WorldWideScience

Sample records for voltage influence error

  1. Mitigating voltage lead errors of an AC Josephson voltage standard by impedance matching

    Science.gov (United States)

    Zhao, Dongsheng; van den Brom, Helko E.; Houtzager, Ernest

    2017-09-01

    A pulse-driven AC Josephson voltage standard (ACJVS) generates calculable AC voltage signals at low temperatures, whereas measurements are performed with a device under test (DUT) at room temperature. The voltage leads cause the output voltage to show deviations that scale with the frequency squared. Error correction mechanisms investigated so far allow the ACJVS to be operational for frequencies up to 100 kHz. In this paper, calculations are presented to deal with these errors in terms of reflected waves. Impedance matching at the source side of the system, which is loaded with a high-impedance DUT, is proposed as an accurate method to mitigate these errors for frequencies up to 1 MHz. Simulations show that the influence of non-ideal component characteristics, such as the tolerance of the matching resistor, the capacitance of the load input impedance, losses in the voltage leads, non-homogeneity in the voltage leads, a non-ideal on-chip connection and inductors between the Josephson junction array and the voltage leads, can be corrected for using the proposed procedures. The results show that an expanded uncertainty of 12 parts in 106 (k  =  2) at 1 MHz and 0.5 part in 106 (k  =  2) at 100 kHz is within reach.

  2. Square-Wave Voltage Injection Algorithm for PMSM Position Sensorless Control With High Robustness to Voltage Errors

    DEFF Research Database (Denmark)

    Ni, Ronggang; Xu, Dianguo; Blaabjerg, Frede

    2017-01-01

    relationship with the magnetic field distortion. Position estimation errors caused by higher order harmonic inductances and voltage harmonics generated by the SVPWM are also discussed. Both simulations and experiments are carried out based on a commercial PMSM to verify the superiority of the proposed method......Rotor position estimated with high-frequency (HF) voltage injection methods can be distorted by voltage errors due to inverter nonlinearities, motor resistance, and rotational voltage drops, etc. This paper proposes an improved HF square-wave voltage injection algorithm, which is robust to voltage...... errors without any compensations meanwhile has less fluctuation in the position estimation error. The average position estimation error is investigated based on the analysis of phase harmonic inductances, and deduced in the form of the phase shift of the second-order harmonic inductances to derive its...

  3. Measurement Error Estimation for Capacitive Voltage Transformer by Insulation Parameters

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2017-03-01

    Full Text Available Measurement errors of a capacitive voltage transformer (CVT are relevant to its equivalent parameters for which its capacitive divider contributes the most. In daily operation, dielectric aging, moisture, dielectric breakdown, etc., it will exert mixing effects on a capacitive divider’s insulation characteristics, leading to fluctuation in equivalent parameters which result in the measurement error. This paper proposes an equivalent circuit model to represent a CVT which incorporates insulation characteristics of a capacitive divider. After software simulation and laboratory experiments, the relationship between measurement errors and insulation parameters is obtained. It indicates that variation of insulation parameters in a CVT will cause a reasonable measurement error. From field tests and calculation, equivalent capacitance mainly affects magnitude error, while dielectric loss mainly affects phase error. As capacitance changes 0.2%, magnitude error can reach −0.2%. As dielectric loss factor changes 0.2%, phase error can reach 5′. An increase of equivalent capacitance and dielectric loss factor in the high-voltage capacitor will cause a positive real power measurement error. An increase of equivalent capacitance and dielectric loss factor in the low-voltage capacitor will cause a negative real power measurement error.

  4. Design Margin Elimination Through Robust Timing Error Detection at Ultra-Low Voltage

    OpenAIRE

    Reyserhove, Hans; Dehaene, Wim

    2017-01-01

    This paper discusses a timing error masking-aware ARM Cortex M0 microcontroller system. Through in-path timing error detection, operation at the point-of-first-failure is possi- ble without corrupting the pipeline state, effectively eliminat- ing traditional timing margins. Error events are flagged and gathered to allow dynamic voltage scaling. The error-aware microcontroller was implemented in a 40nm CMOS process and realizes ultra-low voltage operation down to 0.29V at 5MHz consuming 12.90p...

  5. Metering error quantification under voltage and current waveform distortion

    Science.gov (United States)

    Wang, Tao; Wang, Jia; Xie, Zhi; Zhang, Ran

    2017-09-01

    With integration of more and more renewable energies and distortion loads into power grid, the voltage and current waveform distortion results in metering error in the smart meters. Because of the negative effects on the metering accuracy and fairness, it is an important subject to study energy metering combined error. In this paper, after the comparing between metering theoretical value and real recorded value under different meter modes for linear and nonlinear loads, a quantification method of metering mode error is proposed under waveform distortion. Based on the metering and time-division multiplier principles, a quantification method of metering accuracy error is proposed also. Analyzing the mode error and accuracy error, a comprehensive error analysis method is presented which is suitable for new energy and nonlinear loads. The proposed method has been proved by simulation.

  6. A Robust Ultra-Low Voltage CPU Utilizing Timing-Error Prevention

    OpenAIRE

    Hiienkari, Markus; Teittinen, Jukka; Koskinen, Lauri; Turnquist, Matthew; Mäkipää, Jani; Rantala, Arto; Sopanen, Matti; Kaltiokallio, Mikko

    2015-01-01

    To minimize energy consumption of a digital circuit, logic can be operated at sub- or near-threshold voltage. Operation at this region is challenging due to device and environment variations, and resulting performance may not be adequate to all applications. This article presents two variants of a 32-bit RISC CPU targeted for near-threshold voltage. Both CPUs are placed on the same die and manufactured in 28 nm CMOS process. They employ timing-error prevention with clock stretching to enable ...

  7. A Robust Ultra-Low Voltage CPU Utilizing Timing-Error Prevention

    Directory of Open Access Journals (Sweden)

    Markus Hiienkari

    2015-04-01

    Full Text Available To minimize energy consumption of a digital circuit, logic can be operated at sub- or near-threshold voltage. Operation at this region is challenging due to device and environment variations, and resulting performance may not be adequate to all applications. This article presents two variants of a 32-bit RISC CPU targeted for near-threshold voltage. Both CPUs are placed on the same die and manufactured in 28 nm CMOS process. They employ timing-error prevention with clock stretching to enable operation with minimal safety margins while maximizing performance and energy efficiency at a given operating point. Measurements show minimum energy of 3.15 pJ/cyc at 400 mV, which corresponds to 39% energy saving compared to operation based on static signoff timing.

  8. Filtration influence in a constant potential X-ray machine peak voltage measurements

    Energy Technology Data Exchange (ETDEWEB)

    Santos, L.R.; Vivolo, V.; Xavier, M.; Potiens, M.P.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Navarro, M.V.T., E-mail: dossantos.lucasrodrigues@gmail.com [Instituto Federal de Educacao, Ciencia e Tecnologia da Bahia (IFBA), Salvador (Brazil)

    2017-09-01

    This work shows the peak voltage measurements for several beam filtrations used in diagnostic radiology, using two types of non-invasive detectors; a voltage meter and a high-resolution spectrometer. The technique chosen for the voltage peak measurements with the spectrometer was the endpoint. The results were compared to the measured ones and showed good similarity to the nominal values. However the voltage meter detector used in this work presented errors for heavier filtrations. (author)

  9. Analysis of the Influence of Compensation Capacitance Errors of a Wireless Power Transfer System with SS Topology

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2017-12-01

    Full Text Available In this study, in order to determine the reasonable accuracy of the compensation capacitances satisfying the requirements on the output characteristics for a wireless power transfer (WPT system, taking the series-series (SS compensation structure as an example, the calculation formulas of the output characteristics, such as the power factor, output power, coil transfer efficiency, and capacitors’ voltage stress, are given under the condition of incomplete compensation according to circuit theory. The influence of compensation capacitance errors on the output characteristics of the system is then analyzed. The Taylor expansions of the theoretical formulas are carried out to simplify the formulas. The influence degrees of compensation capacitance errors on the output characteristics are calculated according to the simplified formulas. The reasonable error ranges of the compensation capacitances are then determined according to the requirements of the output characteristics of the system in the system design. Finally, the validity of the theoretical analysis and the simplified processing is verified through experiments. The proposed method has a certain guiding role for practical engineering design, especially in mass production.

  10. Improved read disturb and write error rates in voltage-control spintronics memory (VoCSM) by controlling energy barrier height

    Science.gov (United States)

    Inokuchi, T.; Yoda, H.; Kato, Y.; Shimizu, M.; Shirotori, S.; Shimomura, N.; Koi, K.; Kamiguchi, Y.; Sugiyama, H.; Oikawa, S.; Ikegami, K.; Ishikawa, M.; Altansargai, B.; Tiwari, A.; Ohsawa, Y.; Saito, Y.; Kurobe, A.

    2017-06-01

    A hybrid writing scheme that combines the spin Hall effect and voltage-controlled magnetic-anisotropy effect is investigated in Ta/CoFeB/MgO/CoFeB/Ru/CoFe/IrMn junctions. The write current and control voltage are applied to Ta and CoFeB/MgO/CoFeB junctions, respectively. The critical current density required for switching the magnetization in CoFeB was modulated 3.6-fold by changing the control voltage from -1.0 V to +1.0 V. This modulation of the write current density is explained by the change in the surface anisotropy of the free layer from 1.7 mJ/m2 to 1.6 mJ/m2, which is caused by the electric field applied to the junction. The read disturb rate and write error rate, which are important performance parameters for memory applications, are drastically improved, and no error was detected in 5 × 108 cycles by controlling read and write sequences.

  11. The Design and Characterization of a Prototype Wideband Voltage Sensor Based on a Resistive Divider.

    Science.gov (United States)

    Garnacho, Fernando; Khamlichi, Abderrahim; Rovira, Jorge

    2017-11-17

    The most important advantage of voltage dividers over traditional voltage transformers is that voltage dividers do not have an iron core with non-linear hysteresis characteristics. The voltage dividers have a linear behavior with respect to over-voltages and a flat frequency response larger frequency range. The weak point of a voltage divider is the influence of external high-voltage (HV) and earth parts in its vicinity. Electrical fields arising from high voltages in neighboring phases and from ground conductors and structures are one of their main sources for systematic measurement errors. This paper describes a shielding voltage divider for a 24 kV medium voltage network insulated in SF6 composed of two resistive-capacitive dividers, one integrated within the other, achieving a flat frequency response up to 10 kHz for ratio error and up to 5 kHz for phase displacement error. The metal shielding improves its immunity against electric and magnetic fields. The characterization performed on the built-in voltage sensor shows an accuracy class of 0.2 for a frequency range from 20 Hz to 5 kHz and a class of 0.5 for 1 Hz up to 20 Hz. A low temperature effect is also achieved for operation conditions of MV power grids.

  12. Constant potential high-voltage generator

    International Nuclear Information System (INIS)

    Resnick, T.A.; Dupuis, W.A.; Palermo, T.

    1980-01-01

    An X-ray tube voltage generator with automatic stabilization circuitry is disclosed. The generator includes a source of pulsating direct current voltage such as from a rectified 3 phase transformer. This pulsating voltage is supplied to the cathode and anode of an X-ray tube and forms an accelerating potential for electrons within that tube. The accelerating potential is stabilized with a feedback signal which is provided by a feedback network. The network includes an error signal generator which compares an instantaneous accelerating potential with a preferred reference accelerating potential and generates an error function. This error function is transmitted to a control tube grid which in turn causes the voltage difference between X-ray tube cathode and anode to stabilize and thereby reduce the error function. In this way stabilized accelerating potentials are realized and uniform X-ray energy distributions produced. (Auth.)

  13. Influence of Voltage on Main Characteristics of Electric Lighting Lamps

    Directory of Open Access Journals (Sweden)

    V. B. Kozlovskaya

    2009-01-01

    Full Text Available An analysis and systemization of data on influence of voltage value on main lighting engineering, electric and economic characteristics of incandescent lamps, gaseous-discharge lamps of low and high pressure have been made in the paper.Analytical and graphical dependences have been obtained that ensure to evaluate quantitative changes of corresponding lamp characteristics at voltage deviation from nominal value.

  14. DC-Link Voltage Coordinated-Proportional Control for Cascaded Converter With Zero Steady-State Error and Reduced System Type

    DEFF Research Database (Denmark)

    Tian, Yanjun; Loh, Poh Chiang; Deng, Fujin

    2016-01-01

    Cascaded converter is formed by connecting two subconverters together, sharing a common intermediate dc-link voltage. Regulation of this dc-link voltage is frequently realized with a proportional-integral (PI) controller, whose high gain at dc helps to force a zero steady-state tracking error....... The proposed scheme can be used with either unidirectional or bidirectional power flow, and has been verified by simulation and experimental results presented in this paper........ Such precise tracking is, however, at the expense of increasing the system type, caused by the extra pole at the origin introduced by the PI controller. The overall system may, hence, be tougher to control. To reduce the system type while preserving precise dc-link voltage tracking, this paper proposes...

  15. Influence of tube voltage on CT attenuation, radiation dose, and image quality: phantom study

    International Nuclear Information System (INIS)

    Li Fengtan; Li Dong; Zhang Yunting

    2013-01-01

    Objective: To assess the influence of tube current and tube voltage on the CT attenuation, radiation dose, and image quality. Methods: A total of 113 saline solutions with decreasing dilution of contrast medium (370 mg I/ml) was produced. MDCT scan was performed with 15 series of different settings of tube current and tube voltage. CT attenuations with 15 series of different settings were all measured, and influence of tube current and tube voltage on CT attenuations was analyzed. CT dose index (CTDIvol) was recorded. The CT attenuations with different tube voltage and current were compared with one-way ANOVA and Kruskal-Wallis rank sum test. The correlation of CT attenuation with different tube voltage and the influence of tube voltage and current on radiation dose and image quality were tested by correlation analysis. Results: Tube current (250, 200, 150, 100, and 50 mA) had no significant effect on CT attenuation (F = 0.001, 0.008, 0.075, P > 0.05), while tube voltage (120, 100, and 80 kV) had significant effect (H = 17.906, 17.906, 13.527, 20.124, 23.563, P < 0.05). The correlation between CT attenuation and tube voltage was determined with equation: CT attenuatio N_1_0_0 _k_V = 1.561 × CT attenuatio N_1_2_0 _k_v + 4.0818, CT attenuatio N_8_0 _k_v = 1.2131 × CT attenuatio N_1_2_0 _k_v + 0.9283. The influence of tube voltage on radiation dose and image quality was also analyzed, and equations were also obtained: N_1_2_0 -k_v = -5.9771 Ln (D_1_2_0 kv) + 25.412, N_1_0_0 _k_v = -10.544 Ln (D_1_0_0 _k_v) + 36.262, N_8_0 _k_v = -25.326 Ln (D_8_0 _k_v) + 62.816. According to the results of relationship among CT attenuation, radiation dose, and image quality, lower tube voltage with higher tube current can reduce the radiation dose. Conclusions: Lower tube voltage can reduce the radiation dose. However, CT attenuation was influenced, and correction should be done with the equations. (authors)

  16. Influence of random setup error on dose distribution

    International Nuclear Information System (INIS)

    Zhai Zhenyu

    2008-01-01

    Objective: To investigate the influence of random setup error on dose distribution in radiotherapy and determine the margin from ITV to PTV. Methods: A random sample approach was used to simulate the fields position in target coordinate system. Cumulative effect of random setup error was the sum of dose distributions of all individual treatment fractions. Study of 100 cumulative effects might get shift sizes of 90% dose point position. Margins from ITV to PTV caused by random setup error were chosen by 95% probability. Spearman's correlation was used to analyze the influence of each factor. Results: The average shift sizes of 90% dose point position was 0.62, 1.84, 3.13, 4.78, 6.34 and 8.03 mm if random setup error was 1,2,3,4,5 and 6 mm,respectively. Univariate analysis showed the size of margin was associated only by the size of random setup error. Conclusions: Margin of ITV to PTV is 1.2 times random setup error for head-and-neck cancer and 1.5 times for thoracic and abdominal cancer. Field size, energy and target depth, unlike random setup error, have no relation with the size of the margin. (authors)

  17. The Study of Residual Voltage of Induction Motor and the Influence of Various Parameters on the Residual Voltage

    Science.gov (United States)

    Zhang, Shuping; Zhao, Chen; Tan, Weipu

    2017-05-01

    The majority important load of industrial area is mainly composed of induction motor, it is more common that induction motor becomes sluggishness and even tripping due to the lose of power supply or other malfunction in the practical work. In this paper, space vector method is used to establish a reduced order model of induction motor, and then study the changes of motor electromagnetic after losing electricity. Based on motion equations of the rotor and magnetic flux conservation principle, it uses mathematical methods to deduce the expression of rotor current, rotor flux, the stator flux and the residual voltage of stator side. In addition, relying on thermal power plants, it uses the actual data of power plants, takes DIgsilent software to simulate the residual voltage of motor after losing electricity. analyses the influence on the residual voltage with the changes of the moment of inertia, load ratio, initial size of slip and the load characteristic of induction motor. By analysis of these, it has a more detailed understanding about the changes of residual voltage in practical application, in additional, it is more beneficial to put into standby power supply safely and effectively, moreover, reduce the influence of the input process to the whole system.

  18. INFLUENCE OF MECHANICAL ERRORS IN A ZOOM CAMERA

    Directory of Open Access Journals (Sweden)

    Alfredo Gardel

    2011-05-01

    Full Text Available As it is well known, varying the focus and zoom of a camera lens system changes the alignment of the lens components resulting in a displacement of the image centre and field of view. Thus, knowledge of how the image centre shifts may be important for some aspects of camera calibration. As shown in other papers, the pinhole model is not adequate for zoom lenses. To ensure a calibration model for these lenses, the calibration parameters must be adjusted. The geometrical modelling of a zoom lens is realized from its lens specifications. The influence on the calibration parameters is calculated by introducing mechanical errors in the mobile lenses. Figures are given describing the errors obtained in the principal point coordinates and also in its standard deviation. A comparison is then made with the errors that come from the incorrect detection of the calibration points. It is concluded that mechanical errors of actual zoom lenses can be neglected in the calibration process because detection errors have more influence on the camera parameters.

  19. The influence of the analog-to-digital conversion error on the JT-60 plasma position/shape feedback control system

    International Nuclear Information System (INIS)

    Yoshida, Michiharu; Kurihara, Kenichi

    1995-12-01

    In the plasma feedback control system (PFCS) and the direct digital controller (DDC) for the poloidal field coil power supply in the JT-60 tokamak, it is necessary to observe signals of all the poloidal field coil currents. Each of the signals, originally measured by a single sensor, is distributed to the PFCS and DDC through different cable routes and different analog-to-digital converters from each other. This produces the conversion error to the amount of several bits. Consequently, proper voltage from feedback calculation cannot be applied to the coil, and hence the control performance is possibly supposed to deteriorate to a certain extent. This paper describes how this error makes an influence on the plasma horizontal position control and how to improve the deteriorated control performance. (author)

  20. The influence of transformers, induction motors and fault resistance regarding propagation voltage sags

    OpenAIRE

    Jairo Blanco; Ruben Darío Leal; Jonathan Jacome; Johann F. Petit; Gabriel Ordoñez; Víctor Barrera

    2011-01-01

    This article presents an analysis of voltage sag propagation. The ATPDraw tool was selected for simulating the IEEE 34 node test feeder. It takes into account both voltage sags caused by electrical fault network, as well as voltage sag propagation characteristics caused by induction motor starting and transformer energising. The analysis was aimed at assessing the influence of transformer winding connections, the impedance of these transformers, lines and cables, summarising the...

  1. Restoration of Low-Voltage Distribution Systems with Inverter-Interfaced DG Units

    DEFF Research Database (Denmark)

    Dietmannsberger, Markus; Wang, Xiongfei; Blaabjerg, Frede

    2018-01-01

    -area voltage collapse. This paper proposes a restoration strategy from zero voltage conditions for inverter-interfaced DG under islanded conditions. In the approach, a flexible and scalable Master DG inverter concept is introduced for distributed generations, where no communication is needed and an outage......The increasing share of distributed generation (DG) offers new chances in grid restoration of low-voltage distribution grids. Instead of relying on the transmission or high- and medium-voltage levels, establishing islanding operation in low-voltage grids might be a good option after a wide...... of the Master can be balanced by other DG inverters. The control strategy ensures the tracking of nominal values of the system voltage and frequency without zero steady-state error. The influences of non-controllable DG are also taken into account in the strategy with an effective countermeasure developed...

  2. Influence of water trees on breakdown voltage of polymeric cables insulations

    Energy Technology Data Exchange (ETDEWEB)

    Stancu, Cristina [INCDIE ICPE CA, Bucharest (Romania); Notingher, Petru V.; Plopeanu, Mihai Gabriel [Politehnica University of Bucharest, Bucharest (Romania)

    2011-07-01

    In a previous paper was shown that water trees development modifies considerably the electric field repartition, which increases significantly in the vicinity of treed areas. In order to find the water trees influence on the breakdown voltage, in the present paper, an experimental study on model cables insulated with low density polyethylene is done. In insulation samples, water trees with various dimensions and densities were developed. For the reduction of the test duration, an electric field with a higher frequency (3-5 kHz) was used. For breakdown voltage measurement an automatic setup was realized. For each value of the ageing time the dimensions and densities of water trees and breakdown voltage were measured and the dependency of the breakdown voltage with these quantities were analysed. The results show a significant reduction of the breakdown voltage of treed cables insulations compared to un-treed ones. Key words: polyethylene, water treeing, electric field, breakdown, power cables.

  3. Influence of Ambient Humidity on the Voltage Response of Ionic Polymer-Metal Composite Sensor.

    Science.gov (United States)

    Zhu, Zicai; Horiuchi, Tetsuya; Kruusamäe, Karl; Chang, Longfei; Asaka, Kinji

    2016-03-31

    Electrical potential based on ion migration exists not only in natural systems but also in ionic polymer materials. In order to investigate the influence of ambient humidity on voltage response, classical Au-Nafion IPMC was chosen as the reference sample. Voltage response under a bending deformation was measured in two ways: first, continuous measurement of voltage response in the process of absorption and desorption of water to study the tendency of voltage variation at all water states; second, measurements at multiple fixed ambient humidity levels to characterize the process of voltage response quantitatively. Ambient humidity influences the voltage response mainly by varying water content in ionic polymer. Under a step bending, the amplitude of initial voltage peak first increases and then decreases as the ambient humidity and the inherent water content decrease. This tendency is explained semiquantitatively by mass storage capacity related to the stretchable state of the Nafion polymer network. Following the initial peak, the voltage shows a slow decay to a steady state, which is first characterized in this paper. The relative voltage decay during the steady state always decreases as the ambient humidity is lowered. It is ascribed to progressive increase of the ratio between the water molecules in the cation hydration shell to the free water. Under sinusoidal mechanical bending excitation in the range of 0.1-10 Hz, the voltage magnitude increases with frequency at high ambient humidity but decreases with frequency at low ambient humidity. The relationship is mainly controlled by the voltage decay effect and the response speed.

  4. Influence of Wind Plant Ancillary Voltage Control on System Small Signal Stability

    DEFF Research Database (Denmark)

    Su, Chi; Chen, Zhe

    2012-01-01

    As a common tendency, large-scale wind farms are increasingly connected to the transmission system of modern power grids. This introduces some new challenges to the connected power systems, and the transmission system operators (TSOs) have to put some new requirements as part of the grid codes...... on the integration of wind farms. One common requirement to wind farms is the function of system voltage control which can be implemented in the grid-side convertor controller of a variable speed wind turbine. This ancillary voltage control provided by wind farms could have some influence on the system small signal...... stability. This paper implements an ancillary voltage control strategy on a direct-drive-full-convertor-based wind farm and studies its influence on the damping ratio values of the dominant oscillation mode within the connected power system. All the calculations and simulations are conducted in DIg...

  5. Influence of measurement errors and estimated parameters on combustion diagnosis

    International Nuclear Information System (INIS)

    Payri, F.; Molina, S.; Martin, J.; Armas, O.

    2006-01-01

    Thermodynamic diagnosis models are valuable tools for the study of Diesel combustion. Inputs required by such models comprise measured mean and instantaneous variables, together with suitable values for adjustable parameters used in different submodels. In the case of measured variables, one may estimate the uncertainty associated with measurement errors; however, the influence of errors in model parameter estimation may not be so easily established on an experimental basis. In this paper, a simulated pressure cycle has been used along with known input parameters, so that any uncertainty in the inputs is avoided. Then, the influence of errors in measured variables and geometric and heat transmission parameters on the results of a diagnosis combustion model for direct injection diesel engines have been studied. This procedure allowed to establish the relative importance of these parameters and to set limits to the maximal errors of the model, accounting for both the maximal expected errors in the input parameters and the sensitivity of the model to those errors

  6. Influence of phantom and tube voltage in fluoroscopy on image intensifier (I.I.) incident dose rate

    International Nuclear Information System (INIS)

    Seguchi, Shigenobu; Ishikawa, Yoshinobu; Kuwahara, Kazuyoshi; Morita, Miki; Mizuno, Shouta; Nakamura, Akio

    1999-01-01

    We examined the influence of phantoms and tube voltage in fluoroscopy on the image intensifier (I.I.) conversion factor. We used 20-cm-thick acrylic resin, 20 mm aluminum, and 1.5 mm copper, which are generally used as phantoms in the measurement of I.I. incident dose rate. We measured I.I. incident dose rate and conversion factor under conditions in which the range of tube voltage was from 60 kV to 120 kV. The result showed that the conversion factor is influenced by the type of phantom, with copper showing the highest value, aluminum second, and acrylic the smallest under the same condition of aluminum at half value layer. It was determined that conversion factor depends on tube voltage and has peaks from 80-100 kV. The location and height of the peak are influenced by the type of phantom. Therefore, I.I. incident dose rate is influenced by both the type of phantom and tube voltage under automatic brightness control fluoroscopy. Unification of phantoms and tube voltage is necessary for long-term evaluation of I.I. incident dose rate. (author)

  7. Possible influence of the voltage dependence of the Josephson tunneling current I(V,psi) on the corresponding current-voltage characteristic

    International Nuclear Information System (INIS)

    Hahlbohm, H.D.; Luebbig, H.; Luther, H.

    1975-01-01

    Analog computer calculations of the current-voltage characteristic involving the voltage dependence of the amplitudes of the tunneling current equation explicitly, for the case of a current driven tunneling junction at different temperatures are reported on. These studies are based upon the adiabatic representation of the current-phase relation. The influence of retarding effects is not included. Therefore the computational results can lead to practical consequences at best in the range near the transition temperature. (Auth.)

  8. THE INFLUENCE OF ACCOUNTANCY ERRORS ON FINANCIAL AND TAX REPORTS

    Directory of Open Access Journals (Sweden)

    Mariana GURĂU

    2016-06-01

    Full Text Available To make mistakes is human. An accountant may do mistakes, too. Accountancy errors are defined and classsified by accounting regulations. These set what is the accountant treatment for correcting accountancy errors. However, even though one of the objectives in accounting normalization is made by the disconnection between accountancy and taxation, the accountancy errors influence especially tax reports. We will further point the impact of accountancy errors on financial and tax reports. We will also approach the accountancy principles that impose the rules described for correcting the errors.

  9. Influence of current limitation on voltage stability with voltage sourced converter HVDC

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Jóhannsson, Hjörtur; Hansen, Anca Daniela

    2013-01-01

    A first study of voltage stability with relevant amount of Voltage Sourced Converter based High Voltage Direct Current (VSC-HVDC) transmission is presented, with particular focus on the converters’ behaviour when reaching their rated current. The detrimental effect of entering the current...

  10. Calculating method on human error probabilities considering influence of management and organization

    International Nuclear Information System (INIS)

    Gao Jia; Huang Xiangrui; Shen Zupei

    1996-01-01

    This paper is concerned with how management and organizational influences can be factored into quantifying human error probabilities on risk assessments, using a three-level Influence Diagram (ID) which is originally only as a tool for construction and representation of models of decision-making trees or event trees. An analytical model of human errors causation has been set up with three influence levels, introducing a method for quantification assessments (of the ID), which can be applied into quantifying probabilities) of human errors on risk assessments, especially into the quantification of complex event trees (system) as engineering decision-making analysis. A numerical case study is provided to illustrate the approach

  11. Influence of coupling parameter on current-voltage characteristics of intrinsic Josephson junctions in high-T c superconductors

    International Nuclear Information System (INIS)

    Shukrinov, Yu.M.; Mahfouzi, F.

    2006-01-01

    We study the current-voltage characteristics of intrinsic Josephson junctions in high-T c superconductors by numerical calculations and in framework of capacitively coupled Josephson junctions model we obtain the total number of branches. The influence of the coupling parameter α on the current-voltage characteristics at fixed parameter β (β 2 1/β c , where β c is McCumber parameter) and the influence of α on β-dependence of the current-voltage characteristics are investigated. We obtain the α-dependence of the branch's slopes and branch's endpoints. The presented results show new features of the coupling effect on the scheme of hysteresis jumps in current-voltage characteristics of intrinsic Josephson junctions in high-T c superconductors

  12. Influence of voltage rise time on microwave generation in relativistic backward wave oscillator

    International Nuclear Information System (INIS)

    Wu, Ping; Deng, Yuqun; Sun, Jun; Teng, Yan; Shi, Yanchao; Chen, Changhua

    2015-01-01

    In relativistic backward wave oscillators (RBWOs), although the slow wave structure (SWS) and electron beam determine the main characteristics of beam-wave interaction, many other factors can also significantly affect the microwave generation process. This paper investigates the influence of voltage rise time on beam-wave interaction in RBWOs. Preliminary analysis and PIC simulations demonstrate if the voltage rise time is moderately long, the microwave frequency will gradually increase during the startup process until the voltage reaches its amplitude, which can be explained by the dispersion relation. However, if the voltage rise time is long enough, the longitudinal resonance of the finitely-long SWS will force the RBWO to work with unwanted longitudinal modes for a while and then gradually hop to the wanted longitudinal mode, and this will lead to an impure microwave frequency spectrum. Besides, a longer voltage rise time will delay the startup process and thus lead to a longer microwave saturation time. And if unwanted longitudinal modes are excited due to long voltage rise time, the microwave saturation time will be further lengthened. Therefore, the voltage rise time of accelerators adopted in high power microwave technology should not be too long in case unwanted longitudinal modes are excited

  13. Influence of Ephemeris Error on GPS Single Point Positioning Accuracy

    Science.gov (United States)

    Lihua, Ma; Wang, Meng

    2013-09-01

    The Global Positioning System (GPS) user makes use of the navigation message transmitted from GPS satellites to achieve its location. Because the receiver uses the satellite's location in position calculations, an ephemeris error, a difference between the expected and actual orbital position of a GPS satellite, reduces user accuracy. The influence extent is decided by the precision of broadcast ephemeris from the control station upload. Simulation analysis with the Yuma almanac show that maximum positioning error exists in the case where the ephemeris error is along the line-of-sight (LOS) direction. Meanwhile, the error is dependent on the relationship between the observer and spatial constellation at some time period.

  14. Analysis of influence on back-EMF based sensorless control of PMSM due to parameter variations and measurement errors

    DEFF Research Database (Denmark)

    Wang, Z.; Lu, K.; Ye, Y.

    2011-01-01

    To achieve better performance of sensorless control of PMSM, a precise and stable estimation of rotor position and speed is required. Several parameter uncertainties and variable measurement errors may lead to estimation error, such as resistance and inductance variations due to temperature...... and flux saturation, current and voltage errors due to measurement uncertainties, and signal delay caused by hardwares. This paper reveals some inherent principles for the performance of the back-EMF based sensorless algorithm embedded in a surface mounted PMSM system adapting vector control strategy...

  15. The Sustained Influence of an Error on Future Decision-Making.

    Science.gov (United States)

    Schiffler, Björn C; Bengtsson, Sara L; Lundqvist, Daniel

    2017-01-01

    Post-error slowing (PES) is consistently observed in decision-making tasks after negative feedback. Yet, findings are inconclusive as to whether PES supports performance accuracy. We addressed the role of PES by employing drift diffusion modeling which enabled us to investigate latent processes of reaction times and accuracy on a large-scale dataset (>5,800 participants) of a visual search experiment with emotional face stimuli. In our experiment, post-error trials were characterized by both adaptive and non-adaptive decision processes. An adaptive increase in participants' response threshold was sustained over several trials post-error. Contrarily, an initial decrease in evidence accumulation rate, followed by an increase on the subsequent trials, indicates a momentary distraction of task-relevant attention and resulted in an initial accuracy drop. Higher values of decision threshold and evidence accumulation on the post-error trial were associated with higher accuracy on subsequent trials which further gives credence to these parameters' role in post-error adaptation. Finally, the evidence accumulation rate post-error decreased when the error trial presented angry faces, a finding suggesting that the post-error decision can be influenced by the error context. In conclusion, we demonstrate that error-related response adaptations are multi-component processes that change dynamically over several trials post-error.

  16. The Sustained Influence of an Error on Future Decision-Making

    Directory of Open Access Journals (Sweden)

    Björn C. Schiffler

    2017-06-01

    Full Text Available Post-error slowing (PES is consistently observed in decision-making tasks after negative feedback. Yet, findings are inconclusive as to whether PES supports performance accuracy. We addressed the role of PES by employing drift diffusion modeling which enabled us to investigate latent processes of reaction times and accuracy on a large-scale dataset (>5,800 participants of a visual search experiment with emotional face stimuli. In our experiment, post-error trials were characterized by both adaptive and non-adaptive decision processes. An adaptive increase in participants’ response threshold was sustained over several trials post-error. Contrarily, an initial decrease in evidence accumulation rate, followed by an increase on the subsequent trials, indicates a momentary distraction of task-relevant attention and resulted in an initial accuracy drop. Higher values of decision threshold and evidence accumulation on the post-error trial were associated with higher accuracy on subsequent trials which further gives credence to these parameters’ role in post-error adaptation. Finally, the evidence accumulation rate post-error decreased when the error trial presented angry faces, a finding suggesting that the post-error decision can be influenced by the error context. In conclusion, we demonstrate that error-related response adaptations are multi-component processes that change dynamically over several trials post-error.

  17. Influence of the applied voltage on the Rapid Chloride Migration (RCM) test

    NARCIS (Netherlands)

    Spiesz, P.R.; Brouwers, H.J.H.

    2012-01-01

    This study addresses the influence of the applied voltage (electrical field) on the value of the chloride migration coefficient, as determined with the Rapid Chloride Migration (RCM) test, and on other properties of cement based mortars. It is shown that in the investigated ranges of applied

  18. Electrostatic micromanipulation of a conductive particle by a single probe with consideration of an error in the evaluated mass

    International Nuclear Information System (INIS)

    Sawai, Kenji; Saito, Shigeki

    2010-01-01

    Recently, micromanipulation techniques for handling a conductive microparticle have been in demand. Electrostatic micromanipulation with a single probe is a promising technique for such manipulation. While the feasibility of the technique has been proved experimentally, the success rate of manipulation was 25%, and further improvements are required. To enhance the success rate and realize highly reliable electrostatic micromanipulation, this paper proposes an improved design of a voltage sequence which is applied to deposit a microparticle onto a substrate plate. It was found through investigation that the error in the evaluated mass of a microparticle must be considered in order to improve the success rate of the manipulation. Behavior of a microparticle during the electrostatic micromanipulation is calculated by a boundary element method, and the influence of error is discussed. An improved design of the applied voltage sequence that can tolerate an error in the evaluated mass is described. Moreover, the effectiveness of the newly designed voltage sequence in the electrostatic micromanipulation is experimentally shown.

  19. Neutron-induced soft errors in CMOS circuits

    International Nuclear Information System (INIS)

    Hazucha, P.

    1999-01-01

    The subject of this thesis is a systematic study of soft errors occurring in CMOS integrated circuits when being exposed to radiation. The vast majority of commercial circuits operate in the natural environment ranging from the sea level to aircraft flight altitudes (less than 20 km), where the errors are caused mainly by interaction of atmospheric neutrons with silicon. Initially, the soft error rate (SER) of a static memory was measured for supply voltages from 2V to 5V when irradiated by 14 MeV and 100 MeV neutrons. Increased error rate due to the decreased supply voltage has been identified as a potential hazard for operation of future low-voltage circuits. A novel methodology was proposed for accurate SER characterization of a manufacturing process and it was validated by measurements on a 0.6 μm process and 100 MeV neutrons. The methodology can be applied to the prediction of SER in the natural environment

  20. False Operation of Static Random Access Memory Cells under Alternating Current Power Supply Voltage Variation

    Science.gov (United States)

    Sawada, Takuya; Takata, Hidehiro; Nii, Koji; Nagata, Makoto

    2013-04-01

    Static random access memory (SRAM) cores exhibit susceptibility against power supply voltage variation. False operation is investigated among SRAM cells under sinusoidal voltage variation on power lines introduced by direct RF power injection. A standard SRAM core of 16 kbyte in a 90 nm 1.5 V technology is diagnosed with built-in self test and on-die noise monitor techniques. The sensitivity of bit error rate is shown to be high against the frequency of injected voltage variation, while it is not greatly influenced by the difference in frequency and phase against SRAM clocking. It is also observed that the distribution of false bits is substantially random in a cell array.

  1. Influence of Distributed Residential Energy Storage on Voltage in Rural Distribution Network and Capacity Configuration

    Science.gov (United States)

    Liu, Lu; Tong, Yibin; Zhao, Zhigang; Zhang, Xuefen

    2018-03-01

    Large-scale access of distributed residential photovoltaic (PV) in rural areas has solved the voltage problem to a certain extent. However, due to the intermittency of PV and the particularity of rural residents’ power load, the problem of low voltage in the evening peak remains to be resolved. This paper proposes to solve the problem by accessing residential energy storage. Firstly, the influence of access location and capacity of energy storage on voltage distribution in rural distribution network is analyzed. Secondly, the relation between the storage capacity and load capacity is deduced for four typical load and energy storage cases when the voltage deviation meets the demand. Finally, the optimal storage position and capacity are obtained by using PSO and power flow simulation.

  2. Systematic errors of EIT systems determined by easily-scalable resistive phantoms.

    Science.gov (United States)

    Hahn, G; Just, A; Dittmar, J; Hellige, G

    2008-06-01

    We present a simple method to determine systematic errors that will occur in the measurements by EIT systems. The approach is based on very simple scalable resistive phantoms for EIT systems using a 16 electrode adjacent drive pattern. The output voltage of the phantoms is constant for all combinations of current injection and voltage measurements and the trans-impedance of each phantom is determined by only one component. It can be chosen independently from the input and output impedance, which can be set in order to simulate measurements on the human thorax. Additional serial adapters allow investigation of the influence of the contact impedance at the electrodes on resulting errors. Since real errors depend on the dynamic properties of an EIT system, the following parameters are accessible: crosstalk, the absolute error of each driving/sensing channel and the signal to noise ratio in each channel. Measurements were performed on a Goe-MF II EIT system under four different simulated operational conditions. We found that systematic measurement errors always exceeded the error level of stochastic noise since the Goe-MF II system had been optimized for a sufficient signal to noise ratio but not for accuracy. In time difference imaging and functional EIT (f-EIT) systematic errors are reduced to a minimum by dividing the raw data by reference data. This is not the case in absolute EIT (a-EIT) where the resistivity of the examined object is determined on an absolute scale. We conclude that a reduction of systematic errors has to be one major goal in future system design.

