlands)

    Cazaux, S; Tielens, AGGM

    2004-01-01

    The most abundant interstellar molecule, H-2, is generally thought to form by recombination of H atoms on grain surfaces. On surfaces, hydrogen atoms can be physisorbed and chemisorbed and their mobility can be governed by quantum mechanical tunneling or thermal hopping. We have developed a model fo

  20. Coarse-graining polymer solutions: A critical appraisal of single- and multi-site models

    Science.gov (United States)

    D'Adamo, G.; Menichetti, R.; Pelissetto, A.; Pierleoni, C.

    2015-09-01

    We critically discuss and review the general ideas behind single- and multi-site coarse-grained (CG) models as applied to macromolecular solutions in the dilute and semi-dilute regime. We first consider single-site models with zero-density and density-dependent pair potentials. We highlight advantages and limitations of each option in reproducing the thermodynamic behavior and the large-scale structure of the underlying reference model. As a case study we consider solutions of linear homopolymers in a solvent of variable quality. Secondly, we extend the discussion to multi-component systems presenting, as a test case, results for mixtures of colloids and polymers. Specifically, we found the CG model with zero-density potentials to be unable to predict fluid-fluid demixing in a reasonable range of densities for mixtures of colloids and polymers of equal size. For larger colloids, the polymer volume fractions at which phase separation occurs are largely overestimated. CG models with density-dependent potentials are somewhat less accurate than models with zero-density potentials in reproducing the thermodynamics of the system and, although they present a phase separation, they significantly underestimate the polymer volume fractions along the binodal. Finally, we discuss a general multi-site strategy, which is thermodynamically consistent and fully transferable with the number of sites, and that allows us to overcome most of the limitations discussed for single-site models.

  1. SILICON CARBIDE GRAIN BOUNDARY DISTRIBUTIONS, IRRADIATION CONDITIONS, AND SILVER RETENTION IN IRRADIATED AGR-1 TRISO FUEL PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Lillo, T. M.; Rooyen, I. J.; Aguiar, J. A.

    2016-11-01

    Precession electron diffraction in the transmission electron microscope was used to map grain orientation and ultimately determine grain boundary misorientation angle distributions, relative fractions of grain boundary types (random high angle, low angle or coincident site lattice (CSL)-related boundaries) and the distributions of CSL-related grain boundaries in the SiC layer of irradiated TRISO-coated fuel particles. Two particles from the AGR-1 experiment exhibiting high Ag-110m retention (>80%) were compared to a particle exhibiting low Ag-110m retention (<19%). Irradiated particles with high Ag-110m retention exhibited a lower fraction of random, high angle grain boundaries compared to the low Ag-110m retention particle. An inverse relationship between the random, high angle grain boundary fraction and Ag-110m retention is found and is consistent with grain boundary percolation theory. Also, comparison of the grain boundary distributions with previously reported unirradiated grain boundary distributions, based on SEM-based EBSD for similarly fabricated particles, showed only small differences, i.e. a greater low angle grain boundary fraction in unirradiated SiC. It was, thus, concluded that SiC layers with grain boundary distributions susceptible to Ag-110m release were present prior to irradiation. Finally, irradiation parameters were found to have little effect on the association of fission product precipitates with specific grain boundary types.

  2. Effects of split nitrogen fertilization on post-anthesis photoassimilates, nitrogen use efficiency and grain yield in malting barley

    DEFF Research Database (Denmark)

    Cai, Jian; Jiang, Dong; Liu, Fulai

    2011-01-01

    . The remobilization of pre-anthesis stored assimilates from vegetative organs into grains was hardly significantly affected by fractions of topdressed nitrogen. Grain yield was the highest for fraction of topdressed nitrogen of 30%, which coincided with the highest plant nitrogen uptake and physiological...

  3. The spatial distribution of grains and crystals in rocks

    Science.gov (United States)

    Jerram, D. A.; Cheadle, Michael J.; Hunter, Robert H.; Elliott, Michael T.

    1996-09-01

    Characterisation and analysis of the spatial distribution pattern (SDP) of grains or crystals in rocks is potentially a powerful technique which can be used to constrain the processes which operate in the formation of rocks. A method to quantify the SDP of grains in thin section is presented. The distance betwen the centre of a grain and the centre of its nearest neighbour is calculated for all the grains in the sample area to produce a distribution of distances that characterises the spatial pattern of grains in the rock. This distribution is then normalised to a random distribution of points with the same population density to give a descriptive value, R. Values of R for rock samples are plotted against porosity (modal abundance of other phases in igneous and metamorphic rocks) to characterise the SDP. The SDP of randomly packed distributions of equal size spheres varies systematically with porosity, producing a line on a porosity versus R plot, termed the random sphere distribution line (RSDL). Rocks which plot above the RSDL have an ordered SDP and those that plot below, a clustered SDP. The effects of variation in grain packing order, grain sorting, compaction and random crystallisation (overgrowth) on determined R values were investigated using a combination of 3-D sphere models and 2-D texture models. The maximum possible value of R is 2.148, corresponding to a perfect section through hexagonal/cubic close packing of grains. The minimum value of R is dependent on the proportion of grains in the sample volume and may be as low as 1.2, for a sample volume with 30% grains which are clustered. Variations in size sorting can cause R to vary by approximately 0.25. Mechanical compaction of a loose framework of grains results in a higher packing order and an increase in R. Continued compaction creates a fabric in the texture and R decreases as cluster patterns are developed perpendicular to the principal stress. The overgrowth of grains in a touching framework

  4. A Theory of Grain Clustering in Turbulence: The Origin and Nature of Large Density Fluctuations

    CERN Document Server

    Hopkins, Philip F

    2016-01-01

    We propose a theory for the density fluctuations of aerodynamic grains embedded in a turbulent, gravitating gas disk. The theory combines calculations for the average behavior of grains encountering a single turbulent eddy, with a hierarchical description of the eddy velocity statistics. We show that this makes analytic predictions for a wide range of quantities, including: the distribution of volume-average grain densities, the power spectrum and correlation functions of grain density fluctuations, and the maximum volume density of grains reached. For each, we predict how these scale as a function of grain stopping/friction time (t_stop), spatial scale, grain-to-gas mass ratio, strength of the turbulence (alpha), and detailed disk properties (orbital frequency, sound speed). We test these against numerical simulations and find good agreement over a huge parameter space. Results from 'turbulent concentration' simulations and laboratory experiments are also predicted as a special case. We predict that vortices...

  5. A coarse-grained model for PETN crystals

    Energy Technology Data Exchange (ETDEWEB)

    Gee, R; Wu, C; Maiti, A

    2006-02-10

    Using the energetic material Pentaerythritol Tetranitrate (PETN) as a specific example of molecular crystal, we describe the development of a simple coarse-graining procedure by grouping several atoms or whole functional groups into single charge-neutral beads. As compared to fully atomistic calculations the coarse-grained model speeds up simulations by more than two orders of magnitude. Yet, by adjusting only two parameters in the coarse-grained interaction, the model accurately predicts the lattice constants, sublimation energy, pressure-volume curve up to P=10 GPa, and energetically the most stable facets. Computed surface and desorption energies, bulk modulus, and equilibrium morphology are reported as well.

  6. Measuring the elastic strain of individual grains in polycrystalline materials

    DEFF Research Database (Denmark)

    on some of the important aspects you have to take into account in order to determine the strain tensors of the individual grains to the desired accuracy of 10-4. The first thing is how to handle the peak overlaps that will inevitably occur, especially for textured and/or deformed materials. Secondly...... within FitAllB. In addition to the centre-of-mass grain positions, orientations and strain tensors, FitAllB also calculates the relative volumes of the grains based on the peak intensities, so using a tessellation routine a crude 3D map of the elastic strain in the polycrystal can be obtained....

  7. Grain Boundary Segregation in Metals

    CERN Document Server

    Lejcek, Pavel

    2010-01-01

    Grain boundaries are important structural components of polycrystalline materials used in the vast majority of technical applications. Because grain boundaries form a continuous network throughout such materials, their properties may limit their practical use. One of the serious phenomena which evoke these limitations is the grain boundary segregation of impurities. It results in the loss of grain boundary cohesion and consequently, in brittle fracture of the materials. The current book deals with fundamentals of grain boundary segregation in metallic materials and its relationship to the grain boundary structure, classification and other materials properties.

  8. Why Is It Important to Eat Grains, Especially Whole Grains?

    Science.gov (United States)

    ... Nutrients and health benefits Print Share Why is it important to eat grains, especially whole grains? Eating ... diabetes. Fiber is important for proper bowel function. It helps reduce constipation and diverticulosis. Fiber-containing foods ...

  9. Bioactivities and antiradical properties of millet grains and hulls.

    Science.gov (United States)

    Chandrasekara, Anoma; Shahidi, Fereidoon

    2011-09-14

    Antioxidant activities of phenolic extracts of kodo and pearl millet whole grains, dehulled grains, and hulls were examined by monitoring inhibition of radical-induced DNA scission, human low-density lipoprotein (LDL) cholesterol, and phospholipid liposome oxidation. Total phenolic content (TPC), hydroxyl and peroxyl radical inhibition, and antiproliferative activities against HT-29 cells were also determined. Major hydroxycinnamic acids in dehulled grains and hulls were identified and quantified using HPLC. Phenolic extract of kodo millet exhibited higher inhibition activities against oxidation of LDL cholesterol and liposome than that of pearl millet. All phenolic extracts exhibited a dose-dependent inhibition of DNA scission. The TPC of hulls of kodo and pearl millets were 3 times higher than those of their corresponding whole grains. At the end of 96 h of incubation, kodo millet extracts inhibited cell proliferation in the range of 75-100%. Antioxidant activities of phenolic extracts were in the order hull > whole grain > dehulled grain. Dehulling reduced the antioxidant potential of whole millet grains. Ferulic and p-coumaric acids were the major hydroxycinnamic acids, and their contents ranged from 17.8 to 1685 μg/g defatted meal and from 3.5 to 680 μg/g defatted meal, respectively. Dehulled grains, as well as the hull fraction, may serve as potential sources of nutraceutical and functional food ingredients in health promotion.

  10. Initialized Fractional Calculus

    Science.gov (United States)

    Lorenzo, Carl F.; Hartley, Tom T.

    2000-01-01

    This paper demonstrates the need for a nonconstant initialization for the fractional calculus and establishes a basic definition set for the initialized fractional differintegral. This definition set allows the formalization of an initialized fractional calculus. Two basis calculi are considered; the Riemann-Liouville and the Grunwald fractional calculi. Two forms of initialization, terminal and side are developed.

  11. On the Role of Alloy Composition and Sintering Parameters in the Bimodal Grain Size Distribution and Mechanical Properties of ODS Ferritic Steels

    Science.gov (United States)

    García-Junceda, Andrea; Campos, Mónica; García-Rodríguez, Nerea; Torralba, José Manuel

    2016-11-01

    A sintered 14Cr-5Al-3W oxide dispersion strengthened steel was produced by mechanical alloying and consolidated by field-assisted hot pressing. First, a nanostructured powder was developed thanks to the high-energy milling used for introducing 0.4Ti-0.25Y2O3-0.6ZrO2 into the prealloyed Fe-Cr-Al-W powder, and then the processed powders were consolidated under a low diffusive technique to better retain the microstructure inherited from milling. The effect of the addition of zirconia and of the pressure applied during sintering on the final bimodal grain microstructure and mechanical properties is assessed. Both parameters are responsible for the refinement of the microstructure by increasing the volume fraction of the ultrafine grains (0 to 400 nm), leading to an enhancement of the mechanical properties, such as the microhardness and tensile strength.

  12. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum

    Science.gov (United States)

    Wang, Lihua; Teng, Jiao; Liu, Pan; Hirata, Akihiko; Ma, En; Zhang, Ze; Chen, Mingwei; Han, Xiaodong

    2014-01-01

    Grain rotation is a well-known phenomenon during high (homologous) temperature deformation and recrystallization of polycrystalline materials. In recent years, grain rotation has also been proposed as a plasticity mechanism at low temperatures (for example, room temperature for metals), especially for nanocrystalline grains with diameter d less than ~15 nm. Here, in tensile-loaded Pt thin films under a high-resolution transmission electron microscope, we show that the plasticity mechanism transitions from cross-grain dislocation glide in larger grains (d>6 nm) to a mode of coordinated rotation of multiple grains for grains with d<6 nm. The mechanism underlying the grain rotation is dislocation climb at the grain boundary, rather than grain boundary sliding or diffusional creep. Our atomic-scale images demonstrate directly that the evolution of the misorientation angle between neighbouring grains can be quantitatively accounted for by the change of the Frank–Bilby dislocation content in the grain boundary. PMID:25030380

  13. Charging of grains in sprite-plasma

    Science.gov (United States)

    Serozhkin, Y.; Oryeshko, E.

