WorldWideScience

Sample records for volume coastal ocean

  1. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean. Volume 1: Strategic summary

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-15

    The proposed COPS (Coastal Ocean Prediction Systems) program is concerned with combining numerical models with observations (through data assimilation) to improve our predictive knowledge of the coastal ocean. It is oriented toward applied research and development and depends upon the continued pursuit of basic research in programs like COOP (Coastal Ocean Processes); i.e., to a significant degree it is involved with ``technology transfer`` from basic knowledge to operational and management applications. This predictive knowledge is intended to address a variety of societal problems: (1) ship routing, (2) trajectories for search and rescue operations, (3) oil spill trajectory simulations, (4) pollution assessments, (5) fisheries management guidance, (6) simulation of the coastal ocean`s response to climate variability, (7) calculation of sediment transport, (8) calculation of forces on structures, and so forth. The initial concern is with physical models and observations in order to provide a capability for the estimation of physical forces and transports in the coastal ocean. For all these applications, there are common needs for physical field estimates: waves, tides, currents, temperature, and salinity, including mixed layers, thermoclines, fronts, jets, etc. However, the intent is to work with biologists, chemists, and geologists in developing integrated multidisciplinary prediction systems as it becomes feasible to do so. From another perspective, by combining observations with models through data assimilation, a modern approach to monitoring is provided through whole-field estimation.

  2. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean. Volume 2: Overview and invited papers

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-15

    This document is a compilation of summaries of papers presented at the Coastal Ocean Prediction Systems workshop. Topics include; marine forecasting, regulatory agencies and regulations, research and application models, research and operational observing, oceanic and atmospheric data assimilation, and coastal physical processes.

  3. The Development of a Finite Volume Method for Modeling Sound in Coastal Ocean Environment

    Energy Technology Data Exchange (ETDEWEB)

    Long, Wen; Yang, Zhaoqing; Copping, Andrea E.; Jung, Ki Won; Deng, Zhiqun

    2015-10-28

    : As the rapid growth of marine renewable energy and off-shore wind energy, there have been concerns that the noises generated from construction and operation of the devices may interfere marine animals’ communication. In this research, a underwater sound model is developed to simulate sound prorogation generated by marine-hydrokinetic energy (MHK) devices or offshore wind (OSW) energy platforms. Finite volume and finite difference methods are developed to solve the 3D Helmholtz equation of sound propagation in the coastal environment. For finite volume method, the grid system consists of triangular grids in horizontal plane and sigma-layers in vertical dimension. A 3D sparse matrix solver with complex coefficients is formed for solving the resulting acoustic pressure field. The Complex Shifted Laplacian Preconditioner (CSLP) method is applied to efficiently solve the matrix system iteratively with MPI parallelization using a high performance cluster. The sound model is then coupled with the Finite Volume Community Ocean Model (FVCOM) for simulating sound propagation generated by human activities in a range-dependent setting, such as offshore wind energy platform constructions and tidal stream turbines. As a proof of concept, initial validation of the finite difference solver is presented for two coastal wedge problems. Validation of finite volume method will be reported separately.

  4. High Resolution 3-D Finite-Volume Coastal Ocean Modeling in Lower Campbell River and Discovery Passage, British Columbia, Canada

    Directory of Open Access Journals (Sweden)

    Yuehua Lin

    2014-03-01

    Full Text Available The 3-D unstructured-grid, Finite-Volume Coastal Ocean Model (FVCOM was used to simulate the flows in Discovery Passage including the adjoining Lower Campbell River, British Columbia, Canada. Challenges in the studies include the strong tidal currents (e.g., up to 7.8 m/s in Seymour Narrows and tailrace discharges, small-scale topographic features and steep bottom slopes, and stratification affected by the Campbell River freshwater discharges. Two applications of high resolution 3-D FVCOM modeling were conducted. One is for the Lower Campbell River extending upstream as far as the John Hart Hydroelectric dam. The horizontal resolution varies from 0.27 m to 32 m in the unstructured triangular mesh to resolve the tailrace flow. The bottom elevation decreases ~14 m within the distance of ~1.4 km along the river. This pioneering FVCOM river modeling demonstrated a very good performance in simulating the river flow structures. The second application is to compute ocean currents immediately above the seabed along the present underwater electrical cable crossing routes across Discovery Passage. Higher resolution was used near the bottom with inter-layer spacing ranging from 0.125 to 0.0005 of total water depth. The model behaves very well in simulating the strong tidal currents in the area at high resolution in both the horizontal and vertical. One year maximum near bottom tidal current along the routes was then analyzed using the model results.

  5. Ocean and Coastal Law

    Science.gov (United States)

    Ross, David A.

    First of all, this is not the typical book that one expects to see reviewed in Eos, but, read on. It should be clear, by now, even to the most esoteric geophysicist, that lawyers and jurists are taking very close looks at many coastal zone and offshore marine activities. More importantly, there are a wide variety of laws (both at the state and the national levels) and international regulations that determine how we now use or will use our coastal region including how and where we will do marine scientific research. Recently, a Presidential Proclamation (March 1983) declared a 200-mile exclusive economic zone for the United States. The President, in the accompanying statements to the Proclamation, has called special attention to polymetallic sulfide deposits (Is someone in the White House reading Eos?) in what will now be U.S. waters (i.e., the Juan de Fuca region). Well, if you or your colleagues want to know more about U.S. and individual state rules for management and use of our marine areas, this might be the book for you.

  6. Ocean City, Maryland Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  7. Dissolved organic carbon pools and export from the coastal ocean

    KAUST Repository

    Barrón, Cristina

    2015-10-21

    The distribution of dissolved organic carbon (DOC) concentration across coastal waters was characterized based on the compilation of 3510 individual estimates of DOC in coastal waters worldwide. We estimated the DOC concentration in the coastal waters that directly exchange with open ocean waters in two different ways, as the DOC concentration at the edge of the shelf break and as the DOC concentration in coastal waters with salinity close to the average salinity in the open ocean. Using these estimates of DOC concentration in the coastal waters that directly exchange with open ocean waters, the mean DOC concentration in the open ocean and the estimated volume of water annually exchanged between coastal and open ocean, we estimated a median ± SE (and average ± SE) global DOC export from coastal to open ocean waters ranging from 4.4 ± 1.0 Pg C yr−1 to 27.0 ± 1.8 Pg C yr−1 (7.0 ± 5.8 Pg C yr−1 to 29.0 ± 8.0 Pg C yr−1) depending on the global hydrological exchange. These values correspond to a median and mean median (and average) range between 14.7 ± 3.3 to 90.0 ± 6.0 (23.3 ± 19.3 to 96.7 ± 26.7) Gg C yr−1 per km of shelf break, which is consistent with the range between 1.4 to 66.1 Gg C yr−1 per km of shelf break of available regional estimates of DOC export. The estimated global DOC export from coastal to open ocean waters is also consistent with independent estimates of the net metabolic balance of the coastal ocean. The DOC export from the coastal to the open ocean is likely to be a sizeable flux and is likely to be an important term in the carbon budget of the open ocean, potentially providing an important subsidy to support heterotrophic activity in the open ocean.

  8. Dissolved organic carbon pools and export from the coastal ocean

    KAUST Repository

    Barró n, Cristina; Duarte, Carlos M.

    2015-01-01

    The distribution of dissolved organic carbon (DOC) concentration across coastal waters was characterized based on the compilation of 3510 individual estimates of DOC in coastal waters worldwide. We estimated the DOC concentration in the coastal waters that directly exchange with open ocean waters in two different ways, as the DOC concentration at the edge of the shelf break and as the DOC concentration in coastal waters with salinity close to the average salinity in the open ocean. Using these estimates of DOC concentration in the coastal waters that directly exchange with open ocean waters, the mean DOC concentration in the open ocean and the estimated volume of water annually exchanged between coastal and open ocean, we estimated a median ± SE (and average ± SE) global DOC export from coastal to open ocean waters ranging from 4.4 ± 1.0 Pg C yr−1 to 27.0 ± 1.8 Pg C yr−1 (7.0 ± 5.8 Pg C yr−1 to 29.0 ± 8.0 Pg C yr−1) depending on the global hydrological exchange. These values correspond to a median and mean median (and average) range between 14.7 ± 3.3 to 90.0 ± 6.0 (23.3 ± 19.3 to 96.7 ± 26.7) Gg C yr−1 per km of shelf break, which is consistent with the range between 1.4 to 66.1 Gg C yr−1 per km of shelf break of available regional estimates of DOC export. The estimated global DOC export from coastal to open ocean waters is also consistent with independent estimates of the net metabolic balance of the coastal ocean. The DOC export from the coastal to the open ocean is likely to be a sizeable flux and is likely to be an important term in the carbon budget of the open ocean, potentially providing an important subsidy to support heterotrophic activity in the open ocean.

  9. Boundary Conditions, Data Assimilation, and Predictability in Coastal Ocean Models

    National Research Council Canada - National Science Library

    Samelson, Roger M; Allen, John S; Egbert, Gary D; Kindle, John C; Snyder, Chris

    2007-01-01

    ...: The specific objectives of this research are to determine the impact on coastal ocean circulation models of open ocean boundary conditions from Global Ocean Data Assimilation Experiment (GODAE...

  10. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean

    International Nuclear Information System (INIS)

    Eden, H.F.; Mooers, C.N.K.

    1990-06-01

    The goal of COPS is to couple a program of regular observations to numerical models, through techniques of data assimilation, in order to provide a predictive capability for the US coastal ocean including the Great Lakes, estuaries, and the entire Exclusive Economic Zone (EEZ). The objectives of the program include: determining the predictability of the coastal ocean and the processes that govern the predictability; developing efficient prediction systems for the coastal ocean based on the assimilation of real-time observations into numerical models; and coupling the predictive systems for the physical behavior of the coastal ocean to predictive systems for biological, chemical, and geological processes to achieve an interdisciplinary capability. COPS will provide the basis for effective monitoring and prediction of coastal ocean conditions by optimizing the use of increased scientific understanding, improved observations, advanced computer models, and computer graphics to make the best possible estimates of sea level, currents, temperatures, salinities, and other properties of entire coastal regions

  11. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean

    International Nuclear Information System (INIS)

    1990-01-01

    This document is a compilation of summaries of papers presented at the Coastal Ocean Prediction Systems workshop. Topics include; marine forecasting, regulatory agencies and regulations, research and application models, research and operational observing, oceanic and atmospheric data assimilation, and coastal physical processes

  12. COPEPOD: The Coastal & Oceanic Plankton Ecology, Production, & Observation Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coastal & Oceanic Plankton Ecology, Production, & Observation Database (COPEPOD) provides NMFS scientists with quality-controlled, globally distributed...

  13. Developments in Coastal Ocean Modeling

    Science.gov (United States)

    Allen, J. S.

    2001-12-01

    Capabilities in modeling continental shelf flow fields have improved markedly in the last several years. Progress is being made toward the long term scientific goal of utilizing numerical circulation models to interpolate, or extrapolate, necessarily limited field measurements to provide additional full-field information describing the behavior of, and providing dynamical rationalizations for, complex observed coastal flow. The improvement in modeling capabilities has been due to several factors including an increase in computer power and, importantly, an increase in experience of modelers in formulating relevant numerical experiments and in analyzing model results. We demonstrate present modeling capabilities and limitations by discussion of results from recent studies of shelf circulation off Oregon and northern California (joint work with Newberger, Gan, Oke, Pullen, and Wijesekera). Strong interactions between wind-forced coastal currents and continental shelf topography characterize the flow regimes in these cases. Favorable comparisons of model and measured alongshore currents and other variables provide confidence in the model-produced fields. The dependence of the mesoscale circulation, including upwelling and downwelling fronts and flow instabilities, on the submodel used to parameterize the effects of small scale turbulence, is discussed. Analyses of model results to provide explanations for the observed, but previously unexplained, alongshore variability in the intensity of coastal upwelling, which typically results in colder surface water south of capes, and the observed development in some locations of northward currents near the coast in response to the relaxation of southward winds, are presented.

  14. New satellite altimetry products for coastal oceans

    Science.gov (United States)

    Dufau, Claire; Mercier, F.; Ablain, M.; Dibarboure, G.; Carrere, L.; Labroue, S.; Obligis, E.; Sicard, P.; Thibaut, P.; Birol, F.; Bronner, E.; Lombard, A.; Picot, N.

    Since the launch of Topex-Poseidon in 1992, satellite altimetry has become one of the most essential elements of the Earth's observing system. Its global view of the ocean state has permitted numerous improvements in the environment understanding, particularly in the global monitoring of climate changes and ocean circulation. Near the coastlines where human activities have a major impact on the ocean, satellite altimeter techniques are unfortunately limited by a growth of their error budget. This quality loss is due to land contamination in the altimetric and radiometric footprints but also to inaccurate geophysical corrections (tides, high-frequency processes linked to atmospheric forcing).Despite instrumental perturbations by emerged lands until 10 km (altimeter) and 50 km (radiometer) off the coasts, measurements are made and may contain useful information for coastal studies. In order to recover these data close to the coast, the French Spatial Agency (CNES) has funded the development of the PISTACH prototype dedicated to Jason-2 altimeter processing in coastal ocean. Since November 2008, these new satellite altimeter products have been providing new retracking solutions, several state-of-the-art or with higher resolution corrections in addition to standard fields. This presentation will present and illustrate this new set of satellite data for the coastal oceans.

  15. Transport processes near coastal ocean outfalls

    Science.gov (United States)

    Noble, M.A.; Sherwood, C.R.; Lee, Hooi-Ling; Xu, Jie; Dartnell, P.; Robertson, G.; Martini, M.

    2001-01-01

    The central Southern California Bight is an urbanized coastal ocean where complex topography and largescale atmospheric and oceanographic forcing has led to numerous sediment-distribution patterns. Two large embayments, Santa Monica and San Pedro Bays, are connected by the short, very narrow shelf off the Palos Verdes peninsula. Ocean-sewage outfalls are located in the middle of Santa Monica Bay, on the Palos Verdes shelf and at the southeastern edge of San Pedro Bay. In 1992, the US Geological Survey, together with allied agencies, began a series of programs to determine the dominant processes that transport sediment and associated pollutants near the three ocean outfalls. As part of these programs, arrays of instrumented moorings that monitor currents, waves, water clarity, water density and collect resuspended materials were deployed on the continental shelf and slope information was also collected on the sediment and contaminant distributions in the region. The data and models developed for the Palos Verdes shelf suggest that the large reservoir of DDT/DDE in the coastal ocean sediments will continue to be exhumed and transported along the shelf for a long time. On the Santa Monica shelf, very large internal waves, or bores, are generated at the shelf break. The near-bottom currents associated with these waves sweep sediments and the associated contaminants from the shelf onto the continental slope. A new program underway on the San Pedro shelf will determine if water and contaminants from a nearby ocean outfall are transported to the local beaches by coastal ocean processes. The large variety of processes found that transport sediments and contaminants in this small region of the continental margin suggest that in regions with complex topography, local processes change markedly over small spatial scales. One cannot necessarily infer that the dominant transport processes will be similar even in adjacent regions.

  16. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean

    International Nuclear Information System (INIS)

    1990-01-01

    The proposed COPS (Coastal Ocean Prediction Systems) program is concerned with combining numerical models with observations (through data assimilation) to improve our predictive knowledge of the coastal ocean. It is oriented toward applied research and development and depends upon the continued pursuit of basic research in programs like COOP (Coastal Ocean Processes); i.e., to a significant degree it is involved with ''technology transfer'' from basic knowledge to operational and management applications. This predictive knowledge is intended to address a variety of societal problems: (1) ship routing, (2) trajectories for search and rescue operations, (3) oil spill trajectory simulations, (4) pollution assessments, (5) fisheries management guidance, (6) simulation of the coastal ocean's response to climate variability, (7) calculation of sediment transport, (8) calculation of forces on structures, and so forth. The initial concern is with physical models and observations in order to provide a capability for the estimation of physical forces and transports in the coastal ocean. For all these applications, there are common needs for physical field estimates: waves, tides, currents, temperature, and salinity, including mixed layers, thermoclines, fronts, jets, etc. However, the intent is to work with biologists, chemists, and geologists in developing integrated multidisciplinary prediction systems as it becomes feasible to do so. From another perspective, by combining observations with models through data assimilation, a modern approach to monitoring is provided through whole-field estimation

  17. Oceanic rafting by a coastal community.

    Science.gov (United States)

    Fraser, Ceridwen I; Nikula, Raisa; Waters, Jonathan M

    2011-03-07

    Oceanic rafting is thought to play a fundamental role in assembling the biological communities of isolated coastal ecosystems. Direct observations of this key ecological and evolutionary process are, however, critically lacking. The importance of macroalgal rafting as a dispersal mechanism has remained uncertain, largely owing to lack of knowledge about the capacity of fauna to survive long voyages at sea and successfully make landfall and establish. Here, we directly document the rafting of a diverse assemblage of intertidal organisms across several hundred kilometres of open ocean, from the subantarctic to mainland New Zealand. Multispecies analyses using phylogeographic and ecological data indicate that 10 epifaunal invertebrate species rafted on six large bull kelp specimens for several weeks from the subantarctic Auckland and/or Snares Islands to the Otago coast of New Zealand, a minimum distance of some 400-600 km. These genetic data are the first to demonstrate that passive rafting can enable simultaneous trans-oceanic transport and landfall of numerous coastal taxa.

  18. Elements of a coastal ocean forecasting system for India

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; Radhakrishnan, K.

    After about four decades of investment in infrastructure for ocean research, an appropriate initiative for India now would be to build a coastal ocean forecasting system to support the country's myriad activities in its Exclusive Economic Zone...

  19. IOCM Aerial Photography: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Integrated Ocean and Coastal Mapping Product (IOCM). The images were acquired from a nominal altitude of 7,500 feet above ground level (AGL), using an Applanix...

  20. Oceanic diffusion in the coastal area

    International Nuclear Information System (INIS)

    Rukuda, Masaaki

    1980-03-01

    Described in this paper is the eddy diffusion in the area off Tokai Village investigated by means of dye diffusion experiment and of oceanic observation. In order to assess the oceanic diffusion in coastal areas, improved methods effective in complex field were developed. The oceanic diffusion was separated in two groups, horizontal and vertical diffusion respectively. Both these diffusions are combined and their analysis together is difficult. The oceanic diffusion is thus considered separately. Instantaneous point release is the basis of horizontal diffusion analysis. Continuous release is then the overlap of numerous instantaneous releases. It was shown that the diffusion parameters derived from the results of diffusion experiment or oceanic observation vary widely with time and place and with sea conditions. A simple diffusion equation was developed from the equation of continuity. The results were in good agreement with seasonal mean horizontal distribution of river water in the sea area. The vertical observation in diffusion experiment is difficult and the vertical structure of oceanic condition is complex, so that the research on vertical diffusion generally is not advanced yet. With river water as the tracer, a method of estimating vertical diffusion parameters with a Gaussian model or one-dimensional model was developed. The vertical diffusion near sea bottom was numerically analized with suspended particles in seawater as the tracer. Diffusion was computed for each particle size, and by summing up the vertical distribution of beam attenuation coefficient was estimated. By comparing the results of estimation and those of observation the vertical diffusivity and the particle size distribution at sea bottom could be estimated. (author)

  1. Stratified coastal ocean interactions with tropical cyclones

    Science.gov (United States)

    Glenn, S. M.; Miles, T. N.; Seroka, G. N.; Xu, Y.; Forney, R. K.; Yu, F.; Roarty, H.; Schofield, O.; Kohut, J.

    2016-01-01

    Hurricane-intensity forecast improvements currently lag the progress achieved for hurricane tracks. Integrated ocean observations and simulations during hurricane Irene (2011) reveal that the wind-forced two-layer circulation of the stratified coastal ocean, and resultant shear-induced mixing, led to significant and rapid ahead-of-eye-centre cooling (at least 6 °C and up to 11 °C) over a wide swath of the continental shelf. Atmospheric simulations establish this cooling as the missing contribution required to reproduce Irene's accelerated intensity reduction. Historical buoys from 1985 to 2015 show that ahead-of-eye-centre cooling occurred beneath all 11 tropical cyclones that traversed the Mid-Atlantic Bight continental shelf during stratified summer conditions. A Yellow Sea buoy similarly revealed significant and rapid ahead-of-eye-centre cooling during Typhoon Muifa (2011). These findings establish that including realistic coastal baroclinic processes in forecasts of storm intensity and impacts will be increasingly critical to mid-latitude population centres as sea levels rise and tropical cyclone maximum intensities migrate poleward. PMID:26953963

  2. Hyperspectral Imager for the Coastal Ocean (HICO): Overview, Operational Updates, and Coastal Ocean Applications

    Science.gov (United States)

    Davis, Curtiss O.; Kappus, Mary E.; Bowles, Jeffrey H.; Evans, Cynthia A.; Stefanov, William L.

    2014-01-01

    The Hyperspectral Imager for the Coastal Ocean (HICO) was built to measure in-water properties of complex coastal regions. HICO enables synoptic coverage; 100-meter spatial resolution for sampling the variability and spatial irregularity of coastal waters; and high spectral resolution to untangle the signals from chlorophyll, colored dissolved organic matter, suspended sediments and varying bottom types. HICO was built by the Naval Research Laboratory, installed on the International Space Station (ISS) in September 2009, and operated for ONR for the first three years. In 2013, NASA assumed sponsorship of operations in order to leverage HICO's ability to address their Earth monitoring mission. This has opened up access of HICO data to the broad research community. Over 8000 images are now available on NASA's Ocean Color Website (http://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sen=hi). Oregon State University's HICO website (http://hico.coas.oregonstate.edu) remains the portal for researchers to request new collections and access their requested data. We will present updates on HICO's calibration and improvements in geolocation and show examples of the use of HICO data to address issues in the coastal ocean and Great Lakes.

  3. The numerics of hydrostatic structured-grid coastal ocean models: State of the art and future perspectives

    Science.gov (United States)

    Klingbeil, Knut; Lemarié, Florian; Debreu, Laurent; Burchard, Hans

    2018-05-01

    The state of the art of the numerics of hydrostatic structured-grid coastal ocean models is reviewed here. First, some fundamental differences in the hydrodynamics of the coastal ocean, such as the large surface elevation variation compared to the mean water depth, are contrasted against large scale ocean dynamics. Then the hydrodynamic equations as they are used in coastal ocean models as well as in large scale ocean models are presented, including parameterisations for turbulent transports. As steps towards discretisation, coordinate transformations and spatial discretisations based on a finite-volume approach are discussed with focus on the specific requirements for coastal ocean models. As in large scale ocean models, splitting of internal and external modes is essential also for coastal ocean models, but specific care is needed when drying & flooding of intertidal flats is included. As one obvious characteristic of coastal ocean models, open boundaries occur and need to be treated in a way that correct model forcing from outside is transmitted to the model domain without reflecting waves from the inside. Here, also new developments in two-way nesting are presented. Single processes such as internal inertia-gravity waves, advection and turbulence closure models are discussed with focus on the coastal scales. Some overview on existing hydrostatic structured-grid coastal ocean models is given, including their extensions towards non-hydrostatic models. Finally, an outlook on future perspectives is made.

  4. Tidal Wetlands and Coastal Ocean Carbon Dynamics

    Science.gov (United States)

    Hopkinson, C.; Wang, S. R.; Forbrich, I.; Giblin, A. E.; Cai, W. J.

    2017-12-01

    Recent overviews of coastal ocean C dynamics have tidal wetlands in a prominent position: a local sink for atmospheric CO2, a local store of OC, and a source of DIC and OC for the adjacent estuary and nearshore ocean. Over the past decade there have been great strides made in quantifying and understanding these flows and linkages. GPP and R of the wetlands are not nearly as imbalanced as thought 30 yrs ago. Heterotrophy of adjacent estuarine waters is not solely due to the respiration of OC exported from the marsh, rather we see the marsh directly respiring into the water during tidal inundation and accumulated marsh DIC draining into tidal creeks. Organic carbon burial on the marsh is still a relatively minor flux, but it is large relative to marsh NEE. Using literature and unpublished data on marsh DIC export, we used examples from Sapelo Island GA USA and Plum Island MA USA to constrain estimates of NEP and potential OC export. P. There remain large uncertainties in quantifying C dynamics of coupled wetland - estuary systems. Gas exchange from the water to atmosphere is one of the largest uncertainties. Work at Sapelo suggests that upwards of 40% of all daily exchange occurs from water flooding the marsh, which is but a few hours a day. This estimate is based on the intercept value for gas exchange vs wind velocity. Another major uncertainty comes from converting between O2 based estimates of metabolism to C. At Sapelo we find PQ and RQ values diverging greatly from Redfield. Finally, C dynamics of the coastal ocean, especially the role of tidal wetlands is likely to change substantially in the future. Studies at Plum Island show a reversal of the 4000 yr process of marsh progradation with marshes eroding away at their edges because of inadequate sediment supply and rising sea level. The fate of eroded OC is questionable. Landward transgression with SLR is the only likely counter to continued wetland loss - but that's a complex social issue requiring new

  5. Oceanic sharks clean at coastal seamount.

    Directory of Open Access Journals (Sweden)

    Simon P Oliver

    2011-03-01

    Full Text Available Interactions between pelagic thresher sharks (Alopias pelagicus and cleaner wrasse were investigated at a seamount in the Philippines. Cleaning associations between sharks and teleosts are poorly understood, but the observable interactions seen at this site may explain why these mainly oceanic sharks regularly venture into shallow coastal waters where they are vulnerable to disturbance from human activity. From 1,230 hours of observations recorded by remote video camera between July 2005 and December 2009, 97 cleaner-thresher shark events were analyzed, 19 of which were interrupted. Observations of pelagic thresher sharks interacting with cleaners at the seamount were recorded at all times of day but their frequency declined gradually from morning until evening. Cleaners showed preferences for foraging on specific areas of a thresher shark's body. For all events combined, cleaners were observed to conduct 2,757 inspections, of which 33.9% took place on the shark's pelvis, 23.3% on the pectoral fins, 22.3% on the caudal fin, 8.6% on the body, 8.3% on the head, 2.1% on the dorsal fin, and 1.5% on the gills respectively. Cleaners did not preferentially inspect thresher sharks by time of day or by shark sex, but there was a direct correlation between the amount of time a thresher shark spent at a cleaning station and the number of inspections it received. Thresher shark clients modified their behavior by "circular-stance-swimming," presumably to facilitate cleaner inspections. The cleaner-thresher shark association reflected some of the known behavioral trends in the cleaner-reef teleost system since cleaners appeared to forage selectively on shark clients. Evidence is mounting that in addition to acting as social refuges and foraging grounds for large visiting marine predators, seamounts may also support pelagic ecology by functioning as cleaning stations for oceanic sharks and rays.

  6. MECHANISMS FOR THE SEASONAL CYCLE IN THE ANTARCTIC COASTAL OCEANS

    OpenAIRE

    オオシマ; Kay I., OHSHIMA

    1996-01-01

    Seasonal variations of the Antarctic coastal oceans has not been well understood owing to logistical difficulties in observations, especially during the ice-covered season. Recently, 'Weddell Gyre Study' and 'Japanese Antarctic Climate Research program' have revealed the following seasonal variations in the Antarctic coastal ocean. First, the thickness of the Winter Water (WW) layer, characterized by cold, fresh, oxygen-rich water, exhibits its maximum in the austral fall and its minimum in t...

  7. Effects of ocean acidification on primary production in a coastal North Sea phytoplankton community

    NARCIS (Netherlands)

    Eberlein, Tim; Wohlrab, Sylke; Rost, Björn; John, Uwe; Bach, Lennart T.; Riebesell, U.; Van de Waal, D.B.

    2017-01-01

    We studied the effect of ocean acidification (OA) on a coastal North Sea plankton community in a long-term mesocosm CO2-enrichment experiment (BIOACID II long-term mesocosm study). From March to July 2013, 10 mesocosms of 19 m length with a volume of 47.5 to 55.9 m3 were deployed in the Gullmar

  8. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic image tiles, coastal North Carolina, 2008 (NODC Accession 0074382)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are a NOAA Integrated Ocean and Coastal Mapping (IOCM) Product collected from the coastal North Carolina (Pamlico Sound) region. Imagery products are true...

  9. The Design and Analysis of Salmonid Tagging Studies in the Columbia Basin : Volume XVII : Effects of Ocean Covariates and Release Timing on First Ocean-Year Survival of Fall Chinook Salmon from Oregon and Washington Coastal Hatcheries.

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Caitlin; Skalski, John R.

    2001-05-01

    Effects of oceanographic conditions, as well as effects of release-timing and release-size, on first ocean-year survival of subyearling fall chinook salmon were investigated by analyzing CWT release and recovery data from Oregon and Washington coastal hatcheries. Age-class strength was estimated using a multinomial probability likelihood which estimated first-year survival as a proportional hazards regression against ocean and release covariates. Weight-at-release and release-month were found to significantly effect first year survival (p < 0.05) and ocean effects were therefore estimated after adjusting for weight-at-release. Negative survival trend was modeled for sea surface temperature (SST) during 11 months of the year over the study period (1970-1992). Statistically significant negative survival trends (p < 0.05) were found for SST during April, June, November and December. Strong pairwise correlations (r > 0.6) between SST in April/June, April/November and April/December suggest the significant relationships were due to one underlying process. At higher latitudes (45{sup o} and 48{sup o}N), summer upwelling (June-August) showed positive survival trend with survival and fall (September-November) downwelling showed positive trend with survival, indicating early fall transition improved survival. At 45{sup o} and 48{sup o}, during spring, alternating survival trends with upwelling were observed between March and May, with negative trend occurring in March and May, and positive trend with survival occurring in April. In January, two distinct scenarios of improved survival were linked to upwelling conditions, indicated by (1) a significant linear model effect (p < 0.05) showing improved survival with increasing upwelling, and (2) significant bowl-shaped curvature (p < 0.05) of survival with upwelling. The interpretation of the effects is that there was (1) significantly improved survival when downwelling conditions shifted to upwelling conditions in January (i

  10. Open-Ocean and Coastal Properties of Recent Major Tsunamis

    Science.gov (United States)

    Rabinovich, A.; Thomson, R.; Zaytsev, O.

    2017-12-01

    The properties of six major tsunamis during the period 2009-2015 (2009 Samoa; 2010 Chile; 2011 Tohoku; 2012 Haida Gwaii; 2014 and 2015 Chile) were thoroughly examined using coastal data from British Columbia, the U.S. West Coast and Mexico, and offshore open-ocean DART and NEPTUNE stations. Based on joint spectral analyses of the tsunamis and background noise, we have developed a method to suppress the influence of local topography and to use coastal observations to determine the underlying spectra of tsunami waves in the deep ocean. The "reconstructed" open-ocean tsunami spectra were found to be in close agreement with the actual tsunami spectra evaluated from the analysis of directly measured open-ocean tsunami records. We have further used the spectral estimates to parameterize tsunamis based on their integral open-ocean spectral characteristics. Three key parameters are introduced to describe individual tsunami events: (1) Integral open-ocean energy; (2) Amplification factor (increase of the mean coastal tsunami variance relative to the open-ocean variance); and (3) Tsunami colour, the frequency composition of the open-ocean tsunami waves. In particular, we found that the strongest tsunamis, associated with large source areas (the 2010 Chile and 2011 Tohoku) are "reddish" (indicating the dominance of low-frequency motions), while small-source events (the 2009 Samoa and 2012 Haida Gwaii) are "bluish" (indicating strong prevalence of high-frequency motions).

  11. Dissolved Organic Matter (DOM) Export from Watersheds to Coastal Oceans

    Science.gov (United States)

    Chen, R. F.; Gardner, G. B.; Peri, F.

    2016-02-01

    Dissolved organic matter (DOM) from terrestrial plants and soils is transported by surface waters and groundwaters to coastal ocean waters. Along the way, photochemical and biological degradation can remove DOM, and in situ processes such as phytoplankton leaching and sediment sources can add to the DOM in the river water. Wetlands, especially coastal wetlands can add significant amounts of DOM that is carried by rivers and is exported through estuaries to coastal systems. We will present observational data from a variety of coastal systems (San Francisco Bay, Boston Harbor, Chesapeake Bay, Hudson River, the Mississippi River, and a small salt marsh in the Gulf of Mexico). High resolution measurements of chromophoric dissolved organic matter (CDOM) can be correlated with dissolved organic carbon (DOC) so can be used to estimate DOC in specific systems and seasons. Gradients in CDOM/DOC combined with water fluxes can be used to estimate DOC fluxes from a variety of coastal watersheds to coastal systems. Influences of land use, system size, residence time, DOM quality, and photochemical and biological degradation will be discussed. The significance of coastal wetlands in the land-to-ocean export of DOC will be emphasized.

  12. Diurnal changes in ocean color in coastal waters

    Science.gov (United States)

    Arnone, Robert; Vandermeulen, Ryan; Ladner, Sherwin; Ondrusek, Michael; Kovach, Charles; Yang, Haoping; Salisbury, Joseph

    2016-05-01

    Coastal processes can change on hourly time scales in response to tides, winds and biological activity, which can influence the color of surface waters. These temporal and spatial ocean color changes require satellite validation for applications using bio-optical products to delineate diurnal processes. The diurnal color change and capability for satellite ocean color response were determined with in situ and satellite observations. Hourly variations in satellite ocean color are dependent on several properties which include: a) sensor characterization b) advection of water masses and c) diurnal response of biological and optical water properties. The in situ diurnal changes in ocean color in a dynamic turbid coastal region in the northern Gulf of Mexico were characterized using above water spectral radiometry from an AErosol RObotic NETwork (AERONET -WavCIS CSI-06) site that provides up to 8-10 observations per day (in 15-30 minute increments). These in situ diurnal changes were used to validate and quantify natural bio-optical fluctuations in satellite ocean color measurements. Satellite capability to detect changes in ocean color was characterized by using overlapping afternoon orbits of the VIIRS-NPP ocean color sensor within 100 minutes. Results show the capability of multiple satellite observations to monitor hourly color changes in dynamic coastal regions that are impacted by tides, re-suspension, and river plume dispersion. Hourly changes in satellite ocean color were validated with in situ observation on multiple occurrences during different times of the afternoon. Also, the spatial variability of VIIRS diurnal changes shows the occurrence and displacement of phytoplankton blooms and decay during the afternoon period. Results suggest that determining the temporal and spatial changes in a color / phytoplankton bloom from the morning to afternoon time period will require additional satellite coverage periods in the coastal zone.

  13. Icefield-to-ocean linkages across the northern Pacific coastal temperate rainforest ecosystem

    Science.gov (United States)

    O'Neel, Shad; Hood, Eran; Bidlack, Allison L.; Fleming, Sean W.; Arimitsu, Mayumi L.; Arendt, Anthony; Burgess, Evan W.; Sergeant, Christopher J.; Beaudreau, Anne E.; Timm, Kristin; Hayward, Gregory D.; Reynolds, Joel H.; Pyare, Sanjay

    2015-01-01

    Rates of glacier mass loss in the northern Pacific coastal temperate rainforest (PCTR) are among the highest on Earth, and changes in glacier volume and extent will affect the flow regime and chemistry of coastal rivers, as well as the nearshore marine ecosystem of the Gulf of Alaska. Here we synthesize physical, chemical and biological linkages that characterize the northern PCTR ecosystem, with particular emphasis on the potential impacts of glacier change in the coastal mountain ranges on the surface–water hydrology, biogeochemistry, coastal oceanography and aquatic ecology. We also evaluate the relative importance and interplay between interannual variability and long-term trends in key physical drivers and ecological responses. To advance our knowledge of the northern PCTR, we advocate for cross-disciplinary research bridging the icefield-to-ocean ecosystem that can be paired with long-term scientific records and designed to inform decisionmakers.

  14. Oceans and Human Health: Linking Ocean, Organism, and Human Health for Sustainable Management of Coastal Ecosystems

    Science.gov (United States)

    Sandifer, P. A.; Trtanj, J.; Collier, T. K.

    2012-12-01

    Scientists and policy-makers are increasingly recognizing that sustainable coastal communities depend on healthy and resilient economies, ecosystems, and people, and that the condition or "health" of the coastal ocean and humans are intimately and inextricably connected. A wealth of ecosystem services provided by ocean and coastal environments are crucial for human survival and well being. Nonetheless, the health of coastal communities, their economies, connected ecosystems and ecosystem services, and people are under increasing threats from health risks associated with environmental degradation, climate change, and unwise land use practices, all of which contribute to growing burdens of naturally-occurring and introduced pathogens, noxious algae, and chemical contaminants. The occurrence, frequency, intensity, geographic range, and number and kinds of ocean health threats are increasing, with concomitant health and economic effects and eroding public confidence in the safety and wholesomeness of coastal environments and resources. Concerns in the research and public health communities, many summarized in the seminal 1999 NRC Report, From Monsoons to Microbes and the 2004 final report of the US Commission on Ocean Policy, resulted in establishment of a new "meta-discipline" known as Oceans and Human Health (OHH). OHH brings together practitioners in oceanography, marine biology, ecology, biomedical science, medicine, economics and other social sciences, epidemiology, environmental management, and public health to focus on water- and food-borne causes of human and animal illnesses associated with ocean and coastal systems and on health benefits of seafood and other marine products. It integrates information across multiple disciplines to increase knowledge of ocean health risks and benefits and communicate such information to enhance public safety. Recognizing the need for a comprehensive approach to ocean health threats and benefits, Congress passed the Oceans and

  15. Coastal Adaptation: The Case of Ocean Beach, San Francisco

    Science.gov (United States)

    Cheong, S.

    2012-12-01

    Coastal erosion, storms, sea-level rise, and tsunamis all lead to inundation that puts people and communities at risk. Adapting to these coastal hazards has gained increasing attention with climate change. Instead of promoting one particular strategy such as seawalls or defending against one type of hazard, scholars and practitioners encourage a combination of existing methods and strategies to promote synergistic effects. The recently published Intergovernmental Panel on Climate Change (IPCC) Special Report on climate extremes reflects this trend in the integration of disaster risk management and climate change adaptation. This paper focuses on the roles, compatibilities, and synergies of three coastal adaptation options - engineering, vegetation, and policy - in the case of Ocean Beach in San Francisco. Traditionally engineering approach and ecosystem conservation often have stood in opposition as hard shoreline structures destroy coastal habitats, worsen coastal erosion, divert ocean currents, and prevent the natural migration of shores. A natural migration of shores without structure translates into the abandonment of properties in the coastal zone, and is at odds with property rights and development. For example, policies of relocation, retreat, and insurance may not be popular given the concerns of infrastructure and coastal access. As such, engineering, natural defense, and policy can be more conflictual than complementary. Nonetheless, all these responses are used in combination in many locations. Complementarities and compatibilities, therefore, must be assessed when considering the necessity of engineering responses, natural defense capabilities, and policy options. In this light, the question is how to resolve the problem of mixed responses and short- and long-term interests and values, identify compatibilities, and generate synergies. In the case of Ocean Beach, recent erosions that endangered San Francisco's wastewater treatment system acted as major

  16. Development of three dimensional ocean current model for coastal region

    International Nuclear Information System (INIS)

    Kobayashi, Takuya

    1999-12-01

    In order to study the migration behavior of radionuclides released into a coastal region around Japan, Princeton Ocean Model (POM) was introduced. This three-dimensional ocean current model was modified to be applied for oceanic simulations around Japan. This report describes the governing equations, numerical methods and model improvements. In addition, database system which is utilized for calculations and visualization system for graphical outputs are also described. Model simulation was carried out at off the area of Shimokita. Aomori-ken, Japan to investigate the effects of the boundary conditions on simulated results. (author)

  17. Ocean Wave Energy Regimes of the Circumpolar Coastal Zones

    Science.gov (United States)

    Atkinson, D. E.

    2004-12-01

    Ocean wave activity is a major enviromental forcing agent of the ice-rich sediments that comprise large sections of the arctic coastal margins. While it is instructive to possess information about the wind regimes in these regions, direct application to geomorphological and engineering needs requires knowledge of the resultant wave-energy regimes. Wave energy information has been calculated at the regional scale using adjusted reanalysis model windfield data. Calculations at this scale are not designed to account for local-scale coastline/bathymetric irregularities and variability. Results will be presented for the circumpolar zones specified by the Arctic Coastal Dynamics Project.

  18. Challenges and potential solutions for European coastal ocean modelling

    Science.gov (United States)

    She, Jun; Stanev, Emil

    2017-04-01

    Coastal operational oceanography is a science and technological platform to integrate and transform the outcomes in marine monitoring, new knowledge generation and innovative technologies into operational information products and services in the coastal ocean. It has been identified as one of the four research priorities by EuroGOOS (She et al. 2016). Coastal modelling plays a central role in such an integration and transformation. A next generation coastal ocean forecasting system should have following features: i) being able to fully exploit benefits from future observations, ii) generate meaningful products in finer scales e.g., sub-mesoscale and in estuary-coast-sea continuum, iii) efficient parallel computing and model grid structure, iv) provide high quality forecasts as forcing to NWP and coastal climate models, v) resolving correctly inter-basin and inter-sub-basin water exchange, vi) resolving synoptic variability and predictability in marine ecosystems, e.g., for algae bloom, vi) being able to address critical and relevant issues in coastal applications, e.g., marine spatial planning, maritime safety, marine pollution protection, disaster prevention, offshore wind energy, climate change adaptation and mitigation, ICZM (integrated coastal zone management), the WFD (Water Framework Directive), and the MSFD (Marine Strategy Framework Directive), especially on habitat, eutrophication, and hydrographic condition descriptors. This presentation will address above challenges, identify limits of current models and propose correspondent research needed. The proposed roadmap will address an integrated monitoring-modelling approach and developing Unified European Coastal Ocean Models. In the coming years, a few new developments in European Sea observations can expected, e.g., more near real time delivering on profile observations made by research vessels, more shallow water Argo floats and bio-Argo floats deployed, much more high resolution sea level data from SWOT

  19. Accuracy assessment of satellite Ocean colour products in coastal waters.

    Science.gov (United States)

    Tilstone, G.; Lotliker, A.; Groom, S.

    2012-04-01

    The use of Ocean Colour Remote Sensing to monitor phytoplankton blooms in coastal waters is hampered by the absorption and scattering from substances in the water that vary independently of phytoplankton. In this paper we compare different ocean colour algorithms available for SeaWiFS, MODIS and MERIS with in situ observations of Remote Sensing Reflectance, Chlorophyll-a (Chla), Total Suspended Material and Coloured Dissolved Organic Material in coastal waters of the Arabian Sea, Bay of Bengal, North Sea and Western English Channel, which have contrasting inherent optical properties. We demonstrate a clustering method on specific-Inherent Optical Properties (sIOP) that gives accurate water quality products from MERIS data (HYDROPT) and also test the recently developed ESA CoastColour MERIS products. We found that for coastal waters of the Bay of Bengal, OC5 gave the most accurate Chla, for the Arabian Sea GSM and OC3M Chla were more accurate and for the North Sea and Western English Channel, MERIS HYDROPT were more accurate than standard algorithms. The reasons for these differences will be discussed. A Chla time series from 2002-2011 will be presented to illustrate differences in algorithms between coastal regions and inter- and intra-annual variability in phytoplankton blooms

  20. Advancing coastal ocean modelling, analysis, and prediction for the US Integrated Ocean Observing System

    Science.gov (United States)

    Wilkin, John L.; Rosenfeld, Leslie; Allen, Arthur; Baltes, Rebecca; Baptista, Antonio; He, Ruoying; Hogan, Patrick; Kurapov, Alexander; Mehra, Avichal; Quintrell, Josie; Schwab, David; Signell, Richard; Smith, Jane

    2017-01-01

    This paper outlines strategies that would advance coastal ocean modelling, analysis and prediction as a complement to the observing and data management activities of the coastal components of the US Integrated Ocean Observing System (IOOS®) and the Global Ocean Observing System (GOOS). The views presented are the consensus of a group of US-based researchers with a cross-section of coastal oceanography and ocean modelling expertise and community representation drawn from Regional and US Federal partners in IOOS. Priorities for research and development are suggested that would enhance the value of IOOS observations through model-based synthesis, deliver better model-based information products, and assist the design, evaluation, and operation of the observing system itself. The proposed priorities are: model coupling, data assimilation, nearshore processes, cyberinfrastructure and model skill assessment, modelling for observing system design, evaluation and operation, ensemble prediction, and fast predictors. Approaches are suggested to accomplish substantial progress in a 3–8-year timeframe. In addition, the group proposes steps to promote collaboration between research and operations groups in Regional Associations, US Federal Agencies, and the international ocean research community in general that would foster coordination on scientific and technical issues, and strengthen federal–academic partnerships benefiting IOOS stakeholders and end users.

  1. Climate Outreach Using Regional Coastal Ocean Observing System Portals

    Science.gov (United States)

    Anderson, D. M.; Hernandez, D. L.; Wakely, A.; Bochenek, R. J.; Bickel, A.

    2015-12-01

    Coastal oceans are dynamic, changing environments affected by processes ranging from seconds to millennia. On the east and west coast of the U.S., regional observing systems have deployed and sustained a remarkable diverse array of observing tools and sensors. Data portals visualize and provide access to real-time sensor networks. Portals have emerged as an interactive tool for educators to help students explore and understand climate. Bringing data portals to outreach events, into classrooms, and onto tablets and smartphones enables educators to address topics and phenomena happening right now. For example at the 2015 Charleston Science Technology Engineering and Math (STEM) Festival, visitors navigated the SECOORA (Southeast Coastal Ocean Observing regional Association) data portal to view the real-time marine meteorological conditions off South Carolina. Map-based entry points provide an intuitive interface for most students, an array of time series and other visualizations depict many of the essential principles of climate science manifest in the coastal zone, and data down-load/ extract options provide access to the data and documentation for further inquiry by advanced users. Beyond the exposition of climate principles, the portal experience reveals remarkable technologies in action and shows how the observing system is enabled by the activity of many different partners.

  2. Coastal Ocean Ecosystem Dynamics Imager Pointing Line-of-Sight Solution Development and Testing

    Data.gov (United States)

    National Aeronautics and Space Administration — A stable pointing line of sight solution is developed and tested in support of the Coastal Ocean Ecosystem Dynamics Imager for the GEOstationary Coastal and Air...

  3. Integrated Ocean and Coastal Mapping (IOCM) Project FL1415: APALACHICOLA RIVER (MOUTH) TO SAUL CREEK, FL.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of Integrated Ocean and Coastal Mapping (IOCM) is to improve the coordination among federal, state and local government, non-governmental and private...

  4. Integrated Ocean and Coastal Mapping (IOCM) Project FL1421: ST JOHNS RIVER, FL.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of Integrated Ocean and Coastal Mapping (IOCM) is to improve the coordination among federal, state and local government, non-governmental and private...

  5. Integrated Ocean and Coastal Mapping (IOCM) Project WA1406: OLYMPIA, WA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of Integrated Ocean and Coastal Mapping (IOCM) is to improve the coordination among federal, state and local government, non-governmental and private...

  6. Integrated Ocean and Coastal Mapping (IOCM) Project WA1405: STRAIT OF JUAN DE FUCA, WA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of Integrated Ocean and Coastal Mapping (IOCM) is to improve the coordination among federal, state and local government, non-governmental and private...

  7. Integrated Ocean and Coastal Mapping (IOCM) Project FL1414: VENICE INLET - ICW, FL.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of Integrated Ocean and Coastal Mapping (IOCM) is to improve the coordination among federal, state and local government, non-governmental and private...

  8. Integrated Ocean and Coastal Mapping (IOCM) Project WA1002: PUDGET SOUND - WHIDBEY ISLAND, WA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of Integrated Ocean and Coastal Mapping (IOCM) is to improve the coordination among federal, state and local government, non-governmental and private...

  9. 2011 NOAA Ortho-rectified Mosaic of Texas: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  10. Integrated Ocean and Coastal Mapping (IOCM) Project OR1210: CAPE PERPETUA TO CLATSOP SPIT, OR.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of Integrated Ocean and Coastal Mapping (IOCM) is to improve the coordination among federal, state and local government, non-governmental and private...

  11. Coastal Ocean Observing Network - Open Source Architecture for Data Management and Web-Based Data Services

    Science.gov (United States)

    Pattabhi Rama Rao, E.; Venkat Shesu, R.; Udaya Bhaskar, T. V. S.

    2012-07-01

    The observations from the oceans are the backbone for any kind of operational services, viz. potential fishing zone advisory services, ocean state forecast, storm surges, cyclones, monsoon variability, tsunami, etc. Though it is important to monitor open Ocean, it is equally important to acquire sufficient data in the coastal ocean through coastal ocean observing systems for re-analysis, analysis and forecast of coastal ocean by assimilating different ocean variables, especially sub-surface information; validation of remote sensing data, ocean and atmosphere model/analysis and to understand the processes related to air-sea interaction and ocean physics. Accurate information and forecast of the state of the coastal ocean at different time scales is vital for the wellbeing of the coastal population as well as for the socio-economic development of the country through shipping, offshore oil and energy etc. Considering the importance of ocean observations in terms of understanding our ocean environment and utilize them for operational oceanography, a large number of platforms were deployed in the Indian Ocean including coastal observatories, to acquire data on ocean variables in and around Indian Seas. The coastal observation network includes HF Radars, wave rider buoys, sea level gauges, etc. The surface meteorological and oceanographic data generated by these observing networks are being translated into ocean information services through analysis and modelling. Centralized data management system is a critical component in providing timely delivery of Ocean information and advisory services. In this paper, we describe about the development of open-source architecture for real-time data reception from the coastal observation network, processing, quality control, database generation and web-based data services that includes on-line data visualization and data downloads by various means.

  12. Ocean acidification 2.0: Managing our Changing Coastal Ocean Chemistry

    OpenAIRE

    Strong, AL; Kroeker, KJ; Teneva, LT; Mease, LA; Kelly, RP

    2014-01-01

    Ocean acidification (OA) is rapidly emerging as a significant problem for organisms, ecosystems, and human societies. Globally, addressing OA and its impacts requires international agreements to reduce rising atmospheric carbon dioxide concentrations. However, the complex suite of drivers of changing carbonate chemistry in coastal environments also requires regional policy analysis, mitigation, and adaptation responses. In order to fundamentally address the threat of OA, environmental manager...

  13. Towards a regional coastal ocean observing system: An initial design for the Southeast Coastal Ocean Observing Regional Association

    Science.gov (United States)

    Seim, H. E.; Fletcher, M.; Mooers, C. N. K.; Nelson, J. R.; Weisberg, R. H.

    2009-05-01

    A conceptual design for a southeast United States regional coastal ocean observing system (RCOOS) is built upon a partnership between institutions of the region and among elements of the academic, government and private sectors. This design envisions support of a broad range of applications (e.g., marine operations, natural hazards, and ecosystem-based management) through the routine operation of predictive models that utilize the system observations to ensure their validity. A distributed information management system enables information flow, and a centralized information hub serves to aggregate information regionally and distribute it as needed. A variety of observing assets are needed to satisfy model requirements. An initial distribution of assets is proposed that recognizes the physical structure and forcing in the southeast U.S. coastal ocean. In-situ data collection includes moorings, profilers and gliders to provide 3D, time-dependent sampling, HF radar and surface drifters for synoptic sampling of surface currents, and satellite remote sensing of surface ocean properties. Nested model systems are required to properly represent ocean conditions from the outer edge of the EEZ to the watersheds. An effective RCOOS will depend upon a vital "National Backbone" (federally supported) system of in situ and satellite observations, model products, and data management. This dependence highlights the needs for a clear definition of the National Backbone components and a Concept of Operations (CONOPS) that defines the roles, functions and interactions of regional and federal components of the integrated system. A preliminary CONOPS is offered for the Southeast (SE) RCOOS. Thorough system testing is advocated using a combination of application-specific and process-oriented experiments. Estimates of costs and personnel required as initial components of the SE RCOOS are included. Initial thoughts on the Research and Development program required to support the RCOOS are

  14. Uncertainties in Coastal Ocean Color Products: Impacts of Spatial Sampling

    Science.gov (United States)

    Pahlevan, Nima; Sarkar, Sudipta; Franz, Bryan A.

    2016-01-01

    With increasing demands for ocean color (OC) products with improved accuracy and well characterized, per-retrieval uncertainty budgets, it is vital to decompose overall estimated errors into their primary components. Amongst various contributing elements (e.g., instrument calibration, atmospheric correction, inversion algorithms) in the uncertainty of an OC observation, less attention has been paid to uncertainties associated with spatial sampling. In this paper, we simulate MODIS (aboard both Aqua and Terra) and VIIRS OC products using 30 m resolution OC products derived from the Operational Land Imager (OLI) aboard Landsat-8, to examine impacts of spatial sampling on both cross-sensor product intercomparisons and in-situ validations of R(sub rs) products in coastal waters. Various OLI OC products representing different productivity levels and in-water spatial features were scanned for one full orbital-repeat cycle of each ocean color satellite. While some view-angle dependent differences in simulated Aqua-MODIS and VIIRS were observed, the average uncertainties (absolute) in product intercomparisons (due to differences in spatial sampling) at regional scales are found to be 1.8%, 1.9%, 2.4%, 4.3%, 2.7%, 1.8%, and 4% for the R(sub rs)(443), R(sub rs)(482), R(sub rs)(561), R(sub rs)(655), Chla, K(sub d)(482), and b(sub bp)(655) products, respectively. It is also found that, depending on in-water spatial variability and the sensor's footprint size, the errors for an in-situ validation station in coastal areas can reach as high as +/- 18%. We conclude that a) expected biases induced by the spatial sampling in product intercomparisons are mitigated when products are averaged over at least 7 km × 7 km areas, b) VIIRS observations, with improved consistency in cross-track spatial sampling, yield more precise calibration/validation statistics than that of MODIS, and c) use of a single pixel centered on in-situ coastal stations provides an optimal sampling size for

  15. Atmosphere-ocean feedbacks in a coastal upwelling system

    Science.gov (United States)

    Alves, J. M. R.; Peliz, A.; Caldeira, R. M. A.; Miranda, P. M. A.

    2018-03-01

    The COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) modelling system is used in different configurations to simulate the Iberian upwelling during the 2012 summer, aiming to assess the atmosphere-ocean feedbacks in the upwelling dynamics. When model results are compared with satellite measurements and in-situ data, two-way coupling is found to have a moderate impact in data-model statistics. A significant reinforcement of atmosphere-ocean coupling coefficients is, however, observed in the two-way coupled run, and in the WRF and ROMS runs forced by previously simulated SST and wind fields, respectively. The increasing in the coupling coefficient is associated with slight, but potentially important changes in the low-level coastal jet in the atmospheric marine boundary layer. While these results do not imply the need for fully coupled simulations in many applications, they show that in seasonal numerical studies such simulations do not degrade the overall model performance, and contribute to produce better dynamical fields.

  16. Analyzing coastal turbidity under complex terrestrial loads characterized by a 'stress connectivity matrix' with an atmosphere-watershed-coastal ocean coupled model

    Science.gov (United States)

    Yamamoto, Takahiro; Nadaoka, Kazuo

    2018-04-01

    Atmospheric, watershed and coastal ocean models were integrated to provide a holistic analysis approach for coastal ocean simulation. The coupled model was applied to coastal ocean in the Philippines where terrestrial sediment loads provided from several adjacent watersheds play a major role in influencing coastal turbidity and are partly responsible for the coastal ecosystem degradation. The coupled model was validated using weather and hydrologic measurement to examine its potential applicability. The results revealed that the coastal water quality may be governed by the loads not only from the adjacent watershed but also from the distant watershed via coastal currents. This important feature of the multiple linkages can be quantitatively characterized by a "stress connectivity matrix", which indicates the complex underlying structure of environmental stresses in coastal ocean. The multiple stress connectivity concept shows the potential advantage of the integrated modelling approach for coastal ocean assessment, which may also serve for compensating the lack of measured data especially in tropical basins.

  17. Estimation of the atmosphere-ocean fluxes of greenhouse gases and aerosols at the finer resolution of the coastal ocean.

