WorldWideScience

Sample records for volume comprises pores

  1. Active Pore Volume in Danish Peat Soils

    DEFF Research Database (Denmark)

    Forsmann, Ditte M.; Kjærgaard, Charlotte

    2012-01-01

    Phosphorus release within the soil matrix caused by the changed redox conditions due to re-establishment of a riparian wetland can be critical for the aquatic environment. However, phosphorous released in the soil will not always result in an immediate contribution to this loss to the aquatic...... is not actively transported out of the system, but is only transported via diffusion, which is a very slow process. Thus it is interesting to investigate the size of the active pore volume in peat soils. The hypothesis of this study is that the active pores volume of a peat soil can be expressed using bulk...

  2. Active Pore Volume in Danish Peat Soils

    DEFF Research Database (Denmark)

    Forsmann, Ditte M.; Kjærgaard, Charlotte

    2012-01-01

    cm3 intact soil samples. Finally, breakthrough of tritium (3H2O) was used to construct breakthrough curves for each peat soil, which indicates the flow pattern in the soil. A mobile-immobile domain model (MIM-model) in CXTFIT was used to derive parameters describing the size of the immobile...... and mobile domains as well as the exchange between the two domains. Finally, the samples were dried in the own for determination of the bulk density. The bulk density was correlated to parameters from the MIM-model and to the macropore volume to determine, whether bulk density can be used as a key parameter....

  3. Estimating pore and cement volumes in thin section

    Science.gov (United States)

    Halley, R.B.

    1978-01-01

    Point count estimates of pore, grain and cement volumes from thin sections are inaccurate, often by more than 100 percent, even though they may be surprisingly precise (reproducibility + or - 3 percent). Errors are produced by: 1) inclusion of submicroscopic pore space within solid volume and 2) edge effects caused by grain curvature within a 30-micron thick thin section. Submicroscopic porosity may be measured by various physical tests or may be visually estimated from scanning electron micrographs. Edge error takes the form of an envelope around grains and increases with decreasing grain size and sorting, increasing grain irregularity and tighter grain packing. Cements are greatly involved in edge error because of their position at grain peripheries and their generally small grain size. Edge error is minimized by methods which reduce the thickness of the sample viewed during point counting. Methods which effectively reduce thickness include use of ultra-thin thin sections or acetate peels, point counting in reflected light, or carefully focusing and counting on the upper surface of the thin section.

  4. Idealized Shale Sorption Isotherm Measurements to Determine Pore Volume, Pore Size Distribution, and Surface Area

    Science.gov (United States)

    Holmes, R.; Wang, B.; Aljama, H.; Rupp, E.; Wilcox, J.

    2014-12-01

    One method for mitigating the impacts of anthropogenic CO2-related climate change is the sequestration of CO2 in depleted gas and oil reservoirs, including shale. The accurate characterization of the heterogeneous material properties of shale, including pore volume, surface area, pore size distributions (PSDs) and composition is needed to understand the interaction of CO2 with shale. Idealized powdered shale sorption isotherms were created by varying incremental amounts of four essential components by weight. The first two components, organic carbon and clay, have been shown to be the most important components for CO2 uptake in shales. Organic carbon was represented by kerogen isolated from a Silurian shale, and clay groups were represented by illite from the Green River shale formation. The rest of the idealized shale was composed of equal parts by weight of SiO2 to represent quartz and CaCO3 to represent carbonate components. Baltic, Eagle Ford, and Barnett shale sorption measurements were used to validate the idealized samples. The idealized and validation shale sorption isotherms were measured volumetrically using low pressure N2 (77K) and CO2 (273K) adsorbates on a Quantachrome Autosorb IQ2. Gravimetric isotherms were also produced for a subset of these samples using CO2 and CH4adsorbates under subsurface temperature and pressure conditions using a Rubotherm magnetic suspension balance. Preliminary analyses were inconclusive in validating the idealized samples. This could be a result of conflicting reports of total organic carbon (TOC) content in each sample, a problem stemming from the heterogeneity of the samples and different techniques used for measuring TOC content. The TOC content of the validation samples (Eagle Ford and Barnett) was measured by Rock-Eval pyrolysis at Weatherford Laboratories, while the TOC content in the Baltic validation samples was determined by LECO TOC. Development of a uniform process for measuring TOC in the validation samples is

  5. Unified method for the total pore volume and pore size distribution of hierarchical zeolites from argon adsorption and mercury intrusion.

    Science.gov (United States)

    Kenvin, Jeffrey; Jagiello, Jacek; Mitchell, Sharon; Pérez-Ramírez, Javier

    2015-02-03

    A generalized approach to determine the complete distribution of macropores, mesopores, and micropores from argon adsorption and mercury porosimetry is developed and validated for advanced zeolite catalysts with hierarchically structured pore systems in powder and shaped forms. Rather than using a fragmented approach of simple overlays from individual techniques, a unified approach that utilizes a kernel constructed from model isotherms and model intrusion curves is used to calculate the complete pore size distribution and the total pore volume of the material. An added benefit of a single full-range pore size distribution is that the cumulative pore area and the area distribution are also obtained without the need for additional modeling. The resulting complete pore size distribution and the kernel accurately model both the adsorption isotherm and the mercury porosimetry. By bridging the data analysis of two primary characterization tools, this methodology fills an existing gap in the library of familiar methods for porosity assessment in the design of materials with multilevel porosity for novel technological applications.

  6. Methods for determining enzymatic activity comprising heating and agitation of closed volumes

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David Neil; Henriksen, Emily DeCrescenzo; Reed, David William; Jensen, Jill Renee

    2016-03-15

    Methods for determining thermophilic enzymatic activity include heating a substrate solution in a plurality of closed volumes to a predetermined reaction temperature. Without opening the closed volumes, at least one enzyme is added, substantially simultaneously, to the closed volumes. At the predetermined reaction temperature, the closed volumes are agitated and then the activity of the at least one enzyme is determined. The methods are conducive for characterizing enzymes of high-temperature reactions, with insoluble substrates, with substrates and enzymes that do not readily intermix, and with low volumes of substrate and enzyme. Systems for characterizing the enzymes are also disclosed.

  7. Methods for determining enzymatic activity comprising heating and agitation of closed volumes

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David Neil; Henriksen, Emily DeCrescenzo; Reed, David William; Jensen, Jill Renee

    2016-03-15

    Methods for determining thermophilic enzymatic activity include heating a substrate solution in a plurality of closed volumes to a predetermined reaction temperature. Without opening the closed volumes, at least one enzyme is added, substantially simultaneously, to the closed volumes. At the predetermined reaction temperature, the closed volumes are agitated and then the activity of the at least one enzyme is determined. The methods are conducive for characterizing enzymes of high-temperature reactions, with insoluble substrates, with substrates and enzymes that do not readily intermix, and with low volumes of substrate and enzyme. Systems for characterizing the enzymes are also disclosed.

  8. Large pore volume mesoporous aluminum oxide synthesized via nano-assembly

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A new nano-assembly approach has been proposed for the preparation of macropore volume mesoporous aluminum oxide supports. Secondary nano-assembly and a frame structure mechanism for large pore volume mesoporous supports have been proposed. In a primary nano-assembly supersoluble micelle,aluminum hydroxide nanoparticles were precipitated in situ in surfactants with a volume balance (VB) less than 1,followed by secondary nano-assembly in linear and cylindrical shapes. The secondary nano-assembly of cylindrical aluminum hydroxides was calcined to form nano cylindrical aluminum oxides. For the formation of macropore volume mesoporous supports,we utilized a frame structure mechanism of mesoporous support,in which the exterior surface of the carrier may not be continuous. This macropore volume support has been used for the hydrotreatment of a residual oil catalyst,which possesses the following physical characteristics:pore volume 1.8―2.7 mL·g-1,specific surface area 180―429 m2·g-1,average pore diameter 17―57 nm,average pore diameter more than 10 nm (81%―94%),porosity 87%―93%,and crush strength 7.7―25 N·mm-1.

  9. AFM-porosimetry: density and pore volume measurements of particulate materials.

    Science.gov (United States)

    Sörensen, Malin H; Valle-Delgado, Juan J; Corkery, Robert W; Rutland, Mark W; Alberius, Peter C

    2008-06-01

    We introduced the novel technique of AFM-porosimetry and applied it to measure the total pore volume of porous particles with a spherical geometry. The methodology is based on using an atomic force microscope as a balance to measure masses of individual particles. Several particles within the same batch were measured, and by plotting particle mass versus particle volume, the bulk density of the sample can be extracted from the slope of the linear fit. The pore volume is then calculated from the densities of the bulk and matrix materials, respectively. In contrast to nitrogen sorption and mercury porosimetry, this method is capable of measuring the total pore volume regardless of pore size distribution and pore connectivity. In this study, three porous samples were investigated by AFM-porosimetry: one ordered mesoporous sample and two disordered foam structures. All samples were based on a matrix of amorphous silica templated by a block copolymer, Pluronic F127, swollen to various degrees with poly(propylene glycol). In addition, the density of silica spheres without a template was measured by two independent techniques: AFM and the Archimedes principle.

  10. Gas Breakthrough Pressure (GBP through Claystones: Correlation with FIB/SEM Imaging of the Pore Volume

    Directory of Open Access Journals (Sweden)

    Song Yang

    2016-07-01

    Full Text Available This contribution uses six claystone samples imaged by FIB/SEM (Focused Ion Beam/Scanning Electron Microscopy, within micrometric volumes located in the clay matrix; their 3D connected pore network is identified down to 17-22 nm pore size. All samples are gently dried to minimize damage, and several are impregnated with Poly(Methyl MethAcrylate (PMMA resin to avoid further damage during FIB/SEM observations. Three pore volumes out of six are connected between two parallel end surfaces through crack-like pores; two are not connected between any two parallel end surfaces; only one sample has a connected pore network distinct from cracks. By assuming varied pathways for gas to migrate by capillarity through the connected pore volumes (either by taking the shortest path, or through the largest path, or through the most frequent pore size, or by simulating the ingress of a non wetting fluid, we determine the Gas Breakthrough Pressure (GBP through the initially fully liquid saturated claystone, from these micrometric volumes. The scale change (from the micrometric to the macroscopic scale is assumed possible without changing the GBP value, and clay/water interactions are not accounted for. By comparison with GBP values measured in the laboratory on centimetric-sized claystone samples, it is concluded that breakthrough occurs most probably by capillary digitation; micro-cracks are the most probable pathways for gas, so that gas does not progress in a homogeneous manner through the claystone, as standard macroscopic finite element models would represent it. For intact claystone, predictions based on the capillary ingress of a non wetting fluid provide a GBP value ranging between 7-14 MPa.

  11. Simulation of pore pressure accumulation under cyclic loading using Finite Volume Method

    DEFF Research Database (Denmark)

    Tang, Tian; Hededal, Ole

    2014-01-01

    This paper presents a finite volume implementation of a porous, nonlinear soil model capable of simulating pore pressure accumulation under cyclic loading. The mathematical formulations are based on modified Biot’s coupled theory by substituting the original elastic constitutive model with an adv...... mapping algorithm is used to calculate the stress and strain relation in each control volume level. Test cases show very good performance of the model.......This paper presents a finite volume implementation of a porous, nonlinear soil model capable of simulating pore pressure accumulation under cyclic loading. The mathematical formulations are based on modified Biot’s coupled theory by substituting the original elastic constitutive model...... with an advanced elastoplastic model suitable for describing monotonic as well as cyclic loading conditions. The finite volume method is applied to discretize these formulations. The resulting set of coupled nonlinear algebraic equations are then solved by a ’segregated’ solution procedure. An efficient return...

  12. Low-cost preparation of mesoporous silica with high pore volume

    Institute of Scientific and Technical Information of China (English)

    Shuling Shen; Wei Wu; Kai Guo; Jianfeng Chen

    2007-01-01

    Mesoporous silica materials with high pore volume were successfully prepared by the chemical precipitation method, with water glass and a biodegradable nonionic surfactant polyethylene glycol (PEG). The obtained materials were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermo gravimetric analyzer and differential scanning calorimetry (TG-DSC), nitrogen adsorption-desorption measurements, and X-ray diffraction (XRD). The results showed that the changes of the pore parameters depended on both the surfactant content and heat treatment temperature. When the content of PEG was 10wt% and the obtained PEG/SiO2 composite was heated at 600℃, the mesoporous silica with a pore volume of 2.2 cm3/g, a BET specific surface area of 361.55 m2/g, and a diameter of 2-4 μm could be obtained. The obtained mesoporous silica materials have potential applications in the fields of paint and plastic, as thickening, reinforcing, and flatting agents.

  13. Surface area and volume fraction of random open-pore systems

    Science.gov (United States)

    Hermann, H.; Elsner, A.; Stoyan, D.

    2013-12-01

    For the first time, explicit approximate formulas are presented for the volume fraction and specific surface area of random open-pore systems with poly-disperse pore size distributions. It is shown that the formulas are valid for broad classes of models for porous media characterized by tunable pore size distributions and a variable degree of inter-penetrability of pores. The formulas for the poly-disperse case are based on expressions derived previously for mono-disperse penetrable-sphere models. The results are obtained by analysis of a series of open-pore models, which are prepared by computer simulation of systems of randomly packed partially penetrable spheres with various poly-disperse size distributions such as gamma, lognormal, and Gaussian. The formulas are applied in a study of atomic layer deposition processes on open-pore systems, and the effective Young's modulus and the effective thermal conductivity of Al2O3 coated porous polypropylene electrodes for lithium ion batteries are predicted.

  14. Prediction total specific pore volume of geopolymers produced from waste ashes by fuzzy logic

    Directory of Open Access Journals (Sweden)

    Ali Nazari

    2012-04-01

    Full Text Available In the present work, total specific pore volume of inorganic polymers (geopolymers made from seeded fly ash and rice husk bark ash has been predicted by fuzzy logic. Different specimens, made from a mixture of fly ash and rice husk bark ash in fine and coarse form together with alkali activator made of water glass and NaOH solution, were subjected to porosimetry tests at 7 and 28 days of curing. The curing regime was different: one set of the specimens were cured at room temperature until reaching to 7 and 28 days and the other sets were oven cured for 36 hours at the range of 40-90 °C and then cured at room temperature until 7 and 28 days. A model based on fuzzy logic for predicting the total specific pore volume of the specimens has been presented. To build the model, training and testing using experimental results from 120 specimens were conducted. The used data as the inputs of fuzzy logic models are arranged in a format of six parameters that cover the percentage of fine fly ash in the ashes mixture, the percentage of coarse fly ash in the ashes mixture, the percentage of fine rice husk bark ash in the ashes mixture, the percentage of coarse rice husk bark ash in the ashes mixture, the temperature of curing and the time of water curing. According to the input parameters, in the fuzzy logic model, the pore volume of each specimen was predicted. The training and testing results in the fuzzy logic model have shown a strong potential for predicting the total specific pore volume of the geopolymer specimens in the considered range.

  15. Estimation of surface area and pore volume of activated carbons by methylene blue and iodine numbers

    Directory of Open Access Journals (Sweden)

    Cleiton A. Nunes

    2011-01-01

    Full Text Available Data of methylene blue number and iodine number of activated carbons samples were calibrated against the respective surface area, micropore volume and total pore volume using multiple regression. The models obtained from the calibrations were used in predicting these physical properties of a test group of activated carbon samples produced from several raw materials. In all cases, the predicted values were in good agreement with the expected values. The method allows extracting more information from the methylene blue and iodine adsorption studies than normally obtained with this type of material.

  16. Prediction of Shrinkage Pore Volume Fraction Using a Dimensionless Niyama Criterion

    Science.gov (United States)

    Carlson, Kent D.; Beckermann, Christoph

    2009-01-01

    A method is presented to use a dimensionless form of the well-known Niyama criterion to directly predict the amount of shrinkage porosity that forms during solidification of metal alloy castings. The main advancement offered by this method is that it avoids the need to know the threshold Niyama value below which shrinkage porosity forms; such threshold values are generally unknown and alloy dependent. The dimensionless criterion accounts for both the local thermal conditions (as in the original Niyama criterion) and the properties and solidification characteristics of the alloy. Once a dimensionless Niyama criterion value is obtained from casting simulation results, the corresponding shrinkage pore volume fraction can be determined knowing only the solid fraction-temperature curve and the total solidification shrinkage of the alloy. Curves providing the shrinkage pore volume percentage as a function of the dimensionless Niyama criterion are given for WCB steel, aluminum alloy A356, and magnesium alloy AZ91D. The present method is used in a general-purpose casting simulation software package to predict shrinkage porosity in three-dimensional (3-D) castings. Comparisons between simulated and experimental shrinkage porosity results for a WCB steel plate casting demonstrate that this method can reasonably predict shrinkage. Additional simulations for magnesium alloy AZ91D illustrate that this method is applicable to a wide variety of alloys and casting conditions.

  17. Petrophysical studies of north American carbonate rock samples and evaluation of pore-volume compressibility models

    Science.gov (United States)

    da Silva, Gilberto Peixoto; Franco, Daniel R.; Stael, Giovanni C.; da Costa de Oliveira Lima, Maira; Sant'Anna Martins, Ricardo; de Moraes França, Olívia; Azeredo, Rodrigo B. V.

    2015-12-01

    In this work, we evaluate two pore volume compressibility models that are currently discussed in the literature (Horne, 1990; Jalalh, 2006b). Five groups of carbonate rock samples from the three following sedimentary basins in North America that are known for their association with hydrocarbon deposits were selected for this study: (i) the Guelph Formation of the Michigan Basin (Middle Silurian); (ii) the Edwards Formation of the Central Texas Platform (Middle Cretaceous); and (iii) the Burlington-Keokuk Formation of the Mississippian System (Lower Mississippian). In addition to the evaluation of the compressibility model, a petrophysical evaluation of these rock samples was conducted. Additional characterizations, such as grain density, the effective porosity, absolute grain permeability, thin section petrography, MICP and NMR, were performed to complement constant pore-pressure compressibility tests. Although both models presented an overall good representation of the compressibility behavior of the studied carbonate rocks, even when considering their broad porosity range (~ 2-38%), the model proposed by Jalalh (2006b) performed better with a confidence level of 95% and a prediction interval of 68%.

  18. Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 2, Big Hill Site, Texas.

    Energy Technology Data Exchange (ETDEWEB)

    Rautman, Christopher Arthur; Lord, Anna Snider

    2007-08-01

    Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 2 focuses on the Big Hill SPR site, located in southeastern Texas. Volumes 1, 3, and 4, respectively, present images for the Bayou Choctaw SPR site, Louisiana, the Bryan Mound SPR site, Texas, and the West Hackberry SPR site, Louisiana. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

  19. Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 3, Bryan Mound Site, Texas.

    Energy Technology Data Exchange (ETDEWEB)

    Rautman, Christopher Arthur; Lord, Anna Snider

    2007-09-01

    Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 3 focuses on the Bryan Mound SPR site, located in southeastern Texas. Volumes 1, 2, and 4, respectively, present images for the Bayou Choctaw SPR site, Louisiana, the Big Hill SPR site, Texas, and the West Hackberry SPR site, Louisiana. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

  20. Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 4, West Hackberry site, Louisiana.

    Energy Technology Data Exchange (ETDEWEB)

    Rautman, Christopher Arthur; Lord, Anna Snider

    2007-09-01

    Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 4 focuses on the West Hackberry SPR site, located in southwestern Louisiana. Volumes 1, 2, and 3, respectively, present images for the Bayou Choctaw SPR site, Louisiana, the Big Hill SPR site, Texas, and the Bryan Mound SPR site, Texas. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

  1. Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 1, Bayou Choctaw site, Louisiana.

    Energy Technology Data Exchange (ETDEWEB)

    Rautman, Christopher Arthur; Lord, Anna Snider

    2007-10-01

    Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 1 focuses on the Bayou Choctaw SPR site, located in southern Louisiana. Volumes 2, 3, and 4, respectively, present images for the Big Hill SPR site, Texas, the Bryan Mound SPR site, Texas, and the West Hackberry SPR site, Louisiana. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

  2. Characterization of the intragranular water regime within subsurface sediments: Pore volume, surface area, and mass transfer limitations

    Science.gov (United States)

    Hay, Michael B.; Stoliker, Deborah L.; Davis, James A.; Zachara, John M.

    2011-10-01

    Although "intragranular" pore space within grain aggregates, grain fractures, and mineral surface coatings may contain a relatively small fraction of the total porosity within a porous medium, it often contains a significant fraction of the reactive surface area, and can thus strongly affect the transport of sorbing solutes. In this work, we demonstrate a batch experiment procedure using tritiated water as a high-resolution diffusive tracer to characterize the intragranular pore space. The method was tested using uranium-contaminated sediments from the vadose and capillary fringe zones beneath the former 300A process ponds at the Hanford site (Washington). Sediments were contacted with tracers in artificial groundwater, followed by a replacement of bulk solution with tracer-free groundwater and the monitoring of tracer release. From these data, intragranular pore volumes were calculated and mass transfer rates were quantified using a multirate first-order mass transfer model. Tritium-hydrogen exchange on surface hydroxyls was accounted for by conducting additional tracer experiments on sediment that was vacuum dried after reaction. The complementary ("wet" and "dry") techniques allowed for the simultaneous determination of intragranular porosity and surface area using tritium. The Hanford 300A samples exhibited intragranular pore volumes of ˜1% of the solid volume and intragranular surface areas of ˜20%-35% of the total surface area. Analogous experiments using bromide ion as a tracer yielded very different results, suggesting very little penetration of bromide into the intragranular porosity.

  3. Characterization of the intragranular water regime within subsurface sediments: pore volume, surface area, and mass transfer limitations

    Science.gov (United States)

    Hay, Michael B.; Stoliker, Deborah L.; Davis, James A.; Zachara, John M.

    2011-01-01

    Although "intragranular" pore space within grain aggregates, grain fractures, and mineral surface coatings may contain a relatively small fraction of the total porosity within a porous medium, it often contains a significant fraction of the reactive surface area, and can thus strongly affect the transport of sorbing solutes. In this work, we demonstrate a batch experiment procedure using tritiated water as a high-resolution diffusive tracer to characterize the intragranular pore space. The method was tested using uranium-contaminated sediments from the vadose and capillary fringe zones beneath the former 300A process ponds at the Hanford site (Washington). Sediments were contacted with tracers in artificial groundwater, followed by a replacement of bulk solution with tracer-free groundwater and the monitoring of tracer release. From these data, intragranular pore volumes were calculated and mass transfer rates were quantified using a multirate first-order mass transfer model. Tritium-hydrogen exchange on surface hydroxyls was accounted for by conducting additional tracer experiments on sediment that was vacuum dried after reaction. The complementary ("wet" and "dry") techniques allowed for the simultaneous determination of intragranular porosity and surface area using tritium. The Hanford 300A samples exhibited intragranular pore volumes of ~1% of the solid volume and intragranular surface areas of ~20%–35% of the total surface area. Analogous experiments using bromide ion as a tracer yielded very different results, suggesting very little penetration of bromide into the intragranular porosity.

  4. Two catesories of fractal models of rock and soil expressing volume and size-distribution of pores and grains

    Institute of Scientific and Technical Information of China (English)

    TAO GaoLiang; ZHANG JiRu

    2009-01-01

    Based on the Sierpinski carpet and Menger sponge models, two categories of fractal models of rock and soil which are composed of the volume fractal model of pores, the volume fractal model of grains, pore-size or particle-size distribution fractal models are established and their relations are clarified in this paper. Through comparison and analysis, it is found that previous models can be unified by the two categories of fractal models, so the unified fractal models are formed. Experimental results presented by Katz indicate that the first category of fractal models can be used to express the fractal behavior of sandstone. A scanning electron microscope (SEM) will be used to study the microstructure of soft clay and it will be testified that the fractal behavior of soft clay suits the second category of fractal models.

  5. Preparation of High Surface Area, Large Pore Volume Alumina by Using β-Cyclodextrin as a Non-surfactant Template

    Institute of Scientific and Technical Information of China (English)

    Lai Jun WANG; Ming Fen WEN; Yu Shan LI; Dong YANG; Jing CHEN; Chong Li SONG

    2006-01-01

    A series of alumina samples were prepared using β-cyclodextrin as the non-surfactant template. These samples were characterized by XRD, BET and TEM. The results showed that the alumina samples prepared using β-cyclodextrin template had the higher surface areas (124-484 m2/g), larger pore volumes (0.7-1.27 mL/g) and more thermal stability than samples prepared without using β-cyclodextrin.

  6. Pore-scale simulations of drainage in granular materials: Finite size effects and the representative elementary volume

    Science.gov (United States)

    Yuan, Chao; Chareyre, Bruno; Darve, Félix

    2016-09-01

    A pore-scale model is introduced for two-phase flow in dense packings of polydisperse spheres. The model is developed as a component of a more general hydromechanical coupling framework based on the discrete element method, which will be elaborated in future papers and will apply to various processes of interest in soil science, in geomechanics and in oil and gas production. Here the emphasis is on the generation of a network of pores mapping the void space between spherical grains, and the definition of local criteria governing the primary drainage process. The pore space is decomposed by Regular Triangulation, from which a set of pores connected by throats are identified. A local entry capillary pressure is evaluated for each throat, based on the balance of capillary pressure and surface tension at equilibrium. The model reflects the possible entrapment of disconnected patches of the receding wetting phase. It is validated by a comparison with drainage experiments. In the last part of the paper, a series of simulations are reported to illustrate size and boundary effects, key questions when studying small samples made of spherical particles be it in simulations or experiments. Repeated tests on samples of different sizes give evolution of water content which are not only scattered but also strongly biased for small sample sizes. More than 20,000 spheres are needed to reduce the bias on saturation below 0.02. Additional statistics are generated by subsampling a large sample of 64,000 spheres. They suggest that the minimal sampling volume for evaluating saturation is one hundred times greater that the sampling volume needed for measuring porosity with the same accuracy. This requirement in terms of sample size induces a need for efficient computer codes. The method described herein has a low algorithmic complexity in order to satisfy this requirement. It will be well suited to further developments toward coupled flow-deformation problems in which evolution of the

  7. Mesoporous calcium-silicon xerogels with mesopore size and pore volume influence hMSC behaviors by load and sustained release of rhBMP-2.

    Science.gov (United States)

    Song, Wenhua; Li, Xiangde; Qian, Jun; Lv, Guoyu; Yan, Yonggang; Su, Jiacan; Wei, Jie

    2015-01-01

    Mesoporous calcium-silicon xerogels with a pore size of 15 nm (MCS-15) and pore volume of 1.43 cm(3)/g were synthesized by using 1,3,5-mesitylene (TMB) as the pore-expanding agent. The MCS-15 exhibited good degradability with the weight loss of 50 wt% after soaking in Tris-HCl solution for 56 days, which was higher than the 30 wt% loss shown by mesoporous calcium-silicon xerogels with a pore size of 4 nm (MCS-4). The pore size and pore volume of MCS-15 had significant influences on load and release of recombinant human bone morphogenetic protein-2 (rhBMP-2). The MCS-15 had a higher capacity to encapsulate a large amount of rhBMP-2; it could adsorb 45 mg/g of rhBMP-2 in phosphate-buffered saline after 24 hours, which was more than twice that with MCS-4 (20 mg/g). Moreover, the MCS-15 system exhibited sustained release of rhBMP-2 as compared with MCS-4 system (showing a burst release). The MCS-15/rhBMP-2 system could promote the proliferation and differentiation of human mesenchymal stem cells, showing good cytocompatibility and bioactivity. The results indicated that MCS-15, with larger mesopore size and higher pore volume, might be a promising carrier for loading and sustained release of rhBMP-2, which could be used as bone repair material with built-in osteoinduction function in bone reconstruction.

  8. Effects of pore-scale dispersion, degree of heterogeneity, sampling size, and source volume on the concentration moments of conservative solutes in heterogeneous formations

    Science.gov (United States)

    Daniele Tonina; Alberto Bellin

    2008-01-01

    Pore-scale dispersion (PSD), aquifer heterogeneity, sampling volume, and source size influence solute concentrations of conservative tracers transported in heterogeneous porous formations. In this work, we developed a new set of analytical solutions for the concentration ensemble mean, variance, and coefficient of variation (CV), which consider the effects of all these...

  9. Mesoporous calcium–silicon xerogels with mesopore size and pore volume influence hMSC behaviors by load and sustained release of rhBMP-2

    Directory of Open Access Journals (Sweden)

    Song W

    2015-03-01

    Full Text Available Wenhua Song,1,* Xiangde Li,1,* Jun Qian,1 Guoyu Lv,2 Yonggang Yan,2 Jiacan Su,3 Jie Wei1 1Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of China; 2College of Physical Science and Technology, Sichuan University, Chengdu, People’s Republic of China; 3Changhai Hospital, Second Military Medical University, Shanghai, People’s Republic of China *These authors contributed equally to this paper Abstract: Mesoporous calcium–silicon xerogels with a pore size of 15 nm (MCS-15 and pore volume of 1.43 cm3/g were synthesized by using 1,3,5-mesitylene (TMB as the pore-expanding agent. The MCS-15 exhibited good degradability with the weight loss of 50 wt% after soaking in Tris-HCl solution for 56 days, which was higher than the 30 wt% loss shown by mesoporous calcium–silicon xerogels with a pore size of 4 nm (MCS-4. The pore size and pore volume of MCS-15 had significant influences on load and release of recombinant human bone morphogenetic protein-2 (rhBMP-2. The MCS-15 had a higher capacity to encapsulate a large amount of rhBMP-2; it could adsorb 45 mg/g of rhBMP-2 in phosphate-buffered saline after 24 hours, which was more than twice that with MCS-4 (20 mg/g. Moreover, the MCS-15 system exhibited sustained release of rhBMP-2 as compared with MCS-4 system (showing a burst release. The MCS-15/rhBMP-2 system could promote the proliferation and differentiation of human mesenchymal stem cells, showing good cytocompatibility and bioactivity. The results indicated that MCS-15, with larger mesopore size and higher pore volume, might be a promising carrier for loading and sustained release of rhBMP-2, which could be used as bone repair material with built-in osteoinduction function in bone reconstruction. Keywords: mesoporous calcium–silicon xerogels, pore size, pore volume, load-release, rhBMP-2

  10. Sulphonic acid derivatives as probes of pore properties of volume-regulated anion channels in endothelial cells.

    Science.gov (United States)

    Droogmans, G; Maertens, C; Prenen, J; Nilius, B

    1999-09-01

    1. We have used the whole-cell patch-clamp technique to study the effects of 4-sulphonic-calixarenes and some other poly-sulphonic acid agents, such as suramin and basilen blue, on volume-regulated anion channel (VRAC) currents in cultured endothelial cells (CPAE cells). 2. The 4-sulphonic-calixarenes induced a fast inhibition at positive potentials but were ineffective at negative potentials. At small positive potentials, 4-sulphonic-calix[4]arene was a more effective inhibitor than 4-sulphonic-calix[6]arene and -calix[8]arene, which became more effective at more positive potentials. 3. Also suramin and basilen blue induced a voltage dependent current inhibition, reaching a maximum around +40 mV and declining at more positive potentials. 4. The voltage dependence of inhibition was modelled by assuming that these negatively charged molecules bind to a site inside VRAC that senses a fraction delta of the applied electrical field, ranging beween 0.16 to 0.32. 4-Sulphonic-calix[4]arene, suramin and basilen blue bind and occlude VRAC at moderate potentials, but permeate the channel at more positive potentials. 4-Sulphonic-calix[6]arene and -calix[8]arene however do not permeate the channel. From the structural information of the calixarenes, we estimate a lower and upper limit of 11*12 and 17*12 A2 respectively for the cross-sectional area of the pore.

  11. Synthesis of Macro-Mesostructuredγ-Al2O3 with Large Pore Volume and High Surface Area by a Facile Secondary Reforming Method

    Institute of Scientific and Technical Information of China (English)

    Meng Xiuhong; Duan Linhai; Xie Xiaohua; Wang Qiang; Wang Haiyan

    2014-01-01

    Through improving the aging process during synthesis of the support,γ-Al2O3 with large pore volume and high surface area was synthesized by a facile secondary reforming method. The synthesis parameters, such as the reaction tem-perature, the ifrst aging temperature and the second aging temperature, were investigated. The textural properties ofγ-Al2O3 were characterized by means of N2 adsorption-desorption isotherms, X-ray powder diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and thermogravimetry (TG). The experimental results indicated that AACH and amorphous AlOOH were the precursors of alumina, which were formed via precipitation from solutions after reaction of aluminum sulphate with ammonium hydrogen carbonate. The precursor nanocrystallites grew and re-assembled during the secondary reforming process, which resulted in an increased pore size and pore volume and a decreased bulk density. The as-synthesizedγ-Al2O3 materials featured meso/macroporosity, large pore volume (2.175 cm3/g), high surface area (237.8 m2/g), and low bulk density (0.284 g/mL).

  12. A coupled soil-pore fluid formulation for modeling soil liquefaction and cyclic mobility in seabed using the finite volume method

    DEFF Research Database (Denmark)

    Tang, Tian; Roenby, Johan; Hededal, Ole

    by formulating the strong interactions between soil skeleton and the pore fluid via a coupled set of partial differential equations. A single bounding surface soil model capable of simulating the accumulations of pore pressures, strains, dilatancy, and strain „softening‟, is then adopted for quantifying...... the cyclic soil constitutive relations. To deal with the high non-linearity in the equations, the finite volume (FV) method is proposed for the numerical simulation. The corresponding discretization strategies and solution algorithms, including the conventional segregated method and the more recent block...

  13. Water-soluble gases as partitioning tracers to investigate the pore volume?transmissivity correlation in a fracture

    Science.gov (United States)

    Lunati, Ivan; Kinzelbach, Wolfgang

    2004-11-01

    Hydraulically equivalent fractures may show striking differences when a gas-migration experiment is performed because of the different correlations between transmissivity, pore volume and entry pressure. We numerically simulate gas migration between injection and extraction boreholes in a parallel plate fracture with a heterogeneous fault gouge, in a rough-walled fracture filled with homogeneous material, and in a rough-walled empty fracture. The parallel plate model and the empty model clearly show the existence of preferential paths; for high variance of the transmissivity field, gas flow takes place only in few discrete channels separated by water-saturated regions. In contrast, in the fracture filled with homogeneous fault gouge, the gas saturation is continuous and more uniformly distributed. It appears a fundamental issue to be able to discriminate in situ among conceptual models that can yield such a different gas-saturation distribution. As in practice, the saturation distribution cannot be directly observed, tracer experiments are performed to characterize a fracture. For these reasons, we simulate the transport of tracers, which are added to the gas phase as soon as quasi-steady saturation distribution and extraction rate are achieved, and we compare the breakthrough curves obtained assuming different models. Our numerical simulations suggest that discrimination among the models on the basis of single-tracer tests is unlikely. A better tool to investigate fracture properties is provided by a gas-tracer test, in which a cocktail of gases with different water solubility is employed. These gases behave as partitioning tracers and allow us to estimate the gas saturation in the fracture. Indeed, by comparison of the residence-time distributions of different gases, we are able to compute a streamline effective saturation, which is an excellent estimate of fracture saturation. In addition, the streamline effective saturation curve contains information that is

  14. A coupled soil-pore fluid formulation for modeling soil liquefaction and cyclic mobility in seabed using the finite volume method

    DEFF Research Database (Denmark)

    Tang, Tian; Roenby, Johan; Hededal, Ole

    by formulating the strong interactions between soil skeleton and the pore fluid via a coupled set of partial differential equations. A single bounding surface soil model capable of simulating the accumulations of pore pressures, strains, dilatancy, and strain „softening‟, is then adopted for quantifying...... the cyclic soil constitutive relations. To deal with the high non-linearity in the equations, the finite volume (FV) method is proposed for the numerical simulation. The corresponding discretization strategies and solution algorithms, including the conventional segregated method and the more recent block...... matrix solver, are discussed as well. Overall, investigations in this paper provide a methodology for developing a numerical code simulating liquefaction and cyclic mobility. In future work this will be implemented in practice with the aid of the open source CFD toolbox, OpenFOAM....

  15. Pore structure and growth kinetics in carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Bose, S.

    1978-04-01

    Pore structure of glassy carbon (GC) and pyrolytic graphite (PG) have been investigated. GC is one of the most impervious of solids finding applications in prosthetic devices and fuel cells while PG is used extensively in the aerospace industry. One third of the microstructure of GC consists of closed pores inaccessible to fluids. The microstructure of this material has been characterized using x-ray diffraction (XRD) and high resolution electron microscopy. Small angle x-ray scattering (SAXS) has been used to measure the angstrom sized pores and to follow the evolution of pore surface area as a function of heat treatment temperature (HTT) and heat treatment time (HTt) at constant temperature. From these measurements an analysis of the surface area kinetics was made to find out if rate processes are involved and to locate graphitization occurring at pore surfaces. PG on the other hand has been found to have larger sized pores that comprise five percent of its volume. In addition to being closed these pores are oriented. Some pore models are proposed for PG and the existing scattering theory from oriented ellipsoids is modified to include the proposed shapes.

  16. Large pore volume mesoporous copper particles and scaffold microporous carbon material obtained from an inorganic-organic nanohybrid material, copper-succinate-layered hydroxide.

    Science.gov (United States)

    Ghotbi, Mohammad Yeganeh; Bagheri, Narjes; Sadrnezhaad, S K

    2011-10-01

    Copper-succinate-layered hydroxide (CSLH), a new nanohybrid material, was synthesized as an inorganic-organic nanohybrid, in which organic moiety was intercalated between the layers of a single cation layered material, copper hydroxide nitrate. Microporous scaffold carbon material was obtained by thermal decomposition of the nanohybrid at 500 °C under argon atmosphere followed by acid washing process. Furthermore, the heat-treated product of the nanohybrid at 600 °C was ultrafine mesoporous metallic copper particles. The results of this study confirmed the great potential of CSLH to produce the carbon material with large surface area (580 m(2)/g) and high pore volume copper powder (2.04 cm(3)/g).

  17. Insulating Materials Comprising Polysilazane, Methods of Forming Such Insulating Materials, and Precursor Formulations Comprising Polysilazane

    Science.gov (United States)

    Larson, Robert S. (Inventor); Fuller, Michael E. (Inventor)

    2013-01-01

    Methods of forming an insulating material comprising combining a polysilazane, a cross-linking compound, and a gas-generating compound to form a reaction mixture, and curing the reaction mixture to form a modified polysilazane. The gas-generating compound may be water, an alcohol, an amine, or combinations thereof. The cross-linking compound may be an isocyanate, an epoxy resin, or combinations thereof. The insulating material may include a matrix comprising one of a reaction product of a polysilazane and an isocyanate and a reaction product of a polysilazane and an epoxy resin. The matrix also comprises a plurality of interconnected pores produced from one of reaction of the polysilazane and the isocyanate and from reaction of the polysilazane and the epoxy resin. A precursor formulation that comprises a polysilazane, a cross-linking compound, and a gas-generating compound is also disclosed.

  18. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    Science.gov (United States)

    Liu, Han [Waltham, MA; LaConti, Anthony B [Lynnfield, MA; Mittelsteadt, Cortney K [Natick, MA; McCallum, Thomas J [Ashland, MA

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  19. BALLISTIC RESISTANT ARTICLES COMPRISING TAPES

    NARCIS (Netherlands)

    VAN DER EEM, JORIS; HARINGS, JULES; JANSE, GERARDUS; TJADEN, HENDRIK

    2015-01-01

    The invention pertains to a ballistic-resistant moulded article comprising a compressed stack of sheets comprising reinforcing tapes having a tensile strength of at least 1.0 GPa, a tensile modulus of at least 40 GPa, and a tensile energy-to-break of at least 15 J/g, the direction of the tapes withi

  20. BALLISTIC RESISTANT ARTICLES COMPRISING TAPES

    NARCIS (Netherlands)

    VAN DER EEM, JORIS; HARINGS, JULES; JANSE, GERARDUS; TJADEN, HENDRIK

    2015-01-01

    The invention pertains to a ballistic-resistant moulded article comprising a compressed stack of sheets comprising reinforcing tapes having a tensile strength of at least 1.0 GPa, a tensile modulus of at least 40 GPa, and a tensile energy-to-break of at least 15 J/g, the direction of the tapes

  1. Articles comprising ferritic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  2. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    Science.gov (United States)

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  3. Comparison of caprock pore networks which potentially will be impacted by carbon sequestration projects.

    Energy Technology Data Exchange (ETDEWEB)

    McCray, John (Colorado School of Mines); Navarre-Sitchler, Alexis (Colorado School of Mines); Mouzakis, Katherine (Colorado School of Mines); Heath, Jason E.; Dewers, Thomas A.; Rother, Gernot (Oak Ridge National Laboratory)

    2010-12-01

    Injection of CO2 into underground rock formations can reduce atmospheric CO2 emissions. Caprocks present above potential storage formations are the main structural trap inhibiting CO2 from leaking into overlying aquifers or back to the Earth's surface. Dissolution and precipitation of caprock minerals resulting from reaction with CO2 may alter the pore network where many pores are of the micrometer to nanometer scale, thus altering the structural trapping potential of the caprock. However, the distribution, geometry and volume of pores at these scales are poorly characterized. In order to evaluate the overall risk of leakage of CO2 from storage formations, a first critical step is understanding the distribution and shape of pores in a variety of different caprocks. As the caprock is often comprised of mudstones, we analyzed samples from several mudstone formations with small angle neutron scattering (SANS) and high-resolution transmission electron microscopy (TEM) imaging to compare the pore networks. Mudstones were chosen from current or potential sites for carbon sequestration projects including the Marine Tuscaloosa Group, the Lower Tuscaloosa Group, the upper and lower shale members of the Kirtland Formation, and the Pennsylvanian Gothic shale. Expandable clay contents ranged from 10% to approximately 40% in the Gothic shale and Kirtland Formation, respectively. During SANS, neutrons effectively scatter from interfaces between materials with differing scattering length density (i.e., minerals and pores). The intensity of scattered neutrons, I(Q), where Q is the scattering vector, gives information about the volume and arrangement of pores in the sample. The slope of the scattering data when plotted as log I(Q) vs. log Q provides information about the fractality or geometry of the pore network. On such plots slopes from -2 to -3 represent mass fractals while slopes from -3 to -4 represent surface fractals. Scattering data showed surface fractal dimensions

  4. Impact of Wettability on Pore-Scale Characteristics of Residual Nonaqueous Phase Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Al-Raoush, Riyadh I.; (Southern)

    2009-07-31

    The objective of this paper was to investigate the impact of wettability of porous media on pore-scale characteristics of residual nonaqueous phase liquids (NAPLs). Synchrotron X-ray microtomography was used to obtain high-resolution three-dimensional images of fractionally wet sand systems with mean grain size of 250 {micro}m. Pore-scale characteristics of NAPL blobs such as volume, lengths, interfacial areas, and sphericity index were computed using three-dimensional image processing algorithms. Four systems comprised of 100, 50, 25, and 0% NAPL-wet mass fractions containing the residual NAPL were imaged and analyzed. Findings indicate that spatial variation in wettability of porous media surfaces has a significant impact on pore-scale characteristics of residual NAPL blobs in saturated porous media systems. As the porous media comprises more water-wet surfaces, residual NAPL blobs increase in size and length due to the entrapment at large pore bodies. NAPL-water interfacial areas tend to increase as the NAPL-wet surface fractions increase in the systems. Overall residual NAPL saturations are less in fractionally wet systems and increase as the systems become more NAPL-wet or water-wet.

  5. Pore Structure of Cement Pastes Blended with Volcanic Rock

    Institute of Scientific and Technical Information of China (English)

    YU Lehua; ZHOU Shuangxi; LI Liling

    2016-01-01

    The pore parameters of cement pastes blended with volcanic rock at the curing age of 1, 28 and 90 d were de-termined by a mercury intrusion porosimetry. The pore structure of the pastes was characterized through the analysis of porosity, average pore diameter, the most probable pore aperture, pore size distribution, as well as total pore volume. For the improvement of mechanical property and durability of cement-based material, the correlation of the formed pore structure with hydration time and replacement level of volcanic rock for cement was revealed. The results indicate that volcanic rock can diminish porosity and reduce pore size in cement paste when curing time prolongs, which is particu-larly prominent with replacement level of less than 20% in late period. The more harmful pores (i.e., capillary pore) are gradually transformed into harmless pore (i.e., gel pores or micropore), even fully filled and disappeared when hydration products increase. The pore structure of the cement paste is thus refined. The beneficial effect of volcanic rock on the pore structure of cement paste could enhance the mechanical property and durability of cement-based material.

  6. Dilated pore of winer

    Directory of Open Access Journals (Sweden)

    Mittal R

    2002-01-01

    Full Text Available Two cases of dilated pore of Winer were observed. First case had single defined black papule with well defined margin, central pore and discharge of black powdery material from nose since 3 years. The second case had one 9mm, black well-defined papule with central pore discharging black powdery material on right forearm since 9 months and 9 similar smaller papules were seen on forearm and lower abdomen. Histopathologically both revealed greatly dilated infundibulum lined by acanthotic epidermis and atrophic subinfundibular hair structures thus confirming diagnosis of dilated pore of Winer

  7. Fractal classification and natural classification of coal pore structure based on migration of coal bed methane

    Institute of Scientific and Technical Information of China (English)

    FU Xuehai; QIN Yong; ZHANG Wanhong; WEI Chongtao; ZHOU Rongfu

    2005-01-01

    According to the data of 146 coal samples measured by mercury penetration, coal pores are classified into two levels of <65 nm diffusion pore and >65 nm seeping pore by fractal method based on the characteristics of diffusion, seepage of coal bed methane(CBM) and on the research results of specific pore volume and pore structure. The diffusion pores are further divided into three categories: <8 nm micropore, 8-20 nm transitional pore, and 20-65 nm minipore based on the relationship between increment of specific surface area and diameter of pores, while seepage pores are further divided into three categories: 65-325 nm mesopore,325-1000 nm transitional pore, and >1000 nm macropore based on the abrupt change in the increment of specific pore volume.

  8. Energy system comprising an electrochemical energy source

    NARCIS (Netherlands)

    Roozeboom, F.; Notten, P.

    2010-01-01

    The invention relates to an energy system comprising an electrochemical energy source, wherein said electrochemical energy source comprises at least one assembly of a first electrode, a second electrode, and an intermediate solid-state electrolyte separating said first electrode and said second elec

  9. Pressurizable structures comprising different surface sections

    NARCIS (Netherlands)

    Koussios, S.; Bergsma, O.K.; Beukers, A.

    2004-01-01

    The invention relates to composite pressurizable structures which are overwound with fibres or are braided. The pressurizable structures comprise axial sections which in turn comprise both concave and convex surfaces. The shape characteristics are related to geodesic as well as non-geodesic trajecto

  10. Soil Pore Network Visualisation and Quantification using ImageJ

    DEFF Research Database (Denmark)

    Garbout, Amin; Pajor, Radoslaw; Otten, Wilfred

    Computed Tomography data. We used ImageJ to analyze images of pore geometries in soils generated by X-ray micro Computed Tomography. Soil samples were scanned at 30 μm resolution, and we produced replicated samples with different pore geometries by packing different sized soil aggregates at pre......-defined densities. First, scanned grayscale data of soil volumes were thresholded to separate solid and pore phases. Then, pore networks were extracted with the Skeletonize3D plug-in (Ignacio Arganda-Carreras), exploiting an ITK algorithm: binary thinning was used for finding the centerlines (”skeleton”) of pores...

  11. Fingerprint pores extractor

    CSIR Research Space (South Africa)

    Mngenge, NA

    2012-11-01

    Full Text Available alone. Sweat pores have been less utilized in the past due to constraints imposed by fingerprint scanning devices and resolution standards. Recently, progress has been made on both scanning devices and resolution standards to support the use of pores...

  12. Pore size distribution mapping

    OpenAIRE

    Strange, John H.; J. Beau W. WEBBER; Schmidt, S.D.

    1996-01-01

    Pore size distribution mapping has been demonstrated using NMR cryoporometry\\ud in the presence of a magnetic field gradient, This novel method is extendable to 2D and 3D mapping. It offers a unique nondestructive method of obtaining full pore-size distributions in the range 3 to 100 nm at any point within a bulk sample. \\ud

  13. Pore structure in blended cement pastes

    DEFF Research Database (Denmark)

    Canut, Mariana Moreira Cavalcanti

    Supplementary cementitious materials (SCMs), such as slag and fly ash, are increasingly used as a substitute for Portland cement in the interests of improvement of engineering properties and sustainability of concrete. According to studies improvement of engineering properties can be explained...... supplement each other. Cement pastes (w/b=0.4) with and without slag and fly ash cured at two moisture (sealed and saturated) and temperature (20 and 55ºC) conditions were used to investigate the combined impact of SCMs addition and curing on the pore structure of pastes cured up to two years. Also...... volume and threshold pore size were found when comparing with plain cement paste at the same curing conditions. The porosity methods MIP, LTC and SEM have been shown to be suitable to characterise pore parameters of the pastes. MIP is a simple and fast method which covers a large range of pore sizes...

  14. Composition comprising lignin and antidi arrheal component

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention relates to a composition comprising lignin and at least one compound selected from the group consisting of bromelain, papain, tannin, carvacrol, thymol, alliin, allicin, fenugreek seed, egg, poppy, poppy seeds, humic acid, roots, kaolin, catechu, cellulase, flavonoid...

  15. Velocities in Solar Pores

    Science.gov (United States)

    Balasubramaniam, K. S.; Keil, S. L.; Smaldone, L. A.

    1996-05-01

    We investigate the three dimensional structure of solar pores and their surroundings using high spatial and spectral resolution data. We present evidence that surface velocities decrease around pores with a corresponding increase in the line-of-sight (LOS) velocities. LOS velocities in pores increase with the strength of the magnetic field. Surface velocities show convergence toward a weak downflow which appear to trace boundaries resembling meso-granular and super granular flows. The observed magnetic fields in the pores appear near these boundaries. We analyze the vertical velocity structure in pores and show that they generally have downflows decreasing exponentially with height, with a scale height of about 90 km. Evidence is also presented for the expanding nature of flux tubes. Finally we describe a phenomenological model for pores. This work was supported by AFOSR Task 2311G3. LAS was partially supported by the Progetto Nazionale Astrofisica e Fisica Cosmica of MURST and Scambi Internazionali of the Universita degli Studi di Napoli Frederico II. National Solar Observatory, NOAO, is operated for the National Science Foundation by AURA, Inc.

  16. A study on optimal pore development of modified commercial activated carbons for electrode materials of supercapacitors

    Science.gov (United States)

    Bang, Joon Hyuk; Lee, Hye-Min; An, Kay-Hyeok; Kim, Byung-Joo

    2017-09-01

    This study aimed to understand the impact of CO2 activation of commercial activated carbons (AC) on the changes in pore characteristics and the electrochemical property. The surface structure of manufactured AC was observed with a X-ray diffraction (XRD); the pore characteristics were analyzed at N2/77 K isothermal absorption using the Brunauer-Emmett-Teller (BET) and Dubinin-Radushkevich (DR) equations. In addition, the electrochemical characteristics were analyzed by means of an electrolyte of 1 M (C2H5)4NBF4/propylene carbonate, using a charge/discharge test, cyclic voltammetry (CV), and impedance. The N2/77 K isothermal absorption curve of the manufactured AC falls under Type I in the classification of the International Union of Pure and Applied Chemistry (IUPAC) and was found to largely comprise micropores. The specific surface area increased from 1690 m2/g to 2290 m2/g, and the pore volume grew from 0.80 cm3/g to 1.10 cm3/g. The analysis of electrochemical characteristics also found that the specific capacity increased from 17 F/g to 20 F/g (in a full cell condition). Based on these results, we were able to determine the pore characteristics of commercial AC through an additional activation process, which consequently allowed us to manufacture the AC with an advanced electrochemical property.

  17. An optically guided microdevice comprising a nanowire

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a microdevice (100) for emitting electromagnetic radiation onto an associated object. Simultaneous non-contact spatial control over the microdevice in terms of translational movement in three dimensions, and rotational movement around at least two axes, preferably...... three axes, is possible. The microdevice further comprises a nanowire (150) being arranged for emitting electromagnetic radiation onto said associated object. This is advantageous for obtaining better spatial control of the microdevice comprising the nanowire, and this enables that light could more...

  18. Hearing aid comprising an array of microphones

    NARCIS (Netherlands)

    Boone, M.M.; Berkhout, A.J.; Merks, I.L.D.M.

    1999-01-01

    Hearing aid for improving the hearing ability of the hard of hearing, comprising an array of microphones, the electrical output signals of which are fed to at least one transmission path belonging to an ear. Means are provided for deriving two array output signals from the output signals of the micr

  19. Synthetic thermoelectric materials comprising phononic crystals

    Science.gov (United States)

    El-Kady, Ihab F; Olsson, Roy H; Hopkins, Patrick; Reinke, Charles; Kim, Bongsang

    2013-08-13

    Synthetic thermoelectric materials comprising phononic crystals can simultaneously have a large Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Such synthetic thermoelectric materials can enable improved thermoelectric devices, such as thermoelectric generators and coolers, with improved performance. Such synthetic thermoelectric materials and devices can be fabricated using techniques that are compatible with standard microelectronics.

  20. Biocatalytic material comprising multilayer enzyme coated fiber

    Science.gov (United States)

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    The present invention relates generally to high stability, high activity biocatalytic materials and processes for using the same. The materials comprise enzyme aggregate coatings having high biocatalytic activity and stability useful in heterogeneous environment. These new materials provide a new biocatalytic immobilized enzyme system with applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  1. Conservation agriculture effects on soil pore characteristics

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Abdollahi, Lotfollah

    of quantitative knowledge to support this statement. This study examines the long-term effects of crop rotations, residue management and tillage on soil pore characteristics of two sandy loam soils in Denmark. Results are reported from a split plot field experiment rotation as main plot factor and tillage...... air permeability and pore continuity index. Generally, residue input, especially when combined with direct drilling at the Foulum site, decreased bulk density and the volume of blocked air porosity, and increased air-filled porosity, volumetric water content, air permeability and gas diffusivity. Our...

  2. Nanophosphor composite scintillators comprising a polymer matrix

    Science.gov (United States)

    Muenchausen, Ross Edward; Mckigney, Edward Allen; Gilbertson, Robert David

    2010-11-16

    An improved nanophosphor composite comprises surface modified nanophosphor particles in a solid matrix. The nanophosphor particle surface is modified with an organic ligand, or by covalently bonding a polymeric or polymeric precursor material. The surface modified nanophosphor particle is essentially charge neutral, thereby preventing agglomeration of the nanophosphor particles during formation of the composite material. The improved nanophosphor composite may be used in any conventional scintillator application, including in a radiation detector.

  3. Electrochemical cell comprising stable hydride-forming material

    Energy Technology Data Exchange (ETDEWEB)

    Willems, J. J. G. S. A.; van Beek, J. R. G. C. M.; Buschow, K. H. J.

    1984-12-11

    An electrochemical cell having a negative electrode comprising a compound derived from LaNi/sub 5/, in which La is optionally substituted by a plateau pressure-increasing element and in which Ni is substituted entirely or partly by a plateau pressure-reducing element, for example, Co and/or Cu, with the object of considerably reducing volume steps and hence crack formation of the intermetallic compound during charging and discharging. Moreover, the corrosion of the intermetallic compound is counteracted by adding small quantities of Al, Cr and/or Si, Which metals enhance the formation of a protecting oxide layer.

  4. Method of forming a nanocluster-comprising dielectric layer and device comprising such a layer

    NARCIS (Netherlands)

    Kochupurackal, J.B.P.; Besling, W.F.A.; Klootwijk, J.H.; Wolters, A.M.; Roozeboom, F.

    2012-01-01

    A method of forming a dielectric layer on a further layer of a semiconductor device is disclosed. The method comprises depositing a dielectric precursor compound and a further precursor compound over the further layer, the dielectric precursor compound comprising a metal ion from the group consistin

  5. Properties of solar pores

    NARCIS (Netherlands)

    Sütterlin, Peter

    2001-01-01

    We present the results of an extensive investigation of the properties of solar pores. Spectra of all 4 Stokes parameters of several magnetic sensitive absorption lines as well as Stokes I only spectra of lines with low or vanishing Landéfactor have been observed. An inversion code based on the Leve

  6. The pore space scramble

    Science.gov (United States)

    Gormally, Alexandra; Bentham, Michelle; Vermeylen, Saskia; Markusson, Nils

    2015-04-01

    Climate change and energy security continue to be the context of the transition to a secure, affordable and low carbon energy future, both in the UK and beyond. This is reflected in for example, binding climate policy targets at the EU level, the introduction of renewable energy targets, and has also led to an increasing interest in Carbon Capture and Storage (CCS) technology with its potential to help mitigate against the effects of CO2 emissions from fossil fuel burning. The UK has proposed a three phase strategy to integrate CCS into its energy system in the long term focussing on off-shore subsurface storage (DECC, 2014). The potential of CCS therefore, raises a number of challenging questions and issues surrounding the long-term storage of CO2 captured and injected into underground spaces and, alongside other novel uses of the subsurface, contributes to opening a new field for discussion on the governance of the subsurface. Such 'novel' uses of the subsurface have lead to it becoming an increasingly contested space in terms of its governance, with issues emerging around the role of ownership, liability and property rights of subsurface pore space. For instance, questions over the legal ownership of pore space have arisen with ambiguity over the legal standpoint of the surface owner and those wanting to utilise the pore space for gas storage, and suggestions of whether there are depths at which legal 'ownership' becomes obsolete (Barton, 2014). Here we propose to discuss this 'pore space scramble' and provide examples of the competing trajectories of different stakeholders, particularly in the off-shore context given its priority in the UK. We also propose to highlight the current ambiguity around property law of pore space in the UK with reference to approaches currently taken in different national contexts. Ultimately we delineate contrasting models of governance to illustrate the choices we face and consider the ethics of these models for the common good

  7. Electrode assembly for a lithium ion battery, process for the production of such electrode assembly, and lithium ion battery comprising such electrode assemblies

    NARCIS (Netherlands)

    Mulder, F.M.; Wagemaker, M.

    2013-01-01

    The invention provides an electrode assembly for a lithium ion battery, the electrode assembly comprising a lithium storage electrode layer on a current collector, wherein the lithium storage electrode layer is a porous layer having a porosity in the range of -35 %, with pores having pore widths in

  8. Electrode assembly for a lithium ion battery, process for the production of such electrode assembly, and lithium ion battery comprising such electrode assemblies

    NARCIS (Netherlands)

    Mulder, F.M.; Wagemaker, M.

    2013-01-01

    The invention provides an electrode assembly for a lithium ion battery, the electrode assembly comprising a lithium storage electrode layer on a current collector, wherein the lithium storage electrode layer is a porous layer having a porosity in the range of -35 %, with pores having pore widths in

  9. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China.

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions play a major role in the shale oil occurrence (free or absorbed state, amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1 Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2 There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3 Pores in lacustrine shale are well developed when the organic matter maturity (Ro is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable.

  10. Surface pore tension and adsorption characteristics of polluted sediment

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Most natural sediment particles have numerous pores and a complex surface texture which facilitates their adsorption of contaminants. Particle surface structure,therefore,is an important instrumental factor in the transport of contaminants,especially in water environments. This paper reports on the results of adsorption-desorption experiments to analyze polluted sediment surface pore tension characteristics performed on samples from the bottom of Guanting Reservoir. In our analysis,the Frenkel-Halsey-Hill(FHH) equation is applied to calculate the fractal dimensions of particles to quantify the surface roughness and pore tension characteristics. The results show that the surface fractal dimensions of sediment particle surfaces normally measure from 2.6 to 2.85. The volume of pores smaller than 10 nm changes significantly after being contaminated with pollutants and the fractal dimension decreases because the pores adsorb the contaminants.

  11. Measurements of pore-scale flow through apertures.

    Energy Technology Data Exchange (ETDEWEB)

    Chojnicki, Kirsten

    2017-09-01

    Pore-scale aperture effects on flow in pore networks was studied in the laboratory to provide a parameterization for use in transport models. Four cases were considered: regular and irregular pillar/pore alignment with and without an aperture. The velocity field of each case was measured and simulated, providing quantitatively comparable results. Two aperture effect parameterizations were considered: permeability and transmission. Permeability values varied by an order of magnitude between the cases with and without apertures. However, transmission did not correlate with permeability. Despite having much greater permeability the regular aperture case permitted less transmission than the regular case. Moreover, both irregular cases had greater transmission than the regular cases, a difference not supported by the permeabilities. Overall, these findings suggest that pore-scale aperture effects on flow though a pore-network may not be adequately captured by properties such as permeability for applications that are interested in determining particle transport volume and timing.

  12. Pore dynamics in lipid membranes

    Science.gov (United States)

    Gozen, I.; Dommersnes, P.

    2014-09-01

    Transient circular pores can open in plasma membrane of cells due to mechanical stress, and failure to repair such pores lead to cell death. Similar pores in the form of defects also exist among smectic membranes, such as in myelin sheaths or mitochondrial membranes. The formation and growth of membrane defects are associated with diseases, for example multiple sclerosis. A deeper understanding of membrane pore dynamics can provide a more refined picture of membrane integrity-related disease development, and possibly also treatment options and strategies. Pore dynamics is also of great importance regarding healthcare applications such as drug delivery, gene or as recently been implied, cancer therapy. The dynamics of pores significantly differ in stacks which are confined in 2D compared to those in cells or vesicles. In this short review, we will summarize the dynamics of different types of pores that can be observed in biological membranes, which include circular transient, fusion and hemi-fusion pores. We will dedicate a section to floral and fractal pores which were discovered a few years ago and have highly peculiar characteristics. Finally, we will discuss the repair mechanisms of large area pores in conjunction with the current cell membrane repair hypotheses.

  13. Soils, Pores, and NMR

    Science.gov (United States)

    Pohlmeier, Andreas; Haber-Pohlmeier, Sabina; Haber, Agnes; Sucre, Oscar; Stingaciu, Laura; Stapf, Siegfried; Blümich, Bernhard

    2010-05-01

    Within Cluster A, Partial Project A1, the pore space exploration by means of Nuclear Magnetic Resonance (NMR) plays a central role. NMR is especially convenient since it probes directly the state and dynamics of the substance of interest: water. First, NMR is applied as relaxometry, where the degree of saturation but also the pore geometry controls the NMR signature of natural porous systems. Examples are presented where soil samples from the Selhausen, Merzenhausen (silt loams), and Kaldenkirchen (sandy loam) test sites are investigated by means of Fast Field Cycling Relaxometry at different degrees of saturation. From the change of the relaxation time distributions with decreasing water content and by comparison with conventional water retention curves we conclude that the fraction of immobile water is characterized by T1 samples (Haber-Pohlmeier et al. 2010). Third, relaxometric information forms the basis of understanding magnetic resonance imaging (MRI) results. The general difficulty of imaging in soils are the inherent fast T2 relaxation times due to i) the small pore sizes, ii) presence of paramagnetic ions in the solid matrix, and iii) diffusion in internal gradients. The last point is important, since echo times can not set shorter than about 1ms for imaging purposes. The way out is either the usage of low fields for imaging in soils or special ultra-short pulse sequences, which do not create echoes. In this presentation we will give examples on conventional imaging of macropore fluxes in soil cores (Haber-Pohlmeier et al. 2010), and the combination with relaxometric imaging, as well as the advantages and drawbacks of low-field and ultra-fast pulse imaging. Also first results on the imaging of soil columns measured by SIP in Project A3 are given. Haber-Pohlmeier, S., S. Stapf, et al. (2010). "Waterflow Monitored by Tracer Transport in Natural Porous Media Using MRI." Vadose Zone J.: submitted. Haber-Pohlmeier, S., S. Stapf, et al. (2010). "Relaxation in a

  14. Effects of supersaturation on pore shape in solid

    Science.gov (United States)

    Wei, P. S.; Hsiao, S. Y.

