WorldWideScience

Sample records for volume coastal ocean

  1. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean. Volume 1: Strategic summary

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-15

    The proposed COPS (Coastal Ocean Prediction Systems) program is concerned with combining numerical models with observations (through data assimilation) to improve our predictive knowledge of the coastal ocean. It is oriented toward applied research and development and depends upon the continued pursuit of basic research in programs like COOP (Coastal Ocean Processes); i.e., to a significant degree it is involved with ``technology transfer`` from basic knowledge to operational and management applications. This predictive knowledge is intended to address a variety of societal problems: (1) ship routing, (2) trajectories for search and rescue operations, (3) oil spill trajectory simulations, (4) pollution assessments, (5) fisheries management guidance, (6) simulation of the coastal ocean`s response to climate variability, (7) calculation of sediment transport, (8) calculation of forces on structures, and so forth. The initial concern is with physical models and observations in order to provide a capability for the estimation of physical forces and transports in the coastal ocean. For all these applications, there are common needs for physical field estimates: waves, tides, currents, temperature, and salinity, including mixed layers, thermoclines, fronts, jets, etc. However, the intent is to work with biologists, chemists, and geologists in developing integrated multidisciplinary prediction systems as it becomes feasible to do so. From another perspective, by combining observations with models through data assimilation, a modern approach to monitoring is provided through whole-field estimation.

  2. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean. Volume 2: Overview and invited papers

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-15

    This document is a compilation of summaries of papers presented at the Coastal Ocean Prediction Systems workshop. Topics include; marine forecasting, regulatory agencies and regulations, research and application models, research and operational observing, oceanic and atmospheric data assimilation, and coastal physical processes.

  3. High Resolution 3-D Finite-Volume Coastal Ocean Modeling in Lower Campbell River and Discovery Passage, British Columbia, Canada

    Directory of Open Access Journals (Sweden)

    Yuehua Lin

    2014-03-01

    Full Text Available The 3-D unstructured-grid, Finite-Volume Coastal Ocean Model (FVCOM was used to simulate the flows in Discovery Passage including the adjoining Lower Campbell River, British Columbia, Canada. Challenges in the studies include the strong tidal currents (e.g., up to 7.8 m/s in Seymour Narrows and tailrace discharges, small-scale topographic features and steep bottom slopes, and stratification affected by the Campbell River freshwater discharges. Two applications of high resolution 3-D FVCOM modeling were conducted. One is for the Lower Campbell River extending upstream as far as the John Hart Hydroelectric dam. The horizontal resolution varies from 0.27 m to 32 m in the unstructured triangular mesh to resolve the tailrace flow. The bottom elevation decreases ~14 m within the distance of ~1.4 km along the river. This pioneering FVCOM river modeling demonstrated a very good performance in simulating the river flow structures. The second application is to compute ocean currents immediately above the seabed along the present underwater electrical cable crossing routes across Discovery Passage. Higher resolution was used near the bottom with inter-layer spacing ranging from 0.125 to 0.0005 of total water depth. The model behaves very well in simulating the strong tidal currents in the area at high resolution in both the horizontal and vertical. One year maximum near bottom tidal current along the routes was then analyzed using the model results.

  4. Dissolved organic carbon pools and export from the coastal ocean

    KAUST Repository

    Barrón, Cristina

    2015-10-21

    The distribution of dissolved organic carbon (DOC) concentration across coastal waters was characterized based on the compilation of 3510 individual estimates of DOC in coastal waters worldwide. We estimated the DOC concentration in the coastal waters that directly exchange with open ocean waters in two different ways, as the DOC concentration at the edge of the shelf break and as the DOC concentration in coastal waters with salinity close to the average salinity in the open ocean. Using these estimates of DOC concentration in the coastal waters that directly exchange with open ocean waters, the mean DOC concentration in the open ocean and the estimated volume of water annually exchanged between coastal and open ocean, we estimated a median ± SE (and average ± SE) global DOC export from coastal to open ocean waters ranging from 4.4 ± 1.0 Pg C yr−1 to 27.0 ± 1.8 Pg C yr−1 (7.0 ± 5.8 Pg C yr−1 to 29.0 ± 8.0 Pg C yr−1) depending on the global hydrological exchange. These values correspond to a median and mean median (and average) range between 14.7 ± 3.3 to 90.0 ± 6.0 (23.3 ± 19.3 to 96.7 ± 26.7) Gg C yr−1 per km of shelf break, which is consistent with the range between 1.4 to 66.1 Gg C yr−1 per km of shelf break of available regional estimates of DOC export. The estimated global DOC export from coastal to open ocean waters is also consistent with independent estimates of the net metabolic balance of the coastal ocean. The DOC export from the coastal to the open ocean is likely to be a sizeable flux and is likely to be an important term in the carbon budget of the open ocean, potentially providing an important subsidy to support heterotrophic activity in the open ocean.

  5. Ocean City, Maryland Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  6. Coastal Virginia to Coastal North Carolina RGB Aerial Photography: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Integrated Ocean and Coastal Mapping Product (IOCM). The images were acquired from a nominal altitude of 7,500 feet above ground level (AGL), using an Applanix...

  7. Coastal Virginia to Coastal North Carolina IR Aerial Photography: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Integrated Ocean and Coastal Mapping Product (IOCM). The images were acquired from a nominal altitude of 7,500 feet above ground level (AGL), using an Applanix...

  8. COPEPOD: The Coastal & Oceanic Plankton Ecology, Production, & Observation Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coastal & Oceanic Plankton Ecology, Production, & Observation Database (COPEPOD) provides NMFS scientists with quality-controlled, globally distributed...

  9. Ensuring Continuity of Coastal Ocean Optical Products

    Science.gov (United States)

    Crout, Richard L.; Ladner, Sherwin; Lawson, Adam; Martinolich, Paul; Arnone, Bob; Vandermeulen, Ryan; Bowers, Jennifer

    2015-12-01

    Satellite ocean colour remote sensing evolved rapidly following the 1978 launch of the Color Zone Coastal Scanner (CZCS). Since that launch, the Naval Research Laboratory (NRL) has developed and transitioned tactical ocean optical products (diver visibility, laser penetration depth, chlorophyll concentration, and inherent optical products) from polar-orbiting ocean color sensors to the Naval Oceanographic Office (NAVOCEANO). Beginning with CZCS, NRL exploited the succession of ocean color sensors, including Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Resolution Imaging Spectrometer (Aqua MODIS), MEdium Resolution Imaging Spectrometer (MERIS), and the Suomi National Polar-orbiting Partnership Visible Infra Infrared Imager Radiometer Suite (S-NPP VIIRS). Additionally, the geostationary Communication, Ocean, and Meteorological Satellite Geostationary Ocean Color Imager (COMS GOCI) is also being exploited. Future sensors of interest include the Sentinel-3 series Ocean and Land Color Imager (OLCI) and the Joint Polar Satellite System (JPSS) VIIRS. NRL’s Automated Optical Processing System (AOPS) processes ocean color satellite data to provide an operational near-real time depiction of the bio-optical ocean environment. These products are also used for validation of/or assimilation into ocean forecast models and to predict the impact of the environment on Navy coastal operations. NRL contributes to advancements in satellite processing techniques, atmospheric correction for coastal waters, enhanced resolution optical properties using imaging bands, cloud masking, and sensor merging for optimal operational products. Multiple satellites are necessary to provide changing conditions throughout the day allowing for detection of rapid optical temporal and spatial changes due to tides, winds, and river outflow. The Sentinel-3A and -3B OLCIs are critical to Navy coastal operations due to the quality of the data and the morning orbit that complements MODIS Aqua and

  10. Refraction of coastal ocean waves

    Science.gov (United States)

    Shuchman, R. A.; Kasischke, E. S.

    1981-01-01

    Refraction of gravity waves in the coastal area off Cape Hatteras, NC as documented by synthetic aperture radar (SAR) imagery from Seasat orbit 974 (collected on September 3, 1978) is discussed. An analysis of optical Fourier transforms (OFTs) from more than 70 geographical positions yields estimates of wavelength and wave direction for each position. In addition, independent estimates of the same two quantities are calculated using two simple theoretical wave-refraction models. The OFT results are then compared with the theoretical results. A statistical analysis shows a significant degree of linear correlation between the data sets. This is considered to indicate that the Seasat SAR produces imagery whose clarity is sufficient to show the refraction of gravity waves in shallow water.

  11. Hydrography and biogeochemistry of the coastal ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Unnikrishnan, A.S.

    various size groups for plankton are defined as: pico (0.2–2 µm), nano (2–20 µm), micro (20–200 µm), macro (200–2000 µm), and mega (>2000 µm).] As a result, a larger fraction of PP gets respired with a smaller amount reaching NAQVI AND UNNIKRISHNAN 241... is called the “f-ratio,” and this ratio is obviously higher in the coastal ocean. Export of organic carbon from the surface layer to the deep sea, known as the “biological pump,” is crucial for sequestra- tion of atmospheric carbon dioxide (CO 2 ): should...

  12. IOCM Aerial Photography: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Integrated Ocean and Coastal Mapping Product (IOCM). The images were acquired from a nominal altitude of 7,500 feet above ground level (AGL), using an Applanix...

  13. Elements of a coastal ocean forecasting system for India

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; Radhakrishnan, K.

    After about four decades of investment in infrastructure for ocean research, an appropriate initiative for India now would be to build a coastal ocean forecasting system to support the country's myriad activities in its Exclusive Economic Zone...

  14. Measurements of the volume scattering function in a coastal environment

    Science.gov (United States)

    Berthon, Jean-François; Lee, Michael; Shybanov, Eugeny; Zibordi, Giuseppe

    2007-04-01

    The Volume Scattering Function (VSF) is an essential variable in the context of marine radiative transfer modeling and of the inversion of ocean colour remote sensing data. However, an important lack of knowledge on the VSF natural variability affects the present models, in particular for the coastal environment. Measurements of the Volume Scattering Function between 0.6° and 177.3° with an angular resolution of 0.3° were performed in the northern coastal Adriatic Sea onboard an oceanographic platform in October 2004 using a prototype instrument. Observed differences with the commonly used Petzold's functions are significant, in particular for the "open ocean" and "coastal" types in the backward directions. The use of an empirical relationship for the derivation of b b(λ) from a unique measurement of β(ψ,λ) at ψ=140 for the Hydroscat-6 was validated for this coastal site at that season. Finally, the use of the Kopelevich VSF model together with a measurement of b p(λ) at λ=555 nm allowed the reconstruction of the VSF to within about 35%.

  15. Hyperspectral Imager for the Coastal Ocean (HICO): Overview, Operational Updates, and Coastal Ocean Applications

    Science.gov (United States)

    Davis, Curtiss O.; Kappus, Mary E.; Bowles, Jeffrey H.; Evans, Cynthia A.; Stefanov, William L.

    2014-01-01

    The Hyperspectral Imager for the Coastal Ocean (HICO) was built to measure in-water properties of complex coastal regions. HICO enables synoptic coverage; 100-meter spatial resolution for sampling the variability and spatial irregularity of coastal waters; and high spectral resolution to untangle the signals from chlorophyll, colored dissolved organic matter, suspended sediments and varying bottom types. HICO was built by the Naval Research Laboratory, installed on the International Space Station (ISS) in September 2009, and operated for ONR for the first three years. In 2013, NASA assumed sponsorship of operations in order to leverage HICO's ability to address their Earth monitoring mission. This has opened up access of HICO data to the broad research community. Over 8000 images are now available on NASA's Ocean Color Website (http://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sen=hi). Oregon State University's HICO website (http://hico.coas.oregonstate.edu) remains the portal for researchers to request new collections and access their requested data. We will present updates on HICO's calibration and improvements in geolocation and show examples of the use of HICO data to address issues in the coastal ocean and Great Lakes.

  16. Sediment chemoautotrophy in the coastal ocean

    Science.gov (United States)

    Vasquez-Cardenas, Diana; Meysman, Filip J. R.; van Breugel, Peter; Boschker, Henricus T. S.

    2016-04-01

    A key process in the biogeochemistry of coastal sediments is the reoxidation of reduced intermediates formed during anaerobic mineralization which in part is performed by chemoautotrophic micro-organisms. These microbes fix inorganic carbon using the energy derived from reoxidation reactions and in doing so can fix up to 32% of the CO2 released by mineralization. However the importance and distribution of chemoautotrophy has not been systematically investigated in these environments. To address these issues we surveyed nine coastal sediments by means of bacterial biomarker analysis (phospholipid derived fatty acids) combined with stable isotope probing (13C-bicarbonate) which resulted in an almost doubling of the number of observations on coastal sedimentary chemoautotrophy. Firstly, sediment chemoautotrophy rates from this study and rates compiled from literature (0.07 to 36 mmol C m-2 d-1) showed a power-law relation with benthic oxygen uptake (3.4 to 192 mmol O2 m-2 d-1). Benthic oxygen uptake was used as a proxy for carbon mineralization to calculate the ratio of the CO2 fixed by chemoautotrophy over the total CO2 released through mineralization. This CO2 efficiency was 3% in continental shelf, 9% in nearshore and 21% in salt marsh sediments. These results suggest that chemoautotrophy plays an important role in C-cycling in reactive intertidal sediments such as salt marshes rather than in the organic-poor, permeable continental shelf sediments. Globally in the coastal ocean our empirical results show that chemoautotrophy contributes ˜0.05 Pg C y-1 which is four times less than previous estimates. Secondly, five coastal sediment regimes were linked to the depth-distribution of chemoautotrophy: 1) permeable sediments dominated by advective porewater transport, 2) bioturbated sediments, and cohesive sediments dominated by diffusive porewater transport characterized by either 3) canonical sulfur oxidation, 4) nitrate-storing Beggiatoa, or 5) electrogenic sulfur

  17. New Hampshire IR Coastal Aerial Photography: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Integrated Ocean and Coastal Mapping Product (IOCM). The images were acquired from a nominal altitude of 7,500 feet above ground level (AGL), using an Applanix...

  18. Coupled Modeling of Hydrodynamics and Sound in Coastal Ocean for Renewable Ocean Energy Development

    Energy Technology Data Exchange (ETDEWEB)

    Long, Wen; Jung, Ki Won; Yang, Zhaoqing; Copping, Andrea; Deng, Z. Daniel

    2016-03-01

    An underwater sound model was developed to simulate sound propagation from marine and hydrokinetic energy (MHK) devices or offshore wind (OSW) energy platforms. Finite difference methods were developed to solve the 3D Helmholtz equation for sound propagation in the coastal environment. A 3D sparse matrix solver with complex coefficients was formed for solving the resulting acoustic pressure field. The Complex Shifted Laplacian Preconditioner (CSLP) method was applied to solve the matrix system iteratively with MPI parallelization using a high performance cluster. The sound model was then coupled with the Finite Volume Community Ocean Model (FVCOM) for simulating sound propagation generated by human activities, such as construction of OSW turbines or tidal stream turbine operations, in a range-dependent setting. As a proof of concept, initial validation of the solver is presented for two coastal wedge problems. This sound model can be useful for evaluating impacts on marine mammals due to deployment of MHK devices and OSW energy platforms.

  19. Oceanic sharks clean at coastal seamount.

    Directory of Open Access Journals (Sweden)

    Simon P Oliver

    Full Text Available Interactions between pelagic thresher sharks (Alopias pelagicus and cleaner wrasse were investigated at a seamount in the Philippines. Cleaning associations between sharks and teleosts are poorly understood, but the observable interactions seen at this site may explain why these mainly oceanic sharks regularly venture into shallow coastal waters where they are vulnerable to disturbance from human activity. From 1,230 hours of observations recorded by remote video camera between July 2005 and December 2009, 97 cleaner-thresher shark events were analyzed, 19 of which were interrupted. Observations of pelagic thresher sharks interacting with cleaners at the seamount were recorded at all times of day but their frequency declined gradually from morning until evening. Cleaners showed preferences for foraging on specific areas of a thresher shark's body. For all events combined, cleaners were observed to conduct 2,757 inspections, of which 33.9% took place on the shark's pelvis, 23.3% on the pectoral fins, 22.3% on the caudal fin, 8.6% on the body, 8.3% on the head, 2.1% on the dorsal fin, and 1.5% on the gills respectively. Cleaners did not preferentially inspect thresher sharks by time of day or by shark sex, but there was a direct correlation between the amount of time a thresher shark spent at a cleaning station and the number of inspections it received. Thresher shark clients modified their behavior by "circular-stance-swimming," presumably to facilitate cleaner inspections. The cleaner-thresher shark association reflected some of the known behavioral trends in the cleaner-reef teleost system since cleaners appeared to forage selectively on shark clients. Evidence is mounting that in addition to acting as social refuges and foraging grounds for large visiting marine predators, seamounts may also support pelagic ecology by functioning as cleaning stations for oceanic sharks and rays.

  20. Oceanic sharks clean at coastal seamount.

    Science.gov (United States)

    Oliver, Simon P; Hussey, Nigel E; Turner, John R; Beckett, Alison J

    2011-03-14

    Interactions between pelagic thresher sharks (Alopias pelagicus) and cleaner wrasse were investigated at a seamount in the Philippines. Cleaning associations between sharks and teleosts are poorly understood, but the observable interactions seen at this site may explain why these mainly oceanic sharks regularly venture into shallow coastal waters where they are vulnerable to disturbance from human activity. From 1,230 hours of observations recorded by remote video camera between July 2005 and December 2009, 97 cleaner-thresher shark events were analyzed, 19 of which were interrupted. Observations of pelagic thresher sharks interacting with cleaners at the seamount were recorded at all times of day but their frequency declined gradually from morning until evening. Cleaners showed preferences for foraging on specific areas of a thresher shark's body. For all events combined, cleaners were observed to conduct 2,757 inspections, of which 33.9% took place on the shark's pelvis, 23.3% on the pectoral fins, 22.3% on the caudal fin, 8.6% on the body, 8.3% on the head, 2.1% on the dorsal fin, and 1.5% on the gills respectively. Cleaners did not preferentially inspect thresher sharks by time of day or by shark sex, but there was a direct correlation between the amount of time a thresher shark spent at a cleaning station and the number of inspections it received. Thresher shark clients modified their behavior by "circular-stance-swimming," presumably to facilitate cleaner inspections. The cleaner-thresher shark association reflected some of the known behavioral trends in the cleaner-reef teleost system since cleaners appeared to forage selectively on shark clients. Evidence is mounting that in addition to acting as social refuges and foraging grounds for large visiting marine predators, seamounts may also support pelagic ecology by functioning as cleaning stations for oceanic sharks and rays.

  1. Coastal Ocean Processes Symposium: A Tribute to William D. Grant

    Science.gov (United States)

    1999-05-01

    This report is a compilation of abstracts distributed at the Coastal Ocean Processes Symposium: A Tribute to William D . Grant at the Woods Hole Oceanographic Institution from September 27-September 30, 1998.

  2. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic image tiles, coastal North Carolina, 2008 (NODC Accession 0074382)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are a NOAA Integrated Ocean and Coastal Mapping (IOCM) Product collected from the coastal North Carolina (Pamlico Sound) region. Imagery products are true...

  3. The Design and Analysis of Salmonid Tagging Studies in the Columbia Basin : Volume XVII : Effects of Ocean Covariates and Release Timing on First Ocean-Year Survival of Fall Chinook Salmon from Oregon and Washington Coastal Hatcheries.

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Caitlin; Skalski, John R.

    2001-05-01

    Effects of oceanographic conditions, as well as effects of release-timing and release-size, on first ocean-year survival of subyearling fall chinook salmon were investigated by analyzing CWT release and recovery data from Oregon and Washington coastal hatcheries. Age-class strength was estimated using a multinomial probability likelihood which estimated first-year survival as a proportional hazards regression against ocean and release covariates. Weight-at-release and release-month were found to significantly effect first year survival (p < 0.05) and ocean effects were therefore estimated after adjusting for weight-at-release. Negative survival trend was modeled for sea surface temperature (SST) during 11 months of the year over the study period (1970-1992). Statistically significant negative survival trends (p < 0.05) were found for SST during April, June, November and December. Strong pairwise correlations (r > 0.6) between SST in April/June, April/November and April/December suggest the significant relationships were due to one underlying process. At higher latitudes (45{sup o} and 48{sup o}N), summer upwelling (June-August) showed positive survival trend with survival and fall (September-November) downwelling showed positive trend with survival, indicating early fall transition improved survival. At 45{sup o} and 48{sup o}, during spring, alternating survival trends with upwelling were observed between March and May, with negative trend occurring in March and May, and positive trend with survival occurring in April. In January, two distinct scenarios of improved survival were linked to upwelling conditions, indicated by (1) a significant linear model effect (p < 0.05) showing improved survival with increasing upwelling, and (2) significant bowl-shaped curvature (p < 0.05) of survival with upwelling. The interpretation of the effects is that there was (1) significantly improved survival when downwelling conditions shifted to upwelling conditions in January (i

  4. Near coastal ocean attributes of salmon - Ocean Survival of Salmonids

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A study to evaluate the role of changing ocean conditions on growth and survival of juvenile salmon from the Columbia River basin as they enter the Columbia River...

  5. Coastal Ocean Circulation Experiment off Senegal (COCES - II)

    Science.gov (United States)

    2013-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Coastal Ocean Circulation Experiment off Senegal (COCES...particular emphasis on eddy dynamics. OBJECTIVES The general objective of COCES-II is to investigate the coastal dynamics off the coast of Senegal , a...Senegalese scientists to study the North Atlantic off the west African coast. APPROACH Surface drifters are deployed off the coast of Senegal on a

  6. Coastal and open ocean aerosol characteristics: investigating the representativeness of coastal aerosol sampling over the North-East Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    M. Rinaldi

    2008-11-01

    Full Text Available In order to achieve a better understanding of the modifications of the physical and chemical properties of marine aerosol particles during transport from offshore to the coast, size distribution and chemical composition were measured concurrently in clean air masses over the open North Atlantic Ocean and at an Irish coastal site. Open ocean sampling was performed on board the oceanographic vessel Celtic Explorer sailing 100–300 km off the Irish west coast, while coastal measurements were performed at the Mace Head GAW station. The experiment took place between 11 June and 6 July 2006, during the period of phytoplankton bloom.

    The number size distribution and size-resolved chemical composition of coastal and open ocean samples were very similar, indicating homogeneous physical and chemical aerosol properties over a wide region in the marine boundary layer. The results also show that submicron chemical and physical aerosol properties measured at the coastal Mace Head Atmospheric Research Station were not unduly influenced by coastal artefacts and are thus representative of open water properties. Greater differences between the coastal site and the open ocean were observed for the aerosol supermicron sea spray components; this could be due to a variety of reasons, ranging from higher local wind speeds at the coastal site over the comparison period, to differences in sampling heights and increased local surf-zone production.

    Evidence of ageing processes was observed: at the costal site the ratio between non-sea-salt sulphate and methanesulphonic acid was higher, and the aerosol water soluble organic compounds were more oxidized than in the open ocean.

  7. Comparison of aerosol size distribution in coastal and oceanic environments

    NARCIS (Netherlands)

    Kusmierczyk-Michulec, J.T.; Eijk, A.M.J. van

    2006-01-01

    The results of applying the empirical orthogonal functions (EOF) method to decomposition and approximation of aerosol size distributions are presented. A comparison was made for two aerosol data sets, representing coastal and oceanic environments. The first data set includes measurements collected a

  8. Eutrophication-driven deoxygenation in the coastal ocean

    NARCIS (Netherlands)

    Rabalais, N.N.; Cai, W.-J.; Carstensen, J.; Conley, D.J.; Fry, B.; Hu, X.; Quiñones-Rivera, Z.; Rosenberg, R.; Slomp, C.P.; Turner, R.E.; Voss, M.; Wissel, X.; Zhang, J.

    2014-01-01

    Human activities, especially increased nutrient loads that set in motion a cascading chain of events related to eutrophication, accelerate development of hypoxia (lower oxygen concentration) in many areas of the world's coastal ocean. Climate changes and extreme weather events may modify hypoxia. Or

  9. Coastal Adaptation: The Case of Ocean Beach, San Francisco

    Science.gov (United States)

    Cheong, S.

    2012-12-01

    Coastal erosion, storms, sea-level rise, and tsunamis all lead to inundation that puts people and communities at risk. Adapting to these coastal hazards has gained increasing attention with climate change. Instead of promoting one particular strategy such as seawalls or defending against one type of hazard, scholars and practitioners encourage a combination of existing methods and strategies to promote synergistic effects. The recently published Intergovernmental Panel on Climate Change (IPCC) Special Report on climate extremes reflects this trend in the integration of disaster risk management and climate change adaptation. This paper focuses on the roles, compatibilities, and synergies of three coastal adaptation options - engineering, vegetation, and policy - in the case of Ocean Beach in San Francisco. Traditionally engineering approach and ecosystem conservation often have stood in opposition as hard shoreline structures destroy coastal habitats, worsen coastal erosion, divert ocean currents, and prevent the natural migration of shores. A natural migration of shores without structure translates into the abandonment of properties in the coastal zone, and is at odds with property rights and development. For example, policies of relocation, retreat, and insurance may not be popular given the concerns of infrastructure and coastal access. As such, engineering, natural defense, and policy can be more conflictual than complementary. Nonetheless, all these responses are used in combination in many locations. Complementarities and compatibilities, therefore, must be assessed when considering the necessity of engineering responses, natural defense capabilities, and policy options. In this light, the question is how to resolve the problem of mixed responses and short- and long-term interests and values, identify compatibilities, and generate synergies. In the case of Ocean Beach, recent erosions that endangered San Francisco's wastewater treatment system acted as major

  10. Coastal Ocean Processes: A Science Prospectus

    Science.gov (United States)

    1992-04-01

    particles to the sediment surface from depths of at least 30 cm. Rare events, such as severe storms, turbidity flows and earthquakes and associated tsunami ...extreme events, such as tsunamis , are recorded there. However, interpret- ing this record of the dynamic coastal environment is difficult. Developing...from rivers, glaciers , the at- mosphere and beaches, are deposited as a result of physical, biological and chemical processes in the water coluinn. It

  11. What was natural in the coastal oceans?

    Science.gov (United States)

    Jackson, J B

    2001-05-08

    Humans transformed Western Atlantic coastal marine ecosystems before modern ecological investigations began. Paleoecological, archeological, and historical reconstructions demonstrate incredible losses of large vertebrates and oysters from the entire Atlantic coast. Untold millions of large fishes, sharks, sea turtles, and manatees were removed from the Caribbean in the 17th to 19th centuries. Recent collapses of reef corals and seagrasses are due ultimately to losses of these large consumers as much as to more recent changes in climate, eutrophication, or outbreaks of disease. Overfishing in the 19th century reduced vast beds of oysters in Chesapeake Bay and other estuaries to a few percent of pristine abundances and promoted eutrophication. Mechanized harvesting of bottom fishes like cod set off a series of trophic cascades that eliminated kelp forests and then brought them back again as fishers fished their way down food webs to small invertebrates. Lastly, but most pervasively, mechanized harvesting of the entire continental shelf decimated large, long-lived fishes and destroyed three-dimensional habitats built up by sessile corals, bryozoans, and sponges. The universal pattern of losses demonstrates that no coastal ecosystem is pristine and few wild fisheries are sustainable along the entire Western Atlantic coast. Reconstructions of ecosystems lost only a century or two ago demonstrate attainable goals of establishing large and effective marine reserves if society is willing to pay the costs. Historical reconstructions provide a new scientific framework for manipulative experiments at the ecosystem scale to explore the feasibility and benefits of protection of our living coastal resources.

  12. Oceans and Human Health: Linking Ocean, Organism, and Human Health for Sustainable Management of Coastal Ecosystems

    Science.gov (United States)

    Sandifer, P. A.; Trtanj, J.; Collier, T. K.

    2012-12-01

    Scientists and policy-makers are increasingly recognizing that sustainable coastal communities depend on healthy and resilient economies, ecosystems, and people, and that the condition or "health" of the coastal ocean and humans are intimately and inextricably connected. A wealth of ecosystem services provided by ocean and coastal environments are crucial for human survival and well being. Nonetheless, the health of coastal communities, their economies, connected ecosystems and ecosystem services, and people are under increasing threats from health risks associated with environmental degradation, climate change, and unwise land use practices, all of which contribute to growing burdens of naturally-occurring and introduced pathogens, noxious algae, and chemical contaminants. The occurrence, frequency, intensity, geographic range, and number and kinds of ocean health threats are increasing, with concomitant health and economic effects and eroding public confidence in the safety and wholesomeness of coastal environments and resources. Concerns in the research and public health communities, many summarized in the seminal 1999 NRC Report, From Monsoons to Microbes and the 2004 final report of the US Commission on Ocean Policy, resulted in establishment of a new "meta-discipline" known as Oceans and Human Health (OHH). OHH brings together practitioners in oceanography, marine biology, ecology, biomedical science, medicine, economics and other social sciences, epidemiology, environmental management, and public health to focus on water- and food-borne causes of human and animal illnesses associated with ocean and coastal systems and on health benefits of seafood and other marine products. It integrates information across multiple disciplines to increase knowledge of ocean health risks and benefits and communicate such information to enhance public safety. Recognizing the need for a comprehensive approach to ocean health threats and benefits, Congress passed the Oceans and

  13. Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter

    Science.gov (United States)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Black carbon (BC) in ultrafiltered high-molecular-weight DOM (UDOM) was measured in surface waters of Delaware Bay, Chesapeake Bay and the adjacent Atlantic Ocean (USA) to ascertain the importance of riverine and estuarine DOM as a source of BC to the ocean. BC comprised 5-72% of UDOM-C (27+/-l7%) and on average 8.9+/-6.5% of dissolved organic carbon (DOC) with higher values in the turbid region of the Delaware Estuary and lower yields in the river and coastal ocean. The spatial and seasonal distributions of BC along the salinity gradient of Delaware Bay suggest that the higher levels of BC in surface water UDOM originated from localized sources, possibly from atmospheric deposition or released from resuspended sediments. Black carbon comprised 4 to 7% of the DOC in the coastal Atlantic Ocean, revealing that river-estuary systems are important exporters of colloidal BC to the ocean. The annual flux of BC from Delaware Bay UDOM to the Atlantic Ocean was estimated at 2.4x10(exp 10) g BC yr(exp -1). The global river flux of BC through DOM to the ocean could be on the order of 5.5x1O(exp 12)g BC yr (exp -1). These results support the hypothesis that the DOC pool is the intermediate reservoir in which BC ages prior to sedimentary deposition.

  14. Perturbation of regional ocean tides due to coastal dikes

    Science.gov (United States)

    Choi, B. H.; Kim, K. O.; Lee, H. S.; Yuk, J. H.

    2010-04-01

    The tidal regime modeling system for ocean tides in the seas bordering the Korean Peninsula is designed to cover an area that is broad in scope and size, yet provide a high degree of resolution in coastal development areas, including the Saemangeum area in the eastern Yellow Sea and the Ariake Sea in Japan, where serious environmental problems have occurred after the completion of interior tidal dikes. With this simulation system, we have estimated the changes in tidal regime due to barriers at Saemangeum and Isahaya Bay in the Ariake Sea. Some results in terms of perturbations in tidal elevations due to the construction of coastal dikes are presented and discussed.

  15. Challenges and potential solutions for European coastal ocean modelling

    Science.gov (United States)

    She, Jun; Stanev, Emil

    2017-04-01

    Coastal operational oceanography is a science and technological platform to integrate and transform the outcomes in marine monitoring, new knowledge generation and innovative technologies into operational information products and services in the coastal ocean. It has been identified as one of the four research priorities by EuroGOOS (She et al. 2016). Coastal modelling plays a central role in such an integration and transformation. A next generation coastal ocean forecasting system should have following features: i) being able to fully exploit benefits from future observations, ii) generate meaningful products in finer scales e.g., sub-mesoscale and in estuary-coast-sea continuum, iii) efficient parallel computing and model grid structure, iv) provide high quality forecasts as forcing to NWP and coastal climate models, v) resolving correctly inter-basin and inter-sub-basin water exchange, vi) resolving synoptic variability and predictability in marine ecosystems, e.g., for algae bloom, vi) being able to address critical and relevant issues in coastal applications, e.g., marine spatial planning, maritime safety, marine pollution protection, disaster prevention, offshore wind energy, climate change adaptation and mitigation, ICZM (integrated coastal zone management), the WFD (Water Framework Directive), and the MSFD (Marine Strategy Framework Directive), especially on habitat, eutrophication, and hydrographic condition descriptors. This presentation will address above challenges, identify limits of current models and propose correspondent research needed. The proposed roadmap will address an integrated monitoring-modelling approach and developing Unified European Coastal Ocean Models. In the coming years, a few new developments in European Sea observations can expected, e.g., more near real time delivering on profile observations made by research vessels, more shallow water Argo floats and bio-Argo floats deployed, much more high resolution sea level data from SWOT

  16. Coastal ocean acidification: The other eutrophication problem

    Science.gov (United States)

    Wallace, Ryan B.; Baumann, Hannes; Grear, Jason S.; Aller, Robert C.; Gobler, Christopher J.

    2014-07-01

    Increased nutrient loading into estuaries causes the accumulation of algal biomass, and microbial degradation of this organic matter decreases oxygen levels and contributes towards hypoxia. A second, often overlooked consequence of microbial degradation of organic matter is the production of carbon dioxide (CO2) and a lowering of seawater pH. To assess the potential for acidification in eutrophic estuaries, the levels of dissolved oxygen (DO), pH, the partial pressure of carbon dioxide (pCO2), and the saturation state for aragonite (Ωaragonite) were horizontally and vertically assessed during the onset, peak, and demise of low oxygen conditions in systems across the northeast US including Narragansett Bay (RI), Long Island Sound (CT-NY), Jamaica Bay (NY), and Hempstead Bay (NY). Low pH conditions (3000 μatm), were acidic pH (<7.0), and were undersaturated with regard to aragonite (Ωaragonite < 1), even near-normoxic but eutrophic regions of these estuaries were often relatively acidified (pH < 7.7) during late summer and/or early fall. The close spatial and temporal correspondence between DO and pH and the occurrence of extremes in these conditions in regions with the most intense nutrient loading indicated that they were primarily driven by microbial respiration. Given that coastal acidification is promoted by nutrient-enhanced organic matter loading and reaches levels that have previously been shown to negatively impact the growth and survival of marine organisms, it may be considered an additional symptom of eutrophication that warrants managerial attention.

  17. Climate Outreach Using Regional Coastal Ocean Observing System Portals

    Science.gov (United States)

    Anderson, D. M.; Hernandez, D. L.; Wakely, A.; Bochenek, R. J.; Bickel, A.

    2015-12-01

    Coastal oceans are dynamic, changing environments affected by processes ranging from seconds to millennia. On the east and west coast of the U.S., regional observing systems have deployed and sustained a remarkable diverse array of observing tools and sensors. Data portals visualize and provide access to real-time sensor networks. Portals have emerged as an interactive tool for educators to help students explore and understand climate. Bringing data portals to outreach events, into classrooms, and onto tablets and smartphones enables educators to address topics and phenomena happening right now. For example at the 2015 Charleston Science Technology Engineering and Math (STEM) Festival, visitors navigated the SECOORA (Southeast Coastal Ocean Observing regional Association) data portal to view the real-time marine meteorological conditions off South Carolina. Map-based entry points provide an intuitive interface for most students, an array of time series and other visualizations depict many of the essential principles of climate science manifest in the coastal zone, and data down-load/ extract options provide access to the data and documentation for further inquiry by advanced users. Beyond the exposition of climate principles, the portal experience reveals remarkable technologies in action and shows how the observing system is enabled by the activity of many different partners.

  18. Multiresolution in CROCO (Coastal and Regional Ocean Community model)

    Science.gov (United States)

    Debreu, Laurent; Auclair, Francis; Benshila, Rachid; Capet, Xavier; Dumas, Franck; Julien, Swen; Marchesiello, Patrick

    2016-04-01

    CROCO (Coastal and Regional Ocean Community model [1]) is a new oceanic modeling system built upon ROMS_AGRIF and the non-hydrostatic kernel of SNH, gradually including algorithms from MARS3D (sediments)and HYCOM (vertical coordinates). An important objective of CROCO is to provide the possibility of running truly multiresolution simulations. Our previous work on structured mesh refinement [2] allowed us to run two-way nesting with the following major features: conservation, spatial and temporal refinement, coupling at the barotropic level. In this presentation, we will expose the current developments in CROCO towards multiresolution simulations: connection between neighboring grids at the same level of resolution and load balancing on parallel computers. Results of preliminary experiments will be given both on an idealized test case and on a realistic simulation of the Bay of Biscay with high resolution along the coast. References: [1] : CROCO : http://www.croco-ocean.org [2] : Debreu, L., P. Marchesiello, P. Penven, and G. Cambon, 2012: Two-way nesting in split-explicit ocean models: algorithms, implementation and validation. Ocean Modelling, 49-50, 1-21.

  19. Sustainable Management of Coastal Environments Through Coupled Terrestrial-Coastal Ocean Models

    Science.gov (United States)

    Lohrenz, S. E.; Cai, W.; Tian, H.; He, R.; Xue, Z.; Fennel, K.; Hopkinson, C.; Howden, S. D.

    2012-12-01

    Changing climate and land use practices have the potential to dramatically alter coupled hydrologic-biogeochemical processes and associated movement of water, carbon and nutrients through various terrestrial reservoirs into rivers, estuaries, and coastal ocean waters. Consequences of climate- and land use-related changes will be particularly evident in large river basins and their associated coastal outflow regions. The large spatial extent of such systems necessitates a combination of satellite observations and model-based approaches coupled with targeted ground-based site studies to adequately characterize relationships among climate forcing (e.g., wind, precipitation, temperature, solar radiation, humidity, extreme weather), land use practice/land cover change, and transport of materials through watersheds and, ultimately, to coastal regions. Here, we describe a NASA Interdisciplinary Science project that employs an integrated suite of models in conjunction with remotely sensed as well as targeted in situ observations with the objectives of describing processes controlling fluxes on land and their coupling to riverine, estuarine and ocean ecosystems. The objectives of this effort are to 1) assemble and evaluate long term datasets for the assessment of impacts of climate variability, extreme weather events, and land use practices on transport of water, carbon and nitrogen within terrestrial systems and the delivery of materials to waterways and rivers; 2) using the Mississippi River as a testbed, develop and evaluate an integrated suite of models to describe linkages between terrestrial and riverine systems, transport of carbon and nutrients in the Mississippi river and its tributaries, and associated cycling of carbon and nutrients in coastal ocean waters; and 3) evaluate uncertainty in model products and parameters and identify areas where improved model performance is needed through model refinement and data assimilation. The effort employs the Dynamic Land

  20. First China ocean reflection experiment using coastal GNSS-R

    Institute of Scientific and Technical Information of China (English)

    WANG Xin; SUN Qiang; ZHANG XunXie; LU DaRen; SHAO LianJun; HU Xiong; RUFFINI Giulio; DUNNE Stephen; FRANCOIS Soulat

    2008-01-01

    It is a new way for oceanographic remote sensing using the GNSS-Reflection technique. Sea waves, tides and sea surface wind can be obtained by analyzing the direct and reflected GPS signals from sea surface. It has become an advanced field concerned by many researchers. In this paper the first China Ocean Reflection Experiment (CORE) with the coastal GNSS-R in the southeast is reported and the method to retrieve oceanographic parameters with the direct and reflected GPS signals is studied. The primary retrievals of Significant Wave Height (SWH) are presented and also compared with the meas-urements from Ultrasonic Wave Gauge (UWG) in situ.

  1. 2011 NOAA Ortho-rectified Mosaic of Texas: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  2. 2008 NOAA Aerial Photography (IR) of Alaska: Kachemak Bay: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Integrated Ocean and Coastal Mapping (IOCM) Product. The images were acquired from a nominal altitude of 5,000 feet above ground level (AGL), using an Applanix...

  3. Integrated Ocean and Coastal Mapping (IOCM) Project WA1405: STRAIT OF JUAN DE FUCA, WA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of Integrated Ocean and Coastal Mapping (IOCM) is to improve the coordination among federal, state and local government, non-governmental and private...

  4. Integrated Ocean and Coastal Mapping (IOCM) Project NY1405: ERIE CANAL, NY.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of Integrated Ocean and Coastal Mapping (IOCM) is to improve the coordination among federal, state and local government, non-governmental and private...

  5. Integrated Ocean and Coastal Mapping (IOCM) Project FL1421: ST JOHNS RIVER, FL.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of Integrated Ocean and Coastal Mapping (IOCM) is to improve the coordination among federal, state and local government, non-governmental and private...

  6. Integrated Ocean and Coastal Mapping (IOCM) Project OR1201; LANE, DOUGLAS AND COOS COUNTIES, OR.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of Integrated Ocean and Coastal Mapping (IOCM) is to improve the coordination among federal, state and local government, non-governmental and private...

  7. IOCM Aerial Photography (IR): New Hampshire Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Integrated Ocean and Coastal Mapping Product (IOCM). The images were acquired from a nominal altitude of 7,500 feet above ground level (AGL), using an Applanix...

  8. IOCM Aerial Photography: New Hampshire MLLW Natural Color Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Integrated Ocean and Coastal Mapping Product (IOCM). The images were acquired from a nominal altitude of 7,500 feet above ground level (AGL), using an Applanix...

  9. IOCM Aerial Photography: New Hampshire MHW Infrared Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Integrated Ocean and Coastal Mapping Product (IOCM). The images were acquired from a nominal altitude of 7,500 feet above ground level (AGL), using an Applanix...

  10. Integrated Ocean and Coastal Mapping (IOCM) Project WA1406: OLYMPIA, WA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of Integrated Ocean and Coastal Mapping (IOCM) is to improve the coordination among federal, state and local government, non-governmental and private...

  11. Integrated Ocean and Coastal Mapping (IOCM) Project WA1002: PUDGET SOUND - WHIDBEY ISLAND, WA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of Integrated Ocean and Coastal Mapping (IOCM) is to improve the coordination among federal, state and local government, non-governmental and private...

  12. 2012 NOAA Ortho-rectified Mosaic of Texas: Trinity Bay, Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  13. Integrated Ocean and Coastal Mapping (IOCM) Project FL1415: APALACHICOLA RIVER (MOUTH) TO SAUL CREEK, FL.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of Integrated Ocean and Coastal Mapping (IOCM) is to improve the coordination among federal, state and local government, non-governmental and private...

  14. IOCM Aerial Photography (RGB) for NERR: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Integrated Ocean and Coastal Mapping Product (IOCM). The images were acquired from a nominal altitude of 7,500 feet above ground level (AGL), using an Applanix...

  15. Integrated Ocean and Coastal Mapping (IOCM) Project OR1210: CAPE PERPETUA TO CLATSOP SPIT, OR.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of Integrated Ocean and Coastal Mapping (IOCM) is to improve the coordination among federal, state and local government, non-governmental and private...

  16. IOCM Aerial Photography: New Hampshire MHW Natural Color Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Integrated Ocean and Coastal Mapping Product (IOCM). The images were acquired from a nominal altitude of 7,500 feet above ground level (AGL), using an Applanix...

  17. Integrated Ocean and Coastal Mapping (IOCM) Project FL1414: VENICE INLET - ICW, FL.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of Integrated Ocean and Coastal Mapping (IOCM) is to improve the coordination among federal, state and local government, non-governmental and private...

  18. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic image tiles for select coastal bays, Texas, 2007 (NODC Accession 0086051)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are a collection of natural color (RGB) and color infrared (IR) ortho images from selected coastal bays of Texas. The actual project boundary located...

  19. Data Requirements for Oceanic Processes in the Open Ocean, Coastal Zone, and Cryosphere

    Science.gov (United States)

    Nagler, R. G.; Mccandless, S. W., Jr.

    1978-01-01

    The type of information system that is needed to meet the requirements of ocean, coastal, and polar region users was examined. The requisite qualities of the system are: (1) availability, (2) accessibility, (3) responsiveness, (4) utility, (5) continuity, and (6) NASA participation. The system would not displace existing capabilities, but would have to integrate and expand the capabilities of existing systems and resolve the deficiencies that currently exist in producer-to-user information delivery options.

  20. Year Five of Southeast Atlantic Coastal Ocean Observing System (SEACOOS) Implementation

    Science.gov (United States)

    2007-12-15

    Journal of Marine Systems doi...regional coastal ocean observing system design for the southeast coastal ocean observing regional association, Journal of Marine Systems , in press. Seim...Technology, 2008 IEEE: 71:79. Wanninkhof, R., A. Olsen, and J. Trinanes, 2007. Air-Sea CO2 Fluxes in the Caribbean Sea from 2002- 2004, Journal of Marine Systems ,

  1. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic image tiles, New Hampshire, 2008 (NODC Accession 0074094)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are an Integrated Ocean and Coastal Mapping (IOCM) Product of coastal New Hampshire. The images were acquired from a nominal altitude of 5,000 feet above...

  2. Estimation of the atmosphere-ocean fluxes of greenhouse gases and aerosols at the finer resolution of the coastal ocean.

    Science.gov (United States)

    Vieira, Vasco; Sahlée, Erik; Jurus, Pavel; Clementi, Emanuela; Pettersson, Heidi; Mateus, Marcos

    2016-04-01

    mentioned above. First, we tested with measured data from the Baltic. Then, we adapted it to a coupler for atmosphere (WRF) and ocean (WW3-NEMO) model components and tested with simulated data relative to the Mediterranean and coastal North Atlantic. Computational speed was greatly improved by calculus vectorization and parallelization. The classical solubility formulation was compared to a recent alternative relying in a different chemistry background. Differences between solubility formulations resulted in a bias of 3.86×106 ton of CO2, 880.7 ton of CH4 and 401 ton of N2O dissolved in the first meter below the sea-surface of the modelled region, corresponding to 5.9% of the N2O yearly discharged by European estuaries. These differences concentrated in sensitive areas for Earth-System dynamics: the cooler polar waters and warmer less-saline coastal waters. The classical transfer velocity formulation using solely u10 was compared to alternatives using the friction velocity, atmospheric stability, sea-surface agitation and wave breaking. Differences between estimated transfer velocities concentrated at the coastal ocean and resulted in 55.82% of the gas volume transferred over the sea-surface of the modelled region during the 66h simulated period.

  3. Airborne Mission Concept for Coastal Ocean Color and Ecosystems Research

    Science.gov (United States)

    Guild, L. S.; Hooker, S. B.; Morrow, J. H.; Kudela, R. M.; Palacios, S. L.; Negrey, K.; Torres-Perez, J. L.; Dunagan, S. E.

    2016-12-01

    NASA airborne missions in 2011 and 2013 over Monterey Bay, CA demonstrated novel above- and in-water calibration and validation measurements supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The resultant airborne data characterize contemporaneous coastal atmospheric and aquatic properties plus sea-truth observations from state-of-the-art instrument systems spanning a next-generation spectral domain (320-875 nm). This airborne instrument suite for calibration, validation, and research flew at the lowest safe altitude (ca. 100 ft or 30 m) as well as higher altitudes (e.g., 6,000 ft or 1,800 m) above the sea surface covering a larger area in a single synoptic sortie than ship-based measurements at a few stations during the same sampling period. Data collection of coincident atmospheric and aquatic properties near the sea surface and at altitude allows the input of relevant variables into atmospheric correction schemes to improve the output of corrected imaging spectrometer data. Specific channels support legacy and next-generation satellite capabilities, and flights are planned to within 30 min of satellite overpass. This concept supports calibration and validation activities of ocean color phenomena (e.g., river plumes, algal blooms) and studies of water quality and coastal ecosystems. The 2011 COAST mission flew at 100 and 6,000 ft on a Twin Otter platform with flight plans accommodating the competing requirements of the sensor suite, which included the Coastal-Airborne In-situ Radiometers (C-AIR) for the first time. C-AIR (Biospherical Instruments Inc.) also flew in the 2013 OCEANIA mission at 100 and 1,000 ft on the Twin Otter below the California airborne simulation of the proposed NASA HyspIRI satellite system comprised of an imaging spectrometer and thermal infrared multispectral imager on the ER-2 at 65,000 ft (20,000 m). For both missions, the Compact-Optical Profiling System (Biospherical

  4. Cabled observatories: Connecting coastal communities to local ocean data

    Science.gov (United States)

    Pelz, M.; Hoeberechts, M.; Brown, J. C. K.; McLean, M. A.; Ewing, N.; Moran, K.

    2015-12-01

    Coastal communities are facing a wide range of rapid changes due to anthropogenic and natural environmental influences. Communities are under pressure to adapt to effects of climate change, including altered shorelines, changes in availability of seafood, and in northern regions, changes to the extent, formation and break-up of land-fast and sea-ice. Access to up-to-date scientific data and basic climate literacy are essential tools to enable community members to make informed decisions about their own coast. Ocean Networks Canada (ONC) operates the world-leading NEPTUNE and VENUS cabled ocean observatories off the west coast of British Columbia (BC). ONC also operates smaller, coastal community observatories which provide data for both scientific and educational initiatives.The first Arctic community observatory, deployed in 2012, is located in Cambridge Bay, Nunavut. Real-time data flowing from the platform are collected by a range of instruments, including a conductivity-temperature-depth sensor (CTD), hydrophone, video camera, and an ice profiler. There is also a meteorological station and time lapse camera on the dock. Five additional community observatories are being installed over the next year along the coast of BC. Indigenous communities, including the Inuit population in Cambridge Bay and First Nations on BC's north and central coast, are key partners and collaborators of this initiative.Benefits to communities from cabled observatory ocean monitoring can only be achieved if the data collected are relevant to community members and contribute to research priorities identified within the community. The data must be easily accessible and complement existing environmental monitoring initiatives. Community members must possess knowledge and tools to analyze and interpret the data for their purposes. For these reasons, community involvement is critical to the project, including the design of user interfaces for data access, development of educational programs

  5. Satellite Observations of Coastal Processes from a Geostationary Orbit: Application to estuarine, coastal, and ocean resource management

    Science.gov (United States)

    Tzortziou, M.; Mannino, A.; Schaeffer, B. A.

    2016-12-01

    Coastal areas are among the most vulnerable yet economically valuable ecosystems on Earth. Estuaries and coastal oceans are critically important as essential habitat for marine life, as highly productive ecosystems and a rich source of food for human consumption, as a strong economic driver for coastal communities, and as a highly dynamic interface between land and ocean carbon and nutrient cycles. Still, our present capabilities to remotely observe coastal ocean processes from space are limited in their temporal, spatial, and spectral resolution. These limitations, in turn, constrain our ability to observe and understand biogeochemical processes in highly dynamic coastal ecosystems, or predict their response and resilience to current and future pressures including sea level rise, coastal urbanization, and anthropogenic pollution.On a geostationary orbit, and with high spatial resolution and hyper-spectral capabilities, NASA's Decadal Survey mission GEO-CAPE (GEO-stationary for Coastal and Air Pollution Events) will provide, for the first time, a satellite view of the short-term changes and evolution of processes along the economically invaluable but, simultaneously, particularly vulnerable near-shore waters of the United States. GEO-CAPE will observe U.S. lakes, estuaries, and coastal regions at sufficient temporal and spatial scales to resolve near-shore processes, tides, coastal fronts, and eddies, track sediments and pollutants, capture diurnal biogeochemical processes and rates of transformation, monitor harmful algal blooms and large oil spills, observe episodic events and coastal hazards. Here we discuss the GEO-CAPE applications program and the new capabilities afforded by this future satellite mission, to identify potential user communities, incorporate end-user needs into future mission planning, and allow integration of science and management at the coastal interface.

  6. NODC Standard Format Coastal Ocean Wave and Current (F181) Data from the Atlantic Remote Sensing Land/Ocean Experiment (ARSLOE) (1980) (NODC Accession 0014202)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains time series coastal ocean wave and current data collected during the Atlantic Remote Sensing Land/Ocean Experiment (ARSLOE). ARSLOE was...

  7. Interagency Working Group on Ocean Social Science: Incorporating ecosystem services approaches into ocean and coastal decision-making and governance

    Science.gov (United States)

    The application of social science has been recognized as a priority for effective ocean and coastal management, driving much discussion and fostering emerging efforts in several areas. The Interagency Working Group on Ocean Social Science (IWG-OSS) is tasked with assisting the Su...

  8. International and United States documents on oceans law and policy. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J.N. (ed.)

    1986-01-01

    Volume 2 of the five-volume series continues the major international documents of Volume 1 relating to ocean issues. It groups the documents under three major headings: Cooperative agreements for port regulation and development, Living resources, and Environmental protection. The Living resources section is further divided into Coastal fisheries, Anadromous species, Highly migratory species, and Marine Mammals. Subdivisions under the Environmental protection section are General principles, Regional protection, Vessel-source pollution, Ocean dumping, Land-based pollution, Civil liability and compensation, and Endangered species. The title page for each document includes full citations, although some documents have been edited. A separate abstract was prepared for each of the seven sections under Environmental protection.

  9. Coastal ocean atmospheric correction for AVNIR-2 high resolution images

    Science.gov (United States)

    Murakami, Hiroshi; Dupouy, Cécile

    2010-10-01

    Coastal ocean-color estimation needs to retrieve not only molecular and aerosol scattering (ρa), but also high spatial resolution sea-surface reflectance (ρa) because ρg has fine temporal and spatial scales due to variable winds and air-sea stability caused by the coastal geographical structure. Murakami and Frouin 2008 showed a possibility of ρg correction by using near infrared (NIR) and shortwave infrared (SWIR) channels of MODIS 500m observations. This study investigated the correction of the atmospheric and sea-surface reflectance on the southwest of New Caledonia lagoon using AVNIR-2 which has 10-m resolution but doesn't have SWIR. After corrections of gas absorption and molecule scattering, we estimated ρa+ρg and water-leaving reflectance iteratively through IOPs retrieved from visible bands. Spectral slope of ρa+ρg was assumed uniform within our small target area (60km×40km). We tested sensitivity to several possible IOP spectra (total absorption of particle and dissolved matter and back-scattering coefficients) with comparison to in-situ IOP measurements. The AVNIR-2 derived remote sensing reflectance agreed well to the MODIS one (rootmean square difference / average of Rrs 443nm was 43%), and AVNIR-2 IOPs agreed well to in-situ IOP measurements (correlation coefficients more than 0.9) when we used the IOP spectra modeled by in-situ measurements around the New Caledonia. Chlorophyll-a (Chla) calculated by the AVNIR-2 IOPs showed better agreement to in-situ Chla in the lagoon areas where traditional blue/green algorithms overestimated.

  10. Real-time seismic data from the coastal ocean

    Science.gov (United States)

    Frye, D.; ten Brink, U.; Paul, W.; Peal, K.; Von Der Heydt, K.

    2003-01-01

    A moored-buoy system for collecting real-time seismic data from the coastal ocean has been developed and will be deployed for its initial field trial in the fall of 2003. The key component in this moored system is an ultra-stretchy mooring hose that provides compliance for waves and currents and protects the electrical conductors connecting an Ocean Bottom Seismometer (OBS) to a surface buoy from the effects of bending and stretching. This hose is able to stretch to more than twice its unstretched length of 30 m without putting excessive strain on the electrical conductors embedded in its wall. In the initial trials of this system, the OBS will be deployed on the bottom in 40 m of water and connected to the mooring hose through a cable on the seafloor. It will transmit continuous data at a rate of about 5,000 bps to a radio link in the surface buoy. A repeater modem located at the Gay Head lighthouse on Martha's Vineyard about 18 km from the mooring site will receive the transmissions and forward the data to our laboratory at WHOI, about 46 km distant. A GPS receiver on the surface buoy will be configured to send accurate and synchronized time to the OBS on the seafloor, which will make it possible to include data from these undersea systems in the existing seismic data network without the need for any preprocessing. Power to operate the RF link and the OBS will be supplied by solar panels and rechargeable batteries on the surface buoy.

  11. A 4DVAR System for the Navy Coastal Ocean Model. Part 1: System Description and Assimilation of Synthetic Observations in Monterey Bay

    Science.gov (United States)

    2014-06-01

    Navy Coastal Ocean Model (NCOM). NCOM is an opera- tional ocean model (primarily at the Naval Oceano- graphic Office) that has been validated ( Martin ...in section 5. 2. The model NCOM is described in the literature ( Martin 2000; Barron et al. 2006). The model domain used for this experiment contains...meridional velocity y as well as the baro - tropic velocities, and the Flather boundary conditions for elevation. 2086 MONTHLY WEATHER REV IEW VOLUME

  12. IODE's Role in Managing and Exchanging Ocean Data from Coastal Zones

    OpenAIRE

    1995-01-01

    The coastal zones in the world are exposed to continuously increasing environmental stresses: pollution, eutrophication, erosion problems which are amplified by steadily growing economic and recreational use and demographic changes. In view of the position of the coastal environment as a buffering zone and interface between land and open ocean, an effort in integrated coastal zone management is required to achieve sustainable development. Besides the possible impact of global climate change a...

