WorldWideScience

Sample records for volume comprises pores

  1. Active Pore Volume in Danish Peat Soils

    DEFF Research Database (Denmark)

    Forsmann, Ditte M.; Kjærgaard, Charlotte

    2012-01-01

    Phosphorus release within the soil matrix caused by the changed redox conditions due to re-establishment of a riparian wetland can be critical for the aquatic environment. However, phosphorous released in the soil will not always result in an immediate contribution to this loss to the aquatic...... environment. Lowland soils are primarily peat soils, and only a minor part of the total soil volume of peat soils is occupied by macropores (>30 µm). Since water primarily flows in these macropores, the majority of the soil matrix is bypassed (the immobile domain). Phosphorus released in the immobile domain...... is not actively transported out of the system, but is only transported via diffusion, which is a very slow process. Thus it is interesting to investigate the size of the active pore volume in peat soils. The hypothesis of this study is that the active pores volume of a peat soil can be expressed using bulk...

  2. Pore volume is most highly correlated with the visual assessment of skin pores.

    Science.gov (United States)

    Kim, S J; Shin, M K; Back, J H; Koh, J S

    2014-11-01

    Many studies have been focused on evaluating assessment techniques for facial pores amid growing attention on skin care. Ubiquitous techniques used to assess the size of facial pores include visual assessment, cross-section images of the skin surface, and profilometric analysis of silicone replica of the facial skin. In addition, there are indirect assessment methods, including observation of pores based on confocal laser scanning microscopy and the analysis of sebum secretion and skin elasticity. The aim of this study was to identify parameters useful in estimating pore of surface in normal skin. The severity of pores on the cheek area by frontal optical images was divided on a 0-6 scale with '0' being faint and small pore and '6' being obvious and large pore. After the photos of the frontal cheek of 32 women aged between 35 and 49 were taken, the size of their pores was measured on a 0-6 scale; and the correlation between visual grading of pore and various evaluations (pore volume by 3-D image, pore area and number by Optical Image Analyzer) contributing to pore severity investigated using direct, objective, and noninvasive evaluations. The visual score revealed that the size of pores was graded on a 1-6 scale. Visual grading of pore was highly correlated with pore volume measured from 3-D images and pore area measured from 2-D optical images in the order (P pore was also slightly correlated with the number of pores in size of over 0.04 mm(2) (P pore score and pore volume can be explained by 3-D structural characteristics of pores. It is concluded that pore volume and area serve as useful parameters in estimating pore of skin surface. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Pore volume and pore size distribution of cement samples measured by a modified mercury intrusion porosimeter

    International Nuclear Information System (INIS)

    Zamorani, E.; Blanchard, H.

    1987-01-01

    Important parameters for the characterization of cement specimens are mechanical properties and porosity. This work is carried out at the Ispra Establishment of the Joint Research Centre in the scope of the Radioactive Waste Management programme. A commercial Mercury Intrusion Porosimeter was modified in an attempt to improve the performance of the instrument and to provide fast processing of the recorded values: pressure-volume of pores. The dead volume of the instrument was reduced and the possibility of leakage from the moving parts eliminated. In addition, the modification allows an improvement of data acquisition thus increasing data accuracy and reproducibility. In order to test the improved performance of the modified instrument, physical characterizations of cement forms were carried out. Experimental procedures and results are reported

  4. Methods for determining enzymatic activity comprising heating and agitation of closed volumes

    Science.gov (United States)

    Thompson, David Neil; Henriksen, Emily DeCrescenzo; Reed, David William; Jensen, Jill Renee

    2016-03-15

    Methods for determining thermophilic enzymatic activity include heating a substrate solution in a plurality of closed volumes to a predetermined reaction temperature. Without opening the closed volumes, at least one enzyme is added, substantially simultaneously, to the closed volumes. At the predetermined reaction temperature, the closed volumes are agitated and then the activity of the at least one enzyme is determined. The methods are conducive for characterizing enzymes of high-temperature reactions, with insoluble substrates, with substrates and enzymes that do not readily intermix, and with low volumes of substrate and enzyme. Systems for characterizing the enzymes are also disclosed.

  5. Investigating the pore-water chemistry effects on the volume change behaviour of Boom clay

    Science.gov (United States)

    Deng, Y. F.; Cui, Y. J.; Tang, A. M.; Nguyen, X. P.; Li, X. L.; Van Geet, M.

    The Essen site has been chosen as an alternative site for nuclear waste disposal in Belgium. The soil formation involved at this site is the same as at Mol site: Boom clay. However, owing to its geographical situation closer to the sea, Boom clay at Essen presents a pore water salinity 4-5 times higher than Boom clay at Mol. This study aims at studying the effects of pore water salinity on the hydro-mechanical behaviour of Boom clay. Specific oedometer cells were used allowing “flushing” the pore water in soil specimen by synthetic pore water or distilled water. The synthetic pore water used was prepared with the chemistry as that for the site water: 5.037 g/L for core Ess83 and 5.578 g/L for core Ess96. Mechanical loading was then carried out on the soil specimen after flushing. The results show that water salinity effect on the liquid limit is negligible. The saturation or pore water replacement under the in situ effective stress of 2.4 MPa does not induce significant volume change. For Ess83, hydro-mechanical behaviour was found to be slightly influenced by the water salinity; on the contrary, no obvious effect was identified on the hydro-mechanical behaviour of Ess96. This can be attributed to the higher smectite content in Ess83 than in Ess96.

  6. Wood decay by brown-rot fungi : changes in pore structure and cell wall volume

    Science.gov (United States)

    Douglas S. Flournoy; T. Kent Kirk; T.L. Highley

    1991-01-01

    Sweetgum (Liquidambar styraciflua L.) wood blocks were decayed by Postia (= Poria) placenta in soilblock cultures. Decay was terminated at various weight losses, and the pore volumes available to four low molecular weight molecules, (water, 4 Å,; glucose, 8 Å,; maltose, 10 Å; and raffinose, 128,) and three dextrans (Mr 6,000, 38 Å; 11,200, 51 Å; nd 17,500, 61 Å) were...

  7. Estimation of surface area and pore volume of activated carbons by methylene blue and iodine numbers

    Directory of Open Access Journals (Sweden)

    Cleiton A. Nunes

    2011-01-01

    Full Text Available Data of methylene blue number and iodine number of activated carbons samples were calibrated against the respective surface area, micropore volume and total pore volume using multiple regression. The models obtained from the calibrations were used in predicting these physical properties of a test group of activated carbon samples produced from several raw materials. In all cases, the predicted values were in good agreement with the expected values. The method allows extracting more information from the methylene blue and iodine adsorption studies than normally obtained with this type of material.

  8. Simulation of pore pressure accumulation under cyclic loading using Finite Volume Method

    DEFF Research Database (Denmark)

    Tang, Tian; Hededal, Ole

    2014-01-01

    This paper presents a finite volume implementation of a porous, nonlinear soil model capable of simulating pore pressure accumulation under cyclic loading. The mathematical formulations are based on modified Biot’s coupled theory by substituting the original elastic constitutive model...... with an advanced elastoplastic model suitable for describing monotonic as well as cyclic loading conditions. The finite volume method is applied to discretize these formulations. The resulting set of coupled nonlinear algebraic equations are then solved by a ’segregated’ solution procedure. An efficient return...

  9. Impact of pore-pressure cycling on bentonite in constant volume experiments

    International Nuclear Information System (INIS)

    Graham, C.C.; Harrington, J.F.; Cuss, R.J.; Sellin, P.

    2012-01-01

    Document available in extended abstract form only. The SKB safety case for a KBS-3 repository highlights the potential importance of future successive glaciation events on repository functions. One particular uncertainty is the likely affect of elevated pore-water pressures on barrier safety functions. Over the repository lifetime such changes in pore-water pressure are likely to be cyclic in nature, as successive glacial episodes lead to loading and unloading of the engineered barrier. For a clay-water system with the pore-water in thermodynamic equilibrium with an external reservoir of water at pressure, p w , the total stress acting on the surrounding vessel can be expressed as: (1) σ = Π + αp w where Π is the swelling pressure and α is a proportionality constant. We present results from a series of laboratory experiments designed to investigate this relationship, in the context of glacial loading. Blocks of pre-compacted Mx80 bentonite were manufactured by Clay Technology AB (Lund, Sweden), by rapidly compacting bentonite granules in a mould under a one dimensionally applied stress (Johannesson et al., 1995). The blocks were then sub-sampled and cylindrical specimens prepared for testing (120 mm in length and 60 mm in diameter). The experiments were conducted using a specially designed constant volume cell, which allows the evolution of the total stresses acting on the surrounding vessel to be monitored during clay swelling (at three radial and two axial locations). A high precision syringe pump was used to maintain a constant applied pore pressure within the bentonite, while the rate of hydraulic inflow, and consequent stress development, were monitored to determine the point at which hydraulic equilibrium was reached. During the tests each sample was subjected to an incremental series of constant pore-pressure steps, with all samples experiencing at least one loading and unloading cycle. The resulting average total stress data yield alpha values in the

  10. Characterization of the intragranular water regime within subsurface sediments: pore volume, surface area, and mass transfer limitations

    Science.gov (United States)

    Hay, Michael B.; Stoliker, Deborah L.; Davis, James A.; Zachara, John M.

    2011-01-01

    Although "intragranular" pore space within grain aggregates, grain fractures, and mineral surface coatings may contain a relatively small fraction of the total porosity within a porous medium, it often contains a significant fraction of the reactive surface area, and can thus strongly affect the transport of sorbing solutes. In this work, we demonstrate a batch experiment procedure using tritiated water as a high-resolution diffusive tracer to characterize the intragranular pore space. The method was tested using uranium-contaminated sediments from the vadose and capillary fringe zones beneath the former 300A process ponds at the Hanford site (Washington). Sediments were contacted with tracers in artificial groundwater, followed by a replacement of bulk solution with tracer-free groundwater and the monitoring of tracer release. From these data, intragranular pore volumes were calculated and mass transfer rates were quantified using a multirate first-order mass transfer model. Tritium-hydrogen exchange on surface hydroxyls was accounted for by conducting additional tracer experiments on sediment that was vacuum dried after reaction. The complementary ("wet" and "dry") techniques allowed for the simultaneous determination of intragranular porosity and surface area using tritium. The Hanford 300A samples exhibited intragranular pore volumes of ~1% of the solid volume and intragranular surface areas of ~20%–35% of the total surface area. Analogous experiments using bromide ion as a tracer yielded very different results, suggesting very little penetration of bromide into the intragranular porosity.

  11. Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 2, Big Hill Site, Texas.

    Energy Technology Data Exchange (ETDEWEB)

    Rautman, Christopher Arthur; Lord, Anna Snider

    2007-08-01

    Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 2 focuses on the Big Hill SPR site, located in southeastern Texas. Volumes 1, 3, and 4, respectively, present images for the Bayou Choctaw SPR site, Louisiana, the Bryan Mound SPR site, Texas, and the West Hackberry SPR site, Louisiana. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

  12. Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 1, Bayou Choctaw site, Louisiana.

    Energy Technology Data Exchange (ETDEWEB)

    Rautman, Christopher Arthur; Lord, Anna Snider

    2007-10-01

    Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 1 focuses on the Bayou Choctaw SPR site, located in southern Louisiana. Volumes 2, 3, and 4, respectively, present images for the Big Hill SPR site, Texas, the Bryan Mound SPR site, Texas, and the West Hackberry SPR site, Louisiana. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

  13. Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 3, Bryan Mound Site, Texas.

    Energy Technology Data Exchange (ETDEWEB)

    Rautman, Christopher Arthur; Lord, Anna Snider

    2007-09-01

    Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 3 focuses on the Bryan Mound SPR site, located in southeastern Texas. Volumes 1, 2, and 4, respectively, present images for the Bayou Choctaw SPR site, Louisiana, the Big Hill SPR site, Texas, and the West Hackberry SPR site, Louisiana. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

  14. Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 4, West Hackberry site, Louisiana.

    Energy Technology Data Exchange (ETDEWEB)

    Rautman, Christopher Arthur; Lord, Anna Snider

    2007-09-01

    Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 4 focuses on the West Hackberry SPR site, located in southwestern Louisiana. Volumes 1, 2, and 3, respectively, present images for the Bayou Choctaw SPR site, Louisiana, the Big Hill SPR site, Texas, and the Bryan Mound SPR site, Texas. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

  15. Pore-scale simulations of drainage in granular materials: Finite size effects and the representative elementary volume

    Science.gov (United States)

    Yuan, Chao; Chareyre, Bruno; Darve, Félix

    2016-09-01

    A pore-scale model is introduced for two-phase flow in dense packings of polydisperse spheres. The model is developed as a component of a more general hydromechanical coupling framework based on the discrete element method, which will be elaborated in future papers and will apply to various processes of interest in soil science, in geomechanics and in oil and gas production. Here the emphasis is on the generation of a network of pores mapping the void space between spherical grains, and the definition of local criteria governing the primary drainage process. The pore space is decomposed by Regular Triangulation, from which a set of pores connected by throats are identified. A local entry capillary pressure is evaluated for each throat, based on the balance of capillary pressure and surface tension at equilibrium. The model reflects the possible entrapment of disconnected patches of the receding wetting phase. It is validated by a comparison with drainage experiments. In the last part of the paper, a series of simulations are reported to illustrate size and boundary effects, key questions when studying small samples made of spherical particles be it in simulations or experiments. Repeated tests on samples of different sizes give evolution of water content which are not only scattered but also strongly biased for small sample sizes. More than 20,000 spheres are needed to reduce the bias on saturation below 0.02. Additional statistics are generated by subsampling a large sample of 64,000 spheres. They suggest that the minimal sampling volume for evaluating saturation is one hundred times greater that the sampling volume needed for measuring porosity with the same accuracy. This requirement in terms of sample size induces a need for efficient computer codes. The method described herein has a low algorithmic complexity in order to satisfy this requirement. It will be well suited to further developments toward coupled flow-deformation problems in which evolution of the

  16. Effect of uncertainty in pore volumes on the uncertainty in amount adsorbed at high-pressures on activated carbon cloth

    International Nuclear Information System (INIS)

    Pendleton, Ph.; Badalyan, A.

    2005-01-01

    determination on the adsorption capacity and the specific surface excess on FMI/250 ACC at high-pressures, assess the extent of hysteresis in the pore volume and size distribution as a result of low-high-low pressure cycling, and show the influence of chemisorbed oxygen on the amount adsorbed and the materials physical property values. [1] E. Dimotakis, M. P. Cal, J. Economy, M. J. Rood, S. Larson, Environmental Science and Technology, 29, 1876,1995. [2] D. Lozano-Castello, J. Alcaniz-Monge, M. A. de la Casa-Lillo, D. Cazorla-Amoros, A. Linares-Solano, Fuel, 81, 1777, 2 002. [3] Sh. Jiang, J. A. Zollweg, K. E. Gubbins, Journal of Physical Chemistry, 98, 5709,1994. (authors)

  17. A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure

    Science.gov (United States)

    George, David L.; Iverson, Richard M.

    2011-01-01

    Pore-fluid pressure plays a crucial role in debris flows because it counteracts normal stresses at grain contacts and thereby reduces intergranular friction. Pore-pressure feedback accompanying debris deformation is particularly important during the onset of debrisflow motion, when it can dramatically influence the balance of forces governing downslope acceleration. We consider further effects of this feedback by formulating a new, depth-averaged mathematical model that simulates coupled evolution of granular dilatancy, solid and fluid volume fractions, pore-fluid pressure, and flow depth and velocity during all stages of debris-flow motion. To illustrate implications of the model, we use a finite-volume method to compute one-dimensional motion of a debris flow descending a rigid, uniformly inclined slope, and we compare model predictions with data obtained in large-scale experiments at the USGS debris-flow flume. Predictions for the first 1 s of motion show that increasing pore pressures (due to debris contraction) cause liquefaction that enhances flow acceleration. As acceleration continues, however, debris dilation causes dissipation of pore pressures, and this dissipation helps stabilize debris-flow motion. Our numerical predictions of this process match experimental data reasonably well, but predictions might be improved by accounting for the effects of grain-size segregation.

  18. Physical foundations and experience of application of method of determination of volumes of all group of pore channels in powders and porous bodies

    International Nuclear Information System (INIS)

    Gabelkov, S.V.

    2011-01-01

    Physical foundations of the method of determination of the relative volumes of each group of pore channels that are available in a porous body on removal of work liquid from them at its evaporation were developed. Advantages and disadvantages are given, experience using of this method is extended at creating of ceramic matrix (cubic zirconia and magnesium-aluminium spinel) for isolation of high active waste. This method in combination with method of electronic microscopy has given an ability to investigate destruction of agglomerates and aggregates of xerogels and powders at milling and pressing, agglomeration of powders at its production and evolution of each component of pore spaces at sintering of porous bodies.

  19. Micro-CT scan reveals an unexpected high-volume and interconnected pore network in a Cretaceous Sanagasta dinosaur eggshell.

    Science.gov (United States)

    Hechenleitner, E Martín; Grellet-Tinner, Gerald; Foley, Matthew; Fiorelli, Lucas E; Thompson, Michael B

    2016-03-01

    The Cretaceous Sanagasta neosauropod nesting site (La Rioja, Argentina) was the first confirmed instance of extinct dinosaurs using geothermal-generated heat to incubate their eggs. The nesting strategy and hydrothermal activities at this site led to the conclusion that the surprisingly 7 mm thick-shelled eggs were adapted to harsh hydrothermal microenvironments. We used micro-CT scans in this study to obtain the first three-dimensional microcharacterization of these eggshells. Micro-CT-based analyses provide a robust assessment of gas conductance in fossil dinosaur eggshells with complex pore canal systems, allowing calculation, for the first time, of the shell conductance through its thickness. This novel approach suggests that the shell conductance could have risen during incubation to seven times more than previously estimated as the eggshell erodes. In addition, micro-CT observations reveal that the constant widening and branching of pore canals form a complex funnel-like pore canal system. Furthermore, the high density of pore canals and the presence of a lateral canal network in the shell reduce the risks of pore obstruction during the extended incubation of these eggs in a relatively highly humid and muddy nesting environment. © 2016 The Author(s).

  20. Convex hull approach for determining rock representative elementary volume for multiple petrophysical parameters using pore-scale imaging and Lattice-Boltzmann modelling

    Science.gov (United States)

    Shah, S. M.; Crawshaw, J. P.; Gray, F.; Yang, J.; Boek, E. S.

    2017-06-01

    In the last decade, the study of fluid flow in porous media has developed considerably due to the combination of X-ray Micro Computed Tomography (micro-CT) and advances in computational methods for solving complex fluid flow equations directly or indirectly on reconstructed three-dimensional pore space images. In this study, we calculate porosity and single phase permeability using micro-CT imaging and Lattice Boltzmann (LB) simulations for 8 different porous media: beadpacks (with bead sizes 50 μm and 350 μm), sandpacks (LV60 and HST95), sandstones (Berea, Clashach and Doddington) and a carbonate (Ketton). Combining the observed porosity and calculated single phase permeability, we shed new light on the existence and size of the Representative Element of Volume (REV) capturing the different scales of heterogeneity from the pore-scale imaging. Our study applies the concept of the 'Convex Hull' to calculate the REV by considering the two main macroscopic petrophysical parameters, porosity and single phase permeability, simultaneously. The shape of the hull can be used to identify strong correlation between the parameters or greatly differing convergence rates. To further enhance computational efficiency we note that the area of the convex hull (for well-chosen parameters such as the log of the permeability and the porosity) decays exponentially with sub-sample size so that only a few small simulations are needed to determine the system size needed to calculate the parameters to high accuracy (small convex hull area). Finally we propose using a characteristic length such as the pore size to choose an efficient absolute voxel size for the numerical rock.

  1. Thermal decomposition pathway of undoped and doped zinc layered gallate nanohybrid with Fe 3+, Co 2+ and Ni 2+ to produce mesoporous and high pore volume carbon material

    Science.gov (United States)

    Ghotbi, Mohammad Yeganeh; bin Hussein, Mohd Zobir; Yahaya, Asmah Hj; Abd Rahman, Mohd Zaki

    2009-12-01

    A series of brucite-like materials, undoped and doped zinc layered hydroxide nitrate with 2% (molar) Fe 3+, Co 2+ and Ni 2+ were synthesized. Organic-inorganic nanohybrid material with gallate anion as a guest, and zinc hydroxide nitrate, as an inorganic layered host was prepared by the ion-exchange method. The nanohybrid materials were heat-treated at various temperatures, 400-700 °C. X-ray diffraction, thermal analysis and also Fourier transform infrared results showed that incorporation of the doping agents within the zinc layered hydroxide salt layers has enhanced the heat-resistivity of the nanohybrid materials in the thermal decomposition pathway. Porous carbon materials can be obtained from the heat-treating the nanohybrids at 600 and 700 °C. Calcination of the nanohybrids at 700 °C under nitrogen atmosphere produces mesoporous and high pore volume carbon materials.

  2. Antera 3D capabilities for pore measurements.

    Science.gov (United States)

    Messaraa, C; Metois, A; Walsh, M; Flynn, J; Doyle, L; Robertson, N; Mansfield, A; O'Connor, C; Mavon, A

    2018-04-29

    The cause of enlarged pores remains obscure but still remains of concern for women. To complement subjective methods, bioengineered methods are needed for quantification of pores visibility following treatments. The study objective was to demonstrate the suitability of pore measurements from the Antera 3D. Pore measurements were collected on 22 female volunteers aged 18-65 years with the Antera 3D, the DermaTOP and image analysis on photographs. Additionally, 4 raters graded pore size on photographs on a scale 0-5. Repeatability of Antera 3D parameters was ascertained and the benefit of a pore minimizer product on the cheek was assessed on a sub panel of seven female volunteers. Pore parameters using the Antera were shown to depict pore severity similar to raters on photographs, except for Max Depth. Mean pore volume, mean pore area and count were moderately correlated with DermaTOP parameters (up to r = .50). No relationship was seen between the Antera 3D and pore visibility analysis on photographs. The most repeatable parameters were found to be mean pore volume, mean pore area and max depth, especially for the small and medium filters. The benefits of a pore minimizer product were the most striking for mean pore volume and mean pore area when using the small filter for analysis, rather than the medium/large ones. Pore measurements with the Antera 3D represent a reliable tool for efficacy and field studies, with an emphasis of the small filter for analysis for the mean pore volume/mean pore area parameters. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    Science.gov (United States)

    Liu, Han [Waltham, MA; LaConti, Anthony B [Lynnfield, MA; Mittelsteadt, Cortney K [Natick, MA; McCallum, Thomas J [Ashland, MA

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  4. BALLISTIC RESISTANT ARTICLES COMPRISING TAPES

    NARCIS (Netherlands)

    VAN DER EEM, JORIS; HARINGS, JULES; JANSE, GERARDUS; TJADEN, HENDRIK

    2015-01-01

    The invention pertains to a ballistic-resistant moulded article comprising a compressed stack of sheets comprising reinforcing tapes having a tensile strength of at least 1.0 GPa, a tensile modulus of at least 40 GPa, and a tensile energy-to-break of at least 15 J/g, the direction of the tapes

  5. Facial Pores: Definition, Causes, and Treatment Options.

    Science.gov (United States)

    Lee, Sang Ju; Seok, Joon; Jeong, Se Yeong; Park, Kui Young; Li, Kapsok; Seo, Seong Jun

    2016-03-01

    Enlarged skin pores refer to conditions that present with visible topographic changes of skin surfaces. Although not a medical concern, enlarged pores are a cosmetic concern for a large number of individuals. Moreover, clear definition and possible causes of enlarged pores have not been elucidated. To review the possible causes and treatment options for skin pores. This article is based on a review of the medical literature and the authors' clinical experience in investigating and treating skin pores. There are 3 major clinical causes of enlarged facial pores, namely high sebum excretion, decreased elasticity around pores, and increased hair follicle volume. In addition, chronic recurrent acne, sex hormones, and skin care regimen can affect pore size. Given the different possible causes for enlarged pores, therapeutic modalities must be individualized for each patient. Potential factors that contribute to enlarged skin pores include excessive sebum, decreased elasticity around pores, and increased hair follicle volume. Because various factors cause enlarged facial pores, it might be useful to identify the underlying causes to be able to select the appropriate treatment.

  6. Ionic liquids comprising heteraromatic anions

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, William F.; Brennecke, Joan F.; Maginn, Edward J.; Mindrup, Elaine; Gurkan, Burcu; Price, Erica; Goodrich, Brett

    2018-04-24

    Some embodiments described herein relate to ionic liquids comprising an anion of a heteraromatic compound such as optionally substituted pyrrolide, optionally substituted pyrazolide, optionally substituted indolide, optionally substituted phospholide, or optionally substituted imidazolide. Methods and devices for gas separation or gas absorption related to these ionic liquids are also described herein.

  7. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    Science.gov (United States)

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  8. Printhead and inkjet printer comprising such a printhead

    NARCIS (Netherlands)

    2007-01-01

    The invention relates to a printhead comprising multiple substantially closed ink chambers (13), the ink chambers being mutually separated by at least one wall (12), wherein each of the chambers comprises an electro-mechanical converter (15), where actuation of the converter leads to a volume change

  9. Mesoscale Simulations of Pore Migration in a Nuclear Fuel

    International Nuclear Information System (INIS)

    Radhakrishnan, Balasubramaniam; Gorti, Sarma B.

    2010-01-01

    The evolution of pore and grain structure in a nuclear fuel environment is strongly influenced by the local temperature, and the temperature gradient. The evolution of pore and grain structure in an externally imposed temperature gradient is simulated for a hypothetical material using a Potts model approach that allows for porosity migration by mechanisms similar to surface, grain boundary and volume diffusion, as well as the interaction of migrating pores with stationary grain boundaries. First, the migration of a single pore in a single crystal in the presence of the temperature gradient is simulated. Next, the interaction of a pore moving in a temperature gradient with a grain boundary that is perpendicular to the pore migration direction is simulated in order to capture the force exerted by the pore on the grain boundary. The simulations reproduce the expected variation of pore velocity with pore size as well as the variation of the grain boundary force with pore size.

  10. Differences in the behaviour of HTO and H2O in soil after condensation from the atmosphere and conversion of HT to HTO and OBT in soil relative to moisture content and pore volume

    International Nuclear Information System (INIS)

    Bunnenberg, C.; Feinhals, J.; Wiener, B.

    1986-01-01

    Theoretical considerations and field and soil column experiments have identified the condensation of atmospheric water vapour as an additional process in the HTO contamination of soils. In contrast to wash-out, where tritium concentrations of the deposited water are the same as in the falling drops, the specific activity of the condensed water is increased compared with that of the atmospheric humidity, when the partial vapour pressure gradient of HTO between atmosphere and soil is higher than the H 2 O pressure gradient. With respect to HTO deposition, condensation may therefore be more effective per unit precipitation than wash-out. Experiments on the conversion rates of HT to HTO and OBT in soils have exhibited a pronounced dependence on moisture content and free pore volume. With rising moisture content, conversion increases due to enhanced bacterial action; while close to field capacity a decrease occurs as a result of restricted HT diffusion through the soil pores. In short-term experiments about 0.1% of the converted HT was found in the OBT form. (author)

  11. Micro-CT Pore Scale Study Of Flow In Porous Media: Effect Of Voxel Resolution

    Science.gov (United States)

    Shah, S.; Gray, F.; Crawshaw, J.; Boek, E.

    2014-12-01

    In the last few years, pore scale studies have become the key to understanding the complex fluid flow processes in the fields of groundwater remediation, hydrocarbon recovery and environmental issues related to carbon storage and capture. A pore scale study is often comprised of two key procedures: 3D pore scale imaging and numerical modelling techniques. The essence of a pore scale study is to test the physics implemented in a model of complicated fluid flow processes at one scale (microscopic) and then apply the model to solve the problems associated with water resources and oil recovery at other scales (macroscopic and field). However, the process of up-scaling from the pore scale to the macroscopic scale has encountered many challenges due to both pore scale imaging and modelling techniques. Due to the technical limitations in the imaging method, there is always a compromise between the spatial (voxel) resolution and the physical volume of the sample (field of view, FOV) to be scanned by the imaging methods, specifically X-ray micro-CT (XMT) in our case In this study, a careful analysis was done to understand the effect of voxel size, using XMT to image the 3D pore space of a variety of porous media from sandstones to carbonates scanned at different voxel resolution (4.5 μm, 6.2 μm, 8.3 μm and 10.2 μm) but keeping the scanned FOV constant for all the samples. We systematically segment the micro-CT images into three phases, the macro-pore phase, an intermediate phase (unresolved micro-pores + grains) and the grain phase and then study the effect of voxel size on the structure of the macro-pore and the intermediate phases and the fluid flow properties using lattice-Boltzmann (LB) and pore network (PN) modelling methods. We have also applied a numerical coarsening algorithm (up-scale method) to reduce the computational power and time required to accurately predict the flow properties using the LB and PN method.

  12. Active pore space utilization in nanoporous carbon-based supercapacitors: Effects of conductivity and pore accessibility

    Science.gov (United States)

    Seredych, Mykola; Koscinski, Mikolaj; Sliwinska-Bartkowiak, Malgorzata; Bandosz, Teresa J.

    2012-12-01

    Composites of commercial graphene and nanoporous sodium-salt-polymer-derived carbons were prepared with 5 or 20 weight% graphene. The materials were characterized using the adsorption of nitrogen, SEM/EDX, thermal analysis, Raman spectroscopy and potentiometric titration. The samples' conductivity was also measured. The performance of the carbon composites in energy storage was linked to their porosity and electronic conductivity. The small pores (<0.7) were found as very active for double layer capacitance. It was demonstrated that when double layer capacitance is a predominant mechanism of charge storage, the degree of the pore space utilization for that storage can be increased by increasing the conductivity of the carbons. That active pore space utilization is defined as gravimetric capacitance per unit pore volume in pores smaller than 0.7 nm. Its magnitude is affected by conductivity of the carbon materials. The functional groups, besides pseudocapacitive contribution, increased the wettability and thus the degree of the pore space utilization. Graphene phase, owing to its conductivity, also took part in an insitu increase of the small pore accessibility and thus the capacitance of the composites via enhancing an electron transfer to small pores and thus imposing the reduction of groups blocking the pores for electrolyte ions.

  13. Guidance for the application of an assessment methodology for innovative nuclear energy systems. INPRO manual - Overview of the methodology. Vol. 1 of 9 of the final report of phase 1 of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) including a CD-ROM comprising all volumes

    International Nuclear Information System (INIS)

    2008-11-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in the year 2000, based on a resolution of the IAEA General Conference (GC(44)/RES/21). The main objectives of INPRO are (1) to help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21st century in a sustainable manner, (2) to bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles; and (3) to create a forum to involve all relevant stakeholders that will have an impact on, draw from, and complement the activities of existing institutions, as well as ongoing initiatives at the national and international level. This document follows the guidelines of the INPRO report 'Methodology for the assessment of innovative nuclear reactors and fuel cycles, Report of Phase 1B (first part) of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)', IAEA-TECDOC-1434 (2004), together with its previous report Guidance for the evaluation for innovative nuclear reactors and fuel cycles, Report of Phase 1A of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), IAEA-TECDOC-1362 (2003). This INPRO manual is comprised of an overview volume (laid out in this report), and eight additional volumes (available on a CD-ROM attached to the inside back cover of this report) covering the areas of economics (Volume 2), infrastructure (Volume 3), waste management (Volume 4), proliferation resistance (Volume 5), physical protection (Volume 6), environment (Volume 7), safety of reactors (Volume 8), and safety of nuclear fuel cycle facilities (Volume 9). The overview volume sets out the philosophy of INPRO and a general discussion of the INPRO methodology. This overview volume discusses the relationship of INPRO with the UN concept of sustainability to demonstrate how the

  14. GAS SEPARATION MEMBRANES COMPRISING PERMEABILITY ENHANCING ADDITIVES

    NARCIS (Netherlands)

    Wessling, Matthias; Sterescu, D.M.; Stamatialis, Dimitrios

    2007-01-01

    The present invention relates to polymer compositions comprising a (co)polymer comprising (a) an arylene oxide moiety and (b) a dendritic (co)polymer, a hyperbranched (co)polymer or a mixture thereof, and the use of these polymer compositions as membrane materials for the separation of gases. The

  15. Cationic electrodepositable coating composition comprising lignin

    Science.gov (United States)

    Fenn, David; Bowman, Mark P; Zawacky, Steven R; Van Buskirk, Ellor J; Kamarchik, Peter

    2013-07-30

    A cationic electrodepositable coating composition is disclosed. The present invention in directed to a cationic electrodepositable coating composition comprising a lignin-containing cationic salt resin, that comprises (A) the reaction product of: lignin, an amine, and a carbonyl compound; (B) the reaction product of lignin, epichlorohydrin, and an amine; or (C) combinations thereof.

  16. Semiconductor device comprising a pn-heterojunction

    NARCIS (Netherlands)

    2007-01-01

    An electric device is disclosed comprising a pn-heterojunction ( 4 ) formed by a nanowire ( 3 ) of 111 -V semiconductor material and a semiconductor body ( 1 ) comprising a group IV semiconductor material. The nanowire ( 3 ) is positioned in direct contact with the surface ( 2 ) of the semiconductor

  17. A study on optimal pore development of modified commercial activated carbons for electrode materials of supercapacitors

    Science.gov (United States)

    Bang, Joon Hyuk; Lee, Hye-Min; An, Kay-Hyeok; Kim, Byung-Joo

    2017-09-01

    This study aimed to understand the impact of CO2 activation of commercial activated carbons (AC) on the changes in pore characteristics and the electrochemical property. The surface structure of manufactured AC was observed with a X-ray diffraction (XRD); the pore characteristics were analyzed at N2/77 K isothermal absorption using the Brunauer-Emmett-Teller (BET) and Dubinin-Radushkevich (DR) equations. In addition, the electrochemical characteristics were analyzed by means of an electrolyte of 1 M (C2H5)4NBF4/propylene carbonate, using a charge/discharge test, cyclic voltammetry (CV), and impedance. The N2/77 K isothermal absorption curve of the manufactured AC falls under Type I in the classification of the International Union of Pure and Applied Chemistry (IUPAC) and was found to largely comprise micropores. The specific surface area increased from 1690 m2/g to 2290 m2/g, and the pore volume grew from 0.80 cm3/g to 1.10 cm3/g. The analysis of electrochemical characteristics also found that the specific capacity increased from 17 F/g to 20 F/g (in a full cell condition). Based on these results, we were able to determine the pore characteristics of commercial AC through an additional activation process, which consequently allowed us to manufacture the AC with an advanced electrochemical property.

  18. Composition comprising lignin and antidi arrheal component

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention relates to a composition comprising lignin and at least one compound selected from the group consisting of bromelain, papain, tannin, carvacrol, thymol, alliin, allicin, fenugreek seed, egg, poppy, poppy seeds, humic acid, roots, kaolin, catechu, cellulase, flavonoid...

  19. Coating compositions comprising bismuth-alloyed zinc

    DEFF Research Database (Denmark)

    2008-01-01

    The present application discloses (i) a coating composition comprising a particulate zinc-based alloyed material, said material comprising 0.05-0.7% by weight of bismuth (Bi), the D50 of the particulate material being in the range of 2.5-30 µm; (ii) a coated structure comprising a metal structure...... having a first coating of the zinc-containing coating composition applied onto at least a part of the metal structure in a dry film thickness of 5-100 µm; and an outer coating applied onto said zinc-containing coating in a dry film thickness of 30-200 µm; (iii) a particulate zinc-based alloyed material......, wherein the material comprises 0.05-0.7%(w/w) of bismuth (Bi), and wherein the D50 of the particulate material is in the range of 2.5-30 µm; (iv) a composite powder consisting of at least 25%(w/w) of the particulate zinc-based alloyed material, the rest being a particulate material consisting of zinc...

  20. Biocatalytic material comprising multilayer enzyme coated fiber

    Science.gov (United States)

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    The present invention relates generally to high stability, high activity biocatalytic materials and processes for using the same. The materials comprise enzyme aggregate coatings having high biocatalytic activity and stability useful in heterogeneous environment. These new materials provide a new biocatalytic immobilized enzyme system with applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  1. The pore space scramble

    Science.gov (United States)

    Gormally, Alexandra; Bentham, Michelle; Vermeylen, Saskia; Markusson, Nils

    2015-04-01

    Climate change and energy security continue to be the context of the transition to a secure, affordable and low carbon energy future, both in the UK and beyond. This is reflected in for example, binding climate policy targets at the EU level, the introduction of renewable energy targets, and has also led to an increasing interest in Carbon Capture and Storage (CCS) technology with its potential to help mitigate against the effects of CO2 emissions from fossil fuel burning. The UK has proposed a three phase strategy to integrate CCS into its energy system in the long term focussing on off-shore subsurface storage (DECC, 2014). The potential of CCS therefore, raises a number of challenging questions and issues surrounding the long-term storage of CO2 captured and injected into underground spaces and, alongside other novel uses of the subsurface, contributes to opening a new field for discussion on the governance of the subsurface. Such 'novel' uses of the subsurface have lead to it becoming an increasingly contested space in terms of its governance, with issues emerging around the role of ownership, liability and property rights of subsurface pore space. For instance, questions over the legal ownership of pore space have arisen with ambiguity over the legal standpoint of the surface owner and those wanting to utilise the pore space for gas storage, and suggestions of whether there are depths at which legal 'ownership' becomes obsolete (Barton, 2014). Here we propose to discuss this 'pore space scramble' and provide examples of the competing trajectories of different stakeholders, particularly in the off-shore context given its priority in the UK. We also propose to highlight the current ambiguity around property law of pore space in the UK with reference to approaches currently taken in different national contexts. Ultimately we delineate contrasting models of governance to illustrate the choices we face and consider the ethics of these models for the common good

  2. Downhole transmission system comprising a coaxial capacitor

    Science.gov (United States)

    Hall, David R [Provo, UT; Pixton, David S [Lehi, UT; Johnson, Monte L [Orem, UT; Bartholomew, David B [Springville, UT; Hall, Jr., H. Tracy; Rawle, Michael [Springville, UT

    2011-05-24

    A transmission system in a downhole component comprises a plurality of data transmission elements. A coaxial cable having an inner conductor and an outer conductor is disposed within a passage in the downhole component such that at least one capacitor is disposed in the passage and having a first terminal coupled to the inner conductor and a second terminal coupled to the outer conductor. Preferably the transmission element comprises an electrically conducting coil. Preferably, within the passage a connector is adapted to electrically connect the inner conductor of the coaxial cable and the lead wire. The coaxial capacitor may be disposed between and in electrically communication with the connector and the passage. In another embodiment a connector is adapted to electrical connect a first and a second portion of the inner conductor of the coaxial cable and a coaxial capacitor is in electrical communication with the connector and the passage.

  3. Nanophosphor composite scintillators comprising a polymer matrix

    Science.gov (United States)

    Muenchausen, Ross Edward; Mckigney, Edward Allen; Gilbertson, Robert David

    2010-11-16

    An improved nanophosphor composite comprises surface modified nanophosphor particles in a solid matrix. The nanophosphor particle surface is modified with an organic ligand, or by covalently bonding a polymeric or polymeric precursor material. The surface modified nanophosphor particle is essentially charge neutral, thereby preventing agglomeration of the nanophosphor particles during formation of the composite material. The improved nanophosphor composite may be used in any conventional scintillator application, including in a radiation detector.

  4. X-ray pore optic developments

    Science.gov (United States)

    Wallace, Kotska; Bavdaz, Marcos; Collon, Maximilien; Beijersbergen, Marco; Kraft, Stefan; Fairbend, Ray; Séguy, Julien; Blanquer, Pascal; Graue, Roland; Kampf, Dirk

    2017-11-01

    In support of future x-ray telescopes ESA is developing new optics for the x-ray regime. To date, mass and volume have made x-ray imaging technology prohibitive to planetary remote sensing imaging missions. And although highly successful, the mirror technology used on ESA's XMM-Newton is not sufficient for future, large, x-ray observatories, since physical limits on the mirror packing density mean that aperture size becomes prohibitive. To reduce telescope mass and volume the packing density of mirror shells must be reduced, whilst maintaining alignment and rigidity. Structures can also benefit from a modular optic arrangement. Pore optics are shown to meet these requirements. This paper will discuss two pore optic technologies under development, with examples of results from measurement campaigns on samples. One activity has centred on the use of coated, silicon wafers, patterned with ribs, that are integrated onto a mandrel whose form has been polished to the required shape. The wafers follow the shape precisely, forming pore sizes in the sub-mm region. Individual stacks of mirrors can be manufactured without risk to, or dependency on, each other and aligned in a structure from which they can also be removed without hazard. A breadboard is currently being built to demonstrate this technology. A second activity centres on glass pore optics. However an adaptation of micro channel plate technology to form square pores has resulted in a monolithic material that can be slumped into an optic form. Alignment and coating of two such plates produces an x-ray focusing optic. A breadboard 20cm aperture optic is currently being built.

  5. Fibrous composites comprising carbon nanotubes and silica

    Science.gov (United States)

    Peng, Huisheng [Shanghai, CN; Zhu, Yuntian Theodore [Cary, NC; Peterson, Dean E [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM

    2011-10-11

    Fibrous composite comprising a plurality of carbon nanotubes; and a silica-containing moiety having one of the structures: (SiO).sub.3Si--(CH.sub.2).sub.n--NR.sub.1R.sub.2) or (SiO).sub.3Si--(CH.sub.2).sub.n--NCO; where n is from 1 to 6, and R.sub.1 and R.sub.2 are each independently H, CH.sub.3, or C.sub.2H.sub.5.

  6. Method of forming a nanocluster comprising dielectric layer and device comprising such a layer

    NARCIS (Netherlands)

    2009-01-01

    A method of forming a dielectric layer (330) on a further layer (114, 320) of a semiconductor device (300) is disclosed. The method comprises depositing a dielectric precursor compound and a further precursor compound over the further layer (114, 320), the dielectric precursor compound comprising a

  7. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China.

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions play a major role in the shale oil occurrence (free or absorbed state, amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1 Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2 There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3 Pores in lacustrine shale are well developed when the organic matter maturity (Ro is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable.

  8. Measurements of pore-scale flow through apertures

    Energy Technology Data Exchange (ETDEWEB)

    Chojnicki, Kirsten [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Pore-scale aperture effects on flow in pore networks was studied in the laboratory to provide a parameterization for use in transport models. Four cases were considered: regular and irregular pillar/pore alignment with and without an aperture. The velocity field of each case was measured and simulated, providing quantitatively comparable results. Two aperture effect parameterizations were considered: permeability and transmission. Permeability values varied by an order of magnitude between the cases with and without apertures. However, transmission did not correlate with permeability. Despite having much greater permeability the regular aperture case permitted less transmission than the regular case. Moreover, both irregular cases had greater transmission than the regular cases, a difference not supported by the permeabilities. Overall, these findings suggest that pore-scale aperture effects on flow though a pore-network may not be adequately captured by properties such as permeability for applications that are interested in determining particle transport volume and timing.

  9. Hexadecane trapped in nano-pores of silica-aerogel

    International Nuclear Information System (INIS)

    Slavikova, B.; Jesenak, K.; Iskrova, M.; Majernik, V.; Sausa, O.; Kristiak, J.

    2009-01-01

    Ways of filling of the high-porous silica-aerogel with hydrocarbon C 16 H 34 and its efficient removal from the pores by physical method of the Positron Annihilation Spectroscopy were studied. As the most effective way to fill the SiO 2 aerogel appears through the implementation of a liquid phase, while the most appropriate way of removing of hexadecane is firing at an elevated temperature. Molecular system of hexadecane closed in nano-pores of silica-aerogel behaves otherwise than volume system of the same molecules. In the case of pure hexadecane phase transition was observed at 291 K, while solidification process is gradual with decrease of temperature in cetane trapped in pores of silica-aerogel. The results of the periods of life of o-Ps indicate greater turbidity in the pores of the molecular system compared to the volume sample of hexadecane.

  10. Electromagnetic radiation absorbers and modulators comprising polyaniline

    Science.gov (United States)

    Epstein, Arthur J.; Ginder, John M.; Roe, Mitchell G.; Hajiseyedjavadi, Hamid

    1992-01-01

    A composition for absorbing electromagnetic radiation, wherein said electromagnetic radiation possesses a wavelength generally in the range of from about 1000 Angstroms to about 50 meters, wherein said composition comprises a polyaniline composition of the formula ##STR1## where y can be equal to or greater than zero, and R.sup.1 and R.sup.2 are independently selected from the group containing of H, --OCH.sub.3, --CH.sub.3, --F, --Cl, --Br, --I, NR.sup.3 .sub.2, --NHCOR.sup.3, --OH, --O.sup.-, SR.sup.3, --OCOR.sup.3, --NO.sub.2, --COOH, --COOR.sup.3, --COR.sup.3, --CHO, and --CN, where R.sup.3 is a C.sub.1 to C.sub.8 alkyl, aryl or aralkyl group.

  11. Electrode assembly for a lithium ion battery, process for the production of such electrode assembly, and lithium ion battery comprising such electrode assemblies

    NARCIS (Netherlands)

    Mulder, F.M.; Wagemaker, M.

    2013-01-01

    The invention provides an electrode assembly for a lithium ion battery, the electrode assembly comprising a lithium storage electrode layer on a current collector, wherein the lithium storage electrode layer is a porous layer having a porosity in the range of -35 %, with pores having pore widths in

  12. Modeling superhydrophobic surfaces comprised of random roughness

    Science.gov (United States)

    Samaha, M. A.; Tafreshi, H. Vahedi; Gad-El-Hak, M.

    2011-11-01

    We model the performance of superhydrophobic surfaces comprised of randomly distributed roughness that resembles natural surfaces, or those produced via random deposition of hydrophobic particles. Such a fabrication method is far less expensive than ordered-microstructured fabrication. The present numerical simulations are aimed at improving our understanding of the drag reduction effect and the stability of the air-water interface in terms of the microstructure parameters. For comparison and validation, we have also simulated the flow over superhydrophobic surfaces made up of aligned or staggered microposts for channel flows as well as streamwise or spanwise ridge configurations for pipe flows. The present results are compared with other theoretical and experimental studies. The numerical simulations indicate that the random distribution of surface roughness has a favorable effect on drag reduction, as long as the gas fraction is kept the same. The stability of the meniscus, however, is strongly influenced by the average spacing between the roughness peaks, which needs to be carefully examined before a surface can be recommended for fabrication. Financial support from DARPA, contract number W91CRB-10-1-0003, is acknowledged.

  13. Evaluation of Optimal Pore Size of (3-Aminopropyltriethoxysilane Grafted MCM-41 for Improved CO2 Adsorption

    Directory of Open Access Journals (Sweden)

    Zhilin Liu

    2015-01-01

    Full Text Available An array of new MCM-41 with substantially larger average pore diameters was synthesized through adding 1,3,5-trimethylbenzene (TMB as the swelling agent to explore the effect of pore size on final adsorbent properties. The pore expanded MCM-41 was also grafted with (3-Aminopropyltriethoxysilane (APTES to determine the optimal pore size for CO2 adsorption. The pore-expanded mesoporous MCM-41s showed relatively less structural regularity but significant increments of pore diameter (4.64 to 7.50 nm; the fraction of mesopore volume also illustrated an increase. The adsorption heat values were correlated with the order of the adsorption capacities for pore expanded MCM-41s. After amine functionalization, the adsorption capacities and heat values showed a significant increase. APTES-grafted pore-expanded MCM-41s depicted a high potential for CO2 capture regardless of the major drawback of the high energy required for regeneration.

  14. A pore water conductivity sensor

    NARCIS (Netherlands)

    Hilhorst, M.A.

    2001-01-01

    The electrical permittivity and conductivity of the bulk soil are a function of the permittivity and conductivity of the pore water. For soil water contents higher than 0.10 both functions are equal, facilitating in situ conductivity measurements of the pore water. A novel method is described, based

  15. Pore characteristics of shale gas reservoirs from the Lower Paleozoic in the southern Sichuan Basin, China

    Directory of Open Access Journals (Sweden)

    Xianqing Li

    2016-06-01

    Full Text Available Data was acquired from both the drillings and core samples of the Lower Paleozoic Qiongzhusi and Longmaxi Formations' marine shale gas reservoirs in the southern Sichuan Basin by means of numerous specific experimental methods such as organic geochemistry, organic petrology, and pore analyses. Findings helped determine the characteristics of organic matter, total porosity, microscopic pore, and pore structure. The results show that the Lower Paleozoic marine shale in the south of the Sichuan Basin are characterized by high total organic carbon content (most TOC>2.0%, high thermal maturity level (RO = 2.3%–3.8%, and low total porosity (1.16%–6.87%. The total organic carbon content and thermal maturity level of the Qiongzhusi Formation shale are higher than those of the Longmaxi Formation shale, while the total porosity of the Qiongzhusi Formation shale is lower than that of the Longmaxi Formation shale. There exists intergranular pore, dissolved pore, crystal particle pore, particle edge pore, and organic matter pore in the Lower Paleozoic Qiongzhusi Formation and Longmaxi Formation shale. There are more micro-nano pores developed in the Longmaxi Formation shales than those in the Qiongzhusi Formation shales. Intergranular pores, dissolved pores, as well as organic matter pores, are the most abundant, these are primary storage spaces for shale gas. The microscopic pores in the Lower Paleozoic shales are mainly composed of micropores, mesopores, and a small amount of macropores. The micropore and mesopore in the Qiongzhusi Formation shale account for 83.92% of the total pore volume. The micropore and mesopore in the Longmaxi Formation shale accounts for 78.17% of the total pore volume. Thus, the micropores and mesopores are the chief components of microscopic pores in the Lower Paleozoic shale gas reservoirs in the southern Sichuan Basin.

  16. X-ray CT analysis of pore structure in sand

    Science.gov (United States)

    Mukunoki, Toshifumi; Miyata, Yoshihisa; Mikami, Kazuaki; Shiota, Erika

    2016-06-01

    The development of microfocused X-ray computed tomography (CT) devices enables digital imaging analysis at the pore scale. The applications of these devices are diverse in soil mechanics, geotechnical and geoenvironmental engineering, petroleum engineering, and agricultural engineering. In particular, the imaging of the pore space in porous media has contributed to numerical simulations for single-phase and multiphase flows or contaminant transport through the pore structure as three-dimensional image data. These obtained results are affected by the pore diameter; therefore, it is necessary to verify the image preprocessing for the image analysis and to validate the pore diameters obtained from the CT image data. Moreover, it is meaningful to produce the physical parameters in a representative element volume (REV) and significant to define the dimension of the REV. This paper describes the underlying method of image processing and analysis and discusses the physical properties of Toyoura sand for the verification of the image analysis based on the definition of the REV. On the basis of the obtained verification results, a pore-diameter analysis can be conducted and validated by a comparison with the experimental work and image analysis. The pore diameter is deduced from Young-Laplace's law and a water retention test for the drainage process. The results from previous study and perforated-pore diameter originally proposed in this study, called the voxel-percolation method (VPM), are compared in this paper. In addition, the limitations of the REV, the definition of the pore diameter, and the effectiveness of the VPM for an assessment of the pore diameter are discussed.

  17. Surfactant-enhanced control of track-etch pore morphology

    International Nuclear Information System (INIS)

    Apel', P.Yu.; Blonskaya, I.V.; Didyk, A.Yu.; Dmitriev, S.N.; Orelovich, O.L.; Samojlova, L.I.; Vutsadakis, V.A.; Root, D.

    2000-01-01

    The influence of surfactants on the process of chemical development of ion tracks in polymers is studied. Based on the experimental data, a mechanism of the surfactant effect on the track-etch pore morphology is proposed. In the beginning of etching the surfactant is adsorbed on the surface and creates a layer that is quasi-solid and partially protects the surface from the etching agent. However, some etchant molecules diffuse through the barrier and react with the polymer surface. This results in the formation of a small hole at the entrance to the ion track. After the hole has attained a few annometers in diameter, the surfactant molecules penetrate into the track and cover its walls. Further diffusion of the surfactant into the growing pore is hindered. The adsorbed surfactant layer is not permeable for large molecules. In contrast, small alkali molecules and water molecules diffuse into the track and provide the etching process enlarging the pore. At this stage the transport of the surfactant into the pore channel can proceed only due to the lateral diffusion in the adsorbed layer. The volume inside the pore is free of surfactant molecules and grows at a higher rate than pore entrance. After a more prolonged etching the bottle-like (or 'cigar-like') pore channels are formed. The bottle-like shape of the pore channels depends on the etching conditions such as alkali and surfactant concentration, temperature, and type of the surfactant. The use of surfactants enables one to produce track-etch membranes with improved flow rate characteristics compared with those having cylindrical pores with the same nominal pore diameters

  18. Laboratory characterization of shale pores

    Science.gov (United States)

    Nur Listiyowati, Lina

    2018-02-01

    To estimate the potential of shale gas reservoir, one needs to understand the characteristics of pore structures. Characterization of shale gas reservoir microstructure is still a challenge due to ultra-fine grained micro-fabric and micro level heterogeneity of these sedimentary rocks. The sample used in the analysis is a small portion of any reservoir. Thus, each measurement technique has a different result. It raises the question which methods are suitable for characterizing pore shale. The goal of this paper is to summarize some of the microstructure analysis tools of shale rock to get near-real results. The two analyzing pore structure methods are indirect measurement (MIP, He, NMR, LTNA) and direct observation (SEM, TEM, Xray CT). Shale rocks have a high heterogeneity; thus, it needs multiscale quantification techniques to understand their pore structures. To describe the complex pore system of shale, several measurement techniques are needed to characterize the surface area and pore size distribution (LTNA, MIP), shapes, size and distribution of pore (FIB-SEM, TEM, Xray CT), and total porosity (He pycnometer, NMR). The choice of techniques and methods should take into account the purpose of the analysis and also the time and budget.

  19. Microfiltration of distillery stillage: Influence of membrane pore size

    Directory of Open Access Journals (Sweden)

    Vasić Vesna M.

    2012-01-01

    Full Text Available Stillage is one of the most polluted waste products of the food industry. Beside large volume, the stillage contains high amount of suspended solids, high values of chemical oxygen demand and biological oxygen demand, so it should not be discharged in the nature before previous purification. In this work, three ceramic membranes for microfiltration with different pore sizes were tested for stillage purification in order to find the most suitable membrane for the filtration process. Ceramic membranes with a nominal pore size of 200 nm, 450 nm and 800 nm were used for filtration. The influence of pore size on permeate flux and removal efficiency was investigated. A membrane with the pore size of 200 nm showed the best filtration performance so it was chosen for the microfiltration process.

  20. Mesoporous Akaganeite of Adjustable Pore Size Synthesized using Mixed Templates

    Science.gov (United States)

    Zhang, Y.; Ge, D. L.; Ren, H. P.; Fan, Y. J.; Wu, L. M.; Sun, Z. X.

    2017-12-01

    Mesoporous akaganeite with large and adjustable pore size was synthesized through a co-template method, which was achieved by the combined interaction between PEG2000 and alkyl amines with different lengths of the straight carbon chain. The characterized results indicate that the synthesized samples show comparatively narrow BJH pore size distributions and centered at 14.3 nm when PEG and HEPA was used, and it could be enlarged to 16.8 and 19.4 nm respectively through changing the alkyl amines to DDA and HDA. Meanwhile, all the synthesized akaganeite possess relativity high specific surface area ranging from 183 to 281 m2/g and high total pore volume of 0.98 to 1.5 cm3/g. A possible mechanism leading to the pore size changing was also proposed.

  1. 3D Textural and Geochemical Analyses on Carbonado Diamond: Insights from Pores and the Minerals within Them

    Science.gov (United States)

    Eckley, S. A.; Ketcham, R. A.

    2017-12-01

    Carbonado is an enigmatic variety of polycrystalline diamond found only in placer deposits and Proterozoic metaconglomerates in Brazil and the Central African Republic with unknown primary origin. These highly porous black nodules possess a narrow range of isotopically light carbon (δ13C -31 to -24 ‰), a primarily crustal inclusion suite unusually enriched in REEs and actinides filling the pore spaces, a crystallization age from 2.6 to 3.8 Ga, and other atypical features which have led to a variety of formation theories from extra-solar to deep mantle. We have completed the first multi-sample 3D textural analysis on nine carbonados using high resolution X-ray CT (XCT), with follow-up geochemical work. We have documented a variety of textures in both pore structure and mineralogy within pores. All pore textures feature a preferred orientation. Spatial coherence in pore fillings in some specimens suggest that secondary minerals formed by in-situ breakdown of primary inclusion phases. This, combined with the presence of pseudomorphs, support the hypothesis that elements comprising the secondary minerals within the pore spaces are actually primary. SEM-EDS analysis of one carbonado's exterior revealed the presence of zircon; XCT analysis of the complete volume indicates zircon is present only on the exterior of that specimen, but may be interior to others. Anticipated follow-up work will include LA-ICP-MS U-Pb dating and REE analysis of the zircon, and step-leaching and ICP analysis of some specimens. Periodic XCT imaging will allow us to trace leaching progress and effectiveness. To provide further context for our observed pore fabrics, we also analyzed a framesite, a less porous polycrystalline diamond found in kimberlites thought to crystallize shortly before eruption. Both diamond varieties have bladed/elongated pores forming a foliation with a moderate lineation. The similarity in fabrics suggests a similar process could have formed both carbonados and

  2. Pore Structure and Fractal Characteristics of Niutitang Shale from China

    Directory of Open Access Journals (Sweden)

    Zhaodong Xi

    2018-04-01

    Full Text Available A suite of shale samples from the Lower Cambrian Niutitang Formation in northwestern Hunan Province, China, were investigated to better understand the pore structure and fractal characteristics of marine shale. Organic geochemistry, mineralogy by X-ray diffraction, porosity, permeability, mercury intrusion and nitrogen adsorption and methane adsorption experiments were conducted for each sample. Fractal dimension D was obtained from the nitrogen adsorption data using the fractal Frenkel-Halsey-Hill (FHH model. The relationships between total organic carbon (TOC content, mineral compositions, pore structure parameters and fractal dimension are discussed, along with the contributions of fractal dimension to shale gas reservoir evaluation. Analysis of the results showed that Niutitang shale samples featured high TOC content (2.51% on average, high thermal maturity (3.0% on average, low permeability and complex pore structures, which are highly fractal. TOC content and mineral compositions are two major factors affecting pore structure but they have different impacts on the fractal dimension. Shale samples with higher TOC content had a larger specific surface area (SSA, pore volume (PV and fractal dimension, which enhanced the heterogeneity of the pore structure. Quartz content had a relatively weak influence on shale pore structure, whereas SSA, PV and fractal dimension decreased with increasing clay mineral content. Shale with a higher clay content weakened pore structure heterogeneity. The permeability and Langmuir volume of methane adsorption were affected by fractal dimension. Shale samples with higher fractal dimension had higher adsorption capacity but lower permeability, which is favorable for shale gas adsorption but adverse to shale gas seepage and diffusion.

  3. Direct Numerical Simulation of Low Capillary Number Pore Scale Flows

    Science.gov (United States)

    Esmaeilzadeh, S.; Soulaine, C.; Tchelepi, H.

    2017-12-01

    The arrangement of void spaces and the granular structure of a porous medium determines multiple macroscopic properties of the rock such as porosity, capillary pressure, and relative permeability. Therefore, it is important to study the microscopic structure of the reservoir pores and understand the dynamics of fluid displacements through them. One approach for doing this, is direct numerical simulation of pore-scale flow that requires a robust numerical tool for prediction of fluid dynamics and a detailed understanding of the physical processes occurring at the pore-scale. In pore scale flows with a low capillary number, Eulerian multiphase methods are well-known to produce additional vorticity close to the interface. This is mainly due to discretization errors which lead to an imbalance of capillary pressure and surface tension forces that causes unphysical spurious currents. At the pore scale, these spurious currents can become significantly stronger than the average velocity in the phases, and lead to unphysical displacement of the interface. In this work, we first investigate the capability of the algebraic Volume of Fluid (VOF) method in OpenFOAM for low capillary number pore scale flow simulations. Afterward, we compare VOF results with a Coupled Level-Set Volume of Fluid (CLSVOF) method and Iso-Advector method. It has been shown that the former one reduces the VOF's unphysical spurious currents in some cases, and both are known to capture interfaces sharper than VOF. As the conclusion, we will investigate that whether the use of CLSVOF or Iso-Advector will lead to less spurious velocities and more accurate results for capillary driven pore-scale multiphase flows or not. Keywords: Pore-scale multiphase flow, Capillary driven flows, Spurious currents, OpenFOAM

  4. An investigation of fractal characteristics of mesoporous carbon electrodes with various pore structures

    International Nuclear Information System (INIS)

    Pyun, Su-Il; Rhee, Chang-Kyu

    2004-01-01

    Fractal characteristics of mesoporous carbon electrodes were investigated with various pore structures using the N 2 gas adsorption method and the transmission electron microscopy (TEM) image analysis method. The mesoporous carbons with various pore structures were prepared by imprinting mesophase pitch used as a carbonaceous precursor with different colloidal silica particles. All imprinted mesoporous carbons were composed of two groups of pores produced from the carbonisation of mesophase pitch and from the silica imprinting. The overall surface fractal dimensions of the carbon specimens were determined from the analyses of the N 2 gas adsorption isotherms. In order to distinguish the surface fractal dimension of the carbonisation-induced pore surface from that fractal dimension of the silica-imprinted pore surface, the individual surface fractal dimensions were determined from the image analyses of the TEM images. From the comparison of the overall surface fractal dimension with the individual surface fractal dimensions, it was recognised that the overall surface fractal dimension is crucially influenced by the individual surface fractal dimension of the silica-imprinted pore surface. Moreover, from the fact that the silica-imprinted pore surface with broad relative pore size distribution (PSD) gave lower value of the individual surface fractal dimension than that pore surface with narrow relative PSD, it is concluded that as the silica-imprinted pores comprising the carbon specimen agglomerate, the individual surface fractal dimension of that pore surface decreases

  5. Compositions comprising free-standing two-dimensional nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Barsoum, Michel W.; Gogotsi, Yury; Abdelmalak, Michael Naguib; Mashtalir, Olha

    2017-12-05

    The present invention is directed to methods of transferring urea from an aqueous solution comprising urea to a MXene composition, the method comprising contacting the aqueous solution comprising urea with the MXene composition for a time sufficient to form an intercalated MXene composition comprising urea.

  6. Mechanical constraint and release generates long, ordered horizontal pores in anodic alumina templates

    International Nuclear Information System (INIS)

    Bolger, Ciara T; Petkov, Nikolay; Holmes, Justin D; Fois, Giovanni; Cross, Graham L W; Sassiat, Nicolas; Burke, Micheál; Quinn, Aidan J

    2012-01-01

    We describe the formation of long, highly ordered arrays of planar oriented anodic aluminum oxide (AAO) pores during plane parallel anodization of thin aluminum ‘finger’ microstructures fabricated on thermally oxidized silicon substrates and capped with a silicon oxide layer. The pore morphology was found to be strongly influenced by mechanical constraint imposed by the oxide layers surrounding the Al fingers. Tractions induced by the SiO 2 substrate and capping layer led to frustrated volume expansion and restricted oxide flow along the interface, with extrusion of oxide into the primary pore volume, leading to the formation of dendritic pore structures and meandering pore growth. However, partial relief of the constraint by a delaminating interfacial fracture, with its tip closely following the anodization front, led to pore growth that was highly ordered with regular, hexagonally packed arrays of straight horizontal pores up to 3 µm long. Detailed characterization of both straight and dendritic planar pores over a range of formation conditions using advanced microscopy techniques is reported, including volume reconstruction, enabling high quality 3D visualization of pore formation. (paper)

  7. Pore size matters for potassium channel conductance

    Science.gov (United States)

    Moldenhauer, Hans; Pincuntureo, Matías

    2016-01-01

    Ion channels are membrane proteins that mediate efficient ion transport across the hydrophobic core of cell membranes, an unlikely process in their absence. K+ channels discriminate K+ over cations with similar radii with extraordinary selectivity and display a wide diversity of ion transport rates, covering differences of two orders of magnitude in unitary conductance. The pore domains of large- and small-conductance K+ channels share a general architectural design comprising a conserved narrow selectivity filter, which forms intimate interactions with permeant ions, flanked by two wider vestibules toward the internal and external openings. In large-conductance K+ channels, the inner vestibule is wide, whereas in small-conductance channels it is narrow. Here we raise the idea that the physical dimensions of the hydrophobic internal vestibule limit ion transport in K+ channels, accounting for their diversity in unitary conductance. PMID:27619418

  8. Pore Scale Analysis of Oil Shale/Sands Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chen-Luh [Univ. of Utah, Salt Lake City, UT (United States); Miller, Jan [Univ. of Utah, Salt Lake City, UT (United States)

    2011-03-01

    There are important questions concerning the quality and volume of pore space that is created when oil shale is pyrolyzed for the purpose of producing shale oil. In this report, 1.9 cm diameter cores of Mahogany oil shale were pyrolyzed at different temperatures and heating rates. Detailed 3D imaging of core samples was done using multiscale X-ray computed tomography (CT) before and after pyrolysis to establish the pore structure. The pore structure of the unreacted material was not clear. Selected images of a core pyrolyzed at 400oC were obtained at voxel resolutions from 39 microns (Οm) to 60 nanometers (nm). Some of the pore space created during pyrolysis was clearly visible at these resolutions and it was possible to distinguish between the reaction products and the host shale rock. The pore structure deduced from the images was used in Lattice Boltzmann simulations to calculate the permeability in the pore space. The permeabilities of the pyrolyzed samples of the silicate-rich zone were on the order of millidarcies, while the permeabilities of the kerogen-rich zone after pyrolysis were very anisotropic and about four orders of magnitude higher.