    2017-02-01

    The shape of a pore resulting from a bubble entrapped by a solidification front with different supersaturation ratios is predicted in this work. Supersaturation ratio, representing the ratio between solute concentration and saturation solute concentration, determines nucleation of a bubble and development of the pore shape in the early stage. Pore formation and its shape in solid influence contemporary issues of biology, engineering, foods, geophysics and climate change, etc. This work extends and combines previous models accounting for realistic mass and momentum transport, and physico-chemical equilibrium of solute gas across the bubble cap to self-consistently determine shape of the bubble cap beyond the solidification front and the pore shape in solid. The study also deal with that pore formation can be resulted from three different mechanisms, depending on the directions and magnitude of solute gas transport across the bubble cap. Case 1 is subject to solute transport from the pore across the cap into the surrounding liquid in the early stage. Cases 2a and 2b indicate opposite direction of solute transport. In contrast to Case 2b, the effect of solute transport on solute gas pressure in the pore in Case 2a is stronger than that of pore volume expansionin the last stage. The results find that an increase in supersaturation ratio decreases pore radius and time for bubble entrapment in Case 1. The bubble cannot be entrapped in Case 2. The predicted pore shape in solid agrees with experimental data. Understanding, prediction and control of the growth of the pore shape have therefore been obtained.

  15. Formation of spherical stomatocyte of high-genus vesicle under pore-size constraint

    CERN Document Server

    Noguchi, Hiroshi

    2016-01-01

    Nuclear pores have an approximately uniform distribution in the nuclear envelope of most living cells. Hence, the morphology of the nuclear envelope is a spherical stomatocyte with a high genus. We have investigated the morphology of high-genus vesicles under pore-size constraint using dynamically triangulated membrane simulations. Bending-energy minimization without volume or other constraints produces a circular-cage stomatocyte, where the pores are aligned in a circular line on an oblate inner bud. As the pore radius is reduced, the circular-pore alignment is more stabilized than a random pore distribution on a spherical bud. However, we have clarified the conditions for the formation of a spherical stomatocyte: a small reduced volume, osmotic pressure within the inner bud, and repulsion between the pores. When area-difference elasticity is taken into account, the formation of cylindrical or budded tubules from the stomatocyte and discoidal stomatocyte is found.

  16. Using X-Ray Computed Tomography in Pore Structure Characterization for a Berea Sandstone: Resolution Effect

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Sheng; Hu, Qinhong; Dultz, Stefan; Zhang, Ming

    2012-11-23

    X-raycomputedtomography (XCT) is a powerful tool for detecting the micro-scale porestructure and has been applied to many natural and synthetic porous media. However, due to the resolution limitations, either non-representative view of the sample or inaccurate results can be produced from the XCT image processing. In this paper, two XCT (micro-CT and CT with synchrotron radiation) with different resolutions of 12.7 μm and 0.35 μm, as well as mercury intrusion porosimetry (MIP) with a minimum detection limit of 3 nm, were used for Berea sandstone to investigate the effect of detecting resolution on the porestructure. Several key porestructure parameters, including porosity, pore size distribution, pore connectivity, surface area, hydraulic radius, and aspect ratio were analyzed in a manner of quantitative comparison between different resolutions of XCT and MIP. The low resolution XCT can capture the large-pore porosity, while overestimates the pore size and pore connectivity. The high resolution XCT is more accurate in describing the pore shape, porosity, pore size; however, it is not representative since narrower detecting pore size range and small volume represented. A representative element volume related to large-pore porosity and probably large-pore connectivity with diameter and height of 2.8 mm is obtained through scale effect analysis. Therefore, selecting an appropriate resolution should be a compromise between the pore size and the representative element volume for the specific property or process of interest.

  17. Evaluation of Optimal Pore Size of (3-Aminopropyltriethoxysilane Grafted MCM-41 for Improved CO2 Adsorption

    Directory of Open Access Journals (Sweden)

    Zhilin Liu

    2015-01-01

    Full Text Available An array of new MCM-41 with substantially larger average pore diameters was synthesized through adding 1,3,5-trimethylbenzene (TMB as the swelling agent to explore the effect of pore size on final adsorbent properties. The pore expanded MCM-41 was also grafted with (3-Aminopropyltriethoxysilane (APTES to determine the optimal pore size for CO2 adsorption. The pore-expanded mesoporous MCM-41s showed relatively less structural regularity but significant increments of pore diameter (4.64 to 7.50 nm; the fraction of mesopore volume also illustrated an increase. The adsorption heat values were correlated with the order of the adsorption capacities for pore expanded MCM-41s. After amine functionalization, the adsorption capacities and heat values showed a significant increase. APTES-grafted pore-expanded MCM-41s depicted a high potential for CO2 capture regardless of the major drawback of the high energy required for regeneration.

  18. Temperature induced pore fluid pressurization in geomaterials

    CERN Document Server

    Ghabezloo, Siavash

    2010-01-01

    The theoretical basis of the thermal response of the fluid-saturated porous materials in undrained condition is presented. It has been demonstrated that the thermal pressurization phenomenon is controlled by the discrepancy between the thermal expansion of the pore fluid and of the solid phase, the stress-dependency of the compressibility and the non-elastic volume changes of the porous material. For evaluation of the undrained thermo-poro-elastic properties of saturated porous materials in conventional triaxial cells, it is important to take into account the effect of the dead volume of the drainage system. A simple correction method is presented to correct the measured pore pressure change and also the measured volumetric strain during an undrained heating test. It is shown that the porosity of the tested material, its drained compressibility and the ratio of the volume of the drainage system to the one of the tested sample, are the key parameters which influence the most the error induced on the measuremen...

  19. Hydrocarbon recovery comprising injecting a slug comprising oil soluble alkoxylated surfactants from lignin

    Energy Technology Data Exchange (ETDEWEB)

    Naae, D.G.; DaGue, M.G.; Dunn, N.G.

    1993-07-27

    A method is described of recovering hydrocarbons from an underground hydrocarbon formation penetrated by at least one injection well and at least one production well, which comprises: injecting into the formation through an injection well a surfactant slug comprising about 0.1% to about 10% by weight of oil soluble surfactants produced from lignin, said oil soluble surfactants produced by placing lignin in contact with water, converting the lignin into relatively low molecular weight lignin phenols by reducing the lignin in the presence of a reducing agent of carbon monoxide or hydrogen, said reduction occurring at a temperature greater than about 200 C and a pressure greater than about 100 psi, recovering the oil soluble lignin phenols from the reaction mixture, alkoxylating the lignin phenols by reacting the lignin phenols with an a-olefin epoxide having about 6 to about 20 carbon atoms at about 100 to about 200 C for about 1 to about 3 hours in an organic solvent, and changing the alkoxylated lignin phenols into oil soluble lignin surfactants by a reaction selected from the group consisting of sulfonation, sulfation, and alkoxysulfation; injecting into the formation through the injection well a drive fluid to push the surfactant slug towards a production well; and recovering hydrocarbons at the production well.

  20. X-ray CT analysis of pore structure in sand

    Science.gov (United States)

    Mukunoki, Toshifumi; Miyata, Yoshihisa; Mikami, Kazuaki; Shiota, Erika

    2016-06-01

    The development of microfocused X-ray computed tomography (CT) devices enables digital imaging analysis at the pore scale. The applications of these devices are diverse in soil mechanics, geotechnical and geoenvironmental engineering, petroleum engineering, and agricultural engineering. In particular, the imaging of the pore space in porous media has contributed to numerical simulations for single-phase and multiphase flows or contaminant transport through the pore structure as three-dimensional image data. These obtained results are affected by the pore diameter; therefore, it is necessary to verify the image preprocessing for the image analysis and to validate the pore diameters obtained from the CT image data. Moreover, it is meaningful to produce the physical parameters in a representative element volume (REV) and significant to define the dimension of the REV. This paper describes the underlying method of image processing and analysis and discusses the physical properties of Toyoura sand for the verification of the image analysis based on the definition of the REV. On the basis of the obtained verification results, a pore-diameter analysis can be conducted and validated by a comparison with the experimental work and image analysis. The pore diameter is deduced from Young-Laplace's law and a water retention test for the drainage process. The results from previous study and perforated-pore diameter originally proposed in this study, called the voxel-percolation method (VPM), are compared in this paper. In addition, the limitations of the REV, the definition of the pore diameter, and the effectiveness of the VPM for an assessment of the pore diameter are discussed.

  1. A pore water conductivity sensor

    NARCIS (Netherlands)

    Hilhorst, M.A.

    2001-01-01

    The electrical permittivity and conductivity of the bulk soil are a function of the permittivity and conductivity of the pore water. For soil water contents higher than 0.10 both functions are equal, facilitating in situ conductivity measurements of the pore water. A novel method is described, based

  2. Ion transport across transmembrane pores

    NARCIS (Netherlands)

    Leontiadou, Hari; Mark, Alan E.; Marrink, Siewert-Jan

    2007-01-01

    To study the pore-mediated transport of ionic species across a lipid membrane, a series of molecular dynamics simulations have been performed of a dipalmitoyl-phosphatidyl-choline bilayer containing a preformed water pore in the presence of sodium and chloride ions. It is found that the stability of

  3. Compositions Comprising Nickel-Titanium, Methods Manufacture Thereof and Articles Comprising the Same

    Science.gov (United States)

    Glennon, Glenn N. (Inventor); DellaCorte, Christopher (Inventor)

    2016-01-01

    Disclosing herein is a method for manufacturing nickel-titanium compositions. The method includes disposing a powdered composition in a mold; the powdered composition comprising nickel and titanium; the titanium being present in an amount of about 38 to about 42 wt % and the nickel being present in an amount of about 58 to about 62 wt %; sintering the powdered composition to produce a sintered preform; compacting the preform; machining the preform to form an article; heat treating the article; the annealing being conducted at a temperature of about 1650.degree. F. to about 1900.degree. F. at a pressure of about 3 Torr to about 5 Kg-f/cm.sup.2 for a time period of about 10 minutes to about 5 hours; and quenching the article.

  4. Size dependent pore size distribution of shales by gas physisorption

    Science.gov (United States)

    Roshan, Hamid; Andersen, Martin S.; Yu, Lu; Masoumi, Hossein; Arandian, Hamid

    2017-04-01

    Gas physisorption, in particular nitrogen adsorption-desorption, is a traditional technique for characterization of geomaterials including the organic rich shales. The low pressure nitrogen is used together with adsorption-desorption physical models to study the pore size distribution (PSD) and porosity of the porous samples. The samples are usually crushed to a certain fragment size to measure these properties however there is not yet a consistent standard size proposed for sample crushing. Crushing significantly increases the surface area of the fragments e.g. the created surface area is differentiated from that of pores using BET technique. In this study, we show that the smaller fragment sizes lead to higher cumulative pore volume and smaller pore diameters. It is also shown that some of the micro-pores are left unaccounted because of the correction of the external surface area. In order to illustrate this, the nitrogen physisorption is first conducted on the identical organic rich shale samples with different sizes: 20-25, 45-50 and 63-71 µm. We then show that such effects are not only a function of pore structure changes induced by crushing, but is linked to the inability of the physical models in differentiating between the external surface area (BET) and micro-pores for different crushing sizes at relatively low nitrogen pressure. We also discuss models currently used in nano-technology such as t-method to address this issue and their advantages and shortcoming for shale rock characterization.

  5. Amyloid β Ion Channels in a Membrane Comprising Brain Total Lipid Extracts.

    Science.gov (United States)

    Lee, Joon; Kim, Young Hun; T Arce, Fernando; Gillman, Alan L; Jang, Hyunbum; Kagan, Bruce L; Nussinov, Ruth; Yang, Jerry; Lal, Ratnesh

    2017-02-20

    Amyloid β (Aβ) oligomers are the predominant toxic species in the pathology of Alzheimer's disease. The prevailing mechanism for toxicity by Aβ oligomers includes ionic homeostasis destabilization in neuronal cells by forming ion channels. These channel structures have been previously studied in model lipid bilayers. In order to gain further insight into the interaction of Aβ oligomers with natural membrane compositions, we have examined the structures and conductivities of Aβ oligomers in a membrane composed of brain total lipid extract (BTLE). We utilized two complementary techniques: atomic force microscopy (AFM) and black lipid membrane (BLM) electrical recording. Our results indicate that Aβ1-42 forms ion channel structures in BTLE membranes, accompanied by a heterogeneous population of ionic current fluctuations. Notably, the observed current events generated by Aβ1-42 peptides in BTLE membranes possess different characteristics compared to current events generated by the presence of Aβ1-42 in model membranes comprising a 1:1 mixture of DOPS and POPE lipids. Oligomers of the truncated Aβ fragment Aβ17-42 (p3) exhibited similar ion conductivity behavior as Aβ1-42 in BTLE membranes. However, the observed macroscopic ion flux across the BTLE membranes induced by Aβ1-42 pores was larger than for p3 pores. Our analysis of structure and conductance of oligomeric Aβ pores in a natural lipid membrane closely mimics the in vivo cellular environment suggesting that Aβ pores could potentially accelerate the loss of ionic homeostasis and cellular abnormalities. Hence, these pore structures may serve as a target for drug development and therapeutic strategies for AD treatment.

  6. Microfiltration of distillery stillage: Influence of membrane pore size

    Directory of Open Access Journals (Sweden)

    Vasić Vesna M.

    2012-01-01

    Full Text Available Stillage is one of the most polluted waste products of the food industry. Beside large volume, the stillage contains high amount of suspended solids, high values of chemical oxygen demand and biological oxygen demand, so it should not be discharged in the nature before previous purification. In this work, three ceramic membranes for microfiltration with different pore sizes were tested for stillage purification in order to find the most suitable membrane for the filtration process. Ceramic membranes with a nominal pore size of 200 nm, 450 nm and 800 nm were used for filtration. The influence of pore size on permeate flux and removal efficiency was investigated. A membrane with the pore size of 200 nm showed the best filtration performance so it was chosen for the microfiltration process.

  7. Pore-scale supercritical CO2 dissolution and mass transfer under drainage conditions

    Science.gov (United States)

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart; Kneafsey, Timothy J.; Mehta, Hardeep

    2017-02-01

    Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO2 (scCO2) and a prolonged depletion of residual scCO2. In this study, pore-scale scCO2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO2 into the sandstone-analogue pore network initially saturated by water without dissolved CO2 (dsCO2). During the experiments, time-lapse images of dye intensity, reflecting water pH, were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO2 dissolution and phase equilibrium occurs when scCO2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes - scCO2 dissolution at phase interfaces and diffusion of dsCO2 at the pore scale (10-100 μm) observed after scCO2 bubble invasion into water-filled pores without pore throat constraints - are relatively fast. The overall slow dissolution of scCO2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. This finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore clusters of varying size are surrounded

  8. Pore-scale supercritical CO2 dissolution and mass transfer under drainage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart; Kneafsey, Timothy J.; Mehta, Hardeep

    2017-02-01

    Abstract: Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO2 (scCO2) and a prolonged depletion of residual scCO2. In this study, pore-scale scCO2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO2 into the sandstone-analogue pore network initially saturated by water without dissolved CO2 (dsCO2). During the experiments, time-lapse images of dye intensity, reflecting water pH, were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO2 dissolution and phase equilibrium occurs when scCO2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO2 dissolution at phase interfaces and diffusion of dsCO2 at the pore scale (10-100 µm) observed after scCO2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase

  9. Atomic structure of anthrax protective antigen pore elucidates toxin translocation.

    Science.gov (United States)

    Jiang, Jiansen; Pentelute, Bradley L; Collier, R John; Zhou, Z Hong

    2015-05-28

    Anthrax toxin, comprising protective antigen, lethal factor, and oedema factor, is the major virulence factor of Bacillus anthracis, an agent that causes high mortality in humans and animals. Protective antigen forms oligomeric prepores that undergo conversion to membrane-spanning pores by endosomal acidification, and these pores translocate the enzymes lethal factor and oedema factor into the cytosol of target cells. Protective antigen is not only a vaccine component and therapeutic target for anthrax infections but also an excellent model system for understanding the mechanism of protein translocation. On the basis of biochemical and electrophysiological results, researchers have proposed that a phi (Φ)-clamp composed of phenylalanine (Phe)427 residues of protective antigen catalyses protein translocation via a charge-state-dependent Brownian ratchet. Although atomic structures of protective antigen prepores are available, how protective antigen senses low pH, converts to active pore, and translocates lethal factor and oedema factor are not well defined without an atomic model of its pore. Here, by cryo-electron microscopy with direct electron counting, we determine the protective antigen pore structure at 2.9-Å resolution. The structure reveals the long-sought-after catalytic Φ-clamp and the membrane-spanning translocation channel, and supports the Brownian ratchet model for protein translocation. Comparisons of four structures reveal conformational changes in prepore to pore conversion that support a multi-step mechanism by which low pH is sensed and the membrane-spanning channel is formed.

  10. Coated silicon comprising material for protection against environmental corrosion

    Science.gov (United States)

    Hazel, Brian Thomas (Inventor)

    2009-01-01

    In accordance with an embodiment of the invention, an article is disclosed. The article comprises a gas turbine engine component substrate comprising a silicon material; and an environmental barrier coating overlying the substrate, wherein the environmental barrier coating comprises cerium oxide, and the cerium oxide reduces formation of silicate glass on the substrate upon exposure to corrodant sulfates.

  11. Computation of fluid flow and pore-space properties estimation on micro-CT images of rock samples

    Science.gov (United States)

    Starnoni, M.; Pokrajac, D.; Neilson, J. E.

    2017-09-01

    Accurate determination of the petrophysical properties of rocks, namely REV, mean pore and grain size and absolute permeability, is essential for a broad range of engineering applications. Here, the petrophysical properties of rocks are calculated using an integrated approach comprising image processing, statistical correlation and numerical simulations. The Stokes equations of creeping flow for incompressible fluids are solved using the Finite-Volume SIMPLE algorithm. Simulations are then carried out on three-dimensional digital images obtained from micro-CT scanning of two rock formations: one sandstone and one carbonate. Permeability is predicted from the computed flow field using Darcy's law. It is shown that REV, REA and mean pore and grain size are effectively estimated using the two-point spatial correlation function. Homogeneity and anisotropy are also evaluated using the same statistical tools. A comparison of different absolute permeability estimates is also presented, revealing a good agreement between the numerical value and the experimentally determined one for the carbonate sample, but a large discrepancy for the sandstone. Finally, a new convergence criterion for the SIMPLE algorithm, and more generally for the family of pressure-correction methods, is presented. This criterion is based on satisfaction of bulk momentum balance, which makes it particularly useful for pore-scale modelling of reservoir rocks.

  12. Pore structure and dielectric behaviour of the 3D collagen-DAC scaffolds designed for nerve tissue repair.

    Science.gov (United States)

    Pietrucha, Krystyna; Marzec, Ewa; Kudzin, Marcin

    2016-11-01

    The design and selection of a suitable scaffold with well-defined pores size distribution and dielectric properties are critical features for neural tissue engineering. In this study we use mercury porosimetry and the dielectric spectroscopy in the alpha-dispersion region of the electric field to determine the microarchitecture and activation energy of collagen (Col) modified by 2,3 dialdehyde cellulose (DAC). The scaffold was synthesized in three steps: (i) preparation of DAC by oxidation of cellulose, (ii) construction of a 3D Col sponge-shape or film, (iii) cross-linkage of the Col samples using DAC. The activation energy needed to break the bonds formed by water in the Col-DAC composite is approximately 2 times lower than that in the unmodified Col. In addition, the magnitude of conductivity for modified Col at 70°C is approximately 40% lower than that recorded for the unmodified Col. The largest fraction, of which at least 70% of the total pore volume comprises the sponge, is occupied by pores ranging from 20 to 100μm in size. The knowledge on the dielectric behaviour and microstructure of the Col-DAC scaffold may prove relevant to neural tissue engineering focused on the regeneration of the nervous system. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Pore evolution in interstellar ice analogues: simulating the effects of temperature increase

    CERN Document Server

    Cazaux, S; Linnartz, H; Tielens, A G G M

    2014-01-01

    Context. The level of porosity of interstellar ices - largely comprised of amorphous solid water (ASW) - contains clues on the trapping capacity of other volatile species and determines the surface accessibility that is needed for solid state reactions to take place. Aims. Our goal is to simulate the growth of amorphous water ice at low temperature (10 K) and to characterize the evolution of the porosity (and the specific surface area) as a function of temperature (from 10 to 120 K). Methods. Kinetic Monte Carlo simulations are used to mimic the formation and the thermal evolution of pores in amorphous water ice. We follow the accretion of gas-phase water molecules as well as their migration on surfaces with different grid sizes, both at the top growing layer and within the bulk. Results. We show that the porosity characteristics change substantially in water ice as the temperature increases. The total surface of the pores decreases strongly while the total volume decreases only slightly for higher temperatur...

  14. Pore size matters for potassium channel conductance

    Science.gov (United States)

    Moldenhauer, Hans; Pincuntureo, Matías

    2016-01-01

    Ion channels are membrane proteins that mediate efficient ion transport across the hydrophobic core of cell membranes, an unlikely process in their absence. K+ channels discriminate K+ over cations with similar radii with extraordinary selectivity and display a wide diversity of ion transport rates, covering differences of two orders of magnitude in unitary conductance. The pore domains of large- and small-conductance K+ channels share a general architectural design comprising a conserved narrow selectivity filter, which forms intimate interactions with permeant ions, flanked by two wider vestibules toward the internal and external openings. In large-conductance K+ channels, the inner vestibule is wide, whereas in small-conductance channels it is narrow. Here we raise the idea that the physical dimensions of the hydrophobic internal vestibule limit ion transport in K+ channels, accounting for their diversity in unitary conductance. PMID:27619418

  15. Distributed Pore Chemistry in Porous Organic Polymers

    Science.gov (United States)

    Koontz, Steven L. (Inventor)

    1999-01-01

    A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclosed. The substrate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphorylcholine groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge. wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic regions. and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.

  16. Studying Pore Structure of Nonwovens with 3D Imaging and Modeling Permeability

    Science.gov (United States)

    Baradari, Mehdi Gholipour

    Nonwovens are classified as a porous material and pore structure is named as the most important and complex feature of them. Since pore structure is out of control during any nonwovens manufacturing processes, many attempts have been made to measure the major characteristics of a pore network including: pore size, pore volume, pore surface area and pore shape. Among all pore characteristics, pore size due to its significant influence on many nonwovens applications such as filtration is counted as the most significant one. Generally, experiment, theoretical modeling and image analysis are the most common methods to measure pore size of nonwovens. Normally, pores in nonwovens make many convergences and divergences along the length and for this reason, many pore diameters could be assigned for a media. Due to inefficiency of the aforementioned techniques to measure all these diameters, they are not precise enough to study pore structure. The initial objective of this research is obtaining information of the pore structure, especially pore sizes, by applying image analysis techniques to a 3D image of nonwovens obtained through 3D imaging techniques such as DVI and micro CT. This 3D structure of the nonwoven media will be transformed to a graph, employing skeletonization through AvizoRTM software. The obtained graph exhibits topology, shape and connectivity of the pore structure for the utilized nonwoven. In this graph, each node and link would be a representative for pores intersection and body of pore, respectively. Saving the information of this graph results to some matrices/vectors including nodes coordinated, connectivity and nodes thickness, which exhibits the pore size. Therefore, all the pore sizes available in the structure will be extracted through this method. As expected, the information obtained from pore network is very complex consisting many numbers, so analyse them would be very difficult. Therefore, it was tried to use the saved information to model

  17. Mangrove pore water exchange across a latitudinal gradient

    Science.gov (United States)

    Tait, Douglas R.; Maher, Damien T.; Macklin, Paul A.; Santos, Isaac R.

    2016-04-01

    We combined observations of the natural tracer radon (222Rn) with hydrodynamic models across a broad latitudinal gradient covering several climate zones to estimate pore water exchange rates in mangroves. Pore water exchange ranged from 2.1 to 35.5 cm d-1 from temperate to tropical regions and averaged 16.3 ± 5.1 cm d-1. If upscaled to the global weighted mangrove area, pore water exchange in mangroves would recirculate the entire volume of water overlying the continental shelf in less than 153 years. Although pore water exchange (recirculated seawater) and river discharge represent different pathways for water entering the coastal ocean, the estimated global mangrove pore water exchange would be equal to approximately one third of annual global river discharge to the ocean (3.84 × 1013 m3 yr-1). Because biogeochemical processes in mangroves are largely dependent on pore water exchange, these large exchange rates have major implications for coastal nutrient, carbon, and greenhouse gas cycling in tropical marine systems.

  18. Pore Scale Analysis of Oil Shale/Sands Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chen-Luh [Univ. of Utah, Salt Lake City, UT (United States); Miller, Jan [Univ. of Utah, Salt Lake City, UT (United States)

    2011-03-01

    There are important questions concerning the quality and volume of pore space that is created when oil shale is pyrolyzed for the purpose of producing shale oil. In this report, 1.9 cm diameter cores of Mahogany oil shale were pyrolyzed at different temperatures and heating rates. Detailed 3D imaging of core samples was done using multiscale X-ray computed tomography (CT) before and after pyrolysis to establish the pore structure. The pore structure of the unreacted material was not clear. Selected images of a core pyrolyzed at 400oC were obtained at voxel resolutions from 39 microns (Οm) to 60 nanometers (nm). Some of the pore space created during pyrolysis was clearly visible at these resolutions and it was possible to distinguish between the reaction products and the host shale rock. The pore structure deduced from the images was used in Lattice Boltzmann simulations to calculate the permeability in the pore space. The permeabilities of the pyrolyzed samples of the silicate-rich zone were on the order of millidarcies, while the permeabilities of the kerogen-rich zone after pyrolysis were very anisotropic and about four orders of magnitude higher.

  19. Solid polymer electrolyte composite membrane comprising a porous support and a solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide

    Science.gov (United States)

    Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B

    2015-02-24

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.

  20. Enzyme system comprising an enzyme bonded in a porous matrix

    Science.gov (United States)

    Ackerman, Eric [Richland, WA; Liu, Jun [West Richland, WA

    2010-12-07

    A protein system is described in which a protein is bound within a matrix material that has pores that are sized to achieve excellent properties such as: activity, protein density, and stability. In a preferred embodiment, the pore sizes range from 50 to 400 .ANG.. One protein that has demonstrated surprisingly good results in this system is OPH. This protein is known to degrade organophosphorus compounds such as are found in chemical weapons and pesticides. Novel methods of forming the protein system and methods of making OPH are also described.

  1. Membranes with functionalized carbon nanotube pores for selective transport

    Science.gov (United States)

    Bakajin, Olgica; Noy, Aleksandr; Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K; Kim, Sangil

    2015-01-27

    Provided herein composition and methods for nanoporous membranes comprising single walled, double walled, or multi-walled carbon nanotubes embedded in a matrix material. Average pore size of the carbon nanotube can be 6 nm or less. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  2. A general approach to crystalline and monomodal pore size mesoporous materials

    National Research Council Canada - National Science Library

    Poyraz, Altug S; Kuo, Chung-Hao; Biswas, Sourav; King'ondu, Cecil K; Suib, Steven L

    2013-01-01

    Mesoporous oxides attract a great deal of interest in many fields, including energy, catalysis and separation, because of their tunable structural properties such as surface area, pore volume and size...

  3. Compositions comprising enhanced graphene oxide structures and related methods

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Priyank Vijaya; Bardhan, Neelkanth M.; Belcher, Angela; Grossman, Jeffrey

    2016-12-27

    Embodiments described herein generally relate to compositions comprising a graphene oxide species. In some embodiments, the compositions advantageously have relatively high oxygen content, even after annealing.

  4. Compositions comprising enhanced graphene oxide structures and related methods

    Science.gov (United States)

    Kumar, Priyank Vijaya; Bardhan, Neelkanth M.; Belcher, Angela; Grossman, Jeffrey

    2016-12-27

    Embodiments described herein generally relate to compositions comprising a graphene oxide species. In some embodiments, the compositions advantageously have relatively high oxygen content, even after annealing.

  5. Tunable ultrathin membranes with nonvolatile pore shape memory.

    Science.gov (United States)

    Kuroki, Hidenori; Islam, Crescent; Tokarev, Igor; Hu, Heng; Liu, Guojun; Minko, Sergiy

    2015-05-20

    The concept of a responsive nanoporous thin-film gel membranes whose pores could be tuned to a desired size by a specific "molecular signal" and whose pore geometry becomes "memorized" by the gel is reported. The ∼100 nm thick membranes were prepared by dip-coating from a solution mixture of a random copolymer comprising responsive and photo-cross-linkable units and monodisperse latex nanoparticles used as a sacrificial colloidal template. After stabilization of the films by photo-cross-linking the latex template was removed, yielding nanoporous structures with a narrow pore size distribution and a high porosity. The thin-film membranes could be transferred onto porous supports to serve as tunable size-selective barriers in various colloids separation applications. The pore dimensions and hence the membrane's colloidal-particle-size cutoff were reversibly regulated by swelling-shrinking of the polymer network with a specially selected low-molar-mass compound. The attained pore shape was "memorized" in aqueous media and "erased" by treatment in special solvents reverting the membrane to the original state.

  6. Apparatus comprising trace element dosage and method for treating raw water in biofilter

    DEFF Research Database (Denmark)

    2015-01-01

    : - the filter comprises a filter material (4) including a porous filter material and a microbial biomass, the filter material is either stationary relative to the volume or comprises a particulate material, the filter material (4) is inserted in a fluid flow path generated by water flowing in direction from...... the inlet (2) to the outlet (3) or in the reverse direction, - the trace element dosage device (13) is positioned upstream of the porous filter material and microbial biomass and is configured to dose trace element(s) to the water flowing through the filter. A method for treating raw water by microbial...

  7. C-doped mesoporous anatase TiO2 comprising 10nm crystallites.

    Science.gov (United States)

    Xie, Chong; Yang, Shenghui; Li, Beibei; Wang, Hongkong; Shi, Jian-Wen; Li, Guodong; Niu, Chunming

    2016-08-15

    We report a C-doped mesoporous anatase TiO2 with high surface area synthesized using multi-walled carbon nanotube (MWCNT) mat as a "rigid" template and carbon doping source. The characterization by SEM, HRTEM, X-ray diffraction and nitrogen adsorption revealed that TiO2 samples have a porous structure which are figuratively a inverse copy of MWCNT network and pore walls are formed by interconnected TiO2 nanoparticles with average diameter of ∼10nm. We found that annealing temperatures from 400 to 1000°C before MWCNT template removal had very limited effect on particle size (∼10nm), surface area (112-129m(2)/g) and total pore volume (0.74-0.85m(2)/g) of the samples through a significantly delayed phase transition from anatase to rutile started at 800°C, resulting in only ∼9.1% conversion at 1000°C. The pore size distribution is in mesopore range from 6 to 60nm peaked at ∼24nm. XPS analysis showed a relatively strong C1s peak at 288.4eV, indicating C doping at Ti sites, which is responsible for red shift of adsorption edge of UV-vis spectra and photocatalytic activity in visible-light region.

  8. Charge pump DC-DC converter comprising solid state batteries

    NARCIS (Netherlands)

    Reefman, D.; Roozeboom, F.; Notten, P.H.L.; Klootwijk, J.H.

    2013-01-01

    An electronic device is provided which comprises a DC-DC converter. The DC-DC converter comprises at least one solid-state rechargeable battery (B1, B2) for storing energy for the DC-DC conversion and an output capacitor (C2).

  9. Medical preparation container comprising microwave powered sensor assembly

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a medical preparation container which comprises a microwave powered sensor assembly. The microwave powered sensor assembly comprises a sensor configured to measure a physical property or chemical property of a medical preparation during its heating in a microwave...

  10. Pore-space distribution and transport properties of an andesitic intrusion

    Science.gov (United States)

    Jamtveit, Bjørn; Krotkiewski, Marcin; Kobchenko, Maya; Renard, Francois; Angheluta, Luiza

    2014-08-01

    The pore structure of magmatic rocks records processes operating during magma solidification and cooling. It has first order effects on the petrophysical properties of the magmatic rocks, and also influences mass transfer and mineral reactions during subsequent metamorphism or weathering. Here, the pore space characteristics of an andesitic sill intrusion were determined by multiscale resolution computed X-ray microtomography (μ-CT), and the 3D structure was used for transport modeling. Unaltered andesite has a power law distribution of pore volumes over a range of five orders of magnitude. The probability distribution function (PDF) scales with the inverse square of the pore volume (V), PDF∝V-2. This scaling behavior is attributed to the coalescence of pores at crystal-melt boundaries. Large pores are concentrated on the outer margins of amphibole and plagioclase phenocrystals. Incipient weathering of the andesite is associated with preferential growth of weathering products in the largest pores. This can be explained by a model in which diffusion of external components into the porous andesite is controlled by a random network of grain boundaries and/or microfractures. This network preferentially links the larger pores to the system boundaries and it is the major fluid transport pathway, confining incipient weathering into a small fraction of the rock volume only.

  11. Activated carbon from char obtained from vacuum pyrolysis of teak sawdust: pore structure development and characterization.

    Science.gov (United States)

    Ismadji, S; Sudaryanto, Y; Hartono, S B; Setiawan, L E K; Ayucitra, A

    2005-08-01

    The preparation of activated carbon from vacuum pyrolysis char of teak sawdust was studied and the results are presented in this paper. The effects of process variables such as temperature and activation time on the pore structure of activated carbons were studied. The activated carbon prepared from char obtained by vacuum pyrolysis has higher surface area and pore volume than that from atmospheric pyrolysis char. The BET surface area and pore volume of activated carbon prepared from vacuum pyrolysis char were 1150 m2/g and 0.43 cm3/g, respectively.

  12. Immunogenic compositions comprising human immunodeficiency virus (HIV) mosaic Nef proteins

    Science.gov (United States)

    Korber, Bette T [Los Alamos, NM; Perkins, Simon [Los Alamos, NM; Bhattacharya, Tanmoy [Los Alamos, NM; Fischer, William M [Los Alamos, NM; Theiler, James [Los Alamos, NM; Letvin, Norman [Boston, MA; Haynes, Barton F [Durham, NC; Hahn, Beatrice H [Birmingham, AL; Yusim, Karina [Los Alamos, NM; Kuiken, Carla [Los Alamos, NM

    2012-02-21

    The present invention relates to mosaic clade M HIV-1 Nef polypeptides and to compositions comprising same. The polypeptides of the invention are suitable for use in inducing an immune response to HIV-1 in a human.

  13. An endoplasmic reticulum (ER)-directed fusion protein comprising a ...

    African Journals Online (AJOL)

    An endoplasmic reticulum (ER)-directed fusion protein comprising a bacterial subtilisin ... which are used for the commercial production of therapeutic proteins. ... expression platforms) to purify recombinant proteins in crude plant extracts.

  14. Metal-polymer composites comprising nanostructures and applications thereof

    Science.gov (United States)

    Wang, Hsing-Lin; Jeon, Sea Ho; Mack, Nathan H.

    2011-08-02

    Metal-polymer composites, and methods of making and use thereof, said composites comprising a thermally-cured dense polyaniline substrate; an acid dopant; and, metal nanostructure deposits wherein the deposits have a morphology dependent upon the acid dopant.

  15. Dielectric electroactive polymers comprising an ionic supramolecular structure

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to an ionic interpenetrating polymer network comprising at least one elastomer and an ionic supramolecular structure comprising the reaction product of at least two chemical compounds wherein each of said compounds has at least two functional groups and wherein said ...... compounds are able to undergo Lewis acid-base reactions. The interpenetrating polymer network may be used as dielectric electroactive polymers (DEAPs) having a high dielectric permittivity....

  16. Characterization of pore network structure in catalyst layers of polymer electrolyte fuel cells

    OpenAIRE

    El Hannach, Mohamed; Soboleva, Tatyana; Malek, Kourosh; Franco, Alejandro A.; Prat, Marc; Pauchet, Joël; Holdcroft, Steven

    2014-01-01

    International audience; We model and validate the effect of ionomer content and Pt nanoparticles on nanoporous structure of catalyst layers in polymer electrolyte fuel cells. By employing Pore network modeling technique and analytical solutions, we analyze and reproduce experimental N2-adsorption isotherms of carbon, Pt/ carbon and catalyst layers with various ionomer contents. The porous catalyst layer structures comprise of Ketjen Black carbon, Pt and Nafion ionomer. The experimental pore s...

  17. Mode of action of antimicrobial proteins, pore-forming toxins and biologically active

    Directory of Open Access Journals (Sweden)

    O Schmidt

    2005-07-01

    Full Text Available Antimicrobial peptides and pore-forming toxins are important effectors in innate immune defencereactions. But their mode of action, comprising the insertion into cholesterol-containing membranes isnot known. Here we explore the mechanical implications of pore-formation by extracellular proteinassemblies that drive cellular uptake reactions by leverage-mediated (LM processes, whereoligomeric adhesion molecules bent membrane-receptors around ‘hinge’-like lipophorin particles. Theinteractions of antimicrobial peptides, pore-forming toxins and biologically active proteins with LMassembliesprovide a new paradigm for the configurational specificity and sterical selectivity ofbiologically active peptides.

  18. Experimental Study on Pore Distribution Characters and Convert Rate of CaO

    Institute of Scientific and Technical Information of China (English)

    Li JIA; Yanyan ZENG; Tao ZHANG

    2005-01-01

    During the reaction between calcium sorbents and SO2, calcium sorbents are first calcined and converted into CaO. CaO can be obtained by calcining Ca(OH)2 or CaCO3. The porosity of the sorbent is increased because of calcination and is decreased because of sulfurization. In the calcination process H2O or CO2 is escaped from the particles and pores are formed in particles. The reaction or convert rate of CaO is influenced strongly by the pore structure characters. From Ca(OH)2 to CaO the escape velocity of H2O or its mass transfer is one of the key factors influencing the pore forming. During calcination process different heating velocity, different heating time and temperature were suggested. The temperature rising rate and calcining temperature play important role to the pore structure. The convert rates of CaO obtained through different calcining conditions were investigated experimentally. Some interesting results were showed that the calcium utilization of CaO particles is determined not only by the special surface area and total pore volume, but also by pore-size distribution. The main factor influencing the sulfation is the pore diameter distribution at lower sulfation temperature. For higher reaction temperature specific volume is the important reason. But pore-size distribution is strongly influenced by heat flux and temperature in the calcining process.

  19. DESIGN INFORMATION ON FINE PORE AERATION SYSTEMS

    Science.gov (United States)

    Field studies were conducted over several years at municipal wastewater treatment plants employing line pore diffused aeration systems. These studies were designed to produce reliable information on the performance and operational requirements of fine pore devices under process ...

  20. Compositions, methods, and systems comprising fluorous-soluble polymers

    Science.gov (United States)

    Swager, Timothy M.; Lim, Jeewoo; Takeda, Yohei

    2015-10-13

    The present invention generally relates to compositions, methods, and systems comprising polymers that are fluorous-soluble and/or organize at interfaces between a fluorous phase and a non-fluorous phase. In some embodiments, emulsions or films are provided comprising a polymer. The polymers, emulsions, and films can be used in many applications, including for determining, treating, and/or imaging a condition and/or disease in a subject. The polymer may also be incorporated into various optoelectronic device such as photovoltaic cells, organic light-emitting diodes, organic field effect transistors, or the like. In some embodiments, the polymers comprise pi-conjugated backbones, and in some cases, are highly emissive.

  1. Thermoacoustic refrigerators and engines comprising cascading stirling thermodynamic units

    Energy Technology Data Exchange (ETDEWEB)

    Backhaus, Scott; Swift, Greg

    2013-06-25

    The present invention includes a thermoacoustic assembly and method for improved efficiency. The assembly has a first stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator and at least one additional heat exchanger. The first stage Stirling thermal unit is serially coupled to a first end of a quarter wavelength long coupling tube. A second stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator, and at least one additional heat exchanger, is serially coupled to a second end of the quarter wavelength long coupling tube.

  2. Thermoacoustic refrigerators and engines comprising cascading stirling thermodynamic units

    Science.gov (United States)

    Backhaus, Scott; Swift, Greg

    2013-06-25

    The present invention includes a thermoacoustic assembly and method for improved efficiency. The assembly has a first stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator and at least one additional heat exchanger. The first stage Stirling thermal unit is serially coupled to a first end of a quarter wavelength long coupling tube. A second stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator, and at least one additional heat exchanger, is serially coupled to a second end of the quarter wavelength long coupling tube.

  3. Detection and Influence of Shrinkage Pores and Nonmetallic Inclusions on Fatigue Life of Cast Aluminum Alloys

    Science.gov (United States)

    Tijani, Yakub; Heinrietz, André; Stets, Wolfram; Voigt, Patrick

    2013-12-01

    In the current study, test bars of cast aluminum alloys EN AC-AlSi8Cu3 and EN AC-AlSi7Mg0.3 were produced with a defined amounts of shrinkage pores and oxides. For this purpose, a permanent mold with heating and cooling devices for the generation of pores was constructed. The oxides were produced by contaminating the melt. The specimens and their corresponding defect distributions were examined and quantified by X-ray computer tomography (CT) and quantitative metallography, respectively. A special test algorithm for the simultaneous image analyses of pores and oxides was developed. Fatigue tests were conducted on the defective samples. It was found that the presence of shrinkage pores lowers the fatigue strength, and only few oxide inclusions were found to initiate fatigue cracks when shrinkage pores are present. The results show that the pore volume is not sufficient to characterize the influence of shrinkage pores on fatigue life. A parametric model for the calculation of fatigue life based on the pore parameters obtained from CT scans was implemented. The model accounts for the combined impact of pore location, size, and shape on fatigue life reduction.

  4. Effect of hydrofluoric acid (HF) concentration to pores size diameter of silicon membrane.

    Science.gov (United States)

    Burham, Norhafizah; Hamzah, Azrul Azlan; Majlis, Burhanuddin Yeop

    2014-01-01

    This paper studies parameters which affect the pore size diameter of a silicon membrane. Electrochemical etching is performed in characterise the parameter involved in this process. The parameter has been studied is volume ratio of hydrofluoric acid (HF) and ethanol as an electrolyte aqueous for electrochemical etch. This electrolyte aqueous solution has been mixed between HF and ethanol with volume ratio 3:7, 5:5, 7:3 and 9:1. As a result, the higher volume of HF in this electrolyte gives the smallest pore size diameter compared to the lower volume of HF. These samples have been dipped into HF and ethanol electrolyte aqueous with supplied 25 mA/cm2 current density for 20, 30, 40, and 50 minutes. The samples will inspect under Scanning Electron Microscope (SEM) to execute the pore formations on silicon membrane surface.

  5. A Stereolithography Pore-Throat Model

    Science.gov (United States)

    Crandall, D.; Ahmadi, G.; Ferer, M.; Smith, D. H.

    2007-12-01

    A new experimental, heterogeneous pore-throat model has been designed and fabricated using stereolithography (SL). In SL production, a laser cures a thin layer of photo-sensitive resin on the surface of a vat of liquid resin; a moveable platform then submerges the cured layer and a new layer is cured on top of the previous one, creating a physical model from a computer generated model. This layered fabrication of a computer generated model has enabled the production of an experimental porous medium with improved fluid resistance properties, as compared to previously studied, constant-height etched cells. A uniform distribution of throat widths was randomly placed throughout the pore-throat matrix and the throat height of each throat was assigned to increase the range of viscous and capillary resistances within the physical model. This variation in both throat height and width generated a porous medium with fairly low porosity (43%), permeability (~400 D), and wide range of geometric resistance properties. Experimental, two-phase immiscible drainage studies in the porous flowcell were performed. Analysis of the captured images was performed with open-source image processing software. These analysis techniques utilized the capability of both ImageJ and the Gnu Image Manipulation Program to be customized with ancillary codes. This enabled batch procedures to be created that converted the original grey-scale bitmaps to binary data sets, which were then analyzed with in-house codes. The fractal dimension, Df, (measured with box-counting) and percent saturation of these experiments were calculated and shown to compare favorably to fractal predictions and previous flowcell studies. Additionally, using the computer generated pore-throat geometry, a computational fluid dynamics model of two- phase flow through the porous medium was created. This model was created using FLUENT code and the Volume of Fluid method. The percent saturation of the less-viscous invading fluid

  6. DC-to-DC converter comprising a reconfigurable capacitor unit

    NARCIS (Netherlands)

    Klootwijk, J.H.; Bergveld, H.J.; Roozeboom, F.; Reefman, D.; Ruigrok, J.

    2013-01-01

    The present invention relates to a configurable trench multi-capacitor device comprising a trench in a semiconductor substrate. The trench has a lateral extension exceeding 10 micrometer and a trench filling includes a number of at least four electrically conductive capacitor-electrode layers. A

  7. Method of treating ammonia-comprising waste water

    NARCIS (Netherlands)

    Van Loosdrecht, M.C.M.; Jetten, M.S.M.

    1998-01-01

    The invention relates to a method of treating ammonia-comprising waste water in which the bicarbonate ion is the counter ion of the ammonium ion present in the waste water. According to the invention half the ammonium is converted into nitrite, yielding an ammonia- and nitrite-containing solution, a

  8. Non-cementitious compositions comprising vaterite and methods thereof

    Energy Technology Data Exchange (ETDEWEB)

    Devenney, Martin; Fernandez, Miguel; Morgan, Samuel O.

    2015-09-15

    Non-cementitious compositions and products are provided. The compositions of the invention include a carbonate additive comprising vaterite such as reactive vaterite. Additional aspects of the invention include methods of making and using the non-cementitious compositions and products.

  9. Pore formation by Cry toxins.

    Science.gov (United States)

    Soberón, Mario; Pardo, Liliana; Muñóz-Garay, Carlos; Sánchez, Jorge; Gómez, Isabel; Porta, Helena; Bravo, Alejandra

    2010-01-01

    Bacillus thuringiensis (Bt) bacteria produce insecticidal Cry and Cyt proteins used in the biological control of different insect pests. In this review, we will focus on the 3d-Cry toxins that represent the biggest group of Cry proteins and also on Cyt toxins. The 3d-Cry toxins are pore-forming toxins that induce cell death by forming ionic pores into the membrane of the midgut epithelial cells in their target insect. The initial steps in the mode of action include ingestion of the protoxin, activation by midgut proteases to produce the toxin fragment and the interaction with the primary cadherin receptor. The interaction of the monomeric CrylA toxin with the cadherin receptor promotes an extra proteolytic cleavage, where helix alpha-1 of domain I is eliminated and the toxin oligomerization is induced, forming a structure of 250 kDa. The oligomeric structure binds to a secondary receptor, aminopeptidase N or alkaline phosphatase. The secondary receptor drives the toxin into detergent resistant membrane microdomains formingpores that cause osmotic shock, burst of the midgut cells and insect death. Regarding to Cyt toxins, these proteins have a synergistic effect on the toxicity of some Cry toxins. Cyt proteins are also proteolytic activated in the midgut lumen of their target, they bind to some phospholipids present in the mosquito midgut cells. The proposed mechanism of synergism between Cry and Cyt toxins is that Cyt1Aa function as a receptor for Cry toxins. The Cyt1A inserts into midgut epithelium membrane and exposes protein regions that are recognized by Cry11Aa. It was demonstrated that this interaction facilitates the oligomerization of Cry11Aa and also its pore formation activity.

  10. Storage of hydrogen at 303 K in graphite slitlike pores from grand canonical Monte Carlo simulation.

    Science.gov (United States)

    Kowalczyk, Piotr; Tanaka, Hideki; Hołyst, Robert; Kaneko, Katsumi; Ohmori, Takumi; Miyamoto, Junichi

    2005-09-15

    Grand canonical Monte Carlo (GCMC) simulations were used for the modeling of the hydrogen adsorption in idealized graphite slitlike pores. In all simulations, quantum effects were included through the Feynman and Hibbs second-order effective potential. The simulated surface excess isotherms of hydrogen were used for the determination of the total hydrogen storage, density of hydrogen in graphite slitlike pores, distribution of pore sizes and volumes, enthalpy of adsorption per mole, total surface area, total pore volume, and average pore size of pitch-based activated carbon fibers. Combining experimental results with simulations reveals that the density of hydrogen in graphite slitlike pores at 303 K does not exceed 0.014 g/cm(3), that is, 21% of the liquid-hydrogen density at the triple point. The optimal pore size for the storage of hydrogen at 303 K in the considered pore geometry depends on the pressure of storage. For lower storage pressures, p optimal pore width is equal to a 2.2 collision diameter of hydrogen (i.e., 0.65 nm), whereas, for p congruent with 50MPa, the pore width is equal to an approximately 7.2 collision diameter of hydrogen (i.e., 2.13 nm). For the wider pores, that is, the pore width exceeds a 7.2 collision diameter of hydrogen, the surface excess of hydrogen adsorption is constant. The importance of quantum effects is recognized in narrow graphite slitlike pores in the whole range of the hydrogen pressure as well as in wider ones at high pressures of bulk hydrogen. The enthalpies of adsorption per mole for the considered carbonaceous materials are practically constant with hydrogen loading and vary within the narrow range q(st) congruent with 7.28-7.85 kJ/mol. Our systematic study of hydrogen adsorption at 303 K in graphite slitlike pores gives deep insight into the timely problem of hydrogen storage as the most promising source of clean energy. The calculated maximum storage of hydrogen is equal to approximately 1.4 wt %, which is far from

  11. Influence of stress-path on pore size distribution in granular materials

    Directory of Open Access Journals (Sweden)

    Das Arghya

    2017-01-01

    Full Text Available Pore size distribution is an important feature of granular materials in the context of filtration and erosion in soil hydraulic structures. Present study focuses on the evolution characteristics of pore size distribution for numerically simulated granular assemblies while subjected to various compression boundary constrain, namely, conventional drained triaxial compression, one-dimensional or oedometric compression and isotropic compression. We consider the effects initial packing of the granular assembly, loose or dense state. A simplified algorithm based on Delaunay tessellation is used for the estimation of pore size distribution for the deforming granular assemblies at various stress states. The analyses show that, the evolution of pore size is predominantly governed by the current porosity of the granular assembly while the stress path or loading process has minimal influence. Further it has also been observed that pore volume distribution reaches towards a critical distribution at the critical porosity during shear enhanced loading process irrespective of the deformation mechanism either compaction or dilation.

  12. Influence of stress-path on pore size distribution in granular materials

    Science.gov (United States)

    Das, Arghya; Kumar, Abhinav

    2017-06-01

    Pore size distribution is an important feature of granular materials in the context of filtration and erosion in soil hydraulic structures. Present study focuses on the evolution characteristics of pore size distribution for numerically simulated granular assemblies while subjected to various compression boundary constrain, namely, conventional drained triaxial compression, one-dimensional or oedometric compression and isotropic compression. We consider the effects initial packing of the granular assembly, loose or dense state. A simplified algorithm based on Delaunay tessellation is used for the estimation of pore size distribution for the deforming granular assemblies at various stress states. The analyses show that, the evolution of pore size is predominantly governed by the current porosity of the granular assembly while the stress path or loading process has minimal influence. Further it has also been observed that pore volume distribution reaches towards a critical distribution at the critical porosity during shear enhanced loading process irrespective of the deformation mechanism either compaction or dilation.

  13. Influence of carbonization conditions on micro-pore structure of foundry formed coke produced with char

    Energy Technology Data Exchange (ETDEWEB)

    Jun Qiao; Jianjun Wu; Jingru Zu; Zhiyuan Gao; Guoli Zhou

    2009-07-01

    There are few studies on coke's micro-pore structure in recent years, however, micro-pore structure of foundry coke determines its macroscopically quality index and reactivity in cupola furnace. Effect of such factors on micro-pore structure were investigated under different carbonization conditions with certain ratio of raw materials and material forming process in this article as charging temperature (A); braised furnace time (B); heating rate of the first stage (C)and the second stage (D) and holding time of ultimate temperature (E). Research showed that charging temperature was the most influential factor on the coke porosity, pore volume, pore size and specific surface area. It is suggested that formation of plastic mass and releasing rate of volatile during carbonization period are two main factors on microstructure of foundry coke while charging temperature contributes most to the above factors. 6 refs., 4 figs., 9 tabs.

  14. USING A NEW FINITE SLIT PORE MODEL FOR NLDFT ANALYSIS OF CARBON PORE STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Jagiello, Jacek [Micromeritics Instrument Corporation; Kenvin, Jeffrey [Micromeritics Instrument Corporation; Oliver, James P [Micromeritics Instrument Corporation; Lupini, Andrew R [ORNL; Contescu, Cristian I [ORNL

    2011-01-01

    In this work, we present a model for analyzing activated carbon micropore structures based on graphene sheet walls of finite thickness and extent. This is a two-dimensional modification of the widely used infinite slit pore model that assumes graphite-like infinitely extended pore walls. The proposed model has two versions: (1) a strip pore constructed with graphene strip walls that have finite length L in the x direction and are infinite in the y direction. Strip pores are open on both sides in the x direction. (2) A channel pore is a strip pore partially closed along one edge by a perpendicularly oriented graphene wall. This more realistic model allows pore termination via both physical pore entrances and pore blockage. The model consequently introduces heterogeneity of the adsorption potential that is reduced near pore entrances and enhanced near corners of pore walls. These energetically heterogeneous structures fill with adsorbate more gradually than homogeneous pores of the same width. As a result, the calculated adsorption isotherms are smoother and less steep for the finite versus the infinite pore model. In the application of this model for carbon characterization it is necessary to make an assumption about the pore length. In this work we made this assumption based on the high resolution scanning transmission electron microscopy (STEM) results. We find the agreement between the experiment and the model significantly better for the finite than for the infinite pore model.

  15. Recyclable organic solar cells on substrates comprising cellulose nanocrystals (CNC)

    Energy Technology Data Exchange (ETDEWEB)

    Kippelen, Bernard; Fuentes-Hernandez, Canek; Zhou, Yinhua; Moon, Robert; Youngblood, Jeffrey P

    2015-12-01

    Recyclable organic solar cells are disclosed herein. Systems and methods are further disclosed for producing, improving performance, and for recycling the solar cells. In certain example embodiments, the recyclable organic solar cells disclosed herein include: a first electrode; a second electrode; a photoactive layer disposed between the first electrode and the second electrode; an interlayer comprising a Lewis basic oligomer or polymer disposed between the photoactive layer and at least a portion of the first electrode or the second electrode; and a substrate disposed adjacent to the first electrode or the second electrode. The interlayer reduces the work function associated with the first or second electrode. In certain example embodiments, the substrate comprises cellulose nanocrystals that can be recycled. In certain example embodiments, one or more of the first electrode, the photoactive layer, and the second electrode may be applied by a film transfer lamination method.

  16. Nanometer to Centimeter Scale Analysis and Modeling of Pore Structures

    Science.gov (United States)

    Wesolowski, D. J.; Anovitz, L.; Vlcek, L.; Rother, G.; Cole, D. R.

    2011-12-01

    The microstructure and evolution of pore space in rocks is a critically important factor controlling fluid flow. The size, distribution and connectivity of these confined geometries dictate how fluids including H2O and CO2, migrate into and through these micro- and nano-environments, wet and react with the solid. (Ultra)small-angle neutron scattering and autocorrelations derived from BSE imaging provide a method of quantifying pore structures in a statistically significant manner from the nanometer to the centimeter scale. Multifractal analysis provides additional constraints. These methods were used to characterize the pore features of a variety of potential CO2 geological storage formations and geothermal systems such as the shallow buried quartz arenites from the St. Peter Sandstone and the deeper Mt. Simon quartz arenite in Ohio as well as the Eau Claire shale and mudrocks from the Cranfield MS CO2 injection test and the normal temperature and high-temperature vapor-dominated parts of the Geysers geothermal system in California. For example, analyses of samples of St. Peter sandstone show total porosity correlates with changes in pores structure including pore size ratios, surface fractal dimensions, and lacunarity. These samples contain significant large-scale porosity, modified by quartz overgrowths, and neutron scattering results show significant sub-micron porosity, which may make up fifty percent or more of the total pore volume. While previous scattering data from sandstones suggest scattering is dominated by surface fractal behavior, our data are both fractal and pseudo-fractal. The scattering curves are composed of steps, modeled as polydispersed assemblages of pores with log-normal distributions. In some samples a surface-fractal overprint is present. There are also significant changes in the mono and multifractal dimensions of the pore structure as the pore fraction decreases. There are strong positive correlations between D(0) and image and total

  17. Benchmark Study of 3D Pore-scale Flow and Solute Transport Simulation Methods

    Science.gov (United States)

    Scheibe, T. D.; Yang, X.; Mehmani, Y.; Perkins, W. A.; Pasquali, A.; Schoenherr, M.; Kim, K.; Perego, M.; Parks, M. L.; Trask, N.; Balhoff, M.; Richmond, M. C.; Geier, M.; Krafczyk, M.; Luo, L. S.; Tartakovsky, A. M.

    2015-12-01

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that benchmark study to include additional models of the first type based on the immersed-boundary method (IMB), lattice Boltzmann method (LBM), and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries in the manner of PNMs has not been fully determined. We apply all five approaches (FVM-based CFD, IMB, LBM, SPH and PNM) to simulate pore-scale velocity distributions and nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The benchmark study was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This study provides support for confidence in a variety of pore-scale modeling methods, and motivates further development and application of pore-scale simulation methods.

  18. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    Science.gov (United States)

    Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.; Pasquali, Andrea; Schönherr, Martin; Kim, Kyungjoo; Perego, Mauro; Parks, Michael L.; Trask, Nathaniel; Balhoff, Matthew T.; Richmond, Marshall C.; Geier, Martin; Krafczyk, Manfred; Luo, Li-Shi; Tartakovsky, Alexandre M.; Scheibe, Timothy D.

    2016-09-01

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based on the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This study provides support for confidence

  19. Synchrotron microtomographic quantification of geometrical soil pore characteristics affected by compaction

    Science.gov (United States)

    Udawatta, Ranjith P.; Gantzer, Clark J.; Anderson, Stephen H.; Assouline, Shmuel

    2016-05-01

    Soil compaction degrades soil structure and affects water, heat, and gas exchange as well as root penetration and crop production. The objective of this study was to use X-ray computed microtomography (CMT) techniques to compare differences in geometrical soil pore parameters as influenced by compaction of two different aggregate size classes. Sieved (diameter Compaction reduced porosity, average pore size, number of pores, and characteristic constants. The average pore radii (63.7 and 61 µm; p < 0.04), largest pore volume (1.58 and 0.58 mm3; p = 0.06), number of pores (55 and 50; p = 0.09), and characteristic coordination number (3.74 and 3.94; p = 0.02) were significantly different between the low-density than the high-density treatment. Aggregate size also influenced measured geometrical pore parameters. This analytical technique provides a tool for assessing changes in soil pores that affect hydraulic properties and thereby provides information to assist in assessment of soil management systems.

  20. Variational-based segmentation of bio-pores in tomographic images

    Science.gov (United States)

    Bauer, Benjamin; Cai, Xiaohao; Peth, Stephan; Schladitz, Katja; Steidl, Gabriele

    2017-01-01

    X-ray computed tomography (CT) combined with a quantitative analysis of the resulting volume images is a fruitful technique in soil science. However, the variations in X-ray attenuation due to different soil components keep the segmentation of single components within these highly heterogeneous samples a challenging problem. Particularly demanding are bio-pores due to their elongated shape and the low gray value difference to the surrounding soil structure. Recently, variational models in connection with algorithms from convex optimization were successfully applied for image segmentation. In this paper we apply these methods for the first time for the segmentation of bio-pores in CT images of soil samples. We introduce a novel convex model which enforces smooth boundaries of bio-pores and takes the varying attenuation values in the depth into account. Segmentation results are reported for different real-world 3D data sets as well as for simulated data. These results are compared with two gray value thresholding methods, namely indicator kriging and a global thresholding procedure, and with a morphological approach. Pros and cons of the methods are assessed by considering geometric features of the segmented bio-pore systems. The variational approach features well-connected smooth pores while not detecting smaller or shallower pores. This is an advantage in cases where the main bio-pores network is of interest and where infillings, e.g., excrements of earthworms, would result in losing pore connections as observed for the other thresholding methods.

  1. Pore structure characteristics after two years biochar application to a sandy loam field

    DEFF Research Database (Denmark)

    Sun, Zhencai; Arthur, Emmanuel; de Jonge, Lis Wollesen

    2015-01-01

    Soil pore structure comprises the size and shape of soil pores and has a major impact on water retention and gas movement. The porous nature of biochar suggests that its application to soil can potentially alter soil pore structure characteristics, and the purpose of this study was to evaluate...... the effects of birch wood biochar (20, 40, and 100 Mg ha−1) applied to a sandy loam on soil total porosity and pore structure indices. Bulk and intact soil samples were collected for physicochemical analyses and water retention and gas diffusivity measurements between pF 1.0 and pF 3.0. Biochar application...... reduced bulk density and increased total porosity especially for soil with 100 Mg ha−1 biochar (16% and 14% reduction in bulk density and total porosity, respectively). Biochar application of more than 20 Mg ha−1 enhanced water retention, and the trend increased with increasing biochar application rate...

  2. Methane adsorption behavior on coal having different pore structures

    Institute of Scientific and Technical Information of China (English)

    Zhao; Yi; Jiang; Chengfa; Chu; Wei

    2012-01-01

    The adsorption of methane onto five dry coal samples was measured at 298 K over the pressure range from 0 to 3.5 MPa using a volumetric method.The isotherm data were fitted to the Langmuir and the Freundlich equations.The kinetic data were fitted to a pseudo second order equation,the linear driving force equation(LDF),and an intra-particle diffusion model.These results showed that higher methane adsorption is correlated with larger micro-pore volumes and specific surface areas.The adsorption was related to the narrow micro-pore size distribution when the previous two parameters are large.The kinetics study showed that the kinetics of methane adsorption onto these five dry coal samples followed a pseudo second order model very well.Methane adsorption rates are controlled by intra-particle diffusion.The faster the intra-particle diffusion,the faster the methane adsorption rate will be.

  3. Microlens arrays with integrated pores

    Directory of Open Access Journals (Sweden)

    Shu Yang

    2005-12-01

    Full Text Available Microlenses are important optical components that image, detect, and couple light. But most synthetic microlenses have fixed position and shape once they are fabricated, so their possible range of tunability and complexity is rather limited. By comparison, biology provides many varied, new paradigms for the development of adaptive optical networks. Here, we discuss inspirational examples of biological lenses and their synthetic analogs. We focus on the fabrication and characterization of biomimetic microlens arrays with integrated pores, whose appearance and function are similar to highly efficient optical elements formed by brittlestars. The complex design can be created by three-beam interference lithography. The synthetic lens has strong focusing ability for use as an adjustable lithographic mask and a tunable optical device coupled with the microfluidic system. Replacing rigid microlenses with soft hydrogels provides a way of changing the lens geometry and refractive index continuously in response to external stimuli, resulting in intelligent, multifunctional, tunable optics.

  4. Atomic Structure of Graphene Subnanometer Pores.

    Science.gov (United States)

    Robertson, Alex W; Lee, Gun-Do; He, Kuang; Gong, Chuncheng; Chen, Qu; Yoon, Euijoon; Kirkland, Angus I; Warner, Jamie H

    2015-12-22

    The atomic structure of subnanometer pores in graphene, of interest due to graphene's potential as a desalination and gas filtration membrane, is demonstrated by atomic resolution aberration corrected transmission electron microscopy. High temperatures of 500 °C and over are used to prevent self-healing of the pores, permitting the successful imaging of open pore geometries consisting of between -4 to -13 atoms, all exhibiting subnanometer diameters. Picometer resolution bond length measurements are used to confirm reconstruction of five-membered ring projections that often decorate the pore perimeter, knowledge which is used to explore the viability of completely self-passivated subnanometer pore structures; bonding configurations where the pore would not require external passivation by, for example, hydrogen to be chemically inert.