    The presence of a charged dust component at a mesosphere substantially determines properties of this atmospheric layer and has manifold manifestations One of possible sources of free electrons for a charge of grains can be served the electrical discharges in a mesosphere sprites 1 As sprites take huge volume about 10000 cubic kilometer and happen approximately 1 time per one second their role in the charging of grains in a mesosphere necessarily should be taken into account In supported work is estimated the value of a charge which grains obtained in sprite-plasma The parameters of sprite-plasma velocity concentration of an electronic component duration of existence make possible a charge of submicron grains up to value at which in case of sufficient concentration of particles the sprite-plasmas can to be possessed of the dusty plasma properties 2 begin enumerate item V P Pasko U S Inan T F Bell Y N Taranenko Sprites produced by quasi-electrostatic heating ldots J Geophys Res Vol 102 No A3 pages 4529-4561 March 1 1997 item Yu Serozhkin Dusty sprite-plasma and conditions for its formation AIP Conference Proceedings New vistas in dusty plasmas Fourth International Conferences on the Physics of Dusty Plasmas Orleans France 13-17 June 2005 Vol 799 pages 383-386 end enumerate

  14. Quantitative Measurements of Soot Volume Fractions in Diesel Engine Using Laser-Induced Incandescence Method%利用激光诱导炽光法定量测量柴油机缸内燃烧过程碳烟体积分数

    Institute of Scientific and Technical Information of China (English)

    唐青龙; 张鹏; 刘海峰; 尧命发

    2015-01-01

    激光诱导炽光(LII)法是一种用于测量火焰中碳烟体积分数的光学测试方法.本文介绍了LII的基本原理以及LII实现定量测量的常见标定方法,建立了一套基于双色法-激光诱导炽光法(2C-LII)的用于柴油机缸内燃烧过程碳烟体积分数定量测量的测试系统,该测试系统采用双成像原理,可以实现多点标定和全视场范围内的碳烟体积分数测量.在一台工作在1200 r∙min-1、喷油量21 mg的光学单缸柴油机上,研究了60、100和140 MPa三个不同喷油压力下,缸内燃烧过程碳烟的分布情况,结果表明,碳烟自发光出现在燃烧放热率峰值之后,且随着喷油压力提高,碳烟发光持续期缩短,碳烟发光强度降低.测试区域内火焰中的碳烟体积分数范围约为0-50×10-6.不同喷油压力下,碳烟生成初期、碳烟峰值和碳烟氧化三个阶段内平均碳烟体积分数的范围分别是:5×10-6-9×10-6,15×10-6-20×10-6和14×10-6-16×10-6.喷油压力提高后火焰中的碳烟分布区域面积增大,平均碳烟体积分数减小,碳烟体积分数的空间分布趋于均匀.%Laser-induced incandescence (LII) is an optical diagnostic method used to measure the soot volume fraction in a flame. In this paper, the principle of LII and the calibration methods normal y used are introduced. Based on two-color LII theory, a quantitative test system for determining the in-cylinder soot volume fraction was established. A dual imaging setup was used, which can achieve multipoint calibration and ful field-of-view quantification of soot in a diesel engine chamber. An investigation was carried out on an optical diesel engine with the conditions 1200 r∙min-1 and 21 mg fuel injection per cycle, with various injection pressures (60, 100, and 140 MPa). The results show that the natural soot incandescence emerged after the peak rate of combustion heat release. With increasing injection pressure, the duration of natural soot

  15. Grain Boundary Assemblies in Dynamically-Recrystallized Austenitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Marina Tikhonova

    2016-11-01

    Full Text Available The grain boundary misorientation distributions associated with the development of dynamic recrystallization were studied in a high-nitrogen austenitic stainless steel subjected to hot working. Under conditions of discontinuous dynamic recrystallization, the relationships between the grain or subgrain sizes and flow stresses can be expressed by power law functions with different grain/subgrain size exponents of about −0.76 (for grain size or −1.0 (for subgrain size. Therefore, the mean grain size being much larger than the subgrain size under conditions of low flow stress gradually approaches the size of the subgrains with an increase in the flow stress. These dependencies lead to the fraction of high-angle boundaries being a function of the flow stress. Namely, the fraction of ordinary high-angle boundaries in dynamically-recrystallized structures decreases with a decrease in the flow stress. On the other hand, the fraction of special boundaries, which are associated with annealing twins, progressively increases with a decrease of the flow stress.

  16. THE INSTABILITY OF THE DIFFUSION-CONTROLLED GRAIN-BOUNDARY VOID IN STRESSED SOLID

    Institute of Scientific and Technical Information of China (English)

    王华; 李中华

    2003-01-01

    As atoms migrate along a void surface and grain-boundary, driven by various thermodynamic forces, the grain-boundary void changes its shape and volume. When the void changes its configuration, the free energy of the system also changes. In this article, the free energy is calculated for an evolving grain-boundary void filled with gas in a stressed solid. Then the instability conditions and the equilibrium shape of the void are determined as a function of the grain-boundary and surface energies, the void volume, the externally applied stresses, as well as the internal pressure built up by the gas filled in the void.

  17. Predictive coarse-graining

    Science.gov (United States)

    Schöberl, Markus; Zabaras, Nicholas; Koutsourelakis, Phaedon-Stelios

    2017-03-01

    We propose a data-driven, coarse-graining formulation in the context of equilibrium statistical mechanics. In contrast to existing techniques which are based on a fine-to-coarse map, we adopt the opposite strategy by prescribing a probabilistic coarse-to-fine map. This corresponds to a directed probabilistic model where the coarse variables play the role of latent generators of the fine scale (all-atom) data. From an information-theoretic perspective, the framework proposed provides an improvement upon the relative entropy method [1] and is capable of quantifying the uncertainty due to the information loss that unavoidably takes place during the coarse-graining process. Furthermore, it can be readily extended to a fully Bayesian model where various sources of uncertainties are reflected in the posterior of the model parameters. The latter can be used to produce not only point estimates of fine-scale reconstructions or macroscopic observables, but more importantly, predictive posterior distributions on these quantities. Predictive posterior distributions reflect the confidence of the model as a function of the amount of data and the level of coarse-graining. The issues of model complexity and model selection are seamlessly addressed by employing a hierarchical prior that favors the discovery of sparse solutions, revealing the most prominent features in the coarse-grained model. A flexible and parallelizable Monte Carlo - Expectation-Maximization (MC-EM) scheme is proposed for carrying out inference and learning tasks. A comparative assessment of the proposed methodology is presented for a lattice spin system and the SPC/E water model.

  18. Grain alcohol study: summary

    Energy Technology Data Exchange (ETDEWEB)

    The study has concentrated upon a detailed examination of all considerations involved in the production, use, and marketing of ethyl alcohol (Ethanol) as produced from the fermentation of agricultural grains. Each parameter was examined in the light of current energy markets and trends; new sources and technological, and processes for fermentation, the capability of the agricultural industry to support fermentaton demand; the optimization of value of agricultureal crops; and the efficiencies of combining related industries. Anhydrous (200 proof) ethanol makes an excellent blending component for all present automotive fuels and an excellent octane additive for unleaded fuels in proportions up to 35% without requiring modifications to current engines. There is no difference between ethanol produced by fermentation and ethanol produced synthetically from petroleum. The decision to produce ethanol one way or the other is purely economic. The agricultural industry can support a major expansion in the fermentation industry. The residue (distillers grains) from the fermentation of corn for ethanol is an excellent and economical feed for livestock and poultry. A reliable supply of distillers grains can assist in making the large beef feedlot operations more economically viable. The source materials, fuels, products and by-products of an ethanol plant, beef feedlot, gas biodigester plant, municipal waste recovery plant and a steam generated electrical plant are interrelated and mutually beneficial for energy efficiencies and economic gains when co-located. The study concludes that the establishment of such agricultural-environment industrial energy complexes, would provide a broad range of significant benefits to Indiana.

  19. Grain alcohol study: summary

    Energy Technology Data Exchange (ETDEWEB)

    The study has concentrated upon a detailed examination of all considerations involved in the production, use, and marketing of ethyl alcohol (ethanol) as produced from the fermentation of agricultural grains. Each parameter was examined in the light of current energy markets and trends; new sources and technological, and processes for fermentation, the capability of the agricultural industry to support fermentation demand; the optimizaton of value of agricultural crops; and the efficiencies of combining related industries. Ahydrous (200 proof) ethanol makes an excellent blending component for all present automotive fuels and an excellent octane additive for unleaded fuels in proportions up to 35% without requiring modifications to current engines. There is no difference between ethanol produced by fermentation and ethanol produced synthetically from petroleum. The decision to produce ethanol one way or the other is purely economic. The agricultural industry can support a major expansion in the fermentation industry. The residue (distillers grains) from the fermentation of corn for ethanol is an excellent and economical feed for livestock and poultry. A reliable supply of distillers grain can assist in making the large beef feedlot operations more economically viable. The source materials, fuels, products and by-products of an ethanol plant, beef feedlot, gas biodigester plant, municipal waste recovery plant and a steam generated electrical plant are interrelated and mutually beneficial for energy efficiencies and economic gains when co-located. The study concludes that the establishment of such agricultural- environment industrial energy complexes, would provide a broad range of significant benefits to Indiana.

  20. Hydrolysis of Brewers' Spent Grain by Carbohydrate Degrading Enzymes

    NARCIS (Netherlands)

    Forssell, P.; Kontkanen, H.; Schols, H.A.; Hinz, S.W.A.; Eijsink, V.G.H.; Treimo, J.; Robertson, J.A.; Waldron, K.W.; Faulds, C.B.; Buchert, J.

    2008-01-01

    In this work four commercial cellulase-hemicellulase mixtures with different activity profiles were used for solubilization of carbohydrates from brewers' spent grain (BSG). After the enzyme treatment, both the solubilised fraction and the unhydrolysed residue were characterized. Treatment with 5,00

  1. Semi-solid rheocasting of grain refined aluminum alloy 7075

    CSIR Research Space (South Africa)

    Curle, UA

    2010-09-01

    Full Text Available levels used were 0.03% Ti, 0.13% Ti and 0.29% Ti (mass fraction). Tensile tests reveal that the ultimate tensile strengths, at all levels of grain refinement, are at least 97% of the specified minimum. Elongation at fracture increases with the increase...

  2. Sediment Distribution in the Nearshore Zone: Grain Size Evolution in Response to Shoreface Nourishment (Island of Terschelling, The Netherlands)

    Science.gov (United States)

    Guillén, J.; Hoekstra, P.

    1997-11-01

    The natural sediment distribution in the littoral zone of Terschelling, The Netherlands was disturbed by a shoreface nourishment carried out off the central part of the island. The sedimentological impact of this shoreface nourishment, i.e. the grain size evolution and the sediment dynamics, is studied in order to increase understanding of coastal processes. The variability of the sediment during the study period is due to both natural processes and the nourishment. Immediately after implementation of the nourishment, the sediment distribution was measurably affected. The sediment supplied caused a coarsening (20-40 μm) of the sediment in the zone directly affected by the nourishment. Six months after the nourishment, the grain size distribution across the profile was nearly the same as the original, and no significant effects of the nourishment could be recognized in the median grain size. Individual grain size fractions displayed a temporal evolution more complex than the median size, and significant changes, unrelated to the sand supplied, were observed. Results of the sediment analysis from the coastal zone of Terschelling indicate that the shoreface nourishment only had a short-term and very local impact on the sediment distribution. Some months after the nourishment, the former grain size distribution was re-established. This implies that the nourished sediment was quickly dispersed and mixed with the original deposits, and that it only represents a small part of the volume of sediment involved in the dynamics of the littoral zone. On a yearly perspective, the natural variability of the sediment was higher than the changes caused by the nourishment.

  3. Grain-resolved elastic strains in deformed copper measured by three-dimensional X-ray diffraction

    DEFF Research Database (Denmark)

    Oddershede, Jette; Schmidt, Søren; Poulsen, Henning Friis

    2011-01-01

    . For each grain the centre-of-mass position was determined with an accuracy of 10 μm, the volume with a relative error of 20%, the orientation to 0.05° and the axial strain to 10− 4. The elastic strain along the tensile direction exhibited a grain orientation dependence with grains within 20° of carrying...

  4. Influence of grain size on radiation effects in a low carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Alsabbagh, Ahmad, E-mail: ahalsabb@ncsu.edu [Department of Nuclear Engineering, North Carolina State University (United States); Valiev, Ruslan Z. [Institute of Physics of Advanced Materials, Ufa State Aviation Technical University (Russian Federation); Murty, K.L. [Department of Nuclear Engineering, North Carolina State University (United States)

    2013-11-15

    Ultra-fine grain (UFG) metals with a relatively large volume of interfaces are expected to be more radiation resistant than conventional metals; grain boundaries act as unsaturable sinks for neutron irradiation induced defects. Effects of neutron irradiation on conventional and ultra-fine grain structured carbon steel are studied using the PULSTAR reactor at NC State University to relatively low fluence (∼1.15 × 10{sup −3} dpa). The low dose irradiation of ultrafine grained carbon steel revealed minute radiation effects in contrast to the observed radiation hardening and reduction of ductility in its conventional grained counterpart.

  5. Fraction Sense: Foundational Understandings.

    Science.gov (United States)

    Fennell, Francis Skip; Karp, Karen

    2016-08-09

    The intent of this commentary is to identify elements of fraction sense and note how the research studies provided in this special issue, in related but somewhat different ways, validate the importance of such understandings. Proficiency with fractions serves as a prerequisite for student success in higher level mathematics, as well as serving as a gateway to many occupations and varied contexts beyond the mathematics classroom. Fraction sense is developed through instructional opportunities involving fraction equivalence and magnitude, comparing and ordering fractions, using fraction benchmarks, and computational estimation. Such foundations are then extended to operations involving fractions and decimals and applications involving proportional reasoning. These components of fraction sense are all addressed in the studies provided in this issue, with particular consideration devoted to the significant importance of the use of the number line as a central representational tool for conceptually understanding fraction magnitude.

  6. Nitrogen and phosphorus compounds in the aleurone grains of Iris pseudoacorus endosperm and Pisum sativum cotyledons

    OpenAIRE

    Ligia Konopska

    2015-01-01

    Aleurone grains from Iris pseudoacorus endosperm and Pisum sativum cotyledons were isolated partly according to Tombs's method (1967). Nitrogen compounds content was determined in them by Kjeldahl's micromethod, and in the particular fractions after Thiman and Laloraya (1960). Mainly protein N was detected in the aleurone grains, constituting 14.8 and 15.2 per cent of the dry mass of pea and Iris seeds, respectively. Moreover, phosphorus compounds were fractionated according to Holden and Pir...

  7. Methods to recover value-added coproducts from dry grind processing of grains into fuel ethanol.

    Science.gov (United States)

    Liu, Keshun; Barrows, Frederic T

    2013-07-31

    Three methods are described to fractionate condensed distillers solubles (CDS) into several new coproducts, including a protein-mineral fraction and a glycerol fraction by a chemical method; a protein fraction, an oil fraction and a glycerol-mineral fraction by a physical method; or a protein fraction, an oil fraction, a mineral fraction, and a glycerol fraction by a physicochemical method. Processing factors (ethanol concentration and centrifuge force) were also investigated. Results show that the three methods separated CDS into different fractions, with each fraction enriched with one or more of the five components (protein, oil, ash, glycerol and other carbohydrates) and thus having different targeted end uses. Furthermore, because glycerol, a hygroscopic substance, was mostly shifted to the glycerol or glycerol-mineral fraction, the other fractions had much faster moisture reduction rates than CDS upon drying in a forced air oven at 60 °C. Thus, these methods could effectively solve the dewatering problem of CDS, allowing elimination of the current industrial practice of blending distiller wet grains with CDS for drying together and production of distiller dried grains as a standalone coproduct in addition to a few new fractions.

  8. Biomarker of whole grain wheat intake associated lower BMI in older adults

    Science.gov (United States)

    Alkylresorcinols (AR) are phenolic lipids in the bran fraction of some whole grains (wheat, rye and barley). Plasma AR reflect recent intake of these whole grains. We examined the cross-sectional associations between plasma AR (measured by LCMS/ MS), whole wheat intake, and body mass index (BMI) in ...