  13. Steroidal estrogen sources in a sewage-impacted coastal ocean.

    Science.gov (United States)

    Griffith, David R; Kido Soule, Melissa C; Eglinton, Timothy I; Kujawinski, Elizabeth B; Gschwend, Philip M

    2016-08-10

    Estrogens are known to be potent endocrine disrupting chemicals that are commonly found in wastewater effluents at ng L(-1) levels. Yet, we know very little about the distribution and fate of estrogens in coastal oceans that receive wastewater inputs. This study measured a wide range of steroidal estrogens in sewage-impacted seawater using ultra high performance liquid chromatography (UHPLC) tandem mass spectrometry (MS/MS) together with the method of standard addition. In Massachusetts Bay, we find conjugated, free, and halogenated estrogens at concentrations that are consistent with dilution at sites close to the sewage source. At a site 6 miles down current of the sewage source, we observe estrone (E1) concentrations (520 ± 180 pg L(-1)) that are nearly double the nearfield concentrations (320 ± 60 pg L(-1)) despite 9-fold dilution of carbamazepine, which was used as a conservative sewage tracer. Our results suggest that background E1 concentrations in Massachusetts Bay (∼270 ± 50 pg L(-1)) are derived largely from sources unrelated to wastewater effluent such as marine vertebrates.

  14. Ocean and Coastal Acidification off New England and Nova Scotia

    Science.gov (United States)

    New England coastal and adjacent Nova Scotia shelf waters have a reduced buffering capacity because of significant freshwater input, making the region’s waters potentially more vulnerable to coastal acidification. Nutrient loading and heavy precipitation events further acid...

  15. Ocean and Coastal Acidification off New England and Nova Scotia

    Science.gov (United States)

    New England coastal and adjacent Nova Scotia shelf waters have a reduced buffering capacity because of significant freshwater input, making the region’s waters potentially more vulnerable to coastal acidification. Nutrient loading and heavy precipitation events further acid...

  16. 46 CFR 11.401 - Ocean and near-coastal officer or STCW endorsements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Ocean and near-coastal officer or STCW endorsements. 11.401 Section 11.401 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND... and near-coastal officer or STCW endorsements. (a) Any license or MMC endorsement for service...

  17. Ecological impacts of ocean acidification in coastal marine environments (Invited)

    Science.gov (United States)

    Harley, C.; Crim, R.; Gooding, R.; Nienhuis, S.; Tang, E.

    2010-12-01

    Rising atmospheric carbon dioxide concentrations are driving rapid and potentially unprecedented reductions in pH and carbonate ion availability in coastal marine environments. This process, known as ocean acidification (OA), has far-reaching implications for the performance and survival of marine organisms, particularly those with calcified shells and skeletons. Here, we highlight the ways in which OA impacts plants and animals in a coastal benthic food web, with an emphasis on what we know and what we don’t know about the ways in which the responses of individual organisms will scale up to long-term changes in community structure. Our system of interest is the rocky shore benthic community that is broadly represented from Alaska through California. Ecologically important species include producers (micro- and macro-algae), grazers (urchins and gastropods), filter feeders (mussels), and predators (sea stars). Although the direct effects of OA on coastal phytoplankton and kelps remain poorly understood, it appears as though elevated CO2 will increase the doubling rate of benthic diatoms. Small changes in food supply, however, may pale in comparison to the direct effects of OA on heavily calcified grazers and filter feeders. Sea urchin and mussel growth are both reduced by increased CO2 in the lab, and decadal-scale reductions in pH are associated with reduced turban snail growth in the field. Although adult abalone growth appears to be unaffected by CO2, larval development is impaired and larval survival is significantly reduced in acidified conditions. In contrast to the negative effects of OA on heavily calcified herbivores and filter feeders, lightly calcified sea stars actually grow faster when CO2 is experimentally increased. The acidification-induced changes described here are likely to result in substantial shifts in the benthic ecosystem. Increasing predation pressure may further reduce the abundance of grazers and filter feeders that are already suffering

  18. NOAA Integrated Ocean and Coastal Mapping (IOCM) true color (RGB) orthorectified mosaic image tiles, coastal Texas, 2007 - 2011 (NODC Accession 0105604)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains true color ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source...

  19. Coastal Ocean State Estimates and Forecasts based on HF Radar Data

    Science.gov (United States)

    Stanev, E. V.; Schulz-Stellenfleth, J.; Staneva, J.; Seemann, J.

    2012-04-01

    Coastal Observing System for Northern and Arctic Seas (COSYNA) collects near real-time HF radar data, which are used in parallel with numerical models to provide continuously state estimates and coastal ocean forecasts. The forecasting suite includes nested 3-D hydrodynamic models running in data-assimilation mode, which are forced with an up-to-date meteorological forecast data. This paper reviews a new method focussed on intra-tidal time scales combining radial surface currents measurements from three HF radars in the German Bight with a priori information from the hydrodynamic model. The example provided in this study is considered as a step towards developing new coastal ocean products.

  20. Extraction of coastal ocean wave characteristics using remote sensing and computer vision technologies

    CSIR Research Space (South Africa)

    Johnson, M

    2017-05-01

    Full Text Available The coastal zone occurs at the interface of three major natural systems. These systems include the atmosphere, the ocean and the land surface. Ocean waves are among the most important forces shaping the world¿s coastlines. They drive environmental...

  1. Green sturgeon physical habitat use in the coastal Pacific Ocean.

    Directory of Open Access Journals (Sweden)

    David D Huff

    Full Text Available The green sturgeon (Acipenser medirostris is a highly migratory, oceanic, anadromous species with a complex life history that makes it vulnerable to species-wide threats in both freshwater and at sea. Green sturgeon population declines have preceded legal protection and curtailment of activities in marine environments deemed to increase its extinction risk. Yet, its marine habitat is poorly understood. We built a statistical model to characterize green sturgeon marine habitat using data from a coastal tracking array located along the Siletz Reef near Newport, Oregon, USA that recorded the passage of 37 acoustically tagged green sturgeon. We classified seafloor physical habitat features with high-resolution bathymetric and backscatter data. We then described the distribution of habitat components and their relationship to green sturgeon presence using ordination and subsequently used generalized linear model selection to identify important habitat components. Finally, we summarized depth and temperature recordings from seven green sturgeon present off the Oregon coast that were fitted with pop-off archival geolocation tags. Our analyses indicated that green sturgeon, on average, spent a longer duration in areas with high seafloor complexity, especially where a greater proportion of the substrate consists of boulders. Green sturgeon in marine habitats are primarily found at depths of 20-60 meters and from 9.5-16.0°C. Many sturgeon in this study were likely migrating in a northward direction, moving deeper, and may have been using complex seafloor habitat because it coincides with the distribution of benthic prey taxa or provides refuge from predators. Identifying important green sturgeon marine habitat is an essential step towards accurately defining the conditions that are necessary for its survival and will eventually yield range-wide, spatially explicit predictions of green sturgeon distribution.

  2. Bubbles & Turbulence in the Ocean Surface Layer & Topographic Interactions in Coastal Waters

    Science.gov (United States)

    2016-06-07

    key factors we identify as crucial to an understanding of near surface turbulence and mixing in a wind driven sea : wave breaking frequency, bubble ... Bubbles & Turbulence in the Ocean Surface Layer & Topographic Interactions in Coastal Waters David Farmer Institute of Ocean Sciences 9860 West...near surface of the ocean, including the role of bubbles in mediating and serving as tracers of such processes; (ii) To elucidate the fluid dynamical

  3. Estuarine circulation-driven entrainment of oceanic nutrients fuels coastal phytoplankton in an open coastal system in Japan

    Science.gov (United States)

    Watanabe, Kenta; Kasai, Akihide; Fukuzaki, Koji; Ueno, Masahiro; Yamashita, Yoh

    2017-01-01

    We investigated interactions among seasonal fluctuations in phytoplankton biomass, riverine nutrient flux, and the fluxes of nutrients entrained by estuarine circulation in Tango Bay, Japan, to determine the influence of freshwater inflows to an open bay on coastal phytoplankton productivity. The riverine nutrient flux was strongly regulated by river discharge. Estuarine circulation was driven by river discharge, with high fluxes of nutrients (mean nitrate + nitrite flux: 5.3 ± 3.5 Mg [mega grams]-N day-1) between winter and early spring, enhanced by nutrient supply to the surface water via vertical mixing. In contrast, low-nutrient seawater was delivered to the bay between late spring and summer (1.0 ± 0.8 Mg-N day-1). Seasonal fluctuations in phytoplankton biomass were affected by the entrained fluxes of oceanic nutrients and variation in the euphotic zone depth, and to a lesser degree by the riverine nutrient flux. Bioassays and stoichiometric analyses indicated that phytoplankton growth was limited by nitrogen and/or phosphorus. Both the entrainment of oceanic nutrients and the euphotic zone depth affected the duration and magnitude of blooms. Our findings show that, unlike semi-enclosed bays, seasonal variations in coastal phytoplankton in an open coastal system are primarily fueled by the entrainment of oceanic nutrients and are influenced by both freshwater inflow and coastal conditions (e.g. vertical mixing and wind events).

  4. Introduction to special section on The U.S. IOOS Coastal and Ocean Modeling Testbed

    Science.gov (United States)

    Luettich, Richard A.; Wright, L. Donelson; Signell, Richard; Friedrichs, Carl; Friedrichs, Marjy; Harding, John; Fennel, Katja; Howlett, Eoin; Graves, Sara; Smith, Elizabeth; Crane, Gary; Baltes, Rebecca

    2013-12-01

    Strong and strategic collaborations among experts from academia, federal operational centers, and industry have been forged to create a U.S. IOOS Coastal and Ocean Modeling Testbed (COMT). The COMT mission is to accelerate the transition of scientific and technical advances from the coastal and ocean modeling research community to improved operational ocean products and services. This is achieved via the evaluation of existing technology or the development of new technology depending on the status of technology within the research community. The initial phase of the COMT has addressed three coastal and ocean prediction challenges of great societal importance: estuarine hypoxia, shelf hypoxia, and coastal inundation. A fourth effort concentrated on providing and refining the cyberinfrastructure and cyber tools to support the modeling work and to advance interoperability and community access to the COMT archive. This paper presents an overview of the initiation of the COMT, the findings of each team and a discussion of the role of the COMT in research to operations and its interface with the coastal and ocean modeling community in general. Detailed technical results are presented in the accompanying series of 16 technical papers in this special issue.

  5. 2011 NOAA Ortho-rectified Mosaic of Texas: Integrated Ocean and Coastal Mapping Product (NODC Accession 0105604)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  6. 2015 NOAA Ortho-rectified Color Mosaic of Redwood City, California: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  7. 2014 NOAA Ortho-rectified Color Mosaic of The Everglades, Florida: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  8. 2015 NOAA Ortho-rectified Color Mosaic of Wilmington and Newcastle, Delaware: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  9. 2012 NOAA Ortho-rectified Mosaic of Texas: Seadrift to Palacios Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  10. 2012 NOAA Ortho-rectified Mosaic of Laguna Madre / Arroyo Colorado, Texas: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  11. 2012 NOAA Ortho-rectified Color Mosaic of Tacoma and Gig Harbor, Washington: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  12. 2015 NOAA Ortho-rectified Color Mosaic of Port Everglades, Florida: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  13. 2014 NOAA Ortho-rectified Near-Infrared Mosaic of The Everglades, Florida: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  14. Interaction between coastal and oceanic ecosystems of the Western and Central Pacific Ocean through predator-prey relationship studies.

    Directory of Open Access Journals (Sweden)

    Valerie Allain

    Full Text Available The Western and Central Pacific Ocean sustains the highest tuna production in the world. This province is also characterized by many islands and a complex bathymetry that induces specific current circulation patterns with the potential to create a high degree of interaction between coastal and oceanic ecosystems. Based on a large dataset of oceanic predator stomach contents, our study used generalized linear models to explore the coastal-oceanic system interaction by analyzing predator-prey relationship. We show that reef organisms are a frequent prey of oceanic predators. Predator species such as albacore (Thunnus alalunga and yellowfin tuna (Thunnus albacares frequently consume reef prey with higher probability of consumption closer to land and in the western part of the Pacific Ocean. For surface-caught-predators consuming reef prey, this prey type represents about one third of the diet of predators smaller than 50 cm. The proportion decreases with increasing fish size. For predators caught at depth and consuming reef prey, the proportion varies with predator species but generally represents less than 10%. The annual consumption of reef prey by the yellowfin tuna population was estimated at 0.8 ± 0.40 CV million tonnes or 2.17 × 10(12± 0.40 CV individuals. This represents 6.1% ± 0.17 CV in weight of their diet. Our analyses identify some of the patterns of coastal-oceanic ecosystem interactions at a large scale and provides an estimate of annual consumption of reef prey by oceanic predators.

  15. Bromide in some coastal and oceanic waters of India

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza, F.P.; Dalal, V.N.K.

    Bromide concentration and bromide/chlorinity ratio are estimated in coastal waters of Goa, Minicoy Lagoon, Western Arabian Sea and Western Bay of Bengal. The influence of precipitation and river runoff on bromide and bromide/chlorinity ratio...

  16. A review of satellite radar altimetry applied to coastal ocean studies

    Science.gov (United States)

    Vignudelli, Stefano

    2016-07-01

    Satellite radar altimetry is today considered a mature technique in open ocean. The data stream from the various satellite missions are routinely used for a number of applications. In the last decade, significant research has been carried out into overcoming the problems to extend the capabilities of radar altimeters to the coastal zone, with the aim to integrate the altimeter-derived measurements of sea level, wind speed and significant wave height into coastal ocean observing systems. More/better (and new) datasets are being produced. Moreover, the advent of new satellite missions, both nadir-viewing (e.g., Sentinel-3) and wide-swath (e.g. SWOT), should globally improve both quantity and quality of coastal altimetry data. In this talk, after a brief review of the challenges in coastal altimetry and description of the new products, we showcase some application examples how the new products can be exploited, and we discuss directions for a global coastal altimetry dataset as an asset for long term monitoring of sea level and sea state in the coastal ocean.

  17. U.S. Geological Survey (USGS) Western Region: Coastal and Ocean Science

    Science.gov (United States)

    Kinsinger, Anne E.

    2009-01-01

    USGS Western Region Coastal and Ocean Science is interdisciplinary, collaborative, and integrates expertise from all USGS Disciplines, and ten of its major Science Centers, in Alaska, Hawai'i, California, Washington, and Oregon. The scientific talent, laboratories, and research vessels in the Western Region and across the Nation, strategically position the USGS to address broad geographic and oceanographic research topics. USGS information products inform resource managers and policy makers who must balance conservation mandates with increasing demands for resources that sustain the Nation's economy. This fact sheet describes but a few examples of the breadth of USGS science conducted in coastal, nearshore, and ocean environments along our Nation's West Coast and Pacific Islands.

  18. Coastal ocean forecasting with an unstructured grid model in the southern Adriatic and northern Ionian seas

    Science.gov (United States)

    Federico, Ivan; Pinardi, Nadia; Coppini, Giovanni; Oddo, Paolo; Lecci, Rita; Mossa, Michele

    2017-01-01

    SANIFS (Southern Adriatic Northern Ionian coastal Forecasting System) is a coastal-ocean operational system based on the unstructured grid finite-element three-dimensional hydrodynamic SHYFEM model, providing short-term forecasts. The operational chain is based on a downscaling approach starting from the large-scale system for the entire Mediterranean Basin (MFS, Mediterranean Forecasting System), which provides initial and boundary condition fields to the nested system. The model is configured to provide hydrodynamics and active tracer forecasts both in open ocean and coastal waters of southeastern Italy using a variable horizontal resolution from the open sea (3-4 km) to coastal areas (50-500 m). Given that the coastal fields are driven by a combination of both local (also known as coastal) and deep-ocean forcings propagating along the shelf, the performance of SANIFS was verified both in forecast and simulation mode, first (i) on the large and shelf-coastal scales by comparing with a large-scale survey CTD (conductivity-temperature-depth) in the Gulf of Taranto and then (ii) on the coastal-harbour scale (Mar Grande of Taranto) by comparison with CTD, ADCP (acoustic doppler current profiler) and tide gauge data. Sensitivity tests were performed on initialization conditions (mainly focused on spin-up procedures) and on surface boundary conditions by assessing the reliability of two alternative datasets at different horizontal resolution (12.5 and 6.5 km). The SANIFS forecasts at a lead time of 1 day were compared with the MFS forecasts, highlighting that SANIFS is able to retain the large-scale dynamics of MFS. The large-scale dynamics of MFS are correctly propagated to the shelf-coastal scale, improving the forecast accuracy (+17 % for temperature and +6 % for salinity compared to MFS). Moreover, the added value of SANIFS was assessed on the coastal-harbour scale, which is not covered by the coarse resolution of MFS, where the fields forecasted by SANIFS

  19. Hydrographic processing considerations in the “Big Data” age: An overview of technology trends in ocean and coastal surveys

    Science.gov (United States)

    Holland, M.; Hoggarth, A.; Nicholson, J.

    2016-04-01

    The quantity of information generated by survey sensors for ocean and coastal zone mapping has reached the “Big Data” age. This is influenced by the number of survey sensors available to conduct a survey, high data resolution, commercial availability, as well as an increased use of autonomous platforms. The number of users of sophisticated survey information is also growing with the increase in data volume. This is leading to a greater demand and broader use of the processed results, which includes marine archeology, disaster response, and many other applications. Data processing and exchange techniques are evolving to ensure this increased accuracy in acquired data meets the user demand, and leads to an improved understanding of the ocean environment. This includes the use of automated processing, models that maintain the best possible representation of varying resolution data to reduce duplication, as well as data plug-ins and interoperability standards. Through the adoption of interoperable standards, data can be exchanged between stakeholders and used many times in any GIS to support an even wider range of activities. The growing importance of Marine Spatial Data Infrastructure (MSDI) is also contributing to the increased access of marine information to support sustainable use of ocean and coastal environments. This paper offers an industry perspective on trends in hydrographic surveying and processing, and the increased use of marine spatial data.

  20. Modeling Coastal Ocean Optical Properties for Coupled Circulation and Ecosystem Models

    Science.gov (United States)

    2016-06-07

    Modeling Coastal Ocean Optical Properties for Coupled Circulation and Ecosystem Models Curtis D. Mobley Sequoia Scientific , Inc. 2700 Richards...N00014D01610002 http://www.onr.navy.mil/sci_tech/32/322/ocean_optics_biology.asp LONG-TERM GOAL The overall goal of this work , now completed, was to...wrong by orders of magnitude in Case 2 or optically shallow waters. The objective of this work was develop a radiative transfer model that can be

  1. A Multi-Process Test Case to Perform Comparative Analysis of Coastal Oceanic Models

    Science.gov (United States)

    Lemarié, F.; Burchard, H.; Knut, K.; Debreu, L.

    2016-12-01

    Due to the wide variety of choices that need to be made during the development of dynamical kernels of oceanic models, there is a strong need for an effective and objective assessment of the various methods and approaches that predominate in the community. We present here an idealized multi-scale scenario for coastal ocean models combining estuarine, coastal and shelf sea scales at midlatitude. The bathymetry, initial conditions and external forcings are defined analytically so that any model developer or user could reproduce the test case with its own numerical code. Thermally stratified conditions are prescribed and a tidal forcing is imposed as a propagating coastal Kelvin wave. The following physical processes can be assessed from the model results: estuarine process driven by tides and buoyancy gradients, the river plume dynamics, tidal fronts, and the interaction between tides and inertial oscillations. We show results obtained using the GETM (General Estuarine Transport Model) and the CROCO (Coastal and Regional Ocean Community model) models. Those two models are representative of the diversity of numerical methods in use in coastal models: GETM is based on a quasi-lagrangian vertical coordinate, a coupled space-time approach for advective terms, a TVD (Total Variation Diminishing) tracer advection scheme while CROCO is discretized with a quasi-eulerian vertical coordinate, a method of lines is used for advective terms, and tracer advection satisfies the TVB (Total Variation Bounded) property. The multiple scales are properly resolved thanks to nesting strategies, 1-way nesting for GETM and 2-way nesting for CROCO. Such test case can be an interesting experiment to continue research in numerical approaches as well as an efficient tool to allow intercomparison between structured-grid and unstructured-grid approaches. Reference : Burchard, H., Debreu, L., Klingbeil, K., Lemarié, F. : The numerics of hydrostatic structured-grid coastal ocean models: state of

  2. Effects of ocean acidification on primary production in a coastal North Sea phytoplankton community

    Science.gov (United States)

    Eberlein, Tim; Wohlrab, Sylke; Rost, Björn; John, Uwe; Bach, Lennart T.; Riebesell, Ulf; Van de Waal, Dedmer B.

    2017-01-01

    We studied the effect of ocean acidification (OA) on a coastal North Sea plankton community in a long-term mesocosm CO2-enrichment experiment (BIOACID II long-term mesocosm study). From March to July 2013, 10 mesocosms of 19 m length with a volume of 47.5 to 55.9 m3 were deployed in the Gullmar Fjord, Sweden. CO2 concentrations were enriched in five mesocosms to reach average CO2 partial pressures (pCO2) of 760 μatm. The remaining five mesocosms were used as control at ambient pCO2 of 380 μatm. Our paper is part of a PLOS collection on this long-term mesocosm experiment. Here, we here tested the effect of OA on total primary production (PPT) by performing 14C-based bottle incubations for 24 h. Furthermore, photoacclimation was assessed by conducting 14C-based photosynthesis-irradiance response (P/I) curves. Changes in chlorophyll a concentrations over time were reflected in the development of PPT, and showed higher phytoplankton biomass build-up under OA. We observed two subsequent phytoplankton blooms in all mesocosms, with peaks in PPT around day 33 and day 56. OA had no significant effect on PPT, except for a marginal increase during the second phytoplankton bloom when inorganic nutrients were already depleted. Maximum light use efficiencies and light saturation indices calculated from the P/I curves changed simultaneously in all mesocosms, and suggest that OA did not alter phytoplankton photoacclimation. Despite large variability in time-integrated productivity estimates among replicates, our overall results indicate that coastal phytoplankton communities can be affected by OA at certain times of the seasonal succession with potential consequences for ecosystem functioning. PMID:28273107

  3. Intertidal zones as carbon dioxide sources to coastal oceans

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.; George, M.D.; Rajagopal, M.D.

    To understand the factors controlling carbon dioxide (CO sub(2)) exchanges near land-sea boundary diurnal observations have been made twice on CO sub(2) in the air and water in a coastal region. The results suggest that CO sub(2) enrichment...

  4. Circulation constrains the evolution of larval development modes and life histories in the coastal ocean.

    Science.gov (United States)

    Pringle, James M; Byers, James E; Pappalardo, Paula; Wares, John P; Marshall, Dustin

    2014-04-01

    The evolutionary pressures that drive long larval planktonic durations in some coastal marine organisms, while allowing direct development in others, have been vigorously debated. We introduce into the argument the asymmetric dispersal of larvae by coastal currents and find that the strength of the currents helps determine which dispersal strategies are evolutionarily stable. In a spatially and temporally uniform coastal ocean of finite extent, direct development is always evolutionarily stable. For passively drifting larvae, long planktonic durations are stable when the ratio of mean to fluctuating currents is small and the rate at which larvae increase in size in the plankton is greater than the mortality rate (both in units of per time). However, larval behavior that reduces downstream larval dispersal for a given time in plankton will be selected for, consistent with widespread observations of behaviors that reduce dispersal of marine larvae. Larvae with long planktonic durations are shown to be favored not for the additional dispersal they allow, but for the additional fecundity that larval feeding in the plankton enables. We analyzed the spatial distribution of larval life histories in a large database of coastal marine benthic invertebrates and documented a link between ocean circulation and the frequency of planktotrophy in the coastal ocean. The spatial variation in the frequency of species with planktotrophic larvae is largely consistent with our theory; increases in mean currents lead to a decrease in the fraction of species with planktotrophic larvae over a broad range of temperatures.

  5. Salinity dependent hydrogen isotope fractionation in alkenones produced by coastal and open ocean haptophyte algae

    NARCIS (Netherlands)

    M'boule, D.; Chivall, D.; Sinke-Schoen, D.; Sinninghe Damsté, J.S.; Schouten, S.; van der Meer, M.T.J.

    2014-01-01

    The hydrogen isotope fractionation in alkenones produced by haptophyte algae is a promising new proxy for paleosalinity reconstructions. To constrain and further develop this proxy the coastal haptophyte Isochrysis galbana and the open ocean haptophyte alga Emiliania huxleyi were cultured at differe

  6. Assessing satellite sea surface salinity from ocean color radiometric measurements for coastal hydrodynamic model data assimilation

    Science.gov (United States)

    Vogel, Ronald L.; Brown, Christopher W.

    2016-07-01

    Improving forecasts of salinity from coastal hydrodynamic models would further our predictive capacity of physical, chemical, and biological processes in the coastal ocean. However, salinity is difficult to estimate in coastal and estuarine waters at the temporal and spatial resolution required. Retrieving sea surface salinity (SSS) using satellite ocean color radiometry may provide estimates with reasonable accuracy and resolution for coastal waters that could be assimilated into hydrodynamic models to improve SSS forecasts. We evaluated the applicability of satellite SSS retrievals from two algorithms for potential assimilation into National Oceanic and Atmospheric Administration's Chesapeake Bay Operational Forecast System (CBOFS) hydrodynamic model. Of the two satellite algorithms, a generalized additive model (GAM) outperformed that of an artificial neural network (ANN), with mean bias and root-mean-square error (RMSE) of 1.27 and 3.71 for the GAM and 3.44 and 5.01 for the ANN. However, the RMSE for the SSS predicted by CBOFS (2.47) was lower than that of both satellite algorithms. Given the better precision of the CBOFS model, assimilation of satellite ocean color SSS retrievals will not improve CBOFS forecasts of SSS in Chesapeake Bay. The bias in the GAM SSS retrievals suggests that adding a variable related to precipitation may improve its performance.

  7. Rapid seawater circulation through animal burrows in mangrove forests - A significant source of saline groundwater to the tropical coastal ocean

    Science.gov (United States)

    Clark, J. F.; Stieglitz, T. C.; Hancock, G. J.

    2010-12-01

    A common approach for quantifying rates of submarine groundwater discharge (SGD) to the coastal ocean is to use geochemical tracers that are part of the U- and Th-decay chains such as Rn-222 and short lived radium isotopes. These radionuclides are naturally enriched in groundwater relative to seawater and have well understood chemistries within the marine environment. They occur in both fresh (continental) and saline (marine) groundwaters and thus the water source is often ambiguous. Stieglitz (2005, Marine Pollution Bulletin 51, 51-59) has shown that some coastal areas within the Great Barrier Reef (GBR) lagoon (Australia) are enriched in the SGD tracer, Rn-222; he attributed this to four possible processes including the tidal flushing of mangrove forest floors. Here, we present a detailed investigation into the tidal circulation of seawater through animal burrows using Rn-222 and isotopes of radium in the Coral Creek mangrove forest, Hinchinbrook Island, Queensland, Australia. The study was conducted at the end of the dry season in a creek with no freshwater inputs. Significant export of radionuclides and salt from the forest into the creek indicates continuous tidally driven circulation through the burrows. Results demonstrate that the forest sediment is efficiently flushed, with a water flux of about 30 L/m2/ day of forest floor, which is equivalent to flushing about 10% of the total burrow volume per tidal cycle. Annual average circulation flux through mangrove forest floors are of the same order as annual river discharge in the central GBR. However, unlike the river discharge, the tidal circulation should be relatively stable throughout the year. This work documents the importance of animal burrows in maintaining productive sediments in these systems, and illustrates the physical process that supports large exports of organic and inorganic matter from mangrove forests to the coastal zone. It also illustrates the importance of considering saline groundwater

  8. Coastal Zone Color Scanner (CZCS): Imagery of near-surface phytoplankton pigment concentrations from the first coastal ocean dynamics experiment (CODE-1), March - July 1981

    Science.gov (United States)

    Abbott, M. R.; Zion, P. M.

    1984-01-01

    As part of the first Coastal Ocean Dynamics Experiment, images of ocean color were collected from late March until late July, 1981, by the Coastal Zone Color Scanner aboard Nimbus-7. Images that had sufficient cloud-free area to be of interest were processed to yield near-surface phytoplankton pigment concentrations. These images were then remapped to a fixed equal-area grid. This report contains photographs of the digital images and a brief description of the processing methods.

  9. Coastal biogeochemical processes in the north Indian Ocean (14, S-W)

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Narvekar, P.V.; Desa, E.

    by Allan R. Robinson and Kennelh H. Brink ISBN 0-67401527-4 a2005 by the President and Fellows of Harvard College 724 COASTAL BIOGEOCIIEMICAL PROCESSES IN TI-IE NORTH INDIAN OCEAN along all meridians. This discontinuity, called the Ilydrochemical Front... JGOFS, focused on the open-ocean and that too mainly in the Arabian Sea. Con- sequently, some portions of the North Indian Ocean have been studied quite in- tensively; such areas covered adequately in this review, include the Somali and Arabian coasts...

  10. Effects of near-future ocean acidification, fishing, and marine protection on a temperate coastal ecosystem.

    Science.gov (United States)

    Cornwall, Christopher E; Eddy, Tyler D

    2015-02-01

    Understanding ecosystem responses to global and local anthropogenic impacts is paramount to predicting future ecosystem states. We used an ecosystem modeling approach to investigate the independent and cumulative effects of fishing, marine protection, and ocean acidification on a coastal ecosystem. To quantify the effects of ocean acidification at the ecosystem level, we used information from the peer-reviewed literature on the effects of ocean acidification. Using an Ecopath with Ecosim ecosystem model for the Wellington south coast, including the Taputeranga Marine Reserve (MR), New Zealand, we predicted ecosystem responses under 4 scenarios: ocean acidification + fishing; ocean acidification + MR (no fishing); no ocean acidification + fishing; no ocean acidification + MR for the year 2050. Fishing had a larger effect on trophic group biomasses and trophic structure than ocean acidification, whereas the effects of ocean acidification were only large in the absence of fishing. Mortality by fishing had large, negative effects on trophic group biomasses. These effects were similar regardless of the presence of ocean acidification. Ocean acidification was predicted to indirectly benefit certain species in the MR scenario. This was because lobster (Jasus edwardsii) only recovered to 58% of the MR biomass in the ocean acidification + MR scenario, a situation that benefited the trophic groups lobsters prey on. Most trophic groups responded antagonistically to the interactive effects of ocean acidification and marine protection (46%; reduced response); however, many groups responded synergistically (33%; amplified response). Conservation and fisheries management strategies need to account for the reduced recovery potential of some exploited species under ocean acidification, nonadditive interactions of multiple factors, and indirect responses of species to ocean acidification caused by declines in calcareous predators. © 2014 Society for Conservation Biology.

  11. Rapid shelf-wide cooling response of a stratified coastal ocean to hurricanes

    Science.gov (United States)

    Seroka, Greg; Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-06-01

    Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead-of-eye-center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation-validated, high-resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid-Atlantic hurricanes were investigated: Hurricane Irene (2011)—with an inshore Mid-Atlantic Bight (MAB) track during the late summer stratified coastal ocean season—and Tropical Storm Barry (2007)—with an offshore track during early summer. For both storms, the critical ahead-of-eye-center depth-averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead-of-eye-center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3-D coupled atmosphere-ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels.

  12. Rapid shelf‐wide cooling response of a stratified coastal ocean to hurricanes

    Science.gov (United States)

    Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-01-01

    Abstract Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead‐of‐eye‐center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation‐validated, high‐resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid‐Atlantic hurricanes were investigated: Hurricane Irene (2011)—with an inshore Mid‐Atlantic Bight (MAB) track during the late summer stratified coastal ocean season—and Tropical Storm Barry (2007)—with an offshore track during early summer. For both storms, the critical ahead‐of‐eye‐center depth‐averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead‐of‐eye‐center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3‐D coupled atmosphere‐ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels. PMID:28944132

  13. Rapid shelf-wide cooling response of a stratified coastal ocean to hurricanes.

    Science.gov (United States)

    Seroka, Greg; Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-06-01

    Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead-of-eye-center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation-validated, high-resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid-Atlantic hurricanes were investigated: Hurricane Irene (2011)-with an inshore Mid-Atlantic Bight (MAB) track during the late summer stratified coastal ocean season-and Tropical Storm Barry (2007)-with an offshore track during early summer. For both storms, the critical ahead-of-eye-center depth-averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead-of-eye-center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3-D coupled atmosphere-ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels.

  14. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans

    Science.gov (United States)

    Blondeau-Patissier, David; Gower, James F. R.; Dekker, Arnold G.; Phinn, Stuart R.; Brando, Vittorio E.

    2014-04-01

    The need for more effective environmental monitoring of the open and coastal ocean has recently led to notable advances in satellite ocean color technology and algorithm research. Satellite ocean color sensors' data are widely used for the detection, mapping and monitoring of phytoplankton blooms because earth observation provides a synoptic view of the ocean, both spatially and temporally. Algal blooms are indicators of marine ecosystem health; thus, their monitoring is a key component of effective management of coastal and oceanic resources. Since the late 1970s, a wide variety of operational ocean color satellite sensors and algorithms have been developed. The comprehensive review presented in this article captures the details of the progress and discusses the advantages and limitations of the algorithms used with the multi-spectral ocean color sensors CZCS, SeaWiFS, MODIS and MERIS. Present challenges include overcoming the severe limitation of these algorithms in coastal waters and refining detection limits in various oceanic and coastal environments. To understand the spatio-temporal patterns of algal blooms and their triggering factors, it is essential to consider the possible effects of environmental parameters, such as water temperature, turbidity, solar radiation and bathymetry. Hence, this review will also discuss the use of statistical techniques and additional datasets derived from ecosystem models or other satellite sensors to characterize further the factors triggering or limiting the development of algal blooms in coastal and open ocean waters.

  15. Predator Effects on Dense Zooplankton Aggregations in the Coastal Ocean

    Science.gov (United States)

    2011-09-30

    blue whale distribution at the Costa Rica Dome” 2010 Ocean Sciences Meeting, Portland, OR Feb 22-18, 2010. Cowles, T.J., Benoit-Bird, K.J., Benfield...Seasonal timing of zooplankton and forage fish in the Columbia River plume and effects on marine juvenile salmon survival” 2010 Ocean Sciences...Society of America. Portland, OR. May 18-22, 2009. Kaltenberg, A.M.*, Benoit-Bird, K.J., Emmet, R. “Temporal patterns of fish and mesozooplankton near

  16. Modelling shelf-ocean exchange and its biogeochemical consequences in coastal upwelling systems

    DEFF Research Database (Denmark)

    Muchamad, Al Azhar

    reactions and biological respiration of marine organic matter (remineralization) under oxic and anoxic conditions. The developed model was coupled into a three-dimensional physical circulation model called the Regional Ocean Modeling System (ROMS). Then, the coupled model was employed and calibrated...... to relatively wide shelf areas because more sinking organic matter reach the shelf sea-floor and remineralize there, enhancing the nutrient trapping effect of the shelf circulation system. These results highlight the important role of the continental shelf bathymetry in modulating the shelf–ocean exchange......The biogeochemical cycles of organic carbon, nutrients, oxygen, and sulfur in the oceans have been suggested to dominantly occur across the shelf–ocean transition over the continental margin, although this zone represents only a small percentage of the global ocean area. Coastal upwelling zones...

  17. Study on detection of coastal water environment of China by ocean color remote sensing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Coastal water environment is essentially enhanced by ocean color which is basically decided by substances concentration in water such as chlorophyll, suspended material and yellow substance. It is very difficult, even not possible, to detect water color by expensive ship routing, because of its temporal and spatial variety of feature and scales in the very complicated dynamical system of coastal water. With the development of satellite technique in the last 20 a, space sensors can be applied to detect ocean color by measuring the spectra of water-leaving radiance. It is proven that ocean color remote sensing is a powerful tool for understanding the process of oceanic biology and physics. Since the 1980s, great attention has been paid to the advanced remote sensing technique in China, especially to development of satellite programs for the coastal water environment. On 7 September 1988, China launched her first polar orbit satellite FY- 1A for meteorological and oceanographic application (water color and temperature) and the second satellite FY- 1B two years later. In May 1999, China launched her second generation environment satellite FY- 1C with higher sensitivies,more channels and stable operation. The special ocean color satellite HY - 1 is planned to be in the orbit in 2001, whose main purpose is to detect the coastal water environment of China seas. China is also developing a very advantageous sensor termed as Chinese moderate imaging spectra radiometer (CMODIS) with 91 channels, which will be a good candidate of the third generation satellite FY-3in 2003.The technical system of ocean color rermote sensing was developed by the Second Institute of Oceanography (SIO), State Oceanic Administration (SOA) in 1997. The system included data receiving, processing, distribution, calibration, validation and application units. The Hangzhou Station of SIO, SOA has the capability to receive FY- 1 and AVHRR data since 1989. It was also a SeaWiFS scientific research station

  18. An Innovative Coastal-Ocean Observing Network (ICON)

    Science.gov (United States)

    2016-06-07

    meteorological properties from four deep -ocean moorings, 3) sea surface temperature and color from satellites, and 4) along-track temperature and temperature...interpreted and displayed on the central web site. They are also being used as either validation or assimilation sources for a nested, primitive

  19. Terrestrial and coastal landscape evolution on tropical oceanic islands

    NARCIS (Netherlands)

    Viles, H.A.; Spencer, T.

    2011-01-01

    Tropical oceanic islands owe their origin to volcanic eruptions, their location to plate tectonics, and their morphology to the interplay over time between a range of constructional and erosional processes. A broad distinction can be made between high volcanic islands, with summits up to 4,000 m, an

  20. Development of a Regional Coastal and Open Ocean Forecast System

    Science.gov (United States)

    1999-09-30

    Stream, — Special Issue — in Memory of Dr. Antonio Michelato. Journal of Marine Systems , 20, 129-156, 1999. [9] Warn-Varnas, A., J. Sellschopp, P.J. Haley...Reviews, 1999. Submitted [12] Lermusiaux, P.F.J. Evolving the sub-space of the three-dimensional ocean variability, Journal of Marine Systems , 1999

  1. Salinity dependent hydrogen isotope fractionation in alkenones produced by coastal and open ocean haptophyte algae

    Science.gov (United States)

    M'boule, Daniela; Chivall, David; Sinke-Schoen, Danielle; Sinninghe Damsté, Jaap S.; Schouten, Stefan; van der Meer, Marcel T. J.

    2014-04-01

    The hydrogen isotope fractionation in alkenones produced by haptophyte algae is a promising new proxy for paleosalinity reconstructions. To constrain and further develop this proxy the coastal haptophyte Isochrysis galbana and the open ocean haptophyte alga Emiliania huxleyi were cultured at different salinities. The fractionation factor, αalkenones-water, ranged between 0.853 and 0.902 for I. galbana and 0.789 and 0.822 for E. huxleyi. The results show a strong linear correlation between the fractionation factor α and salinity for E. huxleyi, in agreement with earlier studies, but also for I. galbana. Both haptophytes show the same response to changes in salinity, represented by the slopes of the α-salinity relationship (˜0.002 per salinity unit). This suggests that the same process, in both coastal as well as open ocean haptophytes, is responsible for reducing fractionation with increasing salinity. However, there is a significant difference in absolute isotope fractionation between E. huxleyi and I. galbana, i.e. E. huxleyi produces alkenones which are 90‰ more depleted in D under the same culturing conditions than I. galbana. Our data suggest that the δD of alkenones can be used to reconstruct relative shifts in paleosalinity in coastal as well as open ocean environments with careful consideration of species composition and other complicating factors especially in coastal regions.

  2. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget

    Science.gov (United States)

    Duarte, Carlos M.

    2017-01-01

    Vegetated coastal habitats, including seagrass and macroalgal beds, mangrove forests and salt marshes, form highly productive ecosystems, but their contribution to the global carbon budget remains overlooked, and these forests remain hidden in representations of the global carbon budget. Despite being confined to a narrow belt around the shoreline of the world's oceans, where they cover less than 7 million km2, vegetated coastal habitats support about 1 to 10 % of the global marine net primary production and generate a large organic carbon surplus of about 40 % of their net primary production (NPP), which is either buried in sediments within these habitats or exported away. Large, 10-fold uncertainties in the area covered by vegetated coastal habitats, along with variability about carbon flux estimates, result in a 10-fold bracket around the estimates of their contribution to organic carbon sequestration in sediments and the deep sea from 73 to 866 Tg C yr-1, representing between 3 % and 1/3 of oceanic CO2 uptake. Up to 1/2 of this carbon sequestration occurs in sink reservoirs (sediments or the deep sea) beyond these habitats. The organic carbon exported that does not reach depositional sites subsidizes the metabolism of heterotrophic organisms. In addition to a significant contribution to organic carbon production and sequestration, vegetated coastal habitats contribute as much to carbonate accumulation as coral reefs do. While globally relevant, the magnitude of global carbon fluxes supported by salt-marsh, mangrove, seagrass and macroalgal habitats is declining due to rapid habitat loss, contributing to loss of CO2 sequestration, storage capacity and carbon subsidies. Incorporating the carbon fluxes' vegetated coastal habitats' support into depictions of the carbon budget of the global ocean and its perturbations will improve current representations of the carbon budget of the global ocean.

  3. The Physical Context for Thin Layers in the Coastal Ocean

    Science.gov (United States)

    2010-03-01

    their statistics is in preparation. This latter article will be co-authored by MIT/WHOI Joint Program student Nick Woods who was partially supported...Abstract OS34M-05. Fratantoni, D. M., B. A. Hodges , and J. M. Lund, Autonomous Investigation of Thin Phytoplankton Layers and Their Physical Context...Poster presented at AGU Ocean Sciences Meeting, March 2008, Orlando, FL. Hodges , B. A., Fratantoni, D. M, and J. M. Lund, Propagation of a thin layer

  4. State of knowledge of coastal and marine biodiversity of Indian Ocean countries.

    Directory of Open Access Journals (Sweden)

    Mohideen Wafar

    Full Text Available The Indian Ocean (IO extends over 30% of the global ocean area and is rimmed by 36 littoral and 11 hinterland nations sustaining about 30% of the world's population. The landlocked character of the ocean along its northern boundary and the resultant seasonally reversing wind and sea surface circulation patterns are features unique to the IO. The IO also accounts for 30% of the global coral reef cover, 40,000 km² of mangroves,some of the world's largest estuaries, and 9 large marine ecosystems. Numerous expeditions and institutional efforts in the last two centuries have contributed greatly to our knowledge of coastal and marine biodiversity within the IO. The current inventory, as seen from the Ocean Biogeographic Information System, stands at 34,989 species, but the status of knowledge is not uniform among countries. Lack of human, institutional, and technical capabilities in some IO countries is the main cause for the heterogeneous level of growth in our understanding of the biodiversity of the IO. The gaps in knowledge extend to several smaller taxa and to large parts of the shelf and deep-sea ecosystems, including seamounts. Habitat loss, uncontrolled developmental activities in the coastal zone, over extraction of resources, and coastal pollution are serious constraints on maintenance of highly diverse biota, especially in countries like those of the IO, where environmental regulations are weak.

  5. River plumes as a source of large-amplitude internal waves in the coastal ocean

    Science.gov (United States)

    Nash, Jonathan D.; Moum, James N.

    2005-09-01

    Satellite images have long revealed the surface expression of large amplitude internal waves that propagate along density interfaces beneath the sea surface. Internal waves are typically the most energetic high-frequency events in the coastal ocean, displacing water parcels by up to 100m and generating strong currents and turbulence that mix nutrients into near-surface waters for biological utilization. While internal waves are known to be generated by tidal currents over ocean-bottom topography, they have also been observed frequently in the absence of any apparent tide-topography interactions. Here we present repeated measurements of velocity, density and acoustic backscatter across the Columbia River plume front. These show how internal waves can be generated from a river plume that flows as a gravity current into the coastal ocean. We find that the convergence of horizontal velocities at the plume front causes frontal growth and subsequent displacement downward of near-surface waters. Individual freely propagating waves are released from the river plume front when the front's propagation speed decreases below the wave speed in the water ahead of it. This mechanism generates internal waves of similar amplitude and steepness as internal waves from tide-topography interactions observed elsewhere, and is therefore important to the understanding of coastal ocean mixing.

  6. Intercomparison of the Charnock and CORE bulk wind stress formulations for coastal ocean modelling

    Directory of Open Access Journals (Sweden)

    J. M. Brown

    2013-03-01

    Full Text Available The accurate parameterisation of momentum and heat transfer across the air-sea interface is vital for realistic simulation of the atmosphere-ocean system. In many modelling applications accurate representation of the wind stress is required to numerically reproduce surge, coastal ocean circulation, surface waves, turbulence and mixing. Different formulations can be implemented and impact the accuracy of: the instantaneous and long-term residual circulation; the surface mixed layer; and the generation of wave-surge conditions. This, in turn, affects predictions of storm impact, sediment pathways, and coastal resilience to climate change. The specific numerical formulation needs careful selection to ensure the accuracy of the simulation. Two wind stress formulae widely used in respectively the ocean circulation and the storm surge communities are studied with focus on an application to the NW region of the UK. Model-observation validation is performed at two nearshore and one estuarine ADCP stations in Liverpool Bay, a hypertidal region of freshwater influence with vast intertidal areas. The period of study covers both calm and extreme conditions to fully test the robustness of the 10 m wind stress component of the Common Ocean Reference Experiment (CORE bulk formulae and the Charnock relation. In this coastal application a realistic barotropic-baroclinic simulation of the circulation and surge elevation is setup, demonstrating greater accuracy occurs when using the Charnock relation for surface wind stress.

  7. Ocean acidification and calcium carbonate saturation states in the coastal zone of the West Antarctic Peninsula

    Science.gov (United States)

    Jones, Elizabeth M.; Fenton, Mairi; Meredith, Michael P.; Clargo, Nicola M.; Ossebaar, Sharyn; Ducklow, Hugh W.; Venables, Hugh J.; de Baar, Hein J. W.

    2017-05-01

    The polar oceans are particularly vulnerable to ocean acidification; the lowering of seawater pH and carbonate mineral saturation states due to uptake of atmospheric carbon dioxide (CO2). High spatial variability in surface water pH and saturation states (Ω) for two biologically-important calcium carbonate minerals calcite and aragonite was observed in Ryder Bay, in the coastal sea-ice zone of the West Antarctic Peninsula. Glacial meltwater and melting sea ice stratified the water column and facilitated the development of large phytoplankton blooms and subsequent strong uptake of atmospheric CO2 of up to 55 mmol m-2 day-1 during austral summer. Concurrent high pH (8.48) and calcium carbonate mineral supersaturation (Ωaragonite 3.1) occurred in the meltwater-influenced surface ocean. Biologically-induced increases in calcium carbonate mineral saturation states counteracted any effects of carbonate ion dilution. Accumulation of CO2 through remineralisation of additional organic matter from productive coastal waters lowered the pH (7.84) and caused deep-water corrosivity (Ωaragonite 0.9) in regions impacted by Circumpolar Deep Water. Episodic mixing events enabled CO2-rich subsurface water to become entrained into the surface and eroded seasonal stratification to lower surface water pH (8.21) and saturation states (Ωaragonite 1.8) relative to all surface waters across Ryder Bay. Uptake of atmospheric CO2 of 28 mmol m-2 day-1 in regions of vertical mixing may enhance the susceptibility of the surface layer to future ocean acidification in dynamic coastal environments. Spatially-resolved studies are essential to elucidate the natural variability in carbonate chemistry in order to better understand and predict carbon cycling and the response of marine organisms to future ocean acidification in the Antarctic coastal zone.

  8. Smart Oceans BC: Supporting Coastal and Ocean Natural Hazards Mitigation for British Columbia

    Science.gov (United States)

    Moran, K.; Insua, T. L.; Pirenne, B.; Hoeberechts, M.; McLean, S.

    2014-12-01

    Smart Oceans BC is a new multi-faceted program to support decision-makers faced with responding to natural disasters and hazards in Canada's Province of British Columbia. It leverages the unique capabilities of Ocean Networks Canada's cabled ocean observatories, NEPTUNE and VENUS to enhance public safety, marine safety and environmental monitoring. Smart Oceans BC combines existing and new marine sensing technology with its robust data management and archive system, Oceans 2.0, to deliver information and science for good ocean management and responsible ocean use. Smart Oceans BC includes new ocean observing infrastructure for: public safety, through natural hazard detection for earthquake groundshaking and near-field tsunamis; marine safety, by monitoring and providing alerts on sea state, ship traffic, and marine mammal presence; and environmental protection, by establishing baseline data in critical areas, and providing real-time environmental observations. Here we present the elements of this new ocean observing initiative that are focused on tsunami and earthquake early warning including cabled and autonomous sensor systems, real-time data delivery, software developments that enable rapid detection, analytics used in notification development, and stakeholder engagement plans.

  9. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic true color (RGB) and infrared (IR) image tiles, Kachemak Bay, Alaska, 2008 (NODC Accession 0074379)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are a NOAA National Ocean Service National Geodetic Survey (NOS/NGS) Integrated Ocean and Coastal Mapping (IOCM) Product. The images were acquired from a...

  10. Coastal versus open-ocean denitrification in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Naik, H.; Pratihary, A.K.; DeSouza, W.; Narvekar, P.V.; Jayakumar, D.A.; Devol, A.H.; Yoshinari, T.; Saino, T.

    , as reflected by the distribu- tion of NO-2 (Fig. 2d), denitrification intensifies away from the coast. This pattern is opposite to that observed in the two other major oceanic suboxic zones, especially off Peru-Chile, where the poleward undercurrents, in fact..., support bulk of the denitrification (Codispoti et al., 1989). This difference probably owes to a lower respiration rate within the WIUC, which, in turn, may be caused by two factors. Firstly, un- like its counterpart off Peru-Chile the WIUC does not occur...

  11. The making of a productivity hotspot in the coastal ocean.

    Directory of Open Access Journals (Sweden)

    Dana K Wingfield

    Full Text Available BACKGROUND: Highly productive hotspots in the ocean often occur where complex physical forcing mechanisms lead to aggregation of primary and secondary producers. Understanding how hotspots persist, however, requires combining knowledge of the spatio-temporal linkages between geomorphology, physical forcing, and biological responses with the physiological requirements and movement of top predators. METHODOLOGY/PRINCIPAL FINDINGS: Here we integrate remotely sensed oceanography, ship surveys, and satellite telemetry to show how local geomorphology interacts with physical forcing to create a region with locally enhanced upwelling and an adjacent upwelling shadow that promotes retentive circulation, enhanced year-round primary production, and prey aggregation. These conditions provide an area within the upwelling shadow where physiologically optimal water temperatures can be found adjacent to a region of enhanced prey availability, resulting in a foraging hotspot for loggerhead sea turtles (Caretta caretta off the Baja California peninsula, Mexico. SIGNIFICANCE/CONCLUSIONS: We have identified the set of conditions that lead to a persistent top predator hotspot, which increases our understanding of how highly migratory species exploit productive regions of the ocean. These results will aid in the development of spatially and environmentally explicit management strategies for marine species of conservation concern.

  12. Quasi-Operational Coastal Ocean Nowcast/Forecast Systems

    Directory of Open Access Journals (Sweden)

    Christopher N. K. Mooers

    2010-01-01

    Full Text Available For several years, quasi-operational (i.e., real-time, semi-autonomous, research-mode nowcast/forecast systems have been run in two quite different regimes: (1 the Straits of Florida/East Florida Shelf, which includes the Florida Current, and (2 Prince William Sound, Alaska, which is a small, semi-enclosed sea with two major straits. For both regimes, the Princeton Ocean Model (POM has been implemented with mesoscale resolution. Both implementations are forced by mesoscale numerical weather predictions, the US Navy's operational global ocean model (NCOM, which assimilates satellite altimetric sea surface height anomalies, MCSST, ARGO float temperature and salinity profiles, etc. for open boundary conditions, and four diurnal and four semi-diurnal tides, also imposed on the open boundaries. Real-time observations are mainly used for model skill assessment, as a prelude to data assimilation. One of the benefits of this activity has been new understanding derived from diagnostics studies made possible by these numerical simulations. For example, the Florida Current Frontal (cyclonic Eddies, which form weekly in the cyclonic shear zone along the shelfbreak, have been more fully characterized than had been possible by observations alone, and the prevalence of three-layered monthly mean flow in the straits of Prince William Sound has been determined in a highly variable regime that is difficult to observe comprehensively.

  13. A Regional Ocean Reanalysis System for Coastal Waters of China and Adjacent Seas

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A regional ocean reanalysis system for the coastal waters of China and adjacent seas has been developed by the National Marine Data and Information Service(NMDIS).It produces a dataset package called CORA (China ocean reanalysis).The regional ocean model used is based on the Princeton Ocean Model with a generalized coordinate system(POMgcs).The model is parallelized by NMDIS with the addition of the wave breaking and tidal mixing processes into model parameterizations.Data assimilation is a sequential three-dimensional variational(3D-Var) scheme implemented within a multigrid framework.Observations include satellite remote sensing sea surface temperature(SST),altimetry sea level anomaly(SLA),and temperature/salinity profiles.The reanalysis fields of sea surface height,temperature,salinity,and currents begin with January 1986 and are currently updated every year. Error statistics and error distributions of temperature,salinity and currents are presented as a primary evaluation of the reanalysis fields using sea level data from tidal gauges,temperature profiles,as well as the trajectories of Argo floats.Some case studies offer the opportunity to verify the evolution of certain local circulations.These evaluations show that the reanalysis data produced provide a good representation of the ocean processes and phenomena in the coastal waters of China and adjacent seas.

  14. User’s Manual for the Navy Coastal Ocean Model (NCOM) Version 4.0

    Science.gov (United States)

    2009-02-06

    Manual for the Navy Coastal Ocean Model (NCOM) Version 4.0 Paul J. Martin Charlie n. Barron luCy F. SMedStad tiMothy J. CaMPBell alan J. WallCraFt...Timothy J. Campbell, Alan J. Wallcraft, Robert C. Rhodes, Clark Rowley, Tamara L. Townsend, and Suzanne N. Carroll* Naval Research Laboratory...1997- 1998 ENSO event. Bound.-Layer Meteor. 103: 439-458. Large, W.G., J.C. McWilliams , and S. Doney, (1994). Oceanic vertical mixing: a review and

  15. Navy Coastal Ocean Model (NCOM) Version 4.0 (User’s Manual)

    Science.gov (United States)

    2009-02-06

    Manual for the Navy Coastal Ocean Model (NCOM) Version 4.0 Paul J. Martin Charlie n. Barron luCy F. SMedStad tiMothy J. CaMPBell alan J. WallCraFt...Timothy J. Campbell, Alan J. Wallcraft, Robert C. Rhodes, Clark Rowley, Tamara L. Townsend, and Suzanne N. Carroll* Naval Research Laboratory...the 1997- 1998 ENSO event. Bound.-Layer Meteor. 103: 439-458. Large, W.G., J.C. McWilliams , and S. Doney, (1994). Oceanic vertical mixing: a review

  16. Using Unmanned Underwater Vehicles as Research Platforms in Coastal Ocean Studies

    Institute of Scientific and Technical Information of China (English)

    HOU Weilin; Kendall L. Carder; David K. Costello; DU Keping; LIU Zhishen

    2003-01-01

    The advantages of using unmanned underwater vehicles in coastal ocean studies are emphasized. Two types of representative vehicles, remotely operated vehicle (ROV) and autonomous underwater vehicle (AUV) from University of South Florida, are discussed. Two individual modular sensor packages designed and tested for these platforms and field measurement results are also presented. The bottom classification and albedo package, BCAP, provides fast and accurate estimates of bottom albedos, along with other parameters such as in-water remote sensing reflectance. The real-time ocean bottom optical topographer, ROBOT, reveals high-resolution 3-dimentional bottom topography for target identification. Field data and results from recent Coastal Benthic Optical Properties field campaign, 1999 and 2000, are presented. Advantages and limitations of these vehicles and applications of modular sensor packages are compared and discussed.

  17. Linking nutrient loading and oxygen in the coastal ocean: A new global scale model

    Science.gov (United States)

    Reed, Daniel C.; Harrison, John A.

    2016-03-01

    Recent decades have witnessed an exponential spread of low-oxygen regions in the coastal ocean due at least in-part to enhanced terrestrial nutrient inputs. As oxygen deprivation is a major stressor on marine ecosystems, there is a great need to quantitatively link shifts in nutrient loading with changes in oxygen concentrations. To this end, we have developed and here describe, evaluate, and apply the Coastal Ocean Oxygen Linked to Benthic Exchange And Nutrient Supply (COOLBEANS) model, a first-of-its-kind, spatially explicit (with 152 coastal segments) model, global model of coastal oxygen and nutrient dynamics. In COOLBEANS, benthic oxygen demand (BOD) is calculated using empirical models for aerobic respiration, iron reduction, and sulfate reduction, while oxygen supply is represented by a simple parameterization of exchange between surface and bottom waters. A nutrient cycling component translates shifts in riverine nutrient inputs into changes in organic matter delivery to sediments and, ultimately, oxygen uptake. Modeled BOD reproduces observations reasonably well (Nash-Sutcliffe efficiency = 0.71), and estimates of exchange between surface and bottom waters correlate with stratification. The model examines sensitivity of bottom water oxygen to changes in nutrient inputs and vertical exchange between surface and bottom waters, highlighting the importance of this vertical exchange in defining the susceptibility of a system to oxygen depletion. These sensitivities along with estimated maximum hypoxic areas that are supported by present day nutrient loads are consistent with existing hypoxic regions. Sensitivities are put into context by applying historic changes in nitrogen loading observed in the Gulf of Mexico to the global coastal ocean, demonstrating that such loads would drive many systems anoxic or even sulfidic.