  5. Multilayer Electroactive Polymer Composite Material Comprising Carbon Nanotubes

    Science.gov (United States)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2009-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  6. Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore

    Science.gov (United States)

    Song, Langzhou; Hobaugh, Michael R.; Shustak, Christopher; Cheley, Stephen; Bayley, Hagan; Gouaux, J. Eric

    1996-12-01

    The structure of the Staphylococcus aureus α-hemolysin pore has been determined to 1.9 overset{circ}{mathrm A} resolution. Contained within the mushroom-shaped homo-oligomeric heptamer is a solvent-filled channel, 100 overset{circ}{mathrm A} in length, that runs along the sevenfold axis and ranges from 14 overset{circ}{mathrm A} to 46 overset{circ}{mathrm A} in diameter. The lytic, transmembrane domain comprises the lower half of a 14-strand antiparallel β barrel, to which each protomer contributes two β strands, each 65 overset{circ}{mathrm A} long. The interior of the β barrel is primarily hydrophilic, and the exterior has a hydrophobic belt 28 overset{circ}{mathrm A} wide. The structure proves the heptameric subunit stoichiometry of the α-hemolysin oligomer, shows that a glycine-rich and solvent-exposed region of a water-soluble protein can self-assemble to form a transmembrane pore of defined structure, and provides insight into the principles of membrane interaction and transport activity of β barrel pore-forming toxins.

  7. Photovoltaic device comprising compositionally graded intrinsic photoactive layer

    Science.gov (United States)

    Hoffbauer, Mark A; Williamson, Todd L

    2013-04-30

    Photovoltaic devices and methods of making photovoltaic devices comprising at least one compositionally graded photoactive layer, said method comprising providing a substrate; growing onto the substrate a uniform intrinsic photoactive layer having one surface disposed upon the substrate and an opposing second surface, said intrinsic photoactive layer consisting essentially of In.sub.1-xA.sub.xN,; wherein: i. 0.ltoreq.x.ltoreq.1; ii. A is gallium, aluminum, or combinations thereof; and iii. x is at least 0 on one surface of the intrinsic photoactive layer and is compositionally graded throughout the layer to reach a value of 1 or less on the opposing second surface of the layer; wherein said intrinsic photoactive layer is isothermally grown by means of energetic neutral atom beam lithography and epitaxy at a temperature of 600.degree. C. or less using neutral nitrogen atoms having a kinetic energy of from about 1.0 eV to about 5.0 eV, and wherein the intrinsic photoactive layer is grown at a rate of from about 5 nm/min to about 100 nm/min.

  8. Pore structure modification of diatomite as sulfuric acid catalyst support by high energy electron beam irradiation and hydrothermal treatment

    Science.gov (United States)

    Li, Chong; Zhang, Guilong; Wang, Min; Chen, Jianfeng; Cai, Dongqing; Wu, Zhengyan

    2014-08-01

    High energy electron beam (HEEB) irradiation and hydrothermal treatment (HT), were applied in order to remove the impurities and enlarge the pore size of diatomite, making diatomite more suitable to be a catalyst support. The results demonstrated that, through thermal, charge, impact and etching effects, HEEB irradiation could make the impurities in the pores of diatomite loose and remove some of them. Then HT could remove rest of them from the pores and contribute significantly to the modification of the pore size distribution of diatomite due to thermal expansion, water swelling and thermolysis effects. Moreover, the pore structure modification improved the properties (BET (Brunauer-Emmett-Teller) specific surface area, bulk density and pore volume) of diatomite and the catalytic efficiency of the catalyst prepared from the treated diatomite.

  9. Quantitative assessment of pore development at Al2O3/FeAl interfaces during high temperature oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Peggy Y.; Van Leiden, C.; Niu, Y.; Gesmundo, F.

    2001-04-24

    Alloys of commercial grades that do not contain a reactive element, such as yttrium, often develop pores at the scale/alloy interface. The accumulation and growth of these pores greatly weaken scale adhesion. The purpose of this study is to evaluate pore development in Fe-40at% Al and determine the change in pore volume with oxidation time. Experimental results are then compared to a theoretical calculation where all vacancies are allowed to condense as voids. After removing the oxide scales that formed after various times of oxidation at 1000 C in oxygen, the alloy surface was analyzed using scanning electron microscopy (SEM) and atomic force microscopy (AFM) to determine the size and depth of interfacial pores. Results are discussed in light of possible mechanisms involved in pore formation at scale/alloy interfaces.

  10. Pore space characterization in carbonate rocks - Approach to combine nuclear magnetic resonance and elastic wave velocity measurements

    Science.gov (United States)

    Müller-Huber, Edith; Schön, Jürgen; Börner, Frank

    2016-04-01

    Pore space features influence petrophysical parameters such as porosity, permeability, elastic wave velocity or nuclear magnetic resonance (NMR). Therefore they are essential to describe the spatial distribution of petrophysical parameters in the subsurface, which is crucial for efficient reservoir characterization especially in carbonate rocks. While elastic wave velocity measurements respond to the properties of the solid rock matrix including pores or fractures, NMR measurements are sensitive to the distribution of pore-filling fluids controlled by rock properties such as the pore-surface-to-pore-volume ratio. Therefore a combination of both measurement principles helps to investigate carbonate pore space using complementary information. In this study, a workflow is presented that delivers a representative average semi-axis length of ellipsoidal pores in carbonate rocks based on the pore aspect ratio received from velocity interpretation and the pore-surface-to-pore-volume ratio Spor as input parameters combined with theoretical calculations for ellipsoidal inclusions. A novel method to calculate Spor from NMR data based on the ratio of capillary-bound to movable fluids and the thickness of the capillary-bound water film is used. To test the workflow, a comprehensive petrophysical database was compiled using micritic and oomoldic Lower Muschelkalk carbonates from Germany. The experimental data indicate that both mud-dominated and grain-dominated carbonates possess distinct ranges of petrophysical parameters. The agreement between the predicted and measured surface-to-volume ratio is satisfying for oomoldic and most micritic samples, while pyrite or significant sample heterogeneity may lead to deviations. Selected photo-micrographs and scanning electron microscope images support the validity of the estimated representative pore dimensions.

  11. Dynamical Configurations of Celestial Systems Comprised of Multiple Irregular Bodies

    CERN Document Server

    Jiang, Yu; Baoyin, Hexi; Li, Junfeng

    2016-01-01

    This manuscript considers the main features of the nonlinear dynamics of multiple irregular celestial body systems. The gravitational potential, static electric potential, and magnetic potential are considered. Based on the three established potentials, we show that three conservative values exist for this system, including a Jacobi integral. The equilibrium conditions for the system are derived and their stability analyzed. The equilibrium conditions of a celestial system comprised of n irregular bodies are reduced to 12n minus 9 equations. The dynamical results are applied to simulate the motion of multiple-asteroid systems. The simulation is useful for the study of the stability of multiple irregular celestial body systems and for the design of spacecraft orbits to triple asteroid systems discovered in the solar system. The dynamical configurations of the five triple-asteroid systems 45 Eugenia, 87 Sylvia, 93 Minerva, 216 Kleopatra, and 136617 1994CC, and the six-body system 134340 Pluto are calculated and...

  12. Complete Recycling of Composite Material Comprising Polybutylene Terephthalate and Copper

    Directory of Open Access Journals (Sweden)

    Fabian Knappich

    2017-06-01

    Full Text Available Composite materials comprising plastic and metal parts generate a large amount of waste containing valuable components that are difficult to separate and recycle. We therefore developed an economical solvent-based process for the recovery of costly manufactured composite materials comprising several copper panels over-moulded with a polymeric matrix of polybutylene terephthalate (PBT. We applied the CreaSolv® Process, which uses proprietary formulations with a low risk to user and environment, in order to dissolve the polymer and retain the inert copper. After separating the metal from the solution, solvent recovery was achieved by means of vacuum distillation and melt degassing extrusion. The recovered solvent was collected and recycled while maintaining its original properties. We tested two candidate solvents with PBT, measuring their impact on the molecular weight (Mw and polydispersity of the polymer at different residence times and dissolution temperatures. We found that increasing the temperature-time-load had a negative effect on the Mw. Both solvents we tested were able to dissolve the polymeric matrix within 30 min and with moderate energy consumption. Furthermore, we found that the exclusion of oxygen during dissolution significantly increases the quality of the recovered polymer and metal. We transferred the process from the laboratory scale to the small-technical scale and produced material for large analytical and mechanical quality evaluation, revealing no decline in the polymer quality by blending with new plastic. The recovered copper met virgin material properties. Therefore, both components of the original composite material have been recovered in a form suitable for reuse.

  13. Use of high-resolution X-ray computed tomography and 3D image analysis to quantify mineral dissemination and pore space in oxide copper ore particles

    Science.gov (United States)

    Yang, Bao-hua; Wu, Ai-xiang; Narsilio, Guillermo A.; Miao, Xiu-xiu; Wu, Shu-yue

    2017-09-01

    Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle, a cylindrical copper oxide ore sample (ϕ4.6 mm × 5.6 mm) was scanned using high-resolution X-ray computed tomography (HRXCT), a nondestructive imaging technology, at a spatial resolution of 4.85 μm. Combined with three-dimensional (3D) image analysis techniques, the main mineral phases and pore space were segmented and the volume fraction of each phase was calculated. In addition, the mass fraction of each mineral phase was estimated and the result was validated with that obtained using traditional techniques. Furthermore, the pore phase features, including the pore size distribution, pore surface area, pore fractal dimension, pore centerline, and the pore connectivity, were investigated quantitatively. The pore space analysis results indicate that the pore size distribution closely fits a log-normal distribution and that the pore space morphology is complicated, with a large surface area and low connectivity. This study demonstrates that the combination of HRXCT and 3D image analysis is an effective tool for acquiring 3D mineralogical and pore structural data.

  14. Gas transport and subsoil pore characteristics

    DEFF Research Database (Denmark)

    Berisso, Feto Esimo; Schjønning, Per; Keller, Thomas

    2013-01-01

    Arrangements of elementary soil particles during soil deposition and subsequent biological and physical processes in long-term pedogenesis are expected to lead to anisotropy of the non-tilled subsoil pore system. Soil compaction by agricultural machinery is known to affect soil pore characteristi...

  15. Cavitation and pore blocking in nanoporous glasses.

    Science.gov (United States)

    Reichenbach, C; Kalies, G; Enke, D; Klank, D

    2011-09-06

    In gas adsorption studies, porous glasses are frequently referred to as model materials for highly disordered mesopore systems. Numerous works suggest that an accurate interpretation of physisorption isotherms requires a complete understanding of network effects upon adsorption and desorption, respectively. The present article deals with nitrogen and argon adsorption at different temperatures (77 and 87 K) performed on a series of novel nanoporous glasses (NPG) with different mean pore widths. NPG samples contain smaller mesopores and significantly higher microporosity than porous Vycor glass or controlled pore glass. Since the mean pore width of NPG can be tuned sensitively, the evolution of adsorption characteristics with respect to a broadening pore network can be investigated starting from the narrowest nanopore width. With an increasing mean pore width, a H2-type hysteresis develops gradually which finally transforms into a H1-type. In this connection, a transition from a cavitation-induced desorption toward desorption controlled by pore blocking can be observed. Furthermore, we find concrete hints for a pore size dependence of the relative pressure of cavitation in highly disordered pore systems. By comparing nitrogen and argon adsorption, a comprehensive insight into adsorption mechanisms in novel disordered materials is provided.

  16. Coating of silicon pore optics

    DEFF Research Database (Denmark)

    Cooper-Jensen, Carsten P.; Ackermann, M.; Christensen, Finn Erland

    2009-01-01

    For the International X-ray observatory (IXO), a mirror module with an effective area of 3 m2 at 1.25 keV and at least 0.65 m2 at 6 keV has to be realized. To achieve this goal, coated silicon pore optics has been developed over the last years. One of the challenges is to coat the Si plates...... and still to realize Si-Si bonding. It has been demonstrated that ribbed silicon plates can be produced and assembled into stacks. All previously work has been done using uncoated Si plates. In this paper we describe how to coat the ribbed Si plates with an Ir coating and a top C coating through a mask so...... that there will be coating only between the ribs and not in the area where bonding takes place. The paper includes description of the mounting jig and how to align the mask on top of the plate. We will also present energy scans from Si plates coated through a mask....

  17. Particle diffusion in complex nanoscale pore networks

    DEFF Research Database (Denmark)

    Müter, Dirk; Sørensen, Henning Osholm; Bock, H.

    2015-01-01

    decreased to as much as 60% when particle size increased from 1% to 35% of the average pore diameter. When particles were attracted to the pore surfaces, even very small particles, diffusion was drastically inhibited, by as much as a factor of 100. Thus, the size of particles and their interaction......We studied the diffusion of particles in the highly irregular pore networks of chalk, a very fine-grained rock, by combining three-dimensional X-ray imaging and dissipative particle dynamics (DPD) simulations. X-ray imaging data were collected at 25 nm voxel dimension for two chalk samples...... with very different porosities (4% and 26%). The three-dimensional pore systems derived from the tomograms were imported into DPD simulations and filled with spherical particles of variable diameter and with an optional attractive interaction to the pore surfaces. We found that diffusion significantly...

  18. FINGERPRINT MATCHING BASED ON PORE CENTROIDS

    Directory of Open Access Journals (Sweden)

    S. Malathi

    2011-05-01

    Full Text Available In recent years there has been exponential growth in the use of bio- metrics for user authentication applications. Automated Fingerprint Identification systems have become popular tool in many security and law enforcement applications. Most of these systems rely on minutiae (ridge ending and bifurcation features. With the advancement in sensor technology, high resolution fingerprint images (1000 dpi pro- vide micro level of features (pores that have proven to be useful fea- tures for identification. In this paper, we propose a new strategy for fingerprint matching based on pores by reliably extracting the pore features The extraction of pores is done by Marker Controlled Wa- tershed segmentation method and the centroids of each pore are con- sidered as feature vectors for matching of two fingerprint images. Experimental results shows that the proposed method has better per- formance with lower false rates and higher accuracy.

  19. Components of coated vesicles and nuclear pore complexes share a common molecular architecture.

    Directory of Open Access Journals (Sweden)

    Damien Devos

    2004-12-01

    Full Text Available Numerous features distinguish prokaryotes from eukaryotes, chief among which are the distinctive internal membrane systems of eukaryotic cells. These membrane systems form elaborate compartments and vesicular trafficking pathways, and sequester the chromatin within the nuclear envelope. The nuclear pore complex is the portal that specifically mediates macromolecular trafficking across the nuclear envelope. Although it is generally understood that these internal membrane systems evolved from specialized invaginations of the prokaryotic plasma membrane, it is not clear how the nuclear pore complex could have evolved from organisms with no analogous transport system. Here we use computational and biochemical methods to perform a structural analysis of the seven proteins comprising the yNup84/vNup107-160 subcomplex, a core building block of the nuclear pore complex. Our analysis indicates that all seven proteins contain either a beta-propeller fold, an alpha-solenoid fold, or a distinctive arrangement of both, revealing close similarities between the structures comprising the yNup84/vNup107-160 subcomplex and those comprising the major types of vesicle coating complexes that maintain vesicular trafficking pathways. These similarities suggest a common evolutionary origin for nuclear pore complexes and coated vesicles in an early membrane-curving module that led to the formation of the internal membrane systems in modern eukaryotes.

  20. The influence of extraction procedure on ion concentrations in sediment pore water

    Science.gov (United States)

    Winger, P.V.; Lasier, P.J.; Jackson, B.P.

    1998-01-01

    Sediment pore water has the potential to yield important information on sediment quality, but the influence of isolation procedures on the chemistry and toxicity are not completely known and consensus on methods used for the isolation from sediment has not been reached. To provide additional insight into the influence of collection procedures on pore water chemistry, anion (filtered only) and cation concentrations were measured in filtered and unfiltered pore water isolated from four sediments using three different procedures: dialysis, centrifugation and vacuum. Peepers were constructed using 24-cell culture plates and cellulose membranes, and vacuum extractors consisted of fused-glass air stones attached with airline tubing to 60cc syringes. Centrifugation was accomplished at two speeds (2,500 and 10,000 x g) for 30 min in a refrigerated centrifuge maintained at 4?C. Only minor differences in chemical characteristics and cation and anion concentrations were found among the different collecting methods with differences being sediment specific. Filtering of the pore water did not appreciably reduce major cation concentrations, but trace metals (Cu and Pb) were markedly reduced. Although the extraction methods evaluated produced pore waters of similar chemistries, the vacuum extractor provided the following advantages over the other methods: (1) ease of extraction, (2) volumes of pore water isolated, (3) minimal preparation time and (4) least time required for extraction of pore water from multiple samples at one time.

  1. Electrically tunable pore morphology in nanoporous gold thin films

    Institute of Scientific and Technical Information of China (English)

    Tatiana S. Dorofeeva; Erkin Seker

    2015-01-01

    Nanoporous gold (np-Au) is an emerging nanostructured material that exhibits many desirable properties, including high electrical and thermal conductivity, high surface area-to-volume ratio, tunable pore morphology well-established surface-binding chemistry, and compatibility with microfabrication. These features make np-Au a popular material for use in fuel cells, optical and electrical biosensors, drug delivery vehicles, neural electrode coatings, and as a model system for nanoscale mechanics. In each of its many applications, np-Au morphology plays an essential role in the overall device operation. Therefore, precise morphological control is necessary to attain optimal device performance. Traditionally thermal treatment by furnaces and hot plates is used to obtain np-Au with self-similar but coarser morphologies. However, this approach lacks the ability to create different morphologies on a single substrate and requires high temperatures (〉 250 ℃) incompatible with most plastic substrates. Herein, we report electro-annealing as a novel method that permits control of the extent and location of pore coarsening on a single substrate in one fast treatment step. The electro-annealing entails much lower temperatures (〈 150 ℃) than traditional thermal treatment, putatively due to electrically assisted phenomena contributing to the thermally activated surface diffusion of gold atoms, responsible for coarsening. Overall, this approach is easily scaled to display multiple pore morphologies on a single chip, therefore enabling high-throughput screening of optimal nanostructures for specific applications.

  2. Eleven years' effect of conservation practices for temperate sandy loams: II. Soil pore characteristics

    DEFF Research Database (Denmark)

    Abdollahi, Lotfallah; Munkholm, Lars Juhl

    2017-01-01

    Conservation agriculture (CA) is regarded by many as a sustainable intensification strategy. Minimal soil disturbance in combination with residue retention are important CA components. This study examined the long-term effects of crop rotation, residue retention, and tillage on soil pore characte......Conservation agriculture (CA) is regarded by many as a sustainable intensification strategy. Minimal soil disturbance in combination with residue retention are important CA components. This study examined the long-term effects of crop rotation, residue retention, and tillage on soil pore......, the volume of pores > 30 μm was more than 0.03 m3 m-3 larger for MP than for D in spring 2014 at the 4- to 8-cm depth. At the 18- to 27-cm depth, direct drilling resulted in a better air permeability and pore continuity index (e.g., air permeability of 18.2 and 11.2 mm2 for D and MP, respectively at −10 k...

  3. Nanocasting Process to Pore-Expanded Ordered Mesoporous Carbons with 2D Hexagonal Mesostructure

    Directory of Open Access Journals (Sweden)

    Chongwen Jiang

    2014-01-01

    Full Text Available Pore-expanded ordered mesoporous carbons with 2D hexagonal mesostructure were synthesized by a simple nanocasting process. We adopted sucrose as carbon precursors, mesoporous silica materials SBA-15 as the hard templates, and hexane as micelle swelling agents. The pore size distribution of OMCs was narrow and centered at 5.4 nm, which is larger than the upper limit of pore diameters typically reported for CMK-3. The BET surface area and mesopore volume of PE-CMK-3 can reach to 1213.47 m2/g and 1.56 cm3/g, respectively, indicating that choosing large pore size materials as template is good for preparation of high performance of OMCs.

  4. Monitoring CO2 invasion processes at the pore scale using geological labs on chip.

    Science.gov (United States)

    Morais, S; Liu, N; Diouf, A; Bernard, D; Lecoutre, C; Garrabos, Y; Marre, S

    2016-09-21

    In order to investigate at the pore scale the mechanisms involved during CO2 injection in a water saturated pore network, a series of displacement experiments is reported using high pressure micromodels (geological labs on chip - GLoCs) working under real geological conditions (25 < T (°C) < 75 and 4.5 < p (MPa) < 8). The experiments were focused on the influence of three experimental parameters: (i) the p, T conditions, (ii) the injection flow rates and (iii) the pore network characteristics. By using on-chip optical characterization and imaging approaches, the CO2 saturation curves as a function of either time or the number of pore volume injected were determined. Three main mechanisms were observed during CO2 injection, namely, invasion, percolation and drying, which are discussed in this paper. Interestingly, besides conventional mechanisms, two counterintuitive situations were observed during the invasion and drying processes.

  5. Superficial performance and pore structure of palygorskite treated by hydrochloric acid

    Institute of Scientific and Technical Information of China (English)

    LIU Yi-xin; DAI Wei-wei; Wang Ting; TAO Yong

    2006-01-01

    In order to amend the superficial performance of palygorskite and improve its application, the natural palygorskite(NP) was treated in the dipping and ionic exchanging experiments using 6 mol/L hydrochloric acid treatment. The performance and pore structure of the treated palygorskite(TP) were investigated by means of microscope analyses, FT-IR, XRF, BET-SSA and full hole distribution analytical techniques. The results show that the hydrochloric acid treatment can make the gracile and aggregating compact crystal bundles inside palygorskite clay broken and dispersed, the roughness of microcrystalline surface increases, which not only can dissolve or remove dolomite but vary the superficial performance of palygorskite to some degree. The specific surface area and pore volume increase a lot, while the mean pore size decreases. The pore structure of TP changes remarkably compared with that of NP after 6 mol/L hydrochloric acid treatment, and the relevant physicochemical performance can be improved.

  6. STREPTOMYCES SPECIES COMPRISING THE BLUE-SPORE SERIES.

    Science.gov (United States)

    TREJO, W H; BENNETT, R E

    1963-03-01

    Trejo, W. H. (Squibb Institute for Medical Research, New Brunswick, N.J.) and R. E. Bennett. Streptomyces species comprising the blue-spore series. J. Bacteriol. 85:676-690. 1963.-The objective of this study was to define and delimit the streptomycetes of the blue-spored (Viridochromogenes) series. The series, as defined in this study, includes 11 blue and blue-green species. The green-spored species were excluded on the basis of morphology as well as color. It was proposed that NRRL B-1511 be designated as the neotype strain of Streptomyces viridochromogenes (Krainsky) Waksman and Henrici, and that IMRU 3761 be designated as the neotype for Streptomyces cyaneus (Krassilnikov) Waksman. Evidence was presented to show that physiological criteria cannot be used to differentiate these organisms below the series level. The major characteristics of the Viridochromogenes series are blue to blue-green spores borne in spirals, and chromogenicity (melanin-positive). Reverse color and spore morphology provide a basis for separation below the series level.

  7. Evolution of Anode Porosity under Air Oxidation: The Unveiling of the Active Pore Size

    Directory of Open Access Journals (Sweden)

    Francois Chevarin

    2017-03-01

    Full Text Available The carbon anode, used in aluminum electrolysis (Hall–Héroult process, is over-consumed by air oxidation and carboxy-reaction (with CO2. Several anode features may affect this over-consumption, such as impurity content, graphitization level and anode porosity features (e.g., porosity volume fraction or pore size distribution. The two first parameters are basically related to the quality of raw materials and coke calcination conditions. Anode porosity is, however, greatly affected by anode manufacturing conditions, and is possible to be modified, to some extent, by adjusting the anode recipe and the processing parameters. This work aims to investigate the effect of anode porosity on its air reactivity. Baked anode samples were prepared in laboratory scale and then crushed into powder form (−4760 + 4000 µm. The recipe for anode preparation was similar to a typical industrial recipe, except that in the lab scale no butt particles were used in the recipe. Anode particles were then gasified at six different conversion levels (0, 5, 15, 25, 35 and 50 wt % under air at 525 °C. The porosity was characterized in several pore size ranges, measured by nitrogen adsorption and mercury intrusion (0.0014–0.020, 0.002–0.025, 0.025–0.100, 0.1–40.0 and superior at 40 µm. The volume variation of each pore range, as a function of carbon conversion, was assessed and used to determine the size of the most active pores for air oxidation. The most active pore size was found to be the pores inferior at 40 µm before 15 wt % of gasification and pores superior at 40 µm between 15 and 50 wt % of carbon conversion. Limitation of pore size range could be used as an additional guideline, along with other targets such as high homogeneity and density, to set the optimum anode manufacturing parameters.

  8. Designing Nonwovens to Meet Pore Size Specifications

    Directory of Open Access Journals (Sweden)

    Glen E. Simmonds

    2007-04-01

    Full Text Available New nonwovens applications in areas such as filtration require a media designed to particular pore size specifications in the 3 to 20 micron range. The purpose of this work was to develop a basis by which to design and construct a fabric with given pore size specifications. While doing so we have provided a validation for two different mathematical models. We have also found that bicomponent spunbonded islands-in-the-sea nonwoven fabrics can be designed very precisely to achieve target pore diameters and porosity. Mathematical models can be used to develop fabric specifications in the standard manufacturing terms of basis weight and fiber diameter. Measured mean flow pore diameters for the test fabrics showed excellent correlation to targeted mean flow pore diameters for both models. The experimental fit to the Bryner model is the better of the two, but requires specification of fabric thickness in addition to basis weight and fiber diameter to achieve actual mean pore diameters that closely match target values. Experimental validation of the influence of fabric thickness on the mean flow pore diameter at constant basis weight and fiber diameter remains open for further investigation. In addition, achieving complete separation of the island and sea polymers along with unbundling of the island fibers remain areas for improvement.

  9. Propagation of Love waves in an elastic layer with void pores

    Indian Academy of Sciences (India)

    S Dey; S Gupta; A K Gupta

    2004-08-01

    The paper presents a study of propagation of Love waves in a poroelastic layer resting over a poro-elastic half-space. Pores contain nothing of mechanical or energetic significance. The study reveals that such a medium transmits two types of love waves. The first front depends upon the modulus of rigidity of the elastic matrix of the medium and is the same as the love wave in an elastic layer over an elastic half-space. The second front depends upon the change in volume fraction of the pores. As the first front is well-known, the second front has been investigated numerically for different values of void parameters. It is observed that the second front is many times faster than the shear wave in the void medium due to change in volume fraction of the pores and is significant.

  10. The rat pineal gland comprises an endocannabinoid system.

    Science.gov (United States)

    Koch, Marco; Habazettl, Iris; Dehghani, Faramarz; Korf, Horst-Werner

    2008-11-01

    In the mammalian pineal gland, the rhythm in melatonin biosynthesis depends on the norepinephrine (NE)-driven regulation of arylalkylamine N-acetyltransferase (AANAT), the penultimate enzyme of melatonin biosynthesis. A recent study showed that phytocannabinoids like tetrahydrocannabinol reduce AANAT activity and attenuate NE-induced melatonin biosynthesis in rat pineal glands, raising the possibility that an endocannabinoid system is present in the pineal gland. To test this hypothesis, we analyzed cannabinoid (CB) receptors and specific enzymes for endocannabinoid biosynthesis or catabolism in rat pineal glands and cultured pinealocytes. Immunohistochemical and immunoblot analyses revealed the presence of CB1 and CB2 receptor proteins, of N-acyl phosphatidyl ethanolamine hydrolyzing phospholipase D (NAPE-PLD), an enzyme catalyzing endocannabinoid biosynthesis and of fatty acid amide hydrolase (FAAH), an endocannabinoid catabolizing enzyme, in pinealocytes, and in pineal sympathetic nerve fibers identified by double immunofluorescence with an antibody against tyrosine hydroxylase. The immunosignals for the CB2 receptor, NAPE-PLD, and FAAH found in pinealocytes did not vary under a 12 hr light:12 hr dark cycle. The CB1 receptor immunoreaction in pinealocytes was significantly reduced at the end of the light phase [zeitgeber time (ZT) 12]. The immunosignal for NAPE-PLD found in pineal sympathetic nerve fibers was reduced in the middle of the dark phase (ZT 18). Stimulation of cultured pinealocytes with NE affected neither the subcellular distribution nor the intensity of the immunosignals for the investigated CB receptors and enzymes. In summary, the pineal gland comprises indispensable compounds of the endocannabinoid system indicating that endocannabinoids may be involved in the control of pineal physiology.

  11. Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities

    Directory of Open Access Journals (Sweden)

    C. Marcolli

    2013-06-01

    deposition mechanism, but evident when assuming freezing in pores, because for homogeneous ice nucleation only small pore volumes are needed, while heterogeneous ice nucleation requires larger pore structures to contain at least one active site for immersion nucleation. Together, these pieces of evidence strongly suggest that ice nucleation within pores should be the prevailing freezing mechanism of clay minerals for RHw below water saturation. Extending the analysis to other types of ice nuclei shows that freezing in pores and cracks is probably the prevailing ice nucleation mechanism for glassy and volcanic ash aerosols at RHw below water saturation. Freezing of water in carbon nanotubes might be of significance for ice nucleation by soot aerosols. No case could be identified that gives clear evidence of ice nucleation by water vapor deposition on a solid surface. Inspection of ice nuclei with a close lattice match to ice, such as silver iodide or SnomaxTM, show that for high ice nucleation efficiency below water saturation the presence of impurities or cracks on the surface may be essential. Soluble impurities promote the formation of a liquid phase below water saturation in patches on the surface or as a complete surface layer that offers an environment for immersion freezing. If porous aerosol particles come in contact with semivolatile vapors, these will condense preferentially in pores before a coating on the surface of the particles is formed. A pore partially filled with condensed species attracts water at lower RHw than an empty pore, but the aqueous solution that forms in the pore will freeze at a higher RHi than pure water. The ice nucleation ability of pores completely filled with condensed organic species might be totally impeded. Pores might also be important for preactivation, the capability of a particle to nucleate ice at lower RHi in subsequent experiments when compared to the first initial ice nucleation event. Preactivation has often been explained by

  12. Control of pore size in epoxy systems.

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Patricia Sue; Lenhart, Joseph Ludlow (North Dakota State University, Fargo, ND); Lee, Elizabeth (North Dakota State University, Fargo, ND); Kallam, Alekhya (North Dakota State University, Fargo, ND); Majumdar, Partha (North Dakota State University, Fargo, ND); Dirk, Shawn M.; Gubbins, Nathan; Chisholm, Bret J. (North Dakota State University, Fargo, ND); Celina, Mathias Christopher; Bahr, James (North Dakota State University, Fargo, ND); Klein, Robert J.

    2009-01-01

    Both conventional and combinatorial approaches were used to study the pore formation process in epoxy based polymer systems. Sandia National Laboratories conducted the initial work and collaborated with North Dakota State University (NDSU) using a combinatorial research approach to produce a library of novel monomers and crosslinkers capable of forming porous polymers. The library was screened to determine the physical factors that control porosity, such as porogen loading, polymer-porogen interactions, and polymer crosslink density. We have identified the physical and chemical factors that control the average porosity, pore size, and pore size distribution within epoxy based systems.

  13. Analytical applications for pore-forming proteins.

    Science.gov (United States)

    Kasianowicz, John J; Balijepalli, Arvind K; Ettedgui, Jessica; Forstater, Jacob H; Wang, Haiyan; Zhang, Huisheng; Robertson, Joseph W F

    2016-03-01

    Proteinaceous nanometer-scale pores are ubiquitous in biology. The canonical ionic channels (e.g., those that transport Na(+), K(+), Ca(2+), and Cl(-) across cell membranes) play key roles in many cellular processes, including nerve and muscle activity. Another class of channels includes bacterial pore-forming toxins, which disrupt cell function, and can lead to cell death. We describe here the recent development of these toxins for a wide range of biological sensing applications. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.

  14. Micro system comprising 96 micro valves on a titer plate

    Science.gov (United States)

    Krabbe, S.; Flitsch, D.; Büchs, J.; Schomburg, W. K.

    2016-10-01

    A system of 96 micro valves has been developed and mounted on top of a 48-well micro titer plate providing two valves for each well controlling its air inlet and outlet. Testing of the valve system showed that all valves are working and are opened and closed reliably. A pneumatic system is switching inlet and outlet valves independently of each other. The geometry of the feed channels ensures an equal air flow through all wells, when the valves are open. Between the micro valves, one optical fibre was inserted through the lid of each well allowing measuring the oxygen partial pressure in the enclosed air volume by fluorescence sensor spots. Escherichia coli bacteria were grown inside the wells and their metabolism was observed by the oxygen partial pressure change due to respiration. In all 48 wells, the same oxygen transfer rate was observed within an averaged standard deviation of 1 mmol/L/h. The oxygen transfer rate differences compared to a macroscopic standard shake flask system were overall compatible within their uncertainties.

  15. Pore structure characterization of Chang-7 tight sandstone using MICP combined with N2GA techniques and its geological control factors

    Science.gov (United States)

    Cao, Zhe; Liu, Guangdi; Zhan, Hongbin; Li, Chaozheng; You, Yuan; Yang, Chengyu; Jiang, Hang

    2016-11-01

    Understanding the pore networks of unconventional tight reservoirs such as tight sandstones and shales is crucial for extracting oil/gas from such reservoirs. Mercury injection capillary pressure (MICP) and N2 gas adsorption (N2GA) are performed to evaluate pore structure of Chang-7 tight sandstone. Thin section observation, scanning electron microscope, grain size analysis, mineral composition analysis, and porosity measurement are applied to investigate geological control factors of pore structure. Grain size is positively correlated with detrital mineral content and grain size standard deviation while negatively related to clay content. Detrital mineral content and grain size are positively correlated with porosity, pore throat radius and withdrawal efficiency and negatively related to capillary pressure and pore-to-throat size ratio; while interstitial material is negatively correlated with above mentioned factors. Well sorted sediments with high debris usually possess strong compaction resistance to preserve original pores. Although many inter-crystalline pores are produced in clay minerals, this type of pores is not the most important contributor to porosity. Besides this, pore shape determined by N2GA hysteresis loop is consistent with SEM observation on clay inter-crystalline pores while BJH pore volume is positively related with clay content, suggesting N2GA is suitable for describing clay inter-crystalline pores in tight sandstones.

  16. Pore structure modification of diatomite as sulfuric acid catalyst support by high energy electron beam irradiation and hydrothermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chong [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Zhang, Guilong; Wang, Min [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Chen, Jianfeng [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Cai, Dongqing, E-mail: dqcai@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Wu, Zhengyan, E-mail: zywu@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China)

    2014-08-15

    Highlights: • High energy electron beam (HEEB) irradiation and hydrothermal treatment were used. • HEEB irradiation could make the impurities in the pores of diatomite loose. • Hydrothermal treatment (HT) could remove these impurities from the pores. • They could effectively improve pore size distribution and decrease the bulk density. • Catalytic performance of the corresponding catalyst was significantly improved. - Abstract: High energy electron beam (HEEB) irradiation and hydrothermal treatment (HT), were applied in order to remove the impurities and enlarge the pore size of diatomite, making diatomite more suitable to be a catalyst support. The results demonstrated that, through thermal, charge, impact and etching effects, HEEB irradiation could make the impurities in the pores of diatomite loose and remove some of them. Then HT could remove rest of them from the pores and contribute significantly to the modification of the pore size distribution of diatomite due to thermal expansion, water swelling and thermolysis effects. Moreover, the pore structure modification improved the properties (BET (Brunauer–Emmett–Teller) specific surface area, bulk density and pore volume) of diatomite and the catalytic efficiency of the catalyst prepared from the treated diatomite.

  17. Straight Pore Microfilter with Efficient Regeneration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase II project is directed toward development of a novel microfiltration filter that has distinctively narrow pore size...

  18. Straight Pore Microfilter with Efficient Regeneration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project is directed toward development of a novel microfiltration filter that has distinctively narrow pore size...

  19. A Potential Model for Cylindrical Pores

    Institute of Scientific and Technical Information of China (English)

    张现仁; 汪文川

    2001-01-01

    An analytical potential for cylindrical pores has been derived by introducing a variational method into the integration for the calculation of the interaction energy between the wall molecules and a test molecule, all of which are represented by Lennard-Jones potential. The model proposed gives good fit to the results from the cylindrical surface model and the pseudoatom model. To test the potential proposed rigorously, we have carried out grand canonical ensemble Monte Carlo(GCMC) simulation of nitrogen in the MCM-41 pore at 77 K, and compared the simulated adsorption isotherm with the experimental data reported in the literature. The simulated isotherm from our model is in almost qualitative agreement with experiment. Consequently, the model proposed provides an explicit and accurate description of cylindrical pores represented by the Lennard-Jones potential. Moreover, the model can be easily applied to a variety of cylindrical pores, ranging from cylindrical surface to finite thickness walls, in both theoretical studies and computer simulations.

  20. Analysis of a spatially deconvolved solar pore

    CERN Document Server

    Noda, C Quintero; Cobo, B Ruiz; Suematsu, Y; Katsukawa, Y; Ichimoto, K

    2016-01-01

    Solar pores are active regions with large magnetic field strengths and apparent simple magnetic configurations. Their properties resemble the ones found for the sunspot umbra although pores do not show penumbra. Therefore, solar pores present themselves as an intriguing phenomenon that is not completely understood. We examine in this work a solar pore observed with Hinode/SP using two state of the art techniques. The first one is the spatial deconvolution of the spectropolarimetric data that allows removing the stray light contamination induced by the spatial point spread function of the telescope. The second one is the inversion of the Stokes profiles assuming local thermodynamic equilibrium that let us to infer the atmospheric physical parameters. After applying these techniques, we found that the spatial deconvolution method does not introduce artefacts, even at the edges of the magnetic structure, where large horizontal gradients are detected on the atmospheric parameters. Moreover, we also describe the p...

  1. Visualization of enzyme activities inside earthworm pores

    Science.gov (United States)

    Hoang, Duyen; Razavi, Bahar S.

    2015-04-01

    In extremely dynamic microhabitats as bio-pores made by earthworm, the in situ enzyme activities are assumed as a footprint of complex biotic interactions. Our study focused on the effect of earthworm on the enzyme activities inside bio-pores and visualizing the differences between bio-pores and earthworm-free soil by zymography technique (Spohn and Kuzyakov, 2013). For the first time, we aimed at quantitative imaging of enzyme activities in bio-pores. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). After two weeks when bio-pore systems were formed by earthworms, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine-aminopeptidase, and phosphatase. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. However, the differences in activity of cellobiohydrolase and leucine aminopeptidase between bio-pore and bulk soil were less pronounced. This demonstrated an applicability of zymography approach to monitor and to distinguish the in situ activity of hydrolytic enzymes in soil biopores.

  2. The effects of firing numbers on the opening total pore volume, translucency parameter and color of dental all-ceramic systems%烧结次数对牙科全瓷开放性总孔体积、透明度和色度的影响

    Institute of Scientific and Technical Information of China (English)

    李水根; 庞莉苹; 姚江武

    2012-01-01

    目的 评价烧结次数对牙科全瓷开放性总孔体积(TPV)、透明度(TP)和色度的影响.方法 采用热压全瓷(IPS Empress Ⅱ)、氧化铝全瓷(In-Cream alumina blanks)和氧化锆全瓷(Cercon CAD/CAM zirconia)3种材料制作试样,使用分光光谱仪与表面积和孔隙率仪测量计算试样经过1、3、5次烧结后的TP、明度(ΔL)、彩度(ΔC)和TPV变化.应用SAS 8.0软件对数据进行统计分析.结果 相同烧结次数下,3种全瓷试件的TPV、TP、ΔL和ΔC间均存在统计学差异(P<0.05),其中TPV为热压全瓷大于氧化铝全瓷和氧化锆全瓷(P<0.05);TP和ΔL均为热压全瓷最高,氧化锆全瓷其次,氧化铝全瓷最低(P<0.05);ΔC为热压全瓷和氧化铝全瓷大于氧化锆全瓷(P<0.05).不同烧结次数下,同一全瓷试件TPV、TP、ΔL和ΔC间也存在统计学差异(P<0.05).随着烧结次数的增加,TPV逐渐减小,TP、ΔL和△C逐渐增加.烧结次数与TPV、TPV与TP和ΔL均呈负相关(P<0.05).结论 重复烧结可通过TPV变化影响全瓷修复体的TP和ΔL的稳定性.%Objective To evaluate the effects of firing numbers on the total opening pore volume (TPV), translucency parameter (TP) and color of dental all-ceramic systems. Methods Specimens of three kinds of all-ceramics systems were made, i.e. heat pressed all-ceramic (IPS Empress E), alumina all-ceramic (In-Cream alumina blanks) and zirconia all-ceramic (Cercon CAD/CAM zirconia). The specimens' TP, lightness (AL), chroma (AC) and TPY after 1, 3 and 5 firings were measured and calculated by spectrophotometer and surface area/porosity system. The data were analyzed statistically using SAS 8.0 software. Results There were significant differences in TPV, TP, AL and AC for all-ceramic specimens at same number of firings (Palumina and zirconia for TPV(Pzirconia>alumina for TP and AL(Pzirconia for AC(P<0.05). The significant differences also presented in TPV, TP, AL and AC for a same specimen at different

  3. The evolution of pore connectivity in volcanic rocks

    Science.gov (United States)

    Colombier, Mathieu; Wadsworth, Fabian B.; Gurioli, Lucia; Scheu, Bettina; Kueppers, Ulrich; Di Muro, Andrea; Dingwell, Donald B.

    2017-03-01

    Pore connectivity is a measure of the fraction of pore space (vesicles, voids or cracks) in a material that is interconnected on the system length scale. Pore connectivity is fundamentally related to permeability, which has been shown to control magma outgassing and the explosive potential of magma during ascent in the shallowest part of the crust. Here, we compile a database of connectivity and porosity from published sources and supplement this with additional measurements, using natural volcanic rocks produced in a broad range of eruptive styles and with a range of bulk composition. The database comprises 2715 pairs of connectivity C and porosity ϕ values for rocks from 35 volcanoes as well as 116 products of experimental work. For 535 volcanic rock samples, the permeability k was also measured. Data from experimental studies constrain the general features of the relationship between C and ϕ associated with both vesiculation and densification processes, which can then be used to interpret natural data. To a first order, we show that a suite of rocks originating from effusive eruptive behaviour can be distinguished from rocks originating from explosive eruptive behaviour using C and ϕ. We observe that on this basis, a particularly clear distinction can be made between scoria formed in fire-fountains and that formed in Strombolian activity. With increasing ϕ, the onset of connectivity occurs at the percolation threshold ϕc which in turn can be hugely variable. We demonstrate that C is an excellent metric for constraining ϕc in suites of porous rocks formed in a common process and discuss the range of ϕc values recorded in volcanic rocks. The percolation threshold is key to understanding the onset of permeability, outgassing and compaction in shallow magmas. We show that this threshold is dramatically different in rocks formed during densification processes than in rocks formed in vesiculating processes and propose that this value is the biggest factor in

  4. Evaluation of the effect of varying the workability in concrete pore structure by using X-ray microtomography

    Directory of Open Access Journals (Sweden)

    E. E. Bernardes

    Full Text Available The useful life of concrete is associated with the penetrative ability of aggressive agents on their structures. Structural parameters such as porosity, pore distribution and connectivity have great influence on the properties of mass transport in porous solids. In the present study, the effect of varying the workability of concrete in fresh state, produced through the use of additives, on pore structure and on the mechanical compressive strength of hardened concrete was assessed. The pore structure was analyzed with the aid of X-ray microtomography, and the results obtained were compared to the total pore volume calculated from data derived from helium and mercury pycnometry tests. A good approximation between the porosity values obtained through the two techniques was observed, and it was found that, regardless of concrete consistency, the samples from the surface of the specimens showed a percentage of pores higher than those taken from the more inner layers.

  5. Pore REconstruction and Segmentation (PORES) method for improved porosity quantification of nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Van Eyndhoven, G., E-mail: geert.vaneyndhoven@uantwerpen.be [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Kurttepeli, M. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van Oers, C.J.; Cool, P. [Laboratory of Adsorption and Catalysis, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Bals, S. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Batenburg, K.J. [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Centrum Wiskunde and Informatica, Science Park 123, NL-1090 GB Amsterdam (Netherlands); Mathematical Institute, Universiteit Leiden, Niels Bohrweg 1, NL-2333 CA Leiden (Netherlands); Sijbers, J. [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium)

    2015-01-15

    Electron tomography is currently a versatile tool to investigate the connection between the structure and properties of nanomaterials. However, a quantitative interpretation of electron tomography results is still far from straightforward. Especially accurate quantification of pore-space is hampered by artifacts introduced in all steps of the processing chain, i.e., acquisition, reconstruction, segmentation and quantification. Furthermore, most common approaches require subjective manual user input. In this paper, the PORES algorithm “POre REconstruction and Segmentation” is introduced; it is a tailor-made, integral approach, for the reconstruction, segmentation, and quantification of porous nanomaterials. The PORES processing chain starts by calculating a reconstruction with a nanoporous-specific reconstruction algorithm: the Simultaneous Update of Pore Pixels by iterative REconstruction and Simple Segmentation algorithm (SUPPRESS). It classifies the interior region to the pores during reconstruction, while reconstructing the remaining region by reducing the error with respect to the acquired electron microscopy data. The SUPPRESS reconstruction can be directly plugged into the remaining processing chain of the PORES algorithm, resulting in accurate individual pore quantification and full sample pore statistics. The proposed approach was extensively validated on both simulated and experimental data, indicating its ability to generate accurate statistics of nanoporous materials. - Highlights: • An electron tomography reconstruction/segmentation method for nanoporous materials. • The method exploits the porous nature of the scanned material. • Validated extensively on both simulation and real data experiments. • Results in increased image resolution and improved porosity quantification.

  6. Temperature-mediated phase transformation, pore geometry and pore hysteresis transformation of borohydride derived in-born porous zirconium hydroxide nanopowders

    Science.gov (United States)

    Nayak, Nadiya B.; Nayak, Bibhuti B.

    2016-05-01

    Development of in-born porous nature of zirconium hydroxide nanopowders through a facile hydrogen (H2) gas-bubbles assisted borohydride synthesis route using sodium borohydride (NaBH4) and novel information on the temperature-mediated phase transformation, pore geometry as well as pore hysteresis transformation of in-born porous zirconium hydroxide nanopowders with the help of X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) isotherm and Transmission Electron Microscopy (TEM) images are the main theme of this research work. Without any surfactants or pore forming agents, the borohydride derived amorphous nature of porous powders was stable up to 500 °C and then the seed crystals start to develop within the loose amorphous matrix and trapping the inter-particulate voids, which led to develop the porous nature of tetragonal zirconium oxide at 600 °C and further sustain this porous nature as well as tetragonal phase of zirconium oxide up to 800 °C. The novel hydrogen (H2) gas-bubbles assisted borohydride synthesis route led to develop thermally stable porous zirconium hydroxide/oxide nanopowders with an adequate pore size, pore volume, and surface area and thus these porous materials are further suggested for promising use in different areas of applications.

  7. Pore- and micro-structural characterization of a novel structural binder based on iron carbonation

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sumanta, E-mail: Sumanta.Das@asu.edu [School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ (United States); Stone, David, E-mail: dajstone@gmail.com [Iron Shell LLC, Tucson, AZ (United States); Convey, Diana, E-mail: Diana.Convey@asu.edu [LeRoy Eyring Center for Solid State Science, Arizona State University, Tempe, AZ (United States); Neithalath, Narayanan, E-mail: Narayanan.Neithalath@asu.edu [School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ (United States)

    2014-12-15

    The pore- and micro-structural features of a novel binding material based on the carbonation of waste metallic iron powder are reported in this paper. The binder contains metallic iron powder as the major ingredient, followed by additives containing silica and alumina to facilitate favorable reaction product formation. Compressive strengths sufficient for a majority of concrete applications are attained. The material pore structure is investigated primarily through mercury intrusion porosimetry whereas electron microscopy is used for microstructural characterization. Reduction in the overall porosity and the average pore size with an increase in carbonation duration from 1 day to 4 days is noticed. The pore structure features are used in predictive models for gas and moisture transport (water vapor diffusivity and moisture permeability) through the porous medium which dictates its long-term durability when used in structural applications. Comparisons of the pore structure with those of a Portland cement paste are also provided. The morphology of the reaction products in the iron-based binder, and the distribution of constituent elements in the microstructure are also reported. - Highlights: • Carbonation of iron produces a dense microstructure. • Pore volume in iron carbonate lower, critical size higher than those in OPC pastes • Reaction product contains iron, carbon, silicon, aluminum and calcium. • Power-law for porosity-moisture permeability relationship was established.

  8. Extreme value statistics analysis of fracture strengths of a sintered silicon nitride failing from pores

    Science.gov (United States)

    Chao, Luen-Yuan; Shetty, Dinesh K.

    1992-01-01

    Statistical analysis and correlation between pore-size distribution and fracture strength distribution using the theory of extreme-value statistics is presented for a sintered silicon nitride. The pore-size distribution on a polished surface of this material was characterized, using an automatic optical image analyzer. The distribution measured on the two-dimensional plane surface was transformed to a population (volume) distribution, using the Schwartz-Saltykov diameter method. The population pore-size distribution and the distribution of the pore size at the fracture origin were correllated by extreme-value statistics. Fracture strength distribution was then predicted from the extreme-value pore-size distribution, usin a linear elastic fracture mechanics model of annular crack around pore and the fracture toughness of the ceramic. The predicted strength distribution was in good agreement with strength measurements in bending. In particular, the extreme-value statistics analysis explained the nonlinear trend in the linearized Weibull plot of measured strengths without postulating a lower-bound strength.

  9. A vacuum-operated pore-water extractor for estuarine and freshwater sediments

    Science.gov (United States)

    Winger, P.V.; Lasier, P.J.

    1991-01-01

    A vacuum-operated pore-water extractor for estuarine and freshwater sediments was developed and constructed from a fused-glass air stone attached with aquarium airline tubing to a 30 or 60 cc polypropylene syringe. Pore water is extracted by inserting the air stone into the sediment and creating a vacuum by retracting and bracing the syringe plunger. A hand-operated vacuum pump attached to a filtration flask was also evaluated as an alternative vacuum source. The volume and time to extract pore water varies with the number of devices and the sediment particle size. Extraction time is longer for fine sediments than for sandy sediments. Four liters of sediment generally yield between 500 and 1,500 mL of pore water. The sediment that surrounds and accumulates on the air stone acts as a filter, and, except for the first few milliliters, the collected pore water is clear. Because there is no exposure to air or avenue for escape, volatile compounds andin situ characteristics are retained in the extracted pore water.

  10. Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties

    Energy Technology Data Exchange (ETDEWEB)

    RamIrez, Patricio [Departament de Fisica Aplicada, Universitat Politecnica de Valencia, E-46022 Valencia (Spain); Apel, Pavel Yu [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie street 6, 141980 Dubna (Russian Federation); Cervera, Javier; Mafe, Salvador [Departament de Fisica de la Terra i Termodinamica, Universitat de Valencia, E-46100 Burjassot (Spain)], E-mail: patraho@fis.upv.es

    2008-08-06

    We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores.

  11. Final Report for Subcontract B541028, Pore-Scale Modeling to Support "Pore Connectivity" Research Work

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, R P

    2009-02-25

    This report covers modeling aspects of a combined experimental and modeling task in support of the DOE Science and Technology Program (formerly OSTI) within the Office of Civilian Radioactive Waste Management (OCRWM). Research Objectives The research for this project dealt with diffusive retardation: solute moving through a fracture diffuses into and out of the rock matrix. This diffusive exchange retards overall solute movement, and retardation both dilutes waste being released, and allows additional decay. Diffusive retardation involves not only fracture conductivity and matrix diffusion, but also other issues and processes: contaminants may sorb to the rock matrix, fracture flow may be episodic, a given fracture may or may not flow depending on the volume of flow and the fracture's connection to the overall fracture network, the matrix imbibes water during flow episodes and dries between episodes, and so on. The objective of the project was to improve understanding of diffusive retardation of radionuclides due to fracture / matrix interactions. Results from combined experimental/modeling work were to (1) determine whether the current understanding and model representation of matrix diffusion is valid, (2) provide insights into the upscaling of laboratory-scale diffusion experiments, and (3) help in evaluating the impact on diffusive retardation of episodic fracture flow and pore connectivity in Yucca Mountain tuffs. Questions explored included the following: (1) What is the relationship between the diffusion coefficient measured at one scale, to that measured or observed at a different scale? In classical materials this relationship is trivial; in low-connectivity materials it is not. (2) Is the measured diffusivity insensitive to the shape of the sample? Again, in classical materials there should be no sample shape effect. (3) Does sorption affect diffusive exchange in low-connectivity media differently than in classical media? (4) What is the effect of

  12. Low Pore Connectivity in Natural Rock

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qinhong; Ewing, Robert P.; Dultz, Stefan

    2012-05-15

    As repositories for CO₂ and radioactive waste, as oil and gas reservoirs, and as contaminated sites needing remediation, rock formations play a central role in energy and environmental management. The connectivity of the rock's porespace strongly affects fluid flow and solute transport. This work examines pore connectivity and its implications for fluid flow and chemical transport. Three experimental approaches (imbibition, tracer concentration profiles, and imaging) were used in combination with network modeling. In the imbibition results, three types of imbibition slope [log (cumulative imbibition) vs. log (imbibition time)] were found: the classical 0.5, plus 0.26, and 0.26 transitioning to 0.5. The imbibition slope of 0.26 seen in Indiana sandstone, metagraywacke, and Barnett shale indicates low pore connectivity, in contrast to the slope of 0.5 seen in the well-connected Berea sandstone. In the tracer profile work, rocks exhibited different distances to the plateau porosity, consistent with the pore connectivity from the imbibition tests. Injection of a molten metal into connected pore spaces, followed by 2-D imaging of the solidified alloy in polished thin sections, allowed direct assessment of pore structure and lateral connection in the rock samples. Pore-scale network modeling gave results consistent with measurements, confirming pore connectivity as the underlying cause of both anomalous behaviors: imbibition slope not having the classical value of 0.5, and accessible porosity being a function of distance from the edge. A poorly connected porespace will exhibit anomalous behavior in fluid flow and chemical transport, such as a lower imbibition slope (in air–water system) and diffusion rate than expected from classical behavior.

  13. Low pore connectivity in natural rock.

    Science.gov (United States)

    Hu, Qinhong; Ewing, Robert P; Dultz, Stefan

    2012-05-15

    As repositories for CO(2) and radioactive waste, as oil and gas reservoirs, and as contaminated sites needing remediation, rock formations play a central role in energy and environmental management. The connectivity of the rock's porespace strongly affects fluid flow and solute transport. This work examines pore connectivity and its implications for fluid flow and chemical transport. Three experimental approaches (imbibition, tracer concentration profiles, and imaging) were used in combination with network modeling. In the imbibition results, three types of imbibition slope [log (cumulative imbibition) vs. log (imbibition time)] were found: the classical 0.5, plus 0.26, and 0.26 transitioning to 0.5. The imbibition slope of 0.26 seen in Indiana sandstone, metagraywacke, and Barnett shale indicates low pore connectivity, in contrast to the slope of 0.5 seen in the well-connected Berea sandstone. In the tracer profile work, rocks exhibited different distances to the plateau porosity, consistent with the pore connectivity from the imbibition tests. Injection of a molten metal into connected pore spaces, followed by 2-D imaging of the solidified alloy in polished thin sections, allowed direct assessment of pore structure and lateral connection in the rock samples. Pore-scale network modeling gave results consistent with measurements, confirming pore connectivity as the underlying cause of both anomalous behaviors: imbibition slope not having the classical value of 0.5, and accessible porosity being a function of distance from the edge. A poorly connected porespace will exhibit anomalous behavior in fluid flow and chemical transport, such as a lower imbibition slope (in air-water system) and diffusion rate than expected from classical behavior.

  14. Three-dimensional pore space quantification of apple tissue using X-ray computed microtomography.

    Science.gov (United States)

    Mendoza, Fernando; Verboven, Pieter; Mebatsion, Hibru K; Kerckhofs, Greet; Wevers, Martine; Nicolaï, Bart

    2007-08-01

    The microstructure and the connectivity of the pore space are important variables for better understanding of the complex gas transport phenomena that occur in plant tissues. In this study, we present an experimental procedure for image acquisition and image processing to quantitatively characterize in 3D the pore space of apple tissues (Malus domestica Borkh.) for two cultivars (Jonagold and Braeburn) taken from the fleshy part of the cortex using X-ray computer microtomography. Preliminary sensitivity analyses were performed to determine the effect of the resolution and the volume size (REV, representative elementary volume analysis) on the computed porosity of apple samples. For comparison among cultivars, geometrical properties such as porosity, specific surface area, number of disconnected pore volumes and their distribution parameters were extracted and analyzed in triplicate based on the 3D skeletonization of the pore space (medial axis analysis). The results showed that microtomography provides a resolution at the micrometer level to quantitatively analyze and characterize the 3D topology of the pore space in apple tissue. The computed porosity was confirmed to be highly dependent of the resolution used, and the minimum REV of the cortical flesh of apple fruit was estimated to be 1.3 mm(3). Comparisons among the two cultivars using a resolution of 8.5 mum with a minimum REV cube showed that in spite of the complexity and variability of the pore space network observed in Jonagold and Braeburn apples, the extracted parameters from the medial axis were significantly different (P-value < 0.05). Medial axis parameters showed potential to differentiate the microstructure between the two evaluated apple cultivars.

  15. Pore Structure Characterization of Indiana Limestone and Pink Dolomite from Pore Network Reconstructions

    Directory of Open Access Journals (Sweden)

    Freire-Gormaly Marina

    2016-05-01

    Full Text Available Carbon sequestration in deep underground saline aquifers holds significant promise for reducing atmospheric carbon dioxide emissions (CO2. However, challenges remain in predicting the long term migration of injected CO2. Addressing these challenges requires an understanding of pore-scale transport of CO2 within existing brine-filled geological reservoirs. Studies on the transport of fluids through geological porous media have predominantly focused on oil-bearing formations such as sandstone. However, few studies have considered pore-scale transport within limestone and other carbonate formations, which are found in potential storage sites. In this work, high-resolution micro-Computed Tomography (microCT was used to obtain pore-scale structural information of two model carbonates: Indiana Limestone and Pink Dolomite. A modified watershed algorithm was applied to extract pore network from the reconstructed microCT volumetric images of rock samples and compile a list of pore-scale characteristics from the extracted networks. These include statistical distributions of pore size and radius, pore-pore separation, throat radius, and network coordination. Finally, invasion percolation algorithms were applied to determine saturation-pressure curves for the rock samples. The statistical distributions were comparable to literature values for the Indiana Limestone. This served as validation for the network extraction approach for Pink Dolomite, which has not been considered previously. Based on the connectivity and the pore-pore separation, formations such as Pink Dolomite may present suitable storage sites for carbon storage. The pore structural distributions and saturation curves obtained in this study can be used to inform core- and reservoir-scale modeling and experimental studies of sequestration feasibility.

  16. Pore Distribution and Water Uptake in a Cenosphere-Cement Paste Composite Material

    Science.gov (United States)

    Baronins, J.; Setina, J.; Sahmenko, G.; Lagzdina, S.; Shishkin, A.

    2015-11-01

    Alumina silicate cenospheres (CS) is a significant waste material from power plants that use a coal. Use CS as Portland cement replacement material gives opportunity to control physical and mechanical properties and makes a product lighter and more cost-effective. In the frame of this study, Portland cement paste samples were produced by adding CS in the concentration range from 0 to 40 volume %. Water uptake of hardened samples was checked and pore size distribution by using the mercury porosimetry was determined. In a cold climate where the temperature often falls below 0 °C, it is important to avoid the amount of micrometer sized pores in the final structure and to decrease water absorption capacity of material. In winter conditions, water fills such pores and causes additional stresses to their walls by expansion while freezing. It was found that generally water uptake capacity for cement paste samples decreased up to 20% by increasing the concentration of CS up to 40 volume %, at the same time, the volume of micrometer sized opened pores increases.

  17. Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers.

    Science.gov (United States)

    Lee, Seul-Yi; Park, Soo-Jin

    2013-01-01

    Commercially available activated carbon fibers (ACFs) were modified further by a chemical activation method to obtain superior CO(2) adsorption capacity. The relationship between the pore structure of the modified ACF and the CO(2) adsorption behaviors was investigated. Chemical activation (with KOH at a fixed activation temperature of 900°C for 1h and various KOH/ACF weight ratios ranging from 1 to 4) of ACF increased the total pore volume and specific surface area to 1.124 cm(3)g(-1) (KOH/ACF weight ratio of 2) and 2318 m(2)g(-1) (KOH/ACF weight ratio of 4), respectively. Compared to ACF, the total pore volume and specific surface area were improved by factors of 2.5 and 2.3, respectively. Interestingly, the highest CO(2) adsorption capacity of 250 mg g(-1) at 298 K and 1 bar was observed at a KOH/ACF weight ratio of 3. The modified ACF had the narrowest microporosity ranging from 0.5 to 0.7 nm. Therefore, the increase in CO(2) adsorption capacity after chemical activation is closely related to the narrower pore size distribution rather than the total or micropore volume and specific surface area.

  18. Modeling branching pore structures in membrane filters

    Science.gov (United States)

    Sanaei, Pejman; Cummings, Linda J.

    2016-11-01

    Membrane filters are in widespread industrial use, and mathematical models to predict their efficacy are potentially very useful, as such models can suggest design modifications to improve filter performance and lifetime. Many models have been proposed to describe particle capture by membrane filters and the associated fluid dynamics, but most such models are based on a very simple structure in which the pores of the membrane are assumed to be simple circularly-cylindrical tubes spanning the depth of the membrane. Real membranes used in applications usually have much more complex geometry, with interconnected pores which may branch and bifurcate. Pores are also typically larger on the upstream side of the membrane than on the downstream side. We present an idealized mathematical model, in which a membrane consists of a series of bifurcating pores, which decrease in size as the membrane is traversed. Feed solution is forced through the membrane by applied pressure, and particles are removed from the feed either by sieving, or by particle adsorption within pores (which shrinks them). Thus the membrane's permeability decreases as the filtration progresses, ultimately falling to zero. We discuss how filtration efficiency depends on the characteristics of the branching structure. Partial support from NSF DMS 1261596 is gratefully acknowledged.

  19. Performance of Small Pore Microchannel Plates

    Science.gov (United States)

    Siegmund, O. H. W.; Gummin, M. A.; Ravinett, T.; Jelinsky, S. R.; Edgar, M.

    1995-01-01

    Small pore size microchannel plates (MCP's) are needed to satisfy the requirements for future high resolution small and large format detectors for astronomy. MCP's with pore sizes in the range 5 micron to 8 micron are now being manufactured, but they are of limited availability and are of small size. We have obtained sets of Galileo 8 micron and 6.5 micron MCP's, and Philips 6 micron and 7 micron pore MCP's, and compared them to our larger pore MCP Z stacks. We have tested back to back MCP stacks of four of these MCP's and achieved gains greater than 2 x 1O(exp 7) with pulse height distributions of less than 40% FWHM, and background rates of less than 0.3 events sec(exp -1) cm(exp -2). Local counting rates up to approx. 100 events/pore/sec have been attained with little drop of the MCP gain. The bare MCP quantum efficiencies are somewhat lower than those expected, however. Flat field images are characterized by an absence of MCP fixed pattern noise.