  9. Can ash clog soil pores?

    Science.gov (United States)

    Stoof, Cathelijne; Stoof, Cathelijne; Gevaert, Anouk; Gevaert, Anouk; Baver, Christine; Baver, Christine; Hassanpour, Bahareh; Hassanpour, Bahareh; Morales, Veronica; Morales, Veronica; Zhang, Wei; Zhang, Wei; Martin, Deborah; Martin, Deborah; Steenhuis, Tammo; Steenhuis, Tammo

    2015-04-01

    Wildfire can greatly increase a landscape's vulnerability to flooding and erosion events, and ash is thought to play a large role in controlling runoff and erosion processes after wildfire. Although ash can store rainfall and thereby reduce runoff and erosion for a limited period after wildfires, it has also been hypothesized to clog soil pores and reduce infiltration. Several researchers have attributed the commonly observed increase in runoff and erosion after fire to the potential pore-clogging effect of ash. Evidence is however incomplete, as to date, research has solely focused on identifying the presence of ash in the soil, with the actual flow processes associated with the infiltration and pore-clogging of ash remaining a major unknown. In several laboratory experiments, we tested the hypothesis that ash causes pore clogging to the point that infiltration is hampered and ponding occurs. We first visualized and quantified pore-scale infiltration of water and ash in sand of a range of textures and at various infiltration rates, using a digital bright field microscope capturing both photo and video. While these visualization experiments confirm field and lab observation of ash washing into soil pores, we did not observe any clogging of pores, and have not been able to create conditions for which this does occur. Additional electrochemical analysis and measurement of saturated hydraulic conductivity indicate that pore clogging by ash is not plausible. Electrochemical analysis showed that ash and sand are both negatively charged, showing that attachment of ash to sand and any resulting clogging is unlikely. Ash also had quite high saturated conductivity, and systems where ash was mixed in or lying on top of sand had similarly high hydraulic conductivity. Based on these various experiments, we cannot confirm the hypothesis that pore clogging by ash contributes to the frequently observed increase in post-fire runoff, at least for the medium to coarse sands

  10. Synthesis of Novel Mesoporous Silica Materials with Hierarchical Pore Structures

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Suk Bon; Choi, Wang Kyu; Choi, Byung Seon; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Porous materials with various pore sizes in the range of micropore (< 2 nm), mesopore (2-50 nm), and macropore (> 50 nm) are attractive due to their many emerging applications such as catalysts, separation systems, and low dielectric constant materials. The discovery of new M41S mesoporous silica families with pore sizes larger than 2 nm in diameter in 1992 extended the applications into much wider pore ranges, bringing in a new prosperous era in porous material research. The synthesis of these silica materials has been mainly accomplished through a self-assembly between surfactant molecules and inorganic species under various pH conditions. Recently, core-shell nanoparticles with a silica core and mesoporous shell under basic conditions were synthesized using the silica nanoparticles as a core, and a silica precursor (TEOS) and cationic surfactant (CTABr) as a material for the formation of the mesoporous shell. The resultant materials were very monodispersive in size and showed a narrow pore size distribution in the range of ca 2-3 nm in diameter, depending on the alkyl-chain length of the surfactants used. In this work, the mesoporous shell coated-fumed silicas (denoted as MS M-5s) were synthesized by using fumed silica instead of the silica nanoparticle as a core based on previous reports. Also, the structural properties of the MS M-5s such as the specific surface area and pore volume were easily controlled by varying the amount of the silica precursor and surfactant. The resultant materials exhibited a BET surface area of ca 279-446 m{sup 2}/g and total pore volume of ca 0.64-0.74 cm{sup 3}/g and showed a narrow pore size distribution (PSD) due to the removal of the organic surfactant molecules

  11. Experimental Investigation of Evolution of Pore Structure in Longmaxi Marine Shale Using an Anhydrous Pyrolysis Technique

    Directory of Open Access Journals (Sweden)

    Zhaodong Xi

    2018-05-01

    Full Text Available To better understanding the evolutionary characteristics of pore structure in marine shale with high thermal maturity, a natural Longmaxi marine shale sample from south China with a high equivalent vitrinite reflectance value (Ro = 2.03% was selected to conduct an anhydrous pyrolysis experiment (500–750 °C, and six artificial shale samples (pyrolysis products spanning a maturity range from Ro = 2.47% to 4.87% were obtained. Experimental procedures included mercury intrusion, nitrogen adsorption, and carbon dioxide adsorption, and were used to characterize the pore structure. In addition, fractal theory was applied to analyze the heterogeneous pore structure. The results showed that this sample suite had large differences in macropore, mesopore, and micropore volume (PV, as well as specific surface area (SSA and pore size distributions (PSD, at different temperatures. Micropore, mesopore, and macropore content increased, from being unheated to 600 °C, which caused the pore structure to become more complex. The content of small diameter pores (micropores and fine mesopores, <10 nm decreased and pores with large diameters (large mesopores and macropores, >10 nm slightly increased from 600 to 750 °C. Fractal analysis showed that larger pore sizes had more complicated pore structure in this stage. The variance in pore structure for samples during pyrolysis was related to the further transformation of organic matter and PSD rearrangement. According to the data in this study, two stages were proposed for the pore evolution for marine shale with high thermal maturity.

  12. Membranes with functionalized carbon nanotube pores for selective transport

    Science.gov (United States)

    Bakajin, Olgica; Noy, Aleksandr; Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K; Kim, Sangil

    2015-01-27

    Provided herein composition and methods for nanoporous membranes comprising single walled, double walled, or multi-walled carbon nanotubes embedded in a matrix material. Average pore size of the carbon nanotube can be 6 nm or less. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  13. Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media

    KAUST Repository

    Icardi, Matteo; Boccardo, Gianluca; Marchisio, Daniele L.; Tosco, Tiziana; Sethi, Rajandrea

    2014-01-01

    In the present work fluid flow and solute transport through porous media are described by solving the governing equations at the pore scale with finite-volume discretization. Instead of solving the simplified Stokes equation (very often employed

  14. Calibrating the Iowa pore index with mercury intrusion porosimetry and petrography.

    Science.gov (United States)

    2017-10-31

    The Iowa Pore Index (IPI) test is a fast, non-destructive, inexpensive, and environmentally friendly test used by several Midwestern state departments of transportation to determine the volume ratio of macropores to micropores in a coarse rock aggreg...

  15. Artificial skin and patient simulator comprising the artificial skin

    NARCIS (Netherlands)

    2011-01-01

    The invention relates to an artificial skin (10, 12, 14), and relates to a patient simulator (100) comprising the artificial skin. The artificial skin is a layered structure comprising a translucent cover layer (20) configured for imitating human or animal skin, and comprising a light emitting layer

  16. Coated silicon comprising material for protection against environmental corrosion

    Science.gov (United States)

    Hazel, Brian Thomas (Inventor)

    2009-01-01

    In accordance with an embodiment of the invention, an article is disclosed. The article comprises a gas turbine engine component substrate comprising a silicon material; and an environmental barrier coating overlying the substrate, wherein the environmental barrier coating comprises cerium oxide, and the cerium oxide reduces formation of silicate glass on the substrate upon exposure to corrodant sulfates.

  17. Characterization of lacustrine shale pore structure: The Upper-Triassic Yanchang Formation, Ordos Basin, China

    Directory of Open Access Journals (Sweden)

    Yuxi Yu

    2016-08-01

    Full Text Available Amounts of silty laminae in continental shale gas reservoir were investigated in the Zhangjiatan shale of the Yanchang Formation, Ordos Basin. The purpose of this study is to provide awareness in terms of the nature and discrepancies in pore structure between silty laminae and clayey laminae. By mechanically separating the silty laminae from the shale core, a combination measurement series of mercury injection capillary pressure, N2 adsorption, and carbon dioxide adsorption were performed on the aforementioned two parts. An integrated pore size distribution, with a pore diameter range of 0.1 nm-100 μm, was obtained by using appropriate sample particle size and calculation model. The comparative analysis of the pore structure shows that the clayey laminae are dominated by mesopore and micropore; meanwhile, the silty laminae are dominated by macropore alone. The pore volume distribution in clayey laminae is sorted as mesopore volume > micropore volume > macropore volume, on the other hand, for silty laminae it is macropore volume > mesopore volume > micropore volume. The averaged total pore volume of silty laminae is 2.02 cc/100 g, and for clayey laminae, it is 1.41 cc/100 g. The porosity of silty laminae is 5.40%, which is greater than that of clayey laminae's 3.67%. Since silty laminae have larger pore width and pore space, they are more permeable and porous than the clayey laminae; it also acts as a favorable conduit and reservoir for shale gas.

  18. Solid polymer electrolyte composite membrane comprising a porous support and a solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide

    Science.gov (United States)

    Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B

    2015-02-24

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.

  19. Study on pore structure and diffusion coefficient of chloride ion in hardened low-alkaline cement

    International Nuclear Information System (INIS)

    Mihara, Morihiro; Torii, Kazuyuki

    2009-03-01

    Low-alkaline cement using pozzolans is under consideration as a possible filling and structural material in geological disposal for long-lived radioactive waste. Silica fume and fly ash are used to develop the low-alkaline cement which is named HFSC, High-volume Fly ash Silica fume Cement. In this study, pore structure and diffusivity of chloride ion in HFSC pastes were investigated in order to understand the fundamental transport properties of ions. HFSC which included different contents of fly ash (40%, 50% and 60%) with silica fume (20%) and ordinary Portland (OPC) cement were prepared. Hardened cement pastes were supplied to pore structure analysis and in-diffusion experiment with NaCl and CaCl 2 solution. Mercury intrusion method (MIP) commonly used and image analysis of backscattered electron microscopy (BSE) for pore in hardened cement paste were performed to investigate the pore structure. The porosity of HFSC was larger than that of OPC measured by MIP. However, pore diameter increasing pore volume of HFSC was smaller than that of OPC. It was observed that lager pores were in HFSC than in OPC from BSE. These large pores in HFSC were originated from cenosphere of FA. The apparent diffusivity of chloride in HFSC with fly ash of 40% showed smallest value in the cement pastes. It was concluded that the smallest diffusion coefficient was caused by a pore of HFSC which had a bended structure and ion exclusion/filtration effect. (author)

  20. An investigation into the effects of pore connectivity on T2 NMR relaxation

    Science.gov (United States)

    Ghomeshi, Shahin; Kryuchkov, Sergey; Kantzas, Apostolos

    2018-04-01

    Nuclear Magnetic Resonance (NMR) is a powerful technique used to characterize fluids and flow in porous media. The NMR relaxation curves are closely related to pore geometry, and the inversion of the NMR relaxometry data is known to give useful information with regards to pore size distribution (PSD) through the relative amplitudes of the fluids stored in the small and large pores. While this information is crucial, the main challenge for the successful use of the NMR measurements is the proper interpretation of the measured signals. Natural porous media patterns consist of complex pore structures with many interconnected or "coupled" regions, as well as isolated pores. This connectivity along the throats changes the relaxation distribution and in order to properly interpret this data, a thorough understanding of the effects of pore connectivity on the NMR relaxation distribution is warranted. In this paper we address two main points. The first pertains to the fact that there is a discrepancy between the relaxation distribution obtained from experiments, and the ones obtained from solving the mathematical models of diffusion process in the digitized images of the pore space. There are several reasons that may attribute to this such as the lack of a proper incorporation of surface roughness into the model. However, here we are more interested in the effects of pore connectivity and to understand why the typical NMR relaxation distribution obtained from experiments are wider, while the numerical simulations predict that a wider NMR relaxation distribution may indicate poor connectivity. Secondly, by not taking into account the pore coupling effects, from our experience in interpreting the data, we tend to underestimate the pore volume of small pores and overestimate the amplitudes in the large pores. The role of pore coupling becomes even more prominent in rocks with small pore sizes such as for example in shales, clay in sandstones, and in the microstructures of

  1. Enzyme system comprising an enzyme bonded in a porous matrix

    Science.gov (United States)

    Ackerman, Eric [Richland, WA; Liu, Jun [West Richland, WA

    2010-12-07

    A protein system is described in which a protein is bound within a matrix material that has pores that are sized to achieve excellent properties such as: activity, protein density, and stability. In a preferred embodiment, the pore sizes range from 50 to 400 .ANG.. One protein that has demonstrated surprisingly good results in this system is OPH. This protein is known to degrade organophosphorus compounds such as are found in chemical weapons and pesticides. Novel methods of forming the protein system and methods of making OPH are also described.

  2. Plastic strain caused by contraction of pores in polycrystalline graphites

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Yoda, Shinichi; Konishi, Takashi.

    1989-01-01

    The effects of porosity on mechanical properties and deformation behavior of four isotropic polycrystalline graphites were studied. The pore size distributions of the graphites were measured using a conventional mercury penetration technique. The average pore radius of ISO-88 graphite was about one-tenth of that of ISEM-1, IG-11 or IG-15 graphites. Young's modulus of the graphites decreased with increasing porosity. The stress-strain curve of each graphite was measured in its lateral and axial directions. Young's modulus of graphite decreased with increasing load. The plastic strain at a given compressive load was calculated from the stress-strain curve and the initial gradient of the unloading curve at the load. The ratio of lateral plastic strain to axial plastic strain for the graphites was less than 0.5, indicating that the volume of the graphites decreased during compressive loading. By assuming that the volume change was caused by contraction of pores, plastic strain associated with contraction of pores was calculated from the axial plastic strain and lateral plastic strain by slips along the basal planes. The plastic strain increased with increasing axial plastic strain and porosity of graphite. (author)

  3. Phase transitions of fluids in heterogeneous pores

    Directory of Open Access Journals (Sweden)

    A. Malijevský

    2016-03-01

    Full Text Available We study phase behaviour of a model fluid confined between two unlike parallel walls in the presence of long range (dispersion forces. Predictions obtained from macroscopic (geometric and mesoscopic arguments are compared with numerical solutions of a non-local density functional theory. Two capillary models are considered. For a capillary comprising two (differently adsorbing walls we show that simple geometric arguments lead to the generalized Kelvin equation locating very accurately capillary condensation, provided both walls are only partially wet. If at least one of the walls is in complete wetting regime, the Kelvin equation should be modified by capturing the effect of thick wetting films by including Derjaguin's correction. Within the second model, we consider a capillary formed of two competing walls, so that one tends to be wet and the other dry. In this case, an interface localized-delocalized transition occurs at bulk two-phase coexistence and a temperature T*(L depending on the pore width L. A mean-field analysis shows that for walls exhibiting first-order wetting transition at a temperature T_{w}, T_{s} > T*(L > T_{w}, where the spinodal temperature Ts can be associated with the prewetting critical temperature, which also determines a critical pore width below which the interface localized-delocalized transition does not occur. If the walls exhibit critical wetting, the transition is shifted below Tw and for a model with the binding potential W(l=A(Tl-2+B(Tl-3+..., where l is the location of the liquid-gas interface, the transition can be characterized by a dimensionless parameter κ=B/(AL, so that the fluid configuration with delocalized interface is stable in the interval between κ=-2/3 and κ ~ -0.23.

  4. Compositions comprising enhanced graphene oxide structures and related methods

    Science.gov (United States)

    Kumar, Priyank Vijaya; Bardhan, Neelkanth M.; Belcher, Angela; Grossman, Jeffrey

    2016-12-27

    Embodiments described herein generally relate to compositions comprising a graphene oxide species. In some embodiments, the compositions advantageously have relatively high oxygen content, even after annealing.

  5. Coating of silicon pore optics

    DEFF Research Database (Denmark)

    Cooper-Jensen, Carsten P.; Ackermann, M.; Christensen, Finn Erland

    2009-01-01

    For the International X-ray observatory (IXO), a mirror module with an effective area of 3 m2 at 1.25 keV and at least 0.65 m2 at 6 keV has to be realized. To achieve this goal, coated silicon pore optics has been developed over the last years. One of the challenges is to coat the Si plates...

  6. Protein crystal nucleation in pores.

    Science.gov (United States)

    Nanev, Christo N; Saridakis, Emmanuel; Chayen, Naomi E

    2017-01-16

    The most powerful method for protein structure determination is X-ray crystallography which relies on the availability of high quality crystals. Obtaining protein crystals is a major bottleneck, and inducing their nucleation is of crucial importance in this field. An effective method to form crystals is to introduce nucleation-inducing heterologous materials into the crystallization solution. Porous materials are exceptionally effective at inducing nucleation. It is shown here that a combined diffusion-adsorption effect can increase protein concentration inside pores, which enables crystal nucleation even under conditions where heterogeneous nucleation on flat surfaces is absent. Provided the pore is sufficiently narrow, protein molecules approach its walls and adsorb more frequently than they can escape. The decrease in the nucleation energy barrier is calculated, exhibiting its quantitative dependence on the confinement space and the energy of interaction with the pore walls. These results provide a detailed explanation of the effectiveness of porous materials for nucleation of protein crystals, and will be useful for optimal design of such materials.

  7. Compressive behavior of pervious concretes and a quantification of the influence of random pore structure features

    International Nuclear Information System (INIS)

    Deo, Omkar; Neithalath, Narayanan

    2010-01-01

    Research highlights: → Identified the relevant pore structure features of pervious concretes, provided methodologies to extract those, and quantified the influence of these features on compressive response. → A model for stress-strain relationship of pervious concretes, and relationship between model parameters and parameters of the stress-strain relationship developed. → Statistical model for compressive strength as a function of pore structure features; and a stochastic model for the sensitivity of pore structure features in strength prediction. - Abstract: Properties of a random porous material such as pervious concrete are strongly dependent on its pore structure features, porosity being an important one among them. This study deals with developing an understanding of the material structure-compressive response relationships in pervious concretes. Several pervious concrete mixtures with different pore structure features are proportioned and subjected to static compression tests. The pore structure features such as pore area fractions, pore sizes, mean free spacing of the pores, specific surface area, and the three-dimensional pore distribution density are extracted using image analysis methods. The compressive stress-strain response of pervious concretes, a model to predict the stress-strain response, and its relationship to several of the pore structure features are outlined. Larger aggregate sizes and increase in paste volume fractions are observed to result in increased compressive strengths. The compressive response is found to be influenced by the pore sizes, their distributions and spacing. A statistical model is used to relate the compressive strength to the relevant pore structure features, which is then used as a base model in a Monte-Carlo simulation to evaluate the sensitivity of the predicted compressive strength to the model terms.

  8. Lattice density functional theory investigation of pore shape effects. I. Adsorption in single nonperiodic pores.

    Science.gov (United States)

    Malanoski, A P; van Swol, Frank

    2002-10-01

    A fully explicit in three dimensions lattice density functional theory is used to investigate adsorption in single nonperiodic pores. The effect of varying pore shape from the slits and cylinders that are normally simulated was our primary interest. A secondary concern was the results for pores with very large diameters. The shapes investigated were square pores with or without surface roughness, cylinders, right triangle pores, and trapezoidal pores. It was found that pores with very similar shape factors gave similar results but that the introduction of acute angled corners or very large side ratio lengths in rectangular pores gave results that were significantly different. Further, a rectangular pore going towards the limit of infinite side ratio does not approach the results of a slit pore. In all of these cases, the importance of features that are present for only a small portion of the pore is demonstrated.

  9. The Arabidopsis Nuclear Pore and Nuclear Envelope

    OpenAIRE

    Meier, Iris; Brkljacic, Jelena

    2010-01-01

    The nuclear envelope is a double membrane structure that separates the eukaryotic cytoplasm from the nucleoplasm. The nuclear pores embedded in the nuclear envelope are the sole gateways for macromolecular trafficking in and out of the nucleus. The nuclear pore complexes assembled at the nuclear pores are large protein conglomerates composed of multiple units of about 30 different nucleoporins. Proteins and RNAs traffic through the nuclear pore complexes, enabled by the interacting activities...

  10. Pore formation during dehydration of a polycrystalline gypsum sample observed and quantified in a time-series synchrotron X-ray micro-tomography experiment

    Directory of Open Access Journals (Sweden)

    F. Fusseis

    2012-03-01

    Full Text Available We conducted an in-situ X-ray micro-computed tomography heating experiment at the Advanced Photon Source (USA to dehydrate an unconfined 2.3 mm diameter cylinder of Volterra Gypsum. We used a purpose-built X-ray transparent furnace to heat the sample to 388 K for a total of 310 min to acquire a three-dimensional time-series tomography dataset comprising nine time steps. The voxel size of 2.2 μm3 proved sufficient to pinpoint reaction initiation and the organization of drainage architecture in space and time.

    We observed that dehydration commences across a narrow front, which propagates from the margins to the centre of the sample in more than four hours. The advance of this front can be fitted with a square-root function, implying that the initiation of the reaction in the sample can be described as a diffusion process.

    Novel parallelized computer codes allow quantifying the geometry of the porosity and the drainage architecture from the very large tomographic datasets (20483 voxels in unprecedented detail. We determined position, volume, shape and orientation of each resolvable pore and tracked these properties over the duration of the experiment. We found that the pore-size distribution follows a power law. Pores tend to be anisotropic but rarely crack-shaped and have a preferred orientation, likely controlled by a pre-existing fabric in the sample. With on-going dehydration, pores coalesce into a single interconnected pore cluster that is connected to the surface of the sample cylinder and provides an effective drainage pathway.

    Our observations can be summarized in a model in which gypsum is stabilized by thermal expansion stresses and locally increased pore fluid pressures until the dehydration front approaches to within about 100 μm. Then, the internal stresses are released and dehydration happens efficiently, resulting in new pore space. Pressure release, the production of pores and the

  11. Pore formation during dehydration of polycrystalline gypsum observed and quantified in a time-series synchrotron radiation based X-ray micro-tomography experiment

    Science.gov (United States)

    Fusseis, F.; Schrank, C.; Liu, J.; Karrech, A.; Llana-Fúnez, S.; Xiao, X.; Regenauer-Lieb, K.

    2011-10-01

    We conducted an in-situ X-ray micro-computed tomography heating experiment at the Advanced Photon Source (USA) to dehydrate an unconfined 2.3 mm diameter cylinder of Volterra Gypsum. We used a purpose-built X-ray transparent furnace to heat the sample to 388 K for a total of 310 min to acquire a three-dimensional time-series tomography dataset comprising nine time steps. The voxel size of 2.2 μm3 proved sufficient to pinpoint reaction initiation and the organization of drainage architecture in space and time. We observed that dehydration commences across a narrow front, which propagates from the margins to the centre of the sample in more than four hours. The advance of this front can be fitted with a square-root function, implying that the initiation of the reaction in the sample can be described as a diffusion process. Novel parallelized computer codes allow quantifying the geometry of the porosity and the drainage architecture from the very large tomographic datasets (6.4 × 109 voxel each) in unprecedented detail. We determined position, volume, shape and orientation of each resolvable pore and tracked these properties over the duration of the experiment. We found that the pore-size distribution follows a power law. Pores tend to be anisotropic but rarely crack-shaped and have a preferred orientation, likely controlled by a pre-existing fabric in the sample. With on-going dehydration, pores coalesce into a single interconnected pore cluster that is connected to the surface of the sample cylinder and provides an effective drainage pathway. Our observations can be summarized in a model in which gypsum is stabilized by thermal expansion stresses and locally increased pore fluid pressures until the dehydration front approaches to within about 100 μm. Then, the internal stresses are released and dehydration happens efficiently, resulting in new pore space. Pressure release, the production of pores and the advance of the front are coupled in a feedback loop. We

  12. Pore formation during dehydration of a polycrystalline gypsum sample observed and quantified in a time-series synchrotron X-ray micro-tomography experiment

    Science.gov (United States)

    Fusseis, F.; Schrank, C.; Liu, J.; Karrech, A.; Llana-Fúnez, S.; Xiao, X.; Regenauer-Lieb, K.

    2012-03-01

    We conducted an in-situ X-ray micro-computed tomography heating experiment at the Advanced Photon Source (USA) to dehydrate an unconfined 2.3 mm diameter cylinder of Volterra Gypsum. We used a purpose-built X-ray transparent furnace to heat the sample to 388 K for a total of 310 min to acquire a three-dimensional time-series tomography dataset comprising nine time steps. The voxel size of 2.2 μm3 proved sufficient to pinpoint reaction initiation and the organization of drainage architecture in space and time. We observed that dehydration commences across a narrow front, which propagates from the margins to the centre of the sample in more than four hours. The advance of this front can be fitted with a square-root function, implying that the initiation of the reaction in the sample can be described as a diffusion process. Novel parallelized computer codes allow quantifying the geometry of the porosity and the drainage architecture from the very large tomographic datasets (20483 voxels) in unprecedented detail. We determined position, volume, shape and orientation of each resolvable pore and tracked these properties over the duration of the experiment. We found that the pore-size distribution follows a power law. Pores tend to be anisotropic but rarely crack-shaped and have a preferred orientation, likely controlled by a pre-existing fabric in the sample. With on-going dehydration, pores coalesce into a single interconnected pore cluster that is connected to the surface of the sample cylinder and provides an effective drainage pathway. Our observations can be summarized in a model in which gypsum is stabilized by thermal expansion stresses and locally increased pore fluid pressures until the dehydration front approaches to within about 100 μm. Then, the internal stresses are released and dehydration happens efficiently, resulting in new pore space. Pressure release, the production of pores and the advance of the front are coupled in a feedback loop.

  13. High-resolution 3D X-ray microtomography as tool to investigate size distribution of grain phase and pore space in sandstones

    Science.gov (United States)

    Kahl, Wolf-Achim; Holzheid, Astrid

    2013-04-01

    The geometry and internal structures of sandstone reservoirs, like grain size, sorting, degree of bioturbation, and the history of the diagenetic alterations determine the quantity, flow rates, and recovery of hydrocarbons present in the pore space. In this respect, processes influencing the deep reservoir quality in sandstones are either of depositional, shallow diagenetic, or deep-burial origin. To assess the effect of compaction and cementation on the pore space during diagenesis, we investigated a set of sandstone samples using high-resolution microtomography (µ-CT). By high-resolution µ-CT, size distributions (in 2D and 3D), surface areas and volume fractions of the grain skeleton and pore space of sandstones and - in addition - of mineral powders have been determined. For this study, we analysed aliquots of sandstones that exhibit either complete, partial or no cemententation of the pore space, and sets of mineral powders (quartz, feldspar, calcite). As the resolution of the µ-CT scans is in the µm-range, the surface areas determined for sandstones and powders do detect the geometric surface of the material (Kahl & Holzheid, 2010). Since there are differing approaches to "size" parameters like e.g., long/short particle axes, area equivalent radius, Feret-diameter (2D), and structural thickness (3D), we decided to illustrate the effect of various size determinations for (a) single grains, (b) grain skeletons, and (c) pore space. Therefor, the computer-aided morphometric analysis of the segmented 3D models of the reconstructed scan images comprises versatile calculation algorithms. For example, size distribution of the pore space of partially cemented sandstones can be used to infer the timing of the formation of the cement in respect to tectonic/diagenetic activities. In the case of a late-stage partial cementation of a Bunter sandstone, both pore space and cement phase show identical size distributions. On the contrary, the anhydrite cement of a

  14. Zinc comprising coordination compounds as growth stimulants of cotton seeds

    International Nuclear Information System (INIS)

    Yusupov, Z.N.; Nurmatov, T.M.; Rakhimova, M.M.; Dzhafarov, M.I.; Nikolaeva, T.B.

    1991-01-01

    Present article is devoted to zinc comprising coordination compounds as growth stimulants of cotton seeds. The influence of zinc coordination compounds with physiologically active ligands on germinative energy and seed germination of cotton was studied. The biogical activity and effectiveness of zinc comprising coordination compounds at application them for humidification of cotton seeds was studied as well.

  15. Electrochemical energy storage devices comprising self-compensating polymers

    Science.gov (United States)

    Johnson, Paul; Bautista-Martinez, Jose Antonio; Friesen, Cody; Switzer, Elise

    2018-01-30

    The disclosed technology relates generally to devices comprising conductive polymers and more particularly to electrochemical devices comprising self-compensating conductive polymers. In one aspect, electrochemical energy storage device comprises a negative electrode comprising an active material including a redox-active polymer. The device additionally comprises a positive electrode comprising an active material including a redox-active polymer. The device further comprises an electrolyte material interposed between the negative electrode and positive electrode and configured to conduct mobile counterions therethrough between the negative electrode and positive electrode. At least one of the negative electrode redox-active polymer and the positive electrode redox-active polymer comprises a zwitterionic polymer unit configured to reversibly switch between a zwitterionic state in which the zwitterionic polymer unit has first and second charge centers having opposite charge states that compensate each other, and a non-zwitterionic state in which the zwitterionic polymer unit has one of the first and second charge centers whose charge state is compensated by mobile counterions.

  16. Relationship between pore structure and compressive strength

    Indian Academy of Sciences (India)

    Properties of concrete are strongly dependent on its pore structure features, porosity being an important one among them. This study deals with developing an understanding of the pore structure-compressive strength relationship in concrete. Several concrete mixtures with different pore structures are proportioned and ...

  17. Microporous silica prepared by organic templating: relationship between the molecular template and pore structure

    International Nuclear Information System (INIS)

    Brinker, C. Jeffrey; Cao, Guozhong; Kale, Rahul P.; Lopez, Gabriel P.; Lu, Yunfeng; Prabakar, S.

    1999-01-01

    Microporous silica materials with a controlled pore size and a narrow pore size distribution have been prepared by sol-gel processing using an organic-templating approach. Microporous networks were formed by pyrolytic removal of organic ligands (methacryloxypropyl groups) from organic/inorganic hybrid materials synthesized by copolymerization of 3-methacryloxypropylsilane (MPS) and tetraethoxysilane (TEOS). Molecular simulations and experimental measurements were conducted to examine the relationship between the microstructural characteristics of the porous silica (e.g., pore size, total pore volume, and pore connectivity) and the size and amount of organic template ligands added. Adsorption measurements suggest that the final porosity of the microporous silica is due to both primary pores (those present in the hybrid materials prior to pyrolysis) and secondary pores (those created by pyrolytic removal of organic templates). Primary pores were inaccessible to N(sub 2) at 77 K but accessible to CO(sub 2) at 195 K; secondary pores were accessible to both N(sub 2) (at 77 K) and CO(sub 2) (at 195 K) in adsorption measurements. Primary porosity decreases with the amount of organic ligands added because of the enhanced densification of MPS/TEOS hybrid materials as the mole fraction of trifunctional MPS moieties increases. pore volumes measured by nitrogen adsorption experiments at 77 K suggest that the secondary (template-derived) porosity exhibits a percolation behavior as the template concentration is increased. Gas permeation experiments indicate that the secondary pores are approximately 5(angstrom) in diameter, consistent with predictions based on molecular simulations

  18. Measuring kinetic drivers of pneumolysin pore structure.

    Science.gov (United States)

    Gilbert, Robert J C; Sonnen, Andreas F-P

    2016-05-01

    Most membrane attack complex-perforin/cholesterol-dependent cytolysin (MACPF/CDC) proteins are thought to form pores in target membranes by assembling into pre-pore oligomers before undergoing a pre-pore to pore transition. Assembly during pore formation is into both full rings of subunits and incomplete rings (arcs). The balance between arcs and full rings is determined by a mechanism dependent on protein concentration in which arc pores arise due to kinetic trapping of the pre-pore forms by the depletion of free protein subunits during oligomerization. Here we describe the use of a kinetic assay to study pore formation in red blood cells by the MACPF/CDC pneumolysin from Streptococcus pneumoniae. We show that cell lysis displays two kinds of dependence on protein concentration. At lower concentrations, it is dependent on the pre-pore to pore transition of arc oligomers, which we show to be a cooperative process. At higher concentrations, it is dependent on the amount of pneumolysin bound to the membrane and reflects the affinity of the protein for its receptor, cholesterol. A lag occurs before cell lysis begins; this is dependent on oligomerization of pneumolysin. Kinetic dissection of cell lysis by pneumolysin demonstrates the capacity of MACPF/CDCs to generate pore-forming oligomeric structures of variable size with, most likely, different functional roles in biology.

  19. A model of lipid rearrangements during pore formation in the DPPC lipid bilayer.

    Science.gov (United States)

    Wrona, Artur; Kubica, Krystian

    2017-07-10

    The molecular bases of pore formation in the lipid bilayer remain unclear, as do the exact characteristics of their sizes and distributions. To understand this process, numerous studies have been performed on model lipid membranes including cell-sized giant unilamellar vesicles (GUV). The effect of an electric field on DPPC GUV depends on the lipid membrane state: in the liquid crystalline phase the created pores have a cylinder-like shape, whereas in the gel phase a crack has been observed. The aim of the study was to investigate the geometry of pores created in a lipid bilayer in gel and liquid crystalline phases in reference to literature experimental data. A mathematical model of the pore in a DPPC lipid bilayer developed based on the law of conservation of mass and the assumption of constant volume of lipid molecules, independent of their conformation, allows for analysis of pore shape and accompanying molecular rearrangements. The membrane area occupied by the pore of a cylinder-like shape is greater than the membrane area occupied by lipid molecules creating the pore structure (before pore appearance). Creation of such pores requires more space, which can be achieved by conformational changes of lipid chains toward a more compact state. This process is impossible for a membrane in the most compact, gel phase. We show that the geometry of the pores formed in the lipid bilayer in the gel phase must be different from the cylinder shape formed in the lipid bilayer in a liquid crystalline state, confirming experimental studies. Furthermore, we characterize the occurrence of the 'buffer' zone surrounding pores in the liquid crystalline phase as a mechanism of separation of neighbouring pores.

  20. Medical preparation container comprising microwave powered sensor assembly

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a medical preparation container which comprises a microwave powered sensor assembly. The microwave powered sensor assembly comprises a sensor configured to measure a physical property or chemical property of a medical preparation during its heating in a microwave ...... oven. The microwave powered sensor assembly is configured for harvesting energy from microwave radiation emitted by the microwave oven and energize the sensor by the harvested microwave energy.......The present invention relates to a medical preparation container which comprises a microwave powered sensor assembly. The microwave powered sensor assembly comprises a sensor configured to measure a physical property or chemical property of a medical preparation during its heating in a microwave...

  1. Metal-polymer composites comprising nanostructures and applications thereof

    Science.gov (United States)

    Wang, Hsing-Lin [Los Alamos, NM; Jeon, Sea Ho [Dracut, MA; Mack, Nathan H [Los Alamos, NM

    2011-08-02

    Metal-polymer composites, and methods of making and use thereof, said composites comprising a thermally-cured dense polyaniline substrate; an acid dopant; and, metal nanostructure deposits wherein the deposits have a morphology dependent upon the acid dopant.

  2. Immunogenic compositions comprising human immunodeficiency virus (HIV) mosaic Nef proteins

    Science.gov (United States)

    Korber, Bette T [Los Alamos, NM; Perkins, Simon [Los Alamos, NM; Bhattacharya, Tanmoy [Los Alamos, NM; Fischer, William M [Los Alamos, NM; Theiler, James [Los Alamos, NM; Letvin, Norman [Boston, MA; Haynes, Barton F [Durham, NC; Hahn, Beatrice H [Birmingham, AL; Yusim, Karina [Los Alamos, NM; Kuiken, Carla [Los Alamos, NM

    2012-02-21

    The present invention relates to mosaic clade M HIV-1 Nef polypeptides and to compositions comprising same. The polypeptides of the invention are suitable for use in inducing an immune response to HIV-1 in a human.

  3. Dielectric electroactive polymers comprising an ionic supramolecular structure

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to an ionic interpenetrating polymer network comprising at least one elastomer and an ionic supramolecular structure comprising the reaction product of at least two chemical compounds wherein each of said compounds has at least two functional groups and wherein said ...... compounds are able to undergo Lewis acid-base reactions. The interpenetrating polymer network may be used as dielectric electroactive polymers (DEAPs) having a high dielectric permittivity....

  4. Pore development of thermosetting phenol resin derived mesoporous carbon through a commercially nanosized template

    Energy Technology Data Exchange (ETDEWEB)

    Tang Zhihong [Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Song Yan [Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China)], E-mail: yansong1026@126.com; Tian Yongming [Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Liu Lang; Guo Quangui [Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China)

    2008-01-25

    Mesoporous carbons (MCs) with high specific surface area and pore volume were synthesized from thermosetting phenol resin (TPR) by using commercial nanosized silica particles as template. Based on the results of thermogravimetric analysis, nitrogen adsorption, mercury adsorption and high-resolution transmission electron microscopy (HRTEM), mechanism of the pore formation of MCs was proposed. Silica particles not only participated in the pore formation of MCs but also influenced the thermosetting process of the carbon precursor. The mechanism of pore formation in the MCs may be described as follows: mesopores were introduced by the removal of silica particles; small mesopores were created by the combination of aperture between TPR and silica particles and opened pores in the matrix generated by the release of small molecules in the carbon during carbonization process; macropores were produced by the aggregation of silica particles and the collapse of carbon wall.

  5. Pore development of thermosetting phenol resin derived mesoporous carbon through a commercially nanosized template

    International Nuclear Information System (INIS)

    Tang Zhihong; Song Yan; Tian Yongming; Liu Lang; Guo Quangui

    2008-01-01

    Mesoporous carbons (MCs) with high specific surface area and pore volume were synthesized from thermosetting phenol resin (TPR) by using commercial nanosized silica particles as template. Based on the results of thermogravimetric analysis, nitrogen adsorption, mercury adsorption and high-resolution transmission electron microscopy (HRTEM), mechanism of the pore formation of MCs was proposed. Silica particles not only participated in the pore formation of MCs but also influenced the thermosetting process of the carbon precursor. The mechanism of pore formation in the MCs may be described as follows: mesopores were introduced by the removal of silica particles; small mesopores were created by the combination of aperture between TPR and silica particles and opened pores in the matrix generated by the release of small molecules in the carbon during carbonization process; macropores were produced by the aggregation of silica particles and the collapse of carbon wall

  6. Effect of pore structure on capillary condensation in a porous medium.

    Science.gov (United States)

    Deinert, M R; Parlange, J-Y

    2009-02-01

    The Kelvin equation relates the equilibrium vapor pressure of a fluid to the curvature of the fluid-vapor interface and predicts that vapor condensation will occur in pores or irregularities that are sufficiently small. Past analyses of capillary condensation in porous systems with fractal structure have related the phenomenon to the fractal dimension of the pore volume distribution. Recent work, however, suggests that porous systems can exhibit distinct fractal dimensions that are characteristic of both their pore volume and the surfaces of the pores themselves. We show that both fractal dimensions have an effect on the thermodynamics that governs capillary condensation and that previous analyses can be obtained as limiting cases of a more general formulation.

  7. Pore system characteristics of the Permian transitional shale reservoir in the Lower Yangtze Region, China

    Directory of Open Access Journals (Sweden)

    Taotao Cao

    2016-10-01

    Full Text Available The Permian shale, a set of transitional shale reservoir, is considered to be an important shale gas exploration target in the Lower Yangtze region. Due to little research conducted on the pore system characteristic and its controlling factors of the shale gas reservoir, SEM, FE-SEM, low-pressure N2 adsorption, and mercury intrusion tests were carried out on the Permian shales from the outcrop and HC well in the southern Anhui. The results show that the Permian shales mainly consist of organic matter, quartz, illite, calcite, and pyrite, of which pyrite occurs as framboids coexisting with organic matter and the organic matter is distributed in shales in stripped, interstitial, thin film and shell shapes. The basic pore types are inorganic mineral pore (intercrystalline pore, intergranular edge pore, intergranular pore, and interlayer pore in clay minerals and the organic pore and microfracture, of which organic pore and microfracture are the dominating pore types. In shale, organic pores are not developed at all in some organic grains but are well developed in others, which may be related to the types of and maceral compositions of kerogen. Under tectonic stress, shale rocks could develop mylonitization phenomenon exhibiting organic grains well blend with clay minerals, and produce a mass of microfractures and nanopores between organic matter grains and clay minerals. Mercury intrusion tests show that the shale is mainly composed of micropore and transition pore with high porosity, good pore connectivity and high efficiency of mercury withdraw, while the shale that mainly dominated by mesopore and macropore has a low porosity, poor pore connectivity, and low efficiency of the mercury withdraw. The volume percentage of mesopore and marcopore is increasing with the increase of quartz, and that of micropore and transition pore has a decreased tendency along with the increase of soluble organic matter (S1. Organic matter is the main contributor to

  8. Effect of Pore Size and Pore Connectivity on Unidirectional Capillary Penetration Kinetics in 3-D Porous Media using Direct Numerical Simulation

    Science.gov (United States)

    Fu, An; Palakurthi, Nikhil; Konangi, Santosh; Comer, Ken; Jog, Milind

    2017-11-01

    The physics of capillary flow is used widely in multiple fields. Lucas-Washburn equation is developed by using a single pore-sized capillary tube with continuous pore connection. Although this equation has been extended to describe the penetration kinetics into porous medium, multiple studies have indicated L-W does not accurately predict flow patterns in real porous media. In this study, the penetration kinetics including the effect of pore size and pore connectivity will be closely examined since they are expected to be the key factors effecting the penetration process. The Liquid wicking process is studied from a converging and diverging capillary tube to the complex virtual 3-D porous structures with Direct Numerical Simulation (DNS) using the Volume-Of-Fluid (VOF) method within the OpenFOAM CFD Solver. Additionally Porous Medium properties such as Permeability (k) , Tortuosity (τ) will be also analyzed.

  9. Pore surface engineering in covalent organic frameworks.

    Science.gov (United States)

    Nagai, Atsushi; Guo, Zhaoqi; Feng, Xiao; Jin, Shangbin; Chen, Xiong; Ding, Xuesong; Jiang, Donglin

    2011-11-15

    Covalent organic frameworks (COFs) are a class of important porous materials that allow atomically precise integration of building blocks to achieve pre-designable pore size and geometry; however, pore surface engineering in COFs remains challenging. Here we introduce pore surface engineering to COF chemistry, which allows the controlled functionalization of COF pore walls with organic groups. This functionalization is made possible by the use of azide-appended building blocks for the synthesis of COFs with walls to which a designable content of azide units is anchored. The azide units can then undergo a quantitative click reaction with alkynes to produce pore surfaces with desired groups and preferred densities. The diversity of click reactions performed shows that the protocol is compatible with the development of various specific surfaces in COFs. Therefore, this methodology constitutes a step in the pore surface engineering of COFs to realize pre-designed compositions, components and functions.

  10. Compositions, methods, and systems comprising fluorous-soluble polymers

    Science.gov (United States)

    Swager, Timothy M.; Lim, Jeewoo; Takeda, Yohei

    2015-10-13

    The present invention generally relates to compositions, methods, and systems comprising polymers that are fluorous-soluble and/or organize at interfaces between a fluorous phase and a non-fluorous phase. In some embodiments, emulsions or films are provided comprising a polymer. The polymers, emulsions, and films can be used in many applications, including for determining, treating, and/or imaging a condition and/or disease in a subject. The polymer may also be incorporated into various optoelectronic device such as photovoltaic cells, organic light-emitting diodes, organic field effect transistors, or the like. In some embodiments, the polymers comprise pi-conjugated backbones, and in some cases, are highly emissive.

  11. Thermoacoustic refrigerators and engines comprising cascading stirling thermodynamic units

    Science.gov (United States)

    Backhaus, Scott; Swift, Greg

    2013-06-25

    The present invention includes a thermoacoustic assembly and method for improved efficiency. The assembly has a first stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator and at least one additional heat exchanger. The first stage Stirling thermal unit is serially coupled to a first end of a quarter wavelength long coupling tube. A second stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator, and at least one additional heat exchanger, is serially coupled to a second end of the quarter wavelength long coupling tube.

  12. Effects of fractal pore on coal devolatilization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yongli; He, Rong [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Wang, Xiaoliang; Cao, Liyong [Dongfang Electric Corporation, Chengdu (China). Centre New Energy Inst.

    2013-07-01

    Coal devolatilization is numerically investigated by drop tube furnace and a coal pyrolysis model (Fragmentation and Diffusion Model). The fractal characteristics of coal and char pores are investigated. Gas diffusion and secondary reactions in fractal pores are considered in the numerical simulations of coal devolatilization, and the results show that the fractal dimension is increased firstly and then decreased later with increased coal conversions during devolatilization. The mechanisms of effects of fractal pores on coal devolatilization are analyzed.

  13. Adsorption of Carbon Dioxide onto Tetraethylenepentamine Impregnated PMMA Sorbents with Different Pore Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Dong Hyun; Park, Cheonggi; Jung, Hyunchul; Kim, Sung Hyun [Korea University, Seoul (Korea, Republic of)

    2015-02-15

    Poly(methyl methacrylate) (PMMA) supports and amine additives were investigated to adsorb CO{sub 2}. PMMA supports were fabricated by using different ratio of pore forming agents (porogen) to control the BET specific surface area, pore volume and distribution. Toluene and xylene are used for porogens. Supported amine sorbents were prepared by wet impregnation of tetraethylenepentamine (TEPA) on PMMA supports. So we could identify the effect of the pore structure of supports and the quantity of impregnated TEPA on the adsorption capacity. The increased amount of toluene as pore foaming agent resulted in the decreased average pore diameter and the increased BET surface area. Polymer supports with huge different pore distribution could be fabricated by controlling the ratio of porogen. After impregnation, the support with micropore structure is supposed the pore blocking and filling effect so that it has low CO{sub 2} capacity and kinetics due to the difficulty of diffusing. Macropore structure indicates fast adsorption capacity and low influence of amine loading. In case of support with mesopore, it has high performance of adsorption capacity and kinetics. So high surface area and meso-/macro- pore structure is suitable for CO{sub 2} capture.

  14. Electroosmotic pore transport in human skin.

    Science.gov (United States)

    Uitto, Olivia D; White, Henry S

    2003-04-01

    To determine the pathways and origin of electroosmotic flow in human skin. Iontophoretic transport of acetaminophen in full thickness human cadaver skin was visualized and quantified by scanning electrochemical microscopy. Electroosmotic flow in the shunt pathways of full thickness skin was compared to flow in the pores of excised stratum corneum and a synthetic membrane pore. The penetration of rhodamine 6G into pore structures was investigated by laser scanning confocal microscopy. Electroosmotic transport is observed in shunt pathways in full thickness human skin (e.g., hair follicles and sweat glands), but not in pore openings of freestanding stratum corneum. Absolute values of the diffusive and iontophoretic pore fluxes of acetaminophen in full thickness human skin are also reported. Rhodamine 6G is observed to penetrate to significant depths (approximately 200 microm) along pore pathways. Iontophoresis in human cadaver skin induces localized electroosmotic flow along pore shunt paths. Electroosmotic forces arise from the passage of current through negatively charged mesoor nanoscale pores (e.g., gap functions) within cellular regions that define the pore structure beneath the stratum corneum.

  15. Using low temperature calorimetry and moisture fixation method to study the pore structure of cement based materials

    DEFF Research Database (Denmark)

    Wu, Min

    connectivity but also the pore (interior) size distribution and the total pore volume. (6) Thermodynamic modeling using the program PHREEQC was performed on relevant cement paste samples. The results suggest that for the studied paste samples, the temperature depression caused by the ions present in the pore...... on the type of equations used for describing multilayer adsorption, indicating that the calculated specific surface area may not represent the “real” geometrical surface area. (4) The important factors influencing the analyzed pore size distribution (PSD) results using sorption data were reviewed...

  16. DC-to-DC converter comprising a reconfigurable capacitor unit

    NARCIS (Netherlands)

    2008-01-01

    The present invention relates to a configurable trench multi-capacitor device comprising a trench in a semiconductor substrate. The trench has a lateral extension exceeding 10 micrometer and a trench filling includes a number of at least four electrically conductive capacitor-electrode layers. A

  17. Hot gas handling device and motorized vehicle comprising the device

    NARCIS (Netherlands)

    Klein Geltink, J.; Beukers, A.; Van Tooren, M.J.L.; Koussios, S.

    2012-01-01

    The invention relates to a device for handling hot exhaust gasses discharged from an internal combustion engine. The device comprises a housing (2), enclosing a space (3) for transporting the exhaust gasses. The housing (2) is provided with an entrance - opening (4) for the exhaust gasses discharged

  18. Non-cementitious compositions comprising vaterite and methods thereof

    Science.gov (United States)

    Devenney, Martin; Fernandez, Miguel; Morgan, Samuel O.

    2015-09-15

    Non-cementitious compositions and products are provided. The compositions of the invention include a carbonate additive comprising vaterite such as reactive vaterite. Additional aspects of the invention include methods of making and using the non-cementitious compositions and products.

  19. DC-to-DC converter comprising a reconfigurable capacitor unit

    NARCIS (Netherlands)

    Klootwijk, J.H.; Bergveld, H.J.; Roozeboom, F.; Reefman, D.; Ruigrok, J.

    2013-01-01

    The present invention relates to a configurable trench multi-capacitor device comprising a trench in a semiconductor substrate. The trench has a lateral extension exceeding 10 micrometer and a trench filling includes a number of at least four electrically conductive capacitor-electrode layers. A

  20. An empirical firn-densification model comprising ice-lences

    DEFF Research Database (Denmark)

    Reeh, Niels; Fisher, D.A.; Koerner, R.M.

    2005-01-01

    a suitable value of the surface snow density. In the present study, a simple densification model is developed that specifically accounts for the content of ice lenses in the snowpack. An annual layer is considered to be composed of an ice fraction and a firn fraction. It is assumed that all meltwater formed...... changes reflect a volume change of the ice sheet with no corresponding change of mass, i.e. a volume change that does not influence global sea level....

  1. Radial symmetry in a chimeric glutamate receptor pore

    Science.gov (United States)

    Wilding, Timothy J.; Lopez, Melany N.; Huettner, James E.

    2014-02-01

    Ionotropic glutamate receptors comprise two conformationally different A/C and B/D subunit pairs. Closed channels exhibit fourfold radial symmetry in the transmembrane domain (TMD) but transition to twofold dimer-of-dimers symmetry for extracellular ligand binding and N-terminal domains. Here, to evaluate symmetry in open pores we analysed interaction between the Q/R editing site near the pore loop apex and the transmembrane M3 helix of kainate receptor subunit GluK2. Chimeric subunits that combined the GluK2 TMD with extracellular segments from NMDA receptors, which are obligate heteromers, yielded channels made up of A/C and B/D subunit pairs with distinct substitutions along M3 and/or Q/R site editing status, in an otherwise identical homotetrameric TMD. Our results indicate that Q/R site interaction with M3 occurs within individual subunits and is essentially the same for both A/C and B/D subunit conformations, suggesting that fourfold pore symmetry persists in the open state.

  2. Pore structure modification of diatomite as sulfuric acid catalyst support by high energy electron beam irradiation and hydrothermal treatment

    Science.gov (United States)

    Li, Chong; Zhang, Guilong; Wang, Min; Chen, Jianfeng; Cai, Dongqing; Wu, Zhengyan

    2014-08-01

    High energy electron beam (HEEB) irradiation and hydrothermal treatment (HT), were applied in order to remove the impurities and enlarge the pore size of diatomite, making diatomite more suitable to be a catalyst support. The results demonstrated that, through thermal, charge, impact and etching effects, HEEB irradiation could make the impurities in the pores of diatomite loose and remove some of them. Then HT could remove rest of them from the pores and contribute significantly to the modification of the pore size distribution of diatomite due to thermal expansion, water swelling and thermolysis effects. Moreover, the pore structure modification improved the properties (BET (Brunauer-Emmett-Teller) specific surface area, bulk density and pore volume) of diatomite and the catalytic efficiency of the catalyst prepared from the treated diatomite.

  3. The Effect of the Pore Entrance on Particle Motion in Slit Pores: Implications for Ultrathin Membranes.

    Science.gov (United States)

    Delavari, Armin; Baltus, Ruth

    2017-08-10

    Membrane rejection models generally neglect the effect of the pore entrance on intrapore particle transport. However, entrance effects are expected to be particularly important with ultrathin membranes, where membrane thickness is typically comparable to pore size. In this work, a 2D model was developed to simulate particle motion for spherical particles moving at small Re and infinite Pe from the reservoir outside the pore into a slit pore. Using a finite element method, particles were tracked as they accelerated across the pore entrance until they reached a steady velocity in the pore. The axial position in the pore where particle motion becomes steady is defined as the particle entrance length (PEL). PELs were found to be comparable to the fluid entrance length, larger than the pore size and larger than the thickness typical of many ultrathin membranes. Results also show that, in the absence of particle diffusion, hydrodynamic particle-membrane interactions at the pore mouth result in particle "funneling" in the pore, yielding cross-pore particle concentration profiles focused at the pore centerline. The implications of these phenomena on rejection from ultrathin membranes are examined.

  4. Automatic facial pore analysis system using multi-scale pore detection.

    Science.gov (United States)

    Sun, J Y; Kim, S W; Lee, S H; Choi, J E; Ko, S J

    2017-08-01

    As facial pore widening and its treatments have become common concerns in the beauty care field, the necessity for an objective pore-analyzing system has been increased. Conventional apparatuses lack in usability requiring strong light sources and a cumbersome photographing process, and they often yield unsatisfactory analysis results. This study was conducted to develop an image processing technique for automatic facial pore analysis. The proposed method detects facial pores using multi-scale detection and optimal scale selection scheme and then extracts pore-related features such as total area, average size, depth, and the number of pores. Facial photographs of 50 subjects were graded by two expert dermatologists, and correlation analyses between the features and clinical grading were conducted. We also compared our analysis result with those of conventional pore-analyzing devices. The number of large pores and the average pore size were highly correlated with the severity of pore enlargement. In comparison with the conventional devices, the proposed analysis system achieved better performance showing stronger correlation with the clinical grading. The proposed system is highly accurate and reliable for measuring the severity of skin pore enlargement. It can be suitably used for objective assessment of the pore tightening treatments. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Radiative magnetohydrodynamic simulations of solar pores

    NARCIS (Netherlands)

    Cameron, R.; Schuessler, M.; Vögler, A.; Zakharov, V.

    2007-01-01

    Context. Solar pores represent a class of magnetic structures intermediate between small-scale magnetic flux concentrations in intergranular lanes and fully developed sunspots with penumbrae. Aims. We study the structure, energetics, and internal dynamics of pore-like magnetic structures by means of

  6. Cavitation and pore blocking in nanoporous glasses.

    Science.gov (United States)

    Reichenbach, C; Kalies, G; Enke, D; Klank, D

    2011-09-06

    In gas adsorption studies, porous glasses are frequently referred to as model materials for highly disordered mesopore systems. Numerous works suggest that an accurate interpretation of physisorption isotherms requires a complete understanding of network effects upon adsorption and desorption, respectively. The present article deals with nitrogen and argon adsorption at different temperatures (77 and 87 K) performed on a series of novel nanoporous glasses (NPG) with different mean pore widths. NPG samples contain smaller mesopores and significantly higher microporosity than porous Vycor glass or controlled pore glass. Since the mean pore width of NPG can be tuned sensitively, the evolution of adsorption characteristics with respect to a broadening pore network can be investigated starting from the narrowest nanopore width. With an increasing mean pore width, a H2-type hysteresis develops gradually which finally transforms into a H1-type. In this connection, a transition from a cavitation-induced desorption toward desorption controlled by pore blocking can be observed. Furthermore, we find concrete hints for a pore size dependence of the relative pressure of cavitation in highly disordered pore systems. By comparing nitrogen and argon adsorption, a comprehensive insight into adsorption mechanisms in novel disordered materials is provided. © 2011 American Chemical Society

  7. A Dew Point Meter Comprising a Nanoporous Thin Film Alumina Humidity Sensor with a Linearizing Capacitance Measuring Electronics

    Directory of Open Access Journals (Sweden)

    Dilip Kumar Ghara

    2008-02-01

    Full Text Available A novel trace moisture analyzer is presented comprising a capacitive nanoporous film of metal oxide sensor and electronics. The change in capacity of the sensor is due to absorption of water vapor by the pores. A simple capacitance measuring electronics is developed which can detect any change in capacitance and correlates to ambient humidity. The circuit can minimize the parasitic earth capacitance. The non linear response of the sensor is linearized with a micro-controller linearizing circuit. The experimental result shows a resolution of -4°C DP and accuracy within 2%.

  8. Recyclable organic solar cells on substrates comprising cellulose nanocrystals (CNC)

    Science.gov (United States)

    Kippelen, Bernard; Fuentes-Hernandez, Canek; Zhou, Yinhua; Moon, Robert; Youngblood, Jeffrey P

    2015-12-01

    Recyclable organic solar cells are disclosed herein. Systems and methods are further disclosed for producing, improving performance, and for recycling the solar cells. In certain example embodiments, the recyclable organic solar cells disclosed herein include: a first electrode; a second electrode; a photoactive layer disposed between the first electrode and the second electrode; an interlayer comprising a Lewis basic oligomer or polymer disposed between the photoactive layer and at least a portion of the first electrode or the second electrode; and a substrate disposed adjacent to the first electrode or the second electrode. The interlayer reduces the work function associated with the first or second electrode. In certain example embodiments, the substrate comprises cellulose nanocrystals that can be recycled. In certain example embodiments, one or more of the first electrode, the photoactive layer, and the second electrode may be applied by a film transfer lamination method.

  9. Resonant power converter comprising adaptive dead-time control

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates in a first aspect to a resonant power converter comprising: a first power supply rail for receipt of a positive DC supply voltage and a second power supply rail for receipt of a negative DC supply voltage. The resonant power converter comprises a resonant network with an input...... terminal for receipt of a resonant input voltage from a driver circuit. The driver circuit is configured for alternatingly pulling the resonant input voltage towards the positive and negative DC supply voltages via first and second semiconductor switches, respectively, separated by intervening dead......-time periods in accordance with one or more driver control signals. A dead-time controller is configured to adaptively adjusting the dead-time periods based on the resonant input voltage....

  10. FINGERPRINT MATCHING BASED ON PORE CENTROIDS

    Directory of Open Access Journals (Sweden)

    S. Malathi

    2011-05-01

    Full Text Available In recent years there has been exponential growth in the use of bio- metrics for user authentication applications. Automated Fingerprint Identification systems have become popular tool in many security and law enforcement applications. Most of these systems rely on minutiae (ridge ending and bifurcation features. With the advancement in sensor technology, high resolution fingerprint images (1000 dpi pro- vide micro level of features (pores that have proven to be useful fea- tures for identification. In this paper, we propose a new strategy for fingerprint matching based on pores by reliably extracting the pore features The extraction of pores is done by Marker Controlled Wa- tershed segmentation method and the centroids of each pore are con- sidered as feature vectors for matching of two fingerprint images. Experimental results shows that the proposed method has better per- formance with lower false rates and higher accuracy.

  11. Thermal emitter comprising near-zero permittivity materials

    Science.gov (United States)

    Luk, Ting S.; Campione, Salvatore; Sinclair, Michael B.

    2017-10-25

    A novel thermal source comprising a semiconductor hyperbolic metamaterial provides control of the emission spectrum and the angular emission pattern. These properties arise because of epsilon-near-zero conditions in the semiconductor hyperbolic metamaterial. In particular, the thermal emission is dominated by the epsilon-near-zero effect in the doped quantum wells composing the semiconductor hyperbolic metamaterial. Furthermore, different properties are observed for s and p polarizations, following the characteristics of the strong anisotropy of hyperbolic metamaterials.

  12. Fractal Characteristics of Pores in Taiyuan Formation Shale from Hedong Coal Field, China

    Science.gov (United States)

    Li, Kunjie; Zeng, Fangui; Cai, Jianchao; Sheng, Guanglong; Xia, Peng; Zhang, Kun

    For the purpose of investigating the fractal characteristics of pores in Taiyuan formation shale, a series of qualitative and quantitative experiments were conducted on 17 shale samples from well HD-1 in Hedong coal field of North China. The results of geochemical experiments show that Total organic carbon (TOC) varies from 0.67% to 5.32% and the organic matters are in the high mature or over mature stage. The shale samples consist mainly of clay minerals and quartz with minor pyrite and carbonates. The FE-SEM images indicate that three types of pores, organic-related pores, inorganic-related pores and micro-fractures related pores, are developed well, and a certain number of intragranular pores are found inside quartz and carbonates formed by acid liquid corrosion. The pore size distributions (PSDs) broadly range from several to hundreds nanometers, but most pores are smaller than 10nm. As the result of different adsorption features at relative pressure (0-0.5) and (0.5-1) on the N2 adsorption isotherm, two fractal dimensions D1 and D2 were obtained with the Frenkel-Halsey-Hill (FHH) model. D1 and D2 vary from 2.4227 to 2.6219 and from 2.6049 to 2.7877, respectively. Both TOC and brittle minerals have positive effect on D1 and D2, whereas clay minerals, have a negative influence on them. The fractal dimensions are also influenced by the pore structure parameters, such as the specific surface area, BJH pore volume, etc. Shale samples with higher D1 could provide more adsorption sites leading to a greater methane adsorption capacity, whereas shale samples with higher D2 have little influence on methane adsorption capacity.

  13. Quantitative research on skin pore widening using a stereoimage optical topometer and Sebutape.

    Science.gov (United States)

    Jo, Ho Youn; Yu, Dong Soo; Oh, Chil Hwan

    2007-05-01

    The treatment of skin pore widening is concerned with cosmetics sciences, but an objective and quantitative measurement method of the severity of skin pore widening has not been developed. In this study, bioengineering methods were applied to evaluate skin pore widening. The results from bioengineering measurements were compared with clinical visual assessment. In order to quantify skin pore widening, three-dimensional data of skin pore were produced by a stereoimage optical topometer (SOT). The sizes of follicular infundibulum were measured quantitatively, with reserved sebum by Sebutape. 50 female volunteers were divided into two groups. Group A was tested by the cosmetics including active ingredient and group B by placebo. The constricting effect of skin pores by cosmetics was measured for immediate effect and long-term effect. In the immediate effect, there was no statistical difference between groups A and B in visual scoring. In SOT, the size of the skin pores of group A had changed after application of cosmetics but there were no changes in group B. In the long-term effect, there was no statistical difference between groups A and B in visual scoring. TA, TV, SA, and SV of skin pores of groups A and B were decreased in 3 and 6 months by SOT. In Sebutape measurement, there was decreased volume of reserved sebum in groups A and B. The result of the Sebutape study was similar to that of SOT. Evaluation of skin pore change by visual assessment is difficult, but bioengineering tools are more reliable and useful methods for the assessment of skin pore change.

  14. Mesoporous templated silicas: stability, pore size engineering and catalytic activation

    International Nuclear Information System (INIS)

    Vansant, Etienne

    2003-01-01

    The Laboratory of Adsorption and Catalysis has focused its research activities on the synthesis and activation of new porous materials. In the past few years, we have succeeded in developing easy and reproducible pathways to synthesize a huge variety of mesoporous crystalline materials. Points of interest in the synthesis of Mesoporous Templated Silicas are (i) stabilization of the structure, to withstand hydrothermal, thermal and mechanical pressure, (ii) pore size engineering to systematically control the pore size, pore volume and the ratio micro/mesopores and (iii) ease and reproducibility of the synthesis procedure, applying green principles, such as template recuperation. By carefully adapting the synthesis conditions and composition of the synthesis gel, using surfactants (long chain quaternary ammonium ions) and co-templates (long chain amines, alcohols or alkanes), the pore size of the obtained materials can be controlled from 1.5 to 7.0 nm, retaining the very narrow pore size distribution. Alternatively, materials with combined micro- and mesoporosity can be synthesized, using neutral surfactants (triblock copolymers). Hereby, the optimization of the SBA-15 and SBA-16 synthesis is being done in order to create mesoporous materials with microporous walls. The second research line is the controlled activation of MTS materials, by grafting or incorporation of catalytic active centers. We have developed for this purpose the Molecular Designed Dispersion method, which uses metal diketonate complexes as precursors. It is shown that in all cases the dispersion of the metal oxides on the surface is much better compared to the conventional grafting techniques. We have studied and published activation with V, Ti, Mo, Fe, Al and Cr species on different MTS materials. The structure and location of the active metal ion is the subject of an extensive spectroscopic investigation, using FT-IR, FT-Raman, UV-Vis DR coupled with selective chemisorption experiments and

  15. The analysis and comparison of the ions present in the pore water of different cement systems

    International Nuclear Information System (INIS)

    Jolliffe, C.B.

    1990-01-01

    Cementation is currently the main encapsulation route for the safe disposal of intermediate level radioactive waste. By analysis of the pore solutions extracted from hardened cement pastes any potential interactions between the cement matrix and/or the disposal container can be identified. The effect of hydration time on three different blended cement systems has been assessed by analysing the water extracted from the pore voids within the hardened cement pastes by use of a high force hydraulic press. The pH, redox potential, anion and cation concentrations were measured using standard analytical techniques. The results showed that as the cement systems hydrated the volume of pore water extracted decreased, causing a reduction in the ionic species released into solution. The strongly basic pore waters contained mainly potassium and sodium hydroxide and this feature needs to be taken into account when modelling radionuclide migration. (author)

  16. Multilayer Electroactive Polymer Composite Material Comprising Carbon Nanotubes

    Science.gov (United States)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2009-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  17. Enlarged facial pores: an update on treatments.

    Science.gov (United States)

    Dong, Joanna; Lanoue, Julien; Goldenberg, Gary

    2016-07-01

    Enlarged facial pores remain a common dermatologic and cosmetic concern from acne and rosacea, among other conditions, that is difficult to treat due to the multifactorial nature of their pathogenesis and negative impact on patients' quality of life. Enlarged facial pores are primarily treated through addressing associative factors, such as increased sebum production and cutaneous aging. We review the current treatment modalities for enlarged or dense facial pores, including topical retinoids, chemical peels, oral antiandrogens, and lasers and devices, with a focus on newer therapies.

  18. Control of pore size in epoxy systems.

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Patricia Sue; Lenhart, Joseph Ludlow (North Dakota State University, Fargo, ND); Lee, Elizabeth (North Dakota State University, Fargo, ND); Kallam, Alekhya (North Dakota State University, Fargo, ND); Majumdar, Partha (North Dakota State University, Fargo, ND); Dirk, Shawn M.; Gubbins, Nathan; Chisholm, Bret J. (North Dakota State University, Fargo, ND); Celina, Mathias C.; Bahr, James (North Dakota State University, Fargo, ND); Klein, Robert J.

    2009-01-01

    Both conventional and combinatorial approaches were used to study the pore formation process in epoxy based polymer systems. Sandia National Laboratories conducted the initial work and collaborated with North Dakota State University (NDSU) using a combinatorial research approach to produce a library of novel monomers and crosslinkers capable of forming porous polymers. The library was screened to determine the physical factors that control porosity, such as porogen loading, polymer-porogen interactions, and polymer crosslink density. We have identified the physical and chemical factors that control the average porosity, pore size, and pore size distribution within epoxy based systems.

  19. Apparatus comprising trace element dosage and method for treating raw water in biofilter

    DEFF Research Database (Denmark)

    2015-01-01

    the inlet (2) to the outlet (3) or in the reverse direction, - the trace element dosage device (13) is positioned upstream of the porous filter material and microbial biomass and is configured to dose trace element(s) to the water flowing through the filter. A method for treating raw water by microbial......Apparatus for treating raw water in a biofilter The present invention relates to an apparatus in which raw water is treated through microbial activity where microbial activity is controlled by nutrients and other parameters. Some of the nutrients controlling the microbial activity are trace...... elements such as certain metals (Cu, Co, Cr, Mo, Ni, W, Zn or a mixture thereof). The apparatus comprising - a volume provided with an inlet (2) for raw water and an outlet (3) for water having been subjected to microbial activity, a filter and a trace element dosage device (13) are placed in this volume...

  20. Photovoltaic device comprising compositionally graded intrinsic photoactive layer

    Science.gov (United States)

    Hoffbauer, Mark A; Williamson, Todd L

    2013-04-30

    Photovoltaic devices and methods of making photovoltaic devices comprising at least one compositionally graded photoactive layer, said method comprising providing a substrate; growing onto the substrate a uniform intrinsic photoactive layer having one surface disposed upon the substrate and an opposing second surface, said intrinsic photoactive layer consisting essentially of In.sub.1-xA.sub.xN,; wherein: i. 0.ltoreq.x.ltoreq.1; ii. A is gallium, aluminum, or combinations thereof; and iii. x is at least 0 on one surface of the intrinsic photoactive layer and is compositionally graded throughout the layer to reach a value of 1 or less on the opposing second surface of the layer; wherein said intrinsic photoactive layer is isothermally grown by means of energetic neutral atom beam lithography and epitaxy at a temperature of 600.degree. C. or less using neutral nitrogen atoms having a kinetic energy of from about 1.0 eV to about 5.0 eV, and wherein the intrinsic photoactive layer is grown at a rate of from about 5 nm/min to about 100 nm/min.

  1. Final Report for Subcontract B541028,Pore-Scale Modeling to Support 'Pore Connectivity' Research Work

    International Nuclear Information System (INIS)

    Ewing, R.P.

    2008-01-01

    A central concept for the geological barrier at the proposed Yucca Mountain radioactive waste repository is diffusive retardation: solute moving through a fracture diffuses into and out of the rock matrix. This diffusive exchange retards overall solute movement, and retardation both dilutes waste being released, and allows additional decay. The original concept of diffusive retardation required knowledge only of the fracture conductivity and the matrix diffusion. But that simple concept is unavoidably complicated by other issues and processes: contaminants may sorb to the rock matrix, fracture flow may be episodic, a given fracture may or may not flow depending on the volume of flow and the fracture's connection to the overall fracture network, the matrix imbibes water during flow episodes and dries between episodes, and so on. Some of these issues have been examined by other projects. This particular project is motivated by a simple fact: Yucca Mountain tuff has low pore connectivity. This fact is not widely recognized, nor are its implications widely appreciated. Because low pore connectivity affects many processes, it may invalidate many assumptions that are basic (though perhaps not stated) to other investigations. The overall project's objective statement (from the proposal) was: This proposal aims to improve our understanding of diffusive retardation of radionuclides due to fracture/matrix interactions. Results from this combined experimental/modeling work will (1) determine whether the current understanding and model representation of matrix diffusion is valid, (2) provide insights into the upscaling of laboratory-scale diffusion experiments, and (3) evaluate the impact on diffusive retardation of episodic fracture flow and pore connectivity in Yucca Mountain tuffs. An obvious data gap addressed by the project was that there were only a few limited measurements of the diffusion coefficient of the rock at the repository level. That is, at the time we wrote

  2. Valve seat pores sealed with thermosetting monomer

    Science.gov (United States)

    Olmore, A. B.