  3. Systematic errors of EIT systems determined by easily-scalable resistive phantoms

    International Nuclear Information System (INIS)

    Hahn, G; Just, A; Dittmar, J; Hellige, G

    2008-01-01

    We present a simple method to determine systematic errors that will occur in the measurements by EIT systems. The approach is based on very simple scalable resistive phantoms for EIT systems using a 16 electrode adjacent drive pattern. The output voltage of the phantoms is constant for all combinations of current injection and voltage measurements and the trans-impedance of each phantom is determined by only one component. It can be chosen independently from the input and output impedance, which can be set in order to simulate measurements on the human thorax. Additional serial adapters allow investigation of the influence of the contact impedance at the electrodes on resulting errors. Since real errors depend on the dynamic properties of an EIT system, the following parameters are accessible: crosstalk, the absolute error of each driving/sensing channel and the signal to noise ratio in each channel. Measurements were performed on a Goe-MF II EIT system under four different simulated operational conditions. We found that systematic measurement errors always exceeded the error level of stochastic noise since the Goe-MF II system had been optimized for a sufficient signal to noise ratio but not for accuracy. In time difference imaging and functional EIT (f-EIT) systematic errors are reduced to a minimum by dividing the raw data by reference data. This is not the case in absolute EIT (a-EIT) where the resistivity of the examined object is determined on an absolute scale. We conclude that a reduction of systematic errors has to be one major goal in future system design

  4. Influence of Daily Set-Up Errors on Dose Distribution During Pelvis Radiotherapy

    International Nuclear Information System (INIS)

    Kasabasic, M.; Ivkovic, A.; Faj, D.; Rajevac, V.; Sobat, H.; Jurkovic, S.

    2011-01-01

    An external beam radiotherapy (EBRT) using megavoltage beam of linear accelerator is usually the treatment of choice for the cancer patients. The goal of EBRT is to deliver the prescribed dose to the target volume, with as low as possible dose to the surrounding healthy tissue. A large number of procedures and different professions involved in radiotherapy process, uncertainty of equipment and daily patient set-up errors can cause a difference between the planned and delivered dose. We investigated a part of this difference caused by daily patient set-up errors. Daily set-up errors for 35 patients were measured. These set-up errors were simulated on 5 patients, using 3D treatment planning software XiO (CMS Inc., St. Louis, MO). The differences in dose distributions between the planned and shifted ''geometry'' were investigated. Additionally, an influence of the error on treatment plan selection was checked by analyzing the change in dose volume histograms, planning target volume conformity index (CI P TV) and homogeneity index (HI). Simulations showed that patient daily set-up errors can cause significant differences between the planned and actual dose distributions. Moreover, for some patients those errors could influence the choice of treatment plan since CI P TV fell under 97 %. Surprisingly, HI was not as sensitive as CI P TV on set-up errors. The results showed the need for minimizing daily set-up errors by quality assurance programme. (author)

  5. Measurements of Voltage Harmonics in 400 kV Transmission Network

    Directory of Open Access Journals (Sweden)

    Ryszard Pawełek

    2014-06-01

    Full Text Available The paper deals with the analysis of voltage harmonics measurements performed in the 400 kV transmission network. The voltage was measured by means of three transducers: resistive voltage divider, inductive measuring transformer and capacitive voltage measuring transformer. Instrument errors were estimated for measuring transformers with reference to the harmonic values obtained from the voltage divider.

  6. Source position error influence on industry CT image quality

    International Nuclear Information System (INIS)

    Cong Peng; Li Zhipeng; Wu Haifeng

    2004-01-01

    Based on the emulational exercise, the influence of source position error on industry CT (ICT) image quality was studied and the valuable parameters were obtained for the design of ICT. The vivid container CT image was also acquired from the CT testing system. (authors)

  7. DC-link Voltage Coordinative-Proportional Control in Cascaded Converter Systems

    DEFF Research Database (Denmark)

    Tian, Yanjun; Loh, Poh Chiang; Deng, Fujin

    2015-01-01

    PI controllers are frequently implemented in cascaded converter system to control the DC-link voltage, because they can achieve zero steady state error. However the PI controller adds a pole at the origin point and a zero on the left half plane, and it increases the control system type number......, and then the system is more difficult to control. This paper proposed a DC-link control method for the two stages cascaded converter, and it uses proportional controller for the DC-link voltage control. This control method can achieve zero steady state error on the DC-link voltage; reduce the control system type...

  8. Empirical Verification of Fault Models for FPGAs Operating in the Subcritical Voltage Region

    DEFF Research Database (Denmark)

    Birklykke, Alex Aaen; Koch, Peter; Prasad, Ramjee

    2013-01-01

    We present a rigorous empirical study of the bit-level error behavior of field programmable gate arrays operating in the subcricital voltage region. This region is of significant interest as voltage-scaling under normal circumstances is halted by the first occurrence of errors. However, accurate...

  9. Influence of process parameters on threshold voltage and leakage current in 18nm NMOS device

    Science.gov (United States)

    Atan, Norani Binti; Ahmad, Ibrahim Bin; Majlis, Burhanuddin Bin Yeop; Fauzi, Izzati Binti Ahmad

    2015-04-01

    The process parameters are very crucial factor in the development of transistors. There are many process parameters that influenced in the development of the transistors. In this research, we investigate the effects of the process parameters variation on response characteristics such as threshold voltage (VTH) and sub-threshold leakage current (IOFF) in 18nm NMOS device. The technique to identify semiconductor process parameters whose variability would impact most on the device characteristic is realized through the process by using Taguchi robust design method. This paper presents the process parameters that influenced in threshold voltage (VTH) and sub-threshold leakage current (IOFF) which includes the Halo Implantation, Compensation Implantation, Adjustment Threshold voltage Implantation and Source/Drain Implantation. The design, fabrication and characterization of 18nm HfO2/TiSi2 NMOS device is simulated and performed via a tool called Virtual Wafer Fabrication (VWF) Silvaco TCAD Tool known as ATHENA and ATLAS simulators. These two simulators were combined with Taguchi L9 Orthogonal method to aid in the design and the optimization of the process parameters to achieve the optimum average of threshold voltage (VTH) and sub-threshold leakage current, (IOFF) in 18nm device. Results from this research were obtained; where Halo Implantation dose was identified as one of the process parameter that has the strongest effect on the response characteristics. Whereby the Compensation Implantation dose was identified as an adjustment factor to get the nominal values of threshold voltage VTH, and sub-threshold leakage current, IOFF for 18nm NMOS devices equal to 0.302849 volts and 1.9123×10-16 A/μm respectively. The design values are referred to ITRS 2011 prediction.

  10. Current and Voltage Conveyors in Current- and Voltage-Mode Precision Full-Wave Rectifiers

    Directory of Open Access Journals (Sweden)

    J. Koton

    2011-04-01

    Full Text Available In this paper new versatile precision full-wave rectifiers using current and/or voltage conveyors as active elements and two diodes are presented. The performance of these circuit solutions is analysed and compared to the opamp based precision rectifier. To analyze the behavior of the functional blocks, the frequency dependent RMS error and DC transient value are evaluated for different values of input voltage amplitudes. Furthermore, experimental results are given that show the feasibilities of the conveyor based rectifiers superior to the corresponding operational amplifier based topology.

  11. FRamework Assessing Notorious Contributing Influences for Error (FRANCIE): Perspective on Taxonomy Development to Support Error Reporting and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lon N. Haney; David I. Gertman

    2003-04-01

    Beginning in the 1980s a primary focus of human reliability analysis was estimation of human error probabilities. However, detailed qualitative modeling with comprehensive representation of contextual variables often was lacking. This was likely due to the lack of comprehensive error and performance shaping factor taxonomies, and the limited data available on observed error rates and their relationship to specific contextual variables. In the mid 90s Boeing, America West Airlines, NASA Ames Research Center and INEEL partnered in a NASA sponsored Advanced Concepts grant to: assess the state of the art in human error analysis, identify future needs for human error analysis, and develop an approach addressing these needs. Identified needs included the need for a method to identify and prioritize task and contextual characteristics affecting human reliability. Other needs identified included developing comprehensive taxonomies to support detailed qualitative modeling and to structure meaningful data collection efforts across domains. A result was the development of the FRamework Assessing Notorious Contributing Influences for Error (FRANCIE) with a taxonomy for airline maintenance tasks. The assignment of performance shaping factors to generic errors by experts proved to be valuable to qualitative modeling. Performance shaping factors and error types from such detailed approaches can be used to structure error reporting schemes. In a recent NASA Advanced Human Support Technology grant FRANCIE was refined, and two new taxonomies for use on space missions were developed. The development, sharing, and use of error taxonomies, and the refinement of approaches for increased fidelity of qualitative modeling is offered as a means to help direct useful data collection strategies.

  12. Influence of the voltage polarity on the properties of a nanosecond surface barrier discharge in atmospheric-pressure air

    International Nuclear Information System (INIS)

    Nudnova, M. M.; Aleksandrov, N. L.; Starikovskii, A. Yu.

    2010-01-01

    The properties of a surface barrier discharge in atmospheric-pressure air at different polarities of applied voltage were studied experimentally. The influence of the voltage polarity on the spatial structure of the discharge and the electric field in the discharge plasma was determined by means of spectroscopic measurements. It is found that the energy deposited in the discharge does not depend on the voltage polarity and that discharges of positive polarity are more homogenous and the electric fields in them are higher.

  13. Prescribing errors during hospital inpatient care: factors influencing identification by pharmacists.

    Science.gov (United States)

    Tully, Mary P; Buchan, Iain E

    2009-12-01

    To investigate the prevalence of prescribing errors identified by pharmacists in hospital inpatients and the factors influencing error identification rates by pharmacists throughout hospital admission. 880-bed university teaching hospital in North-west England. Data about prescribing errors identified by pharmacists (median: 9 (range 4-17) collecting data per day) when conducting routine work were prospectively recorded on 38 randomly selected days over 18 months. Proportion of new medication orders in which an error was identified; predictors of error identification rate, adjusted for workload and seniority of pharmacist, day of week, type of ward or stage of patient admission. 33,012 new medication orders were reviewed for 5,199 patients; 3,455 errors (in 10.5% of orders) were identified for 2,040 patients (39.2%; median 1, range 1-12). Most were problem orders (1,456, 42.1%) or potentially significant errors (1,748, 50.6%); 197 (5.7%) were potentially serious; 1.6% (n = 54) were potentially severe or fatal. Errors were 41% (CI: 28-56%) more likely to be identified at patient's admission than at other times, independent of confounders. Workload was the strongest predictor of error identification rates, with 40% (33-46%) less errors identified on the busiest days than at other times. Errors identified fell by 1.9% (1.5-2.3%) for every additional chart checked, independent of confounders. Pharmacists routinely identify errors but increasing workload may reduce identification rates. Where resources are limited, they may be better spent on identifying and addressing errors immediately after admission to hospital.

  14. Comparative study of 0° X-cut and Y + 36°-cut lithium niobate high-voltage sensing

    Science.gov (United States)

    Patel, N.; Branch, D. W.; Schamiloglu, E.; Cular, S.

    2015-08-01

    A comparison study between Y + 36° and 0° X-cut lithium niobate (LiNbO3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y + 36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y + 36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz-100 kHz. Using the same conditions as the Y + 36° cut, the 0° X-cut crystal sensed a shift of 10-273 ps for DC voltages and 189-813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250-2 ns and the Y + 36°-cut crystal sensed a time shift of 0.115-1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. When the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.

  15. The influence of preparation methodology on high voltage behaviour of alumina insulators in vacuum

    CERN Document Server

    Goddard, B; Tan, J

    1998-01-01

    The flashover characteristics of an insulator bridged high voltage vacuum gap can play an important role in the overall performance of a high voltage device, for example in the extreme environments of high energy particle accelerators. The detailed preparation of the insulators is, at present, governed by the commercial production methods and by standard bulk cleaning processes, which for a particular application may be far from optimum. The influence of particular cleaning technique have been investigated for commercially available alumina samples, with measurement of surface characteristics by scanning electron microscopy and laser diffraction and fields up to 200 kV/cm. The results of the different measurements are discussed in the overall context of the problems encountered in the full sized high voltage devices, and suggestions are made as to how the performance of alumina insulators could be improved by modification of the production and preparation specification.

  16. Influence of surface error on electromagnetic performance of reflectors based on Zernike polynomials

    Science.gov (United States)

    Li, Tuanjie; Shi, Jiachen; Tang, Yaqiong

    2018-04-01

    This paper investigates the influence of surface error distribution on the electromagnetic performance of antennas. The normalized Zernike polynomials are used to describe a smooth and continuous deformation surface. Based on the geometrical optics and piecewise linear fitting method, the electrical performance of reflector described by the Zernike polynomials is derived to reveal the relationship between surface error distribution and electromagnetic performance. Then the relation database between surface figure and electric performance is built for ideal and deformed surfaces to realize rapidly calculation of far-field electric performances. The simulation analysis of the influence of Zernike polynomials on the electrical properties for the axis-symmetrical reflector with the axial mode helical antenna as feed is further conducted to verify the correctness of the proposed method. Finally, the influence rules of surface error distribution on electromagnetic performance are summarized. The simulation results show that some terms of Zernike polynomials may decrease the amplitude of main lobe of antenna pattern, and some may reduce the pointing accuracy. This work extracts a new concept for reflector's shape adjustment in manufacturing process.

  17. Influence of the statistical distribution of bioassay measurement errors on the intake estimation

    International Nuclear Information System (INIS)

    Lee, T. Y; Kim, J. K

    2006-01-01

    The purpose of this study is to provide the guidance necessary for making a selection of error distributions by analyzing influence of statistical distribution for a type of bioassay measurement error on the intake estimation. For this purpose, intakes were estimated using maximum likelihood method for cases that error distributions are normal and lognormal, and comparisons between two distributions for the estimated intakes were made. According to the results of this study, in case that measurement results for lung retention are somewhat greater than the limit of detection it appeared that distribution types have negligible influence on the results. Whereas in case of measurement results for the daily excretion rate, the results obtained from assumption of a lognormal distribution were 10% higher than those obtained from assumption of a normal distribution. In view of these facts, in case where uncertainty component is governed by counting statistics it is considered that distribution type have no influence on intake estimation. Whereas in case where the others are predominant, it is concluded that it is clearly desirable to estimate the intake assuming a lognormal distribution

  18. Influence of X and gamma radiation and bias conditions on dropout voltage of voltage regulators serial transistors

    International Nuclear Information System (INIS)

    Vukic, V.; Osmokrovic, P.; Stankovic, S.; Kovacevic, M.

    2005-01-01

    Research topic presented in this paper is degradation of characteristics of low-dropout voltage regulator's serial transistor during exposure of device to the ionizing radiation. Voltage regulators were exposed to X and γ radiation in two modes: without bias conditions, and with bias conditions and load. Tested circuits are representatives of the first and the second generation of low-dropout voltage regulators, with lateral and vertical PNP serial transistor: LM2940 and L4940. Experimental results of output voltage and serial dropout voltage change in function of total ionizing dose, during the medium-dose-rate exposure, were presented. (author) [sr

  19. Voltage scheduling for low power/energy

    Science.gov (United States)

    Manzak, Ali

    2001-07-01

    Power considerations have become an increasingly dominant factor in the design of both portable and desk-top systems. An effective way to reduce power consumption is to lower the supply voltage since voltage is quadratically related to power. This dissertation considers the problem of lowering the supply voltage at (i) the system level and at (ii) the behavioral level. At the system level, the voltage of the variable voltage processor is dynamically changed with the work load. Processors with limited sized buffers as well as those with very large buffers are considered. Given the task arrival times, deadline times, execution times, periods and switching activities, task scheduling algorithms that minimize energy or peak power are developed for the processors equipped with very large buffers. A relation between the operating voltages of the tasks for minimum energy/power is determined using the Lagrange multiplier method, and an iterative algorithm that utilizes this relation is developed. Experimental results show that the voltage assignment obtained by the proposed algorithm is very close (0.1% error) to that of the optimal energy assignment and the optimal peak power (1% error) assignment. Next, on-line and off-fine minimum energy task scheduling algorithms are developed for processors with limited sized buffers. These algorithms have polynomial time complexity and present optimal (off-line) and close-to-optimal (on-line) solutions. A procedure to calculate the minimum buffer size given information about the size of the task (maximum, minimum), execution time (best case, worst case) and deadlines is also presented. At the behavioral level, resources operating at multiple voltages are used to minimize power while maintaining the throughput. Such a scheme has the advantage of allowing modules on the critical paths to be assigned to the highest voltage levels (thus meeting the required timing constraints) while allowing modules on non-critical paths to be assigned

  20. Influence of Crowbar and Chopper Protection on DFIG during Low Voltage Ride Through

    Directory of Open Access Journals (Sweden)

    Rita M. Monteiro Pereira

    2018-04-01

    Full Text Available The energy sector is evolving rapidly, namely due to the increasing importance of renewable energy sources. The connection of large amounts of wind power generation poses new challenges for the dynamic voltage stability analysis of an electric power system, which has to be studied. In this paper, the traditional Doubly-Fed Induction Generator model is employed. Based on this model, a crowbar and chopper circuit is set up to protect the turbine during the short-circuit period. The EUROSTAG software package was used for the simulation studies of the system, and numerical results were obtained. Conclusions are drawn that provide a better understanding of the influence of crowbar and chopper protection on Doubly-Fed Induction Generators (DFIG, during low voltage ride through, in a system with wind power generation.

  1. Comparative study of 0° X-cut and Y + 36°-cut lithium niobate high-voltage sensing

    International Nuclear Information System (INIS)

    Patel, N.; Branch, D. W.; Cular, S.; Schamiloglu, E.

    2015-01-01

    A comparison study between Y + 36° and 0° X-cut lithium niobate (LiNbO 3 ) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y + 36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y + 36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz–100 kHz. Using the same conditions as the Y + 36° cut, the 0° X-cut crystal sensed a shift of 10–273 ps for DC voltages and 189–813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250–2 ns and the Y + 36°-cut crystal sensed a time shift of 0.115–1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. When the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment

  2. Precise derating of three phase induction motors with unbalanced voltages

    International Nuclear Information System (INIS)

    Faiz, Jawad; Ebrahimpour, H.

    2007-01-01

    Performance analysis of three phase induction motors under supply voltage unbalance conditions is normally conducted using the well-known symmetrical components analysis. In this analysis, the voltage unbalance level at the terminals of the machine is assessed by means of the NEMA or IEC definitions. Both definitions lead to a relatively large error in predicting the performance of a machine. A method has recently been proposed in which, in addition to the voltage unbalance factor (VUF), the phase angle has been taken into account in the analysis. This means that the voltage unbalance factor is regarded as a complex value. This paper shows that although the use of the complex VUF reduces the computational error considerably, it is still high. This is proven by evaluating the derating factor of a three phase induction motor. A method is introduced to determine the derating factor precisely using the complex unbalance factor for an induction motor operating under any unbalanced supply condition. A practical case for derating of a typical three phase squirrel cage induction motor supplied by an unbalanced voltage is studied in the paper

  3. Experimental study on the influence of radiation on high-voltage insulation gases

    International Nuclear Information System (INIS)

    Fujiwara, Yukio; Inoue, Takashi; Miyamoto, Kenji; Miyamoto, Naoki; Ohara, Yoshihiro; Okumura, Yoshikazu; Watanabe, Kazuhiro

    1999-12-01

    In a neutral beam injection (NBI) system for next generation tokamaks such as International Thermonuclear Experimental Reactor (ITER), insulation gas around a beam source will be irradiated with neutrons and gamma rays from the reactor. It is necessary to evaluate the influence of the radiation on the insulation gas for the engineering design of the ITER-NBI system. In the present paper, the influence of the 60 Co gamma rays on air, SF 6 , C 2 F 6 , CO 2 , and mixing gas of air and SF 6 was studied. Ionization current and voltage-holding characteristics of the gases were measured for an absorbed dose rate of 0.45 Gy/s using parallel disk electrodes whose diameter is 130 mm. Saturation current proved to increase linearly with a gap length between the electrodes, gas pressure, an absorbed dose rate, and molecular weight of the gases. Voltage-holding capability was degraded by about 10 %; the degree of the degradation did not depend on the absorbed dose rate. Dissociative products of SF 6 by the irradiation were also analyzed with a quadrupole mass spectrometer. News peaks that did not exist before irradiation appeared at the m/e of 48, 64, 67, 83, 86, 102, and 105 after irradiation. The amount of the dissociative products turned out to be saturated at a higher absorbed dose. (author)

  4. Influences of optical-spectrum errors on excess relative intensity noise in a fiber-optic gyroscope

    Science.gov (United States)

    Zheng, Yue; Zhang, Chunxi; Li, Lijing

    2018-03-01

    The excess relative intensity noise (RIN) generated from broadband sources degrades the angular-random-walk performance of a fiber-optic gyroscope dramatically. Many methods have been proposed and managed to suppress the excess RIN. However, the properties of the excess RIN under the influences of different optical errors in the fiber-optic gyroscope have not been systematically investigated. Therefore, it is difficult for the existing RIN-suppression methods to achieve the optimal results in practice. In this work, the influences of different optical-spectrum errors on the power spectral density of the excess RIN are theoretically analyzed. In particular, the properties of the excess RIN affected by the raised-cosine-type ripples in the optical spectrum are elaborately investigated. Experimental measurements of the excess RIN corresponding to different optical-spectrum errors are in good agreement with our theoretical analysis, demonstrating its validity. This work provides a comprehensive understanding of the properties of the excess RIN under the influences of different optical-spectrum errors. Potentially, it can be utilized to optimize the configurations of the existing RIN-suppression methods by accurately evaluating the power spectral density of the excess RIN.

  5. Direct DC 10 V comparison between two programmable Josephson voltage standards made of niobium nitride (NbN)-based and niobium (Nb)-based Josephson junctions

    Science.gov (United States)

    Solve, S.; Chayramy, R.; Maruyama, M.; Urano, C.; Kaneko, N.-H.; Rüfenacht, A.

    2018-04-01

    BIPM’s new transportable programmable Josephson voltage standard (PJVS) has been used for an on-site comparison at the National Metrology Institute of Japan (NMIJ) and the National Institute of Advanced Industrial Science and Technology (AIST) (NMIJ/AIST, hereafter called just NMIJ unless otherwise noted). This is the first time that an array of niobium-based Josephson junctions with amorphous niobium silicon Nb x Si1-x barriers, developed by the National Institute of Standards and Technology4 (NIST), has been directly compared to an array of niobium nitride (NbN)-based junctions (developed by the NMIJ in collaboration with the Nanoelectronics Research Institute (NeRI), AIST). Nominally identical voltages produced by both systems agreed within 5 parts in 1012 (0.05 nV at 10 V) with a combined relative uncertainty of 7.9  ×  10-11 (0.79 nV). The low side of the NMIJ apparatus is, by design, referred to the ground potential. An analysis of the systematic errors due to the leakage current to ground was conducted for this ground configuration. The influence of a multi-stage low-pass filter installed at the output measurement leads of the NMIJ primary standard was also investigated. The number of capacitances in parallel in the filter and their insulation resistance have a direct impact on the amplitude of the systematic voltage error introduced by the leakage current, even if the current does not necessarily return to ground. The filtering of the output of the PJVS voltage leads has the positive consequence of protecting the array from external sources of noise. Current noise, when coupled to the array, reduces the width or current range of the quantized voltage steps. The voltage error induced by the leakage current in the filter is an order of magnitude larger than the voltage error in the absence of all filtering, even though the current range of steps is significantly decreased without filtering.

  6. Direct model-based predictive control scheme without cost function for voltage source inverters with reduced common-mode voltage

    Science.gov (United States)

    Kim, Jae-Chang; Moon, Sung-Ki; Kwak, Sangshin

    2018-04-01

    This paper presents a direct model-based predictive control scheme for voltage source inverters (VSIs) with reduced common-mode voltages (CMVs). The developed method directly finds optimal vectors without using repetitive calculation of a cost function. To adjust output currents with the CMVs in the range of -Vdc/6 to +Vdc/6, the developed method uses voltage vectors, as finite control resources, excluding zero voltage vectors which produce the CMVs in the VSI within ±Vdc/2. In a model-based predictive control (MPC), not using zero voltage vectors increases the output current ripples and the current errors. To alleviate these problems, the developed method uses two non-zero voltage vectors in one sampling step. In addition, the voltage vectors scheduled to be used are directly selected at every sampling step once the developed method calculates the future reference voltage vector, saving the efforts of repeatedly calculating the cost function. And the two non-zero voltage vectors are optimally allocated to make the output current approach the reference current as close as possible. Thus, low CMV, rapid current-following capability and sufficient output current ripple performance are attained by the developed method. The results of a simulation and an experiment verify the effectiveness of the developed method.

  7. Influence of construction errors on Wendelstein 7-X magnetic configurations

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, T. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany)], E-mail: tamara.andreeva@ipp.mpg.de; Braeuer, T.; Endler, M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Kisslinger, J.; Toussaint, U.v. [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, D-85748, Garching (Germany)

    2009-06-15

    Wendelstein 7-X, currently under construction at the Max-Planck-Institut fuer Plasmaphysik in Greifswald, Germany, is a modular advanced stellarator, combining the modular coil concept with optimised properties of the plasma. The magnet system of the machine consists of 50 non-planar and 20 planar superconducting coils which are arranged in five identical modules, forming a toroidal five-fold symmetric system. The majority of operational magnetic configurations will have rotational transform {iota}/2{pi} = 1 at the boundary. Such configurations are very sensitive to symmetry breaking perturbations, which are the consequence of imprecisely manufactured coils or assembly errors. To date, all 70 coils have been fabricated, and the first two half-modules of the machine have been assembled. The comparative analysis of manufactured winding packs and estimates of the corresponding level of magnetic field perturbation are presented. The dependency of the error fields on the coil assembly sequence is considered, as well as the impact of the first assembly errors. The influence of different construction uncertainties is discussed, and measures to minimise the magnetic field perturbation are suggested.

  8. The Influence of Guided Error-Based Learning on Motor Skills Self-Efficacy and Achievement.

    Science.gov (United States)

    Chien, Kuei-Pin; Chen, Sufen

    2018-01-01

    The authors investigated the role of errors in motor skills teaching, specifically the influence of errors on skills self-efficacy and achievement. The participants were 75 undergraduate students enrolled in pétanque courses. The experimental group (guided error-based learning, n = 37) received a 6-week period of instruction based on the students' errors, whereas the control group (correct motion instruction, n = 38) received a 6-week period of instruction emphasizing correct motor skills. The experimental group had significantly higher scores in motor skills self-efficacy and outcomes than did the control group. Novices' errors reflect their schema in motor skills learning, which provides a basis for instructors to implement student-centered instruction and to facilitate the learning process. Guided error-based learning can effectively enhance beginners' skills self-efficacy and achievement in precision sports such as pétanque.

  9. Contact angle influence on the pull-in voltage of microswitches in the presence of capillary and quantum vacuum effects

    NARCIS (Netherlands)

    Palasantzas, George

    2007-01-01

    Capillary condensation between the electrodes of microswitches influences the effective pull-in voltage in a manner that depends on the contact angle of the capillary meniscus and the presence of plate surface roughness. Indeed, surface roughening is shown to have a stronger influence on the pull-in

  10. High Bandwidth Zero Voltage Injection Method for Sensorless Control of PMSM

    DEFF Research Database (Denmark)

    Ge, Xie; Lu, Kaiyuan; Kumar, Dwivedi Sanjeet

    2014-01-01

    High frequency signal injection is widely used in PMSM sensorless control system for low speed operations. The conventional voltage injection method often needs filters to obtain particular harmonic component in order to estimate the rotor position; or it requires several voltage pulses to be inj......High frequency signal injection is widely used in PMSM sensorless control system for low speed operations. The conventional voltage injection method often needs filters to obtain particular harmonic component in order to estimate the rotor position; or it requires several voltage pulses...... in a fast current regulation performance. Injection of zero voltage also minimizes the inverter voltage error effects caused by the dead-time....

  11. The influence of motor re-acceleration on voltage sags

    NARCIS (Netherlands)

    Bollen, M.H.J.

    1995-01-01

    The assumption that a voltage sag is rectangular is not correct in a power system with large induction motor loads. The motors decelerate during the short circuit. After fault-clearing, they will accelerate again, drawing a high reactive current from the supply, causing a prolonged postfault voltage

  12. Voltage stability in low voltage microgrids in aspects of active and reactive power demand

    Directory of Open Access Journals (Sweden)

    Parol Mirosław

    2016-03-01

    Full Text Available Low voltage microgrids are autonomous subsystems, in which generation, storage and power and electrical energy consumption appear. In the paper the main attention has been paid to the voltage stability issue in low voltage microgrid for different variants of its operation. In the introduction a notion of microgrid has been presented, and also the issue of influence of active and reactive power balance on node voltage level has been described. Then description of voltage stability issue has been presented. The conditions of voltage stability and indicators used to determine voltage stability margin in the microgrid have been described. Description of the low voltage test microgrid, as well as research methodology along with definition of considered variants of its operation have been presented further. The results of exemplary calculations carried out for the daily changes in node load of the active and reactive power, i.e. the voltage and the voltage stability margin indexes in nodes have been presented. Furthermore, the changes of voltage stability margin indexes depending on the variant of the microgrid operation have been presented. Summary and formulation of conclusions related to the issue of voltage stability in microgrids have been included at the end of the paper.

  13. Perpendicular magnetic anisotropy influence on voltage-driven spin-diode effect in magnetic tunnel junctions: A micromagnetic study

    Energy Technology Data Exchange (ETDEWEB)

    Frankowski, Marek, E-mail: mfrankow@agh.edu.pl [AGH University of Science and Technology, al. Mickiewicza 30, Department of Electronics, 30-059 Kraków (Poland); Chȩciński, Jakub [AGH University of Science and Technology, al. Mickiewicza 30, Department of Electronics, 30-059 Kraków (Poland); AGH University of Science and Technology, al. Mickiewicza 30, Faculty of Physics and Applied Computer Science, 30-059 Kraków (Poland); Skowroński, Witold; Stobiecki, Tomasz [AGH University of Science and Technology, al. Mickiewicza 30, Department of Electronics, 30-059 Kraków (Poland)

    2017-05-01

    We study the influence of the perpendicular magnetic anisotropy on the voltage-induced ferromagnetic resonance in magnetic tunnel junctions (MTJs). An MTJ response to the applied radio-frequency voltage excitation is investigated using micromagnetic calculations with the free layer oriented both in-plane and out-of-plane. Our model allows for a quantitative description of the magnetic system parameters such as resonance frequency, sensitivity or quality factor and for a distinction between material-dependent internal damping and disorder-dependent effective damping. We find that the sensitivity abruptly increases up to three orders of magnitude near the anisotropy transition regime, while the quality factor declines due to effective damping increase. We attribute the origin of this behaviour to the changes of the exchange energy in the system, which is calculated using micromagnetic approach. - Highlights: • Micromagnetic approach is used for modelling of voltage-induced spin-diode effect. • Voltage-induced switching simulations are performed. • Spin-diode line is analyzed as a function of perpendicular anisotropy energy. • Effective damping, quality factor and sensitivity are calculated.

  14. Influence of calculation error of total field anomaly in strongly magnetic environments

    Science.gov (United States)

    Yuan, Xiaoyu; Yao, Changli; Zheng, Yuanman; Li, Zelin

    2016-04-01

    An assumption made in many magnetic interpretation techniques is that ΔTact (total field anomaly - the measurement given by total field magnetometers, after we remove the main geomagnetic field, T0) can be approximated mathematically by ΔTpro (the projection of anomalous field vector in the direction of the earth's normal field). In order to meet the demand for high-precision processing of magnetic prospecting, the approximate error E between ΔTact and ΔTpro is studied in this research. Generally speaking, the error E is extremely small when anomalies not greater than about 0.2T0. However, the errorE may be large in highly magnetic environments. This leads to significant effects on subsequent quantitative inference. Therefore, we investigate the error E through numerical experiments of high-susceptibility bodies. A systematic error analysis was made by using a 2-D elliptic cylinder model. Error analysis show that the magnitude of ΔTact is usually larger than that of ΔTpro. This imply that a theoretical anomaly computed without accounting for the error E overestimate the anomaly associated with the body. It is demonstrated through numerical experiments that the error E is obvious and should not be ignored. It is also shown that the curves of ΔTpro and the error E had a certain symmetry when the directions of magnetization and geomagnetic field changed. To be more specific, the Emax (the maximum of the error E) appeared above the center of the magnetic body when the magnetic parameters are determined. Some other characteristics about the error Eare discovered. For instance, the curve of Emax with respect to the latitude was symmetrical on both sides of magnetic equator, and the extremum of the Emax can always be found in the mid-latitudes, and so on. It is also demonstrated that the error Ehas great influence on magnetic processing transformation and inversion results. It is conclude that when the bodies have highly magnetic susceptibilities, the error E can

  15. Multi-Stage Optimization-Based Automatic Voltage Control Systems Considering Wind Power Forecasting Errors

    DEFF Research Database (Denmark)

    Qin, Nan; Bak, Claus Leth; Abildgaard, Hans

    2017-01-01

    This paper proposes an automatic voltage control (AVC) system for power systems with limited continuous voltage control capability. The objective is to minimize the operational cost over a period, which consists of the power loss in the grid, the shunt switching cost, the transformer tap change...... electricity control center, where study cases based on the western Danish power system demonstrate the superiority of the proposed AVC system in term of the cost minimization. Monte Carlo simulations are carried out to verify the proposed method on the robustness improvements....

  16. A methodology for translating positional error into measures of attribute error, and combining the two error sources

    Science.gov (United States)

    Yohay Carmel; Curtis Flather; Denis Dean

    2006-01-01

    This paper summarizes our efforts to investigate the nature, behavior, and implications of positional error and attribute error in spatiotemporal datasets. Estimating the combined influence of these errors on map analysis has been hindered by the fact that these two error types are traditionally expressed in different units (distance units, and categorical units,...

  17. Design concept for radiation hardening of low power and low voltage dynamic memories

    International Nuclear Information System (INIS)

    Schleifer, H.; Ropp, T.V.D.; Reczek, W.

    1995-01-01

    A radiation hard low power, low voltage dynamic memory is obtained by the use of a dummy cell concept. Compared to conventional dummy cell concepts, this concept applies a fully sized dummy cell. By optimizing the dummy cell precharge voltage for 5 V and 3 V operation and the timing of the dummy word-line, the overall soft error rate (SER) of the chip is improved by 2 orders of magnitude. An additional improvement of 1 order of magnitude is possible for 3 V operation by adjusting substrate bias and cell plate voltage. The results are verified by an accelerated SER measurement with a radium 226 source and an additional field soft error study

  18. INVESTIGATION OF INFLUENCE OF ENCODING FUNCTION COMPLEXITY ON DISTRIBUTION OF ERROR MASKING PROBABILITY

    Directory of Open Access Journals (Sweden)

    A. B. Levina

    2016-03-01

    Full Text Available Error detection codes are mechanisms that enable robust delivery of data in unreliable communication channels and devices. Unreliable channels and devices are error-prone objects. Respectively, error detection codes allow detecting such errors. There are two classes of error detecting codes - classical codes and security-oriented codes. The classical codes have high percentage of detected errors; however, they have a high probability to miss an error in algebraic manipulation. In order, security-oriented codes are codes with a small Hamming distance and high protection to algebraic manipulation. The probability of error masking is a fundamental parameter of security-oriented codes. A detailed study of this parameter allows analyzing the behavior of the error-correcting code in the case of error injection in the encoding device. In order, the complexity of the encoding function plays an important role in the security-oriented codes. Encoding functions with less computational complexity and a low probability of masking are the best protection of encoding device against malicious acts. This paper investigates the influence of encoding function complexity on the error masking probability distribution. It will be shownthat the more complex encoding function reduces the maximum of error masking probability. It is also shown in the paper that increasing of the function complexity changes the error masking probability distribution. In particular, increasing of computational complexity decreases the difference between the maximum and average value of the error masking probability. Our resultshave shown that functions with greater complexity have smoothed maximums of error masking probability, which significantly complicates the analysis of error-correcting code by attacker. As a result, in case of complex encoding function the probability of the algebraic manipulation is reduced. The paper discusses an approach how to measure the error masking

  19. Phase-wise enhanced voltage support from electric vehicles in a Danish low-voltage distribution grid

    DEFF Research Database (Denmark)

    Knezovic, Katarina; Marinelli, Mattia

    2016-01-01

    High deployment of electric vehicles (EVs) imposes great challenges for the distribution grids, especially in unbalanced systems with notable voltage variations which detrimentally affect security of supply. On the other hand, with development of Vehicle-to-Grid technology, EVs may be able...... to provide numerous services for grid support, e.g., voltage control. Implemented electronic equipment will allow them to exchange reactive power for autonomous voltage support without communicating with the distribution system operator or influencing the available active power for primary transportation...

  20. Research on the Error Characteristics of a 110 kV Optical Voltage Transformer under Three Conditions: In the Laboratory, Off-Line in the Field and During On-Line Operation

    Science.gov (United States)

    Xiao, Xia; Hu, Haoliang; Xu, Yan; Lei, Min; Xiong, Qianzhu

    2016-01-01

    Optical voltage transformers (OVTs) have been applied in power systems. When performing accuracy performance tests of OVTs large differences exist between the electromagnetic environment and the temperature variation in the laboratory and on-site. Therefore, OVTs may display different error characteristics under different conditions. In this paper, OVT prototypes with typical structures were selected to be tested for the error characteristics with the same testing equipment and testing method. The basic accuracy, the additional error caused by temperature and the adjacent phase in the laboratory, the accuracy in the field off-line, and the real-time monitoring error during on-line operation were tested. The error characteristics under the three conditions—laboratory, in the field off-line and during on-site operation—were compared and analyzed. The results showed that the effect of the transportation process, electromagnetic environment and the adjacent phase on the accuracy of OVTs could be ignored for level 0.2, but the error characteristics of OVTs are dependent on the environmental temperature and are sensitive to the temperature gradient. The temperature characteristics during on-line operation were significantly superior to those observed in the laboratory. PMID:27537895

  1. The error analysis of the reverse saturation current of the diode in the modeling of photovoltaic modules

    International Nuclear Information System (INIS)

    Wang, Gang; Zhao, Ke; Qiu, Tian; Yang, Xinsheng; Zhang, Yong; Zhao, Yong

    2016-01-01

    In the modeling and simulation of photovoltaic modules, especially in calculating the reverse saturation current of the diode, the series and parallel resistances are often neglected, causing certain errors. We analyzed the errors at the open circuit point, and proposed an iterative algorithm to calculate the modified values of the reverse saturation current, series resistance and parallel resistance of the diode, in order to reduce the errors. Assuming independent irradiation and temperature effects, the irradiation-dependence and the temperature-dependence of the open circuit voltage were introduced to obtain the modified formula of the open circuit voltage under any condition. Experimental results show that this modified formula has high accuracy, even at irradiance as low as 40 W/m"2. The errors of open circuit voltage were significantly reduced, indicating that this modified model is suitable for simulations of photovoltaic modules. - Highlights: • We propose a new method for modeling PV modules with higher accuracy. • The errors of open circuit voltage are significantly reduced. • I_o under any condition is calculated.

  2. Practical experience in the determination of the tube voltage using the Ardran-Crooks cassette

    International Nuclear Information System (INIS)

    Ewen, K.; Roesner, W.