    Science.gov (United States)

    Vieira, Vasco; Sahlée, Erik; Jurus, Pavel; Clementi, Emanuela; Pettersson, Heidi; Mateus, Marcos

    2016-04-01

    mentioned above. First, we tested with measured data from the Baltic. Then, we adapted it to a coupler for atmosphere (WRF) and ocean (WW3-NEMO) model components and tested with simulated data relative to the Mediterranean and coastal North Atlantic. Computational speed was greatly improved by calculus vectorization and parallelization. The classical solubility formulation was compared to a recent alternative relying in a different chemistry background. Differences between solubility formulations resulted in a bias of 3.86×106 ton of CO2, 880.7 ton of CH4 and 401 ton of N2O dissolved in the first meter below the sea-surface of the modelled region, corresponding to 5.9% of the N2O yearly discharged by European estuaries. These differences concentrated in sensitive areas for Earth-System dynamics: the cooler polar waters and warmer less-saline coastal waters. The classical transfer velocity formulation using solely u10 was compared to alternatives using the friction velocity, atmospheric stability, sea-surface agitation and wave breaking. Differences between estimated transfer velocities concentrated at the coastal ocean and resulted in 55.82% of the gas volume transferred over the sea-surface of the modelled region during the 66h simulated period.

  18. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic image tiles, New Hampshire, 2008 (NODC Accession 0074094)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are an Integrated Ocean and Coastal Mapping (IOCM) Product of coastal New Hampshire. The images were acquired from a nominal altitude of 5,000 feet above...

  19. Ocean model system for radionuclides - validation and application to the Rokkasho coastal area

    International Nuclear Information System (INIS)

    Kobayashi, Takuya

    2010-01-01

    Coastal areas have complex environmental systems and often a high influence from the atmosphere, rivers and the open sea. A nuclear fuel reprocessing plant in Japan releases liquid radioactive waste from a discharge pipe to such a complex coastal area. Consequently, the development of radionuclide migration forecast system in the ocean plays an important rule for assessing the behavior of radionuclides in the coastal area. The development of ocean model systems will be presented and model application will also be described. (author)

  20. Remote Sensing of Selected Water-Quality Indicators with the Hyperspectral Imager for the Coastal Ocean (HICO) Sensor

    Science.gov (United States)

    The Hyperspectral Imager for the Coastal Ocean (HICO) offers the coastal environmental monitoring community an unprecedented opportunity to observe changes in coastal and estuarine water quality across a range of spatial scales not feasible with traditional field-based monitoring...

  1. Airborne Mission Concept for Coastal Ocean Color and Ecosystems Research

    Science.gov (United States)

    Guild, Liane S.; Hooker, Stanford B.; Morrow, John H.; Kudela, Raphael M.; Palacios, Sherry L.; Torres Perez, Juan L.; Hayashi, Kendra; Dunagan, Stephen E.

    2016-01-01

    NASA airborne missions in 2011 and 2013 over Monterey Bay, CA, demonstrated novel above- and in-water calibration and validation measurements supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The resultant airborne data characterize contemporaneous coastal atmospheric and aquatic properties plus sea-truth observations from state-of-the-art instrument systems spanning a next-generation spectral domain (320-875 nm). This airborne instrument suite for calibration, validation, and research flew at the lowest safe altitude (ca. 100 ft or 30 m) as well as higher altitudes (e.g., 6,000 ft or 1,800 m) above the sea surface covering a larger area in a single synoptic sortie than ship-based measurements at a few stations during the same sampling period. Data collection of coincident atmospheric and aquatic properties near the sea surface and at altitude allows the input of relevant variables into atmospheric correction schemes to improve the output of corrected imaging spectrometer data. Specific channels support legacy and next-generation satellite capabilities, and flights are planned to within 30 min of satellite overpass. This concept supports calibration and validation activities of ocean color phenomena (e.g., river plumes, algal blooms) and studies of water quality and coastal ecosystems. The 2011 COAST mission flew at 100 and 6,000 ft on a Twin Otter platform with flight plans accommodating the competing requirements of the sensor suite, which included the Coastal-Airborne In-situ Radiometers (C-AIR) for the first time. C-AIR (Biospherical Instruments Inc.) also flew in the 2013 OCEANIA mission at 100 and 1,000 ft on the Twin Otter below the California airborne simulation of the proposed NASA HyspIRI satellite system comprised of an imaging spectrometer and thermal infrared multispectral imager on the ER-2 at 65,000 ft (20,000 m). For both missions, the Compact-Optical Profiling System (Biospherical

  2. NODC Standard Format Coastal Ocean Wave and Current (F181) Data from the Atlantic Remote Sensing Land/Ocean Experiment (ARSLOE) (1980) (NODC Accession 0014202)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains time series coastal ocean wave and current data collected during the Atlantic Remote Sensing Land/Ocean Experiment (ARSLOE). ARSLOE was...

  3. Coastal processes study at Ocean Beach, San Francisco, CA: summary of data collection 2004-2006

    Science.gov (United States)

    Barnard, Patrick L.; Eshleman, Jodi; Erikson, Li H.; Hanes, Daniel M.

    2007-01-01

    Ocean Beach in San Francisco, California, contains a persistent erosional section in the shadow of the San Francisco ebb tidal delta and south of Sloat Boulevard that threatens valuable public infrastructure as well as the safe recreational use of the beach. Coastal managers have been discussing potential mediation measures for over a decade, with little scientific research available to aid in decision making. The United States Geological Survey (USGS) initiated the Ocean Beach Coastal Processes Study in April 2004 to provide the scientific knowledge necessary for coastal managers to make informed management decisions. This study integrates a wide range of field data collection and numerical modeling techniques to document nearshore sediment transport processes at the mouth of San Francisco Bay, with emphasis on how these processes relate to erosion at Ocean Beach. The Ocean Beach Coastal Processes Study is the first comprehensive study of coastal processes at the mouth of San Francisco Bay.

  4. Interagency Working Group on Ocean Social Science: Incorporating ecosystem services approaches into ocean and coastal decision-making and governance

    Science.gov (United States)

    The application of social science has been recognized as a priority for effective ocean and coastal management, driving much discussion and fostering emerging efforts in several areas. The Interagency Working Group on Ocean Social Science (IWG-OSS) is tasked with assisting the Su...

  5. Enhanced ocean carbon storage from anaerobic alkalinity generation in coastal sediments

    NARCIS (Netherlands)

    Thomas, H.; Schiettecatte, L.-S.; Suykens, K.; Koné, Y.J.M.; Shadwick, E.H.; Prowe, A.E.F.; Bozec, Y.; Baar, H.J.W. de; Borges, A.V.; Slomp, C.

    2009-01-01

    The coastal ocean is a crucial link between land, the open ocean and the atmosphere. The shallowness of the water column permits close interactions between the sedimentary, aquatic and atmospheric compartments, which otherwise are decoupled at long time scales (≅ 1000 yr) in the open oceans. Despite

  6. Coastal ocean transport patterns in the central Southern California Bight

    Science.gov (United States)

    Noble, M.A.; Rosenberger, K.J.; Hamilton, P.; Xu, J. P.

    2009-01-01

    In the past decade, several large programs that monitor currents and transport patterns for periods from a few months to a few years were conducted by a consortium of university, federal, state, and municipal agencies in the central Southern California Bight, a heavily urbanized section of the coastal ocean off the west coast of the United States encompassing Santa Monica Bay, San Pedro Bay, and the Palos Verdes shelf. These programs were designed in part to determine how alongshelf and cross-shelf currents move sediments, pollutants, and suspended material through the region. Analysis of the data sets showed that the current patterns in this portion of the Bight have distinct changes in frequency and amplitude with location, in part because the topography of the shelf and upper slope varies rapidly over small spatial scales. However, because the mean, subtidal, and tidal-current patterns in any particular location were reasonably stable with time, one could determine a regional pattern for these current fields in the central Southern California Bight even though measurements at the various locations were obtained at different times. In particular, because the mean near-surface flows over the San Pedro and Palos Verdes shelves are divergent, near-surface waters from the upper slope tend to carry suspended material onto the shelf in the northwestern portion of San Pedro Bay. Water and suspended material are also carried off the shelf by the mean and subtidal flow fields in places where the orientation of the shelf break changes abruptly. The barotropic tidal currents in the central Southern California Bight flow primarily alongshore, but they have pronounced amplitude variations over relatively small changes in alongshelf location that are not totally predicted by numerical tidal models. Nonlinear internal tides and internal bores at tidal frequencies are oriented more across the shelf. They do not have a uniform transport direction, since they move fine sediment

  7. HYCOM Coastal Ocean Hindcasts and Predictions: Impact of Nesting in HYCOM GODAE Assimilative Hindcasts

    National Research Council Canada - National Science Library

    Halliwell, George R; Shay, Lynn K; Kourafalou, Villy; Weisberg, Robert H; Barth, Alexander; Hurlburt, Harley E; Hogan, Patrick J; Smedstad, Ole M; Cummings, James A

    2007-01-01

    The overarching goal is to determine how simulations and forecasts of currents and water properties in the coastal ocean, and the scientific results obtained from them, are influenced by the initial...

  8. Numerical Simulation of Salinity and Dissolved Oxygen at Perdido Bay and Adjacent Coastal Ocean

    Science.gov (United States)

    Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of the salinity, temperature, nutrients and dissolved oxygen (DO) in Perdido Bay and adjacent Gulf of Mexico. External forcing fa...

  9. Ocean and Coastal Acidification off New England and Nova Scotia

    Science.gov (United States)

    New England coastal and adjacent Nova Scotia shelf waters have a reduced buffering capacity because of significant freshwater input, making the region’s waters potentially more vulnerable to coastal acidification. Nutrient loading and heavy precipitation events further acid...

  10. Increasing coastal slump activity impacts the release of sediment and organic carbon into the Arctic Ocean

    Directory of Open Access Journals (Sweden)

    J. L. Ramage

    2018-03-01

    Full Text Available Retrogressive thaw slumps (RTSs are among the most active thermokarst landforms in the Arctic and deliver a large amount of material to the Arctic Ocean. However, their contribution to the organic carbon (OC budget is unknown. We provide the first estimate of the contribution of RTSs to the nearshore OC budget of the Yukon Coast, Canada, and describe the evolution of coastal RTSs between 1952 and 2011 in this area. We (1 describe the evolution of RTSs between 1952 and 2011; (2 calculate the volume of eroded material and stocks of OC mobilized through slumping, including soil organic carbon (SOC and dissolved organic carbon (DOC; and (3 estimate the OC fluxes mobilized through slumping between 1972 and 2011. We identified RTSs using high-resolution satellite imagery from 2011 and geocoded aerial photographs from 1952 and 1972. To estimate the volume of eroded material, we applied spline interpolation on an airborne lidar dataset acquired in July 2013. We inferred the stocks of mobilized SOC and DOC from existing related literature. Our results show a 73 % increase in the number of RTSs and 14 % areal expansion between 1952 and 2011. In the study area, RTSs displaced at least 16.6×106 m3 of material, 53 % of which was ice, and mobilized 145.9×106 kg of OC. Between 1972 and 2011, 49 RTSs displaced 8.6×103 m3 yr−1 of material, adding 0.6 % to the OC flux released by coastal retreat along the Yukon Coast. Our results show that the contribution of RTSs to the nearshore OC budget is non-negligible and should be included when estimating the quantity of OC released from the Arctic coast to the ocean.

  11. Simulated ocean acidification reveals winners and losers in coastal phytoplankton.

    Directory of Open Access Journals (Sweden)

    Lennart T Bach

    Full Text Available The oceans absorb ~25% of the annual anthropogenic CO2 emissions. This causes a shift in the marine carbonate chemistry termed ocean acidification (OA. OA is expected to influence metabolic processes in phytoplankton species but it is unclear how the combination of individual physiological changes alters the structure of entire phytoplankton communities. To investigate this, we deployed ten pelagic mesocosms (volume ~50 m3 for 113 days at the west coast of Sweden and simulated OA (pCO2 = 760 μatm in five of them while the other five served as controls (380 μatm. We found: (1 Bulk chlorophyll a concentration and 10 out of 16 investigated phytoplankton groups were significantly and mostly positively affected by elevated CO2 concentrations. However, CO2 effects on abundance or biomass were generally subtle and present only during certain succession stages. (2 Some of the CO2-affected phytoplankton groups seemed to respond directly to altered carbonate chemistry (e.g. diatoms while others (e.g. Synechococcus were more likely to be indirectly affected through CO2 sensitive competitors or grazers. (3 Picoeukaryotic phytoplankton (0.2-2 μm showed the clearest and relatively strong positive CO2 responses during several succession stages. We attribute this not only to a CO2 fertilization of their photosynthetic apparatus but also to an increased nutrient competitiveness under acidified (i.e. low pH conditions. The stimulating influence of high CO2/low pH on picoeukaryote abundance observed in this experiment is strikingly consistent with results from previous studies, suggesting that picoeukaryotes are among the winners in a future ocean.

  12. Simulated ocean acidification reveals winners and losers in coastal phytoplankton.

    Science.gov (United States)

    Bach, Lennart T; Alvarez-Fernandez, Santiago; Hornick, Thomas; Stuhr, Annegret; Riebesell, Ulf

    2017-01-01

    The oceans absorb ~25% of the annual anthropogenic CO2 emissions. This causes a shift in the marine carbonate chemistry termed ocean acidification (OA). OA is expected to influence metabolic processes in phytoplankton species but it is unclear how the combination of individual physiological changes alters the structure of entire phytoplankton communities. To investigate this, we deployed ten pelagic mesocosms (volume ~50 m3) for 113 days at the west coast of Sweden and simulated OA (pCO2 = 760 μatm) in five of them while the other five served as controls (380 μatm). We found: (1) Bulk chlorophyll a concentration and 10 out of 16 investigated phytoplankton groups were significantly and mostly positively affected by elevated CO2 concentrations. However, CO2 effects on abundance or biomass were generally subtle and present only during certain succession stages. (2) Some of the CO2-affected phytoplankton groups seemed to respond directly to altered carbonate chemistry (e.g. diatoms) while others (e.g. Synechococcus) were more likely to be indirectly affected through CO2 sensitive competitors or grazers. (3) Picoeukaryotic phytoplankton (0.2-2 μm) showed the clearest and relatively strong positive CO2 responses during several succession stages. We attribute this not only to a CO2 fertilization of their photosynthetic apparatus but also to an increased nutrient competitiveness under acidified (i.e. low pH) conditions. The stimulating influence of high CO2/low pH on picoeukaryote abundance observed in this experiment is strikingly consistent with results from previous studies, suggesting that picoeukaryotes are among the winners in a future ocean.

  13. Simulated ocean acidification reveals winners and losers in coastal phytoplankton

    Science.gov (United States)

    Alvarez-Fernandez, Santiago; Hornick, Thomas; Stuhr, Annegret; Riebesell, Ulf

    2017-01-01

    The oceans absorb ~25% of the annual anthropogenic CO2 emissions. This causes a shift in the marine carbonate chemistry termed ocean acidification (OA). OA is expected to influence metabolic processes in phytoplankton species but it is unclear how the combination of individual physiological changes alters the structure of entire phytoplankton communities. To investigate this, we deployed ten pelagic mesocosms (volume ~50 m3) for 113 days at the west coast of Sweden and simulated OA (pCO2 = 760 μatm) in five of them while the other five served as controls (380 μatm). We found: (1) Bulk chlorophyll a concentration and 10 out of 16 investigated phytoplankton groups were significantly and mostly positively affected by elevated CO2 concentrations. However, CO2 effects on abundance or biomass were generally subtle and present only during certain succession stages. (2) Some of the CO2-affected phytoplankton groups seemed to respond directly to altered carbonate chemistry (e.g. diatoms) while others (e.g. Synechococcus) were more likely to be indirectly affected through CO2 sensitive competitors or grazers. (3) Picoeukaryotic phytoplankton (0.2–2 μm) showed the clearest and relatively strong positive CO2 responses during several succession stages. We attribute this not only to a CO2 fertilization of their photosynthetic apparatus but also to an increased nutrient competitiveness under acidified (i.e. low pH) conditions. The stimulating influence of high CO2/low pH on picoeukaryote abundance observed in this experiment is strikingly consistent with results from previous studies, suggesting that picoeukaryotes are among the winners in a future ocean. PMID:29190760

  14. Intraseasonal response of the northern Indian Ocean coastal waveguide to the Madden-Julian Oscillation

    Digital Repository Service at National Institute of Oceanography (India)

    Vialard, J.; Shenoi, S.S.C.; Mc; Shankar, D.; Durand, F.; Fernando, V.; Shetye, S.R.

    Author version: Geophys. Res. Lett.: 36(14); 2009; doi:10.1029/2009GL038450; 5 pp Intraseasonal response of Northern Indian Ocean coastal waveguide to the Madden-Julian Oscillation J. Vialard 1 2 , S.S.C Shenoi 2 , J.P. McCreary 3 , D. Shankar 2... involving both equatorial wave dynamics and coastal wave propagation around the perimeter of the northern Indian Ocean [McCreary et al., 1993]. The East India Coastal Current (EICC), for example, is strongly influenced by remote wind forcing from...

  15. Connecting Coastal Communities with Ocean Science: A Look at Ocean Sense and the Inclusion of Place-based Indigenous Knowledge

    Science.gov (United States)

    McLean, M. A.; Brown, J.; Hoeberechts, M.

    2016-02-01

    Ocean Networks Canada (ONC), an initiative of the University of Victoria, develops, operates, and maintains cabled ocean observatory systems. Technologies developed on the world-leading NEPTUNE and VENUS observatories have been adapted for small coastal installations called "community observatories," which enable community members to directly monitor conditions in the local ocean environment. In 2014, ONC pioneered an innovative educational program, Ocean Sense: Local observations, global connections, which introduces students and teachers to the technologies installed on community observatories. The program introduces middle and high school students to research methods in biology, oceanography and ocean engineering through hands-on activities. Ocean Sense includes a variety of resources and opportunities to excite students and spark curiosity about the ocean environment. The program encourages students to connect their local observations to global ocean processes and the observations of students in other geographic regions. The connection to place and local relevance of the program is further enhanced through an emphasis on Indigenous and place-based knowledge. ONC is working with coastal Indigenous communities in a collaborative process to include local knowledge, culture, and language in Ocean Sense materials. For this process to meaningful and culturally appropriate, ONC is relying on the guidance and oversight of Indigenous community educators and knowledge holders. Ocean Sense also includes opportunities for Indigenous youth and teachers in remote communities to connect in person, including an annual Ocean Science Symposium and professional development events for teachers. Building a program which embraces multiple perspectives is effective both in making ocean science more relevant to Indigenous students and in linking Indigenous knowledge and place-based knowledge to ocean science.

  16. A Real-Time Coastal Ocean Prediction Experiment for MREA04

    Science.gov (United States)

    2008-01-01

    coastal ocean prediction experiment for MREA04 Dong S. Ko *, Paul J. Martin, Clark D. Rowley, Ruth H. Preller Naval Research Laborator ,: S ’ntis Space...Jourml of Marine Svstem 69 t200S) 17 28 and various data streams for ocean bathymetry, clima - global ONFS or from a higher resolution regional ONFS

  17. Arabian Sea upwelling - A comparison between coastal and open ocean regions

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; PrasannaKumar, S.

    The response of the eastern Arabian Sea to prevailing winds during an upwelling event, in the peak of southwest monsoon, was studied at both coastal and open ocean environment based on the data collected as a part of the Indian Joint Global Ocean...

  18. Estimating total alkalinity for coastal ocean acidification monitoring at regional to continental scales in Australian coastal waters

    KAUST Repository

    Baldry, Kimberlee; Hardman-Mountford, Nick; Greenwood, Jim

    2017-01-01

    Owing to a lack of resources, tools, and knowledge, the natural variability and distribution of Total Alkalinity (TA) has been poorly characterised in coastal waters globally, yet variability is known to be high in coastal regions due to the complex interactions of oceanographic, biotic, and terrestrially-influenced processes. This is a particularly challenging task for the vast Australian coastline, however, it is also this vastness that demands attention in the face of ocean acidification (OA). Australian coastal waters have high biodiversity and endemism, and are home to large areas of coral reef, including the Great Barrier Reef, the largest coral reef system in the world. Ocean acidification threatens calcifying marine organisms by hindering calcification rates, threatening the structural integrity of coral reefs and other ecosystems. Tracking the progression of OA in different coastal regions requires accurate knowledge of the variability in TA. Thus, estimation methods that can capture this variability at synoptic scales are needed. Multiple linear regression is a promising approach in this regard. Here, we compare a range of both simple and multiple linear regression models to the estimation of coastal TA from a range of variables, including salinity, temperature, chlorophyll-a concentration and nitrate concentration. We find that regionally parameterised models capture local variability better than more general coastal or open ocean parameterised models. The strongest contribution to model improvement came through incorporating temperature as an input variable as well as salinity. Further improvements were achieved through the incorporation of either nitrate or chlorophyll-a, with the combination of temperature, salinity, and nitrate constituting the minimum model in most cases. These results provide an approach that can be applied to satellite Earth observation and autonomous in situ platforms to improve synoptic scale estimation of TA in coastal waters.

  19. Estimating total alkalinity for coastal ocean acidification monitoring at regional to continental scales in Australian coastal waters

    KAUST Repository

    Baldry, Kimberlee

    2017-06-01

    Owing to a lack of resources, tools, and knowledge, the natural variability and distribution of Total Alkalinity (TA) has been poorly characterised in coastal waters globally, yet variability is known to be high in coastal regions due to the complex interactions of oceanographic, biotic, and terrestrially-influenced processes. This is a particularly challenging task for the vast Australian coastline, however, it is also this vastness that demands attention in the face of ocean acidification (OA). Australian coastal waters have high biodiversity and endemism, and are home to large areas of coral reef, including the Great Barrier Reef, the largest coral reef system in the world. Ocean acidification threatens calcifying marine organisms by hindering calcification rates, threatening the structural integrity of coral reefs and other ecosystems. Tracking the progression of OA in different coastal regions requires accurate knowledge of the variability in TA. Thus, estimation methods that can capture this variability at synoptic scales are needed. Multiple linear regression is a promising approach in this regard. Here, we compare a range of both simple and multiple linear regression models to the estimation of coastal TA from a range of variables, including salinity, temperature, chlorophyll-a concentration and nitrate concentration. We find that regionally parameterised models capture local variability better than more general coastal or open ocean parameterised models. The strongest contribution to model improvement came through incorporating temperature as an input variable as well as salinity. Further improvements were achieved through the incorporation of either nitrate or chlorophyll-a, with the combination of temperature, salinity, and nitrate constituting the minimum model in most cases. These results provide an approach that can be applied to satellite Earth observation and autonomous in situ platforms to improve synoptic scale estimation of TA in coastal waters.

  20. Sea surface temperature trends in the coastal ocean

    OpenAIRE

    Amos, C.L.; Al-Rashidi, Thamer B.; Rakha, Karim; El-Gamily, Hamdy; Nicholls, R.J.

    2013-01-01

    Sea surface temperature (SST) trends in the coastal zone are shown to be increasing at rates that exceed the global trends by up to an order of magnitude. This paper compiles some of the evidence of the trends published in the literature. The evidence suggests that urbanization in the coastal hinterland is having a direct effect on SST through increased temperatures of river and lake waters, as well as through heated run-off and thermal effluent discharges from coastal infrastructure. These l...

  1. Current practice and future prospects for social data in coastal and ocean planning.

    Science.gov (United States)

    Le Cornu, Elodie; Kittinger, John N; Koehn, J Zachary; Finkbeiner, Elena M; Crowder, Larry B

    2014-08-01

    Coastal and ocean planning comprises a broad field of practice. The goals, political processes, and approaches applied to planning initiatives may vary widely. However, all planning processes ultimately require adequate information on both the biophysical and social attributes of a planning region. In coastal and ocean planning practice, there are well-established methods to assess biophysical attributes; however, less is understood about the role and assessment of social data. We conducted the first global assessment of the incorporation of social data in coastal and ocean planning. We drew on a comprehensive review of planning initiatives and a survey of coastal and ocean practitioners. There was significantly more incorporation of social data in multiuse versus conservation-oriented planning. Practitioners engaged a wide range of social data, including governance, economic, and cultural attributes of planning regions and human impacts data. Less attention was given to ecosystem services and social-ecological linkages, both of which could improve coastal and ocean planning practice. Although practitioners recognize the value of social data, little funding is devoted to its collection and incorporation in plans. Increased capacity and sophistication in acquiring critical social and ecological data for planning is necessary to develop plans for more resilient coastal and ocean ecosystems and communities. We suggest that improving social data monitoring, and in particular spatial social data, to complement biophysical data, is necessary for providing holistic information for decision-support tools and other methods. Moving beyond people as impacts to people as beneficiaries, through ecosystem services assessments, holds much potential to better incorporate the tenets of ecosystem-based management into coastal and ocean planning by providing targets for linked biodiversity conservation and human welfare outcomes. © 2014 Society for Conservation Biology.

  2. Verification of mid-ocean ballast water exchange using naturally occurring coastal tracers

    International Nuclear Information System (INIS)

    Murphy, Kathleen; Boehme, Jennifer; Coble, Paula; Cullen, Jay; Field, Paul; Moore, Willard; Perry, Elgin; Sherrell, Robert; Ruiz, Gregory

    2004-01-01

    We examined methods for verifying whether or not ships have performed mid-ocean ballast water exchange (BWE) on four commercial vessels operating in the Pacific and Atlantic Oceans. During BWE, a ship replaces the coastal water in its ballast tanks with water drawn from the open ocean, which is considered to harbor fewer organisms capable of establishing in coastal environments. We measured concentrations of several naturally occurring chemical tracers (salinity, six trace elements, colored dissolved organic matter fluorescence and radium isotopes) along ocean transects and in ballast tanks subjected to varying degrees of BWE (0-99%). Many coastal tracers showed significant concentration changes due to BWE, and our ability to detect differences between exchanged and unexchanged ballast tanks was greatest under multivariate analysis. An expanded dataset, which includes additional geographic regions, is now needed to test the generality of our results

  3. Verification of mid-ocean ballast water exchange using naturally occurring coastal tracers

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Kathleen; Boehme, Jennifer; Coble, Paula; Cullen, Jay; Field, Paul; Moore, Willard; Perry, Elgin; Sherrell, Robert; Ruiz, Gregory

    2004-04-01

    We examined methods for verifying whether or not ships have performed mid-ocean ballast water exchange (BWE) on four commercial vessels operating in the Pacific and Atlantic Oceans. During BWE, a ship replaces the coastal water in its ballast tanks with water drawn from the open ocean, which is considered to harbor fewer organisms capable of establishing in coastal environments. We measured concentrations of several naturally occurring chemical tracers (salinity, six trace elements, colored dissolved organic matter fluorescence and radium isotopes) along ocean transects and in ballast tanks subjected to varying degrees of BWE (0-99%). Many coastal tracers showed significant concentration changes due to BWE, and our ability to detect differences between exchanged and unexchanged ballast tanks was greatest under multivariate analysis. An expanded dataset, which includes additional geographic regions, is now needed to test the generality of our results.

  4. Trends of coastal and oceanic ST along the Western Iberian Peninsula over the period 1975- 2006.

    Science.gov (United States)

    Santos, F.; Gómez-Gesteira, M.; deCastro, M.; Álvarez, I.; Sousa, M. C.

    2012-04-01

    Temperature is observed to have different trends at coastal and oceanic locations along the western Iberian Peninsula (from 43.25oN to 37.25oN and from 9.75°W to 14.75°W) from 1975 to 2006. This period corresponds with the last warming period in the area under study. The analysis was carried out by means of the Simple Ocean Data Assimilation (SODA) package. Reanalysis of ocean climate variability are available at monthly scale with a horizontal resolution of 0.5o- 0.5o and a vertical resolution of 40 levels which allows us to obtain information beneath the sea surface levels (http://www.atmos.umd.edu/~ocean/). Only the first 21 vertical levels (from 5.0 m to 729.35 m) were considered since the most important changes in the heat content observed in the world ocean during the last decades, correspond to the upper 700m (Levitus et al., 2009). Warming was observed to be considerably higher at ocean locations than at coastal ones at the same latitude. This behavior is observed throughout the water column. Ocean warming ranged from values on the order of 0.3 °C dec-1 near surface to 0.1 °C dec-1 at 500 m depth. On the contrary, the coastal warming is much smaller, reaching values close to 0.2 °C dec-1 near surface and decreasing rapidly at values below 0.1 °C dec-1 for depths on the order of 50 m. Actually, coastal warming is practically negligible under 50 m. The different warming rates near coast and at ocean locations have been previously described for SST by the authors (Santos et al, 2011, 2012). The weaker coastal warming compared with the ocean warming at the same latitude was related to the presence of coastal upwelling. Coastal upwelling is the most importing forcing mechanism in the western coast of the Iberian Peninsula pumping cold water from below to near surface layers. In this sense, the heat diffusion from the atmosphere is constrained to near surface area by advection, which mixes deeper colder water with warmer surface water. The heat content

  5. Suspended sediment concentration and optical property observations of mixed-turbidity, coastal waters through multispectral ocean color inversion

    Science.gov (United States)

    Multispectral satellite ocean color data from high-turbidity areas of the coastal ocean contain information about the surface concentrations and optical properties of suspended sediments and colored dissolved organic matter (CDOM). Empirical and semi-analytical inversion algorit...

  6. 2015 NOAA Ortho-rectified Color Mosaic of San Diego, California: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  7. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic image tiles, Empire, Louisiana 2010 (NODC Accession 0075830)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of the Mississippi -...

  8. 2015 NOAA Ortho-rectified Color Mosaic of Los Angeles and Long Beach, California: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  9. Bromide in some coastal and oceanic waters of India

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza, F.P.; Dalal, V.N.K.

    Bromide concentration and bromide/chlorinity ratio are estimated in coastal waters of Goa, Minicoy Lagoon, Western Arabian Sea and Western Bay of Bengal. The influence of precipitation and river runoff on bromide and bromide/chlorinity ratio...

  10. Pigment specific in vivo light absorption of phytoplankton from estuarine, coastal and oceanic waters

    DEFF Research Database (Denmark)

    Stæhr, A.; Markager, S.; Sand-Jensen, K.

    2004-01-01

    The influence of phytoplankton photoacclimation and adaptation to natural growth conditions on the chlorophyll a-specific in vivo absorption coefficient (a* ph) was evaluated for samples collected in estuarine, coastal and oceanic waters. Despite an overall gradient in the physio......-chemical environment from estuaries, over coastal, to oceanic waters, no clear relationships were found between a* ph and the prevailing light, temperature, salinity and nutrient concentrations, indicating that short-term cellular acclimation was of minor importance for the observed variability in a* ph. The clear...... decline in a* ph from oceanic, over coastal, to estuarine waters was, however, strongly correlated with an increase in cell size and intracellular chlorophyll a (chl a) content of the phytoplankton, and a reduction of photosynthetic carotenoids relative to chl a. Variations in photoprotective carotenoids...

  11. Coordinated Regional Benefit Studies of Coastal Ocean Observing Systems

    National Research Council Canada - National Science Library

    Kite-Powell, Hauke L; Colgan, Charles S; Luger, Michael; Wieand, Ken; Pulsipher, Allan; Pendleton, Linwood; Wellman, Katherine; Pelsoci, Tom

    2003-01-01

    .... The authors will first produce regional "inventories" of ocean observation user sectors, including information about the physical and economic scale of their activities, how products from improved...

  12. Origins of wind-driven intraseasonal sea level variations in the North Indian Ocean coastal waveguide

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, I.; Vialard, J.; Lengaigne, M.; Han, W.; Mc; Durand, F.; Muraleedharan, P.M.

    version: Geophys. Res. Lett., vol.40(21); 2013; 5740-5744 Origins of wind-driven intraseasonal sea level variations in the North Indian Ocean coastal waveguide I. Suresh1, J. Vialard2, M. Lengaigne2, W. Han3, J. McCreary4, F. Durand5, P.M. Muraleedharan1... reversing winds. These wind variations drive seasonal equatorial Kelvin and Rossby wave responses. The seasonal equatorial Kelvin waves propagate into the North Indian Ocean (hereafter NIO) as coastal Kelvin waves [McCreary et al., 1993]. As a result...

  13. U.S. Geological Survey (USGS) Western Region: Coastal and Ocean Science

    Science.gov (United States)

    Kinsinger, Anne E.

    2009-01-01

    USGS Western Region Coastal and Ocean Science is interdisciplinary, collaborative, and integrates expertise from all USGS Disciplines, and ten of its major Science Centers, in Alaska, Hawai'i, California, Washington, and Oregon. The scientific talent, laboratories, and research vessels in the Western Region and across the Nation, strategically position the USGS to address broad geographic and oceanographic research topics. USGS information products inform resource managers and policy makers who must balance conservation mandates with increasing demands for resources that sustain the Nation's economy. This fact sheet describes but a few examples of the breadth of USGS science conducted in coastal, nearshore, and ocean environments along our Nation's West Coast and Pacific Islands.

  14. Differences in coastal and oceanic SST trends north of Yucatan Peninsula

    Science.gov (United States)

    Varela, R.; Costoya, X.; Enriquez, C.; Santos, F.; Gómez-Gesteira, M.

    2018-06-01

    The coastal area north of Yucatan has experienced a cooling SST trend from 1982 to 2015 during the upwelling season (May-September) that contrasts with the warming observed at the adjacent ocean area. Different drivers were analyzed to identify the possible causes of that unusual coastal cooling. Changes in coastal upwelling and in sea-atmosphere heat fluxes are not consistent with the observed coastal cooling. The eastward shift of the Yucatan Current observed over the last decades is hypothesized as the most probable cause of coastal cooling. This shift enhances the vertical transport of cold deeper water to the continental shelf from where it is pumped to the surface by upwelling favorable westerly winds.

  15. A Multi-Process Test Case to Perform Comparative Analysis of Coastal Oceanic Models

    Science.gov (United States)

    Lemarié, F.; Burchard, H.; Knut, K.; Debreu, L.

    2016-12-01

    Due to the wide variety of choices that need to be made during the development of dynamical kernels of oceanic models, there is a strong need for an effective and objective assessment of the various methods and approaches that predominate in the community. We present here an idealized multi-scale scenario for coastal ocean models combining estuarine, coastal and shelf sea scales at midlatitude. The bathymetry, initial conditions and external forcings are defined analytically so that any model developer or user could reproduce the test case with its own numerical code. Thermally stratified conditions are prescribed and a tidal forcing is imposed as a propagating coastal Kelvin wave. The following physical processes can be assessed from the model results: estuarine process driven by tides and buoyancy gradients, the river plume dynamics, tidal fronts, and the interaction between tides and inertial oscillations. We show results obtained using the GETM (General Estuarine Transport Model) and the CROCO (Coastal and Regional Ocean Community model) models. Those two models are representative of the diversity of numerical methods in use in coastal models: GETM is based on a quasi-lagrangian vertical coordinate, a coupled space-time approach for advective terms, a TVD (Total Variation Diminishing) tracer advection scheme while CROCO is discretized with a quasi-eulerian vertical coordinate, a method of lines is used for advective terms, and tracer advection satisfies the TVB (Total Variation Bounded) property. The multiple scales are properly resolved thanks to nesting strategies, 1-way nesting for GETM and 2-way nesting for CROCO. Such test case can be an interesting experiment to continue research in numerical approaches as well as an efficient tool to allow intercomparison between structured-grid and unstructured-grid approaches. Reference : Burchard, H., Debreu, L., Klingbeil, K., Lemarié, F. : The numerics of hydrostatic structured-grid coastal ocean models: state of

  16. Hydrographic processing considerations in the “Big Data” age: An overview of technology trends in ocean and coastal surveys

    Science.gov (United States)

    Holland, M.; Hoggarth, A.; Nicholson, J.

    2016-04-01

    The quantity of information generated by survey sensors for ocean and coastal zone mapping has reached the “Big Data” age. This is influenced by the number of survey sensors available to conduct a survey, high data resolution, commercial availability, as well as an increased use of autonomous platforms. The number of users of sophisticated survey information is also growing with the increase in data volume. This is leading to a greater demand and broader use of the processed results, which includes marine archeology, disaster response, and many other applications. Data processing and exchange techniques are evolving to ensure this increased accuracy in acquired data meets the user demand, and leads to an improved understanding of the ocean environment. This includes the use of automated processing, models that maintain the best possible representation of varying resolution data to reduce duplication, as well as data plug-ins and interoperability standards. Through the adoption of interoperable standards, data can be exchanged between stakeholders and used many times in any GIS to support an even wider range of activities. The growing importance of Marine Spatial Data Infrastructure (MSDI) is also contributing to the increased access of marine information to support sustainable use of ocean and coastal environments. This paper offers an industry perspective on trends in hydrographic surveying and processing, and the increased use of marine spatial data.

  17. Intertidal zones as carbon dioxide sources to coastal oceans

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.; George, M.D.; Rajagopal, M.D.

    To understand the factors controlling carbon dioxide (CO sub(2)) exchanges near land-sea boundary diurnal observations have been made twice on CO sub(2) in the air and water in a coastal region. The results suggest that CO sub(2) enrichment...

  18. Effects of ocean acidification on primary production in a coastal North Sea phytoplankton community.

    Directory of Open Access Journals (Sweden)

    Tim Eberlein

    Full Text Available We studied the effect of ocean acidification (OA on a coastal North Sea plankton community in a long-term mesocosm CO2-enrichment experiment (BIOACID II long-term mesocosm study. From March to July 2013, 10 mesocosms of 19 m length with a volume of 47.5 to 55.9 m3 were deployed in the Gullmar Fjord, Sweden. CO2 concentrations were enriched in five mesocosms to reach average CO2 partial pressures (pCO2 of 760 μatm. The remaining five mesocosms were used as control at ambient pCO2 of 380 μatm. Our paper is part of a PLOS collection on this long-term mesocosm experiment. Here, we here tested the effect of OA on total primary production (PPT by performing 14C-based bottle incubations for 24 h. Furthermore, photoacclimation was assessed by conducting 14C-based photosynthesis-irradiance response (P/I curves. Changes in chlorophyll a concentrations over time were reflected in the development of PPT, and showed higher phytoplankton biomass build-up under OA. We observed two subsequent phytoplankton blooms in all mesocosms, with peaks in PPT around day 33 and day 56. OA had no significant effect on PPT, except for a marginal increase during the second phytoplankton bloom when inorganic nutrients were already depleted. Maximum light use efficiencies and light saturation indices calculated from the P/I curves changed simultaneously in all mesocosms, and suggest that OA did not alter phytoplankton photoacclimation. Despite large variability in time-integrated productivity estimates among replicates, our overall results indicate that coastal phytoplankton communities can be affected by OA at certain times of the seasonal succession with potential consequences for ecosystem functioning.

  19. Salinity dependent hydrogen isotope fractionation in alkenones produced by coastal and open ocean haptophyte algae

    NARCIS (Netherlands)

    M'boule, D.; Chivall, D.; Sinke-Schoen, D.; Sinninghe Damsté, J.S.; Schouten, S.; van der Meer, M.T.J.

    2014-01-01

    The hydrogen isotope fractionation in alkenones produced by haptophyte algae is a promising new proxy for paleosalinity reconstructions. To constrain and further develop this proxy the coastal haptophyte Isochrysis galbana and the open ocean haptophyte alga Emiliania huxleyi were cultured at

  20. Multi-Scale Three-Dimensional Variational Data Assimilation System for Coastal Ocean Prediction

    Science.gov (United States)

    Li, Zhijin; Chao, Yi; Li, P. Peggy

    2012-01-01

    A multi-scale three-dimensional variational data assimilation system (MS-3DVAR) has been formulated and the associated software system has been developed for improving high-resolution coastal ocean prediction. This system helps improve coastal ocean prediction skill, and has been used in support of operational coastal ocean forecasting systems and field experiments. The system has been developed to improve the capability of data assimilation for assimilating, simultaneously and effectively, sparse vertical profiles and high-resolution remote sensing surface measurements into coastal ocean models, as well as constraining model biases. In this system, the cost function is decomposed into two separate units for the large- and small-scale components, respectively. As such, data assimilation is implemented sequentially from large to small scales, the background error covariance is constructed to be scale-dependent, and a scale-dependent dynamic balance is incorporated. This scheme then allows effective constraining large scales and model bias through assimilating sparse vertical profiles, and small scales through assimilating high-resolution surface measurements. This MS-3DVAR enhances the capability of the traditional 3DVAR for assimilating highly heterogeneously distributed observations, such as along-track satellite altimetry data, and particularly maximizing the extraction of information from limited numbers of vertical profile observations.

  1. The Smartfin: How Citizen Scientist Surfers Could Help Inform Coastal Ocean Science and Conservation.

    Science.gov (United States)

    Stern, A.

    2016-12-01

    Coastal marine ecosystems only represent a small percentage of the global ocean's surface area. However, these ecosystems are highly productive, rich in biodiversity, and are where the vast majority of human activity occurs. The complex interaction between seawater, land, and atmosphere makes coastal ecosystems some of the most dynamic in terms of seawater chemistry. In order to capture these dynamic changes in seawater chemistry across appropriate spatial and temporal scales requires a large amount of measurements. Unfortunately, it is often challenging to maintain an array of oceanographic sensors in coastal ecosystems, especially in high energy areas like the surf zone. Citizen science has the potential to increase the collection of oceanographic data from coastal systems where traditional methods are more difficult or expensive to implement. This talk will highlight the Smartfin, a surfboard mounted fin that measures seawater chemical parameters, physical wave characteristics, and GPS location during an ordinary surf session. Created by environmental non-profit Lost Bird, the Smartfin is a partnership between non-profits (Lost Bird and Surfrider Foundation), researchers (Scripps Institution of Oceanography), engineers (Board Formula), and the citizen science community. With an estimated 23 million surfers worldwide the Smartfin could greatly enhance vital data collection in coastal regions as well as raise awareness about our changing coastal and ocean ecosystems.

  2. A multi-detector continuous monitor for assessment of 222Rn in the coastal ocean

    International Nuclear Information System (INIS)

    Dulaiova, H.; Peterson, R.; Burnett, W.C.

    2005-01-01

    Radon-222 is a good natural tracer of groundwater discharge and other physical processes in the coastal ocean. Unfortunately, its usefulness is limited by the time consuming nature of collecting individual samples and traditional analysis schemes. An automated multi-detector system is demonstrated that can be used in a continuous survey basis to assess radon activities in coastal ocean waters. The system analyses 222 Rn from a constant stream of water delivered by a submersible pump to an air-water exchanger where radon in the water phase equilibrates with radon in a closed air loop. The air stream is fed to 3 commercial radon-in-air monitors connected in parallel to determine the activity of 222 Rn. By running the detectors out of phase, it is possible to obtain as many as 6 readings per hour with a precision of approximately ±5-15% for typical coastal seawater concentrations. (author)

  3. Effects of near-future ocean acidification, fishing, and marine protection on a temperate coastal ecosystem.

    Science.gov (United States)

    Cornwall, Christopher E; Eddy, Tyler D

    2015-02-01

    Understanding ecosystem responses to global and local anthropogenic impacts is paramount to predicting future ecosystem states. We used an ecosystem modeling approach to investigate the independent and cumulative effects of fishing, marine protection, and ocean acidification on a coastal ecosystem. To quantify the effects of ocean acidification at the ecosystem level, we used information from the peer-reviewed literature on the effects of ocean acidification. Using an Ecopath with Ecosim ecosystem model for the Wellington south coast, including the Taputeranga Marine Reserve (MR), New Zealand, we predicted ecosystem responses under 4 scenarios: ocean acidification + fishing; ocean acidification + MR (no fishing); no ocean acidification + fishing; no ocean acidification + MR for the year 2050. Fishing had a larger effect on trophic group biomasses and trophic structure than ocean acidification, whereas the effects of ocean acidification were only large in the absence of fishing. Mortality by fishing had large, negative effects on trophic group biomasses. These effects were similar regardless of the presence of ocean acidification. Ocean acidification was predicted to indirectly benefit certain species in the MR scenario. This was because lobster (Jasus edwardsii) only recovered to 58% of the MR biomass in the ocean acidification + MR scenario, a situation that benefited the trophic groups lobsters prey on. Most trophic groups responded antagonistically to the interactive effects of ocean acidification and marine protection (46%; reduced response); however, many groups responded synergistically (33%; amplified response). Conservation and fisheries management strategies need to account for the reduced recovery potential of some exploited species under ocean acidification, nonadditive interactions of multiple factors, and indirect responses of species to ocean acidification caused by declines in calcareous predators. © 2014 Society for Conservation Biology.

  4. Rapid shelf-wide cooling response of a stratified coastal ocean to hurricanes.

    Science.gov (United States)

    Seroka, Greg; Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-06-01

    Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead-of-eye-center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation-validated, high-resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid-Atlantic hurricanes were investigated: Hurricane Irene (2011)-with an inshore Mid-Atlantic Bight (MAB) track during the late summer stratified coastal ocean season-and Tropical Storm Barry (2007)-with an offshore track during early summer. For both storms, the critical ahead-of-eye-center depth-averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead-of-eye-center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3-D coupled atmosphere-ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels.

  5. Rapid shelf‐wide cooling response of a stratified coastal ocean to hurricanes

    Science.gov (United States)

    Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-01-01

    Abstract Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead‐of‐eye‐center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation‐validated, high‐resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid‐Atlantic hurricanes were investigated: Hurricane Irene (2011)—with an inshore Mid‐Atlantic Bight (MAB) track during the late summer stratified coastal ocean season—and Tropical Storm Barry (2007)—with an offshore track during early summer. For both storms, the critical ahead‐of‐eye‐center depth‐averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead‐of‐eye‐center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3‐D coupled atmosphere‐ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels. PMID:28944132

  6. Coastal Zone Color Scanner (CZCS): Imagery of near-surface phytoplankton pigment concentrations from the first coastal ocean dynamics experiment (CODE-1), March - July 1981

    Science.gov (United States)

    Abbott, M. R.; Zion, P. M.

    1984-01-01

    As part of the first Coastal Ocean Dynamics Experiment, images of ocean color were collected from late March until late July, 1981, by the Coastal Zone Color Scanner aboard Nimbus-7. Images that had sufficient cloud-free area to be of interest were processed to yield near-surface phytoplankton pigment concentrations. These images were then remapped to a fixed equal-area grid. This report contains photographs of the digital images and a brief description of the processing methods.

  7. The growing human footprint on coastal and open-ocean biogeochemistry.

    Science.gov (United States)

    Doney, Scott C

    2010-06-18

    Climate change, rising atmospheric carbon dioxide, excess nutrient inputs, and pollution in its many forms are fundamentally altering the chemistry of the ocean, often on a global scale and, in some cases, at rates greatly exceeding those in the historical and recent geological record. Major observed trends include a shift in the acid-base chemistry of seawater, reduced subsurface oxygen both in near-shore coastal water and in the open ocean, rising coastal nitrogen levels, and widespread increase in mercury and persistent organic pollutants. Most of these perturbations, tied either directly or indirectly to human fossil fuel combustion, fertilizer use, and industrial activity, are projected to grow in coming decades, resulting in increasing negative impacts on ocean biota and marine resources.

  8. Multi-scale modeling of Puget Sound using an unstructured-grid coastal ocean model: from tide flats to estuaries and coastal waters

    International Nuclear Information System (INIS)

    Yang, Zhaoqing; Khangaonkar, Tarang

    2010-01-01

    Water circulation in Puget Sound, a large complex estuary system in the Pacific Northwest coastal ocean of the United States, is governed by multiple spatially and temporally varying forcings from tides, atmosphere (wind, heating/cooling, precipitation/evaporation, pressure), and river inflows. In addition, the hydrodynamic response is affected strongly by geomorphic features, such as fjord-like bathymetry and complex shoreline features, resulting in many distinguishing characteristics in its main and sub-basins. To better understand the details of circulation features in Puget Sound and to assist with proposed nearshore restoration actions for improving water quality and the ecological health of Puget Sound, a high-resolution (around 50 m in estuaries and tide flats) hydrodynamic model for the entire Puget Sound was needed. Here, a threedimensional circulation model of Puget Sound using an unstructured-grid finite volume coastal ocean model is presented. The model was constructed with sufficient resolution in the nearshore region to address the complex coastline, multi-tidal channels, and tide flats. Model open boundaries were extended to the entrance of the Strait of Juan de Fuca and the northern end of the Strait of Georgia to account for the influences of ocean water intrusion from the Strait of Juan de Fuca and the Fraser River plume from the Strait of Georgia, respectively. Comparisons of model results, observed data, and associated error statistics for tidal elevation, velocity, temperature, and salinity indicate that the model is capable of simulating the general circulation patterns on the scale of a large estuarine system as well as detailed hydrodynamics in the nearshore tide flats. Tidal characteristics, temperature/salinity stratification, mean circulation, and river plumes in estuaries with tide flats are discussed.

  9. Terrestrial and coastal landscape evolution on tropical oceanic islands

    NARCIS (Netherlands)

    Viles, H.A.; Spencer, T.

    2011-01-01

    Tropical oceanic islands owe their origin to volcanic eruptions, their location to plate tectonics, and their morphology to the interplay over time between a range of constructional and erosional processes. A broad distinction can be made between high volcanic islands, with summits up to 4,000 m,

  10. Phylogenetic comparisons of a coastal bacterioplankton community with its counterparts in open ocean and freshwater systems.

    Science.gov (United States)

    Rappé; Vergin; Giovannoni

    2000-09-01

    In order to extend previous comparisons between coastal marine bacterioplankton communities and their open ocean and freshwater counterparts, here we summarize and provide new data on a clone library of 105 SSU rRNA genes recovered from seawater collected over the western continental shelf of the USA in the Pacific Ocean. Comparisons to previously published data revealed that this coastal bacterioplankton clone library was dominated by SSU rRNA gene phylotypes originally described from surface waters of the open ocean, but also revealed unique SSU rRNA gene lineages of beta Proteobacteria related to those found in clone libraries from freshwater habitats. beta Proteobacteria lineages common to coastal and freshwater samples included members of a clade of obligately methylotrophic bacteria, SSU rRNA genes affiliated with Xylophilus ampelinus, and a clade related to the genus Duganella. In addition, SSU rRNA genes were recovered from such previously recognized marine bacterioplankton SSU rRNA gene clone clusters as the SAR86, SAR11, and SAR116 clusters within the class Proteobacteria, the Roseobacter clade of the alpha subclass of the Proteobacteria, the marine group A/SAR406 cluster, and the marine Actinobacteria clade. Overall, these results support and extend previous observations concerning the global distribution of several marine planktonic prokaryote SSU rRNA gene phylotypes, but also show that coastal bacterioplankton communities contain SSU rRNA gene lineages (and presumably bacterioplankton) shown previously to be prevalent in freshwater habitats.

  11. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget

    Science.gov (United States)

    Duarte, Carlos M.

    2017-01-01

    Vegetated coastal habitats, including seagrass and macroalgal beds, mangrove forests and salt marshes, form highly productive ecosystems, but their contribution to the global carbon budget remains overlooked, and these forests remain hidden in representations of the global carbon budget. Despite being confined to a narrow belt around the shoreline of the world's oceans, where they cover less than 7 million km2, vegetated coastal habitats support about 1 to 10 % of the global marine net primary production and generate a large organic carbon surplus of about 40 % of their net primary production (NPP), which is either buried in sediments within these habitats or exported away. Large, 10-fold uncertainties in the area covered by vegetated coastal habitats, along with variability about carbon flux estimates, result in a 10-fold bracket around the estimates of their contribution to organic carbon sequestration in sediments and the deep sea from 73 to 866 Tg C yr-1, representing between 3 % and 1/3 of oceanic CO2 uptake. Up to 1/2 of this carbon sequestration occurs in sink reservoirs (sediments or the deep sea) beyond these habitats. The organic carbon exported that does not reach depositional sites subsidizes the metabolism of heterotrophic organisms. In addition to a significant contribution to organic carbon production and sequestration, vegetated coastal habitats contribute as much to carbonate accumulation as coral reefs do. While globally relevant, the magnitude of global carbon fluxes supported by salt-marsh, mangrove, seagrass and macroalgal habitats is declining due to rapid habitat loss, contributing to loss of CO2 sequestration, storage capacity and carbon subsidies. Incorporating the carbon fluxes' vegetated coastal habitats' support into depictions of the carbon budget of the global ocean and its perturbations will improve current representations of the carbon budget of the global ocean.

  12. The Hyperspectral Imager for the Coastal Ocean (HICO (trademark)) Provides a New View of the Coastal Ocean

    Science.gov (United States)

    2012-02-09

    The calibrated data are then sent to NRL Stennis Space Center (NRL-SSC) for further processing using the NRL SSC Automated Processing System (APS...hyperspectral sensor in space we have not previously developed automated processing for hyperspectral ocean color data. The hyperspectral processing branch

  13. Model-Based Assessment of the CO2 Sequestration Potential of Coastal Ocean Alkalinization

    Science.gov (United States)

    Feng, E. Y.; Koeve, W.; Keller, D. P.; Oschlies, A.

    2017-12-01

    The potential of coastal ocean alkalinization (COA), a carbon dioxide removal (CDR) climate engineering strategy that chemically increases ocean carbon uptake and storage, is investigated with an Earth system model of intermediate complexity. The CDR potential and possible environmental side effects are estimated for various COA deployment scenarios, assuming olivine as the alkalinity source in ice-free coastal waters (about 8.6% of the global ocean's surface area), with dissolution rates being a function of grain size, ambient seawater temperature, and pH. Our results indicate that for a large-enough olivine deployment of small-enough grain sizes (10 µm), atmospheric CO2 could be reduced by more than 800 GtC by the year 2100. However, COA with coarse olivine grains (1000 µm) has little CO2 sequestration potential on this time scale. Ambitious CDR with fine olivine grains would increase coastal aragonite saturation Ω to levels well beyond those that are currently observed. When imposing upper limits for aragonite saturation levels (Ωlim) in the grid boxes subject to COA (Ωlim = 3.4 and 9 chosen as examples), COA still has the potential to reduce atmospheric CO2 by 265 GtC (Ωlim = 3.4) to 790 GtC (Ωlim = 9) and increase ocean carbon storage by 290 Gt (Ωlim = 3.4) to 913 Gt (Ωlim = 9) by year 2100.

  14. Gulf of Mexico Coastal Ocean Observing System: The Gulf Component of the U.S. Integrated Ocean Observing System

    Science.gov (United States)

    Bernard, L. J.; Moersdorf, P. F.

    2005-05-01

    The United States is developing an Integrated Ocean Observing System (IOOS) as the U.S. component of the international Global Ocean Observing System (GOOS). IOOS consists of: (1) a coastal observing system for the U.S. EEZ, estuaries, and Great Lakes; and (2) a contribution to the global component of GOOS focused on climate and maritime services. The coastal component will consist of: (1) a National Backbone of observations and products from our coastal ocean supported by federal agencies; and (2) contributions of Regional Coastal Ocean Observing Systems (RCOOS). The Gulf of Mexico Coastal Ocean Observing System (GCOOS) is one of eleven RCOOS. This paper describes how GCOOS is progressing as a system of systems to carry out data collection, analysis, product generation, dissemination of information, and data archival. These elements are provided by federal, state, and local government agencies, academic institutions, non-government organization, and the private sector. This end-to-end system supports the seven societal goals of the IOOS, as provided by the U.S. Commission on Ocean Policy: detect and forecast oceanic components of climate variability, facilitate safe and efficient marine operations, ensure national security, manage marine resources, preserve and restore healthy marine ecosystems, mitigate natural hazards, and ensure public health. The initial building blocks for GCOOS include continuing in situ observations, satellite products, models, and other information supported by federal and state government, private industry, and academia. GCOOS has compiled an inventory of such activities, together with descriptions, costs, sources of support, and possible out-year budgets. These activities provide information that will have broader use as they are integrated and enhanced. GCOOS has begun that process by several approaches. First, GCOOS has established a web site (www.gcoos.org) which is a portal to such activities and contains pertinent information

  15. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic true color (RGB) and infrared (IR) image tiles, Kachemak Bay, Alaska, 2008 (NODC Accession 0074379)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are a NOAA National Ocean Service National Geodetic Survey (NOS/NGS) Integrated Ocean and Coastal Mapping (IOCM) Product. The images were acquired from a...

  16. Process studies of the carbonate system in coastal and ocean environments of the Atlantic Ocean

    NARCIS (Netherlands)

    Salt, L.A.