    1966-01-01

    Hard anodic coating provides a smooth wear resistant value seating surface on a cast aluminum alloy valve body. Vacuum impregnation with a thermosetting monomer, diallyl phthalate, seals the pores on the coating to prevent galvanic corrosion.

  3. Estimation of pore pressure from seismic velocities

    International Nuclear Information System (INIS)

    Perez, Zayra; Ojeda, German Y; Mateus, Darwin

    2009-01-01

    On pore pressure calculations it is common to obtain a profile in a well bore, which is then extrapolated toward offset wells. This practice might generate mistakes on pore pressure measurements, since geological conditions may change from a well bore to another, even into the same basin. Therefore, it is important to use other tools which allow engineers not only to detect and estimate in an indirect way overpressure zones, but also to keep a lateral tracking of possible changes that may affect those values in the different formations. Taking into account this situation, we applied a methodology that estimates formation pressure from 3D seismic velocities by using the Eaton method. First, we estimated formation pore pressure; then, we identified possible overpressure zones. Finally, those results obtained from seismic information were analyzed involving well logs and pore pressure tests, in order to compare real data with prediction based on seismic information from the Colombian foothill.

  4. OBSERVATIONS OF SAUSAGE MODES IN MAGNETIC PORES

    International Nuclear Information System (INIS)

    Morton, R. J.; Erdelyi, R.; Jess, D. B.; Mathioudakis, M.

    2011-01-01

    We present here evidence for the observation of the magnetohydrodynamic (MHD) sausage modes in magnetic pores in the solar photosphere. Further evidence for the omnipresent nature of acoustic global modes is also found. The empirical decomposition method of wave analysis is used to identify the oscillations detected through a 4170 A 'blue continuum' filter observed with the Rapid Oscillations in the Solar Atmosphere (ROSA) instrument. Out of phase, periodic behavior in pore size and intensity is used as an indicator of the presence of magnetoacoustic sausage oscillations. Multiple signatures of the magnetoacoustic sausage mode are found in a number of pores. The periods range from as short as 30 s up to 450 s. A number of the magnetoacoustic sausage mode oscillations found have periods of 3 and 5 minutes, similar to the acoustic global modes of the solar interior. It is proposed that these global oscillations could be the driver of the sausage-type magnetoacoustic MHD wave modes in pores.

  5. Hierarchically Porous Carbon Materials for CO 2 Capture: The Role of Pore Structure

    Energy Technology Data Exchange (ETDEWEB)

    Estevez, Luis [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Barpaga, Dushyant [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Zheng, Jian [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Sabale, Sandip [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Patel, Rajankumar L. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Zhang, Ji-Guang [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; McGrail, B. Peter [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Motkuri, Radha Kishan [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States

    2018-01-17

    With advances in porous carbon synthesis techniques, hierarchically porous carbon (HPC) materials are being utilized as relatively new porous carbon sorbents for CO2 capture applications. These HPC materials were used as a platform to prepare samples with differing textural properties and morphologies to elucidate structure-property relationships. It was found that high microporous content, rather than overall surface area was of primary importance for predicting good CO2 capture performance. Two HPC materials were analyzed, each with near identical high surface area (~2700 m2/g) and colossally high pore volume (~10 cm3/g), but with different microporous content and pore size distributions, which led to dramatically different CO2 capture performance. Overall, large pore volumes obtained from distinct mesopores were found to significantly impact adsorption performance. From these results, an optimized HPC material was synthesized that achieved a high CO2 capacity of ~3.7 mmol/g at 25°C and 1 bar.

  6. Polythiophenes Comprising Conjugated Pendants for Polymer Solar Cells: A Review

    Directory of Open Access Journals (Sweden)

    Hsing-Ju Wang

    2014-03-01

    Full Text Available Polythiophene (PT is one of the widely used donor materials for solution-processable polymer solar cells (PSCs. Much progress in PT-based PSCs can be attributed to the design of novel PTs exhibiting intense and broad visible absorption with high charge carrier mobility to increase short-circuit current density (Jsc, along with low-lying highest occupied molecular orbital (HOMO levels to achieve large open circuit voltage (Voc values. A promising strategy to tailor the photophysical properties and energy levels via covalently attaching electron donor and acceptor pendants on PTs backbone has attracted much attention recently. The geometry, electron-donating capacity, and composition of conjugated pendants are supposed to be the crucial factors in adjusting the conformation, energy levels, and photovoltaic performance of PTs. This review will go over the most recent approaches that enable researchers to obtain in-depth information in the development of PTs comprising conjugated pendants for PSCs.

  7. Antimalarial activity of compounds comprising a primary benzene sulfonamide fragment.

    Science.gov (United States)

    Andrews, Katherine T; Fisher, Gillian M; Sumanadasa, Subathdrage D M; Skinner-Adams, Tina; Moeker, Janina; Lopez, Marie; Poulsen, Sally-Ann

    2013-11-15

    Despite the urgent need for effective antimalarial drugs with novel modes of action no new chemical class of antimalarial drug has been approved for use since 1996. To address this, we have used a rational approach to investigate compounds comprising the primary benzene sulfonamide fragment as a potential new antimalarial chemotype. We report the in vitro activity against Plasmodium falciparum drug sensitive (3D7) and resistant (Dd2) parasites for a panel of fourteen primary benzene sulfonamide compounds. Our findings provide a platform to support the further evaluation of primary benzene sulfonamides as a new antimalarial chemotype, including the identification of the target of these compounds in the parasite. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Pore structure modification of diatomite as sulfuric acid catalyst support by high energy electron beam irradiation and hydrothermal treatment

    International Nuclear Information System (INIS)

    Li, Chong; Zhang, Guilong; Wang, Min; Chen, Jianfeng; Cai, Dongqing; Wu, Zhengyan

    2014-01-01

    Highlights: • High energy electron beam (HEEB) irradiation and hydrothermal treatment were used. • HEEB irradiation could make the impurities in the pores of diatomite loose. • Hydrothermal treatment (HT) could remove these impurities from the pores. • They could effectively improve pore size distribution and decrease the bulk density. • Catalytic performance of the corresponding catalyst was significantly improved. - Abstract: High energy electron beam (HEEB) irradiation and hydrothermal treatment (HT), were applied in order to remove the impurities and enlarge the pore size of diatomite, making diatomite more suitable to be a catalyst support. The results demonstrated that, through thermal, charge, impact and etching effects, HEEB irradiation could make the impurities in the pores of diatomite loose and remove some of them. Then HT could remove rest of them from the pores and contribute significantly to the modification of the pore size distribution of diatomite due to thermal expansion, water swelling and thermolysis effects. Moreover, the pore structure modification improved the properties (BET (Brunauer–Emmett–Teller) specific surface area, bulk density and pore volume) of diatomite and the catalytic efficiency of the catalyst prepared from the treated diatomite

  9. Pore structure modification of diatomite as sulfuric acid catalyst support by high energy electron beam irradiation and hydrothermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chong [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Zhang, Guilong; Wang, Min [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Chen, Jianfeng [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Cai, Dongqing, E-mail: dqcai@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Wu, Zhengyan, E-mail: zywu@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China)

    2014-08-15

    Highlights: • High energy electron beam (HEEB) irradiation and hydrothermal treatment were used. • HEEB irradiation could make the impurities in the pores of diatomite loose. • Hydrothermal treatment (HT) could remove these impurities from the pores. • They could effectively improve pore size distribution and decrease the bulk density. • Catalytic performance of the corresponding catalyst was significantly improved. - Abstract: High energy electron beam (HEEB) irradiation and hydrothermal treatment (HT), were applied in order to remove the impurities and enlarge the pore size of diatomite, making diatomite more suitable to be a catalyst support. The results demonstrated that, through thermal, charge, impact and etching effects, HEEB irradiation could make the impurities in the pores of diatomite loose and remove some of them. Then HT could remove rest of them from the pores and contribute significantly to the modification of the pore size distribution of diatomite due to thermal expansion, water swelling and thermolysis effects. Moreover, the pore structure modification improved the properties (BET (Brunauer–Emmett–Teller) specific surface area, bulk density and pore volume) of diatomite and the catalytic efficiency of the catalyst prepared from the treated diatomite.

  10. Visualization of enzyme activities inside earthworm pores

    Science.gov (United States)

    Hoang, Duyen; Razavi, Bahar S.

    2015-04-01

    In extremely dynamic microhabitats as bio-pores made by earthworm, the in situ enzyme activities are assumed as a footprint of complex biotic interactions. Our study focused on the effect of earthworm on the enzyme activities inside bio-pores and visualizing the differences between bio-pores and earthworm-free soil by zymography technique (Spohn and Kuzyakov, 2013). For the first time, we aimed at quantitative imaging of enzyme activities in bio-pores. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). After two weeks when bio-pore systems were formed by earthworms, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine-aminopeptidase, and phosphatase. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. However, the differences in activity of cellobiohydrolase and leucine aminopeptidase between bio-pore and bulk soil were less pronounced. This demonstrated an applicability of zymography approach to monitor and to distinguish the in situ activity of hydrolytic enzymes in soil biopores.

  11. Pore REconstruction and Segmentation (PORES) method for improved porosity quantification of nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Van Eyndhoven, G., E-mail: geert.vaneyndhoven@uantwerpen.be [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Kurttepeli, M. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van Oers, C.J.; Cool, P. [Laboratory of Adsorption and Catalysis, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Bals, S. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Batenburg, K.J. [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Centrum Wiskunde and Informatica, Science Park 123, NL-1090 GB Amsterdam (Netherlands); Mathematical Institute, Universiteit Leiden, Niels Bohrweg 1, NL-2333 CA Leiden (Netherlands); Sijbers, J. [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium)

    2015-01-15

    Electron tomography is currently a versatile tool to investigate the connection between the structure and properties of nanomaterials. However, a quantitative interpretation of electron tomography results is still far from straightforward. Especially accurate quantification of pore-space is hampered by artifacts introduced in all steps of the processing chain, i.e., acquisition, reconstruction, segmentation and quantification. Furthermore, most common approaches require subjective manual user input. In this paper, the PORES algorithm “POre REconstruction and Segmentation” is introduced; it is a tailor-made, integral approach, for the reconstruction, segmentation, and quantification of porous nanomaterials. The PORES processing chain starts by calculating a reconstruction with a nanoporous-specific reconstruction algorithm: the Simultaneous Update of Pore Pixels by iterative REconstruction and Simple Segmentation algorithm (SUPPRESS). It classifies the interior region to the pores during reconstruction, while reconstructing the remaining region by reducing the error with respect to the acquired electron microscopy data. The SUPPRESS reconstruction can be directly plugged into the remaining processing chain of the PORES algorithm, resulting in accurate individual pore quantification and full sample pore statistics. The proposed approach was extensively validated on both simulated and experimental data, indicating its ability to generate accurate statistics of nanoporous materials. - Highlights: • An electron tomography reconstruction/segmentation method for nanoporous materials. • The method exploits the porous nature of the scanned material. • Validated extensively on both simulation and real data experiments. • Results in increased image resolution and improved porosity quantification.

  12. Facial skin pores: a multiethnic study.

    Science.gov (United States)

    Flament, Frederic; Francois, Ghislain; Qiu, Huixia; Ye, Chengda; Hanaya, Tomoo; Batisse, Dominique; Cointereau-Chardon, Suzy; Seixas, Mirela Donato Gianeti; Dal Belo, Susi Elaine; Bazin, Roland

    2015-01-01

    Skin pores (SP), as they are called by laymen, are common and benign features mostly located on the face (nose, cheeks, etc) that generate many aesthetic concerns or complaints. Despite the prevalence of skin pores, related literature is scarce. With the aim of describing the prevalence of skin pores and anatomic features among ethnic groups, a dermatoscopic instrument, using polarized lighting, coupled to a digital camera recorded the major features of skin pores (size, density, coverage) on the cheeks of 2,585 women in different countries and continents. A detection threshold of 250 μm, correlated to clinical scorings by experts, was input into a specific software to further allow for automatic counting of the SP density (N/cm(2)) and determination of their respective sizes in mm(2). Integrating both criteria also led to establishing the relative part of the skin surface (as a percentage) that is actually covered by SP on cheeks. The results showed that the values of respective sizes, densities, and skin coverage: 1) were recorded in all studied subjects; 2) varied greatly with ethnicity; 3) plateaued with age in most cases; and 4) globally refected self-assessment by subjects, in particular those who self-declare having "enlarged pores" like Brazilian women. Inversely, Chinese women were clearly distinct from other ethnicities in having very low density and sizes. Analyzing the present results suggests that facial skin pore's morphology as perceived by human eye less result from functional criteria of associated appendages such as sebaceous glands. To what extent skin pores may be viewed as additional criteria of a photo-altered skin is an issue to be further addressed.

  13. Pore formation and occurrence in the organic-rich shales of the Triassic Chang-7 Member, Yanchang Formation, Ordos Basin, China

    Directory of Open Access Journals (Sweden)

    Chuang Er

    2016-12-01

    Full Text Available Shale-reservoir appraisal depends greatly on its pore characteristics (e.g., diameter, geometry, connectivity. Using a new pore-classification scheme based on the matrix type and occurrence state, four types of pores are identified in the organic-rich shales of the Triassic Chang-7 Member: intergranular, intragranular, organic pore, and microfracture. The intergranular pores are subdivided into primary pores between clastic grains, clay-mineral aggregates, and secondary dissolution pores between clastic grains or clay-mineral aggregates based on their origins, respectively. The intragranular pores are subdivided into secondary dissolved pores in feldspars, intra-clay-mineral aggregates and inter-pyrite. Organic pores include primarily microfractures in the organic matter and isolated organic pores. Microfracture is mainly developed along sandy and muddy laminations. Analysis by integration of data from pore imaging, low-temperature liquid nitrogen absorption, relationships between pore geometry and mineral components and between TOC and maturity of organic matter indicates that depositional environment, diagenesis, and thermal evolution of organic matter controlled the formation and preservation of pores. Organic-rich shales deposited in a deep and semi-deep lake environment contains thinly bedded turbidite sandstones, which are characterized by high content of clastic particles and thus favor the development of primary intergranular and intragranular pores, as well as microfractures along sandy laminations. During the early diagenesis process, precipitation of pyrite favors the development of inter-pyrite pores. However, compaction reduced the diameter and bulk pore volume. Organic pore has been greatly reduced under compaction. Dissolution led to formation of both inter and intra-feldspar pores, which has improved reservoir quality to some extent. Organic pore started to develop after shale maturity reaches a threshold (RO = 0

  14. Asteroseismology of KIC 7107778: a binary comprising almost identical subgiants

    Science.gov (United States)

    Li, Yaguang; Bedding, Timothy R.; Li, Tanda; Bi, Shaolan; Murphy, Simon J.; Corsaro, Enrico; Chen, Li; Tian, Zhijia

    2018-05-01

    We analyse an asteroseismic binary system: KIC 7107778, a non-eclipsing, unresolved target, with solar-like oscillations in both components. We used Kepler short cadence time series spanning nearly 2 yr to obtain the power spectrum. Oscillation mode parameters were determined using Bayesian inference and a nested sampling Monte Carlo algorithm with the DIAMONDS package. The power profiles of the two components fully overlap, indicating their close similarity. We modelled the two stars with MESA and calculated oscillation frequencies with GYRE. Stellar fundamental parameters (mass, radius, and age) were estimated by grid modelling with atmospheric parameters and the oscillation frequencies of l = 0, 2 modes as constraints. Most l = 1 mixed modes were identified with models searched using a bisection method. Stellar parameters for the two sub-giant stars are MA = 1.42 ± 0.06 M⊙, MB = 1.39 ± 0.03 M⊙, RA = 2.93 ± 0.05 R⊙, RB = 2.76 ± 0.04 R⊙, tA = 3.32 ± 0.54 Gyr and tB = 3.51 ± 0.33 Gyr. The mass difference of the system is ˜1 per cent. The results confirm their simultaneous birth and evolution, as is expected from binary formation. KIC 7107778 comprises almost identical twins, and is the first asteroseismic sub-giant binary to be detected.

  15. Evaluation of the effect of varying the workability in concrete pore structure by using X-ray microtomography

    Directory of Open Access Journals (Sweden)

    E. E. Bernardes

    Full Text Available The useful life of concrete is associated with the penetrative ability of aggressive agents on their structures. Structural parameters such as porosity, pore distribution and connectivity have great influence on the properties of mass transport in porous solids. In the present study, the effect of varying the workability of concrete in fresh state, produced through the use of additives, on pore structure and on the mechanical compressive strength of hardened concrete was assessed. The pore structure was analyzed with the aid of X-ray microtomography, and the results obtained were compared to the total pore volume calculated from data derived from helium and mercury pycnometry tests. A good approximation between the porosity values obtained through the two techniques was observed, and it was found that, regardless of concrete consistency, the samples from the surface of the specimens showed a percentage of pores higher than those taken from the more inner layers.

  16. Porous Carbon with Willow-Leaf-Shaped Pores for High-Performance Supercapacitors.

    Science.gov (United States)

    Shi, Yanhong; Zhang, Linlin; Schon, Tyler B; Li, Huanhuan; Fan, Chaoying; Li, Xiaoying; Wang, Haifeng; Wu, Xinglong; Xie, Haiming; Sun, Haizhu; Seferos, Dwight S; Zhang, Jingping

    2017-12-13

    A novel kind of biomass-derived, high-oxygen-containing carbon material doped with nitrogen that has willow-leaf-shaped pores was synthesized. The obtained carbon material has an exotic hierarchical pore structure composed of bowl-shaped macropores, willow-leaf-shaped pores, and an abundance of micropores. This unique hierarchical porous structure provides an effective combination of high current densities and high capacitance because of a pseudocapacitive component that is afforded by the introduction of nitrogen and oxygen dopants. Our synthetic optimization allows further improvements in the performance of this hierarchical porous carbon (HPC) material by providing a high degree of control over the graphitization degree, specific surface area, and pore volume. As a result, a large specific surface area (1093 m 2 g -1 ) and pore volume (0.8379 cm 3 g -1 ) are obtained for HPC-650, which affords fast ion transport because of its short ion-diffusion pathways. HPC-650 exhibits a high specific capacitance of 312 F g -1 at 1 A g -1 , retaining 76.5% of its capacitance at 20 A g -1 . Moreover, it delivers an energy density of 50.2 W h kg -1 at a power density of 1.19 kW kg -1 , which is sufficient to power a yellow-light-emitting diode and operate a commercial scientific calculator.

  17. Behaviors and kinetics of toluene adsorption-desorption on activated carbons with varying pore structure.

    Science.gov (United States)

    Yang, Xi; Yi, Honghong; Tang, Xiaolong; Zhao, Shunzheng; Yang, Zhongyu; Ma, Yueqiang; Feng, Tiecheng; Cui, Xiaoxu

    2018-05-01

    This work was undertaken to investigate the behaviors and kinetics of toluene adsorption and desorption on activated carbons with varying pore structure. Five kinds of activated carbon from different raw materials were selected. Adsorption isotherms and breakthrough curves for toluene were measured. Langmuir and Freundlich equations were fitted to the equilibrium data, and the Freundlich equation was more suitable for simulating toluene adsorption. The process consisted of monolayer, multilayer and partial active site adsorption types. The effect of the pore structure of the activated carbons on toluene adsorption capacity was investigated. The quasi-first-order model was more suitable for describing the process than the quasi-second-order model. The adsorption data was also modeled by the internal particle diffusion model and it was found that the adsorption process could be divided into three stages. In the external surface adsorption process, the rate depended on the specific surface area. During the particle diffusion stage, pore structure and volume were the main factors affecting adsorption rate. In the final equilibrium stage, the rate was determined by the ratio of meso- and macro-pores to total pore volume. The rate over the whole adsorption process was dominated by the toluene concentration. The desorption behavior of toluene on activated carbons was investigated, and the process was divided into heat and mass transfer parts corresponding to emission and diffusion mechanisms, respectively. Physical adsorption played the main role during the adsorption process. Copyright © 2017. Published by Elsevier B.V.

  18. Final Report for Subcontract B541028, Pore-Scale Modeling to Support 'Pore Connectivity' Research Work

    International Nuclear Information System (INIS)

    Ewing, R.P.

    2009-01-01

    This report covers modeling aspects of a combined experimental and modeling task in support of the DOE Science and Technology Program (formerly OSTI) within the Office of Civilian Radioactive Waste Management (OCRWM). Research Objectives The research for this project dealt with diffusive retardation: solute moving through a fracture diffuses into and out of the rock matrix. This diffusive exchange retards overall solute movement, and retardation both dilutes waste being released, and allows additional decay. Diffusive retardation involves not only fracture conductivity and matrix diffusion, but also other issues and processes: contaminants may sorb to the rock matrix, fracture flow may be episodic, a given fracture may or may not flow depending on the volume of flow and the fracture's connection to the overall fracture network, the matrix imbibes water during flow episodes and dries between episodes, and so on. The objective of the project was to improve understanding of diffusive retardation of radionuclides due to fracture / matrix interactions. Results from combined experimental/modeling work were to (1) determine whether the current understanding and model representation of matrix diffusion is valid, (2) provide insights into the upscaling of laboratory-scale diffusion experiments, and (3) help in evaluating the impact on diffusive retardation of episodic fracture flow and pore connectivity in Yucca Mountain tuffs. Questions explored included the following: (1) What is the relationship between the diffusion coefficient measured at one scale, to that measured or observed at a different scale? In classical materials this relationship is trivial; in low-connectivity materials it is not. (2) Is the measured diffusivity insensitive to the shape of the sample? Again, in classical materials there should be no sample shape effect. (3) Does sorption affect diffusive exchange in low-connectivity media differently than in classical media? (4) What is the effect of matrix

  19. Improved capacitance characteristics of electrospun ACFs by pore size control and vanadium catalyst.

    Science.gov (United States)

    Im, Ji Sun; Woo, Sang-Wook; Jung, Min-Jung; Lee, Young-Seak

    2008-11-01

    Nano-sized carbon fibers were prepared by using electrospinning, and their electrochemical properties were investigated as a possible electrode material for use as an electric double-layer capacitor (EDLC). To improve the electrode capacitance of EDLC, we implemented a three-step optimization. First, metal catalyst was introduced into the carbon fibers due to the excellent conductivity of metal. Vanadium pentoxide was used because it could be converted to vanadium for improved conductivity as the pore structure develops during the carbonization step. Vanadium catalyst was well dispersed in the carbon fibers, improving the capacitance of the electrode. Second, pore-size development was manipulated to obtain small mesopore sizes ranging from 2 to 5 nm. Through chemical activation, carbon fibers with controlled pore sizes were prepared with a high specific surface and pore volume, and their pore structure was investigated by using a BET apparatus. Finally, polyacrylonitrile was used as a carbon precursor to enrich for nitrogen content in the final product because nitrogen is known to improve electrode capacitance. Ultimately, the electrospun activated carbon fibers containing vanadium show improved functionality in charge/discharge, cyclic voltammetry, and specific capacitance compared with other samples because of an optimal combination of vanadium, nitrogen, and fixed pore structures.

  20. A computational geometry approach to pore network construction for granular packings

    Science.gov (United States)

    van der Linden, Joost H.; Sufian, Adnan; Narsilio, Guillermo A.; Russell, Adrian R.; Tordesillas, Antoinette

    2018-03-01

    Pore network construction provides the ability to characterize and study the pore space of inhomogeneous and geometrically complex granular media in a range of scientific and engineering applications. Various approaches to the construction have been proposed, however subtle implementational details are frequently omitted, open access to source code is limited, and few studies compare multiple algorithms in the context of a specific application. This study presents, in detail, a new pore network construction algorithm, and provides a comprehensive comparison with two other, well-established Delaunay triangulation-based pore network construction methods. Source code is provided to encourage further development. The proposed algorithm avoids the expensive non-linear optimization procedure in existing Delaunay approaches, and is robust in the presence of polydispersity. Algorithms are compared in terms of structural, geometrical and advanced connectivity parameters, focusing on the application of fluid flow characteristics. Sensitivity of the various networks to permeability is assessed through network (Stokes) simulations and finite-element (Navier-Stokes) simulations. Results highlight strong dependencies of pore volume, pore connectivity, throat geometry and fluid conductance on the degree of tetrahedra merging and the specific characteristics of the throats targeted by the merging algorithm. The paper concludes with practical recommendations on the applicability of the three investigated algorithms.

  1. Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties

    Energy Technology Data Exchange (ETDEWEB)

    RamIrez, Patricio [Departament de Fisica Aplicada, Universitat Politecnica de Valencia, E-46022 Valencia (Spain); Apel, Pavel Yu [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie street 6, 141980 Dubna (Russian Federation); Cervera, Javier; Mafe, Salvador [Departament de Fisica de la Terra i Termodinamica, Universitat de Valencia, E-46100 Burjassot (Spain)], E-mail: patraho@fis.upv.es

    2008-08-06

    We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores.

  2. Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties

    International Nuclear Information System (INIS)

    RamIrez, Patricio; Apel, Pavel Yu; Cervera, Javier; Mafe, Salvador

    2008-01-01

    We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores

  3. Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties.

    Science.gov (United States)

    Ramírez, Patricio; Apel, Pavel Yu; Cervera, Javier; Mafé, Salvador

    2008-08-06

    We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores.

  4. Characterization of pore-filling of spiro-MeOTAD in solid-state dye-sensitized solar cells and its consequence in device performance

    KAUST Repository

    Ding, I-Kang; Té treault, Nicolas; Hardin, Brian E.; Smith, Eva H.; Grä tzel, Michael; McGehee, Michael D.

    2009-01-01

    that spiro-OMeTAD can penetrate the entire depth of the film, and its concentration is constant throughout the film. We determine that in a 2.5-•m-thick film, the volume of the pores is 60-65% filled. The pores become less filled when thicker films are used

  5. Using BIB-SEM to determine pore morphology and pore size distributions in coal macerals

    Energy Technology Data Exchange (ETDEWEB)

    Giffin, S.; Littke, R. [RWTH Aachen Univ. (Germany). Inst. of Geology and Geochemistry of Petroleum and Coal; Klaver, J.; Urai, J.L. [RWTH Aachen Univ. (Germany). Structural Geology, Tectonics and Geomechanics

    2013-08-01

    The composition of coalbeds is considerably heterogeneous, affecting the transport pathways for fluids within the coal. Transport pathways include cleats and larger pores. However, only a few clues exist as the nature of these pores. This study examines the morphology and distribution of macro- and mesopores in coal samples, using broad ion beam (BIB) milling to prepare relief- and damage-free polished surfaces of coal samples for high-resolution SEM imaging. Broad ion beam milling is advantageous to focused ion beam milling in that a larger surface area can be milled. Combining that with SEM imaging results in a useful tool to study pore morphology and distributions in the size range between 10 nm and 10 {mu}m. Since BIB-sections of a few square millimeters are not large enough to be statistically representative, results cannot be easily interpreted from a coal seam standpoint. Therefore, porosity was investigated as a function of maceral type to characterize pore morphologies. Macerals from the vitrinite and inertinite groups were selected with a known relationship to bedding. BIB-sections were milled parallel to bedding and perpendicular to bedding, and the pores were evaluated in each section. The goal of this study is to (1) qualitatively describe pore morphology with respect to maceral type and (2) quantitatively characterize pore size distributions with respect to maceral and in relationship to bedding. Our results lead to a better understanding of bulk coal porosity due to the visual, spatial representation and quantification of pores in individual macerals. (orig.)

  6. TIG Dressing Effects on Weld Pores and Pore Cracking of Titanium Weldments

    Directory of Open Access Journals (Sweden)

    Hui-Jun Yi

    2016-10-01

    Full Text Available Weld pores redistribution, the effectiveness of using tungsten inert gas (TIG dressing to remove weld pores, and changes in the mechanical properties due to the TIG dressing of Ti-3Al-2.5V weldments were studied. Moreover, weld cracks due to pores were investigated. The results show that weld pores less than 300 μm in size are redistributed or removed via remelting due to TIG dressing. Regardless of the temperature condition, TIG dressing welding showed ductility, and there was a loss of 7% tensile strength of the weldments. Additionally, it was considered that porosity redistribution by TIG dressing was due to fluid flow during the remelting of the weld pool. Weld cracks in titanium weldment create branch cracks around pores that propagate via the intragranular fracture, and oxygen is dispersed around the pores. It is suggested that the pore locations around the LBZ (local brittle zone and stress concentration due to the pores have significant effects on crack initiation and propagation.

  7. Effects of the soil pore network architecture on the soil's physical functionalities

    Science.gov (United States)

    Smet, Sarah; Beckers, Eléonore; Léonard, Angélique; Degré, Aurore

    2017-04-01

    The soil fluid movement's prediction is of major interest within an agricultural or environmental scope because many processes depend ultimately on the soil fluids dynamic. It is common knowledge that the soil microscopic pore network structure governs the inner-soil convective fluids flow. There isn't, however, a general methodthat consider the pore network structure as a variable in the prediction of thecore scale soil's physical functionalities. There are various possible representations of the microscopic pore network: sample scale averaged structural parameters, extrapolation of theoretic pore network, or use of all the information available by modeling within the observed pore network. Different representations implydifferent analyzing methodologies. To our knowledge, few studies have compared the micro-and macroscopic soil's characteristics for the same soil core sample. The objective of our study is to explore the relationship between macroscopic physical properties and microscopic pore network structure. The saturated hydraulic conductivity, the air permeability, the retention curve, and others classical physical parameters were measured for ten soil samples from an agricultural field. The pore network characteristics were quantified through the analyses of X-ray micro-computed tomographic images(micro-CT system Skyscan-1172) with a voxel size of 22 µm3. Some of the first results confirmed what others studies had reported. Then, the comparison between macroscopic properties and microscopic parameters suggested that the air movements depended mostly on the pore connectivity and tortuosity than on the total porosity volume. We have also found that the fractal dimension calculated from the X-ray images and the fractal dimension calculated from the retention curve were significantly different. Our communication will detailthose results and discuss the methodology: would the results be similar with a different voxel size? What are the calculated and measured

  8. Moving Magnetic Features Around a Pore

    Energy Technology Data Exchange (ETDEWEB)

    Kaithakkal, A. J.; Riethmüller, T. L.; Solanki, S. K.; Lagg, A.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; VanNoort, M. [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, Göttingen D-37077 (Germany); Rodríguez, J. Blanco [Grupo de Astronomía y Ciencias del Espacio, Universidad de Valencia, E-46980 Paterna, Valencia (Spain); Iniesta, J. C. Del Toro; Suárez, D. Orozco [Instituto de Astrofísica de Andalucía (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain); Schmidt, W. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany); Pillet, V. Martínez [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Knölker, M., E-mail: anjali@mps.mpg.de [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2017-03-01

    Spectropolarimetric observations from Sunrise/IMaX, obtained in 2013 June, are used for a statistical analysis to determine the physical properties of moving magnetic features (MMFs) observed near a pore. MMFs of the same and opposite polarity, with respect to the pore, are found to stream from its border at an average speed of 1.3 km s{sup −1} and 1.2 km s{sup −1}, respectively, with mainly same-polarity MMFs found further away from the pore. MMFs of both polarities are found to harbor rather weak, inclined magnetic fields. Opposite-polarity MMFs are blueshifted, whereas same-polarity MMFs do not show any preference for up- or downflows. Most of the MMFs are found to be of sub-arcsecond size and carry a mean flux of ∼1.2 × 10{sup 17} Mx.

  9. Gas transport and subsoil pore characteristics

    DEFF Research Database (Denmark)

    Berisso, Feto Esimo; Schjønning, Per; Keller, Thomas

    2013-01-01

    Arrangements of elementary soil particles during soil deposition and subsequent biological and physical processes in long-term pedogenesis are expected to lead to anisotropy of the non-tilled subsoil pore system. Soil compaction by agricultural machinery is known to affect soil pore characteristics...... were sampled in vertical and horizontal directions from 0.3, 0.5, 0.7 and 0.9 m depth (the two lower depths only in Sweden). In the laboratory, water retention, air permeability (ka) and gas diffusivity (Ds/D0) were determined. For the sandy clay loam, morphological characteristics of pores (effective......). In the sandy clay loam soil, dB and nB displayed significant anisotropy (FAcharacteristics because of its origin...

  10. Electroosmotic transport in fine grained sediments with respect to pore throats

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, H.; Zorn, R.; Haus, R.; Czurda, K. [Dept. of Applied Geology, Univ. Karlsruhe (Germany)

    2001-07-01

    Electroosmotic experiments were performed with two different fine grained soils, which were consolidated in different ways. The electroosmotic permeability was calculated using the transported volume of water under a dc electric field. In addition to the pH-values prior and after the experiments near the anode and cathode the dominating pore throat-diameters of the samples were analysed by mercury porosimetry. The electroosmotic permeability can be correlated with the dominating pore throat-diameter. Not only chemical parameters like zeta-potential or ion-concentration but also the kind and structure of the soil particles characterize electroosmotic transport. (orig.)

  11. Porous media fluid transport and pore structure

    CERN Document Server

    Dullien, F A L

    1992-01-01

    This book examines the relationship between transport properties and pore structure of porous material. Models of pore structure are presented with a discussion of how such models can be used to predict the transport properties of porous media. Portions of the book are devoted to interpretations of experimental results in this area and directions for future research. Practical applications are given where applicable, and are expected to be useful for a large number of different fields, including reservoir engineering, geology, hydrogeology, soil science, chemical process engineering, biomedica

  12. Nuclear pore complex tethers to the cytoskeleton.

    Science.gov (United States)

    Goldberg, Martin W

    2017-08-01

    The nuclear envelope is tethered to the cytoskeleton. The best known attachments of all elements of the cytoskeleton are via the so-called LINC complex. However, the nuclear pore complexes, which mediate the transport of soluble and membrane bound molecules, are also linked to the microtubule network, primarily via motor proteins (dynein and kinesins) which are linked, most importantly, to the cytoplasmic filament protein of the nuclear pore complex, Nup358, by the adaptor BicD2. The evidence for such linkages and possible roles in nuclear migration, cell cycle control, nuclear transport and cell architecture are discussed. Copyright © 2017. Published by Elsevier Ltd.

  13. Dissolution at porous interfaces VI: Multiple pore systems.

    Science.gov (United States)

    Grijseels, H; Crommelin, D J; De Blaey, C J

    1984-12-01

    With the aid of rapidly dissolving sodium chloride particles, cubic pores were made in the surface of a theophylline tablet. The influence of the pores on the dissolution rate of the surface was investigated in a rotating disk apparatus. Like the drilled pores used in earlier studies, downstream on the surface they caused a turbulent flow regimen with the development of a trough due to enhanced erosion. The phenomenon of a critical pore diameter, discovered with single, drilled pores, seems to be applicable to the cubic pores investigated in this study, although a higher degree of surface coverage with pores caused complications, probably due to particles bordering one another and forming larger pores. The behavior of the porous surfaces at different rotation speeds was studied. Due to the presence of pores the laminar character of the boundary layer flow changes to turbulent, which induces locally an increased dissolution flux in the wake of a pore.

  14. Multiscale pore networks and their effect on deformation and transport property alteration associated with hydraulic fracturing

    Science.gov (United States)

    Daigle, Hugh; Hayman, Nicholas; Jiang, Han; Tian, Xiao; Jiang, Chunbi

    2017-04-01

    Multiple lines of evidence indicate that, during a hydraulic fracture stimulation, the permeability of the unfractured matrix far from the main, induced tensile fracture increases by one to two orders of magnitude. This permeability enhancement is associated with pervasive shear failure in a large region surrounding the main induced fracture. We have performed low-pressure gas sorption, mercury intrusion, and nuclear magnetic resonance measurements along with high-resolution scanning electron microscope imaging on several preserved and unpreserved shale samples from North American basins before and after inducing failure in confined compressive strength tests. We have observed that the pore structure in intact samples exhibits multiscale behavior, with sub-micron-scale pores in organic matter connected in isolated, micron-scale clusters which themselves are connected to each other through a network of microcracks. The organic-hosted pore networks are poorly connected due to a significant number of dead-end pores within the organic matter. Following shear failure, we often observe an increase in pore volume in the sub-micron range, which appears to be related to the formation of microcracks that propagate along grain boundaries and other planes of mechanical strength contrast. This is consistent with other experimental and field evidence. In some cases these microcracks cross or terminate in organic matter, intersecting the organic-hosted pores. The induced microcrack networks typically have low connectivity and do not appreciably increase the connectivity of the overall pore network. However, in other cases the shear deformation results in an overall pore volume decrease; samples which exhibit this behavior tend to have more clay minerals. Our interpretation of these phenomena is as follows. As organic matter is converted to hydrocarbons, organic-hosted pores develop, and the hydrocarbons contained in these pores are overpressured. The disconnected nature of these

  15. Pore pressure control on faulting behavior in a block-gouge system

    Science.gov (United States)

    Yang, Z.; Juanes, R.

    2016-12-01

    Pore fluid pressure in a fault zone can be altered by natural processes (e.g., mineral dehydration and thermal pressurization) and industrial operations involving subsurface fluid injection/extraction for the development of energy and water resources. However, the effect of pore pressure change on the stability and slip motion of a preexisting geologic fault remain poorly understood; yet they are critical for the assessment of seismic risk. In this work, we develop a micromechanical model to investigate the effect of pore pressure on faulting behavior. The model couples pore network fluid flow and mechanics of the solid grains. We conceptualize the fault zone as a gouge layer sandwiched between two blocks; the block material is represented by a group of contact-bonded grains and the gouge is composed of unbonded grains. A pore network is extracted from the particulate pack of the block-gouge system with pore body volumes and pore throat conductivities calculated rigorously based on the geometry of the local pore space. Pore fluid exerts pressure force onto the grains, the motion of which is solved using the discrete element method (DEM). The model updates the pore network regularly in response to deformation of the solid matrix. We study the fault stability in the presence of a pressure inhomogeneity (gradient) across the gouge layer, and compare it with the case of homogeneous pore pressure. We consider both normal and thrust faulting scenarios with a focus on the onset of shear failure along the block-gouge interfaces. Numerical simulations show that the slip behavior is characterized by intermittent dynamics, which is evident in the number of slipping contacts at the block-gouge interfaces and the total kinetic energy of the gouge particles. Numerical results also show that, for the case of pressure inhomogeneity, the onset of slip occurs earlier for the side with higher pressure, and that this onset appears to be controlled by the maximum pressure of both sides

  16. Fabrication of channeled scaffolds with ordered array of micro-pores through microsphere leaching and indirect Rapid Prototyping technique.

    Science.gov (United States)

    Tan, J Y; Chua, C K; Leong, K F

    2013-02-01

    Advanced scaffold fabrication techniques such as Rapid Prototyping (RP) are generally recognized to be advantageous over conventional fabrication methods in terms architectural control and reproducibility. Yet, most RP techniques tend to suffer from resolution limitations which result in scaffolds with uncontrollable, random-size pores and low porosity, albeit having interconnected channels which is characteristically present in most RP scaffolds. With the increasing number of studies demonstrating the profound influences of scaffold pore architecture on cell behavior and overall tissue growth, a scaffold fabrication method with sufficient architectural control becomes imperative. The present study demonstrates the use of RP fabrication techniques to create scaffolds having interconnected channels as well as controllable micro-size pores. Adopted from the concepts of porogen leaching and indirect RP techniques, the proposed fabrication method uses monodisperse microspheres to create an ordered, hexagonal closed packed (HCP) array of micro-pores that surrounds the existing channels of the RP scaffold. The pore structure of the scaffold is shaped using a single sacrificial construct which comprises the microspheres and a dissolvable RP mold that were sintered together. As such, the size of pores as well as the channel configuration of the scaffold can be tailored based on the design of the RP mold and the size of microspheres used. The fabrication method developed in this work can be a promising alternative way of preparing scaffolds with customized pore structures that may be required for specific studies concerning cell-scaffold interactions.

  17. Capillary Condensation in Pores with Rough Walls:

    Czech Academy of Sciences Publication Activity Database

    Bryk, P.; Rżysko, W.; Malijevský, Alexandr; Sokołowski, S.

    2007-01-01

    Roč. 313, č. 1 (2007), s. 41-52 ISSN 0021-9797 Grant - others:TOK(XE) 509249 Institutional research plan: CEZ:AV0Z40720504 Source of funding: R - rámcový projekt EK Keywords : adsorption * pore * capillary condensation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.309, year: 2007

  18. Mimicking the nuclear pore complex using nanopores

    NARCIS (Netherlands)

    Ananth, A.N.

    2018-01-01

    Nuclear pore complexes acts as a gatekeeper for molecular transport between the nucleus and the cytoplasm in eukaryotic cells. The central NPC channel is filled with intrinsically disordered FG domains (phenylalanine (F), glycine (G)) that are responsible for the fascinating selectivity of NPCs, for

  19. Induction of nano pore in Agrobacterial hemoglobin

    Directory of Open Access Journals (Sweden)

    Mojtaba Tousheh

    2014-01-01

    Full Text Available Introduction: A variety of oxygen-transport and -binding proteins exist in organisms including bacteria, protozoans, and fungi all have hemoglobin-like proteins. In addition to dealing with transport and sensing of oxygen, they may also deal with NO2, CO2, sulfide compounds, and even O2 scavenging in environments. Also they detoxified chlorinated materials like P450 enzymes and peroxidases and use as a detector of nitrate and hydrogen peroxide. Pore-forming bacterial globins are interested for filtration. Materials and methods: Although there are data for bacterial toxin as a filter, here we used Agrobacterial hem to induce nano pore in the heme structure using point mutation. Results: Investigations showed that three amino acids leucine 76, alanine 83 and histidine 80 are important for pore formation in Agrobacterium hemoglobin. A point mutation on leucine 76 to glycine, histidine 80 to asparagine and alanine 83 to lysine step by step led to create the nano pore 0.7- 0.8 nm in the globin. Discussion and conclusion: These mutations in bacterial hemoglobin increase the stability when mutation is with it’s at pH7. This mutation decreases the aliphatic index however increase the stability index.

  20. [Micropore filters for measuring red blood cell deformability and their pore diameters].

    Science.gov (United States)

    Niu, X; Yan, Z

    2001-09-01

    Micropore filters are the most important components in micropore filtration testes for assessing red blood cell (RBC) deformability. With regard to their appearance and filtration behaviors, comparisons are made for different kinds of filters currently in use. Nickel filters with regular geometric characteristics are found to be more sensitive to the effects of physical, chemical, especially pathological factors on the RBC deformability. We have critically reviewed the following viewpoint that filters with 3 microns pore diameter are more sensitive to cell volume than to internal viscosity while filters with 5 microns pore diameter are just the opposite. After analyzing the experiment results with 3 microns and 5 microns filters, we point out that filters with smaller pore diameters are more suitable for assessing the RBC deformability.

  1. Effects of pore shape and porosity on the properties of porous LNKN ceramics as bone substitute

    International Nuclear Information System (INIS)

    Wang Qi; Chen Qiang; Zhu Jianguo; Huang Chunpeng; Darvell, Brian W.; Chen Zhiqing

    2008-01-01

    A porous lead-free piezoelectric ceramic is investigated as direct bone substitute. Porous lithium sodium potassium niobate (Li 0.06 Na 0.5 K 0.44 )NbO 3 specimens were prepared by pore-forming method. Different volume fraction of ammonium oxalate monohydrate and poly(methyl methacrylate) were used as porogens to obtain different pore shape and porosity. Scanning electron microscopy showed a bicontinuous 3-3 structure of interconnected pores 150-250 μm in size. The piezoelectric constants and electromechanical coupling coefficients may be controlled by both size and shape of the porogens to tune for the best biological response. Such materials show promise for use as a piezoelectric composite bone substitute

  2. Numerical investigation of micro-pore formation during substrate impact of molten droplets in spraying processes

    International Nuclear Information System (INIS)

    Liu, H.; Lavernia, E.J.; Rangel, R.H.; Muehlberger, E.; Sickinger, A.

    1994-01-01

    The porosity that is commonly associated with discrete droplet processes, such as plasma spraying and spray deposition, effectively degrades the quality of the sprayed material. In the present study, micro-pore formation during the deformation and interaction of molten tungsten droplets impinging onto a flat substrate in spraying processes is numerically investigated. The numerical simulation is accomplished on the basis of the full Navier-Stokes equations and the Volume Of Fluid (VOF) function by using a 2-domain method for the thermal field and solidification problem and a two-phase flow continuum model for the flow problem with a growing solid layer. The possible mechanisms governing the formation of micro-pores are discussed. The effects of important processing parameters, such as droplet impact velocity, droplet temperature, substrate temperature, and droplet viscosity, on the micro-pore formation are addressed

  3. Multiscale pore structure and constitutive models of fine-grained rocks

    Science.gov (United States)

    Heath, J. E.; Dewers, T. A.; Shields, E. A.; Yoon, H.; Milliken, K. L.

    2017-12-01

    A foundational concept of continuum poromechanics is the representative elementary volume or REV: an amount of material large enough that pore- or grain-scale fluctuations in relevant properties are dissipated to a definable mean, but smaller than length scales of heterogeneity. We determine 2D-equivalent representative elementary areas (REAs) of pore areal fraction of three major types of mudrocks by applying multi-beam scanning electron microscopy (mSEM) to obtain terapixel image mosaics. Image analysis obtains pore areal fraction and pore size and shape as a function of progressively larger measurement areas. Using backscattering imaging and mSEM data, pores are identified by the components within which they occur, such as in organics or the clastic matrix. We correlate pore areal fraction with nano-indentation, micropillar compression, and axysimmetic testing at multiple length scales on a terrigenous-argillaceous mudrock sample. The combined data set is used to: investigate representative elementary volumes (and areas for the 2D images); determine if scale separation occurs; and determine if transport and mechanical properties at a given length scale can be statistically defined. Clear scale separation occurs between REAs and observable heterogeneity in two of the samples. A highly-laminated sample exhibits fine-scale heterogeneity and an overlapping in scales, in which case typical continuum assumptions on statistical variability may break down. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  4. Quantitative analysis of nano-pore geomaterials and representative sampling for digital rock physics

    Science.gov (United States)

    Yoon, H.; Dewers, T. A.

    2014-12-01

    Geomaterials containing nano-pores (e.g., shales and carbonate rocks) have become increasingly important for emerging problems such as unconventional gas and oil resources, enhanced oil recovery, and geologic storage of CO2. Accurate prediction of coupled geophysical and chemical processes at the pore scale requires realistic representation of pore structure and topology. This is especially true for chalk materials, where pore networks are small and complex, and require characterization at sub-micron scale. In this work, we apply laser scanning confocal microscopy to characterize pore structures and microlithofacies at micron- and greater scales and dual focused ion beam-scanning electron microscopy (FIB-SEM) for 3D imaging of nanometer-to-micron scale microcracks and pore distributions. With imaging techniques advanced for nano-pore characterization, a problem of scale with FIB-SEM images is how to take nanometer scale information and apply it to the thin-section or larger scale. In this work, several texture characterization techniques including graph-based spectral segmentation, support vector machine, and principal component analysis are applied for segmentation clusters represented by 1-2 FIB-SEM samples per each cluster. Geometric and topological properties are analyzed and lattice-Boltzmann method (LBM) is used to obtain permeability at several different scales. Upscaling of permeability to the Darcy scale (e.g., the thin-section scale) with image dataset will be discussed with emphasis on understanding microfracture-matrix interaction, representative volume for FIB-SEM sampling, and multiphase flow and reactive transport. Funding from the DOE Basic Energy Sciences Geosciences Program is gratefully acknowledged. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under

  5. The equivalent pore aspect ratio as a tool for pore type prediction in carbonate reservoirs

    OpenAIRE

    FOURNIER , François; Pellerin , Matthieu; Villeneuve , Quentin; Teillet , Thomas; Hong , Fei; Poli , Emmanuelle; Borgomano , Jean; Léonide , Philippe; Hairabian , Alex

    2018-01-01

    International audience; The equivalent pore aspect ratios (EPAR) provide a tool to detect pore types by combining P-and S-wave velocities, porosity, bulk density and mineralogical composition of carbonate rocks. The integration of laboratory measurements, well log data and petrographic analysis of 468 carbonate samples from various depositional and diagenetic settings (Lower Cretaceous pre-salt non-marine carbonates from offshore Brazil, Lower Cretaceous shallow-water platform carbonates from...

  6. Biofilm formation on a TiO2 nanotube with controlled pore diameter and surface wettability

    International Nuclear Information System (INIS)

    Anitha, V C; Narayan Banerjee, Arghya; Woo Joo, Sang; Lee, Jin-Hyung; Lee, Jintae; Ki Min, Bong

    2015-01-01

    Titania (TiO 2 ) nanotube arrays (TNAs) with different pore diameters (140 − 20 nm) are fabricated via anodization using hydrofluoric acid (HF) containing ethylene glycol (EG) by changing the HF-to-EG volume ratio and the anodization voltage. To evaluate the effects of different pore diameters of TiO 2 nanotubes on bacterial biofilm formation, Shewanella oneidensis (S. oneidensis) MR-1 cells and a crystal-violet biofilm assay are used. The surface roughness and wettability of the TNA surfaces as a function of pore diameter, measured via the contact angle and AFM techniques, are correlated with the controlled biofilm formation. Biofilm formation increases with the decreasing nanotube pore diameter, and a 20 nm TiO 2 nanotube shows the maximum biofilm formation. The measurements revealed that 20 nm surfaces have the least hydrophilicity with the highest surface roughness of ∼17 nm and that they show almost a 90% increase in the effective surface area relative to the 140 nm TNAs, which stimulate the cells more effectively to produce the pili to attach to the surface for more biofilm formation. The results demonstrate that bacterial cell adhesion (and hence, biofilm formation) can effectively be controlled by tuning the roughness and wettability of TNAs via controlling the pore diameters of TNA surfaces. This biofilm formation as a function of the surface properties of TNAs can be a potential candidate for both medical applications and as electrodes in microbial fuel cells. (paper)

  7. AN INVESTIGATION OF THE VARIATION OF PORE STRUCTURE IN EUCALYPTUS FIBRE DURING RECYCLING

    Directory of Open Access Journals (Sweden)

    Wen Jie Guo

    2011-04-01

    Full Text Available Variation in the pore structure of eucalyptus fibre during recycling was investigated using low-temperature nitrogen adsorption, atomic force microscopy (AFM, and fractal geometry. The Brunauer- Emmett-Teller (BET surface area of the fibre fell to 55.1% of the original value after the first cycle, and to 49.0% after the second cycle, ultimately declining to 35.0% after the fourth. The Barret-Joyner- Halenda (BJH adsorption cumulative pore volume fell to 38.4% of the original by the fourth. After four cycles, the average pore diameter fell to 82% of the original. AFM tests showed that the pore structure in fibre expressed high self-similarity in statistics, and the pore structure in the fibre could be regarded as a fractal. Fractal geometry analysis of the results showed that the fractal dimension of eucalyptus virgin fibre is 2.954. With the number of process cycles increasing, the fractal dimension fell to a minimum of 2.886 after four cycles. The water retention value (WRV of the fibre was proportional to the fractal dimension and the crystallinity of fibre.

  8. Pore size control of Pitch-based activated carbon fibers by pyrolytic deposition of propylene

    International Nuclear Information System (INIS)

    Xie Jinchuan; Wang Xuhui; Deng Jiyong; Zhang Lixing

    2005-01-01

    In this paper, we attempted to narrow the pore size of Pitch-based activated carbon fiber (Pitch-ACF) by chemical vapor deposition (CVD) of propylene at 700 deg. C. The BET equation was used to estimate the specific surface areas. The micropore volumes were determined using DR equation, t-plot and α s -plot, and mesopore surface areas were determined by t-plot and α s -plot. The pore size distribution (PSD) of micropores and mesopore was investigated by micropore analysis method (MP method) and MK method, respectively. The relation between the graphite-like crystal interlayer distance and pore size was analyzed by X-ray diffraction (XRD). The results showed that the pore size of Pitch-ACF was gradually narrowed with increasing deposition time. The catalytic activation of Ni was attempted when Pitch-ACF was modified simultaneously by pyrolysis of propylene. The results obtained from the analysis of PSD of micropores, mesopores and macropores in Ni-P-ACF by density function theory (DFT) showed that the pore structure and surface chemistry were greatly changed due to introducing nickel catalyst

  9. Cell wall microstructure, pore size distribution and absolute density of hemp shiv

    Science.gov (United States)

    Jiang, Y.; Lawrence, M.; Ansell, M. P.; Hussain, A.

    2018-04-01

    This paper, for the first time, fully characterizes the intrinsic physical parameters of hemp shiv including cell wall microstructure, pore size distribution and absolute density. Scanning electron microscopy revealed microstructural features similar to hardwoods. Confocal microscopy revealed three major layers in the cell wall: middle lamella, primary cell wall and secondary cell wall. Computed tomography improved the visualization of pore shape and pore connectivity in three dimensions. Mercury intrusion porosimetry (MIP) showed that the average accessible porosity was 76.67 ± 2.03% and pore size classes could be distinguished into micropores (3-10 nm) and macropores (0.1-1 µm and 20-80 µm). The absolute density was evaluated by helium pycnometry, MIP and Archimedes' methods. The results show that these methods can lead to misinterpretation of absolute density. The MIP method showed a realistic absolute density (1.45 g cm-3) consistent with the density of the known constituents, including lignin, cellulose and hemi-cellulose. However, helium pycnometry and Archimedes' methods gave falsely low values owing to 10% of the volume being inaccessible pores, which require sample pretreatment in order to be filled by liquid or gas. This indicates that the determination of the cell wall density is strongly dependent on sample geometry and preparation.

  10. Polyaniline nanofibers with a high specific surface area and an improved pore structure for supercapacitors

    Science.gov (United States)

    Xu, Hailing; Li, Xingwei; Wang, Gengchao

    2015-10-01

    Polyaniline (PANI) with a high specific surface area and an improved pore structure (HSSA-PANI) has been prepared by using a facile method, treating PANI nanofibers with chloroform (CHCl3), and its structure, morphology and pore structure are investigated. The specific surface area and pore volume of HSSA-PANI are 817.3 m2 g-1 and 0.6 cm3 g-1, and those of PANI are 33.6 m2 g-1 and 0.2 cm3 g-1. As electrode materials, a large specific surface area and pore volume can provide high electroactive regions, accelerate the diffusion of ions, and mitigate the electrochemical degradation of active materials. Compared with PANI, the capacity retention rate of HSSA-PANI is 90% with a growth of current density from 5.0 to 30 A g-1, and that of PANI is 29%. At a current density of 30 A g-1, the specific capacitance of HSSA-PANI still reaches 278.3 F g-1, and that of PANI is 86.7 F g-1. At a current density of 5.0 A g-1, the capacitance retention of HSSA-PANI is 53.1% after 2000 cycles, and that of PANI electrode is only 28.1%.

  11. Characterization of bentonite pore structure by combining chloride porosity and SAXS measurements

    International Nuclear Information System (INIS)

    Muurinen, A.

    2010-01-01

    Document available in extended abstract form only. The total water porosity, chloride porosity and the microstructure were studied in compacted samples prepared from MX-80 and Deponit bentonites equilibrated through filter plates with 0.1 M NaCl solution for 12.5 months. The dry densities of the samples varied approximately from 0.7 to 1.55 g/cm 3 . XRD and SAXS (Small Angle X-ray Scattering) were used to study the microstructure of the bentonites. It was obvious that the chloride porosity was lower than the water porosity in both clays, which indicates the exclusion caused by the negatively charged montmorillonite surfaces. In the XRD and SAXS measurements the measured basal spaces represented by the diffraction peaks were smaller than the theoretical ones assuming a homogenous microstructure. This indicates that there was a substantial amount of water also in the pores, which were not represented by the peaks. This could explain the difference between the measured chloride porosity and the modelling curve obtained with the Donnan model. By combining the information from the SAXS measurements and the chloride exclusion measurements, it was possible to evaluate the volumes of the soft and dense fractions and the pore sizes in each fraction for MX-80. The chloride porosity was mostly caused by the pores in the soft clay where the pore size is larger. The volume of the soft fraction decreased and its density increased with increasing density of the sample. (authors)

  12. Enhancement of plasma generation in catalyst pores with different shapes

    Science.gov (United States)

    Zhang, Yu-Ru; Neyts, Erik C.; Bogaerts, Annemie

    2018-05-01

    Plasma generation inside catalyst pores is of utmost importance for plasma catalysis, as the existence of plasma species inside the pores affects the active surface area of the catalyst available to the plasma species for catalytic reactions. In this paper, the electric field enhancement, and thus the plasma production inside catalyst pores with different pore shapes is studied with a two-dimensional fluid model. The results indicate that the electric field will be significantly enhanced near tip-like structures. In a conical pore with small opening, the strongest electric field appears at the opening and bottom corners of the pore, giving rise to a prominent ionization rate throughout the pore. For a cylindrical pore, the electric field is only enhanced at the bottom corners of the pore, with lower absolute value, and thus the ionization rate inside the pore is only slightly enhanced. Finally, in a conical pore with large opening, the electric field is characterized by a maximum at the bottom of the pore, yielding a similar behavior for the ionization rate. These results demonstrate that the shape of the pore has a significantly influence on the electric field enhancement, and thus modifies the plasma properties.

  13. Pores and Void in Asclepiades’ Physical Theory

    Science.gov (United States)

    Leith, David

    2012-01-01

    This paper examines a fundamental, though relatively understudied, aspect of the physical theory of the physician Asclepiades of Bithynia, namely his doctrine of pores. My principal thesis is that this doctrine is dependent on a conception of void taken directly from Epicurean physics. The paper falls into two parts: the first half addresses the evidence for the presence of void in Asclepiades’ theory, and concludes that his conception of void was basically that of Epicurus; the second half focuses on the precise nature of Asclepiadean pores, and seeks to show that they represent void interstices between the primary particles of matter which are the constituents of the human body, and are thus exactly analogous to the void interstices between atoms within solid objects in Epicurus’ theory. PMID:22984299

  14. Mesoporous ethanesilica materials with bimodal and trimodal pore-size distributions synthesised in the presence of cobalt ions

    Directory of Open Access Journals (Sweden)

    Alufelwi M. Tshavhungwe

    2010-07-01

    Full Text Available Mesoporous organosilica materials containing ethane groups in their framework were formed with two and three pore sizes (i.e. bimodal and trimodal pores when synthesised by the sol-gel method in the presence of cobalt ions. The compounds 1,2-bistrimethoxysilylethane and tetraethylorthosilicate were used as silicon sources and the reactions were done in the presence of a surfactant, which served as a template. Diffuse reflectance infrared Fourier transform spectroscopy revealed that organic functional groups were incorporated into the ethanesilica. Powder X-ray diffraction and nitrogen adsorption data indicated that the mesophase and textural properties (surface area, pore volume, pore diameter of the materials were dependent on the ageing temperature, the amount/ratio of silica precursors and cobalt ion incorporation. Secondary mesopores were drastically reduced by changing the ratio of silicon precursors.

  15. Incorporation of the Pore Size Variation to Modeling of the Elastic Behavior of Metallic Open-Cell Foams

    Directory of Open Access Journals (Sweden)

    Ćwieka K.

    2017-03-01

    Full Text Available In the present paper we present the approach for modeling of the elastic behavior of open-cell metallic foams concerning non-uniform pore size distribution. This approach combines design of foam structures and numerical simulations of compression tests using finite element method (FEM. In the design stage, Laguerre-Voronoi tessellations (LVT were performed on several sets of packed spheres with defined variation of radii, bringing about a set of foam structures with porosity ranging from 74 to 98% and different pore size variation quantified by the coefficient of pore volume variation, CV(V, from 0.5 to 2.1. Each structure was numerically subjected to uni-axial compression test along three directions within the elastic region. Basing on the numerical response, the effective Young’s modulus, Eeff, was calculated for each structure. It is shown that the Eeff is not only dependent on the porosity but also on the pore size variation.

  16. Facial skin pores: a multiethnic study

    Directory of Open Access Journals (Sweden)

    Flament F

    2015-02-01

    Full Text Available Frederic Flament,1 Ghislain Francois,1 Huixia Qiu,2 Chengda Ye,2 Tomoo Hanaya,3 Dominique Batisse,3 Suzy Cointereau-Chardon,1 Mirela Donato Gianeti Seixas,4 Susi Elaine Dal Belo,4 Roland Bazin5 1Department of Applied Research and Development, L’Oreal Research and Innovation, Paris, France; 2Department of Applied Research and Development, L’Oreal Research and Innovation, Shanghai, People’s Republic of China; 3Department of Applied Research and Development, L’Oreal Research and Innovation, Tokyo, Japan; 4Department of Applied Research and Development, L’Oreal Research and Innovation, Rio de Janeiro, Brazil; 5RB Consult, Bievres, France Abstract: Skin pores (SP, as they are called by laymen, are common and benign features mostly located on the face (nose, cheeks, etc that generate many aesthetic concerns or complaints. Despite the prevalence of skin pores, related literature is scarce. With the aim of describing the prevalence of skin pores and anatomic features among ethnic groups, a dermatoscopic instrument, using polarized lighting, coupled to a digital camera recorded the major features of skin pores (size, density, coverage on the cheeks of 2,585 women in different countries and continents. A detection threshold of 250 µm, correlated to clinical scorings by experts, was input into a specific software to further allow for automatic counting of the SP density (N/cm2 and determination of their respective sizes in mm2. Integrating both criteria also led to establishing the relative part of the skin surface (as a percentage that is actually covered by SP on cheeks. The results showed that the values of respective sizes, densities, and skin coverage: 1 were recorded in all studied subjects; 2 varied greatly with ethnicity; 3 plateaued with age in most cases; and 4 globally reflected self-assessment by subjects, in particular those who self-declare having “enlarged pores” like Brazilian women. Inversely, Chinese women were clearly

  17. A new model for pore formation by cholesterol-dependent cytolysins.

    Directory of Open Access Journals (Sweden)

    Cyril F Reboul

    2014-08-01

    Full Text Available Cholesterol Dependent Cytolysins (CDCs are important bacterial virulence factors that form large (200-300 Å membrane embedded pores in target cells. Currently, insights from X-ray crystallography, biophysical and single particle cryo-Electron Microscopy (cryo-EM experiments suggest that soluble monomers first interact with the membrane surface via a C-terminal Immunoglobulin-like domain (Ig; Domain 4. Membrane bound oligomers then assemble into a prepore oligomeric form, following which the prepore assembly collapses towards the membrane surface, with concomitant release and insertion of the membrane spanning subunits. During this rearrangement it is proposed that Domain 2, a region comprising three β-strands that links the pore forming region (Domains 1 and 3 and the Ig domain, must undergo a significant yet currently undetermined, conformational change. Here we address this problem through a systematic molecular modeling and structural bioinformatics approach. Our work shows that simple rigid body rotations may account for the observed collapse of the prepore towards the membrane surface. Support for this idea comes from analysis of published cryo-EM maps of the pneumolysin pore, available crystal structures and molecular dynamics simulations. The latter data in particular reveal that Domains 1, 2 and 4 are able to undergo significant rotational movements with respect to each other. Together, our data provide new and testable insights into the mechanism of pore formation by CDCs.

  18. Radial distribution of ions in pores with a surface charge

    NARCIS (Netherlands)

    Stegen, J.H.G. van der; Görtzen, J.; Kuipers, J.A.M.; Hogendoorn, J.A.; Versteeg, G.F.

    2001-01-01

    A sorption model applicable to calculate the radial equilibrium concentrations of ions in the pores of ion-selective membranes with a pore structure is developed. The model is called the radial uptake model. Because the model is applied to a Nafion sulfonic layer with very small pores and the radial

  19. Estimation of adsorption-induced pore pressure and confinement in a nanoscopic slit pore by a density functional theory

    Science.gov (United States)

    Grégoire, David; Malheiro, Carine; Miqueu, Christelle

    2018-03-01

    This study aims at characterising the adsorption-induced pore pressure and confinement in nanoscopic pores by molecular non-local density functional theory (DFT). Considering its important potential industrial applications, the adsorption of methane in graphitic slit pores has been selected as the test case. While retaining the accuracy of molecular simulations at pore scale, DFT has a very low computational cost that allows obtaining highly resolved pore pressure maps as a function of both pore width and thermodynamic conditions. The dependency of pore pressure on these parameters (pore width, pressure and temperature) is carefully analysed in order to highlight the effect of each parameter on the confined fluid properties that impact the solid matrix.

  20. Micro-computed tomography pore-scale study of flow in porous media: Effect of voxel resolution

    Science.gov (United States)

    Shah, S. M.; Gray, F.; Crawshaw, J. P.; Boek, E. S.

    2016-09-01

    avoids the problem of partial volume effects and reduces the scaling effect by preserving the pore-space properties influencing the transport properties. This is evidently compared in this study by predicting several pore network properties such as number of pores and throats, average pore and throat radius and coordination number for both scan based analysis and numerical coarsened data.

  1. Direct observations of the 3D pore network of a Callovo-Oxfordian clay-stone

    International Nuclear Information System (INIS)

    Robinet, J.C.; Talandier, J.; Davy, C.A.; Ghayaza, M.; Skoczylas, F.; Troadec, D.; Sardini, P.

    2012-01-01

    Document available in extended abstract form only. Long term deep underground storage of radioactive nuclear waste is planned in the East of France within an argillaceous rock layer (the host rock), also called argillite, situated at ca. 450-500 m depth. Andra, the French national agency for nuclear waste management, is in charge of assessing the feasibility, the safety and the performance of this underground disposal. The drilling of storage tunnels generates an Excavated Damaged Zone (EDZ), where argillite is macro-cracked in various locations. This requires strengthening by different means, e.g. shotcrete or pre-fabricated concrete arches. It is also expected that underground water seepage will contribute to argillite sealing: mainly self-sealing, and sealing at the interface with concrete. Sealing phenomena include crystalline swelling of smectitic clay components of argillite and inter-particle swelling of clay minerals due to osmosis mechanisms. Small scale pores and mineral organisation of the COx clay-stone are widely acknowledged to control transfer properties of water, gas and varied solutes. In order to assess these properties, the COx small-scale structure has been imaged down to micrometric resolution by various means, including classical Scanning Electron Microscopy (SEM), X-ray computed microtomography and autoradiography. To go further into pore and mineral characterisation of COx clay-stone, the following investigations are currently under way: (i) acquiring/quantifying the 3D geometry of the pore network of undisturbed COx with a nano-metric resolution and (ii) imaging/quantifying the small-scale (mm-nm) structure of self-sealed volumes. The FIB (Focused Ion Beam) /SEM technique allows performing 3D observations of solid volumes of ca. a few microns, with a resolution of about ten nanometers, by acquiring and computing regularly spaced 2D SEM images. This technique provides quantification of the 3D spatial distribution mainly of macro- and meso-pores

  2. Effect of Pore Pressure on Slip Failure of an Impermeable Fault: A Coupled Micro Hydro-Geomechanical Model

    Science.gov (United States)

    Yang, Z.; Juanes, R.

    2015-12-01

    The geomechanical processes associated with subsurface fluid injection/extraction is of central importance for many industrial operations related to energy and water resources. However, the mechanisms controlling the stability and slip motion of a preexisting geologic fault remain poorly understood and are critical for the assessment of seismic risk. In this work, we develop a coupled hydro-geomechanical model to investigate the effect of fluid injection induced pressure perturbation on the slip behavior of a sealing fault. The model couples single-phase flow in the pores and mechanics of the solid phase. Granular packs (see example in Fig. 1a) are numerically generated where the grains can be either bonded or not, depending on the degree of cementation. A pore network is extracted for each granular pack with pore body volumes and pore throat conductivities calculated rigorously based on geometry of the local pore space. The pore fluid pressure is solved via an explicit scheme, taking into account the effect of deformation of the solid matrix. The mechanics part of the model is solved using the discrete element method (DEM). We first test the validity of the model with regard to the classical one-dimensional consolidation problem where an analytical solution exists. We then demonstrate the ability of the coupled model to reproduce rock deformation behavior measured in triaxial laboratory tests under the influence of pore pressure. We proceed to study the fault stability in presence of a pressure discontinuity across the impermeable fault which is implemented as a plane with its intersected pore throats being deactivated and thus obstructing fluid flow (Fig. 1b, c). We focus on the onset of shear failure along preexisting faults. We discuss the fault stability criterion in light of the numerical results obtained from the DEM simulations coupled with pore fluid flow. The implication on how should faults be treated in a large-scale continuum model is also presented.