  18. Empirical evidence reveals seasonally dependent reduction in nitrification in coastal sediments subjected to near future ocean acidification

    NARCIS (Netherlands)

    Braeckman, U.; Van Colen, C.; Guilini, K.; Van Gansbeke, D.; Soetaert, K.; Vincx, M.; Vanaverbeke, J.

    2014-01-01

    Research so far has provided little evidence that benthic biogeochemical cycling is affected by ocean acidification under realistic climate change scenarios. We measured nutrient exchange and sediment community oxygen consumption (SCOC) rates to estimate nitrification in natural coastal permeable

  19. Offshore limit of coastal ocean variability identified from hydrography and altimeter data in the eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Antony, M.K.; Swamy, G.N.; Somayajulu, Y.K.

    In this communication, we describe a hitherto-unknown offshore limit to the coastal ocean variability signatures away from the continental shelf in the eastern Arabian Sea, based on hydrographic observations and satellite altimeter (TOPEX...

  20. Sea truth validation of sea WiFS ocean colour sensor in the coastal waters of the eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.S.; Suresh, T.; Matondkar, S.G.P.; Desa, E.

    In this paper we report bio-optical measurements made during an ocean colour validation cruise SK 149C in November 1999 of the research vessel Sagar Kanya in the coastal waters of the Eastern Arabian Sea. The chlorophyll concentration...

  1. Empirical evidence reveals seasonally dependent reduction in nitrification in coastal sediments subjected to near future ocean acidification

    NARCIS (Netherlands)

    Braeckman, U.; Van Colen, C.; Guilini, K.; Van Gansbeke, D.; Soetaert, K.; Vincx, M.; Vanaverbeke, J.

    2014-01-01

    Research so far has provided little evidence that benthic biogeochemical cycling is affected by ocean acidification under realistic climate change scenarios. We measured nutrient exchange and sediment community oxygen consumption (SCOC) rates to estimate nitrification in natural coastal permeable an

  2. Ancillary hydrographic data from the Coastal Ocean Dynamics Experiments from 20 April 1981 to 19 August 1982 (NODC Accession 8400121)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and pressure data were collected using CTD from the R.V. WECOMA in the coastal waters of California from 20 April 1981 to 19 August 1982. Data...

  3. Process studies of the carbonate system in coastal and ocean environments of the Atlantic Ocean

    NARCIS (Netherlands)

    Salt, L.A.

    2014-01-01

    The increase in anthropogenic, atmospheric carbon dioxide (CO2) has been largely mitigated by ocean uptake since the start of the Industrial Revolution, with the Atlantic Ocean providing the largest store of anthropogenic carbon. The thesis of Lesley Salt examines how the uptake of CO2 varies in

  4. Ocean acidification impacts on nitrogen fixation in the coastal western Mediterranean Sea

    OpenAIRE

    Rees, AP; Turk-Kubo, KA; Al-Moosawi, L; Alliouane, S.; F. Gazeau; Hogan, ME; Zehr, JP

    2016-01-01

    The effects of ocean acidification on nitrogen (N2) fixation rates and on the community composition of N2-fixing microbes (diazotrophs) were examined in coastal waters of the North-Western Mediterranean Sea. Nine experimental mesocosm enclosures of ∼50 m3 each were deployed for 20 days during June-July 2012 in the Bay of Calvi, Corsica, France. Three control mesocosms were maintained under ambient conditions of carbonate chemistry. The remainder were manipulated with CO2 saturated seawater to...

  5. Promoting discovery and access to real time observations produced by regional coastal ocean observing systems

    Science.gov (United States)

    Anderson, D. M.; Snowden, D. P.; Bochenek, R.; Bickel, A.

    2015-12-01

    In the U.S. coastal waters, a network of eleven regional coastal ocean observing systems support real-time coastal and ocean observing. The platforms supported and variables acquired are diverse, ranging from current sensing high frequency (HF) radar to autonomous gliders. The system incorporates data produced by other networks and experimental systems, further increasing the breadth of the collection. Strategies promoted by the U.S. Integrated Ocean Observing System (IOOS) ensure these data are not lost at sea. Every data set deserves a description. ISO and FGDC compliant metadata enables catalog interoperability and record-sharing. Extensive use of netCDF with the Climate and Forecast convention (identifying both metadata and a structured format) is shown to be a powerful strategy to promote discovery, interoperability, and re-use of the data. To integrate specialized data which are often obscure, quality control protocols are being developed to homogenize the QC and make these data more integrate-able. Data Assembly Centers have been established to integrate some specialized streams including gliders, animal telemetry, and HF radar. Subsets of data that are ingested into the National Data Buoy Center are also routed to the Global Telecommunications System (GTS) of the World Meteorological Organization to assure wide international distribution. From the GTS, data are assimilated into now-cast and forecast models, fed to other observing systems, and used to support observation-based decision making such as forecasts, warnings, and alerts. For a few years apps were a popular way to deliver these real-time data streams to phones and tablets. Responsive and adaptive web sites are an emerging flexible strategy to provide access to the regional coastal ocean observations.

  6. Improving Surface Flux Parameterizations in the Navy’s Coastal Ocean Atmosphere Prediction System

    Science.gov (United States)

    2016-06-07

    Improving Surface Flux Parameterizations in the Navy’s Coastal Ocean Atmosphere Prediction System Shouping Wang Naval Research Laboratory...this research is to improve the surface flux and boundary layer turbulence parameteri- zation in COAMPS®1 for low- and high-wind events over the...processes and developing new parameterizations for the surface and boundary layer turbulence mixing. We pro- vide real-time COAMPS weather forecasts

  7. Development of a Coupled Ocean-Hydrologic Model to Simulate Pollutant Transport in Singapore Coastal Waters

    Science.gov (United States)

    Chua, V. P.

    2015-12-01

    Intensive agricultural, economic and industrial activities in Singapore and Malaysia have made our coastal areas under high risk of water pollution. A coupled ocean-hydrologic model is employed to perform three-dimensional simulations of flow and pollutant transport in Singapore coastal waters. The hydrologic SWAT model is coupled with the coastal ocean SUNTANS model by outputting streamflow and pollutant concentrations from the SWAT model and using them as inputs for the SUNTANS model at common boundary points. The coupled model is calibrated with observed sea surface elevations and velocities, and high correlation coefficients that exceed 0.97 and 0.91 are found for sea surface elevations and velocities, respectively. The pollutants are modeled as Gaussian passive tracers, and are released at five upstream locations in Singapore coastal waters. During the Northeast monsoon, pollutants released in Source 1 (Johor River), Source 2 (Tiram River), Source 3 (Layang River) and Source 4 (Layau River) enter the Singapore Strait after 4 days of release and reach Sentosa Island within 9 days. Meanwhile, pollutants released in Source 5 (Kallang River) reach Sentosa Island after 4 days. During the Southwest monsoon, the dispersion time is roughly doubled, with pollutants from Sources 1 - 4 entering the Singapore Strait only after 12 days of release due to weak currents.

  8. Including high frequency variability in coastal ocean acidification projections

    Directory of Open Access Journals (Sweden)

    Y. Takeshita

    2015-05-01

    Full Text Available Assessing the impacts of anthropogenic ocean acidification requires knowledge of present-day and future environmental conditions. Here, we present a simple model for upwelling margins that projects anthropogenic acidification trajectories by combining high-temporal resolution sensor data, hydrographic surveys for source water characterization, empirical relationships of the CO2 system, and the atmospheric CO2 record. This model characterizes CO2 variability on timescales ranging from hours (e.g. tidal to months (e.g. seasonal, bridging a critical knowledge gap in ocean acidification research. The amount of anthropogenic carbon in a given water mass is dependent on the age, therefore a density–age relationship was derived for the study region, and was combined with the 2013 Intergovernmental Panel on Climate Change CO2 emission scenarios to add density-dependent anthropogenic carbon to the sensor time series. The model was applied to time series from four autonomous pH sensors, each deployed in the surf zone, kelp forest, submarine canyon edge, and shelf break in the upper 100 m of the Southern California Bight. All habitats were within 5 km of one another, and exhibited unique, habitat-specific CO2 variability signatures and acidification trajectories, demonstrating the importance of making projections in the context of habitat-specific CO2 signatures. In general, both the mean and range of pCO2 increase in the future, with the greatest increases in both magnitude and range occurring in the deeper habitats due to reduced buffering capacity. On the other hand, the saturation state of aragonite (ΩAr decreased in both magnitude and range. This approach can be applied to the entire California Current System, and upwelling margins in general, where sensor and complementary hydrographic data are available.

  9. Understanding individual and combined effects of ocean acidification, warming and coastal runoff on marine calcifying organisms on tropical coral reefs

    OpenAIRE

    Vogel, Nikolas

    2015-01-01

    Anthropogenically induced greenhouse gas emissions result in two major environmental changes on the global scale for coral reefs: ocean acidification (OA) and ocean warming (OW). Additionally, increasing levels of terrestrial runoff, that introduce fertilizer, sewage, sediments and other contaminants into coastal areas, can decrease water quality on the local scale. Consequently, photosynthesizing and calcifying coral reef organisms are affected by OA, OW and coastal runoff, but knowledge abo...

  10. Microplastics in coastal and marine environments of the western tropical and sub-tropical Atlantic Ocean.

    Science.gov (United States)

    Costa, Monica F; Barletta, Mário

    2015-11-01

    Microplastic pollution is a global issue. It is present even in remote and pristine coastal and marine environments, likely causing impacts of unknown scale. Microplastics are primary- and secondary-sourced plastics with diameters of 5 mm or less that are either free in the water column or mixed in sandy and muddy sediments. Since the early 1970s, they have been reported to pollute marine environments; recently, concern has increased as soaring amounts of microplastics in the oceans were detected and because the development of unprecedented processes involving this pollutant at sea is being unveiled. Coastal and marine environments of the western tropical and sub-tropical Atlantic Ocean (WTAO) are contaminated with microplastics at different quantities and from a variety of types. The main environmental compartments (water, sediments and biota) are contaminated, but the consequences are still poorly understood. Rivers and all scales of fishery activities are identified as the most likely sources of this pollutant to coastal waters; however, based on the types of microplastics observed, other maritime operations are also possible sources. Ingestion by marine biota occurs in the vertebrate groups (fish, birds, and turtles) in these environments. In addition, the presence of microplastics in plankton samples from different habitats of estuaries and oceanic islands is confirmed. The connectivity among environmental compartments regarding microplastic pollution is a new research frontier in the region.

  11. Variability in the coupling between sea surface temperature and wind stress in the global coastal ocean

    Science.gov (United States)

    Wang, Yuntao; Castelao, Renato M.

    2016-08-01

    Mesoscale ocean-atmosphere interaction between sea surface temperature (SST) and wind stress throughout the global coastal ocean was investigated using 7 years of satellite observations. Coupling coefficients between crosswind SST gradients and wind stress curl and between downwind SST gradients and wind stress divergence were used to quantify spatial and temporal variability in the strength of the interaction. The use of a consistent data set and standardized methods allow for direct comparisons between coupling coefficients in the different coastal regions. The analysis reveals that strong coupling is observed in many mid-latitude regions throughout the world, especially in regions with strong fronts like Eastern and Western Boundary Currents. Most upwelling regions in Eastern Boundary Currents are characterized by strong seasonal variability in the strength of the coupling, which generally peaks during summer in mid latitudes and during winter at low latitudes. Seasonal variability in coastal regions along Western Boundary Currents is comparatively smaller. Intraseasonal variability is especially important in regions of strong eddy activity (e.g., Western Boundary Currents), being particularly relevant for the coupling between crosswind SST gradients and wind stress curl. Results from the analysis can be used to guide modeling studies, since it allows for the a priori identification of regions in which regional models need to properly represent the ocean-atmosphere interaction to accurately represent local variability.

  12. Facing Climate Change: Connecting Coastal Communities with Place-Based Ocean Science

    Science.gov (United States)

    Pelz, M.; Dewey, R. K.; Hoeberechts, M.; McLean, M. A.; Brown, J. C.; Ewing, N.; Riddell, D. J.

    2016-12-01

    As coastal communities face a wide range of environmental changes, including threats from climate change, real-time data from cabled observatories can be used to support community members in making informed decisions about their coast and marine resources. Ocean Networks Canada (ONC) deploys and operates an expanding network of community observatories in the Arctic and coastal British Columbia, which enable communities to monitor real-time and historical data from the local marine environment. Community observatories comprise an underwater cabled seafloor platform and shore station equipped with a variety of sensors that collect environmental data 24/7. It is essential that data being collected by ONC instruments are relevant to community members and can contribute to priorities identified within the community. Using a community-based science approach, ONC is engaging local parties at all stages of each project from location planning, to instrument deployment, to data analysis. Alongside the science objectives, place-based educational programming is being developed with local educators and students. As coastal populations continue to grow and our use of and impacts on the ocean increase, it is vital that global citizens develop an understanding that the health of the ocean reflects the health of the planet. This presentation will focus on programs developed by ONC emphasizing the connection to place and local relevance with an emphasis on Indigenous knowledge. Building programs which embrace multiple perspectives is effective both in making ocean science more relevant to Indigenous students and in linking place-based knowledge to ocean science. The inclusion of Indigenous Knowledge into science-based monitoring programs also helps develop a more complete understanding of local conditions. We present a case study from the Canadian Arctic, in which ONC is working with Inuit community members to develop a snow and ice monitoring program to assist with predictions and

  13. Biogenic halocarbons from coastal oceanic upwelling regions as tropospheric halogen source

    Science.gov (United States)

    Krüger, Kirstin; Fuhlbrügge, Steffen; Hepach, Helmke; Fiehn, Alina; Atlas, Elliot; Quack, Birgit

    2016-04-01

    Halogenated very short lived substances (VSLS) are naturally produced in the ocean and emitted to the atmosphere. Recently, oceanic upwelling regions in the tropical East Atlantic were identified as strong sources of brominated halocarbons to the troposphere. During a cruise of R/V METEOR in December 2012 the oceanic sources and emissions of various halogenated trace gases and their mixing ratios in the marine atmospheric boundary layer (MABL) were investigated above the Peruvian Upwelling for the first time. This study presents novel observations of the three VSLS bromoform, dibromomethane and methyl iodide together with high resolution meteorological measurements and Lagrangian transport modelling. Although relatively low oceanic emissions were observed, except for methyl iodide, surface atmospheric abundances were elevated. Radiosonde launches during the cruise revealed a low, stable MABL and a distinct trade inversion above acting both as strong barriers for convection and trace gas transport in this region. Significant correlations between observed atmospheric VSLS abundances, sea surface temperature, relative humidity and MABL height were found. We used a simple source-loss estimate to identify the contribution of oceanic emissions to observed atmospheric concentrations which revealed that the observed marine VSLS abundances were dominated by horizontal advection below the trade inversion. The observed VSLS variations can be explained by the low emissions and their accumulation under different MABL and trade inversion conditions. Finally, observations from a second Peruvian Upwelling cruise with R/V SONNE during El Nino in October 2015 will be compared to highlight the role of different El Nino Southern Oscillation conditions. This study confirms the importance of coastal oceanic upwelling and trade wind systems on creating effective transport barriers in the lowermost atmosphere controlling the distribution of VSLS abundances above coastal ocean upwelling

  14. The Southern California Coastal Ocean Observing System (SCCOOS): Developing A Coastal Observation System To Enable Both Science Based Decision Making And Scientific Discovery

    Science.gov (United States)

    Terrill, E.; John, O.

    2005-05-01

    The Southern California Coastal Ocean Observing System (SCCOOS) is a consortium that extends from Northern Baja CA in Mexico to Morro Bay at the southern edge of central California, and aims to streamline, coordinate, and further develop individual institutional efforts by creating an integrated, multidisciplinary coastal observatory in the Bight of Southern California for the benefit of society. By leveraging existing infrastructure, partnerships, and private, local, state, and federal resources, SCCOOS is developing a fully operational coastal observation system to address issues related to coastal water quality, marine life resources, and coastal hazards for end user communities spanning local, state, and federal interests. However, to establish a sensible observational approach to address these societal drivers, sound scientific approaches are required in both the system design and the transformation of data to useful products. Since IOOS and coastal components of the NSF Ocean Observatories Initiative (OOI) are not mutually exclusive within this framework, the SCCOOS consortium of observatory implementers have created an organizational structure that encourages dovetailing of OOI into the routine observations provided by the operational components of a regional IOOS. To begin the development, SCCOOS has grant funding from the California Coastal Conservancy as part of a $21M, statewide initiative to establish a Coastal Ocean Currents Monitoring Program, and funding from NOAA's Coastal Observing Technology System (COTS). In addition, SCCOOS is leveraging IT development that has been supported by the NSF Information Technology Research program Real-time observatories, Applications,and Data Manageemnt Network (ROADNET), and anticipates using developments which will result from the NSF Laboratory for Ocean Observatory Knowledge Integration Grid (LOOKING) program. The observational components now funded at SCCOOS include surface current mapping by HF radar; high

  15. Coastal water quality estimation from Geostationary Ocean Color Imager (GOCI) satellite data using machine learning approaches

    Science.gov (United States)

    Im, Jungho; Ha, Sunghyun; Kim, Yong Hoon; Ha, Hokyung; Choi, Jongkuk; Kim, Miae

    2014-05-01

    It is important to monitor coastal water quality using key parameters such as chlorophyll-a concentration and suspended sediment to better manage coastal areas as well as to better understand the nature of biophysical processes in coastal seawater. Remote sensing technology has been commonly used to monitor coastal water quality due to its ability of covering vast areas at high temporal resolution. While it is relatively straightforward to estimate water quality in open ocean (i.e., Case I water) using remote sensing, coastal water quality estimation is still challenging as many factors can influence water quality, including various materials coming from inland water systems and tidal circulation. There are continued efforts to accurately estimate water quality parameters in coastal seawater from remote sensing data in a timely manner. In this study, two major water quality indicators, chlorophyll-a concentration and the amount of suspended sediment, were estimated using Geostationary Ocean Color Imager (GOCI) satellite data. GOCI, launched in June 2010, is the first geostationary ocean color observation satellite in the world. GOCI collects data hourly for 8 hours a day at 6 visible and 2 near-infrared bands at a 500 m resolution with 2,500 x 2,500 km square around Korean peninsula. Along with conventional statistical methods (i.e., various linear and non-linear regression), three machine learning approaches such as random forest, Cubist, and support vector regression were evaluated for coastal water quality estimation. In situ measurements (63 samples; including location, two water quality parameters, and the spectra of surface water using a hand-held spectroradiometer) collected during four days between 2011 and 2012 were used as reference data. Due to the small sample size, leave-one-out cross validation was used to assess the performance of the water quality estimation models. Atmospherically corrected radiance data and selected band-ratioed images were used

  16. Monitoring of ocean surface algal blooms in coastal and oceanic waters around India.

    Digital Repository Service at National Institute of Oceanography (India)

    Tholkapiyan, M.; Shanmugam, P.; Suresh, T.

    the Arabian Sea, Indian Ocean and Bay of Bengal from 2003–2011 were obtained from the NASA Goddard Space Flight Centre (http://oceancolor.gsfc.nasa.gov/). Scenes severally contaminated by clouds and extreme atmospheric conditions were discarded from...

  17. Stormwater plume detection by MODIS imagery in the southern California coastal ocean

    Science.gov (United States)

    Nezlin, N.P.; DiGiacomo, P.M.; Diehl, D.W.; Jones, B.H.; Johnson, S.C.; Mengel, M.J.; Reifel, K.M.; Warrick, J.A.; Wang, M.

    2008-01-01

    Stormwater plumes in the southern California coastal ocean were detected by MODIS-Aqua satellite imagery and compared to ship-based data on surface salinity and fecal indicator bacterial (FIB) counts collected during the Bight'03 Regional Water Quality Program surveys in February-March of 2004 and 2005. MODIS imagery was processed using a combined near-infrared/shortwave-infrared (NIR-SWIR) atmospheric correction method, which substantially improved normalized water-leaving radiation (nLw) optical spectra in coastal waters with high turbidity. Plumes were detected using a minimum-distance supervised classification method based on nLw spectra averaged within the training areas, defined as circular zones of 1.5-5.0-km radii around field stations with a surface salinity of S 33.0 ('ocean'). The plume optical signatures (i.e., the nLw differences between 'plume' and 'ocean') were most evident during the first 2 days after the rainstorms. To assess the accuracy of plume detection, stations were classified into 'plume' and 'ocean' using two criteria: (1) 'plume' included the stations with salinity below a certain threshold estimated from the maximum accuracy of plume detection; and (2) FIB counts in 'plume' exceeded the California State Water Board standards. The salinity threshold between 'plume' and 'ocean' was estimated as 32.2. The total accuracy of plume detection in terms of surface salinity was not high (68% on average), seemingly because of imperfect correlation between plume salinity and ocean color. The accuracy of plume detection in terms of FIB exceedances was even lower (64% on average), resulting from low correlation between ocean color and bacterial contamination. Nevertheless, satellite imagery was shown to be a useful tool for the estimation of the extent of potentially polluted plumes, which was hardly achievable by direct sampling methods (in particular, because the grids of ship-based stations covered only small parts of the plumes detected via

  18. Final Technical Report: DOE-Biological Ocean Margins Program. Microbial Ecology of Denitrifying Bacteria in the Coastal Ocean.

    Energy Technology Data Exchange (ETDEWEB)

    Lee Kerkhof

    2013-01-01

    The focus of our research was to provide a comprehensive study of the bacterioplankton populations off the coast of New Jersey near the Rutgers University marine field station using terminal restriction fragment polymorphism analysis (TRFLP) coupled to 16S rRNA genes for large data set studies. Our three revised objectives to this study became: (1) to describe bacterioplankton population dynamics in the Mid Atlantic Bight using TRFLP analysis of 16S rRNA genes. (2) to determine whether spatial and temporal factors are driving bacterioplankton community dynamics in the MAB using monthly samping along our transect line over a 2-year period. (3) to identify dominant members of a coastal bacterioplankton population by clonal library analysis of 16S rDNA genes and sequencing of PCR product corresponding to specific TRFLP peaks in the data set. Although open ocean time-series sites have been areas of microbial research for years, relatively little was known about the population dynamics of bacterioplankton communities in the coastal ocean on kilometer spatial and seasonal temporal scales. To gain a better understanding of microbial community variability, monthly samples of bacterial biomass were collected in 1995-1996 along a 34-km transect near the Long-Term Ecosystem Observatory (LEO-15) off the New Jersey coast. Surface and bottom sampling was performed at seven stations along a transect line with depths ranging from 1 to 35m (n=178). The data revealed distinct temporal patterns among the bacterioplankton communities in the Mid-Atlantic Bight rather than grouping by sample location or depth (figure 2-next page). Principal components analysis models supported the temporal patterns. In addition, partial least squares regression modeling could not discern a significant correlation from traditional oceanographic physical and phytoplankton nutrient parameters on overall bacterial community variability patterns at LEO-15. These results suggest factors not traditionally

  19. Observations and modeling of the ice-ocean conditions in the coastal Chukchi and Beaufort Seas

    Institute of Scientific and Technical Information of China (English)

    JIN Meibing; WANG Jia; MIZOBATA Kohei; HU Haoguo; SHIMADA Koji

    2008-01-01

    The Chukchi and Beaufort Seas include several important hydrological features: inflow of the Pacific water, Alaska coast current (ACC), the seasonal to perennial sea ice cover, and landfast ice along the Alaskan coast. The dynamics of this coupled ice-ocean sys-tem is important for both regional scale oceanography and large-scale global climate change research. A number of moorings were de-ployed in the area by JAMSTEC since 1992, and the data revealed highly variable characteristics of the hydrological environment. A re-gional high-resolution coupled ice-ocean model of the Chukchi and Beaufort Seas was established to simulate the ice-ocean environment and unique seasonal landfast ice in the coastal Beaufort Sea. The model results reproduced the Beaufort gyre and the ACC. The depth-averaged annual mean ocean currents along the Beaufort Sea coast and shelf break compared well with data from four moored ADCPs, but the simulated velocity had smaller standard deviations, which indicate small-scale eddies were frequent in the region. The model re-suits captured the seasonal variations of sea ice area as compared with remote sensing data, and the simulated sea ice velocity showed an almost stationary area along the Beaufort Sea coast that was similar to the observed landfast ice extent. It is the combined effects of the weak oceanic current near the coast, a prevailing wind with an onshore component, the opposite direction of the ocean current, and the blocking by the coastline that make the Beaufort Sea coastal areas prone to the formation of landfast ice.

  20. Phytoplankton responses to atmospheric metal deposition in the coastal and open-ocean Sargasso Sea.

    Science.gov (United States)

    Mackey, Katherine R M; Buck, Kristen N; Casey, John R; Cid, Abigail; Lomas, Michael W; Sohrin, Yoshiki; Paytan, Adina

    2012-01-01

    This study investigated the impact of atmospheric metal deposition on natural phytoplankton communities at open-ocean and coastal sites in the Sargasso Sea during the spring bloom. Locally collected aerosols with different metal contents were added to natural phytoplankton assemblages from each site, and changes in nitrate, dissolved metal concentration, and phytoplankton abundance and carbon content were monitored. Addition of aerosol doubled the concentrations of cadmium (Cd), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), and nickel (Ni) in the incubation water. Over the 3-day experiments, greater drawdown of dissolved metals occurred in the open ocean water, whereas little metal drawdown occurred in the coastal water. Two populations of picoeukaryotic algae and Synechococcus grew in response to aerosol additions in both experiments. Particulate organic carbon increased and was most sensitive to changes in picoeukaryote abundance. Phytoplankton community composition differed depending on the chemistry of the aerosol added. Enrichment with aerosol that had higher metal content led to a 10-fold increase in Synechococcus abundance in the oceanic experiment but not in the coastal experiment. Enrichment of aerosol-derived Co, Mn, and Ni were particularly enhanced in the oceanic experiment, suggesting the Synechococcus population may have been fertilized by these aerosol metals. Cu-binding ligand concentrations were in excess of dissolved Cu in both experiments, and increased with aerosol additions. Bioavailable free hydrated Cu(2+) concentrations were below toxicity thresholds throughout both experiments. These experiments show (1) atmospheric deposition contributes biologically important metals to seawater, (2) these metals are consumed over time scales commensurate with cell growth, and (3) growth responses can differ between distinct Synechococcus or eukaryotic algal populations despite their relatively close geographic proximity and taxonomic similarity.

  1. Phytoplankton responses to atmospheric metal deposition in the coastal and open-ocean Sargasso Sea

    Directory of Open Access Journals (Sweden)

    Katherine Rose Marie Mackey

    2012-10-01

    Full Text Available This study investigated the impact of atmospheric metal deposition on natural phytoplankton communities at open-ocean and coastal sites in the Sargasso Sea during the spring bloom. Locally collected aerosols with different metal contents were added to natural phytoplankton assemblages from each site, and changes in nitrate, dissolved metal concentration, and phytoplankton abundance and carbon content were monitored. Addition of aerosol doubled the concentrations of cadmium, cobalt, copper, iron, manganese and nickel in the incubation water. Over the three-day experiments, greater drawdown of dissolved metals occurred in the open ocean water, whereas little metal drawdown occurred in the coastal water. Two populations of picoeukaryotic algae and Synechococcus grew in response to aerosol additions in both experiments. Particulate organic carbon (POC increased and was most sensitive to changes in picoeukaryote abundance. Phytoplankton community composition differed depending on the chemistry of the aerosol added. Enrichment with aerosol that had higher metal content led to a 10-fold increase in Synechococcus abundance in the oceanic experiment but not in the coastal experiment. Enrichment of aerosol-derived cobalt (Co, manganese, and nickel were particularly enhanced in the oceanic experiment, suggesting the Synechococcus population may have been fertilized by these aerosol metals. Copper (Cu-binding ligand concentrations were in excess of dissolved Cu in both experiments, and increased with aerosol additions. Bioavailable free hydrated Cu2+ concentrations were below toxicity thresholds throughout both experiments. These experiments show (1 atmospheric deposition contributes biologically important metals to seawater, (2 these metals are consumed over time scales commensurate with cell growth, and (3 growth responses can differ between distinct Synechococcus or eukaryotic algal populations despite relatively close geographic proximity and taxonomic

  2. Coastal sea level variability in the US West Coast Ocean Forecast System (WCOFS)

    Science.gov (United States)

    Kurapov, Alexander L.; Erofeeva, Svetlana Y.; Myers, Edward

    2017-01-01

    Sea level variability along the US West Coast is analyzed using multi-year time series records from tide gauges and a high-resolution regional ocean model, the base of the West Coast Ocean Forecast System (WCOFS). One of the metrics utilized is the frequency of occurrences when model prediction is within 0.15 m from the observed sea level, F. A target level of F = 90% is set by an operational agency. A combination of the tidal sea level from a shallow water inverse model, inverted barometer (IB) term computed using surface air pressure from a mesoscale atmospheric model, and low-pass filtered sea level from WCOFS representing the effect of coastal ocean dynamics (DYN) provides the most straightforward approach to reaching levels F>80%. The IB and DYN components each add between 5 and 15% to F. Given the importance of the DYN term bringing F closer to the operational requirement and its role as an indicator of the coastal ocean processes on scales from days to interannual, additional verification of the WCOFS subtidal sea level is provided in terms of the model-data correlation, standard deviation of the band-pass filtered (2-60 days) time series, the annual cycle amplitude, and alongshore sea level coherence in the range of 5-120-day periods. Model-data correlation in sea level increases from south to north along the US coast. The rms amplitude of model sea level variability in the 2-60-day band and its annual amplitude are weaker than observed north of 42 N, in the Pacific Northwest (PNW) coast region. The alongshore coherence amplitude and phase patterns are similar in the model and observations. Availability of the multi-year model solution allows computation and analysis of spatial maps of the coherence amplitude. For a reference location in the Southern California Bight, relatively short-period sea level motions (near 10 days) are incoherent with those north of the Santa Barbara Channel (in part, due to coastal trapped wave scattering and/or dissipation). At a

  3. Groundwater-ocean interaction and its effects on coastal ecological processes - are there groundwater-dependant ecosystems in the coastal zone?

    Science.gov (United States)

    Stieglitz, T. C.

    2013-05-01

    Hydrological land-ocean connectivity is an important driver of coastal ecosystems. Rivers are obvious and visible pathways for terrestrial runoff. The critical role of surface water discharge from rivers to coastal ecosystems has been well documented. Hidden from view, 'downstream' effects of coastal (supra-tidal, intertidal and submarine) groundwater discharge are far less well understood. Whilst hydrological and geochemical processes associated with coastal groundwater discharge have received an increasing amount of scientific attention over the past decade or so, the effects of groundwater flow on productivity, composition, diversity and functioning of coastal ecosystems along the world's shorelines have received little attention to date. Coastal groundwater discharge includes both terrestrial (fresh) groundwater fluxes and the recirculation of seawater through sediments, analogous to hyporheic flow in rivers. I will present an overview over relevant coastal hydrological processes, and will illustrate their ecological effects on examples from diverse tropical coastal ecosystems, e.g. (1) perennial fresh groundwater discharge from coastal sand dune systems permitting growth of freshwater-dependent vegetation in the intertidal zone of the Great Barrier Reef (Australia), (2) recirculation of seawater through mangrove forest floors directly affecting tree health and providing a pathway for carbon export from these ecosystems, (3) the local hydrology of groundwater-fed coastal inlets on Mexico's Yucatan peninsula affecting the movement behaviour of and habitat use by the queen conch Strombus gigas, an economically important species in the Caribbean region. These examples for hydrological-ecological coupling in the coastal zone invite the question if we should not consider these coastal ecosystems to be groundwater-dependent, in analogy to groundwater-dependency in freshwater aquatic systems.

  4. Predicting dissolved lignin phenol concentrations in the coastal ocean from chromophoric dissolved organic matter (CDOM absorption coefficients

    Directory of Open Access Journals (Sweden)

    Cédric G. Fichot

    2016-02-01

    Full Text Available Dissolved lignin is a well-established biomarker of terrigenous dissolved organic matter (DOM in the ocean, and a chromophoric component of DOM. Although evidence suggests there is a strong linkage between lignin concentrations and chromophoric DOM (CDOM absorption coefficients in coastal waters, the characteristics of this linkage and the existence of a relationship that is applicable across coastal oceans remain unclear. Here, 421 paired measurements of dissolved lignin concentrations (sum of 9 lignin phenols and CDOM absorption coefficients (ag(λ were used to examine their relationship along the river-ocean continuum (0-37 salinity and across contrasting coastal oceans (sub-tropical, temperate, high-latitude. Overall, lignin concentrations spanned four orders of magnitude and revealed a strong, non-linear relationship with ag(λ. The characteristics of the relationship (shape, wavelength dependency, lignin-composition dependency and evidence from degradation indicators were all consistent with lignin being an important driver of CDOM variability in coastal oceans, and suggested physical mixing and long-term photodegradation were important in shaping the relationship. These observations were used to develop two simple empirical models for estimating lignin concentrations from ag(λ with a +/- 20% error relative to measured values. The models are expected to be applicable in most coastal oceans influenced by terrigenous inputs.

  5. Physiological responses of coastal and oceanic diatoms to diurnal fluctuations in seawater carbonate chemistry under two CO2 concentrations

    Science.gov (United States)

    Li, Futian; Wu, Yaping; Hutchins, David A.; Fu, Feixue; Gao, Kunshan

    2016-11-01

    Diel and seasonal fluctuations in seawater carbonate chemistry are common in coastal waters, while in the open-ocean carbonate chemistry is much less variable. In both of these environments, ongoing ocean acidification is being superimposed on the natural dynamics of the carbonate buffer system to influence the physiology of phytoplankton. Here, we show that a coastal Thalassiosira weissflogii isolate and an oceanic diatom, Thalassiosira oceanica, respond differentially to diurnal fluctuating carbonate chemistry in current and ocean acidification (OA) scenarios. A fluctuating carbonate chemistry regime showed positive or negligible effects on physiological performance of the coastal species. In contrast, the oceanic species was significantly negatively affected. The fluctuating regime reduced photosynthetic oxygen evolution rates and enhanced dark respiration rates of T. oceanica under ambient CO2 concentration, while in the OA scenario the fluctuating regime depressed its growth rate, chlorophyll a content, and elemental production rates. These contrasting physiological performances of coastal and oceanic diatoms indicate that they differ in the ability to cope with dynamic pCO2. We propose that, in addition to the ability to cope with light, nutrient, and predation pressure, the ability to acclimate to dynamic carbonate chemistry may act as one determinant of the spatial distribution of diatom species. Habitat-relevant diurnal changes in seawater carbonate chemistry can interact with OA to differentially affect diatoms in coastal and pelagic waters.

  6. The coastal ocean response to the global warming acceleration and hiatus.

    Science.gov (United States)

    Liao, Enhui; Lu, Wenfang; Yan, Xiao-Hai; Jiang, Yuwu; Kidwell, Autumn

    2015-11-16

    Coastlines are fundamental to humans for habitation, commerce, and natural resources. Many coastal ecosystem disasters, caused by extreme sea surface temperature (SST), were reported when the global climate shifted from global warming to global surface warming hiatus after 1998. The task of understanding the coastal SST variations within the global context is an urgent matter. Our study on the global coastal SST from 1982 to 2013 revealed a significant cooling trend in the low and mid latitudes (31.4% of the global coastlines) after 1998, while 17.9% of the global coastlines changed from a cooling trend to a warming trend concurrently. The trend reversals in the Northern Pacific and Atlantic coincided with the phase shift of Pacific Decadal Oscillation and North Atlantic Oscillation, respectively. These coastal SST changes are larger than the changes of the global mean and open ocean, resulting in a fast increase of extremely hot/cold days, and thus extremely hot/cold events. Meanwhile, a continuous increase of SST was detected for a considerable portion of coastlines (46.7%) with a strengthened warming along the coastlines in the high northern latitudes. This suggests the warming still continued and strengthened in some regions after 1998, but with a weaker pattern in the low and mid latitudes.

  7. Cumulative Ocean Volume Estimates of the Solar System

    Science.gov (United States)

    Frank, E. A.; Mojzsis, S. J.

    2010-12-01

    Although there has been much consideration for habitability in silicate planets and icy bodies, this information has never been quantitatively gathered into a single approximation encompassing our solar system from star to cometary halo. Here we present an estimate for the total habitable volume of the solar system by constraining our definition of habitable environments to those to which terrestrial microbial extremophiles could theoretically be transplanted and yet survive. The documented terrestrial extremophile inventory stretches environmental constraints for habitable temperature and pH space of T ~ -15oC to 121oC and pH ~ 0 to 13.5, salinities >35% NaCl, and gamma radiation doses of 10,000 to 11,000 grays [1]. Pressure is likely not a limiting factor to life [2]. We applied these criteria in our analysis of the geophysical habitable potential of the icy satellites and small icy bodies. Given the broad spectrum of environmental tolerance, we are optimistic that our pessimistic estimates are conservative. Beyond the reaches of our inner solar system's conventional habitable zone (Earth, Mars and perhaps Venus) is Ceres, a dwarf planet in the habitable zone that could possess a significant liquid water ocean if that water contains anti-freezing species [3]. Yet further out, Europa is a small icy satellite that has generated much excitement for astrobiological potential due to its putative subsurface liquid water ocean. It is widely promulgated that the icy moons Enceladus, Triton, Callisto, Ganymede, and Titan likewise have also sustained liquid water oceans. If oceans in Europa, Enceladus, and Triton have direct contact with a rocky mantle hot enough to melt, hydrothermal vents could provide an energy source for chemotrophic organisms. Although oceans in the remaining icy satellites may be wedged between two layers of ice, their potential for life cannot be precluded. Relative to the Jovian style of icy satellites, trans-neptunian objects (TNOs) - icy bodies

  8. Spatio-temporal variations in aerosol properties over the oceanic regions between coastal India and Antarctica

    Science.gov (United States)

    Chaubey, Jai Prakash; Moorthy, K. Krishna; Babu, S. Suresh; Gogoi, Mukunda M.

    2013-11-01

    Measurements of aerosol optical depth (AOD), mass concentrations of black carbon (MB) and composite aerosols (MT) in the marine atmospheric boundary layer (MABL) were made during onward [Dec 2007 to Jan 2008; Northern Hemispheric (NH) winter] and return (Mar-Apr 2008; NH spring) legs of the trans-continental cruise of 27th Indian Scientific Expedition to Antarctica (ISEA) during International Polar Year of 2007-2008. Large latitudinal gradients are seen; with AOD decreasing from coastal India (AOD~0.45) to coastal Antarctica (AOD~0.04) during NH winter. The measurements also evidenced a strong seasonality of AOD over all regions, with a decrease of the values and gradient in NH spring. BC concentration in the MABL decreases exponentially from 3800 ng m-3 (over 10°N) to 624 ng m-3 near equator and much lower values (<100 ng m-3) over southern oceanic region. Seasonality in the latitudinal gradients of AOD, MB and MT exists over regions north of 20°S. Multi campaign [Pilot Expedition to Southern Ocean (2004), Special Expedition to Larsemann Hills (2007) and Tropical Indian Ocean cruise (2010)] analysis over these oceanic regions showed that the pattern over the regions (south of 20°S) remained the same. Seasonality of AOD exists over Atlantic Ocean as well. Temporal variation of AOD at different latitudes derived from AERONET data also showed marked seasonality and latitudinal variation in northern hemisphere than in southern Hemisphere. Satellite retrieved AOD showed good correlation with the ship borne measurements; while GOCART retrieved AOD underestimates but gives a measure of the spatial variations.

  9. Prospects for improving the representation of coastal and shelf seas in global ocean models

    Science.gov (United States)

    Holt, Jason; Hyder, Patrick; Ashworth, Mike; Harle, James; Hewitt, Helene T.; Liu, Hedong; New, Adrian L.; Pickles, Stephen; Porter, Andrew; Popova, Ekaterina; Icarus Allen, J.; Siddorn, John; Wood, Richard

    2017-02-01

    Accurately representing coastal and shelf seas in global ocean models represents one of the grand challenges of Earth system science. They are regions of immense societal importance through the goods and services they provide, hazards they pose and their role in global-scale processes and cycles, e.g. carbon fluxes and dense water formation. However, they are poorly represented in the current generation of global ocean models. In this contribution, we aim to briefly characterise the problem, and then to identify the important physical processes, and their scales, needed to address this issue in the context of the options available to resolve these scales globally and the evolving computational landscape.We find barotropic and topographic scales are well resolved by the current state-of-the-art model resolutions, e.g. nominal 1/12°, and still reasonably well resolved at 1/4°; here, the focus is on process representation. We identify tides, vertical coordinates, river inflows and mixing schemes as four areas where modelling approaches can readily be transferred from regional to global modelling with substantial benefit. In terms of finer-scale processes, we find that a 1/12° global model resolves the first baroclinic Rossby radius for only ˜ 8 % of regions state of the art.We quantify the benefit of improved resolution and process representation using 1/12° global- and basin-scale northern North Atlantic nucleus for a European model of the ocean (NEMO) simulations; the latter includes tides and a k-ɛ vertical mixing scheme. These are compared with global stratification observations and 19 models from CMIP5. In terms of correlation and basin-wide rms error, the high-resolution models outperform all these CMIP5 models. The model with tides shows improved seasonal cycles compared to the high-resolution model without tides. The benefits of resolution are particularly apparent in eastern boundary upwelling zones.To explore the balance between the size of a globally

  10. Enhancing moderate-resolution ocean color products over coastal/inland waters (Conference Presentation)

    Science.gov (United States)

    Pahlevan, Nima; Schott, John R.; Zibordi, Giuseppe

    2016-10-01

    With the successful launch of Landsat-8 in 2013 followed by a very recent launch of Sentinel-2A, we are entering a new area where frequent moderate resolution water quality products over coastal/inland waters will be available to scientists and operational agencies. Although designed for land observations, the Operational Land Imager (OLI) has proven to provide high-fidelity products in these aquatic systems where coarse-resolution ocean color imagers fail to provide valid observations. High-quality, multi-scale ocean color products can give insights into the biogeochemical/physical processes from the upstream in watersheds, into near-shore regions, and further out in ocean basins. In this research, we describe a robust cross-calibration approach, which facilitates seamless ocean color products at multi scales. The top-of-atmosphere (TOA) OLI imagery is cross-calibrated against near-simultaneous MODIS and VIIRS ocean color observations in high-latitude regions. This allows for not only examining the overall relative performance of OLI but also for characterizing non-uniformity (i.e., banding) across its swath. The uncertainty of this approach is, on average, found to be less than 0.5% in the blue channels. The adjustments made for OLI TOA reflectance products are then validated against in-situ measurements of remote sensing reflectance collected in research cruises or at the AERONET-OC.

  11. A miniaturized UV/VIS/IR hyperspectral radiometer for autonomous airborne and underwater imaging spectroscopy of coastal and oceanic environments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Remote sensing of optical properties of oceans and coastal waters provides essential information for various scientific questions and applications, including...

  12. Intercomparison of the Charnock and COARE bulk wind stress formulations for coastal ocean modelling

    Directory of Open Access Journals (Sweden)

    J. M. Brown

    2013-08-01

    Full Text Available The accurate parameterisation of momentum and heat transfer across the air–sea interface is vital for realistic simulation of the atmosphere–ocean system. In most modelling applications accurate representation of the wind stress is required to numerically reproduce surge, coastal ocean circulation, surface waves, turbulence and mixing. Different formulations can be implemented and impact the accuracy of the instantaneous and long-term residual circulation, the surface mixed layer, and the generation of wave-surge conditions. This, in turn, affects predictions of storm impact, sediment pathways, and coastal resilience to climate change. The specific numerical formulation needs careful selection to ensure the accuracy of the simulation. Two wind stress parameterisations widely used in the ocean circulation and the storm surge communities respectively are studied with focus on an application to the NW region of the UK. Model–observation validation is performed at two nearshore and one estuarine ADCP (acoustic Doppler current profiler stations in Liverpool Bay, a hypertidal region of freshwater influence (ROFI with vast intertidal areas. The period of study covers both calm and extreme conditions to test the robustness of the 10 m wind stress component of the Coupled Ocean–Atmosphere Response Experiment (COARE bulk formulae and the standard Charnock relation. In this coastal application a realistic barotropic–baroclinic simulation of the circulation and surge elevation is set-up, demonstrating greater accuracy occurs when using the Charnock relation, with a constant Charnock coefficient of 0.0185, for surface wind stress during this one month period.

  13. Design of an Airborne Portable Remote Imaging Spectrometer (PRISM) for the Coastal Ocean

    Science.gov (United States)

    Mouroulis, P.; vanGorp, B.; Green, R. O.; Cohen, D.; Wilson, D.; Randall, D.; Rodriguez, J.; Polanco, O.; Dierssen, H.; Balasubramanian, K.; Vargas, R.; Hein, R.; Sobel, H.; Eastwood, M.

    2010-01-01

    PRISM is a pushbroom imaging spectrometer currently under development at the Jet Propulsion Laboratory, intended to address the needs of airborne coastal ocean science research. We describe here the instrument design and the technologies that enable it to achieve its distinguishing characteristics. PRISM covers the 350-1050 nm range with a 3.1 nm sampling and a 33(deg) field of view. The design provides for high signal to noise ratio, high uniformity of response, and low polarization sensitivity. The complete instrument also incorporates two additional wavelength bands at 1240 and 1610 nm in a spot radiometer configuration to aid with atmospheric correction.

  14. Northeast Coastal Ocean Forecast System (NECOFS): A Multi-scale Global-Regional-Estuarine FVCOM Model

    Science.gov (United States)

    Beardsley, R. C.; Chen, C.

    2014-12-01

    The Northeast Coastal Ocean Forecast System (NECOFS) is a global-regional-estuarine integrated atmosphere/surface wave/ocean forecast model system designed for the northeast US coastal region covering a computational domain from central New Jersey to the eastern end of the Scotian Shelf. The present system includes 1) the mesoscale meteorological model WRF (Weather Research and Forecasting); 2) the regional-domain FVCOM covering the Gulf of Maine/Georges Bank/New England Shelf region (GOM-FVCOM); 3) the unstructured-grid surface wave model (FVCOM-SWAVE) modified from SWAN with the same domain as GOM-FVCOM; 3) the Mass coastal FVCOM with inclusion of inlets, estuaries and intertidal wetlands; and 4) three subdomain wave-current coupled inundation FVCOM systems in Scituate, MA, Hampton River, NH and Mass Bay, MA. GOM-FVCOM grid features unstructured triangular meshes with horizontal resolution of ~ 0.3-25 km and a hybrid terrain-following vertical coordinate with a total of 45 layers. The Mass coastal FVCOM grid is configured with triangular meshes with horizontal resolution up to ~10 m, and 10 layers in the vertical. Scituate, Hampton River and Mass Bay inundation model grids include both water and land with horizontal resolution up to ~5-10 m and 10 vertical layers. GOM-FVCOM is driven by surface forcing from WRF model output configured for the region (with 9-km resolution), the COARE3 bulk air-sea flux algorithm, local river discharges, and tidal forcing constructed by eight constituents and subtidal forcing on the boundary nested to the Global-FVCOM. SWAVE is driven by the same WRF wind field with wave forcing at the boundary nested to Wave Watch III configured for the northwestern Atlantic region. The Mass coastal FVCOM and three inundation models are connected with GOM-FVCOM through one-way nesting in the common boundary zones. The Mass coastal FVCOM is driven by the same surface forcing as GOM-FVCOM. The nesting boundary conditions for the inundation models

  15. The contribution of Alaskan, Siberian, and Canadian coastal polynas to the cold halocline layer of the Arctic Ocean

    Science.gov (United States)

    Cavalieri, Donald J.; Martin, Seelye

    1994-01-01

    Numerous Arctic Ocean circulation and geochemical studies suggest that ice growth in polynyas over the Alaskan, Siberian, and Canadian continental shelves is a source of cold, saline water which contributes to the maintenance of the Arctic Ocean halocline. The purpose of this study is to estimate for the 1978-1987 winters the contributions of Arctic coastal polynyas to the cold halocline layer of the Arctic Ocean. The study uses a combination of satellite, oceanographic, and weather data to calculate the brine fluxes from the polynyas; then an oceanic box model is used to calculate their contributions to the cold halocline layer of the Arctic Ocean. This study complements and corrects a previous study of dense water production by coastal polynyas in the Barents, Kara, and Laptev Seas.

  16. NOAA Integrated Ocean and Coastal Mapping (IOCM) true color (RGB) orthorectified mosaic image tiles, Baton Rouge to LaPlace, Louisiana 2010 (NODC Accession 0074374)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of the Mississippi...

  17. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic image tiles, Cutts Island to Prouts Neck, Penobscot, and Reversing Falls, Maine, June 2011 (NODC Accession 0100008)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains both true color (RGB) and infrared (IR) ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping...

  18. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic image tiles, Merrimack River and Plum Island Sound, Massachusetts, June 2011 (NODC Accession 0103944)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains both true color (RGB) and infrared (IR) ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping...

  19. Temperature data from thermistor casts in the Atlantic Ocean's coastal waters off Florida by from 01 January 2000 to 31 December 2003 (NODC Accession 0002518)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature data were collected using SBE 39 thermistor casts in the Atlantic Ocean's coastal waters off Florida from January 1, 2000 to December 31, 2003 as part of...

  20. NOAA Integrated Ocean and Coastal Mapping (IOCM) true color (RGB) orthorectified mosaic image tiles, Port of Mobile, Alabama, 2011 (NODC Accession 0106341)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains true color (RGB) ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The...

  1. NOAA Integrated Ocean and Coastal Mapping (IOCM) true color (RGB) orthorectified mosaic image tiles, Lake Charles, Louisiana 2009-2010 (NODC Accession 0075827)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of Lake Charles,...

  2. 2014 NOAA Ortho-rectified Mean Low Low Water Color Mosaic of Perdido Bay, Alabama: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  3. 2012 NOAA Ortho-rectified Mosaic of California: Port Hueneme to Seal Rock, Mean Lower Low Water Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  4. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic image tiles, LaPlace to Venice, Louisiana 2010 (NODC Accession 0075829)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of Mississippi River -...

  5. 2015 NOAA Ortho-rectified Mosaic of Ortho-rectified Below Mean High Water Color Mosaic of Jacksonville, Florida: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  6. 2012 NOAA Ortho-rectified Mosaic of South Carolina: Sewee Bay to Santee River, Mean Lower Low Water Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  7. 2014 NOAA Ortho-rectified Mean High Water Color Mosaic of Dewees Island to Bulls Bay (ICW), South Carolina: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  8. 2015 NOAA Ortho-rectified Below Mean High Water Color Mosaic of Ports of Tampa, St Petersburg and Port Manatee, Florida: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  9. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic image tiles for Hampton Harbor to Frost Point and the Isle of Shoals, NH, 2011 (NODC Accession 0092292)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains orthorectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. Data were collected at...

  10. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic image tiles, Beaumont, Orange, and Port Author, Texas, 2010 (NODC Accession 0074380)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of Beaumont, Orange,...

  11. 2014 NOAA Ortho-rectified Mean Low Low Water Near-Infrared Mosaic of Cape Lookout, North Carolina: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  12. 2013 NOAA Ortho-rectified Mean Low Low Water Color Mosaic of Puget Sound - Sequim Bay to Foulweather Bluff, Washington: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  13. 2014 NOAA Ortho-rectified Mean High Water Near-Infrared Mosaic of Dewees Island to Bulls Bay (ICW), South Carolina: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  14. 2014 NOAA Ortho-rectified Mean High Water Color Mosaic of Cabbage Creek to St. Johns River, Florida: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  15. 2014 NOAA Ortho-rectified Mean High Water Color Mosaic of Harbor River to Casino Creek (ICW), South Carolina: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  16. 2014 NOAA Ortho-rectified Mean Low Low Water Color Mosaic of San Francisco Bay - North, California: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  17. 2014 NOAA Ortho-rectified Below Mean High Water Near-Infrared Mosaic of Freeport, Texas: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  18. 2014 NOAA Ortho-rectified Mean Low Low Water Near-Infrared Mosaic of San Francisco Bay (South), California: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  19. 2014 NOAA Ortho-rectified Mean Low Low Water Near-Infrared Mosaic of Hood Canal - Port Townsend to Annas Bay, Washington: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  20. 2014 NOAA Ortho-rectified Mean High Water Near-Infrared Mosaic of Edisto Island, South Carolina: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  1. 2015 NOAA Ortho-rectified Below Mean High Water Color Mosaic of the Port of Pensacola, Florida: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  2. 2012 NOAA Ortho-rectified Mosaic of South Carolina: Northeast Point to Murphy Island, Mean Lower Low Water Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  3. 2011 NOAA Ortho-rectified Mosaic of Christiansted of St. Johns, U.S. Virgin Islands: Integrated Ocean and Coastal Mapping Product (NODC Accession 0086076)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  4. 2014 NOAA Ortho-rectified Mean Low Low Water Color Mosaic of Dewees Island to Bulls Bay (ICW), South Carolina: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  5. 2014 NOAA Ortho-rectified Mean Low Low Water Near-Infrared Mosaic of Dewees Island to Bulls Bay (ICW), South Carolina: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  6. 2014 NOAA Ortho-rectified Mean High Water Near-Infrared Mosaic of Cabbage Creek to St. Johns River, Florida: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  7. 2013 NOAA Ortho-rectified Mean High Water Color Mosaic of Sequim Bay to Foulweather Bluff, Washington: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  8. 2014 NOAA Ortho-rectified Mean Low Low Water Color Mosaic of Harbor River to Casino Creek (ICW), SouthCarolina: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  9. 2015 NOAA Ortho-rectified Below Mean High Water Color Mosaic of the Port of Palm Beach, Florida: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  10. 2014 NOAA Ortho-rectified Mean Low Low Water Color Mosaic of Cape Lookout, North Carolina: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  11. 2014 NOAA Ortho-rectified Mean Low Low Water Color Mosaic of Mobile Bay, Alabama: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  12. 2014 NOAA Ortho-rectified Mean Low Low Water Color Mosaic of Cabbage Creek to St. Johns River, Florida: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  13. 2014 NOAA Ortho-rectified Below Mean High Water Color Mosaic of Port of Humboldt and Eureka, California: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  14. NOAA Integrated Ocean and Coastal Mapping (IOCM) infrared (IR) orthorectified mosaic image tiles, Lake Charles, Louisiana 2009-2010 (NODC Accession 0100232)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains infrared (IR) ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The...

  15. Comparison between the Coastal Impacts of Cyclone Nargis and the Indian Ocean Tsunami

    Science.gov (United States)

    Fritz, H. M.; Blount, C.

    2009-12-01

    On 26 December 2004 a great earthquake with a moment magnitude of 9.3 occurred off the North tip of Sumatra, Indonesia. The Indian Ocean tsunami claimed 230,000 lives making it the deadliest in recorded history. Less than 4 years later tropical cyclone Nargis (Cat. 4) made landfall in Myanmar’s Ayeyarwady delta on 2 May 2008 causing the worst natural disaster in Myanmar’s recorded history. Official death toll estimates exceed 138,000 fatalities making it the 7th deadliest cyclone ever recorded worldwide. The Bay of Bengal counts seven tropical cyclones with death tolls in excess of 100,000 striking India and Bangladesh in the past 425 years, which highlights the difference in return periods between extreme cyclones and tsunamis. Damage estimates at over $10 billion made Nargis the most damaging cyclone ever recorded in the Indian Ocean. Although the two natural disasters are completely different in their generation mechanisms they both share massive coastal inundations as primary damage and death cause. While the damage patterns exhibit similarities the forcing differs. The primary tsunami impact is dominated by the runup of a few main waves washing rapidly ashore and inducing high lateral forces. On the contrary the tropical cyclone storm surge damage is the result of numerous storm waves continuously hitting the flooded structures on the elevated storm tide level. While coastal vegetation such as mangroves may be effective at reducing superimposed storm waves they are limited at reducing storm surge. Unfortunately, mangroves have been significantly cut for charcoal and land use as rice paddies in Myanmar due to rapid population growth and economic reasons, thereby increasing coastal vulnerability and land loss due to erosion (Figure 1). The period of a storm surge is typically an order of magnitude longer than the period of a tsunami resulting in significantly larger inundation distances along coastal plains and river deltas. The storm surge of cyclone Nargis

  16. Ammonia-oxidizing Archaea in the Arctic Ocean and Antarctic coastal waters.

    Science.gov (United States)

    Kalanetra, Karen M; Bano, Nasreen; Hollibaugh, James T

    2009-09-01

    We compared abundance, distributions and phylogenetic composition of Crenarchaeota and ammonia-oxidizing Archaea (AOA) in samples collected from coastal waters west of the Antarctic Peninsula during the summers of 2005 and 2006, with samples from the central Arctic Ocean collected during the summer of 1997. Ammonia-oxidizing Archaea and Crenarchaeota abundances were estimated from quantitative PCR measurements of amoA and 16S rRNA gene abundances. Crenarchaeota and AOA were approximately fivefold more abundant at comparable depths in the Antarctic versus the Arctic Ocean. Crenarchaeota and AOA were essentially absent from the Antarctic Summer Surface Water (SSW) water mass (0-45 m depth). The ratio of Crenarchaeota 16S rRNA to archaeal amoA gene abundance in the Winter Water (WW) water mass (45-105 m depth) of the Southern Ocean was much lower (0.15) than expected and in sharp contrast to the ratio (2.0) in the Circumpolar Deep Water (CDW) water mass (105-3500 m depth) immediately below it. We did not observe comparable segregation of this ratio by depth or water mass in Arctic Ocean samples. A ubiquitous, abundant and polar-specific crenarchaeote was the dominant ribotype in the WW and important in the upper halocline of the Arctic Ocean. Our data suggest that this organism does not contain an ammonia monooxygenase gene. In contrast to other studies where Crenarchaeota populations apparently lacking amoA genes are found in bathypelagic waters, this organism appears to dominate in well-defined, ammonium-rich, near-surface water masses in polar oceans.