  9. Grain Destruction in Interstellar Shocks

    OpenAIRE

    1995-01-01

    Interstellar shock waves can erode and destroy grains present in the shocked gas, primarily as the result of sputtering and grain-grain collisions. Uncertainties in current estimates of sputtering yields are reviewed. Results are presented for the simple case of sputtering of fast grains being stopped in cold gas. An upper limit is derived for sputtering of refractory grains in C-type MHD shocks: shock speeds $v_s \\gtrsim 50 \\kms$ are required for return of more than 30\\% of the silicate to t...

  10. Whole grains and human health.

    Science.gov (United States)

    Slavin, Joanne

    2004-06-01

    Epidemiological studies find that whole-grain intake is protective against cancer, CVD, diabetes, and obesity. Despite recommendations to consume three servings of whole grains daily, usual intake in Western countries is only about one serving/d. Whole grains are rich in nutrients and phytochemicals with known health benefits. Whole grains have high concentrations of dietary fibre, resistant starch, and oligosaccharides. Whole grains are rich in antioxidants including trace minerals and phenolic compounds and these compounds have been linked to disease prevention. Other protective compounds in whole grains include phytate, phyto-oestrogens such as lignan, plant stanols and sterols, and vitamins and minerals. Published whole-grain feeding studies report improvements in biomarkers with whole-grain consumption, such as weight loss, blood-lipid improvement, and antioxidant protection. Although it is difficult to separate the protective properties of whole grains from dietary fibre and other components, the disease protection seen from whole grains in prospective epidemiological studies far exceeds the protection from isolated nutrients and phytochemicals in whole grains.

  11. Applications of fractional calculus in physics

    CERN Document Server

    2000-01-01

    Fractional calculus is a collection of relatively little-known mathematical results concerning generalizations of differentiation and integration to noninteger orders. While these results have been accumulated over centuries in various branches of mathematics, they have until recently found little appreciation or application in physics and other mathematically oriented sciences. This situation is beginning to change, and there are now a growing number of research areas in physics which employ fractional calculus.This volume provides an introduction to fractional calculus for physicists, and co

  12. Alternative grains in nutrition

    Directory of Open Access Journals (Sweden)

    Jevcsák Sz.

    2016-12-01

    Full Text Available Many people suffer from gluten sensitivity or gluten intolerance. They have to avoid or limit their gluten intake. Sorghum and millet are gluten-free cereals, wherefore persons with gluten sensitivity or gluten intolerance could consume them. Moreover, they have a lot of positive effects due to their phenolic compounds as phenol acid or flavonoid. Antioxidant activity in sorghum is especially high in comparison with other cereals. Our aim was to compare literature data about the chemical compositions of sorghum and millet with other grains.

  13. Meaning of Fractions

    Science.gov (United States)

    Dewi, D. A. K.; Suryadi, D.; Suratno, T.; Mulyana, E.; Kurniawan, H.

    2017-02-01

    Introducing fractions is identical to divide an object. Suppose we divide the apple into two parts. One divided into two parts, the question arises whether one part can be called a half or not. Based on this activity, how can students give meaning to fractions. This study aims at designing a different fractions lesson by applying Didactical Design Research. In doing so, we undertook several research phases: 1) thinking what is fractions and why students should learn this concept; 2) designing didactical situation based on identified learning obstacles; and 3) reflecting retrospectively on the lesson design and its implementation as to redesign the fractions lesson. Our analysis revealed that most students held epistemological obstacles in giving meaning of fractions because they only know fractions as numbers that have numerator and denominator. By positioning ourselves as students, we discuss the ideal design to help students in constructing the meaning of fractions.

  14. Fractional Dynamical Systems

    CERN Document Server

    Edelman, Mark

    2014-01-01

    In this paper the author presents the results of the preliminary investigation of fractional dynamical systems based on the results of numerical simulations of fractional maps. Fractional maps are equivalent to fractional differential equations describing systems experiencing periodic kicks. Their properties depend on the value of two parameters: the non-linearity parameter, which arises from the corresponding regular dynamical systems; and the memory parameter which is the order of the fractional derivative in the corresponding non-linear fractional differential equations. The examples of the fractional Standard and Logistic maps demonstrate that phase space of non-linear fractional dynamical systems may contain periodic sinks, attracting slow diverging trajectories, attracting accelerator mode trajectories, chaotic attractors, and cascade of bifurcations type trajectories whose properties are different from properties of attractors in regular dynamical systems. The author argues that discovered properties s...

  15. The Long American Grain Invasion of Britain

    DEFF Research Database (Denmark)

    Sharp, Paul Richard

    This paper provides evidence that transatlantic commodity market integration began prior to the "first era of globalization" at the end of the nineteenth century. It does so by giving a long term perspective to the story of the development of an Atlantic Economy in wheat between the United States...... and Britain. Both trade statistics and contemporary comment reveal the importance of this trade from the middle to late eighteenth century, long before the so-called grain invasion of the late nineteenth century. Using data on imports from America and a large volume of substantiating primary evidence...

  16. Valor prognóstico da fração de volume de colágeno na cardiomiopatia hipertrófica Valor pronóstico de la fracción de volumen de colágeno en la cardiomiopatía hipertrófica Prognostic value of the collagen volume fraction in hypertrophic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Edmundo Arteaga

    2009-03-01

    ó, con éxito, biopsia endomiocárdica del ventrículo derecho en 21 pacientes sintomáticos con CMH. La fracción de volumen de colágeno (FVC miocárdico se determinó por medio de histología. Se determinó la FVC también en fragmentos de nueve corazones normales de individuos fallecidos por causas no cardiacas. Respecto a la FVC, se dividieron a los pacientes en grupos supra e inframedianos (FVC elevada y FVC baja, respectivamente, y se compararon las características clínicas y ecocardiográficas y las curvas de sobrevida. RESULTADOS: Entre los pacientes, la FVC tuvo variación del 1,86% al 29,9%, con mediana en el 6,19%. Ya en los corazones normales, del 0,13% al 1,46%, mediana en el 0,36% (p6,19%, sin que se observara diferencias basales. Sin embargo, tras un período de seguimiento promedio de 110 meses, cuatro muertes ocurrieron (dos súbitas, y otras dos por insuficiencia cardiaca en el grupo con FVC mayor, mientras que los pacientes del grupo con FVC menor estaban vivos al final del período (p=0,02. CONCLUSIÓN: Por primera vez, se asoció prospectivamente la fibrosis miocárdica a un peor diagnóstico en pacientes con CMH. Se deben encaminar esfuerzos hacia la cuantificación de la fibrosis en la CMH, al aceptar que la asociación con el pronóstico puede auxiliar tanto en la estratificación de riesgo para implante de desfibrilador, como en la prescripción de fármacos potencialmente reparadores miocárdicos.BACKGROUND: In hypertrophic cardiomyopathy (HCM, interstitial myocardial fibrosis is an important histological modification that has been associated with sudden death and evolution toward myocardial dilation. OBJECTIVE:To prospectively evaluate the prognostic value of the collagen volume fraction in HCM. METHODS: An endomyocardial biopsy of the right ventricle was successfully performed in 21 symptomatic patients with HCM. The myocardial collagen volume fraction (CVF was determined by histology. The CVF was also determined in fragments of nine normal

  17. Non-Destructive Evaluation of Grain Structure Using Air-Coupled Ultrasonics

    Energy Technology Data Exchange (ETDEWEB)

    Belvin, A. D.; Burrell, R. K.; Cole, E.G.

    2009-08-01

    Cast material has a grain structure that is relatively non-uniform. There is a desire to evaluate the grain structure of this material non-destructively. Traditionally, grain size measurement is a destructive process involving the sectioning and metallographic imaging of the material. Generally, this is performed on a representative sample on a periodic basis. Sampling is inefficient and costly. Furthermore, the resulting data may not provide an accurate description of the entire part's average grain size or grain size variation. This project is designed to develop a non-destructive acoustic scanning technique, using Chirp waveforms, to quantify average grain size and grain size variation across the surface of a cast material. A Chirp is a signal in which the frequency increases or decreases over time (frequency modulation). As a Chirp passes through a material, the material's grains reduce the signal (attenuation) by absorbing the signal energy. Geophysics research has shown a direct correlation with Chirp wave attenuation and mean grain size in geological structures. The goal of this project is to demonstrate that Chirp waveform attenuation can be used to measure grain size and grain variation in cast metals (uranium and other materials of interest). An off-axis ultrasonic inspection technique using air-coupled ultrasonics has been developed to determine grain size in cast materials. The technique gives a uniform response across the volume of the component. This technique has been demonstrated to provide generalized trends of grain variation over the samples investigated.

  18. Comparison of geostatistical kriging algorithms for intertidal surface sediment facies mapping with grain size data.

    Science.gov (United States)

    Park, No-Wook; Jang, Dong-Ho

    2014-01-01

    This paper compares the predictive performance of different geostatistical kriging algorithms for intertidal surface sediment facies mapping using grain size data. Indicator kriging, which maps facies types from conditional probabilities of predefined facies types, is first considered. In the second approach, grain size fractions are first predicted using cokriging and the facies types are then mapped. As grain size fractions are compositional data, their characteristics should be considered during spatial prediction. For efficient prediction of compositional data, additive log-ratio transformation is applied before cokriging analysis. The predictive performance of cokriging of the transformed variables is compared with that of cokriging of raw fractions in terms of both prediction errors of fractions and facies mapping accuracy. From a case study of the Baramarae tidal flat, Korea, the mapping method based on cokriging of log-ratio transformation of fractions outperformed the one based on cokriging of untransformed fractions in the prediction of fractions and produced the best facies mapping accuracy. Indicator kriging that could not account for the variation of fractions within each facies type showed the worst mapping accuracy. These case study results indicate that the proper processing of grain size fractions as compositional data is important for reliable facies mapping.

  19. Comparison of Geostatistical Kriging Algorithms for Intertidal Surface Sediment Facies Mapping with Grain Size Data

    Directory of Open Access Journals (Sweden)

    No-Wook Park

    2014-01-01

    Full Text Available This paper compares the predictive performance of different geostatistical kriging algorithms for intertidal surface sediment facies mapping using grain size data. Indicator kriging, which maps facies types from conditional probabilities of predefined facies types, is first considered. In the second approach, grain size fractions are first predicted using cokriging and the facies types are then mapped. As grain size fractions are compositional data, their characteristics should be considered during spatial prediction. For efficient prediction of compositional data, additive log-ratio transformation is applied before cokriging analysis. The predictive performance of cokriging of the transformed variables is compared with that of cokriging of raw fractions in terms of both prediction errors of fractions and facies mapping accuracy. From a case study of the Baramarae tidal flat, Korea, the mapping method based on cokriging of log-ratio transformation of fractions outperformed the one based on cokriging of untransformed fractions in the prediction of fractions and produced the best facies mapping accuracy. Indicator kriging that could not account for the variation of fractions within each facies type showed the worst mapping accuracy. These case study results indicate that the proper processing of grain size fractions as compositional data is important for reliable facies mapping.

  20. A study of fractional Schrödinger equation composed of Jumarie fractional derivative

    Indian Academy of Sciences (India)

    JOYDIP BANERJEE; UTTAM GHOSH; SUSMITA SARKAR; SHANTANU DAS

    2017-04-01

    In this paper we have derived the fractional-order Schrödinger equation composed of Jumarie fractional derivative. The solution of this fractional-order Schrödinger equation is obtained in terms of Mittag–Leffler function with complex arguments, and fractional trigonometric functions. A few important properties of the fractional Schrödinger equation are then described for the case of particles in one-dimensional infinite potential well. One of the motivations for using fractional calculus in physical systems is that the space and time variables, which we often deal with, exhibit coarse-grained phenomena. This means infinite simal quantities cannot be arbitrarily taken to zero – rather they are non-zero with a minimum spread. This type of non-zero spread arises in the microscopic to mesoscopic levels of system dynamics, which means that, if we denote x as the point in space and t as the point in time, then limit of the differentials dx (and dt ) cannot be taken as zero. To take the concept of coarse graining into account, use the infinite simal quantities as $(\\Delta x)^\\alpha$ (and $(\\Delta t)^\\alpha$) with 0 < $\\alpha$ < 1; called as ‘fractional differentials’. For arbitrarily small $\\Delta x$ and $\\Delta t$ (tending towards zero), these ‘fractional’ differentials are greaterthan $\\Delta x$ (and $\\Delta t$), i.e. $(\\Delta x)^\\alpha$ > $\\Delta x$ and $(\\Delta t)^\\alpha$ > $\\Delta t$. This way of defining the fractional differentials helps us to use fractional derivatives in the study of dynamic systems.

  1. Identification of Accretion as Grain Growth Mechanism in Astrophysically Relevant Water&ice Dusty Plasma Experiment

    Science.gov (United States)

    Marshall, Ryan S.; Chai, Kil-Byoung; Bellan, Paul M.

    2017-03-01

    The grain growth process in the Caltech water–ice dusty plasma experiment has been studied using a high-speed camera and a long-distance microscope lens. It is observed that (i) the ice grain number density decreases fourfold as the average grain major axis increases from 20 to 80 μm, (ii) the major axis length has a log-normal distribution rather than a power-law dependence, and (iii) no collisions between ice grains are apparent. The grains have a large negative charge resulting in strong mutual repulsion and this, combined with the fractal character of the ice grains, prevents them from agglomerating. In order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains, the volumetric packing factor (i.e., ratio of the actual volume to the volume of a circumscribing ellipsoid) of the ice grains must be less than ∼0.1 depending on the exact relative velocity of the grains in question. Thus, it is concluded that direct accretion of water molecules is very likely to dominate the observed ice grain growth.

  2. Multiple age components in individual molybdenite grains

    Science.gov (United States)

    Aleinikoff, John N.; Creaser, Robert A.; Lowers, Heather; Magee, Charles W.; Grauch, Richard I.