  3. Pore-scale simulation of wettability and interfacial tension effects on flooding process for enhanced oil recovery.

    Science.gov (United States)

    Zhao, Jin; Wen, Dongsheng

    2017-08-27

    For enhanced oil recovery (EOR) applications, the oil/water flow characteristics during the flooding process was numerically investigated with the volume-of-fluid method at the pore scale. A two-dimensional pore throat-body connecting structure was established, and four scenarios were simulated in this paper. For oil-saturated pores, the wettability effect on the flooding process was studied; for oil-unsaturated pores, three effects were modelled to investigate the oil/water phase flow behaviors, namely the wettability effect, the interfacial tension (IFT) effect, and the combined wettability/IFT effect. The results show that oil saturated pores with the water-wet state can lead to 25-40% more oil recovery than with the oil-wet state, and the remaining oil mainly stays in the near wall region of the pore bodies for oil-wet saturated pores. For oil-unsaturated pores, the wettability effects on the flooding process can help oil to detach from the pore walls. By decreasing the oil/water interfacial tension and altering the wettability from oil-wet to water-wet state, the remaining oil recovery rate can be enhanced successfully. The wettability-IFT combined effect shows better EOR potential compared with decreasing the interfacial tension alone under the oil-wet condition. The simulation results in this work are consistent with previous experimental and molecular dynamics simulation conclusions. The combination effect of the IFT reducation and wettability alteration can become an important recovery mechanism in future studies for nanoparticles, surfactant, and nanoparticle-surfactant hybrid flooding process.

  4. Pore closure in zeolitic imidazolate frameworks under mechanical pressure.

    Science.gov (United States)

    Henke, Sebastian; Wharmby, Michael T; Kieslich, Gregor; Hante, Inke; Schneemann, Andreas; Wu, Yue; Daisenberger, Dominik; Cheetham, Anthony K

    2018-02-14

    We investigate the pressure-dependent mechanical behaviour of the zeolitic imidazolate framework ZIF-4 (M(im) 2 ; M 2+ = Co 2+ or Zn 2+ , im - = imidazolate) with high pressure, synchrotron powder X-ray diffraction and mercury intrusion measurements. A displacive phase transition from a highly compressible open pore ( op ) phase with continuous porosity (space group Pbca , bulk modulus ∼1.4 GPa) to a closed pore ( cp ) phase with inaccessible porosity (space group P 2 1 / c , bulk modulus ∼3.3-4.9 GPa) is triggered by the application of mechanical pressure. Over the course of the transitions, both ZIF-4 materials contract by about 20% in volume. However, the threshold pressure, the reversibility and the immediate repeatability of the phase transition depend on the metal cation. ZIF-4(Zn) undergoes the op-cp phase transition at a hydrostatic mechanical pressure of only 28 MPa, while ZIF-4(Co) requires about 50 MPa to initiate the transition. Interestingly, ZIF-4(Co) fully returns to the op phase after decompression, whereas ZIF-4(Zn) remains in the cp phase after pressure release and requires subsequent heating to switch back to the op phase. These variations in high pressure behaviour can be rationalised on the basis of the different electron configurations of the respective M 2+ ions (3d 10 for Zn 2+ and 3d 7 for Co 2+ ). Our results present the first examples of op-cp phase transitions ( i.e. breathing transitions) of ZIFs driven by mechanical pressure and suggest potential applications of these functional materials as shock absorbers, nanodampers, or in mechanocalorics.

  5. Computed Microtomography Quantification of Internal Pore Geometry of Soil Aggregates from Contrasting Land Management Types

    Science.gov (United States)

    Ananyeva, K.; Wang, W.; Smucker, A. J.; Kravchenko, A. N.; Chun, H. C.; Rivers, M. L.

    2010-12-01

    Structure of soil aggregate interiors controls intra-aggregate processes and provides important contributions to the biogeochemical processes of the soil profile. Applications of computed microtomography (CMT) to soil science have enabled the direct and nondestructive analyses of internal aggregate pore structures within soil volumes. The main objective of this study was to employ CMT to examine the internal pore structures of soil aggregates, 4 to 6.3 mm across, sampled at 0-20 cm depths from contrasting long-term land management types. Intra-aggregate pore-size distributions were compared among land management types. Porosity below CMT resolution (tillage, grass vegetation) than that of aggregates managed by conventional tillage (CT) used for agriculture. There was also greater percentage of intra-aggregate pores >400 µm in aggregates from NS than CT or NT management systems. In the range 15-100 µm, however, porosity of CT aggregates exceeded that of NS and NT aggregates. Total intra-aggregate porosities were similar and higher for both CT and NS (34.6 and 34.7%, correspondingly) than the 32.6% for NT aggregates. Although statistically significant, this difference (CT or NS vs. NT) was practically small, requiring at least 48 replications to be detected. These results indicate that long-term differences in management affected intra-aggregate pore size distributions. Increased 15-100 µm porosity in CT aggregates is probably related to their greater fragility. A combination of higher microporosity (400 µm in NS aggregates may generate more favorable conditions for microbial activity through a combination of larger intra-aggregate regions with high water-holding capacities and increased aeration and preferential flow pathways for intra-aggregate solute and gas transport. Our current focus is comparing and relating specifics of internal pore structures in the aggregates from contrasting land management types, to the measurements of solution and microbial flow

  6. Contaminant characterization of sediment and pore-water in the Clinch River and Poplar Creek

    International Nuclear Information System (INIS)

    Levine, D.A.; Harris, R.A.; Campbell, K.R.; Hargrove, W.W.; Rash, C.D.

    1995-01-01

    Sediment and pore-water samples were collected from 80 locations in the Clinch River and Poplar Creek system to characterize concentrations and spatial distribution of contaminants for use in ecological risk assessment. Sediment cores were collected at each site and the top 15 cm was analyzed to represent the biologically active zone. Sediment for pore-water extraction was collected in large volumes using a Ponar grab sampler. Pore-water was extracted from this sediment using centrifugation, All samples were analyzed for metals (including methyl mercury), organics, and radiological constituents. Additionally, sediment was analyzed for physical properties: particle size distribution, density, and porosity. Sediment and pore-water were also analyzed for total organic carbon and nitrogen and ammonia levels. Sediment and pore-water were also analyzed for total organic carbon and nitrogen and ammonia levels. Sediment and pre-water results indicate that there are several areas where concentrations of a variety of contaminants are high enough to causes ecological effects. These locations in the river are immediately downstream from know sources of Contamination from on-site DOE facilities. East Fork Poplar Creek is a source of several metals, including mercury, cadmium, chromium, and copper. Mitchell Branch is a source of number of metals, uranium isotopes, technetium-99, and several PAHs. There are two clear sources of arsenic and selenium to the system, one in Poplar Creek and one in Melton Hill Reservoir, both related to past disposal of coal-ash. High concentrations in sediments did not always coincide with high concentrations in pore-water for the same sites and contaminants. This appears to be related to particle size of the sediment and total organic carbon

  7. Characterization of large-pore polymeric supports for use in perfusion biochromatography.

    Science.gov (United States)

    Whitney, D; McCoy, M; Gordon, N; Afeyan, N

    1998-05-22

    Perfusion chromatography is uniquely characterized by the flow of a portion of the column eluent directly through the resin in the packed bed. The benefits of this phenomenon and some of the properties of perfusive resins have been described before, and can be summarized as enhanced mass transport to interior binding sites. Here we extend the understanding of this phenomenon by comparing resins with different pore size distributions. Resins are chosen to give approximately the same specific pore volumes (as shown in the characterization section) but the varying contribution of large pores is used to control the amount of liquid flowing through the beads. POROS R1 has the largest contribution of throughpores, and therefore the greatest intraparticle flow. POROS R2 has a lower contribution of throughpores, and a higher surface area coming from a greater population of diffusive pores, but still shows significant mass transport enhancements relative to a purely diffusive control. Oligo R3 is dominated by a high population of diffusive pores, and is used comparatively as a non-perfusive resin. Although the pore size distribution can be engineered to control mass transport rates, the resulting surface area is not the only means by which binding capacity can be controlled. Surface coatings are employed to increase binding capacity without fundamentally altering the mass transport properties. Models are used to describe the amount of flow transecting the beads, and comparisons of coated resins to uncoated (polystyrene) resins leads to the conclusion that these coatings do not obstruct the throughpore structures. This is an important conclusion since the binding capacity of the coated product, in some cases, is shown to be over 10-fold higher than the precursor polystyrene scaffold (i.e., POROS R1 or POROS R2).

  8. Energy conversion device with support member having pore channels

    Science.gov (United States)

    Routkevitch, Dmitri [Longmont, CO; Wind, Rikard A [Johnstown, CO

    2014-01-07

    Energy devices such as energy conversion devices and energy storage devices and methods for the manufacture of such devices. The devices include a support member having an array of pore channels having a small average pore channel diameter and having a pore channel length. Material layers that may include energy conversion materials and conductive materials are coaxially disposed within the pore channels to form material rods having a relatively small cross-section and a relatively long length. By varying the structure of the materials in the pore channels, various energy devices can be fabricated, such as photovoltaic (PV) devices, radiation detectors, capacitors, batteries and the like.

  9. Silicon pore optics developments and status

    DEFF Research Database (Denmark)

    Bavdaz, Marcos; Wille, Eric; Wallace, Kotska

    2012-01-01

    Silicon Pore Optics (SPO) is a lightweight high performance X-ray optics technology being developed in Europe, driven by applications in observatory class high energy astrophysics missions. An example of such application is the former ESA science mission candidate ATHENA (Advanced Telescope...... for High Energy Astrophysics), which uses the SPO technology for its two telescopes, in order to provide an effective area exceeding 1 m2 at 1 keV, and 0.5 m2 at 6 keV, featuring an angular resolution of 10" or better [1 to 24]. This paper reports on the development activities led by ESA, and the status...

  10. Fast and non-destructive pore structure analysis using terahertz time-domain spectroscopy.

    Science.gov (United States)

    Markl, Daniel; Bawuah, Prince; Ridgway, Cathy; van den Ban, Sander; Goodwin, Daniel J; Ketolainen, Jarkko; Gane, Patrick; Peiponen, Kai-Erik; Zeitler, J Axel

    2018-02-15

    Pharmaceutical tablets are typically manufactured by the uni-axial compaction of powder that is confined radially by a rigid die. The directional nature of the compaction process yields not only anisotropic mechanical properties (e.g. tensile strength) but also directional properties of the pore structure in the porous compact. This study derives a new quantitative parameter, S a , to describe the anisotropy in pore structure of pharmaceutical tablets based on terahertz time-domain spectroscopy measurements. The S a parameter analysis was applied to three different data sets including tablets with only one excipient (functionalised calcium carbonate), samples with one excipient (microcrystalline cellulose) and one drug (indomethacin), and a complex formulation (granulated product comprising several excipients and one drug). The overall porosity, tablet thickness, initial particle size distribution as well as the granule density were all found to affect the significant structural anisotropies that were observed in all investigated tablets. The S a parameter provides new insights into the microstructure of a tablet and its potential was particularly demonstrated for the analysis of formulations comprising several components. The results clearly indicate that material attributes, such as particle size and granule density, cause a change of the pore structure, which, therefore, directly impacts the liquid imbibition that is part of the disintegration process. We show, for the first time, how the granule density impacts the pore structure, which will also affect the performance of the tablet. It is thus of great importance to gain a better understanding of the relationship of the physical properties of material attributes (e.g. intragranular porosity, particle shape), the compaction process and the microstructure of the finished product. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The obtaining of iron acetate from processed iron comprising catalyst of ammonia synthesis

    International Nuclear Information System (INIS)

    Mansurov, M.M.; Lugovenko, A.N.; Mirzoeva, M.M.

    1993-01-01

    Present article is devoted to obtaining of iron acetate from processed iron comprising catalyst of ammonia synthesis. The method of synthesis of iron acetate from processed iron comprising catalyst of ammonia synthesis was elaborated. The structure of complex was determined.

  12. Performance characterization of silicon pore optics

    Science.gov (United States)

    Collon, M. J.; Kraft, S.; Günther, R.; Maddox, E.; Beijersbergen, M.; Bavdaz, M.; Lumb, D.; Wallace, K.; Krumrey, M.; Cibik, L.; Freyberg, M.

    2006-06-01

    The characteristics of the latest generation of assembled silicon pore X-ray optics are discussed in this paper. These very light, stiff and modular high performance pore optics (HPO) have been developed [1] for the next generation of astronomical X-ray telescopes, which require large collecting areas whilst achieving angular resolutions better than 5 arcseconds. The suitability of 12 inch silicon wafers as high quality optical mirrors and the automated assembly process are discussed elsewhere in this conference. HPOs with several tens of ribbed silicon plates are assembled by bending the plates into an accurate cylindrical shape and directly bonding them on top of each other. The achievable figure accuracy is measured during assembly and in test campaigns at X-ray testing facilities like BESSY-II and PANTER. Pencil beam measurements allow gaining information on the quality achieved by the production process with high spatial resolution. In combination with full beam illumination a complete picture of the excellent performance of these optics can be derived. Experimental results are presented and discussed in detail. The results of such campaigns are used to further improve the production process in order to match the challenging XEUS requirements [2] for imaging resolution and mass.

  13. Dendritic silica nanomaterials (KCC-1) with fibrous pore structure possess high DNA adsorption capacity and effectively deliver genes in vitro.

    Science.gov (United States)

    Huang, Xiaoxi; Tao, Zhimin; Praskavich, John C; Goswami, Anandarup; Al-Sharab, Jafar F; Minko, Tamara; Polshettiwar, Vivek; Asefa, Tewodros

    2014-09-16

    The pore size and pore structure of nanoporous materials can affect the materials' physical properties, as well as potential applications in different areas, including catalysis, drug delivery, and biomolecular therapeutics. KCC-1, one of the newest members of silica nanomaterials, possesses fibrous, large pore, dendritic pore networks with wide pore entrances, large pore size distribution, spacious pore volume and large surface area--structural features that are conducive for adsorption and release of large guest molecules and biomacromolecules (e.g., proteins and DNAs). Here, we report the results of our comparative studies of adsorption of salmon DNA in a series of KCC-1-based nanomaterials that are functionalized with different organoamine groups on different parts of their surfaces (channel walls, external surfaces or both). For comparison the results of our studies of adsorption of salmon DNA in similarly functionalized, MCM-41 mesoporous silica nanomaterials with cylindrical pores, some of the most studied silica nanomaterials for drug/gene delivery, are also included. Our results indicate that, despite their relatively lower specific surface area, the KCC-1-based nanomaterials show high adsorption capacity for DNA than the corresponding MCM-41-based nanomaterials, most likely because of KCC-1's large pores, wide pore mouths, fibrous pore network, and thereby more accessible and amenable structure for DNA molecules to diffuse through. Conversely, the MCM-41-based nanomaterials adsorb much less DNA, presumably because their outer surfaces/cylindrical channel pore entrances can get blocked by the DNA molecules, making the inner parts of the materials inaccessible. Moreover, experiments involving fluorescent dye-tagged DNAs suggest that the amine-grafted KCC-1 materials are better suited for delivering the DNAs adsorbed on their surfaces into cellular environments than their MCM-41 counterparts. Finally, cellular toxicity tests show that the KCC-1-based

  14. [A photographic scale for evaluating facial pores and analysis of factors associated with pore widening in Chengdu].

    Science.gov (United States)

    Wang, Qing; Zhou, Cheng-xia; Meng, Hui-min; Wang, Xi; Li, Li

    2010-09-01

    To develop a photographic scale for grading widening of pores, and to identify the factors associated with pore widening. People with widened pores were recruited, with photographs taken on their nasal tips, nasal alas and cheeks. A questionnaire survey was undertaken by dermatologists to assess the severity of pore widening. A Cumulative Logit Model was established to identify factors that were associated with pore widening. A total of 115 people participated in the study and 562 photographs were taken. The photographic scale was highly consistent with the clinical judgment. Another 1011 residents aged from 18 to 70 years old in Chengdu were surveyed. The logit model revealed that facial pore widening were associated with gender, age, oily skin, sun protection and anti-aging cosmetic. The photographic scale is reliable and easy to use. Gender, age and oily skin are risk factors, and sun protection and anti-aging cosmetic are protective factors with related to pore widening.

  15. Pneumatic stepper motor and device comprising at least one such pneumatic stepper motor

    NARCIS (Netherlands)

    Groenhuis, Vincent; Siepel, Françoise Jeanette; Stramigioli, Stefano

    2018-01-01

    The invention relates to a pneumatic stepper motor, comprising: - a housing, said housing accommodating at least part of: - a rack or geared axle comprising a plurality of gear elements; and - two pistons, each comprising at least two teeth, said pistons being arranged to cooperate with said rack or

  16. Variations in pore characteristics in high volatile bituminous coals: Implications for coal bed gas content

    Science.gov (United States)

    Mastalerz, Maria; Drobniak, A.; Strapoc, D.; Solano-Acosta, W.; Rupp, J.

    2008-01-01

    The Seelyville Coal Member of the Linton Formation (Pennsylvanian) in Indiana was studied to: 1) understand variations in pore characteristics within a coal seam at a single location and compare these variations with changes occurring between the same coal at different locations, 2) elaborate on the influence of mineral-matter and maceral composition on mesopore and micropore characteristics, and 3) discuss implications of these variations for coal bed gas content. The coal is high volatile bituminous rank with R0 ranging from 0.57% to 0.60%. BET specific surface areas (determined by nitrogen adsorption) of the coals samples studied range from 1.8 to 22.9??m2/g, BJH adsorption mesopore volumes from 0.0041 to 0.0339??cm3/g, and micropore volumes (determined by carbon dioxide adsorption) from 0.0315 to 0.0540??cm3/g. The coals that had the largest specific surface areas and largest mesopore volumes occur at the shallowest depths, whereas the smallest values for these two parameters occur in the deepest coals. Micropore volumes, in contrast, are not depth-dependent. In the coal samples examined for this study, mineral-matter content influenced both specific surface area as well as mesopore and micropore volumes. It is especially clear in the case of micropores, where an increase in mineral-matter content parallels the decrease of micropore volume of the coal. No obvious relationships were observed between the total vitrinite content and pore characteristics but, after splitting vitrinite into individual macerals, we see that collotelinite influences both meso- and micropore volume positively, whereas collodetrinite contributes to the reduction of mesopore and micropore volumes. There are large variations in gas content within a single coal at a single location. Because of this variability, the entire thickness of the coal must be desorbed in order to determine gas content reliably and to accurately calculate the level of gas saturation. ?? 2008 Elsevier B.V. All

  17. Theoretical Analysis of Pore Pressure Diffusion in Some Basic Rock Mechanics Experiments

    Science.gov (United States)

    Braun, Philipp; Ghabezloo, Siavash; Delage, Pierre; Sulem, Jean; Conil, Nathalie

    2018-05-01

    Non-homogeneity of the pore pressure field in a specimen is an issue for characterization of the thermo-poromechanical behaviour of low-permeability geomaterials, as in the case of the Callovo-Oxfordian claystone ( k radioactive waste disposal in France. In tests with drained boundary conditions, excess pore pressure can result in significant errors in the measurement of material parameters. Analytical solutions are presented for the change in time of the pore pressure field in a specimen submitted to various loading paths and different rates. The pore pressure field in mechanical and thermal undrained tests is simulated with a 1D finite difference model taking into account the dead volume of the drainage system of the triaxial cell connected to the specimen. These solutions provide a simple and efficient tool for the estimation of the conditions that must hold for reliable determination of material parameters and for optimization of various test conditions to minimize the experimental duration, while keeping the measurement errors at an acceptable level.

  18. Hydrophobic polymers modification of mesoporous silica with large pore size for drug release

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Shenmin, E-mail: smzhu@sjtu.edu.c [Shanghai Jiao Tong University, State Key Lab of Metal Matrix Composites (China); Zhang Di; Yang Na [Fudan University, Ministry of Education, Key Lab of Molecular Engineering of Polymers (China)

    2009-04-15

    Mesostructure cellular foam (MCF) materials were modified with hydrophobic polyisoprene (PI) through free radical polymerization in the pores network, and the resulting materials (MCF-PI) were investigated as matrices for drug storage. The successful synthesis of PI inside MCF was characterized by Fourier transform infrared (FT-IR), hydrogen nuclear magnetic resonance ({sup 1}H NMR), X-ray diffraction patterns (XRD) and nitrogen adsorption/desorption measurements. It was interesting to find the resultant system held a relatively large pore size (19.5 nm) and pore volume (1.02 cm{sup 3} g{sup -1}), which would benefit for drug storage. Ibuprofen (IBU) and vancomycin were selected as model drugs and loaded onto unmodified MCF and modified MCF (MCF-PI). The adsorption capacities of these model drugs on MCF-PI were observed increase as compared to that of on pure MCF, due to the trap effects induced by polyisoprene chains inside the pores. The delivery system of MCF-PI was found to be more favorable for the adsorption of IBU (31 wt%, IBU/silica), possibly attributing to the hydrophobic interaction between IBU and PI formed on the internal surface of MCF matrix. The release of drug through the porous network was investigated by measuring uptake and release of IBU.

  19. Pore-water chemistry effects on the compressibility behaviour of Boom Clay

    International Nuclear Information System (INIS)

    Deng, Y.F.; Cui, Y.J.; Tang, A.M.; Nguyen, X.P.; Li, X.L.; Maarten, V.G.

    2010-01-01

    %) and the soil can be classified as plastic clay. In order to study the effects of pore-water chemistry on soil compressibility, oedometer tests were performed following a specific procedure. After installation of the soil specimen (50 mm in diameter and 20 mm high) in the oedometer cell between two dry porous stones, the vertical stress was increased in steps from 0.05 MPa to 2.4 MPa, which corresponds to the in-situ effective vertical stress of the soil cores (before flushing the pore stone). After stabilisation of the soil deformation, a back-pressure of 1 MPa was applied from the lower base of the odometer cell using a volume/pressure controller. For each soil core, one test was performed using the synthetic pore-water solution and another one using distilled water. The soil volume change during the back-pressure application was monitored, Meanwhile, the volume of liquid (synthetic pore-water solution or distilled water) passing though the soil specimen was also recorded. Each test lasted about one month and it was stopped when the volume of liquid flow through the specimen was twice the pore volume of the soil specimen. This duration is believed to be long enough to determine the hydraulic conductivity under a constant head conditions (under a pressure gradient of 1 MPa). It is noted that for the test using distilled water, the important volume of liquid flow through the soil specimen allows all the in-situ pore-water to be flushed out from the specimen. At the end of this 'flushing' stage, the back-pressure was decreased to zero and loading and unloading were performed in steps with the vertical stress ranging from 0.05 to 3.2 MPa. This test allows determination of the soil compressibility and also the hydraulic conductivity at various void ratios, in the range of relatively low stresses (up to 3.2 MPa). The result shows that the hydraulic conductivity is almost independent of the pore-water used. By contrast, the soil compressibility clearly changes

  20. Multiple Approaches to Characterizing Pore Structure in Natural Rock

    Science.gov (United States)

    Hu, Q.; Dultz, S.; Hamamoto, S.; Ewing, R. P.

    2012-12-01

    Microscopic characteristics of porous media - pore shape, pore-size distribution, and pore connectivity - control fluid flow and chemical transport, and are important in hydrogeological studies of rock formations in the context of energy, environmental, and water resources management. This presentation discusses various approaches to investigating pore structure of rock, with a particular focus on the Barnett Shale in north Texas used for natural gas production. Approaches include imbibition, tracer diffusion, porosimetry (MIP, vapor adsorption/desorption isotherms, NMR cyroporometry), and imaging (μ-tomography, Wood's metal impregnation, FIB/SEM). Results show that the Barnett Shale pores are predominantly in the nm size range, with a measured median pore-throat diameter of 6.5 nm. But small pore size is not the major contributor to low gas recovery; rather, the low gas diffusivity appears to be caused by low pore connectivity. Chemical diffusion in sparsely-connected pore spaces is not well described by classical Fickian behavior; anomalous behavior is suggested by percolation theory, and confirmed by results of imbibition tests. Our evolving complementary approaches, with their several advantages and disadvantages, provide a rich toolbox for tackling the pore structure characteristics in the Barnett Shale and other natural rocks.

  1. The pore structure and fractal characteristics of shales with low thermal maturity from the Yuqia Coalfield, northern Qaidam Basin, northwestern China

    Science.gov (United States)

    Hou, Haihai; Shao, Longyi; Li, Yonghong; Li, Zhen; Zhang, Wenlong; Wen, Huaijun

    2018-03-01

    The continental shales from the Middle Jurassic Shimengou Formation of the northern Qaidam Basin, northwestern China, have been investigated in recent years because of their shale gas potential. In this study, a total of twenty-two shale samples were collected from the YQ-1 borehole in the Yuqia Coalfield, northern Qaidam Basin. The total organic carbon (TOC) contents, pore structure parameters, and fractal characteristics of the samples were investigated using TOC analysis, low-temperature nitrogen adsorption experiments, and fractal analysis. The results show that the average pore size of the Shimengou shales varied from 8.149 nm to 20.635 nm with a mean value of 10.74 nm, which is considered mesopore-sized. The pores of the shales are mainly inkbottle- and slit-shaped. The sedimentary environment plays an essential role in controlling the TOC contents of the low maturity shales, with the TOC values of shales from deep to semi-deep lake facies (mean: 5.23%) being notably higher than those of the shore-shallow lake facies (mean: 0.65%). The fractal dimensions range from 2.4639 to 2.6857 with a mean of 2.6122, higher than those of marine shales, which indicates that the pore surface was rougher and the pore structure more complex in these continental shales. The fractal dimensions increase with increasing total pore volume and total specific surface area, and with decreasing average pore size. With increasing TOC contents in shales, the fractal dimensions increase first and then decrease, with the highest value occurring at 2% of TOC content, which is in accordance with the trends between the TOC and both total specific surface area and total pore volume. The pore structure complexity and pore surface roughness of these low-maturity shales would be controlled by the combined effects of both sedimentary environments and the TOC contents.

  2. The effect of synthesis parameters on the geometry and dimensions of mesoporous hydroxyapatite nanoparticles in the presence of 1-dodecanethiol as a pore expander

    International Nuclear Information System (INIS)

    Bakhtiari, L.; Rezaie, H.R.; Javadpour, J.; Erfan, M.; Shokrgozar, M.A.

    2015-01-01

    Mesoporous hydroxyapatite with different pore diameters and pore volumes were synthesized by the self-assembly method using Cetyltrimethylammonium bromide (CTAB) as the cationic surfactant and 1-dodecanethiol as the pore expander at different micellization pHs, solvent types and surfactant concentrations. Results of field emission scanning electron microscopy (FESEM) showed a decrease in length/diameter ratio of rod-like particles by an increase in micellization pH and also a sphere to rod transition in morphology by an increase in CTAB concentration. Brunauer–Emmett–Teller (BET) surface area and Low angle X-ray diffraction analysis revealed that the optimized mesoporous hydroxyapatite with controlled pore structure can be obtained under basic micellization pH (about 12, pH of complete ionization of 1-dodecanethiol) by using water as the solvent and a high content of cationic surfactant. The results also show that micellization pH has a strong effect on pore structure and changing the pH can shift the mesostructure to a macroporous structure with morphological changes. - Highlights: • Synthesis of mesoporous hydroxyapatite with controlled pore structure • Introduced a facile way to obtain mesoporous hydroxyapatite with high pore volume • Evaluation of morphological changes as a function of synthesis parameters

  3. The effect of firing temperature on the irreversible expansion, water absorption and pore structure of a brick body during freeze-thaw cycles

    Directory of Open Access Journals (Sweden)

    Mikuláš ŠVEDA

    2013-12-01

    Full Text Available The paper deals with the monitoring of brick body in the process of volumetric freezing and thawing. The samples were fired at temperatures of 900, 1000 and 1060 °C. Attention is focused on monitoring of the irreversible expansion, water absorption and pore structure of a brick body. We found that in all cases the endpoints take place continuously, where the amount firing temperature plays a crucial role. The greatest influence of freeze/thaw cycles on the change of the pore structure was also observed at the lowest temperature. The change of the pore system during the freeze-thaw cycles occurs in such a way, that the pore volume of small pores further decreases and conversely, the pore volume of large pores increases. The knowledge gained can be used not only in the production of new but also in predicting the remaining durability of older clay roofing tiles. DOI: http://dx.doi.org/10.5755/j01.ms.19.4.2741

  4. Pore structure in blended cement pastes

    DEFF Research Database (Denmark)

    Canut, Mariana Moreira Cavalcanti

    Supplementary cementitious materials (SCMs), such as slag and fly ash, are increasingly used as a substitute for Portland cement in the interests of improvement of engineering properties and sustainability of concrete. According to studies improvement of engineering properties can be explained by...... on assumptions of degree of reaction and product densities gave for plain cement pastes results comparable to MIP data.......Supplementary cementitious materials (SCMs), such as slag and fly ash, are increasingly used as a substitute for Portland cement in the interests of improvement of engineering properties and sustainability of concrete. According to studies improvement of engineering properties can be explained...... supplement each other. Cement pastes (w/b=0.4) with and without slag and fly ash cured at two moisture (sealed and saturated) and temperature (20 and 55ºC) conditions were used to investigate the combined impact of SCMs addition and curing on the pore structure of pastes cured up to two years. Also...

  5. Conservation agriculture effects on soil pore characteristics

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Abdollahi, Lotfollah

    ploughing to a depth of 20 cm (MP), harrowing to a depth of 8-10 cm (H) and direct drilling (D). Minimally disturbed core samples were taken at 4-8, 12-16 and 18-27 cm depths 11 years after experimental start. Water retention characteristics were measured for a range of matric potential ranging from -10......Conservation tillage in combination with crop rotation, residue management and cover crops are key components of conservation agriculture. A positive long-term effect of applying all components of conservation agriculture on soil structural quality is expected. However, there is a lack...... of quantitative knowledge to support this statement. This study examines the long-term effects of crop rotations, residue management and tillage on soil pore characteristics of two sandy loam soils in Denmark. Results are reported from a split plot field experiment rotation as main plot factor and tillage...

  6. Preferential flow from pore to landscape scales

    Science.gov (United States)

    Koestel, J. K.; Jarvis, N.; Larsbo, M.

    2017-12-01

    In this presentation, we give a brief personal overview of some recent progress in quantifying preferential flow in the vadose zone, based on our own work and those of other researchers. One key challenge is to bridge the gap between the scales at which preferential flow occurs (i.e. pore to Darcy scales) and the scales of interest for management (i.e. fields, catchments, regions). We present results of recent studies that exemplify the potential of 3-D non-invasive imaging techniques to visualize and quantify flow processes at the pore scale. These studies should lead to a better understanding of how the topology of macropore networks control key state variables like matric potential and thus the strength of preferential flow under variable initial and boundary conditions. Extrapolation of this process knowledge to larger scales will remain difficult, since measurement technologies to quantify macropore networks at these larger scales are lacking. Recent work suggests that the application of key concepts from percolation theory could be useful in this context. Investigation of the larger Darcy-scale heterogeneities that generate preferential flow patterns at the soil profile, hillslope and field scales has been facilitated by hydro-geophysical measurement techniques that produce highly spatially and temporally resolved data. At larger regional and global scales, improved methods of data-mining and analyses of large datasets (machine learning) may help to parameterize models as well as lead to new insights into the relationships between soil susceptibility to preferential flow and site attributes (climate, land uses, soil types).

  7. Pore structure of natural and regenerated soil aggregates

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Arthur, Emmanuel; de Jonge, Lis Wollesen

    2014-01-01

    Quantitative characterization of aggregate pore structure can reveal the evolution of aggregates under different land use and management practices and their effects on soil processes and functions. Advances in X-ray Computed Tomography (CT) provide powerful means to conduct such characterization....... This study examined aggregate pore structure of three differently managed same textured Danish soils (mixed forage cropping, MFC; mixed cash cropping, MCC; cereal cash cropping, CCC) for (i) natural aggregates, and (ii) aggregates regenerated after 20 months of incubation. In total, 27 aggregates (8-16 mm...... pore diameter of 200 and 170 Hm, respectively. Pore shape analysis indicated that CCC and MFC aggregates had an abundance of rounded and elongated pores, respectively, and those of MCC were in-between CCC and MFC. Aggregate pore structure development in the lysimeters was nearly similar irrespective...

  8. Characteristics of Pore Structure and Fractal Dimension of Isometamorphic Anthracite

    Directory of Open Access Journals (Sweden)

    Di Gao

    2017-11-01

    Full Text Available The geologic conditions of No. 3 coal seams are similar to Sihe and Zhaozhuang Collieries, however, the gas production is significantly different. To better understand the effect of pores, by means of experimental measurements and quantitative analysis, the pore properties of high-rank isometamorphic anthracite were thoroughly studied. Our study showed that the pore structures were predominantly adsorptive, accounting for more than 88% of the specific surface area. The coal pores showed typical three-stage fractal characteristics at boundary points of 1 nm and 9 nm (7 nm of coal samples from Zhaozhuang Colliery, and the fractal dimension with 1–9 nm (or 1–7 nm, as being significantly larger than those measured outside the given ranges. Pores in samples from Sihe Colliery were mainly open spherical or ellipsoidal pores in shape; conversely, those from Zhaozhuang Colliery were mainly Y-shaped, V-shaped, or ‘ink-bottle’ type.

  9. Preparation of micro-pored silicone elastomer through radiation crosslinking

    International Nuclear Information System (INIS)

    Gao Xiaoling; Gu Mei; Xie Xubing; Huang Wei

    2013-01-01

    The radiation crosslinking was adopted to prepare the micro-pored silicone elastomer, which was performed by vulcanization and foaming respectively. Radiation crosslinking is a new method to prepare micro-pored material with high performance by use of radiation technology. Silicon dioxide was used as filler, and silicone elastomer was vulcanized by electron beams, then the micro-pored material was made by heating method at a high temperature. The effects of absorbed dose and filler content on the performance and morphology were investigated. The structure and distribution of pores were observed by SEM. The results show that the micro-pored silicon elastomer can be prepared successfully by controlling the absorbed dose and filler content. It has a smooth surface similar to a rubber meanwhile the pores are round and unconnected to each other with the minimum size of 14 μm. And the good mechanical performance can be suitable for further uses. (authors)

  10. Pore Structure and Fluoride Ion Adsorption Characteristics of Zr (IV) Surface-Immobilized Resin Prepared Using Polystyrene as a Porogen

    Science.gov (United States)

    Mizuki, Hidenobu; Ito, Yudai; Harada, Hisashi; Uezu, Kazuya

    Zr(IV) surface-immobilized resins for removal of fluoride ion were prepared by surface template polymerization using polystyrene as a porogen. At polymerization, polystyrene was added in order to increase mesopores (2-50 nm) and macropore (>50 nm) with large macropores (around 300 nm) formed with internal aqueous phase of W⁄O emulsion. The pore structure of Zr(IV) surface-immobilized resins was evaluated by measuring specific surface area, pore volume, and pore size distribution with volumetric adsorption measurement instrument and mercury porosimeter. The adsorption isotherms were well fitted by Langmuir equation. The removal of fluoride was also carried out with column method. Zr(IV) surface-immobilized resins, using 10 g⁄L polystyrene in toluene at polymerization, possessed higher volume of not only mesopores and macropores but also large macropores. Furethermore, by adding the polystyrene with smaller molecular size, the pore volume of mesopores, macropores and large macropores was significantly increased, and the fluoride ion adsorption capacity and the column utilization also increased.

  11. Damage Effects and Fractal Characteristics of Coal Pore Structure during Liquid CO2 Injection into a Coal Bed for E-CBM

    Directory of Open Access Journals (Sweden)

    Li Ma

    2018-05-01

    Full Text Available Pore structure has a significant influence on coal-bed methane (CBM enhancement. Injecting liquid CO2 into coal seams is an effective way to increase CBM recovery. However, there has been insufficient research regarding the damage effects and fractal characteristics of pore structure at low temperature induced by injecting liquid CO2 into coal samples. Therefore, the methods of low-pressure nitrogen adsorption-desorption (LP-N2-Ad and mercury intrusion porosimetry (MIP were used to investigate the damage effects and fractal characteristics of pore structure with full aperture as the specimens were frozen by liquid CO2. The adsorption isotherms revealed that the tested coal samples belonged to type B, indicating that they contained many bottle and narrow-slit shaped pores. The average pore diameter (APD; average growth rate of 18.20%, specific surface area (SSA; average growth rate of 7.38%, and total pore volume (TPV; average growth rate of 18.26% increased after the specimens were infiltrated by liquid CO2, which indicated the generation of new pores and the transformation of original pores. Fractal dimensions D1 (average of 2.58 and D2 (average of 2.90 of treated coal samples were both larger the raw coal (D1, average of 2.55 and D2, average of 2.87, which indicated that the treated specimens had more rough pore surfaces and complex internal pore structures than the raw coal samples. The seepage capacity was increased because D4 (average of 2.91 of the treated specimens was also higher than the raw specimens (D4, average of 2.86. The grey relational coefficient between the fractal dimension and pore structure parameters demonstrated that the SSA, APD, and porosity positively influenced the fractal features of the coal samples, whereas the TPV and permeability exerted negative influences.

  12. Visualizing and Quantifying Bioaccessible Pores in Field-Aged Petroleum Hydrocarbon-Contaminated Clay Soils Using Synchrotron-based X-ray Computed Tomography

    Science.gov (United States)

    Chang, W.; Kim, J.; Zhu, N.; McBeth, J. M.

    2015-12-01

    Microbial hydrocarbon degradation is environmentally significant and applicable to contaminated site remediation practices only when hydrocarbons (substrates) are physically bioaccessible to bacteria in soil matrices. Powerful X-rays are produced by synchrotron radiation, allowing for bioaccessible pores in soil (larger than 4 microns), where bacteria can be accommodated, colonize and remain active, can be visualized at a much higher resolution. This study visualized and quantified such bioaccessible pores in intact field-aged, oil-contaminated unsaturated soil fractions, and examined the relationship between the abundance of bioaccessible pores and hydrocarbon biodegradation. Using synchrotron-based X-ray Computed Tomography (CT) at the Canadian Light Source, a large dataset of soil particle characteristics, such as pore volumes, surface areas, number of pores and pore size distribution, was generated. Duplicate samples of five different soil fractions with different soil aggregate sizes and water contents (13, 18 and 25%) were examined. The method for calculating the number and distribution of bioaccessible pores using CT images was validated using the known porosity of Ottawa sand. This study indicated that the distribution of bioaccessible pore sizes in soil fractions are very closely related to microbial enhancement. A follow-up aerobic biodegradation experiment for the soils at 17 °C (average site temperature) over 90 days confirmed that a notable decrease in hydrocarbon concentrations occurred in soils fractions with abundant bioaccessible pores and with a larger number of pores between 10 and 100 μm. The hydrocarbon degradation in bioactive soil fractions was extended to relatively high-molecular-weight hydrocarbons (C16-C34). This study provides quantitative information about how internal soil pore characteristics can influence bioremediation performance.

  13. Study on pore structure properties of steam activated biomass chars

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Tong; Lu, Fei; Wang, Qinchao; Lu, Ping [Nanjing Normal Univ. (China). School of Energy and Mechanical Engineering

    2013-07-01

    Wheat straw and rice husk chars were prepared in a fixed bed reactor at different pyrolysis temperatures (673, 873 and 1,073K) and different pyrolysis procedure. The steam activated chars were also prepared in a fixed bed reactor at the following conditions: activation temperature is 1,073K, the flow rate of N{sub 2} is 5L/min, and N{sub 2} and H{sub 2}O molar ratio is 1:1. The specific surface area, pore structure and micro-morphology of different kinds of prepared biomass chars were measured by NOVA1000e analysis instrument and JSM-5610LV scanning electron microscopy (SEM), respectively. Results indicated that the internal structure was improved significantly by steam activation through enlarging the specific surface area and enriching the porosity. The wheat straw char prepared by both rapid pyrolysis at 873K and activation by steam is better than others, whose DR surface area increases from 3.10 to 1099.99m{sup 2}/g. The N{sub 2} adsorption volume of steam activated biomass chars has been significant promoted.

  14. Coarse and fine root plants affect pore size distributions differently

    OpenAIRE

    Bodner, G.; Leitner, D.; Kaul, H.-P.

    2014-01-01

    Aims Small scale root-pore interactions require validation of their impact on effective hydraulic processes at the field scale. Our objective was to develop an interpretative framework linking root effects on macroscopic pore parameters with knowledge at the rhizosphere scale. Methods A field experiment with twelve species from different families was conducted. Parameters of Kosugi?s pore size distribution (PSD) model were determined inversely from tension infiltrometer data. Measured root tr...

  15. The effect of scaffold pore size in cartilage tissue engineering.

    Science.gov (United States)

    Nava, Michele M; Draghi, Lorenza; Giordano, Carmen; Pietrabissa, Riccardo

    2016-07-26

    The effect of scaffold pore size and interconnectivity is undoubtedly a crucial factor for most tissue engineering applications. The aim of this study was to examine the effect of pore size and porosity on cartilage construct development in different scaffolds seeded with articular chondrocytes. We fabricated poly-L-lactide-co-trimethylene carbonate scaffolds with different pore sizes, using a solvent-casting/particulate-leaching technique. We seeded primary bovine articular chondrocytes on these scaffolds, cultured the constructs for 2 weeks and examined cell proliferation, viability and cell-specific production of cartilaginous extracellular matrix proteins, including GAG and collagen. Cell density significantly increased up to 50% with scaffold pore size and porosity, likely facilitated by cell spreading on the internal surface of bigger pores, and by increased mass transport of gases and nutrients to cells, and catabolite removal from cells, allowed by lower diffusion barriers in scaffolds with a higher porosity. However, both the cell metabolic activity and the synthesis of cartilaginous matrix proteins significantly decreased by up to 40% with pore size. We propose that the association of smaller pore diameters, causing 3-dimensional cell aggregation, to a lower oxygenation caused by a lower porosity, could have been the condition that increased the cell-specific synthesis of cartilaginous matrix proteins in the scaffold with the smallest pores and the lowest porosity among those tested. In the initial steps of in vitro cartilage engineering, the combination of small scaffold pores and low porosity is an effective strategy with regard to the promotion of chondrogenesis.

  16. Real-Time Pore Pressure Detection: Indicators and Improved Methods

    Directory of Open Access Journals (Sweden)

    Jincai Zhang

    2017-01-01

    Full Text Available High uncertainties may exist in the predrill pore pressure prediction in new prospects and deepwater subsalt wells; therefore, real-time pore pressure detection is highly needed to reduce drilling risks. The methods for pore pressure detection (the resistivity, sonic, and corrected d-exponent methods are improved using the depth-dependent normal compaction equations to adapt to the requirements of the real-time monitoring. A new method is proposed to calculate pore pressure from the connection gas or elevated background gas, which can be used for real-time pore pressure detection. The pore pressure detection using the logging-while-drilling, measurement-while-drilling, and mud logging data is also implemented and evaluated. Abnormal pore pressure indicators from the well logs, mud logs, and wellbore instability events are identified and analyzed to interpret abnormal pore pressures for guiding real-time drilling decisions. The principles for identifying abnormal pressure indicators are proposed to improve real-time pore pressure monitoring.

  17. Fusion Pore Diameter Regulation by Cations Modulating Local Membrane Anisotropy

    Directory of Open Access Journals (Sweden)

    Doron Kabaso

    2012-01-01

    Full Text Available The fusion pore is an aqueous channel that is formed upon the fusion of the vesicle membrane with the plasma membrane. Once the pore is open, it may close again (transient fusion or widen completely (full fusion to permit vesicle cargo discharge. While repetitive transient fusion pore openings of the vesicle with the plasma membrane have been observed in the absence of stimulation, their frequency can be further increased using a cAMP-increasing agent that drives the opening of nonspecific cation channels. Our model hypothesis is that the openings and closings of the fusion pore are driven by changes in the local concentration of cations in the connected vesicle. The proposed mechanism of fusion pore dynamics is considered as follows: when the fusion pore is closed or is extremely narrow, the accumulation of cations in the vesicle (increased cation concentration likely leads to lipid demixing at the fusion pore. This process may affect local membrane anisotropy, which reduces the spontaneous curvature and thus leads to the opening of the fusion pore. Based on the theory of membrane elasticity, we used a continuum model to explain the rhythmic opening and closing of the fusion pore.

  18. X-ray microtomography application in pore space reservoir rock.

    Science.gov (United States)

    Oliveira, M F S; Lima, I; Borghi, L; Lopes, R T

    2012-07-01

    Characterization of porosity in carbonate rocks is important in the oil and gas industry since a major hydrocarbons field is formed by this lithology and they have a complex media porous. In this context, this research presents a study of the pore space in limestones rocks by x-ray microtomography. Total porosity, type of porosity and pore size distribution were evaluated from 3D high resolution images. Results show that carbonate rocks has a complex pore space system with different pores types at the same facies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Role of the synaptobrevin C terminus in fusion pore formation

    DEFF Research Database (Denmark)

    Ngatchou, Annita N; Kisler, Kassandra; Fang, Qinghua

    2010-01-01

    Neurotransmitter release is mediated by the SNARE proteins synaptobrevin II (sybII, also known as VAMP2), syntaxin, and SNAP-25, generating a force transfer to the membranes and inducing fusion pore formation. However, the molecular mechanism by which this force leads to opening of a fusion pore...... stimulation, the SNARE complex pulls the C terminus of sybII deeper into the vesicle membrane. We propose that this movement disrupts the vesicular membrane continuity leading to fusion pore formation. In contrast to current models, the experiments suggest that fusion pore formation begins with molecular...

  20. Extraction of pores from microtomographic reconstructions of intact soil aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Albee, P. B.; Stockman, G. C.; Smucker, A. J. M.

    2000-02-29

    Segmentation of features is often a necessary step in the analysis of volumetric data. The authors have developed a simple technique for extracting voids from irregular volumetric data sets. In this work they look at extracting pores from soil aggregates. First, they identify a threshold that gives good separability of the object from the background. They then segment the object, and perform connected components analysis on the pores within the object. Using their technique pores that break the surface can be segmented along with pores completely contained in the initially segmented object.

  1. The effect of swelling agent on the pore characteristics of mesoporous hydroxyapatite nanoparticles

    Directory of Open Access Journals (Sweden)

    L. Bakhtiari

    2015-06-01

    Full Text Available The effect of swelling agent on the physicochemical properties of mesoporous hydroxyapatite particles synthesized by self-assembly process has been investigated. Cetyl trimethylammonium bromide (CTAB and 1-dodecanethiol were used as soft template and swelling agent respectively. The results of the field emission scanning electron microscopy (FESEM, X-ray diffraction (XRD, simultaneous thermal analysis (STA, Brunauer-Emmett-Teller (BET surface area, small-angle X-ray diffraction and Fourier transform infrared spectroscopy (FTIR assessments revealed that in the case of low concentration, 1-dodecanethiol performed as swelling agent and caused an increase in the pore size. However, at higher concentrations it led to the formation of microemulsion and foamy structures. The optimum swelling agent: surfactant mass ratio in synthesis of mesoporous hydroxyapatite particles with high pore volume was determined to be around 2.1 in this study.

  2. Three-dimensional characterization of pores in Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    Márcia Regina Baldissera

    2011-03-01

    Full Text Available The direct three-dimensional characterization of opaque materials through serial sectioning makes possible to visualize and better quantify a material microstructure, using classical metallographic techniques coupled with computer-aided reconstruction. Titanium alloys are used as biomaterials for bone implants because of its excellent mechanical properties, biocompatibility and enhanced corrosion resistance. The Ti-6Al-4V alloy (in wt. (% with porous microstructure permits the ingrowths of new-bone tissues improving the fixation bone/implant. This is important to understand connectivity, morphology and spatial distribution of pores in microstructure. The Ti-6Al-4V alloy compacts were produced by powder metallurgy and sintered at three distinct temperatures (1250, 1400 and 1500 °C to obtain distinct microstructures in terms of residual porosity. The visualization of the reconstructed 3D microstructure provides a qualitative and quantitative analysis of the porosity of Ti6Al4V alloy (volume fraction and pore morphology.

  3. The effect of swelling agent on the pore characteristics of mesoporous hydroxyapatite nanoparticles

    Institute of Scientific and Technical Information of China (English)

    L. Bakhtiari; J. Javadpour; H.R. Rezaie; M. Erfan; M.A. Shokrgozar

    2015-01-01

    The effect of swelling agent on the physicochemical properties of mesoporous hydroxyapatite particles synthesized by self-assembly process has been investigated. Cetyl trimethylammonium bromide (CTAB) and 1-dodecanethiol were used as soft template and swelling agent respectively. The results of the field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), simultaneous thermal analysis (STA), Brunauer-Emmett-Teller (BET) surface area, small-angle X-ray diffraction and Fourier transform infrared spectroscopy (FTIR) assessments revealed that in the case of low concentration, 1-dodecanethiol performed as swelling agent and caused an increase in the pore size. However, at higher concentrations it led to the formation of microemulsion and foamy structures. The optimum swelling agent:surfactant mass ratio in synthesis of mesoporous hydroxyapatite particles with high pore volume was determined to be around 2.1 in this study.

  4. Synthesis and characterization of thermally stable large-pore mesoporous nanocrystallineanatase

    Energy Technology Data Exchange (ETDEWEB)

    Ermokhina, Natalia I.; Nevinskiy, Vitaly A.; Manorik, Piotr A.; Ilyin, Vladimir G. [L.V. Pisarzhevskiy Institute of Physical Chemistry, National Academy of Sciences of Ukraine, 31 Prospekt Nauki, Kyiv 03028 (Ukraine); Novichenko, Viktor N.; Shcherbatiuk, Mykola M.; Klymchuk, Dmitro O. [M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2Tereshchenkivska St., 01601, Kyiv (Ukraine); Tsyba, Mykola M. [Institute for Sorption and Problems of Endoecology, National Academy of Sciences of Ukraine, 13 Naumov St., Kyiv 03164 (Ukraine); Puziy, Alexander M., E-mail: alexander.puziy@ispe.kiev.ua [Institute for Sorption and Problems of Endoecology, National Academy of Sciences of Ukraine, 13 Naumov St., Kyiv 03164 (Ukraine)

    2013-04-15

    Thermally stable mesoporous nanocrystalline TiO{sub 2} with a pure anatase structure was obtained by sol–gel synthesis (in combination with hydrothermal treatment) using titanium tetrabutoxide and dibenzo-18-crown-6 as a structure-directing agent in presence of surfactant and/or La{sup 3+} ions additives. Nanocrystalline TiO{sub 2} demonstrates various textures with a well-defined spherical morphology (micro- and nanospheres), a crystallite size of no greater than 10 nm (XRD), and a narrow pore size distribution. Spherical particles of micrometer scale in the presence of La{sup 3+} ions do not form. TiO{sub 2} calcined (at 500 °C) after hydrothermal treatment (at 175 °C) has a significantly more developed porous structure as compared with TiO{sub 2} which was not treated hydrothermally. For example, specific surface area amounts 137 m{sup 2} g{sup −1} and 69 m{sup 2} g{sup −1}, pore volume 0.98 cm{sup 3} g{sup −1} and 0.21 cm{sup 3} g{sup −1}, pore diameter 17.5 nm and 12.5 nm respectively for samples hydrothermally treated and not treated. - Graphical abstract: Large-pore mesoporous nanocristalline anatase. Highlights: ► Large-pore mesoporous nanocrystalline TiO{sub 2} was obtained by sol–gel synthesis. ► Crown ether was used as template in presence of surfactant and/or La{sup 3+} ions. ► Anatase (crystalline size<11 nm) is the only crystalline phase present in TiO{sub 2}. ► TiO{sub 2} shows well-defined homogeneous spherical morphology (micro- and nano-spheres)

  5. Pore-size Distributions from Nitrogen Adsorption Revisited: Models Comparison with Controlled-pore Glasses

    Czech Academy of Sciences Publication Activity Database

    Šolcová, Olga; Matějová, Lenka; Schneider, Petr

    2006-01-01

    Roč. 313, č. 2 (2006), s. 167-176 ISSN 0926-860X R&D Projects: GA ČR(CZ) GA104/04/2116; GA ČR GD203/03/H140; GA AV ČR IAA4072404 Institutional research plan: CEZ:AV0Z40720504 Keywords : pore size distribution * physical adsorption * standard nitrogen isotherm Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.630, year: 2006

  6. Evaluation Of Liner Back-pressure Due To Concrete Pore Pressure At Elevated Temperatures

    International Nuclear Information System (INIS)

    James, R.J.; Rashid, Y.R.; Liu, A.S.; Gou, B.

    2006-01-01

    wall considering the time-dependent temperature distribution that evolves following the LOCA. The pressure distribution at each time increment is balanced for mass diffusion using Darcy's Law for mass flux under a pressure gradient. The total mass for the free water, the water vapor, and the non-condensable gases in the pore volumes is tracked to maintain conservation of mass. The evolution of liner back-pressure with time is then based on detailed finite element modeling that incorporates the pore pressure model into a concrete cracking analysis with full coupling between the temperatures, pressures, and liner displacements. (authors)

  7. Propagation of a plasma streamer in catalyst pores

    Science.gov (United States)

    Zhang, Quan-Zhi; Bogaerts, Annemie

    2018-03-01

    Although plasma catalysis is gaining increasing interest for various environmental applications, the underlying mechanisms are still far from understood. For instance, it is not yet clear whether and how plasma streamers can propagate in catalyst pores, and what is the minimum pore size to make this happen. As this is crucial information to ensure good plasma-catalyst interaction, we study here the mechanism of plasma streamer propagation in a catalyst pore, by means of a two-dimensional particle-in-cell/Monte Carlo collision model, for various pore diameters in the nm-range to μm-range. The so-called Debye length is an important criterion for plasma penetration into catalyst pores, i.e. a plasma streamer can penetrate into pores when their diameter is larger than the Debye length. The Debye length is typically in the order of a few 100 nm up to 1 μm at the conditions under study, depending on electron density and temperature in the plasma streamer. For pores in the range of ∼50 nm, plasma can thus only penetrate to some extent and at very short times, i.e. at the beginning of a micro-discharge, before the actual plasma streamer reaches the catalyst surface and a sheath is formed in front of the surface. We can make plasma streamers penetrate into smaller pores (down to ca. 500 nm at the conditions under study) by increasing the applied voltage, which yields a higher plasma density, and thus reduces the Debye length. Our simulations also reveal that the plasma streamers induce surface charging of the catalyst pore sidewalls, causing discharge enhancement inside the pore, depending on pore diameter and depth.

  8. Physical Explanation of Archie's Porosity Exponent in Granular Materials: A Process-Based, Pore-Scale Numerical Study

    Science.gov (United States)

    Niu, Qifei; Zhang, Chi

    2018-02-01

    The empirical Archie's law has been widely used in geosciences and engineering to explain the measured electrical resistivity of many geological materials, but its physical basis has not been fully understood yet. In this study, we use a pore-scale numerical approach combining discrete element-finite difference methods to study Archie's porosity exponent m of granular materials over a wide porosity range. Numerical results reveal that at dilute states (e.g., porosity ϕ > 65%), m is exclusively related to the particle shape and orientation. As the porosity decreases, the electric flow in pore space concentrates progressively near particle contacts and m increases continuously in response to the intensified nonuniformity of the local electrical field. It is also found that the increase in m is universally correlated with the volume fraction of pore throats for all the samples regardless of their particle shapes, particle size range, and porosities.

  9. Role of nitrogen in pore development in activated carbon prepared by potassium carbonate activation of lignin

    Energy Technology Data Exchange (ETDEWEB)

    Tsubouchi, Naoto, E-mail: tsubon@eng.hokudai.ac.jp; Nishio, Megumi; Mochizuki, Yuuki

    2016-05-15

    Highlights: • Activated carbon prepared from a lignin/urea/K{sub 2}CO{sub 3} mixture provides a high specific surface area and a large pore volume. • Part of the urea nitrogen present in the mixture is retained as heterocyclic nitrogen in the solid phase after activation/carbonization. • Pore development is thought to proceed through interactions between K-species and C–N forms. - Abstract: The present work focuses on the role of nitrogen in the development of pores in activated carbon produced from lignin by K{sub 2}CO{sub 3} activation, employing a fixed bed reactor under a high-purity He stream at temperatures of 500–900 °C. The specific surface area and pore volume obtained by activation of lignin alone are 230 m{sup 2}/g and 0.13 cm{sup 3}/g at 800 °C, and 540 m{sup 2}/g and 0.31 cm{sup 3}/g at 900 °C, respectively. Activation of a mixture of lignin and urea provides a significant increase in the surface area and volume, respectively reaching 3300–3400 m{sup 2}/g and 2.0–2.3 cm{sup 3}/g after holding at 800–900 °C for 1 h. Heating a lignin/urea/K{sub 2}CO{sub 3} mixture leads to a significant decrease in the yield of released N-containing gases compared to the results for urea alone and a lignin/urea mixture, and most of the nitrogen in the urea is retained in the solid phase. X-ray photoelectron spectroscopy and X-ray diffraction analyses clearly show that part of the remaining nitrogen is present in heterocyclic structures (for example, pyridinic and pyrrolic nitrogen), and the rest is contained as KOCN at ≤600 °C and as KCN at ≥700 °C, such that the latter two compounds can be almost completely removed by water washing. The fate of nitrogen during heating of lignin/urea/K{sub 2}CO{sub 3} and role of nitrogen in pore development in activated carbon are discussed on the basis of the results mentioned above.

  10. Performance of multilayer coated silicon pore optics

    Science.gov (United States)

    Ackermann, M. D.; Collon, M. J.; Jensen, C. P.; Christensen, F. E.; Krumrey, M.; Cibik, L.; Marggraf, S.; Bavdaz, M.; Lumb, D.; Shortt, B.

    2010-07-01

    The requirements for the IXO (International X-ray Observatory) telescope are very challenging in respect of angular resolution and effective area. Within a clear aperture with 1.7 m > R > 0.25 m that is dictated by the spacecraft envelope, the optics technology must be developed to satisfy simultaneously requirements for effective area of 2.5 m2 at 1.25 keV, 0.65 m2 at 6 keV and 150 cm2 at 30 keV. The reflectivity of the bare mirror substrate materials does not allow these requirements to be met. As such the IXO baseline design contains a coating layout that varies as a function of mirror radius and in accordance with the variation in grazing incidence angle. The higher energy photon response is enhanced through the use of depth-graded multilayer coatings on the inner radii mirror modules. In this paper we report on the first reflectivity measurements of wedged ribbed silicon pore optics mirror plates coated with a depth graded W/Si multilayer. The measurements demonstrate that the deposition and performance of the multilayer coatings is compatible with the SPO production process.

  11. Current concepts in nuclear pore electrophysiology.

    Science.gov (United States)

    Bustamante, José Omar

    2006-01-01

    Over 4 decades ago, microelectrode studies of in situ nuclei showed that, under certain conditions, the nuclear envelope (NE) behaves as a barrier opposing the nucleocytoplasmic flow of physiological ions. As the nuclear pore complexes (NPCs) of the NE are the only pathways for direct nucleocytoplasmic flow, those experiments implied that the NPCs are capable of restricting ion flow. These early studies validated electrophysiology as a useful approach to quantify some of the mechanisms by which NPCs mediate gene activity and expression. Since electron microscopy (EM) and other non-electrophysiological investigations, showed that the NPC lumen is a nanochannel, the opinion prevailed that the NPC could not oppose the flow of ions and, therefore, that electrophysiological observations resulted from technical artifacts. Consequently, the initial enthusiasm with nuclear electrophysiology faded out in less than a decade. In 1990, nuclear electrophysiology was revisited with patch-clamp, the most powerful electrophysiological technique to date. Patch-clamp has consistently demonstrated that the NE has intrinsic ion channel activity. Direct demonstrations of the NPC on-off ion channel gating behavior were published for artificial conditions in 1995 and for intact living nuclei in 2002. This on-off switching/gating behavior can be interpreted in terms of a metastable energy barrier. In the hope of advancing nuclear electrophysiology, and to complement the other papers contained in this special issue of the journal, here I review some of the main technical, experimental, and theoretical issues of the field, with special focus on NPCs.

  12. The hydraulic conductivity of sediments: A pore size perspective

    KAUST Repository

    Ren, X.W.; Santamarina, Carlos

    2017-01-01

    in the void ratio is higher than the theoretical value due to two concurrent phenomena: 1) percolating large pores are responsible for most of the flow, and 2) the larger pores close first during compaction. The prediction of hydraulic conductivity based

  13. Pore fluids from the argillaceous rocks of the Harwell region

    International Nuclear Information System (INIS)

    Brightman, M.A.; Bath, A.H.; Cave, M.R.; Darling, W.G.

    1985-06-01

    The aim of this work was to obtain samples of pore water from argillaceous formations in the Harwell area for chemical analysis to provide a background for radionuclide migration studies and regional groundwater flow pattern. This report describes the samples, development of a pore-water squeezing cell and its operation. Chemical and analytical studies are summarized. (UK)

  14. Fouling layer characterization and pore-blocking mechanisms in an ...

    African Journals Online (AJOL)

    Fouling layer characterization and pore-blocking mechanisms in an UF membrane externally coupled to a UASB reactor. ... Regarding pore-blocking mechanisms, standard blocking was the predominant mechanism at the beginning of filtration, coexisting at the end of it with cake filtration. In the first filtration cycle (1 h), after ...

  15. Molecular Dynamics Simulations of Hydrophilic Pores in Lipid Bilayers

    NARCIS (Netherlands)

    Leontiadou, Hari; Mark, Alan E.; Marrink, Siewert J.

    Hydrophilic pores are formed in peptide free lipid bilayers under mechanical stress. It has been proposed that the transport of ionic species across such membranes is largely determined by the existence of such meta-stable hydrophilic pores. To study the properties of these structures and understand

  16. The study of the relationship between pore structure and ...

    Indian Academy of Sciences (India)

    Administrator

    The pore structure was determined by the N2 adsorption/desorption method below. 73 K and calculated using the BJH model. TEM characterizations show that the pores are ... Mesoporous TiO2 was obtained by calcination of the gel at 500°C for 6 h in air to remove the surfactant species. The samples were designated as ...

  17. Pore size distribution in tablets measured with a morphological sieve

    NARCIS (Netherlands)

    Wu, Yu San; van Vliet, Lucas J.; Frijlink, Henderik W.; van der Voort Maarschalk, Kees

    2007-01-01

    Porosity and pore structure are important characteristics of tablets, since they influence mechanical strength and many other proper-ties. This paper proposes an alternative method for the characterization of pore structure based on image analysis of SEM micrographs. SEM images were made of sodium

  18. The Pore Structure of Direct Methanol Fuel Cell Electrodes

    DEFF Research Database (Denmark)

    Lund, Peter Brilner

    2005-01-01

    The pore structure and morphology of direct methanol fuel cell electrodes are characterized using mercury intrusion porosimetry and scanning electron microscopy. It is found that the pore size distributions of printed primer and catalyst layers are largely dictated by the powders used to make...

  19. Pore size determination from charged particle energy loss measurement

    International Nuclear Information System (INIS)

    Brady, F.P.; Armitage, B.H.

    1977-01-01

    A new method aimed at measuring porosity and mean pore size in materials has been developed at Harwell. The energy width or variance of a transmitted or backscattered charged particle beam is measured and related to the mean pore size via the assumption that the variance in total path length in the porous material is given by (Δx 2 )=na 2 , where n is the mean number of pores and a the mean pore size. It is shown on the basis of a general and rigorous theory of total path length distribution that this approximation can give rise to large errors in the mean pore size determination particularly in the case of large porosities (epsilon>0.5). In practice it is found that it is not easy to utilize fully the general theory because accurate measurements of the first four moments are required to determine the means and variances of the pore and inter-pore length distributions. Several models for these distributions are proposed. When these are incorporated in the general theory the determinations of mean pore size from experimental measurements on powder samples are in good agreement with values determined by other methods. (Auth.)

  20. A FILTRATION METHOD AND APPARATUS INCLUDING A ROLLER WITH PORES

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention offers a method for separating dry matter from a medium. A separation chamber is at least partly defined by a plurality of rollers (2,7) and is capable of being pressure regulated. At least one of the rollers is a pore roller (7) having a surface with pores allowing permeabi...

  1. Electrode material comprising graphene-composite materials in a graphite network

    Science.gov (United States)

    Kung, Harold H.; Lee, Jung K.

    2017-08-08

    A durable electrode material suitable for use in Li ion batteries is provided. The material is comprised of a continuous network of graphite regions integrated with, and in good electrical contact with a composite comprising graphene sheets and an electrically active material, such as silicon, wherein the electrically active material is dispersed between, and supported by, the graphene sheets.

  2. Polymer coating comprising 2-methoxyethyl acrylate units synthesized by surface-initiated atom transfer radical polymerization

    DEFF Research Database (Denmark)

    2011-01-01

    Source: US2012184029A The present invention relates to preparation of a polymer coating comprising or consisting of polymer chains comprising or consisting of units of 2-methoxyethyl acrylate synthesized by Surface-Initiated Atom Transfer Radical Polymerization (SI ATRP) such as ARGET SI ATRP...

  3. Method for recovering aroma concentrate from a caffeine- or theobromine-comprising food base material

    NARCIS (Netherlands)

    Kattenberg, H.R.; Willemsen, J.H.A.; Starmans, D.A.J.; Hoving, H.D.; Winters, M.G.M.

    2002-01-01

    Described is a method for recovering aroma concentrate from a caffeine- or theobromine-comprising food base material, such as coffee or tea, and in particular cocoa, at least comprising the steps of: introducing the food base material into an aqueous extractant and incubating the food base material

  4. Molecular sleds comprising a positively -charged amino acid sequence and a molecular cargo and uses thereof

    NARCIS (Netherlands)

    Mangel, F Walter; Blainey, Paul C; Graziano, Vito; Herrmann, Andreas; McGrath, William J; van Oijen, Antonius Martinus; Xie, Xiaoliang Sunney

    2014-01-01

    The present invention relates to compositions which may comprise a molecular sled linked to cargo and uses thereof. In particular, the present invention relates to a non-naturally occurring or engineered composition which may comprise a molecular sled, linkers and a molecular cargo connected to the

  5. Ball bearings comprising nickel-titanium and methods of manufacture thereof

    Science.gov (United States)

    DellaCorte, Christopher (Inventor); Glennon, Glenn N. (Inventor)

    2012-01-01

    Disclosed herein is a friction reducing nickel-titanium composition. The nickel-titanium composition includes a first phase that comprises nickel and titanium in an atomic ratio of about 0.45:0.55 to about 0.55:0.45; a second phase that comprises nickel and titanium in an atomic ratio of about 0.70:0.30 to about 0.80:0.20; and a third phase that comprises nickel and titanium in an atomic ratio of about 0.52:0.48 to about 0.62:0.38. A bearing for reducing friction comprising a nickel-titanium composition comprising a first phase that comprises nickel and titanium in an atomic ratio of about 0.45:0.55 to about 0.55:0.45; a second phase that comprises nickel and titanium in an atomic ratio of about 0.70:0.30 to about 0.80:0.20; and a third phase that comprises nickel and titanium in an atomic ratio of about 0.52:0.48 to about 0.62:0.38; where the bearing is free from voids and pinholes.

  6. Integrative structure and functional anatomy of a nuclear pore complex

    Science.gov (United States)

    Kim, Seung Joong; Fernandez-Martinez, Javier; Nudelman, Ilona; Shi, Yi; Zhang, Wenzhu; Raveh, Barak; Herricks, Thurston; Slaughter, Brian D.; Hogan, Joanna A.; Upla, Paula; Chemmama, Ilan E.; Pellarin, Riccardo; Echeverria, Ignacia; Shivaraju, Manjunatha; Chaudhury, Azraa S.; Wang, Junjie; Williams, Rosemary; Unruh, Jay R.; Greenberg, Charles H.; Jacobs, Erica Y.; Yu, Zhiheng; de La Cruz, M. Jason; Mironska, Roxana; Stokes, David L.; Aitchison, John D.; Jarrold, Martin F.; Gerton, Jennifer L.; Ludtke, Steven J.; Akey, Christopher W.; Chait, Brian T.; Sali, Andrej; Rout, Michael P.