    1984-01-01

    Within the framework of quality control measures in X-ray diagnostics and therapy, it is desirable to employ for the determination of tube voltage (e.g. in diagnostic X-ray equipment) methods which are as economical as possible while saving time and being simple to apply in spite of the fact that they are as highly accurate as ever possible. The absorber method described here, represented by the Ardran-Crooks cassette, possesses the advantage of low price and easy application. However, if it is operated in such a way that time is saved (assessment by the eye), it is not so accurate, whereas in accurate operation (assessment via luxmeter) it does require a relatively large amount of time. After the film has been exposed, it is necessary to estimate or measure the agreement of blackenings on one and the same film in order to determine the tube voltage. This voltage is then read off by means of a calibration curve. The error in the determination of the tube voltage via the Ardran-Crooks cassette depends on the accuracy of the calibration curve, which, in turn, depends on the number of measurements performed when producing the curve, and on the correct voltage of the standard X-ray equipment used in producing the calibration curve. In addition, assessment by eye adds a total error of 2.3% to 8%, depending on the amount of tube voltage. If the luxmeter is used instead of the eye, this additional error is less than 1% in relation to the magnitude of the tube voltage. (orig./BWU) [de

  3. The Influence of the Mounting Errors in RodToothed Transmissions

    Directory of Open Access Journals (Sweden)

    M. Yu. Sachkov

    2015-01-01

    Full Text Available In the paper we consider an approximate transmission. The work is aimed at development of gear-powered transmission on parallel axes, which is RF patent-protected. The paper justifies a relevance of the synthesis of new kinds of engagement with the simplified geometry of the contacting condition. A typical solution for powered mechanisms received by F. L. Livinin and his disciples is characterized.The paper describes the arrangement of the coordinate systems used to obtain the function of the position of the gear-powered transmission consisting of two wheels with fifteen leads. For them, also the coordinates of the contact points are obtained, and errors of function of the position in tooth changeover are calculated. To obtain the function position was used a method of matrix transformation and equality of radius and unit normal vectors at the contact point. This transmission can be used in mechanical and instrumentation engineering, and other sectors of the economy. Both reducers and multipliers can be made on its basis. It has high manufacturability (with no special equipment required for its production, and a displacement function is close to linear.This article describes the influence of the axle spacing error on the quality of the transmission characteristics. The paper presents the graphic based relationships and tabular estimates for nominal axle spacing and offsets within 0.2 mm. This error of axle spacing is significant for gearing. From the results of this work we can say that the transmission is almost insensitive to errors of axle spacing. Engagement occurs without an exit of contact point on the lead edge. To solve the obtained system of equations, the numerical methods of the software MathCAD package have been applied.In the future, the authors expect to consider other possible manufacturing and mounting errors of gear-powered transmission (such as the error of the step, misalignment, etc. to assess their impact on the quality

  4. Cholesterol influences voltage-gated calcium channels and BK-type potassium channels in auditory hair cells.

    Directory of Open Access Journals (Sweden)

    Erin K Purcell

    Full Text Available The influence of membrane cholesterol content on a variety of ion channel conductances in numerous cell models has been shown, but studies exploring its role in auditory hair cell physiology are scarce. Recent evidence shows that cholesterol depletion affects outer hair cell electromotility and the voltage-gated potassium currents underlying tall hair cell development, but the effects of cholesterol on the major ionic currents governing auditory hair cell excitability are unknown. We investigated the effects of a cholesterol-depleting agent (methyl beta cyclodextrin, MβCD on ion channels necessary for the early stages of sound processing. Large-conductance BK-type potassium channels underlie temporal processing and open in a voltage- and calcium-dependent manner. Voltage-gated calcium channels (VGCCs are responsible for calcium-dependent exocytosis and synaptic transmission to the auditory nerve. Our results demonstrate that cholesterol depletion reduced peak steady-state calcium-sensitive (BK-type potassium current by 50% in chick cochlear hair cells. In contrast, MβCD treatment increased peak inward calcium current (~30%, ruling out loss of calcium channel expression or function as a cause of reduced calcium-sensitive outward current. Changes in maximal conductance indicated a direct impact of cholesterol on channel number or unitary conductance. Immunoblotting following sucrose-gradient ultracentrifugation revealed BK expression in cholesterol-enriched microdomains. Both direct impacts of cholesterol on channel biophysics, as well as channel localization in the membrane, may contribute to the influence of cholesterol on hair cell physiology. Our results reveal a new role for cholesterol in the regulation of auditory calcium and calcium-activated potassium channels and add to the growing evidence that cholesterol is a key determinant in auditory physiology.

  5. Influence of precision of emission characteristic parameters on model prediction error of VOCs/formaldehyde from dry building material.

    Directory of Open Access Journals (Sweden)

    Wenjuan Wei

    Full Text Available Mass transfer models are useful in predicting the emissions of volatile organic compounds (VOCs and formaldehyde from building materials in indoor environments. They are also useful for human exposure evaluation and in sustainable building design. The measurement errors in the emission characteristic parameters in these mass transfer models, i.e., the initial emittable concentration (C 0, the diffusion coefficient (D, and the partition coefficient (K, can result in errors in predicting indoor VOC and formaldehyde concentrations. These errors have not yet been quantitatively well analyzed in the literature. This paper addresses this by using modelling to assess these errors for some typical building conditions. The error in C 0, as measured in environmental chambers and applied to a reference living room in Beijing, has the largest influence on the model prediction error in indoor VOC and formaldehyde concentration, while the error in K has the least effect. A correlation between the errors in D, K, and C 0 and the error in the indoor VOC and formaldehyde concentration prediction is then derived for engineering applications. In addition, the influence of temperature on the model prediction of emissions is investigated. It shows the impact of temperature fluctuations on the prediction errors in indoor VOC and formaldehyde concentrations to be less than 7% at 23±0.5°C and less than 30% at 23±2°C.

  6. An accurate on-site calibration system for electronic voltage transformers using a standard capacitor

    Science.gov (United States)

    Hu, Chen; Chen, Mian-zhou; Li, Hong-bin; Zhang, Zhu; Jiao, Yang; Shao, Haiming

    2018-05-01

    Ordinarily electronic voltage transformers (EVTs) are calibrated off-line and the calibration procedure requires complex switching operations, which will influence the reliability of the power grid and induce large economic losses. To overcome this problem, this paper investigates a 110 kV on-site calibration system for EVTs, including a standard channel, a calibrated channel and a PC equipped with the LabView environment. The standard channel employs a standard capacitor and an analogue integrating circuit to reconstruct the primary voltage signal. Moreover, an adaptive full-phase discrete Fourier transform (DFT) algorithm is proposed to extract electrical parameters. The algorithm involves the process of extracting the frequency of the grid, adjusting the operation points, and calculating the results using DFT. In addition, an insulated automatic lifting device is designed to realize the live connection of the standard capacitor, which is driven by a wireless remote controller. A performance test of the capacitor verifies the accurateness of the standard capacitor. A system calibration test shows that the system ratio error is less than 0.04% and the phase error is below 2‧, which meets the requirement of the 0.2 accuracy class. Finally, the developed calibration system was used in a substation, and the field test data validates the availability of the system.

  7. A New Method for a Piezoelectric Energy Harvesting System Using a Backtracking Search Algorithm-Based PI Voltage Controller

    Directory of Open Access Journals (Sweden)

    Mahidur R. Sarker

    2016-09-01

    Full Text Available This paper presents a new method for a vibration-based piezoelectric energy harvesting system using a backtracking search algorithm (BSA-based proportional-integral (PI voltage controller. This technique eliminates the exhaustive conventional trial-and-error procedure for obtaining optimized parameter values of proportional gain (Kp, and integral gain (Ki for PI voltage controllers. The generated estimate values of Kp and Ki are executed in the PI voltage controller that is developed through the BSA optimization technique. In this study, mean absolute error (MAE is used as an objective function to minimize output error for a piezoelectric energy harvesting system (PEHS. The model for the PEHS is designed and analyzed using the BSA optimization technique. The BSA-based PI voltage controller of the PEHS produces a significant improvement in minimizing the output error of the converter and a robust, regulated pulse-width modulation (PWM signal to convert a MOSFET switch, with the best response in terms of rise time and settling time under various load conditions.

  8. Influence of voltage input to heavy metal removal from electroplating wastewater using electrocoagulation process

    Science.gov (United States)

    Wulan, D. R.; Cahyaningsih, S.; Djaenudin

    2017-03-01

    In medium capacity, electroplating industry usually treats wastewater until 5 m3 per day. Heavy metal content becomes concern that should be reduced. Previous studies performed electrocoagulation method on laboratory scale, either batch or continuous. This study was aimed to compare the influence of voltage input variation into heavy metal removal in electroplating wastewater treatment using electrocoagulation process on laboratory-scale in order to determine the optimum condition for scaling up the reactor into pilot-scale. The laboratory study was performed in 1.5 L glass reactor in batch system using wastewater from electroplating industry, the voltage input varied at 20, 30 and 40 volt. The electrode consisted of aluminium 32 cm2 as sacrifice anode and copper 32 cm2 as cathode. During 120 min electrocoagulation process, the pH value was measured using pH meter, whereas the heavy metal of chromium, copper, iron, and zinc concentration were analysed using Atomic Absorption Spectrophotometer (AAS). Result showed that removal of heavy metals from wastewater increased due to the increasing of voltage input. Different initial concentration of heavy metals on wastewater, resulted the different detention time. At pilot-scale reactor with 30 V voltage input, chromium, iron, and zinc reached removal efficiency until 89-98%, when copper reached 79% efficiency. At 40V, removal efficiencies increased on same detention time, i.e. chromium, iron, and zinc reached 89-99%, whereas copper reached 85%. These removal efficiencies have complied the government standard except for copper that had higher initial concentration in wastewater. Kinetic rate also calculated in this study as the basic factor for scaling up the process.

  9. Automatic error compensation in dc amplifiers

    International Nuclear Information System (INIS)

    Longden, L.L.

    1976-01-01

    When operational amplifiers are exposed to high levels of neutron fluence or total ionizing dose, significant changes may be observed in input voltages and currents. These changes may produce large errors at the output of direct-coupled amplifier stages. Therefore, the need exists for automatic compensation techniques. However, previously introduced techniques compensate only for errors in the main amplifier and neglect the errors induced by the compensating circuitry. In this paper, the techniques introduced compensate not only for errors in the main operational amplifier, but also for errors induced by the compensation circuitry. Included in the paper is a theoretical analysis of each compensation technique, along with advantages and disadvantages of each. Important design criteria and information necessary for proper selection of semiconductor switches will also be included. Introduced in this paper will be compensation circuitry for both resistive and capacitive feedback networks

  10. Voltage Control System of A DC Generator Using PLC

    OpenAIRE

    Subrata CHATTOPADHYAY; Sagarika PAL

    2008-01-01

    The voltage control system of a DC generator may suffer from high frequency oscillations without offset or low frequency oscillation with offset. A PID controller can eliminate both these errors. In the present paper, the voltage control system of a DC generator using a PLC based PID controller has been designed. Operation of PLC as a continuous controller has been described and the load characteristic of DC generator with and without controller have been determined experimentally and reporte...

  11. Influence of substrate bias voltage on structure and properties of the CrAlN films deposited by unbalanced magnetron sputtering

    Science.gov (United States)

    Lv, Yanhong; Ji, Li; Liu, Xiaohong; Li, Hongxuan; Zhou, Huidi; Chen, Jianmin

    2012-02-01

    The CrAlN films were deposited on silicon and stainless steel substrates by unbalanced magnetron sputtering system. The influence of substrate bias on deposition rate, composition, structure, morphology and properties of the CrAlN films was investigated. The results showed that, with the increase of the substrate bias voltage, the deposition rate decreased accompanied by a change of the preferred orientation of the CrAlN film from (2 2 0) to (2 0 0). The grain size and the average surface roughness of the CrAlN films declined as the bias voltage increases above -100 V. The morphology of the films changed from obviously columnar to dense glass-like structure with the increase of the bias voltage from -50 to -250 V. Meanwhile, the films deposited at moderate bias voltage had better mechanical and tribological properties, while the films deposited at higher bias voltage showed better corrosion resistance. It was found that the corrosion resistance improvement was not only attributed to the low pinhole density of the film, but also to chemical composition of films.

  12. X-ray spectral meter of high voltages for X-ray apparatuses

    International Nuclear Information System (INIS)

    Zubkov, I.P.; Larchikov, Yu.V.

    1993-01-01

    Design of the X-ray spectral meter of high voltages (XRSMHV) for medical X-ray apparatuses permitting to conduct the voltage measurements without connection to current circuits. The XRSMHV consists of two main units: the detector unit based on semiconductor detector and the LP4900B multichannel analyzer (Afora, Finland). The XRSMYV was tested using the pilot plant based on RUM-20 X-ray diagnostic apparatus with high-voltage regulator. It was shown that the developed XRSMHV could be certify in the range of high constant voltages form 40 up to 120 kV with the basic relative error limits ±0.15%. The XRSMHV is used at present as the reference means for calibration of high-voltage medical X-ray equipment

  13. Quantitative analysis of dual whole-cell voltage-clamp determination of gap junctional conductance

    NARCIS (Netherlands)

    van Rijen, H. V.; Wilders, R.; van Ginneken, A. C.; Jongsma, H. J.

    1998-01-01

    The dual whole-cell voltage-clamp technique is used widely for determination of kinetics and conductance of gap junctions. The use of this technique may, however, occasion to considerable errors. We have analysed the errors in steady state junctional conductance measurements under different

  14. Influence of video compression on the measurement error of the television system

    Science.gov (United States)

    Sotnik, A. V.; Yarishev, S. N.; Korotaev, V. V.

    2015-05-01

    Video data require a very large memory capacity. Optimal ratio quality / volume video encoding method is one of the most actual problem due to the urgent need to transfer large amounts of video over various networks. The technology of digital TV signal compression reduces the amount of data used for video stream representation. Video compression allows effective reduce the stream required for transmission and storage. It is important to take into account the uncertainties caused by compression of the video signal in the case of television measuring systems using. There are a lot digital compression methods. The aim of proposed work is research of video compression influence on the measurement error in television systems. Measurement error of the object parameter is the main characteristic of television measuring systems. Accuracy characterizes the difference between the measured value abd the actual parameter value. Errors caused by the optical system can be selected as a source of error in the television systems measurements. Method of the received video signal processing is also a source of error. Presence of error leads to large distortions in case of compression with constant data stream rate. Presence of errors increases the amount of data required to transmit or record an image frame in case of constant quality. The purpose of the intra-coding is reducing of the spatial redundancy within a frame (or field) of television image. This redundancy caused by the strong correlation between the elements of the image. It is possible to convert an array of image samples into a matrix of coefficients that are not correlated with each other, if one can find corresponding orthogonal transformation. It is possible to apply entropy coding to these uncorrelated coefficients and achieve a reduction in the digital stream. One can select such transformation that most of the matrix coefficients will be almost zero for typical images . Excluding these zero coefficients also

  15. Influence of Lexical Factors on Word-Finding Accuracy, Error Patterns, and Substitution Types

    Science.gov (United States)

    Newman, Rochelle S.; German, Diane J.; Jagielko, Jennifer R.

    2018-01-01

    This retrospective, exploratory investigation examined the types of target words that 66 children with/without word-finding difficulties (WFD) had difficulty naming, and the types of errors they made. Words were studied with reference to lexical factors (LFs) that might influence naming performance: word frequency, familiarity, length, phonotactic…

  16. Voltage regulation in distribution networks with distributed generation

    Science.gov (United States)

    Blažič, B.; Uljanić, B.; Papič, I.

    2012-11-01

    The paper deals with the topic of voltage regulation in distribution networks with relatively high distributed energy resources (DER) penetration. The problem of voltage rise is described and different options for voltage regulation are given. The influence of DER on voltage profile and the effectiveness of the investigated solutions are evaluated by means of simulation in DIgSILENT. The simulated network is an actual distribution network in Slovenia with a relatively high penetration of distributed generation. Recommendations for voltage control in networks with DER penetration are given at the end.

  17. Influence of parameters detuning on induction motor NFO shaft-sensorless scheme

    Directory of Open Access Journals (Sweden)

    KULIC, F.

    2010-11-01

    Full Text Available In this paper, the parameter sensitivity analysis of shaft-sensorless induction motor drive with natural field orientation (NFO scheme is performed. NFO scheme calculates rotor flux position using the rotor flux vector reference only, does not require significant processor power and therefore it is suitable for low cost shaft sensorless drives. This concept also eliminates the need for sensitive stator voltage vector integration and it is usable in low rotor speed range. However, low speeds are coupled with low stator voltage amplitudes, which inflate the NFO scheme sensitivity to an error in stator resistance parameter. Similar problems can also take place if mutual inductance parameter is detuned, but this time in whole speed range. This paper investigates the influence of each parameter error on the NFO control steady state characteristics and dynamic performance.

  18. Influence of error fields on the plasma confining field and the plasma confinement in tokamak

    International Nuclear Information System (INIS)

    Matsuda, Shinzaburo

    1977-05-01

    Influence of error fields on the plasma confining field and the plasma confinement is treated in the standpoint of design. In the initial breakdown phase before formation of the closed magnetic surfaces, the vertical field properly applied is the most important. Once the magnetic surfaces are formed, the non-axisymmetric error field is important. Effect of the shell gap associated with iron core and with pulsed vertical coils is thus studied. The formation of magnetic islands due to the external non-axisymmetric error field is studied with a simple model. A method of suppressing the islands by choosing the minor periodicity is proposed. (auth.)

  19. Uncertainty in real-time voltage stability assessment methods based on Thevenin equivalent due to PMU’s accuracy

    DEFF Research Database (Denmark)

    Perez, Angel; Møller, Jakob Glarbo; Jóhannsson, Hjörtur

    2014-01-01

    This article studies the influence of PMU’s accuracy in voltage stability assessment, considering the specific case of Th ́ evenin equivalent based methods that include wide-area information in its calculations. The objective was achieved by producing a set of synthesized PMU measurements from...... a time domain simulation and using the Monte Carlo method to reflect the accuracy for the PMUs. This is given by the maximum value for the Total Vector Error defined in the IEEE standard C37.118. Those measurements allowed to estimate the distribution pa- rameters (mean and standard deviation...

  20. Dynamic responses of a wind turbine drivetrain under turbulent wind and voltage disturbance conditions

    Directory of Open Access Journals (Sweden)

    Chengwu Li

    2016-05-01

    Full Text Available Wind energy is known as one of the most efficient clean renewable energy sources and has attracted extensive research interests in both academic and industry fields. In this study, the effects of turbulent wind and voltage disturbance on a wind turbine drivetrain are analyzed, and a wind turbine drivetrain dynamic model combined with the electric model of a doubly fed induction generator is established. The proposed model is able to account for the dynamic interaction between turbulent wind, voltage disturbance, and mechanical system. Also, the effects of time-varying meshing stiffness, transmission error, and bearing stiffness are included in the mechanical part of the coupled dynamic model. From the resultant model, system modes are computed. In addition, by considering the actual control strategies in the simulation process, the effects of turbulent wind and voltage disturbance on the geared rotor system are analyzed. The computational results show that the turbulent wind and voltage disturbance can cause adverse effects on the wind turbine drivetrain, especially the gearbox. A series of parametric studies are also performed to understand the influences of generator and gearbox parameters on the drivetrain system dynamics. Finally, the appropriate generator parameters having a positive effect on the gearbox in alleviating the extreme loads and the modeling approach for investigating the transient performance of generator are discussed.

  1. Research on the Factors Influencing the Measurement Errors of the Discrete Rogowski Coil.

    Science.gov (United States)

    Xu, Mengyuan; Yan, Jing; Geng, Yingsan; Zhang, Kun; Sun, Chao

    2018-03-13

    An innovative array of magnetic coils (the discrete Rogowski coil-RC) with the advantages of flexible structure, miniaturization and mass producibility is investigated. First, the mutual inductance between the discrete RC and circular and rectangular conductors are calculated using the magnetic vector potential (MVP) method. The results are found to be consistent with those calculated using the finite element method, but the MVP method is simpler and more practical. Then, the influence of conductor section parameters, inclination, and eccentricity on the accuracy of the discrete RC is calculated to provide a reference. Studying the influence of an external current on the discrete RC's interference error reveals optimal values for length, winding density, and position arrangement of the solenoids. It has also found that eccentricity and interference errors decreasing with increasing number of solenoids. Finally, a discrete RC prototype is devised and manufactured. The experimental results show consistent output characteristics, with the calculated sensitivity and mutual inductance of the discrete RC being very close to the experimental results. The influence of an external conductor on the measurement of the discrete RC is analyzed experimentally, and the results show that interference from an external current decreases with increasing distance between the external and measured conductors.

  2. Research on the Factors Influencing the Measurement Errors of the Discrete Rogowski Coil

    Directory of Open Access Journals (Sweden)

    Mengyuan Xu

    2018-03-01

    Full Text Available An innovative array of magnetic coils (the discrete Rogowski coil—RC with the advantages of flexible structure, miniaturization and mass producibility is investigated. First, the mutual inductance between the discrete RC and circular and rectangular conductors are calculated using the magnetic vector potential (MVP method. The results are found to be consistent with those calculated using the finite element method, but the MVP method is simpler and more practical. Then, the influence of conductor section parameters, inclination, and eccentricity on the accuracy of the discrete RC is calculated to provide a reference. Studying the influence of an external current on the discrete RC’s interference error reveals optimal values for length, winding density, and position arrangement of the solenoids. It has also found that eccentricity and interference errors decreasing with increasing number of solenoids. Finally, a discrete RC prototype is devised and manufactured. The experimental results show consistent output characteristics, with the calculated sensitivity and mutual inductance of the discrete RC being very close to the experimental results. The influence of an external conductor on the measurement of the discrete RC is analyzed experimentally, and the results show that interference from an external current decreases with increasing distance between the external and measured conductors.

  3. Contamination of current-clamp measurement of neuron capacitance by voltage-dependent phenomena

    Science.gov (United States)

    White, William E.

    2013-01-01

    Measuring neuron capacitance is important for morphological description, conductance characterization, and neuron modeling. One method to estimate capacitance is to inject current pulses into a neuron and fit the resulting changes in membrane potential with multiple exponentials; if the neuron is purely passive, the amplitude and time constant of the slowest exponential give neuron capacitance (Major G, Evans JD, Jack JJ. Biophys J 65: 423–449, 1993). Golowasch et al. (Golowasch J, Thomas G, Taylor AL, Patel A, Pineda A, Khalil C, Nadim F. J Neurophysiol 102: 2161–2175, 2009) have shown that this is the best method for measuring the capacitance of nonisopotential (i.e., most) neurons. However, prior work has not tested for, or examined how much error would be introduced by, slow voltage-dependent phenomena possibly present at the membrane potentials typically used in such work. We investigated this issue in lobster (Panulirus interruptus) stomatogastric neurons by performing current clamp-based capacitance measurements at multiple membrane potentials. A slow, voltage-dependent phenomenon consistent with residual voltage-dependent conductances was present at all tested membrane potentials (−95 to −35 mV). This phenomenon was the slowest component of the neuron's voltage response, and failure to recognize and exclude it would lead to capacitance overestimates of several hundredfold. Most methods of estimating capacitance depend on the absence of voltage-dependent phenomena. Our demonstration that such phenomena make nonnegligible contributions to neuron responses even at well-hyperpolarized membrane potentials highlights the critical importance of checking for such phenomena in all work measuring neuron capacitance. We show here how to identify such phenomena and minimize their contaminating influence. PMID:23576698

  4. Voltage Control System of A DC Generator Using PLC

    Directory of Open Access Journals (Sweden)

    Subrata CHATTOPADHYAY

    2008-06-01

    Full Text Available The voltage control system of a DC generator may suffer from high frequency oscillations without offset or low frequency oscillation with offset. A PID controller can eliminate both these errors. In the present paper, the voltage control system of a DC generator using a PLC based PID controller has been designed. Operation of PLC as a continuous controller has been described and the load characteristic of DC generator with and without controller have been determined experimentally and reported in this paper.

  5. Voltage control in the future power transmission systems

    DEFF Research Database (Denmark)

    Qin, Nan

    Wind energy in Denmark covers 42% of the total power consumption in 2015, and will share up to 50% by 2020. Consequently, the conventional power plants are decommissioning. Under the progress of the green transition, the national decision leads to underground many overhead lines in the future...... stages. The voltage uncertainty caused by the wind power forecasting errors is estimated, which is applied as a voltage security margin to further constrain the voltage magnitude in the optimization problem. The problem under the uncertainty is therefore converted to a deterministic problem, which...... to ensure a highly reliable transmission, e.g. balancing the generation and the consumption in large geographic regions, the exchange capacities will be enlarged by upgrading the interconnections. The Danish power system, the electricity transportation hub between the Nordic and continental European systems...

  6. Universal Voltage Conveyor and Current Conveyor in Fast Full-Wave Rectifier

    Directory of Open Access Journals (Sweden)

    Josef Burian

    2012-12-01

    Full Text Available This paper deals about the design of a fast voltage-mode full-wave rectifier, where universal voltage conveyor and second-generation current conveyor are used as active elements. Thanks to the active elements, the input and output impedance of the non-linear circuit is infinitely high respectively zero in theory. For the rectification only two diodes and three resistors are required as passive elements. The performance of the circuit is shown on experimental measurement results showing the dynamic range, time response, frequency dependent DC transient value and RMS error for different values of input voltage amplitudes.

  7. Factors influencing superimposition error of 3D cephalometric landmarks by plane orientation method using 4 reference points: 4 point superimposition error regression model.

    Science.gov (United States)

    Hwang, Jae Joon; Kim, Kee-Deog; Park, Hyok; Park, Chang Seo; Jeong, Ho-Gul

    2014-01-01

    Superimposition has been used as a method to evaluate the changes of orthodontic or orthopedic treatment in the dental field. With the introduction of cone beam CT (CBCT), evaluating 3 dimensional changes after treatment became possible by superimposition. 4 point plane orientation is one of the simplest ways to achieve superimposition of 3 dimensional images. To find factors influencing superimposition error of cephalometric landmarks by 4 point plane orientation method and to evaluate the reproducibility of cephalometric landmarks for analyzing superimposition error, 20 patients were analyzed who had normal skeletal and occlusal relationship and took CBCT for diagnosis of temporomandibular disorder. The nasion, sella turcica, basion and midpoint between the left and the right most posterior point of the lesser wing of sphenoidal bone were used to define a three-dimensional (3D) anatomical reference co-ordinate system. Another 15 reference cephalometric points were also determined three times in the same image. Reorientation error of each landmark could be explained substantially (23%) by linear regression model, which consists of 3 factors describing position of each landmark towards reference axes and locating error. 4 point plane orientation system may produce an amount of reorientation error that may vary according to the perpendicular distance between the landmark and the x-axis; the reorientation error also increases as the locating error and shift of reference axes viewed from each landmark increases. Therefore, in order to reduce the reorientation error, accuracy of all landmarks including the reference points is important. Construction of the regression model using reference points of greater precision is required for the clinical application of this model.

  8. Influence of contact force on voltage mapping: A combined magnetic resonance imaging and electroanatomic mapping study in patients with tetralogy of Fallot.

    Science.gov (United States)

    Teijeira-Fernandez, Elvis; Cochet, Hubert; Bourier, Felix; Takigawa, Masateru; Cheniti, Ghassen; Thompson, Nathaniel; Frontera, Antonio; Camaioni, Claudia; Massouille, Gregoire; Jalal, Zakaria; Derval, Nicolas; Iriart, Xavier; Denis, Arnaud; Hocini, Meleze; Haissaguerre, Michel; Jais, Pierre; Thambo, Jean-Benoit; Sacher, Frederic

    2018-03-20

    Voltage criteria for ventricular mapping have been obtained from small series of patients and prioritizing high specificity. The purpose of this study was to analyse the potential influence of contact force (CF) on voltage mapping and to define voltage cutoff values for right ventricular (RV) scar using the tetralogy of Fallot as a model of transmural RV scar and magnetic resonance imaging (MRI) as reference. Fourteen patients (age 32.6 ± 14.3 years; 5 female) with repaired tetralogy of Fallot underwent high-resolution cardiac MRI (1.25 × 1.25 × 2.5 mm). Scar, defined as pixels with intensity >50% maximum, was mapped over the RV geometry and merged within the CARTO system to RV endocardial voltage maps acquired using a 3.5-mm ablation catheter with CF technology (SmartTouch, Biosense Webster). In total, 2446 points were analyzed, 915 within scars and 1531 in healthy tissue according to MRI. CF correlated to unipolar (ρ = 0.186; P voltage in healthy tissue (ρ = 0.245; P voltage cutoffs of 5.19 mV for unipolar voltage and 1.76 mV for bipolar voltage, yielding sensitivity/specificity of 0.89/0.85 and 0.9/0.9, respectively. CF is an important factor to be taken into account for voltage mapping. If good CF is applied, unipolar and bipolar voltage cutoffs of 5.19 mV and 1.76 mV are optimal for identifying RV scar on endocardial mapping with the SmartTouch catheter. Data on the diagnostic accuracy of different voltage cutoff values are provided. Copyright © 2018 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  9. Influence of Applied Bias Voltage on the Composition, Structure, and Properties of Ti:Si-Codoped a-C:H Films Prepared by Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Jinlong Jiang

    2014-01-01

    Full Text Available The titanium- and silicon-codoped a-C:H films were prepared at different applied bias voltage by magnetron sputtering TiSi target in argon and methane mixture atmosphere. The influence of the applied bias voltage on the composition, surface morphology, structure, and mechanical properties of the films was investigated by XPS, AFM, Raman, FTIR spectroscopy, and nanoindenter. The tribological properties of the films were characterized on an UMT-2MT tribometer. The results demonstrated that the film became smoother and denser with increasing the applied bias voltage up to −200 V, whereas surface roughness increased due to the enhancement of ion bombardment as the applied bias voltage further increased. The sp3 carbon fraction in the films monotonously decreased with increasing the applied bias voltage. The film exhibited moderate hardness and the superior tribological properties at the applied bias voltage of −100 V. The tribological behaviors are correlated to the H/E or H3/E2 ratio of the films.

  10. Quantifying and handling errors in instrumental measurements using the measurement error theory

    DEFF Research Database (Denmark)

    Andersen, Charlotte Møller; Bro, R.; Brockhoff, P.B.

    2003-01-01

    . This is a new way of using the measurement error theory. Reliability ratios illustrate that the models for the two fish species are influenced differently by the error. However, the error seems to influence the predictions of the two reference measures in the same way. The effect of using replicated x...... measurements. A new general formula is given for how to correct the least squares regression coefficient when a different number of replicated x-measurements is used for prediction than for calibration. It is shown that the correction should be applied when the number of replicates in prediction is less than...

  11. Influence of negative substrate bias voltage on the impurity concentrations in Zr films

    International Nuclear Information System (INIS)

    Lim, J.-W.; Bae, J.W.; Mimura, K.; Isshiki, M.

    2006-01-01

    Zr films were deposited on Si(1 0 0) substrates without a substrate bias voltage and with substrate bias voltages of -50 V and -100 V using a non-mass separated ion beam deposition system. Secondary ion mass spectrometry and glow discharge mass spectrometry were used to determine the impurity concentrations in a Zr target and Zr films. It was found that the total amount of impurities in the Zr film deposited at the substrate bias voltage of -50 V was much lower than that in the Zr film deposited without the substrate bias voltage. It means that applying a negative bias voltage to the substrate can suppress the increase in impurities of Zr films. Furthermore, it was confirmed that dominant impurity elements such as C, N and O have a considerable effect on the purity of Zr films and these impurities can be remarkably reduced by applying the negative substrate bias voltage

  12. Error-related anterior cingulate cortex activity and the prediction of conscious error awareness

    Directory of Open Access Journals (Sweden)

    Catherine eOrr

    2012-06-01

    Full Text Available Research examining the neural mechanisms associated with error awareness has consistently identified dorsal anterior cingulate activity (ACC as necessary but not predictive of conscious error detection. Two recent studies (Steinhauser and Yeung, 2010; Wessel et al. 2011 have found a contrary pattern of greater dorsal ACC activity (in the form of the error-related negativity during detected errors, but suggested that the greater activity may instead reflect task influences (e.g., response conflict, error probability and or individual variability (e.g., statistical power. We re-analyzed fMRI BOLD data from 56 healthy participants who had previously been administered the Error Awareness Task, a motor Go/No-go response inhibition task in which subjects make errors of commission of which they are aware (Aware errors, or unaware (Unaware errors. Consistent with previous data, the activity in a number of cortical regions was predictive of error awareness, including bilateral inferior parietal and insula cortices, however in contrast to previous studies, including our own smaller sample studies using the same task, error-related dorsal ACC activity was significantly greater during aware errors when compared to unaware errors. While the significantly faster RT for aware errors (compared to unaware was consistent with the hypothesis of higher response conflict increasing ACC activity, we could find no relationship between dorsal ACC activity and the error RT difference. The data suggests that individual variability in error awareness is associated with error-related dorsal ACC activity, and therefore this region may be important to conscious error detection, but it remains unclear what task and individual factors influence error awareness.

  13. Refractive error assessment: influence of different optical elements and current limits of biometric techniques.

    Science.gov (United States)

    Ribeiro, Filomena; Castanheira-Dinis, Antonio; Dias, Joao Mendanha

    2013-03-01

    To identify and quantify sources of error on refractive assessment using exact ray tracing. The Liou-Brennan eye model was used as a starting point and its parameters were varied individually within a physiological range. The contribution of each parameter to refractive error was assessed using linear regression curve fits and Gaussian error propagation analysis. A MonteCarlo analysis quantified the limits of refractive assessment given by current biometric measurements. Vitreous and aqueous refractive indices are the elements that influence refractive error the most, with a 1% change of each parameter contributing to a refractive error variation of +1.60 and -1.30 diopters (D), respectively. In the phakic eye, axial length measurements taken by ultrasound (vitreous chamber depth, lens thickness, and anterior chamber depth [ACD]) were the most sensitive to biometric errors, with a contribution to the refractive error of 62.7%, 14.2%, and 10.7%, respectively. In the pseudophakic eye, vitreous chamber depth showed the highest contribution at 53.7%, followed by postoperative ACD at 35.7%. When optic measurements were considered, postoperative ACD was the most important contributor, followed by anterior corneal surface and its asphericity. A MonteCarlo simulation showed that current limits of refractive assessment are 0.26 and 0.28 D for the phakic and pseudophakic eye, respectively. The most relevant optical elements either do not have available measurement instruments or the existing instruments still need to improve their accuracy. Ray tracing can be used as an optical assessment technique, and may be the correct path for future personalized refractive assessment. Copyright 2013, SLACK Incorporated.

  14. Simple programmable voltage reference for low frequency noise measurements

    Science.gov (United States)

    Ivanov, V. E.; Chye, En Un

    2018-05-01

    The paper presents a circuit design of a low-noise voltage reference based on an electric double-layer capacitor, a microcontroller and a general purpose DAC. A large capacitance value (1F and more) makes it possible to create low-pass filter with a large time constant, effectively reducing low-frequency noise beyond its bandwidth. Choosing the optimum value of the resistor in the RC filter, one can achieve the best ratio between the transient time, the deviation of the output voltage from the set point and the minimum noise cut-off frequency. As experiments have shown, the spectral density of the voltage at a frequency of 1 kHz does not exceed 1.2 nV/√Hz the maximum deviation of the output voltage from the predetermined does not exceed 1.4 % and depends on the holding time of the previous value. Subsequently, this error is reduced to a constant value and can be compensated.

  15. Research on the Factors Influencing the Measurement Errors of the Discrete Rogowski Coil †

    Science.gov (United States)

    Xu, Mengyuan; Yan, Jing; Geng, Yingsan; Zhang, Kun; Sun, Chao

    2018-01-01

    An innovative array of magnetic coils (the discrete Rogowski coil—RC) with the advantages of flexible structure, miniaturization and mass producibility is investigated. First, the mutual inductance between the discrete RC and circular and rectangular conductors are calculated using the magnetic vector potential (MVP) method. The results are found to be consistent with those calculated using the finite element method, but the MVP method is simpler and more practical. Then, the influence of conductor section parameters, inclination, and eccentricity on the accuracy of the discrete RC is calculated to provide a reference. Studying the influence of an external current on the discrete RC’s interference error reveals optimal values for length, winding density, and position arrangement of the solenoids. It has also found that eccentricity and interference errors decreasing with increasing number of solenoids. Finally, a discrete RC prototype is devised and manufactured. The experimental results show consistent output characteristics, with the calculated sensitivity and mutual inductance of the discrete RC being very close to the experimental results. The influence of an external conductor on the measurement of the discrete RC is analyzed experimentally, and the results show that interference from an external current decreases with increasing distance between the external and measured conductors. PMID:29534006

  16. High voltage electricity installations a planning perspective

    CERN Document Server

    Jay, Stephen Andrew

    2006-01-01

    The presence of high voltage power lines has provoked widespread concern for many years. High Voltage Electricity Installations presents an in-depth study of policy surrounding the planning of high voltage installations, discussing the manner in which they are percieved by the public, and the associated environmental issues. An analysis of these concerns, along with the geographical, environmental and political influences that shape their expression, is presented. Investigates local planning policy in an area of the energy sector that is of highly topical environmental and public concern Cover

  17. Textbook Error: Short Circuiting on Electrochemical Cell

    Science.gov (United States)

    Bonicamp, Judith M.; Clark, Roy W.

    2007-01-01

    Short circuiting an electrochemical cell is an unreported but persistent error in the electrochemistry textbooks. It is suggested that diagrams depicting a cell delivering usable current to a load be postponed, the theory of open-circuit galvanic cells is explained, the voltages from the tables of standard reduction potentials is calculated and…

  18. Design, experiments and simulation of voltage transformers on the basis of a differential input D-dot sensor.

    Science.gov (United States)

    Wang, Jingang; Gao, Can; Yang, Jie

    2014-07-17

    Currently available traditional electromagnetic voltage sensors fail to meet the measurement requirements of the smart grid, because of low accuracy in the static and dynamic ranges and the occurrence of ferromagnetic resonance attributed to overvoltage and output short circuit. This work develops a new non-contact high-bandwidth voltage measurement system for power equipment. This system aims at the miniaturization and non-contact measurement of the smart grid. After traditional D-dot voltage probe analysis, an improved method is proposed. For the sensor to work in a self-integrating pattern, the differential input pattern is adopted for circuit design, and grounding is removed. To prove the structure design, circuit component parameters, and insulation characteristics, Ansoft Maxwell software is used for the simulation. Moreover, the new probe was tested on a 10 kV high-voltage test platform for steady-state error and transient behavior. Experimental results ascertain that the root mean square values of measured voltage are precise and that the phase error is small. The D-dot voltage sensor not only meets the requirement of high accuracy but also exhibits satisfactory transient response. This sensor can meet the intelligence, miniaturization, and convenience requirements of the smart grid.

  19. Ac-dc converter firing error detection

    International Nuclear Information System (INIS)

    Gould, O.L.

    1996-01-01

    Each of the twelve Booster Main Magnet Power Supply modules consist of two three-phase, full-wave rectifier bridges in series to provide a 560 VDC maximum output. The harmonic contents of the twelve-pulse ac-dc converter output are multiples of the 60 Hz ac power input, with a predominant 720 Hz signal greater than 14 dB in magnitude above the closest harmonic components at maximum output. The 720 Hz harmonic is typically greater than 20 dB below the 500 VDC output signal under normal operation. Extracting specific harmonics from the rectifier output signal of a 6, 12, or 24 pulse ac-dc converter allows the detection of SCR firing angle errors or complete misfires. A bandpass filter provides the input signal to a frequency-to-voltage converter. Comparing the output of the frequency-to-voltage converter to a reference voltage level provides an indication of the magnitude of the harmonics in the ac-dc converter output signal

  20. Vector spin modeling for magnetic tunnel junctions with voltage dependent effects

    International Nuclear Information System (INIS)

    Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A.