  20. Modeling Tissue Growth Within Nonwoven Scaffolds Pores

    Science.gov (United States)

    Church, Jeffrey S.; Alexander, David L.J.; Russell, Stephen J.; Ingham, Eileen; Ramshaw, John A.M.; Werkmeister, Jerome A.

    2011-01-01

    In this study we present a novel approach for predicting tissue growth within the pores of fibrous tissue engineering scaffolds. Thin nonwoven polyethylene terephthalate scaffolds were prepared to characterize tissue growth within scaffold pores, by mouse NR6 fibroblast cells. On the basis of measurements of tissue lengths at fiber crossovers and along fiber segments, mathematical models were determined during the proliferative phase of cell growth. Tissue growth at fiber crossovers decreased with increasing interfiber angle, with exponential relationships determined on day 6 and 10 of culture. Analysis of tissue growth along fiber segments determined two growth profiles, one with enhanced growth as a result of increased tissue lengths near the fiber crossover, achieved in the latter stage of culture. Derived mathematical models were used in the development of a software program to visualize predicted tissue growth within a pore. This study identifies key pore parameters that contribute toward tissue growth, and suggests models for predicting this growth, based on fibroblast cells. Such models may be used in aiding scaffold design, for optimum pore infiltration during the tissue engineering process. PMID:20687775

  1. Analysis of a spatially deconvolved solar pore

    Science.gov (United States)

    Quintero Noda, C.; Shimizu, T.; Ruiz Cobo, B.; Suematsu, Y.; Katsukawa, Y.; Ichimoto, K.

    2016-08-01

    Solar pores are active regions with large magnetic field strengths and apparent simple magnetic configurations. Their properties resemble the ones found for the sunspot umbra although pores do not show penumbra. Therefore, solar pores present themselves as an intriguing phenomenon that is not completely understood. We examine in this work a solar pore observed with Hinode/SP using two state of the art techniques. The first one is the spatial deconvolution of the spectropolarimetric data that allows removing the stray light contamination induced by the spatial point spread function of the telescope. The second one is the inversion of the Stokes profiles assuming local thermodynamic equilibrium that let us to infer the atmospheric physical parameters. After applying these techniques, we found that the spatial deconvolution method does not introduce artefacts, even at the edges of the magnetic structure, where large horizontal gradients are detected on the atmospheric parameters. Moreover, we also describe the physical properties of the magnetic structure at different heights finding that, in the inner part of the solar pore, the temperature is lower than outside, the magnetic field strength is larger than 2 kG and unipolar, and the line-of-sight velocity is almost null. At neighbouring pixels, we found low magnetic field strengths of same polarity and strong downward motions that only occur at the low photosphere, below the continuum optical depth log τ = -1. Finally, we studied the spatial relation between different atmospheric parameters at different heights corroborating the physical properties described before.

  2. Giant MACPF/CDC pore forming toxins: A class of their own.

    Science.gov (United States)

    Reboul, Cyril F; Whisstock, James C; Dunstone, Michelle A

    2016-03-01

    Pore Forming Toxins (PFTs) represent a key mechanism for permitting the passage of proteins and small molecules across the lipid membrane. These proteins are typically produced as soluble monomers that self-assemble into ring-like oligomeric structures on the membrane surface. Following such assembly PFTs undergo a remarkable conformational change to insert into the lipid membrane. While many different protein families have independently evolved such ability, members of the Membrane Attack Complex PerForin/Cholesterol Dependent Cytolysin (MACPF/CDC) superfamily form distinctive giant β-barrel pores comprised of up to 50 monomers and up to 300Å in diameter. In this review we focus on recent advances in understanding the structure of these giant MACPF/CDC pores as well as the underlying molecular mechanisms leading to their formation. Commonalities and evolved variations of the pore forming mechanism across the superfamily are discussed. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.

  3. TIG Dressing Effects on Weld Pores and Pore Cracking of Titanium Weldments

    Directory of Open Access Journals (Sweden)

    Hui-Jun Yi

    2016-10-01

    Full Text Available Weld pores redistribution, the effectiveness of using tungsten inert gas (TIG dressing to remove weld pores, and changes in the mechanical properties due to the TIG dressing of Ti-3Al-2.5V weldments were studied. Moreover, weld cracks due to pores were investigated. The results show that weld pores less than 300 μm in size are redistributed or removed via remelting due to TIG dressing. Regardless of the temperature condition, TIG dressing welding showed ductility, and there was a loss of 7% tensile strength of the weldments. Additionally, it was considered that porosity redistribution by TIG dressing was due to fluid flow during the remelting of the weld pool. Weld cracks in titanium weldment create branch cracks around pores that propagate via the intragranular fracture, and oxygen is dispersed around the pores. It is suggested that the pore locations around the LBZ (local brittle zone and stress concentration due to the pores have significant effects on crack initiation and propagation.

  4. Chromatographic performance of large-pore versus small-pore columns in micellar liquid chromatography.

    Science.gov (United States)

    McCormick, Timothy J; Foley, Joe P; Lloyd, David K

    2003-02-25

    Micellar liquid chromatography (MLC) is useful in bioanalysis because proteinaceous biofluids can be directly injected onto the column. The technique has been limited in part because of the apparently weak eluting power of micellar mobile phases. It has recently been shown [Anal. Chem. 72 (2000) 294] that this may be overcome by the use of large pore size stationary phases. In this work, large-pore (1000 A) C(18) stationary phases were evaluated relative to conventional small-pore (100 A) C(18) stationary phases for the direct sample injection of drugs in plasma. Furthermore, the difference between the large and small pore phases in gradient elution separations of mixtures of widely varying hydrophobicities was investigated. Large-pore stationary phases were found to be very effective for eluting moderately to highly hydrophobic compounds such as ibuprofen, crotamiton, propranolol, and dodecanophenone, which were highly retained on the small-pore stationary phases typically used in MLC. The advantages of direct introduction of biological samples (drugs in plasma) and rapid column re-equilibration after gradient elution in MLC were maintained with large-pore phases. Finally, recoveries, precision, linearity, and detection limits for the determination of quinidine and DPC 961 in spiked bovine plasma were somewhat better using MLC with wide pore phases.

  5. Modeling of N2 adsorption in MCM-41 materials: hexagonal pores versus cylindrical pores.

    Science.gov (United States)

    Ustinov, Eugene A

    2009-07-07

    Low-temperature nitrogen adsorption in hexagonal pores and equivalent cylindrical pores is analyzed using nonlocal density functional theory extended to amorphous solids (NLDFT-AS). It is found that, despite significant difference of the density distribution over the cross-section of the pore, the capillary condensation/evaporation pressure is not considerably affected by the pore shape being slightly lower in the case of hexagonal geometry. However, the condensation/evaporation step in the hexagonal pore is slightly larger than that in the equivalent cylindrical pore because in the latter case the pore wall surface area and, hence, the amount adsorbed at pressures below the evaporation pressure are underestimated by 5%. We show that a dimensionless parameter defined as the ratio of the condensation/evaporation step and the upper value of the amount adsorbed at the condensation/evaporation pressure can be used as an additional criterion of the correct choice of the gas-solid molecular parameters along with the dependence of condensation/evaporation pressure on the pore diameter. Application of the criteria to experimental data on nitrogen adsorption on a series of MCM-41 silica at 77 K corroborates some evidence that the capillary condensation occurs at equilibrium conditions.

  6. Study on lotus-type porous copper electroplated with a Ni coating on inner surface of pores

    Science.gov (United States)

    Du, Hao; Song, Guihong; Nakajima, Hideo; Zhao, Yanhui; Xiao, Jinquan; Xiong, Tianying

    2013-01-01

    Deposition of Ni coating on inner surface of pores was attempted by electroplating for lotus-type porous copper with pore size of 0.6 mm and pore length of 6 mm. The surface morphology, thickness, thickness distribution along the pore length, and phase composition of the coating were characterized. It is proven that the Ni coating with a polycrystalline structure can be deposited on the inner surface of the pores with length/diameter of 10 for lotus-type porous copper by agitating the electroplating solution properly during the process. It is indicated that the coating thickness distributes uniformly along the pore depth and is about 4-5 μm. Furthermore, the mechanical properties including vicker hardness, compressive yield strength and absorbed energy ability of the electroplated porous copper were evaluated. It is found that the mechanical properties are improved significantly after depositing the nickel coating inside pores of the lotus-type porous copper. Among them, 0.2% yield stress increases from 22.96 to 30.15 MPa, while absorbed energy per volume from 60.83 to 96.01 MJ/m3 when compressed to strain of 80%, which is attributed mainly to the Ni coating as an obstacle to dislocation slip during deformation and its strengthening effect for the higher strength, and the good adhesion to the pore wall of the porous copper.

  7. Moving Magnetic Features around a Pore

    CERN Document Server

    Kaithakkal, A J; Solanki, S K; Lagg, A; Barthol, P; Gandorfer, A; Gizon, L; Hirzberger, J; vanNoort, M; Rodríguez, J Blanco; Iniesta, J C Del Toro; Suárez, D Orozco; Schmidt, W; Pillet, V Martínez; Knölker, M

    2016-01-01

    Spectropolarimetric observations from Sunrise II/IMaX obtained in June 2013 are used for a statistical analysis to determine the physical properties of moving magnetic features (MMFs) observed near a pore. MMFs of the same and opposite polarity with respect to the pore are found to stream from its border at an average speed of 1.3 km s$^{-1}$ and 1.2 km s$^{-1}$ respectively, with mainly same-polarity MMFs found further away from the pore. MMFs of both polarities are found to harbor rather weak, inclined magnetic fields. Opposite-polarity MMFs are blue-shifted, while same-polarity MMFs do not show any preference for up- or downflows. Most of the MMFs are found to be of sub-arcsecond size and carry a mean flux of $\\sim$ 1.2$\\times 10^{17}$ Mx.

  8. Optical detection of pores in adipocyte membrane

    Science.gov (United States)

    Yanina, I. Yu.; Doubrovski, V. A.; Tuchin, V. V.

    2013-08-01

    Structures that can be interpreted as cytoplasm droplets leaking through the membrane are experimentally detected on the membranes of adipocytes using optical digital microscopy. The effect of an aqueous alcohol solution of brilliant green on the amount and sizes of structures is studied. It is demonstrated that the optical irradiation of the adipocytes that are sensitized with the aid of the brilliant green leads to an increase in the amount of structures (pores) after the irradiation. The experimental results confirm the existence of an earlier-proposed effect of photochemical action on the sensitized cells of adipose tissue that involves additional formation of pores in the membrane of the sensitized cell under selective optical irradiation. The proposed method for the detection of micropores in the membrane of adipose tissue based on the detection of the cytoplasm droplets leaking from the cell can be considered as a method for the optical detection of nanosized pores.

  9. Pore Pressure Measurements Inside Rubble Mound Breakwaters

    DEFF Research Database (Denmark)

    Helgason, Einar; Burcharth, H. F.; Grüne, Joachim

    2004-01-01

    The present paper presents pore pressure measurements from large scale model tests performed at the Large Wave Channel, Hannover, Germany and small scale model test performed at the Hydraulic & Coastal Engineering Laboratory, Aalborg University, Denmark. Information on pore pressure attenuation......, and compared to a damping model presented by Burcharth et al. (1999). Reasonable agreement is found when considering the difference in the grading and uniformity of the model core materials. Comparison between results obtained from small and large scale model tests showed no clear evidence of scale effects....

  10. Porous media fluid transport and pore structure

    CERN Document Server

    Dullien, F A L

    1992-01-01

    This book examines the relationship between transport properties and pore structure of porous material. Models of pore structure are presented with a discussion of how such models can be used to predict the transport properties of porous media. Portions of the book are devoted to interpretations of experimental results in this area and directions for future research. Practical applications are given where applicable, and are expected to be useful for a large number of different fields, including reservoir engineering, geology, hydrogeology, soil science, chemical process engineering, biomedica

  11. Influence of pore size distribution on the adsorption of phenol on PET-based activated carbons.

    Science.gov (United States)

    Lorenc-Grabowska, Ewa; Diez, María A; Gryglewicz, Grazyna

    2016-05-01

    The role of pore size distribution in the adsorption of phenol in aqueous solutions on polyethylene terephthalate (PET)-based activated carbons (ACs) has been analyzed. The ACs were prepared from PET and mixtures of PET with coal-tar pitch (CTP) by means of carbonization and subsequent steam and carbon dioxide activation at 850 and 950 °C, respectively. The resultant ACs were characterized on the basis of similarities in their surface chemical features and differences in their micropore size distributions. The adsorption of phenol was carried out in static conditions at ambient temperature. The pseudo-second order kinetic model and Langmuir model were found to fit the experimental data very well. The different adsorption capacities of the ACs towards phenol were attributed to differences in their micropore size distributions. Adsorption capacity was favoured by the volume of pores with a size smaller than 1.4 nm; but restricted by pores smaller than 0.8 nm.

  12. Controlling Pore Size and its Distribution of γ-Al2O3 Nanofiltration Membranes

    Institute of Scientific and Technical Information of China (English)

    Rong Chun XIONG; Xiao Dong LEI; Gang WEI

    2003-01-01

    The preparation process of γ-Al2O3 nanofiltration membranes were studied by N2absorption and desorption test and retention rate vs thickness gradient curve method. It was foundthat template and thermal treatment were key factors for controlling pore size and its distribution.Under the optimized experimental conditions, the BJH (Barret-Joyner-Halenda) desorption averagepore diameter, BJH desorption cumulative volume of pores and BET (Brunauer-Emmett-Teller)surface area of obtained membranes were about 3.9 nm, 0.33 cm3/g and 245 m2/g respectively, thepore size distribution was very narrow. Pore size decreased with the increasing of thickness andno evident change after the dense top layer was formed. The optimum thickness can becontrolled by retention rate vs thickness gradient curve method.

  13. Accurate and efficient maximal ball algorithm for pore network extraction

    Science.gov (United States)

    Arand, Frederick; Hesser, Jürgen

    2017-04-01

    The maximal ball (MB) algorithm is a well established method for the morphological analysis of porous media. It extracts a network of pores and throats from volumetric data. This paper describes structural modifications to the algorithm, while the basic concepts are preserved. Substantial improvements to accuracy and efficiency are achieved as follows: First, all calculations are performed on a subvoxel accurate distance field, and no approximations to discretize balls are made. Second, data structures are simplified to keep memory usage low and improve algorithmic speed. Third, small and reasonable adjustments increase speed significantly. In volumes with high porosity, memory usage is improved compared to classic MB algorithms. Furthermore, processing is accelerated more than three times. Finally, the modified MB algorithm is verified by extracting several network properties from reference as well as real data sets. Runtimes are measured and compared to literature.

  14. Minivoids in the Local Volume

    CERN Document Server

    Tikhonov, A V

    2006-01-01

    We consider a sphere of 7.5 Mpc radius, which contains 355 galaxies with accurately measured distances, to detect the nearest empty volumes. Using a simple void detection algorithm, we found six large (mini)voids in Aquila, Eridanus, Leo, Vela, Cepheus and Octans, each of more than 30 Mpc^3. Besides them, 24 middle-size "bubbles" of more than 5 Mpc^3 volume are detected, as well as 52 small "pores". The six largest minivoids occupy 58% of the considered volume. Addition of the bubbles and pores to them increases the total empty volume up to 75% and 81%, respectively. The detected local voids look like oblong potatoes with typical axial ratios b/a = 0.75 and c/a = 0.62 (in the triaxial ellipsoide approximation). Being arranged by the size of their volume, local voids follow power law of volumes-rankes dependence. A correlation Gamma-function of the Local Volume galaxies follows a power low with a formally calculated fractal dimension D = 1.5. We found that galaxies surrounding the local minivoids do not differ...

  15. Experimental Investigation of the Variation of Concrete Pores under the Action of Freeze-Thaw Cycles by Using X-Ray CT

    Directory of Open Access Journals (Sweden)

    Jie Yuan

    2014-01-01

    Full Text Available The variation of concrete pores under the action of freeze-thaw cycles was investigated experimentally by using the X-ray CT. Firstly, the statistical characteristics of pores of concrete specimens were obtained by using the X-ray image analysis. Secondly, the variation of porosity and pore volume of concrete pores were analyzed and discussed by comparing with above characteristics. Thirdly, the failure process of the concrete specimens acted by the freeze-thaw cycles was investigated by scanning the interior of concrete specimens. The results showed that the pore volumes of concrete pores whose volumes were located at the interval [0.5 mm3, 20 mm3] have no big variation in both the amounts and volume of concrete pores, while others were found to have huge change during the process of experiment. The extent of damage acted by the repeated freezing and thawing gradually ranged from surface to complete disintegration of the interior of concrete specimens after 30 cycles of freeze-thaw acting.

  16. Fluctuations of a fluid inside a pore

    NARCIS (Netherlands)

    Zvelindovsky, AV; Zatovsky, AV

    The correlation theory of the thermal hydrodynamic fluctuations of compressible viscous fluids within a spherical pore has been developed. The fluctuation motions ape described by the linearized Navier-Stokes and heat transfer equations, containing spontaneous viscous stresses and heat fluxes. The

  17. Induction of nano pore in Agrobacterial hemoglobin

    Directory of Open Access Journals (Sweden)

    Mojtaba Tousheh

    2014-01-01

    Full Text Available Introduction: A variety of oxygen-transport and -binding proteins exist in organisms including bacteria, protozoans, and fungi all have hemoglobin-like proteins. In addition to dealing with transport and sensing of oxygen, they may also deal with NO2, CO2, sulfide compounds, and even O2 scavenging in environments. Also they detoxified chlorinated materials like P450 enzymes and peroxidases and use as a detector of nitrate and hydrogen peroxide. Pore-forming bacterial globins are interested for filtration. Materials and methods: Although there are data for bacterial toxin as a filter, here we used Agrobacterial hem to induce nano pore in the heme structure using point mutation. Results: Investigations showed that three amino acids leucine 76, alanine 83 and histidine 80 are important for pore formation in Agrobacterium hemoglobin. A point mutation on leucine 76 to glycine, histidine 80 to asparagine and alanine 83 to lysine step by step led to create the nano pore 0.7- 0.8 nm in the globin. Discussion and conclusion: These mutations in bacterial hemoglobin increase the stability when mutation is with it’s at pH7. This mutation decreases the aliphatic index however increase the stability index.

  18. Particle diffusion in complex nanoscale pore networks

    DEFF Research Database (Denmark)

    Müter, Dirk; Sørensen, Henning Osholm; Bock, H.;

    2015-01-01

    We studied the diffusion of particles in the highly irregular pore networks of chalk, a very fine-grained rock, by combining three-dimensional X-ray imaging and dissipative particle dynamics (DPD) simulations. X-ray imaging data were collected at 25 nm voxel dimension for two chalk samples with v...

  19. Maximal pore size in UF membranes

    NARCIS (Netherlands)

    Arkhangelsky, E.; Duek, A.; Gitis, V.

    2012-01-01

    The ultrafiltration membrane rejection capability is most often characterized by molecular weight cutoff (MWCO). The value is found by rejection of organic solutes and the evaluation of particle retention requires a conversion of either MWCO to pore size or particle diameter to molecular weight. The

  20. Silicon Pore Optics development for ATHENA

    DEFF Research Database (Denmark)

    Collon, Maximilien J.; Vacanti, Giuseppe; Guenther, Ramses

    2015-01-01

    ) to meet the science requirements of large effective area (1-2 m(2) at a few keV) at a focal length of 12 m. To meet the high angular resolution (5 arc seconds) requirement the X-ray lens will also need to be very accurate. Silicon Pore Optics (SPO) technology has been invented to enable building...

  1. Observations of sausage modes in magnetic pores

    CERN Document Server

    Morton, R J; Jess, D B; Mathioudakis, M

    2010-01-01

    We present here evidence for the observation of the magneto-hydrodynamic (MHD) sausage modes in magnetic pores in the solar photosphere. Further evidence for the omnipresent nature of acoustic global modes is also found. The empirical decomposition method of wave analysis is used to identify the oscillations detected through a 4170 {\\AA} 'blue continuum' filter observed with the Rapid Oscillations in the Solar Atmosphere (ROSA) instrument. Out of phase, periodic behavior in pore size and intensity is used as an indicator of the presence of magneto-acoustic sausage oscillations. Multiple signatures of the magneto-acoustic sausage mode are found in a number of pores. The periods range from as short as 30 s up to 450 s. A number of the magneto-acoustic sausage mode oscillations found have periods of 3 and 5 minutes, similar to the acoustic global modes of the solar interior. It is proposed that these global oscillations could be the driver of the sausage type magneto-acoustic MHD wave modes in pores.

  2. Fluctuations of a fluid inside a pore

    NARCIS (Netherlands)

    Zvelindovsky, AV; Zatovsky, AV

    1997-01-01

    The correlation theory of the thermal hydrodynamic fluctuations of compressible viscous fluids within a spherical pore has been developed. The fluctuation motions ape described by the linearized Navier-Stokes and heat transfer equations, containing spontaneous viscous stresses and heat fluxes. The e

  3. Fluctuations of a fluid inside a pore

    NARCIS (Netherlands)

    Zvelindovsky, AV; Zatovsky, AV

    1997-01-01

    The correlation theory of the thermal hydrodynamic fluctuations of compressible viscous fluids within a spherical pore has been developed. The fluctuation motions ape described by the linearized Navier-Stokes and heat transfer equations, containing spontaneous viscous stresses and heat fluxes. The e

  4. Pore-Forming Toxins Trigger the Purge.

    Science.gov (United States)

    Bonfini, Alessandro; Buchon, Nicolas

    2016-12-14

    The intestinal epithelium responds to pathogens by coordinating microbial elimination with tissue repair, both required to survive an infection. In this issue of Cell Host & Microbe, Lee et al. (2016) discover a rapid and evolutionarily conserved response to pore-forming toxins in the gut, involving cytoplasm ejection and enterocyte regrowth.

  5. Silicon Pore Optics development for ATHENA

    DEFF Research Database (Denmark)

    Collon, Maximilien J.; Vacanti, Giuseppe; Guenther, Ramses;

    2015-01-01

    ) to meet the science requirements of large effective area (1-2 m(2) at a few keV) at a focal length of 12 m. To meet the high angular resolution (5 arc seconds) requirement the X-ray lens will also need to be very accurate. Silicon Pore Optics (SPO) technology has been invented to enable building...

  6. Facial skin pores: a multiethnic study

    Science.gov (United States)

    Flament, Frederic; Francois, Ghislain; Qiu, Huixia; Ye, Chengda; Hanaya, Tomoo; Batisse, Dominique; Cointereau-Chardon, Suzy; Seixas, Mirela Donato Gianeti; Dal Belo, Susi Elaine; Bazin, Roland

    2015-01-01

    Skin pores (SP), as they are called by laymen, are common and benign features mostly located on the face (nose, cheeks, etc) that generate many aesthetic concerns or complaints. Despite the prevalence of skin pores, related literature is scarce. With the aim of describing the prevalence of skin pores and anatomic features among ethnic groups, a dermatoscopic instrument, using polarized lighting, coupled to a digital camera recorded the major features of skin pores (size, density, coverage) on the cheeks of 2,585 women in different countries and continents. A detection threshold of 250 μm, correlated to clinical scorings by experts, was input into a specific software to further allow for automatic counting of the SP density (N/cm2) and determination of their respective sizes in mm2. Integrating both criteria also led to establishing the relative part of the skin surface (as a percentage) that is actually covered by SP on cheeks. The results showed that the values of respective sizes, densities, and skin coverage: 1) were recorded in all studied subjects; 2) varied greatly with ethnicity; 3) plateaued with age in most cases; and 4) globally refected self-assessment by subjects, in particular those who self-declare having “enlarged pores” like Brazilian women. Inversely, Chinese women were clearly distinct from other ethnicities in having very low density and sizes. Analyzing the present results suggests that facial skin pore’s morphology as perceived by human eye less result from functional criteria of associated appendages such as sebaceous glands. To what extent skin pores may be viewed as additional criteria of a photo-altered skin is an issue to be further addressed. PMID:25733918

  7. Impact of NAPL architecture on interphase mass transfer: A pore network study

    Science.gov (United States)

    Agaoglu, Berken; Scheytt, Traugott; Copty, Nadim K.

    2016-09-01

    Interphase mass transfer in porous media is commonly modeled using Sherwood number expressions that are developed in terms of fluid and porous medium properties averaged over some representative elementary volume (REV). In this work the influence of sub-grid scale properties on interphase mass transfer was investigated using a two-dimensional pore network model. The focus was on assessing the impact of (i) NAPL saturation, (ii) interfacial area (iii) NAPL spatial distribution at the pore scale, (iv) grain size heterogeneity, (v) REV or domain size and (vi) pore scale heterogeneity of the porous media on interphase mass transfer. Variability of both the mass transfer coefficient that explicitly accounts for the interfacial area and the mass transfer coefficient that lumps the interfacial area was examined. It was shown that pore scale NAPL distribution and its orientation relative to the flow direction have significant impact on flow bypassing and the interphase mass transfer coefficient. This results in a complex non-linear relationship between interfacial area and the REV-based interphase mass transfer rate. Hence, explicitly accounting for the interfacial area does not eliminate the uncertainty of the mass transfer coefficient. It was also shown that, even for explicitly defined flow patterns, changing the domain size over which the mass transfer process is defined influences the extent of NAPL bypassing and dilution and, consequently, the interphase mass transfer. It was also demonstrated that the spatial variability of pore scale parameters such as pore throat diameters may result in different rates of interphase mass transfer even for the same pore size distribution index.

  8. Quantitative analysis of nano-pore geomaterials and representative sampling for digital rock physics

    Science.gov (United States)

    Yoon, H.; Dewers, T. A.

    2014-12-01

    Geomaterials containing nano-pores (e.g., shales and carbonate rocks) have become increasingly important for emerging problems such as unconventional gas and oil resources, enhanced oil recovery, and geologic storage of CO2. Accurate prediction of coupled geophysical and chemical processes at the pore scale requires realistic representation of pore structure and topology. This is especially true for chalk materials, where pore networks are small and complex, and require characterization at sub-micron scale. In this work, we apply laser scanning confocal microscopy to characterize pore structures and microlithofacies at micron- and greater scales and dual focused ion beam-scanning electron microscopy (FIB-SEM) for 3D imaging of nanometer-to-micron scale microcracks and pore distributions. With imaging techniques advanced for nano-pore characterization, a problem of scale with FIB-SEM images is how to take nanometer scale information and apply it to the thin-section or larger scale. In this work, several texture characterization techniques including graph-based spectral segmentation, support vector machine, and principal component analysis are applied for segmentation clusters represented by 1-2 FIB-SEM samples per each cluster. Geometric and topological properties are analyzed and lattice-Boltzmann method (LBM) is used to obtain permeability at several different scales. Upscaling of permeability to the Darcy scale (e.g., the thin-section scale) with image dataset will be discussed with emphasis on understanding microfracture-matrix interaction, representative volume for FIB-SEM sampling, and multiphase flow and reactive transport. Funding from the DOE Basic Energy Sciences Geosciences Program is gratefully acknowledged. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under

  9. A fast Laplace solver approach to pore scale permeability

    Science.gov (United States)

    Arns, Christoph; Adler, Pierre

    2017-04-01

    The permeability of a porous medium can be derived by solving the Stokes equations in the pore space with no slip at the walls. The resulting velocity averaged over the pore volume yields the permeability KS by application of the Darcy law. The Stokes equations can be solved by a number of different techniques such as finite differences, finite volume, Lattice Boltzmann, but whatever the technique it remains a heavy task since there are four unknowns at each node (the three velocity components and the pressure) which necessitate the solution of four equations (the projection of Newton's law on each axis and mass conservation). By comparison, the Laplace equation is scalar with a single unknown at each node. The objective of this work is to replace the Stokes equations by an elliptical equation with a space dependent permeability. More precisely, the local permeability k is supposed to be proportional to (r-alpha)**2 where r is the distance of the voxel to the closest wall, and alpha a constant; k is zero in the solid phase. The elliptical equation is div(k gradp)=0. A macroscopic pressure gradient is assumed to be exerted on the medium and again the resulting velocity averaged over space yields a permeability K_L. In order to validate this method, systematic calculations have been performed. First, elementary shapes (plane channel, circular pipe, rectangular channels) were studied for which flow occurs along parallel lines in which case KL is the arithmetic average of the k's. KL was calculated for various discretizations of the pore space and various values of alpha. For alpha=0.5, the agreement with the exact analytical value of KS is excellent for the plane and rectangular channels while it is only approximate for circular pipes. Second, the permeability KL of channels with sinusoidal walls was calculated and compared with analytical results and numerical ones provided by a Lattice Boltzmann algorithm. Generally speaking, the discrepancy does not exceed 25% when

  10. DIFFERENT PORE SIZE ALUMINA FOAMS AND STUDY OF THEIR MECHANICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    A. Hadi

    2015-03-01

    Full Text Available Recently, the open-cell ceramic foams have been extensively investigated due to special properties of these structures. They are excellent candidates for various applications such as molten metal and hot gas filtration, fabrication of metal matrix composites (MMC, heat exchangers and catalyst support. In this study to prepare high strength and high permeable foams, alumina suspensions with proper solid contents and suitable rheological behavior were used for different pore density foams. The properties of the prepared foams such as mean pore size, total porosity, mechanical strength and water permeability were characterized by using different techniques. A reduction in pore density caused an increase in total porosity from 78.5 % to 83 %. The compression strength of the samples was dependent on total porosity as well as properties of the suspension. Compression strengths of 1.77; 3.24 and 3.55 MPa were measured for 10, 17 and 27 ppi foams, respectively. Presence of high volume of permeable pores and good uniformity of the structure led to high permeable foams. The permeability measurement confirmed a rise in permeability rate with a decrease in pore density of the foams.

  11. Porosity and pore size distribution in a sedimentary rock: Implications for the distribution of chlorinated solvents

    Science.gov (United States)

    Shapiro, Allen M.; Evans, Chrsitopher E.; Hayes, Erin C.

    2017-01-01

    Characterizing properties of the rock matrix that control retention and release of chlorinated solvents is essential in evaluating the extent of contamination and the application of remediation technologies in fractured rock. Core samples from seven closely spaced boreholes in a mudstone subject to trichloroethene (TCE) contamination were analyzed using Mercury Intrusion Porosimetry to investigate porosity and pore size distribution as a function of mudstone characteristics, and depth and lateral extent in the aquifer; organic carbon content was also evaluated to identify the potential for adsorption. Porosity and retardation factor varied over two orders of magnitude, with the largest porosities and largest retardation factors associated with carbon-rich mudstone layers. Larger porosities were also measured in the shallow rock that has been subject to enhanced groundwater flow. Porosity also varied over more than an order of magnitude in spatially continuous mudstone layers. The analyses of the rock cores indicated that the largest pore diameters may be accessible to entry of the nonaqueous form of TCE. Although the porosity associated with the largest pore diameters is small (~ 0.1%), that volume of TCE can significantly affect the total TCE that is retained in the rock matrix. The dimensions of the largest pore diameters may also be accessible to microbes responsible for reductive dechlorination; however, the small percentage of the pore space that can accommodate microbes may limit the extent of reductive dechlorination in the rock matrix.

  12. Porosity and pore size distribution in a sedimentary rock: Implications for the distribution of chlorinated solvents.

    Science.gov (United States)

    Shapiro, Allen M; Evans, Christopher E; Hayes, Erin C

    2017-08-01

    Characterizing properties of the rock matrix that control retention and release of chlorinated solvents is essential in evaluating the extent of contamination and the application of remediation technologies in fractured rock. Core samples from seven closely spaced boreholes in a mudstone subject to trichloroethene (TCE) contamination were analyzed using Mercury Intrusion Porosimetry to investigate porosity and pore size distribution as a function of mudstone characteristics, and depth and lateral extent in the aquifer; organic carbon content was also evaluated to identify the potential for adsorption. Porosity and retardation factor varied over two orders of magnitude, with the largest porosities and largest retardation factors associated with carbon-rich mudstone layers. Larger porosities were also measured in the shallow rock that has been subject to enhanced groundwater flow. Porosity also varied over more than an order of magnitude in spatially continuous mudstone layers. The analyses of the rock cores indicated that the largest pore diameters may be accessible to entry of the nonaqueous form of TCE. Although the porosity associated with the largest pore diameters is small (~0.1%), that volume of TCE can significantly affect the total TCE that is retained in the rock matrix. The dimensions of the largest pore diameters may also be accessible to microbes responsible for reductive dechlorination; however, the small percentage of the pore space that can accommodate microbes may limit the extent of reductive dechlorination in the rock matrix. Published by Elsevier B.V.

  13. Characterisation of matrix pore water at the Olkiluoto investigation site, Finland

    Energy Technology Data Exchange (ETDEWEB)

    Eichinger, F.L.

    2006-12-15

    Pore water that resides in the interconnected pore space between minerals and along grain boundaries in crystalline rocks of low permeability has been extracted successfully by tested laboratory out-diffusion methods using drillcore samples from borehole KR 39 located in the Olkiluoto subarea. The obtained experiment solutions have been characterised chemically and isotopically and related to the in situ pore water composition of the rock. In addition, the method of extraction, together with interfaced measurements of interconnected porosity, provided the opportunity to derive diffusion coefficient values of potential use in predicting future rates of solute transport. Because of the very small volumes of pore water extracted, and the possibility of rock stress release occurring during drilling which might: (a) lead to contamination by drilling fluid, (b) affect the derivation of rock porosity values, and (c) result in input of fluids from ruptured fluid inclusions, great care was taken to avoid such problems or, at least further understand the repercussions. Interpretations of the extracted pore waters are supported by investigations of the rock mineralogy, mineral chemistry, whole-rock chemistry, mineral fluid inclusions, and crush-leach experiments. (orig.)

  14. A Pore-Centric Model for Combined Shrinkage and Gas Porosity in Alloy Solidification

    Science.gov (United States)

    Khalajzadeh, Vahid; Carlson, Kent D.; Backman, Daniel G.; Beckermann, Christoph

    2017-04-01

    A unified model has been developed for combined gas- and shrinkage-induced pore formation during solidification of metal alloys. The model is based on a pore-centric approach, in which the temporal evolution of the pore radius is calculated as a function of cooling rate, thermal gradient, gas diffusion, and shrinkage. It accounts for the effect of porosity formation on the liquid velocity within the mushy zone. Simulations for an aluminum alloy show that the porosity transitions smoothly from shrinkage-induced to gas-induced as the Niyama value is increased. A Blake (cavitation) instability is observed to occur when the porosity is both gas- and shrinkage-driven. A revised dimensionless Niyama curve for pure shrinkage is presented. The experimentally observed gas porosity trend that the pore volume decreases with increasing cooling rate is well predicted. The pore-centric formulation allows the present model to be solved locally, at any point in a casting, during a regular casting simulation.

  15. Demixing and confinement of non-additive hard-sphere mixtures in slit pores.

    Science.gov (United States)

    Almarza, N G; Martín, C; Lomba, E; Bores, C

    2015-01-07

    Using Monte Carlo simulation, we study the influence of geometric confinement on demixing for a series of symmetric non-additive hard spheres mixtures confined in slit pores. We consider both a wide range of positive non-additivities and a series of pore widths, ranging from the pure two dimensional limit to a large pore width where results are close to the bulk three dimensional case. Critical parameters are extracted by means of finite size analysis. As a general trend, we find that for this particular case in which demixing is induced by volume effects, the critical demixing densities (and pressures) increase due to confinement between neutral walls, following the expected behavior for phase equilibria of systems confined by pure repulsive walls: i.e., confinement generally enhances miscibility. However, a non-monotonous dependence of the critical pressure and density with pore size is found for small non-additivities. In this latter case, it turns out that an otherwise stable bulk mixture can be unexpectedly forced to demix by simple geometric confinement when the pore width decreases down to approximately one and a half molecular diameters.

  16. Adaptive Multi-Scale Pore Network Method for Two-Phase Flow in Porous Media

    Science.gov (United States)

    Meyer, D. W.; Khayrat, K.; Jenny, P.

    2015-12-01

    Dynamic pore network simulators are important tools in studying macroscopic quantities in two-phase flow through porous media. However, these simulators have a time complexity of order N2 for N pore bodies, which limits their usage to small domains. Quasi-static pore network simulators, which assume capillary dominated flow, are more efficient with a time complexity of order N log(N), but are unable to capture phenomena caused by viscous effects such as viscous fingering and stable displacement. It has been experimentally observed that, in several flow scenarios, capillary forces are dominant at the pore scale and viscous forces at larger scales. In order to take advantage of this behaviour and to reduce the time complexity of existing dynamic pore network simulators, we propose a multi-scale pore-network method for two phase flow. In our solution algorithm, the pore network is first divided into smaller subnetworks. The algorithm to advance the fluid interfaces within each subnetwork consists of three steps: 1) The saturation rate of each subnetwork is obtained by solving a two-phase meso-scale mass balance equation over the domain of subnetworks. Here, a multi-point flux scheme is used. 2) Depending on the local capillary number computed in the subnetwork, either an invasion percolation algorithm or a dynamic network algorithm is used to locally advance the fluid-fluid interfaces within each subnetwork until a new saturation value is matched. 3) The transmissibilities for the meso-scale equation are updated based on the updated fluid configurations in each subnetwork. For this purpose the methodoloy of the existing multi-scale finite volume (MSFV) method is employed. An important feature of the multi-scale pore-network method is that it maintains consistency of both fluid occupancy and fluxes at subnetwork interfaces. Viscous effects such as viscous fingering (see figure) can be captured at a decreased computational cost compared to dynamic pore network

  17. Development and deployment of a deep-sea Raman probe for measurement of pore water geochemistry

    Science.gov (United States)

    Zhang, Xin; Walz, Peter M.; Kirkwood, William J.; Hester, Keith C.; Ussler, William; Peltzer, Edward T.; Brewer, Peter G.

    2010-02-01

    We have developed, deployed, and tested a novel probe for study of the geochemistry of sediment pore waters based upon Raman spectroscopy. The Raman technique has already been used successfully for in situ measurements of targets of scientific interest including gas and hydrothermal vents and complex gas hydrates, but sediment geochemistry has so far been an intractable problem since the sediments themselves are strongly fluorescent and typically only very small sample volumes are obtainable. The 35 cm long probe extracts pore fluids through a 10 μm sintered metallic frit and draws the sample through a 2 mm diameter channel into a sapphire windowed optical cell within which the laser beam is focused and the spectrum recorded. The dead volume of the system is ˜1 ml and the instrument is ROV deployable with activation of probe insertion and sample withdrawal under direct operator control. The unique features of this mode of detection include observation of the sulfate gradient in marine pore waters as an indicator of diagenesis, direct measurement of the dissolved sulfide species H 2S and HS -, and measurement of dissolved methane; all of which are of primary geochemical interest. Quantitative analysis is achieved by area ratio to known water peaks and from standard calibration curves with a precision of ±5%. We find only very small fluorescence from pore waters measured in situ, but observe rapid increases in fluorescence from cores returned to the surface and exposed to oxygen.

  18. Pore structure development of in-situ pyrolyzed coals for pollution prevention in iron foundries

    Energy Technology Data Exchange (ETDEWEB)

    Huang, He; Cannon, Fred S. [Department of Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, PA 16802 (United States); Wang, Yujue [Department of Environmental Science and Engineering, Tsinghua University, Bejing, 100084 (China)

    2009-09-15

    A protocol was devised for preparing pyrolyzed coals that could be made in-situ at foundries to capture volatile organic compound (VOC) emission. This pyrolysis created extensive micropore volume in lignite over a broad range of temperature and time; and could use waste heat from cupola exhaust gases by a heat-exchange tube. For foundry application, moderate porous carbon with relatively uniform pores over wide ranges of temperature and time would be more practical than highly porous activated carbon (AC) that requires narrowly-controlled operations. This pyrolysis protocol was developed in a thermogravimetric analyzer (TGA) and in a small tube furnace, while using lignite, bituminous coal, and anthracite. The lignite yielded the most pore volume; and this was relatively uniform (0.1-0.13 mL/g of pores) while temperatures were 600-900 C, and times were 0-60 min. Smaller grain sizes yielded improved porosity; and this corresponded to more release of phenols and naphthalenes from smaller grains, as discerned by TGA-mass spectroscopy (MS). TGA-MS also revealed that improved pore development between 600-800 C corresponded to the release of CO{sub 2} and H{sub 2}O; and concurrently higher slurry pH linked to less oxygenated functionality. Adsorption of benzene was compared between the in-situ porous carbon and a commercial AC. (author)

  19. Hydralysins, a new category of beta-pore-forming toxins in cnidaria.

    Science.gov (United States)

    Sher, Daniel; Fishman, Yelena; Zhang, Mingliang; Lebendiker, Mario; Gaathon, Ariel; Mancheño, José-Miguel; Zlotkin, Eliahu

    2005-06-17

    Cnidaria are venomous animals that produce diverse protein and polypeptide toxins, stored and delivered into the prey through the stinging cells, the nematocytes. These include pore-forming cytolytic toxins such as well studied actinoporins. In this work, we have shown that the non-nematocystic paralytic toxins, hydralysins, from the green hydra Chlorohydra viridissima comprise a highly diverse group of beta-pore-forming proteins, distinct from other cnidarian toxins but similar in activity and structure to bacterial and fungal toxins. Functional characterization of hydralysins reveals that as soluble monomers they are rich in beta-structure, as revealed by far UV circular dichroism and computational analysis. Hydralysins bind erythrocyte membranes and form discrete pores with an internal diameter of approximately 1.2 nm. The cytolytic effect of hydralysin is cell type-selective, suggesting a specific receptor that is not a phospholipid or carbohydrate. Multiple sequence alignment reveals that hydralysins share a set of conserved sequence motifs with known pore-forming toxins such as aerolysin, epsilon-toxin, alpha-toxin, and LSL and that these sequence motifs are found in and around the poreforming domains of the toxins. The importance of these sequence motifs is revealed by the cloning, expression, and mutagenesis of three hydralysin isoforms that strongly differ in their hemolytic and paralytic activities. The correlation between the paralytic and cytolytic activities of hydralysin suggests that both are a consequence of receptor-mediated pore formation. Hydralysins and their homologues exemplify the wide distribution of beta-pore formers in biology and provide a useful model for the study of their molecular mode of action.

  20. Study of pores produced in underwater wet welding

    Institute of Scientific and Technical Information of China (English)

    Shen Xiaoqin; Liu Shiming

    2006-01-01

    This paper deals with the effect of water depth in the range of 10 m to 80 m upon the formation of pores produced during underwater wet welding. The results show that it is easy for the inner pores to occur owing to the particularity of the molten metal solidification that the outer pores begin to appear when the water depth increases to about 60 m, that the porosity increases and pore grows up as the water depth increases, and that pores are all hydrogen-cont aining ones through the examination of the variation of number of pores with the residual hydrogen and oxygen content in the weld metal.

  1. Volume control device for digital signals

    NARCIS (Netherlands)

    Schinkel, Daniel; van Tuijl, Adrianus Johannes Maria; Nuijten, Petrus A.C.M.

    2004-01-01

    A digital volume control device comprises a logic unit for volume control of digital input signals. Successively supplied m-bits words with maximally k bits active, derived from the output signals of or supplied by a volume control (4) with a quantizer (5) element the filtered m-bits workds are

  2. Three dimensional analysis of the pore space in fine-grained Boom Clay, using BIB-SEM (broad-ion beam scanning electron microscopy), combined with FIB (focused ion-beam) serial cross-sectioning, pore network modeling and Wood's metal injection

    Science.gov (United States)

    Hemes, Susanne; Klaver, Jop; Desbois, Guillaume; Urai, Janos

    2014-05-01

    The Boom Clay is, besides the Ypresian clays, one of the potential host rock materials for radioactive waste disposal in Belgium (Gens et al., 2003; Van Marcke & Laenen, 2005; Verhoef et al., 2011). To access parameters, which are relevant for the diffusion controlled transport of radionuclides in the material, such as porosity, pore connectivity and permeability, it is crucial to characterize the pore space at high resolution (nm-scale) and in 3D. Focused-ion-beam (FIB) serial cross-sectioning in combination with high resolution scanning electron microscopy (SEM), pore network modeling, Wood's metal injection and broad-ion-beam (BIB) milling, constitute a superior set of methods to characterize the 3D pore space in fine-grained, clayey materials, down to the nm-scale resolution. In the present study, we identified characteristic 3D pore space morphologies, determined the 3D volume porosity of the material and applied pore network extraction modeling (Dong and Blunt, 2009), to access the connectivity of the pore space and to discriminate between pore bodies and pore throats. Moreover, we used Wood's metal injection (WMI) in combination with BIB-SEM imaging to assess the pore connectivity at a larger scale and even higher resolution. The FIB-SEM results show a highly (~ 90 %) interconnected pore space in Boom Clay, down to the resolution of ~ 3E+03 nm³ (voxel-size), with a total volume porosity of ~ 20 %. Pore morphologies of large (> 5E+08 nm³), highly interconnected pores are complex, with high surface area to volume ratios (shape factors G ~ 0.01), whereas small (BIB-SEM, down to a resolution of ~ 50 nm² pixel-size, indicates an interconnected porosity fraction of ~ 80 %, of a total measured 2D porosity of ~ 20 %. Determining and distinguishing between pore bodies and pore throats enables us to compare 3D FIB-SEM pore-size distributions to 2D BIB-SEM data, as well as MIP data. Results show a good agreement between the 2D BIB-SEM and 3D FIB-SEM inferred pore

  3. Pore size engineering applied to the design of separators for nickel-hydrogen cells and batteries

    Science.gov (United States)

    Abbey, K. M.; Britton, D. L.

    1983-01-01

    Pore size engineering in starved alkaline multiplate cells involves adopting techniques to widen the volume tolerance of individual cells. Separators with appropriate pore size distributions and wettability characteristics (capillary pressure considerations) to have wider volume tolerances and an ability to resist dimensional changes in the electrodes were designed. The separators studied for potential use in nickel-hydrogen cells consist of polymeric membranes as well as inorganic microporous mats. In addition to standard measurements, the resistance and distribution of electrolyte as a function of total cell electrolyte content were determined. New composite separators consisting of fibers, particles and/or binders deposited on Zircar cloth were developed in order to engineer the proper capillary pressure characteristics in the separator. These asymmetric separators were prepared from a variety of fibers, particles and binders. Previously announced in STAR as N83-24571

  4. Incorporation of the Pore Size Variation to Modeling of the Elastic Behavior of Metallic Open-Cell Foams

    Directory of Open Access Journals (Sweden)

    Ćwieka K.

    2017-03-01

    Full Text Available In the present paper we present the approach for modeling of the elastic behavior of open-cell metallic foams concerning non-uniform pore size distribution. This approach combines design of foam structures and numerical simulations of compression tests using finite element method (FEM. In the design stage, Laguerre-Voronoi tessellations (LVT were performed on several sets of packed spheres with defined variation of radii, bringing about a set of foam structures with porosity ranging from 74 to 98% and different pore size variation quantified by the coefficient of pore volume variation, CV(V, from 0.5 to 2.1. Each structure was numerically subjected to uni-axial compression test along three directions within the elastic region. Basing on the numerical response, the effective Young’s modulus, Eeff, was calculated for each structure. It is shown that the Eeff is not only dependent on the porosity but also on the pore size variation.

  5. Mesoporous ethanesilica materials with bimodal and trimodal pore-size distributions synthesised in the presence of cobalt ions

    Directory of Open Access Journals (Sweden)

    Alufelwi M. Tshavhungwe

    2010-07-01

    Full Text Available Mesoporous organosilica materials containing ethane groups in their framework were formed with two and three pore sizes (i.e. bimodal and trimodal pores when synthesised by the sol-gel method in the presence of cobalt ions. The compounds 1,2-bistrimethoxysilylethane and tetraethylorthosilicate were used as silicon sources and the reactions were done in the presence of a surfactant, which served as a template. Diffuse reflectance infrared Fourier transform spectroscopy revealed that organic functional groups were incorporated into the ethanesilica. Powder X-ray diffraction and nitrogen adsorption data indicated that the mesophase and textural properties (surface area, pore volume, pore diameter of the materials were dependent on the ageing temperature, the amount/ratio of silica precursors and cobalt ion incorporation. Secondary mesopores were drastically reduced by changing the ratio of silicon precursors.

  6. Conformational changes during pore formation by the perforin-related protein pleurotolysin.

    Directory of Open Access Journals (Sweden)

    Natalya Lukoyanova

    2015-02-01

    Full Text Available Membrane attack complex/perforin-like (MACPF proteins comprise the largest superfamily of pore-forming proteins, playing crucial roles in immunity and pathogenesis. Soluble monomers assemble into large transmembrane pores via conformational transitions that remain to be structurally and mechanistically characterised. Here we present an 11 Å resolution cryo-electron microscopy (cryo-EM structure of the two-part, fungal toxin Pleurotolysin (Ply, together with crystal structures of both components (the lipid binding PlyA protein and the pore-forming MACPF component PlyB. These data reveal a 13-fold pore 80 Å in diameter and 100 Å in height, with each subunit comprised of a PlyB molecule atop a membrane bound dimer of PlyA. The resolution of the EM map, together with biophysical and computational experiments, allowed confident assignment of subdomains in a MACPF pore assembly. The major conformational changes in PlyB are a ∼70° opening of the bent and distorted central β-sheet of the MACPF domain, accompanied by extrusion and refolding of two α-helical regions into transmembrane β-hairpins (TMH1 and TMH2. We determined the structures of three different disulphide bond-trapped prepore intermediates. Analysis of these data by molecular modelling and flexible fitting allows us to generate a potential trajectory of β-sheet unbending. The results suggest that MACPF conformational change is triggered through disruption of the interface between a conserved helix-turn-helix motif and the top of TMH2. Following their release we propose that the transmembrane regions assemble into β-hairpins via top down zippering of backbone hydrogen bonds to form the membrane-inserted β-barrel. The intermediate structures of the MACPF domain during refolding into the β-barrel pore establish a structural paradigm for the transition from soluble monomer to pore, which may be conserved across the whole superfamily. The TMH2 region is critical for the release of

  7. Conformational changes during pore formation by the perforin-related protein pleurotolysin.

    Science.gov (United States)

    Lukoyanova, Natalya; Kondos, Stephanie C; Farabella, Irene; Law, Ruby H P; Reboul, Cyril F; Caradoc-Davies, Tom T; Spicer, Bradley A; Kleifeld, Oded; Traore, Daouda A K; Ekkel, Susan M; Voskoboinik, Ilia; Trapani, Joseph A; Hatfaludi, Tamas; Oliver, Katherine; Hotze, Eileen M; Tweten, Rodney K; Whisstock, James C; Topf, Maya; Saibil, Helen R; Dunstone, Michelle A

    2015-02-01

    Membrane attack complex/perforin-like (MACPF) proteins comprise the largest superfamily of pore-forming proteins, playing crucial roles in immunity and pathogenesis. Soluble monomers assemble into large transmembrane pores via conformational transitions that remain to be structurally and mechanistically characterised. Here we present an 11 Å resolution cryo-electron microscopy (cryo-EM) structure of the two-part, fungal toxin Pleurotolysin (Ply), together with crystal structures of both components (the lipid binding PlyA protein and the pore-forming MACPF component PlyB). These data reveal a 13-fold pore 80 Å in diameter and 100 Å in height, with each subunit comprised of a PlyB molecule atop a membrane bound dimer of PlyA. The resolution of the EM map, together with biophysical and computational experiments, allowed confident assignment of subdomains in a MACPF pore assembly. The major conformational changes in PlyB are a ∼70° opening of the bent and distorted central β-sheet of the MACPF domain, accompanied by extrusion and refolding of two α-helical regions into transmembrane β-hairpins (TMH1 and TMH2). We determined the structures of three different disulphide bond-trapped prepore intermediates. Analysis of these data by molecular modelling and flexible fitting allows us to generate a potential trajectory of β-sheet unbending. The results suggest that MACPF conformational change is triggered through disruption of the interface between a conserved helix-turn-helix motif and the top of TMH2. Following their release we propose that the transmembrane regions assemble into β-hairpins via top down zippering of backbone hydrogen bonds to form the membrane-inserted β-barrel. The intermediate structures of the MACPF domain during refolding into the β-barrel pore establish a structural paradigm for the transition from soluble monomer to pore, which may be conserved across the whole superfamily. The TMH2 region is critical for the release of both TMH clusters

  8. Numerical simulation of pore-scale flow in chemical flooding process

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Chemical flooding is one of the effective technologies to increase oil recovery of petroleum reservoirs after water flooding.Above the scale of representative elementary volume(REV), phenomenological modeling and numerical simulations of chemical flooding have been reported in literatures,but the studies alike are rarely conducted at the pore-scale,at which the effects of physicochemical hydrodynamics are hardly resolved either by experimental observations or by traditional continuum-based simulations.In...

  9. Mineral dissolution kinetics at the pore scale

    Energy Technology Data Exchange (ETDEWEB)

    Li, L.; Steefel, C.I.; Yang, L.

    2007-05-24

    Mineral dissolution rates in the field have been reported to be orders of magnitude slower than those measured in the laboratory, an unresolved discrepancy that severely limits our ability to develop scientifically defensible predictive or even interpretive models for many geochemical processes in the earth and environmental sciences. One suggestion links this discrepancy to the role of physical and chemical heterogeneities typically found in subsurface soils and aquifers in producing scale-dependent rates where concentration gradients develop. In this paper, we examine the possibility that scale-dependent mineral dissolution rates can develop even at the single pore and fracture scale, the smallest and most fundamental building block of porous media. To do so, we develop two models to analyze mineral dissolution kinetics at the single pore scale: (1) a Poiseuille Flow model that applies laboratory-measured dissolution kinetics at the pore or fracture wall and couples this to a rigorous treatment of both advective and diffusive transport, and (2) a Well-Mixed Reactor model that assumes complete mixing within the pore, while maintaining the same reactive surface area, average flow rate, and geometry as the Poiseuille Flow model. For a fracture, a 1D Plug Flow Reactor model is considered in addition to quantify the effects of longitudinal versus transverse mixing. The comparison of averaged dissolution rates under various conditions of flow, pore size, and fracture length from the three models is used as a means to quantify the extent to which concentration gradients at the single pore and fracture scale can develop and render rates scale-dependent. Three important minerals that dissolve at widely different rates, calcite, plagioclase, and iron hydroxide, are considered. The modeling indicates that rate discrepancies arise primarily where concentration gradients develop due to comparable rates of reaction and advective transport, and incomplete mixing via molecular

  10. Pore scale heterogeneity in the mineral distribution and reactive surface area of rocks

    Science.gov (United States)

    Lai, P. E.; Krevor, S. C.

    2013-12-01

    There are long-standing challenges in characterizing reactive transport in porous media at scales larger than individual pores. This hampers the prediction of the field-scale impact of geochemical processes on fluid flow [1]. This is a source of uncertainty for CO2 injection, which results in a reactive fluid-rock system, particularly in carbonate rock reservoirs. A potential cause is the inability of the continuum approach to incorporate the impact of heterogeneity in pore-scale reaction rates. This results in part from pore-scale heterogeneities in surface area of reactive minerals [2,3]. In this study we have created μm resolution 3D images of 3 sandstone and 4 carbonate rocks using x-ray microtomography. Using in-house image processing techniques and auxiliary characterisation with thin section, electron microscope and spectroscopic techniques we quantified the surface area of each mineral phase in the x-ray CT images. This quantification was validated against N2 BET surface area and He porosity measurements of the imaged samples. Distributions in reactive surface area for each mineral phase were constructed by calculating surface areas in thousands of randomly selected subvolume images of the total sample, each normalized to the pore volume in that image. In all samples, there is little correlation between the reactive surface area fraction and the volumetric fraction of a mineral in a bulk rock. Berea sandstone was far less heterogeneous and has a characteristic pore size at which a surface area distribution may be used to quantify heterogeneity. In carbonates, heterogeneity is more complex and surface area must be characterized at multiple length scales for an accurate description of reactive transport. [1] Maher, Steefel, Depaolo and Vianni (2006) Geochimica et Cosmochimica Acta, 70, 337-363 [2] Landrot, Ajo-Franklin, Yang, Cabrini and Steefel (2012) Chemical Geology 318-319, 113-125 [3] Li, Peters and Celia (2007) American Journal of Science 307, 1146

  11. Evolution of Pore Size Distribution and Mean Pore Size in Lotus-type Porous Magnesium Fabricated with Gasar Process

    Institute of Scientific and Technical Information of China (English)

    Yuan LIU; Yanxiang LI; Huawei ZHANG; Jiang WAN

    2006-01-01

    The effect of gas pressures on the mean pore size, the porosity and the pore size distribution of lotus-type porous magnesium fabricated with Gasar process were investigated. The theoretical analysis and the experimental results all indicate that there exists an optimal ratio of the partial pressures of hydrogen pH2 to argon pAr for producing lotus-type structures with narrower pore size distribution and smaller pore size. The effect of solidification mode on the pore size distribution and pore size was also discussed.

  12. Induction of nano pore in Agrobacterial hemoglobin

    OpenAIRE

    Mojtaba Tousheh; Giti Emtiazi; Peyman Derikvand

    2014-01-01

    Introduction: A variety of oxygen-transport and -binding proteins exist in organisms including bacteria, protozoans, and fungi all have hemoglobin-like proteins. In addition to dealing with transport and sensing of oxygen, they may also deal with NO2, CO2, sulfide compounds, and even O2 scavenging in environments. Also they detoxified chlorinated materials like P450 enzymes and peroxidases and use as a detector of nitrate and hydrogen peroxide. Pore-forming bacterial globins are interested fo...

  13. Pore Scale Heterogeneity in the Mineral Distribution and Surface Area of Porous Rocks

    Science.gov (United States)

    Lai, Peter; Krevor, Sam

    2015-04-01

    An important control on rate of interfacial processes between minerals and aqueous solutions such as nucleation of solids, and mineral dissolution and growth is reactive surface area. In geochemical modelling, the continuum hypothesis is based on the assumption that the system can be represented by a sufficiently large number of representative elemental volumes. There has been recent interest in studying the impact of this assumption on reaction-transport coupled systems. In this study, the impact of pore-scale heterogeneity on the distribution of reactive surface area is discussed. 3D images obtained using x-ray micro-tomography were used to characterise the distribution of reactive surface area. The results were compared to independent observations. Mineral identification using x- ray diffraction and fluorescence suggested general agreement with CT analysis. Nitrogen BET surface areas were one to two orders of magnitude higher than measurements from x-ray imagery. Co- registered images of Berea sandstone from x-ray and energy dispersive spectroscopy imagery suggested that quartz, K-feldspar and most clays could be identified. However, minor minerals such as albite and illite did not exhibit enough contrast. In Berea sandstone, mineral surface area fraction was poorly correlated to the mineral volumetric fraction. Clay and feldspar minerals exhibited higher surface area fractions than bulk mineralogy suggested. In contrast, in the Edwards carbonate samples, modal mineral composition correlated with mineral-specific surface area. Berea sandstone revealed a characteristic pore size at which a surface area distribution may be used to quantify heterogeneity. Conversely, the carbonate samples suggested a continuous range of pore sizes across length scales. A comparison with pore network model simulations from the literature was made. First order estimates of mineral specific correlations between geometric area measured in the x-ray images were used to convert the CT

  14. A new model for pore formation by cholesterol-dependent cytolysins.

    Directory of Open Access Journals (Sweden)

    Cyril F Reboul

    2014-08-01

    Full Text Available Cholesterol Dependent Cytolysins (CDCs are important bacterial virulence factors that form large (200-300 Å membrane embedded pores in target cells. Currently, insights from X-ray crystallography, biophysical and single particle cryo-Electron Microscopy (cryo-EM experiments suggest that soluble monomers first interact with the membrane surface via a C-terminal Immunoglobulin-like domain (Ig; Domain 4. Membrane bound oligomers then assemble into a prepore oligomeric form, following which the prepore assembly collapses towards the membrane surface, with concomitant release and insertion of the membrane spanning subunits. During this rearrangement it is proposed that Domain 2, a region comprising three β-strands that links the pore forming region (Domains 1 and 3 and the Ig domain, must undergo a significant yet currently undetermined, conformational change. Here we address this problem through a systematic molecular modeling and structural bioinformatics approach. Our work shows that simple rigid body rotations may account for the observed collapse of the prepore towards the membrane surface. Support for this idea comes from analysis of published cryo-EM maps of the pneumolysin pore, available crystal structures and molecular dynamics simulations. The latter data in particular reveal that Domains 1, 2 and 4 are able to undergo significant rotational movements with respect to each other. Together, our data provide new and testable insights into the mechanism of pore formation by CDCs.

  15. A new model for pore formation by cholesterol-dependent cytolysins.

    Science.gov (United States)

    Reboul, Cyril F; Whisstock, James C; Dunstone, Michelle A

    2014-08-01

    Cholesterol Dependent Cytolysins (CDCs) are important bacterial virulence factors that form large (200-300 Å) membrane embedded pores in target cells. Currently, insights from X-ray crystallography, biophysical and single particle cryo-Electron Microscopy (cryo-EM) experiments suggest that soluble monomers first interact with the membrane surface via a C-terminal Immunoglobulin-like domain (Ig; Domain 4). Membrane bound oligomers then assemble into a prepore oligomeric form, following which the prepore assembly collapses towards the membrane surface, with concomitant release and insertion of the membrane spanning subunits. During this rearrangement it is proposed that Domain 2, a region comprising three β-strands that links the pore forming region (Domains 1 and 3) and the Ig domain, must undergo a significant yet currently undetermined, conformational change. Here we address this problem through a systematic molecular modeling and structural bioinformatics approach. Our work shows that simple rigid body rotations may account for the observed collapse of the prepore towards the membrane surface. Support for this idea comes from analysis of published cryo-EM maps of the pneumolysin pore, available crystal structures and molecular dynamics simulations. The latter data in particular reveal that Domains 1, 2 and 4 are able to undergo significant rotational movements with respect to each other. Together, our data provide new and testable insights into the mechanism of pore formation by CDCs.

  16. The S4-S5 loop contributes to the ion-selective pore of potassium channels.

    Science.gov (United States)

    Slesinger, P A; Jan, Y N; Jan, L Y

    1993-10-01

    Mutagenesis experiments on voltage-gated K+ channels have suggested that the ion-selective pore is comprised mostly of H5 segments. To see whether regions outside of the H5 segment might also contribute to the pore structure, we have studied the effect of single amino acid substitutions in the segment that connects the S4 and S5 putative transmembrane segments (S4-S5 loop) on various permeation properties of Shaker K+ channels. Mutations in the S4-S5 loop alter the Rb+ selectivity, the single-channel K+ and Rb+ conductances, and the sensitivity to open channel block produced by intracellular tetraethylammonium ion, Ba2+, and Mg2+. The block of Shaker K+ channels by intracellular Mg2+ is surprising, but is reminiscent of the internal Mg2+ blockade of inward rectifier K+ channels. The results suggest that the S4-S5 loop constitutes part of the ion-selective pore. Thus, the S4-S5 loop and the H5 segment are likely to contribute to the long pore characteristic of voltage-gated K+ channels.

  17. Biomimetic collagen scaffolds with anisotropic pore architecture.

    Science.gov (United States)

    Davidenko, N; Gibb, T; Schuster, C; Best, S M; Campbell, J J; Watson, C J; Cameron, R E

    2012-02-01

    Sponge-like matrices with a specific three-dimensional structural design resembling the actual extracellular matrix of a particular tissue show significant potential for the regeneration and repair of a broad range of damaged anisotropic tissues. The manipulation of the structure of collagen scaffolds using a freeze-drying technique was explored in this work as an intrinsically biocompatible way of tailoring the inner architecture of the scaffold. The research focused on the influence of temperature gradients, imposed during the phase of crystallisation of collagen suspensions, upon the degree of anisotropy in the microstructures of the scaffolds produced. Moulding technology was employed to achieve differences in heat transfer rates during the freezing processes. For this purpose various moulds with different configurations were developed with a view to producing uniaxial and multi-directional temperature gradients across the sample during this process. Scanning electron microscopy analysis of different cross-sections (longitudinal and horizontal) of scaffolds revealed that highly aligned matrices with axially directed pore architectures were obtained where single unidirectional temperature gradients were induced. Altering the freezing conditions by the introduction of multiple temperature gradients allowed collagen scaffolds to be produced with complex pore orientations, and anisotropy in pore size and alignment.