  17. A Survey of ICESat Coastal Altimetry Applications: Continental Coast, Open Ocean Island, and Inland River

    Directory of Open Access Journals (Sweden)

    Timothy J. Urban

    2008-01-01

    Full Text Available ICESat satellite laser altimetry provides an unprecedented set of global elevation measurements of the Earth, yielding great detail over ice, land and ocean surfaces. Coastal regions in particular, including seamless land-water transitions, benefit from the small footprint (50 to 90 m, high resolution (40 Hz, ~170 m along-track, and high precision (2 to 3 cm of ICESat. We discuss the performance and character of ICESat data in three example coastal scenarios: continental coast (Louisiana-Mississippi Gulf Coast, USA, including Lake Pontchartrain, open ocean island (Funafuti, Tuvalu, and an inland river (confluence of Tapajos and Amazon rivers, Brazil. Water elevations are compared to tide gauge heights and to TOPEX and Jason-1 radar altimetry. In demonstrating the utilization of ICESat, we also present examples of: laser waveform shapes over a variety of surface types (water, land, and vegetation; vegetation canopy heights (detecting large-scale destruction from Hurricane Katrina comparing data before and after; sub-canopy surface water; measurements of waves; and examination of along-stream river slope and comparisons of river stage to hydrologically-driven GRACE geoid change.

  18. Ocean warming, a rapid distributional shift, and the hybridization of a coastal fish species.

    Science.gov (United States)

    Potts, Warren M; Henriques, Romina; Santos, Carmen V; Munnik, Kate; Ansorge, Isabelle; Dufois, Francois; Booth, Anthony J; Kirchner, Carola; Sauer, Warwick H H; Shaw, Paul W

    2014-09-01

    Despite increasing awareness of large-scale climate-driven distribution shifts in the marine environment, no study has linked rapid ocean warming to a shift in distribution and consequent hybridization of a marine fish species. This study describes rapid warming (0.8 °C per decade) in the coastal waters of the Angola-Benguela Frontal Zone over the last three decades and a concomitant shift by a temperature sensitive coastal fish species (Argyrosomus coronus) southward from Angola into Namibia. In this context, rapid shifts in distribution across Economic Exclusive Zones will complicate the management of fishes, particularly when there is a lack of congruence in the fisheries policy between nations. Evidence for recent hybridization between A. coronus and a congener, A. inodorus, indicate that the rapid shift in distribution of A. coronus has placed adults of the two species in contact during their spawning events. Ocean warming may therefore revert established species isolation mechanisms and alter the evolutionary history of fishes. While the consequences of the hybridization on the production of the resource remain unclear, this will most likely introduce additional layers of complexity to their management.

  19. Assessment of the colored dissolved organic matter in coastal waters from ocean color remote sensing.

    Science.gov (United States)

    Loisel, Hubert; Vantrepotte, Vincent; Dessailly, David; Mériaux, Xavier

    2014-06-02

    Knowledge on absorption by colored dissolved organic matter, a(cdom), spatio-temporal variability in coastal areas is of fundamental importance in many field of researches related to biogeochemical cycles studies, coastal areas management, as well as land and water interactions in the coastal domain. A new method, based on the theoretical link between the vertical attenuation coefficient, K(d), and the absorption coefficient, has been developed to assess a(cdom). This method, confirmed from radiative transfer simulations and in situ measurements, and tested on an independent in situ data set (N = 126), allows a(cdom) to be assessed with a Mean Relative Absolute Difference, MRAD, of 33% over two order of magnitude (from 0.01 to 1.16 m(-1)). In the frame of ocean color observation, K(d) is not directly measured but estimated from the remote sensing reflectance, R(rs). Based on 109 satellite (SeaWiFS) and in situ coincident (i.e. match-up) data points a(cdom) is retrieved with a MRAD value of 37%. This simple model generally presents slightly better performances than recently developed empirical or semi-analytical algorithms.

  20. Development of a High-Resolution Coastal Circulation Model for the Ocean Observatory in Lunenburg Bay

    Institute of Scientific and Technical Information of China (English)

    WANG Liang; SHENG Jinyu

    2005-01-01

    An advanced ocean observatory has been established in Lunenburg Bay of Nova Scotia, Canada as part of an interdisciplinary research project of marine environmental prediction. The development of a high-resolution coastal circulation model is one of important components of the observatory. The model horizontal resolution is 60 m and the vertical resolution is about 1 m. The coastal circulation model is used to simulate the semi-diurnal tidal circulation and associated nonlinear dynamics with the M2 forcing specified at the model open boundaries. The model is also used to simulate the storm-induced circulation in the bay during Hurricane Juan in September 2003, with the model forcing to be the combination of tides and remotely generated waves specified at the model open boundaries and wind stress applied at the sea surface. The model results demonstrate strong interactions between the local wind stress, tidal forcing, and remotely generated waves during this period. Comparison of model results with the surface elevation and current observations demonstrates that the coastal circulation model has reasonable skills in simulating the tidal and storm-induced circulation in the bay.

  1. Delayed upwelling alters nearshore coastal ocean ecosystems in the northern California current.

    Science.gov (United States)

    Barth, John A; Menge, Bruce A; Lubchenco, Jane; Chan, Francis; Bane, John M; Kirincich, Anthony R; McManus, Margaret A; Nielsen, Karina J; Pierce, Stephen D; Washburn, Libe

    2007-03-06

    Wind-driven coastal ocean upwelling supplies nutrients to the euphotic zone near the coast. Nutrients fuel the growth of phytoplankton, the base of a very productive coastal marine ecosystem [Pauly D, Christensen V (1995) Nature 374:255-257]. Because nutrient supply and phytoplankton biomass in shelf waters are highly sensitive to variation in upwelling-driven circulation, shifts in the timing and strength of upwelling may alter basic nutrient and carbon fluxes through marine food webs. We show how a 1-month delay in the 2005 spring transition to upwelling-favorable wind stress in the northern California Current Large Marine Ecosystem resulted in numerous anomalies: warm water, low nutrient levels, low primary productivity, and an unprecedented low recruitment of rocky intertidal organisms. The delay was associated with 20- to 40-day wind oscillations accompanying a southward shift of the jet stream. Early in the upwelling season (May-July) off Oregon, the cumulative upwelling-favorable wind stress was the lowest in 20 years, nearshore surface waters averaged 2 degrees C warmer than normal, surf-zone chlorophyll-a and nutrients were 50% and 30% less than normal, respectively, and densities of recruits of mussels and barnacles were reduced by 83% and 66%, respectively. Delayed early-season upwelling and stronger late-season upwelling are consistent with predictions of the influence of global warming on coastal upwelling regions.

  2. Coastal ocean acidification and increasing total alkalinity in the northwestern Mediterranean Sea

    Science.gov (United States)

    Kapsenberg, Lydia; Alliouane, Samir; Gazeau, Frédéric; Mousseau, Laure; Gattuso, Jean-Pierre

    2017-05-01

    Coastal time series of ocean carbonate chemistry are critical for understanding how global anthropogenic change manifests in near-shore ecosystems. Yet, they are few and have low temporal resolution. At the time series station Point B in the northwestern Mediterranean Sea, seawater was sampled weekly from 2007 through 2015, at 1 and 50 m, and analyzed for total dissolved inorganic carbon (CT) and total alkalinity (AT). Parameters of the carbonate system such as pH (pHT, total hydrogen ion scale) were calculated and a deconvolution analysis was performed to identify drivers of change. The rate of surface ocean acidification was -0.0028 ± 0.0003 units pHT yr-1. This rate is larger than previously identified open-ocean trends due to rapid warming that occurred over the study period (0.072 ± 0.022 °C yr-1). The total pHT change over the study period was of similar magnitude as the diel pHT variability at this site. The acidification trend can be attributed to atmospheric carbon dioxide (CO2) forcing (59 %, 2.08 ± 0.01 ppm CO2 yr-1) and warming (41 %). Similar trends were observed at 50 m but rates were generally slower. At 1 m depth, the increase in atmospheric CO2 accounted for approximately 40 % of the observed increase in CT (2.97 ± 0.20 µmol kg-1 yr-1). The remaining increase in CT may have been driven by the same unidentified process that caused an increase in AT (2.08 ± 0.19 µmol kg-1 yr-1). Based on the analysis of monthly trends, synchronous increases in CT and AT were fastest in the spring-summer transition. The driving process of the interannual increase in AT has a seasonal and shallow component, which may indicate riverine or groundwater influence. This study exemplifies the importance of understanding changes in coastal carbonate chemistry through the lens of biogeochemical cycling at the land-sea interface. This is the first coastal acidification time series providing multiyear data at high temporal resolution. The data confirm rapid warming in

  3. A multi-subwaveform parametric retracker of the radar satellite altimetric waveform and recovery of gravity anomalies over coastal oceans

    Institute of Scientific and Technical Information of China (English)

    HWANG; CheinWay

    2010-01-01

    The quality of satellite radar altimetric data is very important in studies of geodesy,geophysics,and oceanography.Over coastal oceans,altimeter waveforms are contaminated by the terrain and physical environments so that the accuracy of altimeter data is lower than that over open oceans.Here we develop a new multi-subwaveform parametric retracker(MSPR) to improve the quality of altimeter data for the recovery of gravity anomaly in coastal oceans.The least squares collocation method is used to recover the residual gravity anomaly over the coastal water from altimetric data.The waveform data records from Geosat/GM around Taiwan Island are practically retracked with MSPR.When compared with the Taiwan geoid height,the results retracked by MSPR are more accurate than those retracked by the well-known β-5-parmeter method and from the geophysical data records(GDRs).The gravity anomalies over Taiwan coastal waters are calculated from the retracked altimeter data with the least squares collocation.When we compared gravity anomalies computed using altimeter GDRs with the ship-borne gravity data over Taiwan coastal ocean,we found that the results from retracked data are more accurate than those from GDRs.

  4. Size distributions of coastal ocean suspended particulate inorganic matter: Amorphous silica and clay minerals and their dynamics

    Science.gov (United States)

    Zhang, Xiaodong; Stavn, Robert H.; Falster, Alexander U.; Rick, Johannes J.; Gray, Deric; Gould, Richard W.

    2017-04-01

    Particulate inorganic matter (PIM) is a key component in estuarine and coastal systems and plays a critical role in trace metal cycling. Better understanding of coastal dynamics and biogeochemistry requires improved quantification of PIM in terms of its concentration, size distribution, and mineral species composition. The angular pattern of light scattering contains detailed information about the size and composition of particles. These volume scattering functions (VSFs) were measured in Mobile Bay, Alabama, USA, a dynamic, PIM dominated coastal environment. From measured VSFs, we determined through inversion the particle size distributions (PSDs) of major components of PIM, amorphous silica and clay minerals. An innovation here is the extension of our reported PSDs significantly into the submicron range. The PSDs of autochthonous amorphous silica exhibit two unique features: a peak centered at about 0.8 μm between 0.2 and 4 μm and a very broad shoulder essentially extending from 4 μm to >100 μm. With an active and steady particle source from blooming diatoms, the shapes of amorphous silica PSDs for sizes 10 μm inside the bay, likely due to wind-induced resuspension of larger frustules that have settled. Compared to autochthonous amorphous silica, the allochthonous clay minerals are denser and exhibit relatively narrower PSDs with peaks located between 1 and 4 μm. Preferential settling of larger mineral particles as well as the smaller but denser illite component further narrowed the size distributions of clay minerals as they were being transported outside the bay. The derived PSDs also indicated a very dynamic situation in Mobile Bay when a cold weather front passed through during the experiment. With northerly winds of speeds up to 15 m s-1, both amorphous silica and clay minerals showed a dramatic increase in concentration and broadening in size distribution outside the exit of the barrier islands, indicative of wind-induced resuspension and subsequent

  5. The Hyperspectral Imager for the Coastal Ocean (HICO): Four Years Operating on the International Space Station (Invited)

    Science.gov (United States)

    Davis, C. O.; Nahorniak, J.; Tufillaro, N.; Kappus, M.

    2013-12-01

    The Hyperspectral Imager for the Coastal Ocean (HICO) is the first spaceborne imaging spectrometer designed to sample the coastal ocean. HICO images selected coastal regions at 92 m spatial resolution with full spectral coverage (88 channels covering 400 to 900 nm) and a high signal-to-noise ratio to resolve the complexity of the coastal ocean. Under sponsorship of the Office of Naval Research, HICO was built by the Naval Research Laboratory, which continues to operate the sensor. HICO has been operating on the International Space Station since October 2009 and has collected over 8000 scenes for more than 50 users. As Project Scientist I have been the link to the international ocean optics community primarily through our OSU HICO website (http://hico.oregonstate.edu). HICO operations are now under NASA support and HICO data is now also be available through the NASA Ocean Color Website (http://oceancolor.gsfc.nasa.gov ). Here we give a brief overview of HICO data and operations and discuss the unique challenges and opportunities that come from operating on the International Space Station.

  6. Processes influencing the transport and fate of contaminated sediments in the coastal ocean: Boston Harbor and Massachusetts Bay

    Science.gov (United States)

    Bothner, Michael H.; Butman, Bradford

    2007-01-01

    Most of the major urban centers of the United States including Boston, New York, Washington, Chicago, New Orleans, Miami, Los Angeles, San Francisco, and Seattle—are on a coast (fig. 1.1). All of these cities discharge treated sewage effluent into adjacent waters. In 2000, 74 percent of the U.S. population lived within 200 kilometers (km) of the coast. Between 1980 and 2002, the population density in coastal communities increased approximately 4.5 times faster than in noncoastal areas of the U.S. (Perkins, 2004). More people generate larger volumes of wastes, increase the demands on wastewater treatment, expand the area of impervious land surfaces, and use more vehicles that contribute contaminants to street runoff. According to the National Coastal Condition Report II (U.S. Environmental Protection Agency, 2005a), on the basis of coastal habitat, water and sediment quality, benthic index, and fish tissue, the overall national coastal condition is only poor to fair and the overall coastal condition in the highly populated Northeast is poor. Scientific information helps managers to prioritize and regulate coastal-ocean uses that include recreation, commercial fishing, transportation, waste disposal, and critical habitat for marine organisms. These uses are often in conflict with each other and with environmental concerns. Developing a strategy for managing competing uses while maintaining sustainability of coastal resources requires scientific understanding of how the coastal ocean system behaves and how it responds to anthropogenic influences. This report provides a summary of a multidisciplinary research program designed to improve our understanding of the transport and fate of contaminants in Massachusetts coastal waters. Massachusetts Bay and Boston Harbor have been a focus of U.S. Geological Survey (USGS) research because they provide a diverse geographic setting for developing a scientific understanding of the geology, geochemistry, and oceanography of

  7. Lacaziosis in bottlenose dolphins Tursiops truncatus along the coastal Atlantic Ocean, Florida, USA.

    Science.gov (United States)

    Murdoch, M Elizabeth; Mazzoil, Marilyn; McCulloch, Stephen; Bechdel, Sarah; O'Corry-Crowe, Greg; Bossart, Gregory D; Reif, John S

    2010-10-26

    This study represents the first systematic study of lacaziosis (lobomycosis) in bottlenose dolphins Tursiops truncatus in the Atlantic Ocean along the east-central coast of Florida, USA. Lacaziosis is a chronic infection of the skin caused by the fungus Lacazia loboi, which affects only dolphins and humans. Previous studies have shown a high prevalence (6.8 to 12.0%) of lacaziosis in resident dolphins from the adjacent Indian River Lagoon Estuary (IRL), where the disease is endemic. We examined the prevalence of lacaziosis in this coastal area using photo-identification data collected between 2002 and 2008 to determine the prevalence of lacaziosis in coastal dolphins using photographic methodology shown to have high sensitivity and specificity in prior research. The prevalence of skin lesions compatible with lacaziosis estimated from photographic data was 2.1% (6/284), approximately 3 times lower than that described for the estuarine population using similar methods. To exclude potential bias introduced by differences in study duration and survey effort among areas, an 18 mo period when effort was most equal (January 2006 to June 2007) was chosen for statistical comparison. The prevalence of lacaziosis estimated from photographic data was significantly lower (3.8%: n = 6/160) in the Atlantic Ocean compared to the IRL (12.0%: n = 20/167) (risk ratio = 3.19, 95% CI 1.32 to 7.75, p < 0.01 by chi-square analysis). The lower prevalence of lacaziosis in dolphins found in the Atlantic Ocean and the overall lack of movement of dolphins between these habitats suggests that environmental conditions within the estuary may favor viability of L. loboi, and/or that immune compromise in resident estuarine dolphins is a precursor to the disease.

  8. Electromagnetic induction in the oceans and the anomalous behaviour of coastal C-responses for periods up to 20 days

    DEFF Research Database (Denmark)

    Kuvshinov, A.V.; Olsen, Nils; Avdeev, D.B.

    2002-01-01

    [1] Electromagnetic transfer functions at coastal sites are known to be strongly distorted by the conductivity of the seawater. This ocean effect is generally considered to be small for periods greater than a few days. We revise this statement by detailed and systematic model studies in the period....../bathymetry and map of sediment thicknesses. The simulations were performed for spatial resolutions of the surface shell of 5degrees x 5degrees,2degrees x 2degrees and 1degrees x 1degrees, respectively, and for two, continental and oceanic, underlying 1-D conductivity models. The inducing source is described...... that peculiarities in the observed coastal responses in the period range from 1 to 20 days can be explained to a large amount by induction in the oceans. We show that correction for the ocean effect results in responses that are much better interpretable by 1-D conductivity models compared to the uncorrected...

  9. Increase in dimethylsulfide (DMS emissions due to eutrophication of coastal waters offsets their reduction due to ocean acidification.

    Directory of Open Access Journals (Sweden)

    Nathalie eGypens

    2014-04-01

    Full Text Available Available information from manipulative experiments suggested that the emission of dimethylsulfide (DMS would decrease in response to the accumulation of anthropogenic CO2 in the ocean (ocean acidification. However, in coastal environments, the carbonate chemistry of surface waters was also strongly modified by eutrophication and related changes in biological activity (increased primary production and change in phytoplankton dominance during the last 50 years. Here, we tested the hypothesis that DMS emissions in marine coastal environments also strongly responded to eutrophication in addition to ocean acidification at decadal timescales. We used the R-MIRO-BIOGAS model in the eutrophied Southern Bight of the North Sea characterized by intense blooms of Phaeocystis that are high producers of dimethylsulfoniopropionate (DMSP, the precursor of DMS. We showed that, for the period from 1951 to 2007, eutrophication actually led to an increase of DMS emissions much stronger than the response of DMS emissions to ocean acidification.

  10. Spatially Resolving Ocean Color and Sediment Dispersion in River Plumes, Coastal Systems, and Continental Shelf Waters

    Science.gov (United States)

    Aurin, Dirk Alexander; Mannino, Antonio; Franz, Bryan

    2013-01-01

    Satellite remote sensing of ocean color in dynamic coastal, inland, and nearshorewaters is impeded by high variability in optical constituents, demands specialized atmospheric correction, and is limited by instrument sensitivity. To accurately detect dispersion of bio-optical properties, remote sensors require ample signal-to-noise ratio (SNR) to sense small variations in ocean color without saturating over bright pixels, an atmospheric correction that can accommodate significantwater-leaving radiance in the near infrared (NIR), and spatial and temporal resolution that coincides with the scales of variability in the environment. Several current and historic space-borne sensors have met these requirements with success in the open ocean, but are not optimized for highly red-reflective and heterogeneous waters such as those found near river outflows or in the presence of sediment resuspension. Here we apply analytical approaches for determining optimal spatial resolution, dominant spatial scales of variability ("patches"), and proportions of patch variability that can be resolved from four river plumes around the world between 2008 and 2011. An offshore region in the Sargasso Sea is analyzed for comparison. A method is presented for processing Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra imagery including cloud detection, stray lightmasking, faulty detector avoidance, and dynamic aerosol correction using short-wave- and near-infrared wavebands in extremely turbid regions which pose distinct optical and technical challenges. Results showthat a pixel size of approx. 520 mor smaller is generally required to resolve spatial heterogeneity in ocean color and total suspended materials in river plumes. Optimal pixel size increases with distance from shore to approx. 630 m in nearshore regions, approx 750 m on the continental shelf, and approx. 1350 m in the open ocean. Greater than 90% of the optical variability within plume regions is resolvable with

  11. Oceanic primary production 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll

    Science.gov (United States)

    Antoine, David; André, Jean-Michel; Morel, André

    A fast method has been proposed [Antoine and Morel, this issue] to compute the oceanic primary production from the upper ocean chlorophyll-like pigment concentration, as it can be routinely detected by a spaceborne ocean color sensor. This method is applied here to the monthly global maps of the photosynthetic pigments that were derived from the coastal zone color scanner (CZCS) data archive [Feldman et al., 1989]. The photosynthetically active radiation (PAR) field is computed from the astronomical constant and by using an atmospheric model, thereafter combined with averaged cloud information, derived from the International Satellite Cloud Climatology Project (ISCCP). The aim is to assess the seasonal evolution, as well as the spatial distribution of the photosynthetic carbon fixation within the world ocean and for a ``climatological year,'' to the extent that both the chlorophyll information and the cloud coverage statistics actually are averages obtained over several years. The computed global annual production actually ranges between 36.5 and 45.6 Gt C yr-1 according to the assumption which is made (0.8 or 1) about the ratio of active-to-total pigments (recall that chlorophyll and pheopigments are not radiometrically resolved by CZCS). The relative contributions to the global productivity of the various oceans and zonal belts are examined. By considering the hypotheses needed in such computations, the nature of the data used as inputs, and the results of the sensitivity studies, the global numbers have to be cautiously considered. Improving the reliability of the primary production estimates implies (1) new global data sets allowing a higher temporal resolution and a better coverage, (2) progress in the knowledge of physiological responses of phytoplankton and therefore refinements of the time and space dependent parameterizations of these responses.

  12. Predicting the effects of ocean acidification on predator-prey interactions: a conceptual framework based on coastal molluscs.

    Science.gov (United States)

    Kroeker, Kristy J; Sanford, Eric; Jellison, Brittany M; Gaylord, Brian

    2014-06-01

    The influence of environmental change on species interactions will affect population dynamics and community structure in the future, but our current understanding of the outcomes of species interactions in a high-CO2 world is limited. Here, we draw upon emerging experimental research examining the effects of ocean acidification on coastal molluscs to provide hypotheses of the potential impacts of high-CO2 on predator-prey interactions. Coastal molluscs, such as oysters, mussels, and snails, allocate energy among defenses, growth, and reproduction. Ocean acidification increases the energetic costs of physiological processes such as acid-base regulation and calcification. Impacted molluscs can display complex and divergent patterns of energy allocation to defenses and growth that may influence predator-prey interactions; these include changes in shell properties, body size, tissue mass, immune function, or reproductive output. Ocean acidification has also been shown to induce complex changes in chemoreception, behavior, and inducible defenses, including altered cue detection and predator avoidance behaviors. Each of these responses may ultimately alter the susceptibility of coastal molluscs to predation through effects on predator handling time, satiation, and search time. While many of these effects may manifest as increases in per capita predation rates on coastal molluscs, the ultimate outcome of predator-prey interactions will also depend on how ocean acidification affects the specified predators, which also exhibit complex responses to ocean acidification. Changes in predator-prey interactions could have profound and unexplored consequences for the population dynamics of coastal molluscs in a high-CO2 ocean. © 2014 Marine Biological Laboratory.

  13. Smart Phone Application Development and Demonstration in Support of EPA HICO Imagery for Coastal and Ocean Protection

    Science.gov (United States)

    High resolution spectral data from the ISS Hyperspectral Imager of the Coastal Ocean (HICO) system has been used to map the spatial distribution of selected water quality indicators for four Florida Gulf Coast estuaries from 2010-2012. HICO is the first hyperspectral imager speci...

  14. Smart Phone Application Development and Demonstration in Support of EPA HICO Imagery for Coastal and Ocean Protection

    Science.gov (United States)

    High resolution spectral data from the ISS Hyperspectral Imager of the Coastal Ocean (HICO) system has been used to map the spatial distribution of selected water quality indicators for four Florida Gulf Coast estuaries from 2010-2012. HICO is the first hyperspectral imager speci...

  15. Pigment specific in vivo light absorption of phytoplankton from estuarine, coastal and oceanic waters

    DEFF Research Database (Denmark)

    Stæhr, A.; Markager, S.; Sand-Jensen, K.

    2004-01-01

    decline in a* ph from oceanic, over coastal, to estuarine waters was, however, strongly correlated with an increase in cell size and intracellular chlorophyll a (chl a) content of the phytoplankton, and a reduction of photosynthetic carotenoids relative to chl a. Variations in photoprotective carotenoids...... relative to chl a seemed to be of minor importance for the variability in a* ph. In addition, significant differences in phytoplankton composition and abundance were observed, primarily driven by an increase in the abundance of diatoms, which furthermore correlated with increasing pigment packaging......, particularly within the diatoms. These changes eventually decrease a* ph through a rise in the package effect and a lower abundance of photosynthetic carotenoids relative to chl a....

  16. Morphological characteristics and sand volumes of different coastal dune types in Essaouira Province, Atlantic Morocco

    Science.gov (United States)

    Flor-Blanco, Germán; Flor, Germán; Lharti, Saadia; Pando, Luis

    2013-04-01

    Altogether three coastal dune fields, one located north and two south of the city of Essaouira, Atlantic Morocco, have been investigated to establish the distribution and overall sand volumes of various dune types. The purpose of the study was to characterize and classify the aeolian landforms of the coastal dune belt, to estimate their sand volumes and to assess the effectiveness of coastal dune stabilization measures. The northern dune field is 9 km long and lined by a wide artificial foredune complex fixed by vegetation, fences and branches forming a rectangular grid. Active and ephemeral aklé dunes border the inner backshore, while some intrusive dunes have crossed the foredune belt and are migrating farther inland. The total sand volume of the northern dune belt amounts 13,910,255 m3. The central coastal sector comprises a much smaller dune field located just south of the city. It is only 1.2 km long and, with the exception of intrusive dunes, shows all other dune types. The overall sand volume of the central dune field amounts to about 172,463 m3. The southern dune field is characterized by a narrower foredune belt and overall lower dunes that, in addition, become progressively smaller towards the south. In this sector, embryonic dunes (coppice, shadow dunes), tongue-like and tabular dunes, and sand sheets intrude from the beach, the profile of which has a stepped appearance controlled by irregular outcrops of old aeolianite and beach rock. The total volume of the southern dune field amounts 1,446,389 m3. For the whole study area, i.e. for all three dune fields combined, a sand volume of about 15,529,389 m3 has been estimated. The sand of the dune fields is derived from coastal erosion and especially the Tensift River, which enters the sea at Souira Qedima some 70 km north of Essaouira. After entering the sea, the sand is transported southwards by littoral drift driven by the mainly north-westerly swell climate and the Trade Winds blowing from the NNE. This

  17. Development of an ensemble prediction system for ocean surface waves in a coastal area

    Science.gov (United States)

    Behrens, Arno

    2015-04-01

    An ensemble prediction system for ocean surface waves has been developed and applied on a local scale to the German Bight and the western Baltic Sea. U10-wind fields generated by the COSMO-DE-EPS upstream forecast chain of the German Met Service (DWD: Deutscher Wetterdienst) have been used as the driving force for the third-generation spectral wave model WAM. The atmospheric chain includes four different global models that provide boundary values for four regional COSMO-EU realisations. Each of those drive five COSMO-DE members, respectively, with different sets of physical parameterisations, so that finally 20 members are available to run 20 corresponding wave ensemble members of the coastal wave model CWAM (Coastal WAve Model) for the German Bight and the western Baltic Sea. It is the first time that in an ensemble prediction system for ocean waves, an atmospheric model of such a fine spatial resolution of 2.8 km has been combined with a wave model running on a model grid with a mesh size of 900 m only. Test runs with the wave ensemble prediction system have been executed for two entire months (April 2013 and June 2014) and for an 8-day storm case (Xaver) in December 2013 in order to check whether such a system could be a reasonable step to improve the future operational wave forecasts of the DWD. The results computed by the different wave model members agree fairly well with available buoy data. The differences between the results for the integrated wave parameters of the individual members are small only, but more pronounced in extreme storm situations. Finally, the statistical analysis of the comparisons with measurements show without exception slightly improved values for the ensemble mean of the wave ensemble members compared with the usual deterministic routine control run.

  18. The Gulf of Mexico Coastal Ocean Observing System: A Decade of Data Aggregation and Services.

    Science.gov (United States)

    Howard, M.; Gayanilo, F.; Kobara, S.; Baum, S. K.; Currier, R. D.; Stoessel, M. M.

    2016-02-01

    The Gulf of Mexico Coastal Ocean Observing System Regional Association (GCOOS-RA) celebrated its 10-year anniversary in 2015. GCOOS-RA is one of 11 RAs organized under the NOAA-led U.S. Integrated Ocean Observing System (IOOS) Program Office to aggregate regional data and make these data publicly-available in preferred forms and formats via standards-based web services. Initial development of GCOOS focused on building elements of the IOOS Data Management and Communications Plan which is a framework for end-to-end interoperability. These elements included: data discovery, catalog, metadata, online-browse, data access and transport. Initial data types aggregated included near real-time physical oceanographic, marine meteorological and satellite data. Our focus in the middle of the past decade was on the production of basic products such as maps of current oceanographic conditions and quasi-static datasets such as bathymetry and climatologies. In the latter part of the decade we incorporated historical physical oceanographic datasets and historical coastal and offshore water quality data into our holdings and added our first biological dataset. We also developed web environments and products to support Citizen Scientists and stakeholder groups such as recreational boaters. Current efforts are directed towards applying data quality assurance (testing and flagging) to non-federal data, data archiving at national repositories, serving and visualizing numerical model output, providing data services for glider operators, and supporting marine biodiversity observing networks. GCOOS Data Management works closely with the Gulf of Mexico Research Initiative Information and Data Cooperative and various groups involved with Gulf Restoration. GCOOS-RA has influenced attitudes and behaviors associated with good data stewardship and data management practices across the Gulf and will to continue to do so into the next decade.

  19. Influence of salinity on bacterioplankton communities from the Brazilian rain forest to the coastal Atlantic Ocean.

    Directory of Open Access Journals (Sweden)

    Cynthia B Silveira

    Full Text Available BACKGROUND: Planktonic bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems, however, the taxa that make up these communities are poorly known. The aim of this study was to investigate bacterial communities in aquatic ecosystems at Ilha Grande, Rio de Janeiro, Brazil, a preserved insular environment of the Atlantic rain forest and how they correlate with a salinity gradient going from terrestrial aquatic habitats to the coastal Atlantic Ocean. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed chemical and microbiological parameters of water samples and constructed 16S rRNA gene libraries of free living bacteria obtained at three marine (two coastal and one offshore and three freshwater (water spring, river, and mangrove environments. A total of 836 sequences were analyzed by MOTHUR, yielding 269 freshwater and 219 marine operational taxonomic units (OTUs grouped at 97% stringency. Richness and diversity indexes indicated that freshwater environments were the most diverse, especially the water spring. The main bacterial group in freshwater environments was Betaproteobacteria (43.5%, whereas Cyanobacteria (30.5%, Alphaproteobacteria (25.5%, and Gammaproteobacteria (26.3% dominated the marine ones. Venn diagram showed no overlap between marine and freshwater OTUs at 97% stringency. LIBSHUFF statistics and PCA analysis revealed marked differences between the freshwater and marine libraries suggesting the importance of salinity as a driver of community composition in this habitat. The phylogenetic analysis of marine and freshwater libraries showed that the differences in community composition are consistent. CONCLUSIONS/SIGNIFICANCE: Our data supports the notion that a divergent evolutionary scenario is driving community composition in the studied habitats. This work also improves the comprehension of microbial community dynamics in tropical waters and how they are structured in relation to physicochemical

  20. Ocean acidification may aggravate social-ecological trade-offs in coastal fisheries.

    Directory of Open Access Journals (Sweden)

    Rudi Voss

    Full Text Available Ocean Acidification (OA will influence marine ecosystems by changing species abundance and composition. Major effects are described for calcifying organisms, which are significantly impacted by decreasing pH values. Direct effects on commercially important fish are less well studied. The early life stages of fish populations often lack internal regulatory mechanisms to withstand the effects of abnormal pH. Negative effects can be expected on growth, survival, and recruitment success. Here we study Norwegian coastal cod, one of the few stocks where such a negative effect was experimentally quantified, and develop a framework for coupling experimental data on OA effects to ecological-economic fisheries models. In this paper, we scale the observed physiological responses to the population level by using the experimentally determined mortality rates as part of the stock-recruitment relationship. We then use an ecological-economic optimization model, to explore the potential effect of rising CO2 concentration on ecological (stock size, economic (profits, consumer-related (harvest and social (employment indicators, with scenarios ranging from present day conditions up to extreme acidification. Under the assumptions of our model, yields and profits could largely be maintained under moderate OA by adapting future fishing mortality (and related effort to changes owing to altered pH. This adaptation comes at the costs of reduced stock size and employment, however. Explicitly visualizing these ecological, economic and social tradeoffs will help in defining realistic future objectives. Our results can be generalized to any stressor (or stressor combination, which is decreasing recruitment success. The main findings of an aggravation of trade-offs will remain valid. This seems to be of special relevance for coastal stocks with limited options for migration to avoid unfavorable future conditions and subsequently for coastal fisheries, which are often small

  1. Ocean acidification may aggravate social-ecological trade-offs in coastal fisheries.

    Science.gov (United States)

    Voss, Rudi; Quaas, Martin F; Schmidt, Jörn O; Kapaun, Ute

    2015-01-01

    Ocean Acidification (OA) will influence marine ecosystems by changing species abundance and composition. Major effects are described for calcifying organisms, which are significantly impacted by decreasing pH values. Direct effects on commercially important fish are less well studied. The early life stages of fish populations often lack internal regulatory mechanisms to withstand the effects of abnormal pH. Negative effects can be expected on growth, survival, and recruitment success. Here we study Norwegian coastal cod, one of the few stocks where such a negative effect was experimentally quantified, and develop a framework for coupling experimental data on OA effects to ecological-economic fisheries models. In this paper, we scale the observed physiological responses to the population level by using the experimentally determined mortality rates as part of the stock-recruitment relationship. We then use an ecological-economic optimization model, to explore the potential effect of rising CO2 concentration on ecological (stock size), economic (profits), consumer-related (harvest) and social (employment) indicators, with scenarios ranging from present day conditions up to extreme acidification. Under the assumptions of our model, yields and profits could largely be maintained under moderate OA by adapting future fishing mortality (and related effort) to changes owing to altered pH. This adaptation comes at the costs of reduced stock size and employment, however. Explicitly visualizing these ecological, economic and social tradeoffs will help in defining realistic future objectives. Our results can be generalized to any stressor (or stressor combination), which is decreasing recruitment success. The main findings of an aggravation of trade-offs will remain valid. This seems to be of special relevance for coastal stocks with limited options for migration to avoid unfavorable future conditions and subsequently for coastal fisheries, which are often small scale local

  2. Nitrogen-fixing bacteria associated with copepods in coastal waters of the North Atlantic Ocean.

    Science.gov (United States)

    Scavotto, Rosemary E; Dziallas, Claudia; Bentzon-Tilia, Mikkel; Riemann, Lasse; Moisander, Pia H

    2015-10-01

    The community composition of N2 -fixing microorganisms (diazotrophs) was investigated in copepods (primarily Acartia spp.) in parallel to that of seawater in coastal waters off Denmark (Øresund) and New England, USA. The unicellular cyanobacterial diazotroph UCYN-A was detected from seawater and full-gut copepods, suggesting that the new N contributed by UCYN-A is directly transferred to higher trophic levels in these waters. Deltaproteobacterial and Cluster 3 nifH sequences were detected in > 1 μm seawater particles and full-gut copepods, suggesting that they associate with copepods primarily via feeding. The dominant communities in starved copepods were Vibrio spp. and related Gammaproteobacteria, suggesting they represent the most permanent diazotroph associations in the copepods. N2 fixation rates were up to 3.02 pmol N copepod(-1) day(-1). Although at a typical copepod density in estuarine waters, these volumetric rates are low; considering the small size of a copepod, these mesozooplanktonic crustaceans may serve as hotspots of N2 fixation, at 12.9-71.9 μmol N dm(-3) copepod biomass day(-1). Taken together, diazotroph associations range from more permanent attachments to copepod feeding on some groups. Similar diazotroph groups detected on the eastern and western Atlantic Ocean suggest that these associations are a general phenomenon and play a role in the coastal N cycles. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. High tolerance of protozooplankton to ocean acidification in an Arctic coastal plankton community

    Directory of Open Access Journals (Sweden)

    N. Aberle

    2012-09-01

    Full Text Available Impacts of ocean acidification (OA on marine biota have been observed in a wide range of marine systems. We used a mesocosm approach to study the response of a high Arctic coastal protozooplankton (PZP in the following community during the post-bloom period in the Kongsfjorden (Svalbard to direct and indirect effects of high pCO2/low pH. We found almost no direct effects of OA on PZP composition and diversity. Both, the relative shares of ciliates and heterotrophic dinoflagellates as well as the taxonomic composition of protozoans remained unaffected by changes in pCO2/pH. The different pCO2 treatments did not have any effect on food availability and phytoplankton composition and thus no indirect effects e.g. on the total carrying capacity and phenology of PZP could be observed. Our data points at a high tolerance of this Arctic PZP community to changes in pCO2/pH. Future studies on the impact of OA on plankton communities should include PZP in order to test whether the observed low sensitivity of protozoans to OA is typical for coastal communities where changes in seawater pH occur frequently.

  4. Stable isotope composition and volume of Early Archaean oceans

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Rosing, Minik Thorleif; Bird, Dennis K.

    Oxygen and hydrogen isotope compositions of seawater are controlled by volatile fluxes between mantle, lithospheric (oceanic and continental crust) and atmospheric reservoirs. Throughout geologic time oxygen was likely conserved within these Earth system reservoirs, but hydrogen was not, as it can...... escape to space [1]. Hydrogen isotope ratios of serpentinites from the ~3.8Ga Isua Supracrustal Belt in West Greenland are between -53 and -99‰; the highest values are in antigorite ± lizardite serpentinites from a low-strain lithologic domain where hydrothermal reaction of Archaean seawater with oceanic...... of continents present at that time), and the mass of Early Archaean oceans to ~109 to 126% of present day oceans. Oxygen isotope analyses from these Isua serpentinites (δ18O = +0.1 to 5.6‰ relative to VSMOW) indicate that early Archaean δ18OSEAWATER similar to modern oceans. Our observations suggest...

  5. Nested high resolution models for the coastal areas of the North Indian Ocean

    Science.gov (United States)

    Wobus, Fred; Shapiro, Georgy

    2017-04-01

    Oceanographic processes at coastal scales require much higher horizontal resolution from both ocean models and observations as compared to deep water oceanography. Aside from a few exceptions such as land-locked seas, the hydrodynamics of coastal shallow waters is strongly influenced by the tides, which in turn control the mixing, formation of temperature fronts and other phenomena. The numerical modelling of the coastal domains requires good knowledge of the lateral boundary conditions. The application of lateral boundary conditions to ocean models is a notoriously tricky task, but can only be avoided with global ocean models. Smaller scale regional ocean models are typically nested within global models, and even smaller-scale coastal models may be nested within regional models, creating a nesting chain. However a direct nesting of a very high resolution coastal model into a coarse resolution global model results in degrading of the accuracy of the outputs due to the large difference between the model resolutions. This is why a nesting chain has to be applied, so that every increase in resolution is kept within a reasonable minimum (typically by a factor of 3 to 5 at each step). Global models are traditionally non-tidal, so at some stage of the nesting chain the tides need to be introduced. This is typically done by calculating the tidal constituents from a dedicated tidal model (e.g. TPXO) for all boundary points of a nested model. The tidal elevation at each boundary location can then be calculated from the harmonics at every model time step and the added to the parent model non-tidal SSH. This combination of harmonics-derived tidal SSH and non-tidal parent model SSH is typically applied to the nested domain using the Flather condition, together with the baroclinic velocities from the parent model. The harmonics-derived SSH cannot be added to an SSH signal that is already tidal, so the parent model SSH has to be either detided or taken from a non-tidal model

  6. Atmospheric correction of ocean color imagery over turbid coastal waters using active and passive remote sensing

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiaoling; ZHANG Tinglu; GONG Wei; CHEN Liqiong; LU Jianzhong; ZHAO Xi; ZHANG Wei; YU Zhifeng

    2009-01-01

    This paper demonstrates an atmospheric correction method to process MODIS/Aqua (Moderate-resolution Imaging Spectroradiometer) ocean color imagery over turbid coastal waters with the aid of concurrent CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization) aerosol data, assuming that there exists "nonturbid" water in the study area where MODIS aerosol optical properties can be retrieved accurately. Aerosol properties from CALIOP measurements were obtained and related to those from MODIS. This relationship, combined with CALIOP aerosol data, was extended to turbid water to derive MODIS aerosol properties, where atmospheric correction using MODIS data alone often fails. By combining MODIS and CALIOP data, aerosol signals were separated from the total signals at the satellite level, and water-leaving radiances in turbid waters were subsequently derived. This method was tested on several MODIS/Aqua ocean color images over South China turbid waters. Comparison with field data shows that this method was effective in reducing the errors in the retrieved water-leaving radiance values to some extent. In the Zhujiang (Pearl) River Estuary, this method did not overestimate the aerosol effects as severely, and provided far fewer negative water-leaving radiance values than the NASA (National Aeronautics and Space Administration) default methods that used MODIS data alone.

  7. A climate-based multivariate extreme emulator of met-ocean-hydrological events for coastal flooding

    Science.gov (United States)

    Camus, Paula; Rueda, Ana; Mendez, Fernando J.; Tomas, Antonio; Del Jesus, Manuel; Losada, Iñigo J.

    2015-04-01

    Atmosphere-ocean general circulation models (AOGCMs) are useful to analyze large-scale climate variability (long-term historical periods, future climate projections). However, applications such as coastal flood modeling require climate information at finer scale. Besides, flooding events depend on multiple climate conditions: waves, surge levels from the open-ocean and river discharge caused by precipitation. Therefore, a multivariate statistical downscaling approach is adopted to reproduce relationships between variables and due to its low computational cost. The proposed method can be considered as a hybrid approach which combines a probabilistic weather type downscaling model with a stochastic weather generator component. Predictand distributions are reproduced modeling the relationship with AOGCM predictors based on a physical division in weather types (Camus et al., 2012). The multivariate dependence structure of the predictand (extreme events) is introduced linking the independent marginal distributions of the variables by a probabilistic copula regression (Ben Ayala et al., 2014). This hybrid approach is applied for the downscaling of AOGCM data to daily precipitation and maximum significant wave height and storm-surge in different locations along the Spanish coast. Reanalysis data is used to assess the proposed method. A commonly predictor for the three variables involved is classified using a regression-guided clustering algorithm. The most appropriate statistical model (general extreme value distribution, pareto distribution) for daily conditions is fitted. Stochastic simulation of the present climate is performed obtaining the set of hydraulic boundary conditions needed for high resolution coastal flood modeling. References: Camus, P., Menéndez, M., Méndez, F.J., Izaguirre, C., Espejo, A., Cánovas, V., Pérez, J., Rueda, A., Losada, I.J., Medina, R. (2014b). A weather-type statistical downscaling framework for ocean wave climate. Journal of

  8. Exopolymer Particles in the Sea Surface Microlayer (SML) of the Coastal Pacific Ocean

    Science.gov (United States)

    Thornton, D. C.; Brooks, S. D.; Chen, J.

    2015-12-01

    Exchanges of matter and energy between the ocean and atmosphere occur through the sea surface microlayer (SML). The SML is biogeochemically distinct from the underlying water and overlying atmosphere in terms of physical environment, chemical composition, and biological community. We sampled the Pacific Ocean in coastal waters off the state of Oregon (United States) along a seaward transect out from the mouth of the Columbia River (3 stations) and in deeper waters beyond the shelf break (2 stations) in July 2011. SML samples were collected using the glass plate method and the underlying water was sampled using a peristaltic pump from 1, 5 and 10 m depth. The samples were analyzed for carbohydrates and exopolymer particles. Carbohydrates were significantly enriched in the SML compared with the underlying water. The concentration of polysaccharides was higher than monosaccharides at all depths. We enumerated two classes of exopolymer particles: transparent exopolymer particles (TEP) and Coomassie staining particles (CSP). TEP are composed of acid polysaccharides and CSP are formed from proteins. While TEP have been widely studied, CSP are generally overlooked, despite the biogeochemical significance of proteins. Our data showed that TEP and CSP concentrations were enriched in the SML compared with the underlying waters in most cases. The ubiquitous presence of empty diatom frustules in the samples indicates that the collapse of a diatom bloom was the source of the exopolymers. Further, we conducted image analysis of particle size and abundance, which indicated that TEP and CSP are not the same particles and form distinct populations in the ocean. Our data confirm recent observations indicating that TEP are an important component of the SML. In addition, these data show that CSP are also important components of the SML.

  9. The information content of high-frequency environmental monitoring data signals pollution events in the coastal ocean.

    Science.gov (United States)

    Jeong, Youngsul; Sanders, Brett F; Grant, Stanley B

    2006-10-15

    There are an increasing number of coastal ocean observing systems that deploy new technology for environmental sensing and stream these data in near-real-time to end-users (e.g., scientists and coastal managers) via the worldwide web. The temporal resolution, spatial coverage, and accessibility of these data open up new opportunities for better understanding and managing the coastal ocean, but they also present enormous challenges relative to data processing and data interpretation, particularly in cases where these data are to inform rapid management decision making. Here we demonstrate that changes in surf zone water quality at a popular beach in southern California are signaled by changes in the Fisher Information and Shannon Entropy of high frequency (1/4 min(-1)) measurements of salinity and temperature in the surf zone. These results support the hypothesis that the information content of environmental signals, such as salinity and temperature, can be used to identify changes in the water quality of the coastal ocean. More generally, the approach described here-of using information theory indices calculated from monitoring data as real-time indicators of environmental change-is quite general, and may therefore be applicable to other situations where rapid management decisions are based on high-frequency measurements of environmental parameters.

  10. Isotope composition and volume of Earth's early oceans.

    Science.gov (United States)

    Pope, Emily C; Bird, Dennis K; Rosing, Minik T

    2012-03-20

    Oxygen and hydrogen isotope compositions of Earth's seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs, but hydrogen's was not, as it can escape to space. Isotopic properties of serpentine from the approximately 3.8 Ga Isua Supracrustal Belt in West Greenland are used to characterize hydrogen and oxygen isotope compositions of ancient seawater. Archaean oceans were depleted in deuterium [expressed as δD relative to Vienna standard mean ocean water (VSMOW)] by at most 25 ± 5‰, but oxygen isotope ratios were comparable to modern oceans. Mass balance of the global hydrogen budget constrains the contribution of continental growth and planetary hydrogen loss to the secular evolution of hydrogen isotope ratios in Earth's oceans. Our calculations predict that the oceans of early Earth were up to 26% more voluminous, and atmospheric CH(4) and CO(2) concentrations determined from limits on hydrogen escape to space are consistent with clement conditions on Archaean Earth.

  11. OCEAN-BOTTOM BROADBAND SEISMIC STATIONS AS TOOLS TO IDENTIFY AND MONITOR SEISMIC HAZARD IN COASTAL ZONES (Invited)

    Science.gov (United States)

    Dolenc, D.; Romanowicz, B. A.

    2009-12-01

    Ocean-bottom broadband seismic stations (OBSs) are installed at the interface of the solid earth and the ocean. As such, they are sensitive to the processes that originate in the solid earth (e.g., earthquakes), ocean (e.g., tsunamis), and even atmosphere (e.g., cyclones). Observations of ground motions at the OBSs can therefore be used to study and monitor processes that contribute to hazards in the coastal zones. These processes include earthquakes, underwater landslides, underwater volcanoes, and tsunamis. Numerous offshore faults are located too far from the shore for their background seismicity to be studied by land seismic stations alone, yet they are capable of generating large earthquakes that can threaten coastal communities. OBSs can record offshore seismicity that would be missed by relying only on the land stations. OBS data can also significantly improve locations and source mechanism determination for stronger offshore events that are observed on the land stations as they can significantly improve azimuthal coverage. As such, OBSs are essential for identifying seismic hazard from offshore faults. In addition, nearshore OBSs can improve studies of earthquakes on the land faults, in particular when the faults are located close to the ocean, resulting in limited azimuthal coverage provided by land stations alone. OBSs can also provide information about the offshore subsurface velocity structure, which can significantly affect the amount of shaking in the coastal regions. Velocity structure can be determined by compliance analysis that takes advantage of the seafloor deformation due to infragravity waves (long-period ocean surface waves). Reliable offshore velocity models are needed for modeling seismic wave propagation and for subsequent modeling of the amount of shaking expected in the coastal regions due to strong local and regional offshore earthquakes. We will present examples from the permanent ocean-bottom broadband seismic station MOBB located at

  12. Coastal monitoring of the May 2005 dredge disposal offshore of Ocean Beach, San Francisco, Calif.

    Science.gov (United States)

    Barnard, Patrick L.; Hanes, Daniel M.

    2006-01-01

    Ocean Beach, California, contains an erosion hot spot in the shadow of the San Francisco ebb tidal delta south of Sloat Boulevard that threatens valuable public infrastructure as well as the safe recreational use of the beach. In an effort to reduce the erosion at this location and avoid hazardous navigation conditions at the current disposal site (SF-8), a new plan for the management of sediment dredged annually from the main shipping channel at the mouth of Francisco Bay was implemented in May 2005 by the United States Army Corps of Engineers, San Francisco District (COE). The objective for COE was to perform a test dredge disposal of ~230,000 m3 (300,000 yd3) of sand just offshore of the erosion hot spot, in depths between approximately 9 and 14 m. This disposal site was chosen because it is in a location where the strong tidal currents associated with the mouth of San Francisco Bay and waves can potentially feed sediment toward the littoral zone in the reach of the beach that is experiencing critical erosion. The onshore migration of sediment from the target disposal location might feed the primary longshore bar or the nearshore zone, and provide a buffer to erosion that peaks during winter months when large waves impact the region. The U.S. Geological Survey (USGS), in collaboration with the Sea Floor Mapping Lab (SFML) of California State University, Monterey Bay, monitored the initial bathymetric evolution of the test dredge disposal site and the adjacent coastal region from May 2005 to November 2005. This paper reports on this monitoring effort and assesses the short-term coastal response.

  13. A mass-conserving advection scheme for offline simulation of scalar transport in coastal ocean models

    Science.gov (United States)

    Gillibrand, P. A.; Herzfeld, M.

    2016-05-01

    We present a flux-form semi-Lagrangian (FFSL) advection scheme designed for offline scalar transport simulation with coastal ocean models using curvilinear horizontal coordinates. The scheme conserves mass, overcoming problems of mass conservation typically experienced with offline transport models, and permits long time steps (relative to the Courant number) to be used by the offline model. These attributes make the method attractive for offline simulation of tracers in biogeochemical or sediment transport models using archived flow fields from hydrodynamic models. We describe the FFSL scheme, and test it on two idealised domains and one real domain, the Great Barrier Reef in Australia. For comparison, we also include simulations using a traditional semi-Lagrangian advection scheme for the offline simulations. We compare tracer distributions predicted by the offline FFSL transport scheme with those predicted by the original hydrodynamic model, assess the conservation of mass in all cases and contrast the computational efficiency of the schemes. We find that the FFSL scheme produced very good agreement with the distributions of tracer predicted by the hydrodynamic model, and conserved mass with an error of a fraction of one percent. In terms of computational speed, the FFSL scheme was comparable with the semi-Lagrangian method and an order of magnitude faster than the full hydrodynamic model, even when the latter ran in parallel on multiple cores. The FFSL scheme presented here therefore offers a viable mass-conserving and computationally-efficient alternative to traditional semi-Lagrangian schemes for offline scalar transport simulation in coastal models.

  14. Stable isotope composition and volume of Early Archaean oceans

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Rosing, Minik Thorleif; Bird, Dennis K.

    Oxygen and hydrogen isotope compositions of seawater are controlled by volatile fluxes between mantle, lithospheric (oceanic and continental crust) and atmospheric reservoirs. Throughout geologic time oxygen was likely conserved within these Earth system reservoirs, but hydrogen was not, as it can...... escape to space [1]. Hydrogen isotope ratios of serpentinites from the ~3.8Ga Isua Supracrustal Belt in West Greenland are between -53 and -99‰; the highest values are in antigorite ± lizardite serpentinites from a low-strain lithologic domain where hydrothermal reaction of Archaean seawater with oceanic...

  15. Neural Network Technique for Continous Transition from Ocean to Coastal Retrackers

    Science.gov (United States)

    Hazrina Idris, Nurul; Deng, Xiaoli; Hawani Idris, Nurul

    2017-04-01

    This paper presents the development of neural network for continuous transition of altimeter sea surface heights when switching from ocean to coastal waveform retrackers. In attempting to produce precise coastal sea level anomaly (SLA) via retracking waveforms, issue arose when employing multiple retracking algorithms (i.e. MLE-4, sub-waveform and threshold). The existence of relative offset between those retrackers creates 'jump' in the retracked SLA profiles. In this study, the offset between retrackers is minimized using multi-layer feed forward neural network technique. The technique reduces the offset values by modelling the complicated functions of those retracked SLAs. The technique is tested over the region of the Great Barrier Reef (GBR), Australia. The validation with Townsville and Bundaberg tide gauges shows that the threshold retracker achieves temporal correlations (r) of 0.84 and 0.75, respectively, and root mean square (RMS) error is 16 cm for both stations, indicating that the retracker produces more accurate SLAs than those of two retrackers. Meanwhile, values of r (RMS error) for MLE-4 is only 0.79 (18 cm) and 0.71 (16 cm), respectively, and for sub-waveform is 0.82 (16 cm) and 0.67 (16 cm), respectively. Therefore, with the neural network, retracked SLAs from MLE-4 and sub-waveform are aligned to those of the threshold retracker. The performance of neural network is compared with the normal procedure of offset removal, which is based on the mean of SLA differences (mean method). The performance is assessed by computing the standard deviation of difference (STD) between the SLAs above a referenced ellipsoid and the geoidal height, and the improvement of percentage (IMP). The results indicate that the neural network provides improvement in SLA precision in all 12 cases, while the mean method provides improvement in 10 out of 12 cases and deterioration is seen in two cases. In terms of STD and IMP, neural network reduces the offset better than

  16. Modeling the underwater light field fluctuations in coastal oceanic waters: Validation with experimental data

    Science.gov (United States)

    Sundarabalan, Balasubramanian; Shanmugam, Palanisamy; Ahn, Yu-Hwan

    2016-03-01

    Modeling of the wave-induced underwater light fluctuations at near-surface depths in coastal oceanic waters is challenging because of the surface roughness and strong anisotropic effects of the light field. In the present work, a simple and computationally efficient radiative transfer model is used for the wind-driven sea surface for simulating underwater light fields such as downwelling irradiance ( E d ), upwelling irradiance ( E u ), and upwelling radiance ( L u ) in a spatial domain. It is an extension of our previous work that essentially combines the air-sea interface of the wind-driven sea surface with transmittance and reflectance along with the diffuse and direct components of the homogenous and inhomogeneous water column. The present model simulates underwater light fields for any possible values of absorption and backscattering coefficients. To assess the performance of the model, the E d , E u , and L u profiles predicted by the model are compared with experimental data from relatively clear and turbid coastal waters. Statistical results show significantly low mean relative differences regardless of the wavelength. Comparison of the simulated and in-situ time series data measured over rough sea surfaces demonstrates that model-observation agreement is good for the present model. The Hydrolight model when implemented with the modified bottom reflectance and phase function provides significantly better results than the original Hydrolight model without consideration of the bottom slope and vertically varying phase function. However, these results are non-spatial and have errors fluctuating at different wavelengths. To further demonstrate the efficiency of the present model, spatial distribution patterns of the underwater light fields are simulated based on the measured data from a coastal station for different solar zenith angles (under sunny condition). Simulated wave-induced fluctuations of the underwater lights fields show a good consistency with in

  17. Combined impact of ocean acidification and corrosive waters in a river-influenced coastal upwelling area off Central Chile

    Science.gov (United States)

    Vargas, C.; De La Hoz, M.; San Martin, V.; Contreras, P.; Navarro, J. M.; Lagos, N. A.; Lardies, M.; Manríquez, P. H.; Torres, R.