    2014-01-01

    The increase in anthropogenic, atmospheric carbon dioxide (CO2) has been largely mitigated by ocean uptake since the start of the Industrial Revolution, with the Atlantic Ocean providing the largest store of anthropogenic carbon. The thesis of Lesley Salt examines how the uptake of CO2 varies in

  17. Enhanced ocean carbon storage from anaerobic alkalinity generation in coastal sediments

    Directory of Open Access Journals (Sweden)

    H. Thomas

    2009-02-01

    Full Text Available The coastal ocean is a crucial link between land, the open ocean and the atmosphere. The shallowness of the water column permits close interactions between the sedimentary, aquatic and atmospheric compartments, which otherwise are decoupled at long time scales (≅ 1000 yr in the open oceans. Despite the prominent role of the coastal oceans in absorbing atmospheric CO2 and transferring it into the deep oceans via the continental shelf pump, the underlying mechanisms remain only partly understood. Evaluating observations from the North Sea, a NW European shelf sea, we provide evidence that anaerobic degradation of organic matter, fuelled from land and ocean, generates total alkalinity (AT and increases the CO2 buffer capacity of seawater. At both the basin wide and annual scales anaerobic AT generation in the North Sea's tidal mud flat area irreversibly facilitates 7–10%, or taking into consideration benthic denitrification in the North Sea, 20–25% of the North Sea's overall CO2 uptake. At the global scale, anaerobic AT generation could be accountable for as much as 60% of the uptake of CO2 in shelf and marginal seas, making this process, the anaerobic pump, a key player in the biological carbon pump. Under future high CO2 conditions oceanic CO2 storage via the anaerobic pump may even gain further relevance because of stimulated ocean productivity.

  18. Coastal sea level response to the tropical cyclonic forcing in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Mehra, P.; Soumya, M.; Vethamony, P.; Vijaykumar, K.; Nair, T.M.B.; Agarvadekar, Y.; Jyoti, K.; Sudheesh, K.; Luis, R.; Lobo, S.; Halmalkar, B.

    –173, 2015 www.ocean-sci.net/11/159/2015/ doi:10.5194/os-11-159-2015 © Author(s) 2015. CC Attribution 3.0 License. Coastal sea level response to the tropical cyclonic forcing in the northern Indian Ocean P. Mehra1, M. Soumya1, P. Vethamony1, K. Vijaykumar1, T.... Note: sea level data at Colombo, Kochi, Karachi, Chabahar, Jask, Masirah, Minocoy and Hanimaadhoo are downloaded from www.gloss-sealevel.org and are shown with red stars. (Time is in Indian standard time (IST).) land locations of India are provided...

  19. Investigating the Eddy Diffusivity Concept in the Coastal Ocean

    Science.gov (United States)

    Rypina, I.; Kirincich, A.; Lentz, S. J.; Sundermeyer, M. A.

    2016-12-01

    We test the validity, utility, and limitations of the lateral eddy diffusivity concept in a coastal environment through analyzing data from coupled drifter and dye releases within the footprint of a high-resolution (800 m) high-frequency radar south of Martha's Vineyard, Massachusetts. Specifically, we investigate how well a combination of radar-based velocities and drifter-derived diffusivities can reproduce observed dye spreading over an 8-h time interval. A drifter-based estimate of an anisotropic diffusivity tensor is used to parameterize small-scale motions that are unresolved and under-resolved by the radar system. This leads to a significant improvement in the ability of the radar to reproduce the observed dye spreading. Our drifter-derived diffusivity estimates are O(10 m2/s), are consistent with the diffusivity inferred from aerial images of the dye taken using the quadcopter-mounted digital camera during the dye release, and are roughly an order of magnitude larger than diffusivity estimates of Okubo (O(1 m2/s)) for similar spatial scales ( 1 km). Despite the fact that the drifter-based diffusivity approach was successful in improving the ability of the radar to reproduce the observed dye spreading, the dispersion of drifters was, for the most part, not consistent with the diffusive spreading regime.

  20. Environmental monitoring of coastal and oceanic areas with orbital sensors

    Directory of Open Access Journals (Sweden)

    Patrícia Genovez

    2005-04-01

    Full Text Available PETROBRAS is using spaceborne multi-sensor remote sensing for its sea surface monitoring program at the Campos, Santos and Espírito Santo basins, southeastern Brazilian coast. Ocean color (SeaWiFS and MODIS, thermal infrared (NOAA/AVHRR, scatterometer (QuikSCAT and Synthetic Aperture Radar (RADARSAT-1 and ASAR/ENVISAT data were integrated in order to detect and characterize different sorts of marine pollution and meteo-oceanographic phenomena. The near real time processing and delivery of the radar data allowed the timely in-situ verification and sampling of the remotely detected events. The integrated analysis of these dataset presents an important decision tool for emergencies, as well for the elaboration of contingency plans and evaluation of the oil industry activity impacts.

  1. Offshore limit of coastal ocean variability identified from hydrography and altimeter data in the eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Antony, M.K.; Swamy, G.N.; Somayajulu, Y.K.

    In this communication, we describe a hitherto-unknown offshore limit to the coastal ocean variability signatures away from the continental shelf in the eastern Arabian Sea, based on hydrographic observations and satellite altimeter (TOPEX...

  2. Sea truth validation of sea WiFS ocean colour sensor in the coastal waters of the eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.S.; Suresh, T.; Matondkar, S.G.P.; Desa, E.

    In this paper we report bio-optical measurements made during an ocean colour validation cruise SK 149C in November 1999 of the research vessel Sagar Kanya in the coastal waters of the Eastern Arabian Sea. The chlorophyll concentration...

  3. Empirical evidence reveals seasonally dependent reduction in nitrification in coastal sediments subjected to near future ocean acidification

    NARCIS (Netherlands)

    Braeckman, U.; Van Colen, C.; Guilini, K.; Van Gansbeke, D.; Soetaert, K.; Vincx, M.; Vanaverbeke, J.

    2014-01-01

    Research so far has provided little evidence that benthic biogeochemical cycling is affected by ocean acidification under realistic climate change scenarios. We measured nutrient exchange and sediment community oxygen consumption (SCOC) rates to estimate nitrification in natural coastal permeable

  4. Influence of salinity on bacterioplankton communities from the brazilian rain forest to the coastal Atlantic Ocean

    OpenAIRE

    Silveira, Cynthia Barbosa da; Vieira, Ricardo Pilz; Cardoso, Alexander Machado; Paranhos, Rodolfo Pinheiro da Rocha; Albano, Rodolpho Mattos; Martins, Orlando Bonifácio

    2011-01-01

    BACKGROUND: Planktonic bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems, however, the taxa that make up these communities are poorly known. The aim of this study was to investigate bacterial communities in aquatic ecosystems at Ilha Grande, Rio de Janeiro, Brazil, a preserved insular environment of the Atlantic rain forest and how they correlate with a salinity gradient going from terrestrial aquatic habitats to the coastal Atlantic Ocean. MET...

  5. Tidal influence on the sea-to-air transfer of CH4 in the coastal ocean

    International Nuclear Information System (INIS)

    Hahm, Doshik; Kim, Guebuem; Lee, Yong-Woo; Nam, Sungh-Yun; Kim, Kyung-Ryul; Kim, Kuh

    2006-01-01

    We obtained real-time monitoring data of water temperature, salinity, wind, current, CH 4 and other oceanographic parameters in a coastal bay in the southern sea of Korea from July 8 to August 15, 2003, using an environmental monitoring buoy. In general, the transfer velocity of environmental gases across the air-sea interface is obtained exclusively from empirical relationships with wind speeds. However, our monitoring data demonstrate that the agitation of the aqueous boundary layer is controlled significantly by tidal turbulence, similar to the control exercised by wind stress in the coastal ocean. The sea-to-air transfer of CH 4 is enhanced significantly during spring tide due to an increase in the gas transfer velocity and vertical CH 4 transport from bottom water to the surface layer. Thus, our unique time-series results imply that the sea-to-air transfer of gases, such as CH 4 , DMS, DMHg, N 2 O, CO 2 and 222 Rn, from highly enriched coastal bottom waters, is controlled not only by episodic wind events but also by regular tidal turbulence in the coastal ocean

  6. Development of a Coupled Ocean-Hydrologic Model to Simulate Pollutant Transport in Singapore Coastal Waters

    Science.gov (United States)

    Chua, V. P.

    2015-12-01

    Intensive agricultural, economic and industrial activities in Singapore and Malaysia have made our coastal areas under high risk of water pollution. A coupled ocean-hydrologic model is employed to perform three-dimensional simulations of flow and pollutant transport in Singapore coastal waters. The hydrologic SWAT model is coupled with the coastal ocean SUNTANS model by outputting streamflow and pollutant concentrations from the SWAT model and using them as inputs for the SUNTANS model at common boundary points. The coupled model is calibrated with observed sea surface elevations and velocities, and high correlation coefficients that exceed 0.97 and 0.91 are found for sea surface elevations and velocities, respectively. The pollutants are modeled as Gaussian passive tracers, and are released at five upstream locations in Singapore coastal waters. During the Northeast monsoon, pollutants released in Source 1 (Johor River), Source 2 (Tiram River), Source 3 (Layang River) and Source 4 (Layau River) enter the Singapore Strait after 4 days of release and reach Sentosa Island within 9 days. Meanwhile, pollutants released in Source 5 (Kallang River) reach Sentosa Island after 4 days. During the Southwest monsoon, the dispersion time is roughly doubled, with pollutants from Sources 1 - 4 entering the Singapore Strait only after 12 days of release due to weak currents.

  7. CDOM-DOC relationship in contrasted coastal waters : implication for DOC retrieval from ocean color remote sensing observation

    OpenAIRE

    Vantrepotte, V.; Danhiez, F. P.; Loisel, Hubert; Ouillon, Sylvain; Meriaux, X.; Cauvin, A.; Dessailly, D.

    2015-01-01

    Increasing our knowledge on dissolved organic carbon (DOC) spatio-temporal distribution in the coastal ocean represents a crucial challenge for better understanding the role of these ecosystems in the global oceanic carbon cycle. The assessment of DOC concentration from the absorption properties of the colored part of the dissolved organic matter (a(cdom)) was investigated from an extensive data set covering a variety of coastal environments. Our results confirmed that variation in the acdom(...

  8. Taxonomic and functional distinctness of the fish assemblages in three coastal environments (bays, coastal lagoons and oceanic beaches) in Southeastern Brazil.

    Science.gov (United States)

    Azevedo, Márcia Cristina Costa; Gomes-Gonçalves, Rafaela de Sousa; Mattos, Tailan Moretti; Uehara, Wagner; Guedes, Gustavo Henrique Soares; Araújo, Francisco Gerson

    2017-08-01

    Several species of marine fish use different coastal systems especially during their early development. However, these habitats are jeopardized by anthropogenic influences threatening the success of fish populations, and urgent measures are needed to priorize areas to protect their sustainability. We applied taxonomic (Δ+) and functional (X+) distinctiveness indices that represent taxonomic composition and functional roles to assess biodiversity of three different costal systems: bays, coastal lagoons and oceanic beaches. We hypothesized that difference in habitat characteristics, especially in the more dynamism and habitat homogeneity of oceanic beaches compared with more habitat diversity and sheltered conditions of bays and coastal lagoons results in differences in fish richness and taxonomic and functional diversity. The main premise is that communities phylogenetically and functionally more distinct have more interest in conservation policies. Significant differences (P PERMANOVA. Fish richness was higher in bays compared with the coastal lagoons and oceanic beaches. Higher Δ+ was found for the coastal lagoons compared with the bays and oceanic beaches, with the bays having some values below the confidence limit. Similar patterns were found for X+, although all values were within the confidence limits for the bays, suggesting that the absence of some taxa does not interfere in functional diversity. The hypothesis that taxonomic and functional structure of fish assemblages differ among the three systems was accepted and we suggest that coastal lagoons should be priorized in conservation programs because they support more taxonomic and functional distinctiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Photo-Geomorphology of Coastal Landforms, Cat Island, Bahamas. Volume II,

    Science.gov (United States)

    The report provides the aerial imagery used in the analysis of the coastal landforms of Cat Island in the east-central Bahama Islands. Interpretive...published volume Coastal Landform of Cat Island, Bahamas: A Study of Holocene Accretionary Topography and Sea-Level Change but may also serve as an

  10. Using the Alaska Ocean Observing System to Inform Decision Making for Coastal Resiliency Relating to Inundation, Ocean Acidification, Harmful Algal Blooms, Navigation Safety and Impacts of Vessel Traffic

    Science.gov (United States)

    McCammon, M.

    2017-12-01

    State and federal agencies, coastal communities and Alaska Native residents, and non-governmental organizations are increasingly turning to the Alaska Ocean Observing System (AOOS) as a major source of ocean and coastal data and information products to inform decision making relating to a changing Arctic. AOOS implements its mission to provide ocean observing data and information to meet stakeholder needs by ensuring that all programs are "science based, stakeholder driven and policy neutral." Priority goals are to increase access to existing coastal and ocean data; package information and data in useful ways to meet stakeholder needs; and increase observing and forecasting capacity in all regions of the state. Recently certified by NOAA, the AOOS Data Assembly Center houses the largest collection of real-time ocean and coastal data, environmental models, and biological data in Alaska, and develops tools and applications to make it more publicly accessible and useful. Given the paucity of observations in the Alaska Arctic, the challenge is how to make decisions with little data compared to other areas of the U.S. coastline. AOOS addresses this issue by: integrating and visualizing existing data; developing data and information products and tools to make data more useful; serving as a convener role in areas such as coastal inundation and flooding, impacts of warming temperatures on food security, ocean acidification, observing technologies and capacity; and facilitating planning efforts to increase observations. In this presentation, I will give examples of each of these efforts, lessons learned, and suggestions for future actions.

  11. Biogenic halocarbons from coastal oceanic upwelling regions as tropospheric halogen source

    Science.gov (United States)

    Krüger, Kirstin; Fuhlbrügge, Steffen; Hepach, Helmke; Fiehn, Alina; Atlas, Elliot; Quack, Birgit

    2016-04-01

    Halogenated very short lived substances (VSLS) are naturally produced in the ocean and emitted to the atmosphere. Recently, oceanic upwelling regions in the tropical East Atlantic were identified as strong sources of brominated halocarbons to the troposphere. During a cruise of R/V METEOR in December 2012 the oceanic sources and emissions of various halogenated trace gases and their mixing ratios in the marine atmospheric boundary layer (MABL) were investigated above the Peruvian Upwelling for the first time. This study presents novel observations of the three VSLS bromoform, dibromomethane and methyl iodide together with high resolution meteorological measurements and Lagrangian transport modelling. Although relatively low oceanic emissions were observed, except for methyl iodide, surface atmospheric abundances were elevated. Radiosonde launches during the cruise revealed a low, stable MABL and a distinct trade inversion above acting both as strong barriers for convection and trace gas transport in this region. Significant correlations between observed atmospheric VSLS abundances, sea surface temperature, relative humidity and MABL height were found. We used a simple source-loss estimate to identify the contribution of oceanic emissions to observed atmospheric concentrations which revealed that the observed marine VSLS abundances were dominated by horizontal advection below the trade inversion. The observed VSLS variations can be explained by the low emissions and their accumulation under different MABL and trade inversion conditions. Finally, observations from a second Peruvian Upwelling cruise with R/V SONNE during El Nino in October 2015 will be compared to highlight the role of different El Nino Southern Oscillation conditions. This study confirms the importance of coastal oceanic upwelling and trade wind systems on creating effective transport barriers in the lowermost atmosphere controlling the distribution of VSLS abundances above coastal ocean upwelling

  12. Final Technical Report: DOE-Biological Ocean Margins Program. Microbial Ecology of Denitrifying Bacteria in the Coastal Ocean.

    Energy Technology Data Exchange (ETDEWEB)

    Lee Kerkhof

    2013-01-01

    The focus of our research was to provide a comprehensive study of the bacterioplankton populations off the coast of New Jersey near the Rutgers University marine field station using terminal restriction fragment polymorphism analysis (TRFLP) coupled to 16S rRNA genes for large data set studies. Our three revised objectives to this study became: (1) to describe bacterioplankton population dynamics in the Mid Atlantic Bight using TRFLP analysis of 16S rRNA genes. (2) to determine whether spatial and temporal factors are driving bacterioplankton community dynamics in the MAB using monthly samping along our transect line over a 2-year period. (3) to identify dominant members of a coastal bacterioplankton population by clonal library analysis of 16S rDNA genes and sequencing of PCR product corresponding to specific TRFLP peaks in the data set. Although open ocean time-series sites have been areas of microbial research for years, relatively little was known about the population dynamics of bacterioplankton communities in the coastal ocean on kilometer spatial and seasonal temporal scales. To gain a better understanding of microbial community variability, monthly samples of bacterial biomass were collected in 1995-1996 along a 34-km transect near the Long-Term Ecosystem Observatory (LEO-15) off the New Jersey coast. Surface and bottom sampling was performed at seven stations along a transect line with depths ranging from 1 to 35m (n=178). The data revealed distinct temporal patterns among the bacterioplankton communities in the Mid-Atlantic Bight rather than grouping by sample location or depth (figure 2-next page). Principal components analysis models supported the temporal patterns. In addition, partial least squares regression modeling could not discern a significant correlation from traditional oceanographic physical and phytoplankton nutrient parameters on overall bacterial community variability patterns at LEO-15. These results suggest factors not traditionally

  13. The Southern California Coastal Ocean Observing System (SCCOOS): Developing A Coastal Observation System To Enable Both Science Based Decision Making And Scientific Discovery

    Science.gov (United States)

    Terrill, E.; John, O.

    2005-05-01

    The Southern California Coastal Ocean Observing System (SCCOOS) is a consortium that extends from Northern Baja CA in Mexico to Morro Bay at the southern edge of central California, and aims to streamline, coordinate, and further develop individual institutional efforts by creating an integrated, multidisciplinary coastal observatory in the Bight of Southern California for the benefit of society. By leveraging existing infrastructure, partnerships, and private, local, state, and federal resources, SCCOOS is developing a fully operational coastal observation system to address issues related to coastal water quality, marine life resources, and coastal hazards for end user communities spanning local, state, and federal interests. However, to establish a sensible observational approach to address these societal drivers, sound scientific approaches are required in both the system design and the transformation of data to useful products. Since IOOS and coastal components of the NSF Ocean Observatories Initiative (OOI) are not mutually exclusive within this framework, the SCCOOS consortium of observatory implementers have created an organizational structure that encourages dovetailing of OOI into the routine observations provided by the operational components of a regional IOOS. To begin the development, SCCOOS has grant funding from the California Coastal Conservancy as part of a $21M, statewide initiative to establish a Coastal Ocean Currents Monitoring Program, and funding from NOAA's Coastal Observing Technology System (COTS). In addition, SCCOOS is leveraging IT development that has been supported by the NSF Information Technology Research program Real-time observatories, Applications,and Data Manageemnt Network (ROADNET), and anticipates using developments which will result from the NSF Laboratory for Ocean Observatory Knowledge Integration Grid (LOOKING) program. The observational components now funded at SCCOOS include surface current mapping by HF radar; high

  14. Characteristics of the oceanic MCC, continental MCC, and coastal MCC over the Indonesian maritime continent

    Science.gov (United States)

    Trismidianto

    2018-05-01

    This study explains the comparison of mesoscale convective complexes (MCC) characteristics in the oceans, land and in the coast over Indonesian maritime continent (IMC). MCCs were identified and tracked during 15-years (2001-2015) over IMC by infrared satellite imagery using an algorithm that combines criteria of cloud coverage, eccentricity, and cloud lifetime. Infrared satellite imagery was obtained from Himawari generation satellite data. This study showed most of the continental MCC found near the mountains and the high elevation areas. The frequency of MCC occurrences was larger over the land than over the ocean. The oceanic MCCs, which lasted for more than 12 hours, were longer-lived than the continental MCCs. The MCCs with small size most frequently occurred in the continent, in contrast, the MCC with the medium and large size were most concentrated over the ocean. Generally, the continental and coastal MCC initiation occurs in the late afternoon and reach maximum size around midnight before decaying the next morning. In contrast, the oceanic MCC dominantly develops in midnight, and reach maximum size in the morning and then MCC decayed and dissipated from noon until afternoon. The evolution of MCC development in the ocean, land, and in the coast has almost the same stages and ways.

  15. Monitoring of ocean surface algal blooms in coastal and oceanic waters around India.

    Digital Repository Service at National Institute of Oceanography (India)

    Tholkapiyan, M.; Shanmugam, P.; Suresh, T.

    of the MODIS-Aqua-derived OSABI (ocean surface algal bloom index) and its seasonal composite images report new information and comprehensive pictures of these blooms and their evolution stages in a wide variety of events occurred at different times of the years...

  16. Physiological Responses to Salinity Vary with Proximity to the Ocean in a Coastal Amphibian.

    Science.gov (United States)

    Hopkins, Gareth R; Brodie, Edmund D; Neuman-Lee, Lorin A; Mohammadi, Shabnam; Brusch, George A; Hopkins, Zoë M; French, Susannah S

    2016-01-01

    Freshwater organisms are increasingly exposed to elevated salinity in their habitats, presenting physiological challenges to homeostasis. Amphibians are particularly vulnerable to osmotic stress and yet are often subject to high salinity in a variety of inland and coastal environments around the world. Here, we examine the physiological responses to elevated salinity of rough-skinned newts (Taricha granulosa) inhabiting a coastal stream on the Pacific coast of North America and compare the physiological responses to salinity stress of newts living in close proximity to the ocean with those of newts living farther upstream. Although elevated salinity significantly affected the osmotic (body weight, plasma osmolality), stress (corticosterone), and immune (bactericidal ability) responses of newts, animals found closer to the ocean were generally less reactive to salt stress than those found farther upstream. Our results provide possible evidence for some physiological tolerance in this species to elevated salinity in coastal environments. As freshwater environments become increasingly saline and more stressful, understanding the physiological tolerances of vulnerable groups such as amphibians will become increasingly important to our understanding of their abilities to respond, to adapt, and, ultimately, to survive.

  17. The Baltic Sea as a time machine for the future coastal ocean

    DEFF Research Database (Denmark)

    Reusch, Thorsten B. H.; Dierking, Jan; Andersson, Helen C.

    2018-01-01

    Coastal global oceans are expected to undergo drastic changes driven by climate change and increasing anthropogenic pressures in coming decades. Predicting specific future conditions and assessing the best management strategies to maintain ecosystem integrity and sustainable resource use are diff......Coastal global oceans are expected to undergo drastic changes driven by climate change and increasing anthropogenic pressures in coming decades. Predicting specific future conditions and assessing the best management strategies to maintain ecosystem integrity and sustainable resource use...... are difficult, because of multiple interacting pressures, uncertain projections, and a lack of test cases for management. We argue that the Baltic Sea can serve as a time machine to study consequences and mitigation of future coastal perturbations, due to its unique combination of an early history...... of multistressor disturbance and ecosystem deterioration and early implementation of cross-border environmental management to address these problems. The Baltic Sea also stands out in providing a strong scientific foundation and accessibility to long-term data series that provide a unique opportunity to assess...

  18. Predicting dissolved lignin phenol concentrations in the coastal ocean from chromophoric dissolved organic matter (CDOM absorption coefficients

    Directory of Open Access Journals (Sweden)

    Cédric G. Fichot

    2016-02-01

    Full Text Available Dissolved lignin is a well-established biomarker of terrigenous dissolved organic matter (DOM in the ocean, and a chromophoric component of DOM. Although evidence suggests there is a strong linkage between lignin concentrations and chromophoric DOM (CDOM absorption coefficients in coastal waters, the characteristics of this linkage and the existence of a relationship that is applicable across coastal oceans remain unclear. Here, 421 paired measurements of dissolved lignin concentrations (sum of 9 lignin phenols and CDOM absorption coefficients (ag(λ were used to examine their relationship along the river-ocean continuum (0-37 salinity and across contrasting coastal oceans (sub-tropical, temperate, high-latitude. Overall, lignin concentrations spanned four orders of magnitude and revealed a strong, non-linear relationship with ag(λ. The characteristics of the relationship (shape, wavelength dependency, lignin-composition dependency and evidence from degradation indicators were all consistent with lignin being an important driver of CDOM variability in coastal oceans, and suggested physical mixing and long-term photodegradation were important in shaping the relationship. These observations were used to develop two simple empirical models for estimating lignin concentrations from ag(λ with a +/- 20% error relative to measured values. The models are expected to be applicable in most coastal oceans influenced by terrigenous inputs.

  19. Sensitivity of ocean model simulation in the coastal ocean to the resolution of the meteorological forcing

    Science.gov (United States)

    Chen, Feng; Shapiro, Georgy; Thain, Richard

    2013-04-01

    The quality of ocean simulations depends on a number of factors such as approximations in governing equations, errors introduced by the numerical scheme, uncertainties in input parameters, and atmospheric forcing. The identification of relations between the uncertainties in input and output data is still a challenge for the development of numerical models. The impacts of ocean variables on ocean models are still not well known (e.g., Kara et al., 2009). Given the considerable importance of the atmospheric forcing to the air-sea interaction, it is essential that researchers in ocean modelling work need a good understanding about how sensitive the atmospheric forcing is to variations of model results, which is beneficial to the development of ocean models. Also, it provides a proper way to choose the atmospheric forcing in ocean modelling applications. Our previous study (Shapiro et al, 2011) has shown that the basin-wide circulation pattern and the temperature structure in the Black Sea produced by the same model is significantly dependent on the source of the meteorological input, giving remarkably different responses. For the purpose of this study we have chosen the Celtic Sea where high resolution meteo data are available from the UK Met office since 2006. The Celtic Sea is tidally dominated water basin, with the tidal stream amplitude varying from 0.25m/s in the southwest to 2 m/s in the Bristol Channel. It is also filled with mesoscale eddies which contribute to the formation of the residual (tidally averaged) circulation pattern (Young et al, 2003). The sea is strongly stratified from April to November, which adds to the formation of density driven currents. In this paper we analyse how sensitive the model output is to variations in the spatial resolution of meteorological using low (1.6°) and high (0.11°) resolution meteo forcing, giving the quantitative relation between variations of met forcing and the resulted differences of model results, as well as

  20. The coastal ocean response to the global warming acceleration and hiatus.

    Science.gov (United States)

    Liao, Enhui; Lu, Wenfang; Yan, Xiao-Hai; Jiang, Yuwu; Kidwell, Autumn

    2015-11-16

    Coastlines are fundamental to humans for habitation, commerce, and natural resources. Many coastal ecosystem disasters, caused by extreme sea surface temperature (SST), were reported when the global climate shifted from global warming to global surface warming hiatus after 1998. The task of understanding the coastal SST variations within the global context is an urgent matter. Our study on the global coastal SST from 1982 to 2013 revealed a significant cooling trend in the low and mid latitudes (31.4% of the global coastlines) after 1998, while 17.9% of the global coastlines changed from a cooling trend to a warming trend concurrently. The trend reversals in the Northern Pacific and Atlantic coincided with the phase shift of Pacific Decadal Oscillation and North Atlantic Oscillation, respectively. These coastal SST changes are larger than the changes of the global mean and open ocean, resulting in a fast increase of extremely hot/cold days, and thus extremely hot/cold events. Meanwhile, a continuous increase of SST was detected for a considerable portion of coastlines (46.7%) with a strengthened warming along the coastlines in the high northern latitudes. This suggests the warming still continued and strengthened in some regions after 1998, but with a weaker pattern in the low and mid latitudes.

  1. The coastal ocean response to the global warming acceleration and hiatus

    Science.gov (United States)

    Liao, Enhui; Lu, Wenfang; Yan, Xiao-Hai; Jiang, Yuwu; Kidwell, Autumn

    2015-01-01

    Coastlines are fundamental to humans for habitation, commerce, and natural resources. Many coastal ecosystem disasters, caused by extreme sea surface temperature (SST), were reported when the global climate shifted from global warming to global surface warming hiatus after 1998. The task of understanding the coastal SST variations within the global context is an urgent matter. Our study on the global coastal SST from 1982 to 2013 revealed a significant cooling trend in the low and mid latitudes (31.4% of the global coastlines) after 1998, while 17.9% of the global coastlines changed from a cooling trend to a warming trend concurrently. The trend reversals in the Northern Pacific and Atlantic coincided with the phase shift of Pacific Decadal Oscillation and North Atlantic Oscillation, respectively. These coastal SST changes are larger than the changes of the global mean and open ocean, resulting in a fast increase of extremely hot/cold days, and thus extremely hot/cold events. Meanwhile, a continuous increase of SST was detected for a considerable portion of coastlines (46.7%) with a strengthened warming along the coastlines in the high northern latitudes. This suggests the warming still continued and strengthened in some regions after 1998, but with a weaker pattern in the low and mid latitudes. PMID:26568024

  2. Prospects for improving the representation of coastal and shelf seas in global ocean models

    Science.gov (United States)

    Holt, Jason; Hyder, Patrick; Ashworth, Mike; Harle, James; Hewitt, Helene T.; Liu, Hedong; New, Adrian L.; Pickles, Stephen; Porter, Andrew; Popova, Ekaterina; Icarus Allen, J.; Siddorn, John; Wood, Richard

    2017-02-01

    Accurately representing coastal and shelf seas in global ocean models represents one of the grand challenges of Earth system science. They are regions of immense societal importance through the goods and services they provide, hazards they pose and their role in global-scale processes and cycles, e.g. carbon fluxes and dense water formation. However, they are poorly represented in the current generation of global ocean models. In this contribution, we aim to briefly characterise the problem, and then to identify the important physical processes, and their scales, needed to address this issue in the context of the options available to resolve these scales globally and the evolving computational landscape.We find barotropic and topographic scales are well resolved by the current state-of-the-art model resolutions, e.g. nominal 1/12°, and still reasonably well resolved at 1/4°; here, the focus is on process representation. We identify tides, vertical coordinates, river inflows and mixing schemes as four areas where modelling approaches can readily be transferred from regional to global modelling with substantial benefit. In terms of finer-scale processes, we find that a 1/12° global model resolves the first baroclinic Rossby radius for only ˜ 8 % of regions benefit of improved resolution and process representation using 1/12° global- and basin-scale northern North Atlantic nucleus for a European model of the ocean (NEMO) simulations; the latter includes tides and a k-ɛ vertical mixing scheme. These are compared with global stratification observations and 19 models from CMIP5. In terms of correlation and basin-wide rms error, the high-resolution models outperform all these CMIP5 models. The model with tides shows improved seasonal cycles compared to the high-resolution model without tides. The benefits of resolution are particularly apparent in eastern boundary upwelling zones.To explore the balance between the size of a globally refined model and that of

  3. Gradients in microbial methanol uptake: productive coastal upwelling waters to oligotrophic gyres in the Atlantic Ocean

    Science.gov (United States)

    Dixon, Joanna L; Sargeant, Stephanie; Nightingale, Philip D; Colin Murrell, J

    2013-01-01

    Methanol biogeochemistry and its importance as a carbon source in seawater is relatively unexplored. We report the first microbial methanol carbon assimilation rates (k) in productive coastal upwelling waters of up to 0.117±0.002 d−1 (∼10 nmol l−1 d−1). On average, coastal upwelling waters were 11 times greater than open ocean northern temperate (NT) waters, eight times greater than gyre waters and four times greater than equatorial upwelling (EU) waters; suggesting that all upwelling waters upon reaching the surface (⩽20 m), contain a microbial population that uses a relatively high amount of carbon (0.3–10 nmol l−1 d−1), derived from methanol, to support their growth. In open ocean Atlantic regions, microbial uptake of methanol into biomass was significantly lower, ranging between 0.04–0.68 nmol l−1 d−1. Microbes in the Mauritanian coastal upwelling used up to 57% of the total methanol for assimilation of the carbon into cells, compared with an average of 12% in the EU, and 1% in NT and gyre waters. Several methylotrophic bacterial species were identified from open ocean Atlantic waters using PCR amplification of mxaF encoding methanol dehydrogenase, the key enzyme in bacterial methanol oxidation. These included Methylophaga sp., Burkholderiales sp., Methylococcaceae sp., Ancylobacter aquaticus, Paracoccus denitrificans, Methylophilus methylotrophus, Methylobacterium oryzae, Hyphomicrobium sp. and Methylosulfonomonas methylovora. Statistically significant correlations for upwelling waters between methanol uptake into cells and both chlorophyll a concentrations and methanol oxidation rates suggest that remotely sensed chlorophyll a images, in these productive areas, could be used to derive total methanol biological loss rates, a useful tool for atmospheric and marine climatically active gas modellers, and air–sea exchange scientists. PMID:23178665

  4. Intercomparison of the Charnock and COARE bulk wind stress formulations for coastal ocean modelling

    Directory of Open Access Journals (Sweden)

    J. M. Brown

    2013-08-01

    Full Text Available The accurate parameterisation of momentum and heat transfer across the air–sea interface is vital for realistic simulation of the atmosphere–ocean system. In most modelling applications accurate representation of the wind stress is required to numerically reproduce surge, coastal ocean circulation, surface waves, turbulence and mixing. Different formulations can be implemented and impact the accuracy of the instantaneous and long-term residual circulation, the surface mixed layer, and the generation of wave-surge conditions. This, in turn, affects predictions of storm impact, sediment pathways, and coastal resilience to climate change. The specific numerical formulation needs careful selection to ensure the accuracy of the simulation. Two wind stress parameterisations widely used in the ocean circulation and the storm surge communities respectively are studied with focus on an application to the NW region of the UK. Model–observation validation is performed at two nearshore and one estuarine ADCP (acoustic Doppler current profiler stations in Liverpool Bay, a hypertidal region of freshwater influence (ROFI with vast intertidal areas. The period of study covers both calm and extreme conditions to test the robustness of the 10 m wind stress component of the Coupled Ocean–Atmosphere Response Experiment (COARE bulk formulae and the standard Charnock relation. In this coastal application a realistic barotropic–baroclinic simulation of the circulation and surge elevation is set-up, demonstrating greater accuracy occurs when using the Charnock relation, with a constant Charnock coefficient of 0.0185, for surface wind stress during this one month period.

  5. A miniaturized UV/VIS/IR hyperspectral radiometer for autonomous airborne and underwater imaging spectroscopy of coastal and oceanic environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Remote sensing of optical properties of oceans and coastal waters provides essential information for various scientific questions and applications, including...

  6. Year Five of Southeast Atlantic Coastal Ocean Observing System (SEACOOS) Implementation

    Science.gov (United States)

    2008-09-30

    established the first network of subsurface observing locations (of temperature and salinity ) and shelf current observations. The program also initiated a...evolving, three-dimensional fields of the coastal ocean from the estuaries out to the boundaries of the EEZ was the ambitious goal of the SEACOOS...fiddler crab Uca minax, Marine Biology, 152:1283-1291, doi:10.1007/s00227-007-0777- y. Chassignet, E.P., H.E. Hurlburt, O.M. Smedstad, G.R

  7. A drifter for measuring water turbidity in rivers and coastal oceans.

    Science.gov (United States)

    Marchant, Ross; Reading, Dean; Ridd, James; Campbell, Sean; Ridd, Peter

    2015-02-15

    A disposable instrument for measuring water turbidity in rivers and coastal oceans is described. It transmits turbidity measurements and position data via a satellite uplink to a processing server. The primary purpose of the instrument is to help document changes in sediment runoff from river catchments in North Queensland, Australia. The 'river drifter' is released into a flooded river and drifts downstream to the ocean, measuring turbidity at regular intervals. Deployment in the Herbert River showed a downstream increase in turbidity, and thus suspended sediment concentration, while for the Johnstone River there was a rapid reduction in turbidity where the river entered the sea. Potential stranding along river banks is a limitation of the instrument. However, it has proved possible for drifters to routinely collect data along 80 km of the Herbert River. One drifter deployed in the Fly River, Papua New Guinea, travelled almost 200 km before stranding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Comparison between the Coastal Impacts of Cyclone Nargis and the Indian Ocean Tsunami

    Science.gov (United States)

    Fritz, H. M.; Blount, C.

    2009-12-01

    On 26 December 2004 a great earthquake with a moment magnitude of 9.3 occurred off the North tip of Sumatra, Indonesia. The Indian Ocean tsunami claimed 230,000 lives making it the deadliest in recorded history. Less than 4 years later tropical cyclone Nargis (Cat. 4) made landfall in Myanmar’s Ayeyarwady delta on 2 May 2008 causing the worst natural disaster in Myanmar’s recorded history. Official death toll estimates exceed 138,000 fatalities making it the 7th deadliest cyclone ever recorded worldwide. The Bay of Bengal counts seven tropical cyclones with death tolls in excess of 100,000 striking India and Bangladesh in the past 425 years, which highlights the difference in return periods between extreme cyclones and tsunamis. Damage estimates at over $10 billion made Nargis the most damaging cyclone ever recorded in the Indian Ocean. Although the two natural disasters are completely different in their generation mechanisms they both share massive coastal inundations as primary damage and death cause. While the damage patterns exhibit similarities the forcing differs. The primary tsunami impact is dominated by the runup of a few main waves washing rapidly ashore and inducing high lateral forces. On the contrary the tropical cyclone storm surge damage is the result of numerous storm waves continuously hitting the flooded structures on the elevated storm tide level. While coastal vegetation such as mangroves may be effective at reducing superimposed storm waves they are limited at reducing storm surge. Unfortunately, mangroves have been significantly cut for charcoal and land use as rice paddies in Myanmar due to rapid population growth and economic reasons, thereby increasing coastal vulnerability and land loss due to erosion (Figure 1). The period of a storm surge is typically an order of magnitude longer than the period of a tsunami resulting in significantly larger inundation distances along coastal plains and river deltas. The storm surge of cyclone Nargis

  9. 2014 NOAA Ortho-rectified Mean Low Low Water Color Mosaic of Hood Canal - Port Townsend to Annas Bay, Washington: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  10. NOAA Integrated Ocean and Coastal Mapping (IOCM) true color (RGB) orthorectified mosaic image tiles, Lake Charles, Louisiana 2009-2010 (NODC Accession 0075827)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of Lake Charles,...

  11. 2015 NOAA Ortho-rectified Below Mean High Water Color Mosaic of the Port of Palm Beach, Florida: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  12. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic image tiles for Hampton Harbor to Frost Point and the Isle of Shoals, NH, 2011 (NODC Accession 0092292)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains orthorectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. Data were collected at...

  13. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic image tiles, Merrimack River and Plum Island Sound, Massachusetts, June 2011 (NODC Accession 0103944)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains both true color (RGB) and infrared (IR) ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping...

  14. 2015 NOAA Ortho-rectified Below Mean High Water Color Mosaic of Ports of Houston, Texas City, and Galveston, Texas: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  15. NOAA Integrated Ocean and Coastal Mapping (IOCM) true color (RGB) orthorectified mosaic image tiles, Baton Rouge to LaPlace, Louisiana 2010 (NODC Accession 0074374)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of the Mississippi...

  16. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic image tiles, LaPlace to Venice, Louisiana 2010 (NODC Accession 0075829)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of Mississippi River -...

  17. 2011 NOAA Ortho-rectified Mosaic of Christiansted of St. Johns, U.S. Virgin Islands: Integrated Ocean and Coastal Mapping Product (NODC Accession 0086076)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  18. 2013 NOAA Ortho-rectified Mean High Water Color Mosaic of Sequim Bay to Foulweather Bluff, Washington: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  19. 2014 NOAA Ortho-rectified Mean Low Low Water Near-Infrared Mosaic of Hood Canal - Port Townsend to Annas Bay, Washington: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  20. 2014 NOAA Ortho-rectified Mean Low Low Water Color Mosaic of Puget Sound - Everett to Spring Beach, Washington: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  1. Soil Moisture Ocean Salinity (SMOS) salinity data validation over Malaysia coastal water

    International Nuclear Information System (INIS)

    Reba, M N M; Rosli, A Z; Rahim, N A

    2014-01-01

    The study of sea surface salinity (SSS) plays an important role in the marine ecosystem, estimation of global ocean circulation and observation of fisheries, aquaculture, coral reef and sea grass habitats. The new challenge of SSS estimation is to exploit the ocean surface brightness temperature (Tb) observed by the Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) onboard the Soil Moisture Ocean Salinity (SMOS) satellite that is specifically designed to provide the best retrieval of ocean salinity and soil moisture using the L band of 1.4 GHz radiometer. Tb observed by radiometer is basically a function of the dielectric constant, sea surface temperature (SST), wind speed (U), incidence angle, polarization and SSS. Though, the SSS estimation is an ill-posed inversion problem as the relationship between the Tb and SSS is non-linear function. Objective of this study is to validate the SMOS SSS estimates with the ground-truth over the Malaysia coastal water. The LM iteratively determines the SSS of SMOS by the reduction of the sum of squared errors between Tb SMOS and Tb simulation (using in-situ) based on the updated geophysical triplet in the direction of the minimum of the cost function. The minimum cost function is compared to the desired threshold at each iteration and this recursive least square process updates the SST, U and SSS until the cost function converged. The designed LM's non-linear inversion algorithm simultaneously estimates SST, U and SSS and thus, map of SSS over Malaysia coastal water is produced from the regression model and accuracy assessment between the SMOS and in-situ retrieved SSS. This study found a good agreement in the validation with R square of 0.9 and the RMSE of 0.4. It is concluded that the non-linear inversion method is effective and practical to extract SMOS SSS, U and SST simultaneously

  2. Arctic-COLORS (Coastal Land Ocean Interactions in the Arctic) - a NASA field campaign scoping study to examine land-ocean interactions in the Arctic

    Science.gov (United States)

    Hernes, P.; Tzortziou, M.; Salisbury, J.; Mannino, A.; Matrai, P.; Friedrichs, M. A.; Del Castillo, C. E.

    2014-12-01

    The Arctic region is warming faster than anywhere else on the planet, triggering rapid social and economic changes and impacting both terrestrial and marine ecosystems. Yet our understanding of critical processes and interactions along the Arctic land-ocean interface is limited. Arctic-COLORS is a Field Campaign Scoping Study funded by NASA's Ocean Biology and Biogeochemistry Program that aims to improve understanding and prediction of land-ocean interactions in a rapidly changing Arctic coastal zone, and assess vulnerability, response, feedbacks and resilience of coastal ecosystems, communities and natural resources to current and future pressures. Specific science objectives include: - Quantify lateral fluxes to the arctic inner shelf from (i) rivers and (ii) the outer shelf/basin that affect biology, biodiversity, biogeochemistry (i.e. organic matter, nutrients, suspended sediment), and the processing rates of these constituents in coastal waters. - Evaluate the impact of the thawing of Arctic permafrost within the river basins on coastal biology, biodiversity and biogeochemistry, including various rates of community production and the role these may play in the health of regional economies. - Assess the impact of changing Arctic landfast ice and coastal sea ice dynamics. - Establish a baseline for comparison to future change, and use state-of-the-art models to assess impacts of environmental change on coastal biology, biodiversity and biogeochemistry. A key component of Arctic-COLORS will be the integration of satellite and field observations with coupled physical-biogeochemical models for predicting impacts of future pressures on Arctic, coastal ocean, biological processes and biogeochemical cycles. Through interagency and international collaborations, and through the organization of dedicated workshops, town hall meetings and presentations at international conferences, the scoping study engages the broader scientific community and invites participation of

  3. Diurnal remote sensing of coastal/oceanic waters: a radiometric analysis for Geostationary Coastal and Air Pollution Events.

    Science.gov (United States)

    Pahlevan, Nima; Lee, Zhongping; Hu, Chuanmin; Schott, John R

    2014-02-01

    Optical remote sensing systems aboard geostationary platforms can provide high-frequency observations of bio-optical properties in dynamical coastal/oceanic waters. From the end-user standpoint, it is recognized that the fidelity of daily science products relies heavily on the radiometric sensitivity/performance of the imaging system. This study aims to determine the theoretical detection limits for bio-optical properties observed diurnally from a geostationary orbit. The analysis is based upon coupled radiative transfer simulations and the minimum radiometric requirements defined for the GEOstationary Coastal and Air Pollution Events (GEO-CAPE) mission. The diurnal detection limits are found for the optically active constituents of water, including near-surface concentrations of chlorophyll-a (CHL) and total suspended solids (TSS), and the absorption of colored dissolved organic matter (aCDOM). The diurnal top-of-atmosphere radiance (Lt) is modeled for several locations across the field of regard (FOR) to investigate the radiometric sensitivity at different imaging geometries. It is found that, in oceanic waters (CHL=0.07  mg/m3), detecting changes smaller than 0.01  mg/m3 in CHL is feasible for all locations and hours except for late afternoon observations on the edge of the FOR. For more trophic/turbid waters (0.6

  4. Remote Sensing of Selected Water-Quality Indicators with the Hyperspectral Imager for the Coastal Ocean (HICO) Sensor

    Science.gov (United States)

    2014-01-01

    the bands needed for atmospheric correction. Spectral definition files for AVIRIS, HYDICE, HYMAP, HYPERION, CASI, and AISA sensors are included as...Satellite Visible Imagery – A Review.” In Lecture Notes on Coastal and Estuarine Studies, edited by R. T. Barber, N. K. Mooers, M. J. Bowman, and B...In Proceedings of SPIE Coastal Ocean Remote Sensing, edited by Robert J. Frouin, ZhongPing Lee, Vol. 6680, 668013-1-668013-9. doi:10.1117/12.736845

  5. 77 FR 40586 - Coastal Programs Division

    Science.gov (United States)

    2012-07-10

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Coastal Programs Division AGENCY: Coastal Programs Division, Office of Ocean and Coastal Resource Management, National Ocean.... FOR FURTHER INFORMATION CONTACT: Kerry Kehoe, Coastal Programs Division (NORM/3), Office of Ocean and...

  6. Energy Optimal Path Planning: Integrating Coastal Ocean Modelling with Optimal Control

    Science.gov (United States)

    Subramani, D. N.; Haley, P. J., Jr.; Lermusiaux, P. F. J.

    2016-02-01

    A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. To set up the energy optimization, the relative vehicle speed and headings are considered to be stochastic, and new stochastic Dynamically Orthogonal (DO) level-set equations that govern their stochastic time-optimal reachability fronts are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. The accuracy and efficiency of the DO level-set equations for solving the governing stochastic level-set reachability fronts are quantitatively assessed, including comparisons with independent semi-analytical solutions. Energy-optimal missions are studied in wind-driven barotropic quasi-geostrophic double-gyre circulations, and in realistic data-assimilative re-analyses of multiscale coastal ocean flows. The latter re-analyses are obtained from multi-resolution 2-way nested primitive-equation simulations of tidal-to-mesoscale dynamics in the Middle Atlantic Bight and Shelbreak Front region. The effects of tidal currents, strong wind events, coastal jets, and shelfbreak fronts on the energy-optimal paths are illustrated and quantified. Results showcase the opportunities for longer-duration missions that intelligently utilize the ocean environment to save energy, rigorously integrating ocean forecasting with optimal control of autonomous vehicles.

  7. The Hyperspectral Imager for the Coastal Ocean (HICO): Four Years Operating on the International Space Station (Invited)

    Science.gov (United States)

    Davis, C. O.; Nahorniak, J.; Tufillaro, N.; Kappus, M.

    2013-12-01

    The Hyperspectral Imager for the Coastal Ocean (HICO) is the first spaceborne imaging spectrometer designed to sample the coastal ocean. HICO images selected coastal regions at 92 m spatial resolution with full spectral coverage (88 channels covering 400 to 900 nm) and a high signal-to-noise ratio to resolve the complexity of the coastal ocean. Under sponsorship of the Office of Naval Research, HICO was built by the Naval Research Laboratory, which continues to operate the sensor. HICO has been operating on the International Space Station since October 2009 and has collected over 8000 scenes for more than 50 users. As Project Scientist I have been the link to the international ocean optics community primarily through our OSU HICO website (http://hico.oregonstate.edu). HICO operations are now under NASA support and HICO data is now also be available through the NASA Ocean Color Website (http://oceancolor.gsfc.nasa.gov ). Here we give a brief overview of HICO data and operations and discuss the unique challenges and opportunities that come from operating on the International Space Station.

  8. Spatially Resolving Ocean Color and Sediment Dispersion in River Plumes, Coastal Systems, and Continental Shelf Waters

    Science.gov (United States)

    Aurin, Dirk Alexander; Mannino, Antonio; Franz, Bryan

    2013-01-01

    Satellite remote sensing of ocean color in dynamic coastal, inland, and nearshorewaters is impeded by high variability in optical constituents, demands specialized atmospheric correction, and is limited by instrument sensitivity. To accurately detect dispersion of bio-optical properties, remote sensors require ample signal-to-noise ratio (SNR) to sense small variations in ocean color without saturating over bright pixels, an atmospheric correction that can accommodate significantwater-leaving radiance in the near infrared (NIR), and spatial and temporal resolution that coincides with the scales of variability in the environment. Several current and historic space-borne sensors have met these requirements with success in the open ocean, but are not optimized for highly red-reflective and heterogeneous waters such as those found near river outflows or in the presence of sediment resuspension. Here we apply analytical approaches for determining optimal spatial resolution, dominant spatial scales of variability ("patches"), and proportions of patch variability that can be resolved from four river plumes around the world between 2008 and 2011. An offshore region in the Sargasso Sea is analyzed for comparison. A method is presented for processing Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra imagery including cloud detection, stray lightmasking, faulty detector avoidance, and dynamic aerosol correction using short-wave- and near-infrared wavebands in extremely turbid regions which pose distinct optical and technical challenges. Results showthat a pixel size of approx. 520 mor smaller is generally required to resolve spatial heterogeneity in ocean color and total suspended materials in river plumes. Optimal pixel size increases with distance from shore to approx. 630 m in nearshore regions, approx 750 m on the continental shelf, and approx. 1350 m in the open ocean. Greater than 90% of the optical variability within plume regions is resolvable with

  9. The Gulf of Mexico Coastal Ocean Observing System: Building an MBON for the Florida Keys.

    Science.gov (United States)

    Howard, M.; Stoessel, M. M.; Currier, R. D.

    2016-02-01

    The Gulf of Mexico Coastal Ocean Observing System Regional Association (GCOOS-RA) Data Portal was designed to aggregate regional data and to serve it to the public through standards-based services in useful and desirable forms. These standards are established and sanctioned for use by the U.S. Integrated Ocean Observing System (IOOS) Program Office with inputs from experts on the Integrated Ocean Observation Committee and the RA informatics community. In 2012, with considerable input from staff from Ocean Biogeographical Information System USA (OBIS-USA), IOOS began to develop and adopt standards for serving biological datasets. GCOOS-RA applied these standards the following year and began serving fisheries independent data through an GCOOS ERDDAP server. In late 2014, GCOOS-RA partnered with the University of South Florida in a 5-year Marine Biodiversity Observing Network (MBON) Project sponsored by NOAA, NASA and BOEM. Work began in 2015. GCOOS' primary role is to aggregate, organize and serve data that are useful to an MBON for the Florida Keys National Marine Sanctuary. GCOOS, in collaboration with Axiom Data Science, will produce a decision support system (DSS) for stakeholders such as NOAA National Marine Sanctuaries Program managers. The datasets to be managed include environmental observations from: field surveys, fixed platforms, and satellites; GIS layers of: bathymetry, shoreline, sanctuary boundaries, living marine resources and habitats; outputs from ocean circulation models and ecosystem models (e.g., Ecopath/Ecosim) and Environmental DNA. Additionally, the DSS may be called upon to perform analyses, compute indices of biodiversity and present results in tabular, graphic and fused forms in an interactive setting. This presentation will discuss our progress to date for this challenging work in data integration.

  10. Increase in dimethylsulfide (DMS emissions due to eutrophication of coastal waters offsets their reduction due to ocean acidification.

    Directory of Open Access Journals (Sweden)

    Nathalie eGypens

    2014-04-01

    Full Text Available Available information from manipulative experiments suggested that the emission of dimethylsulfide (DMS would decrease in response to the accumulation of anthropogenic CO2 in the ocean (ocean acidification. However, in coastal environments, the carbonate chemistry of surface waters was also strongly modified by eutrophication and related changes in biological activity (increased primary production and change in phytoplankton dominance during the last 50 years. Here, we tested the hypothesis that DMS emissions in marine coastal environments also strongly responded to eutrophication in addition to ocean acidification at decadal timescales. We used the R-MIRO-BIOGAS model in the eutrophied Southern Bight of the North Sea characterized by intense blooms of Phaeocystis that are high producers of dimethylsulfoniopropionate (DMSP, the precursor of DMS. We showed that, for the period from 1951 to 2007, eutrophication actually led to an increase of DMS emissions much stronger than the response of DMS emissions to ocean acidification.

  11. Processes influencing the transport and fate of contaminated sediments in the coastal ocean: Boston Harbor and Massachusetts Bay

    Science.gov (United States)

    Alexander, P. Soupy; Baldwin, Sandra M.; Blackwood, Dann S.; Borden, Jonathan; Casso, Michael A.; Crusius, John; Goudreau, Joanne; Kalnejais, Linda H.; Lamothe, Paul J.; Martin, William R.; Martini, Marinna A.; Rendigs, Richard R.; Sayles, Frederick L.; Signell, Richard P.; Valentine, Page C.; Warner, John C.; Bothner, Michael H.; Butman, Bradford

    2007-01-01

    Most of the major urban centers of the United States including Boston, New York, Washington, Chicago, New Orleans, Miami, Los Angeles, San Francisco, and Seattle—are on a coast (fig. 1.1). All of these cities discharge treated sewage effluent into adjacent waters. In 2000, 74 percent of the U.S. population lived within 200 kilometers (km) of the coast. Between 1980 and 2002, the population density in coastal communities increased approximately 4.5 times faster than in noncoastal areas of the U.S. (Perkins, 2004). More people generate larger volumes of wastes, increase the demands on wastewater treatment, expand the area of impervious land surfaces, and use more vehicles that contribute contaminants to street runoff. According to the National Coastal Condition Report II (U.S. Environmental Protection Agency, 2005a), on the basis of coastal habitat, water and sediment quality, benthic index, and fish tissue, the overall national coastal condition is only poor to fair and the overall coastal condition in the highly populated Northeast is poor. Scientific information helps managers to prioritize and regulate coastal-ocean uses that include recreation, commercial fishing, transportation, waste disposal, and critical habitat for marine organisms. These uses are often in conflict with each other and with environmental concerns. Developing a strategy for managing competing uses while maintaining sustainability of coastal resources requires scientific understanding of how the coastal ocean system behaves and how it responds to anthropogenic influences. This report provides a summary of a multidisciplinary research program designed to improve our understanding of the transport and fate of contaminants in Massachusetts coastal waters. Massachusetts Bay and Boston Harbor have been a focus of U.S. Geological Survey (USGS) research because they provide a diverse geographic setting for developing a scientific understanding of the geology, geochemistry, and oceanography of

  12. 46 CFR 27.305 - What are the requirements for fire-extinguishing equipment on towing vessels in ocean or coastal...

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false What are the requirements for fire-extinguishing equipment on towing vessels in ocean or coastal service whose construction was contracted for on or after... for fire-extinguishing equipment on towing vessels in ocean or coastal service whose construction was...

  13. Predicting the effects of ocean acidification on predator-prey interactions: a conceptual framework based on coastal molluscs.

    Science.gov (United States)

    Kroeker, Kristy J; Sanford, Eric; Jellison, Brittany M; Gaylord, Brian

    2014-06-01

    The influence of environmental change on species interactions will affect population dynamics and community structure in the future, but our current understanding of the outcomes of species interactions in a high-CO2 world is limited. Here, we draw upon emerging experimental research examining the effects of ocean acidification on coastal molluscs to provide hypotheses of the potential impacts of high-CO2 on predator-prey interactions. Coastal molluscs, such as oysters, mussels, and snails, allocate energy among defenses, growth, and reproduction. Ocean acidification increases the energetic costs of physiological processes such as acid-base regulation and calcification. Impacted molluscs can display complex and divergent patterns of energy allocation to defenses and growth that may influence predator-prey interactions; these include changes in shell properties, body size, tissue mass, immune function, or reproductive output. Ocean acidification has also been shown to induce complex changes in chemoreception, behavior, and inducible defenses, including altered cue detection and predator avoidance behaviors. Each of these responses may ultimately alter the susceptibility of coastal molluscs to predation through effects on predator handling time, satiation, and search time. While many of these effects may manifest as increases in per capita predation rates on coastal molluscs, the ultimate outcome of predator-prey interactions will also depend on how ocean acidification affects the specified predators, which also exhibit complex responses to ocean acidification. Changes in predator-prey interactions could have profound and unexplored consequences for the population dynamics of coastal molluscs in a high-CO2 ocean. © 2014 Marine Biological Laboratory.