    2012-01-01

    Re–Os geochronology of fractions composed of unsized, coarse, and fine molybdenite from a pod of unusual monazite–xenotime gneiss within a granulite facies paragneiss, Hudson Highlands, NY, yielded dates of 950.5 ± 2.5, 953.8 ± 2.6, and 941.2 ± 2.6 Ma, respectively. These dates are not recorded by co-existing zircon, monazite, or xenotime. SEM–BSE imagery of thin sections and separated grains reveals that most molybdenite grains are composed of core and rim plates that are approximately perpendicular. Rim material invaded cores, forming irregular contacts, probably reflecting dissolution/reprecipitation. EPMA and LA-ICP-MS analyses show that cores and rims have different trace element concentrations (for example, cores are relatively enriched in W). On the basis of inclusions of zircon with metamorphic overgrowths, we conclude that molybdenite cores and rims formed after high-grade regional metamorphism. The discovery of cores and rims in individual molybdenite grains is analogous to multi-component U-Pb geochronometers such as zircon, monazite, and titanite; thus, molybdenite should be carefully examined before dating to ensure that the requirement of age homogeneity is fulfilled.

  3. Dust grains from the heart of supernovae

    CERN Document Server

    Bocchio, M; Schneider, R; Bianchi, S; Limongi, M; Chieffi, A

    2016-01-01

    Dust grains are classically thought to form in the winds of AGB stars. However, nowadays there is increasing evidence for dust formation in SNe. In order to establish the relative importance of these two classes of stellar sources of dust it is important to know what is the fraction of freshly formed dust in SN ejecta that is able to survive the passage of the reverse shock and be injected in the interstellar medium. With this aim, we have developed a new code, GRASH_Rev, that allows to follow the dynamics of dust grains in the shocked SN ejecta and to compute the time evolution of the mass, composition and size distribution of the grains. We consider four well studied SNe in the Milky Way and LMC: SN 1987a, Cas A, the Crab Nebula, and N49. For all the simulated models, we find good agreement with observations. Our study suggests that SN 1987A is too young for the reverse shock to have affected the dust mass. Conversely, in the other three SNe, the reverse shock has already destroyed between 10 and 40% of the...

  4. On continued fraction algorithms

    NARCIS (Netherlands)

    Smeets, Ionica

    2010-01-01

    Is there a good continued fraction approximation between every two bad ones? What is the entropy of the natural extension for alpha-Rosen fractions? How do you find multi-dimensional continued fractions with a guaranteed quality in polynomial time? These, and many more, questions are answered in thi

  5. DIY Fraction Pack.

    Science.gov (United States)

    Graham, Alan; Graham, Louise

    2003-01-01

    Describes a very successful attempt to teach fractions to year 5 pupils based on pupils making their own fraction pack. Children decided for themselves how to make the fractional slices used in the activity using colored cardboard sheets and templates of a paper circle consisting of 24 equal slices. (Author/NB)

  6. On continued fraction algorithms

    NARCIS (Netherlands)

    Smeets, Ionica

    2010-01-01

    Is there a good continued fraction approximation between every two bad ones? What is the entropy of the natural extension for alpha-Rosen fractions? How do you find multi-dimensional continued fractions with a guaranteed quality in polynomial time? These, and many more, questions are answered in thi

  7. Average widths of grain boundaries in nanophase alloys synthesized by mechanical attrition

    Science.gov (United States)

    Fultz, B.; Kuwano, H.; Ouyang, H.

    1995-04-01

    Many binary ferrous alloys were synthesized by mechanical attrition in a high-energy ball mill. X-ray diffractometry and transmission electron microscopy were used to measure grain sizes, which were as small as a few nanometers in several alloys. The nanocrystalline alloys showed new features in their Mössbauer spectra, which we associated with 57Fe atoms at and near grain boundaries. The experimental data on the fraction of 57Fe atoms at and near grain boundaries were correlated to the measured grain sizes to obtain an average width of the grain boundaries. The average grain-boundary widths of the fcc alloys Fe-Mn and Ni-Fe were approximately 0.5 nm, but the average widths of grain boundaries in the bcc alloys Cr-Fe, Mo-Fe, and Fe-Ti were somewhat larger than 1 nm.

  8. Grain Coarsening Behavior of Mg-Al Alloys with Mischmetal Addition

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Small addition of mischmetal (MM) into aluminum alloys can lead to grain refinement. However, it is still uncertain whether the same effect applies to Mg-Al alloys. This work indicated that small amount of mischmetal addition ranging from 0.1% to 1.2% (mass fraction) did not cause grain refinement in Mg-Al alloys. On the contrary, they tended to coarsen the grains. When added into Mg-Al alloys, MM reacted preferentially with Al to form Al11MM3 phase. As Al11MM3 phase mainly distributed within α-Mg grains than at grain boundaries, it had little effect in restricting grain growth. In addition, MM reacted with Al8(Mn, Fe)5 or ε-AlMn particles to form Al-MM-Mn compounds, thus it reduced the amount of heterogeneous nuclei in the melt and resulted in remarkable grain coarsening.

  9. Si3N4颗粒体积分数对Si3N4/Al复合材料微观组织和力学性能的影响%Effect of volume fraction on microstructure and mechanical properties of Si3N4/Al composites

    Institute of Scientific and Technical Information of China (English)

    修子扬; 陈国钦; 武高辉; 杨文澍; 刘艳梅

    2011-01-01

    采用压力浸渗法制备Si3N4体积分数分别为45%、50%和55%的颗粒增强铝基复合材料(Si3N4/Al).研究Si3N4体积分数和T6热处理对Si3N4/Al复合材料微观组织和力学性能的影响.结果表明:Si3N4颗粒分散均匀,Si3N4/Al复合材料浸渗良好,没有明显的孔洞和铸造缺陷;在Si3N4颗粒附近的铝基体中,可以观察到高密度位错;Si3N4/Al复合材料的弯曲强度随着Si3N4体积分数的增大而降低;T6热处理能提高复合材料的强度;复合材料的弹性模量随着Si3N4体积分数的增加而线性增加;在低Si3N4体积分数时,可以观察到更多的撕裂棱和韧窝;T6热处理对断口形貌的影响较小.%Si3N4 particles reinforced aluminium matrix composites (Si3N4/Al) with different particle volume fractions (45%,50%,and 55%) were fabricated by pressure infiltration method.The effects of Si3N4 volume fraction and T6 treatment on mierostructure and mechanical properties of Si3N4/Al composite were investigated.The results show that Si3N4/Al composites are well infiltrated with good particles dispersion and no apparent porosity or significant casting defects are observed.High density of dislocations in Al matrix around Si3N4 particles is observed.The bending strength of Si3N4/Al composites decreases with an increase in Si3N4 volume fraction,and can be greatly improved by T6 treatment.Elastic modulus of composites increases linearly with Si3N4 volume fraction.At a lower Si3N4 volume fraction,more tearing ridge and dimples with elongation are observed.T6 heat treatment shows minor effect on the fracture surface of composite.

  10. Influence of SiC grain boundary character on fission product transport in irradiated TRISO fuel

    Science.gov (United States)

    Lillo, T. M.; van Rooyen, I. J.

    2016-05-01

    In this study, the fission product precipitates at silicon carbide grain boundaries from an irradiated TRISO particle were identified and correlated with the associated grain boundary characteristics. Precession electron diffraction in the transmission electron microscope provided the crystallographic information needed to identify grain boundary misorientation and boundary type (i.e., low angle, random high angle or coincident site lattice (CSL)-related). The silicon carbide layer was found to be composed mainly of twin boundaries and small fractions of random high angle and low angle grain boundaries. Most fission products were found at random, high-angle grain boundaries, with small fractions at low-angle and CSL-related grain boundaries. Palladium (Pd) was found at all types of grain boundaries while Pd-uranium and Pd-silver precipitates were only associated with CSL-related and random, high-angle grain boundaries. Precipitates containing only Ag were found only at random, high-angle grain boundaries, but not at low angle or CSL-related grain boundaries.

  11. Good Grains Gone Bad: How Grain to Grain Interactions Complicate the Onset of Motion

    Science.gov (United States)

    Yager, E.; Schmeeckle, M. W.

    2015-12-01

    Predictions of the onset of sediment motion are integral components of bed stability and bedload flux estimates. Mechanistic equations for initial motion employ a balance between driving and resisting forces. Driving forces are modeled as functions of the magnitude and duration of turbulence events whereas resisting forces are simply approximated by the grain weight and a static friction angle. Such resistance approximations do not include the effects of grain packing and dynamic interactions with surrounding sediment. To better understand and quantify grain resistance, we used a Discrete Element Method (DEM) model for a single test grain surrounded by a bed of smaller grains. We applied a constant external force on the test grain in each run and progressively increased the force between runs until the test grain moved out of its resting pocket. The DEM model calculated the test grain velocity, position and net force (sum of applied external force and forces from other grains) at time steps of 1×10-7 s. Despite applying a constant external force, the net force on the test grain fluctuated by three to six orders of magnitude, depending on the run. These fluctuations were driven by the creation and destruction of force chains, and the rearrangement of the positions of surrounding bed sediment. Stick-slip behavior, which has been observed in shear tests of granular material, occurred during test-grain motion. The frequency of stick-slip behavior generally declined with higher applied external forces. Therefore, the onset of grain motion was not continuous, as is often assumed even in the presence of fluctuating applied fluid forces. The duration and magnitude of turbulence fluctuations have received considerable attention but our results suggest that grain resistance oscillations are also important. Whether turbulence and resistance fluctuations are synchronous will likely dictate if grain movement occurs, and we are currently conducting model runs to better

  12. Germinated grains: a superior whole grain functional food?

    Science.gov (United States)

    Nelson, Kristina; Stojanovska, Lily; Vasiljevic, Todor; Mathai, Michael

    2013-06-01

    Grains are global dietary staples that when consumed in whole grain form, offer considerable health benefits compared with milled grain foods, including reduced body weight gain and reduced cardiovascular and diabetes risks. Dietary patterns, functional foods, and other lifestyle factors play a fundamental role in the development and management of epidemic lifestyle diseases that share risks of developing adverse metabolic outcomes, including hyperglycaemia, hypertension, dyslipidaemia, oxidative stress, and inflammation. Whole grains provide energy, nutrients, fibres, and bioactive compounds that may synergistically contribute to their protective effects. Despite their benefits, the intake of grains appears to be lower than recommended in many countries. Of emerging interest is the application of germination processes, which may significantly enhance the nutritional and bioactive content of grains, as well as improve palatability. Enhancing grain foods in a natural way using germination techniques may therefore offer a practical, natural, dietary intervention to increase the health benefits and acceptability of whole grains, with potentially widespread effects across populations in attenuating adverse lifestyle disease outcomes. Continuing to build on the growing body of in-vitro studies requires substantiation with extended in-vivo trials so that we may further develop our understanding of the potential of germinated grains as a functional food.

  13. Fractional Differential Equations

    Directory of Open Access Journals (Sweden)

    Jianping Zhao

    2012-01-01

    Full Text Available An extended fractional subequation method is proposed for solving fractional differential equations by introducing a new general ansätz and Bäcklund transformation of the fractional Riccati equation with known solutions. Being concise and straightforward, this method is applied to the space-time fractional coupled Burgers’ equations and coupled MKdV equations. As a result, many exact solutions are obtained. It is shown that the considered method provides a very effective, convenient, and powerful mathematical tool for solving fractional differential equations.

  14. Fractional smith chart theory

    KAUST Repository

    Shamim, Atif

    2011-03-01

    For the first time, a generalized Smith chart is introduced here to represent fractional order circuit elements. It is shown that the standard Smith chart is a special case of the generalized fractional order Smith chart. With illustrations drawn for both the conventional integer based lumped elements and the fractional elements, a graphical technique supported by the analytical method is presented to plot impedances on the fractional Smith chart. The concept is then applied towards impedance matching networks, where the fractional approach proves to be much more versatile and results in a single element matching network for a complex load as compared to the two elements in the conventional approach. © 2010 IEEE.

  15. Carbon isotope fractionation in protoplanetary disks

    CERN Document Server

    Woods, Paul M

    2008-01-01

    We investigate the gas-phase and grain-surface chemistry in the inner 30 AU of a typical protoplanetary disk using a new model which calculates the gas temperature by solving the gas heating and cooling balance and which has an improved treatment of the UV radiation field. We discuss inner-disk chemistry in general, obtaining excellent agreement with recent observations which have probed the material in the inner regions of protoplanetary disks. We also apply our model to study the isotopic fractionation of carbon. Results show that the fractionation ratio, 12C/13C, of the system varies with radius and height in the disk. Different behaviour is seen in the fractionation of different species. We compare our results with 12C/13C ratios in the Solar System comets, and find a stark contrast, indicative of reprocessing.

  16. Nitrogen and phosphorus compounds in the aleurone grains of Iris pseudoacorus endosperm and Pisum sativum cotyledons

    Directory of Open Access Journals (Sweden)

    Ligia Konopska

    2015-05-01

    Full Text Available Aleurone grains from Iris pseudoacorus endosperm and Pisum sativum cotyledons were isolated partly according to Tombs's method (1967. Nitrogen compounds content was determined in them by Kjeldahl's micromethod, and in the particular fractions after Thiman and Laloraya (1960. Mainly protein N was detected in the aleurone grains, constituting 14.8 and 15.2 per cent of the dry mass of pea and Iris seeds, respectively. Moreover, phosphorus compounds were fractionated according to Holden and Pirie (1955. Analyses demonstrated the presence in aleurone grains of inorganic P, acid-soluble organophosphorus compounds, phospholipids and RNA.

  17. Fractional Dynamics and Control

    CERN Document Server

    Machado, José; Luo, Albert

    2012-01-01

    Fractional Dynamics and Control provides a comprehensive overview of recent advances in the areas of nonlinear dynamics, vibration and control with analytical, numerical, and experimental results. This book provides an overview of recent discoveries in fractional control, delves into fractional variational principles and differential equations, and applies advanced techniques in fractional calculus to solving complicated mathematical and physical problems.Finally, this book also discusses the role that fractional order modeling can play in complex systems for engineering and science. Discusses how fractional dynamics and control can be used to solve nonlinear science and complexity issues Shows how fractional differential equations and models can be used to solve turbulence and wave equations in mechanics and gravity theories and Schrodinger’s equation  Presents factional relaxation modeling of dielectric materials and wave equations for dielectrics  Develops new methods for control and synchronization of...

  18. Fractional factorial plans

    CERN Document Server

    Dey, Aloke

    2009-01-01

    A one-stop reference to fractional factorials and related orthogonal arrays.Presenting one of the most dynamic areas of statistical research, this book offers a systematic, rigorous, and up-to-date treatment of fractional factorial designs and related combinatorial mathematics. Leading statisticians Aloke Dey and Rahul Mukerjee consolidate vast amounts of material from the professional literature--expertly weaving fractional replication, orthogonal arrays, and optimality aspects. They develop the basic theory of fractional factorials using the calculus of factorial arrangements, thereby providing a unified approach to the study of fractional factorial plans. An indispensable guide for statisticians in research and industry as well as for graduate students, Fractional Factorial Plans features: * Construction procedures of symmetric and asymmetric orthogonal arrays. * Many up-to-date research results on nonexistence. * A chapter on optimal fractional factorials not based on orthogonal arrays. * Trend-free plans...