    2012-12-01

    Elevated CO2 in the atmosphere promotes a cascade of physical and chemical changes affecting all levels of biological organization, and the evidence from local to global scales has shown that such anthropogenic climate change has triggered significant responses in the Earth's biota. The increased concentration of CO2 is likely to cause a corresponding increase in ocean acidification (OA). In addition, economically valuable shellfish species predominantly inhabit coastal regions both in natural stocks and/or in managed stocks and farming areas. Many coastal ecosystems may experience seawater pCO2 levels significantly higher than expected from equilibrium with the atmosphere, which in this case are strongly linked to biological processes and/or the impact of two important processes; river plumes and coastal upwelling events, which indeed interplay in a very dynamic way on continental shelves, resulting in both source or sink of CO2 to the atmosphere. Coastal ecosystems receive persistent acid inputs as a result of freshwater discharges from river basins into the coastal domain. In this context, since shellfish resources and shellfish aquaculture activities predominantly occur in nearshore areas, it is expected that shellfish species inhabiting river-influenced benthic ecosystems will be exposed persistently to acidic conditions that are suboptimal for its development. In a wider ecological context, little is also known about the potential impacts of acid waters on the performance of larvae and juveniles of almost all the marine species inhabiting this benthic ecosystem in Eastern Southern Pacific Ocean. We present here the main results of a research study aimed to investigate the environmental conditions to which economically valuable calcifiers shellfish species are exposed in a river-influenced continental shelf off Central Chile. By using isotopic measurements in the dissolved inorganic carbon (DIC) pool (d13C-DIC) we showed the effect of the remineralization of

  18. Atmospheric trace elements in aerosols observed over the Southern Ocean and coastal East Antarctica

    Directory of Open Access Journals (Sweden)

    Guojie Xu

    2014-11-01

    Full Text Available Atmospheric aerosol samples were collected over the Southern Ocean (SO and coastal East Antarctica (CEA during the austral summer of 2010/11. Samples were analysed for trace elements, including Na, Mg, K, Al, Fe, Mn, Ni, Cd and Se, by inductively coupled plasma mass spectrometry (ICP-MS. The mean atmospheric concentrations over the SO were 1100 ng m−3 for Na, 190 ng m−3 for Mg, 150 ng m−3 for Al, 14 ng m−3 for Fe, 0.46 ng m−3 for Mn and 0.25 ng m−3 for Se. Over CEA, the mean concentrations were 990 ng m−3 for Na, 180 ng m−3 for Mg, 190 ng m−3 for Al, 26 ng m−3 for Fe, 0.70 ng m−3 for Mn and 0.29 ng m−3 for Se. Particle size distributions, enrichment factors (EFs and correlation analysis indicate that Na, Mg and K mainly came from the marine source, while Al, Fe and Mn were mainly from the crustal source, which also contributed to Mg and K over CEA. High EFs were associated with Ni, Cd and Se, suggesting likely contributions from mixed sources from the Antarctic continent, long-range transport, marine biogenic emissions and anthropogenic emissions. Sea-salt elements (Na, Mg, K were mainly accumulated in the coarse mode, and crustal elements (Al, Fe, Mn presented a bimodal size distribution pattern. Bioactive elements (Fe, Ni, Cd were enriched in the fine mode, especially with samples collected over the SO, possibly affecting biogeochemical cycles in this oceanic region.

  19. Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean

    Science.gov (United States)

    Wang, Zhaohui Aleck; Kroeger, Kevin D.; Ganju, Neil K.; Gonneea, Meagan; Chu, Sophie N.

    2016-01-01

    Dynamic tidal export of dissolved inorganic carbon (DIC) to the coastal ocean from highly productive intertidal marshes and its effects on seawater carbonate chemistry are thoroughly evaluated. The study uses a comprehensive approach by combining tidal water sampling of CO2parameters across seasons, continuous in situ measurements of biogeochemically-relevant parameters and water fluxes, with high-resolution modeling in an intertidal salt marsh of the U.S. northeast region. Salt marshes can acidify and alkalize tidal water by injecting CO2 (DIC) and total alkalinity (TA). DIC and TA generation may also be decoupled due to differential effects of marsh aerobic and anaerobic respiration on DIC and TA. As marsh DIC is added to tidal water, the buffering capacity first decreases to a minimum and then increases quickly. Large additions of marsh DIC can result in higher buffering capacity in ebbing tide than incoming tide. Alkalization of tidal water, which mostly occurs in the summer due to anaerobic respiration, can further modify buffering capacity. Marsh exports of DIC and alkalinity may have complex implications for the future, more acidified ocean. Marsh DIC export exhibits high variability over tidal and seasonal cycles, which is modulated by both marsh DIC generation and by water fluxes. The marsh DIC export of 414 g C m−2 yr−1, based on high-resolution measurements and modeling, is more than twice the previous estimates. It is a major term in the marsh carbon budget and translates to one of the largest carbon fluxes along the U.S. East Coast.

  20. Assessment of pH variability at a coastal CO 2 vent for ocean acidification studies

    Science.gov (United States)

    Kerrison, Philip; Hall-Spencer, Jason M.; Suggett, David J.; Hepburn, Leanne J.; Steinke, Michael

    2011-08-01

    Marine environments with naturally high CO 2 concentrations have become important research sites for studying the impacts of future ocean acidification on biological processes. We conducted high temporal resolution pH and temperature measurements in and around a shallow (2.5-3 m) CO 2 vent site off Ischia, Italy in May and June 2008. Loggers were deployed at five stations to monitor water at both the surface and benthos. Our reference station, 500 m from the CO 2 vent, had no noticeable vent influence. It had a naturally high and stable benthic pH (mean 8.16, inter-quartile range (IQ): 8.14-8.18) fluctuating with diel periodicity, presumably driven by community photosynthesis and respiration. A principal component analysis (PCA) revealed that the pH of this station was well constrained by meteorological parameters. In contrast, a station positioned within the vent zone, had a low and very variable benthic mean pH of 7.11 (IQ: 6.91-7.62) with large pH fluctuations not well constrained by a PCA. Any stations positioned within 20 m of the main vent zone had lowered pH, but suffered from abnormally large pH fluctuations making them unsuitable representatives to predict future changes to a shallow coastal environment. Between these extremes, we identified a benthic area with a lower pH of 7.84 (IQ: 7.83-7.88) that retained many of the characteristics of the reference station such as a natural diel pH periodicity and low variability. Our results indicate that a range of pH environments maybe commonplace near CO 2 vents due to their characteristic acidification of benthic water over a wide area. Such environments could become invaluable natural laboratories for ocean acidification research, closely mimicking future CO 2 conditions in a natural setting.

  1. Sand dynamic in the Mekong River channel and export to the coastal ocean

    Science.gov (United States)

    Stephens, J. D.; Allison, M. A.; Di Leonardo, D. R.; Weathers, H. D.; Ogston, A. S.; McLachlan, R. L.; Xing, F.; Meselhe, E. A.

    2017-09-01

    Two field campaigns were conducted in the tidal and estuarine reach of the Sông Hậu distributary of the Mekong River to explore the dynamics of sand transport and export to the coastal ocean. This study examines variations in suspended sand concentration and net flux of suspended and bedload sand with respect to changes in discharge between the October 2014 high discharge and March 2015 low discharge season. Isokinetic measurements of suspended sand were used to calibrate a larger dataset of LISST profiles to report suspended sand mass concentrations. During the high discharge season, ebb and flood currents are a primary control on suspended sand concentrations. Ebb tidal flows are more capable of sand transport than flooding flows, due to river discharge augmenting tidal currents. Sand in suspension is primarily derived locally from bed material sand. Bedform transport estimates were limited, but suggest that bedload sand transport is less than 10% of net suspended sand flux. Very low concentrations of suspended sand sediment are found during the low discharge season. These low concentrations are likely caused by (1) a reduction in maximum ebb tide shear stresses associated with less freshwater input, and (2) mud mantling in the bed associated with upstream migration of estuarine circulation, that inhibits local sourcing (resuspension) of bed sand. Results of the observational study were used to calibrate a numerical model of annual sand flux to the ocean from all distributaries of the Mekong River. Annual sand export is estimated at 6.5 ± 1.6 Mt yr-1. The Định An subdistributary accounts for 32% of this total while the smaller Trần Đề subdistributary accounts for only 9%.

  2. Hourly changes in sea surface salinity in coastal waters recorded by Geostationary Ocean Color Imager

    Science.gov (United States)

    Liu, Rongjie; Zhang, Jie; Yao, Haiyan; Cui, Tingwei; Wang, Ning; Zhang, Yi; Wu, Lingjuan; An, Jubai

    2017-09-01

    In this study, we monitored hourly changes in sea surface salinity (SSS) in turbid coastal waters from geostationary satellite ocean color images for the first time, using the Bohai Sea as a case study. We developed a simple multi-linear statistical regression model to retrieve SSS data from Geostationary Ocean Color Imager (GOCI) based on an in situ satellite matched-up dataset (R2 = 0.795; N = 41; Range: 26.4 to 31.9 psμ). The model was then validated using independent continuous SSS measurements from buoys, with the average percentage difference of 0.65%. The model was applied to GOCI images from the dry season during an astronomical tide to characterize hourly changes in SSS in the Bohai Sea. We found that the model provided reasonable estimates of the hourly changes in SSS and that trends in the modeled and measured data were similar in magnitude and direction (0.43 vs 0.33 psμ, R2 = 0.51). There were clear diurnal variations in the SSS of the Bohai Sea, with a regional average of 0.455 ± 0.079 psμ (0.02-3.77 psμ). The magnitude of the diurnal variations in SSS varied spatially, with large diurnal variability in the nearshore, particularly in the estuary, and small variability in the offshore area. The model for the riverine area was based on the inverse correlation between SSS and CDOM absorption. In the offshore area, the water mass of the North Yellow Sea, characterized by high SSS and low CDOM concentrations, dominated. Analysis of the driving mechanisms showed that the tidal current was the main control on hourly changes in SSS in the Bohai Sea.

  3. Hyperspectral and multispectral ocean color inversions to detect Phaeocystis globosa blooms in coastal waters

    Science.gov (United States)

    Lubac, Bertrand; Loisel, Hubert; Guiselin, Natacha; Astoreca, Rosa; Felipe Artigas, L.; MéRiaux, Xavier

    2008-06-01

    Identification of phytoplankton groups from space is essential to map and monitor algal blooms in coastal waters, but remains a challenge due to the presence of suspended sediments and dissolved organic matter which interfere with phytoplankton signal. On the basis of field measurements of remote sensing reflectance (Rrs(λ)), bio-optical parameters, and phytoplankton cells enumerations, we assess the feasibility of using multispectral and hyperspectral approaches for detecting spring blooms of Phaeocystis globosa (P. globosa). The two reflectance ratios (Rrs(490)/Rrs(510) and Rrs(442.5)/Rrs(490)), used in the multispectral inversion, suggest that detection of P. globosa blooms are possible from current ocean color sensors. The effects of chlorophyll concentration, colored dissolved organic matter (CDOM), and particulate matter composition on the performance of this multispectral approach are investigated via sensitivity analysis. This analysis indicates that the development of a remote sensing algorithm, based on the values of these two ratios, should include information about CDOM concentration. The hyperspectral inversion is based on the analysis of the second derivative of Rrs(λ) (dλ2Rrs). Two criteria, based on the position of the maxima and minima of dλ2Rrs, are established to discriminate the P. globosa blooms from diatoms blooms. We show that the position of these extremes is related to the specific absorption spectrum of P. globosa and is significantly correlated with the relative biomass of P. globosa. This result confirms the advantage of a hyperspectral over multispectral inversion for species identification and enumeration from satellite observations of ocean color.

  4. Ocean acidification in the coastal zone from an organism's perspective: multiple system parameters, frequency domains, and habitats.

    Science.gov (United States)

    Waldbusser, George G; Salisbury, Joseph E

    2014-01-01

    Multiple natural and anthropogenic processes alter the carbonate chemistry of the coastal zone in ways that either exacerbate or mitigate ocean acidification effects. Freshwater inputs and multiple acid-base reactions change carbonate chemistry conditions, sometimes synergistically. The shallow nature of these systems results in strong benthic-pelagic coupling, and marine invertebrates at different life history stages rely on both benthic and pelagic habitats. Carbonate chemistry in coastal systems can be highly variable, responding to processes with temporal modes ranging from seconds to centuries. Identifying scales of variability relevant to levels of biological organization requires a fuller characterization of both the frequency and magnitude domains of processes contributing to or reducing acidification in pelagic and benthic habitats. We review the processes that contribute to coastal acidification with attention to timescales of variability and habitats relevant to marine bivalves.

  5. Ocean Acidification in the Coastal Zone from an Organism's Perspective: Multiple System Parameters, Frequency Domains, and Habitats

    Science.gov (United States)

    Waldbusser, George G.; Salisbury, Joseph E.

    2014-01-01

    Multiple natural and anthropogenic processes alter the carbonate chemistry of the coastal zone in ways that either exacerbate or mitigate ocean acidification effects. Freshwater inputs and multiple acid-base reactions change carbonate chemistry conditions, sometimes synergistically. The shallow nature of these systems results in strong benthic-pelagic coupling, and marine invertebrates at different life history stages rely on both benthic and pelagic habitats. Carbonate chemistry in coastal systems can be highly variable, responding to processes with temporal modes ranging from seconds to centuries. Identifying scales of variability relevant to levels of biological organization requires a fuller characterization of both the frequency and magnitude domains of processes contributing to or reducing acidification in pelagic and benthic habitats. We review the processes that contribute to coastal acidification with attention to timescales of variability and habitats relevant to marine bivalves.

  6. Coastal aquaculture development in eastern Africa and the Western Indian Ocean: prospects and problems for food security and local economies.

    Science.gov (United States)

    Rönnback, Patrik; Bryceson, Ian; Kautsky, Nils

    2002-12-01

    This paper reviews the experience and status of coastal aquaculture of seaweeds, mollusks, fish and crustaceans in eastern Africa and the islands of the western Indian Ocean. In many respects, coastal aquaculture is still in its infancy in the region, and there is a pressing need to formulate development strategies aimed at improving the income and assuring the availability of affordable protein to coastal communities. This paper also draws from positive and negative experiences in other parts of the world. The requirements of feed and fry, and the conversion of mangroves are used to illustrate how some aquaculture activities constitute a net loss to global seafood production. The paper presents both general and specific sustainability guidelines based on the acknowledgement of aquaculture as an ecological process. It is concluded that without clear recognition of its dependence on natural ecosystems, the aquaculture industry is unlikely to develop to its full potential in the region.

  7. Short-term degradation of terrestrial DOM in the coastal ocean: Implications for nutrient subsidies and marine microbial community structure

    Science.gov (United States)

    Oliver, A. A.; Tank, S. E.; Kellogg, C.

    2015-12-01

    The export of riverine dissolved organic matter (DOM) to the coastal ocean provides an important link between terrestrial and aquatic ecosystems. The coastal temperate rainforests of British Columbia contain extensive freshwater networks that export significant amounts of water and DOM to the ocean, representing significant cross-system hydrologic and biogeochemical linkages. To better understand the importance of these linkages and implications for ecosystem structure and function, we used an experimental approach to investigate the role of microbial and photodegradation transformations of DOM exported from small coastal catchments to the marine environment. At two time periods (August 2014, March 2015), stream water from the outlets of two coastal watersheds was filtered (microbial inoculums from across a salinity gradient (i.e., freshwater, estuarine, and marine). Treatments were incubated in the ocean under light and dark conditions for 8 days. At 0, 3 and 8 days, samples were analyzed for DOC, TDN, DIN, and DON. Changes in DOM composition were determined with optical characterization techniques such as absorbance (SUVA, S, Sr) and fluorescence (EEM). Microbial community response was measured using cell counts and DNA/RNA amplicon sequencing to determine changes in bacterial abundance and community composition. General patterns indicated that microbial communities from the high salinity treatment (i.e. most marine) were the most effective at utilizing freshwater DOM, especially under light conditions. In some treatments, DOM appeared as a potential source of inorganic nitrogen with corresponding shifts in microbial community composition. Incubations using inoculum from low and mid salinity levels demonstrated smaller changes, indicating that DOM exported from these streams may not be extensively utilized until exposed to higher salinity environments further from stream outlets. These results suggest a role for terrestrial sourced-DOM as a subsidy for microbial

  8. AquaScan: A miniaturized UV/VIS/IR hyperspectral imager for autonomous airborne and underwater imaging spectroscopy of coastal & oceanic environments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The AquaScan, a miniaturized UV/VIS/NIR hyperspectral imager will be built for deployment on a UAV or small manned aircraft for ocean coastal remote sensing...

  9. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in Santa Barbara County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System...

  10. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 20-year storm in Ventura County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System...

  11. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: average conditions in Orange County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System...

  12. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 100-year storm in Orange County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System...

  13. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 100-year storm in Santa Barbara County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System...

  14. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in Santa Barbara County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System...

  15. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in Orange County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System...

  16. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: average conditions in Santa Barbara County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System...

  17. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: average conditions in Ventura County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System...

  18. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 100-year storm in Ventura County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System...

  19. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 20-year storm in Santa Barbara County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System...

  20. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in Ventura County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System...

  1. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 20-year storm in Orange County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System...

  2. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: average conditions in Santa Barbara County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System...

  3. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 20-year storm in Santa Barbara County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System...

  4. CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 100-year storm in Santa Barbara County

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System...

  5. On the representativeness of coastal aerosol studies to open ocean studies: Mace Head – a case study

    Directory of Open Access Journals (Sweden)

    C. D. O'Dowd

    2009-12-01

    Full Text Available A unique opportunity arose during the MAP project to compare open ocean aerosol measurements with those undertaken at the Mace Head Global Atmosphere Watch Station, a station used for decades for aerosol process research and long-term monitoring. The objective of the present study is to demonstrate that the key aerosol features and processes observed at Mace Head are characteristic of the open ocean, while acknowledging and allowing for spatial and temporal gradients. Measurements were conducted for a 5-week period at Mace Head and offshore, on the Research Vessel Celtic Explorer, in generally similar marine air masses, albeit not in connected-flow scenarios. The results of the study indicate, in terms of aerosol number size distribution, higher nucleation mode particle concentrations at Mace Head than offshore, pointing to a strong coastal source of new particles that is not representative of the open ocean. The Aitken mode exhibited a large degree of similarity, with no systematic differences between Mace Head and the open ocean, while the accumulation mode showed averagely 35% higher concentrations at Mace Head. The higher accumulation mode concentration can be attributed equally to cloud processing and to a coastal enhancement in concentration. Chemical analysis showed similar or even higher offshore concentrations for dominant species, such as nss-SO4-2, WSOC, WIOC and MSA. Sea salt concentration differences determined a 40% higher supermicron mass at Mace Head, although this difference can be attributed to a higher wind speed at Mace Head during the comparison period. Moreover, the relative chemical composition as a function of size illustrated remarkable similarity. While differences to varying degrees were observed between offshore and coastal measurements, no convincing evidence was found of local coastal effects, apart from nucleation mode aerosol, thus confirming the integrity of previously reported marine

  6. Spatial Coherence Between Remotely Sensed Ocean Color Data and Vertical Distribution of Lidar Backscattering in Coastal Stratified Waters

    Science.gov (United States)

    2010-01-01

    Implications for remote sensing of harmful algal blooms . In K. A. Steidinger, J. H. Landserber. C. R. Tomas. & C. A. Vargo (Eds.). Harmful Algae 2002... remotely sensed data. Briefly, we propose the use of low and high statistical moments of R, to detect S changes along the vertical component. Locations... Remotely -sensed Ocean Color Data & Vertical Distribution ol I idar Backscattering in Coastal Stratified Waters 5a CONTRACT NUMBER 5b. GRANT

  7. Volume Transport Stream Function Calculated from World Ocean Atlas 2013 (WOA13-VTSF) and Climatological Wind (NCEI Accession 0138646)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset consists of calculated annual and monthly mean ocean volume transport stream function on 1 degree resolution using the WOA13 (T, S) and corresponding...

  8. Computational Fluid Dynamics and Visualisation of Coastal Flows in Tidal Channels Supporting Ocean Energy Development

    Directory of Open Access Journals (Sweden)

    Enayatollah Zangiabadi

    2015-06-01

    Full Text Available Flow characteristics in coastal regions are strongly influenced by the topography of the seabed and understanding the fluid dynamics is necessary before installation of tidal stream turbines (TST. In this paper, the bathymetry of a potential TST deployment site is used in the development of the a CFD (Computational Fluid Dynamics model. The steady state k-ϵ and transient Large Eddy Simulation (LES turbulence methods are employed and compared. The simulations are conducted with a fixed representation of the ocean surface, i.e., a rigid lid representation. In the vicinity of Horse Rock a study of the pressure difference shows that the small change in height of the water column is negligible, providing confidence in the simulation results. The stream surface method employed to visualise the results has important inherent characteristics that can enhance the visual perception of complex flow structures. The results of all cases are compared with the flow data transect gathered by an Acoustic Doppler Current Profiler (ADCP. It has been understood that the k-ϵ method can predict the flow pattern relatively well near the main features of the domain and the LES model has the ability to simulate some important flow patterns caused by the bathymetry.

  9. Isotope composition and volume of Earth’s early oceans

    OpenAIRE

    Pope, Emily C.; Bird, Dennis K.; Rosing, Minik T.

    2012-01-01

    Oxygen and hydrogen isotope compositions of Earth’s seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs, but hydrogen’s was not, as it can escape to space. Isotopic properties of serpentine from the approximately 3.8 Ga Isua Supracrustal Belt in West Greenland are used to characterize hydrogen and oxygen isotop...

  10. EPA Funds Coastal Observation System for Indicators of Ocean Acidification in Casco Bay

    Science.gov (United States)

    The U.S. Environmental Protection Agency provided a total of $85 thousand toward establishing a state-of-the-art coastal observing system in Casco Bay Maine to help coastal managers evaluate the threat of coastal acidification from excess CO 2.

  11. Vorticity models of ocean surface diffusion in coastal jets and eddies

    Science.gov (United States)

    Cano, D.; Matulka, A.; Sekula, E.

    2010-05-01

    We present and discuss the use of multi-fractal techniques used to investigete vorticity and jet dynamical state of these features detected in the sea surface as well as to identify possible local parametrizations of turbulent diffusion in complex non-homogeneous flows. We use a combined vorticity/energy equation to parametrize mixing at the Rossby Deformation Radius, which may be used even in non Kolmogorov types of flows. The vorticity cascade is seen to be different to the energy cascade and may have important cnsecuences in pollutant dispersion prediction, both in emergency accidental releases and on a day to day operational basis. We also identify different SAR signatures of river plumes near the coast, which are usefull to provide calibrations for the different local configurations that allow to predict the behaviour of different tracers and tensioactives in the coastal sea surface area by means of as a geometrical characterization of the vorticity and velocity maps which induce local mixing and dilution jet processes. The satellite-borne SAR seems to be a good system for the identification of dynamic. lt is also a convenient tool to investigate the eddy structures of a certain area where the effect of bathymetry and local currents are important in describing the ocean surface behavior. Maximum eddy size agrees remarkably well with the limit imposed by the local Rossby deformation radius using the usual thermocline induced stratification, Redondo and Platonov (2000). The Rossby deformation radius, defined as Rd = (N/f)h, where N is the Brunt-Vaisalla frequency, f is the local Coriolis parameter (f=2Osin(lat), where O is the rotation of the earth as function of the latitude), The role of buoyancy may be also detected by seasonal changes in h, the thermocline depth, with these considerations Rd is ranged between 6 and 30 Km. Bezerra M.O., Diez M., Medeiros C. Rodriguez A., Bahia E., Sanchez Arcilla A and Redondo J.M. (1998) "Study on the influence of waves on

  12. Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic organisms and their contribution to primary production

    Directory of Open Access Journals (Sweden)

    J.-P. Gattuso

    2006-01-01

    Full Text Available One of the major features of the coastal zone is that part of its sea floor receives a significant amount of sunlight and can therefore sustain benthic primary production by seagrasses, macroalgae, microphytobenthos and corals. However, the contribution of benthic communities to the primary production of the global coastal ocean is not known, partly because the surface area where benthic primary production can proceed is poorly quantified. Here, we use a new analysis of satellite (SeaWiFS data collected between 1998 and 2003 to estimate, for the first time at a nearly global scale, the irradiance reaching the bottom of the coastal ocean. The following cumulative functions provide the percentage of the surface (S of the coastal zone receiving an irradiance greater than Ez (in mol photons m−2 d−1: SNon-polar = 29.61 − 17.92 log10(Ez + 0.72 log102(Ez + 0.90 log103(Ez SArctic = 15.99 − 13.56 log10(Ez + 1.49 log102(Ez + 0.70 log103(Ez Data on the constraint of light availability on the major benthic primary producers and net community production are reviewed. Some photosynthetic organisms can grow deeper than the nominal bottom limit of the coastal ocean (200 m. The minimum irradiance required varies from 0.4 to 5.1 mol photons m−2 d−1 depending on the group considered. The daily compensation irradiance of benthic communities ranges from 0.24 to 4.4 mol photons m−2 d−1. Data on benthic irradiance and light requirements are combined to estimate the surface area of the coastal ocean where (1 light does not limit the distribution of primary producers and (2 net community production (NCP, the balance between gross primary production and community respiration is positive. Positive benthic NCP can occur over 33% of the global shelf area. The limitations of this approach, related to the spatial resolution of the satellite data, the parameterization used to convert reflectance data to irradiance, the lack of global information on the benthic

  13. Coastal ocean and shelf-sea biogeochemical cycling of trace elements and isotopes: lessons learned from GEOTRACES

    Science.gov (United States)

    Lam, Phoebe J.; Lohan, Maeve C.; Kwon, Eun Young; Hatje, Vanessa; Shiller, Alan M.; Cutter, Gregory A.; Thomas, Alex; Milne, Angela; Thomas, Helmuth; Andersson, Per S.; Porcelli, Don; Tanaka, Takahiro; Geibert, Walter; Dehairs, Frank; Garcia-Orellana, Jordi

    2016-01-01

    Continental shelves and shelf seas play a central role in the global carbon cycle. However, their importance with respect to trace element and isotope (TEI) inputs to ocean basins is less well understood. Here, we present major findings on shelf TEI biogeochemistry from the GEOTRACES programme as well as a proof of concept for a new method to estimate shelf TEI fluxes. The case studies focus on advances in our understanding of TEI cycling in the Arctic, transformations within a major river estuary (Amazon), shelf sediment micronutrient fluxes and basin-scale estimates of submarine groundwater discharge. The proposed shelf flux tracer is 228-radium (T1/2 = 5.75 yr), which is continuously supplied to the shelf from coastal aquifers, sediment porewater exchange and rivers. Model-derived shelf 228Ra fluxes are combined with TEI/ 228Ra ratios to quantify ocean TEI fluxes from the western North Atlantic margin. The results from this new approach agree well with previous estimates for shelf Co, Fe, Mn and Zn inputs and exceed published estimates of atmospheric deposition by factors of approximately 3–23. Lastly, recommendations are made for additional GEOTRACES process studies and coastal margin-focused section cruises that will help refine the model and provide better insight on the mechanisms driving shelf-derived TEI fluxes to the ocean. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’.

  14. Coastal ocean and shelf-sea biogeochemical cycling of trace elements and isotopes: lessons learned from GEOTRACES

    Science.gov (United States)

    Charette, Matthew A.; Lam, Phoebe J.; Lohan, Maeve C.; Kwon, Eun Young; Hatje, Vanessa; Jeandel, Catherine; Shiller, Alan M.; Cutter, Gregory A.; Thomas, Alex; Boyd, Philip W.; Homoky, William B.; Milne, Angela; Thomas, Helmuth; Andersson, Per S.; Porcelli, Don; Tanaka, Takahiro; Geibert, Walter; Dehairs, Frank; Garcia-Orellana, Jordi

    2016-11-01

    Continental shelves and shelf seas play a central role in the global carbon cycle. However, their importance with respect to trace element and isotope (TEI) inputs to ocean basins is less well understood. Here, we present major findings on shelf TEI biogeochemistry from the GEOTRACES programme as well as a proof of concept for a new method to estimate shelf TEI fluxes. The case studies focus on advances in our understanding of TEI cycling in the Arctic, transformations within a major river estuary (Amazon), shelf sediment micronutrient fluxes and basin-scale estimates of submarine groundwater discharge. The proposed shelf flux tracer is 228-radium (T1/2 = 5.75 yr), which is continuously supplied to the shelf from coastal aquifers, sediment porewater exchange and rivers. Model-derived shelf 228Ra fluxes are combined with TEI/ 228Ra ratios to quantify ocean TEI fluxes from the western North Atlantic margin. The results from this new approach agree well with previous estimates for shelf Co, Fe, Mn and Zn inputs and exceed published estimates of atmospheric deposition by factors of approximately 3-23. Lastly, recommendations are made for additional GEOTRACES process studies and coastal margin-focused section cruises that will help refine the model and provide better insight on the mechanisms driving shelf-derived TEI fluxes to the ocean. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

  15. An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe

    Science.gov (United States)

    Saba, V. S.; Friedrichs, M. A. M.; Antoine, D.; Armstrong, R. A.; Asanuma, I.; Behrenfeld, M. J.; Ciotti, A. M.; Dowell, M.; Hoepffner, N.; Hyde, K. J. W.; Ishizaka, J.; Kameda, T.; Marra, J.; Mélin, F.; Morel, A.; O'Reilly, J.; Scardi, M.; Smith, W. O., Jr.; Smyth, T. J.; Tang, S.; Uitz, J.; Waters, K.; Westberry, T. K.

    2011-02-01

    Nearly half of the earth's photosynthetically fixed carbon derives from the oceans. To determine global and region specific rates, we rely on models that estimate marine net primary productivity (NPP) thus it is essential that these models are evaluated to determine their accuracy. Here we assessed the skill of 21 ocean color models by comparing their estimates of depth-integrated NPP to 1156 in situ 14C measurements encompassing ten marine regions including the Sargasso Sea, pelagic North Atlantic, coastal Northeast Atlantic, Black Sea, Mediterranean Sea, Arabian Sea, subtropical North Pacific, Ross Sea, West Antarctic Peninsula, and the Antarctic Polar Frontal Zone. Average model skill, as determined by root-mean square difference calculations, was lowest in the Black and Mediterranean Seas, highest in the pelagic North Atlantic and the Antarctic Polar Frontal Zone, and intermediate in the other six regions. The maximum fraction of model skill that may be attributable to uncertainties in both the input variables and in situ NPP measurements was nearly 72%. On average, the simplest depth/wavelength integrated models performed no worse than the more complex depth/wavelength resolved models. Ocean color models were not highly challenged in extreme conditions of surface chlorophyll-a and sea surface temperature, nor in high-nitrate low-chlorophyll waters. Water column depth was the primary influence on ocean color model performance such that average skill was significantly higher at depths greater than 250 m, suggesting that ocean color models are more challenged in Case-2 waters (coastal) than in Case-1 (pelagic) waters. Given that in situ chlorophyll-a data was used as input data, algorithm improvement is required to eliminate the poor performance of ocean color NPP models in Case-2 waters that are close to coastlines. Finally, ocean color chlorophyll-a algorithms are challenged by optically complex Case-2 waters, thus using satellite-derived chlorophyll-a to

  16. BIOMASS, Displacement Volume, WATER DEPTH, SPECIES IDENTIFICATION and other tows - plankton tows data collected in the Coastal Waters of SE Alaska, Gulf of Alaska and North Pacific Ocean on NOAA Ship JOHN N. COBB cruises SECM, jc0005 and others as part of the NEP project from 1997-05-24 to 2006-08-20 (NODC Accession 0115197)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115197 includes discrete sample, meteorological, tows - plankton tows and biological data collected aboard NOAA Ship JOHN N. COBB during cruises...

  17. Ammonium in coastal Antarctic aerosol and snow: Role of polar ocean and penguin emissions

    Science.gov (United States)

    Legrand, Michel; Ducroz, FrançOis; Wagenbach, Dietmar; Mulvaney, Robert; Hall, Julie

    1998-05-01

    Year-round aerosol samples collected in the boundary layer at coastal Antarctic sites (Dumont D'Urville, Neumayer, and Halley) indicate a seasonal cycle of ammonium concentrations with a minimum in winter (April-September). A large intersite difference appears in the summer (November-February) maxima values, from ˜12.5 ng m-3 at Neumayer to 140-230 ng m-3 at Dumont D'Urville. At Dumont D'Urville, ammonium concentrations are the largest ever reported from Antarctic sites, and the large summer maxima are associated with large enrichments with respect to sea salt for potassium and calcium. In addition, seasonal ammonium variations at Dumont D'Urville are in phase with a well-marked seasonal cycle of oxalate concentrations which exhibit maxima of 5-10 ng m-3 in spring and summer and minima of less than 0.5 ng m-3 in winter. Such a composition of aerosols present in the boundary layer at Dumont D'Urville in summer is linked to the presence of a large Adélie penguin population from the end of October to March at the site. Ornithogenic soils (defined as guano-enriched soils), together with the bacterial decomposition of uric acid, are a source of ammonium, oxalate, and cation (such as potassium and calcium) aerosol, in addition to a subsequent large ammonia loss from ornithogenic soils to the atmosphere. The total breeding population of 5 million Adélie penguins widely distributed around the Antarctic continent may emit, at most, some 2.5 × 10-4 Mt of NH3-N during the summer months. In contrast, Halley and Neumayer Stations are far less exposed to penguin colony emissions. At Neumayer, ammonium concentrations peak from January to March and are in phase with the increase of biogenic sulfur species. Here the NH4+/(MSA + nss SO4-) molar ratio is close to 13% in summer aerosol and to 40% in winter aerosol. Using this summer ratio, which may be related to ammonia and sulfur oceanic emissions occurring south of 50°S in summer and estimated DMS emissions in these regions at

  18. The Gulf of Mexico Coastal Ocean Observing System: A Gulf Science Portal

    Science.gov (United States)

    Howard, M.; Gayanilo, F.; Kobara, S.; Jochens, A. E.

    2013-12-01

    The Gulf of Mexico Coastal Ocean Observing System's (GCOOS) regional science portal (gcoos.org) was designed to aggregate data and model output from distributed providers and to offer these, and derived products, through a single access point in standardized ways to a diverse set of users. The portal evolved under the NOAA-led U.S. Integrated Ocean Observing System (IOOS) program where automated largely-unattended machine-to-machine interoperability has always been a guiding tenet for system design. The web portal has a business unit where membership lists, new items, and reference materials are kept, a data portal where near real-time and historical data are held and served, and a products portal where data are fused into products tailored for specific or general stakeholder groups. The staff includes a system architect who built and maintains the data portal, a GIS expert who built and maintains the current product portal, the executive director who marshals resources to keep news items fresh and data manger who manages most of this. The business portal is built using WordPress which was selected because it appeared to be the easiest content management system for non-web programmers to add content to, maintain and enhance. The data portal is custom built and uses database, PHP, and web services based on Open Geospatial Consortium standards-based Sensor Observation Service (SOS) with Observations and Measurements (O&M) encodings. We employ a standards-based vocabulary, which we helped develop, which is registered at the Marine Metadata Interoperability Ontology Registry and Repository (http://mmisw.org). The registry is currently maintained by one of the authors. Products appearing in the products portal are primarily constructed using ESRI software by a Ph.D. level Geographer. Some products were built with other software, generally by graduate students over the years. We have been sensitive to the private sector when deciding which products to produce. While

  19. An Improved Ocean Observing System for Coastal Louisiana: WAVCIS (WAVE-CURRENT-SURGE Information System )

    Science.gov (United States)

    Zhang, X.; Stone, G. W.; Gibson, W. J.; Braud, D.

    2005-05-01

    WAVCIS is a regional ocean observing and forecasting system. It was designed to measure, process, forecast, and distribute oceanographic and meteorological information. WAVCIS was developed and is maintained by the Coastal Studies Institute at Louisiana State University. The in-situ observing stations are distributed along the central Louisiana and Mississippi coast. The forecast region covers the entire Gulf of Mexico with emphasis on offshore Louisiana. By using state-of-the-art instrumentation, WAVCIS measures directional waves, currents, temperature, water level, conductivity, turbidity, salinity, dissolved oxygen, chlorophyll, Meteorological parameters include wind speed and direction, air pressure and temperature visibility and humidity. Through satellite communication links, the measured data are transmitted to the WAVCIS laboratory. After processing, they are available to the public via the internet on a near real-time basis. WAVCIS also includes a forecasting capability. Waves, tides, currents, and winds are forecast daily for up to 80 hours in advance. There are a number of numerical wave and surge models that can be used for forecasts. WAM and SWAN are used for operational purposes to forecast sea state. Tides at each station are predicted based on the harmonic constants calculated from past in-situ observations at respective sites. Interpolated winds from the ETA model are used as input forcing for waves. Both in-situ and forecast information are available online to the users through WWW. Interactive GIS web mapping is implemented on the WAVCIS webpage to visualize the model output and in-situ observational data. WAVCIS data can be queried, retrieved, downloaded, and analyzed through the web page. Near real-time numerical model skill assessment can also be performed by using the data from in-situ observing stations.

  20. Sea Level Change: Is the Volume of the Ocean Changing or Is It Redistributing?

    Science.gov (United States)

    Mitchum, G. T.; Thompson, P. R.; Merrifield, M. A.

    2012-12-01

    Global sea level change is due to changes in the ocean volume, which are in turn primarily due to changes in the globally averaged density of the ocean and ice melt from the land. Regional to local sea level changes reflect global changes as well as redistributions of volume due to ocean dynamics and land motions. Determining whether global sea level change is accelerating requires that we disentangle these regional and local signals from the true global volume changes. Given the current length of our time series determining acceleration is problematic, largely because of substantial spatial and temporal changes in the global sea level field due to ocean-atmosphere dynamics. We will review our work showing that global sea level reconstructions are sensitive to the weightings applied to the tide gauge data. We will also review basin-scale changes in sea level in the North Atlantic and the Tropical Pacific that are clearly wind-driven. These are important for two reasons. First, these signals mask the (presently) small global signal, and second, these signals present a statistical challenge for determining the acceleration of the global volume change rate. The obvious question is how well we can expect to estimate the sea level rise acceleration rate given the observed red noise character, in time and space, of the volume redistribution signals. We will end the presentation with various simulations of our ability to determine global sea level change acceleration that take into account reasonable estimates of decadal redistributions of ocean volume. The net result is that most recent attempts to determine acceleration are seriously flawed. On the positive side, we will provide estimates of how long it might take to make more reliable estimates.

  1. Commercial Digital/ADP Equipment in the Ocean Environment. Volume 2. User Appendices

    Science.gov (United States)

    1978-12-15

    TD 228) 2. GOVT ACCESSION NO 4. TITLE fand Subtitle) COMMERCIAL DIGITAL/ADP EQUIPMENT IN AN OCEAN ENVIRONMENT Volume II: User Appendices 7...2.0 Gs, h sine wave, 30 ms in all 3 axes d. Vibration Frequency Amplitude Accelerated ( HzJ (mm) Max. Gs 4-8 .75 .6 8-14 .50 .6 14-30 .25

  2. Impact of Human Activities on the Flux of Terrestrial Sediments to the Coastal Ocean Offshore Northeastern Taiwan

    Science.gov (United States)

    Chen, Tzu-Ting; Su, Chih-Chieh; Liu, Char-Shine; Huang, Chen-fen; Hsu, Ho-Han

    2016-04-01

    Land to ocean material fluxes play an important role in global biogeochemical cycles. Changes in sediment supply not only greatly influence the benthic environment of coastal estuaries but also might threaten human lives and properties. Artificial constructions, such as roads and reservoirs, could affect natural environments and change sediment discharges. Due to its high precipitation, steep slopes, small basin areas, and frequent flood events, Taiwan is characterized with rapid erosion rates and extremely high sediment yields. In northeastern Taiwan, the high mean annual precipitation lead to large amounts of sediments being delivered into the ocean through the Lanyang River. Since 1957, the road constructions along the Lanyang River greatly increased terrestrial sediment flux to the coastal ocean. However, its influence on offshore area is not yet clear. In this study, we combine geochemical and geophysical data to evaluate the modern sedimentation history and discuss the impact of human activities on the Ilan Shelf. The preliminary results of grain size and 210Pb analyses from five sediment cores taken from the upper South Guishan Channel indicate the existence of local differences on hydrodynamic conditions. In addition, we also applied similarity index which based on a quantitative analysis algorithm to the chirp sonar data on echo character classification and calculated continuous grain size variations of the seafloor surface sediments. By combining all geochemical and geophysical data, we may reconstruct the holistic picture of human impacts on offshore environment from sedimentology records.

  3. Integrated Observations From Fixed and AUV Platforms in the Littoral Zone at the SFOMC Coastal Ocean Observatory

    Science.gov (United States)

    Dhanak, M. R.

    2001-12-01

    A 12-hour survey of the coastal waters off the east coast of Florida at the South Florida Ocean Measurement Center (SFOMC) coastal ocean observatory, during summer 1999, is described to illustrate the observatory's capabilities for ocean observation. The facility is located close to the Gulf Stream, the continental shelf break being only 3 miles from shore and is therefore influenced by the Gulf Stream meanders and the instability of the horizontal shear layer at its edge. As a result, both cross-shelf and along-shelf components of currents in the littoral zone can undergo dramatic +/- 0.5 m/s oscillations. Observations of surface currents from an OSCR, and of subsurface structure from an autonomous underwater vehicle (AUV) platform, a bottom-mounted ADCP and CT-chain arrays during the survey will be described and compared. The AUV on-board sensors included upward and downward looking 1200kHz ADCP, a CTD package and a small-scale turbulence package, consisting of two shear probes and a fast-response thermistor. Prevailing atmospheric conditions were recorded at an on-site buoy. The combined observations depict flows over a range of scales. Acknowledgements: The observations from the OSCR are due to Nick Shay and Tom Cook (University of Miami), and from the bottom-mounted ADCP, CT chain arrays and the surface buoy are due to Alex Soloviev (Nova Southeastern University) and Mark Luther and Bob Weisberg (University of South Florida).

  4. Coastal hypoxia diminished by intrusion of open ocean water after long El Nino Events: Case study of Hong Kong waters

    Science.gov (United States)

    Lui, H. K.; Chen, C. T. A.

    2015-12-01

    Coastal regions suffer from increasing terrestrial inputs of nutrients and organic matter. Consequently, hypoxia (dissolved oxygen (DO) WPS) seawater. For instance, at station SM18 located south of Hong Kong, the summer DO minimum has generally decreased from a saturation state of about 60% to as low as 5% from 1990 to 2013. The almost anoxic condition occurred in 2011 after a La Nina event. On the other hand, the summer DO minimum reached a high value of 79% in 2004 after a long El Nino event. Meanwhile, seawater at the SEATS site also contained the highest proportion of the WPS water, reflecting the large intrusion of the WPS seawater into the SCS. Such a result illustrates a situation that coastal eutrophication and hypoxia could be worsened when the intrusion of open ocean water decreases, and vice versa.

  5. Contribution of High Resolution Microwave and Optical Remote Sensing Observations in Detecting and Monitoring Ocean Coastal Features

    Science.gov (United States)

    Gagliardini, D. A.

    Synthetic Aperture Radar SAR satellite sensors have demonstrated their ability to observe ocean features related to dynamical processes Because of the high resolution of available SAR sensors circulation details and small-scale processes can be detected that are not observable by other sensors more frequently used for ocean research such as the NOAA AVHRR and the ORBVIEW2 SeaWiFS In contrast to these LANDSAT-TM thermal and optical channels can be used to observe sea surface temperatures surface layer ocean color upwelled radiance as well as sun glint reflected radiance patterns of surface roughness at a spatial resolution comparable to that of SAR Several examples of TM images obtained in 1997-2003 over the Argentine coastal ocean region where selected from an extensive data set These images were analyzed and compared with a series of SAR images acquired over the same region by the ERS satellites and in some cases near coincident with the TM data This time period allowed the examination of the seasonal cycles as well as interesting episodic events of different ocean processes including currents fronts upwellings algal blooms eddies internal waves and bathymetry signatures Due in situ observations are scarce over this region some of these processes have been documented for first time helping to improve our understanding of some dynamical and biological aspects Therefore it can be concluded that high resolution optical thermal and microwave data have the ability of providing consistent and complementary high-resolution

  6. 2008 NOAA Integrated Ocean and Coastal Mapping (IOCM) LIDAR: New Hampshire

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were collected by the National Oceanic Atmospheric Administration National Geodetic Survey Remote Sensing Division using an OPTECH ALTM system on June 8,...

  7. 2008 NOAA/NGS Integrated Ocean and Coastal Mapping (IOCM) LIDAR: Kenai Peninsula Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were collected by the National Oceanic Atmospheric Administration National Geodetic Survey Remote Sensing Division using an OPTECH ALTM system. The data...

  8. 2008 NOAA/NGS Integrated Ocean and Coastal Mapping (IOCM) LIDAR: Kenai Peninsula Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were collected by the National Oceanic Atmospheric Administration National Geodetic Survey Remote Sensing Division using an OPTECH ALTM system. The data...

  9. 2008 NOAA Integrated Ocean and Coastal Mapping (IOCM) LIDAR: New Hampshire

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were collected by the National Oceanic Atmospheric Administration National Geodetic Survey Remote Sensing Division using an OPTECH ALTM system on June 8,...

  10. Assessing the magnitude and significance of deep chlorophyll maxima of the coastal eastern Indian Ocean

    Science.gov (United States)

    Hanson, Christine E.; Pesant, Stéphane; Waite, Anya M.; Pattiaratchi, Charitha B.

    2007-04-01

    previously unrecognized significance of these DCM layers in the coastal eastern Indian Ocean has important implications for satellite-based estimates of production within the region.

  11. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic image tiles for Christiansted, St. Johns and Anguilla Harbor, St. Croix, U.S. Virgin Islands, 2011 (NODC Accession 0086076)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The images were...

  12. Current profile data collected aboard NOAA Ship Ronald Brown during cruise RB0708 in the North Atlantic Ocean and coastal waters of Florida from 2007-09-11 to 2007-09-22 (NCEI Accession 0131294)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0131294 includes physical underway data collected aboard NOAA Ship Ronald Brown during cruise RB0708 in the North Atlantic Ocean and coastal waters of...

  13. 2014 NOAA Ortho-rectified Mean Low Low Water Near-Infrared Mosaic of Coosaw River to South Edisto River (ICW), South Carolina: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  14. The MORENA Project: Shelf-ocean exchanges and transport processes along the continental margin in the European coastal upwelling region

    Energy Technology Data Exchange (ETDEWEB)

    Fiuza, A.F.G. [Univ. de Lisboa (Portugal). Inst. de Oceanografia; Perez, F. [Inst. Investigaciones Marinas, Vigo (Spain); Johnson, J. [Univ. East Anglia (United Kingdom)] [and others

    1994-12-31

    The MORENA Project (Multidisciplinary Oceanographic Research in the Eastern Boundary of the North Atlantic) is sponsored by the CEC MAST-2 Programme and has as general objective to measure, understand and model shelf-ocean exchange in a typical coastal upwelling region of the eastern boundary layer of the subtropical ocean. This is being attained through a multidisciplinary approach aimed at the quantitative understanding of the physical, chemical and biological processes involved in the transfer of matter (including salt, particulates, nutrients, organic compounds, biomass), momentum and energy across and along the shelf, the shelf break and the slope, in the Iberian region of the European Atlantic. MORENA has the following components: Observations, Modelling and Combined Analysis.

  15. Measurements and modeling of the volume scattering function in the coastal northern Adriatic Sea

    Science.gov (United States)

    Berthon, Jean-François; Shybanov, Eugeny; Lee, Michael E.-G.; Zibordi, Giuseppe

    2007-08-01

    We performed measurements of the volume scattering function (VSF) between 0.5° and 179° with an angular resolution of 0.3° in the northern Adriatic Sea onboard an oceanographic platform during three different seasons, using the multispectral volume scattering meter (MVSM) instrument. We observed important differences with respect to Petzold's commonly used functions, whereas the Fournier-Forand's analytical formulation provided a rather good description of the measured VSF. The comparison of the derived scattering, bp(λ) and backscattering, bbp(λ) coefficients for particles with the measurements performed with the classical AC-9 and Hydroscat-6 showed agreement to within 20%. The use of an empirical relationship for the derivation of bb(λ) from β(ψ,λ) at ψ=140° was validated for this coastal site although ψ=118° was confirmed to be the most appropriate angle. The low value of the factor used to convert β(ψ,λ) into bb(λ) within the Hydroscat-6 processing partially contributed to the underestimation of bb(λ) with respect to the MVSM. Finally, use of the Kopelevich model together with a measurement of bp(λ) at λ=555 nm allowed us to reconstruct the VSF with average rms percent differences between 8 and 15%.

  16. Influence of El Niño Wind Stress Anomalies on South Brazil Bight Ocean Volume Transports

    Directory of Open Access Journals (Sweden)

    Luiz Paulo de Freitas Assad

    2015-01-01

    Full Text Available The knowledge of wind stress variability could represent an important contribution to understand the variability over upper layer ocean volume transports. The South Brazilian Bight (SBB circulation had been studied by numerous researchers who predominantly attempted to estimate its meridional volume transport. The main objective and contribution of this study is to identify and quantify possible interannual variability in the ocean volume transport in the SBB induced by the sea surface wind stress field. A low resolution ocean global circulation model was implemented to investigate the volume transport variability. The results obtained indicate the occurrence of interannual variability in meridional ocean volume transports along three different zonal sections. These results also indicate the influence of a wind driven large-scale atmospheric process that alters locally the SBB and near-offshore region wind stress field and consequently causes interannual variability in the upper layer ocean volume transports. A strengthening of the southward flow in 25°S and 30°S was observed. The deep layer ocean volume transport in the three monitored sections indicates a potential dominance of other remote ocean processes. A small time lag between the integrated meridional volume transports changes in each monitored zonal section was observed.

  17. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget

    KAUST Repository

    Duarte, Carlos M.

    2017-01-23

    Vegetated coastal habitats, including seagrass and macroalgal beds, mangrove forests and salt marshes, form highly productive ecosystems, but their contribution to the global carbon budget remains overlooked, and these forests remain

  18. Application of the Hyperspectral Imager for the Coastal Ocean to Phytoplankton Ecology Studies in Monterey Bay, CA, USA

    Directory of Open Access Journals (Sweden)

    John P. Ryan

    2014-01-01

    Full Text Available As a demonstrator for technologies for the next generation of ocean color sensors, the Hyperspectral Imager for the Coastal Ocean (HICO provides enhanced spatial and spectral resolution that is required to understand optically complex aquatic environments. In this study we apply HICO, along with satellite remote sensing and in situ observations, to studies of phytoplankton ecology in a dynamic coastal upwelling environment—Monterey Bay, CA, USA. From a spring 2011 study, we examine HICO-detected spatial patterns in phytoplankton optical properties along an environmental gradient defined by upwelling flow patterns and along a temporal gradient of upwelling intensification. From a fall 2011 study, we use HICO’s enhanced spatial and spectral resolution to distinguish a small-scale “red tide” bloom, and we examine bloom expansion and its supporting processes using other remote sensing and in situ data. From a spectacular HICO image of the Monterey Bay region acquired during fall of 2012, we present a suite of algorithm results for characterization of phytoplankton, and we examine the strengths, limitations, and distinctions of each algorithm in the context of the enhanced spatial and spectral resolution.

  19. Infuence of Averaging Method on the Evaluation of a Coastal Ocean Color Event on the U.S. Northeast Coast

    Science.gov (United States)

    Acker, James G.; Uz, Stephanie Schollaert; Shen, Suhung; Leptoukh, Gregory G.

    2010-01-01

    Application of appropriate spatial averaging techniques is crucial to correct evaluation of ocean color radiometric data, due to the common log-normal or mixed log-normal distribution of these data. Averaging method is particularly crucial for data acquired in coastal regions. The effect of averaging method was markedly demonstrated for a precipitation-driven event on the U.S. Northeast coast in October-November 2005, which resulted in export of high concentrations of riverine colored dissolved organic matter (CDOM) to New York and New Jersey coastal waters over a period of several days. Use of the arithmetic mean averaging method created an inaccurate representation of the magnitude of this event in SeaWiFS global mapped chl a data, causing it to be visualized as a very large chl a anomaly. The apparent chl a anomaly was enhanced by the known incomplete discrimination of CDOM and phytoplankton chlorophyll in SeaWiFS data; other data sources enable an improved characterization. Analysis using the geometric mean averaging method did not indicate this event to be statistically anomalous. Our results predicate the necessity of providing the geometric mean averaging method for ocean color radiometric data in the Goddard Earth Sciences DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni).

  20. Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic organisms and contribution to primary production

    Directory of Open Access Journals (Sweden)

    J.-P. Gattuso

    2006-07-01

    Full Text Available One of the major features of the coastal zone is that part of its sea floor receives a significant amount of sunlight and can therefore sustain benthic primary production by seagrasses, macroalgae, microphytobenthos and corals. However, the contribution of benthic communities to the primary production of the global coastal ocean is not known, partly because the surface area where benthic primary production can proceed is poorly quantified. Here, we use a new analysis of satellite (SeaWiFS data collected between 1998 and 2003 to estimate, for the first time at a nearly global scale, the irradiance reaching the bottom of the coastal ocean. The following cumulative functions provide the percentage of the surface of the coastal zone receiving an irradiance greater than Ez:

    PaNon-polar=28.80−16.69 log10(Ez+0.84 log102(Ez+0.83 log103(Ez


    PaArctic=16.01−15.67 log10(Ez+2.03 log102(Ez+1.00 log103(Ez

    Data on the constraint of light availability on the major benthic primary producers and net primary production are reviewed. Some photosynthetic organisms can grow deeper than the nominal bottom limit of the coastal ocean (200 m. The minimum irradiance required varies from 0.4 to 5.1 mol photons m−2 d−1 depending on the group considered. The daily compensation irradiance of benthic communities ranges from 0.24 to 4.4 mol photons m−2 d−1. Data on benthic irradiance and light requirements are combined to estimate the surface area of the coastal ocean where

  1. Spatial scales of optical variability in the coastal ocean: Implications for remote sensing and in situ sampling

    Science.gov (United States)

    Moses, Wesley J.; Ackleson, Steven G.; Hair, Johnathan W.; Hostetler, Chris A.; Miller, W. David

    2016-06-01

    Use of ocean color remote sensing to understand the effects of environmental changes and anthropogenic activities on estuarine and coastal waters requires the capability to measure and track optically detectable complex biogeochemical processes. An important remote sensor design consideration is the minimum spatial resolution required to resolve key ocean features of physical and biological significance. The spatial scale of variability in optical properties of coastal waters has been investigated using continuous, along-track measurements collected using instruments deployed from ships, aircraft, and satellites. We defined the average coefficient of variance, CV¯a, within an image pixel as the primary statistical measure of subpixel variability and investigated how CV¯a changes as a function of the Ground Sampling Distance (GSD). In general, dCV¯a/dGSD is positive, indicating that the subpixel variability increases with GSD. The relationship between CV¯a and GSD is generally nonlinear and the greatest rate of change occurs at small spatial scales. Points of distinct transition in the relationship between CV¯a and GSD are evident between 75 and 600 m, varying depending on the location and the optical parameter, and representing the GSD above which most of the spatial variability due to small-scale features is subsumed within a pixel. At GSDs greater than the transition point, most of the small-scale variability occurs at subpixel scales and, therefore, cannot be resolved. On average, the transition GSD is around 200 m. The results have application in both sensor design and in situ sampling strategy in support of coastal remote sensing operations.

  2. Coastal ocean research in sub-Saharan Africa: towards operational oceanography using satellites, in situ measurements and numerical models

    Science.gov (United States)

    Shillington, Frank

    Sub-Saharan Africa is greatly influenced by major western boundary currents of the Indian Ocean, Agulhas Current and the Somali Current (for six months of the year), and the major eastern boundary upwelling current systems of the Atlantic Ocean, with their concomitant nu-trient rich upwelling ecosystems which support large fisheries: the Benguela Upwelling System and the Canary Upwelling System. The location of the tip of placecountry-regionSouth Africa is unique in the world oceans, since it is such the only place where a warm western boundary current can interact with a cold upwelling ecosystem. In addition, the Agulhas Current is unique in that it retroflects 80% of its large volume flux back into the placeIndian Ocean. The interocean transport of warm thermocline water from the Indian to the placeAtlantic ocean is of global importance. Satellite observations of temperature, chlorophyll, sea surface height, and wind and waves have elucidated many of these first order processes. Numerical ocean models forced and constrained by satellite measurements are being increasingly used to place operational oceanography on a sound footing. Partnerships with African and northern hemisphere collaborators (e.g. the new Norwegian Nansen-Tutu Centre for Marine Research, PlaceNamePrinceton PlaceTypeUniversity) will enhance operational oceanography around placeAfrica to the benefit of all its inhabitants. All of the above aspects will be discussed, with specific examples of local innovative space borne techniques.