  14. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Volume IV: Inherent Optical Properties: Instruments, Characterizations, Field Measurements and Data Analysis Protocols

    Science.gov (United States)

    Mueller, J. L.; Fargion, G. S.; McClain, C. R. (Editor); Pegau, S.; Zanefeld, J. R. V.; Mitchell, B. G.; Kahru, M.; Wieland, J.; Stramska, M.

    2003-01-01

    This document stipulates protocols for measuring bio-optical and radiometric data for the Sensor Intercomparision and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities and algorithm development. The document is organized into 6 separate volumes as Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4. Volume I: Introduction, Background, and Conventions; Volume II: Instrument Specifications, Characterization and Calibration; Volume III: Radiometric Measurements and Data Analysis Methods; Volume IV: Inherent Optical Properties: Instruments, Characterization, Field Measurements and Data Analysis Protocols; Volume V: Biogeochemical and Bio-Optical Measurements and Data Analysis Methods; Volume VI: Special Topics in Ocean Optics Protocols and Appendices. The earlier version of Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3 is entirely superseded by the six volumes of Revision 4 listed above.

  15. Smart Phone Application Development and Demonstration in Support of EPA HICO Imagery for Coastal and Ocean Protection

    Science.gov (United States)

    High resolution spectral data from the ISS Hyperspectral Imager of the Coastal Ocean (HICO) system has been used to map the spatial distribution of selected water quality indicators for four Florida Gulf Coast estuaries from 2010-2012. HICO is the first hyperspectral imager speci...

  16. Parameterization of the chlorophyll a-specific in vivo light absorption coefficient covering estuarine, coastal and oceanic waters

    DEFF Research Database (Denmark)

    Stæhr, P. A.; Markager, S.

    2004-01-01

    We evaluated models predicting the spectral chlorophyll-a (Chl a)-specific absorption coefficient (a*ph (¿)) from Chl a concentration [Chl a] on the basis of 465 phytoplankton absorption spectra collected in estuarine, coastal and oceanic waters. A power model on ln-transformed data provided...

  17. The Baltic Sea as a time machine for the future coastal ocean

    DEFF Research Database (Denmark)

    Reusch, Thorsten B. H.; Dierking, Jan; Andersson, Helen C.

    2018-01-01

    Coastal global oceans are expected to undergo drastic changes driven by climate change and increasing anthropogenic pressures in coming decades. Predicting specific future conditions and assessing the best management strategies to maintain ecosystem integrity and sustainable resource use...... transcending its complex multistate policy setting, with integrated management of watershed and sea. The Baltic Sea also demonstrates how rapidly progressing global pressures, particularly warming of Baltic waters and the surrounding catchment area, can offset the efficacy of current management approaches...... of multistressor disturbance and ecosystem deterioration and early implementation of cross-border environmental management to address these problems. The Baltic Sea also stands out in providing a strong scientific foundation and accessibility to long-term data series that provide a unique opportunity to assess...

  18. The Baltic Sea as a time machine for the future coastal ocean

    DEFF Research Database (Denmark)

    Reusch, Thorsten B. H.; Dierking, Jan; Andersson, Helen C.

    2018-01-01

    the efficacy of management actions to address the breakdown of ecosystem functions. Trend reversals such as the return of top predators, recovering fish stocks, and reduced input of nutrient and harmful substances could be achieved only by implementing an international, cooperative governance structure....... This situation calls for management that is (i) conservative to provide a buffer against regionally unmanageable global perturbations, (ii) adaptive to react to new management challenges, and, ultimately, (iii) multisectorial and integrative to address conflicts associated with economic trade-offs.......Coastal global oceans are expected to undergo drastic changes driven by climate change and increasing anthropogenic pressures in coming decades. Predicting specific future conditions and assessing the best management strategies to maintain ecosystem integrity and sustainable resource use...

  19. Oceanic Area System Improvement Study (OASIS). Volume IV. Caribbean Region Air Traffic Services System Description.

    Science.gov (United States)

    1981-09-01

    OASIS) U Final Report This report i.s one of a set of companion documents which includes the following volumes: Volume I Executive Summary and...Northern Coastal Region of 4 the Directorate of Engineering and Systems (Direccion de Ingenieria y Sistemas ), which is responsible for maintenance of the

  20. Laser fluorosensor demonstration flights over Newfoundland coastal waters. Volume 1

    International Nuclear Information System (INIS)

    Brown, C.E.; Marois, R.

    2007-01-01

    The development and application of advanced oil spill remote sensing equipment was discussed with particular reference to 9 laser fluorosensor demonstration flights undertaken in March 2007 in the coastal waters of Newfoundland and Labrador. The Scanning Laser Environmental Airborne Fluorosensor (SLEAF) provides a fluorescent spectrum of oil to accurately identify even small amounts of fresh crudes equally well during full daylight conditions as at night. They allow for airborne detection, classification, surveillance monitoring of oil spills, as well as the exploration of marine petroleum resources. With the advent of powerful processors in modern computers, the classification capabilities of laser fluorosensors have significantly improved. Fluorescence information can be quickly transferred to response personnel on the ground or at sea to help plan effective oil spill countermeasures and to mitigate the effects of an oil spill in marine and coastal environments. Laser fluorosensors can successfully discriminate between oiled and un-oiled weeds and detect oil in water, snow, ice and beaches. The SLEAF flights were the third series undertaken over a period of 4 years in later winter weather conditions. The flights were focused over shipping lanes south of Newfoundland and Labrador around the local petroleum handling facilities. In addition to laser data, they provided georeferenced infrared, ultraviolet, colour video and digital still imagery. During the flights, SLEAF did not indicate much evidence of petroleum oil on the surface of the marine environment. None of the flights over 17 marine tankers, container vessels, supply vessels and tugs indicated any signs of oily discharge. 10 refs., 1 tab., 7 figs

  1. Improving Coastal Ocean Color Validation Capabilities through Application of Inherent Optical Properties (IOPs)

    Science.gov (United States)

    Mannino, Antonio

    2008-01-01

    Understanding how the different components of seawater alter the path of incident sunlight through scattering and absorption is essential to using remotely sensed ocean color observations effectively. This is particularly apropos in coastal waters where the different optically significant components (phytoplankton, detrital material, inorganic minerals, etc.) vary widely in concentration, often independently from one another. Inherent Optical Properties (IOPs) form the link between these biogeochemical constituents and the Apparent Optical Properties (AOPs). understanding this interrelationship is at the heart of successfully carrying out inversions of satellite-measured radiance to biogeochemical properties. While sufficient covariation of seawater constituents in case I waters typically allows empirical algorithms connecting AOPs and biogeochemical parameters to behave well, these empirical algorithms normally do not hold for case I1 regimes (Carder et al. 2003). Validation in the context of ocean color remote sensing refers to in-situ measurements used to verify or characterize algorithm products or any assumption used as input to an algorithm. In this project, validation capabilities are considered those measurement capabilities, techniques, methods, models, etc. that allow effective validation. Enhancing current validation capabilities by incorporating state-of-the-art IOP measurements and optical models is the purpose of this work. Involved in this pursuit is improving core IOP measurement capabilities (spectral, angular, spatio-temporal resolutions), improving our understanding of the behavior of analytical AOP-IOP approximations in complex coastal waters, and improving the spatial and temporal resolution of biogeochemical data for validation by applying biogeochemical-IOP inversion models so that these parameters can be computed from real-time IOP sensors with high sampling rates. Research cruises supported by this project provides for collection and

  2. Influence of Salinity on Bacterioplankton Communities from the Brazilian Rain Forest to the Coastal Atlantic Ocean

    Science.gov (United States)

    Silveira, Cynthia B.; Vieira, Ricardo P.; Cardoso, Alexander M.; Paranhos, Rodolfo; Albano, Rodolpho M.; Martins, Orlando B.

    2011-01-01

    Background Planktonic bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems, however, the taxa that make up these communities are poorly known. The aim of this study was to investigate bacterial communities in aquatic ecosystems at Ilha Grande, Rio de Janeiro, Brazil, a preserved insular environment of the Atlantic rain forest and how they correlate with a salinity gradient going from terrestrial aquatic habitats to the coastal Atlantic Ocean. Methodology/Principal Findings We analyzed chemical and microbiological parameters of water samples and constructed 16S rRNA gene libraries of free living bacteria obtained at three marine (two coastal and one offshore) and three freshwater (water spring, river, and mangrove) environments. A total of 836 sequences were analyzed by MOTHUR, yielding 269 freshwater and 219 marine operational taxonomic units (OTUs) grouped at 97% stringency. Richness and diversity indexes indicated that freshwater environments were the most diverse, especially the water spring. The main bacterial group in freshwater environments was Betaproteobacteria (43.5%), whereas Cyanobacteria (30.5%), Alphaproteobacteria (25.5%), and Gammaproteobacteria (26.3%) dominated the marine ones. Venn diagram showed no overlap between marine and freshwater OTUs at 97% stringency. LIBSHUFF statistics and PCA analysis revealed marked differences between the freshwater and marine libraries suggesting the importance of salinity as a driver of community composition in this habitat. The phylogenetic analysis of marine and freshwater libraries showed that the differences in community composition are consistent. Conclusions/Significance Our data supports the notion that a divergent evolutionary scenario is driving community composition in the studied habitats. This work also improves the comprehension of microbial community dynamics in tropical waters and how they are structured in relation to physicochemical parameters

  3. Influence of salinity on bacterioplankton communities from the Brazilian rain forest to the coastal Atlantic Ocean.

    Science.gov (United States)

    Silveira, Cynthia B; Vieira, Ricardo P; Cardoso, Alexander M; Paranhos, Rodolfo; Albano, Rodolpho M; Martins, Orlando B

    2011-03-09

    Planktonic bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems, however, the taxa that make up these communities are poorly known. The aim of this study was to investigate bacterial communities in aquatic ecosystems at Ilha Grande, Rio de Janeiro, Brazil, a preserved insular environment of the Atlantic rain forest and how they correlate with a salinity gradient going from terrestrial aquatic habitats to the coastal Atlantic Ocean. We analyzed chemical and microbiological parameters of water samples and constructed 16S rRNA gene libraries of free living bacteria obtained at three marine (two coastal and one offshore) and three freshwater (water spring, river, and mangrove) environments. A total of 836 sequences were analyzed by MOTHUR, yielding 269 freshwater and 219 marine operational taxonomic units (OTUs) grouped at 97% stringency. Richness and diversity indexes indicated that freshwater environments were the most diverse, especially the water spring. The main bacterial group in freshwater environments was Betaproteobacteria (43.5%), whereas Cyanobacteria (30.5%), Alphaproteobacteria (25.5%), and Gammaproteobacteria (26.3%) dominated the marine ones. Venn diagram showed no overlap between marine and freshwater OTUs at 97% stringency. LIBSHUFF statistics and PCA analysis revealed marked differences between the freshwater and marine libraries suggesting the importance of salinity as a driver of community composition in this habitat. The phylogenetic analysis of marine and freshwater libraries showed that the differences in community composition are consistent. Our data supports the notion that a divergent evolutionary scenario is driving community composition in the studied habitats. This work also improves the comprehension of microbial community dynamics in tropical waters and how they are structured in relation to physicochemical parameters. Furthermore, this paper reveals for the first time the pristine

  4. Influence of salinity on bacterioplankton communities from the Brazilian rain forest to the coastal Atlantic Ocean.

    Directory of Open Access Journals (Sweden)

    Cynthia B Silveira

    Full Text Available BACKGROUND: Planktonic bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems, however, the taxa that make up these communities are poorly known. The aim of this study was to investigate bacterial communities in aquatic ecosystems at Ilha Grande, Rio de Janeiro, Brazil, a preserved insular environment of the Atlantic rain forest and how they correlate with a salinity gradient going from terrestrial aquatic habitats to the coastal Atlantic Ocean. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed chemical and microbiological parameters of water samples and constructed 16S rRNA gene libraries of free living bacteria obtained at three marine (two coastal and one offshore and three freshwater (water spring, river, and mangrove environments. A total of 836 sequences were analyzed by MOTHUR, yielding 269 freshwater and 219 marine operational taxonomic units (OTUs grouped at 97% stringency. Richness and diversity indexes indicated that freshwater environments were the most diverse, especially the water spring. The main bacterial group in freshwater environments was Betaproteobacteria (43.5%, whereas Cyanobacteria (30.5%, Alphaproteobacteria (25.5%, and Gammaproteobacteria (26.3% dominated the marine ones. Venn diagram showed no overlap between marine and freshwater OTUs at 97% stringency. LIBSHUFF statistics and PCA analysis revealed marked differences between the freshwater and marine libraries suggesting the importance of salinity as a driver of community composition in this habitat. The phylogenetic analysis of marine and freshwater libraries showed that the differences in community composition are consistent. CONCLUSIONS/SIGNIFICANCE: Our data supports the notion that a divergent evolutionary scenario is driving community composition in the studied habitats. This work also improves the comprehension of microbial community dynamics in tropical waters and how they are structured in relation to physicochemical

  5. The Gulf of Mexico Coastal Ocean Observing System: A Decade of Data Aggregation and Services.

    Science.gov (United States)

    Howard, M.; Gayanilo, F.; Kobara, S.; Baum, S. K.; Currier, R. D.; Stoessel, M. M.

    2016-02-01

    The Gulf of Mexico Coastal Ocean Observing System Regional Association (GCOOS-RA) celebrated its 10-year anniversary in 2015. GCOOS-RA is one of 11 RAs organized under the NOAA-led U.S. Integrated Ocean Observing System (IOOS) Program Office to aggregate regional data and make these data publicly-available in preferred forms and formats via standards-based web services. Initial development of GCOOS focused on building elements of the IOOS Data Management and Communications Plan which is a framework for end-to-end interoperability. These elements included: data discovery, catalog, metadata, online-browse, data access and transport. Initial data types aggregated included near real-time physical oceanographic, marine meteorological and satellite data. Our focus in the middle of the past decade was on the production of basic products such as maps of current oceanographic conditions and quasi-static datasets such as bathymetry and climatologies. In the latter part of the decade we incorporated historical physical oceanographic datasets and historical coastal and offshore water quality data into our holdings and added our first biological dataset. We also developed web environments and products to support Citizen Scientists and stakeholder groups such as recreational boaters. Current efforts are directed towards applying data quality assurance (testing and flagging) to non-federal data, data archiving at national repositories, serving and visualizing numerical model output, providing data services for glider operators, and supporting marine biodiversity observing networks. GCOOS Data Management works closely with the Gulf of Mexico Research Initiative Information and Data Cooperative and various groups involved with Gulf Restoration. GCOOS-RA has influenced attitudes and behaviors associated with good data stewardship and data management practices across the Gulf and will to continue to do so into the next decade.

  6. Ocean Acidification May Aggravate Social-Ecological Trade-Offs in Coastal Fisheries

    Science.gov (United States)

    Voss, Rudi; Quaas, Martin F.; Schmidt, Jörn O.; Kapaun, Ute

    2015-01-01

    Ocean Acidification (OA) will influence marine ecosystems by changing species abundance and composition. Major effects are described for calcifying organisms, which are significantly impacted by decreasing pH values. Direct effects on commercially important fish are less well studied. The early life stages of fish populations often lack internal regulatory mechanisms to withstand the effects of abnormal pH. Negative effects can be expected on growth, survival, and recruitment success. Here we study Norwegian coastal cod, one of the few stocks where such a negative effect was experimentally quantified, and develop a framework for coupling experimental data on OA effects to ecological-economic fisheries models. In this paper, we scale the observed physiological responses to the population level by using the experimentally determined mortality rates as part of the stock-recruitment relationship. We then use an ecological-economic optimization model, to explore the potential effect of rising CO2 concentration on ecological (stock size), economic (profits), consumer-related (harvest) and social (employment) indicators, with scenarios ranging from present day conditions up to extreme acidification. Under the assumptions of our model, yields and profits could largely be maintained under moderate OA by adapting future fishing mortality (and related effort) to changes owing to altered pH. This adaptation comes at the costs of reduced stock size and employment, however. Explicitly visualizing these ecological, economic and social tradeoffs will help in defining realistic future objectives. Our results can be generalized to any stressor (or stressor combination), which is decreasing recruitment success. The main findings of an aggravation of trade-offs will remain valid. This seems to be of special relevance for coastal stocks with limited options for migration to avoid unfavorable future conditions and subsequently for coastal fisheries, which are often small scale local

  7. Ocean acidification may aggravate social-ecological trade-offs in coastal fisheries.

    Science.gov (United States)

    Voss, Rudi; Quaas, Martin F; Schmidt, Jörn O; Kapaun, Ute

    2015-01-01

    Ocean Acidification (OA) will influence marine ecosystems by changing species abundance and composition. Major effects are described for calcifying organisms, which are significantly impacted by decreasing pH values. Direct effects on commercially important fish are less well studied. The early life stages of fish populations often lack internal regulatory mechanisms to withstand the effects of abnormal pH. Negative effects can be expected on growth, survival, and recruitment success. Here we study Norwegian coastal cod, one of the few stocks where such a negative effect was experimentally quantified, and develop a framework for coupling experimental data on OA effects to ecological-economic fisheries models. In this paper, we scale the observed physiological responses to the population level by using the experimentally determined mortality rates as part of the stock-recruitment relationship. We then use an ecological-economic optimization model, to explore the potential effect of rising CO2 concentration on ecological (stock size), economic (profits), consumer-related (harvest) and social (employment) indicators, with scenarios ranging from present day conditions up to extreme acidification. Under the assumptions of our model, yields and profits could largely be maintained under moderate OA by adapting future fishing mortality (and related effort) to changes owing to altered pH. This adaptation comes at the costs of reduced stock size and employment, however. Explicitly visualizing these ecological, economic and social tradeoffs will help in defining realistic future objectives. Our results can be generalized to any stressor (or stressor combination), which is decreasing recruitment success. The main findings of an aggravation of trade-offs will remain valid. This seems to be of special relevance for coastal stocks with limited options for migration to avoid unfavorable future conditions and subsequently for coastal fisheries, which are often small scale local

  8. Multivariate analysis of the influences of oceanic and meteorological processes on suspended particulate matter distributions in Mississippi coastal waters

    Science.gov (United States)

    O'Brien, S. J.; Fitzpatrick, P. J.; Dzwonkowski, B.; Dykstra, S. L.; Wallace, D. J.; Church, I.; Wiggert, J. D.

    2016-02-01

    The Mississippi Sound is influenced by a high volume of sediment discharge from the Biloxi River, Mobile Bay via Pas aux Herons, Pascagoula River, Pearl River, Wolf River, and Lake Pontchartrain through the Rigolets. The river discharge, variable wind speed, wind direction and tides have a significant impact on the turbidity and transport of sediments in the Sound. Level 1 Moderate Resolution Imaging Spectroradiometer (MODIS) data is processed to extract the remote sensing reflectance at the wavelength of 645 nm and binned into an 8-day composite at a resolution of 500 m. The study uses a regional ocean color algorithm to compute suspended particulate matter (SPM) concentration based on these 8-day composite images. Multivariate analysis is applied between the SPM and time series of tides, wind, turbidity and river discharge measured at federal and academic institutions' stations and moorings. The multivariate analysis also includes in situ measurements of suspended sediment concentration and advective exchanges through the Mississippi Sound's tidal inlets between the coastal shelf and the nearshore estuarine waters. Mechanisms underlying the observed spatiotemporal distribution of SPM, including material exchange between the Sound and adjacent shelf waters, will be explored. The results of this study will contribute to current understanding of exchange mechanisms and pathways with the Mississippi Bight via the Mississippi Sound's tidal inlets.

  9. ALES+: Adapting a homogenous ocean retracker for satellite altimetry to sea ice leads, coastal and inland waters

    DEFF Research Database (Denmark)

    Passaro, Marcello; Kildegaard Rose, Stine; Andersen, Ole B.

    2018-01-01

    ice retracker used for fitting specular echoes. Compared to an existing open ocean altimetry dataset, the presented strategy increases the number of sea level retrievals in the sea ice-covered area and the correlation with a local tide gauge. Further tests against in-situ data show that also......Water level from sea ice-covered oceans is particularly challenging to retrieve with satellite radar altimeters due to the different shapes assumed by the returned signal compared with the standard open ocean waveforms. Valid measurements are scarce in large areas of the Arctic and Antarctic Oceans...... the fitting of the signal depending on the sea state and on the slope of its trailing edge. The algorithm modifies the existing Adaptive Leading Edge Subwaveform retracker originally designed for coastal waters, and is applied to Envisat and ERS-2 missions. The validation in a test area of the Arctic Ocean...

  10. A numerical study of the plume in Cape Fear River Estuary and adjacent coastal ocean

    Science.gov (United States)

    Xia, M.; Xia, L.; Pietrafesa, L. J.

    2006-12-01

    Cape Fear River Estuary (CFRE), located in southeast North Carolina, is the only river estuary system in the state which is directly connected to the Atlantic Ocean. It is also an important nursery for economically and ecologically important juvenile fish, crabs, shrimp, and other species because of the tidal influence and saline waters. In this study, Environmental Fluid Dynamic Code (EFDC) is used to simulate the salinity plume and trajectory distribution at the mouth of the CFRE and adjacent coastal ocean. Prescribed with the climatological freshwater discharge rates in the rivers, the modeling system was used to simulate the salinity plume and trajectory distribution distribution in the mouth of the CFRE under the influence of climatological wind conditions and tidal effect. We analyzed the plume formation processes and the strong relationship between the various plume distributions with respect to the wind and river discharge in the region. The simulations also indicate that strong winds tend to reduce the surface CFRE plume size and distorting the bulge region near the estuary mouth due to enhanced wind induced surface mixing. Even moderate wind speeds could fully reverse the buoyancy-driven plume structure in CFRE under normal river discharge conditions. Tide and the river discharge also are important factors to influence the plume structure. The comparions between the distribution of salinity plume and trajectory also are discussed in the study.

  11. A climate-based multivariate extreme emulator of met-ocean-hydrological events for coastal flooding

    Science.gov (United States)

    Camus, Paula; Rueda, Ana; Mendez, Fernando J.; Tomas, Antonio; Del Jesus, Manuel; Losada, Iñigo J.

    2015-04-01

    Atmosphere-ocean general circulation models (AOGCMs) are useful to analyze large-scale climate variability (long-term historical periods, future climate projections). However, applications such as coastal flood modeling require climate information at finer scale. Besides, flooding events depend on multiple climate conditions: waves, surge levels from the open-ocean and river discharge caused by precipitation. Therefore, a multivariate statistical downscaling approach is adopted to reproduce relationships between variables and due to its low computational cost. The proposed method can be considered as a hybrid approach which combines a probabilistic weather type downscaling model with a stochastic weather generator component. Predictand distributions are reproduced modeling the relationship with AOGCM predictors based on a physical division in weather types (Camus et al., 2012). The multivariate dependence structure of the predictand (extreme events) is introduced linking the independent marginal distributions of the variables by a probabilistic copula regression (Ben Ayala et al., 2014). This hybrid approach is applied for the downscaling of AOGCM data to daily precipitation and maximum significant wave height and storm-surge in different locations along the Spanish coast. Reanalysis data is used to assess the proposed method. A commonly predictor for the three variables involved is classified using a regression-guided clustering algorithm. The most appropriate statistical model (general extreme value distribution, pareto distribution) for daily conditions is fitted. Stochastic simulation of the present climate is performed obtaining the set of hydraulic boundary conditions needed for high resolution coastal flood modeling. References: Camus, P., Menéndez, M., Méndez, F.J., Izaguirre, C., Espejo, A., Cánovas, V., Pérez, J., Rueda, A., Losada, I.J., Medina, R. (2014b). A weather-type statistical downscaling framework for ocean wave climate. Journal of

  12. Exopolymer Particles in the Sea Surface Microlayer (SML) of the Coastal Pacific Ocean

    Science.gov (United States)

    Thornton, D. C.; Brooks, S. D.; Chen, J.

    2015-12-01

    Exchanges of matter and energy between the ocean and atmosphere occur through the sea surface microlayer (SML). The SML is biogeochemically distinct from the underlying water and overlying atmosphere in terms of physical environment, chemical composition, and biological community. We sampled the Pacific Ocean in coastal waters off the state of Oregon (United States) along a seaward transect out from the mouth of the Columbia River (3 stations) and in deeper waters beyond the shelf break (2 stations) in July 2011. SML samples were collected using the glass plate method and the underlying water was sampled using a peristaltic pump from 1, 5 and 10 m depth. The samples were analyzed for carbohydrates and exopolymer particles. Carbohydrates were significantly enriched in the SML compared with the underlying water. The concentration of polysaccharides was higher than monosaccharides at all depths. We enumerated two classes of exopolymer particles: transparent exopolymer particles (TEP) and Coomassie staining particles (CSP). TEP are composed of acid polysaccharides and CSP are formed from proteins. While TEP have been widely studied, CSP are generally overlooked, despite the biogeochemical significance of proteins. Our data showed that TEP and CSP concentrations were enriched in the SML compared with the underlying waters in most cases. The ubiquitous presence of empty diatom frustules in the samples indicates that the collapse of a diatom bloom was the source of the exopolymers. Further, we conducted image analysis of particle size and abundance, which indicated that TEP and CSP are not the same particles and form distinct populations in the ocean. Our data confirm recent observations indicating that TEP are an important component of the SML. In addition, these data show that CSP are also important components of the SML.

  13. The Oceans 2015 Initiative, Part II - An updated understanding of the observed and projected impacts of ocean warming and acidification on marine and coastal socioeconomic activities/sectors

    International Nuclear Information System (INIS)

    Weatherdon, Lauren; Sumaila, Rashid; Cheung, William W.L.; Rogers, Alex; Magnan, Alexandre

    2015-01-01

    Between 1971 and 2010, the oceans have absorbed approximately 93% of the excess heat caused by global warming, leading to several major changes such as the increase in stratification, limitation in the circulation of nutrients from deep waters to the surface, and sea level rise. In addition, the oceans absorbed 26% of anthropogenic CO 2 emitted since the start of the Industrial Revolution, which resulted in ocean acidification. Together, these processes strongly affect marine and coastal species' geographic distribution, abundance, migration patterns and phenology. As a consequence of these complex environmental changes, marine and coastal human sectors (i.e., fisheries, aquaculture, coastal tourism and health) are in turn at risk. This report provides an updated synthesis of what the science tells us about such a risk, based upon IPCC AR5 (2013- 2014) and published scientific articles and grey literature that have been published between July 2013 and April 2015. Although uncertainty remains strong, there is growing scientific evidence that ocean warming and acidification will affect key resources for societies through ecosystems services. For example, while AR5 indicated that coral reefs had little scope for adaptation, recent research has suggested that there may be some capacity for some coral species to recover from climatic hocks and bleaching events, and to acquire heat resistance through acclimatization. This will have huge implications on many coastal economies in the developing and developed countries. More generally, key sectors will be affected. For example, while the fish catch potential is expected to decrease at the global scale, it will show diversified trends at the regional scale as fish stocks have started shifting in latitudes or by depth. This will impact regional to local fisheries systems. Also, climate and acidification-related impacts to existing aquaculture are expected to be generally negative, with impacts varying by location

  14. Isotope composition and volume of Earth's early oceans.

    Science.gov (United States)

    Pope, Emily C; Bird, Dennis K; Rosing, Minik T

    2012-03-20

    Oxygen and hydrogen isotope compositions of Earth's seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs, but hydrogen's was not, as it can escape to space. Isotopic properties of serpentine from the approximately 3.8 Ga Isua Supracrustal Belt in West Greenland are used to characterize hydrogen and oxygen isotope compositions of ancient seawater. Archaean oceans were depleted in deuterium [expressed as δD relative to Vienna standard mean ocean water (VSMOW)] by at most 25 ± 5‰, but oxygen isotope ratios were comparable to modern oceans. Mass balance of the global hydrogen budget constrains the contribution of continental growth and planetary hydrogen loss to the secular evolution of hydrogen isotope ratios in Earth's oceans. Our calculations predict that the oceans of early Earth were up to 26% more voluminous, and atmospheric CH(4) and CO(2) concentrations determined from limits on hydrogen escape to space are consistent with clement conditions on Archaean Earth.

  15. Discharge of 210Po and 210Pb in coastal groundwater to the ocean

    International Nuclear Information System (INIS)

    Kim, Intae; Kim, Tae-hoon; Kim, Guebuem

    2013-01-01

    The activities of 210 Po and 210 Pb were measured for the truly dissolved (<10 kDa) and colloidal (10 kDa - 0.45 ìm) phases in coastal ground water in 2010 and 2011. The sampling sites include the coast of a large tidal flat (Hampyeong Bay) and a volcanic island, Jeju, Korea, where submarine groundwater discharge (SGD) were reported to be higher than typical continental margins. The total dissolved fraction was separated into the colloidal and truly dissolved fractions using a tangential flow filtration (TFF) system (PLCGC Pellicon). The total 210 Po and 210 Pb activities in ground water were 1.0 - 18.2 dpm/100L (9.7±7.6 dpm/100L) an 2.9 - 29.1 dpm/100L (16.8±10.7 dpm/100L) in the Hampyeong Bay and Jeju Island samples, respectively. The total 210 Po and 210 Pb activities in groundwater were similar to or even slightly lower than those in the typical seawater. These lower activities seem to be due to the rapid adsorption of Po and Pb on to particles in the subterranean estuary. The proportions of the truly dissolved and colloidal phases were, respectively, 73±5% and 27±5% for 210 Po, and 60±5% and 40±5% for 210 Pb. This result is consistent with the earlier study that more than half of the some dissolved trace metals in coastal ground water are in the colloidal form. Thus, our result implies that the colloidal forms are important in controlling the behaviour of Po, Pb, and other trace metals in the subterranean estuary and SGD-associated fluxes to the ocean. (author)

  16. Hourly changes in sea surface salinity in coastal waters recorded by Geostationary Ocean Color Imager

    Science.gov (United States)

    Liu, Rongjie; Zhang, Jie; Yao, Haiyan; Cui, Tingwei; Wang, Ning; Zhang, Yi; Wu, Lingjuan; An, Jubai

    2017-09-01

    In this study, we monitored hourly changes in sea surface salinity (SSS) in turbid coastal waters from geostationary satellite ocean color images for the first time, using the Bohai Sea as a case study. We developed a simple multi-linear statistical regression model to retrieve SSS data from Geostationary Ocean Color Imager (GOCI) based on an in situ satellite matched-up dataset (R2 = 0.795; N = 41; Range: 26.4 to 31.9 psμ). The model was then validated using independent continuous SSS measurements from buoys, with the average percentage difference of 0.65%. The model was applied to GOCI images from the dry season during an astronomical tide to characterize hourly changes in SSS in the Bohai Sea. We found that the model provided reasonable estimates of the hourly changes in SSS and that trends in the modeled and measured data were similar in magnitude and direction (0.43 vs 0.33 psμ, R2 = 0.51). There were clear diurnal variations in the SSS of the Bohai Sea, with a regional average of 0.455 ± 0.079 psμ (0.02-3.77 psμ). The magnitude of the diurnal variations in SSS varied spatially, with large diurnal variability in the nearshore, particularly in the estuary, and small variability in the offshore area. The model for the riverine area was based on the inverse correlation between SSS and CDOM absorption. In the offshore area, the water mass of the North Yellow Sea, characterized by high SSS and low CDOM concentrations, dominated. Analysis of the driving mechanisms showed that the tidal current was the main control on hourly changes in SSS in the Bohai Sea.

  17. Autonomous Underwater Vehicle Data Management and Metadata Interoperability for Coastal Ocean Studies

    Science.gov (United States)

    McCann, M. P.; Ryan, J. P.; Chavez, F. P.; Rienecker, E.

    2004-12-01

    Data from over 1000 km of Autonomous Underwater Vehicle (AUV) surveys of Monterey Bay have been collected and cataloged in an ocean observatory data management system. The Monterey Bay Aquarium Institute's AUV is equipped with a suite of instruments that include a conductivity, temperature, depth (CTD) instrument, transmissometers, a fluorometer, a nitrate sensor, and an inertial navigation system. Data are logged on the vehicle and upon completion of a survey XML descriptions of the data are submitted to the Shore Side Data System (SSDS). Instrument data are then processed on shore to apply calibrations and produce scientifically useful data products. The SSDS employs a data model that tracks data from the instrument that created it through all the consuming processes that generate derived products. SSDS employs OPeNDAP and netCDF to provide data set interoperability at the data level. The core of SSDS is the metadata that is the catalog of these data sets and their relation to all other relevant data. The metadata is managed in a relational database and governed by a Enterprise Java Bean (EJB) server application. Cross-platform Java applications have been written to manage and visualize these data. A Java Swing application - the Hierarchical Ocean Observatory Visualization and Editing System (HOOVES) - has been developed to provide visualization of data set pedigree and data set variables. Because the SSDS data model is generalized according to "Data Producers" and "Data Containers" many different types of data can be represented in SSDS allowing for interoperability at a metadata level. Comparisons of appropriate data sets, whether they are from an autonomous underwater vehicle or from a fixed mooring are easily made using SSDS. The authors will present the SSDS data model and show examples of how the model helps organize data set metadata allowing for data discovery and interoperability. With improved discovery and interoperability the system is helping us

  18. Atmospheric trace elements in aerosols observed over the Southern Ocean and coastal East Antarctica

    Directory of Open Access Journals (Sweden)

    Guojie Xu

    2014-11-01

    Full Text Available Atmospheric aerosol samples were collected over the Southern Ocean (SO and coastal East Antarctica (CEA during the austral summer of 2010/11. Samples were analysed for trace elements, including Na, Mg, K, Al, Fe, Mn, Ni, Cd and Se, by inductively coupled plasma mass spectrometry (ICP-MS. The mean atmospheric concentrations over the SO were 1100 ng m−3 for Na, 190 ng m−3 for Mg, 150 ng m−3 for Al, 14 ng m−3 for Fe, 0.46 ng m−3 for Mn and 0.25 ng m−3 for Se. Over CEA, the mean concentrations were 990 ng m−3 for Na, 180 ng m−3 for Mg, 190 ng m−3 for Al, 26 ng m−3 for Fe, 0.70 ng m−3 for Mn and 0.29 ng m−3 for Se. Particle size distributions, enrichment factors (EFs and correlation analysis indicate that Na, Mg and K mainly came from the marine source, while Al, Fe and Mn were mainly from the crustal source, which also contributed to Mg and K over CEA. High EFs were associated with Ni, Cd and Se, suggesting likely contributions from mixed sources from the Antarctic continent, long-range transport, marine biogenic emissions and anthropogenic emissions. Sea-salt elements (Na, Mg, K were mainly accumulated in the coarse mode, and crustal elements (Al, Fe, Mn presented a bimodal size distribution pattern. Bioactive elements (Fe, Ni, Cd were enriched in the fine mode, especially with samples collected over the SO, possibly affecting biogeochemical cycles in this oceanic region.

  19. Convergence of marine megafauna movement patterns in coastal and open oceans

    KAUST Repository

    Sequeira, A. M. M.; Rodrí guez, J. P.; Eguí luz, V. M.; Harcourt, R.; Hindell, M.; Sims, D. W.; Duarte, C. M.; Costa, D. P.; Ferná ndez-Gracia, J.; Ferreira, L. C.; Hays, G. C.; Heupel, M. R.; Meekan, M. G.; Aven, A.; Bailleul, F.; Baylis, A. M. M.; Berumen, Michael L.; Braun, C. D.; Burns, J.; Caley, M. J.; Campbell, R.; Carmichael, R. H.; Clua, E.; Einoder, L. D.; Friedlaender, Ari; Goebel, M. E.; Goldsworthy, S. D.; Guinet, C.; Gunn, J.; Hamer, D.; Hammerschlag, N.; Hammill, M.; Hü ckstä dt, L. A.; Humphries, N. E.; Lea, M.-A.; Lowther, A.; Mackay, A.; McHuron, E.; McKenzie, J.; McLeay, L.; McMahon, C. R.; Mengersen, K.; Muelbert, M. M. C.; Pagano, A. M.; Page, B.; Queiroz, N.; Robinson, P. W.; Shaffer, S. A.; Shivji, M.; Skomal, G. B.; Thorrold, S. R.; Villegas-Amtmann, S.; Weise, M.; Wells, R.; Wetherbee, B.; Wiebkin, A.; Wienecke, B.; Thums, M.

    2018-01-01

    The extent of increasing anthropogenic impacts on large marine vertebrates partly depends on the animals' movement patterns. Effective conservation requires identification of the key drivers of movement including intrinsic properties and extrinsic constraints associated with the dynamic nature of the environments the animals inhabit. However, the relative importance of intrinsic versus extrinsic factors remains elusive. We analyze a global dataset of ∼2.8 million locations from >2,600 tracked individuals across 50 marine vertebrates evolutionarily separated by millions of years and using different locomotion modes (fly, swim, walk/paddle). Strikingly, movement patterns show a remarkable convergence, being strongly conserved across species and independent of body length and mass, despite these traits ranging over 10 orders of magnitude among the species studied. This represents a fundamental difference between marine and terrestrial vertebrates not previously identified, likely linked to the reduced costs of locomotion in water. Movement patterns were primarily explained by the interaction between species-specific traits and the habitat(s) they move through, resulting in complex movement patterns when moving close to coasts compared with more predictable patterns when moving in open oceans. This distinct difference may be associated with greater complexity within coastal microhabitats, highlighting a critical role of preferred habitat in shaping marine vertebrate global movements. Efforts to develop understanding of the characteristics of vertebrate movement should consider the habitat(s) through which they move to identify how movement patterns will alter with forecasted severe ocean changes, such as reduced Arctic sea ice cover, sea level rise, and declining oxygen content.

  20. Convergence of marine megafauna movement patterns in coastal and open oceans

    KAUST Repository

    Sequeira, A. M. M.

    2018-02-26

    The extent of increasing anthropogenic impacts on large marine vertebrates partly depends on the animals\\' movement patterns. Effective conservation requires identification of the key drivers of movement including intrinsic properties and extrinsic constraints associated with the dynamic nature of the environments the animals inhabit. However, the relative importance of intrinsic versus extrinsic factors remains elusive. We analyze a global dataset of ∼2.8 million locations from >2,600 tracked individuals across 50 marine vertebrates evolutionarily separated by millions of years and using different locomotion modes (fly, swim, walk/paddle). Strikingly, movement patterns show a remarkable convergence, being strongly conserved across species and independent of body length and mass, despite these traits ranging over 10 orders of magnitude among the species studied. This represents a fundamental difference between marine and terrestrial vertebrates not previously identified, likely linked to the reduced costs of locomotion in water. Movement patterns were primarily explained by the interaction between species-specific traits and the habitat(s) they move through, resulting in complex movement patterns when moving close to coasts compared with more predictable patterns when moving in open oceans. This distinct difference may be associated with greater complexity within coastal microhabitats, highlighting a critical role of preferred habitat in shaping marine vertebrate global movements. Efforts to develop understanding of the characteristics of vertebrate movement should consider the habitat(s) through which they move to identify how movement patterns will alter with forecasted severe ocean changes, such as reduced Arctic sea ice cover, sea level rise, and declining oxygen content.

  1. Combined impact of ocean acidification and corrosive waters in a river-influenced coastal upwelling area off Central Chile

    Science.gov (United States)

    Vargas, C.; De La Hoz, M.; San Martin, V.; Contreras, P.; Navarro, J. M.; Lagos, N. A.; Lardies, M.; Manríquez, P. H.; Torres, R.

    2012-12-01

    Elevated CO2 in the atmosphere promotes a cascade of physical and chemical changes affecting all levels of biological organization, and the evidence from local to global scales has shown that such anthropogenic climate change has triggered significant responses in the Earth's biota. The increased concentration of CO2 is likely to cause a corresponding increase in ocean acidification (OA). In addition, economically valuable shellfish species predominantly inhabit coastal regions both in natural stocks and/or in managed stocks and farming areas. Many coastal ecosystems may experience seawater pCO2 levels significantly higher than expected from equilibrium with the atmosphere, which in this case are strongly linked to biological processes and/or the impact of two important processes; river plumes and coastal upwelling events, which indeed interplay in a very dynamic way on continental shelves, resulting in both source or sink of CO2 to the atmosphere. Coastal ecosystems receive persistent acid inputs as a result of freshwater discharges from river basins into the coastal domain. In this context, since shellfish resources and shellfish aquaculture activities predominantly occur in nearshore areas, it is expected that shellfish species inhabiting river-influenced benthic ecosystems will be exposed persistently to acidic conditions that are suboptimal for its development. In a wider ecological context, little is also known about the potential impacts of acid waters on the performance of larvae and juveniles of almost all the marine species inhabiting this benthic ecosystem in Eastern Southern Pacific Ocean. We present here the main results of a research study aimed to investigate the environmental conditions to which economically valuable calcifiers shellfish species are exposed in a river-influenced continental shelf off Central Chile. By using isotopic measurements in the dissolved inorganic carbon (DIC) pool (d13C-DIC) we showed the effect of the remineralization of

  2. Coastal aquaculture development in eastern Africa and the Western Indian Ocean: prospects and problems for food security and local economies.

    Science.gov (United States)

    Rönnback, Patrik; Bryceson, Ian; Kautsky, Nils

    2002-12-01

    This paper reviews the experience and status of coastal aquaculture of seaweeds, mollusks, fish and crustaceans in eastern Africa and the islands of the western Indian Ocean. In many respects, coastal aquaculture is still in its infancy in the region, and there is a pressing need to formulate development strategies aimed at improving the income and assuring the availability of affordable protein to coastal communities. This paper also draws from positive and negative experiences in other parts of the world. The requirements of feed and fry, and the conversion of mangroves are used to illustrate how some aquaculture activities constitute a net loss to global seafood production. The paper presents both general and specific sustainability guidelines based on the acknowledgement of aquaculture as an ecological process. It is concluded that without clear recognition of its dependence on natural ecosystems, the aquaculture industry is unlikely to develop to its full potential in the region.

  3. Ocean acidification in the coastal zone from an organism's perspective: multiple system parameters, frequency domains, and habitats.

    Science.gov (United States)

    Waldbusser, George G; Salisbury, Joseph E

    2014-01-01

    Multiple natural and anthropogenic processes alter the carbonate chemistry of the coastal zone in ways that either exacerbate or mitigate ocean acidification effects. Freshwater inputs and multiple acid-base reactions change carbonate chemistry conditions, sometimes synergistically. The shallow nature of these systems results in strong benthic-pelagic coupling, and marine invertebrates at different life history stages rely on both benthic and pelagic habitats. Carbonate chemistry in coastal systems can be highly variable, responding to processes with temporal modes ranging from seconds to centuries. Identifying scales of variability relevant to levels of biological organization requires a fuller characterization of both the frequency and magnitude domains of processes contributing to or reducing acidification in pelagic and benthic habitats. We review the processes that contribute to coastal acidification with attention to timescales of variability and habitats relevant to marine bivalves.

  4. Coastal boundary layers in ocean modelling: an application to the Adriatic Sea

    International Nuclear Information System (INIS)

    Malanotte Rizzoli, P.; Dell'Orto, F.

    1981-01-01

    Boundary layers play an important role in modelling geophysical fluid-dynamical flows, in as much as they constitute regions of ageostrophic dynamics in which the physical balances characterizing the main interior of the water mass break down. A short synopsis is given of important boundary layers in ocean circulation modelling with specific emphasis drawn upon side wall boundary layers, namely those adjacent to the coastlines of the considered basin. Application of boundary layer analysis is thereafter made for one specific phenomenological situation, namely the Northern Adriatic Sea and the problem posed by its wintertime seasonal circulation. The analysis furnishes a mathematical model fo the coastal strip adjacent to the Italian shoreline, treated as a boundary layer in the density field, starting from general model equations valid throughout the interior of the Northern Adriatic. The boundary layer model is consequently used to modify the side wall boundary condition for the interior density field. Related numerical experiments are shown and compared with previous standard experiments in which the boundary layer contribution to the density field has not been considered. (author)

  5. Computational Fluid Dynamics and Visualisation of Coastal Flows in Tidal Channels Supporting Ocean Energy Development

    Directory of Open Access Journals (Sweden)

    Enayatollah Zangiabadi

    2015-06-01

    Full Text Available Flow characteristics in coastal regions are strongly influenced by the topography of the seabed and understanding the fluid dynamics is necessary before installation of tidal stream turbines (TST. In this paper, the bathymetry of a potential TST deployment site is used in the development of the a CFD (Computational Fluid Dynamics model. The steady state k-ϵ and transient Large Eddy Simulation (LES turbulence methods are employed and compared. The simulations are conducted with a fixed representation of the ocean surface, i.e., a rigid lid representation. In the vicinity of Horse Rock a study of the pressure difference shows that the small change in height of the water column is negligible, providing confidence in the simulation results. The stream surface method employed to visualise the results has important inherent characteristics that can enhance the visual perception of complex flow structures. The results of all cases are compared with the flow data transect gathered by an Acoustic Doppler Current Profiler (ADCP. It has been understood that the k-ϵ method can predict the flow pattern relatively well near the main features of the domain and the LES model has the ability to simulate some important flow patterns caused by the bathymetry.

  6. Treated Wastewater Changes the Export of Dissolved Inorganic Carbon and Its Isotopic Composition and Leads to Acidification in Coastal Oceans.

    Science.gov (United States)

    Yang, Xufeng; Xue, Liang; Li, Yunxiao; Han, Ping; Liu, Xiangyu; Zhang, Longjun; Cai, Wei-Jun

    2018-04-25

    Human-induced changes in carbon fluxes across the land-ocean interface can influence the global carbon cycle, yet the impacts of rapid urbanization and establishment of wastewater treatment plants (WWTPs) on coastal ocean carbon cycles are poorly known. This is unacceptable as at present ∼64% of global municipal wastewater is treated before discharge. Here, we report surface water dissolved inorganic carbon (DIC) and sedimentary organic carbon concentrations and their isotopic compositions in the rapidly urbanized Jiaozhou Bay in northeast China as well as carbonate parameters in effluents of three large WWTPs around the bay. Using DIC, δ 13 C DIC and total alkalinity (TA) data and a tracer model, we determine the contributions to DIC from wastewater DIC input, net ecosystem production, calcium carbonate precipitation, and CO 2 outgassing. Our study shows that high-DIC and low-pH wastewater effluent represents an important source of DIC and acidification in coastal waters. In contrast to the traditional view of anthropogenic organic carbon export and degradation, we suggest that with the increase of wastewater discharge and treatment rates, wastewater DIC input may play an increasingly more important role in the coastal ocean carbon cycle.

  7. Optimization and Modeling of Extreme Freshwater Discharge from Japanese First-Class River Basins to Coastal Oceans

    Science.gov (United States)

    Kuroki, R.; Yamashiki, Y. A.; Varlamov, S.; Miyazawa, Y.; Gupta, H. V.; Racault, M.; Troselj, J.

    2017-12-01

    We estimated the effects of extreme fluvial outflow events from river mouths on the salinity distribution in the Japanese coastal zones. Targeted extreme event was a typhoon from 06/09/2015 to 12/09/2015, and we generated a set of hourly simulated river outflow data of all Japanese first-class rivers from these basins to the Pacific Ocean and the Sea of Japan during the period by using our model "Cell Distributed Runoff Model Version 3.1.1 (CDRMV3.1.1)". The model simulated fresh water discharges for the case of the typhoon passage over Japan. We used these data with a coupled hydrological-oceanographic model JCOPE-T, developed by Japan Agency for Marine-earth Science and Technology (JAMSTEC), for estimation of the circulation and salinity distribution in Japanese coastal zones. By using the model, the coastal oceanic circulation was reproduced adequately, which was verified by satellite remote sensing. In addition to this, we have successfully optimized 5 parameters, soil roughness coefficient, river roughness coefficient, effective porosity, saturated hydraulic conductivity, and effective rainfall by using Shuffled Complex Evolution method developed by University of Arizona (SCE-UA method), that is one of the optimization method for hydrological model. Increasing accuracy of peak discharge prediction of extreme typhoon events on river mouths is essential for continental-oceanic mutual interaction.

  8. Assimilation of coastal acoustic tomography data using an unstructured triangular grid ocean model for water with complex coastlines and islands

    Science.gov (United States)

    Zhu, Ze-Nan; Zhu, Xiao-Hua; Guo, Xinyu; Fan, Xiaopeng; Zhang, Chuanzheng

    2017-09-01

    For the first time, we present the application of an unstructured triangular grid to the Finite-Volume Community Ocean Model using the ensemble Kalman filter scheme, to assimilate coastal acoustic tomography (CAT) data. The fine horizontal and vertical current field structures around the island inside the observation region were both reproduced well. The assimilated depth-averaged velocities had better agreement with the independent acoustic Doppler current profiler (ADCP) data than the velocities obtained by inversion and simulation. The root-mean-square difference (RMSD) between depth-averaged current velocities obtained by data assimilation and those obtained by ADCPs was 0.07 m s-1, which was less than the corresponding difference obtained by inversion and simulation (0.12 and 0.17 m s-1, respectively). The assimilated vertical layer velocities also exhibited better agreement with ADCP than the velocities obtained by simulation. RMSDs between assimilated and ADCP data in vertical layers ranged from 0.02 to 0.14 m s-1, while RMSDs between simulation and ADCP data ranged from 0.08 to 0.27 m s-1. These results indicate that assimilation had the highest accuracy. Sensitivity experiments involving the elimination of sound transmission lines showed that missing data had less impact on assimilation than on inversion. Sensitivity experiments involving the elimination of CAT stations showed that the assimilation with four CAT stations was the relatively economical and reasonable procedure in this experiment. These results indicate that, compared with inversion and simulation, data assimilation of CAT data with an unstructured triangular grid is more effective in reconstructing the current field.

  9. Radionuclides and particles in seawater with the large volume in situ filtration and concentration system in the coastal waters off Japan

    International Nuclear Information System (INIS)

    Aono, Tatsuo; Nakanishi, Takahiro; Okubo, Ayako; Zheng, Jian; Yamada, Masatoshi; Kusakabe, Masashi

    2008-01-01

    It is necessary to determine the radionuclides in dissolved and particulate state in order to clarify the distributions and behavior of these in seawater. Because the concentrations of radionuclides and particles are very low in the ocean, it is difficult to concentrate and fractionate the particulate matters with the filtration systems in seawater. The large volume in situ filtration and concentration system (LV-FiCS) was developed to collect various forms of trace radionuclides and particles in seawater. The LV-FiCS has been operated during several cruises in the coastal waters off Japan, and several m 3 of seawaters were filtered through different kinds of filters and then pass through the adsorbents to concentrate radionuclides simultaneously. This system could be shown the vertical profiles of thorium with the size-fractionated method and the behavior of these nuclides in the ocean. (author)

  10. 76 FR 39857 - Alaska Coastal Management Program Withdrawal From the National Coastal Management Program Under...

    Science.gov (United States)

    2011-07-07

    ... DEPARTMENT OF COMMERCE National Oceanic Atmospheric Administration Alaska Coastal Management Program Withdrawal From the National Coastal Management Program Under the Coastal Zone Management Act (CZMA) AGENCY: Office of Ocean and Coastal Resource Management (OCRM), National Ocean Service (NOS...

  11. Volume Transport Stream Function Calculated from World Ocean Atlas 2013 (WOA13-VTSF) and Climatological Wind (NCEI Accession 0138646)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset consists of calculated annual and monthly mean ocean volume transport stream function on 1 degree resolution using the WOA13 (T, S) and corresponding...

  12. Estimation of the Atmosphere-Ocean Fluxes of Greenhouse Gases and Aerosols at the Finer Resolution of the Coastal Ocean

    Czech Academy of Sciences Publication Activity Database

    Vieira, V.; Sahlée, E.; Juruš, Pavel; Clementi, E.; Pettersson, H.; Mateus, M.

    2016-01-01

    Roč. 18 (2016), EGU2016-1990-1 ISSN 1607-7962. [EGU General Assembly 2016. 17.04.2016-22.04.2016, Vienna] Institutional support: RVO:67985807 Keywords : greenhouse gases * carbon cycle * atmosphere- ocean interaction * atmosphere modelling * ocean modelling Subject RIV: DG - Athmosphere Sciences, Meteorology

  13. CDOM-DOC relationship in contrasted coastal waters: implication for DOC retrieval from ocean color remote sensing observation.

    Science.gov (United States)

    Vantrepotte, Vincent; Danhiez, François-Pierre; Loisel, Hubert; Ouillon, Sylvain; Mériaux, Xavier; Cauvin, Arnaud; Dessailly, David

    2015-01-12

    Increasing our knowledge on dissolved organic carbon (DOC) spatio-temporal distribution in the coastal ocean represents a crucial challenge for better understanding the role of these ecosystems in the global oceanic carbon cycle. The assessment of DOC concentration from the absorption properties of the colored part of the dissolved organic matter (a(cdom)) was investigated from an extensive data set covering a variety of coastal environments. Our results confirmed that variation in the a(cdom)(412) to DOC ratio (a*(cdom)(412)) can be depicted from the CDOM spectral slope in the UV domain (S(275-295)). They also evidenced that regional first order variation in both a*(cdom)(412) and S(275-295) are highly correlated to variation in a(cdom)(412). From these observations, generalized relationships for estimating a*(cdom)(412) from S(275-295) or a(cdom)(412) were parameterized from our development sites (N = 158; English Channel, French Guiana, Hai Phong Bay) and tested against an independent data set covering others coastal regions (N = 223; French Polynesia, Rhone River estuary, Gulf of Maine, Chesapeake Bay, Southern Middle Atlantic Bight) demonstrating the possibility to derive DOC estimates from in situ CDOM optical properties with an average accuracy of ~16% over very contrasted coastal environments (with DOC ranging from 50 to 250 µmol.L(-1)). The applicability of these generalized approaches was evaluated in the context of ocean color remote sensing observation emphasizing the limits of S(275-295)-based formulations and the potential for a(cdom)-based approaches to represent a compelling alternative for assessing synoptic DOC distribution.

  14. The Gulf of Mexico Coastal Ocean Observing System: A Gulf Science Portal

    Science.gov (United States)

    Howard, M.; Gayanilo, F.; Kobara, S.; Jochens, A. E.

    2013-12-01

    The Gulf of Mexico Coastal Ocean Observing System's (GCOOS) regional science portal (gcoos.org) was designed to aggregate data and model output from distributed providers and to offer these, and derived products, through a single access point in standardized ways to a diverse set of users. The portal evolved under the NOAA-led U.S. Integrated Ocean Observing System (IOOS) program where automated largely-unattended machine-to-machine interoperability has always been a guiding tenet for system design. The web portal has a business unit where membership lists, new items, and reference materials are kept, a data portal where near real-time and historical data are held and served, and a products portal where data are fused into products tailored for specific or general stakeholder groups. The staff includes a system architect who built and maintains the data portal, a GIS expert who built and maintains the current product portal, the executive director who marshals resources to keep news items fresh and data manger who manages most of this. The business portal is built using WordPress which was selected because it appeared to be the easiest content management system for non-web programmers to add content to, maintain and enhance. The data portal is custom built and uses database, PHP, and web services based on Open Geospatial Consortium standards-based Sensor Observation Service (SOS) with Observations and Measurements (O&M) encodings. We employ a standards-based vocabulary, which we helped develop, which is registered at the Marine Metadata Interoperability Ontology Registry and Repository (http://mmisw.org). The registry is currently maintained by one of the authors. Products appearing in the products portal are primarily constructed using ESRI software by a Ph.D. level Geographer. Some products were built with other software, generally by graduate students over the years. We have been sensitive to the private sector when deciding which products to produce. While

  15. Crustal volumes of the continents and of oceanic and continental submarine plateaus

    Science.gov (United States)

    Schubert, G.; Sandwell, D.

    1989-01-01

    Using global topographic data and the assumption of Airy isostasy, it is estimated that the crustal volume of the continents is 7182 X 10 to the 6th cu km. The crustal volumes of the oceanic and continental submarine plateaus are calculated at 369 X 10 to the 6th cu km and 242 X 10 to the 6th cu km, respectively. The total continental crustal volume is found to be 7581 X 10 to the 6th cu km, 3.2 percent of which is comprised of continental submarine plateaus on the seafloor. An upper bound on the contintental crust addition rate by the accretion of oceanic plateaus is set at 3.7 cu km/yr. Subduction of continental submarine plateaus with the oceanic lithosphere on a 100 Myr time scale yields an upper bound to the continental crustal subtraction rate of 2.4 cu km/yr.