    2018-03-01

    Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.

  7. Integrative structure and functional anatomy of a nuclear pore complex.

    Science.gov (United States)

    Kim, Seung Joong; Fernandez-Martinez, Javier; Nudelman, Ilona; Shi, Yi; Zhang, Wenzhu; Raveh, Barak; Herricks, Thurston; Slaughter, Brian D; Hogan, Joanna A; Upla, Paula; Chemmama, Ilan E; Pellarin, Riccardo; Echeverria, Ignacia; Shivaraju, Manjunatha; Chaudhury, Azraa S; Wang, Junjie; Williams, Rosemary; Unruh, Jay R; Greenberg, Charles H; Jacobs, Erica Y; Yu, Zhiheng; de la Cruz, M Jason; Mironska, Roxana; Stokes, David L; Aitchison, John D; Jarrold, Martin F; Gerton, Jennifer L; Ludtke, Steven J; Akey, Christopher W; Chait, Brian T; Sali, Andrej; Rout, Michael P

    2018-03-22

    Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.

  8. X-ray microtomography application in pore space reservoir rock

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.F.S.; Lima, I. [Nuclear Instrumentation Laboratory, COPPE/UFRJ, P.O. Box 68509, 21.941-972, Rio de Janeiro (Brazil); Borghi, L. [Geology Department, Geosciences Institute, Federal University of Rio de Janeiro, Brazil. (Brazil); Lopes, R.T., E-mail: ricardo@lin.ufrj.br [Nuclear Instrumentation Laboratory, COPPE/UFRJ, P.O. Box 68509, 21.941-972, Rio de Janeiro (Brazil)

    2012-07-15

    Characterization of porosity in carbonate rocks is important in the oil and gas industry since a major hydrocarbons field is formed by this lithology and they have a complex media porous. In this context, this research presents a study of the pore space in limestones rocks by x-ray microtomography. Total porosity, type of porosity and pore size distribution were evaluated from 3D high resolution images. Results show that carbonate rocks has a complex pore space system with different pores types at the same facies. - Highlights: Black-Right-Pointing-Pointer This study is about porosity parameter in carbonate rocks by 3D X-Ray Microtomography. Black-Right-Pointing-Pointer This study has become useful as data input for modeling reservoir characterization. Black-Right-Pointing-Pointer This technique was able to provide pores, grains and mineralogical differences among the samples.

  9. HYDROXYETHYL METHACRYLATE BASED NANOCOMPOSITE HYDROGELS WITH TUNABLE PORE ARCHITECTURE

    Directory of Open Access Journals (Sweden)

    Erhan Bat

    2016-10-01

    Full Text Available Hydroxyethyl methacrylate (HEMA based hydrogels have found increasing number of applications in areas such as chromatographic separations, controlled drug release, biosensing, and membrane separations. In all these applications, the pore size and pore interconnectivity are crucial for successful application of these materials as they determine the rate of diffusion through the matrix. 2-Hydroxyethyl methacrylate is a water soluble monomer but its polymer, polyHEMA, is not soluble in water. Therefore, during polymerization of HEMA in aqueous media, a porous structure is obtained as a result of phase separation. Pore size and interconnectivity in these hydrogels is a function of several variables such as monomer concentration, cross-linker concentration, temperature etc. In this study, we investigated the effect of monomer concentration, graphene oxide addition or clay addition on hydrogel pore size, pore interconnectivity, water uptake, and thermal properties. PolyHEMA hydrogels have been prepared by redox initiated free radical polymerization of the monomer using ethylene glycol dimethacrylate as a cross-linker. As a nanofiller, a synthetic hectorite Laponite® XLG and graphene oxide were used. Graphene oxide was prepared by the Tour Method. Pore morphology of the pristine HEMA based hydrogels and nanocomposite hydrogels were studied by scanning electron microscopy. The formed hydrogels were found to be highly elastic and flexible. A dramatic change in the pore structure and size was observed in the range between 22 to 24 wt/vol monomer at 0.5 % of cross-linker. In this range, the hydrogel morphology changes from typical cauliflower architecture to continuous hydrogel with dispersed water droplets forming the pores where the pores are submicron in size and show an interconnected structure. Such controlled pore structure is highly important when these hydrogels are used for solute diffusion or when there’s flow through monolithic hydrogels

  10. A statistical image analysis framework for pore-free islands derived from heterogeneity distribution of nuclear pore complexes.

    Science.gov (United States)

    Mimura, Yasuhiro; Takemoto, Satoko; Tachibana, Taro; Ogawa, Yutaka; Nishimura, Masaomi; Yokota, Hideo; Imamoto, Naoko

    2017-11-24

    Nuclear pore complexes (NPCs) maintain cellular homeostasis by mediating nucleocytoplasmic transport. Although cyclin-dependent kinases (CDKs) regulate NPC assembly in interphase, the location of NPC assembly on the nuclear envelope is not clear. CDKs also regulate the disappearance of pore-free islands, which are nuclear envelope subdomains; this subdomain gradually disappears with increase in homogeneity of the NPC in response to CDK activity. However, a causal relationship between pore-free islands and NPC assembly remains unclear. Here, we elucidated mechanisms underlying NPC assembly from a new perspective by focusing on pore-free islands. We proposed a novel framework for image-based analysis to automatically determine the detailed 'landscape' of pore-free islands from a large quantity of images, leading to the identification of NPC intermediates that appear in pore-free islands with increased frequency in response to CDK activity. Comparison of the spatial distribution between simulated and the observed NPC intermediates within pore-free islands showed that their distribution was spatially biased. These results suggested that the disappearance of pore-free islands is highly related to de novo NPC assembly and indicated the existence of specific regulatory mechanisms for the spatial arrangement of NPC assembly on nuclear envelopes.

  11. A highly stable zeotype mesoporous zirconium metal-organic framework with ultralarge pores.

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Dawei; Wang, Kecheng; Su, Jie; Liu, Tian-Fu; Park, Jihye; Wei, Zhangwen; Bosch, Mathieu; Yakovenko, Andrey; Zou, Xiaodong; Zhou, Hong-Cai

    2015-01-02

    Through topological rationalization, a zeotype mesoporous Zr-containing metal-organic framework (MOF), namely PCN-777, has been designed and synthesized. PCN-777 exhibits the largest cage size of 3.8nm and the highest pore volume of 2.8cm(3)g(-1) among reported Zr-MOFs. Moreover, PCN-777 shows excellent stability in aqueous environments, which makes it an ideal candidate as a support to incorporate different functional moieties. Through facile internal surface modification, the interaction between PCN-777 and different guests can be varied to realize efficient immobilization

  12. Pore Scale Dynamics of Microemulsion Formation.

    Science.gov (United States)

    Unsal, Evren; Broens, Marc; Armstrong, Ryan T

    2016-07-19

    Experiments in various porous media have shown that multiple parameters come into play when an oleic phase is displaced by an aqueous solution of surfactant. In general, the displacement efficiency is improved when the fluids become quasi-miscible. Understanding the phase behavior oil/water/surfactant systems is important because microemulsion has the ability to generate ultralow interfacial tension (microemulsion formation and the resulting properties under equilibrium conditions. However, the majority of applications where microemulsion is present also involve flow, which has received relatively less attention. It is commonly assumed that the characteristics of an oil/water/surfactant system under flowing conditions are identical to the one under equilibrium conditions. Here, we show that this is not necessarily the case. We studied the equilibrium phase behavior of a model system consisting of n-decane and an aqueous solution of olefin sulfonate surfactant, which has practical applications for enhanced oil recovery. The salt content of the aqueous solution was varied to provide a range of different microemulsion compositions and oil-water interfacial tensions. We then performed microfluidic flow experiments to study the dynamic in situ formation of microemulsion by coinjecting bulk fluids of n-decane and surfactant solution into a T-junction capillary geometry. A solvatochromatic fluorescent dye was used to obtain spatially resolved compositional information. In this way, we visualized the microemulsion formation and the flow of it along with the excess phases. A complex interaction between the flow patterns and the microemulsion properties was observed. The formation of microemulsion influenced the flow regimes, and the flow regimes affected the characteristics of the microemulsion formation. In particular, at low flow rates, slug flow was observed, which had profound consequences on the pore scale mixing behavior and resulting microemulsion properties.

  13. Synthesis and Characterization of Wooden Magnetic Activated Carbon Fibers with Hierarchical Pore Structures

    Directory of Open Access Journals (Sweden)

    Dongna Li

    2018-04-01

    Full Text Available Wooden magnetic activated carbon fibers (WMACFs with hierarchical pore structures were obtained by adding magnetic iron oxide (Fe3O4 nanoparticles into the liquefied wood. The structures and properties of WMACFs were analyzed by scanning electronmicroscopy (SEM, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, N2 adsorption, and vibrating sample magnetometer (VSM. The results showed that WMACFs had high Brunauer-Emmett-Teller (BET surface area (1578 m2/g and total pore volume (0.929 cm3/g, of which 45% was the contribution of small mesopores of 2–3 nm. It is believed that Fe3O4 nanoparticles play an important role in the formation of hierarchical pores. With the Fe3O4 content increasing, the yield rate of WMACFs decreased, and the Fe3O4 crystal plane diffraction peaks and characteristic adsorption peaks were obviously observed. At the same time, it was also found that WMACFs had favorable magnetic properties when the Fe3O4 content was above 1.5%. As a result, WMACFs could be a promising candidate for high efficiency, low cost, and convenient separation for the magnetic field.

  14. Pore-Structure-Optimized CNT-Carbon Nanofibers from Starch for Rechargeable Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Yongjin Jeong

    2016-12-01

    Full Text Available Porous carbon materials are used for many electrochemical applications due to their outstanding properties. However, research on controlling the pore structure and analyzing the carbon structures is still necessary to achieve enhanced electrochemical properties. In this study, mesoporous carbon nanotube (CNT-carbon nanofiber electrodes were developed by heat-treatment of electrospun starch with carbon nanotubes, and then applied as a binder-free electrochemical electrode for a lithium-ion battery. Using the unique lamellar structure of starch, mesoporous CNT-carbon nanofibers were prepared and their pore structures were controlled by manipulating the heat-treatment conditions. The activation process greatly increased the volume of micropores and mesopores of carbon nanofibers by etching carbons with CO2 gas, and the Brunauer-Emmett-Teller (BET specific area increased to about 982.4 m2·g−1. The activated CNT-carbon nanofibers exhibited a high specific capacity (743 mAh·g−1 and good cycle performance (510 mAh·g−1 after 30 cycles due to their larger specific surface area. This condition presents many adsorption sites of lithium ions, and higher electrical conductivity, compared with carbon nanofibers without CNT. The research suggests that by controlling the heat-treatment conditions and activation process, the pore structure of the carbon nanofibers made from starch could be tuned to provide the conditions needed for various applications.

  15. The Pore-scale modeling of multiphase flows in reservoir rocks using the lattice Boltzmann method

    Science.gov (United States)

    Mu, Y.; Baldwin, C. H.; Toelke, J.; Grader, A.

    2011-12-01

    Digital rock physics (DRP) is a new technology to compute the physical and fluid flow properties of reservoir rocks. In this approach, pore scale images of the porous rock are obtained and processed to create highly accurate 3D digital rock sample, and then the rock properties are evaluated by advanced numerical methods at the pore scale. Ingrain's DRP technology is a breakthrough for oil and gas companies that need large volumes of accurate results faster than the current special core analysis (SCAL) laboratories can normally deliver. In this work, we compute the multiphase fluid flow properties of 3D digital rocks using D3Q19 immiscible LBM with two relaxation times (TRT). For efficient implementation on GPU, we improved and reformulated color-gradient model proposed by Gunstensen and Rothmann. Furthermore, we only use one-lattice with the sparse data structure: only allocate memory for pore nodes on GPU. We achieved more than 100 million fluid lattice updates per second (MFLUPS) for two-phase LBM on single Fermi-GPU and high parallel efficiency on Multi-GPUs. We present and discuss our simulation results of important two-phase fluid flow properties, such as capillary pressure and relative permeabilities. We also investigate the effects of resolution and wettability on multiphase flows. Comparison of direct measurement results with the LBM-based simulations shows practical ability of DRP to predict two-phase flow properties of reservoir rock.

  16. Modeling pore corrosion in normally open gold- plated copper connectors.

    Energy Technology Data Exchange (ETDEWEB)

    Battaile, Corbett Chandler; Moffat, Harry K.; Sun, Amy Cha-Tien; Enos, David George; Serna, Lysle M.; Sorensen, Neil Robert

    2008-09-01

    The goal of this study is to model the electrical response of gold plated copper electrical contacts exposed to a mixed flowing gas stream consisting of air containing 10 ppb H{sub 2}S at 30 C and a relative humidity of 70%. This environment accelerates the attack normally observed in a light industrial environment (essentially a simplified version of the Battelle Class 2 environment). Corrosion rates were quantified by measuring the corrosion site density, size distribution, and the macroscopic electrical resistance of the aged surface as a function of exposure time. A pore corrosion numerical model was used to predict both the growth of copper sulfide corrosion product which blooms through defects in the gold layer and the resulting electrical contact resistance of the aged surface. Assumptions about the distribution of defects in the noble metal plating and the mechanism for how corrosion blooms affect electrical contact resistance were needed to complete the numerical model. Comparisons are made to the experimentally observed number density of corrosion sites, the size distribution of corrosion product blooms, and the cumulative probability distribution of the electrical contact resistance. Experimentally, the bloom site density increases as a function of time, whereas the bloom size distribution remains relatively independent of time. These two effects are included in the numerical model by adding a corrosion initiation probability proportional to the surface area along with a probability for bloom-growth extinction proportional to the corrosion product bloom volume. The cumulative probability distribution of electrical resistance becomes skewed as exposure time increases. While the electrical contact resistance increases as a function of time for a fraction of the bloom population, the median value remains relatively unchanged. In order to model this behavior, the resistance calculated for large blooms has been weighted more heavily.

  17. Superplastically foaming method to make closed pores inclusive porous ceramics

    International Nuclear Information System (INIS)

    Kishimoto, Akira; Hayashi, Hidetaka

    2011-01-01

    Porous ceramics incorporates pores to improve several properties including thermal insulation maintaining inherenet ceramic properties such as corrosion resistance and large mechanical strength. Conventional porous ceramics is usually fabricated through an insufficient sintering. Since the sintering accompanies the exclusion of pores, it must be terminated at the early stage to maintain the high porosity, leading to degraded strength and durability. Contrary to this, we have innovated superplastically foaming method to make ceramic foams only in the solid state. In this method, the previously inserted foam agent evaporates after the full densification of matrix at around the sintering temperature. Closed pores expand utilizing the superplastic deformation driven by the evolved gas pressure. The typical features of this superplastically foaming method are listed as follows, 1. The pores are introduced after sintering the solid polycrystal. 2. Only closed pores are introduced, improving the insulation of gas and sound in addition to heat. 3. The pore walls are fully densified expecting a large mechanical strength. 4. Compared with the melt foaming method, this method is practical because the fabrication temperature is far below the melting point and it does not need molds. 5. The size and the location pores can be controlled by the amount and position of the foam agent.

  18. Pore formation by actinoporins, cytolysins from sea anemones.

    Science.gov (United States)

    Rojko, Nejc; Dalla Serra, Mauro; Maček, Peter; Anderluh, Gregor

    2016-03-01

    Actinoporins (APs) from sea anemones are ~20 kDa pore forming toxins with a β-sandwich structure flanked by two α-helices. The molecular mechanism of APs pore formation is composed of several well-defined steps. APs bind to membrane by interfacial binding site composed of several aromatic amino acid residues that allow binding to phosphatidylcholine and specific recognition of sphingomyelin. Subsequently, the N-terminal α-helix from the β-sandwich has to be inserted into the lipid/water interphase in order to form a functional pore. Functional studies and single molecule imaging revealed that only several monomers, 3-4, oligomerise to form a functional pore. In this model the α-helices and surrounding lipid molecules build toroidal pore. In agreement, AP pores are transient and electrically heterogeneous. On the contrary, crystallized oligomers of actinoporin fragaceatoxin C were found to be composed of eight monomers with no lipids present between the adjacent α-helices. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Maur Dalla Serra and Franco Gambale. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Nuclear Pore-Like Structures in a Compartmentalized Bacterium.

    Directory of Open Access Journals (Sweden)

    Evgeny Sagulenko

    Full Text Available Planctomycetes are distinguished from other Bacteria by compartmentalization of cells via internal membranes, interpretation of which has been subject to recent debate regarding potential relations to Gram-negative cell structure. In our interpretation of the available data, the planctomycete Gemmata obscuriglobus contains a nuclear body compartment, and thus possesses a type of cell organization with parallels to the eukaryote nucleus. Here we show that pore-like structures occur in internal membranes of G.obscuriglobus and that they have elements structurally similar to eukaryote nuclear pores, including a basket, ring-spoke structure, and eight-fold rotational symmetry. Bioinformatic analysis of proteomic data reveals that some of the G. obscuriglobus proteins associated with pore-containing membranes possess structural domains found in eukaryote nuclear pore complexes. Moreover, immunogold labelling demonstrates localization of one such protein, containing a β-propeller domain, specifically to the G. obscuriglobus pore-like structures. Finding bacterial pores within internal cell membranes and with structural similarities to eukaryote nuclear pore complexes raises the dual possibilities of either hitherto undetected homology or stunning evolutionary convergence.

  20. Impedance nanopore biosensor: influence of pore dimensions on biosensing performance.

    Science.gov (United States)

    Kant, Krishna; Yu, Jingxian; Priest, Craig; Shapter, Joe G; Losic, Dusan

    2014-03-07

    Knowledge about electrochemical and electrical properties of nanopore structures and the influence of pore dimensions on these properties is important for the development of nanopore biosensing devices. The aim of this study was to explore the influence of nanopore dimensions (diameter and length) on biosensing performance using non-faradic electrochemical impedance spectroscopy (EIS). Nanoporous alumina membranes (NPAMs) prepared by self-ordered electrochemical anodization of aluminium were used as model nanopore sensing platforms. NPAMs with different pore diameters (25-65 nm) and lengths (4-18 μm) were prepared and the internal pore surface chemistry was modified by covalently attaching streptavidin and biotin. The performance of this antibody nanopore biosensing platform was evaluated using various concentrations of biotin as a model analyte. EIS measurements of pore resistivity and conductivity were carried out for pores with different diameters and lengths. The results showed that smaller pore dimensions of 25 nm and pore lengths up to 10 μm provide better biosensing performance.

  1. Novel Techniques to Characterize Pore Size of Porous Materials

    KAUST Repository

    Alabdulghani, Ali J.

    2016-01-01

    Porous materials are implemented in several industrial applications such as water desalination, gas separation and pharmaceutical care which they are mainly governed by the pore size and the PSD. Analyzing shale reservoirs are not excluded from these applications and numerous advantages can be gained by evaluating the PSD of a given shale reservoir. Because of the limitations of the conventional characterization techniques, novel methods for characterizing the PSD have to be proposed in order to obtain better characterization results for the porous materials, in general, and shale rocks in particular. Thus, permporosimetry and evapoporometry (EP) technologies were introduced, designed and utilized for evaluating the two key parameters, pore size and pore size distribution. The pore size and PSD profiles of different shale samples from Norway and Argentina were analyzed using these technologies and then confirmed by mercury intrusion porosimeter (MIP). Norway samples showed an average pore diameter of 12.94 nm and 19.22 nm with an average diameter of 13.77 nm and 23.23 nm for Argentina samples using permporosimetry and EP respectively. Both techniques are therefore indicative of the heterogeneity of the shales. The results from permporosimetry are in good agreement with those obtained from MIP technique, but EP for most part over-estimates the average pore size. The divergence of EP results compared to permporosimetry results is referred to the fact that the latter technique measures only the active pores which is not the case with the former technique. Overall, both techniques are complementary to each other which the results from both techniques seem reasonable and reliable and provide two simple techniques to estimate the pore size and pore size distributions for shale rocks.

  2. Novel Techniques to Characterize Pore Size of Porous Materials

    KAUST Repository

    Alabdulghani, Ali J.

    2016-04-24

    Porous materials are implemented in several industrial applications such as water desalination, gas separation and pharmaceutical care which they are mainly governed by the pore size and the PSD. Analyzing shale reservoirs are not excluded from these applications and numerous advantages can be gained by evaluating the PSD of a given shale reservoir. Because of the limitations of the conventional characterization techniques, novel methods for characterizing the PSD have to be proposed in order to obtain better characterization results for the porous materials, in general, and shale rocks in particular. Thus, permporosimetry and evapoporometry (EP) technologies were introduced, designed and utilized for evaluating the two key parameters, pore size and pore size distribution. The pore size and PSD profiles of different shale samples from Norway and Argentina were analyzed using these technologies and then confirmed by mercury intrusion porosimeter (MIP). Norway samples showed an average pore diameter of 12.94 nm and 19.22 nm with an average diameter of 13.77 nm and 23.23 nm for Argentina samples using permporosimetry and EP respectively. Both techniques are therefore indicative of the heterogeneity of the shales. The results from permporosimetry are in good agreement with those obtained from MIP technique, but EP for most part over-estimates the average pore size. The divergence of EP results compared to permporosimetry results is referred to the fact that the latter technique measures only the active pores which is not the case with the former technique. Overall, both techniques are complementary to each other which the results from both techniques seem reasonable and reliable and provide two simple techniques to estimate the pore size and pore size distributions for shale rocks.

  3. Can The Pore Scale Geometry Explain Soil Sample Scale Hydrodynamic Properties?

    Directory of Open Access Journals (Sweden)

    Sarah Smet

    2018-04-01

    Full Text Available For decades, the development of new visualization techniques has brought incredible insights into our understanding of how soil structure affects soil function. X-ray microtomography is a technique often used by soil scientists but challenges remain with the implementation of the procedure, including how well the samples represent the uniqueness of the pore network and structure and the systemic compromise between sample size and resolution. We, therefore, chose to study soil samples from two perspectives: a macroscopic scale with hydrodynamic characterization and a microscopic scale with structural characterization through the use of X-ray microtomography (X-ray μCT at a voxel size of 21.53 μm3 (resampled at 433 μm3. The objective of this paper is to unravel the relationships between macroscopic soil properties and microscopic soil structure. The 24 samples came from an agricultural field (Cutanic Luvisol and the macroscopic hydrodynamic properties were determined using laboratory measurements of the saturated hydraulic conductivity (Ks, air permeability (ka, and retention curves (SWRC. The X-ray μCT images were segmented using a global method and multiple microscopic measurements were calculated. We used Bayesian statistics to report the credible correlation coefficients and linear regressions models between macro- and microscopic measurements. Due to the small voxel size, we observed unprecedented relationships, such as positive correlations between log(Ks and a μCT global connectivity indicator, the fractal dimension of the μCT images or the μCT degree of anisotropy. The air permeability measured at a water matric potential of −70 kPa was correlated to the average coordination number and the X-ray μCT porosity, but was best explained by the average pore volume of the smallest pores. Continuous SWRC were better predicted near saturation when the pore-size distributions calculated on the X-ray μCT images were used as model input. We

  4. A Three-Dimensional Pore-Scale Model for Non-Wetting Phase Mobilization with Ferrofluid

    Science.gov (United States)

    Wang, N.; Prodanovic, M.

    2017-12-01

    Ferrofluid, a stable dispersion of paramagnetic nanoparticles in water, can generate a distributed pressure difference across the phase interface in an immiscible two-phase flow under an external magnetic field. In water-wet porous media, this non-uniform pressure difference may be used to mobilize the non-wetting phase, e.g. oil, trapped in the pores. Previous numerical work by Soares et al. of two-dimensional single-pore model showed enhanced non-wetting phase recovery with water-based ferrofluid under certain magnetic field directions and decreased recovery under other directions. However, the magnetic field selectively concentrates in the high magnetic permeability ferrofluid which fills the small corners between the non-wetting phase and the solid wall. The magnetic field induced pressure is proportional to the square of local magnetic field strength and its normal component, and makes a significant impact on the non-wetting phase deformation. The two-dimensional model omitted the effect of most of these corners and is not sufficient to compute the magnetic-field-induced pressure difference or to predict the non-wetting blob deformation. Further, it is not clear that 3D effects on magnetic field in an irregular geometry can be approximated in 2D. We present a three-dimensional immiscible two-phase flow model to simulate the deformation of a non-wetting liquid blob in a single pore filled with a ferrofluid under a uniform external magnetic field. The ferrofluid is modeled as a uniform single phase because the nanoparticles are 104 times smaller than the pore. The open source CFD solver library OpenFOAM is used for the simulations based on the volume of fluid method. Simulations are performed in a converging-diverging channel model on different magnetic field direction, different initial oil saturations, and different pore shapes. Results indicate that the external magnetic field always stretches the non-wetting blob away from the solid channel wall. A magnetic

  5. Pore Structures in the Biomineralized Byssus of Anomia simplex

    DEFF Research Database (Denmark)

    Frølich, Simon; Leemreize, Hanna; Thomsen, Jesper Skovhus

    2016-01-01

    that uses a biomineralized byssus to permanently anchor itself to substrates. The byssus has a highly complex hierarchical structure and contains over 90 wt% CaCO3. The byssus features a complex set of porosities, presumed to be highly important for the function of the attachment system. The pore space...... is the main focus of the present work. We characterize the three dimensional distribution of pore spaces in the byssus using micro-computed tomography (µCT) through a combination of in house CT and high-resolution synchrotron CT. The pore structures are observed to fall into distinct categories in various...

  6. Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure

    Science.gov (United States)

    Sachtler, W.M.H.; Huang, Y.Y.

    1998-07-28

    Methods are disclosed for the preparation of new sulfated mesoporous zirconia materials/catalysts with crystalline pore walls of predominantly tetragonal crystal structure, characterized by nitrogen physical sorption measurement, X-ray diffraction, transmission electron microscopy and catalytic tests using n-butane isomerization to iso-butane and alkylation of 1-naphthol with 4-tert-butylstyrene as probe reactions. Sulfate deposition is preferred for the transformation of a mesoporous precursor with amorphous pore walls into a material with crystalline pore walls maintaining the mesoporous characteristics. 17 figs.

  7. Tension-induced vesicle fusion: pathways and pore dynamics

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2008-01-01

    and eventually opens a pore to complete the fusion process. In pathway II, at higher tension, a stalk is formed during the fusion process that is then transformed by transmembrane pore formation into a fusion pore. Whereas the latter pathway II resembles stalk pathways as observed in other simulation studies......, fusion pathway I, which does not involve any stalk formation, has not been described previously to the best of our knowledge. A statistical analysis of the various processes shows that fusion is the dominant pathway for releasing the tension of the vesicles. The functional dependence of the observed...

  8. Time evolution of pore system in lime - Pozzolana composites

    Science.gov (United States)

    Doleželová, Magdaléna; Čáchová, Monika; Scheinherrová, Lenka; Keppert, Martin

    2017-11-01

    The lime - pozzolana mortars and plasters are used in restoration works on building cultural heritage but these materials are also following the trend of energy - efficient solutions in civil engineering. Porosity and pore size distribution is one of crucial parameters influencing engineering properties of porous materials. The pore size distribution of lime based system is changing in time due to chemical processes occurring in the material. The present paper describes time evolution of pore system in lime - pozzolana composites; the obtained results are useful in prediction of performance of lime - pozzolana systems in building structures.

  9. Alignment of Carbon Nanotubes Comprising Magnetically Sensitive Metal Oxides in Nanofluids

    Science.gov (United States)

    Hong, Haiping (Inventor); Peterson, G. P. " Bud" (Inventor)

    2016-01-01

    The present invention is a nanoparticle mixture or suspension or nanofluid comprising nonmagnetically sensitive nanoparticles, magnetically sensitive nanoparticles, and surfactant(s). The present invention also relates to methods of preparing and using the same.

  10. Combination Comprising Parthenolide For Use In The Treatment Of Alzheimer's Disease And Other Neurodegenerative Disorders

    KAUST Repository

    Bajic, Vladimir B.; Essack, Magbubah

    2015-01-01

    The present invention generally concerns particular methods and compositions for treatment of a neurodegenerative disease, such as Alzheimer's Disease. In particular embodiments, there is a composition comprising Parthenolide and a second agent

  11. Modelling bentonite pore waters for the Swiss high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Curti, E.

    1993-11-01

    The main objective of this investigation is to contribute to definition of representative compositions of bentonite pore waters in the near-field of the Swiss repository for high-level radioactive waste. Such compositions are necessary for determining the solubility limits of radionuclides for the safety analysis KRISTALLIN I. The model developed here is based on the premise, supported by experimental data, that the composition of bentonite pore waters is largely controlled by the dissolution or precipitation of reactive trace solids in bentonite. Selectivity constants for the exchange equilibria among Na-K, Na-Ca, and Ca-Mg were derived from water-bentonite interaction experiments performed for NAGRA by the British Geological Survey (BGS). An important parameter for the prediction of radionuclide solubilities is the oxidation potential of the bentonite water. Since the BGS experiments yielded no information on this, the oxidation potential had to be estimated from model assumptions. Bentonite pore waters were defined by computer simulation with the geochemical code MINEQL. They have been modelled in a closed system, i.e. assuming the bentonite, once it has reacted with a fixed volume of groundwater, does not exchange further chemical species with an external reservoir. No attempt was made to model the evolution of the pore water by simulating diffusive exchange processes. It can be anticipated that uncertainties in the concentrations of some major elements (e.g. Al, Si) will not significantly affect the calculated radionuclide solubilities. The latter will depend primarily on the concentrations of a few major ligands (OH - , Cl - and CO 3 -2 ) and, for multivalent elements, also on the oxidation potential of the solution. (author) 10 figs., 22 tabs., 40 refs

  12. Photodetection, photon event localization and position tomography device comprising a gammagraphy camera equipped wit such devices

    International Nuclear Information System (INIS)

    Jatteau, M.R.

    1984-01-01

    This device of photodetection and photon event (and noticeably scintillations) localization comprises at least a photomultiplier tube with unique photomultiplying structure and in front of this tube, a net of juxtaposed conduction metal wires excited by voltage pulses. This net comprises only 2n metallic wires to assure the localization of 2sup(2n) possible positions, and that is one of its characteristics [fr

  13. A simulation of earthquake induced undrained pore pressure ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Plains, Kandla River and Gulf of Kachch, between .... We consider the role of induced pore pressure ... location of the Bhuj earthquake epicentre as estimated by US Geological Survey. .... war R 2001 Changes in Ocean; GIS @ development 5.

  14. A Natural Chimeric Pseudomonas Bacteriocin with Novel Pore-Forming Activity Parasitizes the Ferrichrome Transporter.

    Science.gov (United States)

    Ghequire, Maarten G K; Kemland, Lieselore; Anoz-Carbonell, Ernesto; Buchanan, Susan K; De Mot, René

    2017-02-21

    Modular bacteriocins represent a major group of secreted protein toxins with a narrow spectrum of activity, involved in interference competition between Gram-negative bacteria. These antibacterial proteins include a domain for binding to the target cell and a toxin module at the carboxy terminus. Self-inhibition of producers is provided by coexpression of linked immunity genes that transiently inhibit the toxin's activity through formation of bacteriocin-immunity complexes or by insertion in the inner membrane, depending on the type of toxin module. We demonstrate strain-specific inhibitory activity for PmnH, a Pseudomonas bacteriocin with an unprecedented dual-toxin architecture, hosting both a colicin M domain, potentially interfering with peptidoglycan synthesis, and a novel colicin N-type domain, a pore-forming module distinct from the colicin Ia-type domain in Pseudomonas aeruginosa pyocin S5. A downstream-linked gene product confers PmnH immunity upon susceptible strains. This protein, ImnH, has a transmembrane topology similar to that of Pseudomonas colicin M-like and pore-forming immunity proteins, although homology with either of these is essentially absent. The enhanced killing activity of PmnH under iron-limited growth conditions reflects parasitism of the ferrichrome-type transporter for entry into target cells, a strategy shown here to be used as well by monodomain colicin M-like bacteriocins from pseudomonads. The integration of a second type of toxin module in a bacteriocin gene could offer a competitive advantage against bacteria displaying immunity against only one of both toxic activities. IMPORTANCE In their continuous struggle for ecological space, bacteria face a huge load of contenders, including phylogenetically related strains that compete for the same niche. One important group of secreted antibacterial proteins assisting in eliminating these rivals are modular bacteriocins of Gram-negative bacteria, comprising a domain for docking onto the

  15. Diffusion in the pore water of compacted crushed salt

    Energy Technology Data Exchange (ETDEWEB)

    Fluegge, Judith; Herr, Sebastian; Lauke, Thomas; Meleshyn, Artur; Miehe, Ruediger; Ruebel, Andre

    2016-07-15

    Diffusion of dissolved radionuclides in the pore water of compacted crushed salt in the long-term is the most relevant process for the release of radionuclides from a dedicated repository for high-level waste in a salt formation as has been shown in latest safety assessments and research projects /BUH 16/. So far, diffusion coefficients for free water have been applied for the diffusion in pore water in models for long-term safety assessments. This conservative assumption was used, because data on the diffusion coefficient of dissolved substances in crushed salt have been missing. Furthermore, the diffusion coefficient in the pore water was assumed to be constant and independent from the degree of compaction of the crushed salt. The work presented in this report was intended to contribute to fill this gap of knowledge about how the diffusion of radionuclides takes place in the compacted backfill of a repository in salt. For the first time, the pore diffusion coefficient as well as its dependence on the porosity of the crushed salt was determined experimentally by means of through-diffusion experiments using caesium as tracer. The results achieved in this project suggest that the diffusion in compacted crushed salt is not fully comparable to that in a homogeneous, temporally stable porous medium like sand or clay. The results obtained from four diffusion experiments show a remarkably different behaviour and all yield unique concentration versus time plots which includes highly temporal variable tracer fluxes with even full interruptions of the flux for longer periods of time. This effect cannot be explained by assuming a tracer transport by diffusion in a temporarily invariant pore space and / or under temporally invariant experimental conditions. From our point of view, a restructuring of the pore space seems to lead to closed areas of pore water in the sample which may open up again after some time, leading to a variable pore space and hence variable diffusive

  16. Wettability impact on supercritical CO2 capillary trapping: Pore-scale visualization and quantification

    Science.gov (United States)

    Hu, Ran; Wan, Jiamin; Kim, Yongman; Tokunaga, Tetsu K.

    2017-08-01

    How the wettability of pore surfaces affects supercritical (sc) CO2 capillary trapping in geologic carbon sequestration (GCS) is not well understood, and available evidence appears inconsistent. Using a high-pressure micromodel-microscopy system with image analysis, we studied the impact of wettability on scCO2 capillary trapping during short-term brine flooding (80 s, 8-667 pore volumes). Experiments on brine displacing scCO2 were conducted at 8.5 MPa and 45°C in water-wet (static contact angle θ = 20° ± 8°) and intermediate-wet (θ = 94° ± 13°) homogeneous micromodels under four different flow rates (capillary number Ca ranging from 9 × 10-6 to 8 × 10-4) with a total of eight conditions (four replicates for each). Brine invasion processes were recorded and statistical analysis was performed for over 2000 images of scCO2 saturations, and scCO2 cluster characteristics. The trapped scCO2 saturation under intermediate-wet conditions is 15% higher than under water-wet conditions under the slowest flow rate (Ca ˜ 9 × 10-6). Based on the visualization and scCO2 cluster analysis, we show that the scCO2 trapping process in our micromodels is governed by bypass trapping that is enhanced by the larger contact angle. Smaller contact angles enhance cooperative pore filling and widen brine fingers (or channels), leading to smaller volumes of scCO2 being bypassed. Increased flow rates suppress this wettability effect.

  17. Investigation of pore-scale flow physics in porous media burners

    Science.gov (United States)

    Sobhani, Sadaf; Muhunthan, Priyanka; Boigne, Emeric; Mohaddes, Danyal; Ihme, Matthias; Stanford University Team

    2017-11-01

    Porous media burners (PMBs) operate on the principle that the solid porous matrix serves as a means of internally recirculating heat from the combustion products upstream to the reactants, enabling a reduction of the lean-flammability limit, higher power dynamic range, and lower NOx and CO emissions as compared to conventional systems. Accurate predictions of the flow features and properties such as pressure loss in reticulated ceramic foams is an important step in the characterization and optimization of combustion in porous media. In this work, an integrated framework is proposed from obtaining the porous sample to performing a computational fluid dynamics simulation, including X-ray microtomography scanning, digital topology rendering, and volume meshing. Three-dimensional numerical simulations of the flow in the complex geometries of porous foams are obtained by solution of the Navier-Stokes equations using an unstructured, finite-volume solver. This capability enables the investigation of pore-scale flow physics in a wide range of porous materials used in PMBs. In this talk, results obtained at pore-scale Reynolds numbers of order 10 to 100 in a Silicone Carbide foam are presented to demonstrate this capability.

  18. Pore water sampling in acid sulfate soils: a new peeper method.

    Science.gov (United States)

    Johnston, Scott G; Burton, Edward D; Keene, Annabelle F; Bush, Richard T; Sullivan, Leigh A; Isaacson, Lloyd

    2009-01-01

    This study describes the design, deployment, and application of a modified equilibration dialysis device (peeper) optimized for sampling pore waters in acid sulfate soils (ASS). The modified design overcomes the limitations of traditional-style peepers, when sampling firm ASS materials over relatively large depth intervals. The new peeper device uses removable, individual cells of 25 mL volume housed in a 1.5 m long rigid, high-density polyethylene rod. The rigid housing structure allows the device to be inserted directly into relatively firm soils without requiring a supporting frame. The use of removable cells eliminates the need for a large glove-box after peeper retrieval, thus simplifying physical handling. Removable cells are easily maintained in an inert atmosphere during sample processing and the 25-mL sample volume is sufficient for undertaking multiple analyses. A field evaluation of equilibration times indicates that 32 to 38 d of deployment was necessary. Overall, the modified method is simple and effective and well suited to acquisition and processing of redox-sensitive pore water profiles>1 m deep in acid sulfate soil or any other firm wetland soils.

  19. Interactions between bedforms, turbulence and pore flow

    Science.gov (United States)

    Blois, G.; Best, J.; Sambrook Smith, G.; Hardy, R. J.; Lead, J.

    2010-12-01

    A widespread occurrence of flow-form interaction in rivers is represented by subaqueous bedforms such as dunes. Many models have been proposed to explain how bedform generation and evolution are driven by turbulent flow structures that control the incipient motion of cohesionless sediments and later bedform development. However, most of these models have assumed such bedforms to be migrating over an impermeable bed, and that any surface-subsurface flow interaction is negligible. However, for some gravel-bed rivers the porosity can be high, up to 43%, which may result in significant flow both through the permeable bed (hyporheic flow) and across the surface-subsurface interface. The mass and momentum exchange occurring at the interface may have a strong impact on the structure of turbulent flow in the near-bed region. In the case of a dune, its topography induces a local pressure gradient that enhances flow across the interface. This results in a flow structure that may be radically different from that commonly proposed by past work. This paper presents results from a simplified laboratory model akin to a fine-grained bedform generated on top of a coarser sediment bed. Particle imaging velocimetry (PIV) measurements were conducted in order to characterise flow both over and underneath an idealised 2-dimensional dune (0.41 m long, 0.056 m high and having a leeside angle of 27°) overlaying a packed bed of uniform size spheres (D = 0.04 m diameter). Experiments were conducted in free surface flow conditions (Froude number = 0.1; Reynolds number = 25,000) for one bedform height: flow depth ratio (0.31). The flow above the dune was measured using a standard PIV technique while a novel endoscopic PIV (EPIV) system allowed collection of flow data within the pore spaces beneath the dune. The results show that topographically-induced subsurface flow significantly modifies the structure of flow in the leeside of the dune, resulting in a flow field that is radically different

  20. Uranium in US surface, ground, and domestic waters. Volume 2

    International Nuclear Information System (INIS)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms

  1. Rock Physics of Reservoir Rocks with Varying Pore Water Saturation and Pore Water Salinity

    DEFF Research Database (Denmark)

    Katika, Konstantina

    experiments, the rock is subjected to high external stresses that resemble the reservoir stresses; 2) the fluid distribution within the pore space changes during the flow through experiments and wettability alterations may occur; 3) different ions, present in the salt water injected in the core, interact......Advanced waterflooding (injection of water with selective ions in reservoirs) is a method of enhanced oil recovery (EOR) that has attracted the interest of oil and gas companies that exploit the Danish oil and gas reservoirs. This method has been applied successfully in oil reservoirs...... and in the Smart Water project performed in a laboratory scale in order to evaluate the EOR processes in selected core plugs. A major step towards this evaluation is to identify the composition of the injected water that leads to increased oil recovery in reservoirs and to define changes in the petrophysical...

  2. Impact of Pore-Scale Wettability on Rhizosphere Rewetting

    Directory of Open Access Journals (Sweden)

    Pascal Benard

    2018-04-01

    Full Text Available Vast amounts of water flow through a thin layer of soil around the roots, the rhizosphere, where high microbial activity takes place—an important hydrological and biological hotspot. The rhizosphere was shown to turn water repellent upon drying, which has been interpreted as the effect of mucilage secreted by roots. The effects of such rhizosphere water dynamics on plant and microbial activity are unclear. Furthermore, our understanding of the biophysical mechanisms controlling the rhizosphere water repellency remains largely speculative. Our hypothesis is that the key to describe the emergence of water repellency lies within the microscopic distribution of wettability on the pore-scale. At a critical mucilage content, a sufficient fraction of pores is blocked and the rhizosphere turns water repellent. Here we tested whether a percolation approach is capable to predict the flow behavior near the critical mucilage content. The wettability of glass beads and sand mixed with chia seed mucilage was quantified by measuring the infiltration rate of water drops. Drop infiltration was simulated using a simple pore-network model in which mucilage was distributed heterogeneously throughout the pore space with a preference for small pores. The model approach proved capable to capture the percolation nature of the process, the sudden transition from wettable to water repellent and the high variability in infiltration rates near the percolation threshold. Our study highlights the importance of pore-scale distribution of mucilage in the emergent flow behavior across the rhizosphere.

  3. Pore growth in U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Jeong, G.Y.; Sohn, D.-S. [Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 689-798 (Korea, Republic of); Jamison, L.M. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2016-09-15

    U-Mo/Al dispersion fuel is currently under development in the DOE’s Material Management and Minimization program to convert HEU-fueled research reactors to LEU-fueled reactors. In some demanding conditions in high-power and high-performance reactors, large pores form in the interaction layers between the U-Mo fuel particles and the Al matrix, which pose a potential to cause fuel failure. In this study, comprehension of the formation and growth of these pores was explored. As a product, a model to predict pore growth and porosity increase was developed. The model includes three major topics: fission gas release from the U-Mo and the IL to the pores, stress evolution in the fuel meat, and the effect of amorphous IL growth. Well-characterized in-pile data from reduced-size plates were used to fit the model parameters. A data set from full-sized plates, independent and distinctively different from those used to fit the model parameters, was used to examine the accuracy of the model. The model showed fair agreement with the measured data. The model suggested that the growth of the IL has a critical effect on pore growth, as both its material properties and energetics are favorable to pore formation. Therefore, one area of the current effort, focused on suppressing IL growth, appears to be on the right track to improve the performance of this fuel.

  4. Software Image J to study soil pore distribution

    Directory of Open Access Journals (Sweden)

    Sabrina Passoni

    2014-04-01

    Full Text Available In the soil science, a direct method that allows the study of soil pore distribution is the bi-dimensional (2D digital image analysis. Such technique provides quantitative results of soil pore shape, number and size. The use of specific softwares for the treatment and processing of images allows a fast and efficient method to quantify the soil porous system. However, due to the high cost of commercial softwares, public ones can be an interesting alternative for soil structure analysis. The objective of this work was to evaluate the quality of data provided by the Image J software (public domain used to characterize the voids of two soils, characterized as Geric Ferralsol and Rhodic Ferralsol, from the southeast region of Brazil. The pore distribution analysis technique from impregnated soil blocks was utilized for this purpose. The 2D image acquisition was carried out by using a CCD camera coupled to a conventional optical microscope. After acquisition and treatment of images, they were processed and analyzed by the software Noesis Visilog 5.4® (chosen as the reference program and ImageJ. The parameters chosen to characterize the soil voids were: shape, number and pore size distribution. For both soils, the results obtained for the image total porosity (%, the total number of pores and the pore size distribution showed that the Image J is a suitable software to be applied in the characterization of the soil sample voids impregnated with resin.

  5. Pore opening dynamics in the exocytosis of serotonin

    Science.gov (United States)

    Ramirez-Santiago, Guillermo; Cercos, Montserrat G.; Martinez-Valencia, Alejandro; Salinas Hernandez, Israel; Rodríguez-Sosa, Leonardo; de-Miguel, Francisco F.

    2015-03-01

    The current view of the exocytosis of transmitter molecules is that it starts with the formation of a fusion pore that connects the intravesicular and the extracellular spaces, and is completed by the release of the rest of the transmitter contained in the vesicle upon the full fusion and collapse of the vesicle with the plasma membrane. However, under certain circumstances, a rapid closure of the pore before the full vesicle fusion produces only a partial release of the transmitter. Here we show that whole release of the transmitter occurs through fusion pores that remain opened for tens of milliseconds without vesicle collapse. This was demonstrated through amperometric measurements of serotonin release from electrodense vesicles in the axon of leech Retzius neurons and mathematical modelling. By modeling transmitter release with a diffusion equation subjected to boundary conditions that are defined by the experiment, we showed that those pores with a fast half rise time constant remained opened and allowed the full quantum release without vesicle collapse, whereas pores with a slow rise time constant closed rapidly, thus producing partial release. We conclude that a full transmitter release may occur through the fusion pore in the absence of vesicle collapse. This work was founded by a DGAPA-UNAM grants IN200914 and IN118410 CONACYT GRANT 130031, and CONACyT doctoral fellowships.

  6. Wettability effect on capillary trapping of supercritical CO2 at pore-scale: micromodel experiment and numerical modeling

    Science.gov (United States)

    Hu, R.; Wan, J.

    2015-12-01

    Wettability of reservoir minerals along pore surfaces plays a controlling role in capillary trapping of supercritical (sc) CO2 in geologic carbon sequestration. The mechanisms controlling scCO2 residual trapping are still not fully understood. We studied the effect of pore surface wettability on CO2 residual saturation at the pore-scale using engineered high pressure and high temperature micromodel (transparent pore networks) experiments and numerical modeling. Through chemical treatment of the micromodel pore surfaces, water-wet, intermediate-wet, and CO2-wet micromodels can be obtained. Both drainage and imbibition experiments were conducted at 8.5 MPa and 45 °C with controlled flow rate. Dynamic images of fluid-fluid displacement processes were recorded using a microscope with a CCD camera. Residual saturations were determined by analysis of late stage imbibition images of flow path structures. We performed direct numerical simulations of the full Navier-Stokes equations using a volume-of-fluid based finite-volume framework for the primary drainage and the followed imbibition for the micromodel experiments with different contact angles. The numerical simulations agreed well with our experimental observations. We found that more scCO2 can be trapped within the CO2-wet micromodel whereas lower residual scCO2 saturation occurred within the water-wet micromodels in both our experiments and the numerical simulations. These results provide direct and consistent evidence of the effect of wettability, and have important implications for scCO2 trapping in geologic carbon sequestration.

  7. Pore Effect on the Occurrence and Formation of Gas Hydrate in Permafrost of Qilian Mountain, Qinghai-Tibet Plateau, China

    Science.gov (United States)

    Gao, H.; Lu, H.; Lu, Z.

    2014-12-01

    Gas hydrates were found in the permafrost of Qilian Mountain, Qinghai- Tibet Plateau, China in 2008. It has been found that gas hydrates occur in Jurassic sedimentary rocks, and the hydrated gases are mainly thermogenic. Different from the gas hydrates existing in loose sands in Mallik, Mackenzie Delta, Canada and North Slope, Alaska, USA, the gas hydrates in Qilian Mountain occurred in hard rocks. For understanding the occurrence and formation mechanism of gas hydrate in hard rcok, extensive experimental investigations have been conducted to study the pore features and hydrate formation in the rocks recovered from the hydrate layers in Qilian Mountain. The structures of sedimentary rock were observed by high-resolution X-ray CT, and pore size distribution of a rock specimen was measured with the mercury-injection method. Methane hydrate was synthesized in water-saturated rocks, and the saturations of hydrate in sedimentary rocks of various types were estimated from the amount of gas released from certain volume of rock. X-ray CT observation revealed that fractures were developed in the rocks associated with faults, while those away from faults were generally with massive structure. The mercury-injection analysis of pore features found that the porosities of the hydrate-existing rocks were generally less than 3%, and the pore sizes were generally smaller than 100 nm. The synthesizing experiments found that the saturation of methane hydrate were generally lower than 6% of pore space in rocks, but up to 16% when fractures developed. The low hydrate saturation in Qilian sedimentary rocks has been found mainly due to the small pore size of rock. The low hydrate saturation in the rocks might be the reason for the failure of regional seismic and logging detections of gas hydrates in Qilian Mountain.

  8. Accurate relations between pore size and the pressure of capillary condensation and the evaporation of nitrogen in cylindrical pores.

    Science.gov (United States)

    Morishige, Kunimitsu; Tateishi, Masayoshi

    2006-04-25

    To examine the theoretical and semiempirical relations between pore size and the pressure of capillary condensation or evaporation proposed so far, we constructed an accurate relation between the pore radius and the capillary condensation and evaporation pressure of nitrogen at 77 K for the cylindrical pores of the ordered mesoporous MCM-41 and SBA-15 silicas. Here, the pore size was determined from a comparison between the experimental and calculated X-ray diffraction patterns due to X-ray structural modeling recently developed. Among the many theoretical relations that differ from each other in the degree of theoretical improvements, a macroscopic thermodynamic approach based on Broekhoff-de Boer equations was found to be in fair agreement with the experimental relation obtained in the present study.

  9. A free software for pore-scale modelling: solving Stokes equation for velocity fields and permeability values in 3D pore geometries

    KAUST Repository

    Gerke, Kirill; Vasilyev, Roman; Khirevich, Siarhei; Karsanina, Marina; Collins, Daniel; Korost, Dmitry; Mallants, Dirk

    2015-01-01

    In this contribution we introduce a novel free software which solves the Stokes equation to obtain velocity fields for low Reynolds-number flows within externally generated 3D pore geometries. Provided with velocity fields, one can calculate permeability for known pressure gradient boundary conditions via Darcy's equation. Finite-difference schemes of 2nd and 4th order of accuracy are used together with an artificial compressibility method to iteratively converge to a steady-state solution of Stokes' equation. This numerical approach is much faster and less computationally demanding than the majority of open-source or commercial softwares employing other algorithms (finite elements/volumes, lattice Boltzmann, etc.) The software consists of two parts: 1) a pre and post-processing graphical interface, and 2) a solver. The latter is efficiently parallelized to use any number of available cores (the speedup on 16 threads was up to 10-12 depending on hardware). Due to parallelization and memory optimization our software can be used to obtain solutions for 300x300x300 voxels geometries on modern desktop PCs. The software was successfully verified by testing it against lattice Boltzmann simulations and analytical solutions. To illustrate the software's applicability for numerous problems in Earth Sciences, a number of case studies have been developed: 1) identifying the representative elementary volume for permeability determination within a sandstone sample, 2) derivation of permeability/hydraulic conductivity values for rock and soil samples and comparing those with experimentally obtained values, 3) revealing the influence of the amount of fine-textured material such as clay on filtration properties of sandy soil. This work was partially supported by RSF grant 14-17-00658 (pore-scale modelling) and RFBR grants 13-04-00409-a and 13-05-01176-a.

  10. A free software for pore-scale modelling: solving Stokes equation for velocity fields and permeability values in 3D pore geometries

    KAUST Repository

    Gerke, Kirill

    2015-04-01

    In this contribution we introduce a novel free software which solves the Stokes equation to obtain velocity fields for low Reynolds-number flows within externally generated 3D pore geometries. Provided with velocity fields, one can calculate permeability for known pressure gradient boundary conditions via Darcy\\'s equation. Finite-difference schemes of 2nd and 4th order of accuracy are used together with an artificial compressibility method to iteratively converge to a steady-state solution of Stokes\\' equation. This numerical approach is much faster and less computationally demanding than the majority of open-source or commercial softwares employing other algorithms (finite elements/volumes, lattice Boltzmann, etc.) The software consists of two parts: 1) a pre and post-processing graphical interface, and 2) a solver. The latter is efficiently parallelized to use any number of available cores (the speedup on 16 threads was up to 10-12 depending on hardware). Due to parallelization and memory optimization our software can be used to obtain solutions for 300x300x300 voxels geometries on modern desktop PCs. The software was successfully verified by testing it against lattice Boltzmann simulations and analytical solutions. To illustrate the software\\'s applicability for numerous problems in Earth Sciences, a number of case studies have been developed: 1) identifying the representative elementary volume for permeability determination within a sandstone sample, 2) derivation of permeability/hydraulic conductivity values for rock and soil samples and comparing those with experimentally obtained values, 3) revealing the influence of the amount of fine-textured material such as clay on filtration properties of sandy soil. This work was partially supported by RSF grant 14-17-00658 (pore-scale modelling) and RFBR grants 13-04-00409-a and 13-05-01176-a.

  11. Electric circuit breaker comprising a plurality of vacuum interrupters simultaneously operated by a common operator

    Science.gov (United States)

    Barkan, Philip; Imam, Imdad

    1980-01-01

    This circuit breaker comprises a plurality of a vacuum-type circuit interrupters, each having a movable contact rod. A common operating device for the interrupters comprises a linearly-movable operating member. The interrupters are mounted at one side of the operating member with their movable contact rods extending in a direction generally toward the operating member. Means is provided for mechanically coupling the operating member to the contact rods, and this means comprises a plurality of insulating operating rods, each connected at one end to the operating member and at its opposite end to one of the movable contact rods. The operating rods are of substantially equal length and have longitudinal axes that converge and intersect at substantially a common point.

  12. MD simulation of organics adsorption from aqueous solution in carbon slit-like pores. Foundations of the pore blocking effect

    International Nuclear Information System (INIS)

    Gauden, Piotr A; Terzyk, Artur P; Furmaniak, Sylwester; Zieliński, Wojciech; Włoch, Jerzy; Kowalczyk, Piotr

    2014-01-01

    The results of systematic studies of organics adsorption from aqueous solutions (at the neutral pH level) in a system of slit-like carbon pores having different sizes and oxygen groups located at the pore mouth are reported. Using molecular dynamics simulations (GROMACS package) the properties of adsorbent–adsorbate (benzene, phenol or paracetamol) as well as adsorbent–water systems are discussed. After the introduction of surface oxygen functionalities, adsorption of organic compounds decreases (in accordance with experimental data) and this is caused by the accumulation of water molecules at pore entrances. The pore blocking effect decreases with the diameter of slits and practically vanishes for widths larger than approx. 0.68 nm. We observed the increase in phenol adsorption with the rise in temperature. Moreover, adsorbed molecules occupy the external surface of the slit pores (the entrances) in the case of oxidized adsorbents. Among the studied molecules benzene, phenol and paracetamol prefer an almost flat orientation and with the rise in the pore width the number of molecules oriented in parallel decreases. The decrease or increase in temperature (with respect to 298 K) leads to insignificant changes of angular orientation of adsorbed molecules. (paper)

  13. Semipermeable thin-film membranes comprising siloxane, alkoxysilyl and aryloxysilyl oligomers and copolymers

    Science.gov (United States)

    Babcock, Walter C.; Friesen, Dwayne T.

    1988-01-01

    Novel semiperimeable membranes and thin film composite (TFC) gas separation membranes useful in the separation of oxygen, nitrogen, hydrogen, water vapor, methane, carbon dioxide, hydrogen sulfide, lower hydrocarbons, and other gases are disclosed. The novel semipermeable membranes comprise the polycondensation reaction product of two complementary polyfunctional compounds, each having at least two functional groups that are mutually reactive in a condensation polymerization reaction, and at least one of which is selected from siloxanes, alkoxsilyls and aryloxysilyls. The TFC membrane comprises a microporous polymeric support, the surface of which has the novel semipermeable film formed thereon, preferably by interfacial polymerization.

  14. Long-pore Electrostatics in Inward-rectifier Potassium Channels

    Science.gov (United States)

    Robertson, Janice L.; Palmer, Lawrence G.; Roux, Benoît

    2008-01-01

    Inward-rectifier potassium (Kir) channels differ from the canonical K+ channel structure in that they possess a long extended pore (∼85 Å) for ion conduction that reaches deeply into the cytoplasm. This unique structural feature is presumably involved in regulating functional properties specific to Kir channels, such as conductance, rectification block, and ligand-dependent gating. To elucidate the underpinnings of these functional roles, we examine the electrostatics of an ion along this extended pore. Homology models are constructed based on the open-state model of KirBac1.1 for four mammalian Kir channels: Kir1.1/ROMK, Kir2.1/IRK, Kir3.1/GIRK, and Kir6.2/KATP. By solving the Poisson-Boltzmann equation, the electrostatic free energy of a K+ ion is determined along each pore, revealing that mammalian Kir channels provide a favorable environment for cations and suggesting the existence of high-density regions in the cytoplasmic domain and cavity. The contribution from the reaction field (the self-energy arising from the dielectric polarization induced by the ion's charge in the complex geometry of the pore) is unfavorable inside the long pore. However, this is well compensated by the electrostatic interaction with the static field arising from the protein charges and shielded by the dielectric surrounding. Decomposition of the static field provides a list of residues that display remarkable correspondence with existing mutagenesis data identifying amino acids that affect conduction and rectification. Many of these residues demonstrate interactions with the ion over long distances, up to 40 Å, suggesting that mutations potentially affect ion or blocker energetics over the entire pore. These results provide a foundation for understanding ion interactions in Kir channels and extend to the study of ion permeation, block, and gating in long, cation-specific pores. PMID:19001143

  15. Monitoring of bentonite pore water with a probe based on solid-state microsensors

    International Nuclear Information System (INIS)

    Orozco, Jahir; Baldi, Antoni; Martin, Pedro L.; Bratov, Andrei; Jimenez, Cecilia

    2006-01-01

    Repositories for the disposal of radioactive waste generally rely on a multi-barrier system to isolate the waste from the biosphere. This multi-barrier system typically comprises Natural geological barrier provided by the repository host rock and its surroundings and an engineered barrier system (EBS). Bentonite is being studied as an appropriated porous material for an EBS to prevent or delay the release and transport of radionuclides towards biosphere. The study of pore water chemistry within bentonite barriers will permit to understand the transport phenomena of radionuclides and obtain a database of the bentonite-water interaction processes. In this work, the measurement of some chemical parameters in bentonite pore water using solid-state microsensors is proposed. Those sensors are well suited for this application since in situ measurements are feasible and they are robust enough for the long periods of time that monitoring is needed in an EBS. A probe containing an ISFET (ion sensitive field effect transistor) for measuring pH, and platinum microelectrodes for measuring conductivity and redox potential was developed, together with the required instrumentation, to study the chemical changes in a test cell with compacted bentonite. Response features of the sensors' probe and instrumentation performance in synthetic samples with compositions similar to those present in bentonite barriers are reported. Measurements of sensors stability in a test cell are also presented

  16. Human nucleoporins promote HIV-1 docking at the nuclear pore, nuclear import and integration.

    Directory of Open Access Journals (Sweden)

    Francesca Di Nunzio

    Full Text Available The nuclear pore complex (NPC mediates nucleo-cytoplasmic transport of macromolecules and is an obligatory point of passage and functional bottleneck in the replication of some viruses. The Human Immunodeficiency Virus (HIV has evolved the required mechanisms for active nuclear import of its genome through the NPC. However the mechanisms by which the NPC allows or even assists HIV translocation are still unknown. We investigated the involvement of four key nucleoporins in HIV-1 docking, translocation, and integration: Nup358/RanBP2, Nup214/CAN, Nup98 and Nup153. Although all induce defects in infectivity when depleted, only Nup153 actually showed any evidence of participating in HIV-1 translocation through the nuclear pore. We show that Nup358/RanBP2 mediates docking of HIV-1 cores on NPC cytoplasmic filaments by interacting with the cores and that the C-terminus of Nup358/RanBP2 comprising a cyclophilin-homology domain contributes to binding. We also show that Nup214/CAN and Nup98 play no role in HIV-1 nuclear import per se: Nup214/CAN plays an indirect role in infectivity read-outs through its effect on mRNA export, while the reduction of expression of Nup98 shows a slight reduction in proviral integration. Our work shows the involvement of nucleoporins in diverse and functionally separable steps of HIV infection and nuclear import.

  17. Process for the separation of contaminant or mixture of contaminants from a Ch4-comprising gaseous feed streem

    NARCIS (Netherlands)

    2012-01-01

    The invention provides a process for the separation of a contaminant or mixture of contaminants from a CH4-comprising gaseous feed streem, comprising the subsequent steps of: a) passing a CH4-comprising gaseous feed streem comprising the contaminant or the mixture of contaminants in to and through a

  18. Role of uniform pore structure and high positive charges in the arsenate adsorption performance of Al13-modified montmorillonite

    International Nuclear Information System (INIS)

    Zhao, Shou; Feng, Chenghong; Huang, Xiangning; Li, Baohua; Niu, Junfeng; Shen, Zhenyao

    2012-01-01

    Highlights: ► Al 13 modification changes As(V) sorption mechanism of montmorillonites. ► Intercalated ion charges mainly affects As(V) adsorption kinetics. ► Uniform pore structure exhibit more excellent As(V) adsorption performance. - Abstract: Four modified montmorillonite adsorbents with varied Al 13 contents (i.e., Na-Mont, AC-Mont, PAC 20 -Mont, and Al 13 -Mont) were synthesized and characterized by N 2 adsorption/desorption, X-ray diffraction, and Fourier-transform infrared analyses. The arsenate adsorption performance of the four adsorbents were also investigated to determine the role of intercalated Al 13 , especially its high purity, high positive charge (+7), and special Keggin structure. With increased Al 13 content, the physicochemical properties (e.g., surface area, structural uniformity, basal spacing, and pore volume) and adsorption performance of the modified montmorillonites were significantly but disproportionately improved. The adsorption data well fitted the Freundlich and Redlich–Peterson isotherm model, whereas the kinetic data better correlated with the pseudo-second-order kinetic model. The arsenate sorption mechanism of the montmorillonites changed from physical to chemisorption after intercalation with Al 13 . Increasing charges of the intercalated ions enhanced the arsenate adsorption kinetics, but had minimal effect on the structural changes of the montmorillonites. The uniform pore structure formed by intercalation with high-purity Al 13 greatly enhanced the pore diffusion and adsorption rate of arsenate, resulting in the high adsorption performance of Al 13 -Mont.

  19. Adsorption and double layer charging in molecular sieve carbons in relation to molecular dimensions and pore structures

    International Nuclear Information System (INIS)

    Koresh, J.

    1982-09-01

    The pore structure of a fibrous carbon molecular sieve was studied by adsorption of molecular probes. Mild activation steps enabled the graduated opening of critical pore dimensions in the range 3.1-5.0 A, which keeps adsorption selectivity between molecules differing by 0.2 A in cross section diameter, to be considerably greater than 100/1. High adsorption stereospecificity over a wide pore dimension range enabled the studied adsorbates to be ordered in a sequence of increasing critical molecular dimension. Estimation of molecular dimensions by various experimental methods was discussed and their relevance to nonspherical molecules was evaluated. Polar molecules assume different dimensions depending on whether the carbon surface was polar (oxidized) or not. Hydrogen acquires, surprisingly, large width in accordance with its high liquid molar volume. Adsorbent-adsorbate interactions play a crucial role in determining molecular dimensions. Adsorption of ions from aqueous solutions into the developed ultramicropores of fibrous carbon electrodes was also studied. The dependence of the double layer capacitance and the charging rate on the pore critical dimension and on surface oxidation was studied using linear potential sweep voltametry. (Author)

  20. Comparison of Polytetrafluoroethylene Flat-Sheet Membranes with Different Pore Sizes in Application to Submerged Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Manabu Motoori

    2012-06-01

    Full Text Available This study focused on phase separation of activated sludge mixed liquor by flat-sheet membranes of polytetrafluoroethylene (PTFE. A 20 liter working volume lab-scale MBR incorporating immersed PTFE flat-sheet membrane modules with different pore sizes (0.3, 0.5 and 1.0 μm was operated for 19 days treating a synthetic wastewater. The experiment was interrupted twice at days 5 and 13 when the modules were removed and cleaned physically and chemically in sequence. The pure water permeate flux of each membrane module was measured before and after each cleaning step to calculate membrane resistances. Results showed that fouling of membrane modules with 0.3 μm pore size was more rapid than other membrane modules with different pore sizes (0.5 and 1.0 μm. On the other hand, it was not clear whether fouling of the 0.5 μm membrane module was more severe than that of the 1.0 μm membrane module. This was partly because of the membrane condition after chemical cleaning, which seemed to determine the fouling of those modules over the next period. When irreversible resistance (Ri i.e., differences in membrane resistance before use and after chemical cleaning was high, the transmembrane pressure increased quickly during the next period irrespective of membrane pore size.

  1. Rapid and selective adsorption of cationic dyes by a unique metal-organic framework with decorated pore surface

    Science.gov (United States)

    Zhang, Jie; Li, Fan; Sun, Qian

    2018-05-01

    Organic dye pollutants become a big headache due to their toxic nature to the environment, and it should be one of the best solutions if we can remove and separate them. Here, a metal-organic framework (MOF) (denoted as Zn-MOF) with carbonyl group based on fluorenone-2,7-dicarboxylate ligand, was directly synthesized without post-synthesis method and applied to selectively absorb cationic dyes such as MB, CV, RhB from aqueous solution, while anionic or neutral dyes were excluded. Characterization of the Zn-MOF was achieved by X-ray diffraction, scanning electron microscope, Fourier transform infrared spectrometry and elemental analysis. The Zn-MOF mainly possesses open pore channels, high surface area, big pore volume, and most important, the pore surface is furnished with carbonyl groups arising from the ligand and pointing toward the centers of the large chambers of the framework, which are benefit for the adsorption of the cationic dyes. The MB maximum adsorption capacities can attain 326 mg g-1, which is probably due to the suitable pore size, higher solvent-accessible void, and the prominent adsorption capacity of the mesoporous material. The dye adsorption process for the material is proven to be charge-selective and size-selective, and the adsorption isotherms, as well as kinetics characteristic of dye adsorption onto the Zn-MOF were also investigated.

  2. 3-D pore-scale resolved model for coupled species/charge/fluid transport in a vanadium redox flow battery

    International Nuclear Information System (INIS)

    Qiu Gang; Joshi, Abhijit S.; Dennison, C.R.; Knehr, K.W.; Kumbur, E.C.; Sun Ying

    2012-01-01

    The vanadium redox flow battery (VRFB) has emerged as a viable grid-scale energy storage technology that offers cost-effective energy storage solutions for renewable energy applications. In this paper, a novel methodology is introduced for modeling of the transport mechanisms of electrolyte flow, species and charge in the VRFB at the pore scale of the electrodes; that is, at the level where individual carbon fiber geometry and electrolyte flow are directly resolved. The detailed geometry of the electrode is obtained using X-ray computed tomography (XCT) and calibrated against experimentally determined pore-scale characteristics (e.g., pore and fiber diameter, porosity, and surface area). The processed XCT data is then used as geometry input for modeling of the electrochemical processes in the VRFB. The flow of electrolyte through the pore space is modeled using the lattice Boltzmann method (LBM) while the finite volume method (FVM) is used to solve the coupled species and charge transport and predict the performance of the VRFB under various conditions. An electrochemical model using the Butler–Volmer equations is used to provide species and charge coupling at the surfaces of the carbon fibers. Results are obtained for the cell potential distribution, as well as local concentration, overpotential and current density profiles under galvanostatic discharge conditions. The cell performance is investigated as a function of the electrolyte flow rate and external drawing current. The model developed here provides a useful tool for building the structure–property–performance relationship of VRFB electrodes.