  3. Introduction to "Tsunami Science: Ten Years After the 2004 Indian Ocean Tsunami. Volume I"

    Science.gov (United States)

    Rabinovich, Alexander B.; Geist, Eric L.; Fritz, Hermann M.; Borrero, Jose C.

    2015-03-01

    Twenty-two papers on the study of tsunamis are included in Volume I of the PAGEOPH topical issue "Tsunami Science: Ten Years after the 2004 Indian Ocean Tsunami." Eight papers examine various aspects of past events with an emphasis on case and regional studies. Five papers are on tsunami warning and forecast, including the improvement of existing tsunami warning systems and the development of new warning systems in the northeast Atlantic and Mediterranean region. Three more papers present the results of analytical studies and discuss benchmark problems. Four papers report the impacts of tsunamis, including the detailed calculation of inundation onshore and into rivers and probabilistic analysis for engineering purposes. The final two papers relate to important investigations of the source and tsunami generation. Overall, the volume not only addresses the pivotal 2004 Indian Ocean (Sumatra) and 2011 Japan (Tohoku) tsunamis, but also examines the tsunami hazard posed to other critical coasts in the world.

  4. Ocean acidification and calcium carbonate saturation states in the coastal zone of the West Antarctic Peninsula

    NARCIS (Netherlands)

    Jones, E.M.; Fenton, M.; Meredith, M.P.; Clargo, N.M.; Ossebaar, S.; Ducklow, H.W.; Venables, H.J.; De Baar, H.J.W.

    2017-01-01

    The polar oceans are particularly vulnerable to ocean acidification; the lowering of seawater pH and carbonate mineral saturation states due to uptake of atmospheric carbon dioxide (CO2). High spatial variability in surface water pH and saturation states (Ω) for two biologically-important calcium

  5. Ocean acidification and calcium carbonate saturation states in the coastal zone of the West Antarctic Peninsula

    NARCIS (Netherlands)

    Jones, Elizabeth M.; Fenton, Mairi; Meredith, Michael P.; Clargo, Nicola M.; Ossebaar, Sharyn; Ducklow, Hugh W.; Venables, Hugh J.; de Baar, Henricus

    The polar oceans are particularly vulnerable to ocean acidification; the lowering of seawater pH and carbonate mineral saturation states due to uptake of atmospheric carbon dioxide (CO2). High spatial variability in surface water pH and saturation states (Omega) for two biologically-important

  6. Ocean Carbon and Biogeochemistry Scoping Workshop on Terrestrial and Coastal Carbon Fluxes in the Gulf of Mexico, St. Petersburg, FL

    Science.gov (United States)

    Robbins, L. L.; Coble, P. G.; Clayton, T. D.; Cai, W. J.

    2008-01-01

    Despite their relatively small surface area, ocean margins may have a significant impact on global biogeochemical cycles and, potentially, the global air-sea fluxes of carbon dioxide. Margins are characterized by intense geochemical and biological processing of carbon and other elements and exchange large amounts of matter and energy with the open ocean. The area-specific rates of productivity, biogeochemical cycling, and organic/inorganic matter sequestration are high in coastal margins, with as much as half of the global integrated new production occurring over the continental shelves and slopes (Walsh, 1991; Doney and Hood, 2002; Jahnke, in press). However, the current lack of knowledge and understanding of biogeochemical processes occurring at the ocean margins has left them largely ignored in most of the previous global assessments of the oceanic carbon cycle (Doney and Hood, 2002). A major source of North American and global uncertainty is the Gulf of Mexico, a large semi-enclosed subtropical basin bordered by the United States, Mexico, and Cuba. Like many of the marginal oceans worldwide, the Gulf of Mexico remains largely unsampled and poorly characterized in terms of its air-sea exchange of carbon dioxide and other carbon fluxes. The goal of the workshop was to bring together researchers from multiple disciplines studying terrestrial, aquatic, and marine ecosystems to discuss the state of knowledge in carbon fluxes in the Gulf of Mexico, data gaps, and overarching questions in the Gulf of Mexico system. The discussions at the workshop were intended to stimulate integrated studies of marine and terrestrial biogeochemical cycles and associated ecosystems that will help to establish the role of the Gulf of Mexico in the carbon cycle and how it might evolve in the face of environmental change.

  7. Modelling shelf-ocean exchange and its biogeochemical consequences in coastal upwelling systems

    DEFF Research Database (Denmark)

    Muchamad, Al Azhar

    slope and deeper depths. The coupled model may potentially serve as a robust tool in investigation of the dynamics of oceanic biogeochemical cycle throughout Earth history as well as a practical method to quantified storage of carbon flux into the ocean across the continental margins under present day...... in eastern boundary upwelling systems is an example of the most productive ocean waters over continental margins where intense supply of nutrients occur from deeper ocean waters. Interesting questions arise related to the biogeochemical cycles in such upwelling systems; such as 1) how the recently observed...... active but cryptic sulfur cycle possibly is coupled to the nitrogen cycle in an oxygen-minimum-zone (OMZ), 2) what is the relation between the shelf–ocean exchange, continental shelf width and development of the observed bottom water anoxia/euxinia associated with different configurations of continental...

  8. Impact of Argo Observation on the Regional Ocean Reanalysis of China Coastal Waters and Adjacent Seas: A Twin-Experiment Study

    OpenAIRE

    Caixia Shao; Lili Xuan; Yingzhi Cao; Xiaojian Cui; Siyu Gao

    2015-01-01

    A regional ocean reanalysis system of China coastal waters and adjacent seas, called CORA (China ocean reanalysis), has been recently developed at the National Marine Data and Information Service (NMDIS). In this study, based on CORA, the impact of Argo profiles on the regional reanalysis is evaluated using a twin-experiment approach. It is found that, by assimilating Argo observations, the reanalysis quality is much improved: the root mean square (RMS) error of temperature and salinity can b...

  9. Using Radium Isotopes to Evaluate Cross-shelf Dispersion in the Coastal Ocean: Application to San Pedro Bay, CA

    Science.gov (United States)

    Colbert, S. L.; Hammond, D. E.

    2004-12-01

    The short-lived radium isotopes Ra-223 (11 day half life) and Ra-224 (3.6 day half-life) are potentially useful for evaluating cross-shelf dispersion rates in the coastal ocean. A requirement for this application is that their source function and its variability in time and space must be defined. The primary mechanisms for introducing radium into coastal surface waters include: (1) wave and tide-driven circulation of water through permeable beach sands, (2) input from the seafloor due to molecular diffusion and circulation of bottom water through surficial sands, (3) flow of water rich in Ra from marshes and estuaries, and (4) net advection of groundwater. The importance of these inputs to San Pedro Bay was determined from concentrations in waters collected from each of these potential sources. In most of the region, mechanism (2) supplies 90% of the input, although mechanisms (1) and (2) may become dominant locally as the coastal morphology varies in the longshore direction. Longshore variations in the composition of beach sand and the presence of persistent coastal eddies create longshore gradients in Ra concentration that are significant in this region. Temporal variations in shoreline concentrations on time scales 6-8 hours reflect variations in mechanism (1) as tides rise and fall, with drainage of water from the beach face creating higher concentrations during the falling tide. Despite these complications in characterizing the source function, the distribution of short-lived Ra isotopes is useful in constraining the rate of horizontal mixing. A two-dimensional advection-diffusion model was best fit with an eddy diffusivity of 1.3+/-0.2 m2/s over length scales of several km offshore, with a value about 50% smaller in the littoral zone. The scale dependence of eddy diffusivity is also apparent in the distribution of Ra-228, which requires lower eddy diffusivities in the nearshore than in the offshore region. A budget for Ra-226 indicates that little groundwater

  10. Bacterial production and microbial food web structure in a large arctic river and the coastal Arctic Ocean

    Science.gov (United States)

    Vallières, Catherine; Retamal, Leira; Ramlal, Patricia; Osburn, Christopher L.; Vincent, Warwick F.

    2008-12-01

    Globally significant quantities of organic carbon are stored in northern permafrost soils, but little is known about how this carbon is processed by microbial communities once it enters rivers and is transported to the coastal Arctic Ocean. As part of the Arctic River-Delta Experiment (ARDEX), we measured environmental and microbiological variables along a 300 km transect in the Mackenzie River and coastal Beaufort Sea, in July-August 2004. Surface bacterial concentrations averaged 6.7 × 10 5 cells mL - 1 with no significant differences between sampling zones. Picocyanobacteria were abundant in the river, and mostly observed as cell colonies. Their concentrations in the surface waters decreased across the salinity gradient, dropping from 51,000 (river) to 30 (sea) cells mL - 1 . There were accompanying shifts in protist community structure, from diatoms, cryptophytes, heterotrophic protists and chrysophytes in the river, to dinoflagellates, prymnesiophytes, chrysophytes, prasinophytes, diatoms and heterotrophic protists in the Beaufort Sea. Size-fractionated bacterial production, as measured by 3H-leucine uptake, varied from 76 to 416 ng C L - 1 h - 1 . The contribution of particle-attached bacteria (> 3 µm fraction) to total bacterial production decreased from > 90% at the Mackenzie River stations to importance of this particle-based fraction was inversely correlated with salinity and positively correlated with particulate organic carbon concentrations. Glucose enrichment experiments indicated that bacterial metabolism was carbon limited in the Mackenzie River but not in the coastal ocean. Prior exposure of water samples to full sunlight increased the biolability of dissolved organic carbon (DOC) in the Mackenzie River but decreased it in the Beaufort Sea. Estimated depth-integrated bacterial respiration rates in the Mackenzie River were higher than depth-integrated primary production rates, while at the marine stations bacterial respiration rates were near or

  11. The Rocky Shore. A Learning Experience for Coastal and Oceanic Awareness Studies, No. 225. [Project COAST].

    Science.gov (United States)

    Delaware Univ., Newark. Coll. of Education.

    This unit is designed to be used by students in biology classes in secondary schools. Emphasized in the unit are coastal life zones, plants and animals that live in these areas, and factors influencing the lives of the organisms. Included in the unit are evaluation materials, instructional objectives, student background information, masters for…

  12. Influences of riverine and upwelling waters on the coastal carbonate system off Central Chile and their ocean acidification implications

    Science.gov (United States)

    Vargas, Cristian A.; Contreras, Paulina Y.; Pérez, Claudia A.; Sobarzo, Marcus; Saldías, Gonzalo S.; Salisbury, Joe

    2016-06-01

    A combined data set, combining data from field campaigns and oceanographic cruises, was used to ascertain the influence of both river discharges and upwelling processes, covering spatial and temporal variation in dissolved inorganic carbon (DIC) and aragonite saturation state. This work was conducted in one of the most productive river-influenced upwelling areas in the South Pacific coasts (36°S). Additionally, further work was also conducted to ascertain the contribution of different DIC sources, influencing the dynamics of DIC along the land-ocean range. Six sampling campaigns were conducted across seven stations at the Biobío River basin, covering approximately 200 km. Three research cruises were undertaken simultaneously, covering the adjacent continental shelf, including 12 sampling stations for hydrographic measurements. Additionally, six stations were also sampled for chemical analyses, covering summer, winter, and spring conditions over 2010 and 2011. Our results evidenced that seaward extent of the river plume was more evident during the winter field campaign, when highest riverine DIC fluxes were observed. The carbonate system along the river-ocean continuum was very heterogeneous varying over spatial and temporal scales. High DIC and pCO2 were observed in river areas with larger anthropogenic effects. CO2 supersaturation at the river plume was observed during all campaigns due to the influence of low pH river waters in winter/spring and high-pCO2 upwelling waters in summer. δ13CDIC evidenced that main DIC sources along the river and river plume corresponded to the respiration of terrestrial organic matter. We have linked this natural process to the carbonate saturation on the adjacent river-influenced coastal area, suggesting that Ωaragonite undersaturation in surface/subsurface waters is largely modulated by the influence of both river discharge and coastal upwelling events in this productive coastal area. Conditions of low Ωaragonite might impact

  13. Gulf of Mexico Coastal and Ocean Zones Strategic Assessment: Data Atlas 1985 (NODC Accession 0126646)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlas contains metadata and shape files of 18 different species in the Gulf of Mexico as of 1985. The shapefiles display the spatial and temporal distribution of...

  14. The Growing Human Footprint on Coastal and Open-Ocean Biogeochemistry

    National Research Council Canada - National Science Library

    Scott C. Doney

    2010-01-01

    Climate change, rising atmospheric carbon dioxide, excess nutrient inputs, and pollution in its many forms are fundamentally altering the chemistry of the ocean, often on a global scale and, in some...

  15. Coastal Atmospheric-Oceanic Coupled System (CAOCS) for the South China Sea (SCS)-A Modeling Component of the International South China Sea Monsoon Experiment (SCSMEX)

    Science.gov (United States)

    2016-06-07

    determining the open boundary conditions of coastal models. (8) We validated the P-vector inverse method using MOM model and observational data. (9...Chu, “Oceanic responses to gradual transitions of equator-to- pole temperature gradients,” Quarterly Journal of the Royal Meteorological Society, 124

  16. Assimilation of HF Radar Observations in the Chesapeake-Delaware Bay Region Using the Navy Coastal Ocean Model (NCOM) and the Four-Dimensional Variational (4DVAR) Method

    Science.gov (United States)

    2015-01-01

    Forget G, Kohl A, Terrill E. Assessing 40 -VAR for dynamical mapping of coastal high-frequency radar in San Diego . Dyn Allnos Oceans 2009;48:175-97...Mon Weather Rev 20 14;142(4): 1509- 24. 10. Roarty H, Glenn S, Kohut J, Gong D, Handel E, Rivera E, et at. Operation and applica- tion of a regional

  17. Sheltered coastal environments as archives of paleo-tsunami deposits: Observations from the 2004 Indian Ocean tsunami

    Science.gov (United States)

    Andrade, Vanessa; Rajendran, Kusala; Rajendran, C. P.

    2014-12-01

    The 2004 earthquake left several traces of coseismic land deformation and tsunami deposits, both on the islands along the plate boundary and distant shores of the Indian Ocean rim countries. Researchers are now exploring these sites to develop a chronology of past events. Where the coastal regions are also inundated by storm surges, there is an additional challenge to discriminate between the deposits formed by these two processes. Paleo-tsunami research relies largely on finding deposits where preservation potential is high and storm surge origin can be excluded. During the past decade of our work along the Andaman and Nicobar Islands and the east coast of India, we have observed that the 2004 tsunami deposits are best preserved in lagoons, inland streams and also on elevated terraces. Chronological evidence for older events obtained from such sites is better correlated with those from Thailand, Sri Lanka and Indonesia, reiterating their usefulness in tsunami geology studies.

  18. Ubiquitous dissolved inorganic carbon assimilation by marine bacteria in the Pacific Northwest coastal ocean as determined by stable isotope probing.

    Directory of Open Access Journals (Sweden)

    Suzanne DeLorenzo

    Full Text Available In order to identify bacteria that assimilate dissolved inorganic carbon (DIC in the northeast Pacific Ocean, stable isotope probing (SIP experiments were conducted on water collected from 3 different sites off the Oregon and Washington coasts in May 2010, and one site off the Oregon Coast in September 2008 and March 2009. Samples were incubated in the dark with 2 mM (13C-NaHCO(3, doubling the average concentration of DIC typically found in the ocean. Our results revealed a surprising diversity of marine bacteria actively assimilating DIC in the dark within the Pacific Northwest coastal waters, indicating that DIC fixation is relevant for the metabolism of different marine bacterial lineages, including putatively heterotrophic taxa. Furthermore, dark DIC-assimilating assemblages were widespread among diverse bacterial classes. Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes dominated the active DIC-assimilating communities across the samples. Actinobacteria, Betaproteobacteria, Deltaproteobacteria, Planctomycetes, and Verrucomicrobia were also implicated in DIC assimilation. Alteromonadales and Oceanospirillales contributed significantly to the DIC-assimilating Gammaproteobacteria within May 2010 clone libraries. 16S rRNA gene sequences related to the sulfur-oxidizing symbionts Arctic96BD-19 were observed in all active DIC assimilating clone libraries. Among the Alphaproteobacteria, clones related to the ubiquitous SAR11 clade were found actively assimilating DIC in all samples. Although not a dominant contributor to our active clone libraries, Betaproteobacteria, when identified, were predominantly comprised of Burkholderia. DIC-assimilating bacteria among Deltaproteobacteria included members of the SAR324 cluster. Our research suggests that DIC assimilation is ubiquitous among many bacterial groups in the coastal waters of the Pacific Northwest marine environment and may represent a significant metabolic process.

  19. Effects of Sand Dune and Vegetation in the Coastal Area of Sri Lanka at the Indian Ocean Tsunami

    Science.gov (United States)

    Tanaka, Norio; Sasaki, Yasushi; Mowjood, M. I. M.

    This study explored the effects of coastal vegetation and sand dune on tsunami protection based on field observations carried out after the Indian Ocean tsunami on December 26, 2004. The representative vegetation was classified into six types according to their habitat and the stand structures of the trees. The impact of vegetation structure on drag forces was analyzed using the observed characteristics of the tree species. The drag coefficient, including the vertical stand structures of the trees, Cd-all, and the vegetation thickness in a unit area, dNu (d: reference diameter of trees, Nu: number of trees per unit area), varied greatly with the species classification. Based on the field survey and data analysis, Rhizophora apiculata and Rhizophora mucronata (Rhizophora apiculata-type), kinds of mangroves, and Pandanus odoratissimus, representative tree that grows in beach sand, were found to be especially effective in providing protection from tsunami-damage due to their complex aerial root structures. The breaking moment of the trees was investigated through a pulling test for the representative trees. The threshold value for breaking moment was compared to the drag-force moment acting on the trees located at the tsunami-damaged site. The breaking moment equation represents well the limitation of the representative species with the tsunami height. It arrives at a hypothesis about which species could better withstand the effects of a tsunami wave. Sand dune and lagoon is a typical landscape in most part of the coastal zone of Sri Lanka. The combination of the sand dune followed by vegetation toward landside played an important role in retarding tsunami. Two layers of forest in the vertical direction with P. odoratissimus and Casuarina equisetifolia and a horizontal forest structure of small and large diameter trees were also important for increasing drag, trapping floating objects, broken branches, houses, and people. These information should be considered in

  20. Metal release from contaminated coastal sediments under changing pH conditions: Implications for metal mobilization in acidified oceans.

    Science.gov (United States)

    Wang, Zaosheng; Wang, Yushao; Zhao, Peihong; Chen, Liuqin; Yan, Changzhou; Yan, Yijun; Chi, Qiaoqiao

    2015-12-30

    To investigate the impacts and processes of CO2-induced acidification on metal mobilization, laboratory-scale experiments were performed, simulating the scenarios where carbon dioxide was injected into sediment-seawater layers inside non-pressurized chambers. Coastal sediments were sampled from two sites with different contamination levels and subjected to pre-determined pH conditions. Sediment samples and overlying water were collected for metal analysis after 10-days. The results indicated that CO2-induced ocean acidification would provoke increased metal mobilization causing adverse side-effects on water quality. The mobility of metals from sediment to the overlying seawater was correlated with the reduction in pH. Results of sequential extractions of sediments illustrated that exchangeable metal forms were the dominant source of mobile metals. Collectively, our data revealed that high metal concentrations in overlying seawater released from contaminated sediments under acidic conditions may strengthen the existing contamination gradients in Maluan Bay and represent a potential risk to ecosystem health in coastal environments.

  1. Near-coastal ocean variability off southern Tamaulipas - northern Veracruz, western Gulf of Mexico, during spring-summer 2013

    Science.gov (United States)

    Rivas, David

    2016-04-01

    Six months of observations from a near-coastal mooring deployed off southern Tamaulipas-northern Veracruz coast (western Gulf of Mexico) during spring-summer 2013 provides velocity, temperature, salinity, sea level, and dissolved oxygen series in a region which ocean dynamics is still poorly understood. As shown in a preceding analysis of this region's winter circulation for winter 2012-2013, coastal trapped motions associated with the regional invasion of synoptic cold fronts modulate the local variability; this pattern remains in the spring 2013, when even more intense events of alongshore flow (>50 cm/s) are observed. This intensified flow is associated with a significant decrease in the dissolved oxygen, most probably related to an influence of hypoxic waters coming from the northern Gulf. In late spring-mid summer, the wind pattern corresponds to persistent southeasterly winds that favor the occurrence of a local upwelling, which maintains a local thermal reduction (>3 degrees Celsius) and is associated with a persistent northward flow (>30 cm/s). The late summer was characterized by a significant tropical-cyclone activity, when a depression, a storm, and a hurricane affected the western Gulf. These tropical systems caused an intense precipitation and hence an important intensification of the local riverine discharge, and the winds enhanced the mixing of such riverine waters, via mostly kinetic stirring and Ekman pumping.

  2. Analysis of Reynolds stress budgets in LES of Langmuir supercells under crosswind currents in a coastal ocean

    Science.gov (United States)

    Tejada-Martinez, Andres; Zhang, Jie

    2016-11-01

    Langmuir supercells (LSCs) in coastal oceans consist of parallel counter rotating vortices engulfing the water column in unstratified conditions. These cells have been observed in continental shelf regions 15-30 meters deep during the passage of storms. LSCs are aligned roughly in the wind direction and are generated via interaction of the wind-driven shear current and Stokes drift velocity induced by surface gravity waves. LSCs have been determined to be an important contributor to the suspension of sediments and their overall transport across shelves. It has also been shown that tidal forcing distorts and weakens LSCs, inhibiting their potential for sediment suspension. Large-eddy simulations of LSCs in flows driven by a surface wind stress and a constant crosswind pressure gradient (representative of crosswind tidal forcing) have been performed. Although a crosswind tidal current stronger than the wind-driven current is able to break up the LSCs giving rise to smaller scale, weaker Langmuir cells (LCs), analysis of Reynolds shear stress budgets reveals that non-local transport remains significant relative to flow without LCs. This demonstrates the need for a non-local transport term in Reynolds shear stress and turbulent scalar flux closures for coastal flows with LCs. Support from the US National Science Foundation and the Gulf of Mexico Research Initiative is gratefully acknowledged.

  3. Spectral Classification of the Yellow Sea and Implications for Coastal Ocean Color Remote Sensing

    Directory of Open Access Journals (Sweden)

    Huping Ye

    2016-04-01

    Full Text Available Remote sensing reflectance (Rrs classification of coastal waters is a useful tool to monitor environmental processes and manage marine environmental resources. This study presents classification work for data sets that were collected in the Yellow Sea during six cruises (spring and autumn, 2003; summer and winter, 2006/2007; and spring and autumn, 2007. Specifically, we analyzed classification features of Rrs spectra and obtained spatio-temporal characteristics of reflectance and bio-optical properties in the coastal waters. Yellow Sea waters were classified into the following four typical regions based on their spatial distribution characteristics: middle of the Yellow Sea (MYS, north Yellow Sea (NYS, coastal Shandong (CS, and Jiangsu shoal (JS, and five water type categories consisting of Classes A–E were used to represent water colors from clear to very turbid. Application of this classification scheme to Medium Resolution Imaging Spectrometer (MERIS imagery revealed seasonal variations in the data, which suggests that the water types have both significant temporal and spatial distributions. In particular, the area of Class E waters in the Jiangsu shoal tended to gradually shrink in summer and expand in winter. The spatio-temporal variability was due to the influence of various environmental factors such as currents, tidal activity, fresh water discharges, monsoon winds, and typhoons.

  4. California cooperative oceanic fisheries investigations. Reports volume 37, January 1--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Olfe, J. [ed.

    1996-10-01

    Scientists from the California Department of Fish and Game (CDFG), the Southwest Fisheries Science Center of the National Marine Fisheries Service (NMFS), and the Scripps Institution of Oceanography, University of California, San Diego (UCSD), have collaborated for 46 years in the longest-running large-scale study ever undertaken in the ocean. This study was begun in order to understand the causes of changes in population, over time, of commercially important fishes in California`s coastal waters. When the study began, the Pacific sardine was by far the most significant species of economic concern to the State of California. Because its population changes were thought to be caused by a diversity of atmospheric, oceanic, and biological variables, a wide array of measurements in the California Current region were begun and have been continued to this day. This long time series of data allows not only a better understanding of the flux of fish populations, but also lays the foundation for understanding interdecadal and secular change in the seas. This document contains papers from symposium of the 1995 CalCOFI Conference related to interdecadal changes in the ecology of the California current.

  5. A Comparative Analysis of Coastal and Open-Ocean Records of the Great Chilean Tsunamis of 2010, 2014 and 2015 off the Coast of Mexico

    Science.gov (United States)

    Zaytsev, Oleg; Rabinovich, Alexander B.; Thomson, Richard E.

    2016-12-01

    The three great earthquakes off the coast of Chile on 27 February 2010 (Maule, M w 8.8), 1 April 2014 (Iquique, M w 8.2) and 16 September 2015 (Illapel, M w 8.3) generated major transoceanic tsunamis that spread throughout the Pacific Ocean and were measured by numerous coastal tide gauges and open-ocean DART stations. Statistical and spectral analyses of the tsunami waves from the events recorded on the Pacific coast of Mexico enabled us to estimate parameters of the waves along the coast and to compare statistical features of the events. We also identified three coastal "hot spots" (sites having maximum tsunami risk): Puerto Angel, Puerto Madero and Manzanillo. Based on the joint spectral analyses of the tsunamis and background noise, we have developed a method for using coastal observations to determine the underlying spectrum of tsunami waves in the deep ocean. The "reconstructed" open-ocean tsunami spectra are in close agreement with the actual tsunami spectra evaluated from direct analysis of the DART records offshore of Mexico. We have further used the spectral estimates to parameterize the energy of the three Chilean tsunamis based on the total open-ocean tsunami energy and frequency content of the individual events.

  6. Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification.

    Science.gov (United States)

    Kwiatkowski, Lester; Gaylord, Brian; Hill, Tessa; Hosfelt, Jessica; Kroeker, Kristy J; Nebuchina, Yana; Ninokawa, Aaron; Russell, Ann D; Rivest, Emily B; Sesboüé, Marine; Caldeira, Ken

    2016-03-18

    Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Ω arag), with potentially substantial impacts on marine ecosystems over the 21(st) Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Ω arag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Ω arag. If the short-term sensitivity of community calcification to Ω arag is representative of the long-term sensitivity to ocean acidification, nighttime dissolution in these intertidal ecosystems could more than double by 2050, with significant ecological and economic consequences.

  7. Origins of wind-driven intraseasonal sea level variations in the North Indian Ocean coastal waveguide

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, I.; Vialard, J.; Lengaigne, M.; Han, W.; McCreary, J.P.; Durand, F.; Muraleedharan, P.M.

    over the 30°S−30°N, 30°E−110°E domain, with a coastline determined from the 200-m isobath. The model is forced by intraseasonal (20−150-day filtered) daily QuikSCAT wind-stresses (available from http://cersat/ifremer.fr/data/) from August, 1999... to October, 2009. Several studies indicate that this wind-stress product yields a realistic intraseasonal oceanic response in the equatorial Indian Ocean [e.g., Sengupta et al., 2007; Nagura and McPhaden, 2012]. We show results obtained using 5 baroclinic...

  8. Atmospheric Correction and Vicarious Calibration of Oceansat-1 Ocean Color Monitor (OCM Data in Coastal Case 2 Waters

    Directory of Open Access Journals (Sweden)

    Sherwin Ladner

    2012-06-01

    Full Text Available The Ocean Color Monitor (OCM provides radiance measurements in eight visible and near-infrared bands, similar to the Sea-viewing Wide Field-of-View Sensor (SeaWiFS but with higher spatial resolution. For small- to moderate-sized coastal lakes and estuaries, where the 1 × 1 km spatial resolution of SeaWiFS is inadequate, the OCM provides a good alternative because of its higher spatial resolution (240 × 360 m and an exact repeat coverage of every two days. This paper describes a detailed step-by-step atmospheric correction procedure for OCM data applicable to coastal Case 2 waters. This development was necessary as accurate results could not be obtained for our Case 2 water study area in coastal Louisiana with OCM data by using existing atmospheric correction software packages. In addition, since OCM-retrieved radiances were abnormally low in the blue wavelength region, a vicarious calibration procedure was developed. The results of our combined vicarious calibration and atmospheric correction procedure for OCM data were compared with the results from the SeaWiFS Data Analysis System (SeaDAS software package outputs for SeaWiFS and OCM data. For Case 1 waters, our results matched closely with SeaDAS results. For Case 2 waters, our results demonstrated closure with in situ radiometric measurements, while SeaDAS produced negative normalized water leaving radiance (nLw and remote sensing reflectance (Rrs. In summary, our procedure resulted in valid nLw and Rrs values for Case 2 waters using OCM data, providing a reliable method for retrieving useful nLw and Rrs values which can be used to develop ocean color algorithms for in-water substances (e.g., pigments, suspended sediments, chromophoric dissolved organic matter, etc. at relatively high spatial resolution in regions where

  9. Eddies on the boundary between the Kuroshio current and coastal waters observed by HF ocean surface radar

    Science.gov (United States)

    Nadai, A.

    2016-02-01

    The HF ocean surface radar (HFOSR) is one of the powerful tools to measure the ocean current parameters like surface currents. Three observations of the Kuroshio current in the Tokara straight using HFOSR had done by the National Institute of Information and Comunications Technology (NICT: the former name is the Communications Research Laboratory). The first-order echoes on Doppler spectra of HFOSR shows broaden and splitting shape in the region of the border between the Kuroshio currents and coastal waters. The surface velocity maps show the existence of eddy on the border. The investigation of the mechanism of broadening first order-echoes by Nadai (2006) revealed that the modulation of wave fields from surface currents like eddy is the cause of broadening and the measured current fields also influenced the modulated wave fields. Moreover, Nadai (2006) also suggested that the influence is able to reduce using the average of two radial velocities extracted by the first-order echoes. In this paper, the results of current field observation around the border between the Kuroshio current and coastal waters are presented. Many small scale eddies are observed at the border of the Kuroshio current and coastal waters. The typical radius of the eddies is about 10km. Usury the observation of such a small scale eddy is difficult, but the eddies with same scale are observed by airborne synthetic aperture radar in the same area at different time. The eddies shows strong rotation as the typical tangential speed is about 1m/s. While the typical speed of the Kuroshio current is about 1.5m/s, the typical speed of the eddy movements is about 0.7m/s. No eddies generated in the radar coverage, but one or two eddies entered in the radar coverage a day. Therefore the origin of these eddies will exist in the upstream area of the radar coverage. Using the compensation method for the influence of the modulated wave field suggested by Nadai (2006), the eddies shows weak divergence. It is

  10. A quantitative genetic approach to assess the evolutionary potential of a coastal marine fish to ocean acidification

    Science.gov (United States)

    Malvezzi, Alex J; Murray, Christopher S; Feldheim, Kevin A; DiBattista, Joseph D; Garant, Dany; Gobler, Christopher J; Chapman, Demian D; Baumann, Hannes

    2015-01-01

    Assessing the potential of marine organisms to adapt genetically to increasing oceanic CO2 levels requires proxies such as heritability of fitness-related traits under ocean acidification (OA). We applied a quantitative genetic method to derive the first heritability estimate of survival under elevated CO2 conditions in a metazoan. Specifically, we reared offspring, selected from a wild coastal fish population (Atlantic silverside, Menidia menidia), at high CO2 conditions (∼2300 μatm) from fertilization to 15 days posthatch, which significantly reduced survival compared to controls. Perished and surviving offspring were quantitatively sampled and genotyped along with their parents, using eight polymorphic microsatellite loci, to reconstruct a parent–offspring pedigree and estimate variance components. Genetically related individuals were phenotypically more similar (i.e., survived similarly long at elevated CO2 conditions) than unrelated individuals, which translated into a significantly nonzero heritability (0.20 ± 0.07). The contribution of maternal effects was surprisingly small (0.05 ± 0.04) and nonsignificant. Survival among replicates was positively correlated with genetic diversity, particularly with observed heterozygosity. We conclude that early life survival of M. menidia under high CO2 levels has a significant additive genetic component that could elicit an evolutionary response to OA, depending on the strength and direction of future selection. PMID:25926880

  11. A quantitative genetic approach to assess the evolutionary potential of a coastal marine fish to ocean acidification.

    Science.gov (United States)

    Malvezzi, Alex J; Murray, Christopher S; Feldheim, Kevin A; DiBattista, Joseph D; Garant, Dany; Gobler, Christopher J; Chapman, Demian D; Baumann, Hannes

    2015-04-01

    Assessing the potential of marine organisms to adapt genetically to increasing oceanic CO2 levels requires proxies such as heritability of fitness-related traits under ocean acidification (OA). We applied a quantitative genetic method to derive the first heritability estimate of survival under elevated CO2 conditions in a metazoan. Specifically, we reared offspring, selected from a wild coastal fish population (Atlantic silverside, Menidia menidia), at high CO2 conditions (∼2300 μatm) from fertilization to 15 days posthatch, which significantly reduced survival compared to controls. Perished and surviving offspring were quantitatively sampled and genotyped along with their parents, using eight polymorphic microsatellite loci, to reconstruct a parent-offspring pedigree and estimate variance components. Genetically related individuals were phenotypically more similar (i.e., survived similarly long at elevated CO2 conditions) than unrelated individuals, which translated into a significantly nonzero heritability (0.20 ± 0.07). The contribution of maternal effects was surprisingly small (0.05 ± 0.04) and nonsignificant. Survival among replicates was positively correlated with genetic diversity, particularly with observed heterozygosity. We conclude that early life survival of M. menidia under high CO2 levels has a significant additive genetic component that could elicit an evolutionary response to OA, depending on the strength and direction of future selection.

  12. A quantitative genetic approach to assess the evolutionary potential of a coastal marine fish to ocean acidification

    KAUST Repository

    Malvezzi, Alex J.

    2015-02-01

    Assessing the potential of marine organisms to adapt genetically to increasing oceanic CO2 levels requires proxies such as heritability of fitness-related traits under ocean acidification (OA). We applied a quantitative genetic method to derive the first heritability estimate of survival under elevated CO2 conditions in a metazoan. Specifically, we reared offspring, selected from a wild coastal fish population (Atlantic silverside, Menidia menidia), at high CO2 conditions (~2300 μatm) from fertilization to 15 days posthatch, which significantly reduced survival compared to controls. Perished and surviving offspring were quantitatively sampled and genotyped along with their parents, using eight polymorphic microsatellite loci, to reconstruct a parent-offspring pedigree and estimate variance components. Genetically related individuals were phenotypically more similar (i.e., survived similarly long at elevated CO2 conditions) than unrelated individuals, which translated into a significantly nonzero heritability (0.20 ± 0.07). The contribution of maternal effects was surprisingly small (0.05 ± 0.04) and nonsignificant. Survival among replicates was positively correlated with genetic diversity, particularly with observed heterozygosity. We conclude that early life survival of M. menidia under high CO2 levels has a significant additive genetic component that could elicit an evolutionary response to OA, depending on the strength and direction of future selection.

  13. Bacterioplankton abundance and production and nanozooplankton abundance in Kenyan coastal waters (Western Indian Ocean)

    NARCIS (Netherlands)

    Goosen, N.K.; Van Rijswijk, P.; De Bie, M.J.M.; Peene, J.; Kromkamp, J.C.

    1997-01-01

    Bacterial abundance, [H-3]thymidine incorporation rate and heterotrophic nanoflagellate abundance were measured in the water column along transects perpendicular to the Kenyan coast (western Indian Ocean) during June-July (SE monsoon) and November-December (intermonsoon) 1992. Bacterial abundance wa

  14. Coastal sea level response to the tropical cyclonic forcing in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Mehra, P.; Soumya, M.; Vethamony, P.; Vijaykumar, K.; Nair, T.M.B.; Agarvadekar, Y.; Jyoti, K.; Sudheesh, K.; Luis, R.; Lobo; Halmalkar, B.

    . M. Balakrishnan Nair2, Y. Agarvadekar1, K. Jyoti1, K. Sudheesh1, R. Luis1, S. Lobo1, and B. Harmalkar1 1CSIR-National Institute of Oceanography (NIO), Goa, India 2Indian National Centre for Ocean Information Services (INCOIS), Hyderabad, India...

  15. Arabian Sea upwelling - A comparison between coastal and open ocean regions

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; PrasannaKumar, S.

    , the cross-shore component is instrumental in modifying the density structure of the surface layer, especially in the north, to produce retarding effect. In open ocean, the wind maximum around 17 degrees N and 64 degrees E indicates the axis of the Findlater...

  16. How Is Coastal Temperature Influenced by the Great Lakes and the Ocean?

    Science.gov (United States)

    Fortner, Rosanne W.; Mayer, Victor J.

    2009-01-01

    The ocean is a major influence on weather and climate. With this set of lessons, middle school Earth systems science teachers can help their students build an understanding of how large bodies of water can serve as a heat source or sink at different times and how proximity to water moderates climate along the coast. The activity's combination of…

  17. Effects of Ocean Climate on Transboundary Movement of Coastal Pelagic Resources Between the EEZs of Mexico and the United States

    Science.gov (United States)

    Baumgartner, T. R.; Garcia, J.; Sanchez, C.; Lo, N. C.; Charter, R.

    2007-05-01

    Interannual to multidecadal changes in ocean climate directly impact access to transboundary coastal pelagic resources between fisheries operating in U.S. and Mexican waters. This study provides a preliminary analysis of the scale of year-to-year shifts in the distribution of the Pacific sardine (Sardinops sagax caeruleus) with data from 2002 and 2003. One of the purposes of this initiative is to provide a template for collaborative research to guide regional policy development for responsible and sustainable utilization of the shared resource. This work is based on coordinated quarterly ocean surveys run by Mexican (the IMECOCAL program=Investigaciones Mexicanas de la Corriente de California) and U.S. scientists (the CalCOFI program=California Cooperative Oceanic Fisheries Investigations) allowing us to evaluate the annual state of the pelagic ecosystem from northern California to southern Baja California. The subject of this study is the "subarctic stock" of the Pacific sardine which is centered off California in the U.S. and extends southwards to the region off central Baja California. Estimates of sardine biomass in U.S. and Mexican waters, based on the rates of egg production measured during the IMECOCAL and CalCOFI surveys of April 2002 and April 2003, show order of magnitude differences in the relative proportions of biomass in the Mexican EEZ that is associated with the contrasts in ocean climate resulting from the regional effects of El Niño during April 2003. Results indicate a significant northward shift of the sardine stock off Mexico during 2003: we estimate that approximately 20 percent of the total biomass of the stock was located in the Mexican EEZ during spring of 2002 while the shift in ocean climate resulted in the presence of only 2 percent of the biomass of the stock in Mexican waters during April, 2003. A second, more southerly sardine stock extended from southern to central Baja California in April, 2003, but it was out of reach of the fleet

  18. Influence of varying upper ocean stratification on coastal near-inertial currents

    Science.gov (United States)

    Kim, Sung Yong; Kurapov, Alexander L.; Kosro, P. Michael

    2015-12-01

    The influence of varying horizontal and vertical stratification in the upper layer (O>(10>) m) associated with riverine waters and seasonal atmospheric fluxes on coastal near-inertial currents is investigated with remotely sensed and in situ observations of surface and subsurface currents and realistic numerical model outputs off the coast of Oregon. Based on numerical simulations with and without the Columbia River (CR) during summer, the directly wind-forced near-inertial surface currents are enhanced by 30%-60% when the near-surface layer has a stratified condition due to riverine water inputs from the CR. Comparing model results without the CR for summer and winter conditions indicates that the directly wind-forced near-inertial surface current response to a unit wind forcing during summer are 20%-70% stronger than those during winter depending on the cross-shore location, which is in contrast to the seasonal patterns of both mixed-layer depth and amplitudes of near-inertial currents. The model simulations are used to examine aspects of coastal inhibition of near-inertial currents, manifested in their spatial coherence in the cross-shore direction, where the phase propagates upward over the continental shelf, bounces at the coast, and continues increasing upward offshore (toward surface) and then downward offshore at the surface, with magnitudes and length scales in the near-surface layer increasing offshore. This pattern exhibits a particularly well-organized structure during winter. Similarly, the raypaths of clockwise near-inertial internal waves are consistent with the phase propagation of coherence, showing the influence of upper layer stratification and coastal inhibition.

  19. Tsunami Hazard in La Réunion Island (SW Indian Ocean): Scenario-Based Numerical Modelling on Vulnerable Coastal Sites

    Science.gov (United States)

    Allgeyer, S.; Quentel, É.; Hébert, H.; Gailler, A.; Loevenbruck, A.

    2017-08-01

    Several major tsunamis have affected the southwest Indian Ocean area since the 2004 Sumatra event, and some of them (2005, 2006, 2007 and 2010) have hit La Réunion Island in the southwest Indian Ocean. However, tsunami hazard is not well defined for La Réunion Island where vulnerable coastlines can be exposed. This study offers a first tsunami hazard assesment for La Réunion Island. We first review the historical tsunami observations made on the coastlines, where high tsunami waves (2-3 m) have been reported on the western coast, especially during the 2004 Indian Ocean tsunami. Numerical models of historical scenarios yield results consistent with available observations on the coastal sites (the harbours of La Pointe des Galets and Saint-Paul). The 1833 Pagai earthquake and tsunami can be considered as the worst-case historical scenario for this area. In a second step, we assess the tsunami exposure by covering the major subduction zones with syntethic events of constant magnitude (8.7, 9.0 and 9.3). The aggregation of magnitude 8.7 scenarios all generate strong currents in the harbours (3-7 m s^{-1}) and about 2 m of tsunami maximum height without significant inundation. The analysis of the magnitude 9.0 events confirms that the main commercial harbour (Port Est) is more vulnerable than Port Ouest and that flooding in Saint-Paul is limited to the beach area and the river mouth. Finally, the magnitude 9.3 scenarios show limited inundations close to the beach and in the riverbed in Saint-Paul. More generally, the results confirm that for La Runion, the Sumatra subduction zone is the most threatening non-local source area for tsunami generation. This study also shows that far-field coastal sites should be prepared for tsunami hazard and that further work is needed to improve operational warning procedures. Forecast methods should be developed to provide tools to enable the authorities to anticipate the local effects of tsunamis and to evacuate the harbours in

  20. Survey of fish impingement at power plants in the United States. Volume III. Estuaries and coastal waters

    Energy Technology Data Exchange (ETDEWEB)

    Stupka, Richard C.; Sharma, Rajendra K.

    1977-03-01

    Impingement of fish at cooling-water intakes of 32 power plants, located on estuaries and coastal waters has been surveyed and data are presented. Descriptions of site, plant, and intake design and operation are provided. Reports in this volume summarize impingement data for individual plants in tabular and histogram formats. Information was available from differing sources such as the utilities themselves, public documents, regulatory agencies, and others. Thus, the extent of detail in the reports varies greatly from plant to plant. Histogram preparation involved an extrapolation procedure that has inadequacies. The reader is cautioned in the use of information presented in this volume to determine intake-design acceptability or intensity of impacts on ecosystems. No conclusions are presented herein; data comparisons are made in Volume IV.

  1. Statistical downscaling of IPCC sea surface wind and wind energy predictions for U.S. east coastal ocean, Gulf of Mexico and Caribbean Sea

    Science.gov (United States)

    Yao, Zhigang; Xue, Zuo; He, Ruoying; Bao, Xianwen; Song, Jun

    2016-08-01

    A multivariate statistical downscaling method is developed to produce regional, high-resolution, coastal surface wind fields based on the IPCC global model predictions for the U.S. east coastal ocean, the Gulf of Mexico (GOM), and the Caribbean Sea. The statistical relationship is built upon linear regressions between the empirical orthogonal function (EOF) spaces of a cross- calibrated, multi-platform, multi-instrument ocean surface wind velocity dataset (predictand) and the global NCEP wind reanalysis (predictor) over a 10 year period from 2000 to 2009. The statistical relationship is validated before applications and its effectiveness is confirmed by the good agreement between downscaled wind fields based on the NCEP reanalysis and in-situ surface wind measured at 16 National Data Buoy Center (NDBC) buoys in the U.S. east coastal ocean and the GOM during 1992-1999. The predictand-predictor relationship is applied to IPCC GFDL model output (2.0°×2.5°) of downscaled coastal wind at 0.25°×0.25° resolution. The temporal and spatial variability of future predicted wind speeds and wind energy potential over the study region are further quantified. It is shown that wind speed and power would significantly be reduced in the high CO2 climate scenario offshore of the mid-Atlantic and northeast U.S., with the speed falling to one quarter of its original value.

  2. What a Decade (2006–15 Of Journal Abstracts Can Tell Us about Trends in Ocean and Coastal Sustainability Challenges and Solutions

    Directory of Open Access Journals (Sweden)

    Murray A. Rudd

    2017-05-01

    Full Text Available Text mining and analytics may offer possibilities to assess scientists' professional writing and identify patterns of co-occurrence between words and phrases associated with different environmental challenges and their potential solutions. This approach has the potential to help to track emerging issues, semi-automate horizon scanning processes, and identify how different institutions or policy instruments are associated with different types of ocean and coastal sustainability challenges. Here I examine ecologically-oriented ocean and coastal science journal article abstracts published between 2006 and 2015. Informed by the Institutional Analysis and Development (IAD framework, I constructed a dictionary containing phrases associated with 40 ocean challenges and 15 solution-oriented instrument or investments. From 50,817 potentially relevant abstracts, different patterns of co-occurring text associated with challenges and potential solutions were discernable. Topics receiving significantly increased attention in the literature in 2014–15 relative to the 2006–13 period included: marine plastics and debris; environmental conservation; social impacts; ocean acidification; general terrestrial influences; co-management strategies; ocean warming; licensing and access rights; oil spills; and economic impacts. Articles relating to global environmental change were consistently among the most cited; marine plastics and ecosystem trophic structure were also focal topics among the highly cited articles. This exploratory research suggests that scientists' written outputs provide fertile ground for identifying and tracking important and emerging ocean sustainability issues and their possible solutions, as well as the organizations and scientists who work on them.

  3. SeaBuoySoft – an On-line Automated Windows based Ocean Wave height Data Acquisition and Analysis System for Coastal Field’s Data Collection

    Directory of Open Access Journals (Sweden)

    P.H.Tarudkar

    2014-12-01

    Full Text Available Measurement of various hydraulic parameters such as wave heights for the research and the practical purpose in the coastal fields is one of the critical and challenging but equally important criteria in the field of ocean engineering for the design and the development of hydraulic structures such as construction of sea walls, break waters, oil jetties, fisheries harbors, all other structures, and the ships maneuvering, embankments, berthing on jetties. This paper elucidates the development of “SeaBuoySoft online software system for coastal field‟s wave height data collection” for the coastal application work. The system could be installed along with the associated hardware such as a Digital Waverider Receiver unit and a Waverider Buoy at the shore. The ocean wave height data, transmitted by wave rider buoy installed in the shallow/offshore waters of sea is received by the digital waverider receiver unit and it is interfaced to the SeaBuoySoft software. The design and development of the software system has been worked out in-house at Central Water and Power Research Station, Pune, India. The software has been developed as a Windows based standalone version and is unique of its kind for the reception of real time ocean wave height data, it takes care of its local storage of wave height data for its further analysis work as and when required. The system acquires real time ocean wave height data round the clock requiring no operator intervention during data acquisition process on site.

  4. AMS Observations over Coastal California from the Biological and Oceanic Atmospheric Study (BOAS)

    Science.gov (United States)

    Bates, K. H.; Coggon, M. M.; Hodas, N.; Negron, A.; Ortega, A. M.; Crosbie, E.; Sorooshian, A.; Nenes, A.; Flagan, R. C.; Seinfeld, J.

    2015-12-01

    In July 2015, fifteen research flights were conducted on a US Navy Twin Otter aircraft as part of the Biological and Oceanic Atmospheric Study (BOAS) campaign. The flights took place near the California coast at Monterey, to investigate the effects of sea surface temperature and algal blooms on oceanic particulate emissions, the diurnal mixing of urban pollution with other airmasses, and the impacts of biological aerosols on the California atmosphere. The aircraft's payload included an aerosol mass spectrometer (AMS), a differential mobility analyzer, a cloud condensation nuclei counter, a counterflow virtual impactor, a cloudwater collector, and two instruments designed to detect biological aerosols - a wideband integrated biological spectrometer and a SpinCon II - as well as a number of meteorology and aerosol probes, two condensation particle counters, and instruments to measure gas-phase CO, CO2, O3, and NOx. Here, we describe in depth the objectives and outcomes of BOAS and report preliminary results, primarily from the AMS. We detail the spatial characteristics and meteorological variability of speciated aerosol components over a strong and persistent bloom of Pseudo-Nitzschia, the harmful algae that cause 'red tide', and report newly identified AMS markers for biological particles. Finally, we compare these results with data collected during BOAS over urban, forested, and agricultural environments, and describe the mixing observed between oceanic and terrestrial airmasses.

  5. Investigation of groundwater behavior in response to oceanic tide and hydrodynamic assessment of coastal aquifers.

    Science.gov (United States)

    Fadili, Ahmed; Malaurent, Philippe; Najib, Saliha; Mehdi, Khalid; Riss, Joëlle; Makan, Abdelhadi; Boutayeb, Khadija

    2016-05-01

    This study was based, firstly, on observations and analysis of water table level variations in the Plio-Quaternary and Hauterivian aquifers, Oualidia (Morocco), and secondly, on comparing this behavior to oceanic tidal variations. Recordings were made in the well located at 1318 m from the coast, where the two aquifers are in direct contact. This investigation was subdivided into two periods of 4 months each. Results showed a tidal influence on water table level within the well during semi-diurnal and monthly periods. Water table fluctuation periods were equal to 12 h 25 min identical to oceanic tide propagation period, while time lag between water levels was equal to 3 h 24 min. Moreover, results allowed aquifer diffusivity calculation through a confined aquifer model, which was equal to 6.20 m(2) s(-1) calculated from average value of water amplitude and to 40.6 m(2) s(-1) calculated from average value of time lag. In addition, tidal wave amplitude attenuation occurred exponentially with distance from ocean, which disappeared completely after 2000 m from coast.

  6. Radiative transfer model for satellite remote sensing of ocean color in coastal zones

    Science.gov (United States)

    Kobayashi, Hiroshi; Ohta, Sachio; Murao, Naoto; Tachibana, Harukuni; Yamagata, Sadamu

    2001-01-01

    A radiative transfer model for a coupled atmosphere-ocean system was developed for satellite remote sensing of costal pollution to estimate water-leaving radiance from polluted sea surfaces. The optical properties of suspended substances in the ocean such as phytoplankton (Skeletonema costatum and Heterosigma akashiwo), detritus, submicron particles, and inorganic particles were measured or estimated. The equation of radiative transfer in the coupled atmosphere-ocean system was solved by using the invariance imbedding method. The water-leaving radiance in clear and Case II waters, turbid waters with soil particles, and red tide waters, were calculated. It was possible to estimate the soil particle concentration of water by using the ratio of the upward radiance at different wavelengths with a high resolution sensor for the land like the Landsat TM. However, estimating the red tide phytoplankton concentration using Landsat TM was difficult, because the water-leaving radiance varies little with phytoplankton concentration, and is affected by assumed amounts of detritus.

  7. Orbital-Scale Cyclostratigraphy and Ice Volume Fluctuations from Arctic Ocean Sediments

    Science.gov (United States)

    Cronin, T. M.; Marzen, R.; DeNinno, L. H.

    2014-12-01

    Deep-sea foraminiferal oxygen isotope curves (δ18Of) are excellent paleoclimate records but are limited as proxies of global ice volume history during orbital glacial-interglacial cycles (GIC) due to the influence of deep-sea bottom water temperature, regional hydrography, ocean circulation and other factors affecting δ18Of. A more direct source of northern hemisphere [NH] ice history comes from central Arctic Ocean (CAO) submarine ridges (Northwind, Mendeleev, Lomonosov) where, at orbital timescales, sedimentation is controlled by the growth and decay of ice sheets, ice shelves, and sea ice. Calcareous microfossil density in CAO sediments is one of many proxies, such as manganese concentrations, grain size, bulk density, color, mineral content, organic geochemistry, and foraminiferal δ18O, that reveal GIC changes in ice cover, biological productivity, and primary and post-depositional sediment processes. In order to better understand NH ice history, we constructed 600-kyr-long stacked records of Arctic foraminiferal and ostracode density (AFD, AOD) from 19 CAO sediment cores following stacking and astronomical tuning procedures used for deep-sea δ18Of curves. Results show discrepancies between the Arctic AFD and AOD curves, the LR04 δ18Of stack (Lisiecki and Raymo 2005, Paleoceanography), the Red Sea and Mediterranean δ18Of sea level curves (Rohling et al. 2014 Nature), and modeled Antarctic Ice Sheet volume, suggesting asynchronous polar ice sheet behavior in the two hemispheres, notably during MIS 3, 5a, 5c, 7d, and 11.

  8. Cyclic Patterns of Interaction between the Surface Gradient of Temperature, Salinity and Chlorophyll in the Open Ocean and the Coastal Zone

    Science.gov (United States)

    Kartushinsky, Alexei

    Satellite data were used to calculate mean gradient fields of temperature, salinity and chlorophyll concentration in the ocean for different periods of time. Also we used data buoy observations in situ and some numerical modeling results for a better understanding of the dynamic mechanisms involved and their role in the Global ocean and coastal zones. The high temperature and salinity gradient are formed under the periodically action of jet currents, large rings and eddies and upwelling, which transfer water masses in the ocean and influence the distribution of phytoplankton. The gradient fields and their high values give us information about spatial distribution of main frontal zones. The main stage of research is evaluation of statistical correlation between gradients of temperature, salinity and chlorophyll concentration, which suggests a combined effect of physical and biological processes in a synergistically active ocean zones. The software calculates and produces the averages horizontal gradients in the ocean for different grids. Calculations are also made to find latitudianal, meridional, and absolute gradients, pointing to main frontal zones. We conducted a study of cyclic patterns in relation to changes of gradient fields. Statistical relation of temperature, salinity and chlorophyll concentration gradients in various areas of the global ocean and coastal zone with various scales of space-time averaging was analyzed. Pair correlation of gradient fields for steady frontal zones was estimated. Numerous researches in the area show that the advection of currents, horizontal turbulent heat exchange and the radiation heat flow in separate parts of the ocean impact on the structure of gradient fields. Cycles of the gradient variability in the oceanic frontal zones can be used to assess pulse disturbance of the mass, heat transport and fluxes over the ocean and their interaction with atmosphere and subsequent impact on land ecosystems.

  9. The Design and Analysis of Salmonid Tagging Studies in the Columbia Basin; Volume XII; A Multinomial Model for Estimating Ocean Survival from Salmonid Coded Wire-Tag Data.

    Energy Technology Data Exchange (ETDEWEB)

    Ryding, Kristen E.; Skalski, John R.

    1999-06-01

    The purpose of this report is to illustrate the development of a stochastic model using coded wire-tag (CWT) release and age-at-return data, in order to regress first year ocean survival probabilities against coastal ocean conditions and climate covariates.

  10. Mercury Bioaccumulation Response to Recent Hg Pollution Abatement in an Oceanic Predatory Fish, Blue Marlin, Versus the Response in a Coastal Predatory Species, Bluefish, in the Western North Atlantic Ocean

    Science.gov (United States)

    Barber, R. T.; Cross, F. A.

    2015-12-01

    The consumption of marine fish, especially predatory species high in the food chain, is the major route through which people in developed countries are exposed to mercury. Recent work on a coastal species, bluefish (Pomatomus saltatrix), determined that the mercury concentration in fish from the U. S. Mid-Atlantic coast decreased 43% from 1972 to 2011. This mercury decline in a coastal marine fish parallels the mercury decline in many freshwater fish in the U.S. and Canada during the same time period. The result heightens interest in determining whether or not there has been any change in mercury concentration in oceanic predatory fish species, that is, fish that are permanent residents of the open ocean, during the past four decades. To answer this question we compared mercury analyses we made in the 1970s on tournament-caught blue marlin (Makaira nigricans) with those we made from 1998 to 2013. This comparison indicates that from the 1970s to 2013 mercury concentration in blue marlin caught in the western North Atlantic Ocean off the U.S. east coast has declined about 45%, a decline that is remarkably similar to the decline reported in coastal bluefish. These results suggest that a large area of the western North Atlantic Ocean is responding to reductions in emissions of mercury in the U.S. and Canada with reduced mercury bioaccumulation in predatory fish.

  11. Effects of Human Alterations on Global River Basins and their Associated Coastal Zones: focus on River-dominated Ocean Margins (RiOMars)

    Science.gov (United States)

    Dürr, H. H.; Van Cappellen, P.; Meybeck, M.; Laruelle, G. G.; Mayorga, E.; Hartmann, J.; Maavara, T.; Bouwman, L.; Seitzinger, S.