    2014-01-01

    Integration and co-design of CMOS and spin transfer devices requires accurate vector spin conduction modeling of magnetic tunnel junction (MTJ) devices. A physically realistic model of the MTJ should comprehend the spin torque dynamics of nanomagnet interacting with an injected vector spin current and the voltage dependent spin torque. Vector spin modeling allows for calculation of 3 component spin currents and potentials along with the charge currents/potentials in non-collinear magnetic systems. Here, we show 4-component vector spin conduction modeling of magnetic tunnel junction devices coupled with spin transfer torque in the nanomagnet. Nanomagnet dynamics, voltage dependent spin transport, and thermal noise are comprehended in a self-consistent fashion. We show comparison of the model with experimental magnetoresistance (MR) of MTJs and voltage degradation of MR with voltage. Proposed model enables MTJ circuit design that comprehends voltage dependent spin torque effects, switching error rates, spin degradation, and back hopping effects

  1. Influence of Digital Camera Errors on the Photogrammetric Image Processing

    Science.gov (United States)

    Sužiedelytė-Visockienė, Jūratė; Bručas, Domantas

    2009-01-01

    The paper deals with the calibration of digital camera Canon EOS 350D, often used for the photogrammetric 3D digitalisation and measurements of industrial and construction site objects. During the calibration data on the optical and electronic parameters, influencing the distortion of images, such as correction of the principal point, focal length of the objective, radial symmetrical and non-symmetrical distortions were obtained. The calibration was performed by means of the Tcc software implementing the polynomial of Chebichev and using a special test-field with the marks, coordinates of which are precisely known. The main task of the research - to determine how parameters of the camera calibration influence the processing of images, i. e. the creation of geometric model, the results of triangulation calculations and stereo-digitalisation. Two photogrammetric projects were created for this task. In first project the non-corrected and in the second the corrected ones, considering the optical errors of the camera obtained during the calibration, images were used. The results of analysis of the images processing is shown in the images and tables. The conclusions are given.

  2. OFCC based voltage and transadmittance mode instrumentation amplifier

    Science.gov (United States)

    Nand, Deva; Pandey, Neeta; Pandey, Rajeshwari; Tripathi, Prateek; Gola, Prashant

    2017-07-01

    The operational floating current conveyor (OFCC) is a versatile active block due to the availability of both low and high input and output impedance terminals. This paper addresses the realization of OFCC based voltage and transadmittance mode instrumentation amplifiers (VMIA and TAM IA). It employs three OFCCs and seven resistors. The transadmittance mode operation can easily be obtained by simply connecting an OFCC based voltage to current converter at the output. The effect of non-idealities of OFCC, in particular finite transimpedance and tracking error, on system performance is also dealt with and corresponding mathematical expressions are derived. The functional verification is performed through SPICE simulation using CMOS based implementation of OFCC.

  3. Influence of unbalanced voltages on the movement of metallic ...

    Indian Academy of Sciences (India)

    Simulation is carried out on particle movement with balanced and unbalanced voltages and the ... dust, meteorological difficulties and safety. Hence ... work reported deals with the charge acquired by the particle due to macroscopic field at the.

  4. Heat-pump performance: voltage dip/sag, under-voltage and over-voltage

    Directory of Open Access Journals (Sweden)

    William J.B. Heffernan

    2014-12-01

    Full Text Available Reverse cycle air-source heat-pumps are an increasingly significant load in New Zealand and in many other countries. This has raised concern over the impact wide-spread use of heat-pumps may have on the grid. The characteristics of the loads connected to the power system are changing because of heat-pumps. Their performance during under-voltage events such as voltage dips has the potential to compound the event and possibly cause voltage collapse. In this study, results from testing six heat-pumps are presented to assess their performance at various voltages and hence their impact on voltage stability.

  5. Influence of the polarity of the applied voltage on the reignition of a discharge below a dielectric layer in air at atmospheric pressure

    International Nuclear Information System (INIS)

    Pechereau, François; Bourdon, Anne

    2014-01-01

    The dynamics of an atmospheric pressure air discharge in a point-to-plane geometry with a dielectric layer obstacle on the discharge path is investigated numerically for different applied voltages. Whatever the polarity of the voltage applied, first, a streamer discharge of the same polarity ignites at the point and propagates towards the dielectric layer. After the impact on the dielectric surface, the streamer discharge spreads along the upper dielectric surface and charges it positively or negatively depending on its polarity. On the bottom surface of the dielectric layer, charges with an opposite polarity are deposited. Surface charges on both faces of the dielectric layer are shown to have a significant influence on the discharge reignition for a negative applied voltage, but not for a positive one. Furthermore, it is shown that the dynamics of the discharge reignition below the dielectric layer depends on the polarity of the applied voltage at the point electrode. For a positive applied voltage, the reignited discharge is a positive ionization wave propagating towards the grounded plane. For a negative applied voltage, a double headed discharge is observed with positive and negative fronts propagating in opposite directions. Finally, the minimal value of the ionization integral to have a discharge reignition below the dielectric obstacle is found to be less for a negative applied voltage than for a positive one. (paper)

  6. Rotation Disk Process to Assess the Influence of Metals and Voltage on the Growth of Biofilm

    Directory of Open Access Journals (Sweden)

    Dana M. Barry

    2016-07-01

    Full Text Available Biofilms consist of not only bacteria but also extracellular polymer substrates (EPS. They are groups of microorganisms that adhere to each other on a surface, especially as a result of exposure to water and bacteria. They can pose health risks to humans as they grow in hospital settings that include medical supplies and devices. In a previous study, the researchers discovered that bacteria/biofilm grew well on wetted external latex, male catheters. These results concerned the investigators and encouraged them to find ways for prohibiting the growth of bacteria/biofilm on the male catheters (which are made of natural rubber. They carried out a new study to assess the influence of metals and voltage for the growth of bacteria on these latex samples. For this purpose, a unique Rotation Disk Reactor was used to accelerate biofilm formation on external male catheter samples. This setup included a dip tank containing water and a rotating wheel with the attached latex samples (some of which had single electrodes while others had paired electrodes with applied voltage. The process allowed the samples to become wetted and also exposed them to microorganisms in the ambient air during each revolution of the wheel. The results (as viewed from SEM images showed that when compared to the control sample, the presence of metals (brass, stainless steel, and silver was generally effective in preventing bacterial growth. Also the use of voltage (9.5 volt battery essentially eliminated the appearance of rod shaped bacteria in some of the samples. It can be concluded that the presence of metals significantly reduced bacterial growth on latex and the application of voltage was able to essentially eliminate bacteria, providing appropriate electrode combinations were used.

  7. Minimum-Voltage Vector Injection Method for Sensorless Control of PMSM for Low-Speed Operations

    DEFF Research Database (Denmark)

    Xie, Ge; Lu, Kaiyuan; Kumar, Dwivedi Sanjeet

    2016-01-01

    In this paper, a simple signal injection method is proposed for sensorless control of PMSM at low speed, which ideally requires one voltage vector only for position estimation. The proposed method is easy to implement resulting in low computation burden. No filters are needed for extracting...... may also be further developed to inject two opposite voltage vectors to reduce the effects of inverter voltage error on the position estimation accuracy. The effectiveness of the proposed method is demonstrated by comparing with other sensorless control method. Theoretical analysis and experimental...

  8. Neurochemical enhancement of conscious error awareness.

    Science.gov (United States)

    Hester, Robert; Nandam, L Sanjay; O'Connell, Redmond G; Wagner, Joe; Strudwick, Mark; Nathan, Pradeep J; Mattingley, Jason B; Bellgrove, Mark A

    2012-02-22

    How the brain monitors ongoing behavior for performance errors is a central question of cognitive neuroscience. Diminished awareness of performance errors limits the extent to which humans engage in corrective behavior and has been linked to loss of insight in a number of psychiatric syndromes (e.g., attention deficit hyperactivity disorder, drug addiction). These conditions share alterations in monoamine signaling that may influence the neural mechanisms underlying error processing, but our understanding of the neurochemical drivers of these processes is limited. We conducted a randomized, double-blind, placebo-controlled, cross-over design of the influence of methylphenidate, atomoxetine, and citalopram on error awareness in 27 healthy participants. The error awareness task, a go/no-go response inhibition paradigm, was administered to assess the influence of monoaminergic agents on performance errors during fMRI data acquisition. A single dose of methylphenidate, but not atomoxetine or citalopram, significantly improved the ability of healthy volunteers to consciously detect performance errors. Furthermore, this behavioral effect was associated with a strengthening of activation differences in the dorsal anterior cingulate cortex and inferior parietal lobe during the methylphenidate condition for errors made with versus without awareness. Our results have implications for the understanding of the neurochemical underpinnings of performance monitoring and for the pharmacological treatment of a range of disparate clinical conditions that are marked by poor awareness of errors.

  9. Mitigation of Unbalanced Voltage Sags and Voltage Unbalance in CIGRE Low Voltage Distribution Network

    DEFF Research Database (Denmark)

    Mustafa, Ghullam; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    Any problem with voltage in a power network is undesirable as it aggravates the quality of the power. Power electronic devices such as Voltage Source Converter (VSC) based Static Synchronous Compensator (STATCOM) etc. can be used to mitigate the voltage problems in the distribution system...... to unbalanced faults. The compensation of unbalanced voltage sags and voltage unbalance in the CIGRE distribution network is done by using the four STATCOM compensators already existing in the test grid. The simulations are carried out in DIgSILENT power factory software version 15.0........ The voltage problems dealt with in this paper are to show how to mitigate unbalanced voltage sags and voltage unbalance in the CIGRE Low Voltage (LV) test network and net-works like this. The voltage unbalances, for the tested cases in the CIGRE LV test network are mainly due to single phase loads and due...

  10. SPACE-BORNE LASER ALTIMETER GEOLOCATION ERROR ANALYSIS

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2018-05-01

    Full Text Available This paper reviews the development of space-borne laser altimetry technology over the past 40 years. Taking the ICESAT satellite as an example, a rigorous space-borne laser altimeter geolocation model is studied, and an error propagation equation is derived. The influence of the main error sources, such as the platform positioning error, attitude measurement error, pointing angle measurement error and range measurement error, on the geolocation accuracy of the laser spot are analysed by simulated experiments. The reasons for the different influences on geolocation accuracy in different directions are discussed, and to satisfy the accuracy of the laser control point, a design index for each error source is put forward.

  11. [Influence of high-voltage electric burn on the microcirculation of heart in rabbit].

    Science.gov (United States)

    Zhang, Qing-fu; Zhou, Hui-min; Wang, Che-jiang; Shao, Hong-bo

    2012-06-01

    To study the influence of high-voltage electric burn on the microcirculation of heart in rabbit. One-hundred and twenty New Zealand rabbits of clean grade were divided into control group (C) and electric burn group (EB) according to the random number table, with 60 rabbits in each group. Rabbits in EB group were subjected to high-voltage electric burn (the electrical current flow into the left foreleg at the lateral side of proximal end and out from the corresponding site of the right hind leg) with voltage regulator and experimental transformer. Rabbits in C group were sham injured with the same devices without electrification. At 15 minutes before injury, and 5 minutes, 1, 2, 4, 8 hour (s) post injury (PIM or PIH), ten rabbits in each group were chosen to examine the cardiac apex microcirculation hemoperfusion (CAMH) with laser Doppler hemoperfusion image instrument. The morphologic changes of microvessels of left ventricular wall tissues of 2 rabbits from each of the 10 rabbits collected at above-mentioned time points were observed with light microscope and transmission electron microscope. Auricular vein blood of rabbit was harvested at above-mentioned time points for the determination of aspartate amino transferase (AST), lactate dehydrogenase (LDH), hydroxybutyrate dehydrogenase (HBDH), creatine kinase (CK), and creatine kinase isozyme MB (CK-MB) by full-automatic biochemical analyzer. Data were processed with two-factor analysis of variance and LSD test. (1) The differences between C group and EB group in detection results were statistically significant, with F values from 425.991 to 3046.834, P values all below 0.01. Only the data within EB group were comparable. (2) At PIM 5, the CAMH value of rabbits in EB group was (1.96 ± 0.09) V, which was lower than that at 15 minutes before injury [(4.34 ± 0.35) V, P electric burn can bring damage to the microvessels of heart in rabbits and change blood flow of microcirculation, which should be given adequate

  12. Numerical study of the influence of applied voltage on the current balance factor of single layer organic light-emitting diodes

    International Nuclear Information System (INIS)

    Lu, Fei-ping; Liu, Xiao-bin; Xing, Yong-zhong

    2014-01-01

    Current balance factor (CBF) value, the ratio of the recombination current density and the total current density of a device, has an important function in fluorescence-based organic light-emitting diodes (OLEDs), as well as in the performance of the organic electrophosphorescent devices. This paper investigates the influence of the applied voltage of a device on the CBF value of single layer OLED based on the numerical model of a bipolar single layer OLED with organic layer trap free and without doping. Results show that the largest CBF value can be achieved when the electron injection barrier (ϕ n ) is equal to the hole injection barrier (ϕ p ) in the lower voltage region at any instance. The largest CBF in the higher voltage region can be achieved in the case of ϕ n  > ϕ p under the condition of electron mobility (μ 0n ) > hole mobility (μ 0p ), whereas the result for the case of μ 0n   0p , is opposite. The largest CBF when μ 0n  = μ 0p can be achieved in the case of ϕ n  = ϕ p in the entire region of the applied voltage. In addition, the CBF value of the device increases with increasing applied voltage. The results obtained in this paper can present an in-depth understanding of the OLED working mechanism and help in the future fabrication of high efficiency OLEDs

  13. Nonlinear control of voltage source converters in AC-DC power system.

    Science.gov (United States)

    Dash, P K; Nayak, N

    2014-07-01

    This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Influence of modulation method on using LC-traps with single-phase voltage source converters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Min, Huang; Bai, Haofeng

    2015-01-01

    The switching-frequency LC-trap filter has recently been employed with high-order passive filters for Voltage Source Inverters (VSIs). This paper investigates the influence of modulation method on using the LC-traps with single-phase VSIs. Two-level (bipolar) and three-level (unipolar) modulations...... that include phase distortion and alternative phase opposition distortion methods are analyzed. Harmonic filtering performances of four LC-trap-based filters with different locations of LC-traps are compared. It is shown that the use of parallel-LC-traps in series with filter inductors, either grid...... or converter side, has a worse harmonic filtering performance than using series-LC-trap in the shunt branch. Simulations and experimental results are presented for verifications....

  15. Design, Experiments and Simulation of Voltage Transformers on the Basis of a Differential Input D-dot Sensor

    Directory of Open Access Journals (Sweden)

    Jingang Wang

    2014-07-01

    Full Text Available Currently available traditional electromagnetic voltage sensors fail to meet the measurement requirements of the smart grid, because of low accuracy in the static and dynamic ranges and the occurrence of ferromagnetic resonance attributed to overvoltage and output short circuit. This work develops a new non-contact high-bandwidth voltage measurement system for power equipment. This system aims at the miniaturization and non-contact measurement of the smart grid. After traditional D-dot voltage probe analysis, an improved method is proposed. For the sensor to work in a self-integrating pattern, the differential input pattern is adopted for circuit design, and grounding is removed. To prove the structure design, circuit component parameters, and insulation characteristics, Ansoft Maxwell software is used for the simulation. Moreover, the new probe was tested on a 10 kV high-voltage test platform for steady-state error and transient behavior. Experimental results ascertain that the root mean square values of measured voltage are precise and that the phase error is small. The D-dot voltage sensor not only meets the requirement of high accuracy but also exhibits satisfactory transient response. This sensor can meet the intelligence, miniaturization, and convenience requirements of the smart grid.

  16. An AMOLED AC-Biased Pixel Design Compensating the Threshold Voltage and I-R Drop

    Directory of Open Access Journals (Sweden)

    Ching-Lin Fan

    2011-01-01

    Full Text Available We propose a novel pixel design and an AC bias driving method for active-matrix organic light-emitting diode (AM-OLED displays using low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs. The proposed threshold voltage and I-R drop compensation circuit, which comprised three transistors and one capacitor, have been verified to supply uniform output current by simulation work using the Automatic Integrated Circuit Modeling Simulation Program with Integrated Circuit Emphasis (AIM-SPICE simulator. The simulated results demonstrate excellent properties such as low error rate of OLED anode voltage variation (<0.7% and low voltage drop of VDD power line. The proposed pixel circuit effectively enables threshold-voltage-deviation correction of driving TFT and compensates for the voltage drop of VDD power line using AC bias on OLED cathode.

  17. A new high-voltage level-shifting circuit for half-bridge power ICs

    International Nuclear Information System (INIS)

    Kong Moufu; Chen Xingbi

    2013-01-01

    In order to reduce the chip area and improve the reliability of HVICs, a new high-voltage level-shifting circuit with an integrated low-voltage power supply, two PMOS active resistors and a current mirror is proposed. The integrated low-voltage power supply not only provides energy for the level-shifting circuit and the logic circuit, but also provides voltage signals for the gates and sources of the PMOS active resistors to ensure that they are normally-on. The normally-on PMOS transistors do not, therefore, need to be fabricated in the depletion process. The current mirror ensures that the level-shifting circuit has a constant current, which can reduce the process error of the high-voltage devices of the circuit. Moreover, an improved RS trigger is also proposed to improve the reliability of the circuit. The proposed level-shifting circuit is analyzed and confirmed by simulation with MEDICI, and the simulation results show that the function is achieved well. (semiconductor integrated circuits)

  18. Prediction of power losses in silicon iron sheets under PWM voltage supply

    International Nuclear Information System (INIS)

    Amar, M.; Kaczmarek, R.; Protat, F.

    1994-01-01

    The behavior of iron losses in silicon iron steels submitted to a PWM voltage is studied. The influence of modulation parameters (the depth of modulation and the number of eliminated harmonics) is clarified. In particular, the idea of an equivalent alternating pulse voltage that gives the same iron losses as the PWM voltage is established. An estimation formula for iron losses under the PWM voltage is developed based on the loss separation model and the voltage form factor. ((orig.))

  19. Estimation of Medium Voltage Cable Parameters for PD Detection

    DEFF Research Database (Denmark)

    Villefrance, Rasmus; Holbøll, Joachim T.; Henriksen, Mogens

    1998-01-01

    Medium voltage cable characteristics have been determined with respect to the parameters having influence on the evaluation of results from PD-measurements on paper/oil and XLPE-cables. In particular, parameters essential for discharge quantification and location were measured. In order to relate...... and phase constants. A method to estimate this propagation constant, based on high frequency measurements, will be presented and will be applied to different cable types under different conditions. The influence of temperature and test voltage was investigated. The relevance of the results for cable...

  20. Cognitive aspect of diagnostic errors.

    Science.gov (United States)

    Phua, Dong Haur; Tan, Nigel C K

    2013-01-01

    Diagnostic errors can result in tangible harm to patients. Despite our advances in medicine, the mental processes required to make a diagnosis exhibits shortcomings, causing diagnostic errors. Cognitive factors are found to be an important cause of diagnostic errors. With new understanding from psychology and social sciences, clinical medicine is now beginning to appreciate that our clinical reasoning can take the form of analytical reasoning or heuristics. Different factors like cognitive biases and affective influences can also impel unwary clinicians to make diagnostic errors. Various strategies have been proposed to reduce the effect of cognitive biases and affective influences when clinicians make diagnoses; however evidence for the efficacy of these methods is still sparse. This paper aims to introduce the reader to the cognitive aspect of diagnostic errors, in the hope that clinicians can use this knowledge to improve diagnostic accuracy and patient outcomes.

  1. Calculation of the soft error rate of submicron CMOS logic circuits

    International Nuclear Information System (INIS)

    Juhnke, T.; Klar, H.

    1995-01-01

    A method to calculate the soft error rate (SER) of CMOS logic circuits with dynamic pipeline registers is described. This method takes into account charge collection by drift and diffusion. The method is verified by comparison of calculated SER's to measurement results. Using this method, the SER of a highly pipelined multiplier is calculated as a function of supply voltage for a 0.6 microm, 0.3 microm, and 0.12 microm technology, respectively. It has been found that the SER of such highly pipelined submicron CMOS circuits may become too high so that countermeasures have to be taken. Since the SER greatly increases with decreasing supply voltage, low-power/low-voltage circuits may show more than eight times the SER for half the normal supply voltage as compared to conventional designs

  2. Numerical study of the influence of applied voltage on the current balance factor of single layer organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Fei-ping, E-mail: lufp-sysu@163.com; Liu, Xiao-bin; Xing, Yong-zhong [College of Physics and Information Science, Tianshui Normal University, Tianshui 741001 (China)

    2014-04-28

    Current balance factor (CBF) value, the ratio of the recombination current density and the total current density of a device, has an important function in fluorescence-based organic light-emitting diodes (OLEDs), as well as in the performance of the organic electrophosphorescent devices. This paper investigates the influence of the applied voltage of a device on the CBF value of single layer OLED based on the numerical model of a bipolar single layer OLED with organic layer trap free and without doping. Results show that the largest CBF value can be achieved when the electron injection barrier (ϕ{sub n}) is equal to the hole injection barrier (ϕ{sub p}) in the lower voltage region at any instance. The largest CBF in the higher voltage region can be achieved in the case of ϕ{sub n} > ϕ{sub p} under the condition of electron mobility (μ{sub 0n}) > hole mobility (μ{sub 0p}), whereas the result for the case of μ{sub 0n} < μ{sub 0p}, is opposite. The largest CBF when μ{sub 0n} = μ{sub 0p} can be achieved in the case of ϕ{sub n} = ϕ{sub p} in the entire region of the applied voltage. In addition, the CBF value of the device increases with increasing applied voltage. The results obtained in this paper can present an in-depth understanding of the OLED working mechanism and help in the future fabrication of high efficiency OLEDs.

  3. Reducing systematic errors in measurements made by a SQUID magnetometer

    International Nuclear Information System (INIS)

    Kiss, L.F.; Kaptás, D.; Balogh, J.

    2014-01-01

    A simple method is described which reduces those systematic errors of a superconducting quantum interference device (SQUID) magnetometer that arise from possible radial displacements of the sample in the second-order gradiometer superconducting pickup coil. By rotating the sample rod (and hence the sample) around its axis into a position where the best fit is obtained to the output voltage of the SQUID as the sample is moved through the pickup coil, the accuracy of measuring magnetic moments can be increased significantly. In the cases of an examined Co 1.9 Fe 1.1 Si Heusler alloy, pure iron and nickel samples, the accuracy could be increased over the value given in the specification of the device. The suggested method is only meaningful if the measurement uncertainty is dominated by systematic errors – radial displacement in particular – and not by instrumental or environmental noise. - Highlights: • A simple method is described which reduces systematic errors of a SQUID. • The errors arise from a radial displacement of the sample in the gradiometer coil. • The procedure is to rotate the sample rod (with the sample) around its axis. • The best fit to the SQUID voltage has to be attained moving the sample through the coil. • The accuracy of measuring magnetic moment can be increased significantly

  4. Coherent error study in a retarding field energy analyzer

    International Nuclear Information System (INIS)

    Cui, Y.; Zou, Y.; Reiser, M.; Kishek, R.A.; Haber, I.; Bernal, S.; O'Shea, P.G.

    2005-01-01

    A novel cylindrical retarding electrostatic field energy analyzer for low-energy beams has been designed, simulated, and tested with electron beams of several keV, in which space charge effects play an important role. A cylindrical focusing electrode is used to overcome the beam expansion inside the device due to space-charge forces, beam emittance, etc. In this paper, we present the coherent error analysis for this energy analyzer with beam envelope equation including space charge and emittance effects. The study shows that this energy analyzer can achieve very high resolution (with relative error of around 10 -5 ) if taking away the coherent errors by using proper focusing voltages. The theoretical analysis is compared with experimental results

  5. Measurement of microchannel fluidic resistance with a standard voltage meter

    International Nuclear Information System (INIS)

    Godwin, Leah A.; Deal, Kennon S.; Hoepfner, Lauren D.; Jackson, Louis A.; Easley, Christopher J.

    2013-01-01

    Highlights: ► Standard voltage meter used to measure fluidic resistance. ► Manual measurement takes a few seconds, akin to electrical resistance measurements. ► Measurement error is reduced compared to other approaches. ► Amenable to dynamic measurement of fluidic resistance. - Abstract: A simplified method for measuring the fluidic resistance (R fluidic ) of microfluidic channels is presented, in which the electrical resistance (R elec ) of a channel filled with a conductivity standard solution can be measured and directly correlated to R fluidic using a simple equation. Although a slight correction factor could be applied in this system to improve accuracy, results showed that a standard voltage meter could be used without calibration to determine R fluidic to within 12% error. Results accurate to within 2% were obtained when a geometric correction factor was applied using these particular channels. When compared to standard flow rate measurements, such as meniscus tracking in outlet tubing, this approach provided a more straightforward alternative and resulted in lower measurement error. The method was validated using 9 different fluidic resistance values (from ∼40 to 600 kPa s mm −3 ) and over 30 separately fabricated microfluidic devices. Furthermore, since the method is analogous to resistance measurements with a voltage meter in electrical circuits, dynamic R fluidic measurements were possible in more complex microfluidic designs. Microchannel R elec was shown to dynamically mimic pressure waveforms applied to a membrane in a variable microfluidic resistor. The variable resistor was then used to dynamically control aqueous-in-oil droplet sizes and spacing, providing a unique and convenient control system for droplet-generating devices. This conductivity-based method for fluidic resistance measurement is thus a useful tool for static or real-time characterization of microfluidic systems.

  6. Single Step Formation of C-TiO2 Nanotubes: Influence of Applied Voltage and Their Photocatalytic Activity under Solar Illumination

    Directory of Open Access Journals (Sweden)

    Chin Wei Lai

    2013-01-01

    Full Text Available Self-aligned and high-uniformity carbon (C- titania (TiO2 nanotube arrays were successfully formed via single step anodization of titanium (Ti foil at 30 V for 1 h in a bath composed of ethylene glycol (EG, ammonium fluoride (NH4F, and hydrogen peroxide (H2O2. It was well established that applied voltage played an important role in controlling field-assisted oxidation and field-assisted dissolution during electrochemical anodization process. Therefore, the influences of applied voltage on the formation of C-TiO2 nanotube arrays were discussed. It was found that a minimal applied voltage of 30 V was required to form the self-aligned and high-uniformity C-TiO2 nanotube arrays with diameter of ~75 nm and length of ~2 μm. The samples synthesized using different applied voltages were then subjected to heat treatment for the conversion of amorphous phase to crystalline phase. The photocatalytic activity evaluation of C-TiO2 samples was made under degradation of organic dye (methyl orange (MO solution. The results revealed that controlled nanoarchitecture C-TiO2 photocatalyst led to a significant enhancement in photocatalytic activity due to the creation of more specific active surface areas for incident photons absorption from the solar illumination.

  7. Control Of Stepper Motor Movement By DC Voltage

    International Nuclear Information System (INIS)

    Gayani, Didi; Margono; Indasah, Iin; Sugito

    2000-01-01

    Instrumentation for controlling the power of reactor of TRIGA Mark II uses the stepper motor to move the control rod of neutron absorbers. The direction and speed of control rod movement are determined by the polarity and the amplitude of DC voltage as an error signal that is the difference of set point of power and the power of being measured on the control system. The unit of stepper motor controller of reactor instrumentation of TRIGA Mark II uses patent module of trade Mark of Vexta, USA. In this chance, the electronic circuit is made to function as the control of stepper motor movement by using the DC voltage to anticipate the problem may be faced in case of repair and maintenance of reactor instrumentation. As a result of experiment, it is stated that the control of motor movement by using DC voltage is performed into 2 stages. First, by making the oscillator that is proportional to the positive DC voltage. Secondly, by making the translator to translate the oscillator signal to be a logic pattern for controlling the movement of stepper motor. Translator and motor driver are made by using the L297 and L298 as a pair of stepper motor controller of SGS T HOMSON

  8. Influence of voltage on magnetization of ferromagnetic semiconductors with colossal magnetoresistance

    International Nuclear Information System (INIS)

    Povzner, A.A.; Volkov, A.G.

    2017-01-01

    Graphical abstract: We investigate nonequilibrium states of strongly correlated electron subsystem of lanthanum manganite, resulting in an external electric field. It is shown that the Joule heat leads to localization of electrons. As result, electric resistance, magnetization and other characteristics of the electronic system are depending on the applied voltage. This leads to the formation of the bistable state of the electronic system in the vicinity of the Curie point in an external electric field. This manifests itself in non-linear current-voltage characteristics of these substances, and should lead to oscillations of the magnetization and current. - Abstract: The nonequilibrium processes of “self-heating” arising during the flow of electric current are studied for ferromagnetic semiconductors with colossal magnetoresistance near the Curie temperature. These processes lead to the emergence of “hot” paramagnons and the destruction of ferromagnetic order. The solution to the heat balance equation takes into account the temperature dependence of the electrical conductivity caused by Anderson localization of electrons due to their scattering on magnetic inhomogeneities. Description of delocalized electrons subsystem takes into account the spin-flip processes leading to the double exchange. At that, the value of the Anderson percolation threshold and the double exchange depends on the amplitude of spin fluctuations. It was found that N-shaped current-voltage characteristics and hysteresis dependencies of magnetization on the voltage arise in a steady state due to the emergence of “hot” (by internal sample temperature) semiconductor paramagnetic phase. It is shown that the occurrence of self-oscillations of current and magnetization there may be.

  9. Influence of voltage on magnetization of ferromagnetic semiconductors with colossal magnetoresistance

    Energy Technology Data Exchange (ETDEWEB)

    Povzner, A.A., E-mail: a.a.povzner@urfu.ru; Volkov, A.G., E-mail: agvolkov@yandex.ru

    2017-06-15

    Graphical abstract: We investigate nonequilibrium states of strongly correlated electron subsystem of lanthanum manganite, resulting in an external electric field. It is shown that the Joule heat leads to localization of electrons. As result, electric resistance, magnetization and other characteristics of the electronic system are depending on the applied voltage. This leads to the formation of the bistable state of the electronic system in the vicinity of the Curie point in an external electric field. This manifests itself in non-linear current-voltage characteristics of these substances, and should lead to oscillations of the magnetization and current. - Abstract: The nonequilibrium processes of “self-heating” arising during the flow of electric current are studied for ferromagnetic semiconductors with colossal magnetoresistance near the Curie temperature. These processes lead to the emergence of “hot” paramagnons and the destruction of ferromagnetic order. The solution to the heat balance equation takes into account the temperature dependence of the electrical conductivity caused by Anderson localization of electrons due to their scattering on magnetic inhomogeneities. Description of delocalized electrons subsystem takes into account the spin-flip processes leading to the double exchange. At that, the value of the Anderson percolation threshold and the double exchange depends on the amplitude of spin fluctuations. It was found that N-shaped current-voltage characteristics and hysteresis dependencies of magnetization on the voltage arise in a steady state due to the emergence of “hot” (by internal sample temperature) semiconductor paramagnetic phase. It is shown that the occurrence of self-oscillations of current and magnetization there may be.

  10. Determination of the diagnostic x-ray tube practical peak voltage (PPV) from average or average peak voltage measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hourdakis, C J, E-mail: khour@gaec.gr [Ionizing Radiation Calibration Laboratory-Greek Atomic Energy Commission, PO Box 60092, 15310 Agia Paraskevi, Athens, Attiki (Greece)

    2011-04-07

    The practical peak voltage (PPV) has been adopted as the reference measuring quantity for the x-ray tube voltage. However, the majority of commercial kV-meter models measure the average peak, U-bar{sub P}, the average, U-bar, the effective, U{sub eff} or the maximum peak, U{sub P} tube voltage. This work proposed a method for determination of the PPV from measurements with a kV-meter that measures the average U-bar or the average peak, U-bar{sub p} voltage. The kV-meter reading can be converted to the PPV by applying appropriate calibration coefficients and conversion factors. The average peak k{sub PPV,kVp} and the average k{sub PPV,Uav} conversion factors were calculated from virtual voltage waveforms for conventional diagnostic radiology (50-150 kV) and mammography (22-35 kV) tube voltages and for voltage ripples from 0% to 100%. Regression equation and coefficients provide the appropriate conversion factors at any given tube voltage and ripple. The influence of voltage waveform irregularities, like 'spikes' and pulse amplitude variations, on the conversion factors was investigated and discussed. The proposed method and the conversion factors were tested using six commercial kV-meters at several x-ray units. The deviations between the reference and the calculated - according to the proposed method - PPV values were less than 2%. Practical aspects on the voltage ripple measurement were addressed and discussed. The proposed method provides a rigorous base to determine the PPV with kV-meters from U-bar{sub p} and U-bar measurement. Users can benefit, since all kV-meters, irrespective of their measuring quantity, can be used to determine the PPV, complying with the IEC standard requirements.

  11. Coordinated Voltage Control of Distributed PV Inverters for Voltage Regulation in Low Voltage Distribution Networks

    DEFF Research Database (Denmark)

    Nainar, Karthikeyan; Pokhrel, Basanta Raj; Pillai, Jayakrishnan Radhakrishna

    2017-01-01

    This paper reviews and analyzes the existing voltage control methods of distributed solar PV inverters to improve the voltage regulation and thereby the hosting capacity of a low-voltage distribution network. A novel coordinated voltage control method is proposed based on voltage sensitivity...... optimization. The proposed method is used to calculate the voltage bands and droop settings of PV inverters at each node by the supervisory controller. The local controller of each PV inverter implements the volt/var control and if necessary, the active power curtailment as per the received settings and based...... on measured local voltages. The advantage of the proposed method is that the calculated reactive power and active power droop settings enable fair contribution of the PV inverters at each node to the voltage regulation. Simulation studies are conducted using DigSilent Power factory software on a simplified...

  12. Design and test of voltage and current probes for EAST ICRF antenna impedance measurement

    Science.gov (United States)

    Jianhua, WANG; Gen, CHEN; Yanping, ZHAO; Yuzhou, MAO; Shuai, YUAN; Xinjun, ZHANG; Hua, YANG; Chengming, QIN; Yan, CHENG; Yuqing, YANG; Guillaume, URBANCZYK; Lunan, LIU; Jian, CHENG

    2018-04-01

    On the experimental advanced superconducting tokamak (EAST), a pair of voltage and current probes (V/I probes) is installed on the ion cyclotron radio frequency transmission lines to measure the antenna input impedance, and supplement the conventional measurement technique based on voltage probe arrays. The coupling coefficients of V/I probes are sensitive to their sizes and installing locations, thus they should be determined properly to match the measurement range of data acquisition card. The V/I probes are tested in a testing platform at low power with various artificial loads. The testing results show that the deviation of coupling resistance is small for loads R L > 2.5 Ω, while the resistance deviations appear large for loads R L phase measurement error is the more significant factor leads to deleterious results rather than the amplitude measurement error. To exclude the possible ingredients that may lead to phase measurement error, the phase detector can be calibrated in steady L-mode scenario and then use the calibrated data for calculation under H-mode cases in EAST experiments.

  13. Influence of dump voltage and allowable temperature rise on stabilizer requirements in superconducting coils

    International Nuclear Information System (INIS)

    Schwenterly, S.W.

    1988-01-01

    A superconducting winding must have enough stabilizer to satisfy two sets of criteria. During normal operation, the amount of stabilizer must be large enough either to make the coil unconditionally stable or to give a certain desired stability margin. Once a dump occurs, the amount of stabilizer must be large enough to carry the current without generating excessive dump voltages or allowing the winding to exceed a certain maximum temperature (and maximum pressure, in the case of force-cooled coils). The voltage criterion often dominates for very large coil systems, but it is frequently ignored in initial design studies. This paper gives some simple relations between the dump voltage and the stored energy, temperature rise, and coil geometry that are useful in scooping the required amount of stabilizer. Comparison with some recently proposed fusion magnet system designs indicates that excessive dump voltages could result in some cases. High-temperature superconductors may require more stabilizer than the conventional alloys. Calculations with simple model coil systems indicate how trade-offs between various coil parameters affect the dump voltage. 12 refs., 1 fig., 1 tab

  14. Influence of planning time and treatment complexity on radiation therapy errors.

    Science.gov (United States)

    Gensheimer, Michael F; Zeng, Jing; Carlson, Joshua; Spady, Phil; Jordan, Loucille; Kane, Gabrielle; Ford, Eric C

    2016-01-01

    Radiation treatment planning is a complex process with potential for error. We hypothesized that shorter time from simulation to treatment would result in rushed work and higher incidence of errors. We examined treatment planning factors predictive for near-miss events. Treatments delivered from March 2012 through October 2014 were analyzed. Near-miss events were prospectively recorded and coded for severity on a 0 to 4 scale; only grade 3-4 (potentially severe/critical) events were studied in this report. For 4 treatment types (3-dimensional conformal, intensity modulated radiation therapy, stereotactic body radiation therapy [SBRT], neutron), logistic regression was performed to test influence of treatment planning time and clinical variables on near-miss events. There were 2257 treatment courses during the study period, with 322 grade 3-4 near-miss events. SBRT treatments had more frequent events than the other 3 treatment types (18% vs 11%, P = .04). For the 3-dimensional conformal group (1354 treatments), univariate analysis showed several factors predictive of near-miss events: longer time from simulation to first treatment (P = .01), treatment of primary site versus metastasis (P < .001), longer treatment course (P < .001), and pediatric versus adult patient (P = .002). However, on multivariate regression only pediatric versus adult patient remained predictive of events (P = 0.02). For the intensity modulated radiation therapy, SBRT, and neutron groups, time between simulation and first treatment was not found to be predictive of near-miss events on univariate or multivariate regression. When controlling for treatment technique and other clinical factors, there was no relationship between time spent in radiation treatment planning and near-miss events. SBRT and pediatric treatments were more error-prone, indicating that clinical and technical complexity of treatments should be taken into account when targeting safety interventions. Copyright © 2015 American

  15. Influence of Load Modes on Voltage Stability of Receiving Network at DC/AC System

    Directory of Open Access Journals (Sweden)

    Mao Chizu

    2016-01-01

    Full Text Available This paper analyses influence of load modes on DC/AC system. Because of widespread use of HVDC, DC/AC system become more complex than before and the present modes used in dispatch and planning departments are not fit in simulation anymore. So it is necessary to find load modes accurately reflecting characteristics of the system. For the sake of the voltage stability, commutation failure, etc. the practical example of the receiving network in a large DC/AC system in China is simulated with BPA, and the influence of Classical Load Mode (CLM and Synthesis load model (SLM on simulation results is studies. Furthermore, some important parameters of SLM are varied respectively among an interval to analyse how they affect the system. According to this practical examples, the result is closely related to load modes and their parameters, and SLM is more conservative but more reasonable than the present modes. The consequences indicate that at critical states, micro variation in parameters may give rise to change in simulation results radically. Thus, correct mode and parameters are important to enhance simulation accuracy of DC/AC system and researches on how they affect the system make senses.

  16. Stability of high current diode under 100-nanosecond-pulse voltage

    International Nuclear Information System (INIS)

    Lai Dingguo; Qiu Aici; Zhang Yongmin; Huang Jianjun; Ren Shuqing; Yang Li

    2012-01-01

    Stability of high current diode under pulse voltage with 80 ns and 34 ns rise time was studied on the flash Ⅱ accelerator. Influence of rise time of diode voltage on startup time and cathode emission uniformity and repeatability of diode impedance was analyzed by comparing the experimental results with numerically simulated results, and the influence mechanism was discussed. The startup time of diode increases with the increasing of rise time of voltage, and the repeatability of diode impedance decreases. Discal plane cathode is prone to emit rays intensely in the center area, the time that plasma covers the surface of the cathode increases and the shielding effect has more impact on cathode emission according to the increase of rise time. Local intense emission on the cathode increases expansion speed of plasma and reduces the effective emission area. The stability of characteristic impedance of diode under a pulse voltage with slow rise time is decreased by the combined action of expansion speed of plasma and the effective emission area. (authors)

  17. Errors generated with the use of rectangular collimation

    International Nuclear Information System (INIS)

    Parks, E.T.