  3. Hydrodeoxygenation of heavy oils derived from low-temperature coal gasification over NiW catalysts-effect of pore structure

    Energy Technology Data Exchange (ETDEWEB)

    Dieter Leckel [Sasol Technology Research and Development, Sasolburg (South Africa). Fischer-Tropsch Refinery Catalysis

    2008-01-15

    The effect of the pore structure on the hydroprocessing of heavy distillate oils derived from low-temperature coal gasification residues was studied using four NiW catalysts with different pore size distributions. The hydroprocessing was conducted at a pressure of 17.5 MPa, a temperature range of 370-410{sup o}C, and a 0.50 h{sup -1} space velocity. The degree of hydrodeoxygenation (HDO) in terms of phenolics removal was influenced by the catalyst pore structure, with the most preferable peak pore diameter for HDO ranging between 6.8 and 16 nm. The catalyst with the highest volume of pores in the 3.5-6 nm range showed the lowest HDO activity. The apparent activation energies for the HDO reaction varied between 59 and 87 kJ/mol, whereby the lowest values are obtained for the catalysts with a peak pore diameter of 11 and 16 nm. 30 refs., 5 figs., 6 tabs.

  4. The application of the pore population balance method to the calculation of the radiolytic weight loss and gas transport property changes of nuclear graphites

    International Nuclear Information System (INIS)

    Johnson, P.A.V.

    1982-01-01

    A pore population balance equation, previously used to describe the physical property changes of porous carbons during thermal oxidation in carbon dioxide, has been modified to treat the radiolytic oxidation of graphite in CO 2 /CO/CH 4 gas mixtures. Good agreement has been obtained between theory and experiment for the variation in the gas transport coefficients B, K and lambda of gilsonite graphite with absorbed radiation dose. Calculations indicate that the addition of blind pores to the transport porosity, and an allowance for the opening of closed pores with burn-off, do not account for the experimental fractional weight loss curve. An excellent fit is obtained, however, if a small volume of cylindrical pores of a mean radius approximately equal to the diffusion length of oxidising species in the coolant are present in the pore size spectrum. Gilsonite graphite therefore behaves as if the pore size distribution function is trimodal, with mean radii at about 0.5μm, 2.48μm and greater than or equal to 10.57μm. (author)

  5. On the predictivity of pore-scale simulations: estimating uncertainties with multilevel Monte Carlo

    KAUST Repository

    Icardi, Matteo

    2016-02-08

    A fast method with tunable accuracy is proposed to estimate errors and uncertainties in pore-scale and Digital Rock Physics (DRP) problems. The overall predictivity of these studies can be, in fact, hindered by many factors including sample heterogeneity, computational and imaging limitations, model inadequacy and not perfectly known physical parameters. The typical objective of pore-scale studies is the estimation of macroscopic effective parameters such as permeability, effective diffusivity and hydrodynamic dispersion. However, these are often non-deterministic quantities (i.e., results obtained for specific pore-scale sample and setup are not totally reproducible by another “equivalent” sample and setup). The stochastic nature can arise due to the multi-scale heterogeneity, the computational and experimental limitations in considering large samples, and the complexity of the physical models. These approximations, in fact, introduce an error that, being dependent on a large number of complex factors, can be modeled as random. We propose a general simulation tool, based on multilevel Monte Carlo, that can reduce drastically the computational cost needed for computing accurate statistics of effective parameters and other quantities of interest, under any of these random errors. This is, to our knowledge, the first attempt to include Uncertainty Quantification (UQ) in pore-scale physics and simulation. The method can also provide estimates of the discretization error and it is tested on three-dimensional transport problems in heterogeneous materials, where the sampling procedure is done by generation algorithms able to reproduce realistic consolidated and unconsolidated random sphere and ellipsoid packings and arrangements. A totally automatic workflow is developed in an open-source code [2015. https://bitbucket.org/micardi/porescalemc.], that include rigid body physics and random packing algorithms, unstructured mesh discretization, finite volume solvers

  6. Instrument comprising a cable or tube provided provided with a propulsion device

    NARCIS (Netherlands)

    Breedveld, P.

    2006-01-01

    The invention relates to an instrument (1) comprising a cable or tube (3), at a distal end of which a propulsion device (4) is provided for moving the cable or tube in a hollow space, the propulsion device being shaped like a donut lying in a plane at right angles to the longitudinal direction of

  7. Optical device comprising a cantilever and method of fabrication and use thereof

    NARCIS (Netherlands)

    Iannuzzi, Davide; Deladi, S.; Elwenspoek, Michael Curt

    2008-01-01

    The present invention provides an optical device, comprising an optical fiber and a cantilever that is arranged on an end of the optical fiber; The cantilever may be an integral part of the optical fiber, and may have a length that is substantially equal to a diameter of the optical fiber.

  8. Optical device comprising a cantilever and method of fabrication and use thereof

    NARCIS (Netherlands)

    Iannuzzi, Davide; Deladi, S.; Elwenspoek, Michael Curt

    2011-01-01

    The present invention provides an optical device, comprising an optical fiber and a cantilever that is arranged on an end of the optical fiber; The cantilever may be an integral part of the optical fiber, and may have a length that is substantially equal to a diameter of the optical fiber.

  9. Photomlxer for terahertz electromagnetic wave emission comprising quantum dots in a laser cavity

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a photomixer for generating terahertz electromagnetic radiation in response to illumination by a time-modulated optical signal. The photomixer (300) comprises a carrier substrate (310) with a plurality of quantum dots arranged in an emission region (308) thereof...

  10. Light source comprising a common substrate, a first led device and a second led device

    Science.gov (United States)

    Choong, Vi-En

    2010-02-23

    At least one stacked organic or polymeric light emitting diode (PLEDs) devices to comprise a light source is disclosed. At least one of the PLEDs includes a patterned cathode which has regions which transmit light. The patterned cathodes enable light emission from the PLEDs to combine together. The light source may be top or bottom emitting or both.

  11. Hydroformylation catalyst comprising a complex with ligands having a structure derived from bisphenol A

    NARCIS (Netherlands)

    2002-01-01

    Ethylenically unsaturated compounds are hydroformylated in the presence of a hydroformylation catalyst comprising at least one complex of a metal of transition group VIII with at least one phosphorus-containing compound as ligand, where this compound contains two groups which contain P atoms and are

  12. Structural and biophysical characterization of an antimicrobial peptide chimera comprised of lactoferricin and lactoferrampin

    NARCIS (Netherlands)

    Haney, E.F.; Nazmi, K.; Bolscher, J.G.M.; Vogel, H.J.

    2012-01-01

    Lactoferricin and lactoferrampin are two antimicrobial peptides found in the N-terminal lobe of bovine lactoferrin with broad spectrum antimicrobial activity against a range of Gram-positive and Gram-negative bacteria as well as Candida albicans. A heterodimer comprised of lactoferrampin joined to a

  13. Compositions and methods comprising cellulase variants with reduced affinity to non-cellulosic materials

    Energy Technology Data Exchange (ETDEWEB)

    Cascao-Pereira, Luis; Kaper, Thijs; Kelemen, Bradley R.; Liu, Amy D.

    2017-07-04

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having reduced binding to non-cellulosic materials. Also described are nucleic acids encoding the cellulase, compositions comprising said cellulase, methods of identifying cellulose variants and methods of using the compositions.

  14. Compositions and methods comprising cellulase variants with reduced affinity to non-cellulosic materials

    Science.gov (United States)

    Cascao-Pereira, Luis G.; Kaper, Thijs; Kelemen, Bradley R; Liu, Amy D.

    2012-08-07

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having reduced binding to non-cellulosic materials. Also described are nucleic acids encoding the cellulase, compositions comprising said cellulase, methods of identifying cellulose variants and methods of using the compositions.

  15. Compositions and methods comprising cellulase variants with reduced affinity to non-cellulosic materials

    Energy Technology Data Exchange (ETDEWEB)

    Cascao-Pereira, Luis G; Kaper, Thijs; Kelemen, Bradley R; Liu, Amy D

    2015-04-07

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having reduced binding to non-cellulosic materials. Also described are nucleic acids encoding the cellulase, compositions comprising said cellulase, methods of identifying cellulose variants and methods of using the compositions.

  16. Semiconductor sensor device, diagnostic instrument comprising such a device and method of manufacturing such a device

    NARCIS (Netherlands)

    2010-01-01

    The invention relates to a semiconductor sensor device (10) for sensing a substance comprising at least one mesa- shaped semiconductor region (11) which is formed on a surface of a semiconductor body (12) and which is connected at a first end to a first electrically conducting connection region (13)

  17. Nanoscale Cross-Point Resistive Switching Memory Comprising p-Type SnO Bilayers

    KAUST Repository

    Hota, Mrinal Kanti; Hedhili, Mohamed N.; Wang, Qingxiao; Melnikov, Vasily; Mohammed, Omar F.; Alshareef, Husam N.

    2015-01-01

    Reproducible low-voltage bipolar resistive switching is reported in bilayer structures of p-type SnO films. Specifically, a bilayer homojunction comprising SnOx (oxygen-rich) and SnOy (oxygen-deficient) in nanoscale cross-point (300 × 300 nm2

  18. X-ray diffraction device comprising cooling medium connections provided on the x-ray tube

    NARCIS (Netherlands)

    1996-01-01

    An X-ray diffraction device comprises a water-cooled X-ray tube which exhibits a line focus as well as, after rotation through 90 DEG , a point focus. Contrary to customary X-ray tubes, the cooling water is not supplied via the housing (12) in which the X-ray tube is mounted, but the cooling water

  19. Coordinated operation of a neighborhood of smart households comprising electric vehicles, energy storage and distributed generation

    NARCIS (Netherlands)

    Paterakis, N.G.; Erdinc, O.; Pappi, I.N.; Bakirtzis, A.G.; Catalao, J.P.S.

    2016-01-01

    In this paper, the optimal operation of a neighborhood of smart households in terms of minimizing the total energy procurement cost is analyzed. Each household may comprise several assets such as electric vehicles, controllable appliances, energy storage and distributed generation. Bi-directional

  20. Polymer foam comprising a polymer and nanoparticles, and nanoparticles for the manufacture of such foam.

    NARCIS (Netherlands)

    Vancso, Gyula J.; Duvigneau, Joost; Nederkoorn, P.H.J.; Wassing, T.

    2014-01-01

    A polymer foam is produced comprising a polymer and nanoparticles having a maximum dimensionof 750 nm, which foam has cells with an average cell size of at most 1 µm and a cell density of at least 1012 cells/ml, wherein polymeric grafts have been attached to the nanoparticles. The nanoparticles may

  1. Combination Comprising Parthenolide For Use In The Treatment Of Alzheimer's Disease And Other Neurodegenerative Disorders

    KAUST Repository

    Bajic, Vladimir B.

    2015-06-18

    The present invention generally concerns particular methods and compositions for treatment of a neurodegenerative disease, such as Alzheimer\\'s Disease. In particular embodiments, there is a composition comprising Parthenolide and a second agent, including an inhibitor of TLR4/MD-2/CD14, nAChR agonist, Resatorvid, Curcumin, Tilorone or a Tilorone analog, or a combination thereof.

  2. Study of pore pressure reaction on hydraulic fracturing

    Science.gov (United States)

    Trimonova, Mariia; Baryshnikov, Nikolay; Turuntaev, Sergey; Zenchenko, Evgeniy; Zenchenko, Petr

    2017-04-01

    We represent the results of the experimental study of the hydraulic fracture propagation influence on the fluid pore pressure. Initial pore pressure was induced by injection and production wells. The experiments were carried out according to scaling analysis based on the radial model of the fracture. All required geomechanical and hydrodynamical properties of a sample were derived from the scaling laws. So, gypsum was chosen as a sample material and vacuum oil as a fracturing fluid. The laboratory setup allows us to investigate the samples of cylindrical shape. It can be considered as an advantage in comparison with standard cubic samples, because we shouldn't consider the stress field inhomogeneity induced by the corners. Moreover, we can set 3D-loading by this setting. Also the sample diameter is big enough (43cm) for placing several wells: the fracturing well in the center and injection and production wells on two opposite sides of the central well. The experiment consisted of several stages: a) applying the horizontal pressure; b) applying the vertical pressure; c) water solution injection in the injection well with a constant pressure; d) the steady state obtaining; e) the oil injection in the central well with a constant rate. The pore pressure was recorded in the 15 points along bottom side of the sample during the whole experiment. We observe the pore pressure change during all the time of the experiment. First, the pore pressure changed due to water injection. Then we began to inject oil in the central well. We compared the obtained experimental data on the pore pressure changes with the solution of the 2D single-phase equation of pore-elasticity, and we found significant difference. The variation of the equation parameters couldn't help to resolve the discrepancy. After the experiment, we found that oil penetrated into the sample before and after the fracture initiation. This fact encouraged us to consider another physical process - the oil

  3. Rare earth elements in pore waters from Cabo Friós western boundary upwelling system

    Science.gov (United States)

    Smoak, J. M.; Silva-Filho, E. V.; Rousseau, T.; Albuquerque, A. L.; Caldeira, P. P.; Moreira, M.

    2015-12-01

    Rare earth elements (REE) are a group of reactive trace elements in aqueous media, they have a coherent chemical behavior with however a subtle and gradual shift in physicochemical properties allowing their use as tracers of sources and processes. Uncertainties on their oceanic inputs and outputs still remains [Arsouze et al., 2009; Siddall et al., 2008; Tachikawa et al., 2003]. The water-sediment interface were early on identified as a relevant REE source due to the high distribution coefficient between sediments and pore waters [Elderfield and Sholkovitz, 1987] and substantially higher concentration then the water column [Abbott et al., 2015; Haley et al., 2004; Sholkovitz et al., 1989; Soyol-Erdene and Huh, 2013]. Here we present a cross shelf transect of 4 short pore waters REE profiles on a 680 km2 mud bank located in the region of Cabo Frio, Brazil. This study reveals similar trends at the four sites: a REE production zone reflected by a maximum in concentration at the top of the sediment evolving with depth toward a REE consumption zone reflected by a minimum in REE concentrations. PAAS normalized patterns shows 1) a progressive depletion in LREE with depth with HREE/LREE ratios comprised between 1.1 and 1.6 in the 2 first centimeters evolving gradually to ratios comprised between 2.8 and 4.7 above 7 cm 2) A sharp gradient in negative Ce anomaly with Ce/Ce* values reaching 0.3. With maximum Nd concentrations comprised between 780 and 1200 pmol.kg and considering that seawater Nd concentrations of Brazilian shelf bottom waters are comprised between 24 and 50 pmol.Kg-1 we apply the Fick´s First Law of diffusion and estimate that 340 +/- 90 nmol. m-2 Y-1 of Nd is released in the Cabo frio´s mudbank. This flux is in the same order of magnitude of recent estimates by [Abbott et al., 2015] in the slope of Oregon´s margin. Unraveling processes responsible for the REE production zone will help to refine the global REE fluxes estimates.

  4. Acoustic characteristics of sand sediment with circular cylindrical pores

    International Nuclear Information System (INIS)

    Roh, Heui-Seol; Lee, Kang-Il; Yoon, Suk-Wang

    2004-01-01

    The acoustic pressure transmission coefficient and the phase velocity are experimentally measured as functions of the frequency and the porosity in sand sediment slabs with circular cylindrical pores filled with water and air. They are also theoretically estimated with the modified Biot-Attenborough (MBA) model, which uses a separate treatment of the viscous and the thermal effects in a non-rigid porous medium with water- and air-filled cylindrical pores. In this study, the fast (first kind) wave and the slow (second kind) wave are not separated in the transmitted signals through a sediment slab without the circular cylindrical pores, but they are separated in the transmitted signals through a sediment slab with pores. Both the phase velocities and the transmission coefficients of the fast wave and the slow wave in the sediment slabs with water- and air-filled cylindrical pores are sensitive to the air and the water porosities. It is proposed that the fast and the slow waves have opposite behaviors for several acoustic characteristics. The generalized tortuosity factor and the dynamic shape factor are introduced from the acoustic characteristics of the fast wave. The experimental results show reasonable agreement with the theoretical results estimated with the MBA model. These results suggest the possibility of predicting the acoustic characteristics of a sediment as functions of arbitrary water and air porosities. This study may also be applicable to understanding acoustic wave propagations in a bubbly liquid sediment for underwater applications and in cancellous bone for the diagnosis of osteoporosis.

  5. Blocking of Single α-Hemolysin Pore by Rhodamine Derivatives.

    Science.gov (United States)

    Rokitskaya, Tatyana I; Nazarov, Pavel A; Golovin, Andrey V; Antonenko, Yuri N

    2017-06-06

    Measurements of ion conductance through α-hemolysin pore in a bilayer lipid membrane revealed blocking of the ion channel by a series of rhodamine 19 and rhodamine B esters. The longest dwell closed time of the blocking was observed with rhodamine 19 butyl ester (C4R1), whereas the octyl ester (C8R1) was of poor effect. Voltage asymmetry in the binding kinetics indicated that rhodamine derivatives bound to the stem part of the aqueous pore lumen. The binding frequency was proportional to a quadratic function of rhodamine concentrations, thereby showing that the dominant binding species were rhodamine dimers. Two levels of the pore conductance and two dwell closed times of the pore were found. The dwell closed times lengthened as the voltage increased, suggesting impermeability of the channel for the ligands. Molecular docking analysis revealed two distinct binding sites within the lumen of the stem of the α-hemolysin pore for the C4R1 dimer, but only one binding site for the C8R1 dimer. The blocking of the α-hemolysin nanopore by rhodamines could be utilized in DNA sequencing as additional optical sensing owing to bright fluorescence of rhodamines if used for DNA labeling. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. MODERN ROUTES TO EXPLORE CONCRETE’S COMPLEX PORE SPACE

    Directory of Open Access Journals (Sweden)

    Piet Stroeven

    2011-05-01

    Full Text Available This paper concentrates on discrete element computer-simulation of concrete. It is argued on the basis of stochastic heterogeneity theory that modern concurrent-algorithm-based systems should be employed for the assessment of pore characteristics underlying durability performance of cementitious materials. The SPACE system was developed at Delft University of Technology for producing realistic schematizations of realcrete for a wide range of other particle packing problems, involving aggregate and fresh cement, and for the purpose of exploring characteristics in the hardened state of concrete, including of the pore network structure because of obvious durability problems. Since structure-sensitive properties are involved, schematization of reality should explicitly deal with the configuration of the cement particles in the fresh state. The paper concentrates on the stereological and mathematical morphology operations executed to acquire information on particle size, global porosity, and on distribution of porosity and of the connected pore fraction as a result of the near neighbourhood of aggregate grains. Goal is to provide information obtained along different exploration routes of concrete's pore space for setting up a pore network modelling approach. This type of methodological papers is scarce in concrete technology, if not missing at all. Technical publications that report on obtained results in our investigations are systematically referred to.

  7. X-ray Tomography and Impregnation Methods to Analyze Pore Space Hetrerogeneities at the Hydrated State

    International Nuclear Information System (INIS)

    Pret, D.; Ferrage, E.; Tertre, E.; Robinet, J.C.; Faurel, M.; Hubert, F.; Pelletier, M.; Bihannic, I.

    2013-01-01

    environmental conditions and preparations are used. In case of methods able to deal with wet atmospheres and nanometre resolution, sub-sampling millimetre or micrometre size hydrated samples without inducing shearing or fractures is also not still proven. Optimization of impregnation procedure for water saturated clay samples still plays a pivotal role for applying the most advanced imaging techniques at the nanometre scale. In addition, natural clay rocks in sedimentary basins or engineered barriers in deep repositories could not swell or shrink by changing their macroscopic volume. Such case corresponds to constrained swelling conditions that implies a distribution of pore and water highly contrasting with dry state and hydrated state in free swelling conditions. Moreover, swelling rate could potentially be limited down to the crystal scale. As probing in-situ the organization of hydrated and compacted clay materials into an odometer set-up is challenging, it is really poorly documented in literature. Note that opening an odometer setup and analyzing a sample is not a constrained swelling condition: immediate swelling and change of pore space occurs. Natural clayey rocks in sedimentary basins display additional spatial variations of mineral and porosity distributions with contrasted spatial frequencies or gradual evolutions due to sedimentation cycles, temporal evolutions of climate, variations of sources, diagenesis, etc. At the scale of a laboratory sample, geological history still imposes a heterogeneous spatial distribution of mineral and pore space down-scaling to the crystal scale. Localizing samples with a millimetre size or less against the heterogeneities encountered at larger scale is thus important before analyzing it with a nanometre resolution. The best is to follow a continuous down-scaling approach all along the characterization of the organization, keeping the sample in a similar state between each technique. Here we propose a method to fully impregnate up to

  8. Triconstituent co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas.

    Science.gov (United States)

    Liu, Ruili; Shi, Yifeng; Wan, Ying; Meng, Yan; Zhang, Fuqiang; Gu, Dong; Chen, Zhenxia; Tu, Bo; Zhao, Dongyuan

    2006-09-06

    Highly ordered mesoporous polymer-silica and carbon-silica nanocomposites with interpenetrating networks have been successfully synthesized by the evaporation-induced triconstituent co-assembly method, wherein soluble resol polymer is used as an organic precursor, prehydrolyzed TEOS is used as an inorganic precursor, and triblock copolymer F127 is used as a template. It is proposed for the first time that ordered mesoporous nanocomposites have "reinforced concrete"-structured frameworks. By adjusting the initial mass ratios of TEOS to resol, we determined the obtained nanocomposites possess continuous composition with the ratios ranging from zero to infinity for the two constituents that are "homogeneously" dispersed inside the pore walls. The presence of silicates in nanocomposites dramatically inhibits framework shrinkage during the calcination, resulting in highly ordered large-pore mesoporous carbon-silica nanocomposites. Combustion in air or etching in HF solution can remove carbon or silica from the carbon-silica nanocomposites and yield ordered mesoporous pure silica or carbon frameworks. The process generates plenty of small pores in carbon or/and silica pore walls. Ordered mesoporous carbons can then be obtained with large pore sizes of approximately 6.7 nm, pore volumes of approximately 2.0 cm(3)/g, and high surface areas of approximately 2470 m(2)/g. The pore structures and textures can be controlled by varying the sizes and polymerization degrees of two constituent precursors. Accordingly, by simply tuning the aging time of TEOS, ordered mesoporous carbons with evident bimodal pores at 2.6 and 5.8 nm can be synthesized.

  9. Why liquid displacement methods are sometimes wrong in estimating the pore-size distribution

    NARCIS (Netherlands)

    Gijsbertsen-Abrahamse, A.J.; Boom, R.M.; Padt, van der A.

    2004-01-01

    The liquid displacement method is a commonly used method to determine the pore size distribution of micro- and ultrafiltration membranes. One of the assumptions for the calculation of the pore sizes is that the pores are parallel and thus are not interconnected. To show that the estimated pore size

  10. Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure

    KAUST Repository

    Suteewong, Teeraporn

    2011-01-19

    Mesoporous silica with cubic symmetry has attracted interest from researchers for some time. Here, we present the room temperature synthesis of mesoporous silica nanoparticles possessing cubic Pm3n symmetry with very high molar ratios (>50%) of 3-aminopropyl triethoxysilane. The synthesis is robust allowing, for example, co-condensation of organic dyes without loss of structure. By means of pore expander molecules, the pore size can be enlarged from 2.7 to 5 nm, while particle size decreases. Adding pore expander and co-condensing fluorescent dyes in the same synthesis reduces average particle size further down to 100 nm. After PEGylation, such fluorescent aminated mesoporous silica nanoparticles are spontaneously taken up by cells as demonstrated by fluorescence microscopy.

  11. Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure

    KAUST Repository

    Suteewong, Teeraporn; Sai, Hiroaki; Cohen, Roy; Wang, Suntao; Bradbury, Michelle; Baird, Barbara; Gruner, Sol M.; Wiesner, Ulrich

    2011-01-01

    Mesoporous silica with cubic symmetry has attracted interest from researchers for some time. Here, we present the room temperature synthesis of mesoporous silica nanoparticles possessing cubic Pm3n symmetry with very high molar ratios (>50%) of 3-aminopropyl triethoxysilane. The synthesis is robust allowing, for example, co-condensation of organic dyes without loss of structure. By means of pore expander molecules, the pore size can be enlarged from 2.7 to 5 nm, while particle size decreases. Adding pore expander and co-condensing fluorescent dyes in the same synthesis reduces average particle size further down to 100 nm. After PEGylation, such fluorescent aminated mesoporous silica nanoparticles are spontaneously taken up by cells as demonstrated by fluorescence microscopy.

  12. Fines Classification Based on Sensitivity to Pore-Fluid Chemistry

    KAUST Repository

    Jang, Junbong

    2015-12-28

    The 75-μm particle size is used to discriminate between fine and coarse grains. Further analysis of fine grains is typically based on the plasticity chart. Whereas pore-fluid-chemistry-dependent soil response is a salient and distinguishing characteristic of fine grains, pore-fluid chemistry is not addressed in current classification systems. Liquid limits obtained with electrically contrasting pore fluids (deionized water, 2-M NaCl brine, and kerosene) are combined to define the soil "electrical sensitivity." Liquid limit and electrical sensitivity can be effectively used to classify fine grains according to their fluid-soil response into no-, low-, intermediate-, or high-plasticity fine grains of low, intermediate, or high electrical sensitivity. The proposed methodology benefits from the accumulated experience with liquid limit in the field and addresses the needs of a broader range of geotechnical engineering problems. © ASCE.

  13. Fines classification based on sensitivity to pore-fluid chemistry

    Science.gov (United States)

    Jang, Junbong; Santamarina, J. Carlos

    2016-01-01

    The 75-μm particle size is used to discriminate between fine and coarse grains. Further analysis of fine grains is typically based on the plasticity chart. Whereas pore-fluid-chemistry-dependent soil response is a salient and distinguishing characteristic of fine grains, pore-fluid chemistry is not addressed in current classification systems. Liquid limits obtained with electrically contrasting pore fluids (deionized water, 2-M NaCl brine, and kerosene) are combined to define the soil “electrical sensitivity.” Liquid limit and electrical sensitivity can be effectively used to classify fine grains according to their fluid-soil response into no-, low-, intermediate-, or high-plasticity fine grains of low, intermediate, or high electrical sensitivity. The proposed methodology benefits from the accumulated experience with liquid limit in the field and addresses the needs of a broader range of geotechnical engineering problems.

  14. Influence of crosslinking agents on the pore structure of skin.

    Science.gov (United States)

    Fathima, N Nishad; Dhathathreyan, Aruna; Ramasami, T

    2007-05-15

    Analysis of pore structure of skin is important to understand process of diffusion and adsorption involved during any application of the skin matrix. In this study, the effect of thermal shrinkage on the pore structure of chromium and vegetable treated skin has been analyzed as these tanning agents are known to bring about thermal stability to the matrix. The changes brought about in the pore structure have been studied using mercury intrusion porosimetry and scanning electron microscopy. Response of the chromium treated and vegetable tanning treated skin structure to heat has been found to be quite different from each other. About 41% decrease in porosity is observed for chromium treated skin as against 97% decrease for the skin treated with vegetable tannins. This is primarily attributed to the basic nature of these materials and the nature of interaction of them towards skin.

  15. Modeling Stokes flow in real pore geometries derived by high resolution micro CT imaging

    Science.gov (United States)

    Halisch, M.; Müller, C.

    2012-04-01

    Meanwhile, numerical modeling of rock properties forms an important part of modern petrophysics. Substantially, equivalent rock models are used to describe and assess specific properties and phenomena, like fluid transport or complex electrical properties. In recent years, non-destructive computed X-ray tomography got more and more important - not only to take a quick and three dimensional look into rock samples but also to get access to in-situ sample information for highly accurate modeling purposes. Due to - by now - very high resolution of the 3D CT data sets (micron- to submicron range) also very small structures and sample features - e.g. micro porosity - can be visualized and used for numerical models of very high accuracy. Special demands even arise before numerical modeling can take place. Inappropriate filter applications (e.g. improper type of filter, wrong kernel, etc.) may lead to a significant corruption of spatial sample structure and / or even sample or void space volume. Because of these difficulties, especially small scale mineral- and pore space textures are very often lost and valuable in-situ information is erased. Segmentation of important sample features - porosity as well as rock matrix - based upon grayscale values strongly depends upon the scan quality and upon the experience of the application engineer, respectively. If the threshold for matrix-porosity separation is set too low, porosity can be quickly (and even more, due to restrictions of scanning resolution) underestimated. Contrary to this, a too high threshold over-determines porosity and small void space features as well as interfaces are changed and falsified. Image based phase separation in close combination with "conventional" analytics, as scanning electron microscopy or thin sectioning, greatly increase the reliability of this preliminary work. For segmentation and quantification purposes, a special CT imaging and processing software (Avizo Fire) has been used. By using this

  16. Evaluation of Colloid Retention Site Dominance in Variably Saturated Porous Media: An All Pores Pore-Scale Analysis

    Science.gov (United States)

    Morales, Veronica; Perez-Reche, Francisco; Holzner, Markus; Kinzelbach, Wolfgang

    2016-04-01

    It is well accepted that colloid and nanoparticle transport processes in porous media differ substantially between water saturated and unsaturated conditions. Differences are frequently ascribed to particle immobilization by association with interfaces with the gas, as well as to restrictions of the liquid medium through which colloids are transported. Yet, the current understanding of the importance of particle retention at gas interfaces is based on observations of single pores or two-dimensional pore network representations, leaving open the question of their statistical significance when all pores in the medium are considered. In order to address this question, column experiments were performed using a model porous medium of glass beads through which Silver particles were transported for conditions of varying water content and water chemistry. X-ray microtomography was subsequently employed as a non-destructive imaging technique to obtain pore-scale information of the entire column regarding: i) the presence and distribution of the main locations where colloids can become retained (interfaces with the water-solid, air-water, air-solid, and air-water-solid, grain-grain contacts, and the bulk liquid), ii) deposition profiles of colloids along the column classified by the available retention location, and iii) channel widths of 3-dimensional pore-water network representations. The results presented provide a direct statistical evaluation on the significance of colloid retention by attachment to interfaces or by strainig at contact points where multiple interfaces meet.

  17. Pore-Width-Dependent Preferential Interaction of sp2 Carbon Atoms in Cyclohexene with Graphitic Slit Pores by GCMC Simulation

    Directory of Open Access Journals (Sweden)

    Natsuko Kojima

    2011-01-01

    Full Text Available The adsorption of cyclohexene with two sp2 and four sp3 carbon atoms in graphitic slit pores was studied by performing grand canonical Monte Carlo simulation. The molecular arrangement of the cyclohexene on the graphitic carbon wall depends on the pore width. The distribution peak of the sp2 carbon is closer to the pore wall than that of the sp3 carbon except for the pore width of 0.7 nm, even though the Lennard-Jones size of the sp2 carbon is larger than that of the sp3 carbon. Thus, the difference in the interactions of the sp2 and sp3 carbon atoms of cyclohexene with the carbon pore walls is clearly observed in this study. The preferential interaction of sp2 carbon gives rise to a slight tilting of the cyclohexene molecule against the graphitic wall. This is suggestive of a π-π interaction between the sp2 carbon in the cyclohexene molecule and graphitic carbon.

  18. Dispersion upscaling from a pore scale characterization of Lagrangian velocities

    Science.gov (United States)

    Turuban, Régis; de Anna, Pietro; Jiménez-Martínez, Joaquín; Tabuteau, Hervé; Méheust, Yves; Le Borgne, Tanguy

    2013-04-01

    Mixing and reactive transport are primarily controlled by the interplay between diffusion, advection and reaction at pore scale. Yet, how the distribution and spatial correlation of the velocity field at pore scale impact these processes is still an open question. Here we present an experimental investigation of the distribution and correlation of pore scale velocities and its relation with upscaled dispersion. We use a quasi two-dimensional (2D) horizontal set up, consisting of two glass plates filled with cylinders representing the grains of the porous medium : the cell is built by soft lithography technique, wich allows for full control of the system geometry. The local velocity field is quantified from particle tracking velocimetry using microspheres that are advected with the pore scale flow. Their displacement is purely advective, as the particle size is chosen large enough to avoid diffusion. We thus obtain particle trajectories as well as lagrangian velocities in the entire system. The measured velocity field shows the existence of a network of preferential flow paths in channels with high velocities, as well as very low velocity in stagnation zones, with a non Gaussian distribution. Lagrangian velocities are long range correlated in time, which implies a non-fickian scaling of the longitudinal variance of particle positions. To upscale this process we develop an effective transport model, based on correlated continous time random walk, which is entirely parametrized by the pore scale velocity distribution and correlation. The model predictions are compared with conservative tracer test data for different Peclet numbers. Furthermore, we investigate the impact of different pore geometries on the distribution and correlation of Lagrangian velocities and we discuss the link between these properties and the effective dispersion behavior.

  19. Pore-water chemistry explains zinc phytotoxicity in soil.

    Science.gov (United States)

    Kader, Mohammed; Lamb, Dane T; Correll, Ray; Megharaj, Mallavarapu; Naidu, Ravi

    2015-12-01

    Zinc (Zn) is a widespread soil contaminant arising from a numerous anthropogenic sources. However, adequately predicting toxicity of Zn to ecological receptors remains difficult due to the complexity of soil characteristics. In this study, we examined solid-solution partitioning using pore-water data and toxicity of Zn to cucumber (Cucumis sativus L.) in spiked soils. Pore-water effective concentration (ECx, x=10%, 20% and 50% reduction) values were negatively related to pH, indicating lower Zn pore water concentration were needed to cause phytotoxicity at high pH soils. Total dissolved zinc (Znpw) and free zinc (Zn(2+)) in soil-pore water successfully described 78% and 80.3% of the variation in relative growth (%) in the full dataset. When the complete data set was used (10 soils), the estimated EC50pw was 450 and 79.2 µM for Znpw and Zn(2+), respectively. Total added Zn, soil pore water pH (pHpw) and dissolve organic carbon (DOC) were the best predictors of Znpw and Zn(2+) in pore-water. The EC10 (total loading) values ranged from 179 to 5214 mg/kg, depending on soil type. Only pH measurements in soil were related to ECx total Zn data. The strongest relationship to ECx overall was pHca, although pHw and pHpw were in general related to Zn ECx. Similarly, when a solution-only model was used to predict Zn in shoot, DOC was negatively related to Zn in shoot, indicating a reduction in uptake/ translocation of Zn from solution with increasing DOC. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Microfluidic Experiments Studying Pore Scale Interactions of Microbes and Geochemistry

    Science.gov (United States)

    Chen, M.; Kocar, B. D.

    2016-12-01

    Understanding how physical phenomena, chemical reactions, and microbial behavior interact at the pore-scale is crucial to understanding larger scale trends in groundwater chemistry. Recent studies illustrate the utility of microfluidic devices for illuminating pore-scale physical-biogeochemical processes and their control(s) on the cycling of iron, uranium, and other important elements 1-3. These experimental systems are ideal for examining geochemical reactions mediated by microbes, which include processes governed by complex biological phenomenon (e.g. biofilm formation, etc.)4. We present results of microfluidic experiments using a model metal reducing bacteria and varying pore geometries, exploring the limitations of the microorganisms' ability to access tight pore spaces, and examining coupled biogeochemical-physical controls on the cycling of redox sensitive metals. Experimental results will provide an enhanced understanding of coupled physical-biogeochemical processes transpiring at the pore-scale, and will constrain and compliment continuum models used to predict and describe the subsurface cycling of redox-sensitive elements5. 1. Vrionis, H. A. et al. Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site. Appl. Environ. Microbiol. 71, 6308-6318 (2005). 2. Pearce, C. I. et al. Pore-scale characterization of biogeochemical controls on iron and uranium speciation under flow conditions. Environ. Sci. Technol. 46, 7992-8000 (2012). 3. Zhang, C., Liu, C. & Shi, Z. Micromodel investigation of transport effect on the kinetics of reductive dissolution of hematite. Environ. Sci. Technol. 47, 4131-4139 (2013). 4. Ginn, T. R. et al. Processes in microbial transport in the natural subsurface. Adv. Water Resour. 25, 1017-1042 (2002). 5. Scheibe, T. D. et al. Coupling a genome-scale metabolic model with a reactive transport model to describe in situ uranium bioremediation. Microb. Biotechnol. 2, 274-286 (2009).

  1. Effects of pore sizes and oxygen-containing functional groups on desulfurization activity of Fe/NAC prepared by ultrasonic-assisted impregnation

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Song [College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan (China); Guo, Jia-Xiu, E-mail: guojiaxiu@scu.edu.cn [College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan (China); National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065, Sichuan (China); Sichuan Provincial Environmental Protection Environmental Catalysis and Materials Engineering Technology Center, Chengdu 610065, Sichuan (China); Liu, Xiao-Li [National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065, Sichuan (China); Wang, Xue-Jiao [College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan (China); Yin, Hua-Qiang [College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan (China); National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065, Sichuan (China); Sichuan Provincial Environmental Protection Environmental Catalysis and Materials Engineering Technology Center, Chengdu 610065, Sichuan (China); Luo, De-Ming [National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065, Sichuan (China)

    2016-01-01

    Graphical abstract: - Highlights: • Fe/NAC-60 exhibits the best desulfurization activity. • Different oscillation time can change surface area and pore volume of catalysts. • Ultrasonic oscillation increases Fe dispersion on carrier and effective pores. • Pore sizes play a crucial role during the SO{sub 2} removal. - Abstract: A series of Fe-loaded activated carbons treated by HNO{sub 3} (Fe/NAC) were prepared by incipient impregnation method with or without ultrasonic assistance and characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy with energy disperse spectroscope (SEM-EDS), transmission electron microscopy (TEM) and N{sub 2} adsorption/desorption. The desulfurization activities were evaluated at a fixed bed reactor under a mixed gas simulated from flue gas. The results showed that desulfurization activity from excellent to poor is as follows: Fe/NAC-60 > Fe/NAC-80 > Fe/NAC-30 > Fe/NAC-15 > Fe/NAC-0 > Fe/NAC-100 > NAC. Fe/NAC-60 exhibits the best desulfurization activity and has breakthrough sulfur capacity of 319 mg/g and breakthrough time of 540 min. The introduction of ultrasonic oscillation does not change the form of Fe oxides on activated carbon but can change the dispersion and relative contents of Fe{sub 3}O{sub 4}. The types of oxygen-containing functional groups have no obvious change for all samples but the texture properties show some differences when they are oscillated for different times. The fresh Fe/NAC-60 has a surface area of 1045 m{sup 2}/g and total pore volume of 0.961 cm{sup 3}/g with micropore volume of 0.437 cm{sup 3}/g and is larger than Fe/NAC-0 (823 m{sup 2}/g, 0.733 and 0.342 cm{sup 3}/g). After desulfurization, surface area and pore volume of all samples decrease significantly, and those of the exhausted Fe/NAC-60 decrease to 233 m{sup 2}/g and 0.481 cm{sup 3}/g, indicating that some byproducts deposit on surface to cover pores. Pore size distribution

  2. Effects of pore sizes and oxygen-containing functional groups on desulfurization activity of Fe/NAC prepared by ultrasonic-assisted impregnation

    International Nuclear Information System (INIS)

    Shu, Song; Guo, Jia-Xiu; Liu, Xiao-Li; Wang, Xue-Jiao; Yin, Hua-Qiang; Luo, De-Ming

    2016-01-01

    Graphical abstract: - Highlights: • Fe/NAC-60 exhibits the best desulfurization activity. • Different oscillation time can change surface area and pore volume of catalysts. • Ultrasonic oscillation increases Fe dispersion on carrier and effective pores. • Pore sizes play a crucial role during the SO 2 removal. - Abstract: A series of Fe-loaded activated carbons treated by HNO 3 (Fe/NAC) were prepared by incipient impregnation method with or without ultrasonic assistance and characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy with energy disperse spectroscope (SEM-EDS), transmission electron microscopy (TEM) and N 2 adsorption/desorption. The desulfurization activities were evaluated at a fixed bed reactor under a mixed gas simulated from flue gas. The results showed that desulfurization activity from excellent to poor is as follows: Fe/NAC-60 > Fe/NAC-80 > Fe/NAC-30 > Fe/NAC-15 > Fe/NAC-0 > Fe/NAC-100 > NAC. Fe/NAC-60 exhibits the best desulfurization activity and has breakthrough sulfur capacity of 319 mg/g and breakthrough time of 540 min. The introduction of ultrasonic oscillation does not change the form of Fe oxides on activated carbon but can change the dispersion and relative contents of Fe 3 O 4 . The types of oxygen-containing functional groups have no obvious change for all samples but the texture properties show some differences when they are oscillated for different times. The fresh Fe/NAC-60 has a surface area of 1045 m 2 /g and total pore volume of 0.961 cm 3 /g with micropore volume of 0.437 cm 3 /g and is larger than Fe/NAC-0 (823 m 2 /g, 0.733 and 0.342 cm 3 /g). After desulfurization, surface area and pore volume of all samples decrease significantly, and those of the exhausted Fe/NAC-60 decrease to 233 m 2 /g and 0.481 cm 3 /g, indicating that some byproducts deposit on surface to cover pores. Pore size distribution influences SO 2 adsorption, and fresh Fe/NAC-60 has

  3. Silicon pore optics for future x-ray telescopes

    DEFF Research Database (Denmark)

    Wille, Eric; Bavdaz, Marcos; Wallace, Kotska

    2017-01-01

    arcsec or better. These specifications can only be achieved with a novel technology like Silicon Pore Optics, which is being developed by ESA together with a consortium of European industry. Silicon Pore Optics are made of commercial Si wafers using process technology adapted from the semiconductor...... industry. We present the recent upgrades made to the manufacturing processes and equipment, ranging from the manufacture of single mirror plates towards complete focusing mirror modules mounted in flight configuration, and results from first vibration tests. The performance of the mirror modules is tested...

  4. Gas Adsorption in Novel Environments, Including Effects of Pore Relaxation

    International Nuclear Information System (INIS)

    Cole, Milton W; Gatica, Silvina M; Kim, Hye-Young; Lueking, Angela D; Sircar, Sarmishtha

    2012-01-01

    Adsorption experiments have been interpreted frequently with simplified model geometries, such as ideally flat surfaces and slit or cylindrical pores. Recent explorations of unusual environments, such as fullerenes and metal-organic-framework materials, have led to a broadened scope of experimental, theoretical and simulation investigations. This paper reviews a number of such studies undertaken by our group. Among the topics receiving emphasis are these: universality of gas uptake in pores, relaxation of a porous absorbent due to gas uptake and the novel phases of gases on a single nanotube, all of which studies have been motivated by recent experiments.

  5. Role of scaffold mean pore size in meniscus regeneration.

    Science.gov (United States)

    Zhang, Zheng-Zheng; Jiang, Dong; Ding, Jian-Xun; Wang, Shao-Jie; Zhang, Lei; Zhang, Ji-Ying; Qi, Yan-Song; Chen, Xue-Si; Yu, Jia-Kuo

    2016-10-01

    Recently, meniscus tissue engineering offers a promising management for meniscus regeneration. Although rarely reported, the microarchitectures of scaffolds can deeply influence the behaviors of endogenous or exogenous stem/progenitor cells and subsequent tissue formation in meniscus tissue engineering. Herein, a series of three-dimensional (3D) poly(ε-caprolactone) (PCL) scaffolds with three distinct mean pore sizes (i.e., 215, 320, and 515μm) were fabricated via fused deposition modeling. The scaffold with the mean pore size of 215μm significantly improved both the proliferation and extracellular matrix (ECM) production/deposition of mesenchymal stem cells compared to all other groups in vitro. Moreover, scaffolds with mean pore size of 215μm exhibited the greatest tensile and compressive moduli in all the acellular and cellular studies. In addition, the relatively better results of fibrocartilaginous tissue formation and chondroprotection were observed in the 215μm scaffold group after substituting the rabbit medial meniscectomy for 12weeks. Overall, the mean pore size of 3D-printed PCL scaffold could affect cell behavior, ECM production, biomechanics, and repair effect significantly. The PCL scaffold with mean pore size of 215μm presented superior results both in vitro and in vivo, which could be an alternative for meniscus tissue engineering. Meniscus tissue engineering provides a promising strategy for meniscus regeneration. In this regard, the microarchitectures (e.g., mean pore size) of scaffolds remarkably impact the behaviors of cells and subsequent tissue formation, which has been rarely reported. Herein, three three-dimensional poly(ε-caprolactone) scaffolds with different mean pore sizes (i.e., 215, 320, and 515μm) were fabricated via fused deposition modeling. The results suggested that the mean pore size significantly affected the behaviors of endogenous or exogenous stem/progenitor cells and subsequent tissue formation. This study furthers

  6. Dynamics of phase ordering of nematics in a pore

    International Nuclear Information System (INIS)

    Bhattacharya, A.; Chakrabarti, A.

    1994-06-01

    We study the kinetics of phase ordering of a nematic liquid crystal, modeled by a spin-rotor Hamiltonian, confined within a parallel piped pore. The dynamics of the rotor obeys the time-dependent Ginzburg-Landau equation. We study the generation and evolution of a variety of defect structures, and the growth of domains, with different anchoring conditions at the pore surface. Unlike in binary fluids, mere confinement with no anchoring field, does not result in slow dynamics. Homeotropic anchoring, however, leads to slow logarithmic growth. Interestingly, homogeneous anchoring dynamically generates wall defects, resulting in an Ising like structure factor at late times. (author). 27 refs, 4 figs

  7. Method and device for fabricating dispersion fuel comprising fission product collection spaces

    Science.gov (United States)

    Shaber, Eric L; Fielding, Randall S

    2015-05-05

    A method of fabricating a nuclear fuel comprising a fissile material, one or more hollow microballoons, a phenolic resin, and metal matrix. The fissile material, phenolic resin and the one or more hollow microballoons are combined. The combined fissile material, phenolic resin and the hollow microballoons are heated sufficiently to form at least some fissile material carbides creating a nuclear fuel particle. The resulting nuclear fuel particle comprises one or more fission product collection spaces. In a preferred embodiment, the fissile material, phenolic resin and the one or more hollow microballoons are combined by forming the fissile material into microspheres. The fissile material microspheres are then overcoated with the phenolic resin and microballoon. In another preferred embodiment, the fissile material, phenolic resin and the one or more hollow microballoons are combined by overcoating the microballoon with the fissile material, and phenolic resin.

  8. Energy storage systems having an electrode comprising Li.sub.xS.sub.y

    Science.gov (United States)

    Xiao, Jie; Zhang, Jiguang; Graff, Gordon L.; Liu, Jun; Wang, Wei; Zheng, Jianming; Xu, Wu; Shao, Yuyan; Yang, Zhenguo

    2016-08-02

    Improved lithium-sulfur energy storage systems can utilizes Li.sub.xS.sub.y as a component in an electrode of the system. For example, the energy storage system can include a first electrode current collector, a second electrode current collector, and an ion-permeable separator separating the first and second electrode current collectors. A second electrode is arranged between the second electrode current collector and the separator. A first electrode is arranged between the first electrode current collector and the separator and comprises a first condensed-phase fluid comprising Li.sub.xS.sub.y. The energy storage system can be arranged such that the first electrode functions as a positive or a negative electrode.

  9. Lateral acoustic wave resonator comprising a suspended membrane of low damping resonator material

    Science.gov (United States)

    Olsson, Roy H.; El-Kady; , Ihab F.; Ziaei-Moayyed, Maryam; Branch; , Darren W.; Su; Mehmet F.,; Reinke; Charles M.,

    2013-09-03

    A very high-Q, low insertion loss resonator can be achieved by storing many overtone cycles of a lateral acoustic wave (i.e., Lamb wave) in a lithographically defined suspended membrane comprising a low damping resonator material, such as silicon carbide. The high-Q resonator can sets up a Fabry-Perot cavity in a low-damping resonator material using high-reflectivity acoustic end mirrors, which can comprise phononic crystals. The lateral overtone acoustic wave resonator can be electrically transduced by piezoelectric couplers. The resonator Q can be increased without increasing the impedance or insertion loss by storing many cycles or wavelengths in the high-Q resonator material, with much lower damping than the piezoelectric transducer material.

  10. Bacterial Artificial Chromosome Clones of Viruses Comprising the Towne Cytomegalovirus Vaccine

    Directory of Open Access Journals (Sweden)

    Xiaohong Cui

    2012-01-01

    Full Text Available Bacterial artificial chromosome (BAC clones have proven invaluable for genetic manipulation of herpesvirus genomes. BAC cloning can also be useful for capturing representative genomes that comprise a viral stock or mixture. The Towne live attenuated cytomegalovirus vaccine was developed in the 1970s by serial passage in cultured fibroblasts. Although its safety, immunogenicity, and efficacy have been evaluated in nearly a thousand human subjects, the vaccine itself has been little studied. Instead, genetic composition and in vitro growth properties have been inferred from studies of laboratory stocks that may not always accurately represent the viruses that comprise the vaccine. Here we describe the use of BAC cloning to define the genotypic and phenotypic properties of viruses from the Towne vaccine. Given the extensive safety history of the Towne vaccine, these BACs provide a logical starting point for the development of next-generation rationally engineered cytomegalovirus vaccines.

  11. Bacterial artificial chromosome clones of viruses comprising the towne cytomegalovirus vaccine.

    Science.gov (United States)

    Cui, Xiaohong; Adler, Stuart P; Davison, Andrew J; Smith, Larry; Habib, El-Sayed E; McVoy, Michael A

    2012-01-01

    Bacterial artificial chromosome (BAC) clones have proven invaluable for genetic manipulation of herpesvirus genomes. BAC cloning can also be useful for capturing representative genomes that comprise a viral stock or mixture. The Towne live attenuated cytomegalovirus vaccine was developed in the 1970s by serial passage in cultured fibroblasts. Although its safety, immunogenicity, and efficacy have been evaluated in nearly a thousand human subjects, the vaccine itself has been little studied. Instead, genetic composition and in vitro growth properties have been inferred from studies of laboratory stocks that may not always accurately represent the viruses that comprise the vaccine. Here we describe the use of BAC cloning to define the genotypic and phenotypic properties of viruses from the Towne vaccine. Given the extensive safety history of the Towne vaccine, these BACs provide a logical starting point for the development of next-generation rationally engineered cytomegalovirus vaccines.

  12. Effect of pore structure on the activated carbon's capability to sorb airborne methylradioiodine

    International Nuclear Information System (INIS)

    Juhola, A.J.; Friel, J.V.

    1979-01-01

    A study was conducted to determine the effect pore structure of activated carbons has on their capabiity to sorp airborne methylradioiodine. Six de-ashed carbons of very diverse pore structure were selected for study. Batches of each were impregnated with (1) 4.3% I 2 , (2) 5.6% KI, (3) 2% KI, (4) 3% KI to 2% I 2 , (5) 2% I 2 , and (6) 3.4% KIO 3 . Some carbon was reserved for testing without impregnant. Standard procedures at ambient temperature and pressure were followed in the methyliodide testing, with some changes only made to meet the requirements of the specialized study. The surface area of the open-pore volume, for KI impregnated carbons, determined the sorptive efficiency. This relationship is expressed by the equation ln p = ln a - ks, where p is the fraction of methyliodide penetrating the bed and s the surface area. The quantity (a) is associated with the macropore properties, and deterines the capability of the carbon to sorb at very high humidites (> 95% RH). Constant k is to a large degree dependent on the mean diameter of the micropores. Elemental iodine impregnated carbons were considerably less effective than those impregnated with KI, and their sorptive of methyliodide did not follow the above equation. Their activity could be increased by a second impregnation with KOH. KI impregnated carbons lost their activity when treated with HCl on converting the Ki to I 2 . The conversion of KI to I 2 by acid gases in nuclear power plants offers an explanation for the cause of carbon aging

  13. Ionizing device comprising a microchannel electron multiplier with secondary electron emission

    International Nuclear Information System (INIS)

    Chalmeton, Vincent.

    1974-01-01

    The present invention relates to a ionizing device comprising a microchannel electron multiplier involving secondary electron emission as a means of ionization. A system of electrodes is used to accelerate said electrons, ionize the gas and extract the ions from thus created plasma. Said ionizer is suitable for bombarding the target in neutron sources (target of the type of nickel molybdenum coated with tritiated titanium or with a tritium deuterium mixture) [fr

  14. Article comprising a garment or other textile structure for use in controlling body temperature

    Science.gov (United States)

    Butzer, Melissa J.

    2000-01-01

    There is disclosed an article for use in cooling body temperature which comprises a garment having a coat and pant, with each having a body section adapted to receive a portion of the torso of the wearer and extensions from the body section to receive the wearer's limbs. The garment includes a system for circulating temperature controlling fluid from a suitable source through patches removably received in pockets in each of body section and extensions.

  15. A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses.

    Science.gov (United States)

    Qiao, Ning; Mostafa, Hesham; Corradi, Federico; Osswald, Marc; Stefanini, Fabio; Sumislawska, Dora; Indiveri, Giacomo

    2015-01-01

    Implementing compact, low-power artificial neural processing systems with real-time on-line learning abilities is still an open challenge. In this paper we present a full-custom mixed-signal VLSI device with neuromorphic learning circuits that emulate the biophysics of real spiking neurons and dynamic synapses for exploring the properties of computational neuroscience models and for building brain-inspired computing systems. The proposed architecture allows the on-chip configuration of a wide range of network connectivities, including recurrent and deep networks, with short-term and long-term plasticity. The device comprises 128 K analog synapse and 256 neuron circuits with biologically plausible dynamics and bi-stable spike-based plasticity mechanisms that endow it with on-line learning abilities. In addition to the analog circuits, the device comprises also asynchronous digital logic circuits for setting different synapse and neuron properties as well as different network configurations. This prototype device, fabricated using a 180 nm 1P6M CMOS process, occupies an area of 51.4 mm(2), and consumes approximately 4 mW for typical experiments, for example involving attractor networks. Here we describe the details of the overall architecture and of the individual circuits and present experimental results that showcase its potential. By supporting a wide range of cortical-like computational modules comprising plasticity mechanisms, this device will enable the realization of intelligent autonomous systems with on-line learning capabilities.

  16. Neurosensory and vascular function after 14 months of military training comprising cold winter conditions.

    Science.gov (United States)

    Carlsson, Daniel; Pettersson, Hans; Burström, Lage; Nilsson, Tohr; Wahlström, Jens

    2016-01-01

    This study aimed to examine the effects of 14 months of military training comprising cold winter conditions on neurosensory and vascular function in the hands and feet. Military conscripts (N=54) were assessed with quantitative sensory testing comprising touch, temperature, and vibration perception thresholds and finger systolic blood pressure (FSBP) after local cooling and a questionnaire on neurosensory and vascular symptoms at both baseline and follow-up. Ambient air temperature was recorded with body worn temperature loggers. The subjects showed reduced sensitivity to perception of touch, warmth, cold and vibrations in both the hands and feet except from vibrotactile perception in digit two of the right hand (right dig 2). Cold sensations, white fingers, and pain/discomfort when exposed to cold as well as pain increased in both prevalence and severity. There were no statistically significant changes in FSBP after local cooling. Fourteen months of winter military training comprising cold winter conditions reduced sensation from touch, warmth, cold, and vibrotactile stimulus in both hands and feet and increased the severity and prevalence of symptoms and pain. The vascular function in the hands, measured by FSBP after local cooling, was not affected.

  17. Pore facies analysis: incorporation of rock properties into pore geometry based classes in a Permo-Triassic carbonate reservoir in the Persian Gulf

    International Nuclear Information System (INIS)

    Rahimpour-Bonab, H; Aliakbardoust, E

    2014-01-01

    Pore facies analysis is a useful method for the classification of reservoir rocks according to pore geometry characteristics. The importance of this method is related to the dependence of the dynamic behaviour of the reservoir rock on the pore geometry. In this study, pore facies analysis was performed by the quantification and classification of the mercury injection capillary pressure (MICP) curves applying the multi-resolution graph-based clustering (MRGC) method. Each pore facies includes a limited variety of rock samples with different depositional fabrics and diagenetic histories, which are representative of one type of pore geometry. The present pore geometry is the result of the interaction between the primary rock fabric and its diagenetic overprint. Thus the variations in petrographic properties can be correlated with the pore geometry characteristics. Accordingly, the controlling parameters in the pore geometry characteristics were revealed by detailed petrographic analysis in each pore facies. The reservoir rock samples were then classified using the determined petrographic properties which control the pore system quality. This method is proposed for the classification of reservoir rocks in complicated carbonate reservoirs, in order to reduce the incompatibility of traditional facies analysis with pore system characteristics. The method is applicable where enough capillary pressure data is not available. (papers)

  18. Mesoporous carbon with spherical pores as a carrier for celecoxib with needle-like crystallinity: Improve dissolution rate and bioavailability

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenquan; Zhao, Qinfu; Sun, Changshan [Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang (China); Zhang, Zhiwen [Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203 (China); Jiang, Tongying; Sun, Jin [Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang (China); Li, Yaping [Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203 (China); Wang, Siling, E-mail: silingwang@syphu.edu.cn [Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang (China)

    2014-06-01

    The purposes of this investigation are to design mesoporous carbon (MC) with spherical pore channels and incorporate CEL to it for changing its needlelike crystal form and improving its dissolution and bioavailability. A series of solid-state characterization methods, such as SEM, TEM, DSC and XRD, were employed to systematically investigate the existing status of celecoxib (CEL) within the pore channels of MC. The pore size, pore volume and surface area of samples were characterized by nitrogen physical absorption. Gastric mucosa irritation test was carried out to evaluate the safety of mesoporous carbon as a drug carrier. Dissolution tests and in vivo pharmacokinetic studies were conducted to confirm the improvement in drug dissolution kinetics and oral bioavailability. Uptake experiments were conducted to investigate the mechanism of the improved oral bioavailability. The results of solid state characterization showed that MC was prepared successfully and CEL was incorporated into the mesoporous channels of the MC. The crystallinity of CEL in MC was affected by different loading methods, which involve evaporation method and melting method. The dissolution rate of CEL from MC was found to be significantly higher than that of pure CEL, which attributed to reduced crystallinity of CEL. The gastric mucosa irritation test indicated that the MC caused no harm to the stomach and produced a protective effect on the gastric mucosa. Uptake experiments indicated that MC enhanced the amount of CEL absorbed by Caco-2 cells. Moreover, oral bioavailability of CEL loaded within the MC was approximately 1.59-fold greater than that of commercial CEL. In conclusion, MC was a safe carrier to load water insoluble drug by controlling the crystallinity or crystal form with improvement in drug dissolution kinetics and oral bioavailability. - Highlights: • Mesoporous carbon with spherical pore structure was prepared according to the needlelike crystalline of celecoxib. • The

  19. Mesoporous carbon with spherical pores as a carrier for celecoxib with needle-like crystallinity: Improve dissolution rate and bioavailability

    International Nuclear Information System (INIS)

    Zhu, Wenquan; Zhao, Qinfu; Sun, Changshan; Zhang, Zhiwen; Jiang, Tongying; Sun, Jin; Li, Yaping; Wang, Siling

    2014-01-01

    The purposes of this investigation are to design mesoporous carbon (MC) with spherical pore channels and incorporate CEL to it for changing its needlelike crystal form and improving its dissolution and bioavailability. A series of solid-state characterization methods, such as SEM, TEM, DSC and XRD, were employed to systematically investigate the existing status of celecoxib (CEL) within the pore channels of MC. The pore size, pore volume and surface area of samples were characterized by nitrogen physical absorption. Gastric mucosa irritation test was carried out to evaluate the safety of mesoporous carbon as a drug carrier. Dissolution tests and in vivo pharmacokinetic studies were conducted to confirm the improvement in drug dissolution kinetics and oral bioavailability. Uptake experiments were conducted to investigate the mechanism of the improved oral bioavailability. The results of solid state characterization showed that MC was prepared successfully and CEL was incorporated into the mesoporous channels of the MC. The crystallinity of CEL in MC was affected by different loading methods, which involve evaporation method and melting method. The dissolution rate of CEL from MC was found to be significantly higher than that of pure CEL, which attributed to reduced crystallinity of CEL. The gastric mucosa irritation test indicated that the MC caused no harm to the stomach and produced a protective effect on the gastric mucosa. Uptake experiments indicated that MC enhanced the amount of CEL absorbed by Caco-2 cells. Moreover, oral bioavailability of CEL loaded within the MC was approximately 1.59-fold greater than that of commercial CEL. In conclusion, MC was a safe carrier to load water insoluble drug by controlling the crystallinity or crystal form with improvement in drug dissolution kinetics and oral bioavailability. - Highlights: • Mesoporous carbon with spherical pore structure was prepared according to the needlelike crystalline of celecoxib. • The

  20. Capillary pressure-saturation relationships for porous granular materials: Pore morphology method vs. pore unit assembly method

    Science.gov (United States)

    Sweijen, Thomas; Aslannejad, Hamed; Hassanizadeh, S. Majid

    2017-09-01

    In studies of two-phase flow in complex porous media it is often desirable to have an estimation of the capillary pressure-saturation curve prior to measurements. Therefore, we compare in this research the capability of three pore-scale approaches in reproducing experimentally measured capillary pressure-saturation curves. To do so, we have generated 12 packings of spheres that are representative of four different glass-bead packings and eight different sand packings, for which we have found experimental data on the capillary pressure-saturation curve in the literature. In generating the packings, we matched the particle size distributions and porosity values of the granular materials. We have used three different pore-scale approaches for generating the capillary pressure-saturation curves of each packing: i) the Pore Unit Assembly (PUA) method in combination with the Mayer and Stowe-Princen (MS-P) approximation for estimating the entry pressures of pore throats, ii) the PUA method in combination with the hemisphere approximation, and iii) the Pore Morphology Method (PMM) in combination with the hemisphere approximation. The three approaches were also used to produce capillary pressure-saturation curves for the coating layer of paper, used in inkjet printing. Curves for such layers are extremely difficult to determine experimentally, due to their very small thickness and the presence of extremely small pores (less than one micrometer in size). Results indicate that the PMM and PUA-hemisphere method give similar capillary pressure-saturation curves, because both methods rely on a hemisphere to represent the air-water interface. The ability of the hemisphere approximation and the MS-P approximation to reproduce correct capillary pressure seems to depend on the type of particle size distribution, with the hemisphere approximation working well for narrowly distributed granular materials.

  1. Fabrication and Characterization of Single Phase α-Alumina Membranes with Tunable Pore Diameters

    Science.gov (United States)

    Masuda, Tatsuya; Asoh, Hidetaka; Haraguchi, Satoshi; Ono, Sachiko

    2015-01-01

    Nanoporous and single phase α-alumina membranes with pore diameters tunable over a wide range of approximately 60–350 nm were successfully fabricated by optimizing the conditions for anodizing, subsequent detachment, and heat treatment. The pore diameter increased and the cell diameter shrunk upon crystallization to α-alumina by approximately 20% and 3%, respectively, in accordance with the 23% volume shrinkage resulting from the change in density associated with the transformation from the amorphous state to α-alumina. Nevertheless, flat α-alumina membranes, each with a diameter of 25 mm and a thickness of 50 μm, were obtained without thermal deformation. The α-alumina membranes exhibited high chemical resistance in various concentrated acidic and alkaline solutions as well as when exposed to high temperature steam under pressure. The Young’s modulus and hardness of the single phase α-alumina membranes formed by heat treatment at 1250 °C were notably decreased compared to the corresponding amorphous membranes, presumably because of the nodular crystallite structure of the cell walls and the substantial increase in porosity. Furthermore, when used for filtration, the α-alumina membrane exhibited a level of flux higher than that of the commercial ceramic membrane. PMID:28788005

  2. Fabrication and Characterization of Single Phase α-Alumina Membranes with Tunable Pore Diameters

    Directory of Open Access Journals (Sweden)

    Tatsuya Masuda

    2015-03-01

    Full Text Available Nanoporous and single phase α-alumina membranes with pore diameters tunable over a wide range of approximately 60–350 nm were successfully fabricated by optimizing the conditions for anodizing, subsequent detachment, and heat treatment. The pore diameter increased and the cell diameter shrunk upon crystallization to α-alumina by approximately 20% and 3%, respectively, in accordance with the 23% volume shrinkage resulting from the change in density associated with the transformation from the amorphous state to α-alumina. Nevertheless, flat α-alumina membranes, each with a diameter of 25 mm and a thickness of 50 μm, were obtained without thermal deformation. The α-alumina membranes exhibited high chemical resistance in various concentrated acidic and alkaline solutions as well as when exposed to high temperature steam under pressure. The Young’s modulus and hardness of the single phase α-alumina membranes formed by heat treatment at 1250 °C were notably decreased compared to the corresponding amorphous membranes, presumably because of the nodular crystallite structure of the cell walls and the substantial increase in porosity. Furthermore, when used for filtration, the α-alumina membrane exhibited a level of flux higher than that of the commercial ceramic membrane.

  3. Characterization of the Pore Filling of Solid State Dye Sensitized Solar Cells with Photoinduced Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Carol Olson

    2011-01-01

    Full Text Available Near steady-state photoinduced absorption (PIA and UV-Vis absorption spectroscopy are used to characterize the pore filling of spiro-MeOTAD (2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenylamine9,9′-spirobifluorene into the nanoparticulate TiO2 electrode of a solid-state dye-sensitized solar cell (ssDSC. The volumetric ratio of filled to unfilled pore volumes, as well as the optical signature of interacting chemical species, that is, the hole-transfer yield (HTY, are investigated. PIA spectroscopy is used to measure the HTY, relative to the amount of spiro-MeOTAD present, without needing to determine the extinction coefficients of the dye and spiro-MeOTAD cation species. The Beer-Lambert law is used to relate the relative PIA signal to the penetration length of the hole-conductor in the TiO2 film. For the sample thickness range of 1.4–5 μm investigated here, the optimum characteristic penetration length is determined to be 3.1+0.46 μm, which is compared to 1.4 μm for the 200 mg mL−1 concentration of spiro-MeOTAD conventionally used. Therefore, doubling the effective penetration of spiro-MeOTAD is necessary to functionalize all the dye molecules in a ssDSC.

  4. Septal Pore Caps in Basidiomycetes, Composition and Ultrastructure

    NARCIS (Netherlands)

    Driel, K.G.A. van

    2007-01-01

    Filamentous fungi, including Ascomycota and Basidiomycota, form mycelia that consist of a network of apical growing hyphae. These hyphae are separated into cellular compartments by septa that have pores of about 70 to 500 nm in diameter. The cytoplasm within the mycelium is thus continuous

  5. Enhanced water transport and salt rejection through hydrophobic zeolite pores

    Science.gov (United States)

    Humplik, Thomas; Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Karnik, Rohit; Wang, Evelyn N.

    2017-12-01

    The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).

  6. Pore-scale uncertainty quantification with multilevel Monte Carlo

    KAUST Repository

    Icardi, Matteo

    2014-01-06

    Computational fluid dynamics (CFD) simulations of pore-scale transport processes in porous media have recently gained large popularity. However the geometrical details of the pore structures can be known only in a very low number of samples and the detailed flow computations can be carried out only on a limited number of cases. The explicit introduction of randomness in the geometry and in other setup parameters can be crucial for the optimization of pore-scale investigations for random homogenization. Since there are no generic ways to parametrize the randomness in the porescale structures, Monte Carlo techniques are the most accessible to compute statistics. We propose a multilevel Monte Carlo (MLMC) technique to reduce the computational cost of estimating quantities of interest within a prescribed accuracy constraint. Random samples of pore geometries with a hierarchy of geometrical complexities and grid refinements, are synthetically generated and used to propagate the uncertainties in the flow simulations and compute statistics of macro-scale effective parameters.