    2013-12-01

    Coastal systems connected to large rivers, mostly major delta systems or river-dominated ocean margins (RiOMars), make up channels, creating a braided network of streams and many islands (Dürr et al. 2011). Here, we discuss controls on the different nutrient forms delivered to different coastal environments, and how they are assessed (Global-NEWS and other approaches), with a special focus on large deltas and RiOMars. Drivers and impacts of global change will be explored through the Millenium Assessment Scenarios and how the fluxes to these different coastal systems might change. An increasing role is also played by aquaculture in different coastal types as a non-insignificant source of nutrients. World-wide distribution of coastal types and their related river basins (Dürr et al. 2011). Characteristics of types of near-shore coastal areas and their associated river basins Greenland and Antarctica excepted. Data from Dürr et al. (2011) and the Global-NEWS program (Seitzinger et al. 2005 and Mayorga et al. 2010).

  12. Effects of Ocean Acidification on Temperate Coastal Marine Ecosystems and Fisheries in the Northeast Pacific

    Science.gov (United States)

    Haigh, Rowan; Ianson, Debby; Holt, Carrie A.; Neate, Holly E.; Edwards, Andrew M.

    2015-01-01

    As the oceans absorb anthropogenic CO2 they become more acidic, a problem termed ocean acidification (OA). Since this increase in CO2 is occurring rapidly, OA may have profound implications for marine ecosystems. In the temperate northeast Pacific, fisheries play key economic and cultural roles and provide significant employment, especially in rural areas. In British Columbia (BC), sport (recreational) fishing generates more income than commercial fishing (including the expanding aquaculture industry). Salmon (fished recreationally and farmed) and Pacific Halibut are responsible for the majority of fishery-related income. This region naturally has relatively acidic (low pH) waters due to ocean circulation, and so may be particularly vulnerable to OA. We have analyzed available data to provide a current description of the marine ecosystem, focusing on vertical distributions of commercially harvested groups in BC in the context of local carbon and pH conditions. We then evaluated the potential impact of OA on this temperate marine system using currently available studies. Our results highlight significant knowledge gaps. Above trophic levels 2–3 (where most local fishery-income is generated), little is known about the direct impact of OA, and more importantly about the combined impact of multi-stressors, like temperature, that are also changing as our climate changes. There is evidence that OA may have indirect negative impacts on finfish through changes at lower trophic levels and in habitats. In particular, OA may lead to increased fish-killing algal blooms that can affect the lucrative salmon aquaculture industry. On the other hand, some species of locally farmed shellfish have been well-studied and exhibit significant negative direct impacts associated with OA, especially at the larval stage. We summarize the direct and indirect impacts of OA on all groups of marine organisms in this region and provide conclusions, ordered by immediacy and certainty. PMID

  13. Effects of ocean acidification on temperate coastal marine ecosystems and fisheries in the northeast Pacific.

    Science.gov (United States)

    Haigh, Rowan; Ianson, Debby; Holt, Carrie A; Neate, Holly E; Edwards, Andrew M

    2015-01-01

    As the oceans absorb anthropogenic CO2 they become more acidic, a problem termed ocean acidification (OA). Since this increase in CO2 is occurring rapidly, OA may have profound implications for marine ecosystems. In the temperate northeast Pacific, fisheries play key economic and cultural roles and provide significant employment, especially in rural areas. In British Columbia (BC), sport (recreational) fishing generates more income than commercial fishing (including the expanding aquaculture industry). Salmon (fished recreationally and farmed) and Pacific Halibut are responsible for the majority of fishery-related income. This region naturally has relatively acidic (low pH) waters due to ocean circulation, and so may be particularly vulnerable to OA. We have analyzed available data to provide a current description of the marine ecosystem, focusing on vertical distributions of commercially harvested groups in BC in the context of local carbon and pH conditions. We then evaluated the potential impact of OA on this temperate marine system using currently available studies. Our results highlight significant knowledge gaps. Above trophic levels 2-3 (where most local fishery-income is generated), little is known about the direct impact of OA, and more importantly about the combined impact of multi-stressors, like temperature, that are also changing as our climate changes. There is evidence that OA may have indirect negative impacts on finfish through changes at lower trophic levels and in habitats. In particular, OA may lead to increased fish-killing algal blooms that can affect the lucrative salmon aquaculture industry. On the other hand, some species of locally farmed shellfish have been well-studied and exhibit significant negative direct impacts associated with OA, especially at the larval stage. We summarize the direct and indirect impacts of OA on all groups of marine organisms in this region and provide conclusions, ordered by immediacy and certainty.

  14. Effects of ocean acidification on temperate coastal marine ecosystems and fisheries in the northeast Pacific.

    Directory of Open Access Journals (Sweden)

    Rowan Haigh

    Full Text Available As the oceans absorb anthropogenic CO2 they become more acidic, a problem termed ocean acidification (OA. Since this increase in CO2 is occurring rapidly, OA may have profound implications for marine ecosystems. In the temperate northeast Pacific, fisheries play key economic and cultural roles and provide significant employment, especially in rural areas. In British Columbia (BC, sport (recreational fishing generates more income than commercial fishing (including the expanding aquaculture industry. Salmon (fished recreationally and farmed and Pacific Halibut are responsible for the majority of fishery-related income. This region naturally has relatively acidic (low pH waters due to ocean circulation, and so may be particularly vulnerable to OA. We have analyzed available data to provide a current description of the marine ecosystem, focusing on vertical distributions of commercially harvested groups in BC in the context of local carbon and pH conditions. We then evaluated the potential impact of OA on this temperate marine system using currently available studies. Our results highlight significant knowledge gaps. Above trophic levels 2-3 (where most local fishery-income is generated, little is known about the direct impact of OA, and more importantly about the combined impact of multi-stressors, like temperature, that are also changing as our climate changes. There is evidence that OA may have indirect negative impacts on finfish through changes at lower trophic levels and in habitats. In particular, OA may lead to increased fish-killing algal blooms that can affect the lucrative salmon aquaculture industry. On the other hand, some species of locally farmed shellfish have been well-studied and exhibit significant negative direct impacts associated with OA, especially at the larval stage. We summarize the direct and indirect impacts of OA on all groups of marine organisms in this region and provide conclusions, ordered by immediacy and certainty.

  15. Impact of Argo Observation on the Regional Ocean Reanalysis of China Coastal Waters and Adjacent Seas: A Twin-Experiment Study

    Directory of Open Access Journals (Sweden)

    Caixia Shao

    2015-01-01

    Full Text Available A regional ocean reanalysis system of China coastal waters and adjacent seas, called CORA (China ocean reanalysis, has been recently developed at the National Marine Data and Information Service (NMDIS. In this study, based on CORA, the impact of Argo profiles on the regional reanalysis is evaluated using a twin-experiment approach. It is found that, by assimilating Argo observations, the reanalysis quality is much improved: the root mean square (RMS error of temperature and salinity can be further reduced by about 10% and the RMS error of current can be further reduced by 18%, compared to the case only assimilating conventional in situ temperature and salinity observations. Consistent with the unique feature of Argo observations, the temperature is improved in all levels and the largest improvement of salinity happens in the deep ocean. Argo profile data have a significant impact on the regional ocean reanalysis through improvements of both hydrographic and dynamic fields.

  16. Cordilleran Ice Sheet meltwater delivery to the coastal waters of the northeast Pacific Ocean

    Science.gov (United States)

    Hendy, I. L.; Taylor, M.; Gombiner, J. H.; Hemming, S. R.; Bryce, J. G.; Blichert-Toft, J.

    2014-12-01

    Cordilleran Ice Sheet (CIS) delivered meltwater to the NE Pacific Ocean off BC and WA via glacial lake outburst floods (GLOFs), ice rafting and subglacial meltwater discharge. A deglacial glaciomarine sedimentation record is preserved in the well dated ~50-kyr core MD02-2496 (48˚58.47' N, 127˚02.14' W, water depth 1243 m), collected off Vancouver Island. To understand the history of the relationship between the CIS, climate and meltwater discharge, high resolution, multi-proxy geochemical records from the interval that captures the Fraser Glaciation (~30-10 ka) were generated. These proxies include Mg/Ca temperatures and δ18Oseawater from planktonic foraminiferal sp. N. pachyderma and G. bulloides, elemental and organic carbon (Corg) geochemistry of bulk sediments, ɛNd and K/Ar dating of the debris (IRD), as well as evidence for processes such as GLOF events and iceberg discharge. At the Fraser Glaciation initiation (~30 ka) 3°C to 10-12°C in association with an additional IRD event at ~14.8 ka sourced from a ~75 Ma felsic volcanic source, likely the Southern Coast Plutonic Complex. At no point in the δ18Oseawater reconstruction is an obvious meltwater isotopic signature recorded despite the sedimentary evidence for both ice rafting and outburst flooding. Thus CIS meltwater likely entered the NE Pacific Ocean via hyperpycnal flow.

  17. Ocean Color Retrieval Using LANDSAT-8 Imagery in Coastal Case 2 Waters (case Study Persian and Oman Gulf)

    Science.gov (United States)

    Moradi, N.; Hasanlou, M.; Saadatseresht, M.

    2016-06-01

    Ocean color (OC) monitoring using satellite imageries provides an appropriate tool for a better understanding of marine processes and changes in the coastal environment. Radiance measurements in the range of visible light of the electromagnetic spectrum provides information of ocean color that is associated with the water constituents. This measurements are used to monitor the level of biological activity and the presence of particles in the water. Ocean features such as the concentration of chlorophyll, suspended sediment concentration and sea surface temperature have a significant impact on the dynamics of the ocean. The concentration of chlorophyll (chla), active pigments of phytoplankton photosynthesis, as a key indicator applied for assessment of water quality and biochemistry. Experimental algorithms chla related to internal communication various optical components in the water that may be change in space and time in the water with different optical characteristics. Therefore, the algorithms have been developed for one area may not work for other places and each region according to its specific characteristics needs that determined by an algorithm may be appropriate to local. We have tried treatment several algorithms for determination of chlorophyll, including experimental algorithms with a simple band ratio of blue-green band (i.e. OCx) and algorithms includes two bands ratio with variable 𝑅𝑟𝑠(λ2)/𝑅𝑟𝑠(λ1), the three bands ratio with variable [𝑅𝑟𝑠(λ1)-1-𝑅𝑟𝑠(λ2)-1]×𝑅𝑟𝑠(λ3) and four bands ratio with variable [𝑅𝑟𝑠(λ1)-1-𝑅𝑟𝑠(λ2)-1]/[𝑅𝑟𝑠(λ4)-1-𝑅𝑟𝑠(λ3)-1] that desired wavelength (i.e. λ1, λ2, λ3 and λ4) in the range of red and near-infrared wavelengths of the electromagnetic spectrum are in the region of the Persian Gulf and Oman Sea look

  18. Environmental Risk Evaluation System – An Approach to Ranking Risk of Ocean Energy Development on Coastal and Estuarine Environments

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea E.; Hanna, Luke A.; Van Cleve, Frances B.; Blake, Kara M.; Anderson, Richard M.

    2015-01-01

    Deployment and operation of ocean energy devices does not represent the first foray into industrialization of the oceans; shipping, nearshore development, waste disposal, subsea mining, oil and gas extraction, and large-scale commercial fishing all coexist in various states of equilibrium with the marine environment. In most cases these industries were developed without a clear understanding of the likely outcomes of large-scale development. In virtually every country where the harvest of ocean energy is emerging, regulators and stakeholders require that the industry examine potential effects of devices, minimize the footprint of effects, and provide management measures that either avoid the impacts or mitigate to further reduce the residual impacts. The ERES analysis is based on scenarios that are consistent with sequences of events that lead to adverse impacts, distinguishing between episodic, intermittent, and chronic risks. In the context of ocean energy development, an episodic scenario might involve the exceedingly rare but potentially devastating event of an oil spill from vessels caused by the presence of the device, while vulnerable receptors are present; understanding the risk of such a scenario involves determining the probability of the occurrence by examining factors such as the petroleum content of ocean energy devices, the vessel traffic volume and the proximity of shipping lanes to the ocean energy devices, the reliability of the control measures to avoid an episodic event, and the likely presence of seabirds, marine mammals, or fish that may be affected by oil. In contrast, chronic risk scenarios involve events or circumstances that are continuous, so that risk characterization involves assessing only the severity of the consequences. An example of a chronic risk scenario might be the toxicity to marine organisms due to low-level chemical releases from anti-biofouling paints and coatings that may be used on devices, and the effect that the level of

  19. Physical and profile data collected aboard the MELVILLE during cruise MV1403 in the Coastal Waters of SE Alaska and North Pacific Ocean from 2014-05-13 to 2014-06-06 (NCEI Accession 0132044)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0132044 includes physical and profile data collected aboard the MELVILLE during cruise MV1403 in the Coastal Waters of SE Alaska and North Pacific...

  20. Biological, chemical and other data collected aboard the THOMAS G. THOMPSON during cruise TN267 in the Coastal Waters of SE Alaska and North Pacific Ocean from 2011-07-29 to 2011-08-09 (NODC Accession 0104366)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC accession 0104366 includes biological, chemical, optical, physical and underway data collected aboard the THOMAS G. THOMPSON during cruise TN267 in the Coastal...

  1. Chemical, optical and other data collected aboard the THOMAS G. THOMPSON during cruise TN270 in the Coastal Waters of SE Alaska and North Pacific Ocean from 2011-09-01 to 2011-10-21 (NODC Accession 0104369)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0104369 includes chemical, optical and other data collected aboard the THOMAS G. THOMPSON during cruise TN270 in the Coastal Waters of SE Alaska and...

  2. Chemical, optical and other data collected aboard the THOMAS G. THOMPSON during cruise TN254 in the Coastal Waters of SE Alaska and North Pacific Ocean from 2010-09-09 to 2010-10-11 (NODC Accession 0104359)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0104359 includes chemical, optical and other data collected aboard the THOMAS G. THOMPSON during cruise TN254 in the Coastal Waters of SE Alaska and...

  3. Chemical, optical and other data collected aboard the THOMAS G. THOMPSON during cruise TN269 in the Coastal Waters of SE Alaska and North Pacific Ocean from 2011-09-01 to 2011-10-08 (NODC Accession 0104368)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0104368 includes chemical, optical and other data collected aboard the THOMAS G. THOMPSON during cruise TN269 in the Coastal Waters of SE Alaska and...

  4. Physical and underway data collected aboard the ATLANTIS during cruise AT15-67 in the Coastal Waters of SE Alaska and North Pacific Ocean from 2010-07-06 to 2010-07-27 (NODC Accession 0103934)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC accession 0103934 includes physical and underway data collected aboard the ATLANTIS during cruise AT15-67 in the Coastal Waters of SE Alaska and North Pacific...

  5. Chemical, optical and other data collected aboard the THOMAS G. THOMPSON during cruise TN282 in the Coastal Waters of SE Alaska and North Pacific Ocean from 2012-03-11 to 2012-07-06 (NODC Accession 0104374)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0104374 includes chemical, optical and other data collected aboard the THOMAS G. THOMPSON during cruise TN282 in the Coastal Waters of SE Alaska and...

  6. Physical and underway data collected aboard the WECOMA during cruise W1009B in the Coastal Waters of SE Alaska and North Pacific Ocean from 2010-09-21 to 2010-10-09 (NODC Accession 0104379)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC accession 0104379 includes physical and underway data collected aboard the WECOMA during cruise W1009B in the Coastal Waters of SE Alaska and North Pacific...

  7. Chemical, optical and other data collected aboard the THOMAS G. THOMPSON during cruise TN255 in the Coastal Waters of SE Alaska and North Pacific Ocean from 2010-10-16 to 2010-10-20 (NODC Accession 0104360)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0104360 includes chemical, optical and other data collected aboard the THOMAS G. THOMPSON during cruise TN255 in the Coastal Waters of SE Alaska and...

  8. Current meter data from moored current meter casts in the Coastal Waters of Hawaii as part of the Ocean Thermal Energy Conversion (OTEC) project from 23 September 1980 - 01 December 1980 (NODC Accession 8100469)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts in the Coastal Waters of Hawaii from September 23, 1980 to December 1, 1980. Data were submitted...

  9. Physical and underway data collected aboard the WECOMA during cruise W1010C in the Coastal Waters of SE Alaska and North Pacific Ocean from 2010-10-22 to 2010-11-01 (NODC Accession 0104380)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC accession 0104380 includes physical and underway data collected aboard the WECOMA during cruise W1010C in the Coastal Waters of SE Alaska and North Pacific...

  10. Chemical, physical and underway data collected aboard the HEALY during cruise HLY11TA in the Coastal Waters of SE Alaska and North Pacific Ocean from 2011-04-25 to 2011-05-07 (NODC Accession 0103989)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC accession 0103989 includes chemical, physical and underway data collected aboard the HEALY during cruise HLY11TA in the Coastal Waters of SE Alaska and North...

  11. Biological, chemical and other data collected aboard the THOMAS G. THOMPSON during cruise TN264 in the Coastal Waters of SE Alaska and North Pacific Ocean from 2011-05-21 to 2011-05-24 (NODC Accession 0117418)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC accession 0117418 includes biological, chemical, optical and physical data collected aboard the THOMAS G. THOMPSON during cruise TN264 in the Coastal Waters of...

  12. Physical and underway data collected aboard the THOMAS G. THOMPSON during cruise TN265 in the Coastal Waters of SE Alaska and North Pacific Ocean from 2011-05-28 to 2011-06-24 (NODC Accession 0104364)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC accession 0104364 includes physical and underway data collected aboard the THOMAS G. THOMPSON during cruise TN265 in the Coastal Waters of SE Alaska and North...

  13. Physical and underway data collected aboard the ATLANTIS during cruise AT15-47 in the Coastal Waters of SE Alaska and North Pacific Ocean from 2009-06-13 to 2009-06-28 (NODC Accession 0103877)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC accession 0103877 includes physical and underway data collected aboard the ATLANTIS during cruise AT15-47 in the Coastal Waters of SE Alaska and North Pacific...

  14. Chemical, optical and other data collected aboard the THOMAS G. THOMPSON during cruise TN266 in the Coastal Waters of SE Alaska and North Pacific Ocean from 2011-06-27 to 2011-07-27 (NODC Accession 0104365)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0104365 includes chemical, optical and other data collected aboard the THOMAS G. THOMPSON during cruise TN266 in the Coastal Waters of SE Alaska and...

  15. Physical and underway data collected aboard the THOMAS G. THOMPSON during cruise TN283 in the Coastal Waters of SE Alaska and North Pacific Ocean from 2012-03-11 to 2012-07-24 (NODC Accession 0104385)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC accession 0104385 includes physical and underway data collected aboard the THOMAS G. THOMPSON during cruise TN283 in the Coastal Waters of SE Alaska and North...

  16. Physical and underway data collected aboard the HEALY during cruise HLY11TB in the Coastal Waters of SE Alaska and North Pacific Ocean from 2011-05-27 to 2011-06-04 (NODC Accession 0103994)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC accession 0103994 includes physical and underway data collected aboard the HEALY during cruise HLY11TB in the Coastal Waters of SE Alaska and North Pacific...

  17. Chemical, optical and other data collected aboard the THOMAS G. THOMPSON during cruise TN268 in the Coastal Waters of SE Alaska and North Pacific Ocean from 2011-08-11 to 2011-09-01 (NODC Accession 0104367)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0104367 includes chemical, optical and other data collected aboard the THOMAS G. THOMPSON during cruise TN268 in the Coastal Waters of SE Alaska and...

  18. Chemical, optical and other data collected aboard the THOMAS G. THOMPSON during cruise TN281 in the Coastal Waters of SE Alaska and North Pacific Ocean from 2012-04-29 to 2012-05-27 (NODC Accession 0104373)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0104373 includes chemical, optical and other data collected aboard the THOMAS G. THOMPSON during cruise TN281 in the Coastal Waters of SE Alaska and...

  19. Biological, chemical and other data collected aboard the THOMAS G. THOMPSON during cruise TN252 in the Coastal Waters of SE Alaska and North Pacific Ocean from 2010-07-26 to 2010-08-23 (NODC Accession 0104356)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC accession 0104356 includes biological, chemical, optical, physical and underway data collected aboard the THOMAS G. THOMPSON during cruise TN252 in the Coastal...

  20. Review of water intake screening options for coastal water users with recommendations for Ocean Thermal Energy Conversion (OTEC) plants

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D.L.

    1979-05-01

    The large volumes of water withdrawn at both the warm and cold water intakes of an OTEC plant must be screened to remove organisms and debris which could clog the heat exchangers. The recent literature on screening technology is reviewed. In addition, various screen manufacturers and coastal facilities which use large volumes of seawater were visited to determine the operating experience with present screen technology. Static screens (particularly the Johnson Division, UOP profile wire screen and the Royce Equipment Company carrousel screen) have the potential advantage for OTEC for operating in a completely submerged state and of being cheaper to operate and maintain than traveling screens. However, there is no operational history with these static screens for large intake systems. The most promising traveling screen options for OTEC are the dual flow screens. They offer more screening surface and less head loss than through flow screens of similar size. They also have been operated in seawater for large intake systems. More detailed designs of potential OTEC plants, particurlarly screen wells, conduit and surge tank construction and head losses need to be determined before the best alternative intake screen can be selected. 38 references.

  1. Sedimentology of Coastal Deposits in the Seychelles Islands—Evidence of the Indian Ocean Tsunami 2004

    Science.gov (United States)

    Nentwig, Vanessa; Bahlburg, Heinrich; Monthy, Devis

    2015-03-01

    The Seychelles, an archipelago in the Indian Ocean at a distance of 4,500-5,000 km from the west coast of Sumatra, were severely affected by the December 26, 2004 tsunami with wave heights up to 4 m. Since the tsunami history of small islands often remains unclear due to a young historical record, it is important to study the geological traces of high energy events preserved along their coasts. We conducted a survey of the impact of the 2004 Indian Ocean tsunami on the inner Seychelles islands. In detail we studied onshore tsunami deposits in the mangrove forest at Old Turtle Pond in the Curieuse Marine National Park on the east coast of Curieuse Island. It is thus protected from anthropogenic interference. Towards the sea it was shielded until the tsunami in 2004 by a 500 m long and 1.5 m high causeway which was set up in 1909 as a sediment trap and assuring a low energetic hydrodynamic environment for the protection of the mangroves. The causeway was destroyed by the 2004 Indian Ocean Tsunami. The tsunami caused a change of habitat by the sedimentation of sand lobes in the mangrove forest. The dark organic rich mangrove soil (1.9 Φ) was covered by bimodal fine to medium carbonate sand (1.7-2.2 Φ) containing coarser carbonate shell fragments and debris. Intertidal sediments and the mangrove soil acted as sources of the lobe deposits. The sand sheet deposited by the tsunami is organized into different lobes. They extend landwards to different inundation distances as a function of the morphology of the onshore area. The maximum extent of 180 m from the shoreline indicates the minimum inundation distance to the tsunami. The top parts of the sand lobes cover the pneumatophores of the mangroves. There is no landward fining trend along the sand lobes and normal grading of the deposits is rare, occurring only in 1 of 7 sites. The sand lobe deposits also lack sedimentary structures. On the surface of the sand lobes numerous mostly fragmented shells of bivalves and

  2. First year of of an ocean-atmosphere mooring in the Senegalese coastal upwelling.

    Science.gov (United States)

    Lazar, Alban; Dausse, Denis; del Rey, Marta Martin; Diakhaté, Moussa; Machu, Éric; Faye, Saliou; Dagorne, Dominique; Gaye, Amadou

    2016-04-01

    The Joint International Laboratory ECLAIRS set up an oceanographic and meteorological buoy, dedicated to monitoring and analysis of the short and long-term changes in climate, atmosphere and marine environment within the Senegal upwelling. The buoy "MELAX" was deployed early 2015 in the heart of the Senegalese upwelling by 30m-depth at (14°20'N, 17°14'W). Data collected are, for the atmosphere, surface wind, solar radiation, humidity and rain, and for the ocean, temperatures, salinity, and currents (from the surface to the bottom) and oxygen. We present the first year of observations, in particular the relationship between wind, sea surface temperatures, hydrology and current, but also briochemistry. Satellite and model data are used to provide a larger-scale context to the punctual observations.

  3. Seasonality and long term trends in dissolved carbon export from large rivers to the Arctic Ocean, and potential effects on coastal ocean acidification (Invited)

    Science.gov (United States)

    Tank, S. E.; Kokelj, S. V.; Raymond, P. A.; Striegl, R. G.; McClelland, J. W.; Holmes, R. M.; Spencer, R. G.

    2013-12-01

    Large Arctic rivers show marked seasonality in constituent flux as a result of variations in flowpath throughout the yearly cycle. Here, we use measurements collected from the mouths of the six largest rivers draining to the Arctic Ocean to explore seasonal variation in dissolved inorganic and dissolved organic carbon (DIC, DOC) flux, and the effect of this flux on nearshore ocean processes. This work uses data from the Yukon and Mackenzie Rivers in North America, and the Kolyma, Lena, Yenisey, and Ob' in Siberia. Mean monthly concentrations of riverine DIC vary synchronously across all rivers, peaking under ice and reaching a low point immediately after the spring freshet. Monthly climatologies for DIC, in addition to similarly constructed climatologies for Ca2+, show that the input of riverwater universally causes aragonite to be undersaturated in riverine-influenced nearshore regions, with an effect that is greater for the Siberian coast than for western North America, and greater in the spring-winter than in the late summer and fall. Because seasonal trends and geographic variation in DOC concentration are opposite to that for DIC in these large rivers, degradation of DOC to CO2 in the nearshore Arctic should accentuate seasonal and spatial patterns in aragonite undersaturation in Arctic coastal regions. Datasets that extend DIC and DOC concentration measurements back to the early 1970's (DIC) and early 1980's (DOC) near the mouth of the Mackenzie River in the western Canadian Arctic indicate that the summertime concentration and flux of these constituents has been increasing over time in this region. While evidence from other regions of the pan-Arctic, and data gathered from smaller sub-catchment studies indicate that this trend is not universal for DOC, there is growing evidence for a consistent increase in summertime DIC flux across both time and gradients of decreasing permafrost extent. These changes, in turn, could have broad implications for both

  4. Parameterization of the chlorophyll a-specific in vivo light absorption coefficient covering estuarine, coastal and oceanic waters

    DEFF Research Database (Denmark)

    Stæhr, P. A.; Markager, S.

    2004-01-01

    We evaluated models predicting the spectral chlorophyll-a (Chl a)-specific absorption coefficient (a*ph (¿)) from Chl a concentration [Chl a] on the basis of 465 phytoplankton absorption spectra collected in estuarine, coastal and oceanic waters. A power model on ln-transformed data provided...... the best model fit compared to a power model on non-transformed data previously applied to parameterize the relationship between a*ph (¿) and [Chl a]. The variation in a*ph (¿) was parameterized over four orders of magnitude in [Chl a] (0.01-100 mg Chl a m-3) producing a 13-fold range in a*ph (0.19 to 0.......015 m2 mg-1 Chl a) at 440 nm, the peak absorption of Chl a in the blue part of the spectrum. The variations in the modelled a*ph spectra were within realistic predictions of a*ph (¿) and the model satisfactorily reproduced the spectral flattening with increasing [Chl a]. The parameterization of a...

  5. Glider and remote sensing observations of the upper ocean response to an extended shallow coastal diversion of wastewater effluent

    KAUST Repository

    Seegers, Bridget N.

    2016-06-21

    The Orange County Sanitation District (OCSD) diverted wastewater discharge (5.3 × 108 l d−1) from its primary deep (56 m) outfall 8 km offshore, to a secondary shallower (16 m) outfall 1.6 km offshore for a period of three weeks. It was anticipated that the low salinity and density of the effluent would cause it to rise to the surface with limited dilution, elevating nutrient concentrations in near-surface waters and stimulating phytoplankton blooms in the region. Three Teledyne Webb Slocum gliders and a Liquid Robotics surface wave glider were deployed on transects near the outfalls to acquire high spatial and temporal coverage of physical and chemical parameters before, during, and after the wastewater diversion. Combined autonomous underwater vehicle (AUV) and MODIS-Aqua satellite ocean color data indicated that phytoplankton biomass increased in the upper water column in response to the diversion, but that the magnitude of the response was spatially patchy and significantly less than expected. Little evidence of the plume or its effects was detectable 72 h following the diversion. The effluent plume exhibited high rates of dilution and mixed throughout the upper 20 m and occasionally throughout the upper 40 m during the diversion. Rapid plume advection and dilution appeared to contribute to the muted impact of the nutrient-rich effluent on the phytoplankton community in this coastal ecosystem.

  6. Organization of marine phenology data in support of planning and conservation in ocean and coastal ecosystems

    Science.gov (United States)

    Thomas, Kathryn A.; Fornwall, Mark D.; Weltzin, Jake F.; Griffis, R.B.

    2014-01-01

    Among the many effects of climate change is its influence on the phenology of biota. In marine and coastal ecosystems, phenological shifts have been documented for multiple life forms; however, biological data related to marine species' phenology remain difficult to access and is under-used. We conducted an assessment of potential sources of biological data for marine species and their availability for use in phenological analyses and assessments. Our evaluations showed that data potentially related to understanding marine species' phenology are available through online resources of governmental, academic, and non-governmental organizations, but appropriate datasets are often difficult to discover and access, presenting opportunities for scientific infrastructure improvement. The developing Federal Marine Data Architecture when fully implemented will improve data flow and standardization for marine data within major federal repositories and provide an archival repository for collaborating academic and public data contributors. Another opportunity, largely untapped, is the engagement of citizen scientists in standardized collection of marine phenology data and contribution of these data to established data flows. Use of metadata with marine phenology related keywords could improve discovery and access to appropriate datasets. When data originators choose to self-publish, publication of research datasets with a digital object identifier, linked to metadata, will also improve subsequent discovery and access. Phenological changes in the marine environment will affect human economics, food systems, and recreation. No one source of data will be sufficient to understand these changes. The collective attention of marine data collectors is needed—whether with an agency, an educational institution, or a citizen scientist group—toward adopting the data management processes and standards needed to ensure availability of sufficient and useable marine data to understand

  7. Preventive methods for coastal protection towards the use of ocean dynamics for pollution control

    CERN Document Server

    Quak, Ewald

    2013-01-01

    The aim of the book is to present for non-specialist researchers as well as for experts a comprehensive overview of the background, key ideas, basic methods, implementation details and a selection of solutions offered by a novel technology for the optimisation of the location of dangerous offshore activities in terms of environmental criteria, as developed in the course of the BalticWay project.   The book consists of two parts. The first part introduces the basic principles of ocean modeling and depicts the long way from the generic principles to the practical modeling of oil spills and of the propagation of other adverse impacts. The second part focuses on the techniques for solving the inverse problem of the quantification of offshore areas with respect to their potential to serve as a source of environmental danger to vulnerable regions (such as spawning, nursing or also tourist areas).   The chapters are written in a tutorial style; they are mostly self-contained and understandable for non-specialist r...

  8. Twin predecessor of the 2004 Indian Ocean tsunami: Implications for rebuilt coastal communities

    Science.gov (United States)

    Sieh, K.; Daly, P.; McKinnon, E.; Chiang, H.; Pilarczyk, J.; Daryono, M. R.; Horton, B.; Shen, C.; Rubin, C. M.; Ismail, N.; Kelsey, H. M.

    2013-12-01

    We present stratigraphic, historical and archeological evidence for two closely timed predecessors of the giant 2004 tsunami on the northern coast of Aceh, northern Sumatra. Beachcliff exposures reveal two beds of tsunamigenic coral rubble within a small alluvial fan. Stratigraphical consistent radiocarbon and Uranium-Thorium disequilibrium dates indicate the the two beds were emplaced in the mid- to late 14th century, correlative with paleoseismic evidence of sudden uplifts of coral reefs on nearby Simeulue island in AD 1394 and, again in AD 1450. A nearby seacliff exposure contains evidence of nearly continuous settlement from ~AD 1240 to 1367, followed by tsunami destruction. Evidence of continuous settlement included South Asian ceramic and stoneware fragments, as well as a single Chinese coin dating to AD 1111-1118. Our data may solve the mysterious 15th century discontinuity in cultures along the northern Sumatran coast of the maritime silk route. This history of a doublet tsunami has implications for communities around the Indian Ocean that were rebuilt after the devastation of 2004, since reconstruction occurred with the tacit belief that such an event would not happen in the foreseeable future. History, geology and archeology hint that such a view may prove tragically incorrect.

  9. Abundance and genetic diversity of aerobic anoxygenic phototrophic bacteria of coastal regions of the pacific ocean.

    Science.gov (United States)

    Ritchie, Anna E; Johnson, Zackary I

    2012-04-01

    Aerobic anoxygenic phototrophic (AAP) bacteria are photoheterotrophic microbes that are found in a broad range of aquatic environments. Although potentially significant to the microbial ecology and biogeochemistry of marine ecosystems, their abundance and genetic diversity and the environmental variables that regulate these properties are poorly understood. Using samples along nearshore/offshore transects from five disparate islands in the Pacific Ocean (Oahu, Molokai, Futuna, Aniwa, and Lord Howe) and off California, we show that AAP bacteria, as quantified by the pufM gene biomarker, are most abundant near shore and in areas with high chlorophyll or Synechococcus abundance. These AAP bacterial populations are genetically diverse, with most members belonging to the alpha- or gammaproteobacterial groups and with subclades that are associated with specific environmental variables. The genetic diversity of AAP bacteria is structured along the nearshore/offshore transects in relation to environmental variables, and uncultured pufM gene libraries suggest that nearshore communities are distinct from those offshore. AAP bacterial communities are also genetically distinct between islands, such that the stations that are most distantly separated are the most genetically distinct. Together, these results demonstrate that environmental variables regulate both the abundance and diversity of AAP bacteria but that endemism may also be a contributing factor in structuring these communities.

  10. Physical, chemical, and other data from bottle casts from the Coastal Waters of Washington/Oregon from the THOMAS G. THOMPSON as part of the International Decade of Ocean Exploration / Coastal Upwelling Ecosystems Analysis (IDOE/CUEA) from 11 July 1973 to 21 July 1973 (NODC Accession 7601145)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, chemical, and other data were collected from bottle casts in the Coastal Waters of Washington/Oregon from the THOMAS G. THOMPSON from 11 July 1973 to 21...

  11. Current, CTD, and other data from the YAQUINA and other platforms from the coastal waters of Washington/Oregon as part of the International Decade of Ocean Exploration / Coastal Upwelling Ecosystems Analysis (IDOE/CUEA) from 28 January 1975 to 01 September 1975 (NODC Accession 7800403)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current, CTD, and other data were collected from the YAQUINA and other platforms from the coastal waters of Washington/Oregon from 28 January 1975 to 01 September...

  12. Occurrence, distribution and environmental risk of pharmaceutically active compounds (PhACs) in coastal and ocean waters from the Gulf of Cadiz (SW Spain).

    Science.gov (United States)

    Biel-Maeso, Miriam; Baena-Nogueras, Rosa María; Corada-Fernández, Carmen; Lara-Martín, Pablo A

    2017-08-31

    In this study, we have evaluated the occurrence and distribution of 78 pharmaceuticals in different aquatic marine environments from the Gulf of Cadiz (SW Spain) for the first time. The obtained results revealed that pharmaceuticals were present in seawater at total concentrations ranging 61-2133 and 16-189ngL(-1) in coastal and oceanic transects, respectively. Potential marine pollution hotspots were observed in enclosed or semi-enclosed water bodies (Cadiz Bay), showing concentrations that were one or two orders of magnitude higher than in the open ocean. The presence of these chemicals in local sewage treatment plants (STPs), one of the main contamination sources, was also assessed, revealing total concentrations of up to 23μgL(-1) in effluents. PhACs with the highest detection frequencies and concentrations in the sampling region were analgesics and anti-inflammatories followed by antibiotics in the case of samples from Cadiz Bay or caffeine in oceanic seawater samples. Risk quotients, expressed as ratios between the measured environmental concentration (MEC) and the predicted no-effect concentrations (PNEC) were higher than 1 for two compounds (gemfibrozil and ofloxacin) in effluent of Jerez de la Frontera sewage treatment plant (STP). No high environmental risk was detected in both coastal and oceanic sampling areas, although the information available about the effects of these chemicals on marine biota is still very limited and negative effects on non-target species cannot be discarded. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. EFFECT OF THE INDIAN OCEAN TSUNAMI ON GROUNDWATER QUALITY IN COASTAL AQUIFERS IN EASTERN SRI LANKA

    Directory of Open Access Journals (Sweden)

    Meththika Vithanage

    2009-01-01

    Full Text Available ABSTRACTChanges in water quality of a sand aquifer on the east coast of Sri Lanka due to the December 26, 2004 tsunami and subsequent disturbance due to well pumping and flushing by precipitation were investigated. Two closely spaced tsunami affected transects, spanning the ocean and an interior lagoon across a 2 km wide land strip were monitored from October, 2005 to September, 2006. Water samples were collected from 15 dug wells and 20 piezometers, from the disturbed and undisturbed sites respectively to evaluate the temporal and spatial trends in water quality.The EC values observed from the undisturbed area showed a significant decrease (3000 to 1200 μS/cm with the rain from November 2005 to March 2006, while the values in the disturbed area appeared to have stabilized without further decline through the same period. The concentration range of EC, Ca, K, Na, alkalinity, total hardness and sulphate were higher in the disturbed site than in the undisturbed site. PHREEQC modeling showed that the mixed sea water fraction is higher in the disturbed site than in the undisturbed site, and this is likely due to the movement of the disturbed plume by water extraction through pumping and extensive well cleaning after the tsunami, causing forced diffusion and dispersion. No arsenic contamination was observed as all observed arsenic concentrations were below 10 μg/L. For the sites investigated, there are clear indications of only a slow recovery of the aquifer with time in response to the onset of the monsoon.

  14. Bromocarbons in the tropical coastal and open ocean atmosphere during the Prime Expedition Scientific Cruise 2009 (PESC 09

    Directory of Open Access Journals (Sweden)

    M. S. Mohd Nadzir

    2014-01-01

    Full Text Available Atmospheric concentrations of very short-lived species (VSLS bromocarbons, including CHBr3, CH2Br2, CHCl2Br, CHClBr2, CH2BrCl, were measured in the Strait of Malacca and the South China and Sulu-Sulawesi Seas during a two month research cruise in June/July 2009. The highest bromocarbon concentrations were found in the Strait of Malacca, with smaller enhancements in coastal regions of Northern Borneo. CHBr3 was the most abundant bromocarbon, ranging from 5.2 pmol mol−1 in the Strait of Malacca to 0.94 pmol mol−1 over the open ocean. Other bromocarbons showed lower concentrations, in the range of 0.8–1.3 pmol mol−1 for CH2Br2, 0.1–0.5 pmol mol−1 (CHCl2Br and 0.1–0.4 pmol mol−1 (CHClBr2. There was no significant correlation between bromocarbons and in situ chlorophyll a. Together the short-lived bromocarbons contribute an average of 8.9 pmol mol−1 (range 5.2–21.4 pmol mol−1 to tropospheric bromine load, which is similar to that found in previous studies (Montzka et al., 2011. Statistical tests showed strong Spearman correlations amongst brominated compounds suggesting a common source. Log-log plots of CHBr3/CH2Br2 vs. CHBr2Cl/CH2Br2 show that both chemical reactions and dilution into the background atmosphere contribute to the composition of these halocarbons at each sampling point. We have used the correlation to make a crude estimate of the regional emissions of CHBr3 and derive a value of 63 Gg yr−1 for the South East (S.E. Asian region (10° N–20° S, 90–150° E. Finally, we note that satellite-derived chlorophyll a (chl a products do not always agree well with in situ measurements, particularly in coastal regions of high turbidity, meaning that satellite chl a may not always be a good proxy for marine productivity.

  15. Ocean acidification shows negligible impacts on high-latitude bacterial community structure in coastal pelagic mesocosms

    Directory of Open Access Journals (Sweden)

    A.-S. Roy

    2012-09-01

    Full Text Available The impact of ocean acidification and carbonation on microbial community structure was assessed during a large-scale in situ costal pelagic mesocosm study, included as part of the EPOCA 2010 Arctic campaign. The mesocosm experiment included ambient conditions (fjord and nine mesocosms, with pCO2 range from ~145 to ~1420 μatm. Samples collected at nine time points (t-1, t1, t5, t7, t12, t14, t22, t26 to t28 in seven treatments (ambient fjord (~145, 2×~185, ~270, ~685, ~820, ~1050 μatm were analysed for "free-living" and "particle associated" microbial community composition using 16S rRNA amplicon sequencing. This high-throughput sequencing analysis produced ~20 000 000 16S rRNA V4 reads, which comprised 7000 OTUs. The main variables structuring these communities were, sample origin (fjord or mesocosms and the filter size fraction (free-living or particle associated. The community was significantly different between the fjord and both the control and elevated 2 mesocosms (which were not significant different after nutrients were added to the mesocosms; suggesting that the addition of nutrients is the primary driver of the change in mesocosm community structure. The relative importance of each structuring variable depended greatly on the time at which the community was sampled in relation to the phytoplankton bloom. The size fraction was the second most important factor for community structure; separating free-living from particle-associated bacteria. When free-living and particle-associated bacteria were analysed separately at different time points, the only taxon pCO2 was found to significantly affect were the Gammaproteobacteria after nutrient addition. Finally, pCO2 treatment was found to be significantly correlated (non-linear with 15 rare taxa, most of which increased in abundance with higher CO2.

  16. A numerical investigation of the atmosphere-ocean thermal contrast over the coastal upwelling region of Cabo Frio, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Dourado, M. [Departamento de Meteorologia, Universidade Federal de Pelotas, Pelotas RS (Brazil)]. E-mail: marcelo_dourado@ufpel.edu.br; Pereira de Oliveira, A. [Departamento de Ciencias Atmosfericas, Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, (Brazil)

    2008-01-15

    An one-dimensional atmospheric second order closure model, coupled to an oceanic mixed layer model, is used to investigate the short term variation of the atmospheric and oceanic boundary layers in the coastal upwelling area of Cabo Frio, Brazil (23 degrees Celsius S, 42 degrees Celsius 08' W). The numerical simulations were carried out to evaluate the impact caused by the thermal contrast between atmosphere and ocean on the vertical extent and other properties of both atmospheric and oceanic boundary layers. The numerical simulations were designed taking as reference the observations carried out during the passage of a cold front that disrupted the upwelling regime in Cabo Frio in July of 1992. The simulations indicated that in 10 hours the mechanical mixing, sustained by a constant background flow of 10 m s-1, increases the atmospheric boundary layer in 214 m when the atmosphere is initially 2 K warmer than the ocean (positive thermal contrast observed during upwelling regime). For an atmosphere initially -2 K colder than the ocean (negative thermal contrast observed during passage of the cold front), the incipient thermal convection intensifies the mechanical mixing increasing the vertical extent of the atmospheric boundary layer in 360 m. The vertical evolution of the atmospheric boundary layer is consistent with the observations carried out in Cabo Frio during upwelling condition. When the upwelling is disrupted, the discrepancy between the simulated and observed atmospheric boundary layer heights in Cabo Frio during July of 1992 increases considerably. During the period of 10 hours, the simulated oceanic mixed layer deepens 2 m and 5.4 m for positive and negative thermal contrasts of 2 K and -2 K, respectively. In the latter case, the larger vertical extent of the oceanic mixed layer is due to the presence of thermal convection in the atmospheric boundary layer, which in turn is associated to the absence of upwelling caused by the passage of cold fronts

  17. Glacial – interglacial atmospheric CO2 change: a possible "standing volume" effect on deep-ocean carbon sequestration

    Directory of Open Access Journals (Sweden)

    L. C. Skinner

    2009-05-01

    Full Text Available So far, the exploration of possible mechanisms for glacial atmospheric CO2 draw-down and marine carbon sequestration has focussed almost exclusively on dynamic or kinetic processes (i.e. variable mixing-, equilibration- or export rates. Here an attempt is made to underline instead the possible importance of changes in the standing volumes of intra-oceanic carbon reservoirs (i.e. different water-masses in setting the total marine carbon inventory. By way of illustration, a simple mechanism is proposed for enhancing the carbon storage capacity of the deep sea, which operates via an increase in the volume of relatively carbon-enriched AABW-like deep-water filling the ocean basins. Given the hypsometry of the ocean floor and an active biological pump, the water-mass that fills more than the bottom 3 km of the ocean will essentially determine the carbon content of the marine reservoir. A set of simple box-model experiments confirm the expectation that a deep sea dominated by AABW-like deep-water holds more CO2, prior to any additional changes in ocean overturning rate, biological export or ocean-atmosphere exchange. The magnitude of this "standing volume effect" might be as large as the contributions that have been attributed to carbonate compensation, the thermodynamic solubility pump or the biological pump for example. If incorporated into the list of factors that have contributed to marine carbon sequestration during past glaciations, this standing volume mechanism may help to reduce the amount of glacial – interglacial CO2 change that remains to be explained by other mechanisms that are difficult to assess in the geological archive, such as reduced mass transport or mixing rates in particular. This in turn could help narrow the search for forcing conditions capable of pushing the global carbon cycle between glacial and interglacial modes.

  18. Using Eyewitness Reports to Reconstruct the Coastal Impact of the 2004 Indian Ocean Tsunami in Khao Lak, Thailand

    Science.gov (United States)

    Skelton, A.; Mård Karlsson, J.; Sandén, M.; Ioualalen, M.; Kaewbanjak, N.; Pophet, N.; Asavanant, J.; von Matern, A.

    2009-12-01

    The 26 December 2004 Indian Ocean tsunami caused enormous loss of life and major structural damage in over 12 countries bordering the Indian Ocean. Khao Lak, SW Thailand was the second most severely affected region. Here we present reconstructions of the coastal impact of the tsunami in the Khao Lak area. These are based on (1) eyewitness reports, and (2) eyewitness reports supported by video footage of the tsunami, photos of the tsunami and the damage it caused, field measurements and satellite imagery. Based on eyewitness reports, we estimated that the sea began retreating at 10:00 and that the tsunami arrived at 10:30. Based on video footage of the tsunami, we estimated an offshore wave direction of 083 ± 3° and based on the paths by which eyewitnesses were carried by the tsunami, we estimated an onshore wave direction of 088 ± 6°. Based on video footage, we estimated that the velocity of the wave front as it approached the Khao Lak area was 33 ± 4 km/h. We estimated maximum wave heights relative to ground level of 7.5 ± 0.8 m based on eyewitness reports and 4.9 ± 0.6 m (equating to 8.0 ± 0.6 masl) based on field measurements of damage caused by the tsunami. Finally, we estimated that the maximum inundation in the southern part of the Khao Lak area, which is confined by a steeply sloping hinterland, was several hundred meters, whereas maximum inundation in the northern part of the area, which has more gently sloping topography, was up to 1.5 km. This is confirmed by eyewitness reports and satellite imagery. Comparison between reconstructions based on (1) eyewitness reports and (2) eyewitness reports supported by video footage of the tsunami, photos of the tsunami and the damage it caused, field measurements and satellite imagery, suggests that eyewitness reports are an extremely valuable and accurate source of quantitative information following a catastrophic event such as a tsunami. Finally, similarity between our reconstructions and a region

  19. Deep ocean mass fluxes in the coastal upwelling off Mauritania from 1988 to 2012: variability on seasonal to decadal timescales

    Science.gov (United States)

    Fischer, Gerhard; Romero, Oscar; Merkel, Ute; Donner, Barbara; Iversen, Morten; Nowald, Nico; Ratmeyer, Volker; Ruhland, Götz; Klann, Marco; Wefer, Gerold

    2016-05-01

    A more than two-decadal sediment trap record from the Eastern Boundary Upwelling Ecosystem (EBUE) off Cape Blanc, Mauritania, is analysed with respect to deep ocean mass fluxes, flux components and their variability on seasonal to decadal timescales. The total mass flux revealed interannual fluctuations which were superimposed by fluctuations on decadal timescales. High winter fluxes of biogenic silica (BSi), used as a measure of marine production (mostly by diatoms) largely correspond to a positive North Atlantic Oscillation (NAO) index (December-March). However, this relationship is weak. The highest positive BSi anomaly was in winter 2004-2005 when the NAO was in a neutral state. More episodic BSi sedimentation events occurred in several summer seasons between 2001 and 2005, when the previous winter NAO was neutral or even negative. We suggest that distinct dust outbreaks and deposition in the surface ocean in winter and occasionally in summer/autumn enhanced particle sedimentation and carbon export on short timescales via the ballasting effect. Episodic perturbations of the marine carbon cycle by dust outbreaks (e.g. in 2005) might have weakened the relationships between fluxes and large-scale climatic oscillations. As phytoplankton biomass is high throughout the year, any dry (in winter) or wet (in summer) deposition of fine-grained dust particles is assumed to enhance the efficiency of the biological pump by incorporating dust into dense and fast settling organic-rich aggregates. A good correspondence between BSi and dust fluxes was observed for the dusty year 2005, following a period of rather dry conditions in the Sahara/Sahel region. Large changes of all bulk fluxes occurred during the strongest El Niño-Southern Oscillation (ENSO) in 1997-1999 where low fluxes were obtained for almost 1 year during the warm El Niño and high fluxes in the following cold La Niña phase. For decadal timescales, Bakun (1990) suggested an intensification of coastal upwelling

  20. An optical system for detecting and describing major algal blooms in coastal and oceanic waters around India

    Science.gov (United States)

    Gokul, Elamurugu Alias; Shanmugam, Palanisamy

    2016-06-01

    An optical system is developed with the aim to detect and monitor three major algal blooms (including harmful algal blooms "HABs") over ecologically relevant scales around India and to strengthen algal forecasting system. This system is designed to be capable of utilizing remote sensing, in situ, and radiative transfer techniques to provide species-specific data necessary for increasing capabilities of an algal forecasting system. With the ability to measure in-water optical properties by means of remote sensing and in situ observations, the optical system developed infers the desired phytoplankton signal from spectral distributions and utilize these data in a numerical classification technique to generate species-specific maps at given spatial and temporal scales. A simple radiative transfer model is adopted for this system to provide a means to optimally interpolate to regions with sparse in situ observation data and to provide a central component to generate in-water optical properties from remotely sensed data. For a given set of inherent optical properties along with surface and bottom boundary conditions, the optical system potentially provides researchers and managers coverage at different locations and depths for tracking algal blooms in the water column. Three major algal blooms focused here include Noctiluca scintillans/miliaris, Trichodesmium erythraeum, and Cochlodinium polykrikoides, which are recurring events in coastal and oceanic waters around India. Because satellite sensors provide a synoptic view of the ocean, both spatially and temporally, our initial efforts tested this optical system using several MODIS-Aqua images and ancillary data. Validation of the results with coincident in situ data obtained from either surface samples or depth samples demonstrated the robustness and potential utility of this approach, with an accuracy of 80-90% for delineating the presence of all three blooms in a heterogeneous phytoplankton community. Despite its

  1. Discriminating phytoplankton functional types (PFTs) in the coastal ocean using the inversion algorithm PHYDOTax and airborne imaging spectrometer data

    Science.gov (United States)

    Palacios, S. L.; Schafer, C. B.; Broughton, J.; Guild, L. S.; Kudela, R. M.

    2013-12-01

    There is a need in the Biological Oceanography community to discriminate among phytoplankton groups within the bulk chlorophyll pool to understand energy flow through ecosystems, to track the fate of carbon in the ocean, and to detect and monitor-for harmful algal blooms (HABs). The ocean color community has responded to this demand with the development of phytoplankton functional type (PFT) discrimination algorithms. These PFT algorithms fall into one of three categories depending on the science application: size-based, biogeochemical function, and taxonomy. The new PFT algorithm Phytoplankton Detection with Optics (PHYDOTax) is an inversion algorithm that discriminates taxon-specific biomass to differentiate among six taxa found in the California Current System: diatoms, dinoflagellates, haptophytes, chlorophytes, cryptophytes, and cyanophytes. PHYDOTax was developed and validated in Monterey Bay, CA for the high resolution imaging spectrometer, Spectroscopic Aerial Mapping System with On-board Navigation (SAMSON - 3.5 nm resolution). PHYDOTax exploits the high spectral resolution of an imaging spectrometer and the improved spatial resolution that airborne data provides for coastal areas. The objective of this study was to apply PHYDOTax to a relatively lower resolution imaging spectrometer to test the algorithm's sensitivity to atmospheric correction, to evaluate capability with other sensors, and to determine if down-sampling spectral resolution would degrade its ability to discriminate among phytoplankton taxa. This study is a part of the larger Hyperspectral Infrared Imager (HyspIRI) airborne simulation campaign which is collecting Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery aboard NASA's ER-2 aircraft during three seasons in each of two years over terrestrial and marine targets in California. Our aquatic component seeks to develop and test algorithms to retrieve water quality properties (e.g. HABs and river plumes) in both marine and in

  2. Discriminating Phytoplankton Functional Types (PFTs) in the Coastal Ocean Using the Inversion Algorithm Phydotax and Airborne Imaging Spectrometer Data

    Science.gov (United States)

    Palacios, Sherry L.; Schafer, Chris; Broughton, Jennifer; Guild, Liane S.; Kudela, Raphael M.

    2013-01-01

    There is a need in the Biological Oceanography community to discriminate among phytoplankton groups within the bulk chlorophyll pool to understand energy flow through ecosystems, to track the fate of carbon in the ocean, and to detect and monitor-for harmful algal blooms (HABs). The ocean color community has responded to this demand with the development of phytoplankton functional type (PFT) discrimination algorithms. These PFT algorithms fall into one of three categories depending on the science application: size-based, biogeochemical function, and taxonomy. The new PFT algorithm Phytoplankton Detection with Optics (PHYDOTax) is an inversion algorithm that discriminates taxon-specific biomass to differentiate among six taxa found in the California Current System: diatoms, dinoflagellates, haptophytes, chlorophytes, cryptophytes, and cyanophytes. PHYDOTax was developed and validated in Monterey Bay, CA for the high resolution imaging spectrometer, Spectroscopic Aerial Mapping System with On-board Navigation (SAMSON - 3.5 nm resolution). PHYDOTax exploits the high spectral resolution of an imaging spectrometer and the improved spatial resolution that airborne data provides for coastal areas. The objective of this study was to apply PHYDOTax to a relatively lower resolution imaging spectrometer to test the algorithm's sensitivity to atmospheric correction, to evaluate capability with other sensors, and to determine if down-sampling spectral resolution would degrade its ability to discriminate among phytoplankton taxa. This study is a part of the larger Hyperspectral Infrared Imager (HyspIRI) airborne simulation campaign which is collecting Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery aboard NASA's ER-2 aircraft during three seasons in each of two years over terrestrial and marine targets in California. Our aquatic component seeks to develop and test algorithms to retrieve water quality properties (e.g. HABs and river plumes) in both marine and in

  3. On the critical issues of land-ocean interactions in coastal zones%关于陆-海相互作用的若干问题

    Institute of Scientific and Technical Information of China (English)

    张经

    2011-01-01

    Land-ocean interactions in coastal zones comprise a broad research topic in global change science that links the fundamental questions of marine sciences to the sustainability of socio-economics. In the present study, critical issues in land-ocean interactions were addressed based on recent research progress and a literature review. Specifically, the exchange between open boundary and coastal systems, loss of chemical elements from watersheds, coastal eutrophication and harmful algal blooms, hypoxia and dead zones, source vs sink of sediments in coastal environments, feedback to other compartments of the Earth system, sea level rise and its impact on economics and human society, and human activities in the coastal region were investigated. Although there are other critical issues of land-ocean interactions in the coastal zone, they were not dealt with in this study because of limited knowledge and research experience by the author.%陆-海相互作用是一个宽泛的研究领域,但其同海洋科学的基础研究与我们经济、社会的可持续发展均密切相关.基于个人对本研究领域的理解,在本文中提出了一些需要在陆-海相互作用研究中予以关注的问题,包括陆架边缘的物质交换、流域盆地中的物质流失、近海的富营养化与有害水华、底层水缺氧与“死亡区”、沉积物的“源”与“汇”、对地球其他层圈的反馈、海平面上升及其对社会与经济可持续性的作用、沿海地区的人类活动及其影响,等等.本文中未能涉及的命题并非不重要,仅仅系我个人的知识和能力所限.

  4. Coastal-zone biogeochemical dynamics under global warming

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, F.T.; Ver, L.M.; Lerman, A.