  16. Sentinel-3 SAR Altimetry over Coastal and Open Ocean: performance assessment and improved retrieval methods in the ESA SCOOP Project.

    Science.gov (United States)

    Benveniste, J.; Cotton, D.; Moreau, T.; Raynal, M.; Varona, E.; Cipollini, P.; Cancet, M.; Martin, F.; Fenoglio-Marc, L.; Naeije, M.; Fernandes, J.; Lazaro, C.; Restano, M.; Ambrózio, A.

    2017-12-01

    The ESA Sentinel-3 satellite, launched in February 2016 as a part of the Copernicus programme, is the second satellite to operate a SAR mode altimeter. The Sentinel 3 Synthetic Aperture Radar Altimeter (SRAL) is based on the heritage from Cryosat-2, but this time complemented by a Microwave Radiometer (MWR) to provide a wet troposphere correction, and operating at Ku and C-Bands to provide an accurate along-track ionospheric correction. The SRAL is operated in SAR mode over the whole ocean and promises increased performance w.r.t. conventional altimetry. SCOOP (SAR Altimetry Coastal & Open Ocean Performance) is a project funded under the ESA SEOM (Scientific Exploitation of Operational Missions) Programme Element, started in September 2015, to characterise the expected performance of Sentinel-3 SRAL SAR mode altimeter products, in the coastal zone and open-ocean, and then to develop and evaluate enhancements to the baseline processing scheme in terms of improvements to ocean measurements. There is also a work package to develop and evaluate an improved Wet Troposphere correction for Sentinel-3, based on the measurements from the on-board MWR, further enhanced mostly in the coastal and polar regions using third party data, and provide recommendations for use. In this presentation we present results from the SCOOP project that demonstrate the excellent performance of SRAL in terms of measurement precision, and we illustrate the development and testing of new processing approaches designed specifically to improve performance close to the coast. The SCOOP test data sets and relevant documentation are available to external researchers on application to the project team. At the end of the project recommendations for further developments and implementations will be provided through a scientific roadmap.

  17. An Improved Ocean Observing System for Coastal Louisiana: WAVCIS (WAVE-CURRENT-SURGE Information System )

    Science.gov (United States)

    Zhang, X.; Stone, G. W.; Gibson, W. J.; Braud, D.

    2005-05-01

    WAVCIS is a regional ocean observing and forecasting system. It was designed to measure, process, forecast, and distribute oceanographic and meteorological information. WAVCIS was developed and is maintained by the Coastal Studies Institute at Louisiana State University. The in-situ observing stations are distributed along the central Louisiana and Mississippi coast. The forecast region covers the entire Gulf of Mexico with emphasis on offshore Louisiana. By using state-of-the-art instrumentation, WAVCIS measures directional waves, currents, temperature, water level, conductivity, turbidity, salinity, dissolved oxygen, chlorophyll, Meteorological parameters include wind speed and direction, air pressure and temperature visibility and humidity. Through satellite communication links, the measured data are transmitted to the WAVCIS laboratory. After processing, they are available to the public via the internet on a near real-time basis. WAVCIS also includes a forecasting capability. Waves, tides, currents, and winds are forecast daily for up to 80 hours in advance. There are a number of numerical wave and surge models that can be used for forecasts. WAM and SWAN are used for operational purposes to forecast sea state. Tides at each station are predicted based on the harmonic constants calculated from past in-situ observations at respective sites. Interpolated winds from the ETA model are used as input forcing for waves. Both in-situ and forecast information are available online to the users through WWW. Interactive GIS web mapping is implemented on the WAVCIS webpage to visualize the model output and in-situ observational data. WAVCIS data can be queried, retrieved, downloaded, and analyzed through the web page. Near real-time numerical model skill assessment can also be performed by using the data from in-situ observing stations.

  18. Linking 1D coastal ocean modelling to environmental management: an ensemble approach

    Science.gov (United States)

    Mussap, Giulia; Zavatarelli, Marco; Pinardi, Nadia

    2017-12-01

    The use of a one-dimensional interdisciplinary numerical model of the coastal ocean as a tool contributing to the formulation of ecosystem-based management (EBM) is explored. The focus is on the definition of an experimental design based on ensemble simulations, integrating variability linked to scenarios (characterised by changes in the system forcing) and to the concurrent variation of selected, and poorly constrained, model parameters. The modelling system used was previously specifically designed for the use in "data-rich" areas, so that horizontal dynamics can be resolved by a diagnostic approach and external inputs can be parameterised by nudging schemes properly calibrated. Ensembles determined by changes in the simulated environmental (physical and biogeochemical) dynamics, under joint forcing and parameterisation variations, highlight the uncertainties associated to the application of specific scenarios that are relevant to EBM, providing an assessment of the reliability of the predicted changes. The work has been carried out by implementing the coupled modelling system BFM-POM1D in an area of Gulf of Trieste (northern Adriatic Sea), considered homogeneous from the point of view of hydrological properties, and forcing it by changing climatic (warming) and anthropogenic (reduction of the land-based nutrient input) pressure. Model parameters affected by considerable uncertainties (due to the lack of relevant observations) were varied jointly with the scenarios of change. The resulting large set of ensemble simulations provided a general estimation of the model uncertainties related to the joint variation of pressures and model parameters. The information of the model result variability aimed at conveying efficiently and comprehensibly the information on the uncertainties/reliability of the model results to non-technical EBM planners and stakeholders, in order to have the model-based information effectively contributing to EBM.

  19. Impacts of the Nutrient Inputs from Riverine on the Dynamic and Community Structure of Fungal-like Protists in the Coastal Ocean Ecosystems

    Science.gov (United States)

    Duan, Y.; Wang, G.; Xie, N.

    2016-02-01

    The coastal ocean connects terrestrial (e.g., rivers and estuaries) with oceanic ecosystems and is considered as a major component of global carbon cycles and budgets. The coastal waters are featured with a high biodiversity and high primary production. Because of the excessive primary production, a large fraction of primary organic matter becomes available to consumers as detritus in the coastal waters. Bacterioplankton have long been known to play a key role in the degradation of this detritus, and export and storage of organic matter in the coastal ecosystems. However, the primary and secondary production and the carbon biogeochemical processes in the ecosystems are largely regulated by nutrient inputs from riverine and other anthropogenic activities through heterotrophic microbial communities. Thraustochytrids, commonly known as fungal-like protists, are unicellular heterotrophic protists and are recently acknowledged to play a significant role in ocean carbon cycling. Their abundance exceeds that of bacterioplankton in the most time of the year in the coastal waters of China. Also, their abundance and diversity are largely regulated by nutrients inputs from riverine and other anthropogenic activities. Our findings support that thraustochytrids are a dominant heterotrophic microbial group in the coastal waters. Evidently, thraustochytrids are an import, but neglected, component in microbial carbon biogeochemical processes of the coastal ocean.

  20. Remote sensing for global change, climate change and atmosphere and ocean forecasting. Volume 1

    International Nuclear Information System (INIS)

    1992-01-01

    This volume is separated in three sessions. First part is on remote sensing for global change (with global modelling, land cover change on global scale, ocean colour studies of marine biosphere, biological and hydrological interactions and large scale experiments). Second part is on remote sensing for climate change (with earth radiation and clouds, sea ice, global climate research programme). Third part is on remote sensing for atmosphere and ocean forecasting (with temperatures and humidity, winds, data assimilation, cloud imagery, sea surface temperature, ocean waves and topography). (A.B.). refs., figs., tabs

  1. Estimating the value of the marine, coastal and ocean resources of Newfoundland and Labrador (for the period 1997 to 1999)

    International Nuclear Information System (INIS)

    2002-03-01

    More than 90 per cent of Newfoundland and Labrador's population lives adjacent to, or just a few kilometres from the ocean. An increased use of coastal resources has prompted this study which estimated the economic value of the oceans sector to Newfoundland and Labrador's economy. The study included the reference period 1997 to 1999 with private sector industries as well as federal and provincial public sector oceans-related departments and agencies. Private sector industries included oil and gas, fishery, aquaculture, shipbuilding, marine tourism, marine transportation and ocean technologies. Estimating the economic value of the oceans sector is important for policy development and management decisions at the federal and provincial level and for better understanding the contributions of industry. The indicators used in the study included the Gross Domestic Product (GDP) impact, labour income impact, and employment impact. The economic impacts were separated into direct, indirect and induced impacts. The primary data was used to determine direct economic impact of the oceans sector. Then, the Newfoundland and Labrador Econometric Model and the Input-Output Model was used to determine the indirect and induced impacts of the oceans sector. The total GDP impact averaged about $2.59 billion, or 26.5 per cent of total economic activity. The most significant private sector industries, in terms of total GDP impact were offshore oil at 11.9 per cent of GDP, and the fishery at 8.2 per cent. The direct employment impact of ocean-related activity averaged about 12.7 per cent of total employment. Data tables and data sources were included in the appendices. refs., tabs., figs., appendices

  2. Monitoring Drought along the Gulf of Mexico and the Southeastern Atlantic Ocean Using the Coastal Salinity Index

    Science.gov (United States)

    Conrads, P. A.; Rouen, L.; Lackstrom, K.; McCloskey, B.

    2017-12-01

    Coastal droughts have a different dynamic than upland droughts, which are typically characterized by agricultural, hydrologic, meteorological, and (or) socio-economic impacts. Drought uniquely affects coastal ecosystems due to changes in salinity conditions of estuarine creeks and rivers. The location of the freshwater-saltwater interface in surface-water bodies is an important factor in the ecological and socio-economic dynamics of coastal communities. The location of the interface determines the freshwater and saltwater aquatic communities, fisheries spawning habitat, and the freshwater availability for municipal and industrial water intakes. The severity of coastal drought may explain changes in Vibrio bacteria impacts on shellfish harvesting and occurrence of wound infection, fish kills, harmful algal blooms, hypoxia, and beach closures. To address the data and information gap for characterizing coastal drought, a coastal salinity index (CSI) was developed using salinity data. The CSI uses a computational approach similar to the Standardized Precipitation Index (SPI). The CSI is computed for unique time intervals (for example 1-, 6-, 12-, and 24-month) that can characterize the onset and recovery of short- and long-term drought. Evaluation of the CSI indicates that the index can be used for different estuary types (for example: brackish, oligohaline, or mesohaline), for regional comparison between estuaries, and as an index of wet conditions (high freshwater inflow) in addition to drought (saline) conditions. In 2017, three activities in 2017 will be presented that enhance the use and application of the CSI. One, a software package was developed for the consistent computation of the CSI that includes preprocessing of salinity data, filling missing data, computing the CSI, post-processing, and generating the supporting metadata. Two, the CSI has been computed at sites along the Gulf of Mexico (Texas to Florida) and the Southeastern Atlantic Ocean (Florida to

  3. Integrated Observations From Fixed and AUV Platforms in the Littoral Zone at the SFOMC Coastal Ocean Observatory

    Science.gov (United States)

    Dhanak, M. R.

    2001-12-01

    A 12-hour survey of the coastal waters off the east coast of Florida at the South Florida Ocean Measurement Center (SFOMC) coastal ocean observatory, during summer 1999, is described to illustrate the observatory's capabilities for ocean observation. The facility is located close to the Gulf Stream, the continental shelf break being only 3 miles from shore and is therefore influenced by the Gulf Stream meanders and the instability of the horizontal shear layer at its edge. As a result, both cross-shelf and along-shelf components of currents in the littoral zone can undergo dramatic +/- 0.5 m/s oscillations. Observations of surface currents from an OSCR, and of subsurface structure from an autonomous underwater vehicle (AUV) platform, a bottom-mounted ADCP and CT-chain arrays during the survey will be described and compared. The AUV on-board sensors included upward and downward looking 1200kHz ADCP, a CTD package and a small-scale turbulence package, consisting of two shear probes and a fast-response thermistor. Prevailing atmospheric conditions were recorded at an on-site buoy. The combined observations depict flows over a range of scales. Acknowledgements: The observations from the OSCR are due to Nick Shay and Tom Cook (University of Miami), and from the bottom-mounted ADCP, CT chain arrays and the surface buoy are due to Alex Soloviev (Nova Southeastern University) and Mark Luther and Bob Weisberg (University of South Florida).

  4. 2008 NOAA Integrated Ocean and Coastal Mapping (IOCM) LIDAR: New Hampshire

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were collected by the National Oceanic Atmospheric Administration National Geodetic Survey Remote Sensing Division using an OPTECH ALTM system on June 8,...

  5. 2008 NOAA/NGS Integrated Ocean and Coastal Mapping (IOCM) LIDAR: Kenai Peninsula Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were collected by the National Oceanic Atmospheric Administration National Geodetic Survey Remote Sensing Division using an OPTECH ALTM system. The data...

  6. Use of a Land-Based, Dual-Parameter Analyzer for Tracking Ocean Acidification in Nearshore Coastal Habitats

    Science.gov (United States)

    Shea, M.; Alin, S. R.; Evans, W.; Sutton, A.; Hales, B. R.; Newton, J.; Feely, R. A.

    2016-12-01

    In 2007 to 2008, U.S. Pacific Northwest shellfish hatcheries experienced unprecedented larval mortality, attributed to upwelling along the Washington-Oregon coast that brought seawater enriched in anthropogenic CO2 and undersaturated with respect to aragonite to the surface. In response, several hatcheries have been outfitted with land-based analyzers to measure CO2 partial pressure (pCO2) and total dissolved CO2 (TCO2) through U.S. IOOS and NOAA OAP funding. This analyzer, developed at Oregon State University and known as the `Burke-O-Lator,' allows users to track CO2 system parameters in real-time. The data are available in near real-time on the IOOS Pacific Region Ocean Acidification (IPACOA) data portal, which feeds to the Global Ocean Acidification Observing Network (GOA-ON). Here, we explore the broader use of this system as an environmental monitoring tool. Most of the high-quality OA time-series locations in GOA-ON are in the open and coastal ocean, yet many areas of biological interest—such as shellfish hatcheries, shellfish farms, and coastal laboratories—are in the nearshore area of the coastal zone. A truly globally integrated assessment of OA must include nearshore conditions, which have been shown to be quite different in terms of variability, drivers, and range. We evaluated two pCO2 time-series from the coastal nearshore: the Taylor Shellfish Hatchery Burke-O-Lator system on the shore of Dabob Bay in Puget Sound, WA, and the nearby but offshore Dabob ORCA buoy MAPCO2 system within the bay. Preliminary comparison of three years of data reveals similar patterns despite differences in location and seawater intake depth, highlighting the opportunity for the addition of coupled nearshore biology and biogeochemistry measurements in GOA-ON. In addition, the well-calibrated, dual-parameter nature of the system is important for constraining nearshore chemistry, as biology, groundwater, and river inputs can lead to strong variability in carbonate

  7. Ocean basin volume constraints on global sea level since the Jurassic

    Science.gov (United States)

    Seton, M.; Müller, R. D.

    2011-12-01

    Changes in the volume of the ocean basins, predominately via changes in the age-area distribution of oceanic lithosphere, have been suggested as the main driver for long-term eustatic sea-level change. As ocean lithosphere cools and thickens, ocean depth increases. The balance between the abundance of hot and buoyant crust along mid ocean ridges relative to abyssal plains is the primary driving force of long-term sea level changes. The emplacement of volcanic plateaus and chains as well as sedimentation contribute to raising eustatic sea level. Quantifying the average ocean basin depth through time primarily relies on the present day preserved seafloor spreading record, an analysis of the spatio-temporal record of plate boundary processes recorded on the continental margins adjacent to ocean basins as well as a consideration of the rules of plate tectonics, to reconstruct the history of seafloor spreading in the oceanic basins through time. This approach has been successfully applied to predict the magnitude and pattern of eustatic sea-level change since the Cretaceous (Müller et. al. 2008) but uncertainties in reconstructing mid ocean ridges and flanks increase back through time, given that we mainly depend on information preserved in preserved ocean crust. We have reconstructed the age-area distribution of oceanic lithosphere and the plate boundary configurations back to the Jurassic (200 Ma) in order to assess long-term sea-level change from amalgamation to dispersal of Pangaea. We follow the methodology presented in Müller et. al. (2008) but incorporate a new absolute plate motion model derived from Steinberger and Torsvik (2008) prior to 100 Ma, a merged Wessel et. al. (2006) and Wessel and Kroenke (2008) fixed Pacific hotspot reference frame, and a revised model for the formation of Panthalassa and the Cretaceous Pacific. Importantly, we incorporate a model for the break-up of the Ontong Java-Manihiki-Hikurangi plateaus between 120-86 Ma. We extend a

  8. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation. Volume 2; Revised

    Science.gov (United States)

    Mueller, James L. (Editor); Fargion, Giulietta S. (Editor); Trees, C.; Austin, R. W.; Pietras, C. (Editor); Hooker, S.; Holben, B.; McClain, Charles R.; Clark, D. K.; Yuen, M.

    2002-01-01

    This document stipulates protocols for measuring bio-optical and radiometric data for the SIMBIOS Project. It supersedes the earlier version, and is organized into four parts: Introductory Background, Instrument Characteristics, Field Measurements and Data Analysis, Data Reporting and Archival. Changes in this revision include the addition of three new chapters: (1) Fundamental Definitions, Relationships and Conventions; (2) MOBY, A Radiometric Buoy for Performance Monitoring and Vicarious Calibration of Satellite Ocean Color Sensors: Measurement and Data Analysis Protocols; and (3) Normalized Water-Leaving Radiance and Remote Sensing Reflectance: Bidirectional Reflectance and Other Factors. Although the present document represents another significant, incremental improvement in the ocean optics protocols, there are several protocols that have either been overtaken by recent technological progress, or have been otherwise identified as inadequate. Revision 4 is scheduled for completion sometime in 2003. This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational Project. The contributions are published as submitted, after only minor editing to correct obvious grammatical or clerical errors.

  9. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation. Volume 1; Revised

    Science.gov (United States)

    Mueller, James L. (Editor); Fargion, Giulietta (Editor); Mueller, J. L.; Trees, C.; Austin, R. W.; Pietras, C.; Hooker, S.; Holben, B.; McClain, Charles R.; Clark, D. K.; hide

    2002-01-01

    This document stipulates protocols for measuring bio-optical and radiometric data for the SIMBIOS Project. It supersedes the earlier version, and is organized into four parts: Introductory Background, Instrument Characteristics, Field Measurements and Data Analysis, Data Reporting and Archival. Changes in this revision include the addition of three new chapters: (1) Fundamental Definitions, Relationships and Conventions; (2) MOBY, A Radiometric Buoy for Performance Monitoring and Vicarious Calibration of Satellite Ocean Color Sensors: Measurement and Data Analysis Protocols; and (3) Normalized Water-Leaving Radiance and Remote Sensing Reflectance: Bidirectional Reflectance and Other Factors. Although the present document represents another significant, incremental improvement in the ocean optics protocols, there are several protocols that have either been overtaken by recent technological progress, or have been otherwise identified as inadequate. Revision 4 is scheduled for completion sometime in 2003. This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational Project. The contributions are published as submitted, after only minor editing to correct obvious grammatical or clerical errors.

  10. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic image tiles for Brunswick, Kings Bay and Fernandina Beach, and Savannah and the Savannah River, Georgia, 2009-2010 (NODC Accession 0092435)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains orthorectified true color (RGB) and infrared (IR) image mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping...

  11. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget

    KAUST Repository

    Duarte, Carlos M.

    2017-01-01

    Vegetated coastal habitats, including seagrass and macroalgal beds, mangrove forests and salt marshes, form highly productive ecosystems, but their contribution to the global carbon budget remains overlooked, and these forests remain

  12. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget

    KAUST Repository

    Duarte, Carlos M.

    2017-01-23

    Vegetated coastal habitats, including seagrass and macroalgal beds, mangrove forests and salt marshes, form highly productive ecosystems, but their contribution to the global carbon budget remains overlooked, and these forests remain

  13. Global land–ocean linkage: direct inputs of nitrogen to coastal waters via submarine groundwater discharge

    International Nuclear Information System (INIS)

    Beusen, A H W; Slomp, C P; Bouwman, A F

    2013-01-01

    The role of submarine groundwater discharge (SGD), the leakage of groundwater from aquifers into coastal waters, in coastal eutrophication has been demonstrated mostly for the North American and European coastlines, but poorly quantified in other regions. Here, we present the first spatially explicit global estimates of N inputs via SGD to coastal waters and show that it has increased from about 1.0 to 1.4 Tg of nitrate (NO 3 -N) per year over the second half of the 20th century. Since this increase is not accompanied by an equivalent increase of groundwater phosphorus (P) and silicon (Si), SGD transport of nitrate is an important factor for the development of harmful algal blooms in coastal waters. Groundwater fluxes of N are linked to areas with high runoff and intensive anthropogenic activity on land, with Southeast Asia, parts of North and Central America, and Europe being hot spots. (letter)

  14. Application of the Hyperspectral Imager for the Coastal Ocean to Phytoplankton Ecology Studies in Monterey Bay, CA, USA

    Directory of Open Access Journals (Sweden)

    John P. Ryan

    2014-01-01

    Full Text Available As a demonstrator for technologies for the next generation of ocean color sensors, the Hyperspectral Imager for the Coastal Ocean (HICO provides enhanced spatial and spectral resolution that is required to understand optically complex aquatic environments. In this study we apply HICO, along with satellite remote sensing and in situ observations, to studies of phytoplankton ecology in a dynamic coastal upwelling environment—Monterey Bay, CA, USA. From a spring 2011 study, we examine HICO-detected spatial patterns in phytoplankton optical properties along an environmental gradient defined by upwelling flow patterns and along a temporal gradient of upwelling intensification. From a fall 2011 study, we use HICO’s enhanced spatial and spectral resolution to distinguish a small-scale “red tide” bloom, and we examine bloom expansion and its supporting processes using other remote sensing and in situ data. From a spectacular HICO image of the Monterey Bay region acquired during fall of 2012, we present a suite of algorithm results for characterization of phytoplankton, and we examine the strengths, limitations, and distinctions of each algorithm in the context of the enhanced spatial and spectral resolution.

  15. Infuence of Averaging Method on the Evaluation of a Coastal Ocean Color Event on the U.S. Northeast Coast

    Science.gov (United States)

    Acker, James G.; Uz, Stephanie Schollaert; Shen, Suhung; Leptoukh, Gregory G.

    2010-01-01

    Application of appropriate spatial averaging techniques is crucial to correct evaluation of ocean color radiometric data, due to the common log-normal or mixed log-normal distribution of these data. Averaging method is particularly crucial for data acquired in coastal regions. The effect of averaging method was markedly demonstrated for a precipitation-driven event on the U.S. Northeast coast in October-November 2005, which resulted in export of high concentrations of riverine colored dissolved organic matter (CDOM) to New York and New Jersey coastal waters over a period of several days. Use of the arithmetic mean averaging method created an inaccurate representation of the magnitude of this event in SeaWiFS global mapped chl a data, causing it to be visualized as a very large chl a anomaly. The apparent chl a anomaly was enhanced by the known incomplete discrimination of CDOM and phytoplankton chlorophyll in SeaWiFS data; other data sources enable an improved characterization. Analysis using the geometric mean averaging method did not indicate this event to be statistically anomalous. Our results predicate the necessity of providing the geometric mean averaging method for ocean color radiometric data in the Goddard Earth Sciences DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni).

  16. Linking oceanic food webs to coastal production and growth rates of Pacific salmon ( Oncorhynchus spp.), using models on three scales

    Science.gov (United States)

    Aydin, Kerim Y.; McFarlane, Gordon A.; King, Jacquelynne R.; Megrey, Bernard A.; Myers, Katherine W.

    2005-03-01

    Three independent modeling methods—a nutrient-phytoplankton-zooplankton (NPZ) model (NEMURO), a food web model (Ecopath/Ecosim), and a bioenergetics model for pink salmon ( Oncorhynchus gorbuscha)—were linked to examine the relationship between seasonal zooplankton dynamics and annual food web productive potential for Pacific salmon feeding and growing in the Alaskan subarctic gyre ecosystem. The linked approach shows the importance of seasonal and ontogenetic prey switching for zooplanktivorous pink salmon, and illustrates the critical role played by lipid-rich forage species, especially the gonatid squid Berryteuthis anonychus, in connecting zooplankton to upper trophic level production in the subarctic North Pacific. The results highlight the need to uncover natural mechanisms responsible for accelerated late winter and early spring growth of salmon, especially with respect to climate change and zooplankton bloom timing. Our results indicate that the best match between modeled and observed high-seas pink salmon growth requires the inclusion of two factors into bioenergetics models: (1) decreasing energetic foraging costs for salmon as zooplankton are concentrated by the spring shallowing of pelagic mixed-layer depth and (2) the ontogenetic switch of salmon diets from zooplankton to squid. Finally, we varied the timing and input levels of coastal salmon production to examine effects of density-dependent coastal processes on ocean feeding; coastal processes that place relatively minor limitations on salmon growth may delay the seasonal timing of ontogenetic diet shifts and thus have a magnified effect on overall salmon growth rates.

  17. Scientific management of Mediterranean coastal zone: a hybrid ocean forecasting system for oil spill and search and rescue operations.

    Science.gov (United States)

    Jordi, A; Ferrer, M I; Vizoso, G; Orfila, A; Basterretxea, G; Casas, B; Alvarez, A; Roig, D; Garau, B; Martínez, M; Fernández, V; Fornés, A; Ruiz, M; Fornós, J J; Balaguer, P; Duarte, C M; Rodríguez, I; Alvarez, E; Onken, R; Orfila, P; Tintoré, J

    2006-01-01

    The oil spill from Prestige tanker showed the importance of scientifically based protocols to minimize the impacts on the environment. In this work, we describe a new forecasting system to predict oil spill trajectories and their potential impacts on the coastal zone. The system is formed of three main interconnected modules that address different capabilities: (1) an operational circulation sub-system that includes nested models at different scales, data collection with near-real time assimilation, new tools for initialization or assimilation based on genetic algorithms and feature-oriented strategic sampling; (2) an oil spill coastal sub-system that allows simulation of the trajectories and fate of spilled oil together with evaluation of coastal zone vulnerability using environmental sensitivity indexes; (3) a risk management sub-system for decision support based on GIS technology. The system is applied to the Mediterranean Sea where surface currents are highly variable in space and time, and interactions between local, sub-basin and basin scale increase the non-linear interactions effects which need to be adequately resolved at each one of the intervening scales. Besides the Mediterranean Sea is a complex reduced scale ocean representing a real scientific and technological challenge for operational oceanography and particularly for oil spill response and search and rescue operations.

  18. Upgrade of a UV-VIS-NIR imaging spectrometer for the coastal ocean observation: concept, design, fabrication, and test of prototype.

    Science.gov (United States)

    Yu, Lei

    2017-06-26

    A novel UV-VIS-NIR imaging spectrometer prototype has been presented for the remote sensing of the coastal ocean by air. The concept is proposed for the needs of the observation. An advanced design has been demonstrated based on the Dyson spectrometer in details. The analysis and tests present excellent optical performances in the spectral broadband, easy and low cost fabrication and alignment, low inherent stray light, and high signal to noise ratio. The research provides an easy method for the coastal ocean observation.

  19. Ocean acidification and calcium carbonate saturation states in the coastal zone of the West Antarctic Peninsula

    NARCIS (Netherlands)

    Jones, E.M.; Fenton, M.; Meredith, M.P.; Clargo, N.M.; Ossebaar, S.; Ducklow, H.W.; Venables, H.J.; De Baar, H.J.W.

    2017-01-01

    The polar oceans are particularly vulnerable to ocean acidification; the lowering of seawater pH and carbonate mineral saturation states due to uptake of atmospheric carbon dioxide (CO2). High spatial variability in surface water pH and saturation states (Ω) for two biologically-important calcium

  20. Ocean acidification and calcium carbonate saturation states in the coastal zone of the West Antarctic Peninsula

    NARCIS (Netherlands)

    Jones, Elizabeth M.; Fenton, Mairi; Meredith, Michael P.; Clargo, Nicola M.; Ossebaar, Sharyn; Ducklow, Hugh W.; Venables, Hugh J.; de Baar, Henricus

    The polar oceans are particularly vulnerable to ocean acidification; the lowering of seawater pH and carbonate mineral saturation states due to uptake of atmospheric carbon dioxide (CO2). High spatial variability in surface water pH and saturation states (Omega) for two biologically-important

  1. Modular System for Shelves and Coasts (MOSSCO v1.0 – a flexible and multi-component framework for coupled coastal ocean ecosystem modelling

    Directory of Open Access Journals (Sweden)

    C. Lemmen

    2018-03-01

    Full Text Available Shelf and coastal sea processes extend from the atmosphere through the water column and into the seabed. These processes reflect intimate interactions between physical, chemical, and biological states on multiple scales. As a consequence, coastal system modelling requires a high and flexible degree of process and domain integration; this has so far hardly been achieved by current model systems. The lack of modularity and flexibility in integrated models hinders the exchange of data and model components and has historically imposed the supremacy of specific physical driver models. We present the Modular System for Shelves and Coasts (MOSSCO; http://www.mossco.de, a novel domain and process coupling system tailored but not limited to the coupling challenges of and applications in the coastal ocean. MOSSCO builds on the Earth System Modeling Framework (ESMF and on the Framework for Aquatic Biogeochemical Models (FABM. It goes beyond existing technologies by creating a unique level of modularity in both domain and process coupling, including a clear separation of component and basic model interfaces, flexible scheduling of several tens of models, and facilitation of iterative development at the lab and the station and on the coastal ocean scale. MOSSCO is rich in metadata and its concepts are also applicable outside the coastal domain. For coastal modelling, it contains dozens of example coupling configurations and tested set-ups for coupled applications. Thus, MOSSCO addresses the technology needs of a growing marine coastal Earth system community that encompasses very different disciplines, numerical tools, and research questions.

  2. Modular System for Shelves and Coasts (MOSSCO v1.0) - a flexible and multi-component framework for coupled coastal ocean ecosystem modelling

    Science.gov (United States)

    Lemmen, Carsten; Hofmeister, Richard; Klingbeil, Knut; Hassan Nasermoaddeli, M.; Kerimoglu, Onur; Burchard, Hans; Kösters, Frank; Wirtz, Kai W.

    2018-03-01

    Shelf and coastal sea processes extend from the atmosphere through the water column and into the seabed. These processes reflect intimate interactions between physical, chemical, and biological states on multiple scales. As a consequence, coastal system modelling requires a high and flexible degree of process and domain integration; this has so far hardly been achieved by current model systems. The lack of modularity and flexibility in integrated models hinders the exchange of data and model components and has historically imposed the supremacy of specific physical driver models. We present the Modular System for Shelves and Coasts (MOSSCO; http://www.mossco.de), a novel domain and process coupling system tailored but not limited to the coupling challenges of and applications in the coastal ocean. MOSSCO builds on the Earth System Modeling Framework (ESMF) and on the Framework for Aquatic Biogeochemical Models (FABM). It goes beyond existing technologies by creating a unique level of modularity in both domain and process coupling, including a clear separation of component and basic model interfaces, flexible scheduling of several tens of models, and facilitation of iterative development at the lab and the station and on the coastal ocean scale. MOSSCO is rich in metadata and its concepts are also applicable outside the coastal domain. For coastal modelling, it contains dozens of example coupling configurations and tested set-ups for coupled applications. Thus, MOSSCO addresses the technology needs of a growing marine coastal Earth system community that encompasses very different disciplines, numerical tools, and research questions.

  3. Climatic Atlas of the Outer Continental Shelf Waters and Coastal Regions of Alaska. Volume 2. Bering Sea. Revision

    Science.gov (United States)

    1988-01-01

    Joe D. Elms , for their editorial evaluation of the vironmental Assessmant Program. Additional depends to a large extent on weather condi- isopleth...waves, icing rates are open waters and coastal sectionsofAlaska.The temperatures less than 8°C, winds of 25 knots lower. icing causes slippery decks...thereby bias the oceanic climatology towards fair weather. A recent study by Elms (1986), in which he compared the Volunteer Observing Ship (VOS) data

  4. Extratropical Influence of Sea Surface Temperature and Wind on Water Recycling Rate Over Oceans and Coastal Lands

    Science.gov (United States)

    Hu, Hua; Liu, W. Timothy

    1999-01-01

    Water vapor and precipitation are two important parameters confining the hydrological cycle in the atmosphere and over the ocean surface. In the extratropical areas, due to variations of midlatitude storm tracks and subtropical jetstreams, water vapor and precipitation have large variability. Recently, a concept of water recycling rate defined previously by Chahine et al. (GEWEX NEWS, August, 1997) has drawn increasing attention. The recycling rate of moisture is calculated as the ratio of precipitation to total precipitable water (its inverse is the water residence time). In this paper, using multi-sensor spacebased measurements we will study the role of sea surface temperature and ocean surface wind in determining the water recycling rate over oceans and coastal lands. Response of water recycling rate in midlatitudes to the El Nino event will also be discussed. Sea surface temperature data are derived from satellite observations from the Advanced Very High Resolution Radiometer (AVHRR) blended with in situ measurements, available for the period 1982-1998. Global sea surface wind observations are obtained from spaceborne scatterometers aboard on the European Remote-Sensing Satellite (ERS1 and 2), available for the period 1991-1998. Global total precipitable water provided by the NASA Water Vapor Project (NVAP) is available for the period 1988-1995. Global monthly mean precipitation provided by the Global Precipitation Climatology Project (GPCP) is available for the period 1987-1998.

  5. Coastal biogeochemical processes in the north Indian Ocean (14, S-W)

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Narvekar, P.V.; Desa, E.

    of the region are also shown with the numbers denoting the annual runoff in 10" m3. Due to the proximity to landmasses, the North Indian Ocean is probably af- fected by processes originating at the land-ocean boundary more than any other region. Lndeed... IN TIiE NORTH INDIAN OCEAN tion of contributions by the Indian oceanographic community, most of this infor- mation has been generated by scientists from countries outside this region under international efforts that started with the John Murray...

  6. Influences of riverine and upwelling waters on the coastal carbonate system off Central Chile and their ocean acidification implications

    Science.gov (United States)

    Vargas, Cristian A.; Contreras, Paulina Y.; Pérez, Claudia A.; Sobarzo, Marcus; Saldías, Gonzalo S.; Salisbury, Joe

    2016-06-01

    A combined data set, combining data from field campaigns and oceanographic cruises, was used to ascertain the influence of both river discharges and upwelling processes, covering spatial and temporal variation in dissolved inorganic carbon (DIC) and aragonite saturation state. This work was conducted in one of the most productive river-influenced upwelling areas in the South Pacific coasts (36°S). Additionally, further work was also conducted to ascertain the contribution of different DIC sources, influencing the dynamics of DIC along the land-ocean range. Six sampling campaigns were conducted across seven stations at the Biobío River basin, covering approximately 200 km. Three research cruises were undertaken simultaneously, covering the adjacent continental shelf, including 12 sampling stations for hydrographic measurements. Additionally, six stations were also sampled for chemical analyses, covering summer, winter, and spring conditions over 2010 and 2011. Our results evidenced that seaward extent of the river plume was more evident during the winter field campaign, when highest riverine DIC fluxes were observed. The carbonate system along the river-ocean continuum was very heterogeneous varying over spatial and temporal scales. High DIC and pCO2 were observed in river areas with larger anthropogenic effects. CO2 supersaturation at the river plume was observed during all campaigns due to the influence of low pH river waters in winter/spring and high-pCO2 upwelling waters in summer. δ13CDIC evidenced that main DIC sources along the river and river plume corresponded to the respiration of terrestrial organic matter. We have linked this natural process to the carbonate saturation on the adjacent river-influenced coastal area, suggesting that Ωaragonite undersaturation in surface/subsurface waters is largely modulated by the influence of both river discharge and coastal upwelling events in this productive coastal area. Conditions of low Ωaragonite might impact

  7. Gulf of Mexico Coastal and Ocean Zones Strategic Assessment: Data Atlas 1985 (NODC Accession 0126646)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlas contains metadata and shape files of 18 different species in the Gulf of Mexico as of 1985. The shapefiles display the spatial and temporal distribution of...

  8. The Hyperspectral Imager for the Coastal Ocean (HICO): Sensor and Data Processing Overview

    Science.gov (United States)

    2010-01-20

    backscattering coefficients, and others. Several of these software modules will be developed within the Automated Processing System (APS), a data... Automated Processing System (APS) NRL developed APS, which processes satellite data into ocean color data products. APS is a collection of methods...used for ocean color processing which provide the tools for the automated processing of satellite imagery [1]. These tools are in the process of

  9. Ensemble Kalman Filter Inference of Spatially-varying Manning’s n coefficients in the Coastal Ocean

    KAUST Repository

    Siripatana, Adil

    2018-05-16

    Ensemble Kalman (EnKF) filtering is an established framework for large scale state estimation problems. EnKFs can also be used for state-parameter estimation, using the so-called “Joint-EnKF” approach. The idea is simply to augment the state vector with the parameters to be estimated and assign invariant dynamics for the time evolution of the parameters. In this contribution, we investigate the efficiency of the Joint-EnKF for estimating spatially-varying Manning’s n coefficients used to define the bottom roughness in the Shallow Water Equations (SWEs) of a coastal ocean model.Observation System Simulation Experiments (OSSEs) are conducted using the ADvanced CIRCulation (ADCIRC) model, which solves a modified form of the Shallow Water Equations. A deterministic EnKF, the Singular Evolutive Interpolated Kalman (SEIK) filter, is used to estimate a vector of Manning’s n coefficients defined at the model nodal points by assimilating synthetic water elevation data. It is found that with reasonable ensemble size (O(10)), the filter’s estimate converges to the reference Manning’s field. To enhance performance, we have further reduced the dimension of the parameter search space through a Karhunen-Loéve (KL) expansion. We have also iterated on the filter update step to better account for the nonlinearity of the parameter estimation problem. We study the sensitivity of the system to the ensemble size, localization scale, dimension of retained KL modes, and number of iterations. The performance of the proposed framework in term of estimation accuracy suggests that a well-tuned Joint-EnKF provides a promising robust approach to infer spatially varying seabed roughness parameters in the context of coastal ocean modeling.

  10. General Introduction: PREVIMER, a French pre-operational coastal ocean forecasting capability.

    OpenAIRE

    Dumas, Franck; Pineau-guillou, Lucia; Lecornu, Fabrice; Le Roux, Jean-francois; Le Squere, Bruno

    2014-01-01

    Pre-operational system PREVIMER provides with coastal observations and forecasts along French coasts: currents, waves, sea levels, temperature, salinity, primary production and turbidity. These marine environmental data come from in situ observations, satellite images, and numerical models. They are centralized and archived in PREVIMER databases, then published on website (real time and historical data), and freely available to users, private companies as well as public administrations. This ...

  11. Natural and Synthetic Estrogens in Wastewater Treatment Plant Effluent and the Coastal Ocean

    Science.gov (United States)

    2013-09-01

    isotopes (12C, 13C) is used routinely to identify synthetic steroid doping in athletics and livestock applications. 36 Chapter 4 will present...Suri (2009). "Presence of steroid hormones and antibiotics in surface water of agricultural, suburban and mixed- use areas." Environmental Monitoring...halogenated estrogens at picomolar levels in wastewater effluent and coastal seawater. The method was validated using treated effluent from the

  12. Nitrogen Cycling in Permeable Sediments: Process-based Models for Streams and the Coastal Ocean

    OpenAIRE

    Azizian, Morvarid

    2017-01-01

    Bioavailable forms of nitrogen, such as nitrate, are necessary for aquatic ecosystem productivity. Excess nitrate in aquatic systems, however, can adversely affect ecosystems and degrade both surface water and groundwater. Some of this excess nitrate can be removed in the sediments that line the bottom of rivers and coastal waters, through the exchange of water between surface water and groundwater (known as hyporheic exchange).Several process-based models have been proposed for estimating ni...

  13. Metal release from contaminated coastal sediments under changing pH conditions: Implications for metal mobilization in acidified oceans.

    Science.gov (United States)

    Wang, Zaosheng; Wang, Yushao; Zhao, Peihong; Chen, Liuqin; Yan, Changzhou; Yan, Yijun; Chi, Qiaoqiao

    2015-12-30

    To investigate the impacts and processes of CO2-induced acidification on metal mobilization, laboratory-scale experiments were performed, simulating the scenarios where carbon dioxide was injected into sediment-seawater layers inside non-pressurized chambers. Coastal sediments were sampled from two sites with different contamination levels and subjected to pre-determined pH conditions. Sediment samples and overlying water were collected for metal analysis after 10-days. The results indicated that CO2-induced ocean acidification would provoke increased metal mobilization causing adverse side-effects on water quality. The mobility of metals from sediment to the overlying seawater was correlated with the reduction in pH. Results of sequential extractions of sediments illustrated that exchangeable metal forms were the dominant source of mobile metals. Collectively, our data revealed that high metal concentrations in overlying seawater released from contaminated sediments under acidic conditions may strengthen the existing contamination gradients in Maluan Bay and represent a potential risk to ecosystem health in coastal environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Near-coastal ocean variability off southern Tamaulipas - northern Veracruz, western Gulf of Mexico, during spring-summer 2013

    Science.gov (United States)

    Rivas, David

    2016-04-01

    Six months of observations from a near-coastal mooring deployed off southern Tamaulipas-northern Veracruz coast (western Gulf of Mexico) during spring-summer 2013 provides velocity, temperature, salinity, sea level, and dissolved oxygen series in a region which ocean dynamics is still poorly understood. As shown in a preceding analysis of this region's winter circulation for winter 2012-2013, coastal trapped motions associated with the regional invasion of synoptic cold fronts modulate the local variability; this pattern remains in the spring 2013, when even more intense events of alongshore flow (>50 cm/s) are observed. This intensified flow is associated with a significant decrease in the dissolved oxygen, most probably related to an influence of hypoxic waters coming from the northern Gulf. In late spring-mid summer, the wind pattern corresponds to persistent southeasterly winds that favor the occurrence of a local upwelling, which maintains a local thermal reduction (>3 degrees Celsius) and is associated with a persistent northward flow (>30 cm/s). The late summer was characterized by a significant tropical-cyclone activity, when a depression, a storm, and a hurricane affected the western Gulf. These tropical systems caused an intense precipitation and hence an important intensification of the local riverine discharge, and the winds enhanced the mixing of such riverine waters, via mostly kinetic stirring and Ekman pumping.

  15. Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification.

    Science.gov (United States)

    Kwiatkowski, Lester; Gaylord, Brian; Hill, Tessa; Hosfelt, Jessica; Kroeker, Kristy J; Nebuchina, Yana; Ninokawa, Aaron; Russell, Ann D; Rivest, Emily B; Sesboüé, Marine; Caldeira, Ken

    2016-03-18

    Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Ω arag), with potentially substantial impacts on marine ecosystems over the 21(st) Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Ω arag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Ω arag. If the short-term sensitivity of community calcification to Ω arag is representative of the long-term sensitivity to ocean acidification, nighttime dissolution in these intertidal ecosystems could more than double by 2050, with significant ecological and economic consequences.

  16. Extraction of coastal ocean wave characteristics using remote sensing and computer vision technologies

    CSIR Research Space (South Africa)

    Johnson, M

    2017-05-01

    Full Text Available optical imagery from the RapidEye satellite can be used to extract ocean wave characteristics such as wave direction, wavelength, wave period and wave velocity. If successful, the advantage of the proposed remote sensing-based approach would...

  17. Development of SAR Altimetry Mode Studies and Applications over Ocean, Coastal Zones and Inland Water (SAMOSA)

    DEFF Research Database (Denmark)

    Stenseng, Lars

    The aim of the work presented in this technical note is to study and clarify the properties of data collected over the ocean with the ASIRAS instrument. Data acquired in high altitude mode over the Fram Strait, between Greenland and Svalbard, has been re-processed and is presented and analyzed us...

  18. Uranium isotopes in rivers, estuaries and adjacent coastal sediments of western India: their weathering, transport and oceanic budget

    International Nuclear Information System (INIS)

    Borole, D.V.; Krishnaswami, S.; Somayajulu, B.L.K.

    1982-01-01

    The two major river systems on the west coast of India, Narbada and Tapti, their estuaries and the coastal Arabian sea sediments have been extensively studied for their uranium concentrations and 234 U/ 238 U activity ratios. The 238 U concentrations in the aqueous phase of these river systems exhibit a strong positive correlation with the sum of the major cations, and with the HCO 3 - ion contents. The abundance ratio of dissolved U to the sum of the major cations in these waters is similar to their ratio in typical crustal rocks. In the estuaries, both 238 U and its great-grand daughter 234 U behave conservatively beyond chlorosities 0.14 g/l. A review of the uranium isotope measurements in river waters yield a discharge weighted-average 238 U concentration of 0.22 μg/l with a 234 U/ 238 U activity ratio of 1.20 +-0.06. The residence time of uranium isotopes in the oceans estimated from the 238 U concentration and the 234 U/ 238 U A.R. of the rivers yield conflicting results; the material balance of uranium isotopes in the marine environment still remains a paradox. If the disparity between the results is real, then an additional 234 U flux of about 0.25 dpm/cm 2 .10 3 yr into the oceans is necessitated. (author)

  19. A quantitative genetic approach to assess the evolutionary potential of a coastal marine fish to ocean acidification

    KAUST Repository

    Malvezzi, Alex J.

    2015-02-01

    Assessing the potential of marine organisms to adapt genetically to increasing oceanic CO2 levels requires proxies such as heritability of fitness-related traits under ocean acidification (OA). We applied a quantitative genetic method to derive the first heritability estimate of survival under elevated CO2 conditions in a metazoan. Specifically, we reared offspring, selected from a wild coastal fish population (Atlantic silverside, Menidia menidia), at high CO2 conditions (~2300 μatm) from fertilization to 15 days posthatch, which significantly reduced survival compared to controls. Perished and surviving offspring were quantitatively sampled and genotyped along with their parents, using eight polymorphic microsatellite loci, to reconstruct a parent-offspring pedigree and estimate variance components. Genetically related individuals were phenotypically more similar (i.e., survived similarly long at elevated CO2 conditions) than unrelated individuals, which translated into a significantly nonzero heritability (0.20 ± 0.07). The contribution of maternal effects was surprisingly small (0.05 ± 0.04) and nonsignificant. Survival among replicates was positively correlated with genetic diversity, particularly with observed heterozygosity. We conclude that early life survival of M. menidia under high CO2 levels has a significant additive genetic component that could elicit an evolutionary response to OA, depending on the strength and direction of future selection.

  20. California cooperative oceanic fisheries investigations. Reports volume 37, January 1--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Olfe, J. [ed.

    1996-10-01

    Scientists from the California Department of Fish and Game (CDFG), the Southwest Fisheries Science Center of the National Marine Fisheries Service (NMFS), and the Scripps Institution of Oceanography, University of California, San Diego (UCSD), have collaborated for 46 years in the longest-running large-scale study ever undertaken in the ocean. This study was begun in order to understand the causes of changes in population, over time, of commercially important fishes in California`s coastal waters. When the study began, the Pacific sardine was by far the most significant species of economic concern to the State of California. Because its population changes were thought to be caused by a diversity of atmospheric, oceanic, and biological variables, a wide array of measurements in the California Current region were begun and have been continued to this day. This long time series of data allows not only a better understanding of the flux of fish populations, but also lays the foundation for understanding interdecadal and secular change in the seas. This document contains papers from symposium of the 1995 CalCOFI Conference related to interdecadal changes in the ecology of the California current.

  1. Empirical ocean color algorithms and bio-optical properties of the western coastal waters of Svalbard, Arctic

    Science.gov (United States)

    Son, Young-Sun; Kim, Hyun-cheol

    2018-05-01

    Chlorophyll (Chl) concentration is one of the key indicators identifying changes in the Arctic marine ecosystem. However, current Chl algorithms are not accurate in the Arctic Ocean due to different bio-optical properties from those in the lower latitude oceans. In this study, we evaluated the current Chl algorithms and analyzed the cause of the error in the western coastal waters of Svalbard, which are known to be sensitive to climate change. The NASA standard algorithms showed to overestimate the Chl concentration in the region. This was due to the high non-algal particles (NAP) absorption and colored dissolved organic matter (CDOM) variability at the blue wavelength. In addition, at lower Chl concentrations (0.1-0.3 mg m-3), chlorophyll-specific absorption coefficients were ∼2.3 times higher than those of other Arctic oceans. This was another reason for the overestimation of Chl concentration. OC4 algorithm-based regionally tuned-Svalbard Chl (SC4) algorithm for retrieving more accurate Chl estimates reduced the mean absolute percentage difference (APD) error from 215% to 49%, the mean relative percentage difference (RPD) error from 212% to 16%, and the normalized root mean square (RMS) error from 211% to 68%. This region has abundant suspended matter due to the melting of tidal glaciers. We evaluated the performance of total suspended matter (TSM) algorithms. Previous published TSM algorithms generally overestimated the TSM concentration in this region. The Svalbard TSM-single band algorithm for low TSM range (ST-SB-L) decreased the APD and RPD errors by 52% and 14%, respectively, but the RMS error still remained high (105%).

  2. Low-cost embedded systems for democratizing ocean sensor technology in the coastal zone

    Science.gov (United States)

    Glazer, B. T.; Lio, H. I.

    2017-12-01

    Environmental sciences suffer from undersampling. Enabling sustained and unattended data collection in the coastal zone typically involves expensive instrumentation and infrastructure deployed as cabled observatories or moorings with little flexibility in deployment location following initial installation. High costs of commercially-available or custom instruments have limited the number of sensor sites that can be targeted by academic researchers, and have also limited engagement with the public. We have developed a novel, low-cost, open-source sensor and software platform to enable wireless data transfer of biogeochemical sensors in the coastal zone. The platform is centered upon widely available, low-cost, single board computers and microcontrollers. We have used a blend of on-hand research-grade sensors and low-cost open-source electronics that can be assembled by tech-savvy non-engineers. Robust, open-source code that remains customizable for specific miniNode configurations can match a specific site's measurement needs, depending on the scientific research priorities. We have demonstrated prototype capabilities and versatility through lab testing and field deployments of multiple sensor nodes with multiple sensor inputs, all of which are streaming near-real-time data from Kaneohe Bay over wireless RF links to a shore-based base station.

  3. Towards high fidelity numerical wave tanks for modelling coastal and ocean engineering processes

    Science.gov (United States)

    Cozzuto, G.; Dimakopoulos, A.; de Lataillade, T.; Kees, C. E.

    2017-12-01

    With the increasing availability of computational resources, the engineering and research community is gradually moving towards using high fidelity Comutational Fluid Mechanics (CFD) models to perform numerical tests for improving the understanding of physical processes pertaining to wave propapagation and interaction with the coastal environment and morphology, either physical or man-made. It is therefore important to be able to reproduce in these models the conditions that drive these processes. So far, in CFD models the norm is to use regular (linear or nonlinear) waves for performing numerical tests, however, only random waves exist in nature. In this work, we will initially present the verification and validation of numerical wave tanks based on Proteus, an open-soruce computational toolkit based on finite element analysis, with respect to the generation, propagation and absorption of random sea states comprising of long non-repeating wave sequences. Statistical and spectral processing of results demonstrate that the methodologies employed (including relaxation zone methods and moving wave paddles) are capable of producing results of similar quality to the wave tanks used in laboratories (Figure 1). Subsequently cases studies of modelling complex process relevant to coastal defences and floating structures such as sliding and overturning of composite breakwaters, heave and roll response of floating caissons are presented. Figure 1: Wave spectra in the numerical wave tank (coloured symbols), compared against the JONSWAP distribution

  4. Statistical downscaling of IPCC sea surface wind and wind energy predictions for U.S. east coastal ocean, Gulf of Mexico and Caribbean Sea

    Science.gov (United States)

    Yao, Zhigang; Xue, Zuo; He, Ruoying; Bao, Xianwen; Song, Jun

    2016-08-01

    A multivariate statistical downscaling method is developed to produce regional, high-resolution, coastal surface wind fields based on the IPCC global model predictions for the U.S. east coastal ocean, the Gulf of Mexico (GOM), and the Caribbean Sea. The statistical relationship is built upon linear regressions between the empirical orthogonal function (EOF) spaces of a cross- calibrated, multi-platform, multi-instrument ocean surface wind velocity dataset (predictand) and the global NCEP wind reanalysis (predictor) over a 10 year period from 2000 to 2009. The statistical relationship is validated before applications and its effectiveness is confirmed by the good agreement between downscaled wind fields based on the NCEP reanalysis and in-situ surface wind measured at 16 National Data Buoy Center (NDBC) buoys in the U.S. east coastal ocean and the GOM during 1992-1999. The predictand-predictor relationship is applied to IPCC GFDL model output (2.0°×2.5°) of downscaled coastal wind at 0.25°×0.25° resolution. The temporal and spatial variability of future predicted wind speeds and wind energy potential over the study region are further quantified. It is shown that wind speed and power would significantly be reduced in the high CO2 climate scenario offshore of the mid-Atlantic and northeast U.S., with the speed falling to one quarter of its original value.

  5. Legislation would establish commission to assess marine and coastal resources and develop national ocean policy

    Science.gov (United States)

    Showstack, Randy

    During 1998, internationally designated as the year of the ocean, perhaps more people are paying heed to the deep seas now than ever before.Transfixed to the big screen by this year's movie blockbuster, they anticipate when the Titanic will scrape into the iceberg and break apart, shiver when household-name heartthrobs Leonardo DiCaprio and Kate Winslet float on the freezing waters, and hum along to the theme sung by Celine Dion.

  6. What a Decade (2006–15 Of Journal Abstracts Can Tell Us about Trends in Ocean and Coastal Sustainability Challenges and Solutions

    Directory of Open Access Journals (Sweden)

    Murray A. Rudd

    2017-05-01

    Full Text Available Text mining and analytics may offer possibilities to assess scientists' professional writing and identify patterns of co-occurrence between words and phrases associated with different environmental challenges and their potential solutions. This approach has the potential to help to track emerging issues, semi-automate horizon scanning processes, and identify how different institutions or policy instruments are associated with different types of ocean and coastal sustainability challenges. Here I examine ecologically-oriented ocean and coastal science journal article abstracts published between 2006 and 2015. Informed by the Institutional Analysis and Development (IAD framework, I constructed a dictionary containing phrases associated with 40 ocean challenges and 15 solution-oriented instrument or investments. From 50,817 potentially relevant abstracts, different patterns of co-occurring text associated with challenges and potential solutions were discernable. Topics receiving significantly increased attention in the literature in 2014–15 relative to the 2006–13 period included: marine plastics and debris; environmental conservation; social impacts; ocean acidification; general terrestrial influences; co-management strategies; ocean warming; licensing and access rights; oil spills; and economic impacts. Articles relating to global environmental change were consistently among the most cited; marine plastics and ecosystem trophic structure were also focal topics among the highly cited articles. This exploratory research suggests that scientists' written outputs provide fertile ground for identifying and tracking important and emerging ocean sustainability issues and their possible solutions, as well as the organizations and scientists who work on them.

  7. Expanding the Reach of the Coastal Ocean Science Classroom to Teachers through Teleducation

    Science.gov (United States)

    Macko, S.; Szuba, T.

    2007-12-01

    In a first of its kind connectivity, using high speed internet connections, a summer class in Oceanography was live, interactively broadcast (teleducation) to Arcadia High School on the Eastern Shore of Virginia, allowing teachers in the Accomack County School District to receive university credit without leaving their home classrooms 250 miles from UVA. This project was an outreach and education program with a partner in the K-12 schools on the Eastern Shore of Virginia. It endeavored to build a community knowledgeable of the importance the ocean plays daily in our lives, and our own impact on the ocean. By establishing teleducation linkages with the Eastern Shore High Schools we were rigorously testing the live-Internet-based classroom with earth science teachers enabling them to remotely participate in University of Virginia classes in Oceanography. The classes were designed on a faculty development basis or to allow the teachers to acquire NSTA certification in Earth Science Education. While not without small problems of interruptions in connectivity or the occasional transmission of hardcopies of materials, the approach was seen to be extremely successful. The ability to reach school districts and teachers that are in more remote locations and with fewer resources is clearly supported by this venture. Currently we are planning to link multiple classrooms in the next iteration of this work, intending to offer the expanded classroom in more distant college-based classrooms where Ocean Sciences is a desired portion of the curriculum, but is presently only occasionally offered owing to limited resources.