  7. The dimension of the pore space in sponges

    International Nuclear Information System (INIS)

    Silva, L H F; Yamashita, M T

    2009-01-01

    A simple experiment to reveal the dimension of the pore space in sponges is proposed. This experiment is suitable for the first year of a physics or engineering course. The calculated dimension of the void space in a sponge of density 16 mg cm -3 was 2.948± 0.008

  8. Microstructural characterization and pore structure analysis of nuclear graphite

    International Nuclear Information System (INIS)

    Kane, J.; Karthik, C.; Butt, D.P.; Windes, W.E.; Ubic, R.

    2011-01-01

    Graphite will be used as a structural and moderator material in next-generation nuclear reactors. While the overall nature of the production of nuclear graphite is well understood, the historic nuclear grades of graphite are no longer available. This paper reports the virgin microstructural characteristics of filler particles and macro-scale porosity in virgin nuclear graphite grades of interest to the Next Generation Nuclear Plant program. Optical microscopy was used to characterize filler particle size and shape as well as the arrangement of shrinkage cracks. Computer aided image analysis was applied to optical images to quantitatively determine the variation of pore structure, area, eccentricity, and orientation within and between grades. The overall porosity ranged between ∼14% and 21%. A few large pores constitute the majority of the overall porosity. The distribution of pore area in all grades was roughly logarithmic in nature. The average pore was best fit by an ellipse with aspect ratio of ∼2. An estimated 0.6-0.9% of observed porosity was attributed to shrinkage cracks in the filler particles. Finally, a preferred orientation of the porosity was observed in all grades.

  9. Energetics of Transport through the Nuclear Pore Complex

    NARCIS (Netherlands)

    Ghavami, Ali; van der Giessen, Erik; Onck, Patrick R

    2016-01-01

    Molecular transport across the nuclear envelope in eukaryotic cells is solely controlled by the nuclear pore complex (NPC). The NPC provides two types of nucleocytoplasmic transport: passive diffusion of small molecules and active chaperon-mediated translocation of large molecules. It has been shown

  10. The hydraulic conductivity of sediments: A pore size perspective

    KAUST Repository

    Ren, X.W.

    2017-12-06

    This article presents an analysis of previously published hydraulic conductivity data for a wide range of sediments. All soils exhibit a prevalent power trend between the hydraulic conductivity and void ratio. Data trends span 12 orders of magnitude in hydraulic conductivity and collapse onto a single narrow trend when the hydraulic conductivity data are plotted versus the mean pore size, estimated using void ratio and specific surface area measurements. The sensitivity of hydraulic conductivity to changes in the void ratio is higher than the theoretical value due to two concurrent phenomena: 1) percolating large pores are responsible for most of the flow, and 2) the larger pores close first during compaction. The prediction of hydraulic conductivity based on macroscale index parameters in this and similar previous studies has reached an asymptote in the range of kmeas/5≤kpredict≤5kmeas. The remaining uncertainty underscores the important role of underlying sediment characteristics such as pore size distribution, shape, and connectivity that are not measured with index properties. Furthermore, the anisotropy in hydraulic conductivity cannot be recovered from scalar parameters such as index properties. Overall, results highlight the robustness of the physics inspired data scrutiny based Hagen–Poiseuille and Kozeny-Carman analyses.

  11. On the Mechanism of Pore Formation by Melittin

    NARCIS (Netherlands)

    van den Bogaart, Geert; Guzman, Jeanette Velasquez; Mika, Jacek T.; Poolman, Bert

    2008-01-01

    The mechanism of pore formation of lytic peptides, such as melittin from bee venom, is thought to involve binding to the membrane surface, followed by insertion at threshold levels of bound peptide. We show that in membranes composed of zwitterionic lipids, i.e. phosphatidylcholine, melittin not

  12. Pore collapse and regrowth in silicon electrodes for rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    DeCaluwe, S. C. [Department of Mechanical Engineering; Colorado School of Mines; USA; Center for Neutron Research; National Institute of Standards and Technology; Dhar, B. M. [Institute for Materials Research and Dept. of Mechanical Engineering; State University of New York; Binghamton; USA; Material Measurement Laboratory; Huang, L. [Institute for Materials Research and Dept. of Mechanical Engineering; State University of New York; Binghamton; USA; He, Y. [Institute for Materials Research and Dept. of Mechanical Engineering; State University of New York; Binghamton; USA; Department of Physics and Astronomy; Yang, K. [Institute for Materials Research and Dept. of Mechanical Engineering; State University of New York; Binghamton; USA; Owejan, J. P. [Department of Mechanical and Electrical Engineering Technology; State University of New York; Alfred; USA; Zhao, Y. [Department of Physics and Astronomy; University of Georgia; Athens; USA; Talin, A. A. [Center for Nanoscale Science and Technology; National Institute of Standards and Technology; Gaithersburg; USA; Sandia National Laboratories; Dura, J. A. [Center for Neutron Research; National Institute of Standards and Technology; Gaithersburg; USA; Wang, H. [Department of Materials Science and Engineering; University of Maryland; College Park; USA; Institute for Materials Research and Dept. of Mechanical Engineering

    2015-01-01

    In-operando Neutron Reflectometry establishes the pore collapse and regrowth (PCRG) mechanism in amorphous Si. Upon lithiation, porosity is first consumed by expansion of solid Si domains, with little thickness increase. After, the whole film expands. Porosity returns upon delithiation.

  13. Alumina ceramics prepared with new pore-forming agents

    Directory of Open Access Journals (Sweden)

    Zuzana Živcová

    2008-06-01

    Full Text Available Porous ceramics have a wide range of applications at all length scales, ranging from fi ltration membranes and catalyst supports to biomaterials (scaffolds for bone ingrowths and thermally or acoustically insulating bulk materials or coating layers. Organic pore-forming agents (PFAs of biological origin can be used to control porosity, pore size and pore shape. This work concerns the characterization and testing of several less common pore-forming agents (lycopodium, coffee, fl our and semolina, poppy seed, which are of potential interest from the viewpoint of size, shape or availability. The performance of these new PFAs is compared to that of starch, which has become a rather popular PFA for ceramics during the last decade. The PFAs investigated in this work are in the size range from 5 μm (rice starch to approximately 1 mm (poppy seed, all with more or less isometric shape. The burnout behavior of PFAs is studied by thermal analysis, i.e. thermogravimetry and differential thermal analysis. For the preparation of porous alumina ceramics from alumina suspensions containing PFAs traditional slip casting (into plaster molds and starch consolidation casting (using metal molds are used in this work. The resulting microstructures are investigated using optical microscopy, combined with image analysis, as well as other methods (Archimedes method of double-weighing in water, mercury intrusion porosimetry.

  14. Enhanced water transport and salt rejection through hydrophobic zeolite pores.

    Science.gov (United States)

    Humplik, Thomas; Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Karnik, Rohit; Wang, Evelyn N

    2017-12-15

    The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).

  15. Concentration Polarization to Measure Nano-pore Accessibility

    NARCIS (Netherlands)

    Solsona, Miguel; Eijkel, Jan C.T.; Olthuis, Wouter; Papadimitriou, Vasileios; van den Berg, Albert; Abelmann, Leon; Weckhuysen, Bert M.; Nieuwelink, A. E.

    2017-01-01

    Understanding the deactivation process in porous catalysts is of tremendous economic significance. We demonstrate the feasibility of using the concentration polarization method to obtain the pore accessibility distribution at single particle level for the first time. By using this technique we could

  16. Fines Classification Based on Sensitivity to Pore-Fluid Chemistry

    KAUST Repository

    Jang, Junbong; Santamarina, Carlos

    2015-01-01

    The 75-μm particle size is used to discriminate between fine and coarse grains. Further analysis of fine grains is typically based on the plasticity chart. Whereas pore-fluid-chemistry-dependent soil response is a salient and distinguishing

  17. Water vapor weathering of Taurus-Littrow orange soil - A pore-structure analysis

    Science.gov (United States)

    Cadenhead, D. A.; Mikhail, R. S.

    1975-01-01

    A pore-volume analysis was performed on water vapor adsorption data previously obtained on a fresh sample of Taurus-Littrow orange soil, and the analysis was repeated on the same sample after its exposure to moist air for a period of approximately six months. The results indicate that exposure of an outgassed sample to high relative pressures of water vapor can result in the formation of substantial micropore structure, the precise amount being dependent on the sample pretreatment, particularly the outgassing temperature. Micropore formation is explained in terms of water penetration into surface defects. In contrast, long-term exposure to moist air at low relative pressures appears to reverse the process with the elimination of micropores and enlargement of mesopores possibly through surface diffusion of metastable adsorbent material. The results are considered with reference to the storage of lunar samples.

  18. A study on pore-opening behaviors of graphite nanofibers by a chemical activation process.

    Science.gov (United States)

    Kim, Byung-Joo; Lee, Young-Seak; Park, Soo-Jin

    2007-02-15

    In this work, porous graphite nanofibers (GNFs) were prepared by a KOH activation method in order to manufacture porous carbon nanofibers. The process was conducted in the activation temperature range of 900-1100 degrees C, and the KOH:GNFs ratio was fixed at 3.5:1. The textural properties of the porous carbons were analyzed using N2 adsorption isotherms at 77 K. The BET, D-R, and BJH equations were used to observe the specific surface areas and the micro- and mesopore structures, respectively. From the results, it was found that the textural properties, including the specific surface area and the pore volumes, were proportionally enhanced with increasing activation temperatures. However, the activation mechanisms showed quite significant differences between the samples activated at low and high temperatures.

  19. Formation and decay of rudimentary penumbra around a pore

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Hiroko [Unit of Synergetic Studies for Space, Kyoto University, Yamashina-ku, Kyoto 607-8417 (Japan); Kitai, Reizaburo [Kwasan and Hida Observatories, Kyoto University, Yamashina-ku, Kyoto 607-8417 (Japan); Otsuji, Kenichi, E-mail: watanabe@kwasan.kyoto-u.ac.jp [Solar Observatory, National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan)

    2014-12-01

    We analyze the evolution of a pore in the active region NOAA 10940 using the data obtained by the Hinode satellite on 2007 February 3. The pore we analyzed showed the formation of a rudimentary penumbra structure, succeeded by an abrupt disappearance after about 5 hr. The pore had an approximate radius of 3.5 Mm and a total magnetic flux of 3.0 × 10{sup 19} Mx, which is a little smaller than the necessary magnetic flux for penumbral formation supposed by Rucklidge et al. (1-1.5 × 10{sup 20} Mx). Our observation describes a rare phenomenon which was in the unstable phase between a pore and a sunspot. The area of the dark umbra gradually decreased when the rudimentary penumbral filaments formed the penumbral structure, meaning that the penumbra develops at the expense of the umbral magnetic flux. This statement was confirmed by a rough estimation of the magnetic flux variation observed by the Hinode Fe I magnetogram. Five hours after the formation phase, the decay phase began. In this decaying phase, multiple opposite polarity patches are found to appear in the exterior of the pore (a different location from the penumbra formation site). We interpret these opposite polarities as signatures of the horizontal magnetic field, which preferably appears in the course of the unstable reconfiguration of the magnetic field structure. During the course of the disappearance of the penumbra, the horizontal penumbral field seems to become vertical because of the dark umbral area that recovered by about 10%.

  20. Predicting Reactive Transport Dynamics in Carbonates using Initial Pore Structure

    Science.gov (United States)

    Menke, H. P.; Nunes, J. P. P.; Blunt, M. J.

    2017-12-01

    Understanding rock-fluid interaction at the pore-scale is imperative for accurate predictive modelling of carbon storage permanence. However, coupled reactive transport models are computationally expensive, requiring either a sacrifice of resolution or high performance computing to solve relatively simple geometries. Many recent studies indicate that initial pore structure many be the dominant mechanism in determining the dissolution regime. Here we investigate how well the initial pore structure is predictive of distribution and amount of dissolution during reactive flow using particle tracking on the initial image. Two samples of carbonate rock with varying initial pore space heterogeneity were reacted with reservoir condition CO2-saturated brine and scanned dynamically during reactive flow at a 4-μm resolution between 4 and 40 times using 4D X-ray micro-tomography over the course of 1.5 hours using μ-CT. Flow was modelled on the initial binarized image using a Navier-Stokes solver. Particle tracking was then run on the velocity fields, the streamlines were traced, and the streamline density was calculated both on a voxel-by-voxel and a channel-by-channel basis. The density of streamlines was then compared to the amount of dissolution in subsequent time steps during reaction. It was found that for the flow and transport regimes studied, the streamline density distribution in the initial image accurately predicted the dominant pathways of dissolution and gave good indicators of the type of dissolution regime that would later develop. This work suggests that the eventual reaction-induced changes in pore structure are deterministic rather than stochastic and can be predicted with high resolution imaging of unreacted rock.

  1. Pore-scale mechanisms of gas flow in tight sand reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Silin, D.; Kneafsey, T.J.; Ajo-Franklin, J.B.; Nico, P.

    2010-11-30

    Tight gas sands are unconventional hydrocarbon energy resource storing large volume of natural gas. Microscopy and 3D imaging of reservoir samples at different scales and resolutions provide insights into the coaredo not significantly smaller in size than conventional sandstones, the extremely dense grain packing makes the pore space tortuous, and the porosity is small. In some cases the inter-granular void space is presented by micron-scale slits, whose geometry requires imaging at submicron resolutions. Maximal Inscribed Spheres computations simulate different scenarios of capillary-equilibrium two-phase fluid displacement. For tight sands, the simulations predict an unusually low wetting fluid saturation threshold, at which the non-wetting phase becomes disconnected. Flow simulations in combination with Maximal Inscribed Spheres computations evaluate relative permeability curves. The computations show that at the threshold saturation, when the nonwetting fluid becomes disconnected, the flow of both fluids is practically blocked. The nonwetting phase is immobile due to the disconnectedness, while the permeability to the wetting phase remains essentially equal to zero due to the pore space geometry. This observation explains the Permeability Jail, which was defined earlier by others. The gas is trapped by capillarity, and the brine is immobile due to the dynamic effects. At the same time, in drainage, simulations predict that the mobility of at least one of the fluids is greater than zero at all saturations. A pore-scale model of gas condensate dropout predicts the rate to be proportional to the scalar product of the fluid velocity and pressure gradient. The narrowest constriction in the flow path is subject to the highest rate of condensation. The pore-scale model naturally upscales to the Panfilov's Darcy-scale model, which implies that the condensate dropout rate is proportional to the pressure gradient squared. Pressure gradient is the greatest near the

  2. Alcohol dose dumping: The influence of ethanol on hot-melt extruded pellets comprising solid lipids.

    Science.gov (United States)

    Jedinger, N; Schrank, S; Mohr, S; Feichtinger, A; Khinast, J; Roblegg, E

    2015-05-01

    The objective of the present study was to investigate interactions between alcohol and hot-melt extruded pellets and the resulting drug release behavior. The pellets were composed of vegetable calcium stearate as matrix carrier and paracetamol or codeine phosphate as model drugs. Two solid lipids (Compritol® and Precirol®) were incorporated into the matrix to form robust/compact pellets. The drug release characteristics were a strong function of the API solubility, the addition of solid lipids, the dissolution media composition (i.e., alcohol concentration) and correspondingly, the pellet wettability. Pellets comprising paracetamol, which is highly soluble in ethanol, showed alcohol dose dumping regardless of the matrix composition. The wettability increased with increasing ethanol concentrations due to higher paracetamol solubilities yielding increased dissolution rates. For pellets containing codeine phosphate, which has a lower solubility in ethanol than in acidic media, the wettability was a function of the matrix composition. Dose dumping occurred for formulations comprising solid lipids as they showed increased wettabilities with increasing ethanol concentrations. In contrast, pellets comprising calcium stearate as single matrix component showed robustness in alcoholic media due to wettabilities that were not affected by the addition of ethanol. The results clearly indicate that the physico-chemical properties of the drug and the matrix systems are crucial for the design of ethanol-resistant dosage forms. Moreover, hydrophobic calcium stearate can be considered a suitable matrix system that minimizes the risk of ethanol-induced dose dumping for certain API's. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Composites comprising novel RTIL-based polymers, and methods of making and using same

    Science.gov (United States)

    Gin, Douglas; Carlisle, Trevor; Noble, Richard; Nicodemus, Garret; McDanel, William; Cowan, Matthew

    2017-06-27

    The invention includes compositions comprising curable imidazolium-functionalized poly(room-temperature ionic liquid) copolymers and homopolymers. The invention further includes methods of preparing and using the compositions of the invention. The invention further includes novel methods of preparing thin, supported, room-temperature ionic liquid-containing polymeric films on a porous support. In certain embodiments, the methods of the invention avoid the use of a gutter layer, which greatly reduces the overall gas permeance and selectivity of the composite membrane. In other embodiments, the films of the invention have increased gas selectivity and permeance over films prepared using methods described in the prior art.

  4. Palladium catalyst system comprising zwitterion and/or acid-​functionalized ionic liquid

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention concerns a catalyst system in particular a catalyst system comprising Palladium (Pd), a zwitterion and/or an acid-functionalized ionic liquid, and one or more phosphine ligands, wherein the Pd catalyst can be provided by a complex precursor, such as Pd(CH3COO)2, PdCI2, Pd(CH3...... methyl methacrylate and/or methacrylic acid. Catalyst systems according to the invention are suitable for reactions forming separable product and catalyst phases and supported ionic liquid phase SILP applications....

  5. Possibility of sorption purification of chromium comprising waste waters of galvanic production by inorganic ion exchangers

    International Nuclear Information System (INIS)

    Khaynakov, S.A.; Likov, E.P.; Bortun, A.I.; Belyukov, V.N.

    1986-01-01

    Present work is devoted to possibilities of sorption purification of chromium comprising waste waters of galvanic production by inorganic ion exchangers. Thus, the comparative study of sorption of chromium ions on anion exchanger A B-17 and on inorganic ion exchangers on the basis of hydrated titanium and zirconium dioxides in static and dynamic conditions is conducted. The influence of chromium ions concentration, solutions acidity (ph=1÷12) and presence of base electrolyte on sorption is studied. The state of chromium ions sorbed by inorganic ion exchangers is studied by means of infrared spectroscopy and spectroscopy. It is defined that inorganic sorbents could be used for chromium extraction from different solutions.

  6. HVDC Solution for Offshore Wind Park Comprising Turbines Equipped with Full-Range Converters

    DEFF Research Database (Denmark)

    Sharma, Ranjan; Rasmussen, Tonny Wederberg; Jensen, Kim Høj

    2010-01-01

    a voltage drop is created at the collection grid, the wind turbines go into fault-ride-through mode. The power output from each of the wind turbines is thus reduced to balance the system power. The detailed explanation of the strategy is presented in the paper. Matlab simulation model was prepared and some...... of a HVDC transmission system. The power system under study includes an offshore wind farm comprising turbines equipped with full range converters. The collection network is a local AC grid. Power transmission is done through HVDC system. The grid side VSC (voltage source converter) controls the DC voltage...

  7. IDIOMS THAT COMPRISE THE PRESENCE OF TURKISH WORDS IN GREEK CYPRIOT LANGUAGE

    OpenAIRE

    Şevket ÖZNUR; Mahmut İSLÂMOĞLU

    2010-01-01

    In this communiqué again we preferred to present some examples from the effects of Turkish Cypriot Culture. For a few years, we have concentrated on our culture’s effect on other cultures in Cyprus. Bearing in mind that we have lived together for hundreds of years with other societies, we have seen fit to give examples of the cultural interaction between other cultures and Turkish Cypriot culture. Our communiqué mostly comprises the effects of Turkish Culture. We have found it convenient to p...

  8. Electrical characterization of MIM capacitor comprises an adamantane film at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Rajanish N., E-mail: rajanisht@gmail.com [Department of Physics and Astronomical Sciences, Central University of Himachal Pradesh, Dharmshala 176206 Kangra, H.P. India (India); Toyota Technological Institute, 2-12-1Hisakata, Tempaku-Ku, Nagoya 468-8511 (Japan); Yoshimura, Masamichi [Department of Physics and Astronomical Sciences, Central University of Himachal Pradesh, Dharmshala 176206 Kangra, H.P. India (India)

    2016-06-15

    We fabricated a new metal-insulator-metal capacitor at room temperature, comprising a ∼90 nm thin low–k adamantane film on a Si substrate. The surface morphology of deposited organic film was investigated by using scanning electron microscopy and Raman spectroscopy, which is confirmed that the adamantane thin film was uniformly distributed on the Si surface. The adamantane film exhibits a low leakage current density of 7.4 x 10{sup −7} A/cm{sup 2} at 13.5 V, better capacitance density of 2.14 fF/μm{sup 2} at 100 KHz.

  9. Anticonvection device for a narrow space comprised between two parallel walls

    International Nuclear Information System (INIS)

    Costes, Didier.

    1975-01-01

    The invention relates to an anticonvection device providing strong limitations against the convection currents inside a space submitted to a vertical thermal gradient and more especially the space enclosed between the inner wall of a vessel generally cyclindrical in shape and of vertical axis, intended for a nuclear reactor, and the outer wall of a plug fitted together with said vessel. To this effect, said device is characterized in that it comprises a packing of a material of open porosity and thickness-wise elasticity, in the form of threads, fibers, knitted-cloths or sheets separated by distances shorter than the thickness of stagnancy under the temperature conditions inside said space [fr

  10. Detection matrix of an electromagnetic radiation and radiological image intensifier comprising such a matrix

    International Nuclear Information System (INIS)

    Fraleux, Jean.

    1982-01-01

    This invention concerns a detection matrix comprising, in an electrode lattice of lines and columns, addressing means constituted of thin film technology MOS transistors and photoconductances which enable the number of unit module crossings to be halved and to bring about an increase in the effective detection area. This detection matrix is employed in radiological image intensifiers where it ensures the conversion of incident X photons into reading electric signals or only the detection of a visible radiation in the case where the incident X photons are converted into lesser energy photons by a scintillator. The scintillator is then formed of a panel brought into contact with the detector mosaic [fr

  11. From Cell to Tissue Properties-Modeling Skin Electroporation With Pore and Local Transport Region Formation.

    Science.gov (United States)

    Dermol-Cerne, Janja; Miklavcic, Damijan

    2018-02-01

    Current models of tissue electroporation either describe tissue with its bulk properties or include cell level properties, but model only a few cells of simple shapes in low-volume fractions or are in two dimensions. We constructed a three-dimensional model of realistically shaped cells in realistic volume fractions. By using a 'unit cell' model, the equivalent dielectric properties of whole tissue could be calculated. We calculated the dielectric properties of electroporated skin. We modeled electroporation of single cells by pore formation on keratinocytes and on the papillary dermis which gave dielectric properties of the electroporated epidermis and papillary dermis. During skin electroporation, local transport regions are formed in the stratum corneum. We modeled local transport regions and increase in their radii or density which affected the dielectric properties of the stratum corneum. The final model of skin electroporation accurately describes measured electric current and voltage drop on the skin during electroporation with long low-voltage pulses. The model also accurately describes voltage drop on the skin during electroporation with short high-voltage pulses. However, our results indicate that during application of short high-voltage pulses additional processes may occur which increase the electric current. Our model connects the processes occurring at the level of cell membranes (pore formation), at the level of a skin layer (formation of local transport region in the stratum corneum) with the tissue (skin layers) and even level of organs (skin). Using a similar approach, electroporation of any tissue can be modeled, if the morphology of the tissue is known.

  12. Influence of pore fluid and frequency on elastic properties of greensand as interpreted using NMR data

    DEFF Research Database (Denmark)

    Hossain, Zakir; Mukerj, Tapan; Fabricius, Ida Lykke

    2011-01-01

    dispersion. However, Biot’s theory does not fully explain the frequency dispersion of sedimentary rocks. Greensands are composed of a mixture of quartz and micro-porous glauconite grains. In greensand, it is possible that the contrast between flow in macro-pores and micro-pores within glauconites gives rise....... Biot’s critical frequency and NMR (nuclear magnetic resonance) T2 spectrum were combined to describe the differences in fluid flow within macro-pores and within micro-pores. NMR data show that Biot’s flow should occur only in large pores in the greensand while, Biot’s flow should not occur in micro-pores....... Differences of fluid flow in macro-pores and micro-pores pores are described as high frequency squirt flow in greensand....

  13. Understanding capillary condensation and hysteresis in porous silicon: network effects within independent pores.

    Science.gov (United States)

    Naumov, Sergej; Khokhlov, Alexey; Valiullin, Rustem; Kärger, Jörg; Monson, Peter A

    2008-12-01

    The ability to exert a significant degree of pore structure control in porous silicon materials has made them attractive materials for the experimental investigation of the relationship between pore structure, capillary condensation, and hysteresis phenomena. Using both experimental measurements and a lattice gas model in mean field theory, we have investigated the role of pore size inhomogeneities and surface roughness on capillary condensation of N2 at 77K in porous silicon with linear pores. Our results resolve some puzzling features of earlier experimental work. We find that this material has more in common with disordered materials such as Vycor glass than the idealized smooth-walled cylindrical pores discussed in the classical adsorption literature. We provide strong evidence that this behavior comes from the complexity of the processes within independent linear pores, arising from the pore size inhomogeneities along the pore axis, rather than from cooperative effects between different pores.

  14. An instrument to measure differential pore pressures in deep ocean sediments: Pop-Up-Pore-Pressure-Instrument (PUPPI)

    International Nuclear Information System (INIS)

    Schultheiss, P.J.; McPhail, S.D.; Packwood, A.R.; Hart, B.

    1985-01-01

    A Pop-Up-Pore-Pressure-Instrument (PUPPI) has been developed to measure differential pore pressures in sediments. The differential pressure is the pressure above or below normal hydrostatic pressure at the depth of the measurement. It is designed to operate in water depths up to 6000 metres for periods of weeks or months, if required, and measures differential pore pressures at depths of up to 3 metres into the sediments with a resolution of 0.05 kPa. It is a free-fall device with a lance which penetrates the sediments. This lance and the ballast weight is disposed when the PUPPI is acoustically released from the sea floor. When combined with permeability and porosity values of deep-sea sediments the pore pressure measurements made using the PUPPI suggest advection velocities as low as 8.8 mm/yr. The mechanical, electrical and acoustic systems are described together with data obtained from both shallow and deep water trials. (author)

  15. Pore Characterization of Shale Rock and Shale Interaction with Fluids at Reservoir Pressure-Temperature Conditions Using Small-Angle Neutron Scattering

    Science.gov (United States)

    Ding, M.; Hjelm, R.; Watkins, E.; Xu, H.; Pawar, R.

    2015-12-01

    Oil/gas produced from unconventional reservoirs has become strategically important for the US domestic energy independence. In unconventional realm, hydrocarbons are generated and stored in nanopores media ranging from a few to hundreds of nanometers. Fundamental knowledge of coupled thermo-hydro-mechanical-chemical (THMC) processes that control fluid flow and propagation within nano-pore confinement is critical for maximizing unconventional oil/gas production. The size and confinement of the nanometer pores creates many complex rock-fluid interface interactions. It is imperative to promote innovative experimental studies to decipher physical and chemical processes at the nanopore scale that govern hydrocarbon generation and mass transport of hydrocarbon mixtures in tight shale and other low permeability formations at reservoir pressure-temperature conditions. We have carried out laboratory investigations exploring quantitative relationship between pore characteristics of the Wolfcamp shale from Western Texas and the shale interaction with fluids at reservoir P-T conditions using small-angle neutron scattering (SANS). We have performed SANS measurements of the shale rock in single fluid (e.g., H2O and D2O) and multifluid (CH4/(30% H2O+70% D2O)) systems at various pressures up to 20000 psi and temperature up to 150 oF. Figure 1 shows our SANS data at different pressures with H2O as the pressure medium. Our data analysis using IRENA software suggests that the principal changes of pore volume in the shale occurred on smaller than 50 nm pores and pressure at 5000 psi (Figure 2). Our results also suggest that with increasing P, more water flows into pores; with decreasing P, water is retained in the pores.

  16. Monte-Carlo simulation of crystallographical pore growth in III-V-semiconductors

    International Nuclear Information System (INIS)

    Leisner, Malte; Carstensen, Juergen; Foell, Helmut

    2011-01-01

    The growth of crystallographical pores in III-V-semiconductors can be understood in the framework of a simple model, which is based on the assumption that the branching of pores is proportional to the current density at the pore tips. The stochastic nature of this model allows its implementation into a three-dimensional Monte-Carlo-simulation of pore growth. The simulation is able to reproduce the experimentally observed crysto pore structures in III-V-semiconductors in full quantitative detail. The different branching probabilities for different semiconductors, as well as doping levels, can be deduced from the specific passivation behavior of the semiconductor-electrolyte-interface at the pore tips.

  17. Unstable Pore-Water Flow in Intertidal Wetlands

    Science.gov (United States)

    Barry, D. A.; Shen, C.; Li, L.

    2014-12-01

    Salt marshes are important intertidal wetlands strongly influenced by interactions between surface water and groundwater. Bordered by coastal water, the marsh system undergoes cycles of inundation and exposure driven by the tide. This leads to dynamic, complex pore-water flow and solute transport in the marsh soil. Pore-water circulations occur over vastly different spatial and temporal scales with strong link to the marsh topography. These circulations control solute transport between the marsh soil and the tidal creek, and ultimately affect the overall nutrient exchange between the marsh and coastal water. The pore-water flows also dictate the soil condition, particularly aeration, which influences the marsh plant growth. Numerous studies have been carried out to examine the pore-water flow process in the marsh soil driven by tides, focusing on stable flow with the assumption of homogeneity in soil and fluid properties. This assumption, however, is questionable given the actual inhomogeneous conditions in the field. For example, the salinity of surface water in the tidal creek varies temporally and spatially due to the influence of rainfall and evapotranspiration as well as the freshwater input from upland areas to the estuary, creating density gradients across the marsh surface and within the marsh soil. Many marshes possess soil stratigraphy with low-permeability mud typically overlying high-permeability sandy deposits. Macropores such as crab burrows are commonly distributed in salt marsh sediments. All these conditions are prone to the development of non-uniform, unstable preferential pore-water flow in the marsh soil, for example, funnelling and fingering. Here we present results from laboratory experiments and numerical simulations to explore such unstable flow. In particular, the analysis aims to address how the unstable flow modifies patterns of local pore-water movement and solute transport, as well as the overall exchange between the marsh soil and

  18. Pore connectivity effects on solute transport in rocks

    International Nuclear Information System (INIS)

    Hu, Qinhong; Ewing, Robert P.

    2001-01-01

    Retardation of nuclear contaminants in rock matrices can lead to long retention times, allowing substantial radionuclide decay prior to eventual release. Imbibition and diffusion into the rock matrix can move contaminants away from an active fracture, thereby contributing to their retardation. However, diffusive transport in some rocks may behave anomalously because of their sparsely connected porespace, in contrast to diffusion in rocks with denser pore connections. We examined imbibition of weakly sorbing tracers into welded tuff and Indiana sandstone, and water imbibition into metagraywacke and Berea sandstone. Tuff samples were initially equilibrated to 12% and 76% water (v/v) within controlled humidity chambers, while the other rocks were air-dried. For imbibition, one face was exposed to water, with or without tracer, and uptake was measured over time. Following imbibition, tracer concentration measurements were made at fine (1 mm) increments. Three anomalous results were observed: (1) Indiana sandstone and metagraywacke showed mass of imbibed water scaling as time 0.26 , while tuff and Berea sandstone showed the more classical scaling with time 0.5 ; (2) tracer movement into dry (2% initial saturation) Indiana sandstone showed a dispersion pattern similar to that expected during tracer movement into moist (76% initial saturation) tuff; and (3) tracer concentrations at the inlet face of the tuff sample were approximately twice those deeper inside the sample. The experiment was then modeled using random walk methods on a 3-D lattice with different values of pore coordination. Network model simulations that used a pore coordination of 1.49 for Indiana sandstone and 1.56 for metagraywacke showed similar temporal scaling, a result of their porespace being close to the percolation threshold. Tracer concentration profiles in Indiana sandstone and tuff were closely matched by simulations that used pore coordinations of 1.49 and 1.68, respectively, because of how low

  19. Pore Connectivity Effects on Solute Transport in Rocks

    International Nuclear Information System (INIS)

    Oinhong Hu

    2001-01-01

    Retardation of nuclear contaminants in rock matrices can lead to long retention times, allowing substantial radionuclide decay prior to eventual release. Imbibition and diffusion into the rock matrix can move contaminants away from an active fracture, thereby contributing to their retardation. However, diffusive transport in some rocks may behave anomalously because of their sparsely connected porespace, in contrast to diffusion in rocks with denser pore connections. We examined imbibition of weakly sorbing tracers into welded tuff and Indiana sandstone, and water imbibition into metagraywacke and Berea sandstone. Tuff samples were initially equilibrated to 12% and 76% water (v/v) within controlled humidity chambers, while the other rocks were air-dried. For imbibition, one face was exposed to water, with or without tracer, and uptake was measured over time. Following imbibition, tracer concentration measurements were made at fine (1 mm) increments. Three anomalous results were observed: (1) Indiana sandstone and metagraywacke showed mass of imbibed water scaling as time 0.26 , while tuff and Berea sandstone showed the more classical scaling with time 0.05 ; (2) tracer movement into dry (2% initial saturation) Indiana sandstone showed a dispersion pattern similar to that expected during tracer movement into moist (76% initial saturation) tuft and (3) tracer concentrations at the inlet face of the tuff sample were approximately twice those deeper inside the sample. The experiment was then modeled using random walk methods on a 3-D lattice with different values of pore coordination. Network model simulations that used a pore coordination of 1.49 for Indiana sandstone and 1.56 for metagraywacke showed similar temporal scaling, a result of their porespace being close to the percolation threshold. Tracer concentration profiles in Indiana sandstone and tuff were closely matched by simulations that used pore coordinations of 1.49 and 1.68, respectively, because of how low

  20. Regulation of Exocytotic Fusion Pores by SNARE Protein Transmembrane Domains

    Directory of Open Access Journals (Sweden)

    Zhenyong Wu

    2017-10-01

    Full Text Available Calcium-triggered exocytotic release of neurotransmitters and hormones from neurons and neuroendocrine cells underlies neuronal communication, motor activity and endocrine functions. The core of the neuronal exocytotic machinery is composed of soluble N-ethyl maleimide sensitive factor attachment protein receptors (SNAREs. Formation of complexes between vesicle-attached v- and plasma-membrane anchored t-SNAREs in a highly regulated fashion brings the membranes into close apposition. Small, soluble proteins called Complexins (Cpx and calcium-sensing Synaptotagmins cooperate to block fusion at low resting calcium concentrations, but trigger release upon calcium increase. A growing body of evidence suggests that the transmembrane domains (TMDs of SNARE proteins play important roles in regulating the processes of fusion and release, but the mechanisms involved are only starting to be uncovered. Here we review recent evidence that SNARE TMDs exert influence by regulating the dynamics of the fusion pore, the initial aqueous connection between the vesicular lumen and the extracellular space. Even after the fusion pore is established, hormone release by neuroendocrine cells is tightly controlled, and the same may be true of neurotransmitter release by neurons. The dynamics of the fusion pore can regulate the kinetics of cargo release and the net amount released, and can determine the mode of vesicle recycling. Manipulations of SNARE TMDs were found to affect fusion pore properties profoundly, both during exocytosis and in biochemical reconstitutions. To explain these effects, TMD flexibility, and interactions among TMDs or between TMDs and lipids have been invoked. Exocytosis has provided the best setting in which to unravel the underlying mechanisms, being unique among membrane fusion reactions in that single fusion pores can be probed using high-resolution methods. An important role will likely be played by methods that can probe single fusion pores

  1. Synthesis and characterization of high-surface-area millimeter-sized silica beads with hierarchical multi-modal pore structure by the addition of agar

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yosep; Choi, Junhyun [Department of Mineral Resources and Energy Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 561–756 (Korea, Republic of); Tong, Meiping, E-mail: tongmeiping@iee.pku.edu.cn [The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 (China); Kim, Hyunjung, E-mail: kshjkim@jbnu.ac.kr [Department of Mineral Resources and Energy Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 561–756 (Korea, Republic of)

    2014-04-01

    Millimeter-sized spherical silica foams (SSFs) with hierarchical multi-modal pore structure featuring high specific surface area and ordered mesoporous frameworks were successfully prepared using aqueous agar addition, foaming and drop-in-oil processes. The pore-related properties of the prepared spherical silica (SSs) and SSFs were systematically characterized by field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), small-angle X-ray diffraction (SAXRD), Hg intrusion porosimetry, and N{sub 2} adsorption–desorption isotherm measurements. Improvements in the BET surface area and total pore volume were observed at 504 m{sup 2} g{sup −1} and 5.45 cm{sup 3} g{sup −1}, respectively, after an agar addition and foaming process. Despite the increase in the BET surface area, the mesopore wall thickness and the pore size of the mesopores generated from the block copolymer with agar addition were unchanged based on the SAXRD, TEM, and BJH methods. The SSFs prepared in the present study were confirmed to have improved BET surface area and micropore volume through the agar loading, and to exhibit interconnected 3-dimensional network macropore structure leading to the enhancement of total porosity and BET surface area via the foaming process. - Highlights: • Millimeter-sized spherical silica foams (SSFs) are successfully prepared. • SSFs exhibit high BET surface area and ordered hierarchical pore structure. • Agar addition improves BET surface area and micropore volume of SSFs. • Foaming process generates interconnected 3-D network macropore structure of SSFs.

  2. Control the Morphologies and the Pore Architectures of Meso porous Silicas through a Dual-Templating Approach

    International Nuclear Information System (INIS)

    Wang, H.; Chen, H.; Xu, Z.; Wang, S.; Li, B.; Li, Y.

    2012-01-01

    Meso porous silica nanospheres were prepared using a chiral cationic low-molecular-weight amphiphile and organic solvents such as toluene, cyclohexane, and tetrachlorocarbon through a dual-templating approach. X-ray diffraction, nitrogen sorption, field emission scanning electron microscopy, and transmission electron microscopy techniques have been used to characterize the meso porous silicas. The volume ratio of toluene to water plays an important role in controlling the morphologies and the pore architectures of the meso porous silicas. It was also found that meso porous silica nano flakes can be prepared by adding tetrahydrofuran to the reaction mixtures.

  3. A lung cancer risk classifier comprising genome maintenance genes measured in normal bronchial epithelial cells.

    Science.gov (United States)

    Yeo, Jiyoun; Crawford, Erin L; Zhang, Xiaolu; Khuder, Sadik; Chen, Tian; Levin, Albert; Blomquist, Thomas M; Willey, James C

    2017-05-02

    Annual low dose CT (LDCT) screening of individuals at high demographic risk reduces lung cancer mortality by more than 20%. However, subjects selected for screening based on demographic criteria typically have less than a 10% lifetime risk for lung cancer. Thus, there is need for a biomarker that better stratifies subjects for LDCT screening. Toward this goal, we previously reported a lung cancer risk test (LCRT) biomarker comprising 14 genome-maintenance (GM) pathway genes measured in normal bronchial epithelial cells (NBEC) that accurately classified cancer (CA) from non-cancer (NC) subjects. The primary goal of the studies reported here was to optimize the LCRT biomarker for high specificity and ease of clinical implementation. Targeted competitive multiplex PCR amplicon libraries were prepared for next generation sequencing (NGS) analysis of transcript abundance at 68 sites among 33 GM target genes in NBEC specimens collected from a retrospective cohort of 120 subjects, including 61 CA cases and 59 NC controls. Genes were selected for analysis based on contribution to the previously reported LCRT biomarker and/or prior evidence for association with lung cancer risk. Linear discriminant analysis was used to identify the most accurate classifier suitable to stratify subjects for screening. After cross-validation, a model comprising expression values from 12 genes (CDKN1A, E2F1, ERCC1, ERCC4, ERCC5, GPX1, GSTP1, KEAP1, RB1, TP53, TP63, and XRCC1) and demographic factors age, gender, and pack-years smoking, had Receiver Operator Characteristic area under the curve (ROC AUC) of 0.975 (95% CI: 0.96-0.99). The overall classification accuracy was 93% (95% CI 88%-98%) with sensitivity 93.1%, specificity 92.9%, positive predictive value 93.1% and negative predictive value 93%. The ROC AUC for this classifier was significantly better (p < 0.0001) than the best model comprising demographic features alone. The LCRT biomarker reported here displayed high accuracy and ease

  4. Systematically controlled pore system of ordered mesoporous carbons using phosphoric acid as the in situ generated catalysts for carbonization and activation

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xing; Lee, Chang Hyun; Kim, Jin Hoe; You, Dae Jong; Shon, Jeong Kuk; Kim, Ji Man [Dept. of Chemistry, Sungkyunkwan University, Suwon (Korea, Republic of); Pak, Chan Ho [Fuel Cell Group, Corporate R and D Center, Samsung SDI Co. Ltd., Yongin (Korea, Republic of)

    2015-08-15

    We report on a facile synthesis of the ordered mesoporous carbon (OMC) materials with systematically controlled microporosity and mesoporosity simultaneously through the nano-replication route using phosphoric acid as the acid catalyst and activation agent. The use of phosphoric acid affects the pore structures of OMC materials, such as the formation of numerous micropores by activation of the carbon framework and the enlargement of mesopores by spontaneous phase separation during the carbonization. The mesopore sizes, surface areas, total pore volumes, and micropore volumes of the OMC materials are highly dependent on the phosphoric acid content and can be systematically controlled in the range 3.7–7.5 nm, 1027–2782 m{sup 2} g{sup -1}, 1.12–3.53 cm{sup 3} g{sup -1} and 0.34–0.95 cm{sup 3} g{sup -1}, respectively. OMC materials with systematically controlled pore structures were successfully synthesized using phosphoric acid as the carbonization catalyst and mesoporous silica materials with cubic Ia3d and 2-D hexagonal mesostructures as the templates. The phosphoric acid in the synthesis of ordered mesoporous carbon materials acts as the chemical activating agent for micropore generation of the carbon framework and pore-expanding agent for controlling of mesopore size, in addition to functioning as the acid catalyst. The present synthesis pathway is very useful for preparing OMC materials with tunable mesopore sizes and well-developed microporosities at the same time.

  5. Nucleic acids encoding phloem small RNA-binding proteins and transgenic plants comprising them

    Science.gov (United States)

    Lucas, William J.; Yoo, Byung-Chun; Lough, Tony J.; Varkonyi-Gasic, Erika

    2007-03-13

    The present invention provides a polynucleotide sequence encoding a component of the protein machinery involved in small RNA trafficking, Cucurbita maxima phloem small RNA-binding protein (CmPSRB 1), and the corresponding polypeptide sequence. The invention also provides genetic constructs and transgenic plants comprising the polynucleotide sequence encoding a phloem small RNA-binding protein to alter (e.g., prevent, reduce or elevate) non-cell autonomous signaling events in the plants involving small RNA metabolism. These signaling events are involved in a broad spectrum of plant physiological and biochemical processes, including, for example, systemic resistance to pathogens, responses to environmental stresses, e.g., heat, drought, salinity, and systemic gene silencing (e.g., viral infections).

  6. Nanoscale Cross-Point Resistive Switching Memory Comprising p-Type SnO Bilayers

    KAUST Repository

    Hota, Mrinal Kanti

    2015-02-23

    Reproducible low-voltage bipolar resistive switching is reported in bilayer structures of p-type SnO films. Specifically, a bilayer homojunction comprising SnOx (oxygen-rich) and SnOy (oxygen-deficient) in nanoscale cross-point (300 × 300 nm2) architecture with self-compliance effect is demonstrated. By using two layers of SnO film, a good memory performance is obtained as compared to the individual oxide films. The memory devices show resistance ratio of 103 between the high resistance and low resistance states, and this difference can be maintained for up to 180 cycles. The devices also show good retention characteristics, where no significant degradation is observed for more than 103 s. Different charge transport mechanisms are found in both resistance states, depending on the applied voltage range and its polarity. The resistive switching is shown to originate from the oxygen ion migration and subsequent formation/rupture of conducting filaments.

  7. Palladium catalyst system comprising zwitterion and/or acid-functionalized ionic liquid

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention concerns a catalyst system in particular a catalyst system comprising Palladium (Pd), a zwitterion and/or an acid-functionalized ionic liquid, and one or more phosphine ligands, wherein the Pd catalyst can be provided by a complex precursor, such as Pd(CH3COO)2, PdCI2, Pd(CH3......COCHCOCH3), Pd (CF3COO)2, Pd(PPh3)4 or Pd2(dibenzylideneacetone)3. Such catalyst systems can be used for e.g. alkoxycarbonylation reactions, carboxylation reactions, and/or in a co-polymerization reaction, e.g. in the production of methyl propionate and/or propanoic acid, optionally in processes forming...... methyl methacrylate and/or methacrylic acid. Catalyst systems according to the invention are suitable for reactions forming separable product and catalyst phases and supported ionic liquid phase SILP applications....

  8. PREPARATION AND CHARACTERIZATION OF COMPOSITES COMPRISING MODIFIED HARDWOOD AND WOOD POLYMERS/POLY(VINYL CHLORIDE

    Directory of Open Access Journals (Sweden)

    Ruxanda Bodîrlău

    Full Text Available Chemical modification of hardwood sawdust from ash-tree species was carried out with a solution of maleic anhydride in acetone. Wood polymers, lignin, and cellulose were isolated from the wood sawdust and modified by the same method. Samples were characterized by Fourier transform infrared spectroscopy (FTIR, providing evidence that maleic anhydride esterifies the free hydroxyl groups of the wood polymer components. Composites comprising chemically modified wood sawdust and wood polymers (cellulose, lignin-as variable weight percentages-, and poly (vinyl chloride were obtained and further characterized by using FTIR spectroscopy and scanning electron microscopy (SEM. The thermal behavior of composites was investigated by using the thermogravimetric analysis (TGA. In all cases, thermal properties were affected by fillers addition.

  9. Mycobacterium tuberculosis Lineage 4 comprises globally distributed and geographically restricted sublineages

    Science.gov (United States)

    Coscolla, Mireia; Liu, Qingyun; Trauner, Andrej; Fenner, Lukas; Rutaihwa, Liliana; Borrell, Sonia; Luo, Tao; Gao, Qian; Kato-Maeda, Midori; Ballif, Marie; Egger, Matthias; Macedo, Rita; Mardassi, Helmi; Moreno, Milagros; Tudo Vilanova, Griselda; Fyfe, Janet; Globan, Maria; Thomas, Jackson; Jamieson, Frances; Guthrie, Jennifer L.; Asante-Poku, Adwoa; Yeboah-Manu, Dorothy; Wampande, Eddie; Ssengooba, Willy; Joloba, Moses; Henry Boom, W.; Basu, Indira; Bower, James; Saraiva, Margarida; Vaconcellos, Sidra E. G.; Suffys, Philip; Koch, Anastasia; Wilkinson, Robert; Gail-Bekker, Linda; Malla, Bijaya; Ley, Serej D.; Beck, Hans-Peter; de Jong, Bouke C.; Toit, Kadri; Sanchez-Padilla, Elisabeth; Bonnet, Maryline; Gil-Brusola, Ana; Frank, Matthias; Penlap Beng, Veronique N.; Eisenach, Kathleen; Alani, Issam; Wangui Ndung’u, Perpetual; Revathi, Gunturu; Gehre, Florian; Akter, Suriya; Ntoumi, Francine; Stewart-Isherwood, Lynsey; Ntinginya, Nyanda E.; Rachow, Andrea; Hoelscher, Michael; Cirillo, Daniela Maria; Skenders, Girts; Hoffner, Sven; Bakonyte, Daiva; Stakenas, Petras; Diel, Roland; Crudu, Valeriu; Moldovan, Olga; Al-Hajoj, Sahal; Otero, Larissa; Barletta, Francesca; Jane Carter, E.; Diero, Lameck; Supply, Philip; Comas, Iñaki; Niemann, Stefan; Gagneux, Sebastien

    2016-01-01

    Generalist and specialist species differ in the breadth of their ecological niche. Little is known about the niche width of obligate human pathogens. Here we analyzed a global collection of Mycobacterium tuberculosis Lineage 4 clinical isolates, the most geographically widespread cause of human tuberculosis. We show that Lineage 4 comprises globally distributed and geographically restricted sublineages, suggesting a distinction between generalists and specialists. Population genomic analyses showed that while the majority of human T cell epitopes were conserved in all sublineages, the proportion of variable epitopes was higher in generalists. Our data further support a European origin for the most common generalist sublineage. Hence, the global success of Lineage 4 reflects distinct strategies adopted by different sublineages and the influence of human migration. PMID:27798628

  10. Functional Analysis of Genes Comprising the Locus of Heat Resistance in Escherichia coli.

    Science.gov (United States)

    Mercer, Ryan; Nguyen, Oanh; Ou, Qixing; McMullen, Lynn; Gänzle, Michael G

    2017-10-15

    The locus of heat resistance (LHR) is a 15- to 19-kb genomic island conferring exceptional heat resistance to organisms in the family Enterobacteriaceae , including pathogenic strains of Salmonella enterica and Escherichia coli The complement of LHR-comprising genes that is necessary for heat resistance and the stress-induced or growth-phase-induced expression of LHR-comprising genes are unknown. This study determined the contribution of the seven LHR-comprising genes yfdX1 GI , yfdX2 , hdeD GI , orf11 , trx GI , kefB , and psiE GI by comparing the heat resistances of E. coli strains harboring plasmid-encoded derivatives of the different LHRs in these genes. (Genes carry a subscript "GI" [genomic island] if an ortholog of the same gene is present in genomes of E. coli ) LHR-encoded heat shock proteins sHSP20, ClpK GI , and sHSP GI are not sufficient for the heat resistance phenotype; YfdX1, YfdX2, and HdeD are necessary to complement the LHR heat shock proteins and to impart a high level of resistance. Deletion of trx GI , kefB , and psiE GI from plasmid-encoded copies of the LHR did not significantly affect heat resistance. The effect of the growth phase and the NaCl concentration on expression from the putative LHR promoter p2 was determined by quantitative reverse transcription-PCR and by a plasmid-encoded p2:GFP promoter fusion. The expression levels of exponential- and stationary-phase E. coli cells were not significantly different, but the addition of 1% NaCl significantly increased LHR expression. Remarkably, LHR expression in E. coli was dependent on a chromosomal copy of evgA In conclusion, this study improved our understanding of the genes required for exceptional heat resistance in E. coli and factors that increase their expression in food. IMPORTANCE The locus of heat resistance (LHR) is a genomic island conferring exceptional heat resistance to several foodborne pathogens. The exceptional level of heat resistance provided by the LHR questions the

  11. Ion source using a hollow cathode discharge system and especially, particle accelerator comprising said source

    International Nuclear Information System (INIS)

    Mourier, Georges.

    1975-01-01

    An ion source provided with a hollow cathode discharge system is presented. The ion extraction system is designed in view of generating a beam directed towards a point of use located far from the point of ion production. Said source essentially comprises two cathodes facing each other, an anode at a continuous voltage with respect to the cathodes, a heated filament beyond the cathode on the path of the extracted beam, and a grid between said filament and cathode. The ion extraction is limited to a certain portion of the ions present inside the plasma, so as the discharge to continue to be sustained by itself. For that purpose pierced cathodes are used, with a transparency (the ratio of the hole area to the whole cathode area) not much higher than 50% [fr

  12. Position sensitive detector with semiconductor and image electron tube comprising such a detector

    International Nuclear Information System (INIS)

    Roziere, Guy.

    1977-01-01

    This invention concerns a position sensitive detector comprising a semiconducting substrate. It also concerns the electron tubes in which the detector may be incorporated in order to obtain an image formed at the tube input by an incident flux of particles or radiation. When a charged particle or group of such particles, electrons in particular, enter the space charge region of an inversely biased semiconductor diode, the energy supplied by these particles releases in the diode a certain number of electron-hole pairs which move in the field existing in the area towards the diode contacts. A corresponding current arises in the connections of this diode which constitutes the signal corresponding to the incident energy. Such a tube or chain of tubes is employed in nuclear medicine for observing parts of the human body, particularly by gamma radiation [fr

  13. Soil Pore Network Visualisation and Quantification using ImageJ

    DEFF Research Database (Denmark)

    Garbout, Amin; Pajor, Radoslaw; Otten, Wilfred

    Abstract Soil is one of the most complex materials on the earth, within which many biological, physical and chemical processes that support life and affect climate change take place. A much more detailed knowledge of the soil system is required to improve our ability to develop soil management...... strategies to preserve this limited resource. Many of those processes occur at micro scales. For long our ability to study soils non-destructively at microscopic scales has been limited, but recent developments in the use of X-ray Computed Tomography has offered great opportunities to quantify the 3-D...... geometry of soil pores. In this study we look at how networks that summarize the geometry of pores in soil are affected by soil structure. One of the objectives is to develop a robust and reproducible image analysis technique to produce quantitative knowledge on soil architecture from high resolution 3D...

  14. Design of pore size of macroporous ceramic substrates

    International Nuclear Information System (INIS)

    Szewald, O.; Kotsis, I.

    2000-01-01

    A method has been developed for the design of macro-porous ceramic substrates. Based on geometrical and regression models detailed technology was worked out for producing these 100% open porous filters, which were made using quasi homo-disperse fractions of corundum of diameters of several tens and hundreds microns and glassy binding material. Axial pressing was used as a forming process. Pore networks with size distribution that can be defined by a curve having one maximum were provided applying the above technology. Based on geometrical considerations and measurements it was proved that these maximums are at characteristic pore sizes that depend only on characteristic size of the original grain fractions and on the extent of the axial forming pressure. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  15. Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering

    KAUST Repository

    Sicat, Ronell Barrera

    2014-12-31

    This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs.

  16. Kinetic analysis of overlapping multistep thermal decomposition comprising exothermic and endothermic processes: thermolysis of ammonium dinitramide.

    Science.gov (United States)

    Muravyev, Nikita V; Koga, Nobuyoshi; Meerov, Dmitry B; Pivkina, Alla N

    2017-01-25

    This study focused on kinetic modeling of a specific type of multistep heterogeneous reaction comprising exothermic and endothermic reaction steps, as exemplified by the practical kinetic analysis of the experimental kinetic curves for the thermal decomposition of molten ammonium dinitramide (ADN). It is known that the thermal decomposition of ADN occurs as a consecutive two step mass-loss process comprising the decomposition of ADN and subsequent evaporation/decomposition of in situ generated ammonium nitrate. These reaction steps provide exothermic and endothermic contributions, respectively, to the overall thermal effect. The overall reaction process was deconvoluted into two reaction steps using simultaneously recorded thermogravimetry and differential scanning calorimetry (TG-DSC) curves by considering the different physical meanings of the kinetic data derived from TG and DSC by P value analysis. The kinetic data thus separated into exothermic and endothermic reaction steps were kinetically characterized using kinetic computation methods including isoconversional method, combined kinetic analysis, and master plot method. The overall kinetic behavior was reproduced as the sum of the kinetic equations for each reaction step considering the contributions to the rate data derived from TG and DSC. During reproduction of the kinetic behavior, the kinetic parameters and contributions of each reaction step were optimized using kinetic deconvolution analysis. As a result, the thermal decomposition of ADN was successfully modeled as partially overlapping exothermic and endothermic reaction steps. The logic of the kinetic modeling was critically examined, and the practical usefulness of phenomenological modeling for the thermal decomposition of ADN was illustrated to demonstrate the validity of the methodology and its applicability to similar complex reaction processes.

  17. Molecularly imprinted macroporous monoliths for solid-phase extraction: Effect of pore size and column length on recognition properties.

    Science.gov (United States)

    Vlakh, E G; Stepanova, M A; Korneeva, Yu M; Tennikova, T B

    2016-09-01

    The series of macroporous monolithic molecularly imprinted monoliths differed by pore size, column length (volume) and amount of template used for imprinting was synthesized using methacrylic acid and glycerol dimethacrylate as co-monomers and antibiotic ciprofloxacin as a template. The prepared monoliths were characterized regarding to their permeability, pore size, porosity, and resistance to the flow of a mobile phase. The surface morphology was also analyzed. The slight dependence of imprinting factor on flow rate, as well as its independence on pore size of macroporous molecularly imprinted monolithic media was observed. The column obtained at different conditions exhibited different affinity of ciprofloxacin to the imprinted sites that was characterized with Kdiss values in the range of 10(-5)-10(-4)M. The solid-phase extraction of ciprofloxacin from such biological liquids as human blood serum, human urine and cow milk serum was performed using the developed monolithic columns. In all cases, the extraction was found to be 95.0-98.6%. Additionally, the comparison of extraction of three fluoroqinolone analogues, e.g. ciprofloxacin, levofloxacin and moxifloxacin, from human blood plasma was carried out. Contrary to ciprofloxacin extracted with more than 95%, this parameter did not exceed 40% for its analogues. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Fabricating hierarchically porous carbon with well-defined open pores via polymer dehalogenation for high-performance supercapacitor

    Science.gov (United States)

    Guo, Mei; Li, Yu; Du, Kewen; Qiu, Chaochao; Dou, Gang; Zhang, Guoxin

    2018-05-01

    Improving specific energy of supercapacitors (SCs) at high power has been intensively investigated as a hot and challengeable topic. In this work, hierarchically porous carbon (HPC) materials with well-defined meso-/macro-pores are reported via the dehalogenation reaction of polyvinyl fluoride (PVDF) by NaNH2. The pore hierarchy is achievable mainly because of the coupled effects of NaNH2 activation and the template/bubbling effects of byproducts of NaF and NH3. Electron microscopy studies and Brunauer-Emmett-Teller (BET) measurements confirm that the structures of HPC samples contain multiple-scale pores assembled in a hierarchical pattern, and most of their volumes are contributed by mesopores. Aqueous symmetric supercapacitors (ASSCs) were fabricated using HPC-M7 materials, achieving an ultrahigh specific energy of 18.8 Wh kg-1 at specific power of 986.8 W kg-1. Remarkably, at the ultrahigh power of 14.3 kW kg-1, the HPC-ASSCs still output a very high specific energy of 16.7 Wh kg-1, which means the ASSCs can be charged or discharged within 4 s. The outstanding rate capacitive performance is mainly benefited from the hierarchical porous structure that allows highly efficient ion diffusion.

  19. Quantitative multi-scale analysis of mineral distributions and fractal pore structures for a heterogeneous Junger Basin shale

    International Nuclear Information System (INIS)

    Wang, Y.D.; Ren, Y.Q.; Hu, T.; Deng, B.; Xiao, T.Q.; Liu, K.Y.; Yang, Y.S.

    2016-01-01

    Three dimensional (3D) characterization of shales has recently attracted wide attentions in relation to the growing importance of shale oil and gas. Obtaining a complete 3D compositional distribution of shale has proven to be challenging due to its multi-scale characteristics. A combined multi-energy X-ray micro-CT technique and data-constrained modelling (DCM) approach has been used to quantitatively investigate the multi-scale mineral and porosity distributions of a heterogeneous shale from the Junger Basin, northwestern China by sub-sampling. The 3D sub-resolution structures of minerals and pores in the samples are quantitatively obtained as the partial volume fraction distributions, with colours representing compositions. The shale sub-samples from two areas have different physical structures for minerals and pores, with the dominant minerals being feldspar and dolomite, respectively. Significant heterogeneities have been observed in the analysis. The sub-voxel sized pores form large interconnected clusters with fractal structures. The fractal dimensions of the largest clusters for both sub-samples were quantitatively calculated and found to be 2.34 and 2.86, respectively. The results are relevant in quantitative modelling of gas transport in shale reservoirs

  20. Pore Pressure Distribution and Flank Instability in Hydrothermally Altered Stratovolcanoes

    Science.gov (United States)

    Ball, J. L.; Taron, J.; Hurwitz, S.; Reid, M. E.

    2015-12-01

    Field and geophysical investigations of stratovolcanoes with long-lived hydrothermal systems commonly reveal that initially permeable regions (such as brecciated layers of pyroclastic material) can become both altered and water-bearing. Hydrothermal alteration in these regions, including clay formation, can turn them into low-permeability barriers to fluid flow, which could increase pore fluid pressures resulting in flank slope instability. We examined elevated pore pressure conditions using numerical models of hydrothermal flow in stratovolcanoes, informed by geophysical data about internal structures and deposits. Idealized radially symmetric meshes were developed based on cross-sectional profiles and alteration/permeability structures of Cascade Range stratovolcanoes. We used the OpenGeoSys model to simulate variably saturated conditions in volcanoes heated only by regional heat fluxes, as well as 650°C intrusions at two km depth below the surface. Meteoric recharge was estimated from precipitation rates in the Cascade Range. Preliminary results indicate zones of elevated pore pressures form: 1) where slopes are underlain by continuous low-permeability altered layers, or 2) when the edifice has an altered core with saturated, less permeable limbs. The first scenario might control shallow collapses on the slopes above the altered layers. The second could promote deeper flank collapses that are initially limited to the summit and upper slopes, but could progress to the core of an edifice. In both scenarios, pore pressures can be further elevated by shallow intrusions, or evolve over longer time scales under forcing from regional heat flux. Geometries without confining low-permeability layers do not show these pressure effects. Our initial scenarios use radially symmetric models, but we are also simulating hydrothermal flow under real 3D geometries with asymmetric subsurface structures (Mount Adams). Simulation results will be used to inform 3D slope

  1. Gas release from pressurized closed pores in nuclear fuels

    International Nuclear Information System (INIS)

    Bailey, P.; Donnelly, S.E.; Armour, D.G.; Matzke, H.

    1988-01-01

    Gas release from the nuclear fuels UO 2 and UN out of pressurized closed pores produced by autoclave anneals has been studied by Thermal Desorption Spectrometry (TDS). Investigation of gas release during heating and cooling has indicated stress related mechanical effects leading to gas release. This release occurred in a narrow temperature range between about 1000 and 1500 K for UO 2 , but it continued down to ambient temperature for UN. No burst release was observed above 1500 K for UO 2 . (orig.)

  2. Understanding the mechanisms behind coking pressure: Relationship to pore structure

    Energy Technology Data Exchange (ETDEWEB)

    John J. Duffy; M. Castro Diaz; Colin E. Snape; Karen M. Steel; Merrick R. Mahoney [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

    2007-09-15

    Three low volatile coals A, B and C with oven wall pressures of 100 kPa, 60 kPa and 20 kPa respectively were investigated using high-temperature rheometry, {sup 1}H NMR, thermogravimetric analysis and SEM, with the primary aim to better understand the mechanisms behind the coking pressure phenomenon. Rheometer plate displacement measurements ({Delta}L) have shown differences in the expansion and contraction behaviour of the three coals, which seem to correlate with changes in rheological properties; while SEM images have shown that the expansion process coincides with development of pore structure. It is considered that the point of maximum plate height ({Delta}L{sub max}) prior to contraction may be indicative of a cell opening or pore network forming process, based on analogies with other foam systems. Such a process may be considered important for coking pressure since it provides a potential mechanism for volatile escape, relieving internal gas pressure and inducing charge contraction. For coal C, which has the highest fluidity {delta}L{sub max} occurs quite early in the softening process and consequently a large degree of contraction is observed; while for the lower fluidity coal B, the process is delayed since pore development and consequently wall thinning progress at a slower rate. When {Delta}L{sub max} is attained, a lower degree of contraction is observed because the event occurs closer to resolidification where the increasing viscosity/elasticity can stabilise the expanded pore structure. For coal A which is relatively high fluidity, but also high coking pressure, a greater degree of swelling is observed prior to cell rupture, which may be due to greater fluid elasticity during the expansion process. This excessive expansion is considered to be a potential reason for its high coking pressure. 58 refs., 15 figs., 1 tab.

  3. Pore Space Connectivity and the Transport Properties of Rocks

    Directory of Open Access Journals (Sweden)

    Bernabé Yves

    2016-07-01

    Full Text Available Pore connectivity is likely one of the most important factors affecting the permeability of reservoir rocks. Furthermore, connectivity effects are not restricted to materials approaching a percolation transition but can continuously and gradually occur in rocks undergoing geological processes such as mechanical and chemical diagenesis. In this study, we compiled sets of published measurements of porosity, permeability and formation factor, performed in samples of unconsolidated granular aggregates, in which connectivity does not change, and in two other materials, sintered glass beads and Fontainebleau sandstone, in which connectivity does change. We compared these data to the predictions of a Kozeny-Carman model of permeability, which does not account for variations in connectivity, and to those of Bernabé et al. (2010, 2011 model, which does [Bernabé Y., Li M., Maineult A. (2010 Permeability and pore connectivity: a new model based on network simulations, J. Geophys. Res. 115, B10203; Bernabé Y., Zamora M., Li M., Maineult A., Tang Y.B. (2011 Pore connectivity, permeability and electrical formation factor: a new model and comparison to experimental data, J. Geophys. Res. 116, B11204]. Both models agreed equally well with experimental data obtained in unconsolidated granular media. But, in the other materials, especially in the low porosity samples that had undergone the greatest amount of sintering or diagenesis, only Bernabé et al. model matched the experimental data satisfactorily. In comparison, predictions of the Kozeny-Carman model differed by orders of magnitude. The advantage of the Bernabé et al. model was its ability to account for a continuous, gradual reduction in pore connectivity during sintering or diagenesis. Although we can only speculate at this juncture about the mechanisms responsible for the connectivity reduction, we propose two possible mechanisms, likely to be active at different stages of sintering and diagenesis

  4. Optimization of transdermal delivery using magainin pore-forming peptide

    OpenAIRE

    Kim, Yeu-Chun; Ludovice, Peter J.; Prausnitz, Mark R.

    2008-01-01

    The skin's outer layer of stratum corneum, which is a thin tissue containing multilamellar lipid bilayers, is the main barrier to drug delivery to the skin. To increase skin permeability, our previous work has shown large enhancement of transdermal permeation using a pore-forming peptide, magainin, which was formulated with N-lauroyl sarcosine (NLS) in 50% ethanol-in-PBS. Mechanistic analysis suggested that magainin and NLS can increase skin permeability by disrupting stratum corneum lipid st...

  5. Silicon pore optics for the international x-ray observatory

    Science.gov (United States)

    Wille, E.; Wallace, K.; Bavdaz, M.; Collon, M. J.; Günther, R.; Ackermann, M.; Beijersbergen, M. W.; Riekerink, M. O.; Blom, M.; Lansdorp, B.; de Vreede, L.

    2017-11-01

    Lightweight X-ray Wolter optics with a high angular resolution will enable the next generation of X-ray telescopes in space. The International X-ray Observatory (IXO) requires a mirror assembly of 3 m2 effective area (at 1.5 keV) and an angular resolution of 5 arcsec. These specifications can only be achieved with a novel technology like Silicon Pore Optics, which is developed by ESA together with a consortium of European industry. Silicon Pore Optics are made of commercial Si wafers using process technology adapted from the semiconductor industry. We present the manufacturing process ranging from single mirror plates towards complete focusing mirror modules mounted in flight configuration. The performance of the mirror modules is tested using X-ray pencil beams or full X-ray illumination. In 2009, an angular resolution of 9 arcsec was achieved, demonstrating the improvement of the technology compared to 17 arcsec in 2007. Further development activities of Silicon Pore Optics concentrate on ruggedizing the mounting system and performing environmental tests, integrating baffles into the mirror modules and assessing the mass production.

  6. Toxicity of sediments and pore water from Brunswick Estuary, Georgia

    Science.gov (United States)

    Winger, Parley V.; Lasier, Peter J.; Geitner, Harvey

    1993-01-01

    A chlor-alkali plant in Brunswick, Georgia, USA, discharged >2 kg mercury/d into a tributary of the Turtle River-Brunswick Estuary from 1966 to 1971. Mercury concentrations in sediments collected in 1989 along the tributary near the chlor-alkali plant ranged from 1 to 27 μg/g (dry weight), with the highest concentrations found in surface (0–8 cm) sediments of subtidal zones in the vicinity of the discharge site. Toxicity screening in 1990 using Microtox® bioassays on pore water extracted on site from sediments collected at six stations distributed along the tributary indicated that pore water was highly toxic near the plant discharge. Ten-day toxicity tests on pore water from subsequent sediment samples collected near the plant discharge confirmed high toxicity to Hyalella azteca, and feeding activity was significantly reduced in whole-sediment tests. In addition to mercury in the sediments, other metals (chromium, lead, and zinc) exceeded 50 μg/g, and polychlorobiphenyl (PCB) concentrations ranged from 67 to 95 μg/g. On a molar basis, acid-volatile sulfide concentrations (20–45 μmol/g) in the sediments exceeded the metal concentrations. Because acid-volatile sulfides bind with cationic metals and form metal sulfides, which are generally not bioavailable, toxicities shown by these sediments were attributed to the high concentrations of PCBs and possibly methylmercury.