  19. Free volume under shear

    Science.gov (United States)

    Maiti, Moumita; Vinutha, H. A.; Sastry, Srikanth; Heussinger, Claus

    2015-10-01

    Using an athermal quasistatic simulation protocol, we study the distribution of free volumes in sheared hard-particle packings close to, but below, the random-close packing threshold. We show that under shear, and independent of volume fraction, the free volumes develop features similar to close-packed systems — particles self-organize in a manner as to mimick the isotropically jammed state. We compare athermally sheared packings with thermalized packings and show that thermalization leads to an erasure of these structural features. The temporal evolution in particular the opening-up and the closing of free-volume patches is associated with the single-particle dynamics, showing a crossover from ballistic to diffusive behavior.

  20. The radiosurgery fractionation quandary: single fraction or hypofractionation?

    Science.gov (United States)

    Kirkpatrick, John P; Soltys, Scott G; Lo, Simon S; Beal, Kathryn; Shrieve, Dennis C; Brown, Paul D

    2017-04-01

    Stereotactic radiosurgery (SRS), typically administered in a single session, is widely employed to safely, efficiently, and effectively treat small intracranial lesions. However, for large lesions or those in close proximity to critical structures, it can be difficult to obtain an acceptable balance of tumor control while avoiding damage to normal tissue when single-fraction SRS is utilized. Treating a lesion in 2 to 5 fractions of SRS (termed "hypofractionated SRS" [HF-SRS]) potentially provides the ability to treat a lesion with a total dose of radiation that provides both adequate tumor control and acceptable toxicity. Indeed, studies of HF-SRS in large brain metastases, vestibular schwannomas, meningiomas, and gliomas suggest that a superior balance of tumor control and toxicity is observed compared with single-fraction SRS. Nonetheless, a great deal of effort remains to understand radiobiologic mechanisms for HF-SRS driving the dose-volume response relationship for tumors and normal tissues and to utilize this fundamental knowledge and the results of clinic studies to optimize HF-SRS. In particular, the application of HF-SRS in the setting of immunomodulatory cancer therapies offers special challenges and opportunities.

  1. Packing Effect of Excluded Volume on Hard-Sphere Colloids

    Institute of Scientific and Technical Information of China (English)

    肖长明; 金国钧; 马余强

    2001-01-01

    We apply the principle of maximum entropy to consider the excluded volume effect on the phase separation of binary mixtures consisting of hard spheres with two different diameters. We show that a critical volume fraction of hard spheres exists locating the packing of large spheres. In particular, through numerical calculation, we have found that the critical volume fraction becomes lower when the ratio α = σ1/σ2 of large-to-small sphere diameters increases, but becomes higher when the ratio of the large sphere volume fraction to the total volume fraction of large and small spheres increases.

  2. Grain Handling and Storage Safety

    OpenAIRE

    Webster, Jill, Ph.D.

    2005-01-01

    Agricultural Health and Safety Fact Sheet AHS-02 Grain Handling and Storage Safety Jill Webster Ph.D., S. Christian Mariger, Graduate Assistant Agricultural Systems Technology and Education There are several hazards that should be considered when working with grain. Storage structures, handling equipment, and the grain itself have all caused serious injuries and deaths. Storage structures (bins, silos, and granaries), like all confined spaces, have significant hazards associated with them. Be...

  3. Characterization of the intragranular water regime within subsurface sediments: Pore volume, surface area, and mass transfer limitations

    Science.gov (United States)

    Hay, Michael B.; Stoliker, Deborah L.; Davis, James A.; Zachara, John M.

    2011-10-01

    Although "intragranular" pore space within grain aggregates, grain fractures, and mineral surface coatings may contain a relatively small fraction of the total porosity within a porous medium, it often contains a significant fraction of the reactive surface area, and can thus strongly affect the transport of sorbing solutes. In this work, we demonstrate a batch experiment procedure using tritiated water as a high-resolution diffusive tracer to characterize the intragranular pore space. The method was tested using uranium-contaminated sediments from the vadose and capillary fringe zones beneath the former 300A process ponds at the Hanford site (Washington). Sediments were contacted with tracers in artificial groundwater, followed by a replacement of bulk solution with tracer-free groundwater and the monitoring of tracer release. From these data, intragranular pore volumes were calculated and mass transfer rates were quantified using a multirate first-order mass transfer model. Tritium-hydrogen exchange on surface hydroxyls was accounted for by conducting additional tracer experiments on sediment that was vacuum dried after reaction. The complementary ("wet" and "dry") techniques allowed for the simultaneous determination of intragranular porosity and surface area using tritium. The Hanford 300A samples exhibited intragranular pore volumes of ˜1% of the solid volume and intragranular surface areas of ˜20%-35% of the total surface area. Analogous experiments using bromide ion as a tracer yielded very different results, suggesting very little penetration of bromide into the intragranular porosity.

  4. Characterization of the intragranular water regime within subsurface sediments: pore volume, surface area, and mass transfer limitations

    Science.gov (United States)

    Hay, Michael B.; Stoliker, Deborah L.; Davis, James A.; Zachara, John M.

    2011-01-01

    Although "intragranular" pore space within grain aggregates, grain fractures, and mineral surface coatings may contain a relatively small fraction of the total porosity within a porous medium, it often contains a significant fraction of the reactive surface area, and can thus strongly affect the transport of sorbing solutes. In this work, we demonstrate a batch experiment procedure using tritiated water as a high-resolution diffusive tracer to characterize the intragranular pore space. The method was tested using uranium-contaminated sediments from the vadose and capillary fringe zones beneath the former 300A process ponds at the Hanford site (Washington). Sediments were contacted with tracers in artificial groundwater, followed by a replacement of bulk solution with tracer-free groundwater and the monitoring of tracer release. From these data, intragranular pore volumes were calculated and mass transfer rates were quantified using a multirate first-order mass transfer model. Tritium-hydrogen exchange on surface hydroxyls was accounted for by conducting additional tracer experiments on sediment that was vacuum dried after reaction. The complementary ("wet" and "dry") techniques allowed for the simultaneous determination of intragranular porosity and surface area using tritium. The Hanford 300A samples exhibited intragranular pore volumes of ~1% of the solid volume and intragranular surface areas of ~20%–35% of the total surface area. Analogous experiments using bromide ion as a tracer yielded very different results, suggesting very little penetration of bromide into the intragranular porosity.

  5. Investigation of the Solidification Behavior of NH4Cl Aqueous Solution Based on a Volume-Averaged Method

    Science.gov (United States)

    Li, Ri; Zhou, Liming; Wang, Jian; Li, Yan

    2017-02-01

    Based on solidification theory and a volume-averaged multiphase solidification model, the solidification process of NH4Cl-70 pct H2O was numerically simulated and experimentally verified. Although researchers have investigated the solidification process of NH4Cl-70 pct H2O, most existing studies have been focused on analysis of a single phenomenon, such as the formation of channel segregation, convection types, and the formation of grains. Based on prior studies, by combining numerical simulation and experimental investigation, all phenomena of the entire computational domain of the solidification process of an NH4Cl aqueous solution were comprehensively investigated for the first time in this study. In particular, the sedimentation of equiaxed grains in the ingot and the induced convection were reproduced. In addition, the formation mechanism of segregation was studied in depth. The calculation demonstrated that the equiaxed grains settled from the wall of the mold and gradually aggregated at the bottom of the mold; when the volume fraction reached a critical value, the columnar grains stopped growing, thus completing the columnar-to-equiaxed transition (CET). Because of solute partitioning, negative segregation occurred at the bottom region of the ingot concentrated with grains, whereas a wide range of positive segregation occurred in the unsolidified, upper part of the ingot. Experimental investigation indicated that the predicted results of the sedimentation of the equiaxed grains in the ingot and the convection types agreed well with the experimental results, thus revealing that the sedimentation of solid phase and convection in the solidification process are the key factors responsible for macrosegregation.

  6. Volume Entropy

    CERN Document Server

    Astuti, Valerio; Rovelli, Carlo

    2016-01-01

    Building on a technical result by Brunnemann and Rideout on the spectrum of the Volume operator in Loop Quantum Gravity, we show that the dimension of the space of the quadrivalent states --with finite-volume individual nodes-- describing a region with total volume smaller than $V$, has \\emph{finite} dimension, bounded by $V \\log V$. This allows us to introduce the notion of "volume entropy": the von Neumann entropy associated to the measurement of volume.

  7. Dividing Fractions: A Pedagogical Technique

    Science.gov (United States)

    Lewis, Robert

    2016-01-01

    When dividing one fraction by a second fraction, invert, that is, flip the second fraction, then multiply it by the first fraction. To multiply fractions, simply multiply across the denominators, and multiply across the numerators to get the resultant fraction. So by inverting the division of fractions it is turned into an easy multiplication of…

  8. grain-filling, chlorophyll content in relation with grain yield ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    The main effect of high temperatures during grain filling is to ... performance, is a crucial determinant of grain yield in cereal crops. ... 6 rows with 0.20 m row spacing, sowing density ... of wheat, corn (Zea mays L.), and other plants. (Wood et al.

  9. Fractional graph theory a rational approach to the theory of graphs

    CERN Document Server

    Scheinerman, Edward R

    2013-01-01

    A unified treatment of the most important results in the study of fractional graph concepts, this volume explores the various ways in which integer-valued concepts can be modified to derive nonintegral values. It begins with the general fractional theory of hypergraphs and presents in-depth coverage of fundamental and advanced topics. Subjects include fractional matching, fractional coloring, fractional edge coloring, fractional arboricity via matroid methods, and fractional isomorphism. The final chapter examines additional topics such as fractional domination, fractional intersection numbers

  10. Modeling Growth and Dissolution Kinetics of Grain-Boundary Cementite in Cyclic Carburizing

    Science.gov (United States)

    Ikehata, Hideaki; Tanaka, Kouji; Takamiya, Hiroyuki; Mizuno, Hiroyuki; Shimada, Takeyuki

    2013-08-01

    In vacuum carburizing of steels, short-time carburizing is usually followed by a diffusion period to eliminate the filmlike cementite ( θ GB ) grown on the austenite ( γ) grain boundary surface. In order to obtain the θ GB amount during the process, the conventional model estimates the amount of cementite ( θ) with the equilibrium fractions for local C contents within a framework of the finite difference method (FDM), which overestimates the amount of θ GB observed after several minutes of carburizing. In our newly developed model, a parabolic law is assumed for the growth of θ GB and the rate controlling process is considered to be Si diffusion rejected from θ under the isoactivity condition. In contrast, the rate constant for the dissolution of θ GB is considered to be controlled by Cr diffusion of θ. Both rate coefficients ( α) were validated using multicomponent diffusion simulation for the moving velocity of the γ/ θ interface. A one-dimensional (1-D) FDM program calculates an increment of θ GB for all grid points by the updated diffusivities and local equilibrium using coupled CALPHAD software. Predictions of the carbon (C) profile and volume fraction of cementite represent the experimental analysis much better than the existing models, especially for both short-time carburization and the cyclic procedure of carburization and diffusion processes.

  11. Surface depression with double-angle geometry during the discharge of grains from a silo

    Science.gov (United States)

    Pacheco-Vázquez, F.; Ramos-Reyes, A. Y.; Hidalgo-Caballero, S.

    2017-08-01

    When rough grains in loose packing conditions are discharged from a silo, a conical depression with a single slope is formed at the surface. We observed that the increase of volume fraction generates a more complex depression, characterized by two angles of discharge: one at the bottom similar to the angle of repose and a considerably larger upper angle. The change in slope appears at the boundary between a dense stagnant region at the periphery and the central flowing channel formed over the aperture. Since the material in the latter zone is always fluidized, the flow rate is unaffected by the initial packing of the bed. On the other hand, the contrast between both angles is markedly smaller when smooth particles of the same size and density are used, which reveals that high packing fraction and friction must combine to produce the observed geometry. Our results show that the surface profile helps to identify by simple visual inspection the packing conditions of a granular bed, being useful to prevent undesirable collapses during silo discharge in industry.

  12. Influence of MgO containing strontium on the structure of ceramic film formed on grain oriented silicon steel surface

    Directory of Open Access Journals (Sweden)

    Vasconcelos Daniela C. Leite

    1999-01-01

    Full Text Available The oxide layer formed on the surface of a grain oriented silicon steel was characterized by SEM and EDS. 3% Si steel substrates were coated by two types of slurries: one formed by MgO and water and other formed by MgO, water and SrSO4. The ceramic films were evaluated by SEM, EDS and X-ray diffraction. Depth profiles of Fe, Si and Mg were obtained by GDS. The magnetic core losses (at 1.7 Tesla, 60 Hz of the coated steel samples were evaluated as well. The use of MgO containing strontium reduced the volume fraction of forsterite particles beneath the outermost ceramic layer. It was observed a reduced magnetic core loss with the use of the slurry with MgO containing strontium.

  13. Grain-resolved elastic strains in deformed copper measured by three-dimensional X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Oddershede, Jette, E-mail: jeto@risoe.dtu.dk [Center for Fundamental Research: Metal Structures in Four Dimensions, Materials Research Division, Riso DTU, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Schmidt, Soren; Poulsen, Henning Friis; Margulies, Lawrence [Center for Fundamental Research: Metal Structures in Four Dimensions, Materials Research Division, Riso DTU, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Wright, Jonathan [European Synchrotron Research Facility, 38043 Grenoble (France); Moscicki, Marcin [Max-Planck-Institut fuer Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Duesseldorf (Germany); Reimers, Walter [Technische Universitaet Berlin, Sekr. BH18, Ernst-Reuter-Platz 1, 10587 Berlin (Germany); Winther, Grethe [Center for Fundamental Research: Metal Structures in Four Dimensions, Materials Research Division, Riso DTU, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)

    2011-07-15

    This X-ray diffraction study reports the grain-resolved elastic strains in about 1000 randomly oriented grains embedded in a polycrystalline copper sample. Diffraction data were collected in situ in the undeformed state and at a plastic strain of 1.5% while the sample was under tensile load. For each grain the centre-of-mass position was determined with an accuracy of 10 {mu}m, the volume with a relative error of 20%, the orientation to 0.05{sup o} and the axial strain to 10{sup -4}. The elastic strain along the tensile direction exhibited a grain orientation dependence with grains within 20 deg. of <100> carrying the largest strain. While the width of the strain distribution for all grains did not change upon plastic loading, the grain-resolved data show a significant widening of the distribution evaluated for small subsets of initially elastically similar grains. This widening appears independent of the grain orientation. - Research Highlights: {yields} X-ray diffraction study of {approx} 1000 Cu grains during in situ plastic deformation. {yields} Grain averaged positions, orientations, volumes and elastic strain tensors derived. {yields} Both lattice rotation and axial strain depend on the initial grain orientation. {yields} Grains within 20{sup o} of <100> carry the largest elastic strain along the tensile axis. {yields} The results enable evaluation and development of polycrystal plasticity models.