    1991-01-01

    This study was designed to determine whether various techniques for achieving rectangular collimation generate different numbers and types of errors and remakes and to determine whether operator skill level influences errors and remakes. Eighteen students exposed full-mouth series of radiographs on manikins with the use of six techniques. The students were grouped according to skill level. The radiographs were evaluated for errors and remakes resulting from errors in the following categories: cone cutting, vertical angulation, and film placement. Significant differences were found among the techniques in cone cutting errors and remakes, vertical angulation errors and remakes, and total errors and remakes. Operator skill did not appear to influence the number or types of errors or remakes generated. Rectangular collimation techniques produced more errors than did the round collimation techniques. However, only one rectangular collimation technique generated significantly more remakes than the other techniques

  18. Mitigation of Voltage Sags in CIGRE Low Voltage Distribution Network

    DEFF Research Database (Denmark)

    Mustafa, Ghullam; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    Any problem in voltage in a power network is undesirable as it aggravates the quality of the power. Power electronic devices such as Voltage Source Converter (VSC) based Static Synchronous Compensator (STATCOM), Dynamic Voltage Restorer (DVR) etc. are commonly used for the mitigation of voltage p....... The compensation of voltage sags in the different parts of CIGRE distribution network is done by using the four STATCOM compensators already existing in the test grid. The simulations are carried out in DIgSILENT power factory software version 15.0.......Any problem in voltage in a power network is undesirable as it aggravates the quality of the power. Power electronic devices such as Voltage Source Converter (VSC) based Static Synchronous Compensator (STATCOM), Dynamic Voltage Restorer (DVR) etc. are commonly used for the mitigation of voltage...... problems in the distribution system. The voltage problems dealt with in this paper are to show how to mitigate voltage sags in the CIGRE Low Voltage (LV) test network and networks like this. The voltage sags, for the tested cases in the CIGRE LV test network are mainly due to three phase faults...

  19. An Estimation Method of System Voltage Sag Profile using Recorded Sag Data

    Science.gov (United States)

    Tanaka, Kazuyuki; Sakashita, Tadashi

    The influence of voltage sag to electric equipment has become big issues because of wider utilization of voltage sensitive devices. In order to reduce the influence of voltage sag appearing at each customer side, it is necessary to recognize the level of receiving voltage drop due to lightning faults for transmission line. However it is hard to measure directly those sag level at every load node. In this report, a new method of efficiently estimating system voltage sag profile is proposed based on symmetrical coordinate. In the proposed method, limited recorded sag data is used as the estimation condition which is recorded at each substation in power systems. From the point of view that the number of the recorded node is generally far less than those of the transmission route, a fast solution method is developed to calculate only recorder faulted voltage by applying reciprocity theorem for Y matrix. Furthermore, effective screening process is incorporated, in which the limited candidate of faulted transmission line can be chosen. Demonstrative results are presented using the IEEJ East10 standard system and actual 1700 bus system. The results show that estimation accuracy is sufficiently acceptable under less computation labor.

  20. Development of a New Cascade Voltage-Doubler for Voltage Multiplication

    OpenAIRE

    Toudeshki, Arash; Mariun, Norman; Hizam, Hashim; Abdul Wahab, Noor Izzri

    2014-01-01

    For more than eight decades, cascade voltage-doubler circuits are used as a method to produce DC output voltage higher than the input voltage. In this paper, the topological developments of cascade voltage-doublers are reviewed. A new circuit configuration for cascade voltage-doubler is presented. This circuit can produce a higher value of the DC output voltage and better output quality compared to the conventional cascade voltage-doubler circuits, with the same number of stages.

  1. The influence of tube voltage and phantom size in computed tomography on the dose-response relationship of dicentrics in human blood samples

    International Nuclear Information System (INIS)

    Jost, G; Pietsch, H; Lengsfeld, P; Voth, M; Schmid, E

    2010-01-01

    The aim of this study was to investigate the dose response relationship of dicentrics in human lymphocytes after CT scans at tube voltages of 80 and 140 kV. Blood samples from a healthy donor placed in tissue equivalent abdomen phantoms of standard, pediatric and adipose sizes were exposed at dose levels up to 0.1 Gy using a 64-slice CT scanner. It was found that both the tube voltage and the phantom size significantly influenced the CT scan-induced linear dose-response relationship of dicentrics in human lymphocytes. Using the same phantom (standard abdomen), 80 kV CT x-rays were biologically more effective than 140 kV CT x-rays. However, it could also be determined that the applied phantom size had much more influence on the biological effectiveness. Obviously, the increasing slopes of the CT scan-induced dose response relationships of dicentrics in human lymphocytes obtained in a pediatric, a standard and an adipose abdomen have been induced by scattering effects of photons, which strongly increase with increasing phantom size.

  2. The influence of tube voltage and phantom size in computed tomography on the dose-response relationship of dicentrics in human blood samples

    Energy Technology Data Exchange (ETDEWEB)

    Jost, G; Pietsch, H [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Lengsfeld, P; Voth, M [Global Medical Affairs Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Schmid, E, E-mail: Ernst.Schmid@lrz.uni-muenchen.d [Institute for Cell Biology, Center for Integrated Protein Science, University of Munich (Germany)

    2010-06-07

    The aim of this study was to investigate the dose response relationship of dicentrics in human lymphocytes after CT scans at tube voltages of 80 and 140 kV. Blood samples from a healthy donor placed in tissue equivalent abdomen phantoms of standard, pediatric and adipose sizes were exposed at dose levels up to 0.1 Gy using a 64-slice CT scanner. It was found that both the tube voltage and the phantom size significantly influenced the CT scan-induced linear dose-response relationship of dicentrics in human lymphocytes. Using the same phantom (standard abdomen), 80 kV CT x-rays were biologically more effective than 140 kV CT x-rays. However, it could also be determined that the applied phantom size had much more influence on the biological effectiveness. Obviously, the increasing slopes of the CT scan-induced dose response relationships of dicentrics in human lymphocytes obtained in a pediatric, a standard and an adipose abdomen have been induced by scattering effects of photons, which strongly increase with increasing phantom size.

  3. Ventilator-associated pneumonia: the influence of bacterial resistance, prescription errors, and de-escalation of antimicrobial therapy on mortality rates

    Directory of Open Access Journals (Sweden)

    Ana Carolina Souza-Oliveira

    2016-09-01

    Conclusion: Prescription errors influenced mortality of patients with Ventilator-associated pneumonia, underscoring the challenge of proper Ventilator-associated pneumonia treatment, which requires continuous reevaluation to ensure that clinical response to therapy meets expectations.

  4. Distributed Secondary Voltage and Frequency Control for Islanded Microgrids with Uncertain Communication Links

    DEFF Research Database (Denmark)

    Lu, Xiaoqing; Yu, Xinghuo; Lai, Jingang

    2017-01-01

    energy resources (DERs) in a MG to achieve the voltage/frequency restoration and active power sharing accuracy, respectively. In special, the secondary control inputs are merely updated at the end of each round of iteration, and thus each DER only needs to share information with its neighbors...... theory. The proposed controllers are implemented on local DERs, and thus no central controller is required. Moreover, the desired control objective can also be guaranteed even if all DERs are subject to internal uncertainties and external noises including initial voltage and/or frequency resetting errors...

  5. Suppressing voltage transients in high voltage power supplies

    International Nuclear Information System (INIS)

    Lickel, K.F.; Stonebank, R.

    1979-01-01

    A high voltage power supply for an X-ray tubes includes voltage adjusting means, a high voltage transformer, switch means connected to make and interrupt the primary current of the transformer, and over-voltage suppression means to suppress the voltage transient produced when the current is switched on. In order to reduce the power losses in the suppression means, an impedance is connected in the transformer primary circuit on operation of the switch means and is subsequently short-circuited by a switch controlled by a timer after a period which is automatically adjusted to the duration of the transient overvoltage. (U.K.)

  6. A Component-Reduced Zero-Voltage Switching Three-Level DC-DC Converter

    DEFF Research Database (Denmark)

    Qin, Zian; Pang, Ying; Wang, Huai

    2016-01-01

    The basic Zero-Voltage Switching (ZVS) three-level DC-DC converter has one clamping capacitor to realize the ZVS of the switches, and two clamping diodes to clamp the voltage of the clamping capacitor. In order to reduce the reverse recovery loss of the diode as well as its cost, this paper...... proposes to remove one of the clamping diodes in basic ZVS three-level DC-DC converter. With less components, the proposed converter can still have a stable clamping capacitor voltage, which is clamped at half of the dc link voltage. Moreover, the ZVS performance will be influenced by removing the clamping...

  7. Lightning-induced overvoltages in low-voltage systems

    Energy Technology Data Exchange (ETDEWEB)

    Hoeidalen, Hans Kristian

    1997-12-31

    Lightning-induced overvoltages (LIOs) are a main source of failures in low-voltage overhead line systems. This thesis deals mainly with calculations of LIOs aiming to enable the design of a proper voltage protection. Models for calculation of LIOs are adapted from the literature or developed based on measurements. The models used are believed to be fairly accurate for the first few microseconds, which is usually sufficient for predicting the maximum induced voltage in the system. The lightning channel is modelled by the Modified Transmission Line (MTL) model with the Transmission Line (TL) model as a special case. The coupling between the electrical fields from a lightning channel and an overhead line is modelled by Agrawal`s model. The attenuation of electrical fields over a lossy ground is modelled by Norton`s- or the Surface Impedance methods. The validity of all the applied models is analysed. In addition, measurements have been performed in order to develop models of distribution transformers and low-voltage power installation (LVPI) networks. Simple models of typical transformers and LVPIs are developed for calculations when specific data are unavailable. The practical range of values and its influence on the LIOs in a system is investigated. The main frequency range of interest related to LIOs is 10 kHz - 1 MHz in which all the models are accurate. The adapted or developed models are used to calculate LIOs in low-voltage systems. The influence of various key parameters in the system is investigated. Most important are the return stroke amplitude and rise time, the overhead line height and location, the termination of overhead line segments, neutral grounding, and the ground conductivity. 135 refs., 136 figs., 12 tabs.

  8. A qualitative description of human error

    International Nuclear Information System (INIS)

    Li Zhaohuan

    1992-11-01

    The human error has an important contribution to risk of reactor operation. The insight and analytical model are main parts in human reliability analysis. It consists of the concept of human error, the nature, the mechanism of generation, the classification and human performance influence factors. On the operating reactor the human error is defined as the task-human-machine mismatch. The human error event is focused on the erroneous action and the unfavored result. From the time limitation of performing a task, the operation is divided into time-limited and time-opened. The HCR (human cognitive reliability) model is suited for only time-limited. The basic cognitive process consists of the information gathering, cognition/thinking, decision making and action. The human erroneous action may be generated in any stage of this process. The more natural ways to classify human errors are presented. The human performance influence factors including personal, organizational and environmental factors are also listed

  9. A qualitative description of human error

    Energy Technology Data Exchange (ETDEWEB)

    Zhaohuan, Li [Academia Sinica, Beijing, BJ (China). Inst. of Atomic Energy

    1992-11-01

    The human error has an important contribution to risk of reactor operation. The insight and analytical model are main parts in human reliability analysis. It consists of the concept of human error, the nature, the mechanism of generation, the classification and human performance influence factors. On the operating reactor the human error is defined as the task-human-machine mismatch. The human error event is focused on the erroneous action and the unfavored result. From the time limitation of performing a task, the operation is divided into time-limited and time-opened. The HCR (human cognitive reliability) model is suited for only time-limited. The basic cognitive process consists of the information gathering, cognition/thinking, decision making and action. The human erroneous action may be generated in any stage of this process. The more natural ways to classify human errors are presented. The human performance influence factors including personal, organizational and environmental factors are also listed.

  10. Impedance-based Analysis of DC Link Control in Voltage Source Rectifiers

    DEFF Research Database (Denmark)

    Lu, Dapeng; Wang, Xiongfei; Blaabjerg, Frede

    2018-01-01

    This paper analyzes the dynamics influences of the outer dc link control in the voltage source rectifiers based on the impedance model. The ac-dc interactions are firstly presented by means of full order small signal model in dq frame, which shows the input voltage and load condition are the two...

  11. Effects of balanced and unbalanced voltage sags on DC adjustable-speed drives

    Energy Technology Data Exchange (ETDEWEB)

    Pedra, Joaquin; Sainz, Luis; Corcoles, Felipe; Bergas, Joan [Department of Electrical Engineering, ETSEIB-UPC, Av. Diagonal, 647, 08028 Barcelona (Spain); de Blas, Alfredo [Department of Electrical Engineering, EUETIB-UPC, C. d' Urgell, 187, 08036 Barcelona (Spain)

    2008-06-15

    This paper analyzes the sensitivity of DC adjustable-speed drives to balanced and unbalanced voltage sags. The influence of sag type, depth, duration and phase-angle jump on DC drives is studied. The control of the DC drive has been taken into account to understand drive behavior in the presence of voltage sags. Two working modes of the DC motor are considered in the study: as a consumer load and as a regenerative load. When the DC motor works as a consumer load, the study shows that sag type and depth have a significant influence on drive behavior. However, the voltage sag can be ridden through if the rectifier firing angle is set correctly by the control. When the DC motor works as a regenerative load, the study shows the consequences of the three-phase rectifier commutation failure due to the voltage sag. (author)

  12. Design of a Rad-Hard eFuse Trimming Circuit for Bandgap Voltage Reference for LHC Experiments Upgrades

    CERN Document Server

    Besirli, Mustafa; Koukab, Adil; Michelis, Stefano

    A precise and stable reference voltage is required to generate a stable output voltage in DC/DC converters. This reference voltage must be independent of temperature, power supply, radiation, intrinsic technology mismatch and process variation. This master's thesis reports the development of a rad-hard bandgap voltage reference with electrical fuse (eFuse) based analog calibration circuit in a commercial 130nm technology. According to the test results, the maximum error in the bandgap voltage (300mV in this application) was reduced from ±30mV to less than ±0.6mV thanks to the eFuse trimming. A temperature, power supply, radiation, mismatch and process-independent reference voltage was generated to provide reference voltage to first (bPOL12V) and second (bPOL2V5) stage DC/DC converters. This circuit will be integrated in bPOL12V and bPOL2V5 converters for high-luminosity LHC upgrades.

  13. Energy reduction through voltage scaling and lightweight checking

    Science.gov (United States)

    Kadric, Edin

    As the semiconductor roadmap reaches smaller feature sizes and the end of Dennard Scaling, design goals change, and managing the power envelope often dominates delay minimization. Voltage scaling remains a powerful tool to reduce energy. We find that it results in about 60% geomean energy reduction on top of other common low-energy optimizations with 22nm CMOS technology. However, when voltage is reduced, it becomes easier for noise and particle strikes to upset a node, potentially causing Silent Data Corruption (SDC). The 60% energy reduction, therefore, comes with a significant drop in reliability. Duplication with checking and triple-modular redundancy are traditional approaches used to combat transient errors, but spending 2--3x the energy for redundant computation can diminish or reverse the benefits of voltage scaling. As an alternative, we explore the opportunity to use checking operations that are cheaper than the base computation they are guarding. We devise a classification system for applications and their lightweight checking characteristics. In particular, we identify and evaluate the effectiveness of lightweight checks in a broad set of common tasks in scientific computing and signal processing. We find that the lightweight checks cost only a fraction of the base computation (0-25%) and allow us to recover the reliability losses from voltage scaling. Overall, we show about 50% net energy reduction without compromising reliability compared to operation at the nominal voltage. We use FPGAs (Field-Programmable Gate Arrays) in our work, although the same ideas can be applied to different systems. On top of voltage scaling, we explore other common low-energy techniques for FPGAs: transmission gates, gate boosting, power gating, low-leakage (high-Vth) processes, and dual-V dd architectures. We do not scale voltage for memories, so lower voltages help us reduce logic and interconnect energy, but not memory energy. At lower voltages, memories become dominant

  14. Voltage-dependent gating in a "voltage sensor-less" ion channel.

    Directory of Open Access Journals (Sweden)

    Harley T Kurata

    2010-02-01

    Full Text Available The voltage sensitivity of voltage-gated cation channels is primarily attributed to conformational changes of a four transmembrane segment voltage-sensing domain, conserved across many levels of biological complexity. We have identified a remarkable point mutation that confers significant voltage dependence to Kir6.2, a ligand-gated channel that lacks any canonical voltage-sensing domain. Similar to voltage-dependent Kv channels, the Kir6.2[L157E] mutant exhibits time-dependent activation upon membrane depolarization, resulting in an outwardly rectifying current-voltage relationship. This voltage dependence is convergent with the intrinsic ligand-dependent gating mechanisms of Kir6.2, since increasing the membrane PIP2 content saturates Po and eliminates voltage dependence, whereas voltage activation is more dramatic when channel Po is reduced by application of ATP or poly-lysine. These experiments thus demonstrate an inherent voltage dependence of gating in a "ligand-gated" K+ channel, and thereby provide a new view of voltage-dependent gating mechanisms in ion channels. Most interestingly, the voltage- and ligand-dependent gating of Kir6.2[L157E] is highly sensitive to intracellular [K+], indicating an interaction between ion permeation and gating. While these two key features of channel function are classically dealt with separately, the results provide a framework for understanding their interaction, which is likely to be a general, if latent, feature of the superfamily of cation channels.

  15. Transient voltage sharing in series-coupled high voltage switches

    Directory of Open Access Journals (Sweden)

    Editorial Office

    1992-07-01

    Full Text Available For switching voltages in excess of the maximum blocking voltage of a switching element (for example, thyristor, MOSFET or bipolar transistor such elements are often coupled in series - and additional circuitry has to be provided to ensure equal voltage sharing. Between each such series element and system ground there is a certain parasitic capacitance that may draw a significant current during high-speed voltage transients. The "open" switch is modelled as a ladder network. Analy­sis reveals an exponential progression in the distribution of the applied voltage across the elements. Overstressing thus oc­curs in some of the elements at levels of the total voltage that are significantly below the design value. This difficulty is overcome by grading the voltage sharing circuitry, coupled in parallel with each element, in a prescribed manner, as set out here.

  16. Power conditioning using dynamic voltage restorers under different voltage sag types.

    Science.gov (United States)

    Saeed, Ahmed M; Abdel Aleem, Shady H E; Ibrahim, Ahmed M; Balci, Murat E; El-Zahab, Essam E A

    2016-01-01

    Voltage sags can be symmetrical or unsymmetrical depending on the causes of the sag. At the present time, one of the most common procedures for mitigating voltage sags is by the use of dynamic voltage restorers (DVRs). By definition, a DVR is a controlled voltage source inserted between the network and a sensitive load through a booster transformer injecting voltage into the network in order to correct any disturbance affecting a sensitive load voltage. In this paper, modelling of DVR for voltage correction using MatLab software is presented. The performance of the device under different voltage sag types is described, where the voltage sag types are introduced using the different types of short-circuit faults included in the environment of the MatLab/Simulink package. The robustness of the proposed device is evaluated using the common voltage sag indices, while taking into account voltage and current unbalance percentages, where maintaining the total harmonic distortion percentage of the load voltage within a specified range is desired. Finally, several simulation results are shown in order to highlight that the DVR is capable of effective correction of the voltage sag while minimizing the grid voltage unbalance and distortion, regardless of the fault type.

  17. Evaluation of the practical peak voltage quantity for clinical equipment in diagnostic radiology

    International Nuclear Information System (INIS)

    Pires, Joao dos Santos Justo

    2007-01-01

    The objective of this work is to evaluate the calculation of the Practical Peak Voltage (PPV) from the voltage waveform and the kerma contrast for two kinds of X-ray equipment: a single phase clinical equipment, a three phase clinical equipment. The PPV from a mammography system voltage waveform will also be established. The development of this work involves intermediate objectives that indicate the quality of the used methods to calculate the PPV. One of these intermediate objectives is the comparison between the invasive calculations of PPV (using a voltage divider) with the response of kVp meter that calculate the PPV. Another intermediate objective is to compare the PPV with the Contrast Equivalent Voltage (the original non-invasive PPV definition). The variation of the PPV with quantities that influence in the voltage waveform like ripple and sample rate will also be contemplated in this work. The results showed that the PPV quantity could be invasive determined trustworthy. Therefore, the ripple quantity is the mainly influence to determinate the PPV that affecting the non-invasive determination. This fact suggest that the non-invasive instruments manufacturers must reevaluate the calculation of the PPV quantity in their instruments. (author)

  18. Soft error rate analysis methodology of multi-Pulse-single-event transients

    International Nuclear Information System (INIS)

    Zhou Bin; Huo Mingxue; Xiao Liyi

    2012-01-01

    As transistor feature size scales down, soft errors in combinational logic because of high-energy particle radiation is gaining more and more concerns. In this paper, a combinational logic soft error analysis methodology considering multi-pulse-single-event transients (MPSETs) and re-convergence with multi transient pulses is proposed. In the proposed approach, the voltage pulse produced at the standard cell output is approximated by a triangle waveform, and characterized by three parameters: pulse width, the transition time of the first edge, and the transition time of the second edge. As for the pulse with the amplitude being smaller than the supply voltage, the edge extension technique is proposed. Moreover, an efficient electrical masking model comprehensively considering transition time, delay, width and amplitude is proposed, and an approach using the transition times of two edges and pulse width to compute the amplitude of pulse is proposed. Finally, our proposed firstly-independently-propagating-secondly-mutually-interacting (FIP-SMI) is used to deal with more practical re-convergence gate with multi transient pulses. As for MPSETs, a random generation model of MPSETs is exploratively proposed. Compared to the estimates obtained using circuit level simulations by HSpice, our proposed soft error rate analysis algorithm has 10% errors in SER estimation with speed up of 300 when the single-pulse-single-event transient (SPSET) is considered. We have also demonstrated the runtime and SER decrease with the increment of P0 using designs from the ISCAS-85 benchmarks. (authors)

  19. Influence of chronic neck pain on cervical joint position error (JPE): Comparison between young and elderly subjects.

    Science.gov (United States)

    Alahmari, Khalid A; Reddy, Ravi Shankar; Silvian, Paul; Ahmad, Irshad; Nagaraj, Venkat; Mahtab, Mohammad

    2017-11-06

    Evaluation of cervical joint position sense in subjects with chronic neck pain has gained importance in recent times. Different authors have established increased joint position error (JPE) in subjects with acute neck pain. However, there is a paucity of studies to establish the influence of chronic neck pain on cervical JPE. The objective of the study was to understand the influence of chronic neck pain on cervical JPE, and to examine the differences in cervical JPE between young and elderly subjects with chronic neck pain. Forty-two chronic neck pain patients (mean age 47.4) were compared for cervical JPE with 42 age-matched healthy subjects (mean age 47.8), using a digital inclinometer. The cervical JPE were measured in flexion, extension, and rotation in right and left movement directions. The comparison of JPE showed significantly larger errors in subjects with chronic neck pain when compared to healthy subjects (ppain revealed no significant differences (P> 0.05) in cervical JPE. Cervical joint position sense is impaired in subjects with chronic neck pain.

  20. The high voltage system for the novel MPGD-based photon detectors of COMPASS RICH-1

    CERN Document Server

    Dalla Torre, S.; Birsa, R.; Bradamante, F.; Bressan, A.; Chatterjee, C.; Ciliberti, P.; Dasgupta, S.; Gobbo, B.; Gregori, M.; Hamar, G.; Levorato, S.; Martin, A.; Menon, G.; Tessarotto, F.; Zhao, Y.

    2018-01-01

    The architecture of the novel MPGD-based photon detectors of COMPASS RICH-1 consists in a large-size hybrid MPGD multilayer layout combining two layers of Thick-GEMs and a bulk resistive MICROMEGAS. Concerning biasing voltage, the Thick-GEMs are segmented in order to reduce the energy released in case of occasional discharges, while the MICROMEGAS anode is segmented in pads individually biased at positive voltage, while the micromesh is grounded. In total, there are ten different electrode types and more than 20000 electrodes supplied by more than 100 HV channels. Commercial power supply units are used. The original elements of the power supply system are the architecture of the voltage distribution net, the compensation, by voltage adjustment, of the effects of pressure and temperature variation affecting the detector gain and a sophisticated control software, which allows to protect the detectors against errors by the operator, to monitor and log voltages and current at 1 Hz rate and to automatically react ...

  1. Mitigation of voltage sags in the distribution system with dynamic voltage restorer

    International Nuclear Information System (INIS)

    Viglas, D.; Belan, A.

    2012-01-01

    Dynamic voltage restorer is a custom power device that is used to improve voltage sags or swells in electrical distribution system. The components of the Dynamic Voltage Restorer consist of injection transformers, voltage source inverter, passive filters and energy storage. The main function of the Dynamic voltage restorer is used to inject three phase voltage in series and in synchronism with the grid voltages in order to compensate voltage disturbances. This article deals with mitigation of voltage sags caused by three-phase short circuit. Dynamic voltage restorer is modelled in MATLAB/Simulink. (Authors)

  2. A temperature monitor circuit with small voltage sensitivity using a topology-reconfigurable ring oscillator

    Science.gov (United States)

    Kishimoto, Tadashi; Ishihara, Tohru; Onodera, Hidetoshi

    2018-04-01

    In this paper, we propose a temperature monitor circuit that exhibits a small supply voltage sensitivity adopting a circuit topology of a reconfigurable ring oscillator. The circuit topology of the monitor is crafted such that the oscillation frequency is determined by the amount of subthreshold leakage current, which has an exponential dependence on temperature. Another important characteristic of the monitor is its small supply voltage sensitivity. The measured oscillation frequency of a test chip fabricated in a 65 nm CMOS process varies only 2.6% under a wide range of supply voltages from 0.4 to 1.0 V at room temperature. The temperature estimation error ranges from -0.3 to 0.4 °C over a temperature range of 10 to 100 °C.

  3. Voltage regulating circuit

    NARCIS (Netherlands)

    2005-01-01

    A voltage regulating circuit comprising a rectifier (2) for receiving an AC voltage (Vmains) and for generating a rectified AC voltage (vrec), and a capacitor (3) connected in parallel with said rectified AC voltage for providing a DC voltage (VDC) over a load (5), characterized by a unidirectional

  4. Analysis of the error of the developed method of determination the active conductivity reducing the insulation level between one phase of the network and ground, and insulation parameters in a non-symmetric network with isolated neutral with voltage above 1000 V

    Science.gov (United States)

    Utegulov, B. B.

    2018-02-01

    In the work the study of the developed method was carried out for reliability by analyzing the error in indirect determination of the insulation parameters in an asymmetric network with an isolated neutral voltage above 1000 V. The conducted studies of the random relative mean square errors show that the accuracy of indirect measurements in the developed method can be effectively regulated not only by selecting a capacitive additional conductivity, which are connected between phases of the electrical network and the ground, but also by the selection of measuring instruments according to the accuracy class. When choosing meters with accuracy class of 0.5 with the correct selection of capacitive additional conductivity that are connected between the phases of the electrical network and the ground, the errors in measuring the insulation parameters will not exceed 10%.

  5. Scaling prediction errors to reward variability benefits error-driven learning in humans.

    Science.gov (United States)

    Diederen, Kelly M J; Schultz, Wolfram

    2015-09-01

    Effective error-driven learning requires individuals to adapt learning to environmental reward variability. The adaptive mechanism may involve decays in learning rate across subsequent trials, as shown previously, and rescaling of reward prediction errors. The present study investigated the influence of prediction error scaling and, in particular, the consequences for learning performance. Participants explicitly predicted reward magnitudes that were drawn from different probability distributions with specific standard deviations. By fitting the data with reinforcement learning models, we found scaling of prediction errors, in addition to the learning rate decay shown previously. Importantly, the prediction error scaling was closely related to learning performance, defined as accuracy in predicting the mean of reward distributions, across individual participants. In addition, participants who scaled prediction errors relative to standard deviation also presented with more similar performance for different standard deviations, indicating that increases in standard deviation did not substantially decrease "adapters'" accuracy in predicting the means of reward distributions. However, exaggerated scaling beyond the standard deviation resulted in impaired performance. Thus efficient adaptation makes learning more robust to changing variability. Copyright © 2015 the American Physiological Society.

  6. Research on uncertainty evaluation measure and method of voltage sag severity

    Science.gov (United States)

    Liu, X. N.; Wei, J.; Ye, S. Y.; Chen, B.; Long, C.

    2018-01-01

    Voltage sag is an inevitable serious problem of power quality in power system. This paper focuses on a general summarization and reviews on the concepts, indices and evaluation methods about voltage sag severity. Considering the complexity and uncertainty of influencing factors, damage degree, the characteristics and requirements of voltage sag severity in the power source-network-load sides, the measure concepts and their existing conditions, evaluation indices and methods of voltage sag severity have been analyzed. Current evaluation techniques, such as stochastic theory, fuzzy logic, as well as their fusion, are reviewed in detail. An index system about voltage sag severity is provided for comprehensive study. The main aim of this paper is to propose thought and method of severity research based on advanced uncertainty theory and uncertainty measure. This study may be considered as a valuable guide for researchers who are interested in the domain of voltage sag severity.

  7. Metrological Array of Cyber-Physical Systems. Part 11. Remote Error Correction of Measuring Channel

    Directory of Open Access Journals (Sweden)

    Yuriy YATSUK

    2015-09-01

    Full Text Available The multi-channel measuring instruments with both the classical structure and the isolated one is identified their errors major factors basing on general it metrological properties analysis. Limiting possibilities of the remote automatic method for additive and multiplicative errors correction of measuring instruments with help of code-control measures are studied. For on-site calibration of multi- channel measuring instruments, the portable voltage calibrators structures are suggested and their metrological properties while automatic errors adjusting are analysed. It was experimentally envisaged that unadjusted error value does not exceed ± 1 mV that satisfies most industrial applications. This has confirmed the main approval concerning the possibilities of remote errors self-adjustment as well multi- channel measuring instruments as calibration tools for proper verification.

  8. Beyond voltage-gated ion channels: Voltage-operated membrane proteins and cellular processes.

    Science.gov (United States)

    Zhang, Jianping; Chen, Xingjuan; Xue, Yucong; Gamper, Nikita; Zhang, Xuan

    2018-04-18

    Voltage-gated ion channels were believed to be the only voltage-sensitive proteins in excitable (and some non-excitable) cells for a long time. Emerging evidence indicates that the voltage-operated model is shared by some other transmembrane proteins expressed in both excitable and non-excitable cells. In this review, we summarize current knowledge about voltage-operated proteins, which are not classic voltage-gated ion channels as well as the voltage-dependent processes in cells for which single voltage-sensitive proteins have yet to be identified. Particularly, we will focus on the following. (1) Voltage-sensitive phosphoinositide phosphatases (VSP) with four transmembrane segments homologous to the voltage sensor domain (VSD) of voltage-gated ion channels; VSPs are the first family of proteins, other than the voltage-gated ion channels, for which there is sufficient evidence for the existence of the VSD domain; (2) Voltage-gated proton channels comprising of a single voltage-sensing domain and lacking an identified pore domain; (3) G protein coupled receptors (GPCRs) that mediate the depolarization-evoked potentiation of Ca 2+ mobilization; (4) Plasma membrane (PM) depolarization-induced but Ca 2+ -independent exocytosis in neurons. (5) Voltage-dependent metabolism of phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P 2 , PIP 2 ) in the PM. These recent discoveries expand our understanding of voltage-operated processes within cellular membranes. © 2018 Wiley Periodicals, Inc.

  9. A Human Error Analysis Procedure for Identifying Potential Error Modes and Influencing Factors for Test and Maintenance Activities

    International Nuclear Information System (INIS)

    Kim, Jae Whan; Park, Jin Kyun

    2010-01-01

    Periodic or non-periodic test and maintenance (T and M) activities in large, complex systems such as nuclear power plants (NPPs) are essential for sustaining stable and safe operation of the systems. On the other hand, it also has been raised that human erroneous actions that might occur during T and M activities has the possibility of incurring unplanned reactor trips (RTs) or power derate, making safety-related systems unavailable, or making the reliability of components degraded. Contribution of human errors during normal and abnormal activities of NPPs to the unplanned RTs is known to be about 20% of the total events. This paper introduces a procedure for predictively analyzing human error potentials when maintenance personnel perform T and M tasks based on a work procedure or their work plan. This procedure helps plant maintenance team prepare for plausible human errors. The procedure to be introduced is focusing on the recurrent error forms (or modes) in execution-based errors such as wrong object, omission, too little, and wrong action

  10. Temperature measurement error due to the effects of time varying magnetic fields on thermocouples with ferromagnetic thermoelements

    International Nuclear Information System (INIS)

    McDonald, D.W.

    1977-01-01

    Thermocouples with ferromagnetic thermoelements (iron, Alumel, Nisil) are used extensively in industry. We have observed the generation of voltage spikes within ferromagnetic wires when the wires are placed in an alternating magnetic field. This effect has implications for thermocouple thermometry, where it was first observed. For example, the voltage generated by this phenomenon will contaminate the thermocouple thermal emf, resulting in temperature measurement error

  11. Distribution state estimation based voltage control for distribution networks; Koordinierte Spannungsregelung anhand einer Zustandsschaetzung im Verteilnetz

    Energy Technology Data Exchange (ETDEWEB)

    Diwold, Konrad; Yan, Wei [Fraunhofer IWES, Kassel (Germany); Braun, Martin [Fraunhofer IWES, Kassel (Germany); Stuttgart Univ. (Germany). Inst. fuer Energieuebertragung und Hochspannungstechnik (IEH)

    2012-07-01

    The increased integration of distributed energy units creates challenges for the operators of distribution systems. This is due to the fact that distribution systems that were initially designed for distributed consumption and central generation now face decentralized feed-in. One imminent problem associated with decentralised fee-in are local voltage violations in the distribution system, which are hard to handle via conventional voltage control strategies. This article proposes a new voltage control framework for distribution system operation. The framework utilizes reactive power of distributed energy units as well on-load tap changers to mitigate voltage problems in the network. Using an optimization-band the control strategy can be used in situations where network information is derived from distribution state estimators and thus holds some error. The control capabilities in combination with a distribution state estimator are tested using data from a real rural distribution network. The results are very promising, as voltage control is achieved fast and accurate, preventing a majority of the voltage violations during system operation under realistic system conditions. (orig.)

  12. Comparison of two voltage control strategies for a wind power plant

    DEFF Research Database (Denmark)

    Martinez, Jorge; Kjær, Philip C.; Rodriguez, Pedro

    2011-01-01

    plants. This paper addresses the analysis of two different voltage control strategies for a wind power plant, i.e. decentralized and centralized voltage control schemes. The analysis has been performed using the equivalent and simplified transfer functions of the system. Using this representation......Larger percentages of wind power penetration translate to more demanding requirements from grid codes. Recently, voltage support at the point of connection has been introduced by several grid codes from around the world, thus, making it important to analyze this control when applied to wind power......, it is possible to investigate the influence of the plant control gain, short circuit ratio, and time delays on the system stability, as well as the fulfillment of the design requirements. The implemented plant voltage control is based on a slope voltage controller, which calculates the references to be sent...

  13. Stray voltage mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Jamali, B.; Piercy, R.; Dick, P. [Kinetrics Inc., Toronto, ON (Canada). Transmission and Distribution Technologies

    2008-04-09

    This report discussed issues related to farm stray voltage and evaluated mitigation strategies and costs for limiting voltage to farms. A 3-phase, 3-wire system with no neutral ground was used throughout North America before the 1930s. Transformers were connected phase to phase without any electrical connection between the primary and secondary sides of the transformers. Distribution voltage levels were then increased and multi-grounded neutral wires were added. The earth now forms a parallel return path for the neutral current that allows part of the neutral current to flow continuously through the earth. The arrangement is responsible for causing stray voltage. Stray voltage causes uneven milk production, increased incidences of mastitis, and can create a reluctance to drink water amongst cows when stray voltages are present. Off-farm sources of stray voltage include phase unbalances, undersized neutral wire, and high resistance splices on the neutral wire. Mitigation strategies for reducing stray voltage include phase balancing; conversion from single to 3-phase; increasing distribution voltage levels, and changing pole configurations. 22 refs., 5 tabs., 13 figs.

  14. Design considerations and data for gas-insulated high voltage structures

    International Nuclear Information System (INIS)

    Hopkins, D.B.

    1975-11-01

    This paper is intended to benefit the person faced with the occasional task of designing gas insulated high-voltage structures or spark gaps and who must decide upon the proper geometry, spacings, gas type, and pressure for reliable voltage-holding. An approach is presented along with a summary of how various factors affect voltage breakdown. The design procedures described apply to situations where the influence of nearby insulators is negligible. The accuracy of the data is estimated to be within 10 to 15 percent, a value usually attained in practice only when one follows the cautionary advice discussed in the paragraphs on materials preparation, gas properties, and conditioning

  15. Comprehensive Anti-error Study on Power Grid Dispatching Based on Regional Regulation and Integration

    Science.gov (United States)

    Zhang, Yunju; Chen, Zhongyi; Guo, Ming; Lin, Shunsheng; Yan, Yinyang

    2018-01-01

    With the large capacity of the power system, the development trend of the large unit and the high voltage, the scheduling operation is becoming more frequent and complicated, and the probability of operation error increases. This paper aims at the problem of the lack of anti-error function, single scheduling function and low working efficiency for technical support system in regional regulation and integration, the integrated construction of the error prevention of the integrated architecture of the system of dispatching anti - error of dispatching anti - error of power network based on cloud computing has been proposed. Integrated system of error prevention of Energy Management System, EMS, and Operation Management System, OMS have been constructed either. The system architecture has good scalability and adaptability, which can improve the computational efficiency, reduce the cost of system operation and maintenance, enhance the ability of regional regulation and anti-error checking with broad development prospects.

  16. A Contribution To The Development And Analysis Of A Combined Current-Voltage Instrument Transformer By Using Modern CAD Methods

    International Nuclear Information System (INIS)

    Chundeva-Blajer, Marija M.

    2004-01-01

    The principle aim and task of the thesis is the analysis and development of 20 kV combined current-voltage instrument transformer (CCVIT) by using modern CAD techniques. CCVIT is a complex electromagnetic system comprising of four windings and two magnetic cores in one insulation housing for simultaneous transformation of high voltages and currents to measurable signal values by standard instruments. The analytical design methods can be applied on simple electromagnetic configurations, which is not the case with the CCVIT. There is mutual electromagnetic influence between the voltage measurement core (VMC) and the current measurement core (CMC). After the analytical CCVIT design had been done, exact determination of its metrological characteristics has been accomplished by using the numerical finite element method implemented in the FEM-3D program package. The FEM-3D calculation is made in 19 cross-sectional layers of the z-axis of the CCVIT three-dimensional domain. By FEM-3D application the three-dimensional CCVIT magnetic field distribution is derived. This is the basis for calculation of the initial metrological characteristics of the CCVIT (VMC is accuracy class 3 and CMC is accuracy class 1). By using the stochastic optimization technique based on genetic algorithm the CCVIT optimal design is achieved. The objective function is the minimum of the metrological parameters (VIM voltage error and CMC current error). There are I I independent input variables during the optimization process by which the optimal project is derived. The optimal project is adapted for realization of a prototype and the optimized project is derived. Full comparative analysis of the metrological and the electromagnetic characteristics of the three projects is accomplished. By application of the program package MATLAB/SIMULINK the CCVIT transient phenomena is analyzed for different regimes in the three design projects. In the Instrument Transformer Factory of EMO A. D.-Ohrid a CCVIT

  17. Time-Domain Voltage Sag State Estimation Based on the Unscented Kalman Filter for Power Systems with Nonlinear Components

    Directory of Open Access Journals (Sweden)

    Rafael Cisneros-Magaña

    2018-06-01

    Full Text Available This paper proposes a time-domain methodology based on the unscented Kalman filter to estimate voltage sags and their characteristics, such as magnitude and duration in power systems represented by nonlinear models. Partial and noisy measurements from the electrical network with nonlinear loads, used as data, are assumed. The characteristics of voltage sags can be calculated in a discrete form with the unscented Kalman filter to estimate all the busbar voltages; being possible to determine the rms voltage magnitude and the voltage sag starting and ending time, respectively. Voltage sag state estimation results can be used to obtain the power quality indices for monitored and unmonitored busbars in the power grid and to design adequate mitigating techniques. The proposed methodology is successfully validated against the results obtained with the time-domain system simulation for the power system with nonlinear components, being the normalized root mean square error less than 3%.