  18. Pore morphology study of silica aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Hua, D.W.; Anderson, J.; Haereid, S.; Smith, D.M. [UNM/NSF Center for Micro-Engineered Ceramics, Albuquerque, NM (United States); Beaucage, G. [Sandia National Labs., Albuquerque, NM (United States)

    1994-12-31

    Silica aerogels have numerous properties which suggest applications such as ultra high efficiency thermal insulation. These properties relate directly to the aerogel`s pore size distribution. The micro and meso pore size ranges can be investigated by normal small angle x-ray scattering and possibly, nitrogen adsorption. However, the measurement of larger pores (> 250 {angstrom}) is more difficult. Due to their limited mechanical strength, mercury porosimetry and nitrogen condensation can disrupt the gel structure and electron microscopy provides only limited large scale structure information. The use of small angle light scattering techniques seems to have promise, the only hurdle is that aerogels exhibit significant multiple scattering. This can be avoided if one observes the gels in the wet stage since the structure of the aerogel should be very similar to the wet gel (as the result of supercritical drying). Thus, if one can match the refractive index, the morphology can be probed. The combination of certain alcoholic solvents fit this index matching criteria. Preliminary results for the gel network (micron range) and primary particle structure (manometer) are reported by using small angle light scattering and ultra-small angle x-ray scattering. The effects on structure over the length scale range of <1 nm to >5 {mu}m under different conditions (precursors, pH, etc.) are presented. The change in structure of an aerogel during isostatic compaction to 228 MPa (to simulate drying from wetting solvents) are also discussed.

  19. Horizontal flow fields observed in Hinode G-band images IV. Statistical properties of the dynamical environment around pores

    CERN Document Server

    Verma, Meetu

    2014-01-01

    The extensive database of high-resolution G-band images observed with the Hinode/SOT is a unique resource to derive statistical properties of pores using advanced digital image processing techniques. The study is based on two data sets: (1) Photometric and morphological properties inferred from single G-band images cover almost seven years from 2006 October 25 to 2013 August 31. (2) Horizontal flow fields have been derived from 356 one-hour sequences of G-band images using LCT for a shorter period of time from 2006 November 3 to 2008 January 6 comprising 13 active regions. A total of 7643/2863 (single/time-averaged) pores builds the foundation of the statistical analysis. Pores are preferentially observed at low latitudes in the southern hemisphere during the deep minimum of solar cycle No. 23. This imbalance reverses during the rise of cycle No. 24, when the pores migrate from high to low latitudes. Pores are rarely encountered in quiet-Sun G-band images, and only about 10% of pores exists in isolation. In g...

  20. INVESTIGATIONS INTO BIOFOULING PHENOMENA IN FINE PORE AERATION DEVICES

    Science.gov (United States)

    Microbiologically-based procedures were used to describe biofouling phenomena on fine pore aeration devices and to determine whether biofilm characteristics could be related to diffuser process performance parameters. Fine pore diffusers were obtained from five municipal wastewa...

  1. Micro-computed tomography pore-scale study of flow in porous media: Effect of voxel resolution

    Science.gov (United States)

    Shah, S. M.; Gray, F.; Crawshaw, J. P.; Boek, E. S.

    2016-09-01

    avoids the problem of partial volume effects and reduces the scaling effect by preserving the pore-space properties influencing the transport properties. This is evidently compared in this study by predicting several pore network properties such as number of pores and throats, average pore and throat radius and coordination number for both scan based analysis and numerical coarsened data.

  2. Effect of Pore Pressure on Slip Failure of an Impermeable Fault: A Coupled Micro Hydro-Geomechanical Model

    Science.gov (United States)

    Yang, Z.; Juanes, R.

    2015-12-01

    The geomechanical processes associated with subsurface fluid injection/extraction is of central importance for many industrial operations related to energy and water resources. However, the mechanisms controlling the stability and slip motion of a preexisting geologic fault remain poorly understood and are critical for the assessment of seismic risk. In this work, we develop a coupled hydro-geomechanical model to investigate the effect of fluid injection induced pressure perturbation on the slip behavior of a sealing fault. The model couples single-phase flow in the pores and mechanics of the solid phase. Granular packs (see example in Fig. 1a) are numerically generated where the grains can be either bonded or not, depending on the degree of cementation. A pore network is extracted for each granular pack with pore body volumes and pore throat conductivities calculated rigorously based on geometry of the local pore space. The pore fluid pressure is solved via an explicit scheme, taking into account the effect of deformation of the solid matrix. The mechanics part of the model is solved using the discrete element method (DEM). We first test the validity of the model with regard to the classical one-dimensional consolidation problem where an analytical solution exists. We then demonstrate the ability of the coupled model to reproduce rock deformation behavior measured in triaxial laboratory tests under the influence of pore pressure. We proceed to study the fault stability in presence of a pressure discontinuity across the impermeable fault which is implemented as a plane with its intersected pore throats being deactivated and thus obstructing fluid flow (Fig. 1b, c). We focus on the onset of shear failure along preexisting faults. We discuss the fault stability criterion in light of the numerical results obtained from the DEM simulations coupled with pore fluid flow. The implication on how should faults be treated in a large-scale continuum model is also presented.

  3. New ultrasonic technique for the study of the pore shape of track-etched pores in polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Alvarez-Arenas, T.E., E-mail: tgomez@ia.cetef.csic.e [Instituto de Acustica, CSIC, Serrano 144, 28006 Madrid (Spain); Apel, P.Yu.; Orelovitch, O.L. [Flerov Lab. of Nuclear Reactions, JINR, Dubna (Russian Federation); Munoz, M. [Institute of Applied Physics, CSIC, Serrano 144, Madrid (Spain)

    2009-10-15

    A new technique for the study of the pore shape of track-etched pores in polymer films is presented. This technique is based on the use of air-coupled ultrasounds and phase and magnitude spectral analysis. Transmission of ultrasounds through these membranes is made up of two contributions: propagation through the solid part and propagation along the pore channels. A time-domain procedure to separate these to contributions is presented. Sensitivity of ultrasounds propagation in the pore channels to variations of pore shape is studied. Membranes with similar properties (gas flow rate values) but slight differences in the pore shape are studied. The proposed technique reveals to be sensitive to such differences; unlike other techniques, it is capable to provide information in a separate way about pore aperture at the surface and pore diameter inside the membrane, in addition the technique is non-destructive.

  4. Volume Entropy

    CERN Document Server

    Astuti, Valerio; Rovelli, Carlo

    2016-01-01

    Building on a technical result by Brunnemann and Rideout on the spectrum of the Volume operator in Loop Quantum Gravity, we show that the dimension of the space of the quadrivalent states --with finite-volume individual nodes-- describing a region with total volume smaller than $V$, has \\emph{finite} dimension, bounded by $V \\log V$. This allows us to introduce the notion of "volume entropy": the von Neumann entropy associated to the measurement of volume.

  5. Variations in pore characteristics in high volatile bituminous coals: Implications for coal bed gas content

    Science.gov (United States)

    Mastalerz, Maria; Drobniak, A.; Strapoc, D.; Solano-Acosta, W.; Rupp, J.

    2008-01-01

    The Seelyville Coal Member of the Linton Formation (Pennsylvanian) in Indiana was studied to: 1) understand variations in pore characteristics within a coal seam at a single location and compare these variations with changes occurring between the same coal at different locations, 2) elaborate on the influence of mineral-matter and maceral composition on mesopore and micropore characteristics, and 3) discuss implications of these variations for coal bed gas content. The coal is high volatile bituminous rank with R0 ranging from 0.57% to 0.60%. BET specific surface areas (determined by nitrogen adsorption) of the coals samples studied range from 1.8 to 22.9??m2/g, BJH adsorption mesopore volumes from 0.0041 to 0.0339??cm3/g, and micropore volumes (determined by carbon dioxide adsorption) from 0.0315 to 0.0540??cm3/g. The coals that had the largest specific surface areas and largest mesopore volumes occur at the shallowest depths, whereas the smallest values for these two parameters occur in the deepest coals. Micropore volumes, in contrast, are not depth-dependent. In the coal samples examined for this study, mineral-matter content influenced both specific surface area as well as mesopore and micropore volumes. It is especially clear in the case of micropores, where an increase in mineral-matter content parallels the decrease of micropore volume of the coal. No obvious relationships were observed between the total vitrinite content and pore characteristics but, after splitting vitrinite into individual macerals, we see that collotelinite influences both meso- and micropore volume positively, whereas collodetrinite contributes to the reduction of mesopore and micropore volumes. There are large variations in gas content within a single coal at a single location. Because of this variability, the entire thickness of the coal must be desorbed in order to determine gas content reliably and to accurately calculate the level of gas saturation. ?? 2008 Elsevier B.V. All

  6. Pore network and pore scale modeling of reactive transport in porous media

    Science.gov (United States)

    Adler, P. M.; Vu, T. M.; Varloteaux, C.; Bekri, S.

    2012-12-01

    The study of the evolution of a porous medium where a reactive fluid flows is conditioned by the accurate determination of three macroscopic parameters governing the solute displacement, namely the solute velocity, dispersion and mean reaction rate. Of course, a possible application of such studies is CO2 sequestration. This presentation proposes to approach the determination of these parameters by two different ways and to compare them; both are on the pore scale. In the first one called PNM (for pore-network model), a pore-network is extracted from micro tomography images of a real porous medium. This network is composed of spherical pores joined by circular tubes; it is used to calculate transport macroscopic parameters and porosity-permeability evolution during the reactive transport flow as functions of dimensionless numbers representing the reaction and flow rate regimes. The flow is calculated by using Kirchhoff laws. Transport is determined in the asymptotic regime where the solute concentration undergoes an exponential evolution with time. In the second approach called PSM (for pore scale model), the pore-network model is used as a three dimensional medium which is discretized by the Level Set Method. The Stokes equations are solved in order to determine the local flow field and the corresponding permeability. The solute concentration is obtained by solving the local convection-diffusion equation in the 3D pore-network; numerical dispersion is reduced by a Flux Limiting Scheme. Two different geometries of porous media are addressed by both numerical codes. The first pore-network geometry is used to validate the PNM assumptions, whereas the second pore-network is defined for a better understanding of the dominant solute distribution. One of the main results obtained with the first pore-network is the dependence of the concentration profile on the Péclet number Pe in the pore-bodies. When this number increases, one has to switch from an assumption of

  7. Energy conversion device with support member having pore channels

    Science.gov (United States)

    Routkevitch, Dmitri [Longmont, CO; Wind, Rikard A [Johnstown, CO

    2014-01-07

    Energy devices such as energy conversion devices and energy storage devices and methods for the manufacture of such devices. The devices include a support member having an array of pore channels having a small average pore channel diameter and having a pore channel length. Material layers that may include energy conversion materials and conductive materials are coaxially disposed within the pore channels to form material rods having a relatively small cross-section and a relatively long length. By varying the structure of the materials in the pore channels, various energy devices can be fabricated, such as photovoltaic (PV) devices, radiation detectors, capacitors, batteries and the like.

  8. A keyboard for dynamic display and a system comprising the keyboard

    DEFF Research Database (Denmark)

    2011-01-01

    The invention relates to a dynamic display keyboard comprising a plurality of key elements, each key element comprises a transmitting part capable of transmitting at least a part of light incident on the transmitting part; an elastic mat comprising a plurality of elevated elements capable...... keyboard is able to provide a tactile feedback in response to a user action directed towards a key of the keyboard....

  9. Pore-Scale Heterogeneity in the Mineral Distribution and Reactive Surface Area of Porous Rocks

    Science.gov (United States)

    Lai, P. E. P.; Krevor, S. C.

    2015-12-01

    The reactive surface area is an important control on interfacial processes between minerals and aqueous fluids in porous rocks. Spatial heterogeneity in the surface area can lead to complications in modelling reactive transport processes, but quantitative characterisation of this property has been limited. In this paper 3D images obtained using x-ray micro-tomography were used to characterise heterogeneity in surface area in one sandstone and five carbonate rocks. Measurements of average surface area from x-ray imagery were 1-2 orders of magnitude lower than measurements from nitrogen BET. A roughness factor, defined as the ratio of BET surface area to x-ray based surface area, was correlated to the presence of clay or microporosity. Coregistered images of Berea sandstone from x-ray and energy dispersive spectroscopy imagery were used to guide the identification of quartz, K-feldspar, dolomite, calcite and clays in x-ray images. In Berea sandstone, clay and K-feldspar had higher average surface area fractions than their volumetric fractions in the rock. In the Edwards carbonate, however, modal mineral composition correlated with surface area. By sub-sampling digital images, statistical distributions of the surface area were generated at various length scales of subsampling. Comparing these to distributions used in published modelling studies showed that the common practice of leaving surface area and pore volume uncorrelated in a pore leads to unrealistic combinations of surface area and pore volume in the models. We suggest these models adopt a moderate correlation based on observations. In Berea sandstone, constraining ratios of surface area to pore volume to a range of values between that of quartz-lined and five times that of clay-lined spheres appeared sufficient.

  10. Displacement of soil pore water by trichloroethylene

    Science.gov (United States)

    Wershaw, R. L.; Aiken, G.R.; Imbrigiotta, T.E.; Goldberg, M.C.

    1994-01-01

    Dense nonaqueous phase liquids (DNAPLS) are important pollutants because of their widespread use as chemical and industrial solvents. An example of the pollution caused by the discharge of DNAPLs is found at the Picatinny Arsenal, New Jersey, where trichloroethylene (TCE) has been discharged directly into the unsaturated zone. This discharge has resulted in the formation of a plume of TCE-contaminated water in the aquifer downgradient of the discharge. A zone of dark-colored groundwater containing a high dissolved organic C content has been found near the point of discharge of the TCE. The colored-water plume extends from the point of discharge at least 30 m (100 feet) downgradient. Fulvic acids isolated from the colored-waters plume, from water from a background well that has not been affected by the discharge of chlorinated solvents, and from soil pore water collected in a lysimeter installed at an uncontaminated site upgradient of the study area have been compared. Nuclear magnetic resonance spectra of the fulvic acids from the colored waters and from the lysimeter are very similar, but are markedly different from the nuclear magnetic resonance spectrum of the fulvic acid from the background well. The three-dimensional fluorescence spectrum and the DOC fractionation profile of the colored groundwater and the soil pore water are very similar to each other, but quite different from those of the background water. It is proposed from these observations that this colored water is soil pore water that has been displaced by a separate DNAPL liquid phase downward to the saturated zone.

  11. Compositions comprising a polypeptide having cellulolytic enhancing activity and a quinone compound and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    2017-09-05

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a quinone compound. The present invention also relates to methods of using the compositions.

  12. Compositions comprising a polypeptide having cellulolytic enhancing activity and a bicycle compound and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Feng; Sweeney, Matthew; Quinlan, Jason

    2015-06-16

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a bicyclic compound. The present invention also relates to methods of using the compositions.

  13. Compositions comprising a polypeptide having cellulolytic enhancing activity and a bicyclic compound and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    2016-10-04

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a bicyclic compound. The present invention also relates to methods of using the compositions.

  14. Compositions comprising a polypeptide having cellulolytic enhancing activity and a heterocyclic compound and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Feng; Sweeney, Matthew; Quinlan, Jason

    2016-08-02

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a heterocyclic compound. The present invention also relates to methods of using the compositions.

  15. Silicon pore optics developments and status

    DEFF Research Database (Denmark)

    Bavdaz, Marcos; Wille, Eric; Wallace, Kotska;

    2012-01-01

    Silicon Pore Optics (SPO) is a lightweight high performance X-ray optics technology being developed in Europe, driven by applications in observatory class high energy astrophysics missions. An example of such application is the former ESA science mission candidate ATHENA (Advanced Telescope...... of the SPO technology. The technology development programme has succeeded in maturing the SPO further and achieving important milestones, in each of the main activity streams: environmental compatibility, industrial production and optical performance. In order to accurately characterise the increasing...... performance of this innovative optical technology, the associated X-ray test facilities and beam-lines have been refined and upgraded. © 2012 SPIE....

  16. Viral Subversion of the Nuclear Pore Complex

    Directory of Open Access Journals (Sweden)

    Valerie Le Sage

    2013-08-01

    Full Text Available The nuclear pore complex (NPC acts as a selective barrier between the nucleus and the cytoplasm and is responsible for mediating communication by regulating the transport of RNA and proteins. Numerous viral pathogens have evolved different mechanisms to hijack the NPC in order to regulate trafficking of viral proteins, genomes and even capsids into and out of the nucleus thus promoting virus replication. The present review examines the different strategies and the specific nucleoporins utilized during viral infections as a means of promoting their life cycle and inhibiting host viral defenses.

  17. Analysis of quantitative pore features based on mathematical morphology

    Institute of Scientific and Technical Information of China (English)

    QI Heng-nian; CHEN Feng-nong; WANG Hang-jun

    2008-01-01

    Wood identification is a basic technique of wood science and industry. Pore features are among the most important identification features for hardwoods. We have used a method based on an analysis of quantitative pore feature, which differs from traditional qualitative methods. We applies mathematical morphology methods such as dilation and erosion, open and close transformation of wood cross-sections, image repairing, noise filtering and edge detection to segment the pores from their background. Then the mean square errors (MSE) of pores were computed to describe the distribution of pores. Our experiment shows that it is easy to classift the pore features into three basic types, just as in traditional qualitative methods, but with the use of MSE of pores. This quantitative method improves wood identification considerably.

  18. Quantifying similarity of pore-geometry in nanoporous materials

    Science.gov (United States)

    Lee, Yongjin; Barthel, Senja D.; Dłotko, Paweł; Moosavi, S. Mohamad; Hess, Kathryn; Smit, Berend

    2017-05-01

    In most applications of nanoporous materials the pore structure is as important as the chemical composition as a determinant of performance. For example, one can alter performance in applications like carbon capture or methane storage by orders of magnitude by only modifying the pore structure. For these applications it is therefore important to identify the optimal pore geometry and use this information to find similar materials. However, the mathematical language and tools to identify materials with similar pore structures, but different composition, has been lacking. We develop a pore recognition approach to quantify similarity of pore structures and classify them using topological data analysis. This allows us to identify materials with similar pore geometries, and to screen for materials that are similar to given top-performing structures. Using methane storage as a case study, we also show that materials can be divided into topologically distinct classes requiring different optimization strategies.

  19. Global functional analyses of cellular responses to pore-forming toxins.

    Directory of Open Access Journals (Sweden)

    Cheng-Yuan Kao

    2011-03-01

    Full Text Available Here we present the first global functional analysis of cellular responses to pore-forming toxins (PFTs. PFTs are uniquely important bacterial virulence factors, comprising the single largest class of bacterial protein toxins and being important for the pathogenesis in humans of many Gram positive and Gram negative bacteria. Their mode of action is deceptively simple, poking holes in the plasma membrane of cells. The scattered studies to date of PFT-host cell interactions indicate a handful of genes are involved in cellular defenses to PFTs. How many genes are involved in cellular defenses against PFTs and how cellular defenses are coordinated are unknown. To address these questions, we performed the first genome-wide RNA interference (RNAi screen for genes that, when knocked down, result in hypersensitivity to a PFT. This screen identifies 106 genes (∼0.5% of genome in seven functional groups that protect Caenorhabditis elegans from PFT attack. Interactome analyses of these 106 genes suggest that two previously identified mitogen-activated protein kinase (MAPK pathways, one (p38 studied in detail and the other (JNK not, form a core PFT defense network. Additional microarray, real-time PCR, and functional studies reveal that the JNK MAPK pathway, but not the p38 MAPK pathway, is a key central regulator of PFT-induced transcriptional and functional responses. We find C. elegans activator protein 1 (AP-1; c-jun, c-fos is a downstream target of the JNK-mediated PFT protection pathway, protects C. elegans against both small-pore and large-pore PFTs and protects human cells against a large-pore PFT. This in vivo RNAi genomic study of PFT responses proves that cellular commitment to PFT defenses is enormous, demonstrates the JNK MAPK pathway as a key regulator of transcriptionally-induced PFT defenses, and identifies AP-1 as the first cellular component broadly important for defense against large- and small-pore PFTs.

  20. Dendritic silica nanomaterials (KCC-1) with fibrous pore structure possess high DNA adsorption capacity and effectively deliver genes in vitro.

    Science.gov (United States)

    Huang, Xiaoxi; Tao, Zhimin; Praskavich, John C; Goswami, Anandarup; Al-Sharab, Jafar F; Minko, Tamara; Polshettiwar, Vivek; Asefa, Tewodros

    2014-09-16

    The pore size and pore structure of nanoporous materials can affect the materials' physical properties, as well as potential applications in different areas, including catalysis, drug delivery, and biomolecular therapeutics. KCC-1, one of the newest members of silica nanomaterials, possesses fibrous, large pore, dendritic pore networks with wide pore entrances, large pore size distribution, spacious pore volume and large surface area--structural features that are conducive for adsorption and release of large guest molecules and biomacromolecules (e.g., proteins and DNAs). Here, we report the results of our comparative studies of adsorption of salmon DNA in a series of KCC-1-based nanomaterials that are functionalized with different organoamine groups on different parts of their surfaces (channel walls, external surfaces or both). For comparison the results of our studies of adsorption of salmon DNA in similarly functionalized, MCM-41 mesoporous silica nanomaterials with cylindrical pores, some of the most studied silica nanomaterials for drug/gene delivery, are also included. Our results indicate that, despite their relatively lower specific surface area, the KCC-1-based nanomaterials show high adsorption capacity for DNA than the corresponding MCM-41-based nanomaterials, most likely because of KCC-1's large pores, wide pore mouths, fibrous pore network, and thereby more accessible and amenable structure for DNA molecules to diffuse through. Conversely, the MCM-41-based nanomaterials adsorb much less DNA, presumably because their outer surfaces/cylindrical channel pore entrances can get blocked by the DNA molecules, making the inner parts of the materials inaccessible. Moreover, experiments involving fluorescent dye-tagged DNAs suggest that the amine-grafted KCC-1 materials are better suited for delivering the DNAs adsorbed on their surfaces into cellular environments than their MCM-41 counterparts. Finally, cellular toxicity tests show that the KCC-1-based

  1. Hydrophobic polymers modification of mesoporous silica with large pore size for drug release

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Shenmin, E-mail: smzhu@sjtu.edu.c [Shanghai Jiao Tong University, State Key Lab of Metal Matrix Composites (China); Zhang Di; Yang Na [Fudan University, Ministry of Education, Key Lab of Molecular Engineering of Polymers (China)

    2009-04-15

    Mesostructure cellular foam (MCF) materials were modified with hydrophobic polyisoprene (PI) through free radical polymerization in the pores network, and the resulting materials (MCF-PI) were investigated as matrices for drug storage. The successful synthesis of PI inside MCF was characterized by Fourier transform infrared (FT-IR), hydrogen nuclear magnetic resonance ({sup 1}H NMR), X-ray diffraction patterns (XRD) and nitrogen adsorption/desorption measurements. It was interesting to find the resultant system held a relatively large pore size (19.5 nm) and pore volume (1.02 cm{sup 3} g{sup -1}), which would benefit for drug storage. Ibuprofen (IBU) and vancomycin were selected as model drugs and loaded onto unmodified MCF and modified MCF (MCF-PI). The adsorption capacities of these model drugs on MCF-PI were observed increase as compared to that of on pure MCF, due to the trap effects induced by polyisoprene chains inside the pores. The delivery system of MCF-PI was found to be more favorable for the adsorption of IBU (31 wt%, IBU/silica), possibly attributing to the hydrophobic interaction between IBU and PI formed on the internal surface of MCF matrix. The release of drug through the porous network was investigated by measuring uptake and release of IBU.

  2. Simulations of beta-hairpin folding confined to spherical pores using distributed computing.

    Science.gov (United States)

    Klimov, D K; Newfield, D; Thirumalai, D

    2002-06-11

    We report the thermodynamics and kinetics of an off-lattice Go model beta-hairpin from Ig-binding protein confined to an inert spherical pore. Confinement enhances the stability of the hairpin due to the decrease in the entropy of the unfolded state. Compared with their values in the bulk, the rates of hairpin formation increase in the spherical pore. Surprisingly, the dependence of the rates on the pore radius, R(s), is nonmonotonic. The rates reach a maximum at R(s)/R(g,N)(b) approximately equal to 1.5, where R(g,N)(b) is the radius of gyration of the folded beta-hairpin in the bulk. The denatured state ensemble of the encapsulated beta-hairpin is highly structured even at substantially elevated temperatures. Remarkably, a profound effect of confinement is evident even when the beta-hairpin occupies less than a 10th of the sphere volume. Our calculations show that the emergence of substantial structure in the denatured state of proteins in inert pores is a consequence of confinement. In contrast, the structure of the bulk denatured state ensemble depends dramatically on the extent of denaturation.

  3. Linker Installation: Engineering Pore Environment with Precisely Placed Functionalities in Zirconium MOFs.

    Science.gov (United States)

    Yuan, Shuai; Chen, Ying-Pin; Qin, Jun-Sheng; Lu, Weigang; Zou, Lanfang; Zhang, Qiang; Wang, Xuan; Sun, Xing; Zhou, Hong-Cai

    2016-07-20

    Precise placement of multiple functional groups in a highly ordered metal-organic framework (MOF) platform allows the tailoring of the pore environment, which is required for advanced applications. To realize this, we present a comprehensive study on the linker installation method, in which a stable MOF with coordinatively unsaturated Zr6 clusters was employed and linkers bearing different functional groups were postsynthetically installed. A Zr-MOF with inherent missing linker sites, namely, PCN-700, was initially constructed under kinetic control. Twelve linkers with different substituents were then designed to study their effect on MOF formation kinetics and therefore resulting MOF structures. Guided by the geometrical analysis, linkers with different lengths were installed into a parent PCN-700, giving rise to 11 new MOFs and each bearing up to three different functional groups in predefined positions. Systematic variation of the pore volume and decoration of pore environment were realized by linker installation, which resulted in synergistic effects including an enhancement of H2 adsorption capacities of up to 57%. In addition, a size-selective catalytic system for aerobic alcohol oxidation reaction is built in PCN-700 through linker installation, which shows high activity and tunable size selectivity. Altogether, these results exemplify the capability of the linker installation method in the pore environment engineering of stable MOFs with multiple functional groups, giving an unparalleled level of control.

  4. Pore-level mechanics of foam generation and coalescence in the presence of oil.

    Science.gov (United States)

    Almajid, Muhammad M; Kovscek, Anthony R

    2016-07-01

    The stability of foam in porous media is extremely important for realizing the advantages of foamed gas on gas mobility reduction. Foam texture (i.e., bubbles per volume of gas) achieved is dictated by foam generation and coalescence processes occurring at the pore-level. For foam injection to be widely applied during gas injection projects, we need to understand these pore-scale events that lead to foam stability/instability so that they are modeled accurately. Foam flow has been studied for decades, but most efforts focused on studying foam generation and coalescence in the absence of oil. Here, the extensive existing literature is reviewed and analyzed to identify open questions. Then, we use etched-silicon micromodels to observe foam generation and coalescence processes at the pore-level. Special emphasis is placed on foam coalescence in the presence of oil. For the first time, lamella pinch-off as described by Myers and Radke [40] is observed in porous media and documented. Additionally, a new mechanism coined "hindered generation" is found. Hindered generation refers to the role oil plays in preventing the successful formation of a lamella following snap-off near a pore throat.

  5. Preparation of Granular Red Mud Adsorbent using Different Binders by Microwave Pore - Making and Activation Method

    Science.gov (United States)

    Le, Thiquynhxuan; Wang, Hanrui; Ju, Shaohua; Peng, Jinhui; Zhou, Liexing; Wang, Shixing; Yin, Shaohua; Liu, Chao

    2016-04-01

    In this work, microwave energy is used for preparing a granular red mud (GRM) adsorbent made of red mud with different binders, such as starch, sodium silicate and cement. The effects of the preparation parameters, such as binder type, binder addition ratio, microwave heating temperature, microwave power and holding time, on the absorption property of GRM are investigated. The BET surface area, strength, pore structure, XRD and SEM of the GRM absorbent are analyzed. The results show that the microwave roasting has a good effect on pore-making of GRM, especially when using organic binder. Both the BET surface area and the strength of GRM obtained by microwave heating are significantly higher than that by conventional heating. The optimum conditions are obtained as follows: 6:100 (w/w) of starch to red mud ratio, microwave roasting with a power of 2.6 kW at 500℃ for holding time of 30 min. The BET surface area, pore volume and average pore diameter of GRM prepared at the optimum conditions are 15.58 m2/g, 0.0337 cm3/g and 3.1693 A0, respectively.

  6. Modeling multiphase, multicomponent flows at the pore scale: Wetting phenomena and non-equilibrium phase behavior

    Science.gov (United States)

    Cueto-Felgueroso, L.; Fu, X.; Juanes, R.

    2016-12-01

    The description of multicomponent flows with complex phase behavior remains an open challenge in pore-scale modeling. Darcy-scale general purpose simulators assume local thermodynamic equilibrium, and perform equation-of-state-based calculations to make phase equilibrium predictions; that is, to determine the phase volume fractions and their compositions from overall component mole fractions. What remains unclear is whether the thermodynamic equilibrium assumption is valid given the flow conditions, complex structure of the pore space and characteristic time scales for flow. Diffuse-interface theories of multiphase flow have recently emerged as promising tools to understand and simulate complex processes involving the simultaneous flow of two or more immiscible fluid phases. The common goal in these approaches is to formulate thermodynamically consistent stress tensors and mesoscale balance laws, including the impact of surface tension on the momentum balance, as well as properly tracking interfacial dynamics and mass transfer. We propose a phase-field model of multiphase, multicomponent flow, which we use to address the following research questions: What is the impact of the wetting conditions at the pore scale on upscaled descriptions of multiphase flow? What is the impact of the displacement dynamics, pore space structure and wetting conditions on the phase behavior of multicomponent mixtures? We finally investigate upscaling procedures to incorporate non-equilibrium phase behavior at the continuum scale.

  7. Wettability evaluation of a carbonate reservoir rock from core to pore level

    Energy Technology Data Exchange (ETDEWEB)

    Al-Yousef, H.Y.; Lichaa, P.M.; Al-Kaabi, A.U.; Alpustun, H.

    1995-10-01

    Wettability evaluation was performed during stags of as received, cleaned, and restored states on core samples form a Saudi Arabian carbonate reservoir. The wettability behavior from the chemistry of brine-oil-carbonate rock interaction was found to be neutral to slightly oil-wet. The pore-size distribution obtained from mercury injection data indicated that about 15--20 percent of the pore volume is not accessible to asphaltene particles in the crude oil. Therefore a mixed-wettability state can exist. These results were confirmed by the evaluation of the wettability of the cores using USBM and Amott techniques. The wettability at the pore level was studied using Cryo-Scanning Electron Microscopy. Rock samples were examined at irreducible water and residual oil saturations during cleaned and restored states. At irreducible water saturation, both oil and brine were present in the intergranular macroporosity and intragranular macropores and micropores. At residual oil saturation,oil was found in the form of isolated globules in the cleaned case. After aging, the oil is more loosely distributed in the porosity and generally contacts the pore walls. This indicates an evolution toward oil wetness with aging. These results are in agreement with the changes of wettability indices obtained using USBM technique.

  8. Effect of pore water velocities and solute input methods on chloride transport in the undisturbed soil columns of Loess Plateau

    Science.gov (United States)

    Zhou, BeiBei; Wang, QuanJiu

    2016-04-01

    Studies on solute transport under different pore water velocity and solute input methods in undisturbed soil could play instructive roles for crop production. Based on the experiments in the laboratory, the effect of solute input methods with small pulse input and large pulse input, as well as four pore water velocities, on chloride transport in the undisturbed soil columns obtained from the Loess Plateau under controlled condition was studied. Chloride breakthrough curves (BTCs) were generated using the miscible displacement method under water-saturated, steady flow conditions. Using the 0.15 mol L-1 CaCl2 solution as a tracer, a small pulse (0.1 pore volumes) was first induced, and then, after all the solution was wash off, a large pulse (0.5 pore volumes) was conducted. The convection-dispersion equation (CDE) and the two-region model (T-R) were used to describe the BTCs, and their prediction accuracies and fitted parameters were compared as well. All the BTCs obtained for the different input methods and the four pore water velocities were all smooth. However, the shapes of the BTCs varied greatly; small pulse inputs resulted in more rapid attainment of peak values that appeared earlier with increases in pore water velocity, whereas large pulse inputs resulted in an opposite trend. Both models could fit the experimental data well, but the prediction accuracy of the T-R was better. The values of the dispersivity, λ, calculated from the dispersion coefficient obtained from the CDE were about one order of magnitude larger than those calculated from the dispersion coefficient given by the T-R, but the calculated Peclet number, Pe, was lower. The mobile-immobile partition coefficient, β, decreased, while the mass exchange coefficient increased with increases in pore water velocity.

  9. Developments in glass micro pore optics for x-ray applications

    Science.gov (United States)

    Wallace, Kotska; Collon, Maximilien; Bavdaz, Marcos; Fairbend, Ray; Séguy, Julien; Krumrey, Michael

    2006-06-01

    ESA is developing technologies for x-ray imaging to reduce the mass and volume of future missions. Applications of x-ray optics are foreseen in future planetary x-ray imagers, x-ray timing observatories and in observatories for high-energy astrophysics. With reference to planetary x-ray imagers the use of glass micro-pore material is being investigated. This technology allows the formation of a monolithic, glass structure that can be used to focus x-rays by glancing reflections off the pore walls. A technique to form x-ray focusing plates that contain thousands of square micro-pores has been developed with Photonis. The square pores are formed in a process that fuses blocks of extruded square fibres, which can then be sliced, etched and slumped to form the segment of an optic with a specific radius. A proposed imager would be created from 2 optics, slumped with different radii, and mounted to form an approximation of a Wolter I optic configuration. Reflection can be improved by coating the channel surfaces with a heavy element, such as nickel. Continuing developments have been made to enhance the manufacturing processes and improve the characteristics of the manufactured x-ray focusing plates, such as improved surface roughness and squareness of pore walls, improved pore alignment from fibre stacking through to optic segment slumping and development of pore wall coatings. In order to measure improvements x-ray measurements are performed by ESA and cosine Research BV, using the BESSY-II synchrotron facility four-crystal monochromator beamline of the Physikalisch-Technische Bundesanstalt, on multifibres, sectors and slumped sectors. A probing beam is used to investigate a number of pores to determine x-ray transmission, focussing characteristics as they relate to the overall transmission, x-ray reflectivity of channel walls, radial alignment of fibres, slumping radius and fibre position in a fused block. SEM measurements and microscope inspection have also been used

  10. Atmosphere above a large solar pore

    CERN Document Server

    Sobotka, M; Jurcak, J; Heinzel, P; Del Moro, D

    2013-01-01

    A large solar pore with a granular light bridge was observed on October 15, 2008 with the IBIS spectrometer at the Dunn Solar Telescope and a 69-min long time series of spectral scans in the lines Ca II 854.2 nm and Fe I 617.3 nm was obtained. The intensity and Doppler signals in the Ca II line were separated. This line samples the middle chromosphere in the core and the middle photosphere in the wings. Although no indication of a penumbra is seen in the photosphere, an extended filamentary structure, both in intensity and Doppler signals, is observed in the Ca II line core. An analysis of morphological and dynamical properties of the structure shows a close similarity to a superpenumbra of a sunspot with developed penumbra. A special attention is paid to the light bridge, which is the brightest feature in the pore seen in the Ca II line centre and shows an enhanced power of chromospheric oscillations at 3-5 mHz. Although the acoustic power flux in the light bridge is five times higher than in the "quiet" chr...

  11. Molecular dynamics simulation of flow in pores

    Science.gov (United States)

    Blömer, Jan

    2001-08-01

    The gaseous flow in nano-scale pores is of wide interest for many today's industrial applications, e.g., in microelectronics, nano-mechanical devices (Knudsen compressor) and reaction and adsorption at porous surfaces. This can be seen from a variety of papers of recent RGD Symposia. Furthermore it is possible to separate gases by porous membranes. Although the fundamental problem of all these applications is same, namely the important role of the gas-surface interaction in such small structures, we will primarily concentrate on the separation of different gas species by porous membranes. These membranes are typically very robust (temperature, chemical resistance) because they are made from ceramics which offers new application fields. Porous flow can roughly be divided in several flow regimes by the Knudsen number: From viscous flow to Knudsen diffusion to surface diffusion and up to capillary condensation. A Molecular Dynamics (MD) model for the gas as well as the surface is formulated to investigate the interaction of gas atoms or molecules with internal degrees of freedom and the pore. The MD method seems to be well suited to study these phenomena because it can deal with the high density and the many-body-interactions, which occur during the multilayer adsorption and condensation at the surface, although it is clear that it is limited to a small physical space because of its high computational consumption.

  12. Pore formation in lipid membrane I: Continuous reversible trajectory from intact bilayer through hydrophobic defect to transversal pore.

    Science.gov (United States)

    Akimov, Sergey A; Volynsky, Pavel E; Galimzyanov, Timur R; Kuzmin, Peter I; Pavlov, Konstantin V; Batishchev, Oleg V

    2017-09-22

    Lipid membranes serve as effective barriers allowing cells to maintain internal composition differing from that of extracellular medium. Membrane permeation, both natural and artificial, can take place via appearance of transversal pores. The rearrangements of lipids leading to pore formation in the intact membrane are not yet understood in details. We applied continuum elasticity theory to obtain continuous trajectory of pore formation and closure, and analyzed molecular dynamics trajectories of pre-formed pore reseal. We hypothesized that a transversal pore is preceded by a hydrophobic defect: intermediate structure spanning through the membrane, the side walls of which are partially aligned by lipid tails. This prediction was confirmed by our molecular dynamics simulations. Conversion of the hydrophobic defect into the hydrophilic pore required surmounting some energy barrier. A metastable state was found for the hydrophilic pore at the radius of a few nanometers. The dependence of the energy on radius was approximately quadratic for hydrophobic defect and small hydrophilic pore, while for large radii it depended on the radius linearly. The pore energy related to its perimeter, line tension, thus depends of the pore radius. Calculated values of the line tension for large pores were in quantitative agreement with available experimental data.

  13. Uranium in US surface, ground, and domestic waters. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  14. Method and apparatus for separating a non-ferrous metal-comprising fraction from ferrous scrap

    NARCIS (Netherlands)

    Rem, P.C.; Berkhout, S.P.M.

    2010-01-01

    Method for separating a non-ferrous metal-comprising fraction from ferrous scrap, wherein the ferrous scrap is conveyed to a processing device for separating the non-ferrous metal-comprising fraction from the remainder of the ferrous scrap. The processing device supplies a beam of water, and the fer

  15. Polymer coating comprising 2-methoxyethyl acrylate units synthesized by surface-initiated atom transfer radical polymerization

    DEFF Research Database (Denmark)

    2011-01-01

    Source: US2012184029A The present invention relates to preparation of a polymer coating comprising or consisting of polymer chains comprising or consisting of units of 2-methoxyethyl acrylate synthesized by Surface-Initiated Atom Transfer Radical Polymerization (SI ATRP) such as ARGET SI ATRP...... or AGET SI ATRP and uses of said polymer coating....

  16. Method for recovering aroma concentrate from a caffeine- or theobromine-comprising food base material

    NARCIS (Netherlands)

    Kattenberg, H.R.; Willemsen, J.H.A.; Starmans, D.A.J.; Hoving, H.D.; Winters, M.G.M.

    2002-01-01

    Described is a method for recovering aroma concentrate from a caffeine- or theobromine-comprising food base material, such as coffee or tea, and in particular cocoa, at least comprising the steps of: introducing the food base material into an aqueous extractant and incubating the food base material

  17. Molecular sleds comprising a positively -charged amino acid sequence and a molecular cargo and uses thereof

    NARCIS (Netherlands)

    MANGEL, WALTER, F; BLAINEY, PAUL; GRAZIANO, VITO; HERRMANN, ANDREAS; MCGRATH, WILLIAM, J; VAN OIJEN, ANTONIUS, MARTINUS; XIE, XIAOLIANG, SUNNEY

    2014-01-01

    The present invention relates to compositions which may comprise a molecular sled linked to cargo and uses thereof. In particular, the present invention relates to a non-naturally occurring or engineered composition which may comprise a molecular sled, linkers and a molecular cargo connected to the

  18. Ball bearings comprising nickel-titanium and methods of manufacture thereof

    Science.gov (United States)

    DellaCorte, Christopher (Inventor); Glennon, Glenn N. (Inventor)

    2012-01-01

    Disclosed herein is a friction reducing nickel-titanium composition. The nickel-titanium composition includes a first phase that comprises nickel and titanium in an atomic ratio of about 0.45:0.55 to about 0.55:0.45; a second phase that comprises nickel and titanium in an atomic ratio of about 0.70:0.30 to about 0.80:0.20; and a third phase that comprises nickel and titanium in an atomic ratio of about 0.52:0.48 to about 0.62:0.38. A bearing for reducing friction comprising a nickel-titanium composition comprising a first phase that comprises nickel and titanium in an atomic ratio of about 0.45:0.55 to about 0.55:0.45; a second phase that comprises nickel and titanium in an atomic ratio of about 0.70:0.30 to about 0.80:0.20; and a third phase that comprises nickel and titanium in an atomic ratio of about 0.52:0.48 to about 0.62:0.38; where the bearing is free from voids and pinholes.

  19. Electrode material comprising graphene-composite materials in a graphite network

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Harold H.; Lee, Jung K.

    2017-08-08

    A durable electrode material suitable for use in Li ion batteries is provided. The material is comprised of a continuous network of graphite regions integrated with, and in good electrical contact with a composite comprising graphene sheets and an electrically active material, such as silicon, wherein the electrically active material is dispersed between, and supported by, the graphene sheets.

  20. Electrode material comprising graphene-composite materials in a graphite network

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Harold H.; Lee, Jung K.

    2014-07-15

    A durable electrode material suitable for use in Li ion batteries is provided. The material is comprised of a continuous network of graphite regions integrated with, and in good electrical contact with a composite comprising graphene sheets and an electrically active material, such as silicon, wherein the electrically active material is dispersed between, and supported by, the graphene sheets.

  1. Method and apparatus for separating a non-ferrous metal-comprising fraction from ferrous scrap

    NARCIS (Netherlands)

    Rem, P.C.; Berkhout, S.P.M.

    2010-01-01

    Method for separating a non-ferrous metal-comprising fraction from ferrous scrap, wherein the ferrous scrap is conveyed to a processing device for separating the non-ferrous metal-comprising fraction from the remainder of the ferrous scrap. The processing device supplies a beam of water, and the

  2. Partitioning of star branched polymers into pores at three chromatography conditions.

    Science.gov (United States)

    Wang, Yongmei; Masur, Aaron; Zhu, Yutian; Ziebarth, Jesse

    2010-09-24

    The partitioning of star branched polymers into a slit pore at three different chromatography conditions, namely, size exclusion chromatography (SEC), liquid chromatography at the critical condition (LCCC), and liquid adsorption chromatography (LAC) have been investigated with lattice Monte Carlo simulations. Two different chain models are used: random walks (RW) that have no excluded volume interaction and self-avoiding walks (SAW) that have excluded volume interaction. The simulation data obtained for the two chain models are compared to illustrate the effect of excluded volume interactions on the partitioning of star branched polymers. The two most outstanding effects observed due to the introduction of excluded volume interactions are: (i) stars with a high number of arms can be excluded from the pore at condition corresponding to the LCCC of the linear polymers; (ii) the partition coefficient of stars in LAC mode is not dependent only on the total number of monomers on the chain. These effects illustrated by the current study should be taken into account when interpreting experimental chromatography data for branched polymers. Copyright 2010 Elsevier B.V. All rights reserved.

  3. The effect of firing temperature on the irreversible expansion, water absorption and pore structure of a brick body during freeze-thaw cycles

    Directory of Open Access Journals (Sweden)

    Mikuláš ŠVEDA

    2013-12-01

    Full Text Available The paper deals with the monitoring of brick body in the process of volumetric freezing and thawing. The samples were fired at temperatures of 900, 1000 and 1060 °C. Attention is focused on monitoring of the irreversible expansion, water absorption and pore structure of a brick body. We found that in all cases the endpoints take place continuously, where the amount firing temperature plays a crucial role. The greatest influence of freeze/thaw cycles on the change of the pore structure was also observed at the lowest temperature. The change of the pore system during the freeze-thaw cycles occurs in such a way, that the pore volume of small pores further decreases and conversely, the pore volume of large pores increases. The knowledge gained can be used not only in the production of new but also in predicting the remaining durability of older clay roofing tiles. DOI: http://dx.doi.org/10.5755/j01.ms.19.4.2741

  4. The effect of firing temperature on the irreversible expansion, water absorption and pore structure of a brick body during freeze-thaw cycles

    Directory of Open Access Journals (Sweden)

    Mikuláš ŠVEDA

    2013-12-01

    Full Text Available The paper deals with the monitoring of brick body in the process of volumetric freezing and thawing. The samples were fired at temperatures of 900, 1000 and 1060 °C. Attention is focused on monitoring of the irreversible expansion, water absorption and pore structure of a brick body. We found that in all cases the endpoints take place continuously, where the amount firing temperature plays a crucial role. The greatest influence of freeze/thaw cycles on the change of the pore structure was also observed at the lowest temperature. The change of the pore system during the freeze-thaw cycles occurs in such a way, that the pore volume of small pores further decreases and conversely, the pore volume of large pores increases. The knowledge gained can be used not only in the production of new but also in predicting the remaining durability of older clay roofing tiles. DOI: http://dx.doi.org/10.5755/j01.ms.19.4.2741

  5. The effect of synthesis parameters on the geometry and dimensions of mesoporous hydroxyapatite nanoparticles in the presence of 1-dodecanethiol as a pore expander

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtiari, L. [School of Metallurgical and Materials Engineering, Iran University of Science and Technology, Tehran, Narmak 16844 (Iran, Islamic Republic of); Rezaie, H.R., E-mail: hrezaie@iust.ac.ir [School of Metallurgical and Materials Engineering, Iran University of Science and Technology, Tehran, Narmak 16844 (Iran, Islamic Republic of); Javadpour, J. [School of Metallurgical and Materials Engineering, Iran University of Science and Technology, Tehran, Narmak 16844 (Iran, Islamic Republic of); Erfan, M. [Shahid Beheshti University of Medical Sciences, Tehran 6153-14155 (Iran, Islamic Republic of); Shokrgozar, M.A. [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran 13164 (Iran, Islamic Republic of)

    2015-08-01

    Mesoporous hydroxyapatite with different pore diameters and pore volumes were synthesized by the self-assembly method using Cetyltrimethylammonium bromide (CTAB) as the cationic surfactant and 1-dodecanethiol as the pore expander at different micellization pHs, solvent types and surfactant concentrations. Results of field emission scanning electron microscopy (FESEM) showed a decrease in length/diameter ratio of rod-like particles by an increase in micellization pH and also a sphere to rod transition in morphology by an increase in CTAB concentration. Brunauer–Emmett–Teller (BET) surface area and Low angle X-ray diffraction analysis revealed that the optimized mesoporous hydroxyapatite with controlled pore structure can be obtained under basic micellization pH (about 12, pH of complete ionization of 1-dodecanethiol) by using water as the solvent and a high content of cationic surfactant. The results also show that micellization pH has a strong effect on pore structure and changing the pH can shift the mesostructure to a macroporous structure with morphological changes. - Highlights: • Synthesis of mesoporous hydroxyapatite with controlled pore structure • Introduced a facile way to obtain mesoporous hydroxyapatite with high pore volume • Evaluation of morphological changes as a function of synthesis parameters.

  6. Large Mesopore Generation in an Amorphous Silica-Alumina by Controlling the Pore Size with the Gel Skeletal Reinforcement and Its Application to Catalytic Cracking

    Directory of Open Access Journals (Sweden)

    Hiroyuki Nasu

    2012-09-01

    Full Text Available Tetraethoxy orthosilicate (TEOS was used not only as a precursor of silica, but also as an agent which reinforces the skeleton of silica-gel to prepare an aerogel and resultant silica and silica-alumina with large pore size and pore volume. In this gel skeletal reinforcement, the strength of silica aerogel skeleton was enhanced by aging with TEOS/2-propanol mixed solution to prevent the shrink of the pores. When silica aerogel was reinforced by TEOS solution, the pore diameter and pore volume of calcined silica could be controlled by the amount of TEOS solution and reached 30 nm and 3.1 cm3/g. The results from N2 adsorption measurement indicated that most of pores for this silica consisted of mesopores. Silica-alumina was prepared by the impregnation of an aluminum tri-sec-butoxide/2-butanol solution with obtained silica. Mixed catalysts were prepared by the combination of β-zeolite (26 wt% and prepared silica-aluminas with large mesopore (58 wt% and subsequently the effects of their pore sizes on the catalytic activity and the product selectivity were investigated in catalytic cracking of n-dodecane at 500 °C. The mixed catalysts exhibited not only comparable activity to that for single zeolite, but also unique selectivity where larger amounts of branched products were formed.

  7. An emerging pore-making strategy: confined swelling-induced pore generation in block copolymer materials.

    Science.gov (United States)

    Wang, Yong; Li, Fengbin

    2011-05-17

    Block copolymers (BCPs) composed of two or more thermodynamically incompatible homopolymers self-assemble into periodic microdomains. Exposing self-assembled BCPs with solvents selective to one block causes a swelling of the domains composed of this block. Strong swelling in the confinement imposed by the matrix of the other glassy block leads to well-defined porous structures via morphology reconstruction. This confined swelling-induced pore-making process has emerged recently as a new strategy to produce porous materials due to synergic advantages that include extreme simplicity, high pore regularity, involvement of no chemical reactions, no weight loss, reversibility of the pore forming process, etc. The mechanism, kinetics, morphology, and governing parameters of the confined swelling-induced pore-making process in BCP thin films are discussed, and the main applications of nanoporous thin films in the fields of template synthesis, surface patterning, and guidance for the areal arrangements of nanomaterials and biomolecules are summarized. Recent, promising results of extending this mechanism to produce BCP nanofibers or nanotubes and bulk materials with well-defined porosity, which makes this strategy also attractive to researchers outside the nanocommunity, are also presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Computational modeling of electrokinetic transport in random networks of micro-pores and nano-pores

    Science.gov (United States)

    Alizadeh, Shima; Mani, Ali

    2014-11-01

    A reduced order model has been developed to study the nonlinear electrokinetic behaviors emerging in the transport of ionic species through micro-scale and nano-scale porous media. In this approach a porous structure is modeled as a network of long and thin pores. By assuming transport equilibrium in the thin dimensions for each pore, a 1D transport equation is developed in the longitudinal direction covering a wide range of conditions including extreme limits of thick and thin electric double layers. This 1D model includes transport via diffusion, electromigration and wide range of advection mechanisms including pressure driven flow, electroosmosis, and diffusion osmosis. The area-averaged equations governing the axial transport from different pores are coupled at the pore intersections using the proper conservation laws. Moreover, an asymptotic treatment has been included in order to remove singularities in the limit of small concentration. The proposed method provides an efficient framework for insightful simulations of porous electrokinetic systems with applications in water desalination and energy storage. PhD student in Mechanical Engineering, Stanford University. She received her Master's degree in Mechanical Engineering from Stanford at 2013. Her research interests include CFD, high performance computing, and optimization.

  9. Structure and mechanism of peptide-induced membrane pores

    Science.gov (United States)

    Qian, Shuo

    This thesis reports the studies of the structure and mechanism of peptide-induced membrane pores by antimicrobial peptide alamethicin and by a peptide named Baxalpha5, which is derived from Bax protein. Alamethicin is one of best known antimicrobial peptides, which are ubiquitous throughout the biological world. Bax-alpha5 peptide is the pore-forming domain of apoptosis regulator protein Bax, which activates pore formation on outer mitochondrial membrane to release cytochrome c to initiate programmed cell death. Both peptides as well as many other pore-forming peptides, induce pores in membrane, however the structure and mechanism of the pore formation were unknown. By utilizing grazing angle x-ray diffraction, I was able to reconstruct the electron density profile of the membrane pores induced by both peptides. The fully hydrated multiple bilayers of peptide-lipid mixture on solid substrate were prepared in the condition that pores were present, as established previously by neutron in-plane scattering and oriented circular dichroism. At dehydrated conditions, the inter bilayer distance of the sample shortened and the interactions between bilayers caused the membrane pores to become long-ranged correlated and formed a periodically ordered lattice of rhombohedral symmetry, so that x-ray diffraction can be applied. To help solving the phase problem of diffraction, a brominated lipid was used and multi-wavelength anomalous diffraction was performed below the bromine K-edge. The reconstructed electron density profiles unambiguously revealed that the alamethicin-induced membrane pore is of barrel-stave type, while the Bax-alpha5 induced pore is of lipidic toroidal (wormhole) type. The underlying mechanism of pore formation was resolved by observing the time-dependent process of pore formation in vesicles exposed to Bax-alpha5 solutions, as well as the membrane thinning experiment. This demonstrated that Bax-alpha5 exhibited the same sigmoidal concentration dependence as

  10. The Effects of Swelling and Porosity Change on Capillarity: DEM Coupled with a Pore-Unit Assembly Method.

    Science.gov (United States)

    Sweijen, Thomas; Nikooee, Ehsan; Hassanizadeh, S Majid; Chareyre, Bruno

    In this study, a grain-scale modelling technique has been developed to generate the capillary pressure-saturation curves for swelling granular materials. This model employs only basic granular properties such as particles size distribution, porosity, and the amount of absorbed water for swelling materials. Using this model, both drainage and imbibition curves are directly obtained by pore-scale simulations of fluid invasion. This allows us to produce capillary pressure-saturation curves for a large number of different packings of granular materials with varying porosity and/or amount of absorbed water. The algorithm is based on combining the Discrete Element Method for generating different particle packings with a pore-unit assembly approach. The pore space is extracted using a regular triangulation, with the centres of four neighbouring particles forming a tetrahedron. The pore space within each tetrahedron is referred to as a pore unit. Thus, the pore space of a particle packing is represented by an assembly of pore units for which we construct drainage and imbibition capillary pressure-saturation curves. A case study on Hostun sand is conducted to test the model against experimental data from literature and to investigate the required minimum number of particles to have a Representative Elementary Volume. Then, the capillary pressure-saturation curves are constructed for Absorbent Gelling Material particles, for different combinations of porosity values and amounts of absorbed water. Each combination yields a different configuration of pore units, and thus distinctly different capillary pressure-saturation curves. All these curves are shown to collapse into one curve for drainage and one curve for imbibition when we normalize capillary pressure and saturation values. We have developed a formula for the Van Genuchten parameter [Formula: see text] (which is related to the inverse of the entry pressure) as a function of porosity and the amount of absorbed water.

  11. Visualizing and Quantifying Bioaccessible Pores in Field-Aged Petroleum Hydrocarbon-Contaminated Clay Soils Using Synchrotron-based X-ray Computed Tomography

    Science.gov (United States)

    Chang, W.; Kim, J.; Zhu, N.; McBeth, J. M.

    2015-12-01

    Microbial hydrocarbon degradation is environmentally significant and applicable to contaminated site remediation practices only when hydrocarbons (substrates) are physically bioaccessible to bacteria in soil matrices. Powerful X-rays are produced by synchrotron radiation, allowing for bioaccessible pores in soil (larger than 4 microns), where bacteria can be accommodated, colonize and remain active, can be visualized at a much higher resolution. This study visualized and quantified such bioaccessible pores in intact field-aged, oil-contaminated unsaturated soil fractions, and examined the relationship between the abundance of bioaccessible pores and hydrocarbon biodegradation. Using synchrotron-based X-ray Computed Tomography (CT) at the Canadian Light Source, a large dataset of soil particle characteristics, such as pore volumes, surface areas, number of pores and pore size distribution, was generated. Duplicate samples of five different soil fractions with different soil aggregate sizes and water contents (13, 18 and 25%) were examined. The method for calculating the number and distribution of bioaccessible pores using CT images was validated using the known porosity of Ottawa sand. This study indicated that the distribution of bioaccessible pore sizes in soil fractions are very closely related to microbial enhancement. A follow-up aerobic biodegradation experiment for the soils at 17 °C (average site temperature) over 90 days confirmed that a notable decrease in hydrocarbon concentrations occurred in soils fractions with abundant bioaccessible pores and with a larger number of pores between 10 and 100 μm. The hydrocarbon degradation in bioactive soil fractions was extended to relatively high-molecular-weight hydrocarbons (C16-C34). This study provides quantitative information about how internal soil pore characteristics can influence bioremediation performance.

  12. Study on pore structure properties of steam activated biomass chars

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Tong; Lu, Fei; Wang, Qinchao; Lu, Ping [Nanjing Normal Univ. (China). School of Energy and Mechanical Engineering

    2013-07-01

    Wheat straw and rice husk chars were prepared in a fixed bed reactor at different pyrolysis temperatures (673, 873 and 1,073K) and different pyrolysis procedure. The steam activated chars were also prepared in a fixed bed reactor at the following conditions: activation temperature is 1,073K, the flow rate of N{sub 2} is 5L/min, and N{sub 2} and H{sub 2}O molar ratio is 1:1. The specific surface area, pore structure and micro-morphology of different kinds of prepared biomass chars were measured by NOVA1000e analysis instrument and JSM-5610LV scanning electron microscopy (SEM), respectively. Results indicated that the internal structure was improved significantly by steam activation through enlarging the specific surface area and enriching the porosity. The wheat straw char prepared by both rapid pyrolysis at 873K and activation by steam is better than others, whose DR surface area increases from 3.10 to 1099.99m{sup 2}/g. The N{sub 2} adsorption volume of steam activated biomass chars has been significant promoted.

  13. Exact calculation of the tortuosity in disordered linear pores in the Knudsen regime.

    Science.gov (United States)

    Russ, Stefanie

    2009-12-01

    The squared reciprocal tortuosity kappa-2=D/D0 for linear diffusion on lattices and in pores in the Knudsen regime is calculated analytically for a large variety of disordered systems. Here, D0 and D are the self-diffusion coefficients of the smooth and the corresponding disordered system, respectively. To this end, a building-block principle is developed that composes the systems into substructures without cross correlations between them. It is shown how the solutions of the different building blocks can be combined to gain D/D0 for pores of high complexity from the geometrical properties of the systems, i.e., from the volumes of the different substructures. As a test, numerical simulations are performed that agree perfectly with the theory.

  14. Three-dimensional characterization of pores in Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    Márcia Regina Baldissera

    2011-03-01

    Full Text Available The direct three-dimensional characterization of opaque materials through serial sectioning makes possible to visualize and better quantify a material microstructure, using classical metallographic techniques coupled with computer-aided reconstruction. Titanium alloys are used as biomaterials for bone implants because of its excellent mechanical properties, biocompatibility and enhanced corrosion resistance. The Ti-6Al-4V alloy (in wt. (% with porous microstructure permits the ingrowths of new-bone tissues improving the fixation bone/implant. This is important to understand connectivity, morphology and spatial distribution of pores in microstructure. The Ti-6Al-4V alloy compacts were produced by powder metallurgy and sintered at three distinct temperatures (1250, 1400 and 1500 °C to obtain distinct microstructures in terms of residual porosity. The visualization of the reconstructed 3D microstructure provides a qualitative and quantitative analysis of the porosity of Ti6Al4V alloy (volume fraction and pore morphology.

  15. Biological Chitin-MOF Composites with Hierarchical Pore Systems for Air-Filtration Applications.

    Science.gov (United States)

    Wisser, Dorothea; Wisser, Florian M; Raschke, Silvia; Klein, Nicole; Leistner, Matthias; Grothe, Julia; Brunner, Eike; Kaskel, Stefan

    2015-10-19

    Metal-organic frameworks (MOFs) are promising materials for gas-separation and air-filtration applications. However, for these applications, MOF crystallites need to be incorporated in robust and manageable support materials. We used chitin-based networks from a marine sponge as a non-toxic, biodegradable, and low-weight support material for MOF deposition. The structural properties of the material favor predominant nucleation of the MOF crystallites at the inside of the hollow fibers. This composite has a hierarchical pore system with surface areas up to 800 m(2)  g(-1) and pore volumes of 3.6 cm(3)  g(-1) , allowing good transport kinetics and a very high loading of the active material. Ammonia break-through experiments highlight the accessibility of the MOF crystallites and the adsorption potential of the composite indicating their high potential for filtration applications for toxic industrial gases.

  16. Single hepatitis-B virus core capsid binding to individual nuclear pore complexes in Hela cells.

    Science.gov (United States)

    Lill, Yoriko; Lill, Markus A; Fahrenkrog, Birthe; Schwarz-Herion, Kyrill; Paulillo, Sara; Aebi, Ueli; Hecht, Bert

    2006-10-15

    We investigate the interaction of hepatitis B virus capsids lacking a nuclear localization signal with nuclear pore complexes (NPCs) in permeabilized HeLa cells. Confocal and wide-field optical images of the nuclear envelope show well-spaced individual NPCs. Specific interactions of capsids with single NPCs are characterized by extended residence times of capsids in the focal volume which are characterized by fluorescence correlation spectroscopy. In addition, single-capsid-tracking experiments using fast wide-field fluorescence microscopy at 50 frames/s allow us to directly observe specific binding via a dual-color colocalization of capsids and NPCs. We find that binding occurs with high probability on the nuclear-pore ring moiety, at 44 +/- 9 nm radial distance from the central axis.

  17. Pore structure and surface area of silica SBA-15: influence of washing and scale-up

    Directory of Open Access Journals (Sweden)

    Jörg P. Thielemann

    2011-02-01

    Full Text Available The removal of the surfactant (EO20PO70EO20 by washing before final calcination is a critical step in the synthesis of silica SBA-15. In contrast to washing with pure water or ethanol, washing with water and ethanol may, depending on the quantity of solvent used, alter the homogeneity and order of the pores, but also lead to an increase of the surface area of SBA-15. A reduction of solvent volume and a controlled washing protocol allow the synthesis of high surface area SBA-15 materials with a narrow monomodal pore size distribution. For larger batch sizes the influence of the quantity of solvent on the quality of the SBA-15 is reduced.

  18. Optimizing the Pore Structure of Bio-Based ACFs through a Simple KOH–Steam Reactivation

    Directory of Open Access Journals (Sweden)

    Yuxiang Huang

    2016-05-01

    Full Text Available Highly microporous bio-based activated carbon fibers (ACFs were prepared through a simple reactivation method. Sawdust, as the starting material, was liquefied and melt-spun to produce the precursor fibers. Then, the precursor fibers were activated by KOH and reactivated by steam. By varying the conditions of the two activation processes, the formation mechanism of the pore structure was studied, and the result showed that steam reactivation has a positive effect on the development of microporosity. The sample with the optimal condition exhibited the highest specific surface area of 2578 m2·g−1 as well as the largest pore volume of 1.425 cm3·g−1, where micropores contributed 70.3%. Due to its excellent texture properties, the ACF exhibited a high adsorption capacity of 1934 mg/g for iodine.