  8. AMS Observations over Coastal California from the Biological and Oceanic Atmospheric Study (BOAS)

    Science.gov (United States)

    Bates, K. H.; Coggon, M. M.; Hodas, N.; Negron, A.; Ortega, A. M.; Crosbie, E.; Sorooshian, A.; Nenes, A.; Flagan, R. C.; Seinfeld, J.

    2015-12-01

    In July 2015, fifteen research flights were conducted on a US Navy Twin Otter aircraft as part of the Biological and Oceanic Atmospheric Study (BOAS) campaign. The flights took place near the California coast at Monterey, to investigate the effects of sea surface temperature and algal blooms on oceanic particulate emissions, the diurnal mixing of urban pollution with other airmasses, and the impacts of biological aerosols on the California atmosphere. The aircraft's payload included an aerosol mass spectrometer (AMS), a differential mobility analyzer, a cloud condensation nuclei counter, a counterflow virtual impactor, a cloudwater collector, and two instruments designed to detect biological aerosols - a wideband integrated biological spectrometer and a SpinCon II - as well as a number of meteorology and aerosol probes, two condensation particle counters, and instruments to measure gas-phase CO, CO2, O3, and NOx. Here, we describe in depth the objectives and outcomes of BOAS and report preliminary results, primarily from the AMS. We detail the spatial characteristics and meteorological variability of speciated aerosol components over a strong and persistent bloom of Pseudo-Nitzschia, the harmful algae that cause 'red tide', and report newly identified AMS markers for biological particles. Finally, we compare these results with data collected during BOAS over urban, forested, and agricultural environments, and describe the mixing observed between oceanic and terrestrial airmasses.

  9. Seasonality of coastal zone scanner phytoplankton pigment in the offshore oceans

    Science.gov (United States)

    Banse, K.; English, D. C.

    1994-01-01

    The NASA Global Ocean Data Set of plant pigment concentrations in the upper euphotic zone is evaluated for diserning geographical and temporal patterns of seasonality in the open sea. Monthly medians of pigment concentrations for all available years are generated for fields of approximately 77,000 sq km. For the climatological year, highest and lowest medians, month of occurence of the highest median, ratio of highest to lowest medians, and absolute range between the highest and lowest medians are mapped ocean-wide between 62.5 deg N and 62.5 deg S. Seasonal cycles are depicted for 48 sites. In much of the offshore ocean, seasonality of pigment is inferred to be driven almost equally by the interaction of the abiotic environment with phytoplankton physiology and the loss of cells from grazing. Special emphasis among natural domains or provinces is given to the Subantarctic water ring, with no seasonality in its low chlorophyll concentrations in spite of strong environmental forcing, and the narrow Transition Zones, a few degrees of latitude on the equatorial sides of the Subtropical Convergences of the southern hemisphere and their homologs in the northern hemisphere, which have late winter blooms caused by nutrient injection into the upper layers.

  10. Spatio-temporal variability of internal waves in the northern Gulf of Mexico studied with the Navy Coastal Ocean Model, NCOM

    Science.gov (United States)

    Cambazoglu, M. K.; Jacobs, G. A.; Howden, S. D.; Book, J. W.; Arnone, R.; Soto Ramos, I. M.; Vandermeulen, R. A.; Greer, A. T.; Miles, T. N.

    2016-02-01

    Internal waves enhance mixing in the upper ocean, transport nutrients and plankton over the water column and across the shelf from deeper waters to shallower coastal areas, and could also transport pollutants such as hydrocarbons onshore during an oil spill event. This study aims to characterize internal waves in the northern Gulf of Mexico (nGoM) and investigate the possible generation and dissipation mechanisms using a high-resolution (1-km) application of the Navy Coastal Ocean Model (NCOM). Three dimensional model products are used to detect the propagation patterns of internal waves. The vertical structure of internal waves is studied and the role of stratification is analyzed by looking at the temperature, salinity and velocity variations along the water column. The model predictions suggest the generation of internal waves on the continental shelf, therefore the role of ocean bottom topography interacting with tides and general circulation features such as the Loop Current Eddy front, on the internal wave generation will be discussed. The time periods of internal wave occurrences are identified from model predictions and compared to satellite ocean color imagery. Further data analysis, e.g. Fourier analysis, is implemented to determine internal wavelengths and frequencies and to determine if the response of internal waves are at tidal periods or at different frequencies. The atmospheric forcing provided to NCOM and meteorological data records are analyzed to define the interaction between wind forcing and internal wave generation. Wavelet analysis characterizes the ocean response to atmospheric events with periodic frequencies. Ocean color satellite imagery was used to visualize the location of the Mississippi river plume (and other oceanic features) and compared to the model predictions because the enhanced stratification from freshwater plumes which propagate across the Mississippi Bight can provide favorable conditions in coastal waters for internal wave

  11. Oceanography: 1998 Paris Meeting Abstracts: Coastal and Marginal Seas. Volume 11, Number 2

    National Research Council Canada - National Science Library

    Rhodes, Judith

    1998-01-01

    This grant supported a successful international multidisciplinary scientific meeting addressing the topic "Coastal and Marginal Seas," hosted by The Oceanography Society and UNESCO's Intergovernmental...

  12. Mercury Bioaccumulation Response to Recent Hg Pollution Abatement in an Oceanic Predatory Fish, Blue Marlin, Versus the Response in a Coastal Predatory Species, Bluefish, in the Western North Atlantic Ocean

    Science.gov (United States)

    Barber, R. T.; Cross, F. A.

    2015-12-01

    The consumption of marine fish, especially predatory species high in the food chain, is the major route through which people in developed countries are exposed to mercury. Recent work on a coastal species, bluefish (Pomatomus saltatrix), determined that the mercury concentration in fish from the U. S. Mid-Atlantic coast decreased 43% from 1972 to 2011. This mercury decline in a coastal marine fish parallels the mercury decline in many freshwater fish in the U.S. and Canada during the same time period. The result heightens interest in determining whether or not there has been any change in mercury concentration in oceanic predatory fish species, that is, fish that are permanent residents of the open ocean, during the past four decades. To answer this question we compared mercury analyses we made in the 1970s on tournament-caught blue marlin (Makaira nigricans) with those we made from 1998 to 2013. This comparison indicates that from the 1970s to 2013 mercury concentration in blue marlin caught in the western North Atlantic Ocean off the U.S. east coast has declined about 45%, a decline that is remarkably similar to the decline reported in coastal bluefish. These results suggest that a large area of the western North Atlantic Ocean is responding to reductions in emissions of mercury in the U.S. and Canada with reduced mercury bioaccumulation in predatory fish.

  13. Remotely Sensing Lake Water Volumes on the Inner Arctic Coastal Plain of Northern Alaska

    Science.gov (United States)

    Simpson, C. E.; Arp, C. D.; Jones, B. M.; Hinkel, K. M.; Carroll, M.; Smith, L. C.

    2017-12-01

    Thermokarst lake depth is controlled by the amount of excess ice in near-surface permafrost, with lake depths of about 1 - 3 m in areas of epigenetic permafrost and over 10 m in areas of syngenetic permafrost. An important exception to these general patterns is found on the inner Arctic Coastal Plain (ACP) of northern Alaska, where deep lakes occur in Pleistocene-aged, ground-ice poor sandy terrain. These lakes cover 20% of the currently inactive sand sheet and dune deposit (referred to as the Pleistocene Sand Sea) that comprises approximately 7000 km2 of the ACP. Surrounded by high and eroding bluffs, sand sea lakes lie in natural depressions and are characterized by wide, shallow littoral shelves and central troughs that are typically oriented NNW to SSE and can reach depths greater than 20 m. Despite their unique form and extensive coverage, these lakes have received little prior study and a literature gap remains regarding regional water storage. This research classifies sand sea lakes, estimates individual lake volume, and provides a first quantification of water storage in a region of the lake-dominated ACP. We measured bathymetric profiles in 19 sand sea lakes using a sonar recorder to capture various lake depth gradients. Bathymetric surveys collected by oil industry consultants, lake monitoring programs, and habitat studies serve as additional datasets. These field measured lake depth data points were used to classify Color Infrared Photography, WorldView-2 satellite imagery, and Landsat-OLI satellite imagery to develop a spectral depth-classification algorithm and facilitate the interpolation of the bathymetry for study lakes in the inner ACP. Finally, we integrate the remotely sensed bathymetry and imagery-derived lake surface area to estimate individual and regional-scale lake volume. In addition to the natural function of these lakes in water storage, energy balance, and habitat provision, the need for winter water supply to build ice roads for oil

  14. Synchronization of Long Ocean Waves by Coastal Relief on the Southeast Shelf of Sakhalin Island

    Science.gov (United States)

    Kovalev, Dmitry P.; Kovalev, Peter D.

    2017-12-01

    The phenomenon of synchronization (trapping) of coming waves by the resonant water area in a coastal zone of the sea found from the observed data is considered in the paper. Edge waves with the period of about 10.7 minutes are visually observed in sea level fluctuations near the village of Okhotskoye and the cape Ostri on the southeast coast of Sakhalin Island. These waves are synchronized with the resonance water area. It becomes apparent from the unlimited increase of a phase between the bottom stations installed at distance of about 7.5km. In relation to the phenomenon found, the problem of weak and periodic impact on regular self-oscillatory system — Van der Paul’s oscillator — is considered. Good compliance between theoretical model and data of experiments is obtained.

  15. Ocean acidification of a coastal Antarctic marine microbial community reveals a critical threshold for CO2 tolerance in phytoplankton productivity

    Science.gov (United States)

    Deppeler, Stacy; Petrou, Katherina; Schulz, Kai G.; Westwood, Karen; Pearce, Imojen; McKinlay, John; Davidson, Andrew

    2018-01-01

    High-latitude oceans are anticipated to be some of the first regions affected by ocean acidification. Despite this, the effect of ocean acidification on natural communities of Antarctic marine microbes is still not well understood. In this study we exposed an early spring, coastal marine microbial community in Prydz Bay to CO2 levels ranging from ambient (343 µatm) to 1641 µatm in six 650 L minicosms. Productivity assays were performed to identify whether a CO2 threshold existed that led to a change in primary productivity, bacterial productivity, and the accumulation of chlorophyll a (Chl a) and particulate organic matter (POM) in the minicosms. In addition, photophysiological measurements were performed to identify possible mechanisms driving changes in the phytoplankton community. A critical threshold for tolerance to ocean acidification was identified in the phytoplankton community between 953 and 1140 µatm. CO2 levels ≥ 1140 µatm negatively affected photosynthetic performance and Chl a-normalised primary productivity (csGPP14C), causing significant reductions in gross primary production (GPP14C), Chl a accumulation, nutrient uptake, and POM production. However, there was no effect of CO2 on C : N ratios. Over time, the phytoplankton community acclimated to high CO2 conditions, showing a down-regulation of carbon concentrating mechanisms (CCMs) and likely adjusting other intracellular processes. Bacterial abundance initially increased in CO2 treatments ≥ 953 µatm (days 3-5), yet gross bacterial production (GBP14C) remained unchanged and cell-specific bacterial productivity (csBP14C) was reduced. Towards the end of the experiment, GBP14C and csBP14C markedly increased across all treatments regardless of CO2 availability. This coincided with increased organic matter availability (POC and PON) combined with improved efficiency of carbon uptake. Changes in phytoplankton community production could have negative effects on the Antarctic food web and the

  16. Ocean acidification of a coastal Antarctic marine microbial community reveals a critical threshold for CO2 tolerance in phytoplankton productivity

    Directory of Open Access Journals (Sweden)

    S. Deppeler

    2018-01-01

    Full Text Available High-latitude oceans are anticipated to be some of the first regions affected by ocean acidification. Despite this, the effect of ocean acidification on natural communities of Antarctic marine microbes is still not well understood. In this study we exposed an early spring, coastal marine microbial community in Prydz Bay to CO2 levels ranging from ambient (343 µatm to 1641 µatm in six 650 L minicosms. Productivity assays were performed to identify whether a CO2 threshold existed that led to a change in primary productivity, bacterial productivity, and the accumulation of chlorophyll a (Chl a and particulate organic matter (POM in the minicosms. In addition, photophysiological measurements were performed to identify possible mechanisms driving changes in the phytoplankton community. A critical threshold for tolerance to ocean acidification was identified in the phytoplankton community between 953 and 1140 µatm. CO2 levels  ≥ 1140 µatm negatively affected photosynthetic performance and Chl a-normalised primary productivity (csGPP14C, causing significant reductions in gross primary production (GPP14C, Chl a accumulation, nutrient uptake, and POM production. However, there was no effect of CO2 on C : N ratios. Over time, the phytoplankton community acclimated to high CO2 conditions, showing a down-regulation of carbon concentrating mechanisms (CCMs and likely adjusting other intracellular processes. Bacterial abundance initially increased in CO2 treatments  ≥ 953 µatm (days 3–5, yet gross bacterial production (GBP14C remained unchanged and cell-specific bacterial productivity (csBP14C was reduced. Towards the end of the experiment, GBP14C and csBP14C markedly increased across all treatments regardless of CO2 availability. This coincided with increased organic matter availability (POC and PON combined with improved efficiency of carbon uptake. Changes in phytoplankton community production could have negative

  17. Global high-resolution monthly pCO2 climatology for the coastal ocean derived from neural network interpolation

    Directory of Open Access Journals (Sweden)

    G. G. Laruelle

    2017-10-01

    Full Text Available In spite of the recent strong increase in the number of measurements of the partial pressure of CO2 in the surface ocean (pCO2, the air–sea CO2 balance of the continental shelf seas remains poorly quantified. This is a consequence of these regions remaining strongly under-sampled in both time and space and of surface pCO2 exhibiting much higher temporal and spatial variability in these regions compared to the open ocean. Here, we use a modified version of a two-step artificial neural network method (SOM-FFN; Landschützer et al., 2013 to interpolate the pCO2 data along the continental margins with a spatial resolution of 0.25° and with monthly resolution from 1998 to 2015. The most important modifications compared to the original SOM-FFN method are (i the much higher spatial resolution and (ii the inclusion of sea ice and wind speed as predictors of pCO2. The SOM-FFN is first trained with pCO2 measurements extracted from the SOCATv4 database. Then, the validity of our interpolation, in both space and time, is assessed by comparing the generated pCO2 field with independent data extracted from the LDVEO2015 database. The new coastal pCO2 product confirms a previously suggested general meridional trend of the annual mean pCO2 in all the continental shelves with high values in the tropics and dropping to values beneath those of the atmosphere at higher latitudes. The monthly resolution of our data product permits us to reveal significant differences in the seasonality of pCO2 across the ocean basins. The shelves of the western and northern Pacific, as well as the shelves in the temperate northern Atlantic, display particularly pronounced seasonal variations in pCO2,  while the shelves in the southeastern Atlantic and in the southern Pacific reveal a much smaller seasonality. The calculation of temperature normalized pCO2 for several latitudes in different oceanic basins confirms that the seasonality in shelf pCO2 cannot solely be explained by

  18. Effects of Ocean Acidification on Temperate Coastal Marine Ecosystems and Fisheries in the Northeast Pacific

    Science.gov (United States)

    Haigh, Rowan; Ianson, Debby; Holt, Carrie A.; Neate, Holly E.; Edwards, Andrew M.

    2015-01-01

    As the oceans absorb anthropogenic CO2 they become more acidic, a problem termed ocean acidification (OA). Since this increase in CO2 is occurring rapidly, OA may have profound implications for marine ecosystems. In the temperate northeast Pacific, fisheries play key economic and cultural roles and provide significant employment, especially in rural areas. In British Columbia (BC), sport (recreational) fishing generates more income than commercial fishing (including the expanding aquaculture industry). Salmon (fished recreationally and farmed) and Pacific Halibut are responsible for the majority of fishery-related income. This region naturally has relatively acidic (low pH) waters due to ocean circulation, and so may be particularly vulnerable to OA. We have analyzed available data to provide a current description of the marine ecosystem, focusing on vertical distributions of commercially harvested groups in BC in the context of local carbon and pH conditions. We then evaluated the potential impact of OA on this temperate marine system using currently available studies. Our results highlight significant knowledge gaps. Above trophic levels 2–3 (where most local fishery-income is generated), little is known about the direct impact of OA, and more importantly about the combined impact of multi-stressors, like temperature, that are also changing as our climate changes. There is evidence that OA may have indirect negative impacts on finfish through changes at lower trophic levels and in habitats. In particular, OA may lead to increased fish-killing algal blooms that can affect the lucrative salmon aquaculture industry. On the other hand, some species of locally farmed shellfish have been well-studied and exhibit significant negative direct impacts associated with OA, especially at the larval stage. We summarize the direct and indirect impacts of OA on all groups of marine organisms in this region and provide conclusions, ordered by immediacy and certainty. PMID

  19. Ocean acidification changes the structure of an Antarctic coastal protistan community

    Science.gov (United States)

    Hancock, Alyce M.; Davidson, Andrew T.; McKinlay, John; McMinn, Andrew; Schulz, Kai G.; van den Enden, Rick L.

    2018-04-01

    Antarctic near-shore waters are amongst the most sensitive in the world to ocean acidification. Microbes occupying these waters are critical drivers of ecosystem productivity, elemental cycling and ocean biogeochemistry, yet little is known about their sensitivity to ocean acidification. A six-level, dose-response experiment was conducted using 650 L incubation tanks (minicosms) adjusted to a gradient in fugacity of carbon dioxide (fCO2) from 343 to 1641 µatm. The six minicosms were filled with near-shore water from Prydz Bay, East Antarctica, and the protistan composition and abundance was determined by microscopy during 18 days of incubation. No CO2-related change in the protistan community composition was observed during the initial 8 day acclimation period under low light. Thereafter, the response of both autotrophic and heterotrophic protists to fCO2 was species-specific. The response of diatoms was mainly cell size related; microplanktonic diatoms ( > 20 µm) increased in abundance with low to moderate fCO2 (343-634 µatm) but decreased at fCO2 ≥ 953 µatm. Similarly, the abundance of Phaeocystis antarctica increased with increasing fCO2 peaking at 634 µatm. Above this threshold the abundance of micro-sized diatoms and P. antarctica fell dramatically, and nanoplanktonic diatoms ( ≤ 20 µm) dominated, therefore culminating in a significant change in the protistan community composition. Comparisons of these results with previous experiments conducted at this site show that the fCO2 thresholds are similar, despite seasonal and interannual differences in the physical and biotic environment. This suggests that near-shore microbial communities are likely to change significantly near the end of this century if anthropogenic CO2 release continues unabated, with profound ramifications for near-shore Antarctic ecosystem food webs and biogeochemical cycling.

  20. Diatom species abundance and morphologically-based dissolution proxies in coastal Southern Ocean assemblages

    Science.gov (United States)

    Warnock, Jonathan P.; Scherer, Reed P.

    2015-07-01

    Taphonomic processes alter diatom assemblages in sediments, thus potentially negatively impacting paleoclimate records at various rates across space, time, and taxa. However, quantitative taphonomic data is rarely included in diatom-based paleoenvironmental reconstructions and no objective standard exists for comparing diatom dissolution in sediments recovered from marine depositional settings, including the Southern Ocean's opal belt. Furthermore, identifying changes to diatom dissolution through time can provide insight into the efficiency of both upper water column nutrient recycling and the biological pump. This is significant in that reactive metal proxies (e.g. Al, Ti) in the sediments only account for post-depositional dissolution, not the water column where the majority of dissolution occurs. In order to assess the range of variability of responses to dissolution in a typical Southern Ocean diatom community and provide a quantitative guideline for assessing taphonomic variability in diatoms recovered from core material, a sediment trap sample was subjected to controlled, serial dissolution. By evaluating dissolution-induced changes to diatom species' relative abundance, three preservational categories of diatoms have been identified: gracile, intermediate, and robust. The relative abundances of these categories can be used to establish a preservation grade for diatom assemblages. However, changes to the relative abundances of diatom species in sediment samples may reflect taphonomic or ecological factors. In order to address this complication, relative abundance changes have been tied to dissolution-induced morphological change to the areolae of Fragilariopsis curta, a significant sea-ice indicator in Southern Ocean sediments. This correlation allows differentiation between gracile species loss to dissolution versus ecological factors or sediment winnowing. These results mirror a similar morphological dissolution index from a parallel study utilizing

  1. Estimation of Volume and Freshwater Flux from the Arctic Ocean using SMAP and NCEP CFSv2

    Science.gov (United States)

    Bulusu, S.

    2017-12-01

    Spatial and temporal monitoring of sea surface salinity (SSS) plays an important role globally and especially over the Arctic Ocean. The Arctic ice melt has led to an influx of freshwater into the Arctic environment, a process that can be observed in SSS. The recently launched NASA's Soil Moisture Active Passive (SMAP) mission is primarily designed for the global monitoring of soil moisture using L- band (1.4GHz) frequency. SMAP also has the capability of measuring SSS and can thus extend the NASA's Aquarius salinity mission (ended June 7, 2015), salinity data record with improved temporal/spatial sampling. In this research an attempt is made to investigate the retrievability of SSS over the Arctic from SMAP satellite. The objectives of this study are to verify the use of SMAP sea surface salinity (and freshwater) variability in the Arctic Ocean and the extent to estimate freshwater, salt and volume flux from the Arctic Ocean. Along with SMAP data we will use NASA's Ice, Cloud,and land Elevation Satellites (ICESat and ICESat-2), and ESA's CryoSat-2, and NASA's Gravity Recovery and Climate Experiment (GRACE) satellites data to estimate ice melt in the Arctic. The preliminary results from SMAP compared well with the NCEP Climate Forecast System version 2 (CFSv2) salinity data in this region capturing patterns fairly well over the Arctic.

  2. Cordilleran Ice Sheet meltwater delivery to the coastal waters of the northeast Pacific Ocean

    Science.gov (United States)

    Hendy, I. L.; Taylor, M.; Gombiner, J. H.; Hemming, S. R.; Bryce, J. G.; Blichert-Toft, J.

    2014-12-01

    Cordilleran Ice Sheet (CIS) delivered meltwater to the NE Pacific Ocean off BC and WA via glacial lake outburst floods (GLOFs), ice rafting and subglacial meltwater discharge. A deglacial glaciomarine sedimentation record is preserved in the well dated ~50-kyr core MD02-2496 (48˚58.47' N, 127˚02.14' W, water depth 1243 m), collected off Vancouver Island. To understand the history of the relationship between the CIS, climate and meltwater discharge, high resolution, multi-proxy geochemical records from the interval that captures the Fraser Glaciation (~30-10 ka) were generated. These proxies include Mg/Ca temperatures and δ18Oseawater from planktonic foraminiferal sp. N. pachyderma and G. bulloides, elemental and organic carbon (Corg) geochemistry of bulk sediments, ɛNd and K/Ar dating of the rose by > 3°C to 10-12°C in association with an additional IRD event at ~14.8 ka sourced from a ~75 Ma felsic volcanic source, likely the Southern Coast Plutonic Complex. At no point in the δ18Oseawater reconstruction is an obvious meltwater isotopic signature recorded despite the sedimentary evidence for both ice rafting and outburst flooding. Thus CIS meltwater likely entered the NE Pacific Ocean via hyperpycnal flow.

  3. The Design and Analysis of Salmonid Tagging Studies in the Columbia Basin; Volume XII; A Multinomial Model for Estimating Ocean Survival from Salmonid Coded Wire-Tag Data.

    Energy Technology Data Exchange (ETDEWEB)

    Ryding, Kristen E.; Skalski, John R.

    1999-06-01

    The purpose of this report is to illustrate the development of a stochastic model using coded wire-tag (CWT) release and age-at-return data, in order to regress first year ocean survival probabilities against coastal ocean conditions and climate covariates.

  4. Isotopic niches of fishes in coastal, neritic and oceanic waters off Adélie land, Antarctica

    Science.gov (United States)

    Cherel, Yves; Koubbi, Philippe; Giraldo, Carolina; Penot, Florian; Tavernier, Eric; Moteki, Masato; Ozouf-Costaz, Catherine; Causse, Romain; Chartier, Amélie; Hosie, Graham

    2011-08-01

    We used the stable isotope method to investigate the ecological niches of Antarctic fishes, with δ 13C and δ 15N as proxies of fish habitats and dietary habits, respectively. Muscle isotopic signature was measured for each of 237 delipidated tissue samples from 27 fish species collected offshore Adélie Land, East Antarctica. Overall, δ 13C values ranged from -25.3‰ to -18.2‰, thus allowing characterizing of the fish habitats, with inshore/benthic species having more positive δ 13C signatures than offshore/pelagic ones. No clear difference in the δ 13C values of pelagic fishes was found between species living in neritic and oceanic waters. Overall, the δ 15N signatures of neritic pelagic and epibenthic fishes encompassed ˜1.0 trophic level (3.1‰), a higher difference than that (1.4‰) found within the oceanic assemblage. Fishes with the lowest and highest δ 15N values are primarily invertebrate- and fish-eaters, respectively. The isotopic niches of fishes illustrate the different mechanisms allowing coexistence, with most fishes segregating at least by one of the two niche axes (δ 13C and δ 15N). Muscle isotopic values also document interindividual foraging specialization over the long-term in coastal benthic fishes, but not in more offshore pelagic species. Finally, the δ 15N signatures of fishes overlap with those of penguins and seals, indicating that seabirds and marine mammals share the upper levels of the Antarctic pelagic ecosystem with some large fish species. In conclusion, the concept of isotopic niche is a powerful tool to investigate various aspects of the ecological niche of Antarctic fishes, thus complementing the use of other conventional and non-conventional approaches.

  5. Sedimentology of Coastal Deposits in the Seychelles Islands—Evidence of the Indian Ocean Tsunami 2004

    Science.gov (United States)

    Nentwig, Vanessa; Bahlburg, Heinrich; Monthy, Devis

    2015-03-01

    The Seychelles, an archipelago in the Indian Ocean at a distance of 4,500-5,000 km from the west coast of Sumatra, were severely affected by the December 26, 2004 tsunami with wave heights up to 4 m. Since the tsunami history of small islands often remains unclear due to a young historical record, it is important to study the geological traces of high energy events preserved along their coasts. We conducted a survey of the impact of the 2004 Indian Ocean tsunami on the inner Seychelles islands. In detail we studied onshore tsunami deposits in the mangrove forest at Old Turtle Pond in the Curieuse Marine National Park on the east coast of Curieuse Island. It is thus protected from anthropogenic interference. Towards the sea it was shielded until the tsunami in 2004 by a 500 m long and 1.5 m high causeway which was set up in 1909 as a sediment trap and assuring a low energetic hydrodynamic environment for the protection of the mangroves. The causeway was destroyed by the 2004 Indian Ocean Tsunami. The tsunami caused a change of habitat by the sedimentation of sand lobes in the mangrove forest. The dark organic rich mangrove soil (1.9 Φ) was covered by bimodal fine to medium carbonate sand (1.7-2.2 Φ) containing coarser carbonate shell fragments and debris. Intertidal sediments and the mangrove soil acted as sources of the lobe deposits. The sand sheet deposited by the tsunami is organized into different lobes. They extend landwards to different inundation distances as a function of the morphology of the onshore area. The maximum extent of 180 m from the shoreline indicates the minimum inundation distance to the tsunami. The top parts of the sand lobes cover the pneumatophores of the mangroves. There is no landward fining trend along the sand lobes and normal grading of the deposits is rare, occurring only in 1 of 7 sites. The sand lobe deposits also lack sedimentary structures. On the surface of the sand lobes numerous mostly fragmented shells of bivalves and

  6. Ocean acidification changes the structure of an Antarctic coastal protistan community

    Directory of Open Access Journals (Sweden)

    A. M. Hancock

    2018-04-01

    Full Text Available Antarctic near-shore waters are amongst the most sensitive in the world to ocean acidification. Microbes occupying these waters are critical drivers of ecosystem productivity, elemental cycling and ocean biogeochemistry, yet little is known about their sensitivity to ocean acidification. A six-level, dose–response experiment was conducted using 650 L incubation tanks (minicosms adjusted to a gradient in fugacity of carbon dioxide (fCO2 from 343 to 1641 µatm. The six minicosms were filled with near-shore water from Prydz Bay, East Antarctica, and the protistan composition and abundance was determined by microscopy during 18 days of incubation. No CO2-related change in the protistan community composition was observed during the initial 8 day acclimation period under low light. Thereafter, the response of both autotrophic and heterotrophic protists to fCO2 was species-specific. The response of diatoms was mainly cell size related; microplanktonic diatoms ( >  20 µm increased in abundance with low to moderate fCO2 (343–634 µatm but decreased at fCO2  ≥  953 µatm. Similarly, the abundance of Phaeocystis antarctica increased with increasing fCO2 peaking at 634 µatm. Above this threshold the abundance of micro-sized diatoms and P. antarctica fell dramatically, and nanoplanktonic diatoms ( ≤  20 µm dominated, therefore culminating in a significant change in the protistan community composition. Comparisons of these results with previous experiments conducted at this site show that the fCO2 thresholds are similar, despite seasonal and interannual differences in the physical and biotic environment. This suggests that near-shore microbial communities are likely to change significantly near the end of this century if anthropogenic CO2 release continues unabated, with profound ramifications for near-shore Antarctic ecosystem food webs and biogeochemical cycling.

  7. Ocean Acidification of the Pacific Northwest Coastal Waters: A Modeling Study

    Science.gov (United States)

    Siedlecki, S. A.; MacCready, P.; McCabe, R. M.; Feely, R. A.; Alin, S. R.; Newton, J.; Barth, J. A.; Durski, S. M.

    2016-02-01

    Total inorganic carbon and alkalinity is incorporated into a regional bio-physical model to examine inorganic carbon variability along the Washington and Oregon continental margin. Results are compared to output from an existing oxygen model (Siedlecki et al., 2015) combined with observationally-based empirical relationships between carbon system parameters, oxygen, and temperature (Alin et al., in prep). Model hindcasts for 2007 and 2013 are also validated against local observations of dissolved oxygen, pH, and the saturation state of aragonite. Challenges and benefits of each approach are discussed. The model suggests that the volume of hypoxic and undersaturated water present over the continental shelf increases over the upwelling season, occupying more of the water column later in the upwelling season. This would result in increasingly stressful conditions for biota over most of the water column as the upwelling season progresses. Spatial variability in the volume of undersaturated water in the region will also be discussed.

  8. Modelling shelf-ocean exchange and its biogeochemical consequences in coastal upwelling systems

    DEFF Research Database (Denmark)

    Muchamad, Al Azhar

    margin bathymetry, and 3) what processes determine the observed variability of total organic carbon (TOC) content in shelf sediments underlying the upwelling system, with implications for the formation of petroleum source rocks. Here, a numerical ocean modeling approach is used in this thesis to explore...... processes and the development of anoxia/euxinia under the present day or past geological conditions. Thirdly and last, processes controlling distribution of total organic carbon (TOC) content in sediments across the continental margin is evaluated by application of the model to the Benguela upwelling system....... In the model, biological primary production and shelf bottom-water anoxia result in enhanced sedimentary TOC concentrations on the mid shelf and upper slope. The simulated TOCs implicate that bottom lateral transport only has a significant effect on increasing the deposition of the organic carbon on the mid...

  9. Coastal zone color scanner pigment concentrations in the southern ocean and relationships to geophysical surface features

    Science.gov (United States)

    Comiso, J. C.; Mcclain, C. R.; Sullivan, C. W.; Ryan, J. P.; Leonard, C. L.

    1993-01-01

    Climatological data on the distribution of surface pigment fields in the entire southern ocean over a seasonal cycle are examined. The occurrence of intense phytoplankton blooms during austral summer months and during other seasons in different regions is identified and analyzed. The highest pigment concentrations are observed at high latitudes and over regions with water depths usually less than 600 m. Basin-scale pigment distribution shows a slightly asymmetric pattern of enhanced pigment concentrations about Antarctica, with enhanced concentrations extending to lower latitudes in the Atlantic and Indian sectors than in the Pacific sector. A general increase in pigment concentrations is evident from the low latitudes toward the Antarctic circumpolar region. Spatial relationships between pigment and archived geophysical data reveal significant correlation between pigment distributions and both bathymetry and wind stress, while general hemispheric scale patterns of pigment distributions are most coherent with the geostrophic flow of the Antarctic Circumpolar Current.

  10. Correction: Ryan, J., et al. Application of the Hyperspectral Imager for the Coastal Ocean to Phytoplankton Ecology Studies in Monterey Bay, CA, USA. Remote Sens. 2014, 6, 1007–1025

    Directory of Open Access Journals (Sweden)

    Marcos J. Montes

    2015-10-01

    Full Text Available Studies of phytoplankton ecology in Monterey Bay, CA, USA, using the Hyperspectral Imager for the Coastal Ocean (HICO and other satellite remote sensing and in-situ observations, were presented in [1]. [...

  11. What a Decade (2006–15) Of Journal Abstracts Can Tell Us about Trends in Ocean and Coastal Sustainability Challenges and Solutions

    OpenAIRE

    Rudd, Murray A.

    2017-01-01

    Text mining and analytics may offer possibilities to assess scientists' professional writing and identify patterns of co-occurrence between words and phrases associated with different environmental challenges and their potential solutions. This approach has the potential to help to track emerging issues, semi-automate horizon scanning processes, and identify how different institutions or policy instruments are associated with different types of ocean and coastal sustainability challenges. Her...

  12. Glider and remote sensing observations of the upper ocean response to an extended shallow coastal diversion of wastewater effluent

    KAUST Repository

    Seegers, Bridget N.; Teel, Elizabeth N.; Kudela, Raphael M.; Caron, David A.; Jones, Burton

    2016-01-01

    The Orange County Sanitation District (OCSD) diverted wastewater discharge (5.3 × 108 l d−1) from its primary deep (56 m) outfall 8 km offshore, to a secondary shallower (16 m) outfall 1.6 km offshore for a period of three weeks. It was anticipated that the low salinity and density of the effluent would cause it to rise to the surface with limited dilution, elevating nutrient concentrations in near-surface waters and stimulating phytoplankton blooms in the region. Three Teledyne Webb Slocum gliders and a Liquid Robotics surface wave glider were deployed on transects near the outfalls to acquire high spatial and temporal coverage of physical and chemical parameters before, during, and after the wastewater diversion. Combined autonomous underwater vehicle (AUV) and MODIS-Aqua satellite ocean color data indicated that phytoplankton biomass increased in the upper water column in response to the diversion, but that the magnitude of the response was spatially patchy and significantly less than expected. Little evidence of the plume or its effects was detectable 72 h following the diversion. The effluent plume exhibited high rates of dilution and mixed throughout the upper 20 m and occasionally throughout the upper 40 m during the diversion. Rapid plume advection and dilution appeared to contribute to the muted impact of the nutrient-rich effluent on the phytoplankton community in this coastal ecosystem.

  13. Glider and remote sensing observations of the upper ocean response to an extended shallow coastal diversion of wastewater effluent

    KAUST Repository

    Seegers, Bridget N.

    2016-06-21

    The Orange County Sanitation District (OCSD) diverted wastewater discharge (5.3 × 108 l d−1) from its primary deep (56 m) outfall 8 km offshore, to a secondary shallower (16 m) outfall 1.6 km offshore for a period of three weeks. It was anticipated that the low salinity and density of the effluent would cause it to rise to the surface with limited dilution, elevating nutrient concentrations in near-surface waters and stimulating phytoplankton blooms in the region. Three Teledyne Webb Slocum gliders and a Liquid Robotics surface wave glider were deployed on transects near the outfalls to acquire high spatial and temporal coverage of physical and chemical parameters before, during, and after the wastewater diversion. Combined autonomous underwater vehicle (AUV) and MODIS-Aqua satellite ocean color data indicated that phytoplankton biomass increased in the upper water column in response to the diversion, but that the magnitude of the response was spatially patchy and significantly less than expected. Little evidence of the plume or its effects was detectable 72 h following the diversion. The effluent plume exhibited high rates of dilution and mixed throughout the upper 20 m and occasionally throughout the upper 40 m during the diversion. Rapid plume advection and dilution appeared to contribute to the muted impact of the nutrient-rich effluent on the phytoplankton community in this coastal ecosystem.

  14. Glider and remote sensing observations of the upper ocean response to an extended shallow coastal diversion of wastewater effluent

    Science.gov (United States)

    Seegers, Bridget N.; Teel, Elizabeth N.; Kudela, Raphael M.; Caron, David A.; Jones, Burton H.

    2017-02-01

    The Orange County Sanitation District (OCSD) diverted wastewater discharge (5.3 × 108 l d-1) from its primary deep (56 m) outfall 8 km offshore, to a secondary shallower (16 m) outfall 1.6 km offshore for a period of three weeks. It was anticipated that the low salinity and density of the effluent would cause it to rise to the surface with limited dilution, elevating nutrient concentrations in near-surface waters and stimulating phytoplankton blooms in the region. Three Teledyne Webb Slocum gliders and a Liquid Robotics surface wave glider were deployed on transects near the outfalls to acquire high spatial and temporal coverage of physical and chemical parameters before, during, and after the wastewater diversion. Combined autonomous underwater vehicle (AUV) and MODIS-Aqua satellite ocean color data indicated that phytoplankton biomass increased in the upper water column in response to the diversion, but that the magnitude of the response was spatially patchy and significantly less than expected. Little evidence of the plume or its effects was detectable 72 h following the diversion. The effluent plume exhibited high rates of dilution and mixed throughout the upper 20 m and occasionally throughout the upper 40 m during the diversion. Rapid plume advection and dilution appeared to contribute to the muted impact of the nutrient-rich effluent on the phytoplankton community in this coastal ecosystem.

  15. Organization of marine phenology data in support of planning and conservation in ocean and coastal ecosystems

    Science.gov (United States)

    Thomas, Kathryn A.; Fornwall, Mark D.; Weltzin, Jake F.; Griffis, R.B.

    2014-01-01

    Among the many effects of climate change is its influence on the phenology of biota. In marine and coastal ecosystems, phenological shifts have been documented for multiple life forms; however, biological data related to marine species' phenology remain difficult to access and is under-used. We conducted an assessment of potential sources of biological data for marine species and their availability for use in phenological analyses and assessments. Our evaluations showed that data potentially related to understanding marine species' phenology are available through online resources of governmental, academic, and non-governmental organizations, but appropriate datasets are often difficult to discover and access, presenting opportunities for scientific infrastructure improvement. The developing Federal Marine Data Architecture when fully implemented will improve data flow and standardization for marine data within major federal repositories and provide an archival repository for collaborating academic and public data contributors. Another opportunity, largely untapped, is the engagement of citizen scientists in standardized collection of marine phenology data and contribution of these data to established data flows. Use of metadata with marine phenology related keywords could improve discovery and access to appropriate datasets. When data originators choose to self-publish, publication of research datasets with a digital object identifier, linked to metadata, will also improve subsequent discovery and access. Phenological changes in the marine environment will affect human economics, food systems, and recreation. No one source of data will be sufficient to understand these changes. The collective attention of marine data collectors is needed—whether with an agency, an educational institution, or a citizen scientist group—toward adopting the data management processes and standards needed to ensure availability of sufficient and useable marine data to understand

  16. Riverine inputs of polybrominated diphenyl ethers from the Pearl River Delta (China) to the coastal ocean.

    Science.gov (United States)

    Guan, Yu-Feng; Wang, Ji-Zhong; Ni, Hong-Gang; Luo, Xiao-Jun; Mai, Bi-Xian; Zeng, Eddy Y

    2007-09-01

    Riverine runoff is an important mode to transport anthropogenic pollutants from terrestrial sources to oceans. Polybrominated diphenyl ethers (PBDEs) were measured in riverine runoff samples from the eight major outlets within the Pearl River Delta (PRD), China, an economically fast developing region housing a vast number of electronics manufacturing and assembling plants. The sigma 17PBDEs (sum of 17 BDE congeners, i.e., BDE-28, -47, -66, -85, -99, -100, -138, -153, -154, -183, -196, -197, -203, -206, -207, -208, and -209) concentrations varied from 344 to 68,000 pg/L, with those of BDE-209, BDE-47, and BDE-99 being 335-65200, 3-143, and production of brominated fire retardants (approximately 10000 metric tons/year) and the annual riverine input of total PBDEs from the PRD, suggesting that the majority of PBDEs inventory has been accumulated from importation of e-wastes. Because of the continuous importation of e-wastes and strong demand for brominated fire retardants, the impact of PBDEs on China's and the world's environments is expected to persist for many years to come.

  17. Preventive methods for coastal protection towards the use of ocean dynamics for pollution control

    CERN Document Server

    Quak, Ewald

    2013-01-01

    The aim of the book is to present for non-specialist researchers as well as for experts a comprehensive overview of the background, key ideas, basic methods, implementation details and a selection of solutions offered by a novel technology for the optimisation of the location of dangerous offshore activities in terms of environmental criteria, as developed in the course of the BalticWay project.   The book consists of two parts. The first part introduces the basic principles of ocean modeling and depicts the long way from the generic principles to the practical modeling of oil spills and of the propagation of other adverse impacts. The second part focuses on the techniques for solving the inverse problem of the quantification of offshore areas with respect to their potential to serve as a source of environmental danger to vulnerable regions (such as spawning, nursing or also tourist areas).   The chapters are written in a tutorial style; they are mostly self-contained and understandable for non-specialist r...

  18. Twin predecessor of the 2004 Indian Ocean tsunami: Implications for rebuilt coastal communities

    Science.gov (United States)

    Sieh, K.; Daly, P.; McKinnon, E.; Chiang, H.; Pilarczyk, J.; Daryono, M. R.; Horton, B.; Shen, C.; Rubin, C. M.; Ismail, N.; Kelsey, H. M.

    2013-12-01

    We present stratigraphic, historical and archeological evidence for two closely timed predecessors of the giant 2004 tsunami on the northern coast of Aceh, northern Sumatra. Beachcliff exposures reveal two beds of tsunamigenic coral rubble within a small alluvial fan. Stratigraphical consistent radiocarbon and Uranium-Thorium disequilibrium dates indicate the the two beds were emplaced in the mid- to late 14th century, correlative with paleoseismic evidence of sudden uplifts of coral reefs on nearby Simeulue island in AD 1394 and, again in AD 1450. A nearby seacliff exposure contains evidence of nearly continuous settlement from ~AD 1240 to 1367, followed by tsunami destruction. Evidence of continuous settlement included South Asian ceramic and stoneware fragments, as well as a single Chinese coin dating to AD 1111-1118. Our data may solve the mysterious 15th century discontinuity in cultures along the northern Sumatran coast of the maritime silk route. This history of a doublet tsunami has implications for communities around the Indian Ocean that were rebuilt after the devastation of 2004, since reconstruction occurred with the tacit belief that such an event would not happen in the foreseeable future. History, geology and archeology hint that such a view may prove tragically incorrect.

  19. Survey of fish impingement at power plants in the United States. Volume III. Estuaries and coastal waters

    International Nuclear Information System (INIS)

    Stupka, R.C.; Sharma, R.K.

    1977-03-01

    Impingement of fish at cooling-water intakes of 32 power plants, located on estuaries and coastal waters has been surveyed and data are presented. Descriptions of site, plant, and intake design and operation are provided. Reports in this volume summarize impingement data for individual plants in tabular and histogram formats. Information was available from differing sources such as the utilities themselves, public documents, regulatory agencies, and others. Thus, the extent of detail in the reports varies greatly from plant to plant. Histogram preparation involved an extrapolation procedure that has inadequacies. The reader is cautioned in the use of information presented in this volume to determine intake-design acceptability or intensity of impacts on ecosystems. No conclusions are presented herein; data comparisons are made in Volume IV

  20. Survey of fish impingement at power plants in the United States. Volume III. Estuaries and coastal waters

    Energy Technology Data Exchange (ETDEWEB)

    Stupka, Richard C.; Sharma, Rajendra K.

    1977-03-01

    Impingement of fish at cooling-water intakes of 32 power plants, located on estuaries and coastal waters has been surveyed and data are presented. Descriptions of site, plant, and intake design and operation are provided. Reports in this volume summarize impingement data for individual plants in tabular and histogram formats. Information was available from differing sources such as the utilities themselves, public documents, regulatory agencies, and others. Thus, the extent of detail in the reports varies greatly from plant to plant. Histogram preparation involved an extrapolation procedure that has inadequacies. The reader is cautioned in the use of information presented in this volume to determine intake-design acceptability or intensity of impacts on ecosystems. No conclusions are presented herein; data comparisons are made in Volume IV.

  1. Unexpected source of Fukushima-derived radiocesium to the coastal ocean of Japan

    Science.gov (United States)

    Sanial, Virginie; Buesseler, Ken O.; Charette, Matthew A.; Nagao, Seiya

    2017-12-01

    Synthesizing published data, we provide a quantitative summary of the global biogeochemical cycle of vanadium (V), including both human-derived and natural fluxes. Through mining of V ores (130 × 109 g V/y) and extraction and combustion of fossil fuels (600 × 109 g V/y), humans are the predominant force in the geochemical cycle of V at Earth’s surface. Human emissions of V to the atmosphere are now likely to exceed background emissions by as much as a factor of 1.7, and, presumably, we have altered the deposition of V from the atmosphere by a similar amount. Excessive V in air and water has potential, but poorly documented, consequences for human health. Much of the atmospheric flux probably derives from emissions from the combustion of fossil fuels, but the magnitude of this flux depends on the type of fuel, with relatively low emissions from coal and higher contributions from heavy crude oils, tar sands bitumen, and petroleum coke. Increasing interest in petroleum derived from unconventional deposits is likely to lead to greater emissions of V to the atmosphere in the near future. Our analysis further suggests that the flux of V in rivers has been incremented by about 15% from human activities. Overall, the budget of dissolved V in the oceans is remarkably well balanced—with about 40 × 109 g V/y to 50 × 109 g V/y inputs and outputs, and a mean residence time for dissolved V in seawater of about 130,000 y with respect to inputs from rivers.

  2. Tide Gauge Records Reveal Improved Processing of Gravity Recovery and Climate Experiment Time-Variable Mass Solutions over the Coastal Ocean

    Science.gov (United States)

    Piecuch, Christopher G.; Landerer, Felix W.; Ponte, Rui M.

    2018-05-01

    Monthly ocean bottom pressure solutions from the Gravity Recovery and Climate Experiment (GRACE), derived using surface spherical cap mass concentration (MC) blocks and spherical harmonics (SH) basis functions, are compared to tide gauge (TG) monthly averaged sea level data over 2003-2015 to evaluate improved gravimetric data processing methods near the coast. MC solutions can explain ≳ 42% of the monthly variance in TG time series over broad shelf regions and in semi-enclosed marginal seas. MC solutions also generally explain ˜5-32 % more TG data variance than SH estimates. Applying a coastline resolution improvement algorithm in the GRACE data processing leads to ˜ 31% more variance in TG records explained by the MC solution on average compared to not using this algorithm. Synthetic observations sampled from an ocean general circulation model exhibit similar patterns of correspondence between modeled TG and MC time series and differences between MC and SH time series in terms of their relationship with TG time series, suggesting that observational results here are generally consistent with expectations from ocean dynamics. This work demonstrates the improved quality of recent MC solutions compared to earlier SH estimates over the coastal ocean, and suggests that the MC solutions could be a useful tool for understanding contemporary coastal sea level variability and change.

  3. Cybernetic group method of data handling (GMDH) statistical learning for hyperspectral remote sensing inverse problems in coastal ocean optics

    Science.gov (United States)

    Filippi, Anthony Matthew

    For complex systems, sufficient a priori knowledge is often lacking about the mathematical or empirical relationship between cause and effect or between inputs and outputs of a given system. Automated machine learning may offer a useful solution in such cases. Coastal marine optical environments represent such a case, as the optical remote sensing inverse problem remains largely unsolved. A self-organizing, cybernetic mathematical modeling approach known as the group method of data handling (GMDH), a type of statistical learning network (SLN), was used to generate explicit spectral inversion models for optically shallow coastal waters. Optically shallow water light fields represent a particularly difficult challenge in oceanographic remote sensing. Several algorithm-input data treatment combinations were utilized in multiple experiments to automatically generate inverse solutions for various inherent optical property (IOP), bottom optical property (BOP), constituent concentration, and bottom depth estimations. The objective was to identify the optimal remote-sensing reflectance Rrs(lambda) inversion algorithm. The GMDH also has the potential of inductive discovery of physical hydro-optical laws. Simulated data were used to develop generalized, quasi-universal relationships. The Hydrolight numerical forward model, based on radiative transfer theory, was used to compute simulated above-water remote-sensing reflectance Rrs(lambda) psuedodata, matching the spectral channels and resolution of the experimental Naval Research Laboratory Ocean PHILLS (Portable Hyperspectral Imager for Low-Light Spectroscopy) sensor. The input-output pairs were for GMDH and artificial neural network (ANN) model development, the latter of which was used as a baseline, or control, algorithm. Both types of models were applied to in situ and aircraft data. Also, in situ spectroradiometer-derived Rrs(lambda) were used as input to an optimization-based inversion procedure. Target variables

  4. Current, CTD, and other data from the YAQUINA and other platforms from the coastal waters of Washington/Oregon as part of the International Decade of Ocean Exploration / Coastal Upwelling Ecosystems Analysis (IDOE/CUEA) from 1975-01-28 to 1975-09-01 (NODC Accession 7800403)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current, CTD, and other data were collected from the YAQUINA and other platforms from the coastal waters of Washington/Oregon from 28 January 1975 to 01 September...

  5. Physical, chemical, and other data from bottle casts from the Coastal Waters of Washington/Oregon from the THOMAS G. THOMPSON as part of the International Decade of Ocean Exploration / Coastal Upwelling Ecosystems Analysis (IDOE/CUEA) from 1973-07-11 to 1973-07-21 (NODC Accession 7601145)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, chemical, and other data were collected from bottle casts in the Coastal Waters of Washington/Oregon from the THOMAS G. THOMPSON from 11 July 1973 to 21...

  6. A numerical investigation of the atmosphere-ocean thermal contrast over the coastal upwelling region of Cabo Frio, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Dourado, M. [Departamento de Meteorologia, Universidade Federal de Pelotas, Pelotas RS (Brazil)]. E-mail: marcelo_dourado@ufpel.edu.br; Pereira de Oliveira, A. [Departamento de Ciencias Atmosfericas, Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, (Brazil)

    2008-01-15

    An one-dimensional atmospheric second order closure model, coupled to an oceanic mixed layer model, is used to investigate the short term variation of the atmospheric and oceanic boundary layers in the coastal upwelling area of Cabo Frio, Brazil (23 degrees Celsius S, 42 degrees Celsius 08' W). The numerical simulations were carried out to evaluate the impact caused by the thermal contrast between atmosphere and ocean on the vertical extent and other properties of both atmospheric and oceanic boundary layers. The numerical simulations were designed taking as reference the observations carried out during the passage of a cold front that disrupted the upwelling regime in Cabo Frio in July of 1992. The simulations indicated that in 10 hours the mechanical mixing, sustained by a constant background flow of 10 m s-1, increases the atmospheric boundary layer in 214 m when the atmosphere is initially 2 K warmer than the ocean (positive thermal contrast observed during upwelling regime). For an atmosphere initially -2 K colder than the ocean (negative thermal contrast observed during passage of the cold front), the incipient thermal convection intensifies the mechanical mixing increasing the vertical extent of the atmospheric boundary layer in 360 m. The vertical evolution of the atmospheric boundary layer is consistent with the observations carried out in Cabo Frio during upwelling condition. When the upwelling is disrupted, the discrepancy between the simulated and observed atmospheric boundary layer heights in Cabo Frio during July of 1992 increases considerably. During the period of 10 hours, the simulated oceanic mixed layer deepens 2 m and 5.4 m for positive and negative thermal contrasts of 2 K and -2 K, respectively. In the latter case, the larger vertical extent of the oceanic mixed layer is due to the presence of thermal convection in the atmospheric boundary layer, which in turn is associated to the absence of upwelling caused by the passage of cold fronts

  7. Ocean Acidification of the coastal waters of the Pacific Northwest: A modeling study

    Science.gov (United States)

    Siedlecki, S. A.; Hermann, A. J.; Bond, N. A.; Alin, S. R.; Feely, R. A.; Hales, B. R.; Newton, J.; Migliaccio, L.

    2013-12-01

    A regional oxygen model of the Washington and Oregon shelves (Siedlecki, S.A., Banas, N., Davis, K.A., Giddings, S., P. MacCready, Connolly, T., & B. Hickey. Seasonal Oxygen variability on the continental shelves of Washington and Oregon, in prep) is combined with the empirical relationships between the carbonate system, oxygen and temperature (Alin et al, in prep) to simulate the carbonate chemistry in this region. A model hindcast for 2009 is compared to local observations of oxygen, and aragonite saturation. The model is able to reproduce the seasonal change in oxygen observed on the Oregon shelf. Challenges of this approach are discussed. The volume of hypoxic and undersaturated water increases over the upwelling season, occupying more of the water column later in the upwelling season. This results in increasingly stressful conditions over most of the water column for biota on the shelf as the upwelling season progresses. How the rate of ascension and presence of this undersaturated water varies regionally will be discussed.

  8. Surface area and the seabed area, volume, depth, slope, and topographic variation for the world's seas, oceans, and countries.

    Science.gov (United States)

    Costello, Mark John; Cheung, Alan; De Hauwere, Nathalie

    2010-12-01

    Depth and topography directly and indirectly influence most ocean environmental conditions, including light penetration and photosynthesis, sedimentation, current movements and stratification, and thus temperature and oxygen gradients. These parameters are thus likely to influence species distribution patterns and productivity in the oceans. They may be considered the foundation for any standardized classification of ocean ecosystems and important correlates of metrics of biodiversity (e.g., species richness and composition, fisheries). While statistics on ocean depth and topography are often quoted, how they were derived is rarely cited, and unless calculated using the same spatial resolution the resulting statistics will not be strictly comparable. We provide such statistics using the best available resolution (1-min) global bathymetry, and open source digital maps of the world's seas and oceans and countries' Exclusive Economic Zones, using a standardized methodology. We created a terrain map and calculated sea surface and seabed area, volume, and mean, standard deviation, maximum, and minimum, of both depth and slope. All the source data and our database are freely available online. We found that although the ocean is flat, and up to 71% of the area has a ocean volume exceeds 1.3 billion km(3) (or 1.3 sextillion liters), and sea surface and seabed areas over 354 million km(2). We propose the coefficient of variation of slope as an index of topographic heterogeneity. Future studies may improve on this database, for example by using a more detailed bathymetry, and in situ measured data. The database could be used to classify ocean features, such as abyssal plains, ridges, and slopes, and thus provide the basis for a standards based classification of ocean topography.

  9. Discriminating Phytoplankton Functional Types (PFTs) in the Coastal Ocean Using the Inversion Algorithm Phydotax and Airborne Imaging Spectrometer Data

    Science.gov (United States)

    Palacios, Sherry L.; Schafer, Chris; Broughton, Jennifer; Guild, Liane S.; Kudela, Raphael M.

    2013-01-01

    There is a need in the Biological Oceanography community to discriminate among phytoplankton groups within the bulk chlorophyll pool to understand energy flow through ecosystems, to track the fate of carbon in the ocean, and to detect and monitor-for harmful algal blooms (HABs). The ocean color community has responded to this demand with the development of phytoplankton functional type (PFT) discrimination algorithms. These PFT algorithms fall into one of three categories depending on the science application: size-based, biogeochemical function, and taxonomy. The new PFT algorithm Phytoplankton Detection with Optics (PHYDOTax) is an inversion algorithm that discriminates taxon-specific biomass to differentiate among six taxa found in the California Current System: diatoms, dinoflagellates, haptophytes, chlorophytes, cryptophytes, and cyanophytes. PHYDOTax was developed and validated in Monterey Bay, CA for the high resolution imaging spectrometer, Spectroscopic Aerial Mapping System with On-board Navigation (SAMSON - 3.5 nm resolution). PHYDOTax exploits the high spectral resolution of an imaging spectrometer and the improved spatial resolution that airborne data provides for coastal areas. The objective of this study was to apply PHYDOTax to a relatively lower resolution imaging spectrometer to test the algorithm's sensitivity to atmospheric correction, to evaluate capability with other sensors, and to determine if down-sampling spectral resolution would degrade its ability to discriminate among phytoplankton taxa. This study is a part of the larger Hyperspectral Infrared Imager (HyspIRI) airborne simulation campaign which is collecting Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery aboard NASA's ER-2 aircraft during three seasons in each of two years over terrestrial and marine targets in California. Our aquatic component seeks to develop and test algorithms to retrieve water quality properties (e.g. HABs and river plumes) in both marine and in

  10. Oceanographic data collected from Seaside High School by Center for Coastal Margin Observation and Prediction (CMOP) and assembled by Northwest Association of Networked Ocean Observation Systems (NANOOS) in the Columbia River Estuary and North East Pacific Ocean from 2004-02-03 to 2008-03-19 (NCEI Accession 0162187)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0162187 contains navigational and physical data collected at Seaside High School, a fixed station in the Coastal Waters of Washington/Oregon. These...