  18. Influence of Marker Movement Errors on Measuring 3 Dimentional Scapular Position and Orientation

    Directory of Open Access Journals (Sweden)

    Afsoun Nodehi-Moghaddam

    2003-12-01

    Full Text Available Objective: Scapulothoracic muscles weakness or fatique can result in abnormal scapular positioning and compromising scapulo-humeral rhythm and shoulder dysfunction .The scapula moves in a -3 Dimentional fashion so the use of 2-Dimentional Techniques cannot fully capture scapular motion . One of approaches to positioining markers of kinematic systems is to mount each marker directly on the skin generally over a bony anatomical landmarks . Howerer skin movement and Motion of underlying bony structures are not Necessaritly identical and substantial errors may be introduced in the description of bone movement when using skin –mounted markers. evaluation of Influence of marker movement errors on 3-Dimentional scapular position and orientation. Materials & Methods: 10 Healthy subjects with a mean age 30.50 participated in the study . They were tested in three sessions A 3-dimentiional electro mechanical digitizer was used to measure scapular position and orientation measures were obtained while arm placed at the side of the body and elevated 45٫90٫120 and full Rang of motion in the scapular plane . At each test positions six bony landmarks were palpated and skin markers were mounted on them . This procedure repeated in the second test session in third session Removal of markers was not performed through obtaining entire Range of motion after mounting the markers . Results: The intraclass correlation coefficients (ICC for scapulor variables were higher (0.92-0.84 when markers were replaced and re-mounted on bony landmarks with Increasing the angle of elevation. Conclusion: our findings suggested significant markers movement error on measuring the upward Rotation and posterior tilt angle of scapula.

  19. The error model and experiment of measuring angular position error based on laser collimation

    Science.gov (United States)

    Cai, Yangyang; Yang, Jing; Li, Jiakun; Feng, Qibo

    2018-01-01

    Rotary axis is the reference component of rotation motion. Angular position error is the most critical factor which impair the machining precision among the six degree-of-freedom (DOF) geometric errors of rotary axis. In this paper, the measuring method of angular position error of rotary axis based on laser collimation is thoroughly researched, the error model is established and 360 ° full range measurement is realized by using the high precision servo turntable. The change of space attitude of each moving part is described accurately by the 3×3 transformation matrices and the influences of various factors on the measurement results is analyzed in detail. Experiments results show that the measurement method can achieve high measurement accuracy and large measurement range.

  20. Reliability of supply of switchgear for auxiliary low voltage in substations extra high voltage to high voltage

    Directory of Open Access Journals (Sweden)

    Perić Dragoslav M.

    2015-01-01

    Full Text Available Switchgear for auxiliary low voltage in substations (SS of extra high voltages (EHV to high voltage (HV - SS EHV/HV kV/kV is of special interest for the functioning of these important SS, as it provides a supply for system of protection and other vital functions of SS. The article addresses several characteristic examples involving MV lines with varying degrees of independence of their supply, and the possible application of direct transformation EHV/LV through special voltage transformers. Auxiliary sources such as inverters and diesel generators, which have limited power and expensive energy, are also used for the supply of switchgear for auxiliary low voltage. Corresponding reliability indices are calculated for all examples including mean expected annual engagement of diesel generators. The applicability of certain solutions of switchgear for auxiliary low voltage SS EHV/HV, taking into account their reliability, feasibility and cost-effectiveness is analyzed too. In particular, the analysis of applications of direct transformation EHV/LV for supply of switchgear for auxiliary low voltage, for both new and existing SS EHV/HV.

  1. Charge-pump voltage converter

    Science.gov (United States)

    Brainard, John P [Albuquerque, NM; Christenson, Todd R [Albuquerque, NM

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  2. High voltage systems

    International Nuclear Information System (INIS)

    Martin, M.

    1991-01-01

    Industrial processes usually require electrical power. This power is used to drive motors, to heat materials, or in electrochemical processes. Often the power requirements of a plant require the electric power to be delivered at high voltage. In this paper high voltage is considered any voltage over 600 V. This voltage could be as high as 138,000 V for some very large facilities. The characteristics of this voltage and the enormous amounts of power being transmitted necessitate special safety considerations. Safety must be considered during the four activities associated with a high voltage electrical system. These activities are: Design; Installation; Operation; and Maintenance

  3. Influence of model errors in optimal sensor placement

    Science.gov (United States)

    Vincenzi, Loris; Simonini, Laura

    2017-02-01

    The paper investigates the role of model errors and parametric uncertainties in optimal or near optimal sensor placements for structural health monitoring (SHM) and modal testing. The near optimal set of measurement locations is obtained by the Information Entropy theory; the results of placement process considerably depend on the so-called covariance matrix of prediction error as well as on the definition of the correlation function. A constant and an exponential correlation function depending on the distance between sensors are firstly assumed; then a proposal depending on both distance and modal vectors is presented. With reference to a simple case-study, the effect of model uncertainties on results is described and the reliability and the robustness of the proposed correlation function in the case of model errors are tested with reference to 2D and 3D benchmark case studies. A measure of the quality of the obtained sensor configuration is considered through the use of independent assessment criteria. In conclusion, the results obtained by applying the proposed procedure on a real 5-spans steel footbridge are described. The proposed method also allows to better estimate higher modes when the number of sensors is greater than the number of modes of interest. In addition, the results show a smaller variation in the sensor position when uncertainties occur.

  4. Output Error Analysis of Planar 2-DOF Five-bar Mechanism

    Science.gov (United States)

    Niu, Kejia; Wang, Jun; Ting, Kwun-Lon; Tao, Fen; Cheng, Qunchao; Wang, Quan; Zhang, Kaiyang

    2018-03-01

    Aiming at the mechanism error caused by clearance of planar 2-DOF Five-bar motion pair, the method of equivalent joint clearance of kinematic pair to virtual link is applied. The structural error model of revolute joint clearance is established based on the N-bar rotation laws and the concept of joint rotation space, The influence of the clearance of the moving pair is studied on the output error of the mechanis. and the calculation method and basis of the maximum error are given. The error rotation space of the mechanism under the influence of joint clearance is obtained. The results show that this method can accurately calculate the joint space error rotation space, which provides a new way to analyze the planar parallel mechanism error caused by joint space.

  5. Driving Pressure Influence in Voltage Maps Measurement Process Using Advanced Pneumatic Mapping Probe

    Directory of Open Access Journals (Sweden)

    Marek Kukucka

    2016-01-01

    Full Text Available Our paper deals with the method of the voltage-impedance map measurement process as a method useful for the electric mapping of human skin. The area of research extends from the basic research to its practical application in acupuncture skin mapping and acupuncture point localization and visualization. The problem of sufficient skin coverage and electrical contact with measuring electrodes is solved by the conventional mechanical telescopic electrodes and by the pneumatic matrix electrode probe. A 2D or 3D voltage-impedance map of skin is an output of the measuring, interpretation and evaluation process. New pneumatic construction of measuring probe was implemented to achieve a better coverage of specified skin area and get a reduced force range of the touching electrodes allowing the steady contact of the skin-electrode. A skin contact is related to the driving pressure of touching electrodes. Our paper offers experimentally measured results, voltage maps of skin on specific areas, selected measured and described acupuncture points and their applications in electro-acupuncture.

  6. Transient Voltage Stability Analysis and Improvement of A Network with different HVDC Systems

    DEFF Research Database (Denmark)

    Liu, Yan; Chen, Zhe

    2011-01-01

    This paper presents transient voltage stability analysis of an AC system with multi-infeed HVDC links including a traditional LCC HVDC link and a VSC HVDC link. It is found that the voltage supporting capability of the VSC-HVDC link is significantly influenced by the tie-line distance between the...

  7. A SVPWM based on fluctuate capacitor voltage in 3L-NPC back-to-back converter applied to wind energy

    DEFF Research Database (Denmark)

    Chen, Quan; Wang, Qunjing; Chen, Zhe

    2014-01-01

    Three-level Neutral-point-clamped (3L-NPC) converters are becoming a realistic alternative to the conventional converters in high-power wind-energy applications. But the unbalance in the supported capacitors' voltage of back-to-back 3L-NPC converters, including the dynamics of the capacitors...... between the fluctuate voltage of upper and lower capacitors is extracted. Based on this error factor the duty-time of every active voltage vector is calculated. In order to validate the model and the control strategy proposed in this paper, a 2MW 3L-NPC converter used in wind energy has been simulated....

  8. Analytical expressions for noise and crosstalk voltages of the High Energy Silicon Particle Detector

    Science.gov (United States)

    Yadav, I.; Shrimali, H.; Liberali, V.; Andreazza, A.

    2018-01-01

    The paper presents design and implementation of a silicon particle detector array with the derived closed form equations of signal-to-noise ratio (SNR) and crosstalk voltages. The noise analysis demonstrates the effect of interpixel capacitances (IPC) between center pixel (where particle hits) and its neighbouring pixels, resulting as a capacitive crosstalk. The pixel array has been designed and simulated in a 180 nm BCD technology of STMicroelectronics. The technology uses the supply voltage (VDD) of 1.8 V and the substrate potential of -50 V. The area of unit pixel is 250×50 μm2 with the substrate resistivity of 125 Ωcm and the depletion depth of 30 μm. The mathematical model includes the effects of various types of noise viz. the shot noise, flicker noise, thermal noise and the capacitive crosstalk. This work compares the results of noise and crosstalk analysis from the proposed mathematical model with the circuit simulation results for a given simulation environment. The results show excellent agreement with the circuit simulations and the mathematical model. The average relative error (AVR) generated for the noise spectral densities with respect to the simulations and the model is 12% whereas the comparison gives the errors of 3% and 11.5% for the crosstalk voltages and the SNR results respectively.

  9. Theoretical and Experimental Investigation of Force Estimation Errors Using Active Magnetic Bearings with Embedded Hall Sensors

    DEFF Research Database (Denmark)

    Voigt, Andreas Jauernik; Santos, Ilmar

    2012-01-01

    to ∼ 20% of the nominal air gap the force estimation error is found to be reduced by the linearized force equation as compared to the quadratic force equation, which is supported by experimental results. Additionally the FE model is employed in a comparative study of the force estimation error behavior...... of AMBs by embedding Hall sensors instead of mounting these directly on the pole surfaces, force estimation errors are investigated both numerically and experimentally. A linearized version of the conventionally applied quadratic correspondence between measured Hall voltage and applied AMB force...

  10. Application of SMES in wind farm to improve voltage stability

    International Nuclear Information System (INIS)

    Shi, J.; Tang, Y.J.; Ren, L.; Li, J.D.; Chen, S.J.

    2008-01-01

    For the wind farms introducing doubly fed induction generators (DFIGs), voltage stability is an essential issue which influences their widely integration into the power grid. This paper proposes the application of superconducting magnetic energy storage (SMES) in the power system integrated with wind farms. SMES can control the active and reactive power flow, realizing the operation in four quadrants independently. The introducing of SMES can smooth the output power flow of the wind farms, and supply dynamic voltage support. Using MATLAB/SIMULINK, the models of the DFIG, the power grid connected and the SMES are created. Simulation results show that the voltage stability of the power system integrated with wind farms can be improved considerably

  11. Tropical systematic and random error energetics based on NCEP ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Systematic error growth rate peak is observed at wavenumber 2 up to 4-day forecast then .... the influence of summer systematic error and ran- ... total exchange. When the error energy budgets are examined in spectral domain, one may ask ques- tions on the error growth at a certain wavenum- ber from its interaction with ...

  12. Low-Energy Real-Time OS Using Voltage Scheduling Algorithm for Variable Voltage Processors

    OpenAIRE

    Okuma, Takanori; Yasuura, Hiroto

    2001-01-01

    This paper presents a real-time OS based on $ mu $ITRON using proposed voltage scheduling algorithm for variable voltage processors which can vary supply voltage dynamically. The proposed voltage scheduling algorithms assign voltage level for each task dynamically in order to minimize energy consumption under timing constraints. Using the presented real-time OS, running tasks with low supply voltage leads to drastic energy reduction. In addition, the presented voltage scheduling algorithm is ...

  13. Analysis of the current-voltage characteristics lineshapes of resonant tunneling diodes

    International Nuclear Information System (INIS)

    Rivera, P.H.; Schulz, P.A.

    1996-01-01

    It is discussed the influence of a two dimensional electron gas at the emitter-barrier interface on the current-voltage characteristics of a Ga As-Al Ga As double-barrier quantum well resonant tunneling diode. This effect is characterized by the modification of the space charge distribution along the structure. Within the framework of a self-consistent calculation we analyse the current-voltage characteristics of the tunneling diodes. This analysis permits us to infer different tunneling ways, related to the formation of confined states in the emitter region, and their signatures in the current-voltage characteristics. We show that varying the spacer layer, together with barrier heights, changes drastically the current density-voltage characteristics lineshapes. We compare our results with a variety of current-voltage characteristics lineshapes. We compare our results with a variety of current-voltage characteristics reported in the literature. The general trend of experimental lineshapes can be reproduced and interpreted with our model. The possibility of tunneling paths is predicted for a range that has not yet been explored experimentally. (author). 12 refs., 4 figs

  14. Understanding human management of automation errors

    Science.gov (United States)

    McBride, Sara E.; Rogers, Wendy A.; Fisk, Arthur D.

    2013-01-01

    Automation has the potential to aid humans with a diverse set of tasks and support overall system performance. Automated systems are not always reliable, and when automation errs, humans must engage in error management, which is the process of detecting, understanding, and correcting errors. However, this process of error management in the context of human-automation interaction is not well understood. Therefore, we conducted a systematic review of the variables that contribute to error management. We examined relevant research in human-automation interaction and human error to identify critical automation, person, task, and emergent variables. We propose a framework for management of automation errors to incorporate and build upon previous models. Further, our analysis highlights variables that may be addressed through design and training to positively influence error management. Additional efforts to understand the error management process will contribute to automation designed and implemented to support safe and effective system performance. PMID:25383042

  15. Cultural differences in categorical memory errors persist with age.

    Science.gov (United States)

    Gutchess, Angela; Boduroglu, Aysecan

    2018-01-02

    This cross-sectional experiment examined the influence of aging on cross-cultural differences in memory errors. Previous research revealed that Americans committed more categorical memory errors than Turks; we tested whether the cognitive constraints associated with aging impacted the pattern of memory errors across cultures. Furthermore, older adults are vulnerable to memory errors for semantically-related information, and we assessed whether this tendency occurs across cultures. Younger and older adults from the US and Turkey studied word pairs, with some pairs sharing a categorical relationship and some unrelated. Participants then completed a cued recall test, generating the word that was paired with the first. These responses were scored for correct responses or different types of errors, including categorical and semantic. The tendency for Americans to commit more categorical memory errors emerged for both younger and older adults. In addition, older adults across cultures committed more memory errors, and these were for semantically-related information (including both categorical and other types of semantic errors). Heightened vulnerability to memory errors with age extends across cultural groups, and Americans' proneness to commit categorical memory errors occurs across ages. The findings indicate some robustness in the ways that age and culture influence memory errors.

  16. DFIG turbine representation for small signal voltage control studies

    DEFF Research Database (Denmark)

    Garcia, Jorge Martinez; Kjær, Philip Carne; Teodorescu, Remus

    2010-01-01

    This paper addresses the representation of a wind power plant, based on wound rotor asynchronous generators, with a centralized voltage controller, by an equivalent transfer function, valid for small signal voltage control studies. This representation allows to investigate the influence...... introduced recently by several grid codes from around the world, making important to analyze this control when applied to wind power plants. The performance of the equivalent transfer function has been evaluated and compared using an equivalent grid with different short circuit ratios and active power...... of the centralized plant control gain and short circuit ratio on the system stability, for instance, by analyzing the zero-pole placement. Larger percentages of wind power penetration translate to more demanding requirements coming from the grid codes, for example voltage support at the point of connection has been...

  17. WISC-R Examiner Errors: Cause for Concern.

    Science.gov (United States)

    Slate, John R.; Chick, David

    1989-01-01

    Clinical psychology graduate students (N=14) administered Wechsler Intelligence Scale for Children-Revised. Found numerous scoring and mechanical errors that influenced full-scale intelligence quotient scores on two-thirds of protocols. Particularly prone to error were Verbal subtests of Vocabulary, Comprehension, and Similarities. Noted specific…

  18. Preparation of Power Distribution System for High Penetration of Renewable Energy Part I. Dynamic Voltage Restorer for Voltage Regulation Pat II. Distribution Circuit Modeling and Validation

    Science.gov (United States)

    Khoshkbar Sadigh, Arash

    by simulation and experimental tests under various conditions considering all possible cases such as different amounts of voltage sag depth (VSD), different amounts of point-on-wave (POW) at which voltage sag occurs, harmonic distortion, line frequency variation, and phase jump (PJ). Furthermore, the ripple amount of fundamental voltage amplitude calculated by the proposed method and its error is analyzed considering the line frequency variation together with harmonic distortion. The best and worst detection time of proposed method were measured 1ms and 8.8ms, respectively. Finally, the proposed method has been compared with other voltage sag detection methods available in literature. Part 2: Power System Modeling for Renewable Energy Integration: As power distribution systems are evolving into more complex networks, electrical engineers have to rely on software tools to perform circuit analysis. There are dozens of powerful software tools available in the market to perform the power system studies. Although their main functions are similar, there are differences in features and formatting structures to suit specific applications. This creates challenges for transferring power system circuit models data (PSCMD) between different software and rebuilding the same circuit in the second software environment. The objective of this part of thesis is to develop a Unified Platform (UP) to facilitate transferring PSCMD among different software packages and relieve the challenges of the circuit model conversion process. UP uses a commonly available spreadsheet file with a defined format, for any home software to write data to and for any destination software to read data from, via a script-based application called PSCMD transfer application. The main considerations in developing the UP are to minimize manual intervention and import a one-line diagram into the destination software or export it from the source software, with all details to allow load flow, short circuit and

  19. Electrical Tree Initiation and Growth in Silicone Rubber under Combined DC-Pulse Voltage

    Directory of Open Access Journals (Sweden)

    Tao Han

    2018-03-01

    Full Text Available Electrical tree is a serious threat to silicone rubber (SIR insulation and can even cause breakdown. Electrical trees under alternating current (AC and direct current (DC voltage have been widely researched. While there are pulses in high-voltage direct current (HVDC cables under operating conditions caused by lightning and operating overvoltage in the power system, little research has been reported about trees under combined DC-pulse voltage. Their inception and growth mechanism is still not clear. In this paper, electrical trees are studied under several types of combined DC-pulse voltage. The initiation and growth process was recorded by a digital microscope system. The experimental results indicate that the inception pulse voltage is different under each voltage type and is influenced by the combined DC. The initial tree has two structures, determined by the pulse polarity. With increased DC prestressing time, tree inception pulse voltage with the same polarity is clearly decreased. Moreover, a special initial bubble tree was observed after the prestressing DC.

  20. Frequency pulling in a low-voltage medium-power gyrotron

    Science.gov (United States)

    Luo, Li; Du, Chao-Hai; Huang, Ming-Guang; Liu, Pu-Kun

    2018-04-01

    Many recent biomedical applications use medium-power frequency-tunable terahertz (THz) sources, such as sensitivity-enhanced nuclear magnetic resonance, THz imaging, and biomedical treatment. As a promising candidate, a low-voltage gyrotron can generate watt-level, continuous THz-wave radiation. In particular, the frequency-pulling effect in a gyrotron, namely, the effect of the electron beam parameters on the oscillation frequency, can be used to tune the operating frequency. Most previous investigations used complicated and time-consuming gyrotron nonlinear theory to study the influence of many beam parameters on the interaction performance. While gyrotron linear theory investigation demonstrates the advantages of rapidly and clearly revealing the physical influence of individual key beam parameters on the overall system performance, this paper demonstrates systematically the use of gyrotron linear theory to study the frequency-pulling effect in a low-voltage gyrotron with either a Gaussian or a sinusoidal axial-field profile. Furthermore, simulations of a gyrotron operating in the first axial mode are carried out in the framework of nonlinear theory as a contrast. Close agreement is achieved between the two theories. Besides, some interesting results are obtained. In a low-current sinusoidal-profile cavity, the ranges of frequency variation for different axial modes are isolated from each other, and the frequency tuning bandwidth for each axial mode increases by increasing either the beam voltage or pitch factor. Lowering the voltage, the total tuning ranges are squeezed and become concentrated. However, the isolated frequency regions of each axial mode cannot be linked up unless the beam current is increased, meaning that higher current operation is the key to achieving a wider and continuous tuning frequency range. The results presented in this paper can provide a reference for designing a broadband low-voltage gyrotron.

  1. Analysis of voltage spikes in superconducting Nb3Sn magnets

    International Nuclear Information System (INIS)

    Rahimzadeh-Kalaleh, S.; Ambrosio, G.; Chlachidze, G.; Donnelly, C.

    2008-01-01

    Fermi National Accelerator Laboratory has been developing a new generation of superconducting accelerator magnets based on Niobium Tin (Nb 3 Sn). The performance of these magnets is influenced by thermo-magnetic instabilities, known as flux jumps, which can lead to premature trips of the quench detection system due to large voltage transients or quenches at low current. In an effort to better characterize and understand these instabilities, a system for capturing fast voltage transients was developed and used in recent tests of R and D model magnets. A new automated voltage spike analysis program was developed for the analysis of large amount of voltage-spike data. We report results from the analysis of large statistics data samples for short model magnets that were constructed using MJR and RRP strands having different sub-element size and structure. We then assess the implications for quench protection of Nb 3 Sn magnets

  2. The Influence of Errors in Visualization Systems on the Level of Safety Threat in Air Traffic

    Directory of Open Access Journals (Sweden)

    Paweł Ferduła

    2018-01-01

    Full Text Available Air traffic management is carried out by air traffic controllers assisted by complex technical systems that provide them with visualization of the traffic situation. In practice, visualization systems errors sometimes occur. The purpose of this paper is to determine the impact of errors of different types on the safety of the air traffic. The assessment of the threat level is influenced by subjective factors and cannot be expressed precisely. Therefore, the fuzzy reasoning theory has been used. The developed fuzzy model has been used to obtain a tool for simulation of the impact of various factors on traffic safety assessment. The results obtained indicate that the most important determinants of safety are the time when the air traffic controller remains unaware of the breakdown and the total time he/she does not have full knowledge of the traffic situation. It has been found that the key role for the proper operation of the air traffic visualization system and the restoration of full situational awareness is played by self-diagnostic systems that can restore the system’s correct functioning without even the controller being aware of the error occurrence. Their role in ensuring safety might be even greater than redundancy which is commonly used.

  3. Spectrum analysis of a voltage source converter due to semiconductor voltage drops

    DEFF Research Database (Denmark)

    Rasmussen, Tonny Wederberg; Eltouki, Mustafa

    2017-01-01

    It is known that power electronic voltage source converters are non-ideal. This paper presents a state-of-the-art review on the effect of semiconductor voltage drop on the output voltage spectrum, using single-phase H-bridge two-level converter topology with natural sampled pulse width modulation....... The paper describes the analysis of output voltage spectrum, when the semiconductor voltage drop is added. The results of the analysis of the spectral contribution including and excluding semiconductor voltage drop reveal a good agreement between the theoretical results, simulations and laboratory...

  4. Mechanism of electromechanical coupling in voltage-gated potassium channels

    Directory of Open Access Journals (Sweden)

    Rikard eBlunck

    2012-09-01

    Full Text Available Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion – sodium, calcium or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarization, voltage sensors in voltage-gated potassium channels (Kv undergo conformational changes driven by positive charges in the S4 segment and aided by pairwise electrostatic interactions with the surrounding voltage sensor. Structure-function relations of Kv channels have been investigated in detail, and the resulting models on the movement of the voltage sensors now converge to a consensus; the S4 segment undergoes a combined movement of rotation, tilt and vertical displacement in order to bring 3-4 e+ each through the electric field focused in this region. Nevertheless, the mechanism by which the voltage sensor movement leads to pore opening, the electromechanical coupling, is still not fully understood. Thus, recently, electromechanical coupling in different Kv channels has been investigated with a multitude of techniques including electrophysiology, 3D crystal structures, fluorescence spectroscopy and molecular dynamics simulations. Evidently, the S4-S5 linker, the covalent link between the voltage sensor and pore, plays a crucial role. The linker transfers the energy from the voltage sensor movement to the pore domain via an interaction with the S6 C-termini, which are pulled open during gating. In addition, other contact regions have been proposed. This review aims to provide (i an in-depth comparison of the molecular mechanisms of electromechanical coupling in different Kv channels; (ii insight as to how the voltage sensor and pore domain influence one another; and (iii theoretical predictions on the movement of the cytosolic face of the KV channels

  5. Thermal instability and current-voltage scaling in superconducting fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Zeimetz, B [Department of Materials Science and Metallurgy, Cambridge University, Pembroke Street, Cambridge CB1 3QZ (United Kingdom); Tadinada, K [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom); Eves, D E [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom); Coombs, T A [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom); Evetts, J E [Department of Materials Science and Metallurgy, Cambridge University, Pembroke Street, Cambridge CB1 3QZ (United Kingdom); Campbell, A M [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom)

    2004-04-01

    We have developed a computer model for the simulation of resistive superconducting fault current limiters in three dimensions. The program calculates the electromagnetic and thermal response of a superconductor to a time-dependent overload voltage, with different possible cooling conditions for the surfaces, and locally variable superconducting and thermal properties. We find that the cryogen boil-off parameters critically influence the stability of a limiter. The recovery time after a fault increases strongly with thickness. Above a critical thickness, the temperature is unstable even for a small applied AC voltage. The maximum voltage and maximum current during a short fault are correlated by a simple exponential law.

  6. New pixel circuit compensating poly-si TFT threshold-voltage shift for a driving AMOLED

    International Nuclear Information System (INIS)

    Fan, C. L.; Lin, Y. Y.; Lin, B. S.; Chang, J. Y.; Fan, C. L.; Chang, H. C.

    2010-01-01

    This study presents a novel pixel circuit that uses only n-type low-temperature polycrystalline silicon (poly-Si) thin-film transistors (LTPS-TFTs) to simplify the fabrication process of active matrix organic light-emitting diode (AMOLED) displays. The proposed pixel circuit consists of five switching TFTs, one driving TFT (DTFT), and two capacitors. The output current and the OLED anode voltage error rates are about 3% and 0.7%, respectively. Thus, the pixel circuit can realize uniform output current with high immunity to the poly-Si TFT threshold voltage deviation. The proposed novel pixel design has great potential for use in large-size, high-resolution AMOLED displays.

  7. Influence of errors in prescriptions on the security of medicine

    Directory of Open Access Journals (Sweden)

    Puke K.

    2016-01-01

    Full Text Available All types of medication errors including missed doses, incorrect dosage forms, time intervals, and routes are essential encumbrances for qualitative pharmaceutical care and security of medicine [1]. Problems related to prescription errors are common in the healthcare profession, and are responsible for significant increase in costs, cases of morbidity and mortality [2]. The aim of the study was to analyze the common errors in prescriptions which were received in pharmacies and their effect on the security of medicine. Retrospective study was conducted between December 2013 and January 2014 in the pharmacy of Riga, Latvia. Prescriptions were analyzed to identify errors in Inscriptio, Praescriptio and the Signatura part. Of 200 prescriptions, only 14 (7% were filled correctly according to the legislative requirements in Latvia. The most common drug therapeutic class in the prescriptions was non-steroidal anti-inflammatory drugs (NSAID and other analgesics (21.1%. Unclear handwriting was observed in more than one third of all studied prescriptions (n=72; 36.0%. Mean age values of physicians were higher, but not significantly different, in the unclear compared to clear prescriptions, 59.5 ± 8.5 vs. 57.8 ± 10.6, respectively (p=0.253. Omission of the quantity of drug in the prescription part was the most frequent type of the error (n=112, 56.0%. High level of incorrect prescriptions was found during the period of study in the pharmacy. Overall, approximately 27% of prescriptions had significant failures, which could negatively affect therapeutic effect and safety of drug use.

  8. Switched-capacitor multiply-by-two amplifier with reduced capacitor mismatches sensitivity and full swing sample signal common-mode voltage

    International Nuclear Information System (INIS)

    Xu Xinnan; Yao Suying; Xu Jiangtao; Nie Kaiming

    2012-01-01

    A switched-capacitor amplifier with an accurate gain of two that is insensitive to component mismatch is proposed. This structure is based on associating two sets of two capacitors in cross series during the amplification phase. This circuit permits the common-mode voltage of the sample signal to reach full swing. Using the charge-complement technique, the proposed amplifier can reduce the impact of parasitic capacitors on the gain accuracy effectively. Simulation results show that as sample signal common-mode voltage changes, the difference between the minimum and maximum gain error is less than 0.03%. When the capacitor mismatch is increased from 0 to 0.2%, the gain error is deteriorated by 0.00015%. In all simulations, the gain of amplifier is 69 dB. (semiconductor integrated circuits)

  9. Common-mode Voltage Reduction in a Motor Drive System with a Power Factor Correction

    DEFF Research Database (Denmark)

    Adabi, J.; Boora, A.A.; Zare, F.

    2012-01-01

    Common-mode voltage generated by a power converter in combination with parasitic capacitive couplings is a potential source of shaft voltage in an AC motor drive system. In this study, a three-phase motor drive system supplied with a single-phase AC-DC diode rectifier is investigated in order...... to reduce shaft voltage in a three-phase AC motor drive system. In this topology, the AC-DC diode rectifier influences the common-mode voltage generated by the inverter because the placement of the neutral point is changing in different rectifier circuit states. A pulse width modulation technique...

  10. On the specification of bus voltages and radial link transfer impedance modes

    Energy Technology Data Exchange (ETDEWEB)

    El-Sadik, F.M. [Khartoum Univ., Aljamaa, Khartoum (Sudan)

    2010-07-01

    No algebraic equation has been derived for the steady-state stability limit (SSSL) of radial power system components in terms of their resistive sectional impedance elements and associated scalar node voltage constraints. While many criterion have been developed in the literature for the steady state angle and voltage stability limits of systems with losses, speculation exists about certain advocated metrics for these systems in terms of stability reserve margins as a measure of the risk of blackout and the representation of reactance modes associated with Putman's model for synchronous machines. This paper presented the results of a generalized algebraic statement for the reactance modes under stability conditions in voltage-specified power system components cited in the single machine-infinite bus (SMIB) and the radial power link (RPL) systems. The direct analytical solution to the problem enabled the identification of 2 different constraint relations for the sending (E) and receiving-end voltage regulator (VR) voltages. The paper discussed the general SSSL function plan, conditions for SMIB system reactances, and index results for the voltage stability of radial lines. The results for the R2 influence and influence on radial compensation levels were also presented. Index results for non-operational reactance zones were provided. It was concluded that the algebraic solution in a full representation of system losses would enable identification of additional function discontinuities that might not reveal in a step-by-step numerical algorithm and that may account for the many unresolved transmission system phenomenon associated with SSSL predictions and capacitance compensation schemes. 11 refs., 1 tab., 5 figs., 3 appendices.

  11. Influence Voltage Pulse Electrical Discharge In The Water at the Endurance Fatigue Of Carbon Steel

    Directory of Open Access Journals (Sweden)

    I.A. Vakulenko

    2016-05-01

    Full Text Available Effect of pulses of electrical discharge in the water at the magnitude of the limited endurance under cyclic loading thermally hardened carbon steel was investigated. Observed increase stamina during cyclic loading a corresponding increase in the number of accumulated dislocations on the fracture surface. Using the equation of Cofino-Manson has revealed a decrease of strain loading cycle after treatment discharges. For field-cycle fatigue as a result of processing the voltage pulses carbon steel structure improvement, followed by growth of limited endurance decrease per cycle of deformation. With increasing amplitude of the voltage loop gain stamina effect on metal processing voltage pulses is reduced. The results can be used to extend the life of parts that are subject to cyclic loading.

  12. Effects of Electrode Material on the Voltage of a Tree-Based Energy Generator.

    Science.gov (United States)

    Hao, Zhibin; Wang, Guozhu; Li, Wenbin; Zhang, Junguo; Kan, Jiangming

    2015-01-01

    The voltage between a standing tree and its surrounding soil is regarded as an innovative renewable energy source. This source is expected to provide a new power generation system for the low-power electrical equipment used in forestry. However, the voltage is weak, which has caused great difficulty in application. Consequently, the development of a method to increase the voltage is a key issue that must be addressed in this area of applied research. As the front-end component for energy harvesting, a metal electrode has a material effect on the level and stability of the voltage obtained. This study aimed to preliminarily ascertain the rules and mechanisms that underlie the effects of electrode material on voltage. Electrodes of different materials were used to measure the tree-source voltage, and the data were employed in a comparative analysis. The results indicate that the conductivity of the metal electrode significantly affects the contact resistance of the electrode-soil and electrode-trunk contact surfaces, thereby influencing the voltage level. The metal reactivity of the electrode has no significant effect on the voltage. However, passivation of the electrode materials markedly reduces the voltage. Suitable electrode materials are demonstrated and recommended.

  13. Impact of Measurement Error on Synchrophasor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yilu [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gracia, Jose R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ewing, Paul D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhao, Jiecheng [Univ. of Tennessee, Knoxville, TN (United States); Tan, Jin [Univ. of Tennessee, Knoxville, TN (United States); Wu, Ling [Univ. of Tennessee, Knoxville, TN (United States); Zhan, Lingwei [Univ. of Tennessee, Knoxville, TN (United States)

    2015-07-01

    Phasor measurement units (PMUs), a type of synchrophasor, are powerful diagnostic tools that can help avert catastrophic failures in the power grid. Because of this, PMU measurement errors are particularly worrisome. This report examines the internal and external factors contributing to PMU phase angle and frequency measurement errors and gives a reasonable explanation for them. It also analyzes the impact of those measurement errors on several synchrophasor applications: event location detection, oscillation detection, islanding detection, and dynamic line rating. The primary finding is that dynamic line rating is more likely to be influenced by measurement error. Other findings include the possibility of reporting nonoscillatory activity as an oscillation as the result of error, failing to detect oscillations submerged by error, and the unlikely impact of error on event location and islanding detection.

  14. Influence of Installation Errors On the Output Data of the Piezoelectric Vibrations Transducers

    Science.gov (United States)

    Kozuch, Barbara; Chelmecki, Jaroslaw; Tatara, Tadeusz

    2017-10-01

    The paper examines an influence of installation errors of the piezoelectric vibrations transducers on the output data. PCB Piezotronics piezoelectric accelerometers were used to perform calibrations by comparison. The measurements were performed with TMS 9155 Calibration Workstation version 5.4.0 at frequency in the range of 5Hz - 2000Hz. Accelerometers were fixed on the calibration station in a so-called back-to-back configuration in accordance with the applicable international standard - ISO 16063-21: Methods for the calibration of vibration and shock transducers - Part 21: Vibration calibration by comparison to a reference transducer. The first accelerometer was calibrated by suitable methods with traceability to a primary reference transducer. Each subsequent calibration was performed when changing one setting in relation to the original calibration. The alterations were related to negligence and failures in relation to the above-mentioned standards and operating guidelines - e.g. the sensor was not tightened or appropriate substance was not placed. Also, there was modified the method of connection which was in the standards requirements. Different kind of wax, light oil, grease and other assembly methods were used. The aim of the study was to verify the significance of standards requirements and to estimate of their validity. The authors also wanted to highlight the most significant calibration errors. Moreover, relation between various appropriate methods of the connection was demonstrated.

  15. Effect of voltage waveform on dielectric barrier discharge ozone production efficiency

    Science.gov (United States)

    Mericam-Bourdet, N.; Kirkpatrick, M. J.; Tuvache, F.; Frochot, D.; Odic, E.

    2012-03-01

    Dielectric barrier discharges (DBDs) are commonly used for gas effluent cleanup and ozone generation. For these applications, the energy efficiency of the discharge is a major concern. This paper reports on investigations carried out on the voltage shape applied to DBD reactor electrodes, aiming to evaluate a possible energy efficiency improvement for ozone production. Two DBD reactor geometries were used: pin-to-pin and cylinder-to-cylinder, both driven either by a bi-directional power supply (voltage rise rate 1 kV/μs) or by a pulsed power supply (voltage rise rate 1 kV/ns). Ozone formed in dry air was measured at the reactor outlet. Special attention was paid to discharge input power evaluation using different methods including instantaneous current-voltage product and transferred charge-applied voltage figures. The charge transferred by the discharges was also correlated to the ozone production. It is shown that, in the case of the DBD reactors under investigation, the applied voltage shape has no influence on the ozone production efficiency. For the considered voltage rise rate, the charge deposit on the dielectric inserted inside the discharge gap is the important factor (as opposed to the voltage shape) governing the efficiency of the discharge - it does this by tailoring the duration of the current peak into the tens of nanosecond range.

  16. Evaluation of the threshold trimming method for micro inertial fluidic switch based on electrowetting technology

    Directory of Open Access Journals (Sweden)

    Tingting Liu

    2014-03-01

    Full Text Available The switch based on electrowetting technology has the advantages of no moving part, low contact resistance, long life and adjustable acceleration threshold. The acceleration threshold of switch can be fine-tuned by adjusting the applied voltage. This paper is focused on the electrowetting properties of switch and the influence of microchannel structural parameters, applied voltage and droplet volume on acceleration threshold. In the presence of process errors of micro inertial fluidic switch and measuring errors of droplet volume, there is a deviation between test acceleration threshold and target acceleration threshold. Considering the process errors and measuring errors, worst-case analysis is used to analyze the influence of parameter tolerance on the acceleration threshold. Under worst-case condition the total acceleration threshold tolerance caused by various errors is 9.95%. The target acceleration threshold can be achieved by fine-tuning the applied voltage. The acceleration threshold trimming method of micro inertial fluidic switch is verified.

  17. Multifunction Voltage-Mode Filter Using Single Voltage Differencing Differential Difference Amplifier

    Directory of Open Access Journals (Sweden)

    Chaichana Amornchai

    2017-01-01

    Full Text Available In this paper, a voltage mode multifunction filter based on single voltage differencing differential difference amplifier (VDDDA is presented. The proposed filter with three input voltages and single output voltage is constructed with single VDDDA, two capacitors and two resistors. Its quality factor can be adjusted without affecting natural frequency. Also, the natural frequency can be electronically tuned via adjusting of bias current. The filter can offer five output responses, high-pas (HP, band-pass (BP, band-reject (BR, low-pass (LP and all-ass (AP functions in the same circuit topology. The output response can be selected by choosing the suitable input voltage without the component matching condition and the requirement of additional double gain voltage amplifier. PSpice simulation results to confirm an operation of the proposed filter correspond to the theory.

  18. Cytoplasmic Domains and Voltage-Dependent Potassium Channel Gating

    Science.gov (United States)

    Barros, Francisco; Domínguez, Pedro; de la Peña, Pilar

    2012-01-01

    The basic architecture of the voltage-dependent K+ channels (Kv channels) corresponds to a transmembrane protein core in which the permeation pore, the voltage-sensing components and the gating machinery (cytoplasmic facing gate and sensor–gate coupler) reside. Usually, large protein tails are attached to this core, hanging toward the inside of the cell. These cytoplasmic regions are essential for normal channel function and, due to their accessibility to the cytoplasmic environment, constitute obvious targets for cell-physiological control of channel behavior. Here we review the present knowledge about the molecular organization of these intracellular channel regions and their role in both setting and controlling Kv voltage-dependent gating properties. This includes the influence that they exert on Kv rapid/N-type inactivation and on activation/deactivation gating of Shaker-like and eag-type Kv channels. Some illustrative examples about the relevance of these cytoplasmic domains determining the possibilities for modulation of Kv channel gating by cellular components are also considered. PMID:22470342

  19. Temporary over voltages in the high voltage networks

    International Nuclear Information System (INIS)

    Vukelja, Petar; Naumov, Radomir; Mrvic, Jovan; Minovski, Risto

    2001-01-01

    The paper treats the temporary over voltages that may arise in the high voltage networks as a result of: ground faults, loss of load, loss of one or two phases and switching operation. Based on the analysis, the measures for their limitation are proposed. (Original)

  20. Operating Experiences of a Loss of Voltage Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun-Chan [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2015-10-15

    Loss of voltage (LOV) events continue to occur due to inadequate work management and random human errors. On February 26, 2015, regulators analyzed the root causes of LOV events and presented the results for the nuclear industry. Currently, KHNP uses a risk monitoring program, which is named 'LOV Monitor', for LOV prevention during pilot plant outages. This review introduces the operation experiences of LOV Monitor based on the evaluation results of a real event. The operation experiences of LOV Monitor in the pilot plants confirmed that this program could detect and reduce LOV possibilities from scheduling errors such as the simultaneous maintenance of energized trains and de-energized trains considering the physical conditions of the power circuit breakers. However, a maintenance culture that heeds the risk monitoring result must be strengthened in order to obtain substantial effects through applying LOV Monitor to the outage.