  7. Chemical modelling of pore water composition from PFBC residues

    International Nuclear Information System (INIS)

    Karlsson, L.G.

    1991-01-01

    The concentration of trace elements varies depending on the source of the coal and also due to the combustion process used. Mercury is one important element among the trace elements in the coal residues, generally recognised as potentially harmful to the biological system. To predict the pore water concentrations of mercury and other important constituents leached from coal combustion residues disposal sites, mechanistic data on chemical reactions are required. The present study is an application of a basially thermodynamical approach using the geochemical code EQ3NR. The presence of discrete solid phases that control the aqueous concentrations of major elements such as aluminium, calcium and silicon are identified. Solid phases are modelled in equilibrium with a hypothetical pore water at a pH range of 7-11. In this study the thermodynamic database of EQ3NR has been complemented with data for cadmium, mercury and lead taken from the OECD/NEA Thermodynamic Database and from a compilation made by Lindsay. Possible solubility limiting phases for the important trace elements arsenic, cadmium, chromium, copper, mercury, nickel and lead have been identified. Concentrations of these trace elements as a function of pH in the hypothetical pore water were calculated using mechanistic thermodynamial data. The thermodynamical approach in this study seems justified because most solid residues that are either present or expected to form during weathering have relatively fast precipitation/dissolution kinetics. (21 refs., 18 figs., 5 tabs.)

  8. Effects of pore design on mechanical properties of nanoporous silicon

    International Nuclear Information System (INIS)

    Winter, Nicholas; Becton, Matthew; Zhang, Liuyang; Wang, Xianqiao

    2017-01-01

    Nanoporous silicon has been emerging as a powerful building block for next-generation sensors, catalysts, transistors, and tissue scaffolds. The capability to design novel devices with desired mechanical properties is paramount to their reliability and serviceability. In order to bring further resolution to the highly variable mechanical characteristics of nanoporous silicon, here we perform molecular dynamics simulations to study the effects of ligament thickness, relative density, and pore geometry/orientation on the mechanical properties of nanoporous silicon, thereby determining its Young's modulus, ultimate strength, and toughness as well as the scaling laws versus the features of interior ligaments. Results show that pore shape and pattern dictate stress accumulation inside the designed structure, leading to the corresponding failure signature, such as stretching-dominated, bending-dominated, or stochastic failure signatures, in nanoporous silicon. The nanostructure of the material is also seen to drive or mute size effects such as “smaller is stronger” and “smaller is ductile”. This investigation provides useful insight into the behavior of nanoporous silicon and how one might leverage its promising applications. - Graphical abstract: Molecular dynamics simulations are performed to study the effects of ligament thickness, relative density, and pore geometry/orientation on the mechanical properties of nanoporous silicon, thereby determining its Young's modulus, ultimate strength, and toughness as well as the scaling trends versus the features of interior ligaments.

  9. Influence factors on etching rate of PET nuclear pore membrane

    International Nuclear Information System (INIS)

    Zuo Zhenzhong; Wu Zhendong; Liang Haiying; Ju Wei; Chen Dongfeng; Fu Yuanyong; Qu Guopu

    2014-01-01

    Background: The nuclear pore membrane is a kind of liquid filtration material manufactured by irradiation and chemical etching. Various conditions in etch process have a great influence on etch rate. Purpose: The influence factors of concentration and temperature of etch solution and the irradiation energy of heavy ions on etch rate was studied. Methods: Four layers of PET (polyethylene terephthalate) films were stacked together and were irradiated with 140-MeV 32 S ions at room temperature under vacuum conditions. Utilizing conductivity measurement technique, the electrical current changes through the u:radiated PET film were monitored during etching, from which the breakthrough time and therefore the track etching rate was calculated. Results: The results show that there is an exponential correlation between etch rate and temperature, and a linear correlation between etch rate and concentration. The track etching rate increases linearly with energy loss rate. Empirical formula for the bulk etching rate as a function of etchant concentration and temperature was also established via fitting of measurements. Conclusion: It is concluded that by using 1.6-MeV·u -1 32 S ions, PET nuclear pore membrane with cylindrical pore shape can be prepared at 85℃ with etchant concentration of l mol·L -1 . (authors)

  10. Cationic PAMAM dendrimers as pore-blocking binary toxin inhibitors.

    Science.gov (United States)

    Förstner, Philip; Bayer, Fabienne; Kalu, Nnanya; Felsen, Susanne; Förtsch, Christina; Aloufi, Abrar; Ng, David Y W; Weil, Tanja; Nestorovich, Ekaterina M; Barth, Holger

    2014-07-14

    Dendrimers are unique highly branched macromolecules with numerous groundbreaking biomedical applications under development. Here we identified poly(amido amine) (PAMAM) dendrimers as novel blockers for the pore-forming B components of the binary anthrax toxin (PA63) and Clostridium botulinum C2 toxin (C2IIa). These pores are essential for delivery of the enzymatic A components of the internalized toxins from endosomes into the cytosol of target cells. We demonstrate that at low μM concentrations cationic PAMAM dendrimers block PA63 and C2IIa to inhibit channel-mediated transport of the A components, thereby protecting HeLa and Vero cells from intoxication. By channel reconstitution and high-resolution current recording, we show that the PAMAM dendrimers obstruct transmembrane PA63 and C2IIa pores in planar lipid bilayers at nM concentrations. These findings suggest a new potential role for the PAMAM dendrimers as effective polyvalent channel-blocking inhibitors, which can protect human target cells from intoxication with binary toxins from pathogenic bacteria.

  11. Pore Topology Effects in Positron Annihilation Spectroscopy of Zeolites.

    Science.gov (United States)

    Zubiaga, Asier; Warringham, Robbie; Mitchell, Sharon; Gerchow, Lars; Cooke, David; Crivelli, Paolo; Pérez-Ramírez, Javier

    2017-03-03

    Positron annihilation spectroscopy (PAS) is a powerful method to study the size and connectivity of pores in zeolites. The lifetime of positronium within the host material is commonly described by the Tao-Eldrup model. However, one of its largest limitations arises from the simple geometries considered for the shape of the pores, which cannot describe accurately the complex topologies in zeolites. Here, an atomic model that combines the Tao potential with the crystallographic structure is introduced to calculate the distribution and lifetime of Ps intrinsic to a given framework. A parametrization of the model is undertaken for a set of widely applied zeolite framework types (*BEA, FAU, FER, MFI, MOR, UTL), before extending the model to all known structures. The results are compared to structural and topological descriptors, and to the Tao-Eldrup model adapted for zeolites, demonstrating the intricate dependence of the lifetime on the pore architecture. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Dawestrema cycloancistrium (Monogenea) from the head pores of arapaimas.

    Science.gov (United States)

    Portes Santos, Cláudia; da Silva, Maralina Torres; Moravec, Franti Ek

    2017-07-24

    Arapaima gigas is one of the main cultured fish species in South America, and monogenean parasites of this species cause large economic losses to fish farmers. During surveys of the parasites of cultured arapaimas from Mexiana Island in the Amazon River Delta, Rio Branco, in northwestern Brazilian Amazonia, and Yurimaguas, Peru, the monogenean Dawestrema cycloancistrium was found in the gills of A. gigas as well as in previously unreported sites, i.e. the head pores and chambers. The aim of this study was to investigate the transmission route of this parasite and its geographical distribution as well as to describe its morphology as observed by light and confocal imaging. Phalloidin labeling confirmed the presence of 2 prostatic reservoirs and showed muscular branches of fibers supporting haptoral sclerites. In arapaimas, the head connects to the gill chambers via 2 perforated scales located at the dorsolateral sides of the distal part of the head. The scales connect to thin channels and chambers situated in the proximal part of the head. These chambers are filled with cephalic mucus, which flows out to the environment through terminal pores. Adults and egg masses of monogeneans were found on the gills and inside the head pores and cavities of fish along with cephalic mucus. This indicates a specialized method of parasite transmission from adult fish to fingerlings during parental care (holding offspring in the mouth) or via head secretions, providing evidence of a new adapted mechanism of dispersion.

  13. In situ temperature tunable pores of shape memory polyurethane membranes

    International Nuclear Information System (INIS)

    Ahn, Joon-Sung; Yu, Woong-Ryeol; Youk, Ji Ho; Ryu, Hee Youk

    2011-01-01

    Conventional shape memory polymers, such as shape memory polyurethanes (SMPU), can exhibit net two-way shape memory behavior (2WSM), i.e., upon heating and subsequent cooling, their macroscopic shapes change reversibly under an applied bias load. This paper is aimed at reporting similar 2WSM behavior, especially by focusing on the size of nanopores/micropores in SMPU membranes, i.e., the size of the pores can be reversibly changed by up to about 300 nm upon repeated heating and cooling. The SMPU membranes were prepared by electrospinning and elongated at temperatures higher than the transition temperature of the SMPU. Under the constant stress, the size change of the pores in the membranes was measured by applying cyclic temperature change. It was observed that the pore size changed from 150 to 440 nm according to the temperature change, demonstrating that the SMPU membrane can be utilized as a smart membrane to selectively separate substances according to their sizes by just controlling temperature

  14. Integration of pore features into the evaluation of fingerprint evidence.

    Science.gov (United States)

    Anthonioz, Alexandre; Champod, Christophe

    2014-01-01

    Fingerprint practitioners rely on level 3 features to make decisions in relation to the source of an unknown friction ridge skin impression. This research proposes to assess the strength of evidence associated with pores when shown in (dis)agreement between a mark and a reference print. Based upon an algorithm designed to automatically detect pores, a metric is defined in order to compare different impressions. From this metric, the weight of the findings is quantified using a likelihood ratio. The results obtained on four configurations and 54 donors show the significant contribution of the pore features and translate into statistical terms what latent fingerprint examiners have developed holistically through experience. The system provides LRs that are indicative of the true state under both the prosecution and the defense propositions. Not only such a system brings transparency regarding the weight to assign to such features, but also forces a discussion in relation to the risks of such a model to mislead. © 2013 American Academy of Forensic Sciences.

  15. Composites comprising silicon carbide fibers dispersed in magnesia-aluminate matrix and fabrication thereof and of other composites by sinter forging

    Science.gov (United States)

    Panda, Prakash C.; Seydel, Edgar R.; Raj, Rishi

    1989-10-03

    A novel ceramic-ceramic composite of a uniform dispersion of silicon carbide fibers in a matrix of MgO.multidot.nAl.sub.2 O.sub.3 wherein n ranges from about 1 to about 4.5, said composite comprising by volume from 1 to 50% silicon carbide fibers and from 99 to 50% MgO.multidot.nAl.sub.2 O.sub.3. The composite is readily fabricated by forming a powder comprising a uniform dispersion of silicon carbide fibers in poorly crystalline phase comprising MgO and Al.sub.2 O.sub.3 in a mole ratio of n and either (a) hot pressing or preferably (b) cold pressing to form a preform and then forging utilizing a temperature in the range of 1100.degree. C. to 1900.degree. C. and a strain rate ranging from about 10.sup.-5 seconds .sup.-1 to about 1 seconds .sup.-1 so that surfaces cracks do not appear to obtain a shear deformation greater than 30%.

  16. Difficulties of supercurrents in narrow pores of 3He-A

    International Nuclear Information System (INIS)

    Thuneberg, E.V.; Kurkijaervi, J.

    1980-01-01

    We consider resistanceless supercurrents through narrow pores and find such currents to vanish in most cases because of end effects at the entries and exists of the pores. Under pressure dc-supercurrents are found to arise. (author)

  17. Capillary pressure at irregularly shaped pore throats: Implications for water retention characteristics

    Science.gov (United States)

    Suh, Hyoung Suk; Kang, Dong Hun; Jang, Jaewon; Kim, Kwang Yeom; Yun, Tae Sup

    2017-12-01

    The random shapes of pore throats in geomaterials hinder accurate estimation of capillary pressure, and conventional pore network models that simply use the Young-Laplace equation assuming circular pore throats overestimate the capillary pressure. As a solution to this problem that does not complicate the pore network model or slow its implementation, we propose a new morphological analysis method to correlate the capillary pressure at an irregular pore channel with its cross-sectional geometry using lattice Boltzmann (LB) simulation and Mayer and Stowe-Princen theory. Geometry-based shape factors for pore throats are shown here to correlate strongly with the capillary pressure obtained by LB simulation. Water retention curves obtained by incorporating the morphological calibration into conventional pore network simulation and their correlative scheme agree well with experimental data. The suggested method is relevant to pore-scale processes such as geological CO2 sequestration, methane bubbling from wetlands, and enhanced carbon recovery.

  18. A study to investigate viscous coupling effects on the hydraulic conductance of fluid layers in two-phase flow at the pore level.

    Science.gov (United States)

    Shams, Mosayeb; Raeini, Ali Q; Blunt, Martin J; Bijeljic, Branko

    2018-07-15

    This paper examines the role of momentum transfer across fluid-fluid interfaces in two-phase flow. A volume-of-fluid finite-volume numerical method is used to solve the Navier-Stokes equations for two-phase flow at the micro-scale. The model is applied to investigate viscous coupling effects as a function of the viscosity ratio, the wetting phase saturation and the wettability, for different fluid configurations in simple pore geometries. It is shown that viscous coupling effects can be significant for certain pore geometries such as oil layers sandwiched between water in the corner of mixed wettability capillaries. A simple parametric model is then presented to estimate general mobility terms as a function of geometric properties and viscosity ratio. Finally, the model is validated by comparison with the mobilities computed using direct numerical simulation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Pore water colloid properties in argillaceous sedimentary rocks

    Energy Technology Data Exchange (ETDEWEB)

    Degueldre, Claude, E-mail: c.degueldre@lancaster.ac.uk [Engineering Department, University of Lancaster, LA1 4YW Lancaster (United Kingdom); ChiAM & Institute of Environment, University of Geneva, 1211 Genève 4, Swizerland (Switzerland); Earlier, NES, Paul Scherrer Institute, 5232 Villigen (Switzerland); Cloet, Veerle [NAGRA, Hardstrasse 73, 5430 Wettingen (Switzerland)

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay

  20. Investigating the effects of stress on the pore structures of nuclear grade graphites

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Joshua E.L., E-mail: joshua.taylor@postgrad.manchester.ac.uk; Hall, Graham N., E-mail: graham.n.hall@manchester.ac.uk; Mummery, Paul M., E-mail: paul.m.mummery@manchester.ac.uk

    2016-03-15

    Graphite is used as a moderating material and as a structural component in a number of current generation nuclear reactors. During reactor operation stresses develop in the graphite components, causing them to deform. It is important to understand how the microstructure of graphite affects the material's response to these stresses. A series of experiments were performed to investigate how the pore structures of Pile Grade A and Gilsocarbon graphites respond to loading stresses. A compression rig was used to simulate the build-up of operational stresses in graphite components, and a confocal laser microscope was used to study variation of a number of important pore properties. Values of elastic modulus and Poisson's ratio were calculated and compared to existing literature to confirm the validity of the experimental techniques. Mean pore areas were observed to decrease linearly with increasing applied load, mean pore eccentricity increased linearly, and a small amount of clockwise pore rotation was observed. The response to build-up of stresses was dependent on the orientation of the pores and basal planes and the shapes of the pores with respect to the loading axis. It was proposed that pore closure and pore reorientation were competing processes. Pore separation was quantified using ‘nearest neighbour’ and Voronoi techniques, and non-pore regions were found to shrink linearly with increasing applied load. - Highlights: • Effects of stress on pore structures of Gilsocarbon and PGA graphites were studied. • Application of a compressive load was used to generate stresses in graphite. • Inverse linear relationship between stress and pore area was observed. • Mean pore eccentricity increased, clockwise pore rotation observed. • Separation of pores quantified using Voronoi and ‘nearest-neighbour’ methods.

  1. Determination of pore diameter from rejection measurements with a mixture of oligosaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza-Gomez, Heriberto; Rogel-Hernandez, Eduardo [Universidad Autonoma de Baja California-Tijuana, Facultad de Ciencias Quimicas e Ingenieria, Tijuana, BC (Mexico); Lin, Shui Wai [Centro de Graduados e Investigacion del Instituto Tecnologico de Tijuana, Apdo. Postal 1166, Tijuana, BC (Mexico)

    2005-04-01

    This paper present a method to determine pore diameters and effective transport through membranes using a mixture of oligosaccharides. The results are compared with the Maxwell-Stefan equations. The partition coefficients of the solutes are a function of the pore diameter according to the Ferry equation. Thus, with the pore diameter as the only unknown parameter, rejection is described and the pore diameter is obtained by a Marquardt-Levenberg optimization procedure. (orig.)

  2. The effect of pore-scale geometry and wettability on two-phase relative permeabilities within elementary cells

    Science.gov (United States)

    Bianchi Janetti, Emanuela; Riva, Monica; Guadagnini, Alberto

    2017-04-01

    We study the relative role of the complex pore space geometry and wettability of the solid matrix on the quantification of relative permeabilities characterizing steady state immiscible two-phase flow in porous media. We do so by considering elementary cells, which are typically employed in upscaling frameworks based on, e.g., homogenization or volume averaging. In this context one typically relies on the solution of pore-scale physics at a scale which is much smaller than that of an investigated porous system. Pressure-driven two-phase flow following simultaneous co-current injection of water and oil is numerically solved for a suite of regular and stochastically generated two-dimensional explicit elementary cells with fixed porosity and sharing main topological/morphological features. We show that relative permeabilities of the randomly generated elementary cells are significantly influenced by the formation of preferential percolation paths (principal pathways), giving rise to a strongly nonuniform distribution of fluid fluxes. These pathways are a result of the spatially variable resistance that the random pore structures exert on the fluid. The overall effect on relative permeabilities of the diverse organization of principal pathways, as driven by a given random realization at the scale of the unit cell, is significantly larger than that of the wettability of the host rock. In contrast to what can be observed for the random cells analyzed, relative permeabilities of regular cells display a clear trend with contact angle at the investigated scale. Our findings suggest the need to perform systematic upscaling studies in a stochastic context, to propagate the effects of uncertain pore space geometries to a probabilistic description of relative permeability curves at the continuum scale.

  3. Pore-scale analysis of the minimum liquid film thickness around elongated bubbles in confined gas-liquid flows

    Science.gov (United States)

    Magnini, M.; Beisel, A. M.; Ferrari, A.; Thome, J. R.

    2017-11-01

    The fluid mechanics of elongated bubbles in confined gas-liquid flows in micro-geometries is important in pore-scale flow processes for enhanced oil recovery and mobilization of colloids in unsaturated soil. The efficiency of such processes is traditionally related to the thickness of the liquid film trapped between the elongated bubble and the pore's wall, which is assumed constant. However, the surface of long bubbles presents undulations in the vicinity of the rear meniscus, which may significantly decrease the local thickness of the liquid film, thus impacting the process of interest. This study presents a systematic analysis of these undulations and the minimum film thickness induced in the range Ca = 0.001- 0.5 and Re = 0.1- 2000 . Pore-scale Computational Fluid Dynamics (CFD) simulations are performed with a self-improved version of the opensource solver ESI OpenFOAM which is based on a Volume of Fluid method to track the gas-liquid interface. A lubrication model based on the extension of the classical axisymmetric Bretherton theory is utilized to better understand the CFD results. The profiles of the rear meniscus of the bubble obtained with the lubrication model agree fairly well with those extracted from the CFD simulations. This study shows that the Weber number of the flow, We = Ca Re , is the parameter that best describes the dynamics of the interfacial waves. When We 0.1, a larger number of wave crests becomes evident on the surface of the rear meniscus of the bubble. The liquid film thickness at the crests of the undulations thins considerably as the Reynolds number is increased, down to less than 60% of the value measured in the flat film region. This may significantly influence important environmental processes, such as the detachment and mobilization of micron-sized pollutants and pathogenic micro-organisms adhering at the pore's wall in unsaturated soil.

  4. Invariance of single-file water mobility in gramicidin-like peptidic pores as function of pore length.

    Science.gov (United States)

    Portella, Guillem; Pohl, Peter; de Groot, Bert L

    2007-06-01

    We investigated the structural and energetic determinants underlying water permeation through peptidic nanopores, motivated by recent experimental findings that indicate that water mobility in single-file water channels displays nonlinear length dependence. To address the molecular mechanism determining the observed length dependence, we studied water permeability in a series of designed gramicidin-like channels of different length using atomistic molecular dynamics simulations. We found that within the studied range of length the osmotic water permeability is independent of pore length. This result is at variance with textbook models, where the relationship is assumed to be linear. Energetic analysis shows that loss of solvation rather than specific water binding sites in the pore form the main energetic barrier for water permeation, consistent with our dynamics results. For this situation, we propose a modified expression for osmotic permeability that fully takes into account water motion collectivity and does not depend on the pore length. Different schematic barrier profiles are discussed that explain both experimental and computational interpretations, and we propose a set of experiments aimed at validation of the presented results. Implications of the results for the design of peptidic channels with desired permeation characteristics are discussed.

  5. Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media

    KAUST Repository

    Icardi, Matteo

    2014-07-31

    In the present work fluid flow and solute transport through porous media are described by solving the governing equations at the pore scale with finite-volume discretization. Instead of solving the simplified Stokes equation (very often employed in this context) the full Navier-Stokes equation is used here. The realistic three-dimensional porous medium is created in this work by packing together, with standard ballistic physics, irregular and polydisperse objects. Emphasis is placed on numerical issues related to mesh generation and spatial discretization, which play an important role in determining the final accuracy of the finite-volume scheme and are often overlooked. The simulations performed are then analyzed in terms of velocity distributions and dispersion rates in a wider range of operating conditions, when compared with other works carried out by solving the Stokes equation. Results show that dispersion within the analyzed porous medium is adequately described by classical power laws obtained by analytic homogenization. Eventually the validity of Fickian diffusion to treat dispersion in porous media is also assessed. © 2014 American Physical Society.

  6. Effects of sand compaction and mixing on pore structure and the unsaturated soil hydraulic properties

    NARCIS (Netherlands)

    Mahmoodlu, Mojtaba Ghareh; Raoof, A.; Sweijen, T.; van Genuchten, M. Th

    2016-01-01

    The hydraulic properties of unsaturated porous media very much depend on their pore structure as defined by the size, arrangement, and connectivity of pores. Several empirical and quasi-empirical approaches have been used over the years to derive pore structure information from the particle size

  7. Position-Dependent Dynamics Explain Pore-Averaged Diffusion in Strongly Attractive Adsorptive Systems.

    Science.gov (United States)

    Krekelberg, William P; Siderius, Daniel W; Shen, Vincent K; Truskett, Thomas M; Errington, Jeffrey R

    2017-12-12

    Using molecular simulations, we investigate the relationship between the pore-averaged and position-dependent self-diffusivity of a fluid adsorbed in a strongly attractive pore as a function of loading. Previous work (Krekelberg, W. P.; Siderius, D. W.; Shen, V. K.; Truskett, T. M.; Errington, J. R. Connection between thermodynamics and dynamics of simple fluids in highly attractive pores. Langmuir 2013, 29, 14527-14535, doi: 10.1021/la4037327) established that pore-averaged self-diffusivity in the multilayer adsorption regime, where the fluid exhibits a dense film at the pore surface and a lower density interior pore region, is nearly constant as a function of loading. Here we show that this puzzling behavior can be understood in terms of how loading affects the fraction of particles that reside in the film and interior pore regions as well as their distinct dynamics. Specifically, the insensitivity of pore-averaged diffusivity to loading arises from the approximate cancellation of two factors: an increase in the fraction of particles in the higher diffusivity interior pore region with loading and a corresponding decrease in the particle diffusivity in that region. We also find that the position-dependent self-diffusivities scale with the position-dependent density. We present a model for predicting the pore-average self-diffusivity based on the position-dependent self-diffusivity, which captures the unusual characteristics of pore-averaged self-diffusivity in strongly attractive pores over several orders of magnitude.

  8. Image-based numerical simulation of the local cyclic deformation behavior around cast pore in steel

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Lihe, E-mail: dlhqian@yahoo.com [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (China); National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University (China); Cui, Xiaona; Liu, Shuai [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (China); National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University (China); Chen, Minan [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (China); Ma, Penghui [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (China); National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University (China); Xie, Honglan [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics (China); Zhang, Fucheng [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (China); National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University (China); Meng, Jiangying [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (China)

    2016-12-15

    The local cyclic stress/strain responses around an actual, irregular pore in cast Hadfield steel under fatigue loading are investigated numerically, and compared with those around a spherical and an ellipsoidal pore. The actual pore-containing model takes into account the real shape of the pore imaged via high-resolution synchrotron X-ray computed tomography and combines both isotropic hardening and Bauschinger effects by using the Chaboche's material model, which enables to realistically simulate the cyclic deformation behaviors around actual pore. The results show that the stress and strain energy density concentration factors (K{sub σ} and K{sub E}) around either an actual irregular pore or an idealized pore increase while the strain concentration factor (K{sub ε}) decreases slightly with increasing the number of fatigue cycles. However, all the three parameters, K{sub σ}, K{sub ε} and K{sub E}, around an actual pore are always several times larger than those around an idealized pore, whatever the number of fatigue cycles. It is suggested that the fatigue properties of cast pore-containing materials cannot be realistically evaluated with any idealized pore models. The feasibility of the methodology presented highlights the potential of its application in the micromechanical understanding of fatigue damage phenomena in cast pore-containing materials.

  9. Effect of porosity and pore morphology on the low-frequency ...

    Indian Academy of Sciences (India)

    Effect of porosity and pore size distribution on the low-frequency dielectric response, in the range 0.01-100 kHz, in sintered ZrO2-8 mol% Y2O3 ceramic compacts have been investigated. Small-angle neutron scattering (SANS) technique has been employed to obtain the pore characteristics like pore size distribution, ...

  10. Semi-empirical formula for large pore-size estimation from o-Ps annihilation lifetime

    International Nuclear Information System (INIS)

    Nguyen Duc Thanh; Tran Quoc Dung; Luu Anh Tuyen; Khuong Thanh Tuan

    2007-01-01

    The o-Ps annihilation rate in large pore was investigated by the semi-classical approach. The semi-empirical formula that simply correlates between the pore size and the o-Ps lifetime was proposed. The calculated results agree well with experiment in the range from some angstroms to several ten nanometers size of pore. (author)

  11. Sebum output as a factor contributing to the size of facial pores.

    Science.gov (United States)

    Roh, M; Han, M; Kim, D; Chung, K

    2006-11-01

    Many endogenous and exogenous factors are known to cause enlarged pilosebaceous pores. Such factors include sex, genetic predisposition, ageing, chronic ultraviolet light exposure, comedogenic xenobiotics, acne and seborrhoea. This study was an attempt to determine the factors related to enlarged pores. To assess the relationship of sebum output, age, sex, hormonal factors and severity of acne with pore size. A prospective, randomized, controlled study was designed. A total of 60 volunteers, 30 males and 30 females, were recruited for this study. Magnified images of pores were taken using a dermoscopic video camera and measured using an image analysis program. The sebum output level was measured with a Sebumeter. Using multiple linear regression analysis, increased pore size was significantly associated with increased sebum output level, sex and age. Among the variables, sebum output level correlated most with the pore size followed by male sex. In comparing male and female participants, males had higher correlation between the sebum output level and the pore size (male: r = 0.47, female: r = 0.38). Thus, additional factors seem to influence pore size in females. Pore size was significantly increased during the ovulation phase (P = 0.008), but severity of acne was not significantly associated with the pore size. Enlarged pore sizes are associated with increased sebum output level, age and male sex. In female patients, additional hormonal factors, such as those of the menstrual cycle, affect the pore size.

  12. Sebum, acne, skin elasticity, and gender difference - which is the major influencing factor for facial pores?

    Science.gov (United States)

    Kim, B Y; Choi, J W; Park, K C; Youn, S W

    2013-02-01

    Enlarged facial pores have been esthetic problems and have become a matter of cosmetic concern. Several factors are supposed to be related to the enlargement of facial pores, although scientific evaluations were not performed yet. To assess the correlation between facial pores and possible relating factors such as age, gender, sebum secretion, skin elasticity, and the presence of acne, using objective bioengineering instruments. Sixty volunteers, 30 males and 30 females, participated in this study. Various parameters of facial pores were assessed using the Robo Skin Analyzer. The facial sebum secretion and skin elasticity were measured using the Sebumeter and the Cutometer, respectively. These data were compared and correlated to examine the possible relationship between facial pores and age, sebum secretion and skin elasticity, according to gender and the presence of acne. Male gender and the existence of acne were correlated with higher number of facial pores. Sebum secretion levels showed positive correlation with facial pores. The R7 parameter of skin elasticity was negatively correlated with facial pores, suggesting increased facial pores with decreased skin elasticity. However, the age and the severity of acne did not show a definite relationship with facial pores. Male, increased sebum and decreased skin elasticity were mostly correlated with facial pore development. Further studies on population with various demographic profiles and more severe acne may be helpful to elucidate the potential effect of aging and acne severity on facial pores. © 2011 John Wiley & Sons A/S.

  13. Combined use of rheometry and microscopy to understand pore structure development during coal carbonisation

    Energy Technology Data Exchange (ETDEWEB)

    John J. Duffy; Miguel Castro Diaz; Colin E. Snape; Merrick R. Mahoney; Karen M. Steel [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre

    2007-07-01

    The viscoelastic behaviour of coal during carbonisation plays a role in the formation, growth and coalescence of pores. While viscosity is considered to govern pore formation and growth, the coalescence of pores or stabilisation of pores is considered to be governed by elasticity, and these two factors need to be considered in tandem when investigating pore network formation. The properties of the pore network, such as the connectivity of the pores, is hypothesised to be a factor controlling the degree of pressure that the carbonising mass exerts on its surrounding walls, called oven wall pressure (OWP). When volatiles are unable to pass out through the newly formed semi-coke due to low permeability, they travel instead to the centre of the charge, possibly condense as it is cooler, and build-up to high levels, causing high OWPs. Possible causes for low permeability on the semi-coke side could include poor connectivity between pores in the resolidifying material due to lack of connections, tortuous flow paths or narrow necks between pores. Low OWPs are thought to be largely due to a reduction in the elasticity of the fluid phase which allows a greater degree of pore coalescence and ultimately pore connectivity. This paper presents viscoelastic measurements for coals exhibiting different OWPs and scanning electron microscopy (SEM) images of the coal, quenched at various temperatures during carbonisation to show the development of their pore networks. 12 refs., 5 figs., 1 tab.

  14. A mathematical study of the influence of pore geometry on diffusion

    International Nuclear Information System (INIS)

    Melnyk, T.W.; Skeet, A.M.M.

    1987-01-01

    Diffusion into the pore space of plutonic rock matrices is an important phenomenon that can affect the migration of radionuclides and other contaminants in groundwater systems. The effects of irregular pore geometry on rates of diffusive transport are examined in this report. Approximate equations describing steady-state diffusive transport in pores of variable geometry are presented and indicate a strong dependence of the diffusion rates on the geometry of the pore space. Finite-element diffusion calculations were carried out for a series of pores containing storage spaces with rectangular cross-sections. The calculations showed the time taken to reach steady-state is affected by the pore geometry. The results of these calculations were used to simulate typical laboratory diffusion experiments and to evaluate the interpretation of effective diffusion parameters obtained from analysis of the simulated experiments using both capillary and dead-end pore models of the pore space. A capillary model of the pore space requires two independent parameters to characterize the pore space, and is shown, in general, to be inadequate to describe the pre-steady-state regime. The diffusion of radionuclides in groundwater systems lies in this non-steady-state regime. More complex mathematical descriptions of the pore space, using more variables and parameters, can accurately describe the non-steady-state transport. The capillary model, with effective parameter values, gives reasonable results when the size of the dead-end pore space is small relative to the overall diffusion distance under consideration

  15. Effect of pore fluid on the cyclic behavior of laterally loaded offshore piles modelled in centrifuge

    NARCIS (Netherlands)

    Askarinejad, A.; Philia Boru Sitanggang, Anggi; Schenkeveld, Ferry; Lee, W.; Lee, J-S.; Kim, H-K.; kim, D-S.

    The common practice in centrifuge modelling of dynamic processes is to use high-viscosity pore fluids to unify the time scaling factors for the generation and dissipation of pore pressures. This paper focuses on the effects of the density and viscosity of the pore fluid on the behaviour of an

  16. Supercapacitor Electrode Materials from Highly Porous Carbon Nanofibers with Tailored Pore Distributions

    Science.gov (United States)

    Chathurika Abeykoon, Nimali

    for EDLCs. It also explains the necessity and the advantages of tailored high surface area nanofibers as an electrode materials for supercapacitors. Chapter 2 describes the preparation of high surface area carbon nanofibers using polymer blends containing PAN and PMMA and introduces an effective and simple strategy to improve the surface area of CNFs by using a sacrificial polymer, PMMA. Chapter 3 describes blending of high fractional free volume polymer, 6FDA-DAM: DABA (3:2) into PBI to increase surface area and by using the higher etch rate of 6FDA-DAM: DABA in the blend to optimize pore distribution of CNFs. Chapter 4 introduces a novel approach to increase surface area of CNFs without any physical or chemical activation by using an in situ porogen containing copolymer P(AN-co-IA). The concept developed here avoids unnecessary and complex extra activation steps when fabricating carbon nanofibers which leads to lower char yield and uncontrollable pore sizes. Chapter 5 describes enhancement of surface area by using terpolymer P(AN-VIM-IA) to develop a new precursor. This approach is further advantageous since terpolymer can combine superior electrochemical properties of homopolymer, PAN and P(AN- co-IA) and P(AN-co-VIM). Chapter 6 describes the use of commercially available small molecule compatibilizer 2-MI to tailor pore architecture of carbon fiber derived from the immiscible blend of PBI/6FDD to match with the ion sizes of ionic liquid electrolytes thereby increasing the surface area of the CNFs that is accessible to electrolytes.

  17. Magnetoresistance in single-electron transistors comprising a superconducting island with ferromagnetic leads

    Science.gov (United States)

    Mizugaki, Yoshinao; Takiguchi, Masashi; Tamura, Nobuyuki; Shimada, Hiroshi

    2018-03-01

    We report electric and magnetic field responses of single-electron transistors (SETs) comprising a superconducting island with ferromagnetic (FM) leads. We fabricated two SETs, one of which had relatively high resistance and the other had relatively low resistance. The SETs had two states for the gate charge: SET-ON or SET-OFF. They also had two states for the FM lead magnetization: parallel (P) or anti-parallel (AP) configuration. Current-voltage characteristics of four SET states (“P & SET-ON,” “P & SET-OFF,” “AP & SET-ON,” and “AP & SET-OFF”) were measured at approximately 0.1 K in a compact dilution refrigerator. Magnetoresistance ratio (MRR) values were obtained for the SET-ON and SET-OFF states, respectively. The higher-resistance SET1 exhibited positive MRR values for all measured bias voltages. The MRR enhancement was confirmed for the SET-OFF state, which agreed well with the co-tunneling model. The lower-resistance SET2, on the other hand, exhibited negative and positive MRR values for higher and lower bias voltage conditions, respectively. The bias voltage for the MRR polarity reversal was changed by the gate voltage. It was also confirmed that the co-tunneling model was partially valid for negative MRR values.

  18. Guided wave propagation and scattering in pipeworks comprising elbows: Theoretical and experimental results

    International Nuclear Information System (INIS)

    Bakkali, M El; Lhémery, A; Baronian, V; Chapuis, B

    2015-01-01

    Elastic guided waves (GW) are used to inspect pipeworks in various industries. Modelling tools for simulating GW inspection are necessary to understand complex scattering phenomena occurring at specific features (welds, elbows, junctions...). In pipeworks, straight pipes coexist with elbows. GW propagation in the former cases is well-known, but is less documented in the latter. Their scattering at junction of straight and curved pipes constitutes a complex phenomenon. When a curved part is joined to two straight parts, these phenomena couple and give rise to even more complex wave structures. In a previous work, the SemiAnalytic Finite Element method extended to curvilinear coordinates was used to handle GW propagation in elbows, combined with a mode matching method to predict their scattering at the junction with a straight pipe. Here, a pipework comprising an arbitrary number of elbows of finite length and of different curvature linking straight pipes is considered. A modal scattering matrix is built by cascading local scattering and propagation matrices. The overall formulation only requires meshing the pipe section to compute both the modal solutions and the integrals resulting from the mode-matching method for computing local scattering matrices. Numerical predictions using this approach are studied and compared to experiments

  19. Stability Assessment of a System Comprising a Single Machine and Inverter with Scalable Ratings

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Brian B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lin, Yashen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Purba, Victor [University of Minnesota; Dhople, Sairaj [University of Minnesota

    2017-09-28

    From the inception of power systems, synchronous machines have acted as the foundation of large-scale electrical infrastructures and their physical properties have formed the cornerstone of system operations. However, power electronics interfaces are playing a growing role as they are the primary interface for several types of renewable energy sources and storage technologies. As the role of power electronics in systems continues to grow, it is crucial to investigate the properties of bulk power systems in low inertia settings. In this paper, we assess the properties of coupled machine-inverter systems by studying an elementary system comprised of a synchronous generator, three-phase inverter, and a load. Furthermore, the inverter model is formulated such that its power rating can be scaled continuously across power levels while preserving its closed-loop response. Accordingly, the properties of the machine-inverter system can be assessed for varying ratios of machine-to-inverter power ratings and, hence, differing levels of inertia. After linearizing the model and assessing its eigenvalues, we show that system stability is highly dependent on the interaction between the inverter current controller and machine exciter, thus uncovering a key concern with mixed machine-inverter systems and motivating the need for next-generation grid-stabilizing inverter controls.

  20. Composite materials comprising two jonal functions and methods for making the same

    Science.gov (United States)

    Fareed, Ali Syed; Garnier, John Edward; Schiroky, Gerhard Hans; Kennedy, Christopher Robin; Sonuparlak, Birol

    2001-01-01

    The present invention generally relates to mechanisms for preventing undesirable oxidation (i.e., oxidation protection mechanisms) in composite bodies. The oxidation protection mechanisms include getterer materials which are added to the composite body which gather or scavenge undesirable oxidants which may enter the composite body. The getterer materials may be placed into at least a portion of the composite body such that any undesirable oxidant approaching, for example, a fiber reinforcement, would be scavenged by (e.g., reacted with) the getterer. The getterer materials) may form at least one compound which acts as a passivation layer, and/or is able to move by bulk transport (e.g., by viscous flow as a glassy material) to a crack, and sealing the crack, thereby further enhancing the oxidation protection of the composite body. One or more ceramic filler materials which serve as reinforcements may have a plurality of super-imposed coatings thereon, at least one of which coatings may function as or contain an oxidation protection mechanism. Specifically, a coating comprising boron nitride which has been engineered or modified to contain some silicon exhibits improved corrosion resistance, specifically to oxygen and moisture. The coated materials may be useful as reinforcing materials in high performance composites to provide improved mechanical properties such as fracture toughness. The present invention also relates to improved composites which incorporate these materials, and to their methods of manufacture.

  1. Strain gauge sensors comprised of carbon nanotube yarn: parametric numerical analysis of their piezoresistive response

    International Nuclear Information System (INIS)

    Abot, Jandro L; Kiyono, César Y; Thomas, Gilles P; Silva, Emílio C N

    2015-01-01

    Carbon nanotube (CNT) yarns are micron-size fibers that contain thousands of intertwined CNTs in their cross sections and exhibit piezoresistance characteristics that can be tapped for sensing purposes. Sensor yarns can be integrated into polymeric and composite materials to measure strain through resistance measurements without adding weight or altering the integrity of the host material. This paper includes the details of novel strain gauge sensor configurations comprised of CNT yarn, the numerical modeling of their piezoresistive response, and the parametric analysis schemes that determines the highest sensor sensitivity to mechanical loading. The effect of several sensor configuration parameters are discussed including the inclination and separation of the CNT yarns within the sensor, the mechanical properties of the CNT yarn, the direction and magnitude of the applied mechanical load, and the dimensions and shape of the sensor. The sensor configurations that yield the highest sensitivity are presented and discussed in terms of the mechanical and electrical properties of the CNT yarn. It is shown that strain gauge sensors consisting of CNT yarn are sensitive enough to measure strain, and could exhibit even higher gauge factors than those of metallic foil strain gauges. (paper)

  2. Implementation of a documentation model comprising nursing terminologies--theoretical and methodological issues.

    Science.gov (United States)

    von Krogh, Gunn; Nåden, Dagfinn

    2008-04-01

    To describe and discuss theoretical and methodological issues of implementation of a nursing services documentation model comprising NANDA nursing diagnoses, Nursing Intervention Classification and Nursing Outcome Classification terminologies. The model is developed for electronic patient record and was implemented in a psychiatric hospital on an organizational level and on five test wards in 2001-2005. The theory of Rogers guided the process of innovation, whereas the implementation procedure of McCloskey and Bulecheck combined with adult learning principals guided the test site implementation. The test wards managed in different degrees to adopt the model. Two wards succeeded fully, including a ward with high percentage of staff with interdisciplinary background. Better planning regarding the impact of the organization's innovative aptitude, the innovation strategies and the use of differentiated methods regarding the clinician's individual premises for learning nursing terminologies might have enhanced the adoption to the model. To better understand the nature of barriers and the importance of careful planning regarding the implementation of electronic patient record elements in nursing care services, focusing on nursing terminologies. Further to indicate how a theory and specific procedure can be used to guide the process of implementation throughout the different levels of management.

  3. Structural analysis and taste evaluation of γ-glutamyl peptides comprising sulfur-containing amino acids.

    Science.gov (United States)

    Amino, Yusuke; Wakabayashi, Hidehiko; Akashi, Satoko; Ishiwatari, Yutaka

    2018-03-01

    The structures, flavor-modifying effects, and CaSR activities of γ-glutamyl peptides comprising sulfur-containing amino acids were investigated. The chemical structures, including the linkage mode of the N-terminal glutamic acid, of γ-L-glutamyl-S-(2-propenyl)-L-cysteine (γ-L-glutamyl-S-allyl-L-cysteine) and its sulfoxide isolated from garlic were established by comparing their NMR spectra with those of authentic peptides prepared using chemical methods. Mass spectrometric analysis also enabled determination of the linkage modes in the glutamyl dipeptides by their characteristic fragmentation. In sensory evaluation, these peptides exhibited flavor-modifying effects (continuity) in umami solutions less pronounced but similar to that of glutathione. Furthermore, the peptides exhibited intrinsic flavor due to the sulfur-containing structure, which may be partially responsible for their flavor-modifying effects. In CaSR assays, γ-L-glutamyl-S-methyl-L-cysteinylglycine was most active, which indicates that the presence of a medium-sized aliphatic substituent at the second amino acid residue in γ-glutamyl peptides enhances CaSR activity.

  4. High-performance organic light-emitting diodes comprising ultrastable glass layers

    Science.gov (United States)

    Rodríguez-Viejo, Javier

    2018-01-01

    Organic light-emitting diodes (OLEDs) are one of the key solid-state light sources for various applications including small and large displays, automotive lighting, solid-state lighting, and signage. For any given commercial application, OLEDs need to perform at their best, which is judged by their device efficiency and operational stability. We present OLEDs that comprise functional layers fabricated as ultrastable glasses, which represent the thermodynamically most favorable and, thus, stable molecular conformation achievable nowadays in disordered solids. For both external quantum efficiencies and LT70 lifetimes, OLEDs with four different phosphorescent emitters show >15% enhancements over their respective reference devices. The only difference to the latter is the growth condition used for ultrastable glass layers that is optimal at about 85% of the materials’ glass transition temperature. These improvements are achieved through neither material refinements nor device architecture optimization, suggesting a general applicability of this concept to maximize the OLED performance, no matter which specific materials are used. PMID:29806029

  5. Novel Metabolic Attributes of the Genus Cyanothece, Comprising a Group of Unicellular Nitrogen-Fixing Cyanobacteria

    Science.gov (United States)

    Bandyopadhyay, Anindita; Elvitigala, Thanura; Welsh, Eric; Stöckel, Jana; Liberton, Michelle; Min, Hongtao; Sherman, Louis A.; Pakrasi, Himadri B.

    2011-01-01

    ABSTRACT The genus Cyanothece comprises unicellular cyanobacteria that are morphologically diverse and ecologically versatile. Studies over the last decade have established members of this genus to be important components of the marine ecosystem, contributing significantly to the nitrogen and carbon cycle. System-level studies of Cyanothece sp. ATCC 51142, a prototypic member of this group, revealed many interesting metabolic attributes. To identify the metabolic traits that define this class of cyanobacteria, five additional Cyanothece strains were sequenced to completion. The presence of a large, contiguous nitrogenase gene cluster and the ability to carry out aerobic nitrogen fixation distinguish Cyanothece as a genus of unicellular, aerobic nitrogen-fixing cyanobacteria. Cyanothece cells can create an anoxic intracellular environment at night, allowing oxygen-sensitive processes to take place in these oxygenic organisms. Large carbohydrate reserves accumulate in the cells during the day, ensuring sufficient energy for the processes that require the anoxic phase of the cells. Our study indicates that this genus maintains a plastic genome, incorporating new metabolic capabilities while simultaneously retaining archaic metabolic traits, a unique combination which provides the flexibility to adapt to various ecological and environmental conditions. Rearrangement of the nitrogenase cluster in Cyanothece sp. strain 7425 and the concomitant loss of its aerobic nitrogen-fixing ability suggest that a similar mechanism might have been at play in cyanobacterial strains that eventually lost their nitrogen-fixing ability. PMID:21972240

  6. Solvent exchange-induced in situ forming gel comprising ethyl cellulose-antimicrobial drugs.

    Science.gov (United States)

    Phaechamud, Thawatchai; Mahadlek, Jongjan

    2015-10-15

    Solvent-exchanged in situ forming gel is a drug delivery system which is in sol form before administration. When it contacts with the body fluid, then the water miscible organic solvent dissipates and water penetrates into the system, leading the polymer precipitation as in situ gel at the site of injection. The aim of this research was to study the parameters affecting the gel properties, drug release and antimicrobial activities of the in situ forming gels prepared from ethyl cellulose (EC) dissolved in N-methyl pyrrolidone (NMP) to deliver the antimicrobial agents (doxycycline hyclate, metronidazole and benzyl peroxide) for periodontitis treatment. The gel appearance, pH, viscosity, rheology, syringeability, gel formation, rate of water diffusion into the gels, in vitro degradation, drug release behavior and antimicrobial activities against Staphylococcus aureus, Escherichia coli, Candida albicans, Streptococcus mutans and Porphyrommonas gingivalis were determined. Increasing the amount of EC increased the viscosity of system while still exhibiting Newtonian flow and increased the work of syringeability whereas decreased the releasing of drug. The system transformed into the rigid gel formation after being injected into the simulated gingival crevicular fluid. The developed systems containing 5% w/w antimicrobial agent showed the antimicrobial activities against all test bacteria. Thus the developed solvent exchange-induced in situ forming gels comprising EC-antimicrobial drugs exhibited potential use for periodontitis treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Characterization of the proteins comprising the integral matrix of Strongylocentrotus purpuratus embryonic spicules

    Science.gov (United States)

    Killian, C. E.; Wilt, F. H.

    1996-01-01

    In the present study, we enumerate and characterize the proteins that comprise the integral spicule matrix of the Strongylocentrotus purpuratus embryo. Two-dimensional gel electrophoresis of [35S]methionine radiolabeled spicule matrix proteins reveals that there are 12 strongly radiolabeled spicule matrix proteins and approximately three dozen less strongly radiolabeled spicule matrix proteins. The majority of the proteins have acidic isoelectric points; however, there are several spicule matrix proteins that have more alkaline isoelectric points. Western blotting analysis indicates that SM50 is the spicule matrix protein with the most alkaline isoelectric point. In addition, two distinct SM30 proteins are identified in embryonic spicules, and they have apparent molecular masses of approximately 43 and 46 kDa. Comparisons between embryonic spicule matrix proteins and adult spine integral matrix proteins suggest that the embryonic 43-kDa SM30 protein is an embryonic isoform of SM30. An adult 49-kDa spine matrix protein is also identified as a possible adult isoform of SM30. Analysis of the SM30 amino acid sequences indicates that a portion of SM30 proteins is very similar to the carbohydrate recognition domain of C-type lectin proteins.

  8. Saccharification of sunflower stalks using lignocellulases from a fungal consortium comprising Pholiota adiposa and Armillaria gemina.

    Science.gov (United States)

    Ramachandran, Priyadharshini; Kim, Tae-Su; Dhiman, Saurabh Sudha; Li, Jinglin; Park, Ji-Hyun; Choi, Joon-Ho; Kim, Jae Young; Kim, Dongwook; Lee, Jung-Kul

    2015-09-01

    Lignocellulases from Armillaria gemina and Pholiota adiposa are efficient in hydrolyzing aspen and poplar biomass, respectively. In the present study, lignocellulosic enzymes obtained from a fungal consortium comprising P. adiposa and A. gemina were used for the saccharification of sunflower stalks. Sunflower stalks were thermochemically pretreated using 2 % NaOH at 50 °C for 24 h. The saccharification process parameters including substrate concentration, enzyme loading, pH, and temperature were optimized using response surface methodology to improve the saccharification yield. The highest enzymatic hydrolysis (84.3 %) was obtained using the following conditions: enzyme loading 10 FPU/g-substrate, substrate 5.5 %, temperature 50 °C, and pH 4.5. The hydrolysis yield obtained using the enzymes from the fungal consortium was equivalent to that obtained using a mixture of commercial enzymes Celluclast and Novozyme β-glucosidase. Addition of up to 500 ppm of heavy metal ions (As, Cu, Fe, Mn, Ni, Pb, and Zn) during saccharification did not significantly affect the saccharification yield. Thus, the biomass grown for phytoremediation of heavy metals can be used for the production of reducing sugars followed by ethanol fermentation.

  9. An upscaled two-equation model of transport in porous media through unsteady-state closure of volume averaged formulations

    Science.gov (United States)

    Chaynikov, S.; Porta, G.; Riva, M.; Guadagnini, A.

    2012-04-01

    We focus on a theoretical analysis of nonreactive solute transport in porous media through the volume averaging technique. Darcy-scale transport models based on continuum formulations typically include large scale dispersive processes which are embedded in a pore-scale advection diffusion equation through a Fickian analogy. This formulation has been extensively questioned in the literature due to its inability to depict observed solute breakthrough curves in diverse settings, ranging from the laboratory to the field scales. The heterogeneity of the pore-scale velocity field is one of the key sources of uncertainties giving rise to anomalous (non-Fickian) dispersion in macro-scale porous systems. Some of the models which are employed to interpret observed non-Fickian solute behavior make use of a continuum formulation of the porous system which assumes a two-region description and includes a bimodal velocity distribution. A first class of these models comprises the so-called ''mobile-immobile'' conceptualization, where convective and dispersive transport mechanisms are considered to dominate within a high velocity region (mobile zone), while convective effects are neglected in a low velocity region (immobile zone). The mass exchange between these two regions is assumed to be controlled by a diffusive process and is macroscopically described by a first-order kinetic. An extension of these ideas is the two equation ''mobile-mobile'' model, where both transport mechanisms are taken into account in each region and a first-order mass exchange between regions is employed. Here, we provide an analytical derivation of two region "mobile-mobile" meso-scale models through a rigorous upscaling of the pore-scale advection diffusion equation. Among the available upscaling methodologies, we employ the Volume Averaging technique. In this approach, the heterogeneous porous medium is supposed to be pseudo-periodic, and can be represented through a (spatially) periodic unit cell

  10. Preparation of Microcrystals of Piroxicam Monohydrate by Antisolvent Precipitation via Microfabricated Metallic Membranes with Ordered Pore Arrays.

    Science.gov (United States)

    Othman, Rahimah; Vladisavljević, Goran T; Simone, Elena; Nagy, Zoltan K; Holdich, Richard G

    2017-12-06

    Microcrystals of piroxicam (PRX) monohydrate with a narrow size distribution were prepared from acetone/PRX solutions by antisolvent crystallization via metallic membranes with ordered pore arrays. Crystallization was achieved by controlled addition of the feed solution through the membrane pores into a well-stirred antisolvent. A complete transformation of an anhydrous form I into a monohydrate form of PRX was confirmed by Raman spectroscopy and differential scanning calorimetry. The size of the crystals was 7-34 μm and was controlled by the PRX concentration in the feed solution (15-25 g L -1 ), antisolvent/solvent volume ratio (5-30), and type of antisolvent (Milli-Q water or 0.1-0.5 wt % aqueous solutions of hydroxypropyl methyl cellulose (HPMC), poly(vinyl alcohol) or Pluronic P-123). The smallest crystals were obtained by injecting 25 g L -1 PRX solution through a stainless-steel membrane with a pore size of 10 μm into a 0.06 wt % HPMC solution stirred at 1500 rpm using an antisolvent/solvent ratio of 20. HPMC provided better steric stabilization of microcrystals against agglomeration than poly(vinyl alcohol) and Pluronic P-123, due to hydrogen bonding interactions with PRX and water. A continuous production of large PRX monohydrate microcrystals with a volume-weighted mean diameter above 75 μm was achieved in a continuous stirred membrane crystallizer. Rapid pouring of Milli-Q water into the feed solution resulted in a mixture of highly polydispersed prism-shaped and needle-shaped crystals.

  11. Involvement of IGF-1/IGFBP-3 signaling on the conspicuousness of facial pores.

    Science.gov (United States)

    Sugiyama-Nakagiri, Yoriko; Ohuchi, Atsushi; Hachiya, Akira; Kitahara, Takashi

    2010-11-01

    Conspicuous facial pores are one type of serious esthetic defects for many women. We previously reported that the severity of impairment of skin architecture around facial pores correlates well with the appearance of facial pores in several ethnic groups. In our last report, we showed that serum levels of insulin-like growth factor-1 (IGF-1) correlate well with facial pore size and with the severity of impairment of epidermal architecture around facial pores. However, our results could not fully explain the implication between facial pores and IGF signaling. In this study, we conducted a histological analysis of facial skin to determine whether potential changes in IGF-1 availability occur in the skin with or without conspicuous pores. Immunohistochemical observations showed that expression of insulin-like growth factor binding protein-3 (IGFBP-3) is limited to the suprapapillary epidermis around facial pores and to basal cells of rete pegs without tips in epidermis with conspicuous pores. In contrast, in basal cells of skin without conspicuous pores, IGFBP-3 expression is very low. Ki-67 and IGF-1 receptor-positive cells are abundant in basal cells in the tips of the rete pegs in skin with typical epidermal architecture around facial pores. No obvious differences were observed in the expression of filaggrin, involucrin, K1, K6 or K17 in skin with or without conspicuous pores. However, increased expression of K16 was observed in skin with conspicuous pores suggesting hyperproliferation. These results suggest that the IGF-1/IGFBP-3 signaling pathway is involved in the formation of conspicuous facial pores due to the epidermal architecture around facial pores.

  12. Modeling the controllable pH-responsive swelling and pore size of networked alginate based biomaterials.

    Science.gov (United States)

    Chan, Ariel W; Neufeld, Ronald J

    2009-10-01

    Semisynthetic network alginate polymer (SNAP), synthesized by acetalization of linear alginate with di-aldehyde, is a pH-responsive tetrafunctionally linked 3D gel network, and has potential application in oral delivery of protein therapeutics and active biologicals, and as tissue bioscaffold for regenerative medicine. A constitutive polyelectrolyte gel model based on non-Gaussian polymer elasticity, Flory-Huggins liquid lattice theory, and non-ideal Donnan membrane equilibria was derived, to describe SNAP gel swelling in dilute and ionic solutions containing uni-univalent, uni-bivalent, bi-univalent or bi-bi-valent electrolyte solutions. Flory-Huggins interaction parameters as a function of ionic strength and characteristic ratio of alginates of various molecular weights were determined experimentally to numerically predict SNAP hydrogel swelling. SNAP hydrogel swells pronouncedly to 1000 times in dilute solution, compared to its compact polymer volume, while behaving as a neutral polymer with limited swelling in high ionic strength or low pH solutions. The derived model accurately describes the pH-responsive swelling of SNAP hydrogel in acid and alkaline solutions of wide range of ionic strength. The pore sizes of the synthesized SNAP hydrogels of various crosslink densities were estimated from the derived model to be in the range of 30-450 nm which were comparable to that measured by thermoporometry, and diffusion of bovine serum albumin. The derived equilibrium swelling model can characterize hydrogel structure such as molecular weight between crosslinks and crosslinking density, or can be used as predictive model for swelling, pore size and mechanical properties if gel structural information is known, and can potentially be applied to other point-link network polyelectrolytes such as hyaluronic acid gel.

  13. Precipitation of ikaite crystals in Antarctic marine sediments: implications from pore water geochemistry

    Science.gov (United States)

    Lu, Z.; Kennedy, H.; Rickaby, R. E.; Georg, B.; Shaw, S.; Lennie, A.; Pancost, R. D.

    2008-12-01

    Ikaite is a calcium carbonate hexahydrate (CaCO3•6H20) considered to be stable only at low temperatures. It has been found in form of tufa tower at locations where alkaline water mixes with water masses enriched in calcium (e.g. Ikka Fjord, Mono Lake). Large euhedral single crystals of ikaite were also recovered in marine sediments, associated with organic matter degradation, anaerobic oxidation of methane (AOM) and sulfate reduction. The hydration water in the ikaite crystals were demonstrated to record the oxygen isotope composition of the water from which they precipitated. Such a characteristic may allow using ikaite to reconstruct the ice volume in the past. For this purpose, the controls on its precipitation in the sediment column need to be investigated which is the main goal of this study. U.S. Antarctica Program cruise NBP0703 collected two cores with ikaite crystals at Antarctica Peninsula (Bransfield Strait and Firth of Tay). We determined major cation/anion concentrations, dissolved inorganic carbon (DIC) and δ13C composition of DIC in the pore waters in these two cores. Strong organic matter degradation or AOM in both cores results in quick consumption of sulfate in shallow part of the cores (SMT at around 3m).Rapid build-up of DIC is accompanied by the sharp decrease of dissolved calcium in the top 5m. Large variations were observed in δ13CDIC values (-20‰ to +13‰). The δ13C of ikaite in two cores were distinctive from each other (-19‰ and +4‰) corresponding to the DIC pools at different depths. The down core saturation state of the ikaite was modeled in PHREEQC based on the pore water chemistry, and the results are consistent with carbon isotope data, suggesting that these large crystals very likely formed within a narrow depth interval and a short time period (given high sedimentation rates of 0.5-1 cm/yr in this area).

  14. Preparation of salted meat products, e.g. cured bacon - by injecting liquid comprising meat proteins hydrolysed with enzymes

    DEFF Research Database (Denmark)

    1997-01-01

    Preparation of salted meat products comprises the following:(1) meat is chopped into fine pieces and mixed with water to form a slurry; (2) enzymes hydrolyse proteins in the meat; (3) adding a culture to the resulting medium, which comprises short peptide chains or amino acids; (4) forming...... flavourings as the culture is growing, and (5) injecting the liquid into pieces of meat....

  15. Structural and biophysical characterization of an antimicrobial peptide chimera comprised of lactoferricin and lactoferrampin.

    Science.gov (United States)

    Haney, Evan F; Nazmi, Kamran; Bolscher, Jan G M; Vogel, Hans J

    2012-03-01

    Lactoferricin and lactoferrampin are two antimicrobial peptides found in the N-terminal lobe of bovine lactoferrin with broad spectrum antimicrobial activity against a range of Gram-positive and Gram-negative bacteria as well as Candida albicans. A heterodimer comprised of lactoferrampin joined to a fragment of lactoferricin was recently reported in which these two peptides were joined at their C-termini through the two amino groups of a single Lys residue (Bolscher et al., 2009, Biochimie 91(1):123-132). This hybrid peptide, termed LFchimera, has significantly higher antimicrobial activity compared to the individual peptides or an equimolar mixture of the two. In this work, the underlying mechanism behind the increased antibacterial activity of LFchimera was investigated. Differential scanning calorimetry studies demonstrated that all the peptides influenced the thermotropic phase behaviour of anionic phospholipid suspensions. Calcein leakage and vesicle fusion experiments with anionic liposomes revealed that LFchimera had enhanced membrane perturbing properties compared to the individual peptides. Peptide structures were evaluated using circular dichroism and NMR spectroscopy to gain insight into the structural features of LFchimera that contribute to the increased antimicrobial activity. The NMR solution structure, determined in a miscible co-solvent mixture of chloroform, methanol and water, revealed that the Lys linkage increased the helical content in LFchimera compared to the individual peptides, but it did not fix the relative orientations of lactoferricin and lactoferrampin with respect to each other. The structure of LFchimera provides insight into the conformation of this peptide in a membranous environment and improves our understanding of its antimicrobial mechanism of action. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Inadequate vitamin D status: does it contribute to the disorders comprising syndrome 'X'?

    Science.gov (United States)

    Boucher, B J

    1998-04-01

    Environmental factors are important in the aetiology of glucose intolerance, type II diabetes and IHD. The lack of vitamin D, which is necessary for adequate insulin secretion, relates demographically to increased risk of myocardial infarction. These disorders are connected, degenerative vascular disease increasing with glucose intolerance and diabetes and, with its risk factors, comprising syndrome 'X'. Evidence is presented suggesting that vitamin D deficiency may be an avoidable risk factor for syndrome 'X', adding another preventative measure to current recommendations which are aimed at reducing the worldwide epidemic of these disorders. Experimentally, vitamin D deficiency progressively reduces insulin secretion; glucose intolerance follows and becomes irreversible. Relationships between vitamin D status, glucose tolerance and 30 min insulin secretion during oral glucose tolerance tests are reported in British Asians; insulin secretion, but not glycaemia, improving with short-term supplementation. Studies showing reduction in blood pressure and in risk of heart attack and diabetes with exercise (usually outdoor), rarely consider the role of vitamin D status. Glycaemia and insulin secretion in elderly European men, however, relate to vitamin D status, independent of season or physical activity. Prolonged supplementation can improve glycaemia. Hypertension improves with vitamin D treatment with or without initial deficiency. Vitamin D status and climate are reviewed as risk factors for myocardial infarction; the risk reducing with altitude despite increasing cold. Glycaemia and fibrinogenaemia improve with insulin secretion increases in summer. Variation in vitamin D requirements could arise from genetic differences in vitamin D processing since bone density can vary with vitamin D-receptor genotype. Vitamin D receptors are present in islet beta cells and we report insulin secretion in healthy Asians differing profoundly with the Apa I genotype, being

  17. Modeling drag reduction and meniscus stability of superhydrophobic surfaces comprised of random roughness

    Science.gov (United States)

    Samaha, Mohamed A.; Tafreshi, Hooman Vahedi; Gad-el-Hak, Mohamed

    2011-01-01

    Previous studies dedicated to modeling drag reduction and stability of the air-water interface on superhydrophobic surfaces were conducted for microfabricated coatings produced by placing hydrophobic microposts/microridges arranged on a flat surface in aligned or staggered configurations. In this paper, we model the performance of superhydrophobic surfaces comprised of randomly distributed roughness (e.g., particles or microposts) that resembles natural superhydrophobic surfaces, or those produced via random deposition of hydrophobic particles. Such fabrication method is far less expensive than microfabrication, making the technology more practical for large submerged bodies such as submarines and ships. The present numerical simulations are aimed at improving our understanding of the drag reduction effect and the stability of the air-water interface in terms of the microstructure parameters. For comparison and validation, we have also simulated the flow over superhydrophobic surfaces made up of aligned or staggered microposts for channel flows as well as streamwise or spanwise ridges configurations for pipe flows. The present results are compared with theoretical and experimental studies reported in the literature. In particular, our simulation results are compared with work of Sbragaglia and Prosperetti, and good agreement has been observed for gas fractions up to about 0.9. The numerical simulations indicate that the random distribution of surface roughness has a favorable effect on drag reduction, as long as the gas fraction is kept the same. This effect peaks at about 30% as the gas fraction increases to 0.98. The stability of the meniscus, however, is strongly influenced by the average spacing between the roughness peaks, which needs to be carefully examined before a surface can be recommended for fabrication. It was found that at a given maximum allowable pressure, surfaces with random post distribution produce less drag reduction than those made up of

  18. Dutch Lung Surgery Audit: A National Audit Comprising Lung and Thoracic Surgery Patients.

    Science.gov (United States)

    Berge, Martijn Ten; Beck, Naomi; Heineman, David Jonathan; Damhuis, Ronald; Steup, Willem Hans; van Huijstee, Pieter Jan; Eerenberg, Jan Peter; Veen, Eelco; Maat, Alexander; Versteegh, Michel; van Brakel, Thomas; Schreurs, Wilhemina Hendrika; Wouters, Michel Wilhelmus

    2018-04-21

    The nationwide Dutch Lung Surgery Audit (DLSA) started in 2012 to monitor and evaluate the quality of lung surgery in the Netherlands as an improvement tool. This outline describes the establishment, structure and organization of the audit by the Dutch Society of Lung Surgeons (NVvL) and the Dutch Society of Cardiothoracic Surgeons (NVT), in collaboration with the Dutch Institute for Clinical Auditing (DICA). In addition, first four-year results are presented. The NVvL and NVT initiated a web-based registration including weekly updated online feedback for participating hospitals. Data verification by external data managers is performed on regular basis. The audit is incorporated in national quality improvement programs and participation in the DLSA is mandatory by health insurance organizations and the National Healthcare Inspectorate. Between 1 January 2012 and 31 December 2015, all hospitals performing lung surgery participated and a total of 19,557 patients were registered from which almost half comprised lung cancer patients. Nationwide the guideline adherence increased over the years and 96.5% of lung cancer patients were discussed in preoperative multidisciplinary teams. Overall postoperative complications and mortality after non-small cell lung cancer surgery were 15.5% and 2.0%, respectively. The audit provides reliable benchmarked information for caregivers and hospital management with potential to start local, regional or national improvement initiatives. Currently, the audit is further completed with data from non-surgical lung cancer patients including treatment data from pulmonary oncologists and radiation oncologists. This will ultimately provide a comprehensive overview of lung cancer treatment in The Netherlands. Copyright © 2018. Published by Elsevier Inc.

  19. Pore former induced porosity in LSM/CGO cathodes for electrochemical cells for flue gas purification

    DEFF Research Database (Denmark)

    Skovgaard, M.; Andersen, Kjeld Bøhm; Kammer Hansen, Kent

    2012-01-01

    In this study the effect of the characteristics of polymethyl methacrylate (PMMA) pore formers on the porosity, pore size distribution and the air flow through the prepared lanthanum strontium manganate/gadolinium-doped cerium oxide (LSM/CGO) cathodes was investigated. Porous cathodes were obtained...... and the highest porosity measured was 46.4% with an average pore diameter of 0.98 μm. The air flow through this cathode was measured to 5.8 ml/(min mm2). Also the effect of exposure time to the solvent was tested for the most promising PMMA pore former and it was found that the average pore diameter decreases...

  20. Diode-like properties of single- and multi-pore asymmetric track membranes

    Science.gov (United States)

    Zielinska, K.; Gapeeva, A. R.; Orelovich, O. L.; Apel, P. Yu.

    2014-05-01

    In this work, we investigated the ionic transport properties of asymmetric polyethylene terephthalate (PET) track membranes with the thickness of 5 μm. The samples containing single pores and arrays of many pores were fabricated by irradiation with accelerated ions and subsequent physicochemical treatment. The method of etching in the presence of a surface-active agent was used to prepare the pores with highly-tapered tip. The transport of monovalent inorganic ions through the nano-scale holes was studied in a conductivity cell. The effective pore radii, electrical conductance and rectification ratios of pores were measured. The geometric characteristics of nanopores were investigated using FESEM.