  14. Fractional Pure Birth Processes

    CERN Document Server

    Orsingher, Enzo; 10.3150/09-BEJ235

    2010-01-01

    We consider a fractional version of the classical non-linear birth process of which the Yule-Furry model is a particular case. Fractionality is obtained by replacing the first-order time derivative in the difference-differential equations which govern the probability law of the process, with the Dzherbashyan-Caputo fractional derivative. We derive the probability distribution of the number $ \\mathcal{N}_\

  15. Fractional vortex Hilbert's Hotel

    CERN Document Server

    Gbur, Greg

    2015-01-01

    We demonstrate how the unusual mathematics of transfinite numbers, in particular a nearly perfect realization of Hilbert's famous hotel paradox, manifests in the propagation of light through fractional vortex plates. It is shown how a fractional vortex plate can be used, in principle, to create any number of "open rooms," i.e. topological charges, simultaneously. Fractional vortex plates are therefore demonstrated to create a singularity of topological charge, in which the vortex state is completely undefined and in fact arbitrary.

  16. Fractional Electromagnetic Waves

    CERN Document Server

    Gómez, J F; Bernal, J J; Tkach, V I; Guía, M

    2011-01-01

    In the present work we consider the electromagnetic wave equation in terms of the fractional derivative of the Caputo type. The order of the derivative being considered is 0 <\\gamma<1. A new parameter \\sigma, is introduced which characterizes the existence of the fractional components in the system. We analyze the fractional derivative with respect to time and space, for \\gamma = 1 and \\gamma = 1/2 cases.

  17. Normal and abnormal grain growth in fine-grained Nd-Fe-B sintered magnets prepared from He jet milled powders

    Science.gov (United States)

    Bittner, F.; Woodcock, T. G.; Schultz, L.; Schwöbel, C.; Gutfleisch, O.; Zickler, G. A.; Fidler, J.; Üstüner, K.; Katter, M.

    2017-03-01

    Fine-grained, heavy rare earth free Nd-Fe-B sintered magnets were prepared from He jet milled powders with an average particle size of 1.5 μm by low temperature sintering at 920 °C or 980 °C. A coercivity of >1600 kA/m was achieved for an average grain size of 1.68 μm. Transmission electron microscopy showed that the distribution and composition of intergranular and grain boundary junction phases was similar to that in conventionally processed magnets. Microstructural analysis on different length scales revealed the occurrence of abnormal grain growth, which is unexpected for sintering temperatures below 1000 °C. A larger area fraction of abnormal grains was observed in the sample sintered at 920 °C compared to that sintered at 980 °C. Microtexture investigation showed a better crystallographic alignment of the abnormal grains compared to the fine-grained matrix, which is explained by a size dependent alignment of the powder particles during magnetic field alignment prior to sintering. Slightly larger particles in the initial powder show a better alignment and will act as nucleation sites for abnormal grain growth. Magneto-optical Kerr investigations confirmed the lower switching field of the abnormal grains compared to the fine-grained matrix. The demagnetisation curve of the sample sintered at 920 °C showed reduced rectangularity and this was attributed to a cooperative effect of the larger fraction of abnormal grains with low switching field and, as a minor effect, a reduced degree of crystallographic texture in this sample compared to the material sintered at 980 °C, which did not show the reduced rectangularity of the demagnetisation curve.

  18. Alignment of suprathermally rotating grains

    Science.gov (United States)

    Lazarian, A.

    1995-12-01

    It is shown that mechanical alignment can be efficient for suprathermally rotating grains, provided that they drift with supersonic velocities. Such a drift should be widely spread due to both Alfvenic waves and ambipolar diffusion. Moreover, if suprathermal rotation is caused by grain interaction with a radiative flux, it is shown that mechanical alignment may be present even in the absence of supersonic drift. This means that the range of applicability of mechanical alignment is wider than generally accepted and that it can rival the paramagnetic one. We also study the latter mechanism and re-examine the interplay between poisoning of active sites and desorption of molecules blocking the access to the active sites of H_2 formation, in order to explain the observed poor alignment of small grains and good alignment of large grains. To obtain a more comprehensive picture of alignment, we briefly discuss the alignment by radiation fluxes and by grain magnetic moments.

  19. Urbanization and Grain Production Efficiency

    Institute of Scientific and Technical Information of China (English)

    Xiaoyang; LI; Dongge; LIU

    2015-01-01

    Based on DEA-Malmquist method,this paper calculated the integrated technology efficiency of grain production and total factor productivity and analyzed factors influencing the grain production technology efficiency using working documents of panel structure. Research results indicate that grain production integrated technology efficiency of China is relatively low,technology utilization level is low,and it remains at the stage of decreasing returns to scale,and the pure technology efficiency still has space to increase. Total factor productivity is declining and the total factor productivity of many provinces is relatively low. Since the total factor productivity of eastern areas is higher than central and western areas,it is required to strengthen technological support for grain production. The implementation of urbanization is helpful for promoting increase of grain production technology efficiency in central and eastern areas,but it will exert negative influence on western areas.

  20. Autonomous grain combine control system

    Science.gov (United States)

    Hoskinson, Reed L.; Kenney, Kevin L.; Lucas, James R.; Prickel, Marvin A.

    2013-06-25

    A system for controlling a grain combine having a rotor/cylinder, a sieve, a fan, a concave, a feeder, a header, an engine, and a control system. The feeder of the grain combine is engaged and the header is lowered. A separator loss target, engine load target, and a sieve loss target are selected. Grain is harvested with the lowered header passing the grain through the engaged feeder. Separator loss, sieve loss, engine load and ground speed of the grain combine are continuously monitored during the harvesting. If the monitored separator loss exceeds the selected separator loss target, the speed of the rotor/cylinder, the concave setting, the engine load target, or a combination thereof is adjusted. If the monitored sieve loss exceeds the selected sieve loss target, the speed of the fan, the size of the sieve openings, or the engine load target is adjusted.

  1. A Study of Fractional Schrodinger Equation-composed via Jumarie fractional derivative

    CERN Document Server

    Banerjee, Joydip; Sarkar, Susmita; Das, Shantanu

    2016-01-01

    One of the motivations for using fractional calculus in physical systems is due to fact that many times, in the space and time variables we are dealing which exhibit coarse-grained phenomena, meaning that infinitesimal quantities cannot be placed arbitrarily to zero-rather they are non-zero with a minimum length. Especially when we are dealing in microscopic to mesoscopic level of systems. Meaning if we denote x the point in space and t as point in time; then the differentials dx (and dt) cannot be taken to limit zero, rather it has spread. A way to take this into account is to use infinitesimal quantities as (\\Deltax)^\\alpha (and (\\Deltat)^\\alpha) with 0\\Deltax. This way defining the differentials-or rather fractional differentials makes us to use fractional derivatives in the study of dynamic systems. In fractional calculus the fractional order trigonometric functions play important role. The Mittag-Leffler function which plays important role in the field of fractional calculus; and the fractional order tri...

  2. In vitro estimation of the rate and extent of ruminal digestion of cereal feed fraction

    DEFF Research Database (Denmark)

    Tahir, M.N.; Lund, Peter; Hetta, M.

    2011-01-01

    Cereal grains are important components in diets for high producing dairy cows and fast growing beef cattle. The most important feed fraction in cereals is starch, which constitutes the major portion (70-80%) of cereal grains. In ruminant nutrition different starch sources are characterized...

  3. Fração de ejeção e volumes do ventrículo esquerdo medidos com eco 3D e com tomografia ultra-rápida Fracción de eyección y volúmenes del ventrículo izquierdo medidos con eco- 3DTR y con tomografía ultrarrápida Left ventricular ejection fraction and volumes as measured by 3d echocardiography and ultrafast computed tomography

    Directory of Open Access Journals (Sweden)

    Marcelo Luiz Campos Vieira

    2009-04-01

    Full Text Available FUNDAMENTO: O ecocardiograma tridimensional em tempo real (ECO 3D e a tomografia computadorizada ultra-rápida (CT são dois novos métodos de análise da fração de ejeção e dos volumes do VE. OBJETIVO: Comparar as medidas da FEVE e dos volumes do VE aferidos pelo ECO 3D e pela CT ultra-rápida. MÉTODOS: Foram estudados pelo ECO 3D e pela CT ultra-rápida de 64 cortes, 39 pacientes consecutivos (27 homens, média etária de 57±12 anos. Foram analisados: FEVE e volumes do VE. Análise estatística: coeficiente de correlação (r: Pearson, teste de Bland & Altman, teste de regressão linear, 95 % IC, pFUNDAMENTO: La ecocardiografía tridimensional en tiempo real (Eco-3DTR y la tomografía computarizada ultrarrápida (TC ultrarrápida son dos nuevos métodos de análisis de la fracción de eyección (FE y de los volúmenes del ventrículo izquierdo (VI. OBJETIVO: Comparar las mediciones de la fracción de eyección del ventrículo izquierdo (FEVI y de los volúmenes del VI apurados por la Eco-3DTR y por la TC ultrarrápida. MÉTODOS: Se estudiaron, mediante la Eco-3DTR y la TC ultrarrápida de 64 cortes, a 39 pacientes consecutivos (27 varones, promedio de edad de 57±12 años. Se analizaron: FEVI y volúmenes del VI. Análisis estadístico: coeficiente de correlación (r: Pearson, prueba de Bland & Altman, prueba de regresión lineal, 95 % IC, pBACKGROUND: Real-time three-dimensional echocargiography (RT-3D-Echo and ultrafast computed tomography (CT are two novel methods for the analysis of LV ejection fraction and volumes. OBJECTIVE: To compare LVEF and volume measurements as obtained using RT-3D-Echo and ultrafast CT. METHODS: Thirty nine consecutive patients (27 men, mean age of 57±12 years were studied using RT-3D-Echo and 64-slice ultrafast CT. LVEF and LV volumes were analyzed. Statistical analysis: coefficient of correlation (r: Pearson, Bland-Altman analysis, linear regression analysis, 95% CI, p<0.05. RESULTS: RT-3D

  4. Coarse Grained Quantum Dynamics

    CERN Document Server

    Agon, Cesar; Kasko, Skyler; Lawrence, Albion

    2014-01-01

    We consider coarse graining a quantum system divided between short distance and long distance degrees of freedom, which are coupled by the Hamiltonian. Observations using purely long distance observables can be described by the reduced density matrix that arises from tracing out the short-distance observables. The dynamics of this density matrix is that of an open quantum system, and is nonlocal in time, on the order of some short time scale. We describe these dynamics in a model system with a simple hierarchy of energy gaps $\\Delta E_{UV} > \\Delta E_{IR}$, in which the coupling between high-and low-energy degrees of freedom is treated to second order in perturbation theory. We then describe the equations of motion under suitable time averaging, reflecting the limited time resolution of actual experiments, and find an expansion of the master equation in powers of $\\Delta E_{IR}/\\Delta E_{UV}$, in which the failure of the system to be Hamiltonian or even Markovian appears at higher orders in this ratio. We com...

  5. Quantitative analysis of cardiac function: Comparison of electrocardiogram dual gated single photon emission tomography, planar radionuclide ventriculogram and contrast ventriculography in the determination of LV volume and ejection fraction

    Energy Technology Data Exchange (ETDEWEB)

    Ziada, G.; Abdel-Dayem, H.M.; Higazy, E.; Mohamed, M.M.; Bahar, R.; Hayat, N.; Yousof, A.M.

    1987-03-01

    A dual gated tomography (DGT) program for end systolic and end diastolic acquisition and subsequent processing for calculation of LVEF, end diastolic and end systolic volumes (EDV, ESV) has been evaluated in 20 healthy volunteers (25 years-40 years) and 45 patients (25 years-60 years): 20 with ischaemic heart disease and 25 with valvular heart disease (VHD). All had biplane multigated blood pool (MUGA) studies in the 40/sup 0/ LAO projection using in vivo /sup 99m/Tc-R BCs, immediately followed by DG. The results in the patients group were correlated with contrast ventriculography (CV). In the volunteer group, the normal values for LVEF, EDV and ESV measured with DGT were found to be 63%+10%, 91 ml + 6 ml and 30 ml + 6ml and r value for the LVEF=0.91 compared with MUGA. In the IHD group, r values compared with CV were 0.915 and 0.97 for the EDV and ESV and 0.934 for the LVEF. Compared with the MUGA, the r value for LVEF was 0.883. In the VHD group, r values were 0.98 for both the EDV and ESV and 0.948 for the LVEF (P<0.002) compared with CV and 0.789 for the LVEF compared with the MUGA. We feel that DGT is an accurate and reproducible technique for LV function measurements.

  6. Fractional and noncommutative spacetimes

    NARCIS (Netherlands)

    Arzano, M.; Calcagni, M.; Oriti, D.; Scalisi, M.

    2011-01-01

    We establish a mapping between fractional and noncommutative spacetimes in configuration space. Depending on the scale at which the relation is considered, there arise two possibilities. For a fractional spacetime with log-oscillatory measure, the effective measure near the fundamental scale determi

  7. Can Kindergartners Do Fractions?

    Science.gov (United States)

    Cwikla, Julie

    2014-01-01

    Mathematics professor Julie Cwikla decided that she needed to investigate young children's understandings and see what precurricular partitioning notions young minds bring to the fraction table. Cwikla realized that only a handful of studies have examined how preschool-age and early elementary school-age students solve fraction problems (Empson…

  8. Can Kindergartners Do Fractions?

    Science.gov (United States)

    Cwikla, Julie

    2014-01-01

    Mathematics professor Julie Cwikla decided that she needed to investigate young children's understandings and see what precurricular partitioning notions young minds bring to the fraction table. Cwikla realized that only a handful of studies have examined how preschool-age and early elementary school-age students solve fraction problems (Empson…

  9. An Appetite for Fractions

    Science.gov (United States)

    Wilkerson, Trena L.; Bryan, Tommy; Curry, Jane

    2012-01-01

    This article describes how using candy bars as models gives sixth-grade students a taste for learning to represent fractions whose denominators are factors of twelve. Using paper models of the candy bars, students explored and compared fractions. They noticed fewer different representations for one-third than for one-half. The authors conclude…

  10. Categories of Fractions Revisited

    OpenAIRE

    Fritz, Tobias

    2008-01-01

    The theory of categories of fractions as originally developed by Gabriel and Zisman is reviewed in a pedagogical manner giving detailed proofs of all statements. A weakening of the category of fractions axioms used by Higson is discussed and shown to be equivalent to the original axioms.