  1. Voltage regulator for generator

    Energy Technology Data Exchange (ETDEWEB)

    Naoi, K

    1989-01-17

    It is an object of this invention to provide a voltage regulator for a generator charging a battery, wherein even if the ambient temperature at the voltage regulator rises abnormally high, possible thermal breakage of the semiconductor elements constituting the voltage regulator can be avoided. A feature of this invention is that the semiconductor elements can be protected from thermal breakage, even at an abnormal ambient temperature rise at the voltage regulator for the battery charging generator, by controlling a maximum conduction ratio of a power transistor in the voltage regulator in accordance with the temperature at the voltage regulator. This is achieved through a switching device connected in series to the field coil of the generator and adapted to be controlled in accordance with an output voltage of the generator and the ambient temperature at the voltage regulator. 6 figs.

  2. AGAPE-ET for human error analysis of emergency tasks and its application

    International Nuclear Information System (INIS)

    Kim, J. H.; Jeong, W. D.

    2002-01-01

    The paper presents a proceduralised human reliability analysis (HRA) methodology, AGAPE-ET (A Guidance And Procedure for Human Error Analysis for Emergency Tasks), covering both qualitative error analysis and quantification of human error probability (HEP) of emergency tasks in nuclear power plants. The AGAPE-ET method is based on the simplified cognitive model. By each cognitive function, error causes or error-likely situations have been identified considering the characteristics of the performance of each cognitive function and influencing mechanism of the performance influencing factors (PIFs) on the cognitive function. Then, error analysis items have been determined from the identified error causes or error-likely situations and a human error analysis procedure based on the error analysis items is organised to help the analysts cue or guide overall human error analysis. The basic scheme for the quantification of HEP consists in the multiplication of the BHEP assigned by the error analysis item and the weight from the influencing factors decision tree (IFDT) constituted by cognitive function. The method can be characterised by the structured identification of the weak points of the task required to perform and the efficient analysis process that the analysts have only to carry out with the necessary cognitive functions. The paper also presents the application of AGAPE-ET to 31 nuclear emergency tasks and its results

  3. Prediction of breakdown voltages in novel gases for high voltage insulation

    International Nuclear Information System (INIS)

    Koch, M.

    2015-01-01

    This thesis submitted to the Swiss Federal Institute of Technology ETH in Zurich examines the use of sulphur hexafluoride (SF_6) and similar gases as important insulation media for high voltage equipment. Due to its superior insulation properties, SF_6 is widely used in gas-insulated switchgear. However, the gas also has a very high global warming potential and the content of SF_6 in the atmosphere is constantly increasing. The search for new insulation gases using classical breakdown experiments is discussed. A model for SF_6 based on the stepped leader model is described. This calculates the breakdown voltages in arbitrary electrode configurations and under standard voltage waveforms. Thus, the thesis provides a method for the prediction of breakdown voltages of arbitrary field configurations under standard voltage waveforms for gases with electron-attaching properties. With this, further gases can be characterized for usage as high voltage insulation media

  4. Possibility of persistent voltage observation in a system of asymmetric superconducting rings

    International Nuclear Information System (INIS)

    Burlakov, A.A.; Gurtovoi, V.L.; Ilin, A.I.; Nikulov, A.V.; Tulin, V.A.

    2012-01-01

    The possibility of observing persistent voltage in superconducting rings of different arm widths is experimentally investigated. It was previously found that switching of the arms between superconducting and normal states by an AC current induces DC voltage oscillation in the magnetic field with a period corresponding to the flux quantum inside the ring. We used systems with a large number of asymmetric rings connected in series to investigate the possibility of observing this quantum phenomenon near the superconducting transition, where thermal fluctuations lead to switching of ring segments without an external influence and the persistent current is much smaller than in the superconducting state. -- Highlights: ► A possibility to observe the persistent voltage is investigated experimentally. ► The persistent voltage is a DC voltage observed at thermodynamic equilibrium. ► It oscillates in magnetic field like the persistent current in superconducting ring. ► The period of the oscillations corresponds to the flux quantum inside the ring. ► The quantum oscillations of the DC voltage were observed on asymmetric rings.

  5. Development of a Compensation Scheme for a Measurement Voltage Transformer Using the Hysteresis Characteristics of a Core

    Directory of Open Access Journals (Sweden)

    Hyewon Lee

    2015-04-01

    Full Text Available This paper describes the design, evaluation, and implementation of a compensation scheme for a measurement voltage transformer (VT using the hysteresis characteristics of the core. The error of a VT is caused by the primary winding voltage and secondary winding voltage. The latter depends on the secondary current, whereas the former depends on the primary current, which is an aggregate of the exciting and secondary currents. The secondary current is obtained directly from the secondary voltage and is used to obtain the voltage across the secondary winding. For the primary current, the exciting current is decomposed into two components: core-loss and magnetizing currents. The magnetizing current is obtained by the flux-magnetizing current curve instead of the hysteresis loop to minimize the required loops for compensation. The core-loss current is obtained by dividing the primary induced voltage by the core-loss resistance. Finally, the estimated voltages across the primary and secondary windings are added to the measured secondary voltage for compensation. The scheme can significantly improve the accuracy of a VT. The results of the performance of compensator are shown in the experimental test. The accuracy of the measurement VT improves from 1.0C class to 0.1C class. The scheme can help to significantly reduce the required core cross section of a measurement VT in an electrical energy system.

  6. A transient-enhanced NMOS low dropout voltage regulator with parallel feedback compensation

    International Nuclear Information System (INIS)

    Wang Han; Tan Lin

    2016-01-01

    This paper presents a transient-enhanced NMOS low-dropout regulator (LDO) for portable applications with parallel feedback compensation. The parallel feedback structure adds a dynamic zero to get an adequate phase margin with a load current variation from 0 to 1 A. A class-AB error amplifier and a fast charging/discharging unit are adopted to enhance the transient performance. The proposed LDO has been implemented in a 0.35 μm BCD process. From experimental results, the regulator can operate with a minimum dropout voltage of 150 mV at a maximum 1 A load and I Q of 165 μA. Under the full range load current step, the voltage undershoot and overshoot of the proposed LDO are reduced to 38 mV and 27 mV respectively. (paper)

  7. On-site voltage measurement with capacitive sensors on high voltage systems

    NARCIS (Netherlands)

    Wu, L.; Wouters, P.A.A.F.; Heesch, van E.J.M.; Steennis, E.F.

    2011-01-01

    In Extra/High-Voltage (EHV/HV) power systems, over-voltages occur e.g. due to transients or resonances. At places where no conventional voltage measurement devices can be installed, on-site measurement of these occurrences requires preferably non intrusive sensors, which can be installed with little

  8. Voltage and pace-capture mapping of linear ablation lesions overestimates chronic ablation gap size.

    Science.gov (United States)

    O'Neill, Louisa; Harrison, James; Chubb, Henry; Whitaker, John; Mukherjee, Rahul K; Bloch, Lars Ølgaard; Andersen, Niels Peter; Dam, Høgni; Jensen, Henrik K; Niederer, Steven; Wright, Matthew; O'Neill, Mark; Williams, Steven E

    2018-04-26

    Conducting gaps in lesion sets are a major reason for failure of ablation procedures. Voltage mapping and pace-capture have been proposed for intra-procedural identification of gaps. We aimed to compare gap size measured acutely and chronically post-ablation to macroscopic gap size in a porcine model. Intercaval linear ablation was performed in eight Göttingen minipigs with a deliberate gap of ∼5 mm left in the ablation line. Gap size was measured by interpolating ablation contact force values between ablation tags and thresholding at a low force cut-off of 5 g. Bipolar voltage mapping and pace-capture mapping along the length of the line were performed immediately, and at 2 months, post-ablation. Animals were euthanized and gap sizes were measured macroscopically. Voltage thresholds to define scar were determined by receiver operating characteristic analysis as voltage, pace-capture, and ablation contact force maps. All modalities overestimated chronic gap size, by 1.4 ± 2.0 mm (ablation contact force map), 5.1 ± 3.4 mm (pace-capture), and 9.5 ± 3.8 mm (voltage mapping). Error on ablation contact force map gap measurements were significantly less than for voltage mapping (P = 0.003, Tukey's multiple comparisons test). Chronically, voltage mapping and pace-capture mapping overestimated macroscopic gap size by 11.9 ± 3.7 and 9.8 ± 3.5 mm, respectively. Bipolar voltage and pace-capture mapping overestimate the size of chronic gap formation in linear ablation lesions. The most accurate estimation of chronic gap size was achieved by analysis of catheter-myocardium contact force during ablation.

  9. Prediction of breakdown voltages in novel gases for high voltage insulation

    Energy Technology Data Exchange (ETDEWEB)

    Koch, M.

    2015-07-01

    This thesis submitted to the Swiss Federal Institute of Technology ETH in Zurich examines the use of sulphur hexafluoride (SF{sub 6}) and similar gases as important insulation media for high voltage equipment. Due to its superior insulation properties, SF{sub 6} is widely used in gas-insulated switchgear. However, the gas also has a very high global warming potential and the content of SF{sub 6} in the atmosphere is constantly increasing. The search for new insulation gases using classical breakdown experiments is discussed. A model for SF{sub 6} based on the stepped leader model is described. This calculates the breakdown voltages in arbitrary electrode configurations and under standard voltage waveforms. Thus, the thesis provides a method for the prediction of breakdown voltages of arbitrary field configurations under standard voltage waveforms for gases with electron-attaching properties. With this, further gases can be characterized for usage as high voltage insulation media.

  10. Influence of ASIR (Adaptative Statistical Iterative Reconstruction) variation in the image noise of computerized tomography for high voltage

    International Nuclear Information System (INIS)

    Mendes, L.M.M.; Pereira, W.B.R.; Vieira, J.G.; Lamounier, C.S.; Gonçalves, D.A.; Carvalho, G.N.P.; Santana, P.C.; Oliveira, P.M.C.; Reis, L.P.

    2017-01-01

    Computed tomography had great advances in the equipment used in the diagnostic practice, directly influencing the levels of radiation for the patient. It is essential to optimize techniques that must be employed to comply with the ALARA (As Low As Reasonably Achievable) principle of radioprotection. The relationship of ASIR (Adaptive Statistical Iterative Reconstruction) with image noise was studied. Central images of a homogeneous water simulator were obtained in a 20 mm scan using a 64-channel Lightspeed VCT tomograph of General Electric in helical acquisitions with a rotation time of 0.5 seconds, Pitch 0.984: 1, and thickness of cut 0.625 mm. All these constant parameters varying the voltage in two distinct values: 120 and 140 kV with use of the automatic current by the CAE (Automatic Exposure Control), ranging from 50 to 675 mA (120 kV) and from 50 to 610 mA (140kV), minimum and maximum values, respectively allowed for each voltage. Image noise was determined through ImageJ free software. The analysis of the obtained data compared the percentage variation of the noise in the image based on the ASIR value of 10%, concluding that there is a variation of approximately 50% when compared to the values of ASIR (100%) in both tensions. Dose evaluation is required in future studies to better utilize the relationship between dose and image quality

  11. High voltage engineering

    CERN Document Server

    Rizk, Farouk AM

    2014-01-01

    Inspired by a new revival of worldwide interest in extra-high-voltage (EHV) and ultra-high-voltage (UHV) transmission, High Voltage Engineering merges the latest research with the extensive experience of the best in the field to deliver a comprehensive treatment of electrical insulation systems for the next generation of utility engineers and electric power professionals. The book offers extensive coverage of the physical basis of high-voltage engineering, from insulation stress and strength to lightning attachment and protection and beyond. Presenting information critical to the design, selec

  12. Device for monitoring cell voltage

    Science.gov (United States)

    Doepke, Matthias [Garbsen, DE; Eisermann, Henning [Edermissen, DE

    2012-08-21

    A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.

  13. An impact analysis of the fault impedance on voltage sags

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Alessandro Candido Lopes [CELG - Companhia Energetica de Goias, Goiania, GO (Brazil). Generation and Transmission. System' s Operation Center], E-mail: alessandro.clr@celg.com.br; Batista, Adalberto Jose [Federal University of Goias (UFG), Goiania, GO (Brazil)], E-mail: batista@eee.ufg.br; Leborgne, Roberto Chouhy [Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)], E-mail: rcl@ece.ufrgs.br; Emiliano, Pedro Henrique Mota, E-mail: ph@phph.com.br

    2009-07-01

    This paper presents an impact analysis of the fault impedance, in terms of its module and angle, on voltage sags caused by faults. Symmetrical and asymmetrical faults are simulated, at transmission and distribution lines, by using a frequency-domain fault simulation software called ANAFAS. Voltage sags are monitored at buses where sensitive end-users are connected. In order to overcome some intrinsic limitations of this software concerning its automatic execution for several cases, a computational tool was developed in Java programming language. This solution allows the automatic simulation of cases including the effect of the fault position, the fault type, and the proper fault impedance. The main conclusion is that the module and angle of the fault impedance can have a significant influence on voltage sag depending on the fault characteristics. (author)

  14. Effects of Electrode Material on the Voltage of a Tree-Based Energy Generator.

    Directory of Open Access Journals (Sweden)

    Zhibin Hao

    Full Text Available The voltage between a standing tree and its surrounding soil is regarded as an innovative renewable energy source. This source is expected to provide a new power generation system for the low-power electrical equipment used in forestry. However, the voltage is weak, which has caused great difficulty in application. Consequently, the development of a method to increase the voltage is a key issue that must be addressed in this area of applied research. As the front-end component for energy harvesting, a metal electrode has a material effect on the level and stability of the voltage obtained. This study aimed to preliminarily ascertain the rules and mechanisms that underlie the effects of electrode material on voltage. Electrodes of different materials were used to measure the tree-source voltage, and the data were employed in a comparative analysis. The results indicate that the conductivity of the metal electrode significantly affects the contact resistance of the electrode-soil and electrode-trunk contact surfaces, thereby influencing the voltage level. The metal reactivity of the electrode has no significant effect on the voltage. However, passivation of the electrode materials markedly reduces the voltage. Suitable electrode materials are demonstrated and recommended.

  15. Voltage-carrying states in superconducting microstrips

    International Nuclear Information System (INIS)

    Stuivinga, M.E.C.

    1983-01-01

    When the critical current is exceeded in a superconducting microstrip, voltage-carrying states with a resistance significantly below the normal state resistance can occur. Phase-slip centers (PSC) appear at about the critical temperature. These are successive local voltage units which manifest themselves as strip-like increments in voltage in the I-V characteristic. For temperatures off the critical temperature the PSC regime degenerates into a region of normal material, a so-called hot spot. These two phenomena, PSC and hot spots, form the subject of this thesis. To gain a better understanding of the phase-slip center process, an experiment was designed to measure local values of the quasi-particle and pair potential. The results of local potential and gap measurements at a PSC in aluminium are presented and discussed. Special attention is paid to pair-breaking interactions which can shorten the relaxation time. A non-linear differential equation is derived which describes the development of a PSC into a normal hot spot under the influence of Joule heating. It incorporates the temperature rise due to the dissipative processes occurring in the charge imbalance tails. Numerical solutions are presented for a set of parameters, including those for aluminium and tin. Subsequently, they are compared with experiments. (Auth.)

  16. Angular truncation errors in integrating nephelometry

    International Nuclear Information System (INIS)

    Moosmueller, Hans; Arnott, W. Patrick

    2003-01-01

    Ideal integrating nephelometers integrate light scattered by particles over all directions. However, real nephelometers truncate light scattered in near-forward and near-backward directions below a certain truncation angle (typically 7 deg. ). This results in truncation errors, with the forward truncation error becoming important for large particles. Truncation errors are commonly calculated using Mie theory, which offers little physical insight and no generalization to nonspherical particles. We show that large particle forward truncation errors can be calculated and understood using geometric optics and diffraction theory. For small truncation angles (i.e., <10 deg. ) as typical for modern nephelometers, diffraction theory by itself is sufficient. Forward truncation errors are, by nearly a factor of 2, larger for absorbing particles than for nonabsorbing particles because for large absorbing particles most of the scattered light is due to diffraction as transmission is suppressed. Nephelometers calibration procedures are also discussed as they influence the effective truncation error

  17. Fixturing error measurement and analysis using CMMs

    International Nuclear Information System (INIS)

    Wang, Y; Chen, X; Gindy, N

    2005-01-01

    Influence of fixture on the errors of a machined surface can be very significant. The machined surface errors generated during machining can be measured by using a coordinate measurement machine (CMM) through the displacements of three coordinate systems on a fixture-workpiece pair in relation to the deviation of the machined surface. The surface errors consist of the component movement, component twist, deviation between actual machined surface and defined tool path. A turbine blade fixture for grinding operation is used for case study

  18. Reactive Power Compensation of a 24 MW Wind Farm using a 12-Pulse Voltage Source Converter

    DEFF Research Database (Denmark)

    Pedersen, Knud Ole Helgesen; Pedersen, Jørgen Kaas

    1998-01-01

    Integration of large wind farms in distribution and transmission systems may have severe influence on the power quality at the connection point and may also influence the voltage controlling capability of the electrical system. The purpose of the described project has been to develop and investig......Integration of large wind farms in distribution and transmission systems may have severe influence on the power quality at the connection point and may also influence the voltage controlling capability of the electrical system. The purpose of the described project has been to develop...... and investigate the use of a STATCOM by modelling and field testing an 8 MVar unit in a 24 MW wind farm....

  19. 76 FR 70721 - Voltage Coordination on High Voltage Grids; Notice of Staff Workshop

    Science.gov (United States)

    2011-11-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD12-5-000] Voltage Coordination on High Voltage Grids; Notice of Staff Workshop Take notice that the Federal Energy Regulatory Commission will hold a Workshop on Voltage Coordination on High Voltage Grids on Thursday, December 1, 2011...

  20. Proportional-Type Performance Recovery DC-Link Voltage Tracking Algorithm for Permanent Magnet Synchronous Generators

    Directory of Open Access Journals (Sweden)

    Seok-Kyoon Kim

    2017-09-01

    Full Text Available This study proposes a disturbance observer-based proportional-type DC-link voltage tracking algorithm for permanent magnet synchronous generators (PMSGs. The proposed technique feedbacks the only proportional term of the tracking errors, and it contains the nominal static and dynamic feed-forward compensators coming from the first-order disturbance observers. It is rigorously proved that the proposed method ensures the performance recovery and offset-free properties without the use of the integrators of the tracking errors. A wind power generation system has been simulated to verify the efficacy of the proposed method using the PSIM (PowerSIM software with the DLL (Dynamic Link Library block.

  1. Error-related potentials during continuous feedback: using EEG to detect errors of different type and severity

    Science.gov (United States)

    Spüler, Martin; Niethammer, Christian

    2015-01-01

    When a person recognizes an error during a task, an error-related potential (ErrP) can be measured as response. It has been shown that ErrPs can be automatically detected in tasks with time-discrete feedback, which is widely applied in the field of Brain-Computer Interfaces (BCIs) for error correction or adaptation. However, there are only a few studies that concentrate on ErrPs during continuous feedback. With this study, we wanted to answer three different questions: (i) Can ErrPs be measured in electroencephalography (EEG) recordings during a task with continuous cursor control? (ii) Can ErrPs be classified using machine learning methods and is it possible to discriminate errors of different origins? (iii) Can we use EEG to detect the severity of an error? To answer these questions, we recorded EEG data from 10 subjects during a video game task and investigated two different types of error (execution error, due to inaccurate feedback; outcome error, due to not achieving the goal of an action). We analyzed the recorded data to show that during the same task, different kinds of error produce different ErrP waveforms and have a different spectral response. This allows us to detect and discriminate errors of different origin in an event-locked manner. By utilizing the error-related spectral response, we show that also a continuous, asynchronous detection of errors is possible. Although the detection of error severity based on EEG was one goal of this study, we did not find any significant influence of the severity on the EEG. PMID:25859204

  2. Error-related potentials during continuous feedback: using EEG to detect errors of different type and severity

    Directory of Open Access Journals (Sweden)

    Martin eSpüler

    2015-03-01

    Full Text Available When a person recognizes an error during a task, an error-related potential (ErrP can be measured as response. It has been shown that ErrPs can be automatically detected in tasks with time-discrete feedback, which is widely applied in the field of Brain-Computer Interfaces (BCIs for error correction or adaptation. However, there are only a few studies that concentrate on ErrPs during continuous feedback.With this study, we wanted to answer three different questions: (i Can ErrPs be measured in electroencephalography (EEG recordings during a task with continuous cursor control? (ii Can ErrPs be classified using machine learning methods and is it possible to discriminate errors of different origins? (iii Can we use EEG to detect the severity of an error? To answer these questions, we recorded EEG data from 10 subjects during a video game task and investigated two different types of error (execution error, due to inaccurate feedback; outcome error, due to not achieving the goal of an action. We analyzed the recorded data to show that during the same task, different kinds of error produce different ErrP waveforms and have a different spectral response. This allows us to detect and discriminate errors of different origin in an event-locked manner. By utilizing the error-related spectral response, we show that also a continuous, asynchronous detection of errors is possible.Although the detection of error severity based on EEG was one goal of this study, we did not find any significant influence of the severity on the EEG.

  3. Propagation of disturbances as voltage fluctuations in transmission networks

    Directory of Open Access Journals (Sweden)

    Albert Hermina

    2016-08-01

    Full Text Available Significant changes occurred in the power system in Romania in recent years by reducing the power used in the system, the number of classic power sources in operation as well as by implementing renewable energy sources, have determined short circuit power reduction (node rigidity in the points where disturbing users are connected, that in the absence of adequate measures, result in disturbances above acceptable levels. The paper analyzes two power systems areas in which are connected users that cause voltage fluctuation. Disturbances as voltage fluctuations resulting in these nodes may exceed the acceptable values and can spread in the transmission network affecting power quality over large system areas. The analysis conducted reveals the influence of short circuit power in nodes where these users are connected and highlights the fact that in some cases (e.g. lines out of operation for maintenance, shutdown of classic units in the area the disturbances in the transmission network sent to the users at lower voltages may have values above those allowed. Technical Code of existing power transmission network makes no reference to voltage fluctuations, as a rule, in the electricity transmission network was considered that this phenomenon should not exist.

  4. Sensorless Control Technology for PMSG base on the Dead-time Compensation voltage

    Directory of Open Access Journals (Sweden)

    Yang Li-yong

    2015-01-01

    Full Text Available In order to improve the speed sensorless-control system of PMSG in low speed performance, this paper introduces a novel Dead-time compensation control method .Mathematical model is established according to the Dead-zone of the influence of the voltage source type inverter output voltage. At the same time, the given value of current regulator output voltage has been fixed based on the established model. Then the stator voltage after compensationed is applied to the flux estimation, which improves the performance of flux estimation. Finally, the position and speed of the rotor is estimated based on Back-Electromotive Force, which has Simple algorithm and good robustness. In order to verify the correctness of theoretical analysis, the experiment was done according to the new control method. The results proved the correctness and feasibility of this control method.

  5. Sensor Interaction as a Source of the Electromagnetic Field Measurement Error

    Directory of Open Access Journals (Sweden)

    Hartansky R.

    2014-12-01

    Full Text Available The article deals with analytical calculation and numerical simulation of interactive influence of electromagnetic sensors. Sensors are components of field probe, whereby their interactive influence causes the measuring error. Electromagnetic field probe contains three mutually perpendicular spaced sensors in order to measure the vector of electrical field. Error of sensors is enumerated with dependence on interactive position of sensors. Based on that, proposed were recommendations for electromagnetic field probe construction to minimize the sensor interaction and measuring error.

  6. The influence of the representation loads in the voltage stability; Influencia de la representacion de las cargas en la estabilidad de voltaje

    Energy Technology Data Exchange (ETDEWEB)

    Morales Gonzalez, Eduardo

    2005-12-15

    Environmental and economic reasons have been the main factors for limiting the growing of transmission power grids in many countries. In addition, the electric industry trend to de-regulation of electricity markets has forced to operate the transmission grids closer to their normal limits for secure operation. Since most of the time modern power networks operate under stressed conditions, voltage collapse has become a big concern in the daily operation of the systems. Thus, determination of reliable operating limits respect to voltage collapse is of utmost importance to guarantee an economical and secure system operation. With the aim of understanding the mechanisms of voltage stability and voltage collapse, a number of studying approaches have been proposed for the analysis of such problems. A common feature of those approaches is the importance of reliable models for representing load characteristics. As a result of this, the development of adequate mathematical models for reliable load representation has received a great deal of attention. Despite those efforts, load modeling remains as a big challenge in the analysis of power systems voltage stability. In this thesis, the influence of load modeling on voltage stability is addressed using a steady-state analysis approach. The voltage stability analysis of the system is performed from the P-V curves for different load representations and voltage sensitivity indices. Finally, numerical results from two test systems are reported and the close relationship between load modeling and voltage stability limits in a power system is highlighted. [Spanish] Las razones economicas y ambientales han sido los principales factores para limitar el crecimiento de los sistemas de transmision en muchos paises. Ademas, la tendencia a la desregulacion en la industria electrica ha forzado a operar las redes electricas mas cerca de sus limites de operacion. Debido a que la mayoria de los sistemas electricos modernos operan bajo

  7. Errors in Neonatology

    Directory of Open Access Journals (Sweden)

    Antonio Boldrini

    2013-06-01

    Full Text Available Introduction: Danger and errors are inherent in human activities. In medical practice errors can lean to adverse events for patients. Mass media echo the whole scenario. Methods: We reviewed recent published papers in PubMed database to focus on the evidence and management of errors in medical practice in general and in Neonatology in particular. We compared the results of the literature with our specific experience in Nina Simulation Centre (Pisa, Italy. Results: In Neonatology the main error domains are: medication and total parenteral nutrition, resuscitation and respiratory care, invasive procedures, nosocomial infections, patient identification, diagnostics. Risk factors include patients’ size, prematurity, vulnerability and underlying disease conditions but also multidisciplinary teams, working conditions providing fatigue, a large variety of treatment and investigative modalities needed. Discussion and Conclusions: In our opinion, it is hardly possible to change the human beings but it is likely possible to change the conditions under they work. Voluntary errors report systems can help in preventing adverse events. Education and re-training by means of simulation can be an effective strategy too. In Pisa (Italy Nina (ceNtro di FormazIone e SimulazioNe NeonAtale is a simulation center that offers the possibility of a continuous retraining for technical and non-technical skills to optimize neonatological care strategies. Furthermore, we have been working on a novel skill trainer for mechanical ventilation (MEchatronic REspiratory System SImulator for Neonatal Applications, MERESSINA. Finally, in our opinion national health policy indirectly influences risk for errors. Proceedings of the 9th International Workshop on Neonatology · Cagliari (Italy · October 23rd-26th, 2013 · Learned lessons, changing practice and cutting-edge research

  8. Mapping of Residues Forming the Voltage Sensor of the Voltage-Dependent Anion-Selective Channel

    Science.gov (United States)

    Thomas, Lorie; Blachly-Dyson, Elizabeth; Colombini, Marco; Forte, Michael

    1993-06-01

    Voltage-gated ion-channel proteins contain "voltage-sensing" domains that drive the conformational transitions between open and closed states in response to changes in transmembrane voltage. We have used site-directed mutagenesis to identify residues affecting the voltage sensitivity of a mitochondrial channel, the voltage-dependent anion-selective channel (VDAC). Although charge changes at many sites had no effect, at other sites substitutions that increased positive charge also increased the steepness of voltage dependance and substitutions that decreased positive charge decreased voltage dependance by an appropriate amount. In contrast to the plasma membrane K^+ and Na^+ channels, these residues are distributed over large parts of the VDAC protein. These results have been used to define the conformational transitions that accompany voltage gating of an ion channel. This gating mechanism requires the movement of large portions of the VDAC protein through the membrane.

  9. Molecular mechanism of voltage sensing in voltage-gated proton channels

    Science.gov (United States)

    Rebolledo, Santiago; Perez, Marta E.

    2013-01-01

    Voltage-gated proton (Hv) channels play an essential role in phagocytic cells by generating a hyperpolarizing proton current that electrically compensates for the depolarizing current generated by the NADPH oxidase during the respiratory burst, thereby ensuring a sustained production of reactive oxygen species by the NADPH oxidase in phagocytes to neutralize engulfed bacteria. Despite the importance of the voltage-dependent Hv current, it is at present unclear which residues in Hv channels are responsible for the voltage activation. Here we show that individual neutralizations of three charged residues in the fourth transmembrane domain, S4, all reduce the voltage dependence of activation. In addition, we show that the middle S4 charged residue moves from a position accessible from the cytosolic solution to a position accessible from the extracellular solution, suggesting that this residue moves across most of the membrane electric field during voltage activation of Hv channels. Our results show for the first time that the charge movement of these three S4 charges accounts for almost all of the measured gating charge in Hv channels. PMID:23401575

  10. Learning Through Experience: Influence of Formal and Informal Training on Medical Error Disclosure Skills in Residents.

    Science.gov (United States)

    Wong, Brian M; Coffey, Maitreya; Nousiainen, Markku T; Brydges, Ryan; McDonald-Blumer, Heather; Atkinson, Adelle; Levinson, Wendy; Stroud, Lynfa

    2017-02-01

    Residents' attitudes toward error disclosure have improved over time. It is unclear whether this has been accompanied by improvements in disclosure skills. To measure the disclosure skills of internal medicine (IM), paediatrics, and orthopaedic surgery residents, and to explore resident perceptions of formal versus informal training in preparing them for disclosure in real-world practice. We assessed residents' error disclosure skills using a structured role play with a standardized patient in 2012-2013. We compared disclosure skills across programs using analysis of variance. We conducted a multiple linear regression, including data from a historical cohort of IM residents from 2005, to investigate the influence of predictor variables on performance: training program, cohort year, and prior disclosure training and experience. We conducted a qualitative descriptive analysis of data from semistructured interviews with residents to explore resident perceptions of formal versus informal disclosure training. In a comparison of disclosure skills for 49 residents, there was no difference in overall performance across specialties (4.1 to 4.4 of 5, P  = .19). In regression analysis, only the current cohort was significantly associated with skill: current residents performed better than a historical cohort of 42 IM residents ( P  formal (workshops, morbidity and mortality rounds) and informal (role modeling, debriefing) activities in preparation for disclosure in real-world practice. Residents across specialties have similar skills in disclosure of errors. Residents identified role modeling and a strong local patient safety culture as key facilitators for disclosure.

  11. Vivitron 1995, transient voltage simulation, high voltage insulator tests, electric field calculation

    International Nuclear Information System (INIS)

    Frick, G.; Osswald, F.; Heusch, B.

    1996-01-01

    Preliminary investigations showed clearly that, because of the discrete electrode structure of the Vivitron, important overvoltage leading to insulator damage can appear in case of a spark. The first high voltage tests showed damage connected with such events. This fact leads to a severe voltage limitation. This work describes, at first, studies made to understand the effects of transients and the associated over-voltage appearing in the Vivitron. Then we present the high voltage tests made with full size Vivitron components using the CN 6 MV machine as a pilot machine. Extensive field calculations were made. These involve simulations of static stresses and transient overvoltages, on insulating boards and electrodes. This work gave us the solutions for arrangements and modifications in the machine. After application, the Vivitron runs now without any sparks and damage at 20 MV. In the same manner, we tested column insulators of a new design and so we will find out how to get to higher voltages. Electric field calculation around the tie bars connecting the discrete electrodes together showed field enhancements when the voltages applied on the discrete electrodes are not equally distributed. This fact is one of the sources of discharges and voltage limitations. A scenario of a spark event is described and indications are given how to proceed towards higher voltages, in the 30 MV range. (orig.)

  12. Additional ion bombardment in PVD processes generated by a superimposed pulse bias voltage

    International Nuclear Information System (INIS)

    Olbrich, W.; Kampschulte, G.

    1993-01-01

    The superimposed pulse bias voltage is a tool to apply an additional ion bombardment during deposition in physical vapour deposition (PVD) processes. It is generated by the combination of a d.c. ground voltage and a higher d.c. pulse voltage. Using a superimposed pulse bias voltage in ion-assisted PVD processes effects an additional all-around ion bombardment on the surface with ions of higher energy. Both metal and reactive or inert-gas ions are accelerated to the surface. The basic principles and important characteristics of this newly developed process such as ion fluxes or deposition rates are shown. Because of pulsing the high voltage, the deposition temperature does not increase much. The adhesion, structure, morphology and internal stresses are influenced by these additional ion impacts. The columnar growth of the deposited films could be suppressed by using the superimposed pulse bias voltage without increasing the deposition temperature. Different metallizations (Cr and Cu) produced by arc and sputter ion plating are investigated. Carbon-fibre-reinforced epoxy are coated with PVD copper films for further treatment in electrochemical processes. (orig.)

  13. Layout Capacitive Coupling and Structure Impacts on Integrated High Voltage Power MOSFETs

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2016-01-01

    The switching performances of the integrated high voltage power MOSFETs that have prevailing interconnection matrices are being heavily influenced by the parasitic capacitive coupling of on-chip metal wires. The mechanism of the side-byside coupling is generally known, however, the layer-to-layer......The switching performances of the integrated high voltage power MOSFETs that have prevailing interconnection matrices are being heavily influenced by the parasitic capacitive coupling of on-chip metal wires. The mechanism of the side-byside coupling is generally known, however, the layer...... extraction tool shows that the side-by-side coupling dominated structure can perform better than the layer-to-layer coupling dominated structure, in terms of on-resistance times input or output capacitance, by 9.2% and 4.9%, respectively....

  14. Improvement in the Design of Metal-Ceramic High Voltage Feedthroughs for use in High Energy Particle Accelerators

    CERN Document Server

    Weterings, W

    1999-01-01

    Large high-voltage devices operate in particle accelerators to steer charged particles in the desired direction. Solid and hollow rods of sintered alumina are used as insulating supports and high-voltage feedthroughs to power the electrodes of these electrostatic systems. The performance of the systems is often limited by voltage breakdown along the surface of the ceramic insulator (so-called surface flashover) or discharge between feedthrough and vacuum tank, which can lead to significant disruptions in terms of overall machine efficiency. Available results on the influence of the mechanical preparation, thermal history and particular cleaning techniques on commercially obtainable alumina samples have been studied in order to investigate possibilities for better preparation methodology of the insulating supports. Also the influence of the relative position of the feedthrough inside the vacuum tank on the high-voltage breakdown behaviour has been studied. This paper describes the theoretical and practical bac...

  15. Learning from mistakes. Factors that influence how students and residents learn from medical errors.

    Science.gov (United States)

    Fischer, Melissa A; Mazor, Kathleen M; Baril, Joann; Alper, Eric; DeMarco, Deborah; Pugnaire, Michele

    2006-05-01

    Trainees are exposed to medical errors throughout medical school and residency. Little is known about what facilitates and limits learning from these experiences. To identify major factors and areas of tension in trainees' learning from medical errors. Structured telephone interviews with 59 trainees (medical students and residents) from 1 academic medical center. Five authors reviewed transcripts of audiotaped interviews using content analysis. Trainees were aware that medical errors occur from early in medical school. Many had an intense emotional response to the idea of committing errors in patient care. Students and residents noted variation and conflict in institutional recommendations and individual actions. Many expressed role confusion regarding whether and how to initiate discussion after errors occurred. Some noted the conflict between reporting errors to seniors who were responsible for their evaluation. Learners requested more open discussion of actual errors and faculty disclosure. No students or residents felt that they learned better from near misses than from actual errors, and many believed that they learned the most when harm was caused. Trainees are aware of medical errors, but remaining tensions may limit learning. Institutions can immediately address variability in faculty response and local culture by disseminating clear, accessible algorithms to guide behavior when errors occur. Educators should develop longitudinal curricula that integrate actual cases and faculty disclosure. Future multi-institutional work should focus on identified themes such as teaching and learning in emotionally charged situations, learning from errors and near misses and balance between individual and systems responsibility.

  16. Influence of the voltage waveform during nanocomposite layer deposition by aerosol-assisted atmospheric pressure Townsend discharge

    Energy Technology Data Exchange (ETDEWEB)

    Profili, J. [LAPLACE, Université de Toulouse, CNRS, INPT, UPS, Toulouse (France); Département de Physique, Université de Montréal, Montréal, Québec H3C 3J7 (Canada); Levasseur, O.; Stafford, L. [Département de Physique, Université de Montréal, Montréal, Québec H3C 3J7 (Canada); Naudé, N.; Gherardi, N., E-mail: nicolas.gherardi@laplace.univ-tlse.fr [LAPLACE, Université de Toulouse, CNRS, INPT, UPS, Toulouse (France); Chaneac, C. [Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, F-75005 Paris (France)

    2016-08-07

    This work examines the growth dynamics of TiO{sub 2}-SiO{sub 2} nanocomposite coatings in plane-to-plane Dielectric Barrier Discharges (DBDs) at atmospheric pressure operated in a Townsend regime using nebulized TiO{sub 2} colloidal suspension in hexamethyldisiloxane as the growth precursors. For low-frequency (LF) sinusoidal voltages applied to the DBD cell, with voltage amplitudes lower than the one required for discharge breakdown, Scanning Electron Microscopy of silicon substrates placed on the bottom DBD electrode reveals significant deposition of TiO{sub 2} nanoparticles (NPs) close to the discharge entrance. On the other hand, at higher frequencies (HF), the number of TiO{sub 2} NPs deposited strongly decreases due to their “trapping” in the oscillating voltage and their transport along the gas flow lines. Based on these findings, a combined LF-HF voltage waveform is proposed and used to achieve significant and spatially uniform deposition of TiO{sub 2} NPs across the whole substrate surface. For higher voltage amplitudes, in the presence of hexamethyldisiloxane and nitrous oxide for plasma-enhanced chemical vapor deposition of inorganic layers, it is found that TiO{sub 2} NPs become fully embedded into a silica-like matrix. Similar Raman spectra are obtained for as-prepared TiO{sub 2} NPs and for nanocomposite TiO{sub 2}-SiO{sub 2} coating, suggesting that plasma exposure does not significantly alter the crystalline structure of the TiO{sub 2} NPs injected into the discharge.

  17. Technological Aspects: High Voltage

    CERN Document Server

    Faircloth, D.C.

    2013-12-16

    This paper covers the theory and technological aspects of high-voltage design for ion sources. Electric field strengths are critical to understanding high-voltage breakdown. The equations governing electric fields and the techniques to solve them are discussed. The fundamental physics of high-voltage breakdown and electrical discharges are outlined. Different types of electrical discharges are catalogued and their behaviour in environments ranging from air to vacuum are detailed. The importance of surfaces is discussed. The principles of designing electrodes and insulators are introduced. The use of high-voltage platforms and their relation to system design are discussed. The use of commercially available high-voltage technology such as connectors, feedthroughs and cables are considered. Different power supply technologies and their procurement are briefly outlined. High-voltage safety, electric shocks and system design rules are covered.

  18. Capacitor Voltages Measurement and Balancing in Flying Capacitor Multilevel Converters Utilizing a Single Voltage Sensor

    DEFF Research Database (Denmark)

    Farivar, Glen; Ghias, Amer M. Y. M.; Hredzak, Branislav

    2017-01-01

    This paper proposes a new method for measuring capacitor voltages in multilevel flying capacitor (FC) converters that requires only one voltage sensor per phase leg. Multiple dc voltage sensors traditionally used to measure the capacitor voltages are replaced with a single voltage sensor at the ac...... side of the phase leg. The proposed method is subsequently used to balance the capacitor voltages using only the measured ac voltage. The operation of the proposed measurement and balancing method is independent of the number of the converter levels. Experimental results presented for a five-level FC...