  11. CTD Niskin bottle data from the R/V WECOMA in the North Pacific Ocean in support of the National Science Foundation Coastal Ocean Processes program River Influences on Shelf Ecosystems (NSF CoOP RISE), cruise RISE05W3, from 20040708 to 20060613 (NODC Accession 0051411)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CoOP RISE program was designed to determine the impact of large river discharge on coastal shelf ecosystems. Macronutrient and chlorophyll data were collected as...

  12. Temperature profile and other data collected using bottle and CTD casts from the MELVILLE in the Coastal Waters of California for the International Decade of Ocean Exploration / Geochemical Ocean Section Study (IDOE/GEOSECS) project from 19 May 1979 to 23 May 1979 (NODC Accession 8800233)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic Station Data, temperature, and other data were collected using CTD and bottle casts from MELVILLE from the Coastal Waters of California from May 19,...

  13. Ocean Acidification

    Science.gov (United States)

    Ocean and coastal acidification is an emerging issue caused by increasing amounts of carbon dioxide being absorbed by seawater. Changing seawater chemistry impacts marine life, ecosystem services, and humans. Learn what EPA is doing and what you can do.

  14. Ocean Color

    Data.gov (United States)

    National Aeronautics and Space Administration — Satellite-derived Ocean Color Data sets from historical and currently operational NASA and International Satellite missions including the NASA Coastal Zone Color...

  15. Cell volumes of marine phytoplankton from globally distributed coastal data sets

    Digital Repository Service at National Institute of Oceanography (India)

    Harrison, P.J; Zingone, A.; Mickelson, M.J; Lehtinen, S.; Ramaiah, N.; Kraberg, A.C; Sun, J; McQuatters-Gollop, A.; Jakobsen, H.H.

    volumes are the single largest source of uncertainty in community phytoplankton carbon estimates and greatly exceeds the uncertainty associated with the different volume to carbon estimates. Small diatoms have 10 times more carbon density than large...

  16. A numerical study of wave-current interaction through surface and bottom stresses: Coastal ocean response to Hurricane Fran of 1996

    Science.gov (United States)

    Xie, L.; Pietrafesa, L. J.; Wu, K.

    2003-02-01

    A three-dimensional wave-current coupled modeling system is used to examine the influence of waves on coastal currents and sea level. This coupled modeling system consists of the wave model-WAM (Cycle 4) and the Princeton Ocean Model (POM). The results from this study show that it is important to incorporate surface wave effects into coastal storm surge and circulation models. Specifically, we find that (1) storm surge models without coupled surface waves generally under estimate not only the peak surge but also the coastal water level drop which can also cause substantial impact on the coastal environment, (2) introducing wave-induced surface stress effect into storm surge models can significantly improve storm surge prediction, (3) incorporating wave-induced bottom stress into the coupled wave-current model further improves storm surge prediction, and (4) calibration of the wave module according to minimum error in significant wave height does not necessarily result in an optimum wave module in a wave-current coupled system for current and storm surge prediction.

  17. Community barcoding reveals little effect of ocean acidification on the composition of coastal plankton communities: Evidence from a long-term mesocosm study in the Gullmar Fjord, Skagerrak.

    Directory of Open Access Journals (Sweden)

    Julia A F Langer

    Full Text Available The acidification of the oceans could potentially alter marine plankton communities with consequences for ecosystem functioning. While several studies have investigated effects of ocean acidification on communities using traditional methods, few have used genetic analyses. Here, we use community barcoding to assess the impact of ocean acidification on the composition of a coastal plankton community in a large scale, in situ, long-term mesocosm experiment. High-throughput sequencing resulted in the identification of a wide range of planktonic taxa (Alveolata, Cryptophyta, Haptophyceae, Fungi, Metazoa, Hydrozoa, Rhizaria, Straminipila, Chlorophyta. Analyses based on predicted operational taxonomical units as well as taxonomical compositions revealed no differences between communities in high CO2 mesocosms (~ 760 μatm and those exposed to present-day CO2 conditions. Observed shifts in the planktonic community composition were mainly related to seasonal changes in temperature and nutrients. Furthermore, based on our investigations, the elevated CO2 did not affect the intraspecific diversity of the most common mesozooplankter, the calanoid copepod Pseudocalanus acuspes. Nevertheless, accompanying studies found temporary effects attributed to a raise in CO2. Differences in taxa composition between the CO2 treatments could, however, only be observed in a specific period of the experiment. Based on our genetic investigations, no compositional long-term shifts of the plankton communities exposed to elevated CO2 conditions were observed. Thus, we conclude that the compositions of planktonic communities, especially those in coastal areas, remain rather unaffected by increased CO2.

  18. Community barcoding reveals little effect of ocean acidification on the composition of coastal plankton communities: Evidence from a long-term mesocosm study in the Gullmar Fjord, Skagerrak.

    Science.gov (United States)

    Langer, Julia A F; Sharma, Rahul; Schmidt, Susanne I; Bahrdt, Sebastian; Horn, Henriette G; Algueró-Muñiz, María; Nam, Bora; Achterberg, Eric P; Riebesell, Ulf; Boersma, Maarten; Thines, Marco; Schwenk, Klaus

    2017-01-01

    The acidification of the oceans could potentially alter marine plankton communities with consequences for ecosystem functioning. While several studies have investigated effects of ocean acidification on communities using traditional methods, few have used genetic analyses. Here, we use community barcoding to assess the impact of ocean acidification on the composition of a coastal plankton community in a large scale, in situ, long-term mesocosm experiment. High-throughput sequencing resulted in the identification of a wide range of planktonic taxa (Alveolata, Cryptophyta, Haptophyceae, Fungi, Metazoa, Hydrozoa, Rhizaria, Straminipila, Chlorophyta). Analyses based on predicted operational taxonomical units as well as taxonomical compositions revealed no differences between communities in high CO2 mesocosms (~ 760 μatm) and those exposed to present-day CO2 conditions. Observed shifts in the planktonic community composition were mainly related to seasonal changes in temperature and nutrients. Furthermore, based on our investigations, the elevated CO2 did not affect the intraspecific diversity of the most common mesozooplankter, the calanoid copepod Pseudocalanus acuspes. Nevertheless, accompanying studies found temporary effects attributed to a raise in CO2. Differences in taxa composition between the CO2 treatments could, however, only be observed in a specific period of the experiment. Based on our genetic investigations, no compositional long-term shifts of the plankton communities exposed to elevated CO2 conditions were observed. Thus, we conclude that the compositions of planktonic communities, especially those in coastal areas, remain rather unaffected by increased CO2.

  19. New Hampshire / Southern Maine Ocean Uses Atlas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Uses Atlas Project is an innovative partnership between the Coastal Response Research Center (CRRC) and NOAA's Office of Ocean and Coastal Resource...

  20. Dramatic variability of the carbonate system at a temperate coastal ocean site (Beaufort, North Carolina, USA is regulated by physical and biogeochemical processes on multiple timescales.

    Directory of Open Access Journals (Sweden)

    Zackary I Johnson

    Full Text Available Increasing atmospheric carbon dioxide (CO2 from anthropogenic sources is acidifying marine environments resulting in potentially dramatic consequences for the physical, chemical and biological functioning of these ecosystems. If current trends continue, mean ocean pH is expected to decrease by ~0.2 units over the next ~50 years. Yet, there is also substantial temporal variability in pH and other carbon system parameters in the ocean resulting in regions that already experience change that exceeds long-term projected trends in pH. This points to short-term dynamics as an important layer of complexity on top of long-term trends. Thus, in order to predict future climate change impacts, there is a critical need to characterize the natural range and dynamics of the marine carbonate system and the mechanisms responsible for observed variability. Here, we present pH and dissolved inorganic carbon (DIC at time intervals spanning 1 hour to >1 year from a dynamic, coastal, temperate marine system (Beaufort Inlet, Beaufort NC USA to characterize the carbonate system at multiple time scales. Daily and seasonal variation of the carbonate system is largely driven by temperature, alkalinity and the balance between primary production and respiration, but high frequency change (hours to days is further influenced by water mass movement (e.g. tides and stochastic events (e.g. storms. Both annual (~0.3 units and diurnal (~0.1 units variability in coastal ocean acidity are similar in magnitude to 50 year projections of ocean acidity associated with increasing atmospheric CO2. The environmental variables driving these changes highlight the importance of characterizing the complete carbonate system rather than just pH. Short-term dynamics of ocean carbon parameters may already exert significant pressure on some coastal marine ecosystems with implications for ecology, biogeochemistry and evolution and this shorter term variability layers additive effects and

  1. A quantitative genetic approach to assess the evolutionary potential of a coastal marine fish to ocean acidification

    KAUST Repository

    Malvezzi, Alex J.; Murray, Christopher S.; Feldheim, Kevin A.; DiBattista, Joseph; Garant, Dany; Gobler, Christopher J.; Chapman, Demian D.; Baumann, Hannes

    2015-01-01

    Assessing the potential of marine organisms to adapt genetically to increasing oceanic CO2 levels requires proxies such as heritability of fitness-related traits under ocean acidification (OA). We applied a quantitative genetic method to derive

  2. Validation Test Report for the 1/8 deg Global Navy Coastal Ocean Model Nowcast/Forecast System

    National Research Council Canada - National Science Library

    Barron, Charlie N; Kara, A. B; Rhodes, Robert C; Rowley, Clark; Smedstad, Lucy F

    2007-01-01

    .... Global NCOM supports predictions of ocean currents, temperatures, salinity, sea surface height, and sound speed both directly and by providing initial and boundary conditions for higher-resolution nested ocean models...

  3. Salt marsh as a coastal filter for the oceans: changes in function with experimental increases in nitrogen loading and sea-level rise.

    Science.gov (United States)

    Nelson, Joanna L; Zavaleta, Erika S

    2012-01-01

    Coastal salt marshes are among Earth's most productive ecosystems and provide a number of ecosystem services, including interception of watershed-derived nitrogen (N) before it reaches nearshore oceans. Nitrogen pollution and climate change are two dominant drivers of global-change impacts on ecosystems, yet their interacting effects at the land-sea interface are poorly understood. We addressed how sea-level rise and anthropogenic N additions affect the salt marsh ecosystem process of nitrogen uptake using a field-based, manipulative experiment. We crossed simulated sea-level change and ammonium-nitrate (NH(4)NO(3))-addition treatments in a fully factorial design to examine their potentially interacting effects on emergent marsh plants in a central California estuary. We measured above- and belowground biomass and tissue nutrient concentrations seasonally and found that N-addition had a significant, positive effect on a) aboveground biomass, b) plant tissue N concentrations, c) N stock sequestered in plants, and d) shoot:root ratios in summer. Relative sea-level rise did not significantly affect biomass, with the exception of the most extreme sea-level-rise simulation, in which all plants died by the summer of the second year. Although there was a strong response to N-addition treatments, salt marsh responses varied by season. Our results suggest that in our site at Coyote Marsh, Elkhorn Slough, coastal salt marsh plants serve as a robust N trap and coastal filter; this function is not saturated by high background annual N inputs from upstream agriculture. However, if the marsh is drowned by rising seas, as in our most extreme sea-level rise treatment, marsh plants will no longer provide the ecosystem service of buffering the coastal ocean from eutrophication.

  4. Salt marsh as a coastal filter for the oceans: changes in function with experimental increases in nitrogen loading and sea-level rise.

    Directory of Open Access Journals (Sweden)

    Joanna L Nelson

    Full Text Available Coastal salt marshes are among Earth's most productive ecosystems and provide a number of ecosystem services, including interception of watershed-derived nitrogen (N before it reaches nearshore oceans. Nitrogen pollution and climate change are two dominant drivers of global-change impacts on ecosystems, yet their interacting effects at the land-sea interface are poorly understood. We addressed how sea-level rise and anthropogenic N additions affect the salt marsh ecosystem process of nitrogen uptake using a field-based, manipulative experiment. We crossed simulated sea-level change and ammonium-nitrate (NH(4NO(3-addition treatments in a fully factorial design to examine their potentially interacting effects on emergent marsh plants in a central California estuary. We measured above- and belowground biomass and tissue nutrient concentrations seasonally and found that N-addition had a significant, positive effect on a aboveground biomass, b plant tissue N concentrations, c N stock sequestered in plants, and d shoot:root ratios in summer. Relative sea-level rise did not significantly affect biomass, with the exception of the most extreme sea-level-rise simulation, in which all plants died by the summer of the second year. Although there was a strong response to N-addition treatments, salt marsh responses varied by season. Our results suggest that in our site at Coyote Marsh, Elkhorn Slough, coastal salt marsh plants serve as a robust N trap and coastal filter; this function is not saturated by high background annual N inputs from upstream agriculture. However, if the marsh is drowned by rising seas, as in our most extreme sea-level rise treatment, marsh plants will no longer provide the ecosystem service of buffering the coastal ocean from eutrophication.

  5. Natural uranium-series radionuclide inventories in coastal and oceanic waters of the south-western Pacific - insights into trace metal flux and removal pathway analysis

    International Nuclear Information System (INIS)

    Szymczak, R.; Jeffree, R.A.; Peck, G.A.

    2003-01-01

    Participate scavenging of trace metals plays a major role in determining their ecosystem flux and incident dissolved concentrations. Differences in the half-lives and biogeochemical behaviour of natural uranium series radioisotope pairs (eg. 238 U/ 234 Th, 210 Pb/ 210 Po) allow their application as oceanic process tracers. Coincidental measurements of dissolved and particulate trace element concentrations and inventories of radionuclides in the Noumea coral lagoon and adjacent offshore waters were used to quantify water column flux rates and provide insights on removal pathway analysis. Understanding prevailing pathways and respective flux rates of pollutants in specific coastal and oceanic systems will assist to establish the fate and consequence of pollutants and allow sustainable management strategies to be developed. Both natural and pollutant chemical species introduced to the marine environment may either remain benign in solution or undergo physiological uptake by biota, but most often associate with colloids and fine particles, which subsequent undergo aggregation, sedimentation and removal to the sea floor

  6. Coastal erosion hazard and vulnerability using sig tools. Comparison between "La Barra town, Buenaventura, (Pacific Ocean of Colombia) and Providence - Santa Catalina islands (Colombian Caribbean Sea)

    Science.gov (United States)

    Coca-Domínguez, Oswaldo; Ricaurte-Villota, Constanza; Morales-Giraldo, David; Rangel-Buitrago, Nelson

    2014-05-01

    Analysis of hazards and vulnerability associated to coastal erosion along coastlines is a first issue in order to establish plans for adaptation to climate change in coastal areas. La Barra Town, Buenaventura (Pacific ocean of Colombia) and Providence - Santa Catalina Islands (Colombian Caribbean) were selected to develop a detailed analysis of coastal erosion hazard and vulnerability from different perspectives: i) physical (hazard) , ii) social , iii) conservation approach and iv) cultural heritage (Raizal). The analysis was made by a semi quantitative approximation method, applying variables associated with the intrinsic coastal zone properties (i.e. type of beach, exposure of the coast to waves, etc.). Coastal erosion data and associated variables as well land use; conservation and heritage data were used to carry out a further detailed analysis of the human - structural vulnerability and exposure to hazards. The data shows erosion rates close to -17 m yr-1 in La Barra Town (highlighting their critical condition and urgent relocation process), while in some sectors of Providence Island, such as Old Town, erosion rate was -5 m yr-1. The observed erosion process affects directly the land use and the local and regional economy. The differences between indexes and the structural and physical vulnerability as well the use of methodological variables are presented in the context of each region. In this work, all the information was worked using a GIS environment since this allows editing and updating the information continuously. The application of this methodology generates useful information in order to promote risk management as well prevention, mitigation and reduction plans. In both areas the adaptation must be a priority strategy to be considered, including relocation alternatives and sustainable protection with the support of studies of uses and future outlooks in the coast. The methodology is framed into the use of GIS tools and it highlights their benefits

  7. Chlorophyll data from the Coastal waters of Hawaii and Northeast Pacific Ocean to study the responses of the ecosystem to the sewage diversion from the the inner bay to an offshore, deep-water location from 24 September 1976 to 15 June 1979 (NODC Accession 0000396)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chlorophyll data were collected at fixed platforms in the Coastal waters of Hawaii and Northeast Pacific Ocean from September 24, 1976 to June 15, 1979. Data were...

  8. Land-Sourced Pollution with an Emphasis on Domestic Sewage: Lessons from the Caribbean and Implications for Coastal Development on Indian Ocean and Pacific Coral Reefs

    Directory of Open Access Journals (Sweden)

    Andre DeGeorges

    2010-09-01

    Full Text Available This paper discusses land-sourced pollution with an emphasis on domestic sewage in the Caribbean in relation to similar issues in the Indian Ocean and Pacific. Starting on a large-scale in the 1980s, tropical Atlantic coastlines of Florida and Caribbean islands were over-developed to the point that traditional sewage treatment and disposal were inadequate to protect fragile coral reefs from eutrophication by land-sourced nutrient pollution. This pollution caused both ecological and public health problems. Coral reefs were smothered by macro-algae and died, becoming rapidly transformed into weedy algal lawns, which resulted in beach erosion, and loss of habitat that added to fisheries collapse previously caused by over-fishing. Barbados was one of the first countries to recognize this problem and to begin implementation of effective solutions. Eastern Africa, the Indian Ocean Islands, Pacific Islands, and South East Asia, are now starting to develop their coastlines for ecotourism, like the Caribbean was in the 1970s. Tourism is an important and increasing component of the economies of most tropical coastal areas. There are important lessons to be learned from this Caribbean experience for coastal zone planners, developers, engineers, coastal communities and decision makers in other parts of the world to assure that history does not repeat itself. Coral reef die-off from land-sourced pollution has been eclipsed as an issue since the ocean warming events of 1998, linked to global warming. Addressing ocean warming will take considerable international cooperation, but much of the land-sourced pollution issue, especially sewage, can be dealt with on a watershed by watershed basis by Indian Ocean and Pacific countries. Failure to solve this critical issue can adversely impact both coral reef and public health with dire economic consequences, and will prevent coral reef recovery from extreme high temperature events. Sewage treatment, disposal options

  9. Report to Congress: Coastal Barrier Resources System with recommendations as required by Section 10 of Public Law 97-348, the Coastal Barrier Resources Act of 1982. Volume 1

    International Nuclear Information System (INIS)

    1988-01-01

    The U.S. shoreline bordering the Atlantic Ocean and Gulf of Mexico contains one of the longest and best defined chains of coastal barriers in the world. In recognition of the fact, the Coastal Barrier Resources Act (CBRA) (16 U.S.C. 3501 et seq.) was enacted in October 1982. The Act established the Coastal Barrier Resources System (CBRS) consisting of 186 coastal barrier units along 670 mi of shoreline on the Atlantic and Gulf of Mexico coasts. The philosophy behind the CBRA is that the risk associated with new development in these areas should be borne by those who choose to live and work along the coast, and not by all American taxpayers. By restricting Federal expenditures and financial assistance on specific undeveloped coastal barriers, the Federal Government can minimize the loss of human life, reduce the wasteful expenditure of Federal revenues, and reduce the damage to fish and wildlife and other natural resources that can accompany development of these fragile areas. Section 10 of the CBRA directs the Department of the Interior to study the CBRS and prepare for Congress a report which includes recommendations for changes in the CBRS based on an evaluation of management alternatives that would foster conservation of the natural resources of the CBRS

  10. An empirical algorithm to estimate spectral average cosine of underwater light field from remote sensing data in coastal oceanic waters.

    Digital Repository Service at National Institute of Oceanography (India)

    Talaulika, M.; Suresh, T.; Desa, E.S.; Inamdar, A.

    parameters from the coastal waters off Goa, India, and eastern Arabian Sea and the optical parameters derived using the radiative transfer code using these measured data. The algorithm was compared with two earlier reported empirical algorithms of Haltrin...

  11. Zooplankton biomass (displacement volume) data collected in Indian Ocean, Southern Pacific and Southern Atlantic Ocean during Discovery Investigations project from 1931-01-02 to 1951-10-18 by Discovery II, data were acquired from the NMFS-COPEPOD database (NODC Accession 0071064)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Zooplankton biomass (displacement volume) data collected in Indian Ocean, Southern Pacific and Southern Atlantic Ocean during Discovery Investigations project from...

  12. Numerical Methods in Atmospheric and Oceanic Modelling: The Andre J. Robert Memorial Volume

    Science.gov (United States)

    Rosmond, Tom

    Most people, even including some in the scientific community, do not realize how much the weather forecasts they use to guide the activities of their daily lives depend on very complex mathematics and numerical methods that are the basis of modern numerical weather prediction (NWP). André Robert (1929-1993), to whom Numerical Methods in Atmospheric and Oceanic Modelling is dedicated, had a career that contributed greatly to the growth of NWP and the role that the atmospheric computer models of NWP play in our society. There are probably no NWP models running anywhere in the world today that do not use numerical methods introduced by Robert, and those of us who work with and use these models everyday are indebted to him.The first two chapters of the volume are chronicles of Robert's life and career. The first is a 1987 interview by Harold Ritchie, one of Robert's many proteges and colleagues at the Canadian Atmospheric Environment Service. The interview traces Robert's life from his birth in New York to French Canadian parents, to his emigration to Quebec at an early age, his education and early employment, and his rise in stature as one of the preeminent research meteorologists of our time. An amusing anecdote he relates is his impression of weather forecasts while he was considering his first job as a meteorologist in the early 1950s. A newspaper of the time placed the weather forecast and daily horoscope side by side, and Robert regarded each to have a similar scientific basis. Thankfully he soon realized there was a difference between the two, and his subsequent career certainly confirmed the distinction.

  13. Integrated Monitoring of the Soya Warm Current Using HF Ocean Radars, Satellite Altimeters, Coastal Tide Gauges, and a Bottom-Mounted ADCP

    Science.gov (United States)

    Ebuchi, N.; Fukamachi, Y.; Ohshima, K. I.; Wakatsuchi, M.

    2007-12-01

    The Soya Warm Current (SWC) is a coastal boundary current, which flows along the coast of Hokkaido in the Sea of Okhotsk. The SWC flows into the Sea of Okhotsk from the Sea of Japan through the Soya/La Perouse Strait, which is located between Hokkaido, Japan, and Sakhalin, Russia. It supplies warm, saline water in the Sea of Japan to the Sea of Okhotsk and largely affects the ocean circulation and water mass formation in the Sea of Okhotsk, and local climate, environment and fishery in the region. However, the SWC has never been continuously monitored due to the difficulties involved in field observations related to, for example, severe weather conditions in the winter, political issues at the border strait, and conflicts with fishing activities in the strait. Detailed features of the SWC and its variations have not yet been clarified. In order to monitor variations in the SWC, three HF ocean radar stations were installed around the strait. The radar covers a range of approximately 70 km from the coast. It is shown that the HF radars clearly capture seasonal and subinertial variations of the SWC. The velocity of the SWC reaches its maximum, approximately 1 m/s, in summer, and weakens in winter. The velocity core is located 20 to 30 km from the coast, and its width is approximately 50 km. The surface transport by the Soya Warm Current shows a significant correlation with the sea level difference along the strait, as derived from coastal tide gauge records. The cross-current sea level difference, which is estimated from the sea level anomalies observed by the Jason-1 altimeter and a coastal tide gauge, also exhibits variation in concert with the surface transport and along-current sea level difference.

  14. EFFECTS OF MEDU AND COASTAL TOPOGRAPHY ON THE DAMAGE PATTERN DURING THE RECENT INDIAN OCEAN TSUNAMI ALONG THE COAST OF TAMILNADU

    Directory of Open Access Journals (Sweden)

    J.P. Narayan

    2005-01-01

    Full Text Available Effects of Medu (naturally elevated landmass very close to the seashore and elongated parallel to the coast and coastal topography on the damage pattern during the deadliest Indian Ocean tsunami of December 26, 2004 is reported. The tsunami caused severe damage and claimed many victims in the coastal areas of eleven countries bordering the Indian Ocean. The damage survey revealed large variation in damage along the coastal region of Tamilnadu (India.The most severe damage was observed in the Nagapattinam district on the east coast and the west coast of Kanyakumari district. Decrease of damage from Nagapattinam to Kanchipuram district was observed. Intense damage again appeared to the north of Adyar River (from Srinivaspuri to Anna Samadhi Park. Almost, no damage was observed along the coast of Thanjavur, Puddukkotai and Ramnathpuram districts in Palk Strait, situated in the shadow zone of Sri Lanka.It was concluded that the width of continental shelf has played a major role in the pattern of tsunami damage. It was inferred that the width of the continental shelf and the interference of reflected waves from Sri Lanka and Maldives Islands with direct waves and receding waves was responsible for intense damage in Nagapattinam and Kanyakumari districts, respectively. During the damage survey authors also noted that there was almost no damage or much lesser damage to houses situated on or behind the Medu. Many people observed the first arrival. The largest tsunami amplitude occurred as the first arrival on the eastern coast and in the second arrival on the western coast.

  15. Assessing the quality of bottom water temperatures from the Finite-Volume Community Ocean Model (FVCOM) in the Northwest Atlantic Shelf region

    Science.gov (United States)

    Li, Bai; Tanaka, Kisei R.; Chen, Yong; Brady, Damian C.; Thomas, Andrew C.

    2017-09-01

    The Finite-Volume Community Ocean Model (FVCOM) is an advanced coastal circulation model widely utilized for its ability to simulate spatially and temporally evolving three-dimensional geophysical conditions of complex and dynamic coastal regions. While a body of literature evaluates model skill in surface fields, independent studies validating model skill in bottom fields over large spatial and temporal scales are scarce because these fields cannot be remotely sensed. In this study, an evaluation of FVCOM skill in modeling bottom water temperature was conducted by comparison to hourly in situ observed bottom temperatures recorded by the Environmental Monitors on Lobster Traps (eMOLT), a program that attached thermistors to commercial lobster traps from 2001 to 2013. Over 2 × 106 pairs of FVCOM-eMOLT records were evaluated by a series of statistical measures to quantify accuracy and precision of the modeled data across the Northwest Atlantic Shelf region. The overall comparison between modeled and observed data indicates reliable skill of FVCOM (r2 = 0.72; root mean squared error = 2.28 °C). Seasonally, the average absolute errors show higher model skill in spring, fall and winter than summer. We speculate that this is due to the increased difficulty of modeling high frequency variability in the exact position of the thermocline and frontal zones. The spatial patterns of the residuals suggest that there is improved similarity between modeled and observed data at higher latitudes. We speculate that this is due to increased tidal mixing at higher latitudes in our study area that reduces stratification in winter, allowing improved model accuracy. Modeled bottom water temperatures around Cape Cod, the continental shelf edges, and at one location at the entrance to Penobscot Bay were characterized by relatively high errors. Constraints for future uses of FVCOM bottom water temperature are provided based on the uncertainties in temporal-spatial patterns. This study is

  16. Proceedings of oceans '91

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This volume contains the proceedings of the Oceans '91 Conference. Topics addressed include: ocean energy conversion, marine communications and navigation, ocean wave energy conversion, environmental modeling, global climate change, ocean minerals technology, oil spill technology, and submersible vehicles

  17. Seasonal variations of C1-C4 alkyl nitrates at a coastal site in Hong Kong: Influence of photochemical formation and oceanic emissions.

    Science.gov (United States)

    Song, Junwei; Zhang, Yingyi; Huang, Yu; Ho, Kin Fai; Yuan, Zibing; Ling, Zhenhao; Niu, Xiaojun; Gao, Yuan; Cui, Long; Louie, Peter K K; Lee, Shun-Cheng; Lai, Senchao

    2018-03-01

    Five C 1 -C 4 alkyl nitrates (RONO 2 ) were measured at a coastal site in Hong Kong in four selected months of 2011 and 2012. The total mixing ratios of C 1 -C 4 RONO 2 (Σ 5 RONO 2 ) ranged from 15.4 to 143.7 pptv with an average of 65.9 ± 33.0 pptv. C 3 -C 4 RONO 2 (2-butyl nitrate and 2-propyl nitrate) were the most abundant RONO 2 during the entire sampling period. The mixing ratios of C 3 -C 4 RONO 2 were higher in winter than those in summer, while the ones of methyl nitrate (MeONO 2 ) were higher in summer than those in winter. Source analysis suggests that C 2 -C 4 RONO 2 were mainly derived from photochemical formation along with biomass burning (58.3-71.6%), while ocean was a major contributor to MeONO 2 (53.8%) during the whole sampling period. The photochemical evolution of C 2 -C 4 RONO 2 was investigated, and found to be dominantly produced by the parent hydrocarbon oxidation. The notable enrichment of MeONO 2 over C 3 -C 4 RONO 2 was observed in a summer episode when the air masses originating from the South China Sea (SCS) and MeONO 2 was dominantly derived from oceanic emissions. In order to improve the accuracy of ozone (O 3 ) prediction in coastal environment, the relative contribution of RONO 2 from oceanic emissions versus photochemical formation and their coupling effects on O 3 production should be taken into account in future studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. NOAA/NOS National Centers for Coastal Ocean Science (NCCOS) /Center for Coastal Ocean Science (CCMA) benthic habitat and fish community assessment, La Parguera and Guanica, Puerto Rico, 2011-2012 (NODC Accession 0104343)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were collected in order to 1) To spatially characterize and monitor the distribution, abundance, and size of both reef fishes and macro-invertebrates...

  19. NOAA/NOS National Centers for Coastal Ocean Science (NCCOS) /Center for Coastal Ocean Science (CCMA) benthic habitat and fish community assessment, Flower Garden Banks, Texas, 2009-2011 (NODC Accession 0104344)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Flower Garden Banks National Marine Sanctuary (FGBNMS) represents the northernmost tropical western Atlantic coral reef on the continental shelf and supports the...

  20. Coastal Economic Trends for Coastal Geographies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These market data provide a comprehensive set of measures of changes in economic activity throughout the coastal regions of the United States. In regard to the...

  1. Southern Alaska Coastal Relief Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building coastal-relief models (CRM) for select U.S. coastal regions. Bathymetric, topographic, and shoreline data...

  2. Assessment of Urbanization on the Integrated Land-Ocean-Atmosphere Environment in Coastal Metropolis in Preparation for HyspIRI

    Science.gov (United States)

    Sequera, Pedro; McDonald, Kyle C.; Gonzalez, Jorge; Arend, Mark; Krakauer, Nir; Bornstein, Robert; Luvll, Jeffrey

    2012-01-01

    The need for comprehensive studies of the relationships between past and projected changes of regional climate and human activity in comple x urban environments has been well established. The HyspIRI preparato ry airborne activities in California, associated science and applicat ions research, and eventually HyspIRI itself provide an unprecedented opportunity for development and implementation of an integrated data and modeling analysis system focused on coastal urban environments. We will utilize HyspIRI preparatory data collections in developing ne w remote sensing-based tools for investigating the integrated urban e nvironment, emphasizing weather, climate, and energy demands in compl ex coastal cities.

  3. Regional Ocean Data Assimilation

    KAUST Repository

    Edwards, Christopher A.; Moore, Andrew M.; Hoteit, Ibrahim; Cornuelle, Bruce D.

    2015-01-01

    This article reviews the past 15 years of developments in regional ocean data assimilation. A variety of scientific, management, and safety-related objectives motivate marine scientists to characterize many ocean environments, including coastal

  4. SOME BIOLOGICAL ASPECTS OF SCALLOPED HAMMERHEAD SHARKS (Sphyrna lewini Griffith & Smith, 1834 CAUGHT FROM COASTAL FISHERIES IN THE EASTERN INDIAN OCEAN

    Directory of Open Access Journals (Sweden)

    Umi Chodrijah

    2015-12-01

    Full Text Available Indonesia has the largest chondrichthyan fishery in the world, with a reported of 105,000 and 118,000 tonnes landed in 2002 and 2003 respectively. Scalloped hammerhead shark was either targeted or by-catch from this fishery, mostly for its fins. Despite of the growing concern around the world, the availability of biological data of this species, especially in the Eastern Indian Ocean is still lacking. The objectives of this paper are to present some biological information (size composition and sex ratio of the scalloped hammerhead, from coastal fisheries in Eastern Indian Ocean. The data used for the analysis comprised of two components, i.e. survey data in 2010 (February, March, June, August, October and December and data from daily monitoring shark landing in 2013 (January to December. Substantially lower mean size, more immature sharks and more frequent of female caught over years showed that scalloped hammerhead shark in the Eastern Indian Ocean are facing intensive fishing pressure which could lead to overfishing. This could harm the sustainability of scalloped hammerhead shark resource in the long run. The relationship between clasper length and total length was positively correlated where every 5 cmTL increment on clasper length adding 51 cmTL on total length.

  5. The Ocean: Source of Nutrition for the Future. A Learning Experience for Coastal and Oceanic Awareness Studies, No. 305. [Project COAST].

    Science.gov (United States)

    Delaware Univ., Newark. Coll. of Education.

    The question of future sources of food is posed with increasing frequency as the amount of arable land per person decreases with population growth. The role of the ocean as a food supplier is currently being explored. This learning experience is designed for secondary school students. It is divided into four major areas: (1) an overview, (2)…

  6. The Ocean: Our Future

    Science.gov (United States)

    Independent World Commission On The Oceans; Soares, Mario

    1998-09-01

    The Ocean, Our Future is the official report of the Independent World Commission on the Oceans, chaired by Mário Soares, former President of Portugal. Its aim is to summarize the very real problems affecting the ocean and its future management, and to provide imaginative solutions to these various and interlocking problems. The oceans have traditionally been taken for granted as a source of wealth, opportunity and abundance. Our growing understanding of the oceans has fundamentally changed this perception. We now know that in some areas, abundance is giving way to real scarcity, resulting in severe conflicts. Territorial disputes that threaten peace and security, disruptions to global climate, overfishing, habitat destruction, species extinction, indiscriminate trawling, pollution, the dumping of hazardous and toxic wastes, piracy, terrorism, illegal trafficking and the destruction of coastal communities are among the problems that today form an integral part of the unfolding drama of the oceans. Based on the deliberations, experience and input of more than 100 specialists from around the world, this timely volume provides a powerful overview of the state of our water world.

  7. Deriving optical properties of Mahakam Delta coastal waters, Indonesia using in situ measurements and ocean color model inversion

    NARCIS (Netherlands)

    Budhiman, S.; Salama, M.S.; Vekerdy, Z.; Verhoef, W.

    2012-01-01

    The development of an operational water quality monitoring method based on remote sensing data requires information on the apparent and inherent optical properties of water (AOP and IOP respectively). This study was performed to determine the apparent and inherent optical properties of coastal

  8. National Status and Trends, Benthic Surveillance Project Pathology, 1984-1992, National Centers for Coastal Ocean Science

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In order to determine the current status of and to detect any long-term trends in the environmental quality of U.S. nearshore waters, NOAA initiated the National...

  9. National Status and Trends: Bioeffects Assessment Program Sites (1986 to present) Compiled from NOAA's National Centers for Coastal Ocean Science

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains sample collection location information for the National Status and Trends, Bioeffects Assessment Project. The Bioeffects Assessment Sites data...

  10. National Status and Trends, Benthic Surveillance Project Chemistry Data, 1984-1992, National Centers for Coastal Ocean Science

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Status and Trends (NS&T) Benthic Surveillance Project Chemistry data file reports the trace concentrations of a suite of chemical contaminants in...

  11. National Status and Trends, Benthic Surveillance Project Sites, 1984-1992, National Centers for Coastal Ocean Science

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set reports information regarding the nominal sampling locations for the National Status and Trends Benthic Surveillance Project sites. One record is...

  12. National Status and Trends, Benthic Surveillance Project Chemistry Data, 1984-1992, National Centers for Coastal Ocean Science

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Status and Trends (NSandT) Benthic Surveillance Project Chemistry data file reports the trace concentrations of a suite of chemical contaminants in...

  13. National Status and Trends, Benthic Surveillance Project DNA-Xenobiotic Adducts Data, 1991, National Centers for Coastal Ocean Science

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In order to determine the current status of and to detect any long-term trends in the environmental quality of U.S. nearshore waters, NOAA initiated the National...

  14. Oceanic and coastal dissolved iron observations from 1978-01-01 to 2004-12-31 (NCEI Accession 0067344)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Keith Moore observational dissolved Iron database. Moore expanded the original iron database complied by Parekh et al. (2005. The complete dataset with references to...

  15. Observations of Recent Arctic Sea Ice Volume Loss and Its Impact on Ocean-Atmosphere Energy Exchange and Ice Production

    Science.gov (United States)

    Kurtz, N. T.; Markus, T.; Farrell, S. L.; Worthen, D. L.; Boisvert, L. N.

    2011-01-01

    Using recently developed techniques we estimate snow and sea ice thickness distributions for the Arctic basin through the combination of freeboard data from the Ice, Cloud, and land Elevation Satellite (ICESat) and a snow depth model. These data are used with meteorological data and a thermodynamic sea ice model to calculate ocean-atmosphere heat exchange and ice volume production during the 2003-2008 fall and winter seasons. The calculated heat fluxes and ice growth rates are in agreement with previous observations over multiyear ice. In this study, we calculate heat fluxes and ice growth rates for the full distribution of ice thicknesses covering the Arctic basin and determine the impact of ice thickness change on the calculated values. Thinning of the sea ice is observed which greatly increases the 2005-2007 fall period ocean-atmosphere heat fluxes compared to those observed in 2003. Although there was also a decline in sea ice thickness for the winter periods, the winter time heat flux was found to be less impacted by the observed changes in ice thickness. A large increase in the net Arctic ocean-atmosphere heat output is also observed in the fall periods due to changes in the areal coverage of sea ice. The anomalously low sea ice coverage in 2007 led to a net ocean-atmosphere heat output approximately 3 times greater than was observed in previous years and suggests that sea ice losses are now playing a role in increasing surface air temperatures in the Arctic.

  16. Ocean Carbon and Biogeochemistry Scoping Workshop on Terrestrial and Coastal Carbon Fluxes in the Gulf of Mexico, St. Petersburg, FL, May 6-8, 2008

    Science.gov (United States)

    Robbins, L.L.; Coble, P.G.; Clayton, T.D.; Cai, W.J.

    2009-01-01

    Despite their relatively small surface area, ocean margins may have a significant impact on global biogeochemical cycles and, potentially, the global air-sea fluxes of carbon dioxide. Margins are characterized by intense geochemical and biological processing of carbon and other elements and exchange large amounts of matter and energy with the open ocean. The area-specific rates of productivity, biogeochemical cycling, and organic/inorganic matter sequestration are high in coastal margins, with as much as half of the global integrated new production occurring over the continental shelves and slopes (Walsh, 1991; Doney and Hood, 2002; Jahnke, in press). However, the current lack of knowledge and understanding of biogeochemical processes occurring at the ocean margins has left them largely ignored in most of the previous global assessments of the oceanic carbon cycle (Doney and Hood, 2002). A major source of North American and global uncertainty is the Gulf of Mexico, a large semi-enclosed subtropical basin bordered by the United States, Mexico, and Cuba. Like many of the marginal oceans worldwide, the Gulf of Mexico remains largely unsampled and poorly characterized in terms of its air-sea exchange of carbon dioxide and other carbon fluxes. In May 2008, the Ocean Carbon and Biogeochemistry Scoping Workshop on Terrestrial and Coastal Carbon Fluxes in the Gulf of Mexico was held in St. Petersburg, FL, to address the information gaps of carbon fluxes associated with the Gulf of Mexico and to offer recommendations to guide future research. The meeting was attended by over 90 participants from over 50 U.S. and Mexican institutions and agencies. The Ocean Carbon and Biogeochemistry program (OCB; http://www.us-ocb.org/) sponsored this workshop with support from the National Science Foundation, the National Oceanic and Atmospheric Administration, the National Aeronautics and Space Administration, the U.S. Geological Survey, and the University of South Florida. The goal of

  17. 76 FR 57022 - Coastal Zone Management Program: Illinois

    Science.gov (United States)

    2011-09-15

    ... DEPARTMENT OF COMMERCE National Oceanic And Atmospheric Administration Coastal Zone Management Program: Illinois AGENCY: Office of Ocean and Coastal Resource Management (OCRM), National Oceanic and...: Illinois has submitted a coastal management program to NOAA for approval under the Coastal Zone Management...

  18. Oceanographic and surface meteorological data collected from station shp by University of South Florida (USF) Coastal Ocean Monitoring and Prediction System (USF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida and North Atlantic Ocean from 2014-02-13 to 2015-01-29 (NODC Accession 0118791)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0118791 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  19. Oceanographic and surface meteorological data collected from station fhp by University of South Florida (USF) Coastal Ocean Monitoring and Prediction System (USF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida, Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2015-01-29 (NODC Accession 0118789)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0118789 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  20. Oceanographic and surface meteorological data collected from station c21 by University of South Florida (USF) Coastal Ocean Monitoring and Prediction System (USF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida, Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2014-12-14 (NODC Accession 0118788)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0118788 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  1. NOAA/NOS National Centers for Coastal Ocean Science (NCCOS) /Center for Coastal Ocean Science (CCMA) benthic habitat and fish community assessment, U.S. Virgin Islands, 2011-2012 (NODC Accession 0088018)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were collected 2011-2012 from select locations on St. Thomas, St. Croix, and St. John (U.S. VI) in order to 1) to spatially characterize and monitor the...

  2. Application of the Streamflow Prediction Tool to Estimate Sediment Dredging Volumes in Texas Coastal Waterways

    Science.gov (United States)

    Yeates, E.; Dreaper, G.; Afshari, S.; Tavakoly, A. A.

    2017-12-01

    Over the past six fiscal years, the United States Army Corps of Engineers (USACE) has contracted an average of about a billion dollars per year for navigation channel dredging. To execute these funds effectively, USACE Districts must determine which navigation channels need to be dredged in a given year. Improving this prioritization process results in more efficient waterway maintenance. This study uses the Streamflow Prediction Tool, a runoff routing model based on global weather forecast ensembles, to estimate dredged volumes. This study establishes regional linear relationships between cumulative flow and dredged volumes over a long-term simulation covering 30 years (1985-2015), using drainage area and shoaling parameters. The study framework integrates the National Hydrography Dataset (NHDPlus Dataset) with parameters from the Corps Shoaling Analysis Tool (CSAT) and dredging record data from USACE District records. Results in the test cases of the Houston Ship Channel and the Sabine and Port Arthur Harbor waterways in Texas indicate positive correlation between the simulated streamflows and actual dredging records.

  3. Estimation of chlorophyll-a concentration in productive turbid waters using a Hyperspectral Imager for the Coastal Ocean-the Azov Sea case study

    International Nuclear Information System (INIS)

    Gitelson, Anatoly A; Gao Bocai; Li Rongrong; Berdnikov, Sergey; Saprygin, Vladislav

    2011-01-01

    We present here the results of chlorophyll-a (chl-a) concentration estimation using the red and near infrared (NIR) spectral bands of a Hyperspectral Imager for the Coastal Ocean (HICO) in productive turbid waters of the Azov Sea, Russia. During the data collection campaign in the summer of 2010 in Taganrog Bay and the Azov Sea, water samples were collected and concentrations of chl-a were measured analytically. The NIR-red models were tuned to optimize the spectral band selections and chl-a concentrations were retrieved from HICO data. The NIR-red three-band model with HICO-retrieved reflectances at wavelengths 684, 700, and 720 nm explained more than 85% of chl-a concentration variation in the range from 19.67 to 93.14 mg m -3 and was able to estimate chl-a with root mean square error below 10 mg m -3 . The results indicate the high potential of HICO data to estimate chl-a concentration in turbid productive (Case II) waters in real-time, which will be of immense value to scientists, natural resource managers, and decision makers involved in managing the inland and coastal aquatic ecosystems.

  4. Geometrical effects on western intensification of wind-driven ocean currents: The rotated-channel Stommel model, coastal orientation, and curvature

    Science.gov (United States)

    Boyd, John P.; Sanjaya, Edwin

    2014-03-01

    We revisit early models of steady western boundary currents [Gulf Stream, Kuroshio, etc.] to explore the role of irregular coastlines on jets, both to advance the research frontier and to illuminate for education. In the framework of a steady-state, quasigeostrophic model with viscosity, bottom friction and nonlinearity, we prove that rotating a straight coastline, initially parallel to the meridians, significantly thickens the western boundary layer. We analyze an infinitely long, straight channel with arbitrary orientation and bottom friction using an exact solution and singular perturbation theory, and show that the model, though simpler than Stommel's, nevertheless captures both the western boundary jet (“Gulf Stream”) and the “orientation effect”. In the rest of the article, we restrict attention to the Stommel flow (that is, linear and inviscid except for bottom friction) and apply matched asymptotic expansions, radial basis function, Fourier-Chebyshev and Chebyshev-Chebyshev pseudospectral methods to explore the effects of coastal geometry in a variety of non-rectangular domains bounded by a circle, parabolas and squircles. Although our oceans are unabashedly idealized, the narrow spikes, broad jets and stationary points vividly illustrate the power and complexity of coastal control of western boundary layers.

  5. Dynamics of the transition zone in coastal zone color scanner-sensed ocean color in the North Pacific during oceanographic spring

    Science.gov (United States)

    Glover, David M.; Wroblewski, J. S.; Mcclain, Charles R.

    1994-01-01

    A transition zone in phytoplankton concentration running across the North Pacific basin at 30 deg to 40 deg north latitude corresponds to a basin-wide front in surface chlorophyll observed in a composite of coastal zone color scanner (CZCS) images for May, June, and July 1979-1986. This transition zone with low chlorophyll to the south and higher chlorophyll to the north can be simulated by a simple model of the concentration of phytoplankton, zooplankton, and dissolved nutrient (nitrate) in the surface mixed layer of the ocean applied to the North Pacific basin for the climatological conditions during oceanographic springtime (May, June, and July). The model is initialized with a 1 deg x 1 deg gridded estimate of wintertime (February, March, and April) mixed layer nitrate concentrations calculated from an extensive nutrient database and a similarly gridded mixed layer depth data set. Comparison of model predictions with CZCS data provides a means of evaluating the dynamics of the transition zone. We conclude that in the North Pacific, away from major boundary currents and coastal upwelling zones, wintertime vertical mixing determines the total nutrient available to the plankton ecosystem in the spring. The transition zone seen in basin-scale CZCS images is a reflection of the geographic variation in the wintertime mixed layer depth and the nitracline, leading to a latitudinal gradient in phytoplankton chlorophyll.

  6. Bio-physical changes in the coastal ocean triggered by typhoon: A case of Typhoon Meari in summer 2011

    Science.gov (United States)

    Wu, Xiao; Wang, Houjie; Bi, Naishuang; Song, Zhenjie; Zang, Zhengchen; Kineke, Gail C.

    2016-12-01

    Based on the combination of synchronous satellite and in-situ observations, we here, for the first time, provide the compelling evidence of bio-physical response of coastal environment in the Bohai Sea (China) to the passage of Typhoon Meari over the northern Yellow Sea on June 26, 2011. Strong sustained winds induced a tongue-like intrusion of cool water from the northern Yellow Sea into the Bohai Sea, resulting in significant surface cooling and an anomalous increase in sea surface height along the coast of the western Bohai Sea. This, in return, produced downwelling and transport of the warm and nutrient-rich coastal water from the western coast to the central Bohai Sea, as driven by the barotropic pressure gradient force. In-situ observational data confirmed the cooling of both surface and bottom layers with salinity increase; however, the measured temperature increase by 2-3 °C, concomitant salinity decrease by 0.3 PSU and two-fold increase in chlorophyll-a in the middle layers suggested an influence from coastal downwelling. Ekman transport and typhoon-enhanced mixing redistributed the nutrients and thus resulted in higher chlorophyll-a concentrations in the upper layers.

  7. Isotope composition and volume of Earth´s early oceans

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Bird, Dennis K.; Rosing, Minik Thorleif

    2012-01-01

    Oxygen and hydrogen isotope compositions of Earth´s seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs, but hyd...... in Earth´s oceans. Our calculations predict that the oceans of early Earth were up to 26% more voluminous, and atmospheric CH4 and CO2 concentrations determined from limits on hydrogen escape to space are consistent with clement conditions on Archaean Earth.......Oxygen and hydrogen isotope compositions of Earth´s seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs......, but hydrogen´s was not, as it can escape to space. Isotopic properties of serpentine from the approximately 3.8 Ga Isua Supracrustal Belt in West Greenland are used to characterize hydrogen and oxygen isotope compositions of ancient seawater. Archaean oceans were depleted in deuterium [expressed as Î...

  8. Coastal Hazards: Hurricanes, Tsunamis, Coastal Erosion.

    Science.gov (United States)

    Vandas, Steve

    1998-01-01

    Details an ocean-based lesson and provides background information on the designation of 1998 as the "Year of the Ocean" by the United Nations. Contains activities on the poster insert that can help raise student awareness of coastal-zone hazards. (DDR)

  9. Marine information technology - Indian Ocean scenario

    Digital Repository Service at National Institute of Oceanography (India)

    Nayak, M.R.; Gouveia, A.D.; Navelkar, G.S.; Singh, K.

    Marine and coastal information is necessary for sound decision making about sustainable utilisation of our oceanic and coastal resources. Due to inadequate data management tools, lack of information technology benefits in the minds of the ocean...

  10. Large volume recycling of oceanic lithosphere over short time scales: geochemical constraints from the Caribbean Large Igneous Province

    Science.gov (United States)

    Hauff, F.; Hoernle, K.; Tilton, G.; Graham, D. W.; Kerr, A. C.

    2000-01-01

    isochron diagrams suggests that the age of separation of enriched and depleted components from the depleted MORB source mantle could have been ≤500 Ma before CLIP formation and interpreted to reflect the recycling time of the CLIP source. Mantle plume heads may provide a mechanism for transporting large volumes of possibly young recycled oceanic lithosphere residing in the lower mantle back into the shallow MORB source mantle.

  11. New Hampshire / Southern Maine Ocean Uses Atlas: Dominant and Aggregates

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Uses Atlas Project is an innovative partnership between the Coastal Response Research Center (CRRC) and NOAA's Office of Ocean and Coastal Resource...

  12. New Hampshire / Southern Maine Ocean Uses Atlas: Fishing sector

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Uses Atlas Project is an innovative partnership between the Coastal Response Research Center (CRRC) and NOAA's Office of Ocean and Coastal Resource...

  13. New Hampshire / Southern Maine Ocean Uses Atlas: Industrial sector

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Uses Atlas Project is an innovative partnership between the Coastal Response Research Center (CRRC) and NOAA's Office of Ocean and Coastal Resource...

  14. Coastal aquifers: Scientific advances in the face of global environmental challenges

    Science.gov (United States)

    Post, Vincent E. A.; Werner, Adrian D.

    2017-08-01

    Coastal aquifers embody the subsurface transition between terrestrial and marine systems, and form the almost invisible pathway for tremendous volumes of freshwater that flow to the ocean. Changing conditions of the earth's landscapes and oceans can disrupt the fragile natural equilibrium between fresh and saltwater that exists in coastal zones. Among these, over-abstraction of groundwater is considered the leading man-made cause of seawater intrusion. Moreover, many of the world's largest urban settings, where sources of contamination are profuse, have been built over the freshwater in coastal aquifers. Thus, coastal aquifers are important receptors of human impacts to water on Earth (Michael et al., 2017). This Special Issue on 'Investigation and Management of Coastal Aquifers' contains current scientific advances on the topic, dealing with the storage and quality of water, affected by stressors ranging in scale from point source contamination to global climate change.

  15. Data Processing and First Products from the Hyperspectral Imager for the Coastal Ocean (HICO) on the International Space Station

    Science.gov (United States)

    2010-04-01

    NRL Stennis Space Center (NRL-SSC) for further processing using the NRL SSC Automated Processing System (APS). APS was developed for processing...have not previously developed automated processing for 73 hyperspectral ocean color data. The hyperspectral processing branch includes several

  16. Development of a Kelp-Type Structure Module in a Coastal Ocean Model to Assess the Hydrodynamic Impact of Seawater Uranium Extraction Technology

    Directory of Open Access Journals (Sweden)

    Taiping Wang

    2014-02-01

    Full Text Available With the rapid growth of global energy demand, interest in extracting uranium from seawater for nuclear energy has been renewed. While extracting seawater uranium is not yet commercially viable, it serves as a “backstop” to the conventional uranium resources and provides an essentially unlimited supply of uranium resource. With recent technology advances, extracting uranium from seawater could be economically feasible only when the extraction devices are deployed at a large scale (e.g., several hundred km2. There is concern however that the large scale deployment of adsorbent farms could result in potential impacts to the hydrodynamic flow field in an oceanic setting. In this study, a kelp-type structure module based on the classic momentum sink approach was incorporated into a coastal ocean model to simulate the blockage effect of a farm of passive uranium extraction devices on the flow field. The module was quantitatively validated against laboratory flume experiments for both velocity and turbulence profiles.Model results suggest that the reduction in ambient currents could range from 4% to 10% using adsorbent farm dimensions and mooring densities previously described in the literature and with typical drag coefficients.

  17. Seasonality in the coastal ocean of North America, 35°N - 48°N [abstract

    OpenAIRE

    Strub, Ted; Smith, Robert

    1986-01-01

    EXTRACT (SEE PDF FOR FULL ABSTRACT): The seasonal cycles of coastal wind stress, adjusted sea level height (ASL), shelf currents and water temperatures off the west coast of North America (35°N to 48°N) were estimated by fitting annual and semiannual harmonics to data from 1981-1983. Longer records of monthly ASL indicate that these two harmonics adequately represent the long-term monthly average seasonal cycle, and that the current measurement period is long enough to define the seasonal...

  18. Observed changes in ocean acidity and carbon dioxide exchange in the coastal Bay of Bengal - a link to air pollution

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; Krishna, M.S.; Paul, Y.S.; Murty, V.S.N.

    acidity and carbon dioxide exchange in the coastal Bay of Bengal � a link to air pollution By V. V. S. S. SARMA*, M. S. KRISHNA, Y. S. PAUL and V. S. N. MURTY, CSIR�National Institute of Oceanography, 176 Lawsons Bay Colony, Visakhapatnam, India... atmosphere boundary layer over the Bay of Bengal (mean: 5.7 mg m�3) compared to fluxes in the Arabian Sea (mean: 2.9 mg m�3), indicating that the former receives more pollutants than the latter region during January to April when air flow from land to sea...

  19. Coastal California Digital Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital ortho-imagery dataset is a survey of coastal California. The project area consists of approximately 3774 square miles. The project design of the digital...

  20. Ocean Drilling Program Leg 112, Peru continental margin: Part 2, Sedimentary history and diagenesis in a coastal upwelling environment

    Science.gov (United States)

    Suess, E.; von Huene, R.

    1988-10-01

    On the shelf and upper slope off Peru the signal of coastal upwelling productivity and bottom-water oxygen is well preserved in alternately laminated and bioturbated diatomaceous Quaternary sediments. Global sea-level fluctuations are the ultimate cause for these cyclic facies changes. During late Miocene time, coastal upwelling was about 100 km west of the present centers, along the edge of an emergent structure that subsequently subsided to form the modern slope. The sediments are rich in organic carbon, and intense microbially mediated decomposition of organic matter is evident in sulfate reduction and methanogenesis. These processes are accompanied by the formation of diagenetic carbonates, mostly Ca-rich dolomites and Mg-calcites. The downhole isotopic signatures of these carbonate cements display distinct successions that reflect the vertical evolution of the pore fluid environment. From the association of methane gas hydrates, burial depth, and low-chloride interstitial fluids, we suggest an additional process that could contribute to the characteristic chloride depletion in pore fluids of active margins: release of interlayer water from clays without a mineral phase change. The shelf sediments also contain a subsurface brine that stretches for more than 500 km from north to south over the area drilled. The source of the brine remains uncertain, although the composition of the oxygen isotopes suggests dissolution of evaporites by seawater.