  19. Silicon pore optics development for ATHENA

    Science.gov (United States)

    Collon, Maximilien J.; Vacanti, Giuseppe; Günther, Ramses; Yanson, Alex; Barrière, Nicolas; Landgraf, Boris; Vervest, Mark; Chatbi, Abdelhakim; Beijersbergen, Marco W.; Bavdaz, Marcos; Wille, Eric; Haneveld, Jeroen; Koelewijn, Arenda; Leenstra, Anne; Wijnperle, Maurice; van Baren, Coen; Müller, Peter; Krumrey, Michael; Burwitz, Vadim; Pareschi, Giovanni; Conconi, Paolo; Christensen, Finn E.

    2015-09-01

    The ATHENA mission, a European large (L) class X-ray observatory to be launched in 2028, will essentially consist of an X-ray lens and two focal plane instruments. The lens, based on a Wolter-I type double reflection grazing incidence angle design, will be very large (~ 3 m in diameter) to meet the science requirements of large effective area (1-2 m2 at a few keV) at a focal length of 12 m. To meet the high angular resolution (5 arc seconds) requirement the X-ray lens will also need to be very accurate. Silicon Pore Optics (SPO) technology has been invented to enable building such a lens and thus enabling the ATHENA mission. We will report in this paper on the latest status of the development, including details of X-ray test campaigns.

  20. Silicon pore optics for the ATHENA telescope

    Science.gov (United States)

    Collon, Maximilien J.; Vacanti, Giuseppe; Günther, Ramses; Yanson, Alex; Barriere, Nicolas; Landgraf, Boris; Vervest, Mark; Chatbi, Abdelhakim; van der Hoeven, Roy; Beijersbergen, Marco W.; Bavdaz, Marcos; Wille, Eric; Shortt, Brian; Haneveld, Jeroen; Koelewijn, Arenda; van Baren, Coen; Eigenraam, Alexander; Müller, Peter; Krumrey, Michael; Burwitz, Vadim; Pareschi, Giovanni; Conconi, Paolo; Massahi, Sonny; Christensen, Finn E.; Valsecchi, Giuseppe

    2016-07-01

    Silicon Pore Optics is a high-energy optics technology, invented to enable the next generation of high-resolution, large area X-ray telescopes such as the ATHENA observatory, a European large (L) class mission with a launch date of 2028. The technology development is carried out by a consortium of industrial and academic partners and focuses on building an optics with a focal length of 12 m that shall achieve an angular resolution better than 5". So far we have built optics with a focal length of 50 m and 20 m. This paper presents details of the work carried out to build silicon stacks for a 12 m optics and to integrate them into mirror modules. It will also present results of x-ray tests taking place at PTB's XPBF with synchrotron radiation and the PANTER test facility.

  1. Evaluating transport in irregular pore networks

    CERN Document Server

    Klimenko, Dimitri A; Klimenko, Alexander Y; 10.1103/PhysRevE.86.011112

    2012-01-01

    A general approach for investigating transport phenomena in porous media is presented. This approach has the capacity to represent various kinds of irregularity in porous media without the need for excessive detail or computational effort. The overall method combines a generalized Effective Medium Approximation (EMA) with a macroscopic continuum model in order to derive a transport equation with explicit analytical expressions for the transport coefficients. The proposed form of the EMA is an anisotropic and heterogeneous extension of Kirkpatrick's EMA [Rev. Mod. Phys. 45, 574 (1973)] which allows the overall model to account for microscopic alterations in connectivity (with the locations of the pores and the orientation and length of the throat) as well as macroscopic variations in transport properties. A comparison to numerical results for randomly generated networks with different properties is given, indicating the potential for this methodology to handle cases that would pose significant difficulties to ...

  2. Factors Determining the Pore Shape in Polycarbonate Track Membranes

    CERN Document Server

    Apel, P Yu; Orelovich, O L; Akimenko, S N; Sartowska, B; Dmitriev, S N

    2004-01-01

    The process of pore formation in ion-irradiated polycarbonate films on treatment with alkali solutions in the presence of a surfactant is studied. It is found that the pore shape depends on both the structure of the initial films and the peculiarities of the interaction of the surfactant with the polymer surface and the transport of the surfactant into tracks. Due to heterogeneity of the films the cross-section of a track pore channel changes along its length. The presence of the surfactant results in a further effect. Surfactant molecules adsorb on the polymer surface at the pore entries and reduce the etch rate which leads to formation of cigar-like pore channels. The use of surfactant as a component of chemical etchant enables one to control the pore shape in track membranes thus optimizing their retention and permeation characteristics.

  3. Experimental study on pore water pressure dissipation of mucky soil

    Institute of Scientific and Technical Information of China (English)

    Xianwei ZHANG; Changming WANG; Junxia LI; Bin WANG

    2008-01-01

    Pore water pressure has an important influence on mechanical properties of soil. The authors studied the characteristics of pore water pressure dissipating of mucky soil under consolidated-drained condition by using refitted triaxial instrument and analyzed the variation of pore pressure coefficient with consolidation pressure. The results show that the dissipating of pore water pressure behaves in different ways depends on different styles of loading. What is more, the pore water pressure coefficient of mucky soil is less than 1. As the compactness of soil increases and moisture content reduces, the value of B reduces. There is a staggered dissipating in the process of consolidation, in which it is a mutate point when U/P is 80%. It is helpful to establish the pore water pressure model and study the strength-deformation of soil in process of consolidation.

  4. Vapor intrusion in soils with multimodal pore-size distribution

    OpenAIRE

    Alfaro Soto Miguel; Hung Kiang Chang

    2016-01-01

    The Johnson and Ettinger [1] model and its extensions are at this time the most widely used algorithms for estimating subsurface vapor intrusion into buildings (API [2]). The functions which describe capillary pressure curves are utilized in quantitative analyses, although these are applicable for porous media with a unimodal or lognormal pore-size distribution. However, unaltered soils may have a heterogeneous pore distribution and consequently a multimodal pore-size distribution [3], which ...

  5. Fusion Pore Diameter Regulation by Cations Modulating Local Membrane Anisotropy

    Directory of Open Access Journals (Sweden)

    Doron Kabaso

    2012-01-01

    Full Text Available The fusion pore is an aqueous channel that is formed upon the fusion of the vesicle membrane with the plasma membrane. Once the pore is open, it may close again (transient fusion or widen completely (full fusion to permit vesicle cargo discharge. While repetitive transient fusion pore openings of the vesicle with the plasma membrane have been observed in the absence of stimulation, their frequency can be further increased using a cAMP-increasing agent that drives the opening of nonspecific cation channels. Our model hypothesis is that the openings and closings of the fusion pore are driven by changes in the local concentration of cations in the connected vesicle. The proposed mechanism of fusion pore dynamics is considered as follows: when the fusion pore is closed or is extremely narrow, the accumulation of cations in the vesicle (increased cation concentration likely leads to lipid demixing at the fusion pore. This process may affect local membrane anisotropy, which reduces the spontaneous curvature and thus leads to the opening of the fusion pore. Based on the theory of membrane elasticity, we used a continuum model to explain the rhythmic opening and closing of the fusion pore.

  6. Enzyme screening with synthetic multifunctional pores: Focus on biopolymers

    Science.gov (United States)

    Sordé, Nathalie; Das, Gopal; Matile, Stefan

    2003-01-01

    This report demonstrates that a single set of identical synthetic multifunctional pores can detect the activity of many different enzymes. Enzymes catalyzing either synthesis or degradation of DNA (exonuclease III or polymerase I), RNA (RNase A), polysaccharides (heparinase I, hyaluronidase, and galactosyltransferase), and proteins (papain, ficin, elastase, subtilisin, and pronase) are selected to exemplify this key characteristic of synthetic multifunctional pore sensors. Because anionic, cationic, and neutral substrates can gain access to the interior of complementarily functionalized pores, such pores can be the basis for very user-friendly screening of a broad range of enzymes. PMID:14530413

  7. Pore-size-distribution of cationic polyacrylamide hydrogels. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, M.; Prausnitz, J.M.

    1992-06-01

    The pore size distribution of a AAm/MAPTAC (acrylamide copolymerized with (3-methacrylamidopropyl)trimethylammonium chloride) hydrogel was investigated using Kuga`s mixed-solute-exclusion method, taking into account the wall effect. A Brownian-motion model is also used. Results show the feasibility of determining pore-size distribution of porous materials using the mixed-solute-exclusion method in conjunction with solution of the Fredholm equation; good agreement was obtained with experiment, even for bimodal pore structures. However, different pore size distributions were calculated for the two different probe-solutes (Dextran and poly(ethylene glycol/oxide)). Future work is outlined. 32 figs, 25 refs.

  8. Pore-size-distribution of cationic polyacrylamide hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, M.; Prausnitz, J.M.

    1992-06-01

    The pore size distribution of a AAm/MAPTAC (acrylamide copolymerized with (3-methacrylamidopropyl)trimethylammonium chloride) hydrogel was investigated using Kuga's mixed-solute-exclusion method, taking into account the wall effect. A Brownian-motion model is also used. Results show the feasibility of determining pore-size distribution of porous materials using the mixed-solute-exclusion method in conjunction with solution of the Fredholm equation; good agreement was obtained with experiment, even for bimodal pore structures. However, different pore size distributions were calculated for the two different probe-solutes (Dextran and poly(ethylene glycol/oxide)). Future work is outlined. 32 figs, 25 refs.

  9. Ultrafast laser fabrication of submicrometer pores in borosilicate glass.

    Science.gov (United States)

    An, Ran; Uram, Jeffrey D; Yusko, Erik C; Ke, Kevin; Mayer, Michael; Hunt, Alan J

    2008-05-15

    We demonstrate rapid fabrication of submicrometer-diameter pores in borosilicate glass using femtosecond laser machining and subsequent wet-etch techniques. This approach allows direct and repeatable fabrication of high-quality pores with diameters of 400-800 nm. Such small pores coupled with the desirable electrical and chemical properties of glass enable sensitive resistive-pulse analysis to determine the size and concentration of macromolecules and nanoparticles. Plasma-enhanced chemical vapor deposition allows further reduction of pore diameters to below 300 nm.

  10. Relationship between elastic moduli and pore radius in clay aggregates

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke

    2011-01-01

    Available experimental data on elastic velocities of clay-air mixtures and clay-brine mixtures as a function of porosity are re-interpreted. Pore radius as calculated from porosity and specific surface measured by BET seems to be the factor controlling stiffness of these un-cemented sediments....... For each of the two pore fluids: air or brine smectitic clay and kaolinitic clay seem to have similar power law relationships between a given elastic modulus and pore radius. These results indicate that pore radius and thus permeability of shale in the depth interval of mechanical compaction may...

  11. Tension-induced vesicle fusion: pathways and pore dynamics

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2008-01-01

    and eventually opens a pore to complete the fusion process. In pathway II, at higher tension, a stalk is formed during the fusion process that is then transformed by transmembrane pore formation into a fusion pore. Whereas the latter pathway II resembles stalk pathways as observed in other simulation studies...... fusion time on membrane tension implies that the fusion process is completed by overcoming two energy barriers with scales of 13kBT and 11kBT. The fusion pore radius as a function of time has also been extracted from the simulations, and provides a quantitative measure of the fusion dynamics which...

  12. Nanolipoprotein particles comprising a natural rubber biosynthetic enzyme complex and related products, methods and systems

    Energy Technology Data Exchange (ETDEWEB)

    Hoeprich, Paul D.; Whalen, Maureen

    2016-04-05

    Provided herein are nanolipoprotein particles that comprise a biosynthetic enzyme more particularly an enzyme capable of catalyzing rubber or other rubbers polymerization, and related assemblies, devices, methods and systems.

  13. Alignment of Carbon Nanotubes Comprising Magnetically Sensitive Metal Oxides in Nanofluids

    Science.gov (United States)

    Hong, Haiping (Inventor); Peterson, G. P. " Bud" (Inventor)

    2016-01-01

    The present invention is a nanoparticle mixture or suspension or nanofluid comprising nonmagnetically sensitive nanoparticles, magnetically sensitive nanoparticles, and surfactant(s). The present invention also relates to methods of preparing and using the same.

  14. Thermally stable drilling fluid additive comprised of a copolymer of catechol-based monomer

    Energy Technology Data Exchange (ETDEWEB)

    Patel, A.D.

    1986-06-17

    A water soluble polymer is described having thermal stability and exhibiting utility as an aqueous drilling fluid additive comprising: (a) a major portion of a catechol based monomer; (b) a minor portion of a dicarboxylic acid monomer.

  15. Development of an In Situ Raman Probe for Pore Water Geochemistry

    Science.gov (United States)

    Walz, P. M.; Zhang, X.; Hester, K.; Kirkwood, W. J.; Ussler, W.; Peltzer, E. T.; Brewer, P. G.

    2009-12-01

    Scientists and engineers at the Monterey Bay Aquarium Research Institute have developed a ROV-deployable sampling probe utilizing laser Raman spectroscopy for study of sediment pore water geochemistry. The Raman technique has already been used with deep sea ROV platforms successfully performing in situ measurement on targets of scientific interest including gas and hydrothermal vent fluids, and complex gas hydrates. However, in situ measurement of sediment pore water geochemistry by laser Raman methods has so far been an intractable problem because sediment particles strongly fluorescence and insufficient amounts of pore water can be extracted before filters become occluded by sediment particles. Our design incorporates a series of novel elements into a slender 35-cm-long probe that can be inserted into sediment using an ROV manipulator to obtain concentration profiles. Pore water is drawn through a 10-μm stainless steel filter that forms the probe tip into a low volume sample chamber (0.1 mL) using a small hydraulic pump controlled by the ROV. The pump is also used for flushing and clearing filter surfaces. The sampling process is repeated as we proceed incrementally deeper into the sediment. Light (532 nm) from a Raman laser system mounted on the ROV is conveyed by a fiber optic cable to the probe head and focused within the center of the sample chamber through a sapphire-windowed optical cell. Control of the Raman system and spectra acquisition are performed onboard the ship via a laptop computer in the ROV control room. Advantages of this rapid mode of detection include measurement of sulfate gradients in near-seafloor sediments at a vertical scale not easily obtainable using traditional coring and extraction techniques, direct measurement of the dissolved sulfide species H2S and HS-, and measurement of dissolved methane without incurring substantial degassing during core recovery. The chemical measurements are made quantitative by calculating an intensity

  16. Graphite and PMMA as pore formers for thermoplastic extrusion of porous 3Y-TZP oxygen transport membrane supports

    DEFF Research Database (Denmark)

    Bjørnetun Haugen, Astri; Gurauskis, Jonas; Kaiser, Andreas

    2016-01-01

    with gas permeability exceeding the target of 10−14m2 are obtained. In the temperature range 1250–1400°C the support gas permeability is insensitive to the sintering temperature, and the feedstocks shrink more than 15% during sintering, making them ideal for co-sintering with functional OTM layers......A gas permeable porous support is a crucial part of an asymmetric oxygen transport membrane (OTM). Here, we develop feedstocks for thermoplastic extrusion of tubular, porous 3Y-TZP (partially stabilized zirconia polycrystals, (Y2O3)0.03(ZrO2)0.97)) ceramics, using graphite and/or polymethyl...... methacrylate (PMMA) as pore formers. The influence of pore former content and type, 3Y-TZP particle size and support sintering temperature on the microstructure, porosity and gas permeability were studied. Using at least 40 vol% pore former, consisting of graphite and PMMA in the volume ratio 2:1, tubes...

  17. Testing Occam's razor to characterize high-order connectivity in pore networks of granular media: Feature selection in machine learning

    Science.gov (United States)

    van der Linden, Joost; Tordesillas, Antoinette; Narsilio, Guillermo

    2017-06-01

    A perennial challenge for the characterization and modelling of phenomena involving granular media is that the internal connectivity of, and interactions between, the pores and the particles exhibit hallmarks of complexity: multi-scale and nonlinear interactions that lead to a plethora of patterns at the mesoscale, including fluid flow patterns that ultimately render a permeability of the granular media at the macroscale. A multitude of physical parameters exist to characterize geometry and structure, including pore/particle shape, volume and surface area, while a rich class of complex network parameters quantifies internal connectivity of the pore and particles in the material. A large collection of such variables is likely to exhibit a high degree of redundancy. Here we demonstrate how to use feature selection in machine learning theory to identify the most informative and non-redundant, yet parsimonious set of features that optimally characterizes the interstitial flow properties of porous, granular media, e.g., permeability, from high resolution data.

  18. Rock Physics of Reservoir Rocks with Varying Pore Water Saturation and Pore Water Salinity

    DEFF Research Database (Denmark)

    Katika, Konstantina

    be performed on specific geological structures and why it is sometimes successful; has yet to be established. The presence of both oil and water in the pore space, several different ions present in the injected water that contact the pore walls, possible changes in the fluid wetting the surface of the grains......Advanced waterflooding (injection of water with selective ions in reservoirs) is a method of enhanced oil recovery (EOR) that has attracted the interest of oil and gas companies that exploit the Danish oil and gas reservoirs. This method has been applied successfully in oil reservoirs...... and in the Smart Water project performed in a laboratory scale in order to evaluate the EOR processes in selected core plugs. A major step towards this evaluation is to identify the composition of the injected water that leads to increased oil recovery in reservoirs and to define changes in the petrophysical...

  19. Entropy of Shortest Distance (ESD as Pore Detector and Pore-Shape Classifier

    Directory of Open Access Journals (Sweden)

    Klaudia Oleschko

    2013-06-01

    Full Text Available The entropy of shortest distance (ESD between geographic elements (“elliptical intrusions”, “lineaments”, “points” on a map, or between "vugs", "fractures" and "pores" in the macro- or microscopic images of triple porosity naturally fractured vuggy carbonates provides a powerful new tool for the digital processing, analysis, classification and space/time distribution prognostic of mineral resources as well as the void space in carbonates, and in other rocks. The procedure is applicable at all scales, from outcrop photos, FMI, UBI, USI (geophysical imaging techniques to micrographs, as we shall illustrate through some examples. Out of the possible applications of the ESD concept, we discuss in details the sliding window entropy filtering for nonlinear pore boundary enhancement, and propose this procedure as unbiased thresholding technique.

  20. Pharmaceutical compositions comprising lubricants for preventing or reducing aseptic loosening in a subject

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to pharmaceutical compositions comprising one or more amphiphilic polymer lubricants for use in association with artificial orthopaedic implants. Additionally, the invention relates to medical use of the lubricants of the invention in connection with conditions...... associated with artificial5 orthopaedic implants. The invention furthermore relates to artificial joint implants comprising the polymer lubricants according to the invention and methods for preparing such implants....

  1. Pore morphologies of root induced biopores from single pore to network scale investigated by XRCT

    Science.gov (United States)

    Peth, Stephan; Wittig, Marlen C.; Uteau Puschmann, Daniel; Pagenkemper, Sebastian; Haas, Christoph; Holthusen, Dörthe; Horn, Rainer

    2015-04-01

    Biopores are assumed to be an important factor for nutrient acquisition by providing biologically highly active soil-root interfaces to re-colonizing roots and controlling oxygen and water flows at the pedon scale and within the rhizosphere through the formation of branching channel networks which potentially enhance microbial turnover processes. Characteristic differences in pore morphologies are to be expected depending on the genesis of biopores which, for example, can be earthworm-induced or root-induced or subsequently modified by one of the two. Our understanding of biophysical interactions between plants and soil can be significantly improved by quantifying 3D biopore architectures across scales ranging from single biopores to pedon scale pore networks and linking pore morphologies to microscale measurements of transport processes (e.g. oxygen diffusion). While a few studies in the past have investigated biopore networks on a larger scale yet little is known on the micro-morphology of root-induces biopores and their associated rhizosphere. Also little data is available on lateral transport of oxygen through the rhizosphere which will strongly influence microbial turnover processes and consequently control the release and uptake of nutrients. This paper highlights results gathered within a research unit on nutrient acquisition from the subsoil. Here we focus on X-ray microtomography (XRCT) studies ranging from large soil columns (70 cm length and 20 cm diameter) to individual biopores and its surrounding rhizosphere. Samples were collected from sites with different preceding crops (fescue, chicory, alfalfa) and various cropping durations (1-3 years). We will present an approach for quantitative image analysis combined with micro-sensor measurements of oxygen diffusion and spatial gradients of O2 partial pressures to relate pore structure with transport functions. Implications of various biopore architectures for the accessibility of nutrient resources in

  2. Reading the primary structure of a protein with 0.07 nm3 resolution using a subnanometre-diameter pore

    Science.gov (United States)

    Kennedy, Eamonn; Dong, Zhuxin; Tennant, Clare; Timp, Gregory

    2016-11-01

    The primary structure of a protein consists of a sequence of amino acids and is a key factor in determining how a protein folds and functions. However, conventional methods for sequencing proteins, such as mass spectrometry and Edman degradation, suffer from short reads and lack sensitivity, so alternative approaches are sought. Here, we show that a subnanometre-diameter pore, sputtered through a thin silicon nitride membrane, can be used to detect the primary structure of a denatured protein molecule. When a denatured protein immersed in electrolyte is driven through the pore by an electric field, measurements of a blockade in the current reveal nearly regular fluctuations, the number of which coincides with the number of residues in the protein. Furthermore, the amplitudes of the fluctuations are highly correlated with the volumes that are occluded by quadromers (four residues) in the primary structure. Each fluctuation, therefore, represents a read of a quadromer. Scrutiny of the fluctuations reveals that the subnanometre pore is sensitive enough to read the occluded volume that is related to post-translational modifications of a single residue, measuring volume differences of ∼0.07 nm3, but it is not sensitive enough to discriminate between the volumes of all twenty amino acids.

  3. Soil hydraulic properties and REV study using X-ray microtomography and pore-scale modelling: saturated hydraulic conductivity

    Science.gov (United States)

    Gerke, Kirill; Khirevich, Siarhei; Sizonenko, Timofey; Karsanina, Marina; Umarova, Aminat; Korost, Dmitry; Matthai, Stephan; Mallants, Dirk

    2016-04-01

    To verify pore-scale modelling approach for determination of soil saturated hydraulic conductivity properties we scanned three cylindrical soil samples taken from A, Ah and B horizons using X-ray microtomography method. Resulting 3D soil images with resolutions of 15.25-20.96 μm were segmented into pores and solids and their maximum inscribed cube subvolumes were used as input data for three major pore-scale modelling methods to simulate saturated flow - lattice-Boltzmann method, finite-difference solution of the Stokes problem, and pore-network model. Provided that imaging resolution is high enough to capture the backbone of effective porosity and the main conducting pores all three methods resulted in simulated soil permeabilities close to experimental values for Ah and B samples. The resolution of A sample was not enough for an accurate modelling and we concluded that this soil requires multi-scale imaging to cover all relevant heterogeneities. We demonstrate that popular SWV method to choose segmentation threshold resulted in oversegmentation and order of magnitude higher permeability values. Careful manual thresholding combined with local segmentation algorithm provided much more accurate results. Detailed analysis of water retention curves showed that air-filled porosity at relevant pressure stages cannot be used for verification of the segmentation results. Representativity analysis by simulating flow in increasing soil volume up to 2.8 cm3 revealed no representative elementary volume (REV) within Ah sample and non-uniqueness of REV for B sample. The latter was explained by soil structure non-stationarity. We further speculate that structures soil horizons can exhibit no REV at all. We discuss numerous advantages of coupled imaging and pore-scale modelling approach and show how it can become a successor of the conventional soil coring method to parametrize large scale continuum models.

  4. Optimization of pore structure and particle morphology of mesoporous silica for antibody adsorption for use in affinity chromatography

    Science.gov (United States)

    Hikosaka, Ryouichi; Nagata, Fukue; Tomita, Masahiro; Kato, Katsuya

    2016-10-01

    Antibodies have received significant attention for use as antibody drugs, because they bind the objective protein (antigen) via antigen-antibody reactions. Recently, many reports have appeared on various monoclonal antibodies that recognize a single antigen. In this study, monoclonal antibodies are used as adsorbates on mesoporous silica (MPS) for affinity chromatography. MPS has high surface area and large pore volume; moreover, pore diameter, pore structure, and particle morphology are relatively easy to tune by adjusting the conditions of synthesis. The pore structure (two-dimensional (2D) hexagonal and three-dimensional cubic) and particle morphology (spherical and polyhedral) of MPS are optimized for use in a monoclonal antibody/MPS composite. When anti-IgG (one of the monoclonal antibodies) adsorbs on the MPS material and IgG (antigen) binds to anti-IgG/MPS composites, MCM-41p with a 2D-hexagonal pore structure and polyhedral particle morphology has the highest IgG binding efficiency. In addition, the antibody/MPS composites remain stable in chaotropic and low-pH solutions and can be cycled at least five times without decreasing IgG elution. In purification and removal tests, the use of the antibody/MPS composites allows only the objective protein from protein mixtures to be bound and eluted.

  5. Influences of composition of starting powders and sintering temperature on the pore size distribution of porous corundum-mullite ceramics

    Directory of Open Access Journals (Sweden)

    Shujing Li

    2005-01-01

    Full Text Available Porous corundum-mullite ceramics were prepared by an in-situ decomposition pore-forming technique. Starting powders were mixtures of milled Al(OH3 and microsilica and were formed into oblong samples with a length of 100mm and a square cross-section with edge size of 20mm. The samples were heated at 1300°C, 1400°C, 1500°C or 1600°C for 3h in air atmosphere, respectively. Apparent porosity was detected by Archimedes’ Principle with water as a medium. Pore size distribution and the volume percentage of micropores were measured by mercury intrusion porosimetry. The results show that the pore morphology parameters in the samples depend on four factors: particle size distribution of starting powders, decomposition of Al(OH3, the expansion caused by mullite and sintering. The optimum mode which has a higher apparent porosity up to 42.3%, well-distributed pores and more microsize pores up to 16.3% is sample No.3 and the most apposite sintering temperature of this sample is 1500°C.

  6. Reversible Self-Actuated Thermo-Responsive Pore Membrane

    Science.gov (United States)

    Park, Younggeun; Gutierrez, Maria Paz; Lee, Luke P.

    2016-12-01

    Smart membranes, which can selectively control the transfer of light, air, humidity and temperature, are important to achieve indoor climate regulation. Even though reversible self-actuation of smart membranes is desirable in large-scale, reversible self-regulation remains challenging. Specifically, reversible 100% opening/closing of pore actuation showing accurate responsiveness, reproducibility and structural flexibility, including uniform structure assembly, is currently very difficult. Here, we report a reversible, thermo-responsive self-activated pore membrane that achieves opening and closing of pores. The reversible, self-actuated thermo-responsive pore membrane was fabricated with hybrid materials of poly (N-isopropylacrylamide), (PNIPAM) within polytetrafluoroethylene (PTFE) to form a multi-dimensional pore array. Using Multiphysics simulation of heat transfer and structural mechanics based on finite element analysis, we demonstrated that pore opening and closing dynamics can be self-activated at environmentally relevant temperatures. Temperature cycle characterizations of the pore structure revealed 100% opening ratio at T = 40 °C and 0% opening ratio at T = 20 °C. The flexibility of the membrane showed an accurate temperature-responsive function at a maximum bending angle of 45°. Addressing the importance of self-regulation, this reversible self-actuated thermo-responsive pore membrane will advance the development of future large-scale smart membranes needed for sustainable indoor climate control.

  7. Hydrodemetallization of residue (Part 3). Influence of catalyst pore size

    Energy Technology Data Exchange (ETDEWEB)

    Hinuma, Yutaka; Kushiyama, Akira; Kobayashi, Satoru; Aizawa, Reiji; Inoue, Keiichi; Shimizu, Yoshikazu (National Research Inst. for Pollution and Resources, Tsukuba (Japan))

    1989-03-25

    Influence of catalyst pore size on hydrodemetallization of residues was studied, Starting oils were Khafji atmospheric residue and Morichal crude and two catalysts of alumina which have 93A and 160A mean pore diameters respectively and Mo was supported, were used. The rate at which asphaltene(A) was decomposed to maltene(M), related large to the demetallization of whole heavy oil and larger the pore diameter of catalyst, higher the demetallizing activity. But in the demetallization from A and M, the influence of pore size was different and vanadium(V) removal from A was preferable for larger pore size but was reverse from M. These were caused by the difference of diffusion in their pores. Ni was more difficult to remove than V. Catalyst of small pore size was preferable for simultaneous desulfurization, because sulfur compounds were composed of smaller molecular weight distribution. The decomposition of A started preferentially from part having large number of peripheral carbon in condensed aromatic ring or f{sub a} (aromaticity) and the catalyst of large pore size affected large on the structural change of A. 12 ref., 7 figs., 5 tabs.

  8. The Pore Structure of Direct Methanol Fuel Cell Electrodes

    DEFF Research Database (Denmark)

    Lund, Peter Brilner

    2005-01-01

    The pore structure and morphology of direct methanol fuel cell electrodes are characterized using mercury intrusion porosimetry and scanning electron microscopy. It is found that the pore size distributions of printed primer and catalyst layers are largely dictated by the powders used to make the...

  9. Reversible Self-Actuated Thermo-Responsive Pore Membrane.

    Science.gov (United States)

    Park, Younggeun; Gutierrez, Maria Paz; Lee, Luke P

    2016-12-19

    Smart membranes, which can selectively control the transfer of light, air, humidity and temperature, are important to achieve indoor climate regulation. Even though reversible self-actuation of smart membranes is desirable in large-scale, reversible self-regulation remains challenging. Specifically, reversible 100% opening/closing of pore actuation showing accurate responsiveness, reproducibility and structural flexibility, including uniform structure assembly, is currently very difficult. Here, we report a reversible, thermo-responsive self-activated pore membrane that achieves opening and closing of pores. The reversible, self-actuated thermo-responsive pore membrane was fabricated with hybrid materials of poly (N-isopropylacrylamide), (PNIPAM) within polytetrafluoroethylene (PTFE) to form a multi-dimensional pore array. Using Multiphysics simulation of heat transfer and structural mechanics based on finite element analysis, we demonstrated that pore opening and closing dynamics can be self-activated at environmentally relevant temperatures. Temperature cycle characterizations of the pore structure revealed 100% opening ratio at T = 40 °C and 0% opening ratio at T = 20 °C. The flexibility of the membrane showed an accurate temperature-responsive function at a maximum bending angle of 45°. Addressing the importance of self-regulation, this reversible self-actuated thermo-responsive pore membrane will advance the development of future large-scale smart membranes needed for sustainable indoor climate control.

  10. A FILTRATION METHOD AND APPARATUS INCLUDING A ROLLER WITH PORES

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention offers a method for separating dry matter from a medium. A separation chamber is at least partly defined by a plurality of rollers (2,7) and is capable of being pressure regulated. At least one of the rollers is a pore roller (7) having a surface with pores allowing permeabi...

  11. Bacteriocins : mechanism of membrane insertion and pore formation

    NARCIS (Netherlands)

    Moll, Gert N.; Konings, Wil N.; Driessen, Arnold J.M.

    1999-01-01

    Lactic acid bacteria produce several types of pore forming peptides. Class I bacteriocins are lantibiotics that contain (methyl)lanthionine residues that may form intramolecular thioether rings. These peptides generally have a broad spectrum of activity and form unstable pores. Class II bacteriocins

  12. Pore size distribution in tablets measured with a morphological sieve

    NARCIS (Netherlands)

    Wu, Yu San; van Vliet, Lucas J.; Frijlink, Henderik W.; van der Voort Maarschalk, Kees

    2007-01-01

    Porosity and pore structure are important characteristics of tablets, since they influence mechanical strength and many other proper-ties. This paper proposes an alternative method for the characterization of pore structure based on image analysis of SEM micrographs. SEM images were made of sodium c

  13. Bacteriocins : mechanism of membrane insertion and pore formation

    NARCIS (Netherlands)

    Moll, G.N.; Konings, W.N; Driessen, A.J.M.

    1999-01-01

    Lactic acid bacteria produce several types of pore forming peptides. Class I bacteriocins are lantibiotics that contain (methyl)lanthionine residues that may form intramolecular thioether rings. These peptides generally have a broad spectrum of activity and form unstable pores. Class II bacteriocins

  14. Letter to the editor: Diffusion under pore saturation conditions

    NARCIS (Netherlands)

    Krishna, R.; van Baten, J.M.

    2010-01-01

    In the article "Diffusion Under Pore Saturaton Conditions", Lettat et al. (1) presents a model to describe mixture diffusion in MFI zeolite under conditions of pore saturation. As a motivation for developing their model they remark ‘‘the classical adsorbed-phase diffusion models based on the Maxwell

  15. Characteristics of the development of pore stucture during carbonization of crushed and gradulated lean coal

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, Yu.A.; Limonov, N.V.; Ivakhnyuk, G.K.

    1992-06-20

    The development of the pore structure of crushed and granulated lean coal during carbonization was investigated from the results of a study of the change of weight and volume of the coal pieces. It was shown that the macropore structure of the coal is formed in the low-temperature stage of carbonization and is due to the process of the removal of binder from the granules (620 K) and to destruction and elimination of volatile products from the crushed material (770 K). 9 refs., 2 figs., 3 tabs.

  16. Porous Boron Nitride with Tunable Pore Size.

    Science.gov (United States)

    Dai, Jun; Wu, Xiaojun; Yang, Jinlong; Zeng, Xiao Cheng

    2014-01-16

    On the basis of a global structural search and first-principles calculations, we predict two types of porous boron-nitride (BN) networks that can be built up with zigzag BN nanoribbons (BNNRs). The BNNRs are either directly connected with puckered B (N) atoms at the edge (type I) or connected with sp(3)-bonded BN chains (type II). Besides mechanical stability, these materials are predicted to be thermally stable at 1000 K. The porous BN materials entail large surface areas, ranging from 2800 to 4800 m(2)/g. In particular, type-II BN material with relatively large pores is highly favorable for hydrogen storage because the computed hydrogen adsorption energy (-0.18 eV) is very close to the optimal adsorption energy (-0.15 eV) suggested for reversible hydrogen storage at room temperature. Moreover, the type-II materials are semiconductors with width-dependent direct bandgaps, rendering the type-II BN materials promising not only for hydrogen storage but also for optoelectronic and photonic applications.

  17. Freezing of charged colloids in slit pores.

    Science.gov (United States)

    Grandner, Stefan; Klapp, Sabine H L

    2008-12-28

    Using Monte Carlo simulations in the grand canonical and isobaric ensembles we investigate freezing phenomena in a charged colloidal suspension confined to narrow slit pores. Our model involves only the macroions which interact via a Derjaguin-Landau-Verwey-Overbeek (DLVO) potential supplemented by a soft-sphere potential. We focus on DLVO parameters typical for moderately charged silica particles (with charges Z approximately 35) in solvents of low ionic strengths. The corresponding DLVO interactions are too weak to drive a (bulk) freezing transition. Nevertheless, for sufficiently small surface separations L(z) the confined systems display not only layering but also significant in-plane crystalline order at chemical potentials where the bulk system is a globally stable fluid (capillary freezing). At confinement conditions related to two-layer systems the observed in-plane structures are consistent with those detected in ground state calculations for perfect Yukawa bilayers [R. Messina and H. Lowen, Phys. Rev. Lett. 91, 146101 (2003)]. Here we additionally observe (at fixed L(z)) a compression-induced first-order phase transition from a two-layer to a three-layer system with different in-plane structure, in agreement with previous findings for pure hard spheres.

  18. Silicon pore optics developments and status

    Science.gov (United States)

    Bavdaz, Marcos; Wille, Eric; Wallace, Kotska; Shortt, Brian; Collon, Maximilien; Ackermann, Marcelo; Olde Riekerink, Mark; Haneveld, Jeroen; van Baren, Coen; Erhard, Markus; Christensen, Finn; Krumrey, Michael; Burwitz, Vadim

    2012-09-01

    Silicon Pore Optics (SPO) is a lightweight high performance X-ray optics technology being developed in Europe, driven by applications in observatory class high energy astrophysics missions. An example of such application is the former ESA science mission candidate ATHENA (Advanced Telescope for High Energy Astrophysics), which uses the SPO technology for its two telescopes, in order to provide an effective area exceeding 1 m2 at 1 keV, and 0.5 m2 at 6 keV, featuring an angular resolution of 10” or better [1 to 24]. This paper reports on the development activities led by ESA, and the status of the SPO technology. The technology development programme has succeeded in maturing the SPO further and achieving important milestones, in each of the main activity streams: environmental compatibility, industrial production and optical performance. In order to accurately characterise the increasing performance of this innovative optical technology, the associated X-ray test facilities and beam-lines have been refined and upgraded.

  19. Evaluating transport in irregular pore networks

    Science.gov (United States)

    Klimenko, Dimitri A.; Hooman, Kamel; Klimenko, Alexander Y.

    2012-07-01

    A general approach for investigating transport phenomena in porous media is presented. This approach has the capacity to represent various kinds of irregularity in porous media without the need for excessive detail or computational effort. The overall method combines a generalized effective medium approximation (EMA) with a macroscopic continuum model in order to derive a transport equation with explicit analytical expressions for the transport coefficients. The proposed form of the EMA is an anisotropic and heterogeneous extension of Kirkpatrick's EMA [Rev. Mod. Phys.RMPHAT0034-686110.1103/RevModPhys.45.574 45, 574 (1973)] which allows the overall model to account for microscopic alterations in connectivity (with the locations of the pores and the orientation and length of the throat) as well as macroscopic variations in transport properties. A comparison to numerical results for randomly generated networks with different properties is given, indicating the potential for this methodology to handle cases that would pose significant difficulties to many other analytical models.

  20. Influence of pore structure on compressive strength of cement mortar.

    Science.gov (United States)

    Zhao, Haitao; Xiao, Qi; Huang, Donghui; Zhang, Shiping

    2014-01-01

    This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure.

  1. Vapor intrusion in soils with multimodal pore-size distribution

    Directory of Open Access Journals (Sweden)

    Alfaro Soto Miguel

    2016-01-01

    Full Text Available The Johnson and Ettinger [1] model and its extensions are at this time the most widely used algorithms for estimating subsurface vapor intrusion into buildings (API [2]. The functions which describe capillary pressure curves are utilized in quantitative analyses, although these are applicable for porous media with a unimodal or lognormal pore-size distribution. However, unaltered soils may have a heterogeneous pore distribution and consequently a multimodal pore-size distribution [3], which may be the result of specific granulometry or the formation of secondary porosity related to genetic processes. The present paper was designed to present the application of the Vapor Intrusion Model (SVI_Model to unsaturated soils with multimodal pore-size distribution. Simulations with data from the literature show that the use of a multimodal model in soils with such pore distribution characteristics could provide more reliable results for indoor air concentration, rather than conventional models.

  2. Role of pore-forming toxins in neonatal sepsis.

    Science.gov (United States)

    Sonnen, Andreas F-P; Henneke, Philipp

    2013-01-01

    Protein toxins are important virulence factors contributing to neonatal sepsis. The major pathogens of neonatal sepsis, group B Streptococci, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus, secrete toxins of different molecular nature, which are key for defining the disease. Amongst these toxins are pore-forming exotoxins that are expressed as soluble monomers prior to engagement of the target cell membrane with subsequent formation of an aqueous membrane pore. Membrane pore formation is not only a means for immediate lysis of the targeted cell but also a general mechanism that contributes to penetration of epithelial barriers and evasion of the immune system, thus creating survival niches for the pathogens. Pore-forming toxins, however, can also contribute to the induction of inflammation and hence to the manifestation of sepsis. Clearly, pore-forming toxins are not the sole factors that drive sepsis progression, but they often act in concert with other bacterial effectors, especially in the initial stages of neonatal sepsis manifestation.

  3. Pore capillary pressure and saturation of methane hydrate bearing sediments

    Institute of Scientific and Technical Information of China (English)

    SUN Shicai; LIU Changling; YE Yuguang; LIU Yufeng

    2014-01-01

    To better understand the relationship between the pore capillary pressure and hydrate saturation in sedi-ments, a new method was proposed. First, the phase equilibria of methane hydrate in fine-grained silica sands were measured. As to the equilibrium data, the pore capillary pressure and saturation of methane hydrate were calculated. The results showed that the phase equilibria of methane hydrates in fine-grained silica sands changed due to the depressed activity of pore water caused by the surface group and negatively charged characteristic of silica particles as well as the capillary pressure in small pores together. The capil-lary pressure increased with the increase of methane hydrate saturation due to the decrease of the available pore space. However, the capillary-saturation relationship could not yet be described quantitatively because of the stochastic habit of hydrate growth.

  4. Biophysics, Pathophysiology and Pharmacology of Ion Channel Gating Pores

    Directory of Open Access Journals (Sweden)

    Adrien eMoreau

    2014-04-01

    Full Text Available Voltage sensor domain (VSDs are a feature of voltage gated ion channel (VGICs and voltage sensitive proteins. They are composed of four transmembrane (TM segments (S1 to S4. Currents leaking through VSDs are called omega or gating pore currents.Gating pores are caused by mutations of the highly conserved positively charged amino acids in the S4 segment that disrupt interactions between the S4 segment and the gating charge transfer center (GCTC. The GCTC separates the intracellular and extracellular water crevices. The disruption of S4–GCTC interactions allows these crevices to communicate and create a fast activating and non-inactivating alternative cation-selective permeation pathway of low conductance, or a gating pore.Gating pore currents have recently been shown to cause periodic paralysis phenotypes. There is also increasing evidence that gating pores are linked to several other familial diseases. For example, gating pores in Nav1.5 and Kv7.2 channels may underlie mixed arrhythmias associated with dilated cardiomyopathy (DCM phenotypes and peripheral nerve hyperexcitability (PNH respectively. There is little evidence for the existence of gating pore blockers. Moreover, it is known that a number of toxins bind to the VSD of a specific domain of Na+ channels. These toxins may thus modulate gating pore currents. This focus on the VSD motif opens up a new area of research centered on developing molecules to treat a number of cell excitability disorders such as epilepsy, cardiac arrhythmias, and pain.The purpose of the present review is to summarize existing knowledge of the pathophysiology, biophysics, and pharmacology of gating pore currents and to serve as a guide for future studies aimed at improving our understanding of gating pores and their pathophysiological roles.

  5. Effects of Mg content on pore structure and electrochemical corrosion behaviors of porous Al-Mg alloys

    Institute of Scientific and Technical Information of China (English)

    何文远; 肖逸锋; 吴靓; 许艳飞; 钱锦文; 贺跃辉; 郑学军

    2016-01-01

    Porous Al-Mg alloys with different nominal compositions were successfully fabricated via elemental powder reactive synthesis, and the phase composition, pore structure, and corrosion resistance were characterized with X-ray diffractometer, scanning electron microscope and electrochemical analyzer. The volume expansion ratio, open porosity and corrosion resistance in 3.5% (mass fraction) NaCl aqueous solution of the alloys increase at first and then decrease with the increase of Mg content. The maxima of volume expansion ratio and open porosity are 18.3% and 28.1% for the porous Al-56%Mg (mass fraction) alloy, while there is the best corrosion resistance for the porous Al-37.5% Mg (mass fraction) alloy. The pore formation mechanism can be explained by Kirkendall effect, and the corrosion resistance can be mainly affected by the phase composition for the porous Al-Mg alloys. They would be of the potential application for filtration in the chloride environment.

  6. Reliable estimation of adsorption isotherm parameters using adequate pore size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Husseinzadeh, Danial; Shahsavand, Akbar [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2015-05-15

    The equilibrium adsorption isotherm has a crucial effect on various characteristics of the solid adsorbent (e.g., pore volume, bulk density, surface area, pore geometry). A historical paradox exists in conventional estimation of adsorption isotherm parameters. Traditionally, the total amount of adsorb material (total adsorption isotherm) has been considered equivalent to the local adsorption isotherm. This assumption is only valid when the corresponding pore size or energy distribution (PSD or ED) of the porous adsorbent can be successfully represented with the Dirac delta function. In practice, the actual PSD (or ED) is far from such assumption, and the traditional method for prediction of local adsorption isotherm parameters leads to serious errors. Up to now, the powerful combination of inverse theory and linear regularization technique has drastically failed when used for extraction of PSD from real adsorption data. For this reason, all previous researches used synthetic data because they were not able to extract proper PSD from the measured total adsorption isotherm with unrealistic parameters of local adsorption isotherm. We propose a novel approach that can successfully provide the correct values of local adsorption isotherm parameters without any a priori and unrealistic assumptions. Two distinct methods are suggested and several illustrative (synthetic and real experimental) examples are presented to clearly demonstrate the effectiveness of the newly proposed methods on computing the correct values of local adsorption isotherm parameters. The so-called Iterative and Optima methods' impressive performances on extraction of correct PSD are validated using several experimental data sets.

  7. Pore-Structure-Optimized CNT-Carbon Nanofibers from Starch for Rechargeable Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Yongjin Jeong

    2016-12-01

    Full Text Available Porous carbon materials are used for many electrochemical applications due to their outstanding properties. However, research on controlling the pore structure and analyzing the carbon structures is still necessary to achieve enhanced electrochemical properties. In this study, mesoporous carbon nanotube (CNT-carbon nanofiber electrodes were developed by heat-treatment of electrospun starch with carbon nanotubes, and then applied as a binder-free electrochemical electrode for a lithium-ion battery. Using the unique lamellar structure of starch, mesoporous CNT-carbon nanofibers were prepared and their pore structures were controlled by manipulating the heat-treatment conditions. The activation process greatly increased the volume of micropores and mesopores of carbon nanofibers by etching carbons with CO2 gas, and the Brunauer-Emmett-Teller (BET specific area increased to about 982.4 m2·g−1. The activated CNT-carbon nanofibers exhibited a high specific capacity (743 mAh·g−1 and good cycle performance (510 mAh·g−1 after 30 cycles due to their larger specific surface area. This condition presents many adsorption sites of lithium ions, and higher electrical conductivity, compared with carbon nanofibers without CNT. The research suggests that by controlling the heat-treatment conditions and activation process, the pore structure of the carbon nanofibers made from starch could be tuned to provide the conditions needed for various applications.

  8. Induced polarization dependence on pore space geometry: Empirical observations and mechanistic predictions

    Science.gov (United States)

    Weller, A.; Slater, L. D.

    2015-12-01

    We use an extensive database to compare empirical observations and previously proposed empirical models against recently developed mechanistic formulations for the induced polarization (IP) response in porous media as a function of pore space geometry and interfacial chemistry. These comparisons support the argument that the pore-volume normalized internal surface (Spor) is the most important geometric parameter influencing the polarization. The specific polarizability derived from the empirical relationship between imaginary conductivity σ″ and Spor is independent of the porosity. By contrast, equivalent specific polarizability terms in recently proposed mechanistic models are found to be significantly correlated with porosity, and thus do not appear to represent an interfacial chemistry factor independent of the pore space geometry. Furthermore, the database shows no evidence for a significant decrease in the counterion mobility of clayey materials relative to clay-free materials, as postulated in recent studies. On the contrary, a single value of cp is consistent with no significant differences in ionic mobility given that all samples were saturated with a NaCl solution close to a common salinity of about 100 mS/m.

  9. Particle Size and Pore Structure Characterization of Silver Nanoparticles Prepared by Confined Arc Plasma

    Directory of Open Access Journals (Sweden)

    Mingru Zhou

    2009-01-01

    Full Text Available In the protecting inert gas, silver nanoparticles were successfully prepared by confined arc plasma method. The particle size, microstructure, and morphology of the particles by this process were characterized via X-ray powder diffraction (XRD, transmission electron microscopy (TEM and the corresponding selected area electron diffraction (SAED. The N2 absorption-desorption isotherms of the samples were measured by using the static volumetric absorption analyzer, the pore structure of the sample was calculated by Barrett-Joyner-Halenda (BJH academic model, and the specific surface area was calculated from Brunauer-Emmett-Teller (BET adsorption equation. The experiment results indicate that the crystal structure of the samples is face-centered cubic (FCC structure the same as the bulk materials, the particle size distribution ranging from 5 to 65 nm, with an average particle size about 26 nm obtained by TEM and confirmed by XRD and BET results. The specific surface area is 23.81 m2/g, pore volumes are 0.09 cm3/g, and average pore diameter is 18.7 nm.

  10. Biotemplating pores with size and shape diversity for Li-oxygen Battery Cathodes

    Science.gov (United States)

    Oh, Dahyun; Ozgit-Akgun, Çagla; Akca, Esin; Thompson, Leslie E.; Tadesse, Loza F.; Kim, Ho-Cheol; Demirci, Gökhan; Miller, Robert D.; Maune, Hareem

    2017-01-01

    Synthetic porogens provide an easy way to create porous structures, but their usage is limited due to synthetic difficulties, process complexities and prohibitive costs. Here we investigate the use of bacteria, sustainable and naturally abundant materials, as a pore template. The bacteria require no chemical synthesis, come in variable sizes and shapes, degrade easier and are approximately a million times cheaper than conventional porogens. We fabricate free standing porous multiwalled carbon nanotube (MWCNT) films using cultured, harmless bacteria as porogens, and demonstrate substantial Li-oxygen battery performance improvement by porosity control. Pore volume as well as shape in the cathodes were easily tuned to improve oxygen evolution efficiency by 30% and double the full discharge capacity in repeated cycles compared to the compact MWCNT electrode films. The interconnected pores produced by the templates greatly improve the accessibility of reactants allowing the achievement of 4,942 W/kg (8,649 Wh/kg) at 2 A/ge (1.7 mA/cm2). PMID:28374862

  11. An undulation theory for condensation in open end slit pores: critical hysteresis temperature & critical hysteresis pore size.

    Science.gov (United States)

    Fan, Chunyan; Zeng, Yonghong; Do, D D; Nicholson, D

    2014-06-28

    A new theory of condensation in an open end slit pore, based on the concept of temperature dependent undulation, at the interface separating the adsorbed phase and the gas-like region, is presented. The theory, describes, for the first time, the microscopic origin of the critical hysteresis temperature and the critical hysteresis pore size, properties which are not accessible to any classical theories.

  12. Investigating Hydrophilic Pores in Model Lipid Bilayers Using Molecular Simulations: Correlating Bilayer Properties with Pore-Formation Thermodynamics.

    Science.gov (United States)

    Hu, Yuan; Sinha, Sudipta Kumar; Patel, Sandeep

    2015-06-23

    Cell-penetrating and antimicrobial peptides show a remarkable ability to translocate across physiological membranes. Along with factors such as electric-potential-induced perturbations of membrane structure and surface tension effects, experiments invoke porelike membrane configurations during the solute transfer process into vesicles and cells. The initiation and formation of pores are associated with a nontrivial free-energy cost, thus necessitating a consideration of the factors associated with pore formation and the attendant free energies. Because of experimental and modeling challenges related to the long time scales of the translocation process, we use umbrella sampling molecular dynamics simulations with a lipid-density-based order parameter to investigate membrane-pore-formation free energy employing Martini coarse-grained models. We investigate structure and thermodynamic features of the pore in 18 lipids spanning a range of headgroups, charge states, acyl chain lengths, and saturation. We probe the dependence of pore-formation barriers on the area per lipid, lipid bilayer thickness, and membrane bending rigidities in three different lipid classes. The pore-formation free energy in pure bilayers and peptide translocating scenarios are significantly coupled with bilayer thickness. Thicker bilayers require more reversible work to create pores. The pore-formation free energy is higher in peptide-lipid systems than in peptide-free lipid systems due to penalties to maintain the solvation of charged hydrophilic solutes within the membrane environment.

  13. Adsorption and Diffusion Properties of Ethylene, Benzene and Ethylbenzene in the Cylindrical Pore under Alkylation Reaction near Critical Regions by DCV-GCMD Simulation

    Institute of Scientific and Technical Information of China (English)

    刘涛; 刘洪来; 袁渭康

    2005-01-01

    A cylindrical pore model was used to represent approximately the pore of β-zeolite catalyst that had been used in the alkylation of benzene with ethylene and spherical Lennard-Jones molecules represented the components of the reaction system-ethylene, benzene and ethylbenzene. The dual control volume-grand canonical molecular dynamics (DCV-GCMD) method was used to simulate the adsorption and transport properties of three components under reaction in the cylindrical pore at 250℃ and 270℃ in the pressure range from 1 MPa to 8 MPa. The state map of the reactant mixture in the bulk phase could be divided into several different regions around its critical points. The simulated adsorption and transport properties in the pore were compared between the different near-critical regions. The thorough analysis suggested that the high pressure liquid region is the most suitable region for the alkylation reaction of benzene under the near-critical condition.

  14. Structural tensegrity module and two-layer structural mesh comprising said module

    OpenAIRE

    Gómez Jáuregui, Valentín; Otero González, César Antonio; Arias Fernández, Rubén; Manchado del Val, Cristina

    2013-01-01

    ABSTRACT. The invention relates to a structural tensegrity module contained in a prism defined by a lower base and an upper base having 2n sides, comprising 2n lower corner nodes aligned with the vertices of the lower base and 2n lower intermediate nodes aligned with the mid-point of each side of the lower base, and 2n upper corner nodes aligned with the vertices of the upper base and 2n upper intermediate nodes aligned with the mid-point of each side of the upper base. The module comprises a...

  15. Method and apparatus for separating a non-ferrous metal-comprising fraction from ferrous scrap

    OpenAIRE

    Rem, P.C.; Berkhout, S.P.M.

    2010-01-01

    Method for separating a non-ferrous metal-comprising fraction from ferrous scrap, wherein the ferrous scrap is conveyed to a processing device for separating the non-ferrous metal-comprising fraction from the remainder of the ferrous scrap. The processing device supplies a beam of water, and the ferrous scrap is conveyed and released into the waterbeam so as to cause that the ferrous scrap is allowed to fall and move further, subject to the forces of gravity and the waterbeam.

  16. Modeling pore corrosion in normally open gold- plated copper connectors.

    Energy Technology Data Exchange (ETDEWEB)

    Battaile, Corbett Chandler; Moffat, Harry K.; Sun, Amy Cha-Tien; Enos, David George; Serna, Lysle M.; Sorensen, Neil Robert

    2008-09-01

    The goal of this study is to model the electrical response of gold plated copper electrical contacts exposed to a mixed flowing gas stream consisting of air containing 10 ppb H{sub 2}S at 30 C and a relative humidity of 70%. This environment accelerates the attack normally observed in a light industrial environment (essentially a simplified version of the Battelle Class 2 environment). Corrosion rates were quantified by measuring the corrosion site density, size distribution, and the macroscopic electrical resistance of the aged surface as a function of exposure time. A pore corrosion numerical model was used to predict both the growth of copper sulfide corrosion product which blooms through defects in the gold layer and the resulting electrical contact resistance of the aged surface. Assumptions about the distribution of defects in the noble metal plating and the mechanism for how corrosion blooms affect electrical contact resistance were needed to complete the numerical model. Comparisons are made to the experimentally observed number density of corrosion sites, the size distribution of corrosion product blooms, and the cumulative probability distribution of the electrical contact resistance. Experimentally, the bloom site density increases as a function of time, whereas the bloom size distribution remains relatively independent of time. These two effects are included in the numerical model by adding a corrosion initiation probability proportional to the surface area along with a probability for bloom-growth extinction proportional to the corrosion product bloom volume. The cumulative probability distribution of electrical resistance becomes skewed as exposure time increases. While the electrical contact resistance increases as a function of time for a fraction of the bloom population, the median value remains relatively unchanged. In order to model this behavior, the resistance calculated for large blooms has been weighted more heavily.

  17. Pore Scale Dynamics of Microemulsion Formation.

    Science.gov (United States)

    Unsal, Evren; Broens, Marc; Armstrong, Ryan T

    2016-07-19

    Experiments in various porous media have shown that multiple parameters come into play when an oleic phase is displaced by an aqueous solution of surfactant. In general, the displacement efficiency is improved when the fluids become quasi-miscible. Understanding the phase behavior oil/water/surfactant systems is important because microemulsion has the ability to generate ultralow interfacial tension (formation and the resulting properties under equilibrium conditions. However, the majority of applications where microemulsion is present also involve flow, which has received relatively less attention. It is commonly assumed that the characteristics of an oil/water/surfactant system under flowing conditions are identical to the one under equilibrium conditions. Here, we show that this is not necessarily the case. We studied the equilibrium phase behavior of a model system consisting of n-decane and an aqueous solution of olefin sulfonate surfactant, which has practical applications for enhanced oil recovery. The salt content of the aqueous solution was varied to provide a range of different microemulsion compositions and oil-water interfacial tensions. We then performed microfluidic flow experiments to study the dynamic in situ formation of microemulsion by coinjecting bulk fluids of n-decane and surfactant solution into a T-junction capillary geometry. A solvatochromatic fluorescent dye was used to obtain spatially resolved compositional information. In this way, we visualized the microemulsion formation and the flow of it along with the excess phases. A complex interaction between the flow patterns and the microemulsion properties was observed. The formation of microemulsion influenced the flow regimes, and the flow regimes affected the characteristics of the microemulsion formation. In particular, at low flow rates, slug flow was observed, which had profound consequences on the pore scale mixing behavior and resulting microemulsion properties.

  18. Recent Advances in Characterizing Depositional Facies and Pore Network Modeling in Context of Carbon Capture Storage: An Example from the Cambrian Mt. Simon Sandstone in the Illinois Basin

    Science.gov (United States)

    Freiburg, J. T.; Nathan, W.; Best, J.; Reesink, A.; Ritzi, R. W., Jr.; Pendleton, J.; Dominic, D. F.; Tudek, J.; Kohanpur, A. H.

    2015-12-01

    In order to understand subsurface flow dynamics, including CO2 plume migration and capillary trapping, a diverse set of geologic properties within the reservoir, from the pore scale to the basin scale, must be understood and quantified. The uncertainty about site-specific geology stems from the inherent variation in rock types, depositional environments, and diagenesis. In collaboration with geocellular and multiphase modeling, detailed characterization of the Lower Mt. Simon Sandstone (LMSS), a reservoir utilized for carbon capture storage, is supporting data-driven conceptual models to better understand reservoir heterogeneity and its relationship to reservoir properties. This includes characterization of sedimentary facies and pore scale modeling of the reservoir The Cambrian-age Lower Mt. Simon Sandstone (LMSS) is a reservoir utilized for two-different carbon capture storage projects in the Illinois Basin, USA. The LMSS is interpreted to have formed in a braided river environment comprising a hierarchy of stratification, with larger scale depositional facies comprising assemblages of smaller scale facies. The proportions, geometries, length scales, and petrophysical attributes of the depositional facies, and of the textural facies they comprise, are being quantified. Based on examination of core and analog outcrop in adjacent areas, the LMSS is comprised of five dominant depositional facies, the most abundant facies being planar to trough cross-bedded sandstones produced by subaqueous sand dunes. This facies has the best reservoir conditions with porosity up to 27% and permeability up to 470 mD. Three-dimensional pore network modeling via micro computed tomography of this facies shows well-connected and unobstructed pore throats and pore space. This presentation will outline the depositional heterogeneity of the LMSS, its relationship to diagenetic fabrics, and its influence on fluid movement within the reservoir.

  19. Impacts of pore- and petro-fabrics, mineral composition and diagenetic history on the bulk thermal conductivity of sandstones

    Science.gov (United States)

    Nabawy, Bassem S.; Géraud, Yves

    2016-03-01

    The present study aims to model the bulk thermal fabric of the highly porous (26.5 ≤ øHe ≤ 39.0%) siliceous Nubia sandstones in south Egypt, as well as their pore- and petro-anisotropy. The thermal fabric concept is used in the present study to describe the magnitude and direction of the thermal foliation 'F', lineation 'L' and anisotropy 'λ'. Cementation, pressure solution, compaction and the authigenic clay content are the main pore volume-controlling factors, whereas the cement dissolution and fracturing are the most important porosity-enhancing factors. The bulk thermal fabric of the Nubia sandstone is raised mostly from the contribution of the mineral composition and the pore volume. The kaolinite content and pore volume are the main reducing factors for the measured bulk thermal conductivity 'k', whereas the quartz content is the most important enhancing factors. The optical scanning technique, which is one of the most accurate and precise techniques, was applied for measuring the bulk thermal conductivity 'k' of the studied samples. For the dry state, the average thermal condutivity 'kav' in the NE-SW, NW-SE and vertical directions, varies from 1.53 to 2.40, 1.54 to 2.36 and from 1.31 to 2.20 W/(mK), respectively. On other hand, 'kav' for the saline water-saturated state for the NE-SW, NW-SE and vertical directions varies between 2.94 & 4.42, 2.90 & 4.31 and between 2.39 & 3.65 W/(mK), respectively. The present thermal pore fabric is slightly anisotropic, 'λ' varies from 1.10 to 1.41, refers mostly to the NW-SE direction (kmax direction, elongation direction), whereas the petro-fabric refers to NE-SW direction (kmax direction, elongation direction). This gives rise to a conclusion that the pore- and petro-fabrics have two different origins. Therefore, studying the thermal conductivity of the Nubia sandstone in 3-D indicates a pore fabric elongation fluctuating around the N-S direction.

  20. Pore geometry as a control on rock strength

    Science.gov (United States)

    Bubeck, A.; Walker, R. J.; Healy, D.; Dobbs, M.; Holwell, D. A.

    2017-01-01

    The strength of rocks in the subsurface is critically important across the geosciences, with implications for fluid flow, mineralisation, seismicity, and the deep biosphere. Most studies of porous rock strength consider the scalar quantity of porosity, in which strength shows a broadly inverse relationship with total porosity, but pore shape is not explicitly defined. Here we use a combination of uniaxial compressive strength measurements of isotropic and anisotropic porous lava samples, and numerical modelling to consider the influence of pore shape on rock strength. Micro computed tomography (CT) shows that pores range from sub-spherical to elongate and flat ellipsoids. Samples that contain flat pores are weaker if compression is applied parallel to the short axis (i.e. across the minimum curvature), compared to compression applied parallel to the long axis (i.e. across the maximum curvature). Numerical models for elliptical pores show that compression applied across the minimum curvature results in relatively broad amplification of stress, compared to compression applied across the maximum curvature. Certain pore shapes may be relatively stable and remain open in the upper crust under a given remote stress field, while others are inherently weak. Quantifying the shape, orientations, and statistical distributions of pores is therefore a critical step in strength testing of rocks.

  1. Impedance nanopore biosensor: influence of pore dimensions on biosensing performance.

    Science.gov (United States)

    Kant, Krishna; Yu, Jingxian; Priest, Craig; Shapter, Joe G; Losic, Dusan

    2014-03-07

    Knowledge about electrochemical and electrical properties of nanopore structures and the influence of pore dimensions on these properties is important for the development of nanopore biosensing devices. The aim of this study was to explore the influence of nanopore dimensions (diameter and length) on biosensing performance using non-faradic electrochemical impedance spectroscopy (EIS). Nanoporous alumina membranes (NPAMs) prepared by self-ordered electrochemical anodization of aluminium were used as model nanopore sensing platforms. NPAMs with different pore diameters (25-65 nm) and lengths (4-18 μm) were prepared and the internal pore surface chemistry was modified by covalently attaching streptavidin and biotin. The performance of this antibody nanopore biosensing platform was evaluated using various concentrations of biotin as a model analyte. EIS measurements of pore resistivity and conductivity were carried out for pores with different diameters and lengths. The results showed that smaller pore dimensions of 25 nm and pore lengths up to 10 μm provide better biosensing performance.