  11. On fractional programming

    Energy Technology Data Exchange (ETDEWEB)

    Bajona-Xandri, C.; Martinez-Legaz, J.E.

    1994-12-31

    This paper studies the minimax fractional programming problem, assuming quasiconvexity of the objective function, under the lower subdifferentiability viewpoint. Necessary and sufficient optimality conditions and dual properties are found. We present applications of this theory to find the Pareto efficient solutions of a multiobjective fractional problem and to solve several economic models.

  12. Improved polycrystalline Ni{sub 54}Mn{sub 16}Fe{sub 9}Ga{sub 21} high-temperature shape memory alloy by γ phase distributing along grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuiyuan; Zhang, Fan; Zhang, Kaixin; Huang, Yangyang; Wang, Cuiping; Liu, Xingjun [Xiamen Univ. (China). Fujian Key Laboratory of Materials Genome

    2016-09-15

    In this study, the shape recovery and mechanical properties of Ni{sub 54}Mn{sub 16}Fe{sub 9}Ga{sub 21} high-temperature shape memory alloy are improved simultaneously. This results from the low, about 4.4%, volume fraction of γ phase being almost completely distributed along grain boundaries. The recovery strain gradually increases with the increase in residual strain with a shape recovery rate of above 68%, up to a maximum value of 5.3%. The compressive fracture strain of Ni{sub 54}Mn{sub 16}Fe{sub 9}Ga{sub 21} alloy is about 35%. The results further reveal that when applying a high compression deformation two types of cracks form and propagate either within martensite grains (type I) or along the boundaries between martensite phase and γ phase (type II) in the present two-phase alloy.

  13. A model for grain growth based on the novel description of dendrite shape

    Directory of Open Access Journals (Sweden)

    O. Wodo

    2007-12-01

    Full Text Available We use novel description of dendritic shape in the micro solid phase growth model. The model describes evolution of both primary solid solution dendrite and eutectic that forms between arms and grains in the last stage of solidification. Obtained results show that our approach can be used in grain growth model to determine more reliable eutectic distribution. In the paper no kinetics connected with the eutectic transformation is taken into account. However, this does not affect the eutectic distribution because at the beginning of eutectic reaction all liquid phase was assumed to fully transform into eutectic. Results for solid phase growth model based on this description are presented. The obtained results of eutectic distribution are especially important in the hypoeutectic alloy solidification case, where the eutectic grains grow between formed solid solution grains. Thus, the distribution of solid solution grain becomes crucial due to its influence on the delay in solid fraction increase of eutectic grains.

  14. Ultramicroscopic Characterization of Mature Pollen Grains of Habenaria sagittifera

    Directory of Open Access Journals (Sweden)

    Lin Liu

    2016-01-01

    Full Text Available Transmission electron microscopy was conducted to characterize the mature pollen grains in the massulae of Habenaria sagittifera at anthesis to understand its ultramicroscopic features of mature pollen grains of this species. I found that (a pollen walls on the surface of the massula consisted of several layers, which included the tectum, baculum, nexine-1, nexine-2, and intine, whereas pollen walls within the massula were comprised of less layers, lacking tectum and baculum; (b both vegetative and generative nuclei in mature pollen grains were predominated by highly condensed chromatin, which occupied over half of the nuclear volume; and (c the pollen grains did not contain lipid droplets, starch grains, or storage proteins, indicative of the absence of macromolecular storage reserves. In summary, the structural difference between walls on the surface of the massula and walls within the massula, the highly condensed status of the vegetative nucleus, and the absence of macromolecular storage reserves were the most noticeable ultramicroscopic characteristics of mature pollen grains of H. sagittifera.

  15. Chemistry of grain boundary environments in nanocrystalline Al 7075

    Energy Technology Data Exchange (ETDEWEB)

    Ferragut, Rafael, E-mail: rafael.ferragut@polimi.i [Physics Department, LNESS and CNISM, Politecnico di Milano, via Anzani 42, I-22100 Como (Italy); Liddicoat, Peter V. [Australian Key Centre for Microscopy and Microanalysis and ARC Centre of Excellence for Design in Light Metals, University of Sydney, NSW 2006 (Australia); Liao Xiaozhou [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); Zhao, Yong-Hao; Lavernia, Enrique J. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States); Valiev, Ruslan Z. [Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, K. Marksa 12, Ufa 450000 (Russian Federation); Dupasquier, Alfredo [Physics Department, LNESS and CNISM, Politecnico di Milano, via Anzani 42, I-22100 Como (Italy); Ringer, Simon P. [Australian Key Centre for Microscopy and Microanalysis and ARC Centre of Excellence for Design in Light Metals, University of Sydney, NSW 2006 (Australia)

    2010-04-16

    Positron annihilation spectroscopy in two variants (coincidence Doppler-broadening CDB and lifetime spectroscopy LT) was used for the characterisation of severely deformed nanocrystalline 7075 Al alloy, with specific attention to the distribution of solute in the proximity of grain boundaries. The 7075 samples were deformed via the high pressure torsion (HPT) technique after solution treatment and quenching. The grain size at the end of the deformation was sub 100 nm. The deformed samples have undergone 3 months of natural ageing post-processing. CDB and LT measurements consistently indicate that the fraction of trapped positrons in these samples is near to 90%. The analysis of CDB data shows that the environment of the positron traps is enriched with solute up to 50 at.%, nearly evenly divided between Mg and transition metals (Zn and Cu). The CDB results indicate an enhancement of solute concentration at grain boundaries associated with HPT deformation.

  16. Parametric Studies on Star Port Propellant Grain For Ballistic Evaluation

    Directory of Open Access Journals (Sweden)

    Himanshu Shekhar

    2005-10-01

    Full Text Available Star port propellant grains have been extensively studied for their operating as well as geometrical parameters. It is observed that reduced tail-off and better neutrality cannot be achieved simultaneously in a configuration. Parametric study is conducted to know the effect of various parameters of star-shaped propellant grains for ballistic evaluation motor. For reduced tail-off, higher characteristic velocity, lower outer diameter of the star, and lower value of angular fraction is preferred. Star angle, burning rate, and throat diameter have negligible effects on the tail-off factor. For better neutrality, higher value of angular  fraction, higher star outer diameter, and star angle near to neutrality, is needed. An alternate configuration is suggested using this parametric study to ascertain least tail-off and enhanced neutrality.

  17. MATHEMATICAL MODEL OF GRAIN MICRONIZATION

    Directory of Open Access Journals (Sweden)

    V. A. Afanas’ev

    2014-01-01

    Full Text Available Summary. During micronisation grain moisture evaporates mainly in decreasing drying rate period. Grain layer located on the surface of the conveyor micronisers will be regarded as horizontal plate. Due to the fact that the micronisation process the surface of the grain evaporates little moisture (within 2-7 % is assumed constant plate thickness. Because in the process of micronization grain structure is changing, in order to achieve an exact solution of the equations necessary to take into account changes thermophysical, optical and others. Equation of heat transfer is necessary to add a term that is responsible for the infrared heating. Because of the small thickness of the grain, neglecting the processes occurring at the edge of the grain, that is actually consider the problem of an infinite plate. To check the adequacy of the mathematical model of the process of micronisation of wheat grain moisture content must be comparable to the function of time, obtained by solving the system of equations with the measured experimental data of experience. Numerical solution of a system of equations for the period of decreasing drying rate is feasible with the help of the Maple 14, substituting the values of the constants in the system. Calculation of the average relative error does not exceed 7- 10 %, and shows a good agreement between the calculated data and the experimental values.

  18. Quantitative characterisation of sedimentary grains

    Science.gov (United States)

    Tunwal, Mohit; Mulchrone, Kieran F.; Meere, Patrick A.

    2016-04-01

    Analysis of sedimentary texture helps in determining the formation, transportation and deposition processes of sedimentary rocks. Grain size analysis is traditionally quantitative, whereas grain shape analysis is largely qualitative. A semi-automated approach to quantitatively analyse shape and size of sand sized sedimentary grains is presented. Grain boundaries are manually traced from thin section microphotographs in the case of lithified samples and are automatically identified in the case of loose sediments. Shape and size paramters can then be estimated using a software package written on the Mathematica platform. While automated methodology already exists for loose sediment analysis, the available techniques for the case of lithified samples are limited to cases of high definition thin section microphotographs showing clear contrast between framework grains and matrix. Along with the size of grain, shape parameters such as roundness, angularity, circularity, irregularity and fractal dimension are measured. A new grain shape parameter developed using Fourier descriptors has also been developed. To test this new approach theoretical examples were analysed and produce high quality results supporting the accuracy of the algorithm. Furthermore sandstone samples from known aeolian and fluvial environments from the Dingle Basin, County Kerry, Ireland were collected and analysed. Modern loose sediments from glacial till from County Cork, Ireland and aeolian sediments from Rajasthan, India have also been collected and analysed. A graphical summary of the data is presented and allows for quantitative distinction between samples extracted from different sedimentary environments.

  19. Coarse Grained Simulation of Lipid Membrane and Triblock Copolymers

    Science.gov (United States)

    Hatakeyama, Masaomi; Faller, Roland

    2008-02-01

    We investigated the interaction between DPPC (Dipalmitoyl phosphatidylcholine) bilayer and polyethylene oxide-polypropylene oxide-polyethylene oxide (PEO-PPO-PEO) triblock copolymers using coarse grained simulation. We simulated two systems of DPPC bilayer and PEO-PPO-PEO triblock copolymer containing different mole fractions, and simulated DPPC vesicle with the copolymers. We found different adsorption mechanisms of triblock copolymers depending on concentration. And we also observed docking process between a lipid vesicle and a micelle of the copolymers.

  20. Geochemical indicator of original eolian grain size and implications on winter monsoon evolution

    Institute of Scientific and Technical Information of China (English)

    彭淑贞; 郭正堂

    2001-01-01

    Grain size of eolian deposits from the Loess Plateau in China has been widely used to reconstruct the history of the East Asian winter monsoon. However, the grain size of bulk samples is only partially indicative to the strength of the winter monsoon because post-depositional weathering processes have significantly changed the grain size of original eolian particles. Here, non-weathered loess samples were separated into eight different particle fractions, and major chemical elements were determined in order to establish a geochemical indicator of original eolian grain size. The results show that SiO2and AI2O3contents and the SiO2/AI203 ratio in different fractions vary regularly with grain size, and that a good linear relation exists between the SiO2/AI2O3 ratio and grain size for the fractions<50μm. Because Al and Si are among the most stable elements and pedogenic processes in the Loess Plateau cannot affect the SiO2/AI2O3 ratio, this index can be used to reflect the grain size of original eolian part

  1. H2-rich interstellar grain mantles: An equilibrium description

    Science.gov (United States)

    Dissly, Richard W.; Allen, Mark; Anicich, Vincent G.

    1994-01-01

    Experiments simulating the codeposition of molecular hydrogen and water ice on interstellar grains demonstrate that amorphous water ice at 12 K can incorporate a substantial amount of H2, up to a mole ratio of H2/H2O = 0.53. We find that the physical behavior of approximately 80% of the hydrogen can be explained satisfactorily in terms of an equilibrium population, thermodynamically governed by a wide distribution of binding site energies. Such a description predicts that gas phase accretion could lead to mole fractions of H2 in interstellar grain mantles of nearly 0.3; for the probable conditions of WL5 in the rho Ophiuchi cloud, an H2 mole fraction of between 0.05 and 0.3 is predicted, in possible agreement with the observed abundance reported by Sandford, Allamandola, & Geballe. Accretion of gas phase H2 onto grain mantles, rather than photochemical production of H2 within the ice, could be a general explanation for frozen H2 in interstellar ices. We speculate on the implications of such a composition for grain mantle chemistry and physics.

  2. An Improved Implementation of Grain

    CERN Document Server

    Mansouri, Shohreh Sharif

    2009-01-01

    A common approach to protect confidential information is to use a stream cipher which combines plain text bits with a pseudo-random bit sequence. Among the existing stream ciphers, Non-Linear Feedback Shift Register (NLFSR)-based ones provide the best trade-off between cryptographic security and hardware efficiency. In this paper, we show how to further improve the hardware efficiency of Grain stream cipher. By transforming the NLFSR of Grain from its original Fibonacci configuration to the Galois configuration and by introducing a clock division block, we double the throughput of the 80 and 128-bit key 1bit/cycle architectures of Grain with no area penalty.

  3. Size fraction characterization of highly-calcareous fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Itskos, Grigorios; Koukouzas, Nikolaos [Institute for Solid Fuels Technology and Applications, Centre for Research and Technology Hellas, 357-359 Mesogeion Avenue, GR-152 31, Halandri, Athens (Greece); Itskos, Socrates [Department of Chemical Technology and the Environment, Steam Electric Station of Amynteon-Filotas, Public Power Corporation of Greece, GR-532 00, Amynteon (Greece)

    2010-11-15

    The chemical and mineralogical composition of lignite fly ash (FA) varies as a function of the prevalent conditions in both the processes of power production and lignite mining. The differentiation of the qualitative and quantitative composition of the highly-calcareous lignite fly ash, as a function of its particle size distribution, is verified in this paper. According to the results of the conducted research, a fine-grained fraction of considerable amount presents properties that obstruct the sustainable exploitation of calcareous lignite fly ash in cement industry applications. On the other hand, the same grain fraction (because of its hydraulic properties) can be utilized in other sort of applications, based on different criteria, i.e. in road constructions. The coarse-grained fraction (which reflects a low proportion to the total fly ash output) presents the same undesired characteristics as well. Rather, the intermediate grain fraction (75-150 {mu}m) presents the highly desirable properties when fly ash is utilized as a pozzolanic additive. In addition, the mechanism of the formation of the intermediate grain fraction strongly prevents the factors that cause the variation of fly ash-quality. It is therefore the optimum part of the whole amount of lignite FA, to be utilized as additive in cement manufacturing. The outcomes of this paper will hopefully contribute towards the crucial goal of the expansion of the utilization of calcareous lignite fly ash by proposing a more effective way of using this material, basically by taking advantage of its fundamental chemical and mineralogical properties. (author)

  4. Digestion Fractional Crystallisation (DFC)

    DEFF Research Database (Denmark)

    Pilbeam, Llewellyn Howard; Nielsen, T.F.D.; Waight, Tod Earle

    2013-01-01

    High-precision electron microprobe data for major and trace elements (nickel, calcium and manganese) in the margins and rims of groundmass olivine grains from the Majuagaa kimberlite (sensu stricto) in southern West Greenland are presented. Despite a range of olivine core compositions defining se...