  1. Zooplankton biomass (displacement volume) data collected during the NMFS Marine Mammal Survey program from Pacific Ocean from 1998-08-03 to 2006-12-05 (NODC Accession 0071761)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Zooplankton biomass (displacement volume) data collected during the NMFS Marine Mammal Survey program from Pacific Ocean from 1998-08-03 to 2006-12-05, data were...

  2. Effects of land use changes on eutrophication indicators in five coastal lagoons of the Southwestern Atlantic Ocean

    Science.gov (United States)

    Rodríguez-Gallego, Lorena; Achkar, Marcel; Defeo, Omar; Vidal, Leticia; Meerhoff, Erika; Conde, Daniel

    2017-03-01

    Five catchment areas in Uruguay were selected to conduct a nutrient exportation analysis and to evaluate the effects of current land use on the eutrophication of coastal lagoons. Satellite images and national agriculture censuses were used for a quantitative analysis of land use changes from 1974 to 2005, and a nutrient export coefficient approximation was used to determine long-term changes in annual loads. Several eutrophication indicators (water, sediment and autotrophic communities) were assessed seasonally in the lagoon basins during 2005 and 2006. The areal annual load of nutrients exported to the lagoons increased over time. Population and extensive livestock ranching were the most important nutrient sources, while agriculture is increasing in importance. Buffer effects of riparian forests on eutrophication indicators were observed in contrast to the wetlands surrounding the lagoons, which seem to be acting as a source of nutrients. Catchment size was inversely related to most eutrophication indicators. Afforestation and agriculture were found not to directly impact eutrophication indicators, however, catchments with larger agricultural areas showed higher concentrations of suspended solids, which may indicate the export of particulate nutrients. Salinity was inversely related to most eutrophication indicators, suggesting that the manipulation of the sand bar of the lagoons is a critical management issue. Sediment-related eutrophication indicators were more sensitive to changes in land uses and covers, in contrast with the more variable water column indicators, suggesting their potential use as enduring indicators. This research provides a rapid and integral assessment for qualitatively linking catchment changes with eutrophication indicators in coastal environments, which can easily be replicated to track pollutants in locations that lack standardized monitoring programs needed for more complex catchment modeling approaches.

  3. Interpreting operational altimetry signals in near-coastal areas using underwater autonomous vehicles and remotely sensed ocean colour data

    Science.gov (United States)

    Borrione, Ines; Oddo, Paolo; Russo, Aniello; Coelho, Emanuel

    2017-04-01

    During the LOGMEC16 (Long-Term Glider Mission for Environmental Characterization) sea trial carried out in the eastern Ligurian Sea (Northwestern Mediterranean Sea), two oceanographic gliders rated to a maximum depth of 1000m were operating continuously from 3 May to 27 June 2016. When possible, glider tracks were synchronized with the footprints of contemporaneous altimeters (i.e., Jason 2, Altika and Cryosat 2). Temperature and salinity measured by the gliders along the tracks that were co-localized with the altimeter passages, were used to calculate along-track dynamic heights. The latter were then compared with near-real time absolute sea level CMEMS-TAPAS (Copernicus Marine Environment Monitoring Service - Tailored Product for Data Assimilation) product. TAPAS provides along-track sea level anomaly (SLA) estimates together with all the terms used in the correction and the associated Mean Dynamic Topography. Where available, the CMEMS near-real time 1km resolution, Aqua-MODIS ocean colour data was also used as a tracer of the main oceanographic features of the region. Comparison between SLA derived from gliders and TAPAS along common transects, indicates that differences increase for larger sampling time lags between platforms and especially when time differences exceed 20 hrs. In fact, contemporaneous ocean color images reveal the presence of several mesoscale/sub-mesoscale structures (i.e., transient meanders and filaments), suggesting that the oceanographic variability of the region is likely the main cause for the differences observed between the glider and altimetry-based SLA. Results from this study provide additional evidence of the advantages on using a networked ocean observing system. In fact, the interpretation of in-situ observations obtained from a continuously operating sampling platform (also during ongoing experiments at sea) can be greatly improved when combined with other operational datasets, as the CMEMS SLA used here.

  4. Iron Availability Influences Silicon Isotope Fractionation in Two Southern Ocean Diatoms (Proboscia inermis and Eucampia antarctica and a Coastal Diatom (Thalassiosira pseudonana

    Directory of Open Access Journals (Sweden)

    Scott Meyerink

    2017-07-01

    Full Text Available The fractionation of silicon (Si isotopes was measured in two Southern Ocean diatoms (Proboscia inermis and Eucampia Antarctica and a coastal diatom (Thalassiosira pseudonana that were grown under varying iron (Fe concentrations. Varying Fe concentrations had no effect on the Si isotope enrichment factor (ε in T. pseudonana, whilst E. Antarctica and P. inermis exhibited significant variations in the value of ε between Fe-replete and Fe-limited conditions. Mean ε values in P. inermis and E. Antarctica decreased from (± 1SD −1.11 ± 0.15‰ and −1.42 ± 0.41 ‰ (respectively under Fe-replete conditions, to −1.38 ± 0.27 ‰ and −1.57 ± 0.5 ‰ (respectively under Fe-limiting conditions. These variations likely arise from adaptations in diatoms arising from the nutrient status of their environment. T. pseudonana is a coastal clone typically accustomed to low Si but high Fe conditions whereas E. Antarctica and P. inermis are typically accustomed to High Si, High nitrate low Fe conditions. Growth induced variations in silicic acid (Si(OH4 uptake arising from Fe-limitation is the likely mechanism leading to Si-isotope variability in E. Antarctica and P. inermis. The multiplicative effects of species diversity and resource limitation (e.g., Fe on Si-isotope fractionation in diatoms can potentially alter the Si-isotope composition of diatom opal in diatamaceous sediments and sea surface Si(OH4. This work highlights the need for further in vitro studies into intracellular mechanisms involved in Si(OH4 uptake, and the associated pathways for Si-isotope fractionation in diatoms.

  5. Iron bacterial phylogeny and their execution towards iron availability in Equatorial Indian Ocean and Coastal Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Rajasabapathy, R.; Mohandass, C.; VijayRaj, A.S.; Madival, V.V.; Meena, R.M.

    -264. Edwards K.J., W. Bach, T.M. McCollom and D.R. Rogers. 2004. Neutrophilic Iron-Oxidizing Bacteria in the Ocean: Their Habitats, Diversity, and Roles in Mineral Deposition, Rock Alteration, and Biomass Production in the Deep-Sea. Geomicrobiol. J. 21: 393...-404. Edwards K.J., D.R. Rogers, C.O. Wirsen and T.M. McCollom. 2003. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing chemolitho-autotrophic α- and γ -Proteobacteria from the deep sea. Appl. Environ. Microbiol. 69: 2906...

  6. Differential impacts of ocean acidification and warming on winter and summer progeny of a coastal squid (Loligo vulgaris).

    Science.gov (United States)

    Rosa, Rui; Trübenbach, Katja; Pimentel, Marta S; Boavida-Portugal, Joana; Faleiro, Filipa; Baptista, Miguel; Dionísio, Gisela; Calado, Ricardo; Pörtner, Hans O; Repolho, Tiago

    2014-02-15

    Little is known about the capacity of early life stages to undergo hypercapnic and thermal acclimation under the future scenarios of ocean acidification and warming. Here, we investigated a comprehensive set of biological responses to these climate change-related variables (2°C above winter and summer average spawning temperatures and ΔpH=0.5 units) during the early ontogeny of the squid Loligo vulgaris. Embryo survival rates ranged from 92% to 96% under present-day temperature (13-17°C) and pH (8.0) scenarios. Yet, ocean acidification (pH 7.5) and summer warming (19°C) led to a significant drop in the survival rates of summer embryos (47%, Pocean acidification and summer warming scenarios. The occurrence of prolonged embryogenesis along with lowered thermal tolerance limits under such conditions is expected to negatively affect the survival success of squid early life stages during the summer spawning period, but not winter spawning.

  7. Ocean Thermal Energy Conversion (OTEC) platform configuration and integration. Volume II. Conceptual design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The purpose of this project is to evaluate six candidate hullforms as candidates for the OTEC commercial plant. This volume is a summary of the conceptual design including facility requirements, cost, schedule, and site sensitivity. Two OTEC commercial plant configurations are considered in this study: the ship and the semi-submersible. Engineering drawings are presented. (WHR)

  8. The Impacts Of The Indian Ocean Tsunami On Coastal Ecosystems And Resultant Effects On The Human Communities Of Sri Lanka

    Science.gov (United States)

    Ingram, J.; Rumbaitis-del Rio, C.; Franco, G.; Khazai, B.

    2005-12-01

    The devastating tsunami that hit Sri Lanka on December 26, 2004 has demonstrated vividly the inter-connections between social and ecological resilience. Before the tsunami, the coastal zone of Sri Lanka was inhabited by predominantly poor populations, most of whom were directly dependent upon coastal natural resources, such as fisheries and coconut trees, for supporting their livelihoods. Many of these people have now lost their livelihoods through the destruction of their boats and nets for fishing, the contamination of drinking sources, homes, family members and assets. This presentation focuses on observations of the tsunami impacts on both social and ecological communities made along the affected coastline of Sri Lanka in April-May 2005. This assessment recorded patterns of ecological resistance and damage resulting from the tsunami in relation to damage on the human environment, with an exploration of the physical factors that may have contributed to vulnerability or resistance. This work also involved a preliminary assessment of the resilience and recovery of different natural resource based livelihood strategies following the disaster and an exploration of livelihood possibilities in proposed resettlement sites. From observations made in this and other recent studies, it is apparent that intact ecosystems played a vital role in protection from the impact of the tsunami and are vital for supporting people as they seek to rebuild their livelihoods. However, certain structural and biological characteristics appear to offer certain tree species, such as coconut (Cocos nucifera), an advantage in surviving such events and have been important for providing food and drink to people in the days after the tsunami. Areas where significant environmental damage had occurred prior to the tsunami or where there were few natural defenses present to protect human communities, devastation of homes and lives was extremely high. Although, there is evidence that many previously

  9. Application of an optimization algorithm to satellite ocean color imagery: A case study in Southwest Florida coastal waters

    Science.gov (United States)

    Hu, Chuanmin; Lee, Zhongping; Muller-Karger, Frank E.; Carder, Kendall L.

    2003-05-01

    A spectra-matching optimization algorithm, designed for hyperspectral sensors, has been implemented to process SeaWiFS-derived multi-spectral water-leaving radiance data. The algorithm has been tested over Southwest Florida coastal waters. The total spectral absorption and backscattering coefficients can be well partitioned with the inversion algorithm, resulting in RMS errors generally less than 5% in the modeled spectra. For extremely turbid waters that come from either river runoff or sediment resuspension, the RMS error is in the range of 5-15%. The bio-optical parameters derived in this optically complex environment agree well with those obtained in situ. Further, the ability to separate backscattering (a proxy for turbidity) from the satellite signal makes it possible to trace water movement patterns, as indicated by the total absorption imagery. The derived patterns agree with those from concurrent surface drifters. For waters where CDOM overwhelmingly dominates the optical signal, however, the procedure tends to regard CDOM as the sole source of absorption, implying the need for better atmospheric correction and for adjustment of some model coefficients for this particular region.

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from EXPLORER OF THE SEAS in the Caribbean Sea, Coastal Waters of Florida and North Atlantic Ocean from 2012-01-27 to 2012-11-24 (NODC Accession 0108232)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108232 includes Surface underway, chemical, meteorological and physical data collected from EXPLORER OF THE SEAS in the Caribbean Sea, Coastal Waters...

  11. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from ENDEAVOUR, JOHN P. TULLY and PARIZEAU in the Coastal Waters of SE Alaska, Gulf of Alaska and North Pacific Ocean from 1985-02-12 to 2010-06-18 (NODC Accession 0110260)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0110260 includes discrete sample and profile data collected from ENDEAVOUR, JOHN P. TULLY and PARIZEAU in the Coastal Waters of SE Alaska, Gulf of...

  12. Nutrient and physical profile data from four Microbial Exchanges and Coupling in Coastal Atlantic Systems (MECCAS) cruises collected aboard the R/V Gyre at the mouth of the Chesapeake Bay and northern Atlantic Ocean from February 17, 1985 to September 7, 1986 (NODC Accession 8800324)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Microbial Exchanges and Coupling in Coastal Atlantic Systems (MECCAS) cruise data collected aboard the R/V Gyre at the mouth of the Chesapeake Bay and northern...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship RONALD H. BROWN in the Coastal Waters of Florida, North Atlantic Ocean and others from 2004-12-29 to 2005-11-25 (NODC Accession 0081020)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0081020 includes Surface underway, chemical, meteorological, optical and physical data collected from NOAA Ship RONALD H. BROWN in the Coastal Waters...

  14. California Cooperative Oceanic Fisheries Investigations: Reports. Volume 36, January 1 to December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Olfe, J. [ed.

    1995-10-01

    California Cooperative Oceanic Fisheries Investigations (CalCOFI) performs research in the area of sampling physical, chemical, and biological variables in the California Current. The information received is stored in databases and gives a better understanding of the physics and chemistry of the California Current. Their effect on the food chain make it possible to view current oceanographic and biological conditions in the context of the long term. Measurements taken during 1994 and early 1995 on CalCOFI cruises have indicated a return to normal conditions after anomalous conditions that dominated the two preceding years. The data have permitted an increasingly prompt assessment of the state of the California Current system off southern California. This report also contains papers presented at the CalCOFI conference in 1994 regarding the 1991--92 El Nino and its impact on fisheries. In addition, individual scientific contributions are included which provide an additional understanding of the processes involved in the California Current.

  15. Ocean Thermal Energy Converstion (OTEC) test facilities study program. Final report. Volume II. Part B

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-17

    Results are presented of an 8-month study to develop alternative non-site-specific OTEC facilities/platform requirements for an integrated OTEC test program which may include land and floating test facilities. Volume II--Appendixes is bound in three parts (A, B, and C) which together comprise a compendium of the most significant detailed data developed during the study. Part B provides an annotated test list and describes component tests and system tests.

  16. ocean_city_md.grd

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to...

  17. Emissions of Water and Carbon Dioxide from Fossil-Fuel Combustion Contribute Directly to Ocean Mass and Volume Increases

    Science.gov (United States)

    Skuce, A. G.

    2014-12-01

    The direct, non-climate, contribution of carbon dioxide and water emissions from fossil-fuel (FF) combustion to the volume and mass of the oceans has been omitted from estimates of sea-level rise (SLR) in IPCC reports. Following the method of Gornitz et al. (1997), H2O emissions are estimated using carbon emissions from the Carbon Dioxide Information Analysis Center, along with typical carbon and hydrogen contents of FF. Historic H2O emissions from 1750 to 2010 amount to 430 ±50 PgH2O, equivalent to 1.2 ±0.2 mmSLR. Sometime in this decade the volume of H2O from historic FF combustion will exceed the volume of Lake Erie (480 km3). CO2 dissolved in the ocean increases the seawater volume by 31-33 mL mol-1 CO2. From 1750 to 2010, 370 ±70 PgCO2 from FF combustion has dissolved in the oceans, causing 0.7 ±0.2 mmSLR. Combined H2O+CO2emissions from FF have therefore added 1.9 ±0.4 mm to sea levels in the Industrial Era. Combustion of FF in 2010 resulted in emissions of 32 PgCO2 and 12 ±1 PgH2O. SLR contributions for that year from FF emissions were 0.033 ±0.005 mm from H2O and 0.011±0.003 mm from dissolved CO2, a total rate of 0.044 ±0.008 mm yr-1. Emissions incorporated in socio-economic models underlying the RCP 8.5 and 2.6 scenarios are used along with concentration-driven CMIP5 Earth System Models results to estimate future sea-level rise from FF combustion. From 2010 to 2100, RCP8.5 and 2.6 models respectively produce 9 ±2 mmSLR and 5 ±1 mmSLR from FF H2O+CO2. For perspective, these amounts are larger than the modelled contributions from loss of glaciers in the Andes. The direct contribution of FF emissions to SLR is small (1-2%) relative to current rates and projected estimates under RCP scenarios up to 2100. The magnitude is similar to SLR estimates from other minor sources such as the melting of floating ice, land-use emissions and produced water from oil operations, none of which are currently included in SLR assessments. As uncertainties in

  18. U.S. Coastal Relief Model - Hawaii

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides the first comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a...

  19. U.S. Coastal Relief Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides the first comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a...

  20. COASTAL Analysis Submission for Middlesex County, CT

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Coastal study data as defined in FEMA Guidelines and Specifications, Appendix D: Guidance for Coastal Flooding Analyses and Mapping (April 2003) and Atlantic Ocean...

  1. NODC Standard Product: International ocean atlas Volume 11 - Climatic atlas of the Sea of Azov 2008 (1 disc set) (NODC Accession 0098574)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Atlas, Climatic Atlas of the Sea of Azov 2008 on CD-ROM, is an update to Volume 10, Climatic Atlas of the Sea of Azov 2006 on CD-ROM (NODC Accession 0098572),...

  2. Organic Carbon Loading in Tropical Near-Shore Ecosystems: the Role of Mangrove Lagoons and Channels in Coastal Ocean Acidification

    Science.gov (United States)

    García, E.; Morell, J. M.

    2016-02-01

    Low energy tropical Caribbean shores are often dominated by highly productive mangrove ecosystems that thrive on land borne inorganic nutrient inputs and whose net production results in significant export of litter and dissolved organic compounds (DOC). These organic matrixes can be effectively transported to nearby ecosystems, including coral reefs whose vulnerability to excessive organic loading has been widely documented. This study documents the seaward transport and transformation of organic carbon from mangrove bays, trough near-shore reef ecosystems and out to open waters in the La Parguera Marine Reserve (LPMR). Considering in-situ colored dissolved organic matter (CDOM) as a tracer for DOC, absorption coefficient values (a350) were observed in the 6.13-0.02 m-1 and 14.08-0.06 m-1 during the dry (from 0 to 0.18 inches of rain) and wet seasons (from 0.68 to 4.76 inches of rain), respectively. Spectral properties (S275-295 and SR) calculations indicate that DOC is predominantly of terrestrial origin and found in high concentrations in enclosed mangrove bays and canals. Data evidences a strong gradient in CDOM concentration decreasing t from inshore to outer shelf waters. Rain precipitation correlated well with high CDOM values (aλ values doubled) and forced LPMR to behave similarly to a river influenced estuary as shown when CDOM is correlated with salinity, contrary to its predominant negative estuary profile. When correlating CDOM with pH and dissolved oxygen concentrations, it is evident that high organic matter content is driving ocean acidification in the nearshore areas. The non-conservative behavior of CDOM implies that other processes besides dilution may play a significant role in its spatial distribution.

  3. Measuring changes in ambient noise levels from the installation and operation of a surge wave energy converter in the coastal ocean

    Energy Technology Data Exchange (ETDEWEB)

    Haxel, Joe H [Oregon State Univ., Newport, OR (United States); Henkel, Sarah K [Oregon State Univ., Newport, OR (United States)

    2017-10-18

    Ecosystem impacts resulting from elevated underwater noise levels generated by anthropogenic activities in the coastal ocean are poorly understood and remain difficult to address as a result of a significant gap in knowledge for existing nearshore sound levels. Ambient noise is an important habitat component for marine mammals and fish that use sound for essential functions such as communication, navigation, and foraging. Questions surrounding the amplitudes, frequency distributions, and durations of noise emissions from renewable wave energy conversion (WEC) projects during their construction and operation present concerns for long-term consequences in marine habitats. Oregon’s dynamic nearshore environment presents significant challenges for passive acoustic monitoring that include flow noise contamination from wave orbital motions, turbulence from breaking surf, equipment burial, and fishing pressure from sport and commercial crabbers. This project included 2 techniques for passive acoustic data collection: 1) campaign style deployments of fixed hydrophone lander stations to capture temporal variations in noise levels and 2) a drifting hydrophone system to record spatial variations within the project site. The hydrophone lander deployments were effective and economically feasible for enabling robust temporal measurements of ambient noise levels in a variety of sea state conditions. Limiting factors for the fixed stations included 1) a flow shield mitigation strategy failure in the first deployment resulting in significant wideband data contamination and 2) flow noise contamination of the unshielded sensors restricting valuable analysis to frequencies above 500 Hz for subsequent deployments. Drifting hydrophone measurements were also effective and economically feasible (although logistically challenging in the beginning of the project due to vessel time constraints) providing a spatial distribution of sound levels, comparisons of noise levels in varying levels

  4. Marine Microbial Gene Abundance and Community Composition in Response to Ocean Acidification and Elevated Temperature in Two Contrasting Coastal Marine Sediments

    Directory of Open Access Journals (Sweden)

    Ashleigh R. Currie

    2017-08-01

    Full Text Available Marine ecosystems are exposed to a range of human-induced climate stressors, in particular changing carbonate chemistry and elevated sea surface temperatures as a consequence of climate change. More research effort is needed to reduce uncertainties about the effects of global-scale warming and acidification for benthic microbial communities, which drive sedimentary biogeochemical cycles. In this research, mesocosm experiments were set up using muddy and sandy coastal sediments to investigate the independent and interactive effects of elevated carbon dioxide concentrations (750 ppm CO2 and elevated temperature (ambient +4°C on the abundance of taxonomic and functional microbial genes. Specific quantitative PCR primers were used to target archaeal, bacterial, and cyanobacterial/chloroplast 16S rRNA in both sediment types. Nitrogen cycling genes archaeal and bacterial ammonia monooxygenase (amoA and bacterial nitrite reductase (nirS were specifically targeted to identify changes in microbial gene abundance and potential impacts on nitrogen cycling. In muddy sediment, microbial gene abundance, including amoA and nirS genes, increased under elevated temperature and reduced under elevated CO2 after 28 days, accompanied by shifts in community composition. In contrast, the combined stressor treatment showed a non-additive effect with lower microbial gene abundance throughout the experiment. The response of microbial communities in the sandy sediment was less pronounced, with the most noticeable response seen in the archaeal gene abundances in response to environmental stressors over time. 16S rRNA genes (amoA and nirS were lower in abundance in the combined stressor treatments in sandy sediments. Our results indicated that marine benthic microorganisms, especially in muddy sediments, are susceptible to changes in ocean carbonate chemistry and seawater temperature, which ultimately may have an impact upon key benthic biogeochemical cycles.

  5. Feasibility of disposal of high-level radioactive waste into the seabed. Volume 5: Dispersal of radionuclides in the oceans: Models, data sets and regional descriptions

    International Nuclear Information System (INIS)

    Marietta, M.G.; Simmons, W.F.

    1988-01-01

    One of the options suggested for disposal of high-level radioactive waste resulting from the generation of nuclear power is burial beneath the deep ocean floor in geologically stable sediment formations which have no economic value. The 8-volume series provides an assessment of the technical feasibility and radiological safety of this disposal concept based on the results obtained by ten years of co-operation and information exchange among the Member countries participating in the NEA Seabed Working Group. This report summarizes the development of a realistic and credible methodology to describe the oceanic dispersion of radionuclides for risk assessment calculations

  6. New Hampshire / Southern Maine Ocean Uses Atlas: Non-Consumptive sector

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Uses Atlas Project is an innovative partnership between the Coastal Response Research Center (CRRC) and NOAA's Office of Ocean and Coastal Resource...

  7. NOAA's Coastal Change Analysis Program (C-CAP) 2001 Regional Land Cover Data - Coastal United States

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Coastal Change Analysis Program (C-CAP) produces national standardized land cover and change products for the coastal regions of the U.S. C-CAP products...

  8. NOAA's Coastal Change Analysis Program (C-CAP) 2016 Regional Land Cover Data - Coastal United States

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Coastal Change Analysis Program (C-CAP) produces national standardized land cover and change products for the coastal regions of the U.S. C-CAP products...

  9. NOAA's Coastal Change Analysis Program (C-CAP) 2006 Regional Land Cover Data - Coastal United States

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Coastal Change Analysis Program (C-CAP) produces national standardized land cover and change products for the coastal regions of the U.S. C-CAP products...

  10. NOAA's Coastal Change Analysis Program (C-CAP) 1985 Regional Land Cover Data - Coastal United States

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Coastal Change Analysis Program (C-CAP) produces national standardized land cover and change products for the coastal regions of the U.S. C-CAP products...

  11. NOAA's Coastal Change Analysis Program (C-CAP) 1996 Regional Land Cover Data - Coastal United States

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Coastal Change Analysis Program (C-CAP) produces national standardized land cover and change products for the coastal regions of the U.S. C-CAP products...

  12. NOAA's Coastal Change Analysis Program (C-CAP) 1992 Regional Land Cover Data - Coastal United States

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Coastal Change Analysis Program (C-CAP) produces national standardized land cover and change products for the coastal regions of the U.S. C-CAP products...

  13. NOAA's Coastal Change Analysis Program (C-CAP) 2006 Forest Fragmentation Data - Coastal United States

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Coastal Change Analysis Program (C-CAP) produces national standardized land cover and change products for the coastal regions of the U.S. C-CAP products...

  14. NOAA's Coastal Change Analysis Program (C-CAP) 2010 Forest Fragmentation Data - Coastal United States

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Coastal Change Analysis Program (C-CAP) produces national standardized land cover and change products for the coastal regions of the U.S. C-CAP products...

  15. NOAA's Coastal Change Analysis Program (C-CAP) 1985 Forest Fragmentation Data - Coastal United States

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Coastal Change Analysis Program (C-CAP) produces national standardized land cover and change products for the coastal regions of the U.S. C-CAP products...

  16. NOAA's Coastal Change Analysis Program (C-CAP) 1996 Forest Fragmentation Data - Coastal United States

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Coastal Change Analysis Program (C-CAP) produces national standardized land cover and change products for the coastal regions of the U.S. C-CAP products...

  17. New Aerosol Models for the Retrieval of Aerosol Optical Thickness and Normalized Water-Leaving Radiances from the SeaWiFS and MODIS Sensors Over Coastal Regions and Open Oceans

    Science.gov (United States)

    Ahmad, Ziauddin; Franz, Bryan A.; McClain, Charles R.; Kwiatkowska, Ewa J.; Werdell, Jeremy; Shettle, Eric P.; Holben, Brent N.

    2010-01-01

    We describe the development of a new suite of aerosol models for the retrieval of atmospheric and oceanic optical properties from the SeaWiFs and MODIS sensors, including aerosol optical thickness (tau), angstrom coefficient (alpha), and water-leaving radiance (L(sub w)). The new aerosol models are derived from Aerosol Robotic Network (AERONET) observations and have bimodal lognormal distributions that are narrower than previous models used by the Ocean Biology Processing Group. We analyzed AERONET data over open ocean and coastal regions and found that the seasonal variability in the modal radii, particularly in the coastal region, was related to the relative humidity, These findings were incorporated into the models by making the modal radii, as well as the refractive indices, explicitly dependent on relative humidity, From those findings, we constructed a new suite of aerosol models. We considered eight relative humidity values (30%, 50%, 70%, 75%, 80%, 85%, 90%. and 95%) and, for each relative humidity value, we constructed ten distributions by varying the fine-mode fraction from zero to 1. In all. 80 distributions (8Rh x 10 fine-mode fractions) were created to process the satellite data. We. also assumed that the coarse-mode particles were nonabsorbing (sea salt) and that all observed absorptions were entirely due to fine-mode particles. The composition of fine mode was varied to ensure that the new models exhibited the same spectral dependence of single scattering albedo as observed in the AERONET data,

  18. Oceanographic data collected from station Scripps Pier in the Coastal Waters of California by Southern California Coastal Ocean Observing System (SCCOOS) at Scripps Institution of Oceanography (SIO) and assembled by Southern California Coastal Ocean Observing System (SCCOOS) Regional Association from 2005-06-16 to 2016-12-31 (NCEI Accession 0157035)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157035 contains oceanographic and surface meteorological data collected from an automated shore station with a suite of sensors that are attached to...

  19. Oceanographic and surface meteorological data collected from station tarponbay by Sanibel-Captiva Conservation Foundation River, Estuary and Coastal Observing Network (SCCF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida, Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118785)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118785 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  20. Oceanographic and surface meteorological data collected from station redfishpass by Sanibel-Captiva Conservation Foundation River, Estuary and Coastal Observing Network (SCCF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida, Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118783)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118783 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  1. Oceanographic and surface meteorological data collected from station gulfofmexico by Sanibel-Captiva Conservation Foundation River, Estuary and Coastal Observing Network (SCCF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida, Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118782)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118782 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  2. Oceanographic and surface meteorological data collected from station shellpoint by Sanibel-Captiva Conservation Foundation River, Estuary and Coastal Observing Network (SCCF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida and North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118784)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118784 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  3. Oceanographic and surface meteorological data collected from station fortmyers by Sanibel-Captiva Conservation Foundation River, Estuary and Coastal Observing Network (SCCF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida, Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118739)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118739 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  4. STEER Coastal Use Mapping Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coastal Use Mapping Project is designed to collect critical information on human activities in and near the St. Thomas East End Reserves (STEER). The project...

  5. Pacific Coastal Salmon Recovery Fund

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Congress established the Pacific Coastal Salmon Recovery Fund (PCSRF) to monitor the restoration and conservation of Pacific salmon and steelhead populations and...

  6. NOAA Coastal Mapping Shoreline Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Coastal Mapping Shoreline Products from the Remote Sensing Division are primarily for application to the nautical charts produced by NOAA's Office of Coast...

  7. S-N secular ocean tide: explanation of observably coastal velocities of increase of a global mean sea level and mean sea levels in northern and southern hemispheres and prediction of erroneous altimetry velocities

    Science.gov (United States)

    Barkin, Yury

    2010-05-01

    secular S-N oceanic tide. Observations on the coastal guage stations confirm these predicted theoretical velocities [13]. Theoretical values of velocity of increase of global mean sea level of ocean thus has been estimated in 1.61±0.36 mm/yr that is close to value observed by coastal methods. 4 Prediction of erroneous altimetry determinations. An altimetry mehod can not give obtained above values of velocities of increasing of mean sea levels in northern and in southern hemispheres and of course and real value for global change. The reason consists that altimetry determinations include additional effect, we shall name it is fictitious, which is caused by secular drift of the centre of mass of the Earth to the North with velocity 5.24±0.29 mm/yr. It is uneasy to show, that only one effect of drift of the centre of mass results in fictitious effect of decreasing of mean sea level in northern hemisphere with velocity -2.37±0.13 mm/yr and to increasing of the mean sea level in a southern hemisphere with velocity 2.66±0.15 mm/yr, and also to effect of increase of mean global sea level with velocity 0.54±0.03 mm/yr. And the specified effects would take a place in observations even if the real sea level would not vary at all. But we shall add real values of velocities obtained above to fictitious and we shall obtain, accordingly, the values of velocities which can be obtained by altimetry method at scope by observations of all latitudes of ocean areas: 0.08 mm/yr for northern hemisphere; 3.33±0.30 mm/yr for southern hemisphere and 2.15±0.39 mm/yr for a global level of ocean. But they have not any relation to real characteristics of change of sea levels in northern and southern hemispheres of the Earth and to its global secular change. Real values of velocities of increase of mean sea levels in northern hemisphere, in a southern hemisphere and all ocean make: 2.45±0.32 mm/yr, 0.67±0.30 mm/yr and 1.61±0.36 mm/yr. The mentioned values of velocities of change of mean sea

  8. The role of ocean tides on groundwater-surface water exchange in a mangrove-dominated estuary: Shark River Slough, Florida Coastal Everglades, USA

    Science.gov (United States)

    Smith, Christopher G.; Price, René M.; Swarzenski, Peter W.; Stalker, Jeremy C.

    2016-01-01

    Low-relief environments like the Florida Coastal Everglades (FCE) have complicated hydrologic systems where surface water and groundwater processes are intimately linked yet hard to separate. Fluid exchange within these lowhydraulic-gradient systems can occur across broad spatial and temporal scales, with variable contributions to material transport and transformation. Identifying and assessing the scales at which these processes operate is essential for accurate evaluations of how these systems contribute to global biogeochemical cycles. The distribution of 222Rn and 223,224,226Ra have complex spatial patterns along the Shark River Slough estuary (SRSE), Everglades, FL. High-resolution time-series measurements of 222Rn activity, salinity, and water level were used to quantify processes affecting radon fluxes out of the mangrove forest over a tidal cycle. Based on field data, tidal pumping through an extensive network of crab burrows in the lower FCE provides the best explanation for the high radon and fluid fluxes. Burrows are irrigated during rising tides when radon and other dissolved constituents are released from the mangrove soil. Flushing efficiency of the burrows—defined as the tidal volume divided by the volume of burrows— estimated for the creek drainage area vary seasonally from 25 (wet season) to 100 % (dry season) in this study. The tidal pumping of the mangrove forest soil acts as a significant vector for exchange between the forest and the estuary. Processes that enhance exchange of O2 and other materials across the sediment-water interface could have a profound impact on the environmental response to larger scale processes such as sea level rise and climate change. Compounding the material budgets of the SRSE are additional inputs from groundwater from the Biscayne Aquifer, which were identified using radium isotopes. Quantification of the deep groundwater component is not obtainable, but isotopic data suggest a more prevalent signal in the dry

  9. Oceanographic and surface meteorological data collected from station ilm3 by Coastal Ocean Research and Monitoring Program (CORMP) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the North Atlantic Ocean from 2014-02-13 to 2016-02-01 (NODC Accession 0118742)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Accession 0118742 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention (CF)...

  10. Oceanographic and surface meteorological data collected from station c12 by University of South Florida (USF) Coastal Ocean Monitoring and Prediction System (USF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2016-05-11 (NODC Accession 0118787)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118787 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  11. Oceanographic and surface meteorological data collected from station lobo by Florida Atlantic University (FAU) Land/Ocean Biogeochemical Observatory (LOBO) (FAU) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida and North Atlantic Ocean from 2014-02-21 to 2014-11-04 (NODC Accession 0118768)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0118768 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  12. Indian Ocean coasts, coastal ecology

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.

    stream_size 9 stream_content_type text/plain stream_name Encycl_Coast_Sci_2005_546.pdf.txt stream_source_info Encycl_Coast_Sci_2005_546.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  13. Climatic Atlas of the Outer Continental Shelf Waters and Coastal Regions of Alaska. Volume 3. Chukchi-Beaufort Sea

    Science.gov (United States)

    1988-01-01

    activities Joe D. Elms , for their editorial evaluation of the vironmental Assessmant Program. Additional depends to a large extent on weathcr cond...winds of 25 knots lower. icing causes slippery decks, renders moving (13 meters per second) or more, and air tempera- parts inoperable, and, in extreme...try to avoid foul weather an thereby bias the oceanic climatology towards fair weather. A recent study by Elms (1986), in which he compared the

  14. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Virginia, Middle

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  15. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: New Jersey, Northern

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  16. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Virginia, Northern

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  17. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Charleston WFO (Georgia)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  18. NOAA Office for Coastal Management Coastal Digital Elevation Model: Lake Superior

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  19. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Connecticut

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  20. NOAA Office for Coastal Management Sea Level Rise Data: Coastal Flood Threshold Inundation Extent

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  1. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: North Carolina, Northern

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  2. NOAA Office for Coastal Management Coastal Digital Elevation Model: Lake St. Clair

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  3. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: San Diego (CA) WFO

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  4. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Maryland, Southeast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  5. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Delaware

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  6. NOAA Office for Coastal Management Coastal Digital Elevation Model: Lake Erie

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  7. NOAA Office for Coastal Management (OCM) Coastal Inundation Digital Elevation Model: U.S. Virgin Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  8. NOAA Office for Coastal Management Coastal Digital Elevation Model: Lake Huron

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  9. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: New York, Hudson River

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  10. NOAA Office for Coastal Management Coastal Digital Elevation Model: Lake Michigan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  11. NOAA Coastal Services Center Coastal Inundation Digital Elevation Model: Philadelphia WFO - Pennsylvania

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Coastal Services Center's Sea Level...

  12. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: South Carolina, Horry County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  13. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: District of Columbia

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  14. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Virginia, Southern

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  15. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: North Carolina, Middle 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  16. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: North Carolina, Middle 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  17. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Channel Islands, CA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  18. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: New York, Metro

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  19. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: North Carolina, Southern 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  20. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: New Jersey, Middle

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  1. Coastal Zone Color Scanner

    Science.gov (United States)

    Johnson, B.

    1988-01-01

    The Coastal Zone Color Scanner (CZCS) spacecraft ocean color instrument is capable of measuring and mapping global ocean surface chlorophyll concentration. It is a scanning radiometer with multiband capability. With new electronics and some mechanical, and optical re-work, it probably can be made flight worthy. Some additional components of a second flight model are also available. An engineering study and further tests are necessary to determine exactly what effort is required to properly prepare the instrument for spaceflight and the nature of interfaces to prospective spacecraft. The CZCS provides operational instrument capability for monitoring of ocean productivity and currents. It could be a simple, low cost alternative to developing new instruments for ocean color imaging. Researchers have determined that with global ocean color data they can: specify quantitatively the role of oceans in the global carbon cycle and other major biogeochemical cycles; determine the magnitude and variability of annual primary production by marine phytoplankton on a global scale; understand the fate of fluvial nutrients and their possible affect on carbon budgets; elucidate the coupling mechanism between upwelling and large scale patterns in ocean basins; answer questions concerning the large scale distribution and timing of spring blooms in the global ocean; acquire a better understanding of the processes associated with mixing along the edge of eddies, coastal currents, western boundary currents, etc., and acquire global data on marine optical properties.

  2. Regional Ocean Data Assimilation

    KAUST Repository

    Edwards, Christopher A.

    2015-01-03

    This article reviews the past 15 years of developments in regional ocean data assimilation. A variety of scientific, management, and safety-related objectives motivate marine scientists to characterize many ocean environments, including coastal regions. As in weather prediction, the accurate representation of physical, chemical, and/or biological properties in the ocean is challenging. Models and observations alone provide imperfect representations of the ocean state, but together they can offer improved estimates. Variational and sequential methods are among the most widely used in regional ocean systems, and there have been exciting recent advances in ensemble and four-dimensional variational approaches. These techniques are increasingly being tested and adapted for biogeochemical applications.

  3. Initial spread of "1"3"7Cs from the Fukushima Dai-ichi Nuclear Power Plant over the Japan continental shelf. A study using a high-resolution, global-coastal nested ocean model

    International Nuclear Information System (INIS)

    Lai, Z.; Chen, C.; Lin, H.; Shanghai Ocean Univ.; Beardsley, R.; Ji, R.; Shanghai Ocean Univ.; Sasaki, J.; Lin, J.

    2013-01-01

    The 11 March 2011 tsunami triggered by the M9 and M7.9 earthquakes off the Tohoku coast destroyed facilities at the Fukushima Dai-ichi Nuclear Power Plant (FNPP) leading to a significant long-term flow of the radionuclide "1"3"7Cs into coastal waters. A high-resolution, global-coastal nested ocean model was first constructed to simulate the 11 March tsunami and coastal inundation. Based on the model's success in reproducing the observed tsunami and coastal inundation, model experiments were then conducted with differing grid resolution to assess the initial spread of "1"3"7Cs over the eastern shelf of Japan. The "1"3"7Cs was tracked as a conservative tracer (without radioactive decay) in the three-dimensional model flow field over the period of 26 March-31 August 2011. The results clearly show that for the same "1"3"7Cs discharge, the model-predicted spreading of "1"3"7Cs was sensitive not only to model resolution but also the FNPP seawall structure. A coarse-resolution (∝2 km) model simulation led to an overestimation of lateral diffusion and thus faster dispersion of "1"3"7Cs from the coast to the deep ocean, while advective processes played a more significant role when the model resolution at and around the FNPP was refined to ∝5 m. By resolving the pathways from the leaking source to the southern and northern discharge canals, the high-resolution model better predicted the "1"3"7Cs spreading in the inner shelf where in situ measurements were made at 30 km off the coast. The overestimation of "1"3"7Cs concentration near the coast is thought to be due to the omission of sedimentation and biogeochemical processes as well as uncertainties in the amount of "1"3"7Cs leaking from the source in the model. As a result, a biogeochemical module should be included in the model for more realistic simulations of the fate and spreading of "1"3"7Cs in the ocean.

  4. Initial spread of {sup 137}Cs from the Fukushima Dai-ichi Nuclear Power Plant over the Japan continental shelf. A study using a high-resolution, global-coastal nested ocean model

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Z. [Sun Yat-Sen Univ., Guangzhou (China). School of Marine Sciences; Univ. of Massachusetts-Dartmouth, New Bedford, MA (United States). School for Marine Science and Technology; Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province, Guangzhou (China); Chen, C.; Lin, H. [Univ. of Massachusetts-Dartmouth, New Bedford, MA (United States). School for Marine Science and Technology; Shanghai Ocean Univ. (China). International Center for Marine Studies; Beardsley, R. [Woods Hole Oceanographic Institution, Woods Hole, MA (United States). Dept. of Physical Oceanography; Ji, R. [Woods Hole Oceanographic Institution, Woods Hole, MA (United States). Dept. of Biology; Shanghai Ocean Univ. (China). International Center for Marine Studies; Sasaki, J. [The Univ. of Tokyo, Kashiwa (Japan). Dept. of Socio-Cultural Environmental Studies; Lin, J. [Woods Hole Oceanographic Institution, Woods Hole, MA (United States). Dept. of Geology and Geophysics

    2013-07-01

    The 11 March 2011 tsunami triggered by the M9 and M7.9 earthquakes off the Tohoku coast destroyed facilities at the Fukushima Dai-ichi Nuclear Power Plant (FNPP) leading to a significant long-term flow of the radionuclide {sup 137}Cs into coastal waters. A high-resolution, global-coastal nested ocean model was first constructed to simulate the 11 March tsunami and coastal inundation. Based on the model's success in reproducing the observed tsunami and coastal inundation, model experiments were then conducted with differing grid resolution to assess the initial spread of {sup 137}Cs over the eastern shelf of Japan. The {sup 137}Cs was tracked as a conservative tracer (without radioactive decay) in the three-dimensional model flow field over the period of 26 March-31 August 2011. The results clearly show that for the same {sup 137}Cs discharge, the model-predicted spreading of {sup 137}Cs was sensitive not only to model resolution but also the FNPP seawall structure. A coarse-resolution (∝2 km) model simulation led to an overestimation of lateral diffusion and thus faster dispersion of {sup 137}Cs from the coast to the deep ocean, while advective processes played a more significant role when the model resolution at and around the FNPP was refined to ∝5 m. By resolving the pathways from the leaking source to the southern and northern discharge canals, the high-resolution model better predicted the {sup 137}Cs spreading in the inner shelf where in situ measurements were made at 30 km off the coast. The overestimation of {sup 137}Cs concentration near the coast is thought to be due to the omission of sedimentation and biogeochemical processes as well as uncertainties in the amount of {sup 137}Cs leaking from the source in the model. As a result, a biogeochemical module should be included in the model for more realistic simulations of the fate and spreading of {sup 137}Cs in the ocean.

  5. 15 CFR 930.151 - Interstate coastal effect.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Interstate coastal effect. 930.151...) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT FEDERAL CONSISTENCY WITH APPROVED COASTAL MANAGEMENT PROGRAMS Consistency of Federal Activities...

  6. Seasonal and inter-annual dynamics of suspended sediment at the mouth of the Amazon river: The role of continental and oceanic forcing, and implications for coastal geomorphology and mud bank formation

    Science.gov (United States)

    Gensac, Erwan; Martinez, Jean-Michel; Vantrepotte, Vincent; Anthony, Edward J.

    2016-04-01

    Fine-grained sediments supplied to the Ocean by the Amazon River and their transport under the influence of continental and oceanic forcing drives the geomorphic change along the 1500 km-long coast northward to the Orinoco River delta. The aim of this study is to give an encompassing view of the sediment dynamics in the shallow coastal waters from the Amazon River mouth to the Capes region (northern part of the Amapa region of Brazil and eastern part of French Guiana), where large mud banks are formed. Mud banks are the overarching features in the dynamics of the Amazon-Orinoco coast. They start migrating northward in the Capes region. Suspended Particulate Matter (SPM) concentrations were calculated from satellite products (MODIS Aqua and Terra) acquired over the period 2000-2013. The Census-X11 decomposition method used to discriminate short-term, seasonal and long-term time components of the SPM variability has rendered possible a robust analysis of the impact of continental and oceanic forcing. Continental forcing agents considered are the Amazon River water discharge, SPM concentration and sediment discharge. Oceanic forcing comprises modelled data of wind speed and direction, wave height and direction, and currents. A 150 km-long area of accretion is detected at Cabo Norte that may be linked with a reported increase in the river's sediment discharge concurrent with the satellite data study period. We also assess the rate of mud bank migration north of Cabo Norte, and highlight its variability. Although we confirm a 2 km y-1 migration rate, in agreement with other authors, we show that this velocity may be up to 5 km y-1 along the Cabo Orange region, and we highlight the effect of water discharge by major rivers debouching on this coastal mud belt in modulating such rates. Finally, we propose a refined sediment transport pattern map of the region based on our results and of previous studies in the area such as the AMASSEDS programme, and discuss the

  7. Partial pressure (or fugacity) of carbon dioxide, pH, salinity and other variables collected from time series observations using Bubble type equilibrator for autonomous carbon dioxide (CO2) measurement, Carbon dioxide (CO2) gas analyzer and other instruments from MOORING_CHEECA_80W_25N in the Coastal Waters of Florida, Florida Keys National Marine Sanctuary and North Atlantic Ocean from 2011-12-07 to 2015-03-22 (NCEI Accession 0157417)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157417 includes chemical, meteorological, physical and time series data collected from MOORING_CHEECA_80W_25N in the Coastal Waters of Florida,...

  8. NODC Standard Product: International ocean atlas Volume 3 - Hydrochemical Atlas of the Sea of Okhotsk 2001 (NODC Accession 0000521)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hydrochemical and other data were collected from bottle casts in the Sea of Okhotsk from the Protractor from 01 June 1990 to 31 August 1997. Data were compiled as an...

  9. NODC Standard Product: International ocean atlas Volume 6 - Zooplankton of the Arctic Seas 2002 (NODC Accession 0098570)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and biological data for the Arctic and sub-Arctic regions extending from the Barents Sea to the Northwest Pacific, sampled during 25 scientific cruises for...

  10. NODC Standard Product: International ocean atlas Volume 12 - Climatic atlas of the North Pacific Seas 2009 (NODC Accession 0098576)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Atlas contains monthly climatic charts of temperature, salinity, and oxygen at the sea surface and at standard depth levels for the Bering Sea, Sea of Okhotsk,...

  11. NODC Standard Product: International ocean atlas Volume 4 - Atlas of temperature / salinity frequency distributions (2 disc set) (NCEI Accession 0101473)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Atlas presents more than 80,000 plots of the empirical frequency distributions of temperature and salinity for each 5-degree square area of the North Atlantic...

  12. Time dependent phase associations of iron and other trace elements elucidated by 234Th/238U inventories in tropical coastal waters

    International Nuclear Information System (INIS)

    Szymczak, R.; Zaw, M.

    1999-01-01

    In this study samples were collected in the Gulf of Papua region of PNG, on board the research vessel Franklin as apart of a multidisciplinary study of factors influencing the fate of terrestrial material entering the tropical coastal ocean. Samples for 234 Th were collected using a in situ large volume pump device (Challenger Oceanic) passing seawater (1000-2000 litres) through a series of cartridge filters in polycarbonate housings

  13. 2014 NOAA Ortho-rectified Mosaic of Hurricane Sandy Coastal Impact Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles at 0.35m GSD created for NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative in Hurricane Sandy coastal...

  14. Environmental impacts of ocean disposal of CO{sub 2}. Final report volume 2, September 1994--August 1996

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, H.J.; Adams, E.E. [eds.

    1996-12-01

    One option to reduce atmospheric CO{sub 2} levels is to capture and sequester power plant CO{sub 2}. Commercial CO{sub 2} capture technology, though expensive, exists today. However, the ability to dispose of large quantities of CO{sub 2} is highly uncertain. The deep ocean is one of only a few possible CO{sub 2} disposal options (others are depleted oil and gas wells or deep, confined aquifers) and is a prime candidate because the deep ocean is vast and highly unsaturated in CO{sub 2}. Technically, the term `disposal` is really a misnomer because the atmosphere and ocean eventually equilibrate on a time scale of 1000 years regardless of where the CO{sub 2} is originally discharged. However, peak atmospheric CO{sub 2} concentrations expected to occur in the next few centuries could be significantly reduced by ocean disposal. The magnitude of this reduction will depend upon the quantity of CO{sub 2} injected in the ocean, as well as the depth and location of injection. Ocean disposal of CO{sub 2} will only make sense if the environmental impacts to the ocean are significantly less than the avoided impacts of atmospheric release. In this project, we examined these ocean impacts through a multi-disciplinary effort designed to summarize the current state of knowledge. In the process, we have developed a comprehensive method to assess the impacts of pH changes on passive marine organisms. This final report addresses the following six topics: CO{sub 2} loadings and scenarios, impacts of CO{sub 2} transport, near-field perturbations, far-field perturbations, environmental impacts of CO{sub 2} release, and policy and legal implications of CO{sub 2} release.

  15. Linking sardine recruitment in coastal areas to ocean currents using surface drifters and HF radar. A case study in the Gulf of Manfredonia, Adriatic Sea

    DEFF Research Database (Denmark)

    Sciascia, Roberta; Berta, Maristella; Carlson, Daniel Frazier

    2017-01-01

    Understanding the role of ocean currents in the recruitment of commercially and ecologically important fish is an important step towards developing sustainable resource management guidelines. To this end, we attempt to elucidate the role of surface ocean transport in supplying recruits of sardine...

  16. Wave measurement in severe ocean currents

    Digital Repository Service at National Institute of Oceanography (India)

    Diwan, S.G.; Suryavanshi, A.K.; Nayak, B.U.

    The measurement of ocean waves has been of particular interest, as wave data and understanding of wave phenomena are essential to ocean engineering, coastal engineering and to many marine operations. The National Institute of Oceanography, Goa...

  17. NOAA Digital Coast Sea Level Rise and Coastal Flooding Impacts Viewer

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sea Level Rise and Coastal Flooding Impacts Viewer depicts potential sea level rise and its associated impacts on the nation's coastal areas. These coastal areas...

  18. Coastal Morphology and Coastal Protection

    NARCIS (Netherlands)

    Van de Graaff, J.

    2009-01-01

    Lecture notes ct5309. Tides, currents and water; coastal problems; sediment transport processes; coastal transport modes; longshore transport; cross-shore transport; fundamentals of mud; channels and trenches; coastal protection; application of structures; application of nourishments.

  19. 77 FR 8219 - Coastal Zone Management Program: Illinois

    Science.gov (United States)

    2012-02-14

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Coastal Zone Management... ICMP constitutes an approvable program and that requirements of the Coastal Zone Management Act (CZMA..., submitted a coastal management program to NOAA for approval under the Coastal Zone Management Act (CZMA), 16...

  20. Ocean acidification postcards

    Science.gov (United States)

    Schreppel, Heather A.; Cimitile, Matthew J.

    2011-01-01

    The U.S. Geological Survey (USGS) is conducting research on ocean acidification in polar, temperate, subtropical, and tropical regions including the Arctic, West Florida Shelf, and the Caribbean. Project activities include field assessment, experimental laboratory studies, and evaluation of existing data. The USGS is participating in international and interagency working groups to develop research strategies to increase understanding of the global implications of ocean acidification. Research strategies include new approaches for seawater chemistry observation and modeling, assessment of physiological effects on organisms, changes in marine ecosystem structure, new technologies, and information resources. These postcards highlight ongoing USGS research efforts in ocean acidification and carbon cycling in marine and coastal ecosystems in three different regions: polar, temperate, and tropical. To learn more about ocean acidification visit: http://coastal.er.usgs.gov/ocean-acidification/.

  1. (abstract) Seasonal Variability in Coastal Upwelling: A Comparison of Four Coastal Upwelling Sites from Space

    Science.gov (United States)

    Carr, Mary-Elena

    1996-01-01

    Coastal upwelling of subsurface nutrient-rich water occurs along the eastern boundary of the ocean basins and leads to high primary production and fish catches. In this study satellite observations are used to compare the seasonal cycle in wind forcing and in the oceanic and biological response of the major coastal upwelling regions associated with the Canary, Benguela, California, and Humboldt Currents.

  2. U.S. Coastal Relief Model - Northwest Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides the first comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a...

  3. U.S. Coastal Relief Model - Western Gulf of Mexico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides the first comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a...

  4. U.S. Coastal Relief Model - Southeast Atlantic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides the first comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a...

  5. U.S. Coastal Relief Model - Central Gulf of Mexico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides the first comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a...

  6. U.S. Coastal Relief Model - Central Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides the first comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a...

  7. U.S. Coastal Relief Model - Southern California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides the first comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a...

  8. U.S. Coastal Relief Model - Northeast Atlantic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides the first comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a...

  9. U.S. Coastal Relief Model - Puerto Rico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides the first comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a...

  10. Coastal Massachusetts Submerged Aquatic Beds 1994-1996 Geodatabase

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coastal Change Analysis Program (C-CAP) at NOAA Office for Coastal Management partnered with The Massachusetts Department of Environmental Protection Wetlands...

  11. Coastal Massachusetts Submerged Aquatic Beds 1994-1996 Biotic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coastal Change Analysis Program (C-CAP) at NOAA Office for Coastal Management partnered with The Massachusetts Department of Environmental Protection Wetlands...

  12. Coastal Massachusetts Submerged Aquatic Beds 1994-1996 Substrate

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coastal Change Analysis Program (C-CAP) at NOAA Office for Coastal Management partnered with The Massachusetts Department of Environmental Protection Wetlands...

  13. Coastal Massachusetts Submerged Aquatic Beds 1994-1996 Geoform

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coastal Change Analysis Program (C-CAP) at NOAA Office for Coastal Management partnered with The Massachusetts Department of Environmental Protection Wetlands...

  14. U.S. Coastal Relief Model - Southern California Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides a comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a seamless...

  15. National Status and Trends, Benthic Surveillance Project Aryl Hydrocarbon Hydrolase (AHH) Data, 1988-1992, National Centers for Coastal Ocean Science

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In order to determine the current status of and detect any long-term trends in the environmental quality of U.S. nearshore waters, NOAA initiated the National Status...

  16. National Status and Trends, Benthic Surveillance Project Fluorescent Aromatic Compounds (FAC) Data, 1984-1991, National Centers for Coastal Ocean Science

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Status and Trends (NSandT) Benthic Surveillance Fluorescent Aromatic Compounds (FAC) file reports the trace concentrations of Fluorescent Aromatic...

  17. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic image tiles, Pensacola Bay, FL - FL0703 - Phase II - Pensacola Bay, 2010 (NODC Accession 0074383)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains 2.5km by 2.5km digital orthophotography mosaics. The digital orthophotos in this series have a nominal ground resolution of 1 meter. The...

  18. Oceanographic profile temperature, salinity, oxygen, and nutrients measurements collected using bottle from the LCM Red in the Alaskan Coastal waters, from the Gerda in the Atlantic Ocean, and from DeSteiguer in the Pacific Ocean (NODC Accession 0002231)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, oxygen and other profile data received at NODC on 06/10/04 by Olga Baranova, digitized from "William J. Teague, Zachariah R. Hallock, Jan M....

  19. NOAA's Coastal Change Analysis Program (C-CAP) 2006 to 2016 Regional Land Cover Change Data - Coastal United States

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Coastal Change Analysis Program (C-CAP) produces national standardized land cover and change products for the coastal regions of the U.S. C-CAP products...

  20. NOAA's Coastal Change Analysis Program (C-CAP) 2001 to 2016 Regional Land Cover Change Data - Coastal United States

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Coastal Change Analysis Program (C-CAP) produces national standardized land cover and change products for the coastal regions of the U.S. C-CAP products...