  2. Superplastically foaming method to make closed pores inclusive porous ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, Akira; Hayashi, Hidetaka, E-mail: kishim-a@cc.okayama-u.ac.jp [Division of Molecular and Material Science, Graduate School of Natural Science and Technology, Okayama University Okayama (Japan)

    2011-04-15

    Porous ceramics incorporates pores to improve several properties including thermal insulation maintaining inherenet ceramic properties such as corrosion resistance and large mechanical strength. Conventional porous ceramics is usually fabricated through an insufficient sintering. Since the sintering accompanies the exclusion of pores, it must be terminated at the early stage to maintain the high porosity, leading to degraded strength and durability. Contrary to this, we have innovated superplastically foaming method to make ceramic foams only in the solid state. In this method, the previously inserted foam agent evaporates after the full densification of matrix at around the sintering temperature. Closed pores expand utilizing the superplastic deformation driven by the evolved gas pressure. The typical features of this superplastically foaming method are listed as follows, 1. The pores are introduced after sintering the solid polycrystal. 2. Only closed pores are introduced, improving the insulation of gas and sound in addition to heat. 3. The pore walls are fully densified expecting a large mechanical strength. 4. Compared with the melt foaming method, this method is practical because the fabrication temperature is far below the melting point and it does not need molds. 5. The size and the location pores can be controlled by the amount and position of the foam agent.

  3. Clostridial pore-forming toxins: powerful virulence factors.

    Science.gov (United States)

    Popoff, Michel R

    2014-12-01

    Pore formation is a common mechanism of action for many bacterial toxins. More than one third of clostridial toxins are pore-forming toxins (PFTs) belonging to the β-PFT class. They are secreted as soluble monomers rich in β-strands, which recognize a specific receptor on target cells and assemble in oligomers. Then, they undergo a conformational change leading to the formation of a β-barrel, which inserts into the lipid bilayer forming functional pore. According to their structure, clostridial β-PFTs are divided into several families. Clostridial cholesterol-dependent cytolysins form large pores, which disrupt the plasma membrane integrity. They are potent virulence factors mainly involved in myonecrosis. Clostridial heptameric β-PFTs (aerolysin family and staphylococcal α-hemolysin family) induce small pores which trigger signaling cascades leading to different cell responses according to the cell types and toxins. They are mainly responsible for intestinal diseases, like necrotic enteritis, or systemic diseases/toxic shock from intestinal origin. Clostridial intracellularly active toxins exploit pore formation through the endosomal membrane to translocate the enzymatic component or domain into the cytosol. Single chain protein toxins, like botulinum and tetanus neurotoxins, use hydrophobic α-helices to form pores, whereas clostridial binary toxins encompass binding components, which are structurally and functionally related to β-PFTs, but which have acquired the specific activity to internalize their corresponding enzymatic components. Structural analysis suggests that β-PFTs and binding components share a common evolutionary origin.

  4. Nuclear Pore-Like Structures in a Compartmentalized Bacterium

    Science.gov (United States)

    Sagulenko, Evgeny; Green, Kathryn; Yee, Benjamin; Morgan, Garry; Leis, Andrew; Lee, Kuo-Chang; Butler, Margaret K.; Chia, Nicholas; Pham, Uyen Thi Phuong; Lindgreen, Stinus; Catchpole, Ryan; Poole, Anthony M.; Fuerst, John A.

    2017-01-01

    Planctomycetes are distinguished from other Bacteria by compartmentalization of cells via internal membranes, interpretation of which has been subject to recent debate regarding potential relations to Gram-negative cell structure. In our interpretation of the available data, the planctomycete Gemmata obscuriglobus contains a nuclear body compartment, and thus possesses a type of cell organization with parallels to the eukaryote nucleus. Here we show that pore-like structures occur in internal membranes of G.obscuriglobus and that they have elements structurally similar to eukaryote nuclear pores, including a basket, ring-spoke structure, and eight-fold rotational symmetry. Bioinformatic analysis of proteomic data reveals that some of the G. obscuriglobus proteins associated with pore-containing membranes possess structural domains found in eukaryote nuclear pore complexes. Moreover, immunogold labelling demonstrates localization of one such protein, containing a β-propeller domain, specifically to the G. obscuriglobus pore-like structures. Finding bacterial pores within internal cell membranes and with structural similarities to eukaryote nuclear pore complexes raises the dual possibilities of either hitherto undetected homology or stunning evolutionary convergence. PMID:28146565

  5. Morphological Characterization of the Polyflux 210H Hemodialysis Filter Pores

    Directory of Open Access Journals (Sweden)

    A. Hedayat

    2012-01-01

    Full Text Available Background. Morphological characterization of hemodialysis membranes is necessary to improve pore design. Aim. To delineate membrane pore structure of a high flux filter, Polyflux 210H. Methods. We used a Joel JSM-6010LV scanning electron microscope (SEM and a SU6600 Hitachi field emission scanning electron microscope (FESEM to characterize the pore and fiber morphology. The maximal diameters of selected uremic toxins were calculated using the macromolecular modeling Crystallographic Object-Oriented Toolkit (COOT software. Results. The mean pore densities on the outermost and innermost surfaces of the membrane were 36.81% and 5.45%, respectively. The membrane exhibited a tortuous structure with poor connection between the inner and outer pores. The aperture’s width in the inner surface ranged between 34 and 45 nm, which is 8.76–11.60 times larger than the estimated maximum diameter of β2-microglobulin (3.88 nm. Conclusion. The results suggest that the diameter size of inner pore apertures is not a limiting factor to middle molecules clearance, the extremely diminished density is. Increasing inner pore density and improving channel structure are strategies to improve clearance of middle molecules.

  6. Photomlxer for terahertz electromagnetic wave emission comprising quantum dots in a laser cavity

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a photomixer for generating terahertz electromagnetic radiation in response to illumination by a time-modulated optical signal. The photomixer (300) comprises a carrier substrate (310) with a plurality of quantum dots arranged in an emission region (308) thereof...

  7. Palladium catalyst system comprising zwitterion and/or acid-​functionalized ionic liquid

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention concerns a catalyst system in particular a catalyst system comprising Palladium (Pd), a zwitterion and/or an acid-functionalized ionic liquid, and one or more phosphine ligands, wherein the Pd catalyst can be provided by a complex precursor, such as Pd(CH3COO)2, PdCI2, Pd(CH3...

  8. Palladium catalyst system comprising zwitterion and/or acid-functionalized ionic liquid

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention concerns a catalyst system in particular a catalyst system comprising Palladium (Pd), a zwitterion and/or an acid-functionalized ionic liquid, and one or more phosphine ligands, wherein the Pd catalyst can be provided by a complex precursor, such as Pd(CH3COO)2, PdCI2, Pd(CH3...

  9. Non-aqueous liquid compositions comprising ion exchange polymers reference to related application

    Science.gov (United States)

    Kim; Yu Seung , Lee; Kwan-Soo , Rockward; Tommy Q. T.

    2012-08-07

    Compositions, and methods of making thereof, comprising from about 1% to about 5% of a perfluorinated sulfonic acid ionomer or a hydrocarbon-based ionomer; and from about 95% to about 99% of a solvent, said solvent consisting essentially of a polyol; wherein said composition is substantially free of water and wherein said ionomer is uniformly dispersed in said solvent.

  10. Combination Comprising Parthenolide For Use In The Treatment Of Alzheimer's Disease And Other Neurodegenerative Disorders

    KAUST Repository

    Bajic, Vladimir B.

    2015-06-18

    The present invention generally concerns particular methods and compositions for treatment of a neurodegenerative disease, such as Alzheimer\\'s Disease. In particular embodiments, there is a composition comprising Parthenolide and a second agent, including an inhibitor of TLR4/MD-2/CD14, nAChR agonist, Resatorvid, Curcumin, Tilorone or a Tilorone analog, or a combination thereof.

  11. Polymer foam comprising a polymer and nanoparticles, and nanoparticles for the manufacture of such foam.

    NARCIS (Netherlands)

    Vancso, Gyula J.; Duvigneau, Joost; Nederkoorn, P.H.J.; Wassing, T.

    2014-01-01

    A polymer foam is produced comprising a polymer and nanoparticles having a maximum dimensionof 750 nm, which foam has cells with an average cell size of at most 1 µm and a cell density of at least 1012 cells/ml, wherein polymeric grafts have been attached to the nanoparticles. The nanoparticles may

  12. Polymer foam comprising a polymer and nanoparticles, and nanoparticles for the manufacture of such foam.

    NARCIS (Netherlands)

    Vancso, G.J.; Duvigneau, J.; Nederkoorn, P.H.J.; Wassing, T.

    2014-01-01

    A polymer foam is produced comprising a polymer and nanoparticles having a maximum dimensionof 750 nm, which foam has cells with an average cell size of at most 1 µm and a cell density of at least 1012 cells/ml, wherein polymeric grafts have been attached to the nanoparticles. The nanoparticles may

  13. Light source comprising a common substrate, a first led device and a second led device

    Science.gov (United States)

    Choong, Vi-En

    2010-02-23

    At least one stacked organic or polymeric light emitting diode (PLEDs) devices to comprise a light source is disclosed. At least one of the PLEDs includes a patterned cathode which has regions which transmit light. The patterned cathodes enable light emission from the PLEDs to combine together. The light source may be top or bottom emitting or both.

  14. The minimal essential unit for cadherin-mediated intercellular adhesion comprises extracellular domains 1 and 2

    DEFF Research Database (Denmark)

    Shan, Weisong; Yagita, Yoshiki; Wang, Zhaohui

    2004-01-01

    N-cadherin comprises five homologous extracellular domains, a transmembrane, and a cytoplasmic domain. The extracellular domains of N-cadherin play important roles in homophilic cell adhesion, but the contribution of each domain to this phenomenon has not been fully evaluated. In particular, the ...

  15. New mesogenic Schiff base esters comprising benzothiazole moiety:Synthesis and mesomorphic properties

    Institute of Scientific and Technical Information of China (English)

    Sie Tiong Ha; Teck Ming Koh; Guan Yeow Yeap; Hong Cheu Lin; Jun Kit Beh; Yip Foo Win; Peng Lim Boey

    2009-01-01

    A homologous series of Schiff base esters,6-methoxy-2-(2-hydroxy-4-alkanoyloxybenzylidenamino)benzothiazoles,comprising a benzothiazole moiety as the core was synthesized.All the members of this series exhibited an enantiotropic nematic phase.The azomethine linkage along with the lateral hydroxyl and terminal methoxyl groups were found to exert an effect on the mesomorphic properties.

  16. Novel Techniques to Characterize Pore Size of Porous Materials

    KAUST Repository

    Alabdulghani, Ali J.

    2016-04-24

    Porous materials are implemented in several industrial applications such as water desalination, gas separation and pharmaceutical care which they are mainly governed by the pore size and the PSD. Analyzing shale reservoirs are not excluded from these applications and numerous advantages can be gained by evaluating the PSD of a given shale reservoir. Because of the limitations of the conventional characterization techniques, novel methods for characterizing the PSD have to be proposed in order to obtain better characterization results for the porous materials, in general, and shale rocks in particular. Thus, permporosimetry and evapoporometry (EP) technologies were introduced, designed and utilized for evaluating the two key parameters, pore size and pore size distribution. The pore size and PSD profiles of different shale samples from Norway and Argentina were analyzed using these technologies and then confirmed by mercury intrusion porosimeter (MIP). Norway samples showed an average pore diameter of 12.94 nm and 19.22 nm with an average diameter of 13.77 nm and 23.23 nm for Argentina samples using permporosimetry and EP respectively. Both techniques are therefore indicative of the heterogeneity of the shales. The results from permporosimetry are in good agreement with those obtained from MIP technique, but EP for most part over-estimates the average pore size. The divergence of EP results compared to permporosimetry results is referred to the fact that the latter technique measures only the active pores which is not the case with the former technique. Overall, both techniques are complementary to each other which the results from both techniques seem reasonable and reliable and provide two simple techniques to estimate the pore size and pore size distributions for shale rocks.

  17. Modification of Aquifer Pore-Water by Static Diffusion Using Nano-Zero-Valent Metals

    Directory of Open Access Journals (Sweden)

    David D. J. Antia

    2011-01-01

    Full Text Available Sixteen static diffusion reactors containing n-ZVM (Fe0, Cu0, Al0 establish a common equilibrium redox (Eh-pH trajectory which is directly linked to the aquifer pore volume, volume of injected n-ZVM, throughflow rate within the aquifer and time. The effect of NaCl and Ca-montmorillonite on the trajectory is considered. The trajectory can be directly linked to TDS (EC and to the equilibrium removal of contaminants. In each example, the progressive oscillation between reduction and oxidation reactions (including Fenton reactions creates the catalytic nuclei (and redox environment required for the decomposition of organic pollutants and their reconstruction as simple alkanes and oxygenates.

  18. Investigation of electrolyte wetting in lithium ion batteries: Effects of electrode pore structures and solution

    Science.gov (United States)

    Sheng, Yangping

    , which are further described by the percentage of total pore volume and the threshold and critical pore diameter. The effect of calendering process on electrolyte wetting, as a demonstration for typical post-production process, has been revealed by the wetting balance analysis. A quantitative analysis of the pore structure under the pore network concept is used to investigate the evolution of pore structure with the increase of calendering force. Based on the pore structure, the hypothesis of combined effects of capillary and converging-diverging flow in electrolyte wetting is proposed to understand the mechanism. A further demonstration of the effect of production process by adding excessive carbon black is accomplished. The hypothesis is valid to explain the electrolyte wetting behavior with increasing amount of carbon black. The pore structure differences between electrodes with various amount of carbon black are shown by the scanning electron microscope.

  19. Simple model of capillary condensation in cylindrical pores

    Science.gov (United States)

    Szybisz, Leszek; Urrutia, Ignacio

    2002-11-01

    A simple model based on an approximation of the dropletlike model is formulated for studying adsorption of fluids into cylindrical pores. This model yields a nearly universal description of capillary condensation transitions for noble gases confined by alkali metals. The system's thermodynamical behavior is predicted from the values of two dimensionless parameters: D* (the reduced asymptotic strength of the fluid-adsorber interaction, a function of temperature) and R* (the reduced radius of the pore). The phenomenon of hysteresis inherently related to capillary condensation is discussed. The connection to a previously proposed universality for cylindrical pores is also established.

  20. Pore structure of SWNTs with high hydrogen storage capacity

    Institute of Scientific and Technical Information of China (English)

    杨全红; 刘畅; 刘敏; 樊彦贞; 成会明; 王茂章

    2002-01-01

    This paper reveals, by analyses of nitrogen cryo-adsorption isotherm, the energetic and structural heterogeneity of single-walled carbon nanotubes (SWNTs) which has a high hydrogen storage capacity. It was found that SWNTs had manifold pore structures and distributed surface energy. By comparison of the pore structures and energy distributions of SWNTs before and after hydrogen adsorption, it is preliminarily indicated that hydrogen adsorption occurred in micropores and mesopores with smaller diameter, and that the pores of different diameters determined different hydrogen adsorption processes and underwent different structure changes during hydrogen adsorption.

  1. Hindered Diffusion through an Aqueous Pore Describes Invariant Dye Selectivity of Cx43 Junctions☆

    Science.gov (United States)

    Heyman, Nathanael S.; Burt, Janis M.

    2008-01-01

    Abstract The permselectivity (permeance/conductance) of Cx43-comprised gap junctions is a variable parameter of junctional function. To ascertain whether this variability in junctional permselectivity is explained by heterogeneous charge or size selectivity of the comprising channels, the permeance of individual Cx43 gap junctions to combinations of two dyes differing in either size or charge was determined in four cell types: Rin43, NRKe, HeLa43, and cardiac myocytes. The results show that Cx43 junctions are size- but not charge-selective and that both selectivities are constant parameters of junctional function. The consistency of dye selectivities indicates that the large continuum of measured junctional permselectivities cannot be ascribed to an equivalent continuum of individual channel selectivities. Further, the relative dye permeance sequence of NBD-M-TMA ∼ Alexa 350 > Lucifer yellow > Alexa 488 ≫ Alexa 594 (Stokes radii of 4.3 Å, 4.4 Å, 4.9 Å, 5.8 Å, and 7.4 Å, respectively) and the conductance sequence of KCl > TEACl ∼ Kglutamate are well described by hindered diffusion through an aqueous pore with radius ∼10 Å and length 160 Å. The permselectivity and dye selectivity data suggest the variable presence in Cx43-comprised junctions of conductive channels that are either dye-impermeable or dye-permeable. PMID:17921206

  2. A Natural Chimeric Pseudomonas Bacteriocin with Novel Pore-Forming Activity Parasitizes the Ferrichrome Transporter.

    Science.gov (United States)

    Ghequire, Maarten G K; Kemland, Lieselore; Anoz-Carbonell, Ernesto; Buchanan, Susan K; De Mot, René

    2017-02-21

    Modular bacteriocins represent a major group of secreted protein toxins with a narrow spectrum of activity, involved in interference competition between Gram-negative bacteria. These antibacterial proteins include a domain for binding to the target cell and a toxin module at the carboxy terminus. Self-inhibition of producers is provided by coexpression of linked immunity genes that transiently inhibit the toxin's activity through formation of bacteriocin-immunity complexes or by insertion in the inner membrane, depending on the type of toxin module. We demonstrate strain-specific inhibitory activity for PmnH, a Pseudomonas bacteriocin with an unprecedented dual-toxin architecture, hosting both a colicin M domain, potentially interfering with peptidoglycan synthesis, and a novel colicin N-type domain, a pore-forming module distinct from the colicin Ia-type domain in Pseudomonas aeruginosa pyocin S5. A downstream-linked gene product confers PmnH immunity upon susceptible strains. This protein, ImnH, has a transmembrane topology similar to that of Pseudomonas colicin M-like and pore-forming immunity proteins, although homology with either of these is essentially absent. The enhanced killing activity of PmnH under iron-limited growth conditions reflects parasitism of the ferrichrome-type transporter for entry into target cells, a strategy shown here to be used as well by monodomain colicin M-like bacteriocins from pseudomonads. The integration of a second type of toxin module in a bacteriocin gene could offer a competitive advantage against bacteria displaying immunity against only one of both toxic activities.IMPORTANCE In their continuous struggle for ecological space, bacteria face a huge load of contenders, including phylogenetically related strains that compete for the same niche. One important group of secreted antibacterial proteins assisting in eliminating these rivals are modular bacteriocins of Gram-negative bacteria, comprising a domain for docking onto the

  3. Nano pores evolution in hydroxyapatite microsphere during spark plasma sintering

    Directory of Open Access Journals (Sweden)

    Lin C.

    2011-01-01

    Full Text Available Micron-spherical granules of hydroxyapatite (HAp nanoparticles were prepared by powder granulation methods. Through subsequent sintering, porous HAp microspheres with tailored pore and grain framework structures were obtained. Detailed microstructure investigation by SEM and TEM revealed the correlation of the pore structure and the necking strength with the sintering profiles that determine the coalescence features of the nanoparticles. The partially sintered porous HAp microspheres containing more than 50% porosity consisting of pores and grains both in nano-scale are active in inducing the precipitation of HAp in simulated body fluid. The nano-porous HAp microspheres with an extensive surface and interconnecting pores thus demonstrate the potential of stimulating the formation of collagen and bone and the integration with the newly formed bones during physiological bone remodeling.

  4. Bilayer Deformation, Pores, and Micellation Induced by Oxidized Lipids.

    Science.gov (United States)

    Boonnoy, Phansiri; Jarerattanachat, Viwan; Karttunen, Mikko; Wong-Ekkabut, Jirasak

    2015-12-17

    The influence of different oxidized lipids on lipid bilayers was investigated with 16 individual 1 μs atomistic molecular dynamics (MD) simulations. Binary mixtures of lipid bilayers of 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (PLPC) and its peroxide and aldehyde products were performed at different concentrations. In addition, an asymmetrical short chain lipid, 1-palmitoyl-2-decanoyl-sn-glycero-3-phosphatidylcholine (PDPC), was used to compare the effects of polar/apolar groups in the lipid tail on lipid bilayer. Although water defects occurred with both aldehyde and peroxide lipids, full pore formation was observed only for aldehyde lipids. At medium concentrations the pores were stable. At higher concentrations, however, the pores became unstable and micellation occurred. Data analysis shows that aldehyde lipids' propensity for pore formation is due to their shorter and highly mobile tail. The highly polar peroxide lipids are stabilized by strong hydrogen bonds with interfacial water.

  5. The Pore Structure and Hydration Performance of Sulphoaluminate MDF Cement

    Institute of Scientific and Technical Information of China (English)

    HUANG Cong-yun; YUAN Run-zhang; LONG Shi-zong

    2004-01-01

    The hydration and pore structure of sulphoaluminate MDF cement were studied by X-ray diffractometer ( XRD ), scanning electron microscope (SEM) and mercury intrusion porosimeter ( MIP ) etc. The ex-perimental results indicate that hydration products of the materials are entringites ( Aft ), aluminium hydroxide andCSH (Ⅰ) gel etc. Due to its very low water-cement ratio, hydration function is only confined to the surfaces of ce-ment grains, and there is a lot of sulphoaluminate cement in the hardenite which is unhydrated yet. Hydration re-action was rapidly carried under the condition of the heat-pressing. Therefore cement hydrates Aft, CSH (Ⅰ) andaluminium hydroxide gel fill in pores. The expansibility of Aft makes the porosity of MDF cement lower ( less than1 percent ) and the size of pore smaller (80 percent pore was less than 250A), and enhances its strength.

  6. Diffusion Pore Imaging by Hyperpolarized Xenon-129 Nuclear Magnetic Resonance

    CERN Document Server

    Kuder, Tristan Anselm; Windschuh, Johannes; Laun, Frederik Bernd

    2012-01-01

    Nuclear magnetic resonance (NMR) diffusion measurements are widely used to derive parameters indirectly related to the microstructure of biological tissues and porous media. However, a direct imaging of cell or pore shapes and sizes would be of high interest. For a long time, determining pore shapes by NMR diffusion acquisitions seemed impossible, because the necessary phase information could not be preserved. Here we demonstrate experimentally using the measurement technique which we have recently proposed theoretically that the shape of arbitrary closed pores can be imaged by diffusion acquisitions, which yield the phase information. For this purpose, we use hyperpolarized xenon gas in well-defined geometries. The signal can be collected from the whole sample which mainly eliminates the problem of vanishing signal at increasing resolution of conventional NMR imaging. This could be used to non-invasively gain structural information inaccessible so far such as pore or cell shapes, cell density or axon integri...

  7. Diffusion in the pore water of compacted crushed salt

    Energy Technology Data Exchange (ETDEWEB)

    Fluegge, Judith; Herr, Sebastian; Lauke, Thomas; Meleshyn, Artur; Miehe, Ruediger; Ruebel, Andre

    2016-07-15

    Diffusion of dissolved radionuclides in the pore water of compacted crushed salt in the long-term is the most relevant process for the release of radionuclides from a dedicated repository for high-level waste in a salt formation as has been shown in latest safety assessments and research projects /BUH 16/. So far, diffusion coefficients for free water have been applied for the diffusion in pore water in models for long-term safety assessments. This conservative assumption was used, because data on the diffusion coefficient of dissolved substances in crushed salt have been missing. Furthermore, the diffusion coefficient in the pore water was assumed to be constant and independent from the degree of compaction of the crushed salt. The work presented in this report was intended to contribute to fill this gap of knowledge about how the diffusion of radionuclides takes place in the compacted backfill of a repository in salt. For the first time, the pore diffusion coefficient as well as its dependence on the porosity of the crushed salt was determined experimentally by means of through-diffusion experiments using caesium as tracer. The results achieved in this project suggest that the diffusion in compacted crushed salt is not fully comparable to that in a homogeneous, temporally stable porous medium like sand or clay. The results obtained from four diffusion experiments show a remarkably different behaviour and all yield unique concentration versus time plots which includes highly temporal variable tracer fluxes with even full interruptions of the flux for longer periods of time. This effect cannot be explained by assuming a tracer transport by diffusion in a temporarily invariant pore space and / or under temporally invariant experimental conditions. From our point of view, a restructuring of the pore space seems to lead to closed areas of pore water in the sample which may open up again after some time, leading to a variable pore space and hence variable diffusive

  8. Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering

    KAUST Repository

    Sicat, Ronell Barrera

    2014-12-31

    This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs.

  9. Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering.

    Science.gov (United States)

    Sicat, Ronell; Krüger, Jens; Möller, Torsten; Hadwiger, Markus

    2014-12-01

    This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs.

  10. Molecular biology and biophysical properties of ion channel gating pores.

    Science.gov (United States)

    Moreau, Adrien; Gosselin-Badaroudine, Pascal; Chahine, Mohamed

    2014-11-01

    The voltage sensitive domain (VSD) is a pivotal structure of voltage-gated ion channels (VGICs) and plays an essential role in the generation of electrochemical signals by neurons, striated muscle cells, and endocrine cells. The VSD is not unique to VGICs. Recent studies have shown that a VSD regulates a phosphatase. Similarly, Hv1, a voltage-sensitive protein that lacks an apparent pore domain, is a self-contained voltage sensor that operates as an H⁺ channel. VSDs are formed by four transmembrane helices (S1-S4). The S4 helix is positively charged due to the presence of arginine and lysine residues. It is surrounded by two water crevices that extend into the membrane from both the extracellular and intracellular milieus. A hydrophobic septum disrupts communication between these water crevices thus preventing the permeation of ions. The septum is maintained by interactions between the charged residues of the S4 segment and the gating charge transfer center. Mutating the charged residue of the S4 segment allows the water crevices to communicate and generate gating pore or omega pore. Gating pore currents have been reported to underlie several neuronal and striated muscle channelopathies. Depending on which charged residue on the S4 segment is mutated, gating pores are permeant either at depolarized or hyperpolarized voltages. Gating pores are cation selective and seem to converge toward Eisenmann's first or second selectivity sequences. Most gating pores are blocked by guanidine derivatives as well as trivalent and quadrivalent cations. Gating pores can be used to study the movement of the voltage sensor and could serve as targets for novel small therapeutic molecules.

  11. Microchannel apparatus comprising plural microchannels and methods of conducting unit operations

    Science.gov (United States)

    Wegeng, Robert S [Richland, WA; TeGrotenhuis, Ward E [Kennewick, WA; Whyatt, Greg A [West Richland, WA

    2009-03-10

    Microchannel apparatus comprising a header and plural flow microchannels is described in which orifices connect the header and the flow microchannels. The orifices constrict flow. The ratio of the cross-sectional area of each of the orifices to the cross-sectional area of the flow microchannels connected to the orifices is between 0.0005 and 0.1. Also described is microchannel apparatus for conducting unit operations in which a device comprises two arrays of microchannels, and a unit operation is conducted on a fluid as it passes through the first set of microchannels and into a header where a second unit operation is performed, and then the fluid stream passes into the second array of microchannels where the first unit operation is again performed. Methods of conducting unit operations in the apparatuses are also described.

  12. A construction and a tension element comprising a cable and one or more strakes

    DEFF Research Database (Denmark)

    2014-01-01

    The invention provides a construction comprising a structural element and at least one cable (101) arranged in tension to carry at least a part of the weight of the structural element. The cable defines an outer surface (102) onto which at least one strake (104) forms a protrusion for reducing rain...... and wind induced vibrations. The strake has a height being a distance from a strake root part connected to the outer surface of the cable and a strake end part terminating the strake outwards away from the cable, and the strake has a width being transverse to the height, the width decreasing...... in the direction from the strake root part towards the strake end part. The height is less than 5 percent of the diameter of the cable. Furthermore, the strake comprises a first strake surface portion facing away from the cable, which first strake surface portion is concave or straight....

  13. Energy storage systems having an electrode comprising Li.sub.xS.sub.y

    Science.gov (United States)

    Xiao, Jie; Zhang, Jiguang; Graff, Gordon L.; Liu, Jun; Wang, Wei; Zheng, Jianming; Xu, Wu; Shao, Yuyan; Yang, Zhenguo

    2016-08-02

    Improved lithium-sulfur energy storage systems can utilizes Li.sub.xS.sub.y as a component in an electrode of the system. For example, the energy storage system can include a first electrode current collector, a second electrode current collector, and an ion-permeable separator separating the first and second electrode current collectors. A second electrode is arranged between the second electrode current collector and the separator. A first electrode is arranged between the first electrode current collector and the separator and comprises a first condensed-phase fluid comprising Li.sub.xS.sub.y. The energy storage system can be arranged such that the first electrode functions as a positive or a negative electrode.

  14. DC high voltage to drive helium plasma jet comprised of repetitive streamer breakdowns

    CERN Document Server

    Wang, Xingxing

    2016-01-01

    This paper demonstrates and studies helium atmospheric pressure plasma jet comprised of series of repetitive streamer breakdowns, which is driven by a pure DC high voltage (auto-oscillations). Repetition frequency of the breakdowns is governed by the geometry of discharge electrodes/surroundings and gas flow rate. Each next streamer is initiated when the electric field on the anode tip recovers after the previous breakdown and reaches the breakdown threshold value of about 2.5 kV/cm. Repetition frequency of the streamer breakdowns excited using this principle can be simply tuned by reconfiguring the discharge electrode geometry. This custom-designed type of the helium plasma jet, which operates on the DC high voltage and is comprised of the series of the repetitive streamer breakdowns at frequency about 13 kHz, is demonstrated.

  15. Lateral acoustic wave resonator comprising a suspended membrane of low damping resonator material

    Science.gov (United States)

    Olsson, Roy H.; El-Kady; , Ihab F.; Ziaei-Moayyed, Maryam; Branch; , Darren W.; Su; Mehmet F.,; Reinke; Charles M.,

    2013-09-03

    A very high-Q, low insertion loss resonator can be achieved by storing many overtone cycles of a lateral acoustic wave (i.e., Lamb wave) in a lithographically defined suspended membrane comprising a low damping resonator material, such as silicon carbide. The high-Q resonator can sets up a Fabry-Perot cavity in a low-damping resonator material using high-reflectivity acoustic end mirrors, which can comprise phononic crystals. The lateral overtone acoustic wave resonator can be electrically transduced by piezoelectric couplers. The resonator Q can be increased without increasing the impedance or insertion loss by storing many cycles or wavelengths in the high-Q resonator material, with much lower damping than the piezoelectric transducer material.

  16. Relationship between pore structure and compressive strength of concrete: Experiments and statistical modeling

    Indian Academy of Sciences (India)

    J BU; Z TIAN

    2016-03-01

    Properties of concrete are strongly dependent on its pore structure features, porosity being an important one among them. This study deals with developing an understanding of the pore structure-compressive strength relationship in concrete. Several concrete mixtures with different pore structures are proportioned and subjected to static compressive tests. The pore structure features such as porosity, pore size distribution are extracted using mercury intrusion porosimetry technique. A statistical model is developed to relate thecompressive strength to relevant pore structure features.

  17. Orifice plate for controlling solids flow, methods of use thereof and articles comprising the same

    Energy Technology Data Exchange (ETDEWEB)

    Jukkola, Glen D.; Teigen, Bard C.

    2017-01-31

    Disclosed herein is an orifice plate comprising one or more plates having orifices disposed therein; the orifices being operative to permit the flow of solids from a moving bed heat exchanger to a solids flow control system; where the orifice plate is downstream of a tube bundle of the moving bed heat exchanger and upstream of the solids flow control system and wherein the orifice plate is operative to evenly distribute the flow of solids in the solids flow control system.

  18. Transgenic Carrot Expressing Fusion Protein Comprising M. tuberculosis Antigens Induces Immune Response in Mice

    OpenAIRE

    Natalia V. Permyakova; Zagorskaya, Alla A.; Belavin, Pavel A.; Elena A. Uvarova; Nosareva, Olesya V.; Nesterov, Andrey E.; Novikovskaya, Anna A.; Evgeniy L. Zav’yalov; Mikhail P Moshkin; Deineko, Elena V.

    2015-01-01

    Tuberculosis remains one of the major infectious diseases, which continues to pose a major global health problem. Transgenic plants may serve as bioreactors to produce heterologous proteins including antibodies, antigens, and hormones. In the present study, a genetic construct has been designed that comprises the Mycobacterium tuberculosis genes cfp10, esat6 and dIFN gene, which encode deltaferon, a recombinant analog of the human γ-interferon designed for expression in plant tissues. This co...

  19. A free software for pore-scale modelling: solving Stokes equation for velocity fields and permeability values in 3D pore geometries

    Science.gov (United States)

    Gerke, Kirill; Vasilyev, Roman; Khirevich, Siarhei; Karsanina, Marina; Collins, Daniel; Korost, Dmitry; Mallants, Dirk

    2015-04-01

    In this contribution we introduce a novel free software which solves the Stokes equation to obtain velocity fields for low Reynolds-number flows within externally generated 3D pore geometries. Provided with velocity fields, one can calculate permeability for known pressure gradient boundary conditions via Darcy's equation. Finite-difference schemes of 2nd and 4th order of accuracy are used together with an artificial compressibility method to iteratively converge to a steady-state solution of Stokes' equation. This numerical approach is much faster and less computationally demanding than the majority of open-source or commercial softwares employing other algorithms (finite elements/volumes, lattice Boltzmann, etc.) The software consists of two parts: 1) a pre and post-processing graphical interface, and 2) a solver. The latter is efficiently parallelized to use any number of available cores (the speedup on 16 threads was up to 10-12 depending on hardware). Due to parallelization and memory optimization our software can be used to obtain solutions for 300x300x300 voxels geometries on modern desktop PCs. The software was successfully verified by testing it against lattice Boltzmann simulations and analytical solutions. To illustrate the software's applicability for numerous problems in Earth Sciences, a number of case studies have been developed: 1) identifying the representative elementary volume for permeability determination within a sandstone sample, 2) derivation of permeability/hydraulic conductivity values for rock and soil samples and comparing those with experimentally obtained values, 3) revealing the influence of the amount of fine-textured material such as clay on filtration properties of sandy soil. This work was partially supported by RSF grant 14-17-00658 (pore-scale modelling) and RFBR grants 13-04-00409-a and 13-05-01176-a.

  20. A free software for pore-scale modelling: solving Stokes equation for velocity fields and permeability values in 3D pore geometries

    KAUST Repository

    Gerke, Kirill

    2015-04-01

    In this contribution we introduce a novel free software which solves the Stokes equation to obtain velocity fields for low Reynolds-number flows within externally generated 3D pore geometries. Provided with velocity fields, one can calculate permeability for known pressure gradient boundary conditions via Darcy\\'s equation. Finite-difference schemes of 2nd and 4th order of accuracy are used together with an artificial compressibility method to iteratively converge to a steady-state solution of Stokes\\' equation. This numerical approach is much faster and less computationally demanding than the majority of open-source or commercial softwares employing other algorithms (finite elements/volumes, lattice Boltzmann, etc.) The software consists of two parts: 1) a pre and post-processing graphical interface, and 2) a solver. The latter is efficiently parallelized to use any number of available cores (the speedup on 16 threads was up to 10-12 depending on hardware). Due to parallelization and memory optimization our software can be used to obtain solutions for 300x300x300 voxels geometries on modern desktop PCs. The software was successfully verified by testing it against lattice Boltzmann simulations and analytical solutions. To illustrate the software\\'s applicability for numerous problems in Earth Sciences, a number of case studies have been developed: 1) identifying the representative elementary volume for permeability determination within a sandstone sample, 2) derivation of permeability/hydraulic conductivity values for rock and soil samples and comparing those with experimentally obtained values, 3) revealing the influence of the amount of fine-textured material such as clay on filtration properties of sandy soil. This work was partially supported by RSF grant 14-17-00658 (pore-scale modelling) and RFBR grants 13-04-00409-a and 13-05-01176-a.

  1. Distributed pore model for bio-molecule chromatography.

    Science.gov (United States)

    Coquebert de Neuville, Bertrand; Tarafder, Abhijit; Morbidelli, Massimo

    2013-07-12

    One of the main peculiarities in protein chromatography is that the adsorbing proteins and the adsorbent pores have comparable sizes. This has the consequence that the pore accessibility depends not only on the solute size but also on the loading conditions of the adsorbent because protein adsorption significantly reduces the size of the pores. A model that accounts for the pore size distribution of the stationary phase and for the pore shrinkage due to protein adsorption has been developed to describe mass transport and adsorption in the porous particles. This model has been shown to be equivalent to the general rate model (GRM) in the case of processes under highly diluted conditions with little adsorption. This implies that the model parameters determination follows the same procedure as for the classical GRM. The new pore model has been applied and compared to the GRM for the simulation of lysozyme breakthrough experiments and for the prediction of 5% dynamic binding capacity values solely based on static capacity measurements.

  2. Pore opening dynamics in the exocytosis of serotonin

    Science.gov (United States)

    Ramirez-Santiago, Guillermo; Cercos, Montserrat G.; Martinez-Valencia, Alejandro; Salinas Hernandez, Israel; Rodríguez-Sosa, Leonardo; de-Miguel, Francisco F.

    2015-03-01

    The current view of the exocytosis of transmitter molecules is that it starts with the formation of a fusion pore that connects the intravesicular and the extracellular spaces, and is completed by the release of the rest of the transmitter contained in the vesicle upon the full fusion and collapse of the vesicle with the plasma membrane. However, under certain circumstances, a rapid closure of the pore before the full vesicle fusion produces only a partial release of the transmitter. Here we show that whole release of the transmitter occurs through fusion pores that remain opened for tens of milliseconds without vesicle collapse. This was demonstrated through amperometric measurements of serotonin release from electrodense vesicles in the axon of leech Retzius neurons and mathematical modelling. By modeling transmitter release with a diffusion equation subjected to boundary conditions that are defined by the experiment, we showed that those pores with a fast half rise time constant remained opened and allowed the full quantum release without vesicle collapse, whereas pores with a slow rise time constant closed rapidly, thus producing partial release. We conclude that a full transmitter release may occur through the fusion pore in the absence of vesicle collapse. This work was founded by a DGAPA-UNAM grants IN200914 and IN118410 CONACYT GRANT 130031, and CONACyT doctoral fellowships.

  3. Patch-clamp detection of macromolecular translocation along nuclear pores

    Directory of Open Access Journals (Sweden)

    Bustamante J.O.

    1998-01-01

    Full Text Available The present paper reviews the application of patch-clamp principles to the detection and measurement of macromolecular translocation along the nuclear pores. We demonstrate that the tight-seal 'gigaseal' between the pipette tip and the nuclear membrane is possible in the presence of fully operational nuclear pores. We show that the ability to form a gigaseal in nucleus-attached configurations does not mean that only the activity of channels from the outer membrane of the nuclear envelope can be detected. Instead, we show that, in the presence of fully operational nuclear pores, it is likely that the large-conductance ion channel activity recorded derives from the nuclear pores. We conclude the technical section with the suggestion that the best way to demonstrate that the nuclear pores are responsible for ion channel activity is by showing with fluorescence microscopy the nuclear translocation of ions and small molecules and the exclusion of the same from the cisterna enclosed by the two membranes of the envelope. Since transcription factors and mRNAs, two major groups of nuclear macromolecules, use nuclear pores to enter and exit the nucleus and play essential roles in the control of gene activity and expression, this review should be useful to cell and molecular biologists interested in understanding how patch-clamp can be used to quantitate the translocation of such macromolecules into and out of the nucleus

  4. Pore growth in U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Jeong, G.Y.; Sohn, D.-S. [Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 689-798 (Korea, Republic of); Jamison, L.M. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2016-09-15

    U-Mo/Al dispersion fuel is currently under development in the DOE’s Material Management and Minimization program to convert HEU-fueled research reactors to LEU-fueled reactors. In some demanding conditions in high-power and high-performance reactors, large pores form in the interaction layers between the U-Mo fuel particles and the Al matrix, which pose a potential to cause fuel failure. In this study, comprehension of the formation and growth of these pores was explored. As a product, a model to predict pore growth and porosity increase was developed. The model includes three major topics: fission gas release from the U-Mo and the IL to the pores, stress evolution in the fuel meat, and the effect of amorphous IL growth. Well-characterized in-pile data from reduced-size plates were used to fit the model parameters. A data set from full-sized plates, independent and distinctively different from those used to fit the model parameters, was used to examine the accuracy of the model. The model showed fair agreement with the measured data. The model suggested that the growth of the IL has a critical effect on pore growth, as both its material properties and energetics are favorable to pore formation. Therefore, one area of the current effort, focused on suppressing IL growth, appears to be on the right track to improve the performance of this fuel.

  5. Nonlinear electrokinetic transport in networks of microscale and nanoscale pores

    Science.gov (United States)

    Alizadeh, Shima; Andersen, Mathias B.; Mani, Ali

    2012-11-01

    The objective of this study is to develop the understanding of nonlinear electrohydrodynamic effects in a wide range of systems including lab-on-a-chip systems, electroosmotic pumps, and, in general, porous media with random or fabricated pore morphology. We present a continuum model in which these systems are described as massive networks of long and thin pores. The thickness of the pores can vary from nanoscale to microscale, corresponding to the highly overlapped electric double layers (EDL) to the thin double layer limit. Within each pore the transport in the wall-normal direction is assumed to be in equilibrium leading to a reduced order model for the axial transport of species in the form of a transient one-dimensional partial differential equation (PDE). PDEs from different pores are coupled through boundary conditions at the pore intersections by proper implementation of the conservation laws. We show that this model can capture important nonlinear dynamics, which are typically ignored in homogenized models. Specifically, our model captures concentration polarization shocks and flow recirculation zones respectively formed when micropores and nanopores are connected in series and in parallel. We present a comparison between our model and recent experiments in microfluidics, and will discuss applications in porous media modeling for energy storage and water purification systems.

  6. Accumulation of formamide in hydrothermal pores to form prebiotic nucleobases

    Science.gov (United States)

    Niether, Doreen; Afanasenkau, Dzmitry; Dhont, Jan K. G.

    2016-04-01

    Formamide is one of the important compounds from which prebiotic molecules can be synthesized, provided that its concentration is sufficiently high. For nucleotides and short DNA strands, it has been shown that a high degree of accumulation in hydrothermal pores occurs, so that temperature gradients might play a role in the origin of life [Baaske P, et al. (2007) Proc Natl Acad Sci USA 104(22):9346-9351]. We show that the same combination of thermophoresis and convection in hydrothermal pores leads to accumulation of formamide up to concentrations where nucleobases are formed. The thermophoretic properties of aqueous formamide solutions are studied by means of Infrared Thermal Diffusion Forced Rayleigh Scattering. These data are used in numerical finite element calculations in hydrothermal pores for various initial concentrations, ambient temperatures, and pore sizes. The high degree of formamide accumulation is due to an unusual temperature and concentration dependence of the thermophoretic behavior of formamide. The accumulation fold in part of the pores increases strongly with increasing aspect ratio of the pores, and saturates to highly concentrated aqueous formamide solutions of ˜85 wt% at large aspect ratios. Time-dependent studies show that these high concentrations are reached after 45-90 d, starting with an initial formamide weight fraction of 10-310-3 wt % that is typical for concentrations in shallow lakes on early Earth.

  7. Pore growth in U-Mo/Al dispersion fuel

    Science.gov (United States)

    Kim, Yeon Soo; Jeong, G. Y.; Sohn, D.-S.; Jamison, L. M.

    2016-09-01

    U-Mo/Al dispersion fuel is currently under development in the DOE's Material Management and Minimization program to convert HEU-fueled research reactors to LEU-fueled reactors. In some demanding conditions in high-power and high-performance reactors, large pores form in the interaction layers between the U-Mo fuel particles and the Al matrix, which pose a potential to cause fuel failure. In this study, comprehension of the formation and growth of these pores was explored. As a product, a model to predict pore growth and porosity increase was developed. The model includes three major topics: fission gas release from the U-Mo and the IL to the pores, stress evolution in the fuel meat, and the effect of amorphous IL growth. Well-characterized in-pile data from reduced-size plates were used to fit the model parameters. A data set from full-sized plates, independent and distinctively different from those used to fit the model parameters, was used to examine the accuracy of the model. The model showed fair agreement with the measured data. The model suggested that the growth of the IL has a critical effect on pore growth, as both its material properties and energetics are favorable to pore formation. Therefore, one area of the current effort, focused on suppressing IL growth, appears to be on the right track to improve the performance of this fuel.

  8. Software Image J to study soil pore distribution

    Directory of Open Access Journals (Sweden)

    Sabrina Passoni

    2014-04-01

    Full Text Available In the soil science, a direct method that allows the study of soil pore distribution is the bi-dimensional (2D digital image analysis. Such technique provides quantitative results of soil pore shape, number and size. The use of specific softwares for the treatment and processing of images allows a fast and efficient method to quantify the soil porous system. However, due to the high cost of commercial softwares, public ones can be an interesting alternative for soil structure analysis. The objective of this work was to evaluate the quality of data provided by the Image J software (public domain used to characterize the voids of two soils, characterized as Geric Ferralsol and Rhodic Ferralsol, from the southeast region of Brazil. The pore distribution analysis technique from impregnated soil blocks was utilized for this purpose. The 2D image acquisition was carried out by using a CCD camera coupled to a conventional optical microscope. After acquisition and treatment of images, they were processed and analyzed by the software Noesis Visilog 5.4® (chosen as the reference program and ImageJ. The parameters chosen to characterize the soil voids were: shape, number and pore size distribution. For both soils, the results obtained for the image total porosity (%, the total number of pores and the pore size distribution showed that the Image J is a suitable software to be applied in the characterization of the soil sample voids impregnated with resin.

  9. A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses.

    Science.gov (United States)

    Qiao, Ning; Mostafa, Hesham; Corradi, Federico; Osswald, Marc; Stefanini, Fabio; Sumislawska, Dora; Indiveri, Giacomo

    2015-01-01

    Implementing compact, low-power artificial neural processing systems with real-time on-line learning abilities is still an open challenge. In this paper we present a full-custom mixed-signal VLSI device with neuromorphic learning circuits that emulate the biophysics of real spiking neurons and dynamic synapses for exploring the properties of computational neuroscience models and for building brain-inspired computing systems. The proposed architecture allows the on-chip configuration of a wide range of network connectivities, including recurrent and deep networks, with short-term and long-term plasticity. The device comprises 128 K analog synapse and 256 neuron circuits with biologically plausible dynamics and bi-stable spike-based plasticity mechanisms that endow it with on-line learning abilities. In addition to the analog circuits, the device comprises also asynchronous digital logic circuits for setting different synapse and neuron properties as well as different network configurations. This prototype device, fabricated using a 180 nm 1P6M CMOS process, occupies an area of 51.4 mm(2), and consumes approximately 4 mW for typical experiments, for example involving attractor networks. Here we describe the details of the overall architecture and of the individual circuits and present experimental results that showcase its potential. By supporting a wide range of cortical-like computational modules comprising plasticity mechanisms, this device will enable the realization of intelligent autonomous systems with on-line learning capabilities.

  10. Alcohol dose dumping: The influence of ethanol on hot-melt extruded pellets comprising solid lipids.

    Science.gov (United States)

    Jedinger, N; Schrank, S; Mohr, S; Feichtinger, A; Khinast, J; Roblegg, E

    2015-05-01

    The objective of the present study was to investigate interactions between alcohol and hot-melt extruded pellets and the resulting drug release behavior. The pellets were composed of vegetable calcium stearate as matrix carrier and paracetamol or codeine phosphate as model drugs. Two solid lipids (Compritol® and Precirol®) were incorporated into the matrix to form robust/compact pellets. The drug release characteristics were a strong function of the API solubility, the addition of solid lipids, the dissolution media composition (i.e., alcohol concentration) and correspondingly, the pellet wettability. Pellets comprising paracetamol, which is highly soluble in ethanol, showed alcohol dose dumping regardless of the matrix composition. The wettability increased with increasing ethanol concentrations due to higher paracetamol solubilities yielding increased dissolution rates. For pellets containing codeine phosphate, which has a lower solubility in ethanol than in acidic media, the wettability was a function of the matrix composition. Dose dumping occurred for formulations comprising solid lipids as they showed increased wettabilities with increasing ethanol concentrations. In contrast, pellets comprising calcium stearate as single matrix component showed robustness in alcoholic media due to wettabilities that were not affected by the addition of ethanol. The results clearly indicate that the physico-chemical properties of the drug and the matrix systems are crucial for the design of ethanol-resistant dosage forms. Moreover, hydrophobic calcium stearate can be considered a suitable matrix system that minimizes the risk of ethanol-induced dose dumping for certain API's.

  11. Determining pore length scales and pore surface relaxivity of rock cores by internal magnetic fields modulation at 2MHz NMR.

    Science.gov (United States)

    Liu, Huabing; Nogueira d'Eurydice, Marcel; Obruchkov, Sergei; Galvosas, Petrik

    2014-09-01

    Pore length scales and pore surface relaxivities of rock cores with different lithologies were studied on a 2MHz Rock Core Analyzer. To determine the pore length scales of the rock cores, the high eigenmodes of spin bearing molecules satisfying the diffusion equation were detected with optimized encoding periods in the presence of internal magnetic fields Bin. The results were confirmed using a 64MHz NMR system, which supports the feasibility of high eigenmode detection at fields as low as 2MHz. Furthermore, this methodology was combined with relaxometry measurements to a two-dimensional experiment, which provides correlation between pore length and relaxation time. This techniques also yields information on the surface relaxivity of the rock cores. The estimated surface relaxivities were then compared to the results using an independent NMR method.

  12. Accurate relations between pore size and the pressure of capillary condensation and the evaporation of nitrogen in cylindrical pores.

    Science.gov (United States)

    Morishige, Kunimitsu; Tateishi, Masayoshi

    2006-04-25

    To examine the theoretical and semiempirical relations between pore size and the pressure of capillary condensation or evaporation proposed so far, we constructed an accurate relation between the pore radius and the capillary condensation and evaporation pressure of nitrogen at 77 K for the cylindrical pores of the ordered mesoporous MCM-41 and SBA-15 silicas. Here, the pore size was determined from a comparison between the experimental and calculated X-ray diffraction patterns due to X-ray structural modeling recently developed. Among the many theoretical relations that differ from each other in the degree of theoretical improvements, a macroscopic thermodynamic approach based on Broekhoff-de Boer equations was found to be in fair agreement with the experimental relation obtained in the present study.

  13. Two-pore channels (TPCs): Novel voltage-gated ion channels with pleiotropic functions.

    Science.gov (United States)

    Feijóo-Bandín, Sandra; García-Vence, María; García-Rúa, Vanessa; Roselló-Lletí, Esther; Portolés, Manuel; Rivera, Miguel; González-Juanatey, José Ramón; Lago, Francisca

    2017-01-02

    Two-pore channels (TPC1-3) comprise a subfamily of the eukaryotic voltage-gated ion channels (VGICs) superfamily that are mainly expressed in acidic stores in plants and animals. TPCS are widespread across the animal kingdom, with primates, mice and rats lacking TPC3, and mainly act as Ca(+) and Na(+) channels, although it was also suggested that they could be permeable to other ions. Nowadays, TPCs have been related to the development of different diseases, including Parkinson´s disease, obesity or myocardial ischemia. Due to this, their study has raised the interest of the scientific community to try to understand their mechanism of action in order to be able to develop an efficient drug that could regulate TPCs activity. In this review, we will provide an updated view regarding TPCs structure, function and activation, as well as their role in different pathophysiological processes.

  14. Distributed Pore Chemistry in Porous Organic Polymers in Tissue Culture Flasks

    Science.gov (United States)

    Koontz, Steven L. (Inventor)

    1999-01-01

    A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclose. The substrate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphorylcholine groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge, wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic regions, and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.

  15. A family of zeolites with controlled pore size prepared using a top-down method.

    Science.gov (United States)

    Roth, Wieslaw J; Nachtigall, Petr; Morris, Russell E; Wheatley, Paul S; Seymour, Valerie R; Ashbrook, Sharon E; Chlubná, Pavla; Grajciar, Lukáš; Položij, Miroslav; Zukal, Arnošt; Shvets, Oleksiy; Cejka, Jiří

    2013-07-01

    The properties of zeolites, and thus their suitability for different applications, are intimately connected with their structures. Synthesizing specific architectures is therefore important, but has remained challenging. Here we report a top-down strategy that involves the disassembly of a parent zeolite, UTL, and its reassembly into two zeolites with targeted topologies, IPC-2 and IPC-4. The three zeolites are closely related as they adopt the same layered structure, and they differ only in how the layers are connected. Choosing different linkers gives rise to different pore sizes, enabling the synthesis of materials with predetermined pore architectures. The structures of the resulting zeolites were characterized by interpreting the X-ray powder-diffraction patterns through models using computational methods; IPC-2 exhibits orthogonal 12- and ten-ring channels, and IPC-4 is a more complex zeolite that comprises orthogonal ten- and eight-ring channels. We describe how this method enables the preparation of functional materials and discuss its potential for targeting other new zeolites.

  16. Human nucleoporins promote HIV-1 docking at the nuclear pore, nuclear import and integration.

    Directory of Open Access Journals (Sweden)

    Francesca Di Nunzio

    Full Text Available The nuclear pore complex (NPC mediates nucleo-cytoplasmic transport of macromolecules and is an obligatory point of passage and functional bottleneck in the replication of some viruses. The Human Immunodeficiency Virus (HIV has evolved the required mechanisms for active nuclear import of its genome through the NPC. However the mechanisms by which the NPC allows or even assists HIV translocation are still unknown. We investigated the involvement of four key nucleoporins in HIV-1 docking, translocation, and integration: Nup358/RanBP2, Nup214/CAN, Nup98 and Nup153. Although all induce defects in infectivity when depleted, only Nup153 actually showed any evidence of participating in HIV-1 translocation through the nuclear pore. We show that Nup358/RanBP2 mediates docking of HIV-1 cores on NPC cytoplasmic filaments by interacting with the cores and that the C-terminus of Nup358/RanBP2 comprising a cyclophilin-homology domain contributes to binding. We also show that Nup214/CAN and Nup98 play no role in HIV-1 nuclear import per se: Nup214/CAN plays an indirect role in infectivity read-outs through its effect on mRNA export, while the reduction of expression of Nup98 shows a slight reduction in proviral integration. Our work shows the involvement of nucleoporins in diverse and functionally separable steps of HIV infection and nuclear import.

  17. 4-D imaging of sub-second dynamics in pore-scale processes using real-time synchrotron X-ray tomography

    Science.gov (United States)

    Dobson, Katherine J.; Coban, Sophia B.; McDonald, Samuel A.; Walsh, Joanna N.; Atwood, Robert C.; Withers, Philip J.

    2016-07-01

    A variable volume flow cell has been integrated with state-of-the-art ultra-high-speed synchrotron X-ray tomography imaging. The combination allows the first real-time (sub-second) capture of dynamic pore (micron)-scale fluid transport processes in 4-D (3-D + time). With 3-D data volumes acquired at up to 20 Hz, we perform in situ experiments that capture high-frequency pore-scale dynamics in 5-25 mm diameter samples with voxel (3-D equivalent of a pixel) resolutions of 2.5 to 3.8 µm. The data are free from motion artefacts and can be spatially registered or collected in the same orientation, making them suitable for detailed quantitative analysis of the dynamic fluid distribution pathways and processes. The methods presented here are capable of capturing a wide range of high-frequency nonequilibrium pore-scale processes including wetting, dilution, mixing, and reaction phenomena, without sacrificing significant spatial resolution. As well as fast streaming (continuous acquisition) at 20 Hz, they also allow larger-scale and longer-term experimental runs to be sampled intermittently at lower frequency (time-lapse imaging), benefiting from fast image acquisition rates to prevent motion blur in highly dynamic systems. This marks a major technical breakthrough for quantification of high-frequency pore-scale processes: processes that are critical for developing and validating more accurate multiscale flow models through spatially and temporally heterogeneous pore networks.

  18. Comparison of Polytetrafluoroethylene Flat-Sheet Membranes with Different Pore Sizes in Application to Submerged Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Manabu Motoori

    2012-06-01

    Full Text Available This study focused on phase separation of activated sludge mixed liquor by flat-sheet membranes of polytetrafluoroethylene (PTFE. A 20 liter working volume lab-scale MBR incorporating immersed PTFE flat-sheet membrane modules with different pore sizes (0.3, 0.5 and 1.0 μm was operated for 19 days treating a synthetic wastewater. The experiment was interrupted twice at days 5 and 13 when the modules were removed and cleaned physically and chemically in sequence. The pure water permeate flux of each membrane module was measured before and after each cleaning step to calculate membrane resistances. Results showed that fouling of membrane modules with 0.3 μm pore size was more rapid than other membrane modules with different pore sizes (0.5 and 1.0 μm. On the other hand, it was not clear whether fouling of the 0.5 μm membrane module was more severe than that of the 1.0 μm membrane module. This was partly because of the membrane condition after chemical cleaning, which seemed to determine the fouling of those modules over the next period. When irreversible resistance (Ri i.e., differences in membrane resistance before use and after chemical cleaning was high, the transmembrane pressure increased quickly during the next period irrespective of membrane pore size.

  19. Comparison of polytetrafluoroethylene flat-sheet membranes with different pore sizes in application to submerged membrane bioreactor.

    Science.gov (United States)

    Nittami, Tadashi; Hitomi, Tetsuo; Matsumoto, Kanji; Nakamura, Kazuho; Ikeda, Takaharu; Setoguchi, Yoshihiro; Motoori, Manabu

    2012-06-01

    This study focused on phase separation of activated sludge mixed liquor by flat-sheet membranes of polytetrafluoroethylene (PTFE). A 20 liter working volume lab-scale MBR incorporating immersed PTFE flat-sheet membrane modules with different pore sizes (0.3, 0.5 and 1.0 μm) was operated for 19 days treating a synthetic wastewater. The experiment was interrupted twice at days 5 and 13 when the modules were removed and cleaned physically and chemically in sequence. The pure water permeate flux of each membrane module was measured before and after each cleaning step to calculate membrane resistances. Results showed that fouling of membrane modules with 0.3 μm pore size was more rapid than other membrane modules with different pore sizes (0.5 and 1.0 μm). On the other hand, it was not clear whether fouling of the 0.5 μm membrane module was more severe than that of the 1.0 μm membrane module. This was partly because of the membrane condition after chemical cleaning, which seemed to determine the fouling of those modules over the next period. When irreversible resistance (Ri) i.e., differences in membrane resistance before use and after chemical cleaning was high, the transmembrane pressure increased quickly during the next period irrespective of membrane pore size.

  20. Upper subsoil pore characteristics and functions as affected by field traffic and freeze–thaw and dry–wet treatments

    DEFF Research Database (Denmark)

    Schjønning, Per; Lamandé, Mathieu; Cretin, Valentin

    2017-01-01

    Cultivated soils are subject to very high stresses from machinery. This may affect the soil pore system and its processes, soil functions and soil ecosystem services. Compaction experiments were performed on loamy Luvisols at three sites in Denmark: Aarslev, Flakkebjerg and Taastrup. Non-traffick......Cultivated soils are subject to very high stresses from machinery. This may affect the soil pore system and its processes, soil functions and soil ecosystem services. Compaction experiments were performed on loamy Luvisols at three sites in Denmark: Aarslev, Flakkebjerg and Taastrup. Non...... depth when the experimental plots had received either 2 years (Flakkebjerg) or 3 years (Aarslev and Taastrup) of repeated compaction treatment. The volume of air-filled pores and air permeability were quantified for soil drained to –100 hPa matric potential. Freeze–thaw and dry–wet treatments were...... applied to soil cores in the laboratory for Aarslev and Taastrup samples. The multipass machinery significantly affected >30 mm soil pores and air permeability at wheel loads of ~6 Mg or higher, whereas no or only minor effects could be detected for ~3-Mg wheel loads. Indices combining air permeabilities...

  1. Improved analytic methods for coal surface area and pore size distribution determination using 77 K nitrogen adsorption experiment

    Institute of Scientific and Technical Information of China (English)

    Wang Gongda; Wang Kai; Ren Tingxiang

    2014-01-01

    77 K nitrogen adsorption was the most widely used technique for determining surface area and pore size distribution of coal. Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) model are com-monly used analytic methods for adsorption/desorption isotherm. A Chinese anthracite coal is tested in this study using an improved experimental method and adsorption isotherm analyzed by three adsorp-tion mechanisms at different relative pressure stages. The result shows that the micropore filling adsorp-tion predominates at the relative pressure stage from 6.8E?7 to 9E?3. Theoretically, BET and BJH model are not appropriate for analyzing coal samples which contain micropores. Two new analytic procedures for coal surface area and pore size distribution calculation are developed in this work. The results show that BET model underestimates surface area, and micropores smaller than 1.751 nm account for 35.5%of the total pore volume and 74.2%of the total surface area. The investigation of surface area and pore size distribution by incorporating the influence of micropore is significant for understanding adsorption mechanism of methane and carbon dioxide in coal.

  2. Polar organic compounds in pore waters of the Chesapeake Bay impact structure, Eyreville core hole: Character of the dissolved organic carbon and comparison with drilling fluids

    Science.gov (United States)

    Rostad, C.E.; Sanford, W.E.

    2009-01-01

    Pore waters from the Chesapeake Bay impact structure cores recovered at Eyreville Farm, Northampton County, Virginia, were analyzed to characterize the dissolved organic carbon. After squeezing or centrifuging, a small volume of pore water, 100 ??L, was taken for analysis by electrospray ionization-mass spectrometry. Porewater samples were analyzed directly without filtration or fractionation, in positive and negative mode, for polar organic compounds. Spectra in both modes were dominated by low-molecular-weight ions. Negative mode had clusters of ions differing by -60 daltons, possibly due to increasing concentrations of inorganic salts. The numberaverage molecular weight and weight-average molecular weight values for the pore waters from the Chesapeake Bay impact structure are higher than those reported for other aquatic sources of natural dissolved organic carbon as determined by electrospray ionization-mass spectrometry. In order to address the question of whether drilling mud fluids may have contaminated the pore waters during sample collection, spectra from the pore waters were compared to spectra from drilling mud fluids. Ions indicative of drilling mud fluids were not found in spectra from the pore waters, indicating there was no detectable contamination, and highlighting the usefulness of this analytical technique for detecting potential contamination during sample collection. ?? 2009 The Geological Society of America.

  3. Pore structure of new composite adsorbent SiO2·xH2O·yCaCl2 with high uptake of water from air

    Institute of Scientific and Technical Information of China (English)

    刘业凤; 王如竹

    2003-01-01

    A new composite adsorbent SiO2@xH2O@yCaCl2 which is composed of macro-porous silica gel and calcium chloride is introduced. In order to analyze its adsorption theory, adsorption and desorption isotherms, BET surface areas, pore volumes and average pore diameters of macro-porous silica gel and four composite adsorbent samples with different CaCl2 content are measured using SEM and Asap2010 apparatus. From the adsorption isotherms, desorption isotherms and lag loops, it can be deduced that the main pore structure in macro-porous silica gel and the new composite adsorbent have two shapes: taper with one top open and taper or hyperbolic taper with both ends open. Based on the analysis of pore diameter distribution and lag loop, a sketch map showing calcium chloride filled in pore of macro-porous silica gel is presented. The adsorption isotherms at 25℃ are measured. Experimental results show that the new composite adsorbent can adsorb more water than common adsorbents (macro-porous silica gel, micro-porous silica gel and synthetic zeolite 13X). In the light of the results of pore structure, adsorption isotherms and lyolysis phenomenon are analyzed.

  4. Method of converting a carbon-comprising material, method of operating a fuel cell stack, and a fuel cell

    NARCIS (Netherlands)

    Hemmes, K.

    1999-01-01

    The invention relates to a method of converting a carbon-comprising material at elevated temperature in the presence of a molecule that comprises at least one oxygen atom. According to the invention the carbon-comprising material in the fuel cell is converted substantially to carbon monoxide in a re

  5. Method of converting a carbon-comprising material, method of operating a fuel cell stack, and a fuel cell

    NARCIS (Netherlands)

    Hemmes, K.

    1999-01-01

    The invention relates to a method of converting a carbon-comprising material at elevated temperature in the presence of a molecule that comprises at least one oxygen atom. According to the invention the carbon-comprising material in the fuel cell is converted substantially to carbon monoxide in a

  6. Definition and Counting of Configurational Microstates in Steady-State Two-Phase Flows in Pore Networks

    OpenAIRE

    Marios S. Valavanides; Tryfon Daras

    2016-01-01

    Steady-state two-phase flow in porous media is a process whereby a wetting phase displaces a non-wetting phase within a pore network. It is an off-equilibrium stationary process—in the sense that it is maintained in dynamic equilibrium at the expense of energy supplied to the system. The efficiency of the process depends on its spontaneity, measurable by the rate of global entropy production. The latter has been proposed to comprise two components: the rate of mechanical energy dissipation at...