    2000-03-01

    The coastal zone, consisting of the continental shelves to a depth of 200 meters, including bays, lagoons, estuaries, and near-shore banks, is an environment that is strongly affected by its biogeochemical and physical interactions with reservoirs in the adjacent domains of land, atmosphere, open ocean, and marine sediments. Because the coastal zone is smaller in volume and area coverage relative to the open ocean, it traditionally has been studied as an integral part of the global oceans. In this paper, the authors show by numerical modeling that it is important to consider the coastal zone as an entity separate from the open ocean in any assessment of future Earth-system response under human perturbation. Model analyses for the early part of the 21st century suggest that the coastal zone plays a significant modifying role in the biogeochemical dynamics of the carbon cycle and the nutrient cycles coupled to it. This role is manifested in changes in primary production, storage, and/or export of organic matter, its remineralization, and calcium carbonate precipitation--all of which determine the state of the coastal zone with respect to exchange of CO{sub 2} with the atmosphere. Under a scenario of future reduced or complete cessation of the thermohaline circulation (THC) of the global oceans, coastal waters become an important sink for atmospheric CO{sub 2}, as opposed to the conditions in the past and present, when coastal waters are believed to be a source of CO{sub 2} to the atmosphere. Profound changes in coastal-zone primary productivity underscore the important role of phosphorus as a limiting nutrient. In addition, calculations indicate that the saturation state of coastal waters with respect to carbonate minerals will decline by {approximately}15% by the year 2030. Any future slowdown in the THC of the oceans will increase slightly the rate of decline in saturation state.

  5. Biological, chemical and other data collected aboard the THOMAS G. THOMPSON during cruise TN247 in the Coastal Waters of SE Alaska, North Pacific Ocean and South Pacific Ocean from 2010-03-11 to 2010-04-27 (NODC Accession 0104408)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC accession 0104408 includes biological, chemical, optical, physical and underway data collected aboard the THOMAS G. THOMPSON during cruise TN247 in the Coastal...

  6. Temperature profile and other data collected using bottle and CTD casts from the MELVILLE in the Coastal Waters of California for the International Decade of Ocean Exploration / Geochemical Ocean Section Study (IDOE/GEOSECS) project from 19 May 1979 to 23 May 1979 (NODC Accession 8800233)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic Station Data, temperature, and other data were collected using CTD and bottle casts from MELVILLE from the Coastal Waters of California from May 19,...

  7. CTD Niskin bottle data from the R/V WECOMA in the North Pacific Ocean in support of the National Science Foundation Coastal Ocean Processes program River Influences on Shelf Ecosystems (NSF CoOP RISE), cruise RISE05W3, from 20040708 to 20060613 (NODC Accession 0051411)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CoOP RISE program was designed to determine the impact of large river discharge on coastal shelf ecosystems. Macronutrient and chlorophyll data were collected as...

  8. SEASAT economic assessment. Volume 5: Coastal zones case study and generalization. [economic benefits of weather forecasting by SEASAT satellites to the coastal plains of the United States

    Science.gov (United States)

    1975-01-01

    The economic losses sustained in the U.S. coastal zones were studied for the purpose of quantitatively establishing economic benefits as a consequence of improving the predictive quality of destructive phenomena in U.S. coastal zones. Improved prediction of hurricane landfall and improved experimental knowledge of hurricane seeding are discussed.

  9. Development of a Kelp-type Structure Module in a Coastal Ocean Model to Assess the Hydrodynamic Impact of Seawater Uranium Extraction Technology

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Taiping; Khangaonkar, Tarang; Long, Wen; Gill, Gary A.

    2014-02-07

    In recent years, with the rapid growth of global energy demand, the interest in extracting uranium from seawater for nuclear energy has been renewed. While extracting seawater uranium is not yet commercially viable, it serves as a “backstop” to the conventional uranium resources and provides an essentially unlimited supply of uranium resource. With recent advances in seawater uranium extraction technology, extracting uranium from seawater could be economically feasible when the extraction devices are deployed at a large scale (e.g., several hundred km2). There is concern however that the large scale deployment of adsorbent farms could result in potential impacts to the hydrodynamic flow field in an oceanic setting. In this study, a kelp-type structure module was incorporated into a coastal ocean model to simulate the blockage effect of uranium extraction devices on the flow field. The module was quantitatively validated against laboratory flume experiments for both velocity and turbulence profiles. The model-data comparison showed an overall good agreement and validated the approach of applying the model to assess the potential hydrodynamic impact of uranium extraction devices or other underwater structures in coastal oceans.

  10. Assessment of the amount of cesium-137 released into the Pacific Ocean after the Fukushima accident and analysis of its dispersion in Japanese coastal waters

    Science.gov (United States)

    Estournel, C.; Bosc, E.; Bocquet, M.; Ulses, C.; Marsaleix, P.; Winiarek, V.; Osvath, I.; Nguyen, C.; Duhaut, T.; Lyard, F.; Michaud, H.; Auclair, F.

    2012-11-01

    Numerical modeling was used to provide a new estimate of the amount of 137Cs released directly into the ocean from the Fukushima Daiichi nuclear power plant (NPP) after the accident in March 2011 and to gain insights into the physical processes that led to its dispersion in the marine environment during the months following the accident. An inverse method was used to determine the time-dependent137Cs input responsible for the concentrations observed at the NPP's two liquid discharge outlets. The method was then validated through comparisons of the simulated concentrations with concentrations measured in seawater at different points in the neighborhood of the plant. An underestimation was noticed for stations located 30 km offshore. The resulting bias in the release inventory was estimated. Finally, the maximum 137Cs activity released directly to the ocean was estimated to lie between 5.1 and 5.5 PBq (Peta Becquerel = 1015 Bq) but uncertainties remain on the amount of radionuclides released during the first few days after the accident. This estimate was compared to previous ones and differences were analyzed further. The temporal and spatial variations of the 137Cs concentration present in the coastal waters were shown to be strongly related to the wind intensity and direction. During the first month after the accident, winds blowing toward the south confined the radionuclides directly released into the ocean to a narrow coastal band. Afterwards, frequent northward wind events increased the dispersion over the whole continental shelf, leading to strongly reduced concentrations.

  11. ISS Hyperspectral Imager for the Coastal Ocean (HICO): Application of Space-based Hyperspectral Imagery for the Protection of the Nation’s Coastal Resources

    Science.gov (United States)

    The International Space Station (ISS) is a "global observation and diagnosis station” that offers a unique vantage for observing the Earth's coastal ecosystems. From its position in low-Earth orbit, the station’s optical sensors provide images which help us under...

  12. ISS Hyperspectral Imager for the Coastal Ocean (HICO): Application of Space-based Hyperspectral Imagery for the Protection of the Nation’s Coastal Resources

    Science.gov (United States)

    The International Space Station (ISS) is a "global observation and diagnosis station” that offers a unique vantage for observing the Earth's coastal ecosystems. From its position in low-Earth orbit, the station’s optical sensors provide images which help us under...

  13. Dramatic variability of the carbonate system at a temperate coastal ocean site (Beaufort, North Carolina, USA is regulated by physical and biogeochemical processes on multiple timescales.

    Directory of Open Access Journals (Sweden)

    Zackary I Johnson

    Full Text Available Increasing atmospheric carbon dioxide (CO2 from anthropogenic sources is acidifying marine environments resulting in potentially dramatic consequences for the physical, chemical and biological functioning of these ecosystems. If current trends continue, mean ocean pH is expected to decrease by ~0.2 units over the next ~50 years. Yet, there is also substantial temporal variability in pH and other carbon system parameters in the ocean resulting in regions that already experience change that exceeds long-term projected trends in pH. This points to short-term dynamics as an important layer of complexity on top of long-term trends. Thus, in order to predict future climate change impacts, there is a critical need to characterize the natural range and dynamics of the marine carbonate system and the mechanisms responsible for observed variability. Here, we present pH and dissolved inorganic carbon (DIC at time intervals spanning 1 hour to >1 year from a dynamic, coastal, temperate marine system (Beaufort Inlet, Beaufort NC USA to characterize the carbonate system at multiple time scales. Daily and seasonal variation of the carbonate system is largely driven by temperature, alkalinity and the balance between primary production and respiration, but high frequency change (hours to days is further influenced by water mass movement (e.g. tides and stochastic events (e.g. storms. Both annual (~0.3 units and diurnal (~0.1 units variability in coastal ocean acidity are similar in magnitude to 50 year projections of ocean acidity associated with increasing atmospheric CO2. The environmental variables driving these changes highlight the importance of characterizing the complete carbonate system rather than just pH. Short-term dynamics of ocean carbon parameters may already exert significant pressure on some coastal marine ecosystems with implications for ecology, biogeochemistry and evolution and this shorter term variability layers additive effects and

  14. Ocean Uses: New Hampshire and Maine

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Ocean Uses Atlas Project is an innovative partnership between the Coastal Response Research Center (CRRC) and NOAA's Office of Ocean and Coastal Resource...

  15. New Hampshire / Southern Maine Ocean Uses Atlas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Uses Atlas Project is an innovative partnership between the Coastal Response Research Center (CRRC) and NOAA's Office of Ocean and Coastal Resource...

  16. The influence of ocean halogen and sulfur emissions in the air quality of a coastal megacity: The case of Los Angeles.

    Science.gov (United States)

    Muñiz-Unamunzaga, Maria; Borge, Rafael; Sarwar, Golam; Gantt, Brett; de la Paz, David; Cuevas, Carlos A; Saiz-Lopez, Alfonso

    2017-06-27

    The oceans are the main source of natural halogen and sulfur compounds, which have a significant influence on the oxidizing capacity of the marine atmosphere; however, their impact on the air quality of coastal cities is currently unknown. We explore the effect of marine halogens (Cl, Br and I) and dimethyl sulfide (DMS) on the air quality of a large coastal city through a set of high-resolution (4-km) air quality simulations for the urban area of Los Angeles, US, using the Community Multiscale Air Quality (CMAQ model). The results indicate that marine halogen emissions decrease ozone and nitrogen dioxide levels up to 5ppbv and 2.5ppbv, respectively, in the city of Los Angeles. Previous studies suggested that the inclusion of chlorine in air quality models leads to the generation of ozone in urban areas through photolysis of nitryl chloride (ClNO2). However, we find that when considering the chemistry of Cl, Br and I together the net effect is a reduction of surface ozone concentrations. Furthermore, combined ocean emissions of halogens and DMS cause substantial changes in the levels of key urban atmospheric oxidants such as OH, HO2 and NO3, and in the composition and mass of fine particles. Although the levels of ozone, NO3 and HOx are reduced, we find a 10% increase in secondary organic aerosol (SOA) mean concentration, attributed to the increase in aerosol acidity and sulfate aerosol formation when combining DMS and bromine. Therefore, this new pathway for enhanced SOA formation may potentially help with current model under predictions of urban SOA. Although further observations and research are needed to establish these preliminary conclusions, this first city-scale investigation suggests that the inclusion of oceanic halogens and DMS in air quality models may improve regional air quality predictions over coastal cities around the world. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Ocean Acidification

    Science.gov (United States)

    Ocean and coastal acidification is an emerging issue caused by increasing amounts of carbon dioxide being absorbed by seawater. Changing seawater chemistry impacts marine life, ecosystem services, and humans. Learn what EPA is doing and what you can do.

  18. Ocean Color

    Data.gov (United States)

    National Aeronautics and Space Administration — Satellite-derived Ocean Color Data sets from historical and currently operational NASA and International Satellite missions including the NASA Coastal Zone Color...

  19. 2013 NOAA National Geodetic Survey (NGS) LIDAR of New Jersey: Barnegat Light Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were collected by the National Oceanic Atmospheric Administration National Geodetic Survey Remote Sensing Division using a Riegl VQ820G system. The data...

  20. Comparison of Sea Surface Heights Derived from the Navy Coastal Ocean Model With Satellite Altimetry in the Gulf of Mexico

    Science.gov (United States)

    2008-01-01

    The Gulf of Mexico (GOM) is a semi-enclosed sea that connects in the east to the Atlantic ocean through the straits of Florida, and in the south to...the Caribbean Sea, the Gulf of Mexico , the Straits of Florida, and parts of the western North Atlantic Ocean is the real-time ocean nowcast/forecast

  1. Coastal erosion hazard and vulnerability using sig tools. Comparison between "La Barra town, Buenaventura, (Pacific Ocean of Colombia) and Providence - Santa Catalina islands (Colombian Caribbean Sea)

    Science.gov (United States)

    Coca-Domínguez, Oswaldo; Ricaurte-Villota, Constanza; Morales-Giraldo, David; Rangel-Buitrago, Nelson

    2014-05-01

    Analysis of hazards and vulnerability associated to coastal erosion along coastlines is a first issue in order to establish plans for adaptation to climate change in coastal areas. La Barra Town, Buenaventura (Pacific ocean of Colombia) and Providence - Santa Catalina Islands (Colombian Caribbean) were selected to develop a detailed analysis of coastal erosion hazard and vulnerability from different perspectives: i) physical (hazard) , ii) social , iii) conservation approach and iv) cultural heritage (Raizal). The analysis was made by a semi quantitative approximation method, applying variables associated with the intrinsic coastal zone properties (i.e. type of beach, exposure of the coast to waves, etc.). Coastal erosion data and associated variables as well land use; conservation and heritage data were used to carry out a further detailed analysis of the human - structural vulnerability and exposure to hazards. The data shows erosion rates close to -17 m yr-1 in La Barra Town (highlighting their critical condition and urgent relocation process), while in some sectors of Providence Island, such as Old Town, erosion rate was -5 m yr-1. The observed erosion process affects directly the land use and the local and regional economy. The differences between indexes and the structural and physical vulnerability as well the use of methodological variables are presented in the context of each region. In this work, all the information was worked using a GIS environment since this allows editing and updating the information continuously. The application of this methodology generates useful information in order to promote risk management as well prevention, mitigation and reduction plans. In both areas the adaptation must be a priority strategy to be considered, including relocation alternatives and sustainable protection with the support of studies of uses and future outlooks in the coast. The methodology is framed into the use of GIS tools and it highlights their benefits

  2. Chlorophyll data from the Coastal waters of Hawaii and Northeast Pacific Ocean to study the responses of the ecosystem to the sewage diversion from the the inner bay to an offshore, deep-water location from 24 September 1976 to 15 June 1979 (NODC Accession 0000396)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chlorophyll data were collected at fixed platforms in the Coastal waters of Hawaii and Northeast Pacific Ocean from September 24, 1976 to June 15, 1979. Data were...

  3. Physical, wind wave spectra, and other data from meteorological sensors, moored buoy casts, thermistors, and accelerometers in fixed locations in the Gulf of Mexico, South Pacific Ocean, Coastal Waters of Western U.S., Great Lakes, North American Coastline-North, and North American Coastline-South from 01 January 2001 to 31 January 2001 (NODC Accession 0000408)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, wind wave spectra, and other data were collected from fixed platforms in the Gulf of Mexico, South Pacific Ocean, Coastal Waters of Western U.S., Great...

  4. Land-Sourced Pollution with an Emphasis on Domestic Sewage: Lessons from the Caribbean and Implications for Coastal Development on Indian Ocean and Pacific Coral Reefs

    Directory of Open Access Journals (Sweden)

    Andre DeGeorges

    2010-09-01

    Full Text Available This paper discusses land-sourced pollution with an emphasis on domestic sewage in the Caribbean in relation to similar issues in the Indian Ocean and Pacific. Starting on a large-scale in the 1980s, tropical Atlantic coastlines of Florida and Caribbean islands were over-developed to the point that traditional sewage treatment and disposal were inadequate to protect fragile coral reefs from eutrophication by land-sourced nutrient pollution. This pollution caused both ecological and public health problems. Coral reefs were smothered by macro-algae and died, becoming rapidly transformed into weedy algal lawns, which resulted in beach erosion, and loss of habitat that added to fisheries collapse previously caused by over-fishing. Barbados was one of the first countries to recognize this problem and to begin implementation of effective solutions. Eastern Africa, the Indian Ocean Islands, Pacific Islands, and South East Asia, are now starting to develop their coastlines for ecotourism, like the Caribbean was in the 1970s. Tourism is an important and increasing component of the economies of most tropical coastal areas. There are important lessons to be learned from this Caribbean experience for coastal zone planners, developers, engineers, coastal communities and decision makers in other parts of the world to assure that history does not repeat itself. Coral reef die-off from land-sourced pollution has been eclipsed as an issue since the ocean warming events of 1998, linked to global warming. Addressing ocean warming will take considerable international cooperation, but much of the land-sourced pollution issue, especially sewage, can be dealt with on a watershed by watershed basis by Indian Ocean and Pacific countries. Failure to solve this critical issue can adversely impact both coral reef and public health with dire economic consequences, and will prevent coral reef recovery from extreme high temperature events. Sewage treatment, disposal options

  5. Environmental Characteristics Changes of Coastal Ocean as Land-ocean Transitional Zone of China%中国海陆过渡带——岸海洋环境特征与变化研究

    Institute of Scientific and Technical Information of China (English)

    王颖; 季小梅

    2011-01-01

    Coastal ocean is the transitional zone between the land and the ocean. It extends from coastal Zone to the outer edge of the continental shelves, then continues to continental slopes and continental rises. Approximately matching the region that has been alternately flooded and exposed during the sea level fluctuations of the late Quaternary period, and has covered relatively complete zones with land and ocean interactions. It is an independent environment system which is different from the land and the deep ocean, and is closely related to human living activities. Since 'The United Nations Law of Sea Convention' took effect in 1994, coastal ocean has become a hotspot of the earth sciences domain because of the requirement of maritime sovereignty and resources development. Located on the interaction zone of Asia and the Pacific Ocean, Chinese coast is of various types. The coastal ocean environment and processes are unique due to the river-sea interaction and the influence of human activities. Evolution of China coast reflects the influence of geology, rivers, climate, typhoons, waves, tides,shelf currents, and sea level changes. While tectonics control the broad scale appearance of the coast ( either embayed bedrock in emergent regions or plain coast in subsiding regions), rivers dominate the supply of sediment to the sea and help control erosional/accretionary trends. The influence of global change and human activities on river drainage areas also appears in coastal ocean area and affects marine environment remarkably due to the transfixion action of the rivers. The coastal classification was applied to dividing the coast of China into four major sectors. The impact of rivers, waves and tides on coastal processes in each of these sectors varies widely,ranging from river-dominated in the Bohai Sea sector, to wave-dominated in the southern Guangdong/Guangxi sector. The characteristics and problems in the coastal development are analyzed taking the plain coast as an

  6. Zooplankton biomass (displacement volume) data collected in Indian Ocean, Southern Pacific and Southern Atlantic Ocean during Discovery Investigations project from 1931-01-02 to 1951-10-18 by Discovery II, data were acquired from the NMFS-COPEPOD database (NODC Accession 0071064)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Zooplankton biomass (displacement volume) data collected in Indian Ocean, Southern Pacific and Southern Atlantic Ocean during Discovery Investigations project from...

  7. Assessing the quality of bottom water temperatures from the Finite-Volume Community Ocean Model (FVCOM) in the Northwest Atlantic Shelf region

    Science.gov (United States)

    Li, Bai; Tanaka, Kisei R.; Chen, Yong; Brady, Damian C.; Thomas, Andrew C.

    2017-09-01

    The Finite-Volume Community Ocean Model (FVCOM) is an advanced coastal circulation model widely utilized for its ability to simulate spatially and temporally evolving three-dimensional geophysical conditions of complex and dynamic coastal regions. While a body of literature evaluates model skill in surface fields, independent studies validating model skill in bottom fields over large spatial and temporal scales are scarce because these fields cannot be remotely sensed. In this study, an evaluation of FVCOM skill in modeling bottom water temperature was conducted by comparison to hourly in situ observed bottom temperatures recorded by the Environmental Monitors on Lobster Traps (eMOLT), a program that attached thermistors to commercial lobster traps from 2001 to 2013. Over 2 × 106 pairs of FVCOM-eMOLT records were evaluated by a series of statistical measures to quantify accuracy and precision of the modeled data across the Northwest Atlantic Shelf region. The overall comparison between modeled and observed data indicates reliable skill of FVCOM (r2 = 0.72; root mean squared error = 2.28 °C). Seasonally, the average absolute errors show higher model skill in spring, fall and winter than summer. We speculate that this is due to the increased difficulty of modeling high frequency variability in the exact position of the thermocline and frontal zones. The spatial patterns of the residuals suggest that there is improved similarity between modeled and observed data at higher latitudes. We speculate that this is due to increased tidal mixing at higher latitudes in our study area that reduces stratification in winter, allowing improved model accuracy. Modeled bottom water temperatures around Cape Cod, the continental shelf edges, and at one location at the entrance to Penobscot Bay were characterized by relatively high errors. Constraints for future uses of FVCOM bottom water temperature are provided based on the uncertainties in temporal-spatial patterns. This study is

  8. Southern Alaska Coastal Relief Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building coastal-relief models (CRM) for select U.S. coastal regions. Bathymetric, topographic, and shoreline data...

  9. Coastal Economic Trends for Coastal Geographies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These market data provide a comprehensive set of measures of changes in economic activity throughout the coastal regions of the United States. In regard to the...

  10. EFFECTS OF MEDU AND COASTAL TOPOGRAPHY ON THE DAMAGE PATTERN DURING THE RECENT INDIAN OCEAN TSUNAMI ALONG THE COAST OF TAMILNADU

    Directory of Open Access Journals (Sweden)

    J.P. Narayan

    2005-01-01

    Full Text Available Effects of Medu (naturally elevated landmass very close to the seashore and elongated parallel to the coast and coastal topography on the damage pattern during the deadliest Indian Ocean tsunami of December 26, 2004 is reported. The tsunami caused severe damage and claimed many victims in the coastal areas of eleven countries bordering the Indian Ocean. The damage survey revealed large variation in damage along the coastal region of Tamilnadu (India.The most severe damage was observed in the Nagapattinam district on the east coast and the west coast of Kanyakumari district. Decrease of damage from Nagapattinam to Kanchipuram district was observed. Intense damage again appeared to the north of Adyar River (from Srinivaspuri to Anna Samadhi Park. Almost, no damage was observed along the coast of Thanjavur, Puddukkotai and Ramnathpuram districts in Palk Strait, situated in the shadow zone of Sri Lanka.It was concluded that the width of continental shelf has played a major role in the pattern of tsunami damage. It was inferred that the width of the continental shelf and the interference of reflected waves from Sri Lanka and Maldives Islands with direct waves and receding waves was responsible for intense damage in Nagapattinam and Kanyakumari districts, respectively. During the damage survey authors also noted that there was almost no damage or much lesser damage to houses situated on or behind the Medu. Many people observed the first arrival. The largest tsunami amplitude occurred as the first arrival on the eastern coast and in the second arrival on the western coast.

  11. Integrated Monitoring of the Soya Warm Current Using HF Ocean Radars, Satellite Altimeters, Coastal Tide Gauges, and a Bottom-Mounted ADCP

    Science.gov (United States)

    Ebuchi, N.; Fukamachi, Y.; Ohshima, K. I.; Wakatsuchi, M.

    2007-12-01

    The Soya Warm Current (SWC) is a coastal boundary current, which flows along the coast of Hokkaido in the Sea of Okhotsk. The SWC flows into the Sea of Okhotsk from the Sea of Japan through the Soya/La Perouse Strait, which is located between Hokkaido, Japan, and Sakhalin, Russia. It supplies warm, saline water in the Sea of Japan to the Sea of Okhotsk and largely affects the ocean circulation and water mass formation in the Sea of Okhotsk, and local climate, environment and fishery in the region. However, the SWC has never been continuously monitored due to the difficulties involved in field observations related to, for example, severe weather conditions in the winter, political issues at the border strait, and conflicts with fishing activities in the strait. Detailed features of the SWC and its variations have not yet been clarified. In order to monitor variations in the SWC, three HF ocean radar stations were installed around the strait. The radar covers a range of approximately 70 km from the coast. It is shown that the HF radars clearly capture seasonal and subinertial variations of the SWC. The velocity of the SWC reaches its maximum, approximately 1 m/s, in summer, and weakens in winter. The velocity core is located 20 to 30 km from the coast, and its width is approximately 50 km. The surface transport by the Soya Warm Current shows a significant correlation with the sea level difference along the strait, as derived from coastal tide gauge records. The cross-current sea level difference, which is estimated from the sea level anomalies observed by the Jason-1 altimeter and a coastal tide gauge, also exhibits variation in concert with the surface transport and along-current sea level difference.

  12. Evaluation of ocean color data processing schemes for VIIRS sensor using in-situ data of coastal AERONET-OC sites

    Science.gov (United States)

    Ahmed, S.; Gilerson, A.; Hlaing, S.; Weidemann, A.; Arnone, R.; Wang, M.

    2013-10-01

    In the processing of Ocean Color (OC) data from sensor data recorded by Visible Infrared Imaging Radiometer Suite (VIIRS) aboard JPSS-Suomi satellite, NASA Ocean Biology Processing Group (OBPG) is deriving a continuous temporal calibration based on the on-board calibration measurements for the visible bands, and then reprocessing the full mission to produce a continuously calibrated sensor data record (SDR) product. In addition, a vicarious calibration during SDR to OC Level-2 processing is applied. In the latest processing the vicarious calibration is derived from the Marine Optical Buoy (MOBY) data, whereas in the initial processing it was derived from a sea surface reflectance model and a climatology of chlorophyll-a concentration. Furthermore, NASA has recently reprocessed the OC data for the entire VIIRS mission with lunar-based temporal calibration and updated vicarious gains. On the other hand, in fulfilling the mission of the U.S. National Oceanic and Atmospheric Administration (NOAA), the Interface Data Processing Segment (IDPS) developed by Raytheon Intelligence and Information Systems, for the processing of the environmental data products from sensor data records, has gained beta status for evaluation. As these processing schemes continue to evolve, monitoring the validity and assessments of the related VIIRS ocean color products are necessary, especially for coastal waters, to evaluate the consistency of these processing and calibration schemes. The ocean color component of the Aerosol Robotic Network (AERONET-OC) has been designed to support long-term satellite ocean color investigations through cross-site measurements collected by autonomous multispectral radiometer systems deployed above water. As part of this network, the Long Island Sound Coastal Observatory (LISCO) near New York City and WaveCIS in the Gulf of Mexico expand those observational capabilities with continuous monitoring as well as (for the LISCO site) additional assessment of the

  13. High-order accurate finite-volume formulations for the pressure gradient force in layered ocean models

    CERN Document Server

    Engwirda, Darren; Marshall, John

    2016-01-01

    The development of a set of high-order accurate finite-volume formulations for evaluation of the pressure gradient force in layered ocean models is described. A pair of new schemes are presented, both based on an integration of the contact pressure force about the perimeter of an associated momentum control-volume. The two proposed methods differ in their choice of control-volume geometries. High-order accurate numerical integration techniques are employed in both schemes to account for non-linearities in the underlying equation-of-state definitions and thermodynamic profiles, and details of an associated vertical interpolation and quadrature scheme are discussed in detail. Numerical experiments are used to confirm the consistency of the two formulations, and it is demonstrated that the new methods maintain hydrostatic and thermobaric equilibrium in the presence of strongly-sloping layer-wise geometry, non-linear equation-of-state definitions and non-uniform vertical stratification profiles. Additionally, one...

  14. NOAA/NOS National Centers for Coastal Ocean Science (NCCOS) /Center for Coastal Ocean Science (CCMA) benthic habitat and fish community assessment, Flower Garden Banks, Texas, 2009-2011 (NODC Accession 0104344)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Flower Garden Banks National Marine Sanctuary (FGBNMS) represents the northernmost tropical western Atlantic coral reef on the continental shelf and supports the...

  15. NOAA/NOS National Centers for Coastal Ocean Science (NCCOS) /Center for Coastal Ocean Science (CCMA) benthic habitat and fish community assessment, La Parguera and Guanica, Puerto Rico, 2011-2012 (NODC Accession 0104343)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were collected in order to 1) To spatially characterize and monitor the distribution, abundance, and size of both reef fishes and macro-invertebrates...

  16. 75 FR 8649 - Evaluation of State Coastal Management Programs and National Estuarine Research Reserves

    Science.gov (United States)

    2010-02-25

    ... National Oceanic and Atmospheric Administration Evaluation of State Coastal Management Programs and National Estuarine Research Reserves AGENCY: National Oceanic and Atmospheric Administration (NOAA), Office of Ocean and Coastal Resource Management, National Ocean Service, Commerce. ACTION: Notice of intent...

  17. 75 FR 42068 - Evaluation of State Coastal Management Programs and National Estuarine Research Reserves

    Science.gov (United States)

    2010-07-20

    ... National Oceanic and Atmospheric Administration Evaluation of State Coastal Management Programs and National Estuarine Research Reserves AGENCY: National Oceanic and Atmospheric Administration (NOAA), Office of Ocean and Coastal Resource Management, National Ocean Service, Commerce. ACTION: Notice of Intent...

  18. Observations of Recent Arctic Sea Ice Volume Loss and Its Impact on Ocean-Atmosphere Energy Exchange and Ice Production

    Science.gov (United States)

    Kurtz, N. T.; Markus, T.; Farrell, S. L.; Worthen, D. L.; Boisvert, L. N.

    2011-01-01

    Using recently developed techniques we estimate snow and sea ice thickness distributions for the Arctic basin through the combination of freeboard data from the Ice, Cloud, and land Elevation Satellite (ICESat) and a snow depth model. These data are used with meteorological data and a thermodynamic sea ice model to calculate ocean-atmosphere heat exchange and ice volume production during the 2003-2008 fall and winter seasons. The calculated heat fluxes and ice growth rates are in agreement with previous observations over multiyear ice. In this study, we calculate heat fluxes and ice growth rates for the full distribution of ice thicknesses covering the Arctic basin and determine the impact of ice thickness change on the calculated values. Thinning of the sea ice is observed which greatly increases the 2005-2007 fall period ocean-atmosphere heat fluxes compared to those observed in 2003. Although there was also a decline in sea ice thickness for the winter periods, the winter time heat flux was found to be less impacted by the observed changes in ice thickness. A large increase in the net Arctic ocean-atmosphere heat output is also observed in the fall periods due to changes in the areal coverage of sea ice. The anomalously low sea ice coverage in 2007 led to a net ocean-atmosphere heat output approximately 3 times greater than was observed in previous years and suggests that sea ice losses are now playing a role in increasing surface air temperatures in the Arctic.

  19. SOME BIOLOGICAL ASPECTS OF SCALLOPED HAMMERHEAD SHARKS (Sphyrna lewini Griffith & Smith, 1834 CAUGHT FROM COASTAL FISHERIES IN THE EASTERN INDIAN OCEAN

    Directory of Open Access Journals (Sweden)

    Umi Chodrijah

    2015-12-01

    Full Text Available Indonesia has the largest chondrichthyan fishery in the world, with a reported of 105,000 and 118,000 tonnes landed in 2002 and 2003 respectively. Scalloped hammerhead shark was either targeted or by-catch from this fishery, mostly for its fins. Despite of the growing concern around the world, the availability of biological data of this species, especially in the Eastern Indian Ocean is still lacking. The objectives of this paper are to present some biological information (size composition and sex ratio of the scalloped hammerhead, from coastal fisheries in Eastern Indian Ocean. The data used for the analysis comprised of two components, i.e. survey data in 2010 (February, March, June, August, October and December and data from daily monitoring shark landing in 2013 (January to December. Substantially lower mean size, more immature sharks and more frequent of female caught over years showed that scalloped hammerhead shark in the Eastern Indian Ocean are facing intensive fishing pressure which could lead to overfishing. This could harm the sustainability of scalloped hammerhead shark resource in the long run. The relationship between clasper length and total length was positively correlated where every 5 cmTL increment on clasper length adding 51 cmTL on total length.

  20. Isotope composition and volume of Earth´s early oceans

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Bird, Dennis K.; Rosing, Minik Thorleif

    2012-01-01

    Oxygen and hydrogen isotope compositions of Earth´s seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs......, but hydrogen´s was not, as it can escape to space. Isotopic properties of serpentine from the approximately 3.8 Ga Isua Supracrustal Belt in West Greenland are used to characterize hydrogen and oxygen isotope compositions of ancient seawater. Archaean oceans were depleted in deuterium [expressed as Î...... in Earth´s oceans. Our calculations predict that the oceans of early Earth were up to 26% more voluminous, and atmospheric CH4 and CO2 concentrations determined from limits on hydrogen escape to space are consistent with clement conditions on Archaean Earth....

  1. Deriving optical properties of Mahakam Delta coastal waters, Indonesia using in situ measurements and ocean color model inversion

    NARCIS (Netherlands)

    Budhiman, S.; Salama, M.S.; Vekerdy, Z.; Verhoef, W.

    2012-01-01

    The development of an operational water quality monitoring method based on remote sensing data requires information on the apparent and inherent optical properties of water (AOP and IOP respectively). This study was performed to determine the apparent and inherent optical properties of coastal water

  2. Deriving optical properties of Mahakam Delta coastal waters, Indonesia using in situ measurements and ocean color model inversion

    NARCIS (Netherlands)

    Budhiman, S.; Salama, M.S.; Vekerdy, Z.; Verhoef, W.

    2012-01-01

    The development of an operational water quality monitoring method based on remote sensing data requires information on the apparent and inherent optical properties of water (AOP and IOP respectively). This study was performed to determine the apparent and inherent optical properties of coastal water

  3. Validation Test Report for the 1/8 deg Global Navy Coastal Ocean Model Nowcast/Forecast System

    Science.gov (United States)

    2007-01-24

    modeling, and Alan Wallcraft for scalable, portable NCOM code development. Advice for validations in various regions or for particular datasets was...2000a: An optimal definition for ocean mixed layer depth. J. Geophys. Res. 105, 16803-16821.Large, W.G., J.C. McWilliams , and S. Doney, 1994: Oceanic...Large, W.G., J.C. McWilliams , and S.C. Doney, 1994: Oceanic vertical mixing: A review and a model with a non-local boundary layer parameterization. Rev

  4. Coastal aquifers: Scientific advances in the face of global environmental challenges

    Science.gov (United States)

    Post, Vincent E. A.; Werner, Adrian D.

    2017-08-01

    Coastal aquifers embody the subsurface transition between terrestrial and marine systems, and form the almost invisible pathway for tremendous volumes of freshwater that flow to the ocean. Changing conditions of the earth's landscapes and oceans can disrupt the fragile natural equilibrium between fresh and saltwater that exists in coastal zones. Among these, over-abstraction of groundwater is considered the leading man-made cause of seawater intrusion. Moreover, many of the world's largest urban settings, where sources of contamination are profuse, have been built over the freshwater in coastal aquifers. Thus, coastal aquifers are important receptors of human impacts to water on Earth (Michael et al., 2017). This Special Issue on 'Investigation and Management of Coastal Aquifers' contains current scientific advances on the topic, dealing with the storage and quality of water, affected by stressors ranging in scale from point source contamination to global climate change.

  5. National Status and Trends, Benthic Surveillance Project DNA-Xenobiotic Adducts Data, 1991, National Centers for Coastal Ocean Science

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In order to determine the current status of and to detect any long-term trends in the environmental quality of U.S. nearshore waters, NOAA initiated the National...

  6. National Status and Trends, Benthic Surveillance Project Sites, 1984-1992, National Centers for Coastal Ocean Science

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set reports information regarding the nominal sampling locations for the National Status and Trends Benthic Surveillance Project sites. One record is...

  7. National Status and Trends, Benthic Surveillance Project Chemistry Data, 1984-1992, National Centers for Coastal Ocean Science

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Status and Trends (NSandT) Benthic Surveillance Project Chemistry data file reports the trace concentrations of a suite of chemical contaminants in...

  8. National Status and Trends, Benthic Surveillance Project Chemistry Data, 1984-1992, National Centers for Coastal Ocean Science

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Status and Trends (NS&T) Benthic Surveillance Project Chemistry data file reports the trace concentrations of a suite of chemical contaminants in...

  9. Oceanic and coastal dissolved iron observations from 1978-01-01 to 2004-12-31 (NCEI Accession 0067344)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Keith Moore observational dissolved Iron database. Moore expanded the original iron database complied by Parekh et al. (2005. The complete dataset with references to...

  10. National Status and Trends, Benthic Surveillance Project Sites, 1984-1992, National Centers for Coastal Ocean Science

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set reports information regarding the nominal sampling locations for the National Status and Trends Benthic Surveillance Project sites. One record is...

  11. National Status and Trends: Bioeffects Assessment Program Sites (1986 to present) Compiled from NOAA's National Centers for Coastal Ocean Science

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains sample collection location information for the National Status and Trends, Bioeffects Assessment Project. The Bioeffects Assessment Sites data...

  12. National Status and Trends, Benthic Surveillance Project Pathology, 1984-1992, National Centers for Coastal Ocean Science

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In order to determine the current status of and to detect any long-term trends in the environmental quality of U.S. nearshore waters, NOAA initiated the National...

  13. Oceanic Area System Improvement Study (OASIS). Volume IV. Caribbean Region Air Traffic Services System Description.

    Science.gov (United States)

    1981-09-01

    Departamento de Transito Aereo) of the National Airways Division (Division de Aerovias Nacionales) as the authority responsible for the general...Directorate of Air Transport and Traffic (Direccion General Sectorial de Transporte y Transito Aereo - DGTTA), which in turn falls under the authority of...Northern Coastal Region of 4 the Directorate of Engineering and Systems (Direccion de Ingenieria y Sistemas), which is responsible for maintenance of the

  14. Ocean Carbon and Biogeochemistry Scoping Workshop on Terrestrial and Coastal Carbon Fluxes in the Gulf of Mexico, St. Petersburg, FL, May 6-8, 2008

    Science.gov (United States)

    Robbins, L.L.; Coble, P.G.; Clayton, T.D.; Cai, W.J.

    2009-01-01

    Despite their relatively small surface area, ocean margins may have a significant impact on global biogeochemical cycles and, potentially, the global air-sea fluxes of carbon dioxide. Margins are characterized by intense geochemical and biological processing of carbon and other elements and exchange large amounts of matter and energy with the open ocean. The area-specific rates of productivity, biogeochemical cycling, and organic/inorganic matter sequestration are high in coastal margins, with as much as half of the global integrated new production occurring over the continental shelves and slopes (Walsh, 1991; Doney and Hood, 2002; Jahnke, in press). However, the current lack of knowledge and understanding of biogeochemical processes occurring at the ocean margins has left them largely ignored in most of the previous global assessments of the oceanic carbon cycle (Doney and Hood, 2002). A major source of North American and global uncertainty is the Gulf of Mexico, a large semi-enclosed subtropical basin bordered by the United States, Mexico, and Cuba. Like many of the marginal oceans worldwide, the Gulf of Mexico remains largely unsampled and poorly characterized in terms of its air-sea exchange of carbon dioxide and other carbon fluxes. In May 2008, the Ocean Carbon and Biogeochemistry Scoping Workshop on Terrestrial and Coastal Carbon Fluxes in the Gulf of Mexico was held in St. Petersburg, FL, to address the information gaps of carbon fluxes associated with the Gulf of Mexico and to offer recommendations to guide future research. The meeting was attended by over 90 participants from over 50 U.S. and Mexican institutions and agencies. The Ocean Carbon and Biogeochemistry program (OCB; http://www.us-ocb.org/) sponsored this workshop with support from the National Science Foundation, the National Oceanic and Atmospheric Administration, the National Aeronautics and Space Administration, the U.S. Geological Survey, and the University of South Florida. The goal of

  15. The "RA" Expeditions: The Archaeological and Anthropological Background. The "RA" Expeditions: The Coriolis Effect. The "RA" Expeditions: The Papyrus Reed. Learning Experiences for Coastal and Oceanic Awareness Studies, Nos. 211, 212, 213. [Project COAST].

    Science.gov (United States)

    Delaware Univ., Newark. Coll. of Education.

    Included are three units related to coastal and oceanic awareness. These are: (1) The "RA" Expeditions: The Archaeological and Anthropological Background; (2) The "RA" Expeditions: The Coriolis Effect; and (3) The "RA" Expeditions: The Papyrus Reed. Each of the three units are designed for students in grades 6-12. Each unit contains teacher…

  16. The Muskrat. The Not-So-Common Oyster. The Horseshoe Crab. The Blue Crab. Learning Experiences for Coastal and Oceanic Awareness Studies, Nos. 108, 109, 111, 201. [Project COAST].

    Science.gov (United States)

    Delaware Univ., Newark. Coll. of Education.

    Included are four units related to coastal and oceanic awareness. The units are: (1) The Muskrat; (2) The Not-So-Common Oyster; (3) The Horseshoe Crab; and (4) The Blue Crab. All four units are designed for elementary school students. Each unit contains teacher background materials, student activity materials, evaluation materials, transparency…

  17. The "RA" Expeditions: The Archaeological and Anthropological Background. The "RA" Expeditions: The Coriolis Effect. The "RA" Expeditions: The Papyrus Reed. Learning Experiences for Coastal and Oceanic Awareness Studies, Nos. 211, 212, 213. [Project COAST].

    Science.gov (United States)

    Delaware Univ., Newark. Coll. of Education.

    Included are three units related to coastal and oceanic awareness. These are: (1) The "RA" Expeditions: The Archaeological and Anthropological Background; (2) The "RA" Expeditions: The Coriolis Effect; and (3) The "RA" Expeditions: The Papyrus Reed. Each of the three units are designed for students in grades 6-12.…

  18. Oceanic mechanisms for amplification of the 23,000-year ice-volume cycle.

    Science.gov (United States)

    Ruddiman, W F; McIntyre, A

    1981-05-08

    Situated adjacent to the largest Northern Hemispher ice sheets of the ice ages, the mid-latitude North Atlantic Ocean has an important role in the earth's climate history. It provides a significant local source of moisture for the atmosphere and adjacent continents, forms a corridor that guides moisture-bearing storms northward from low latitudes, and at times makes direct contact along its shorelines with continental ice masses. Evidence of major ice-ocean-air interactions involving the North Atlantic during the last 250,000 years is summarized. Outflow of icebergs and meltwater initially driven by summer insolation over the ice sheets affects midlatitude ocean temperatures, summer heat storage, winter sea-ice extent, and global sea level. These oceanic responses in turn influence the winter moisture flux back to the ice sheets, as well as ablation of land ice by calving. Spectral data indicate that the oceanic moisture and sea-level feedbacks, in part controlled by glacial melt products, amplify Milankovitch (insolation) forcing of the volumetrically dominant mid-latitude ice sheets at the 23,000-year precessional cycle.

  19. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO 2

    Science.gov (United States)

    Chen, Chen-Tung Arthur; Borges, Alberto V.

    2009-04-01

    Despite their moderately sized surface area, continental marginal seas play a significant role in the biogeochemical cycles of carbon, as they receive huge amounts of upwelled and riverine inputs of carbon and nutrients, sustaining a disproportionate large biological activity compared to their relative surface area. A synthesis of worldwide measurements of the partial pressure of CO 2 (pCO 2) indicates that most open shelves in the temperate and high-latitude regions are under-saturated with respect to atmospheric CO 2 during all seasons, although the low-latitude shelves seem to be over-saturated. Most inner estuaries and near-shore coastal areas on the other hand are over-saturated with respect to atmospheric CO 2. The scaling of air-sea CO 2 fluxes based on pCO 2 measurements and carbon mass-balance calculations indicate that the continental shelves absorb atmospheric CO 2 ranging between 0.33 and 0.36 Pg C yr -1 that corresponds to an additional sink of 27% to ˜30% of the CO 2 uptake by the open oceans based on the most recent pCO 2 climatology [Takahashi, T., Sutherland, S.C., Wanninkhof, R., Sweeney, C., Feely, R.A., Chipman, D., Hales, B., Friederich, G., Chavez, F., Watson, A., Bakker, D., Schuster, U., Metzl, N., Inoue, H.Y., Ishii, M., Midorikawa, T., Sabine, C., Hoppema, M., Olafsson, J., Amarson, T., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., De Baar, H., Nojiri, Y., Wong, C.S., Delille, B., Bates, N., 2009. Climatological mean and decadal change in surface ocean pCO 2, and net sea-air CO 2 flux over the global oceans. Deep-Sea Research II, this issue [doi: 10.1016/j.dsr2.2008.12.009].]. Inner estuaries, salt marshes and mangroves emit up to 0.50 Pg C yr -1, although these estimates are prone to large uncertainty due to poorly constrained ecosystem surface area estimates. Nevertheless, the view of continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO 2 allows reconciling long-lived opposing views on carbon

  20. Exploring the influence of surface waves in the carbon dioxide transfer velocity between the ocean and atmosphere in the coastal region

    Science.gov (United States)

    Ocampo-Torres, Francisco Javier; Francisco Herrera, Carlos; Gutiérrez-Loza, Lucía; Osuna, Pedro

    2016-04-01

    Field measurements have been carried out in order to better understand the possible influence of ocean surface waves in the transfer of carbon dioxide between the ocean and atmosphere in the coastal zone. The CO2 fluxes are being analysed and results are shown in a contribution by Gutiérrez-Loza et al., in this session. Here we try to highlight the findings regarding the transfer velocity (kCO2) once we have incorporated direct measurements of carbon dioxide concentration in the water side. In this study direct measurements of CO2 fluxes were obtained with an eddy covariance tower located in the shoreline equipped with an infrared open-path gas analyzer (LI-7500, LI-COR) and a sonic anemometer (R3-100 Professional Anemometer, Gill Instruments), both at about 13 m above the mean sea level, and sampling at 20 Hz. For some period of time simultaneous information of waves was recorded with a sampling rate of 2 Hz using an Acoustic Doppler Current Profiler (Workhorse Sentinel, Teledyne RD Instruments) at 10 m depth and 350 m away from the tower. Besides, recently the concentration of CO2 in water has also been recorded making use of a SAMI-CO2 instrument. A subtle effect of the wave field is detected in the estimated kCO2. Looking into details of the surface currents being detected very near the air-sea interface through an ADPC, a certain association can be found with the gas transfer velocity. Furthermore, some of the possible effects of breaking wave induced turbulence in the coastal zone is to be addressed. This work represents a RugDiSMar Project (CONACYT 155793) contribution. The support from CB-2011-01-168173 CONACYT project is greatly acknowledged.

  1. Objective assessment of the contribution of the RECOPESCA network to the monitoring of 3D coastal ocean variables in the Bay of Biscay and the English Channel

    Science.gov (United States)

    Lamouroux, Julien; Charria, Guillaume; De Mey, Pierre; Raynaud, Stéphane; Heyraud, Catherine; Craneguy, Philippe; Dumas, Franck; Le Hénaff, Matthieu

    2016-04-01

    In the Bay of Biscay and the English Channel, in situ observations represent a key element to monitor and to understand the wide range of processes in the coastal ocean and their direct impacts on human activities. An efficient way to measure the hydrological content of the water column over the main part of the continental shelf is to consider ships of opportunity as the surface to cover is wide and could be far from the coast. In the French observation strategy, the RECOPESCA programme, as a component of the High frequency Observation network for the environment in coastal SEAs (HOSEA), aims to collect environmental observations from sensors attached to fishing nets. In the present study, we assess that network using the Array Modes (ArM) method (a stochastic implementation of Le Hénaff et al. Ocean Dyn 59: 3-20. doi: 10.1007/s10236-008-0144-7, 2009). That model ensemble-based method is used here to compare model and observation errors and to quantitatively evaluate the performance of the observation network at detecting prior (model) uncertainties, based on hypotheses on error sources. A reference network, based on fishing vessel observations in 2008, is assessed using that method. Considering the various seasons, we show the efficiency of the network at detecting the main model uncertainties. Moreover, three scenarios, based on the reference network, a denser network in 2010 and a fictive network aggregated from a pluri-annual collection of profiles, are also analysed. Our sensitivity study shows the importance of the profile positions with respect to the sheer number of profiles for ensuring the ability of the network to describe the main error modes. More generally, we demonstrate the capacity of this method, with a low computational cost, to assess and to design new in situ observation networks.

  2. Dynamics of the transition zone in coastal zone color scanner-sensed ocean color in the North Pacific during oceanographic spring

    Science.gov (United States)

    Glover, David M.; Wroblewski, J. S.; Mcclain, Charles R.

    1994-01-01

    A transition zone in phytoplankton concentration running across the North Pacific basin at 30 deg to 40 deg north latitude corresponds to a basin-wide front in surface chlorophyll observed in a composite of coastal zone color scanner (CZCS) images for May, June, and July 1979-1986. This transition zone with low chlorophyll to the south and higher chlorophyll to the north can be simulated by a simple model of the concentration of phytoplankton, zooplankton, and dissolved nutrient (nitrate) in the surface mixed layer of the ocean applied to the North Pacific basin for the climatological conditions during oceanographic springtime (May, June, and July). The model is initialized with a 1 deg x 1 deg gridded estimate of wintertime (February, March, and April) mixed layer nitrate concentrations calculated from an extensive nutrient database and a similarly gridded mixed layer depth data set. Comparison of model predictions with CZCS data provides a means of evaluating the dynamics of the transition zone. We conclude that in the North Pacific, away from major boundary currents and coastal upwelling zones, wintertime vertical mixing determines the total nutrient available to the plankton ecosystem in the spring. The transition zone seen in basin-scale CZCS images is a reflection of the geographic variation in the wintertime mixed layer depth and the nitracline, leading to a latitudinal gradient in phytoplankton chlorophyll.

  3. Coastal California Digital Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital ortho-imagery dataset is a survey of coastal California. The project area consists of approximately 3774 square miles. The project design of the digital...

  4. Oceanographic and surface meteorological data collected from station tas by University of South Florida (USF) Coastal Ocean Monitoring and Prediction System (USF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida and North Atlantic Ocean from 2014-02-13 to 2015-01-22 (NODC Accession 0118792)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0118792 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  5. Oceanographic and surface meteorological data collected from station shp by University of South Florida (USF) Coastal Ocean Monitoring and Prediction System (USF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida and North Atlantic Ocean from 2014-02-13 to 2015-01-29 (NODC Accession 0118791)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0118791 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  6. Oceanographic and surface meteorological data collected from station apk by University of South Florida (USF) Coastal Ocean Monitoring and Prediction System (USF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida and North Atlantic Ocean from 2014-02-13 to 2015-01-29 (NODC Accession 0118740)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0118740 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  7. Oceanographic and surface meteorological data collected from station bcp by University of South Florida (USF) Coastal Ocean Monitoring and Prediction System (USF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida, Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2015-01-29 (NODC Accession 0118786)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0118786 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  8. Oceanographic and surface meteorological data collected from station nfb by University of South Florida (USF) Coastal Ocean Monitoring and Prediction System (USF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida, Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2015-01-29 (NODC Accession 0118790)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0118790 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  9. NOAA/NOS National Centers for Coastal Ocean Science (NCCOS) /Center for Coastal Ocean Science (CCMA) benthic habitat and fish community assessment, U.S. Virgin Islands, 2011-2012 (NODC Accession 0088018)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were collected 2011-2012 from select locations on St. Thomas, St. Croix, and St. John (U.S. VI) in order to 1) to spatially characterize and monitor the...

  10. Seasonal cycle of volume transport through Kerama Gap revealed by a 20-year global HYbrid Coordinate Ocean Model reanalysis

    Science.gov (United States)

    Yu, Zhitao; Metzger, E. Joseph; Thoppil, Prasad; Hurlburt, Harley E.; Zamudio, Luis; Smedstad, Ole Martin; Na, Hanna; Nakamura, Hirohiko; Park, Jae-Hun

    2015-12-01

    The temporal variability of volume transport from the North Pacific Ocean to the East China Sea (ECS) through Kerama Gap (between Okinawa Island and Miyakojima Island - a part of Ryukyu Islands Arc) is investigated using a 20-year global HYbrid Coordinate Ocean Model (HYCOM) reanalysis with the Navy Coupled Ocean Data Assimilation from 1993 to 2012. The HYCOM mean transport is 2.1 Sv (positive into the ECS, 1 Sv = 106 m3/s) from June 2009 to June 2011, in good agreement with the observed 2.0 Sv transport during the same period. This is similar to the 20-year mean Kerama Gap transport of 1.95 ± 4.0 Sv. The 20-year monthly mean volume transport (transport seasonal cycle) is maximum in October (3.0 Sv) and minimum in November (0.5 Sv). The annual variation component (345-400 days), mesoscale eddy component (70-345 days), and Kuroshio meander component (< 70 days) are separated to determine their contributions to the transport seasonal cycle. The annual variation component has a close relation with the local wind field and increases (decreases) transport into the ECS through Kerama Gap in summer (winter). Most of the variations in the transport seasonal cycle come from the mesoscale eddy component. The impinging mesoscale eddies increase the transport into the ECS during January, February, May, and October, and decrease it in March, April, November, and December, but have little effect in summer (June-September). The Kuroshio meander components cause smaller transport variations in summer than in winter.

  11. Development of a Kelp-Type Structure Module in a Coastal Ocean Model to Assess the Hydrodynamic Impact of Seawater Uranium Extraction Technology

    Directory of Open Access Journals (Sweden)

    Taiping Wang

    2014-02-01

    Full Text Available With the rapid growth of global energy demand, interest in extracting uranium from seawater for nuclear energy has been renewed. While extracting seawater uranium is not yet commercially viable, it serves as a “backstop” to the conventional uranium resources and provides an essentially unlimited supply of uranium resource. With recent technology advances, extracting uranium from seawater could be economically feasible only when the extraction devices are deployed at a large scale (e.g., several hundred km2. There is concern however that the large scale deployment of adsorbent farms could result in potential impacts to the hydrodynamic flow field in an oceanic setting. In this study, a kelp-type structure module based on the classic momentum sink approach was incorporated into a coastal ocean model to simulate the blockage effect of a farm of passive uranium extraction devices on the flow field. The module was quantitatively validated against laboratory flume experiments for both velocity and turbulence profiles.Model results suggest that the reduction in ambient currents could range from 4% to 10% using adsorbent farm dimensions and mooring densities previously described in the literature and with typical drag coefficients.

  12. Alkenone-based temperature patterns along the eastern South Pacific Coastal Ocean: the effect of upwelling and advection on the sedimentary alkenone unsaturation-index (U37K'

    Directory of Open Access Journals (Sweden)

    J. Garcés-Vargas

    2010-01-01

    Full Text Available We report that the sedimentary record of alkenone unsaturation-index (U37K' in the eastern South Pacific displays a wide range of temperatures, in response to sea surface temperature (SST, as well as nutrient concentrations. The U37K' inshore-offshore trend shows low-correlation with SSTs at many transitional sites (50–200 km offshore, and in one oligotrophic coastal site (~20° S. In contrast, in open-ocean sites SSTs play the expected dominant role. The latitudinal trend shows that nitrate, phosphate and/or temperature affect distinctively the U37K', suggesting progressive high-impacts in areas with permanent nutrient-stress conditions (~20° S, which is consistent with previous experiments. In contrast, this impact is slightly and not observable in transitional and open-ocean areas, respectively, where the coupling between offshore propagation of mesoscale eddies and upwelling filaments supply additional chlorophyll/nutrient. This study is a first field approximation to the impacts of thermal/non-thermal factors over the unsaturation-index in eastern Boundary Current systems, which would help in future temperature reconstructions.

  13. New Hampshire and Southern Maine Ocean Uses Atlas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Uses Atlas Project is an innovative partnership between the Coastal Response Research Center (CRRC) and NOAA's Office of Ocean and Coastal Resource...

  14. New Hampshire / Southern Maine Ocean Uses Atlas: Dominant and Aggregates

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Uses Atlas Project is an innovative partnership between the Coastal Response Research Center (CRRC) and NOAA's Office of Ocean and Coastal Resource...

  15. Monsoon regime in the Indian Ocean and zooplankton variability

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, V.R.

    The monsoonal effects on zooplankton lead to characteristic zoogeographic patterns in the open ocean and coastal waters. The evaluation of zooplankton variability in the Indian Ocean is presented in three sections: the open ocean, coastal waters...

  16. New Hampshire / Southern Maine Ocean Uses Atlas: Fishing sector

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Uses Atlas Project is an innovative partnership between the Coastal Response Research Center (CRRC) and NOAA's Office of Ocean and Coastal Resource...

  17. New Hampshire / Southern Maine Ocean Uses Atlas: Industrial sector

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Uses Atlas Project is an innovative partnership between the Coastal Response Research Center (CRRC) and NOAA's Office of Ocean and Coastal Resource...

  18. Demonstration of a Relocatable Regional Ocean Atmosphere Modeling System with Coastal Autonomous Sampling Networks: Turbulence Characterization from an AUV

    Science.gov (United States)

    2016-06-07

    pipe (N line, inshore), the downstream pipe (A line, inshore) and the detached jet (A line offshore ), at a variety of depths in the core of the features...R. A. Weller, and R. Pinkel. 1986. Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind

  19. Sensitivity of Calibration Gains to Ocean Color Processing in Coastal and Open Waters Using Ensembles Members for NPP-VIIRS

    Science.gov (United States)

    2014-07-01

    DATE (DD-MM-YYYY) 31-07-2014 REPORT TYPE Conference Proceedine 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Sensitivity of Calibration...34The marine optical buoy (MOBY) radiometric calibration and uncertainty budget for ocean color satellite sensor vicarious calibration," Proc. SPIE

  20. Iron bacterial phylogeny and their execution towards iron availability in Equatorial Indian Ocean and Coastal Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Rajasabapathy, R.; Mohandass, C.; VijayRaj, A.S.; Madival, V.V.; Meena, R.M.

    -264. Edwards K.J., W. Bach, T.M. McCollom and D.R. Rogers. 2004. Neutrophilic Iron-Oxidizing Bacteria in the Ocean: Their Habitats, Diversity, and Roles in Mineral Deposition, Rock Alteration, and Biomass Production in the Deep-Sea. Geomicrobiol. J. 21: 393...