  5. Grain Exchange Probabilities Within a Gravel Bed

    Science.gov (United States)

    Haschenburger, J.

    2008-12-01

    Sediment transfers in gravel-bed rivers involve the vertical exchange of sediments during floods. These exchanges regulate the virtual velocity of sediment and bed material texture. This study describes general tendencies in the vertical exchange of gravels within the substrate that result from multiple floods. Empirical observations come from Carnation Creek, a small gravel-bed river with large woody debris located on the west coast of Vancouver Island, British Columbia. Frequent floods and the relatively limited armor layer facilitate streambed activity and relatively high bedload transport rates, typically under partial sediment transport conditions. Over 2000 magnetically tagged stones, ranging in size from 16 to 180 mm, were deployed on the bed surface between 1991 and 1992. These tracers have been recovered 10 times over 12 flood seasons to quantify their vertical position in the streambed. For analysis, the bed is divided into layers based on armor layer thickness. Once tracers are well mixed within the streambed, grains in the surface layer are most likely to be mixed into the subsurface, while subsurface grains are most likely to persist within the subsurface. Fractional exchange probabilities approach size independence when the most active depth of the substrate is considered. Overall these results highlight vertical mixing as an important process in the dispersion of gravels.

  6. Origins of Shear Jamming for Frictional Grains

    Science.gov (United States)

    Wang, Dong; Zheng, Hu; Ren, Jie; Dijksman, Joshua; Bares, Jonathan; Behringer, Robert

    2016-11-01

    Granular systems have been shown to be able to behave like solids, under shear, even when their densities are below the critical packing fraction for frictionless isotropic jamming. To understand such a phenomena, called shear jamming, the question we address here is: how does shear bring a system from a unjammed state to a jammed state, where the coordination number, Z, is no less than 3, the isotropic jamming point for frictional grains? Since Z can be used to distinguish jammed states from unjammed ones, it is vital to understand how shear increases Z. We here propose a set of three particles in contact, denoted as a trimer, as the basic unit to characterize the deformation of the system. Trimers, stabilized by inter-grain friction, fail under a certain amount of shear and bend to make extra contacts to regain stability. By defining a projection operator of the opening angle of the trimer to the compression direction in the shear, O, we see a systematically linear decrease of this quantity with respect to shear strain, demonstrating the bending of trimers as expected. In addition, the average change of O from one shear step to the next shows a good collapse when plotted against Z, indicating a universal behavior in the process of shear jamming. We acknowledge support from NSF DMR1206351, NASA NNX15AD38G, the William M. Keck Foundation and a RT-MRSEC Fellowship.

  7. Fractional calculus in bioengineering.

    Science.gov (United States)

    Magin, Richard L

    2004-01-01

    Fractional calculus (integral and differential operations of noninteger order) is not often used to model biological systems. Although the basic mathematical ideas were developed long ago by the mathematicians Leibniz (1695), Liouville (1834), Riemann (1892), and others and brought to the attention of the engineering world by Oliver Heaviside in the 1890s, it was not until 1974 that the first book on the topic was published by Oldham and Spanier. Recent monographs and symposia proceedings have highlighted the application of fractional calculus in physics, continuum mechanics, signal processing, and electromagnetics, but with few examples of applications in bioengineering. This is surprising because the methods of fractional calculus, when defined as a Laplace or Fourier convolution product, are suitable for solving many problems in biomedical research. For example, early studies by Cole (1933) and Hodgkin (1946) of the electrical properties of nerve cell membranes and the propagation of electrical signals are well characterized by differential equations of fractional order. The solution involves a generalization of the exponential function to the Mittag-Leffler function, which provides a better fit to the observed cell membrane data. A parallel application of fractional derivatives to viscoelastic materials establishes, in a natural way, hereditary integrals and the power law (Nutting/Scott Blair) stress-strain relationship for modeling biomaterials. In this review, I will introduce the idea of fractional operations by following the original approach of Heaviside, demonstrate the basic operations of fractional calculus on well-behaved functions (step, ramp, pulse, sinusoid) of engineering interest, and give specific examples from electrochemistry, physics, bioengineering, and biophysics. The fractional derivative accurately describes natural phenomena that occur in such common engineering problems as heat transfer, electrode/electrolyte behavior, and sub

  8. Social Trust and Fractionalization:

    DEFF Research Database (Denmark)

    Bjørnskov, Christian

    2008-01-01

    This paper takes a closer look at the importance of fractionalization for the creation of social trust. It first argues that the determinants of trust can be divided into two categories: those affecting individuals' trust radii and those affecting social polarization. A series of estimates using...... a much larger country sample than in previous literature confirms that fractionalization in the form of income inequality and political diversity adversely affects social trust while ethnic diversity does not. However, these effects differ systematically across countries, questioning standard...... interpretations of the influence of fractionalization on trust....

  9. Formation of lithospheric shear zones: Effect of temperature on two-phase grain damage

    Science.gov (United States)

    Mulyukova, Elvira; Bercovici, David

    2017-09-01

    Shear localization in the lithosphere is a characteristic feature of plate tectonic boundaries, and is evident in the presence of small grain mylonites. Localization and mylonitization in the ductile portion of the lithosphere can arise when its polymineralic material deforms by a grain-size sensitive rheology in combination with Zener pinning, which can impede, or possibly even reverse, grain growth and thus promotes a self-softening feedback mechanism. However, the efficacy of this mechanism is not ubiquitous and depends on lithospheric conditions such as temperature and stress. Therefore, we explore the conditions under which self-weakening takes place, and, in particular, the effect of temperature and deformation state (stress or strain-rate) on these conditions. In our model, the lithosphere-like polymineralic material is deformed in a two-dimensional simple shear driven by constant stress or strain rate. The mineral grains evolve to a stable size, which is obtained when the rate of coarsening by normal grain growth and the rate of grain size reduction by damage are in balance. Damage involves processes by which some of the deformational energy gets transferred into surface energy. This can happen by (i) dynamic recrystallization (grain damage) and (ii) stretching, deforming and stirring the material interface (interface damage). The influence of temperature enters through rheological laws (which govern the rate of work and damage), grain growth kinetics, and the damage partitioning fraction, which is the fraction of deformational work that goes into creating new surface energy. We demonstrate that a two-phase damage model, in which the partitioning fraction depends on both temperature and roughness of the interface between the phases, can successfully match the field data, including the reported correlation of grain size and temperature, the increasing dominance of dislocation creep at higher temperatures and a large range of grain sizes observed across the

  10. Micromagnetic simulations on the grain shape effect in Nd-Fe-B magnets

    Science.gov (United States)

    Yi, Min; Gutfleisch, Oliver; Xu, Bai-Xiang

    2016-07-01

    Micromagnetic simulations were performed to study the effect of grain shape and defect layer in Nd-Fe-B magnets. It was found that the coercivity can be increased by a factor of ˜2 by changing the grain shape from the triangular prism to the spheroid. Both the anisotropy field contribution and the shape contribution to the coercivity, and thus also the final coercivity, were found to decrease in the order: spheroid > circular prism > hexagonal prism > square prism > triangular prism. Sputtered columnar grains and hot-deformed platelet grains with a constant volume were also considered. Results show that the coercivity initially increases with the aspect ratio and then nearly saturates above the ratio of ˜4. Simulations of multigrain ensembles showed that depending on the grain shape, compared to the case of single grain, a further decrease of ˜10%-45% in the coercivity is induced by magnetostatic coupling.

  11. PARASITE MYCOPOPULATION OF SOYBEAN GRAIN

    Directory of Open Access Journals (Sweden)

    Jasenka Ćosić

    2008-07-01

    Full Text Available Disease appearance on soybean can influence quality and quantity of yield. Different spieces of saprophyte and parasite fungi can be isolated from stems, pods and grain of soybean. The aim of the research was to evaluate the incidence of important disease on natural soybean grain over the period of 4 years (2004-2007 of experiment held on the location Sopot-Vinkovci and included 9 cultivars of soybean. The following plant pathogenic fungi were identified: Peronospora, Sclerotinia, Cercospora, Fusarium and Diaporthe/Phomopsis. The most frequent fungi on soybean grains were: Cladosporium, Alternaria, Penicillium, Aspergillus and Epicoccum. The health condition of the natural soybean grains over the four years period on all cultivars was good.

  12. Export Rebates on Grain Finished

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ According to the State Statistics Bureau, China's consumer price index (CPI) jumped by 6.9 percent year-on-year last November, approaching the high levels seen at the end of 1996, one of the largest areas of increase was the price of grain,which rose by 6.6 percent. There is no doubt the growth in CPI can be mainly attributed to soaring food prices and the diffusion effect of oil price adjustments. Large orders for grain exports have put Chinese grain suppliers under tremendous pressure. In order to solve this problem, the Finance Ministry and State Administration of Taxation together announced that 84 categories of export tax rebates on major types of grain will be eliminated.

  13. Export Rebates on Grain Finished

    Institute of Scientific and Technical Information of China (English)

    Liu; Xinwen

    2008-01-01

      According to the State Statistics Bureau, China's consumer price index (CPI) jumped by 6.9 percent year-on-year last November, approaching the high levels seen at the end of 1996, one of the largest areas of increase was the price of grain,which rose by 6.6 percent. There is no doubt the growth in CPI can be mainly attributed to soaring food prices and the diffusion effect of oil price adjustments. Large orders for grain exports have put Chinese grain suppliers under tremendous pressure. In order to solve this problem, the Finance Ministry and State Administration of Taxation together announced that 84 categories of export tax rebates on major types of grain will be eliminated.……

  14. PARASITE MYCOPOPULATION OF SOYBEAN GRAIN

    OpenAIRE

    Jasenka Ćosić; Karolina Vrandečić; Draženka Jurković; Ivan Ereš; Jelena Poštić

    2008-01-01

    Disease appearance on soybean can influence quality and quantity of yield. Different spieces of saprophyte and parasite fungi can be isolated from stems, pods and grain of soybean. The aim of the research was to evaluate the incidence of important disease on natural soybean grain over the period of 4 years (2004-2007) of experiment held on the location Sopot-Vinkovci and included 9 cultivars of soybean. The following plant pathogenic fungi were identified: Peronospora, Sclerotinia, Cercospora...

  15. Discrete fractional calculus

    CERN Document Server

    Goodrich, Christopher

    2015-01-01

    This text provides the first comprehensive treatment of the discrete fractional calculus. Experienced researchers will find the text useful as a reference for discrete fractional calculus and topics of current interest. Students who are interested in learning about discrete fractional calculus will find this text to provide a useful starting point. Several exercises are offered at the end of each chapter and select answers have been provided at the end of the book. The presentation of the content is designed to give ample flexibility for potential use in a myriad of courses and for independent study. The novel approach taken by the authors includes a simultaneous treatment of the fractional- and integer-order difference calculus (on a variety of time scales, including both the usual forward and backwards difference operators). The reader will acquire a solid foundation in the classical topics of the discrete calculus while being introduced to exciting recent developments, bringing them to the frontiers of the...

  16. Fractional Derivative Cosmology

    CERN Document Server

    Roberts, Mark D

    2009-01-01

    The degree by which a function can be differentiated need not be restricted to integer values. Usually most of the field equations of physics are taken to be second order, curiosity asks what happens if this is only approximately the case and the field equations are nearly second order. For Robertson-Walker cosmology there is a simple fractional modification of the Friedman and conservation equations. In general fractional gravitational equations similar to Einstein's are hard to define as this requires fractional derivative geometry. What fractional derivative geometry might entail is briefly looked at and it turns out that even asking very simple questions in two dimensions leads to ambiguous or intractable results. A two dimensional line element which depends on the Gamma-function is looked at.

  17. Experimental Determination of Grain Density Function Depends on Mass Fraction of SiC and Undercooling in AZ91/SiC Composite Heterogeneous Nuclation Model%试验确定AZ91/SiC复合材料异质形核模型中决定于SiC质量分数和过冷度的晶粒密度函数

    Institute of Scientific and Technical Information of China (English)

    J.Lelito; P.Zak; J.S.Suchy; W.Krajewski; A.L.Greer; P.Darlak

    2011-01-01

    undercooling.This model in connection with model of crystallisation, which is based on chemical elements diffusion and grain interface kinetics, can be used to predict casting quality and its microstructure.Nucleation models have parameters, which exact values are usually not known and sometimes even their physical meaning is under discussion.Those parameters can be obtained after mathematical analysis of the experimental data.The composite with 0, 1%, 2%, 3% and 4 wt.% of SiC particles were prepared.The AZ91 alloy was a matrix of the composite reinforcement SiC particles.This composite was cast to prepare four different thickness plates.They were taken from the region near to the thermocouple, to analyze the undercooling for different composites and thickness plates and its influence on the grain size.The microstructure and thermal analysis gave set of values that connect mass fraction of SiC particles, and undercooling with grain size.These values were used to approximate nucleation model adjustment parameters.Obtained model can be very useful in modelling composites microstructure.

  18. Intracellular Cadmium Isotope Fractionation

    Science.gov (United States)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  19. Superconductivity of small metal grains

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Renrong; CHEN; Zhiqian; ZHU; Shunquan

    2005-01-01

    The formulas of the energy gap and superconducting critical temperature appropriate for systems with both odd and even number of electrons are derived; the bases of the derivations are BCS theory and energy level statistics. Numerical results qualitatively agree with the experimental phenomena. i.e., the superconductivity of small metallic grains will first enhance then decrease to zero when the grain are getting smaller and smaller. The calculations indicate that the above phenomena happen in the metallic grains belonging to Gaussian Orthogonal Ensemble (GOE) and Gaussian Unitary ensemble (GUE) with zero spin; The superconductivity of small metallic grains in Gaussian Symplectic Ensemble (GSE) will monotonically decrease