  7. On the predictivity of pore-scale simulations: Estimating uncertainties with multilevel Monte Carlo

    Science.gov (United States)

    Icardi, Matteo; Boccardo, Gianluca; Tempone, Raúl

    2016-09-01

    A fast method with tunable accuracy is proposed to estimate errors and uncertainties in pore-scale and Digital Rock Physics (DRP) problems. The overall predictivity of these studies can be, in fact, hindered by many factors including sample heterogeneity, computational and imaging limitations, model inadequacy and not perfectly known physical parameters. The typical objective of pore-scale studies is the estimation of macroscopic effective parameters such as permeability, effective diffusivity and hydrodynamic dispersion. However, these are often non-deterministic quantities (i.e., results obtained for specific pore-scale sample and setup are not totally reproducible by another "equivalent" sample and setup). The stochastic nature can arise due to the multi-scale heterogeneity, the computational and experimental limitations in considering large samples, and the complexity of the physical models. These approximations, in fact, introduce an error that, being dependent on a large number of complex factors, can be modeled as random. We propose a general simulation tool, based on multilevel Monte Carlo, that can reduce drastically the computational cost needed for computing accurate statistics of effective parameters and other quantities of interest, under any of these random errors. This is, to our knowledge, the first attempt to include Uncertainty Quantification (UQ) in pore-scale physics and simulation. The method can also provide estimates of the discretization error and it is tested on three-dimensional transport problems in heterogeneous materials, where the sampling procedure is done by generation algorithms able to reproduce realistic consolidated and unconsolidated random sphere and ellipsoid packings and arrangements. A totally automatic workflow is developed in an open-source code [1], that include rigid body physics and random packing algorithms, unstructured mesh discretization, finite volume solvers, extrapolation and post-processing techniques. The

  8. On the predictivity of pore-scale simulations: estimating uncertainties with multilevel Monte Carlo

    KAUST Repository

    Icardi, Matteo

    2016-02-08

    A fast method with tunable accuracy is proposed to estimate errors and uncertainties in pore-scale and Digital Rock Physics (DRP) problems. The overall predictivity of these studies can be, in fact, hindered by many factors including sample heterogeneity, computational and imaging limitations, model inadequacy and not perfectly known physical parameters. The typical objective of pore-scale studies is the estimation of macroscopic effective parameters such as permeability, effective diffusivity and hydrodynamic dispersion. However, these are often non-deterministic quantities (i.e., results obtained for specific pore-scale sample and setup are not totally reproducible by another “equivalent” sample and setup). The stochastic nature can arise due to the multi-scale heterogeneity, the computational and experimental limitations in considering large samples, and the complexity of the physical models. These approximations, in fact, introduce an error that, being dependent on a large number of complex factors, can be modeled as random. We propose a general simulation tool, based on multilevel Monte Carlo, that can reduce drastically the computational cost needed for computing accurate statistics of effective parameters and other quantities of interest, under any of these random errors. This is, to our knowledge, the first attempt to include Uncertainty Quantification (UQ) in pore-scale physics and simulation. The method can also provide estimates of the discretization error and it is tested on three-dimensional transport problems in heterogeneous materials, where the sampling procedure is done by generation algorithms able to reproduce realistic consolidated and unconsolidated random sphere and ellipsoid packings and arrangements. A totally automatic workflow is developed in an open-source code [2015. https://bitbucket.org/micardi/porescalemc.], that include rigid body physics and random packing algorithms, unstructured mesh discretization, finite volume solvers

  9. Renormalized Volume

    Science.gov (United States)

    Gover, A. Rod; Waldron, Andrew

    2017-09-01

    We develop a universal distributional calculus for regulated volumes of metrics that are suitably singular along hypersurfaces. When the hypersurface is a conformal infinity we give simple integrated distribution expressions for the divergences and anomaly of the regulated volume functional valid for any choice of regulator. For closed hypersurfaces or conformally compact geometries, methods from a previously developed boundary calculus for conformally compact manifolds can be applied to give explicit holographic formulæ for the divergences and anomaly expressed as hypersurface integrals over local quantities (the method also extends to non-closed hypersurfaces). The resulting anomaly does not depend on any particular choice of regulator, while the regulator dependence of the divergences is precisely captured by these formulæ. Conformal hypersurface invariants can be studied by demanding that the singular metric obey, smoothly and formally to a suitable order, a Yamabe type problem with boundary data along the conformal infinity. We prove that the volume anomaly for these singular Yamabe solutions is a conformally invariant integral of a local Q-curvature that generalizes the Branson Q-curvature by including data of the embedding. In each dimension this canonically defines a higher dimensional generalization of the Willmore energy/rigid string action. Recently, Graham proved that the first variation of the volume anomaly recovers the density obstructing smooth solutions to this singular Yamabe problem; we give a new proof of this result employing our boundary calculus. Physical applications of our results include studies of quantum corrections to entanglement entropies.

  10. Analysis of microscopic pore structures of rocks before and after water absorption

    Institute of Scientific and Technical Information of China (English)

    Li Dejian; Wang Guilian; Han Liqiang; Liu Peiyu; He Manchao; Yang Guoxing; Tai Qimin; Chen Cheng

    2011-01-01

    Hydrophilic characteristics of rocks are affected by their microscopic pore structures, which clearly change after water absorption. Water absorption tests and scanning electron microscopic (SEM) experiments on rock samples, located at a site in Tibet, China, were carried out. Changes of rock pore structures before and after water absorption were studied with the distribution of pore sizes and fractal characteristics of pores. The results show that surface porosities, fractal dimensions of pores and the complexity of pore structures increased because the number of new small pores produced increased or the original macropore flow channels were expanded after rocks absorbed water. There were points of inflection on their water absorption curves. After water absorption of other rocks, surface porosities and fractal dimensions of pores and complexity of pore structures decreased as the original pore flow channels became filled. Water absorption curves did not change. Surface porosity and the pore fractal dimensions of rocks have good linear relationships before and after water absorption.

  11. Heuristic Approach to Understanding the Accumulation Process in Hydrothermal Pores

    Directory of Open Access Journals (Sweden)

    Doreen Niether

    2017-01-01

    Full Text Available One of the central questions of humankind is: which chemical and physical conditions are necessary to make life possible? In this “origin-of-life” context, formamide plays an important role, because it has been demonstrated that prebiotic molecules can be synthesized from concentrated formamide solutions. Recently, it could be shown, using finite-element calculations combining thermophoresis and convection processes in hydrothermal pores, that sufficiently high formamide concentrations could be accumulated to form prebiotic molecules (Niether et al. (2016. Depending on the initial formamide concentration, the aspect ratio of the pores, and the ambient temperature, formamide concentrations up to 85 wt % could be reached. The stationary calculations show an effective accumulation, only if the aspect ratio is above a certain threshold, and the corresponding transient studies display a sudden increase of the accumulation after a certain time. Neither of the observations were explained. In this work, we derive a simple heuristic model, which explains both phenomena. The physical idea of the approach is a comparison of the time to reach the top of the pore with the time to cross from the convective upstream towards the convective downstream. If the time to reach the top of the pore is shorter than the crossing time, the formamide molecules are flushed out of the pore. If the time is long enough, the formamide molecules can reach the downstream and accumulate at the bottom of the pore. Analysing the optimal aspect ratio as function of concentration, we find that, at a weight fraction of w = 0 . 5 , a minimal pore height is required for effective accumulation. At the same concentration, the transient calculations show a maximum of the accumulation rate.

  12. Formation of small transmembrane pores: An intermediate stage on the way to Bacillus cereus non-hemolytic enterotoxin (Nhe) full pores in the absence of NheA.

    Science.gov (United States)

    Zhu, Kui; Didier, Andrea; Dietrich, Richard; Heilkenbrinker, Uta; Waltenberger, Eva; Jessberger, Nadja; Märtlbauer, Erwin; Benz, Roland

    2016-01-15

    The non-hemolytic enterotoxin (Nhe) of Bacillus cereus is a three-partite toxin formed of the components NheA, -B and -C. Pore formation and subsequent lysis of target cells caused by Nhe is an orchestrated process comprising three steps: (i) formation of NheB/C oligomers in solution, (ii) attachment of the oligomers to the cell membrane, (iii) binding of NheA to the oligomers. The present study aimed to characterize the properties of the NheB/C complex and the fate of the target cell upon binding. An enzyme immunoassay allowing kinetic measurements and surface plasmon resonance revealed the fast and high affinity formation of the NheB/C oligomers. The benefit of these complexes is a more stable cell binding as well as stronger and earlier cytotoxic effect. High molecular mass hetero-oligomers (620 kDa) probably consisting of one NheC and up to 15 NheB were detected by size-exclusion chromatography and on native PAGE immunoblots. Due to the NheBC application the morphology and membrane permeability of Vero cells is partly disturbed. Formation of stable transmembrane channels with a conductance of about 870 pS and a diameter of about 2 nm due to the application of NheBC could be demonstrated in lipid bilayer experiments. Thus, the NheBC complex itself has a tendency to increase the membrane permeability prior to the emergence of full pores containing also NheA.

  13. Cobalamin status during normal pregnancy and postpartum: a longitudinal study comprising 406 danish women

    DEFF Research Database (Denmark)

    Milman, N; Byg, KE; Bergholt, T

    2006-01-01

    OBJECTIVES: To assess cobalamin (vitamin B(12)) status during normal pregnancy and postpartum in a longitudinal setting. METHODS: This study was performed in 1995-1996. It comprised 406 healthy, pregnant Danish Caucasian women, living in Copenhagen County. Cobalamin status, i.e. plasma (P...... in late pregnancy. The recommendations for periconceptional vitamin B(12) supplementation should be reconsidered.......-) cobalamin, P-methylmalonic acid and P-homocysteine was measured at 18, 32 and 39 wk gestation and 8 wk postpartum during lactation. RESULTS: P-cobalamin showed a gradual, significant decline during pregnancy (P

  14. Composites comprising novel RTIL-based polymers, and methods of making and using same

    Energy Technology Data Exchange (ETDEWEB)

    Gin, Douglas; Carlisle, Trevor; Noble, Richard; Nicodemus, Garret; McDanel, William; Cowan, Matthew

    2017-06-27

    The invention includes compositions comprising curable imidazolium-functionalized poly(room-temperature ionic liquid) copolymers and homopolymers. The invention further includes methods of preparing and using the compositions of the invention. The invention further includes novel methods of preparing thin, supported, room-temperature ionic liquid-containing polymeric films on a porous support. In certain embodiments, the methods of the invention avoid the use of a gutter layer, which greatly reduces the overall gas permeance and selectivity of the composite membrane. In other embodiments, the films of the invention have increased gas selectivity and permeance over films prepared using methods described in the prior art.

  15. The Electrical Properties for Phenolic Isocyanate-Modified Bisphenol-Based Epoxy Resins Comprising Benzoate Group.

    Science.gov (United States)

    Lee, Eun Yong; Chae, Il Seok; Park, Dongkyung; Suh, Hongsuk; Kang, Sang Wook

    2016-03-01

    Epoxy resin has been required to have a low dielectric constant (D(k)), low dissipation factor (Df), low coefficient of thermal expansion (CTE), low water absorption, high mechanical, and high adhesion properties for various applications. A series of novel phenolic isocyanate-modified bisphenol-based epoxy resins comprising benzoate group were prepared for practical electronic packaging applications. The developed epoxy resins showed highly reduced dielectric constants (D(k)-3.00 at 1 GHz) and low dissipation values (Df-0.014 at 1 GHz) as well as enhanced thermal properties.

  16. Quantum correlations and entanglement in a model comprised of a short chain of nonlinear oscillators

    Science.gov (United States)

    Kalaga, J. K.; Kowalewska-Kudłaszyk, A.; Leoński, W.; Barasiński, A.

    2016-09-01

    We discuss a model comprised of a chain of three Kerr-like nonlinear oscillators pumped by two modes of external coherent field. We show that the system can be treated as nonlinear quantum scissors and behave as a three-qubit model. For such situation, different types of tripartite entangled states can be generated, even when damping effects are present in the system. Some amount of such entanglement can survive even in a long-time limit. The flow of bipartite entanglement between subsystems of the model and relations among first-order correlations, second-order correlations, and the entanglement are discussed.

  17. IDIOMS THAT COMPRISE THE PRESENCE OF TURKISH WORDS IN GREEK CYPRIOT LANGUAGE

    OpenAIRE

    Şevket ÖZNUR; Mahmut İSLÂMOĞLU

    2010-01-01

    In this communiqué again we preferred to present some examples from the effects of Turkish Cypriot Culture. For a few years, we have concentrated on our culture’s effect on other cultures in Cyprus. Bearing in mind that we have lived together for hundreds of years with other societies, we have seen fit to give examples of the cultural interaction between other cultures and Turkish Cypriot culture. Our communiqué mostly comprises the effects of Turkish Culture. We have found it convenient to p...

  18. Structures and Energetic Properties of Two New Salts Comprising the 5,5'-Azotetrazolate Dianion

    Directory of Open Access Journals (Sweden)

    Raik Deblitz

    2015-09-01

    Full Text Available Two new potentially energetic salts comprising the 5,5'-azotetrazolate dianion have been prepared and structurally characterized. The new azotetrazolates are tetraphenylphosphonium-5,5'-azotetrazolate (1 and 1H-1,2,4-triazole-1-carboxamidine-5,5'-azotetrazolate (2. The crystal structures of both compounds have been determined by single-crystal X-ray diffraction and their energetic properties have been tested. Due to its high nitrogen-content of 73.14%, compound 2 was found to be significantly impact-sensitive.

  19. HVDC Solution for Offshore Wind Park Comprising Turbines Equipped with Full-Range Converters

    DEFF Research Database (Denmark)

    Sharma, Ranjan; Rasmussen, Tonny Wederberg; Jensen, Kim Høj

    2010-01-01

    of a HVDC transmission system. The power system under study includes an offshore wind farm comprising turbines equipped with full range converters. The collection network is a local AC grid. Power transmission is done through HVDC system. The grid side VSC (voltage source converter) controls the DC voltage...... a voltage drop is created at the collection grid, the wind turbines go into fault-ride-through mode. The power output from each of the wind turbines is thus reduced to balance the system power. The detailed explanation of the strategy is presented in the paper. Matlab simulation model was prepared and some...

  20. Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste

    Science.gov (United States)

    Zhang, Yan-Juan; Xing, Zhen-Jiao; Duan, Zheng-Kang; Li, Meng; Wang, Yin

    2014-10-01

    The effects of steam activation on the pore structure evolution and surface chemistry of activated carbon (AC) obtained from bamboo waste were investigated. Nitrogen adsorption-desorption isotherms revealed that higher steam activation temperatures and/or times promoted the creation of new micropores and widened the existing micropores, consequently decreasing the surface area and total pore volume. Optimum conditions included an activation temperature of 850 °C, activation time of 120 min, and steam flush generated from deionized water of 0.2 cm3 min-1. Under these conditions, AC with a BET surface area of 1210 m2 g-1 and total pore volume of 0.542 cm-3 g-1was obtained. Changes in surface chemistry were determined through Boehm titration, pH measurement, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Results revealed the presence of a large number of basic groups on the surface of the pyrolyzed char and AC. Steam activation did not affect the species of oxygen-containing groups but changed the contents of these species when compared with pyrolyzed char. Scanning electron microscopy was used to observe the surface morphology of the products. AC obtained under optimum conditions showed a monolayer adsorption capacity of 330 mg g-1 for methylene blue (MB), which demonstrates its excellent potential for MB adsorption applications.

  1. Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan-Juan [School of Chemical Engineering, Xiangtan University, Xiangtan 411105 (China); Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 36102 (China); Xing, Zhen-Jiao [Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 36102 (China); Duan, Zheng-Kang [School of Chemical Engineering, Xiangtan University, Xiangtan 411105 (China); Meng Li [Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 36102 (China); Wang, Yin, E-mail: yinwang@iue.ac.cn [Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 36102 (China)

    2014-10-01

    The effects of steam activation on the pore structure evolution and surface chemistry of activated carbon (AC) obtained from bamboo waste were investigated. Nitrogen adsorption–desorption isotherms revealed that higher steam activation temperatures and/or times promoted the creation of new micropores and widened the existing micropores, consequently decreasing the surface area and total pore volume. Optimum conditions included an activation temperature of 850 °C, activation time of 120 min, and steam flush generated from deionized water of 0.2 cm{sup 3} min{sup −1}. Under these conditions, AC with a BET surface area of 1210 m{sup 2} g{sup −1} and total pore volume of 0.542 cm{sup −3} g{sup −1}was obtained. Changes in surface chemistry were determined through Boehm titration, pH measurement, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Results revealed the presence of a large number of basic groups on the surface of the pyrolyzed char and AC. Steam activation did not affect the species of oxygen-containing groups but changed the contents of these species when compared with pyrolyzed char. Scanning electron microscopy was used to observe the surface morphology of the products. AC obtained under optimum conditions showed a monolayer adsorption capacity of 330 mg g{sup −1} for methylene blue (MB), which demonstrates its excellent potential for MB adsorption applications.

  2. Identifying the representative flow unit for capillary dominated two-phase flow in porous media using morphology-based pore-scale modeling

    Science.gov (United States)

    Mu, Yaoming; Sungkorn, Radompon; Toelke, Jonas

    2016-09-01

    In this paper, we extend pore-morphology-based methods proposed by Hazlett (1995) and Hilpert and Miller (2001) to simulate drainage and imbibition in uniformly wetting porous media and add an (optional) entrapment of the (non-)wetting phase. By improving implementation, this method allows us to identify the statistical representative elementary volume and estimate uncertainty by computing fluid flow properties and saturation distributions of hundreds of subsamples within a reasonable time-frame. The method was utilized to study three different porous medium systems and results demonstrate that morphology-based pore-scale modeling is a viable approach to assess the representative elementary volume with respect to capillary dominated two-phase flow. The focus of this paper is the determination of the representative elementary volume for multiphase-flow properties for a digital representation of a rock.

  3. Determination of pore size distributions in capillary-channeled polymer fiber stationary phases by inverse size-exclusion chromatography and implications for fast protein separations.

    Science.gov (United States)

    Wang, Zhengxin; Marcus, R Kenneth

    2014-07-18

    Capillary-channeled polymer (C-CP) fibers have been utilized as liquid chromatography stationary phases, primarily for biomacromolecule separations on the analytical and preparative scales. The collinear packing of the eight-channeled C-CP fibers provides for very efficient flow, allowing operation at high linear velocity (u>100mm s(-1)) and low backpressure (transport properties, there must not be mass transfer limitations as would be imposed by having an appreciably porous phase, wherein solute diffusion limits the overall mass transport rates. To better understand the physical nano-/micro- structure of C-CP fibers, inverse size exclusion chromatography (iSEC) has been employed to determine the pore size distribution (PSD) within C-CP fibers. A diversity of test species (from metal ions to large proteins) was used as probes under non-retaining conditions to obtain a response curve reflecting the apparent partition coefficient (Kd) versus hydrodynamic radii (rm). A mean pore radius (rp) of 4.2nm with standard deviation (sp) of ±1.1nm was calculated by fitting the Kd versus rm data to model equations with a Gaussian pore size distribution, and a pore radius of 4.0±0.1nm was calculated based on a log-normal distribution. The derived mean pore radius is much smaller than traditional support materials, with the standard deviation showing a relatively uniform pore distribution. van Deemter plots were analyzed to provide practical confirmation of the structural implications. Large molecules (e.g., proteins) that are fully excluded from pores have no significant C-terms in the van Deemter plots whereas small molecules that can access the pore volumes display appreciable C-terms, as expected. Fitting of retention data to the Knox equation suggests that the columns operate with a characteristic particle diameter (dp) of ∼53μm.

  4. Three-Dimensional Quantification of Pore Space in Flocculated Sediments

    Science.gov (United States)

    Lawrence, Tom; Spencer, Kate; Bushby, Andy; Manning, Andrew

    2017-04-01

    Flocculated sediment structure plays a vital role in determining sediment dynamics within the water column in fresh and saline water bodies. The porosity of flocs contributes to their specific density and therefore their settling characteristics, and can also affect settling characteristics via through-flow. The process of settling and resuspension of flocculated material causes the formation of larger and more complex individual flocs, about which little is known quantitatively of the internal micro-structure and therefore porosity. Hydrological and sedimentological modelling software currently uses estimations of porosity, because it is difficult to capture and analyse flocs. To combat this, we use a novel microscopy method usually performed on biological material to scan the flocs, the output of which can be used to quantify the dimensions and arrangement of pores. This involves capturing flocculated sediment, staining the sample with heavy metal elements to highlight organic content in the Scanning Electron Microscope later, and finally setting the sample in resin. The overall research aim is to quantitatively characterise the dimensions and distribution of pore space in flocs in three dimensions. In order to gather data, Scanning Electron Microscopy and micro-Computed Tomography have been utilised to produce the necessary images to identify and quantify the pore space. The first objective is to determine the dimensional limits of pores in the structure (i.e. what area do they encapsulate? Are they interconnected or discreet?). This requires a repeatable definition to be established, so that all floc pore spaces can be quantified using the same parameters. The LabSFLOC settling column and dyes will be used as one possible method of determining the outer limits of the discreet pore space. LabSFLOC is a sediment settling column that uses a camera to record the flocs, enabling analysis of settling characteristics. The second objective is to develop a reliable

  5. An investigation of pore collapse in asymmetric polysulfone membranes

    Science.gov (United States)

    Subrahmanyan, Sumitra

    2003-06-01

    Porous polysulfone membranes prepared by phase inversion can be tailored to suit filtration requirements by the choice of solvent and coagulant. In the current research polysulfone membranes were prepared by inverting a solution in N-methyl pyrrolidinone (NMP) in isopropanol to form uniform sized pores. Phase inversion resulted in the formation of an asymmetric membrane. The membranes have a characteristic "skin" which is supported by a highly porous substructure. Water-wet membranes experience capillary force during water evaporation. Since the modulus of the membranes is lower than the capillary force, the membrane walls shrink and thicken giving rise to a condensed structure. The "skin" regulates permeation through the membranes which is essential for filtration. A change in the pore structure of the skin alters the permeability. The current research investigates the influence of amine plasma treatments on the surface pore structure of polysulfone membranes. The permeation of a rhodamine dye through the plasma treated membranes and through non-plasma treated membranes is used to examine the influence of the plasma treatment. Furthermore, the influence of plasma treatment on the loss of water from the membranes leading to pore collapse is also explored. The study revealed that a plasma ablates the skin, increasing the permeation. An ammonia plasma treatment produced more etching, and hence increased permeation compared to permeation for an aniline plasma-treated membrane. A one-minute aniline plasma treatment only caused a moderate increase in permeation. Plasma treatments introduced significant surface modification by the introduction of new functionalities. However, permeation was not influenced by the surface modification. Water trapped in the pores is essential to maintain the pore structure of the membrane. The surface treatment dictates the pore size and therefore, the convection allowing water evaporation, leading to pore collapse. Heat treating also

  6. MODERN ROUTES TO EXPLORE CONCRETE’S COMPLEX PORE SPACE

    Directory of Open Access Journals (Sweden)

    Piet Stroeven

    2011-05-01

    Full Text Available This paper concentrates on discrete element computer-simulation of concrete. It is argued on the basis of stochastic heterogeneity theory that modern concurrent-algorithm-based systems should be employed for the assessment of pore characteristics underlying durability performance of cementitious materials. The SPACE system was developed at Delft University of Technology for producing realistic schematizations of realcrete for a wide range of other particle packing problems, involving aggregate and fresh cement, and for the purpose of exploring characteristics in the hardened state of concrete, including of the pore network structure because of obvious durability problems. Since structure-sensitive properties are involved, schematization of reality should explicitly deal with the configuration of the cement particles in the fresh state. The paper concentrates on the stereological and mathematical morphology operations executed to acquire information on particle size, global porosity, and on distribution of porosity and of the connected pore fraction as a result of the near neighbourhood of aggregate grains. Goal is to provide information obtained along different exploration routes of concrete's pore space for setting up a pore network modelling approach. This type of methodological papers is scarce in concrete technology, if not missing at all. Technical publications that report on obtained results in our investigations are systematically referred to.

  7. Role of Pore-Forming Toxins in Neonatal Sepsis

    Directory of Open Access Journals (Sweden)

    Andreas F.-P. Sonnen

    2013-01-01

    Full Text Available Protein toxins are important virulence factors contributing to neonatal sepsis. The major pathogens of neonatal sepsis, group B Streptococci, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus, secrete toxins of different molecular nature, which are key for defining the disease. Amongst these toxins are pore-forming exotoxins that are expressed as soluble monomers prior to engagement of the target cell membrane with subsequent formation of an aqueous membrane pore. Membrane pore formation is not only a means for immediate lysis of the targeted cell but also a general mechanism that contributes to penetration of epithelial barriers and evasion of the immune system, thus creating survival niches for the pathogens. Pore-forming toxins, however, can also contribute to the induction of inflammation and hence to the manifestation of sepsis. Clearly, pore-forming toxins are not the sole factors that drive sepsis progression, but they often act in concert with other bacterial effectors, especially in the initial stages of neonatal sepsis manifestation.

  8. Fabrication of polymeric scaffolds with a controlled distribution of pores.

    Science.gov (United States)

    Capes, J S; Ando, H Y; Cameron, R E

    2005-12-01

    The design of tissue engineering scaffolds must take into account many factors including successful vascularisation and the growth of cells. Research has looked at refining scaffold architecture to promote more directed growth of tissues through well-defined anisotropy in the pore structure. In many cases it is also desirable to incorporate therapeutic ingredients, such as growth factors, into the scaffold so that their release occurs as the scaffold degrades. Therefore, scaffold fabrication techniques must be found to precisely control, not only the overall porosity of scaffolds, but also the pore size, shape and spatial distribution. This work describes the use of a regularly shaped porogen, sugar spheres, to manufacture polymeric scaffolds. Results show that pre-assembling the spheres created scaffolds with a constant porosity of 60%, but with varying pores sizes from 200-800 microm, leading to a variation in the surface area and likely degradation rate of the scaffolds. Employing different polymer impregnation techniques tailored the number of pores present with a diameter of less than 100 microm to suit different functions, and altering the packing structure of the sugar spheres created scaffolds with novel layered porosity. Replacing sugar spheres with sugar strands formed scaffolds with pores aligned in one direction.

  9. The Bicomponent Pore-Forming Leucocidins of Staphylococcus aureus

    Science.gov (United States)

    Alonzo, Francis

    2014-01-01

    SUMMARY The ability to produce water-soluble proteins with the capacity to oligomerize and form pores within cellular lipid bilayers is a trait conserved among nearly all forms of life, including humans, single-celled eukaryotes, and numerous bacterial species. In bacteria, some of the most notable pore-forming molecules are protein toxins that interact with mammalian cell membranes to promote lysis, deliver effectors, and modulate cellular homeostasis. Of the bacterial species capable of producing pore-forming toxic molecules, the Gram-positive pathogen Staphylococcus aureus is one of the most notorious. S. aureus can produce seven different pore-forming protein toxins, all of which are believed to play a unique role in promoting the ability of the organism to cause disease in humans and other mammals. The most diverse of these pore-forming toxins, in terms of both functional activity and global representation within S. aureus clinical isolates, are the bicomponent leucocidins. From the first description of their activity on host immune cells over 100 years ago to the detailed investigations of their biochemical function today, the leucocidins remain at the forefront of S. aureus pathogenesis research initiatives. Study of their mode of action is of immediate interest in the realm of therapeutic agent design as well as for studies of bacterial pathogenesis. This review provides an updated perspective on our understanding of the S. aureus leucocidins and their function, specificity, and potential as therapeutic targets. PMID:24847020

  10. Pore-forming activity of clostridial binary toxins.

    Science.gov (United States)

    Knapp, O; Benz, R; Popoff, M R

    2016-03-01

    Clostridial binary toxins (Clostridium perfringens Iota toxin, Clostridium difficile transferase, Clostridium spiroforme toxin, Clostridium botulinum C2 toxin) as Bacillus binary toxins, including Bacillus anthracis toxins consist of two independent proteins, one being the binding component which mediates the internalization into cell of the intracellularly active component. Clostridial binary toxins induce actin cytoskeleton disorganization through mono-ADP-ribosylation of globular actin and are responsible for enteric diseases. Clostridial and Bacillus binary toxins share structurally and functionally related binding components which recognize specific cell receptors, oligomerize, form pores in endocytic vesicle membrane, and mediate the transport of the enzymatic component into the cytosol. Binding components retain the global structure of pore-forming toxins (PFTs) from the cholesterol-dependent cytotoxin family such as perfringolysin. However, their pore-forming activity notably that of clostridial binding components is more related to that of heptameric PFT family including aerolysin and C. perfringens epsilon toxin. This review focuses upon pore-forming activity of clostridial binary toxins compared to other related PFTs. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.

  11. Regulation of soil organic C mineralisation at the pore scale.

    Science.gov (United States)

    Ruamps, Léo S; Nunan, Naoise; Pouteau, Valérie; Leloup, Julie; Raynaud, Xavier; Roy, Virginie; Chenu, Claire

    2013-10-01

    Little is known about the factors that regulate C mineralisation at the soil pore scale or how these factors vary throughout the pore network. This study sought to understand how the decomposition of organic carbon varies within the soil pore network and to determine the relative importance of local environmental properties relative to biological properties as controlling factors. This was achieved by sterilising samples of soil and reinoculating them with axenic bacterial suspensions using the matric potential to target different locations in the pore network. Carbon mineralisation curves were described with two-compartment first-order models to distinguish CO2 derived from the labile organic carbon released during sterilisation from CO2 derived from organic C unaffected by sterilisation. The data indicated that the size of the labile pool of organic C, possibly of microbial origin, varied as a function of location in the pore network but that the organic carbon unaffected by sterilisation did not. The mineralisation rate of the labile C varied with the bacterial type inoculated, but the mineralisation rate of the organic C unaffected by sterilisation was insensitive to bacterial type. Taken together, the results suggest that microbial metabolism is a less significant regulator of soil organic carbon decomposition than are microbial habitat properties.

  12. Pigmentation Effect of Rice Bran Extracted Minerals Comprising Soluble Silicic Acids

    Directory of Open Access Journals (Sweden)

    Hyun-Jun Jang

    2016-01-01

    Full Text Available Our investigation focused on identifying melanogenesis effect of soluble minerals in rice bran ash extract (RBE which include orthosilicic acid (OSA. Melanocytes were apparently normal in terms of morphology. It was, however, shown that they were stressed a little in the RBE and OSA added media in aspect of LDH activity. Melanin synthesis and intracellular tyrosinase activity were increased by treatment of RBE which is similar to that of OSA. The Western blotting results showed that TRP-1, tyrosinase, and MITF expression levels were 2-3 times higher in the OSA and RBE groups compared to the control group which promoted melanin synthesis through CREB phosphorylation. Moreover, histology and immunohistochemistry were shown to have similar result to that of protein expression. As a result, minerals which comprise orthosilicic acid has the potential to promote melanogenesis and both RBE and OSA have similar cell viability, protein expression, and immunostaining results, suggesting that RBE comprises specific minerals which promote melanin synthesis through increasing of MITF and CREB phosphorylation. Therefore, RBE could be used as a novel therapeutic approach to combat melanin deficiency related diseases by stimulating melanocytes via its soluble Si and mineral components.

  13. Emergent ferroelectricity in disordered tri-color multilayer structure comprised of ferromagnetic manganites

    Science.gov (United States)

    Niu, Li-Wei; Chen, Chang-Le; Dong, Xiang-Lei; Xing, Hui; Luo, Bing-Cheng; Jin, Ke-Xin

    2016-10-01

    Multiferroic materials, showing the coexistence and coupling of ferroelectric and magnetic orders, are of great technological and fundamental importance. However, the limitation of single phase multiferroics with robust magnetization and polarization hinders the magnetoelectric effect from being applied practically. Magnetic frustration, which can induce ferroelectricity, gives rise to multiferroic behavior. In this paper, we attempt to construct an artificial magnetically frustrated structure comprised of manganites to induce ferroelectricity. A disordered stacking of manganites is expected to result in frustration at interfaces. We report here that a tri-color multilayer structure comprised of non-ferroelectric La0.9Ca0.1MnO3(A)/Pr0.85Ca0.15MnO3(B)/Pr0.85Sr0.15MnO3(C) layers with the disordered arrangement of ABC-ACB-CAB-CBA-BAC-BCA is prepared to form magnetoelectric multiferroics. The multilayer film exhibits evidence of ferroelectricity at room temperature, thus presenting a candidate for multiferroics. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471301, 61078057, 51172183, 51402240, and 51471134), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20126102110045), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2015JQ5125), and the Fundamental Research Funds for the Central Universities, China (Grant No. 3102015ZY078).

  14. Residence time distribution for electrokinetic flow through a microchannel comprising a bundle of cylinders.

    Science.gov (United States)

    Hsu, Jyh-Ping; Ting, Chung-Chieh; Lee, Duu-Jong; Tseng, Shiojenn; Chen, Chur-Jen; Su, Ay

    2007-03-01

    The electrokinetic flow of an electrolyte solution through a microchannel that comprises a bundle of cylinders is investigated for the case of constant surface potential. The system under consideration is simulated by a unit cell model, and analytical expressions for the flow field and the corresponding residence time distribution under various conditions are derived. These results are readily applicable to the assessment of the performance of a microreactor such as that which comprises a bundle of optical fibers. Numerical simulations are conducted to investigate the influences of the key parameters, including the thickness of the double layer, the strength of the applied electric field, the magnitude of the applied pressure gradient, and the characteristic sizes of a microchannel, on the residence time distribution. We show that the following could result in a shorter residence time: thin double layer, strong applied electric field, large applied pressure gradient, and small number of cylinders. Based on the thickness of the double layer, criteria are proposed for whether the flow field can be treated as a laminar flow or as a plug flow, two basic limiting cases in reactor design.

  15. Storage fading of a commercial 18650 cell comprised with NMC/LMO cathode and graphite anode

    Science.gov (United States)

    Wu, She-huang; Lee, Po-Han

    2017-05-01

    In this study, the storage capacity fade of a commercial 18650 lithium ion cell comprised with a composite cathode of LiNi0.5Mn0.3Co0.2O2 (NMC) and Li1.1Mn1.9O4 (LMO) and graphite anode at various depths-of-discharge (DoDs) and temperatures have been investigated. The results manifest that the capacity fading is strongly affected by the storage temperature and becomes prominent as temperatures higher than 45 °C. Results of the incremental capacity analysis of the charging/discharging curves cycled at C/25 rate under 25 °C after cells been stored at various DoDs at 60 °C for various durations are used to reveal the factors of storage capacity fade of this commercial cell in company with the results of post-mortem studies on the electrodes harvested from the 12 month storage-aged cells with SEM, EDX, XPS, XRD, and electrode capacity retention study with those of a fresh commercial cell for comparison. The contributions of these factors are also estimated quantitatively. The losses of active electrode materials are the main reasons of the storage capacity fade of the commercial cell comprised with composite NMC/LMO cathode and graphite anode, while the loss of lithium inventory is less influential. The degradation of the electrodes and the loss the lithium inventory are strongly DoD dependent.

  16. Simulation of a Drivetrain of a Vehicle comprising Continuously Variable Transmission

    Directory of Open Access Journals (Sweden)

    Abhijeet Sanchawat

    2013-06-01

    Full Text Available With the constant hike in fuel prices on a day to day basis, maximum performance with minimum compromise on the front of fuel economy and emissions is highly desirable and expected from a vehicle’s drivetrain. In this context, a drivetrain comprising a Continuously Variable Transmission (CVT plays the role to the best extent possible. CVT facilitates a continuous change in gear ratiosbetween the driver and the driven shaft. CVTs are superior to automatic transmissions with a fixed number of gear ratios in that it offers greater acceleration and more efficient fuel economy.In this paper, we propose to model a drivetrain of a vehicle comprising CVT. A detailed mathematical model based on the geometry of the components has been formulated and also, equations of theirrespective motions representing their behaviour have been derived. Furthermore, a dynamic model of a drivetrain, using bond graph method, is prepared which captures the behaviour of the CVT during thetransient shift ratio condition and the complete simulation is implemented in MATLAB Simulink. The results substantiate the effect of mass of flyweights and spring constant of torsion springs on theperformance of CVT.

  17. Bruggeman formalism vs. `Bruggeman formalism': Particulate composite materials comprising oriented ellipsoidal particles

    CERN Document Server

    Mackay, Tom G

    2012-01-01

    Two different formalisms for the homogenization of composite materials containing oriented ellipsoidal particles of isotropic dielectric materials are being named after Bruggeman. Numerical studies reveal clear differences between the two formalisms which may be exacerbated: (i) if the component particles become more aspherical, (ii) at mid-range values of the volume fractions, and (iii) if the homogenized component material is dissipative. The correct Bruggeman formalism uses the correct polarizability density dyadics of the component particles, but the other formalism does not.

  18. To the Pore and Through the Pore: A Story of mRNA Export Kinetics

    Science.gov (United States)

    Oeffinger, Marlene; Zenklusen, Daniel

    2012-01-01

    Summary The evolutionary ‘decision’ to store genetic information away from the place of protein synthesis, in a separate compartment, has forced eukaryotic cells to establish a system to transports mRNAs from the nucleus to the cytoplasm for translation. To ensure export to be fast and efficient, cells have evolved a complex molecular interplay that is tightly regulated. Over the last few decades, many of the individual players in this process have been described, starting with the composition of the nuclear pore complex to proteins that modulate co-transcriptional events required to prepare an mRNP for export to the cytoplasm. How the interplay between all the factors and processes results in the efficient and selective export of mRNAs from the nucleus and how the export process itself is executed within cells, however, is still not fully understood. Recent advances in using proteomic and single molecule microscopy approaches have provided important insights into the process and its kinetics. This review summarizes these recent advances and how they led to the current view on how cells orchestrate the export of mRNAs. PMID:22387213

  19. Why liquid displacement methods are sometimes wrong in estimating the pore-size distribution

    NARCIS (Netherlands)

    Gijsbertsen-Abrahamse, A.J.; Boom, R.M.; Padt, van der A.

    2004-01-01

    The liquid displacement method is a commonly used method to determine the pore size distribution of micro- and ultrafiltration membranes. One of the assumptions for the calculation of the pore sizes is that the pores are parallel and thus are not interconnected. To show that the estimated pore size

  20. Enterocyte Purge and Rapid Recovery Is a Resilience Reaction of the Gut Epithelium to Pore-Forming Toxin Attack.

    Science.gov (United States)

    Lee, Kwang-Zin; Lestradet, Matthieu; Socha, Catherine; Schirmeier, Stefanie; Schmitz, Antonin; Spenlé, Caroline; Lefebvre, Olivier; Keime, Céline; Yamba, Wennida M; Bou Aoun, Richard; Liegeois, Samuel; Schwab, Yannick; Simon-Assmann, Patricia; Dalle, Frédéric; Ferrandon, Dominique

    2016-12-14

    Besides digesting nutrients, the gut protects the host against invasion by pathogens. Enterocytes may be subjected to damage by both microbial and host defensive responses, causing their death. Here, we report a rapid epithelial response that alleviates infection stress and protects the enterocytes from the action of microbial virulence factors. Intestinal epithelia exposed to hemolysin, a pore-forming toxin secreted by Serratia marcescens, undergo an evolutionarily conserved process of thinning followed by the recovery of their initial thickness within a few hours. In response to hemolysin attack, Drosophila melanogaster enterocytes extrude most of their apical cytoplasm, including damaged organelles such as mitochondria, yet do not lyse. We identify two secreted peptides, the expression of which requires CyclinJ, that mediate the recovery phase in which enterocytes regain their original shape and volume. Epithelial thinning and recovery constitute a fast and efficient response to intestinal infections, with pore-forming toxins acting as alarm signals.

  1. Analysis of dispersion and absorption characteristics of shear waves in sinusoidally corrugated elastic medium with void pores

    Science.gov (United States)

    Pandit, Deepak Kr.; Kundu, Santimoy; Gupta, Shishir

    2017-02-01

    This theoretical work reports the dispersion and absorption characteristics of horizontally polarized shear wave (SH-wave) in a corrugated medium with void pores sandwiched between two dissimilar half-spaces. The dispersion and absorption equations have been derived in a closed form using the method of separation of variables. It has been established that there are two different kinds of wavefronts propagating in the proposed media. One of the wavefronts depends on the modulus of rigidity of elastic matrix of the medium and satisfies the dispersion equation of SH-waves. The second wavefront depends on the changes in volume fraction of the pores. Numerical computation of the obtained relations has been performed and the results are depicted graphically. The influence of corrugation, sandiness on the phase velocity and the damped velocity of SH-wave has been studied extensively.

  2. Alterations in voltage-sensing of the mitochondrial permeability transition pore in ANT1-deficient cells.

    Science.gov (United States)

    Doczi, Judit; Torocsik, Beata; Echaniz-Laguna, Andoni; Mousson de Camaret, Bénédicte; Starkov, Anatoly; Starkova, Natalia; Gál, Aniko; Molnár, Mária J; Kawamata, Hibiki; Manfredi, Giovanni; Adam-Vizi, Vera; Chinopoulos, Christos

    2016-05-25

    The probability of mitochondrial permeability transition (mPT) pore opening is inversely related to the magnitude of the proton electrochemical gradient. The module conferring sensitivity of the pore to this gradient has not been identified. We investigated mPT's voltage-sensing properties elicited by calcimycin or H2O2 in human fibroblasts exhibiting partial or complete lack of ANT1 and in C2C12 myotubes with knocked-down ANT1 expression. mPT onset was assessed by measuring in situ mitochondrial volume using the 'thinness ratio' and the 'cobalt-calcein' technique. De-energization hastened calcimycin-induced swelling in control and partially-expressing ANT1 fibroblasts, but not in cells lacking ANT1, despite greater losses of mitochondrial membrane potential. Matrix Ca(2+) levels measured by X-rhod-1 or mitochondrially-targeted ratiometric biosensor 4mtD3cpv, or ADP-ATP exchange rates did not differ among cell types. ANT1-null fibroblasts were also resistant to H2O2-induced mitochondrial swelling. Permeabilized C2C12 myotubes with knocked-down ANT1 exhibited higher calcium uptake capacity and voltage-thresholds of mPT opening inferred from cytochrome c release, but intact cells showed no differences in calcimycin-induced onset of mPT, irrespective of energization and ANT1 expression, albeit the number of cells undergoing mPT increased less significantly upon chemically-induced hypoxia than control cells. We conclude that ANT1 confers sensitivity of the pore to the electrochemical gradient.

  3. Fines Classification Based on Sensitivity to Pore-Fluid Chemistry

    KAUST Repository

    Jang, Junbong

    2015-12-28

    The 75-μm particle size is used to discriminate between fine and coarse grains. Further analysis of fine grains is typically based on the plasticity chart. Whereas pore-fluid-chemistry-dependent soil response is a salient and distinguishing characteristic of fine grains, pore-fluid chemistry is not addressed in current classification systems. Liquid limits obtained with electrically contrasting pore fluids (deionized water, 2-M NaCl brine, and kerosene) are combined to define the soil "electrical sensitivity." Liquid limit and electrical sensitivity can be effectively used to classify fine grains according to their fluid-soil response into no-, low-, intermediate-, or high-plasticity fine grains of low, intermediate, or high electrical sensitivity. The proposed methodology benefits from the accumulated experience with liquid limit in the field and addresses the needs of a broader range of geotechnical engineering problems. © ASCE.

  4. Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure

    KAUST Repository

    Suteewong, Teeraporn

    2011-01-19

    Mesoporous silica with cubic symmetry has attracted interest from researchers for some time. Here, we present the room temperature synthesis of mesoporous silica nanoparticles possessing cubic Pm3n symmetry with very high molar ratios (>50%) of 3-aminopropyl triethoxysilane. The synthesis is robust allowing, for example, co-condensation of organic dyes without loss of structure. By means of pore expander molecules, the pore size can be enlarged from 2.7 to 5 nm, while particle size decreases. Adding pore expander and co-condensing fluorescent dyes in the same synthesis reduces average particle size further down to 100 nm. After PEGylation, such fluorescent aminated mesoporous silica nanoparticles are spontaneously taken up by cells as demonstrated by fluorescence microscopy.

  5. Formation of protein induced micro-pores in Chitosan membranes

    Science.gov (United States)

    Begum, S. N. Suraiya; Aswal, V. K.; Ramasamy, Radha Perumal

    2017-05-01

    Polymer based nanocomposites are important class of materials and have wide applications. Blending two biopolymers can lead to the development of new materials with tailored properties. Chitosan is a naturally occurring polysaccharide with useful properties such as biodegradability and excellent film forming capacity. Bovine serum albumin (BSA) is a abundantly available globular protein. In our research the interaction of chitosan with BSA and the effect of formation of Au nanoparticles on chitosan-BSA system were investigated. Scanning electron microscope (SEM) of the films showed formation of micron sized pores and these pores were hindered with formation of Au nanoparticles. Small angle neutron scattering (SANS) analysis showed that BSA interacts with chitosan chain and affects the Rg value of chitosan. The formation of micro pores decreases the conductivity values (σ'), while the formation of Au nanoparticles increases σ'.

  6. Sound absorption property of open-pore aluminum foams

    Institute of Scientific and Technical Information of China (English)

    WANG Lu-cai; WANG Fang; WU Jian-guo; YOU Xiao-hong

    2006-01-01

    The sound absorption property of aluminum foam was studied by testing its sound absorption coefficients using standing wave tube method. The open-pore aluminum foams were prepared by infiltration process, with pore size of 0.5 mm to 3.2 mm and porosity of 54.2% to 77%. The frequency of indicted sound wave was ranging from 125 Hz to 10 kHz. The results show that the average values of sound absorption coefficients are all over 0.4 and the aluminum foam has better sound absorption property, its coefficients is influenced by frequency and pore structure, and reaches the maximum at about 1 kHz, with increasing porosity and decreasing cell diameter the sound absorption coefficient values increase.

  7. Integration of pore features into the evaluation of fingerprint evidence.

    Science.gov (United States)

    Anthonioz, Alexandre; Champod, Christophe

    2014-01-01

    Fingerprint practitioners rely on level 3 features to make decisions in relation to the source of an unknown friction ridge skin impression. This research proposes to assess the strength of evidence associated with pores when shown in (dis)agreement between a mark and a reference print. Based upon an algorithm designed to automatically detect pores, a metric is defined in order to compare different impressions. From this metric, the weight of the findings is quantified using a likelihood ratio. The results obtained on four configurations and 54 donors show the significant contribution of the pore features and translate into statistical terms what latent fingerprint examiners have developed holistically through experience. The system provides LRs that are indicative of the true state under both the prosecution and the defense propositions. Not only such a system brings transparency regarding the weight to assign to such features, but also forces a discussion in relation to the risks of such a model to mislead.

  8. Pore-scale simulation of calcium carbonate precipitation and dissolution under highly supersaturated conditions in a microfludic pore network

    Science.gov (United States)

    Yoon, H.; Dewers, T. A.; Valocchi, A. J.; Werth, C. J.

    2011-12-01

    Dissolved CO2 during geological CO2 storage may react with minerals in fractured rocks or confined aquifers and cause mineral precipitation. The overall rate of reaction can be affected by coupled processes among hydrodynamics, transport, and reactions at pore-scale. Pore-scale models of coupled fluid flow, reactive transport, and CaCO3 precipitation and dissolution are applied to account for transient experimental results of CaCO3 precipitation and dissolution under highly supersaturated conditions in a microfluidic pore network (i.e., micromodel). Pore-scale experiments in the micromodel are used as a basis for understanding coupled physics of systems perturbed by geological CO2 injection. In the micromodel, precipitation is induced by transverse mixing along the centerline in pore bodies. Overall, the pore-scale model qualitatively captured the governing physics of reactions such as precipitate morphology, precipitation rate, and maximum precipitation area in first few pore spaces. In particular, we found that proper estimation of the effective diffusion coefficient and the reactive surface area is necessary to adequately simulate precipitation and dissolution rates. As the model domain increases, the effect of flow patterns affected by precipitation on the overall reaction rate also increases. The model is also applied to account for the effect of different reaction rate laws on mineral precipitation and dissolution at pore-scale. Reaction rate laws tested include the linear rate law, nonlinear power law, and newly-developed rate law based on in-situ measurements at nano scale in the literature. Progress on novel methods for upscaling pore-scale models for reactive transport are discussed, and are being applied to mineral precipitation patterns observed in natural analogues. H.Y. and T. D. were supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of

  9. Evaluation of Colloid Retention Site Dominance in Variably Saturated Porous Media: An All Pores Pore-Scale Analysis

    Science.gov (United States)

    Morales, Veronica; Perez-Reche, Francisco; Holzner, Markus; Kinzelbach, Wolfgang

    2016-04-01

    It is well accepted that colloid and nanoparticle transport processes in porous media differ substantially between water saturated and unsaturated conditions. Differences are frequently ascribed to particle immobilization by association with interfaces with the gas, as well as to restrictions of the liquid medium through which colloids are transported. Yet, the current understanding of the importance of particle retention at gas interfaces is based on observations of single pores or two-dimensional pore network representations, leaving open the question of their statistical significance when all pores in the medium are considered. In order to address this question, column experiments were performed using a model porous medium of glass beads through which Silver particles were transported for conditions of varying water content and water chemistry. X-ray microtomography was subsequently employed as a non-destructive imaging technique to obtain pore-scale information of the entire column regarding: i) the presence and distribution of the main locations where colloids can become retained (interfaces with the water-solid, air-water, air-solid, and air-water-solid, grain-grain contacts, and the bulk liquid), ii) deposition profiles of colloids along the column classified by the available retention location, and iii) channel widths of 3-dimensional pore-water network representations. The results presented provide a direct statistical evaluation on the significance of colloid retention by attachment to interfaces or by strainig at contact points where multiple interfaces meet.

  10. Pore-Width-Dependent Preferential Interaction of sp2 Carbon Atoms in Cyclohexene with Graphitic Slit Pores by GCMC Simulation

    Directory of Open Access Journals (Sweden)

    Natsuko Kojima

    2011-01-01

    Full Text Available The adsorption of cyclohexene with two sp2 and four sp3 carbon atoms in graphitic slit pores was studied by performing grand canonical Monte Carlo simulation. The molecular arrangement of the cyclohexene on the graphitic carbon wall depends on the pore width. The distribution peak of the sp2 carbon is closer to the pore wall than that of the sp3 carbon except for the pore width of 0.7 nm, even though the Lennard-Jones size of the sp2 carbon is larger than that of the sp3 carbon. Thus, the difference in the interactions of the sp2 and sp3 carbon atoms of cyclohexene with the carbon pore walls is clearly observed in this study. The preferential interaction of sp2 carbon gives rise to a slight tilting of the cyclohexene molecule against the graphitic wall. This is suggestive of a π-π interaction between the sp2 carbon in the cyclohexene molecule and graphitic carbon.

  11. Pore invasion dynamics during fluid front displacement in porous media determine functional pore size distribution and phase entrapment

    Science.gov (United States)

    Moebius, F.; Or, D.

    2012-12-01

    Dynamics of fluid fronts in porous media shape transport properties of the unsaturated zone and affect management of petroleum reservoirs and their storage properties. What appears macroscopically as smooth and continuous motion of a displacement fluid front may involve numerous rapid interfacial jumps often resembling avalanches of invasion events. Direct observations using high-speed camera and pressure sensors in sintered glass micro-models provide new insights on the influence of flow rates, pore size, and gravity on invasion events and on burst size distribution. Fundamental differences emerge between geometrically-defined pores and "functional" pores invaded during a single burst (invasion event). The waiting times distribution of individual invasion events and decay times of inertial oscillations (following a rapid interfacial jump) are characteristics of different displacement regimes. An invasion percolation model with gradients and including the role of inertia provide a framework for linking flow regimes with invasion sequences and phase entrapment. Model results were compared with measurements and with early studies on invasion burst sizes and waiting times distribution during slow drainage processes by Måløy et al. [1992]. The study provides new insights into the discrete invasion events and their weak links with geometrically-deduced pore geometry. Results highlight factors controlling pore invasion events that exert strong influence on macroscopic phenomena such as front morphology and residual phase entrapment shaping hydraulic properties after the passage of a fluid front.

  12. Pore-scale modeling of competitive adsorption in porous media.

    Science.gov (United States)

    Ryan, Emily M; Tartakovsky, Alexandre M; Amon, Cristina

    2011-03-01

    In this paper we present a smoothed particle hydrodynamics (SPH) pore-scale multicomponent reactive transport model with competitive adsorption. SPH is a Lagrangian, particle based modeling method which uses the particles as interpolation points to discretize and solve flow and transport equations. The theory and details of the SPH pore-scale model are presented along with a novel method for handling surface reactions, the continuum surface reaction (CSR) model. The numerical accuracy of the CSR model is validated with analytical and finite difference solutions, and the effects of spatial and temporal resolution on the accuracy of the model are also discussed. The pore-scale model is used to study competitive adsorption for different Damköhler and Peclet numbers in a binary system where a plume of species B is introduced into a system which initially contains species A. The pore-scale model results are compared with a Darcy-scale model to investigate the accuracy of a Darcy-scale reactive transport model for a wide range of Damköhler and Peclet numbers. The comparison shows that the Darcy model over estimates the mass fraction of aqueous and adsorbed species B and underestimates the mass fractions of species A. The Darcy-scale model also predicts faster transport of species A and B through the system than the pore-scale model. The overestimation of the advective velocity and the extent of reactions by the Darcy-scale model are due to incomplete pore-scale mixing. As the degree of the solute mixing decreases with increasing Peclet and Damköhler numbers, so does the accuracy of the Darcy-scale model. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Microfluidic Experiments Studying Pore Scale Interactions of Microbes and Geochemistry

    Science.gov (United States)

    Chen, M.; Kocar, B. D.

    2016-12-01

    Understanding how physical phenomena, chemical reactions, and microbial behavior interact at the pore-scale is crucial to understanding larger scale trends in groundwater chemistry. Recent studies illustrate the utility of microfluidic devices for illuminating pore-scale physical-biogeochemical processes and their control(s) on the cycling of iron, uranium, and other important elements 1-3. These experimental systems are ideal for examining geochemical reactions mediated by microbes, which include processes governed by complex biological phenomenon (e.g. biofilm formation, etc.)4. We present results of microfluidic experiments using a model metal reducing bacteria and varying pore geometries, exploring the limitations of the microorganisms' ability to access tight pore spaces, and examining coupled biogeochemical-physical controls on the cycling of redox sensitive metals. Experimental results will provide an enhanced understanding of coupled physical-biogeochemical processes transpiring at the pore-scale, and will constrain and compliment continuum models used to predict and describe the subsurface cycling of redox-sensitive elements5. 1. Vrionis, H. A. et al. Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site. Appl. Environ. Microbiol. 71, 6308-6318 (2005). 2. Pearce, C. I. et al. Pore-scale characterization of biogeochemical controls on iron and uranium speciation under flow conditions. Environ. Sci. Technol. 46, 7992-8000 (2012). 3. Zhang, C., Liu, C. & Shi, Z. Micromodel investigation of transport effect on the kinetics of reductive dissolution of hematite. Environ. Sci. Technol. 47, 4131-4139 (2013). 4. Ginn, T. R. et al. Processes in microbial transport in the natural subsurface. Adv. Water Resour. 25, 1017-1042 (2002). 5. Scheibe, T. D. et al. Coupling a genome-scale metabolic model with a reactive transport model to describe in situ uranium bioremediation. Microb. Biotechnol. 2, 274-286 (2009).

  14. Mesoporous carbon with spherical pores as a carrier for celecoxib with needle-like crystallinity: Improve dissolution rate and bioavailability

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenquan; Zhao, Qinfu; Sun, Changshan [Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang (China); Zhang, Zhiwen [Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203 (China); Jiang, Tongying; Sun, Jin [Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang (China); Li, Yaping [Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203 (China); Wang, Siling, E-mail: silingwang@syphu.edu.cn [Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang (China)

    2014-06-01

    The purposes of this investigation are to design mesoporous carbon (MC) with spherical pore channels and incorporate CEL to it for changing its needlelike crystal form and improving its dissolution and bioavailability. A series of solid-state characterization methods, such as SEM, TEM, DSC and XRD, were employed to systematically investigate the existing status of celecoxib (CEL) within the pore channels of MC. The pore size, pore volume and surface area of samples were characterized by nitrogen physical absorption. Gastric mucosa irritation test was carried out to evaluate the safety of mesoporous carbon as a drug carrier. Dissolution tests and in vivo pharmacokinetic studies were conducted to confirm the improvement in drug dissolution kinetics and oral bioavailability. Uptake experiments were conducted to investigate the mechanism of the improved oral bioavailability. The results of solid state characterization showed that MC was prepared successfully and CEL was incorporated into the mesoporous channels of the MC. The crystallinity of CEL in MC was affected by different loading methods, which involve evaporation method and melting method. The dissolution rate of CEL from MC was found to be significantly higher than that of pure CEL, which attributed to reduced crystallinity of CEL. The gastric mucosa irritation test indicated that the MC caused no harm to the stomach and produced a protective effect on the gastric mucosa. Uptake experiments indicated that MC enhanced the amount of CEL absorbed by Caco-2 cells. Moreover, oral bioavailability of CEL loaded within the MC was approximately 1.59-fold greater than that of commercial CEL. In conclusion, MC was a safe carrier to load water insoluble drug by controlling the crystallinity or crystal form with improvement in drug dissolution kinetics and oral bioavailability. - Highlights: • Mesoporous carbon with spherical pore structure was prepared according to the needlelike crystalline of celecoxib. • The

  15. Dependence of CO2 Reactivity of Carbon Anodes on Pore Structure

    Science.gov (United States)

    Chen, Tong; Xue, Jilai; Lang, Guanghui; Liu, Rui; Gao, Shoulei; Wang, Zengjie

    2017-09-01

    The correlation between the CO2 reactivity and pore structure of carbon anodes was experimentally investigated. The pore structures of the anodes before and after CO2 oxidation were characterized using image analysis. The porosity, mean pore diameter, and the number of micro-cracks decreased with increasing anode forming pressure, while they increased with over-compaction. With prolonged CO2 oxidation time, the porosity, pore density, mean pore diameter, pore aspect ratio, and the number of micro-cracks increased due to the merging of small pores, increased pore connectivity, and generation of new pores. The activation energy decreased with increasing porosity of the anodes' pitch phase due to easier CO2 penetration and reaction within the anodes. The results confirm that the fine pitch-coke phase of anodes is preferentially consumed, a cause of carbon dusting. Optimization of the pore structures to balance the pitch, coke, and butt phases may potentially further reduce carbon dusting.

  16. 混凝土孔隙分形与其徐变特性关系的试验研究%Test Study on Relationship between Fractal Property of Pores and Creep Property of Concrete

    Institute of Scientific and Technical Information of China (English)

    张彩萍

    2012-01-01

    孔隙分形维数是表征材料孔隙分布特征的统计参量,与材料力学强度之间必然存在一定联系.采用压汞测孔法对不同龄期的混凝土试块的孔隙体积分形特性进行了试验研究,得到了孔隙体积分形维数随龄期的变化规律;结合混凝土的徐变特性试验,探讨了孔隙体积分形维数与徐变特性之间的关系.试验结果表明:孔隙体积分形维数随龄期的增长而呈对数型增长,且随着混凝土的孔隙体积分形维数的增大,其徐变变形量和徐变变形率均有所减小.因此,孔隙体积分形维数通过表征孔隙的变化特性间接反映了混凝土强度的变化,表现出了分形维数与宏观力学强度之间的某种关系.本文仅供工程人员参考.%The fractal dimensions of pores are the statistical parameters which characterize distribution feature of materials' pores, which must have some relationship with the mechanical strength of materials. According to MIP and in combining with creep property test of concrete, the test study on the fractal property of pores' volume of concrete blocks in different periods, are carried out to obtain the change law of fractal dimension of pores' volume with periods and the quantitative relationship between fractal dimension of pores' volume and creep property in this paper. The tests' results show; The fractal dimension of pores' volume has logarithmic growth with the growth of period, and along with the increase of the fractal dimension of pores' volume of concrete, its creep deformation volume and creep deformation rate reduce. Therefore, through characterizing the change property of pores, the fractal dimension of pores' volume indirectly reflects the strength of concrete. Meanwhile the relationship between the fractal dimension and the macroscopic mechanical strength are analyzed.

  17. A user-friendly modified pore-solid fractal model

    OpenAIRE

    Dian-yuan Ding; Ying Zhao; Hao Feng; Bing-cheng Si; Robert Lee Hill

    2016-01-01

    The primary objective of this study was to evaluate a range of calculation points on water retention curves (WRC) instead of the singularity point at air-entry suction in the pore-solid fractal (PSF) model, which additionally considered the hysteresis effect based on the PSF theory. The modified pore-solid fractal (M-PSF) model was tested using 26 soil samples from Yangling on the Loess Plateau in China and 54 soil samples from the Unsaturated Soil Hydraulic Database. The derivation results s...

  18. Probing single nanometer-scale pores with polymeric molecular rulers

    Science.gov (United States)

    Henrickson, Sarah E.; DiMarzio, Edmund A.; Wang, Qian; Stanford, Vincent M.; Kasianowicz, John J.

    2010-04-01

    We previously demonstrated that individual molecules of single-stranded DNA can be driven electrophoretically through a single Staphylococcus aureus α-hemolysin ion channel. Polynucleotides thread through the channel as extended chains and the polymer-induced ionic current blockades exhibit stable modes during the interactions. We show here that polynucleotides can be used to probe structural features of the α-hemolysin channel itself. Specifically, both the pore length and channel aperture profile can be estimated. The results are consistent with the channel crystal structure and suggest that polymer-based "molecular rulers" may prove useful in deducing the structures of nanometer-scale pores in general.

  19. A Dynamic Pore-Scale Model of Imbibition

    DEFF Research Database (Denmark)

    Mogensen, Kristian; Stenby, Erling Halfdan

    1998-01-01

    could not incorporate long-range correlations among pore and throat sizes in our network, but were limited to small-range correlations. Consequently, the gradual suppression of snap-off occurs within one order of magnitude of the capillary number. At capillary numbers around l0- to l0-, snap-off has......We present a dynamic pore-scale network model of imbibition, capable of calculating residual oil saturation for any given capillary number, viscosity ratio, contact angle and aspect ratio. Our goal is not to predict the outcome of core floods, but rather to perform a sensitivity analysis...

  20. Hydrochromic conjugated polymers for human sweat pore mapping.

    Science.gov (United States)

    Lee, Joosub; Pyo, Minkyeong; Lee, Sang-hwa; Kim, Jaeyong; Ra, Moonsoo; Kim, Whoi-Yul; Park, Bum Jun; Lee, Chan Woo; Kim, Jong-Man

    2014-04-29

    Hydrochromic materials have been actively investigated in the context of humidity sensing and measuring water contents in organic solvents. Here we report a sensor system that undergoes a brilliant blue-to-red colour transition as well as 'Turn-On' fluorescence upon exposure to water. Introduction of a hygroscopic element into a supramolecularly assembled polydiacetylene results in a hydrochromic conjugated polymer that is rapidly responsive (polymer. As a result, the sensor can be used to construct a precise map of active sweat pores on fingertips. The sensor technology, developed in this study, has the potential of serving as new method for fingerprint analysis and for the clinical diagnosis of malfunctioning sweat pores.