  19. Control and Testing of a Dynamic Voltage Restorer (DVR) at Medium Voltage Level

    DEFF Research Database (Denmark)

    Nielsen, John Godsk; Newman, Michael; Nielsen, Hans Ove

    2004-01-01

    power sensitive loads from voltage sags. This paper reports practical test results obtained on a medium voltage (10 kV) level using a DVR at a Distribution test facility in Kyndby, Denmark. The DVR was designed to protect a 400-kVA load from a 0.5-p.u. maximum voltage sag. The reported DVR verifies......The dynamic voltage restorer (DVR) has become popular as a cost effective solution for the protection of sensitive loads from voltage sags. Implementations of the DVR have been proposed at both a low voltage (LV) level, as well as a medium voltage (MV) level; and give an opportunity to protect high...... the use of a feed-forward and feed-back technique of the controller and it obtains both good transient and steady state responses. The effect of the DVR on the system is experimentally investigated under both faulted and non-faulted system states, for a variety of linear and non-linear loads. Variable...

  20. Systematic Errors in Dimensional X-ray Computed Tomography

    DEFF Research Database (Denmark)

    that it is possible to compensate them. In dimensional X-ray computed tomography (CT), many physical quantities influence the final result. However, it is important to know which factors in CT measurements potentially lead to systematic errors. In this talk, typical error sources in dimensional X-ray CT are discussed...

  1. Selection of the important performance influencing factors for the assessment of human error under accident management situations in nuclear power plants

    International Nuclear Information System (INIS)

    Kim, J. H.; Jung, W. J.

    1999-01-01

    This paper introduces the process and final results of selection of the important Performance Influencing Factors (PIFs) under emergency operation and accident management situations in nuclear power plants for use in the assessment of human errors. We collected two types of PIF taxonomies, one is the full set PIF list mainly developed for human error analysis, and the other is the PIFs for human reliability analysis (HRA) in probabilistic safety assessment (PSA). 5 PIF taxonomies among the full set PIF list and 10 PIF taxonomies among HRA methodologies (CREAM, SLIM, INTENT, were collected in this research. By reviewing and analyzing PIFs selected for HRA methodologies, the criterion could be established for the selection of appropriate PIFs under emergency operation and accident management situations. Based on this selection criteria, a new PIF taxonomy was proposed for the assessment of human error under emergency operation and accident management situations in nuclear power plants

  2. Friendship at work and error disclosure

    Directory of Open Access Journals (Sweden)

    Hsiao-Yen Mao

    2017-10-01

    Full Text Available Organizations rely on contextual factors to promote employee disclosure of self-made errors, which induces a resource dilemma (i.e., disclosure entails costing one's own resources to bring others resources and a friendship dilemma (i.e., disclosure is seemingly easier through friendship, yet the cost of friendship is embedded. This study proposes that friendship at work enhances error disclosure and uses conservation of resources theory as underlying explanation. A three-wave survey collected data from 274 full-time employees with a variety of occupational backgrounds. Empirical results indicated that friendship enhanced error disclosure partially through relational mechanisms of employees’ attitudes toward coworkers (i.e., employee engagement and of coworkers’ attitudes toward employees (i.e., perceived social worth. Such effects hold when controlling for established predictors of error disclosure. This study expands extant perspectives on employee error and the theoretical lenses used to explain the influence of friendship at work. We propose that, while promoting error disclosure through both contextual and relational approaches, organizations should be vigilant about potential incongruence.

  3. Complete characterization of voltage sags: an alternative to achieve energy quality

    International Nuclear Information System (INIS)

    Zuniga Medina, Edgar Andres; Vasco Garcia, Carlos Andres

    1992-01-01

    In this paper, the meaning of the power quality and its negative influence in the automation processes are presented. Voltage sags, the problems they cause and a methodology to characterize the phenomenon are also presented. Once the problems associated with the different sensible loads connected to a power system are identified, the cause of the bad quality of the electrical energy provided those loads is then established; voltage sags are one of the most common phenomenon that requires characterization in order to diminish their negative impact on the industrial processes

  4. Error Analysis of 3D Metal Micromold Fabricated by Femtosecond Laser Cutting and Microelectric Resistance Slip Welding

    Directory of Open Access Journals (Sweden)

    Bin Xu

    2013-01-01

    Full Text Available We used micro-double-staged laminated object manufacturing process (micro-DLOM to fabricate 3D micromold. Moreover, the error of the micro-DLOM was also studied. Firstly, we got the principle error of the micro-DLOM. Based on the mathematical expression, it can be deduced that the smaller the opening angle α and the steel foil thickness h are, the smaller the principle error δ is. Secondly, we studied the error of femtosecond laser cutting. Through the experimental results, we know that the error of femtosecond laser cutting is 0.5 μm under 110 mW femtosecond laser power, 100 μm/s cutting speed, and 0.75 μm dimension compensation. Finally, we researched the error of microelectric resistance slip welding. Based on the research results, we can know that the minimum error of microcavity mold in the height direction is only 0.22 μm when welding voltage is 0.21 V and the number of slip welding discharge is 160.

  5. Random and systematic errors in case–control studies calculating the injury risk of driving under the influence of psychoactive substances

    DEFF Research Database (Denmark)

    Houwing, Sjoerd; Hagenzieker, Marjan; Mathijssen, René P.M.

    2013-01-01

    Between 2006 and 2010, six population based case-control studies were conducted as part of the European research-project DRUID (DRiving Under the Influence of Drugs, alcohol and medicines). The aim of these case-control studies was to calculate odds ratios indicating the relative risk of serious....... The list of indicators that was identified in this study is useful both as guidance for systematic reviews and meta-analyses and for future epidemiological studies in the field of driving under the influence to minimize sources of errors already at the start of the study. © 2013 Published by Elsevier Ltd....

  6. Fringe order error in multifrequency fringe projection phase unwrapping: reason and correction.

    Science.gov (United States)

    Zhang, Chunwei; Zhao, Hong; Zhang, Lu

    2015-11-10

    A multifrequency fringe projection phase unwrapping algorithm (MFPPUA) is important to fringe projection profilometry, especially when a discontinuous object is measured. However, a fringe order error (FOE) may occur when MFPPUA is adopted. An FOE will result in error to the unwrapped phase. Although this kind of phase error does not spread, it brings error to the eventual 3D measurement results. Therefore, an FOE or its adverse influence should be obviated. In this paper, reasons for the occurrence of an FOE are theoretically analyzed and experimentally explored. Methods to correct the phase error caused by an FOE are proposed. Experimental results demonstrate that the proposed methods are valid in eliminating the adverse influence of an FOE.

  7. Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements.

    Science.gov (United States)

    Lundby, Alicia; Mutoh, Hiroki; Dimitrov, Dimitar; Akemann, Walther; Knöpfel, Thomas

    2008-06-25

    Ci-VSP contains a voltage-sensing domain (VSD) homologous to that of voltage-gated potassium channels. Using charge displacement ('gating' current) measurements we show that voltage-sensing movements of this VSD can occur within 1 ms in mammalian membranes. Our analysis lead to development of a genetically encodable fluorescent protein voltage sensor (VSFP) in which the fast, voltage-dependent conformational changes of the Ci-VSP voltage sensor are transduced to similarly fast fluorescence read-outs.

  8. Individual and Contextual Factors Influencing Engagement in Learning Activities after Errors at Work: A Replication Study in a German Retail Bank

    Science.gov (United States)

    Leicher, Veronika; Mulder, Regina H.

    2016-01-01

    Purpose: The purpose of this replication study is to identify relevant individual and contextual factors influencing learning from errors at work and to determine if the predictors for learning activities are the same for the domains of nursing and retail banking. Design/methodology/approach: A cross-sectional replication study was carried out in…

  9. Regulation of the Output Voltage of an Inverter in Case of Load Variation

    Science.gov (United States)

    Diouri, Omar; Errahimi, Fatima; Es-Sbai, Najia

    2018-05-01

    In a DC/AC photovoltaic application, the stability of the output voltage of the inverter plays a very important role in the electrical systems. Such a photovoltaic system is constituted by an inverter, which makes it possible to convert the continuous energy to the alternative energy used in systems which operate under a voltage of 230V. The output of this inverter can be connected to a single load or more, at which time a second load is added in parallel with the first load. In this case, it proves a voltage drop at the output of the inverter. This problem influences the proper functioning of the electrical loads. Therefore, our contribution is to give a solution to this by compensating this voltage drop using a boost converter at the input of the inverter. This boost converter will play the role of the compensator that will provide the necessary voltage to the inverter in order to increase the voltage across the loads. But the use of this boost without controlling it is not enough because it generates a voltage that depends on the duty cycle of the control signal. To stabilize the output voltage of the inverter, we used a Proportional, Integral, and Derivative control (PID), which makes it possible to generate the necessary control signal for the voltage boost in order to have a good regulation of the output voltage of the inverter. Finally, we have solved the problem of the voltage drop even though there is loads variation.

  10. Technological Aspects: High Voltage

    International Nuclear Information System (INIS)

    Faircloth, D C

    2013-01-01

    This paper covers the theory and technological aspects of high-voltage design for ion sources. Electric field strengths are critical to understanding high-voltage breakdown. The equations governing electric fields and the techniques to solve them are discussed. The fundamental physics of high-voltage breakdown and electrical discharges are outlined. Different types of electrical discharges are catalogued and their behaviour in environments ranging from air to vacuum are detailed. The importance of surfaces is discussed. The principles of designing electrodes and insulators are introduced. The use of high-voltage platforms and their relation to system design are discussed. The use of commercially available high-voltage technology such as connectors, feedthroughs and cables are considered. Different power supply technologies and their procurement are briefly outlined. High-voltage safety, electric shocks and system design rules are covered. (author)

  11. Voltage sensitivity based reactive power control on VSC-HVDC in a wind farm connected hybrid multi-infeed HVDC system

    DEFF Research Database (Denmark)

    Liu, Yan; Chen, Zhe

    2013-01-01

    With increasing application of both Line Commutated Converter based High Voltage Direct Current (LCC-HVDC) systems and Voltage Source Converter based HVDC (VSC-HVDC) links, a new type of system structure named Hybrid Multi-Infeed HVDC (HMIDC) system is formed in the modern power systems. This paper...... presents the operation and control method of the wind farm connected HMIDC system. The wind power fluctuation takes large influence to the system voltages. In order to reduce the voltage fluctuation of LCC-HVDC infeed bus caused by the wind power variation, a voltage sensitivity-based reactive power...

  12. Fast high resolution ADC based on the flash type with a special error correcting technique

    Energy Technology Data Exchange (ETDEWEB)

    Xiao-Zhong, Liang; Jing-Xi, Cao [Beijing Univ. (China). Inst. of Atomic Energy

    1984-03-01

    A fast 12 bits ADC based on the flash type with a simple special error correcting technique which can effectively compensate the level drift of the discriminators and the droop of the stretcher voltage is described. The DNL is comparable with the Wilkinson's ADC and long term drift is far better than its.

  13. Voltage Management in Unbalanced Low Voltage Networks Using a Decoupled Phase-Tap-Changer Transformer

    DEFF Research Database (Denmark)

    Coppo, Massimiliano; Turri, Roberto; Marinelli, Mattia

    2014-01-01

    The paper studies a medium voltage-low voltage transformer with a decoupled on load tap changer capability on each phase. The overall objective is the evaluation of the potential benefits on a low voltage network of such possibility. A realistic Danish low voltage network is used for the analysis...

  14. Reliability of semiconductor and gas-filled diodes for over-voltage protection exposed to ionizing radiation

    Directory of Open Access Journals (Sweden)

    Stanković Koviljka

    2009-01-01

    Full Text Available The wide-spread use of semiconductor and gas-filled diodes for non-linear over-voltage protection results in a variety of possible working conditions. It is therefore essential to have a thorough insight into their reliability in exploitation environments which imply exposure to ionizing radiation. The aim of this paper is to investigate the influence of irradiation on over-voltage diode characteristics by exposing the diodes to californium-252 combined neutron/gamma radiation field. The irradiation of semiconductor over-voltage diodes causes severe degradation of their protection characteristics. On the other hand, gas-filled over-voltage diodes exhibit a temporal improvement of performance. The results are presented with the accompanying theoretical interpretations of the observed changes in over-voltage diode behaviour, based on the interaction of radiation with materials constituting the diodes.

  15. Automatic voltage imbalance detector

    Science.gov (United States)

    Bobbett, Ronald E.; McCormick, J. Byron; Kerwin, William J.

    1984-01-01

    A device for indicating and preventing damage to voltage cells such as galvanic cells and fuel cells connected in series by detecting sequential voltages and comparing these voltages to adjacent voltage cells. The device is implemented by using operational amplifiers and switching circuitry is provided by transistors. The device can be utilized in battery powered electric vehicles to prevent galvanic cell damage and also in series connected fuel cells to prevent fuel cell damage.

  16. Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements.

    Directory of Open Access Journals (Sweden)

    Alicia Lundby

    2008-06-01

    Full Text Available Ci-VSP contains a voltage-sensing domain (VSD homologous to that of voltage-gated potassium channels. Using charge displacement ('gating' current measurements we show that voltage-sensing movements of this VSD can occur within 1 ms in mammalian membranes. Our analysis lead to development of a genetically encodable fluorescent protein voltage sensor (VSFP in which the fast, voltage-dependent conformational changes of the Ci-VSP voltage sensor are transduced to similarly fast fluorescence read-outs.

  17. NDE errors and their propagation in sizing and growth estimates

    International Nuclear Information System (INIS)

    Horn, D.; Obrutsky, L.; Lakhan, R.

    2009-01-01

    this work, additional calculations can be performed as needed. Changes in the identification of correlated effects, the magnitude of errors, and the analytical form of voltage response can be made easily. The calculated errors on growth may be used to reduce conservative margins on plugging limits and the sensitivity analysis can be used to identify the technique improvements that would provide the greatest benefits. (author)

  18. Electrical engineering unit for the reactive power control of the load bus at the voltage instability

    Science.gov (United States)

    Kotenev, A. V.; Kotenev, V. I.; Kochetkov, V. V.; Elkin, D. A.

    2018-01-01

    For the purpose of reactive power control error reduction and decrease of the voltage sags in the electric power system caused by the asynchronous motors started the mathematical model of the load bus was developed. The model was built up of the sub-models of the following elements: a transformer, a transmission line, a synchronous and an asynchronous loads and a capacitor bank load, and represents the automatic reactive power control system taking into account electromagnetic processes of the asynchronous motors started and reactive power changing of the electric power system elements caused by the voltage fluctuation. The active power/time and reactive power/time characteristics based on the recommended procedure of the equivalent electric circuit parameters calculation were obtained. The derived automatic reactive power control system was shown to eliminate the voltage sags in the electric power system caused by the asynchronous motors started.

  19. Improvement in Brightness Uniformity by Compensating for the Threshold Voltages of Both the Driving Thin-Film Transistor and the Organic Light-Emitting Diode for Active-Matrix Organic Light-Emitting Diode Displays

    Directory of Open Access Journals (Sweden)

    Ching-Lin Fan

    2014-01-01

    Full Text Available This paper proposes a novel pixel circuit design and driving method for active-matrix organic light-emitting diode (AM-OLED displays that use low-temperature polycrystalline-silicon thin-film transistors (LTPS-TFTs as driving element. The automatic integrated circuit modeling simulation program with integrated circuit emphasis (AIM-SPICE simulator was used to verify that the proposed pixel circuit, which comprises five transistors and one capacitor, can supply uniform output current. The voltage programming method of the proposed pixel circuit comprises three periods: reset, compensation with data input, and emission periods. The simulated results reflected excellent performance. For instance, when ΔVTH=±0.33 V, the average error rate of the OLED current variation was low (<0.8%, and when ΔVTH_OLED=+0.33 V, the error rate of the OLED current variation was 4.7%. Moreover, when the I×R (current × resistance drop voltage of a power line was 0.3 V, the error rate of the OLED current variation was 5.8%. The simulated results indicated that the proposed pixel circuit exhibits high immunity to the threshold voltage deviation of both the driving poly-Si TFTs and OLEDs, and simultaneously compensates for the I×R drop voltage of a power line.

  20. The frequency characteristics of medium voltage distribution system impedances

    Directory of Open Access Journals (Sweden)

    Liviu Emil Petrean

    2009-10-01

    Full Text Available In this paper we present the frequency characteristics of impedances involved in the electrical equivalent circuit of a large medium voltage distribution system. These impedances influence harmonics distortions propagation occurring due to the nonsinusoidal loads. We analyse the case of a 10 kV large urban distribution system which supplies industrial, commercial and residential customers. The influence of various parameters of the distribution network on the frequency characteristics are presented, in order to assess the interaction of harmonic distortion and distribution system network.

  1. Simulation of forward dark current voltage characteristics of tandem solar cells

    International Nuclear Information System (INIS)

    Rubinelli, F.A.

    2012-01-01

    The transport mechanisms tailoring the shape of dark current–voltage characteristics of amorphous and microcrystalline silicon based tandem solar cell structures are explored with numerical simulations. Our input parameters were calibrated by fitting experimental current voltage curves of single and double junction structures measured under dark and illuminated conditions. At low and intermediate forward voltages the dark current–voltage characteristics show one or two regions with a current–voltage exponential dependence. The diode factor is unique in tandem cells with the same material in both intrinsic layers and two dissimilar diode factors are observed in tandem cells with different materials on the top and bottom intrinsic layers. In the exponential regions the current is controlled by recombination through gap states and by free carrier diffusion. At high forward voltages the current grows more slowly with the applied voltage. The current is influenced by the onset of electron space charge limited current (SCLC) in tandem cells where both intrinsic layers are of amorphous silicon and by series resistance of the bottom cell in tandem cells where both intrinsic layers are of microcrystalline silicon. In the micromorph cell the onset of SCLC becomes visible on the amorphous top sub-cell. The dark current also depends on the thermal generation of electron–hole (e–h) pairs present at the tunneling recombination junction. The highest dependence is observed in the tandem structure where both intrinsic layers are of microcrystalline silicon. The prediction of meaningless dark currents at low forward and reverse voltages by our code is discussed and one solution is given. - Highlights: ► Transport mechanisms shaping the dark current-voltage curves of tandem devices. ► The devices are amorphous and microcrystalline based tandem solar cells. ► Two regions with a current-voltage exponential dependence are observed. ► The tandem J-V diode factor is the

  2. Measurement of microchannel fluidic resistance with a standard voltage meter.

    Science.gov (United States)

    Godwin, Leah A; Deal, Kennon S; Hoepfner, Lauren D; Jackson, Louis A; Easley, Christopher J

    2013-01-03

    A simplified method for measuring the fluidic resistance (R(fluidic)) of microfluidic channels is presented, in which the electrical resistance (R(elec)) of a channel filled with a conductivity standard solution can be measured and directly correlated to R(fluidic) using a simple equation. Although a slight correction factor could be applied in this system to improve accuracy, results showed that a standard voltage meter could be used without calibration to determine R(fluidic) to within 12% error. Results accurate to within 2% were obtained when a geometric correction factor was applied using these particular channels. When compared to standard flow rate measurements, such as meniscus tracking in outlet tubing, this approach provided a more straightforward alternative and resulted in lower measurement error. The method was validated using 9 different fluidic resistance values (from ∼40 to 600kPa smm(-3)) and over 30 separately fabricated microfluidic devices. Furthermore, since the method is analogous to resistance measurements with a voltage meter in electrical circuits, dynamic R(fluidic) measurements were possible in more complex microfluidic designs. Microchannel R(elec) was shown to dynamically mimic pressure waveforms applied to a membrane in a variable microfluidic resistor. The variable resistor was then used to dynamically control aqueous-in-oil droplet sizes and spacing, providing a unique and convenient control system for droplet-generating devices. This conductivity-based method for fluidic resistance measurement is thus a useful tool for static or real-time characterization of microfluidic systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Error-related brain activity and error awareness in an error classification paradigm.

    Science.gov (United States)

    Di Gregorio, Francesco; Steinhauser, Marco; Maier, Martin E

    2016-10-01

    Error-related brain activity has been linked to error detection enabling adaptive behavioral adjustments. However, it is still unclear which role error awareness plays in this process. Here, we show that the error-related negativity (Ne/ERN), an event-related potential reflecting early error monitoring, is dissociable from the degree of error awareness. Participants responded to a target while ignoring two different incongruent distractors. After responding, they indicated whether they had committed an error, and if so, whether they had responded to one or to the other distractor. This error classification paradigm allowed distinguishing partially aware errors, (i.e., errors that were noticed but misclassified) and fully aware errors (i.e., errors that were correctly classified). The Ne/ERN was larger for partially aware errors than for fully aware errors. Whereas this speaks against the idea that the Ne/ERN foreshadows the degree of error awareness, it confirms the prediction of a computational model, which relates the Ne/ERN to post-response conflict. This model predicts that stronger distractor processing - a prerequisite of error classification in our paradigm - leads to lower post-response conflict and thus a smaller Ne/ERN. This implies that the relationship between Ne/ERN and error awareness depends on how error awareness is related to response conflict in a specific task. Our results further indicate that the Ne/ERN but not the degree of error awareness determines adaptive performance adjustments. Taken together, we conclude that the Ne/ERN is dissociable from error awareness and foreshadows adaptive performance adjustments. Our results suggest that the relationship between the Ne/ERN and error awareness is correlative and mediated by response conflict. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Electrocardiogram voltage discordance: Interpretation of low QRS voltage only in the precordial leads.

    Science.gov (United States)

    Kim, Diana H; Verdino, Ralph J

    To define clinical correlates of low voltage isolated to precordial leads on the surface electrocardiogram (ECG). Low voltage (V) on the ECG is defined as QRS Vvoltage isolated to the precordial leads with normal limb lead voltages is unclear. Twelve-lead ECGs with QRS V>5mm in one or more limb leads and voltage was found in 256 of 150,000 ECGs (~0.2%). 50.4% of patients had discordant ECGs that correlated with classic etiologies, with a higher incidence of LV dilation in those with classic etiologies than those without. Low precordial voltage is associated with classic etiologies and LV dilation. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Comment on 'Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation'

    International Nuclear Information System (INIS)

    Erturk, A; Inman, D J

    2008-01-01

    In a recent paper, Ajitsaria et al (2007 Smart Mater. Struct. 16 447–54) presented a mathematical formulation for the modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation. Their motivation was the recent increasing trend in using the piezoelectric effect to harvest electrical energy from ambient vibrations. This comment addresses the modeling errors and numerous undefined and missing terms in the mentioned work. (comment)

  6. Line-to-Line Fault Analysis and Location in a VSC-Based Low-Voltage DC Distribution Network

    Directory of Open Access Journals (Sweden)

    Shi-Min Xue

    2018-03-01

    Full Text Available A DC cable short-circuit fault is the most severe fault type that occurs in DC distribution networks, having a negative impact on transmission equipment and the stability of system operation. When a short-circuit fault occurs in a DC distribution network based on a voltage source converter (VSC, an in-depth analysis and characterization of the fault is of great significance to establish relay protection, devise fault current limiters and realize fault location. However, research on short-circuit faults in VSC-based low-voltage DC (LVDC systems, which are greatly different from high-voltage DC (HVDC systems, is currently stagnant. The existing research in this area is not conclusive, with further study required to explain findings in HVDC systems that do not fit with simulated results or lack thorough theoretical analyses. In this paper, faults are divided into transient- and steady-state faults, and detailed formulas are provided. A more thorough and practical theoretical analysis with fewer errors can be used to develop protection schemes and short-circuit fault locations based on transient- and steady-state analytic formulas. Compared to the classical methods, the fault analyses in this paper provide more accurate computed results of fault current. Thus, the fault location method can rapidly evaluate the distance between the fault and converter. The analyses of error increase and an improved handshaking method coordinating with the proposed location method are presented.

  7. The electric strength of high-voltage transformers insulation at effect of partial dischargers

    International Nuclear Information System (INIS)

    Khoshravan, E.; Zeraatparvar, A.; Gashimov, A.M.; Mehdizadeh, R.N.

    2001-01-01

    Full text : In paper the change of electric strength of high-voltage transformers insulation at the effect of partial discharges with space charge accumulation was investigated. It is revealed that the effect of partial discharges of insulation materials results the reduction of their pulsing electric strength which can restore the own initial value at releasing of saved charge the volume of a material under condition of absence the ineversible structural changes in it. Researches of high-voltage transformers insulation's non-failure operation conditions show, that at increasing of insulation work time in a strong electrical field the reduction of average breakdown voltages with simultaneous increasing of spread in discharge voltage values takes place. It authentically testifies to reduction of short-time discharge voltage of insulation materials during their electrical aging. As the basic reason of insulation electrical aging the partial discharges occurring in gas cavities inside insulation were considered. It is known that the space charges will be formed in insulation elements of high-voltage devices which effects in dielectrical property of these elements including the electric strength and the space charge formation can occur also at partial discharges in an alternating voltage while the service of high-voltage transformers. In the given work the experiments in revealing separate influence partial discharges in pulsing electric strength of insulation materials at presence and at absence inside them the space charge were spent

  8. Entropy Error Model of Planar Geometry Features in GIS

    Institute of Scientific and Technical Information of China (English)

    LI Dajun; GUAN Yunlan; GONG Jianya; DU Daosheng

    2003-01-01

    Positional error of line segments is usually described by using "g-band", however, its band width is in relation to the confidence level choice. In fact, given different confidence levels, a series of concentric bands can be obtained. To overcome the effect of confidence level on the error indicator, by introducing the union entropy theory, we propose an entropy error ellipse index of point, then extend it to line segment and polygon,and establish an entropy error band of line segment and an entropy error donut of polygon. The research shows that the entropy error index can be determined uniquely and is not influenced by confidence level, and that they are suitable for positional uncertainty of planar geometry features.

  9. Alterations in welding process voltage affect the generation of ultrafine particles, fume composition, and pulmonary toxicity.

    Science.gov (United States)

    Antonini, James M; Keane, Michael; Chen, Bean T; Stone, Samuel; Roberts, Jenny R; Schwegler-Berry, Diane; Andrews, Ronnee N; Frazer, David G; Sriram, Krishnan

    2011-12-01

    The goal was to determine if increasing welding voltage changes the physico-chemical properties of the fume and influences lung responses. Rats inhaled 40 mg/m³ (3 h/day × 3 days) of stainless steel (SS) welding fume generated at a standard voltage setting of 25 V (regular SS) or at a higher voltage (high voltage SS) of 30 V. Particle morphology, size and composition were characterized. Bronchoalveolar lavage was performed at different times after exposures to assess lung injury. Fumes collected from either of the welding conditions appeared as chain-like agglomerates of nanometer-sized primary particles. High voltage SS welding produced a greater number of ultrafine-sized particles. Fume generated by high voltage SS welding was higher in manganese. Pulmonary toxicity was more substantial and persisted longer after exposure to the regular SS fume. In summary, a modest raise in welding voltage affected fume size and elemental composition and altered the temporal lung toxicity profile.

  10. Environmental Audits of High Voltage Objects from the View Point of Investors

    International Nuclear Information System (INIS)

    Marek Szuba, M.

    2007-01-01

    The localization of high voltage objects, e.g., overhead transmission lines, under the spatial planning and environmental protection regulations is discussed. The most important elements of the localization procedure concerning high voltage overhead lines are presented. One of the elements of this procedure is the assessment of the investment environmental impact. The environmental audit is an essential document, in which this impact is described. It seems that its scope specified in the Environmental Protection Act is not adjusted to the specificity of line investments. This gives rise to some problems in preparing environmental audits for overhead lines, e.g., possible influence of high voltage lines on the Natura 2000 area zones. Several other related problems are also highlighted in this paper. (author)

  11. Observation of asymmetric transverse voltage in granular high-T c superconductors

    International Nuclear Information System (INIS)

    Luz, M.S. da; Carvalho, F.J.H. de; Santos, C.A.M. dos; Shigue, C.Y.; Machado, A.J.S.; Ricardo da Silva, R.

    2005-01-01

    This work reports the influence of the granularity on the transverse voltage as a function of the temperature, V XY (T), in polycrystalline samples of Bi 2 Sr 2 Ca 0.8 Pr 0.2 Cu 2 O 8+δ composition. It is observed nonzero transverse voltage at zero external magnetic field in the vicinity of the superconducting transition while far away from it, both above and below, no such voltage was detected. Measurements of V XY (T) in both directions of magnetic field allowed to calculate the symmetric and asymmetric transverse voltages in the full range of the applied magnetic field studied (zero up to 9 T). The symmetric transverse voltage as a function of the temperature presents sign reversal of the Hall resistance and positive Hall voltage at normal state such as expected for hole-doped high critical temperature superconductors. On the other hand, the asymmetric component of V XY (T) shows a peak near the superconducting transition which has been recently reported in literature. V XY (T) curves measured in a sample with double superconducting transition, which was confirmed by ac-susceptibility measurements and hysteresis loops of the magneto-resistance, present two peaks in the asymmetric component. These peaks are related to the intergranular and intragranular transitions and can be explained within the framework of Josephson and Abrikosov vortices and anti-vortices motion. By comparing the temperature dependence of the asymmetric transverse voltage and the derivative of longitudinal voltage is possible to observe a specific relation between both transport properties, which is noted to be valid not only at zero applied magnetic field but also under applied field

  12. Effects of Voltage-Gated K+ Channel on Cell Proliferation in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available Objective. To study the effects and underlying mechanisms of voltage-gated K+ channels on the proliferation of multiple myeloma cells. Methods. RPMI-8226 MM cell line was used for the experiments. Voltage-gated K+ currents and the resting potential were recorded by whole-cell patch-clamp technique. RT-PCR detected Kv channel mRNA expression. Cell viability was analyzed with MTT assay. Cell counting system was employed to monitor cell proliferation. DNA contents and cell volume were analyzed by flow cytometry. Results. Currents recorded in RPMI-8226 cells were confirmed to be voltage-gated K+ channels. A high level of Kv1.3 mRNA was detected but no Kv3.1 mRNA was detected in RPMI-8226 cells. Voltage-gated K+ channel blocker 4-aminopyridine (4-AP (2 mM depolarized the resting potential from −42 ± 1.7 mV to −31.8 ± 2.8 mV (P0.05. Conclusions. In RPMI-8226, voltage-gated K+ channels are involved in proliferation and cell cycle progression its influence on the resting potential and cell volume may be responsible for this process; the inhibitory effect of the voltage-gated K+ channel blocker on RPMI-8226 cell proliferation is a phase-specific event.

  13. Influence of bias voltage on the stability of CsI photocathodes exposed to air

    CERN Document Server

    Nitti, M A; Nappi, E; Singh, B K; Valentini, A

    2002-01-01

    We describe a possible correlation between the bias voltage applied to the substrate during the growth of CsI photocathodes and the variation of quantum efficiency (QE) after one day exposure to humid air. It was found that fresh samples are much less sensitive to humid air when a high negative bias voltage was applied during film growth. A model based on surface film interaction with water molecules is presented for the observed effect. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) measurements have been performed to examine, respectively, the bulk structure and the surface of fresh and exposed CsI samples. Also reported are transmittance measurements for fresh and aged CsI samples in the wavelength range 190-850 nm.

  14. Background voltage distortion influence on power electric systems in the presence of the Steinmetz circuit

    Energy Technology Data Exchange (ETDEWEB)

    Sainz, Luis; Pedra, Joaquin [Department of Electrical Engineering, ETSEIB-UPC, Av. Diagonal 647, 08028 Barcelona (Spain); Caro, Manuel [IDOM Ingenieria y Arquitectura, C. Barcas 2, 46002 Valencia (Spain)

    2009-01-15

    In traction systems, it is usual to connect reactances in delta configuration with single-phase loads to reduce voltage unbalances and avoid electric system operation problems. This set is known as Steinmetz circuit. Parallel and series resonances can occur due to the capacitive reactance of the Steinmetz circuit and affect power quality. In this paper, the series resonance ''observed'' from the supply system is numerically located. The study of this resonance is important to avoid problems due to background voltage distortion. Experimental measurements are also presented to validate the obtained numerical results. (author)

  15. Low-Voltage Consumption Coordination for Loss Minimization and Voltage Control

    DEFF Research Database (Denmark)

    Juelsgaard, Morten; Sloth, Christoffer; Wisniewski, Rafal

    2014-01-01

    This work presents a strategy for minimizing active power losses in low-voltage grids, by coordinating the consumption of electric vehicles and power generation from solar panels. We show that minimizing losses, also reduces voltage variations, and illustrate how this may be employed for increasing...

  16. Thermoelectric voltage at a nanometer-scale heated tip point contact

    Science.gov (United States)

    Fletcher, Patrick C.; Lee, Byeonghee; King, William P.

    2012-01-01

    We report thermoelectric voltage measurements between the platinum-coated tip of a heated atomic force microscope (AFM) cantilever and a gold-coated substrate. The cantilevers have an integrated heater-thermometer element made from doped single crystal silicon, and a platinum tip. The voltage can be measured at the tip, independent from the cantilever heating. We used the thermocouple junction between the platinum tip and the gold substrate to measure thermoelectric voltage during heating. Experiments used either sample-side or tip-side heating, over the temperature range 25-275 °C. The tip-substrate contact is ˜4 nm in diameter and its average measured Seebeck coefficient is 3.4 μV K-1. The thermoelectric voltage is used to determine tip-substrate interface temperature when the substrate is either glass or quartz. When the non-dimensional cantilever heater temperature is 1, the tip-substrate interface temperature is 0.593 on glass and 0.125 on quartz. Thermal contact resistance between the tip and the substrate heavily influences the tip-substrate interface temperature. Measurements agree well with modeling when the tip-substrate interface contact resistance is 108 K W-1.

  17. Thermoelectric voltage at a nanometer-scale heated tip point contact

    International Nuclear Information System (INIS)

    Fletcher, Patrick C; Lee, Byeonghee; King, William P

    2012-01-01

    We report thermoelectric voltage measurements between the platinum-coated tip of a heated atomic force microscope (AFM) cantilever and a gold-coated substrate. The cantilevers have an integrated heater–thermometer element made from doped single crystal silicon, and a platinum tip. The voltage can be measured at the tip, independent from the cantilever heating. We used the thermocouple junction between the platinum tip and the gold substrate to measure thermoelectric voltage during heating. Experiments used either sample-side or tip-side heating, over the temperature range 25–275 °C. The tip–substrate contact is ∼4 nm in diameter and its average measured Seebeck coefficient is 3.4 μV K −1 . The thermoelectric voltage is used to determine tip–substrate interface temperature when the substrate is either glass or quartz. When the non-dimensional cantilever heater temperature is 1, the tip–substrate interface temperature is 0.593 on glass and 0.125 on quartz. Thermal contact resistance between the tip and the substrate heavily influences the tip–substrate interface temperature. Measurements agree well with modeling when the tip–substrate interface contact resistance is 10 8 K W −1 . (paper)

  18. Quantum algorithms and quantum maps - implementation and error correction

    International Nuclear Information System (INIS)

    Alber, G.; Shepelyansky, D.

    2005-01-01

    Full text: We investigate the dynamics of the quantum tent map under the influence of errors and explore the possibilities of quantum error correcting methods for the purpose of stabilizing this quantum algorithm. It is known that static but uncontrollable inter-qubit couplings between the qubits of a quantum information processor lead to a rapid Gaussian decay of the fidelity of the quantum state. We present a new error correcting method which slows down this fidelity decay to a linear-in-time exponential one. One of its advantages is that it does not require redundancy so that all physical qubits involved can be used for logical purposes. We also study the influence of decoherence due to spontaneous decay processes which can be corrected by quantum jump-codes. It is demonstrated how universal encoding can be performed in these code spaces. For this purpose we discuss a new entanglement gate which can be used for lowest level encoding in concatenated error-correcting architectures. (author)

  19. DC-link Voltage Control to Compensate Voltage Deviation for PV–BESSs Integrated System in Low-Voltage (LV Networks

    Directory of Open Access Journals (Sweden)

    Lee Gyu-sub

    2016-01-01

    Full Text Available The exhaustion of fossil fuel and the greenhouse gas emission are one of the most significant energy and environmental issues, respectively. Photovoltaic (PV generators and battery energy storage systems (BESSs have been significantly increased for recent years. The BESSs are mainly used for smoothing active power fluctuation of the PV. In this paper, PV–BESSs integration of two DC/DC converters and one AC/DC converter is investigated and DC-link voltage control to compensate the AC voltage deviation is proposed for the PV‒BESS system in low-voltage (LV networks.

  20. Human Error and Organizational Management

    Directory of Open Access Journals (Sweden)

    Alecxandrina DEACONU

    2009-01-01

    Full Text Available The concern for performance is a topic that raises interest in the businessenvironment but also in other areas that – even if they seem distant from thisworld – are aware of, interested in or conditioned by the economy development.As individual performance is very much influenced by the human resource, wechose to analyze in this paper the mechanisms that generate – consciously or not–human error nowadays.Moreover, the extremely tense Romanian context,where failure is rather a rule than an exception, made us investigate thephenomenon of generating a human error and the ways to diminish its effects.

  1. Decomposition of Composite Electric Field in a Three-Phase D-Dot Voltage Transducer Measuring System

    Directory of Open Access Journals (Sweden)

    Xueqi Hu

    2016-10-01

    Full Text Available In line with the wider application of non-contact voltage transducers in the engineering field, transducers are required to have better performance for different measuring environments. In the present study, the D-dot voltage transducer is further improved based on previous research in order to meet the requirements for long-distance measurement of electric transmission lines. When measuring three-phase electric transmission lines, problems such as synchronous data collection and composite electric field need to be resolved. A decomposition method is proposed with respect to the superimposed electric field generated between neighboring phases. The charge simulation method is utilized to deduce the decomposition equation of the composite electric field and the validity of the proposed method is verified by simulation calculation software. With the deduced equation as the algorithm foundation, this paper improves hardware circuits, establishes a measuring system and constructs an experimental platform for examination. Under experimental conditions, a 10 kV electric transmission line was tested for steady-state errors, and the measuring results of the transducer and the high-voltage detection head were compared. Ansoft Maxwell Stimulation Software was adopted to obtain the electric field intensity in different positions under transmission lines; its values and the measuring values of the transducer were also compared. Experimental results show that the three-phase transducer is characterized by a relatively good synchronization for data measurement, measuring results with high precision, and an error ratio within a prescribed limit. Therefore, the proposed three-phase transducer can be broadly applied and popularized in the engineering field.

  2. Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zheng, Fangdan; Xing, Yinjiao; Jiang, Jiuchun; Sun, Bingxiang; Kim, Jonghoon; Pecht, Michael

    2016-01-01

    Highlights: • Two common tests for observing battery open circuit voltage performance are compared. • The temperature dependency of the OCV-SOC relationship is investigated. • Two estimators are evaluated in terms of accuracy and robustness for estimating battery SOC. • The incremental OCV test is better to predetermine the OCV-SOCs for SOC online estimation. - Abstract: Battery state of charge (SOC) estimation is a crucial function of battery management systems (BMSs), since accurate estimated SOC is critical to ensure the safety and reliability of electric vehicles. A widely used technique for SOC estimation is based on online inference of battery open circuit voltage (OCV). Low-current OCV and incremental OCV tests are two common methods to observe the OCV-SOC relationship, which is an important element of the SOC estimation technique. In this paper, two OCV tests are run at three different temperatures and based on which, two SOC estimators are compared and evaluated in terms of tracking accuracy, convergence time, and robustness for online estimating battery SOC. The temperature dependency of the OCV-SOC relationship is investigated and its influence on SOC estimation results is discussed. In addition, four dynamic tests are presented, one for estimator parameter identification and the other three for estimator performance evaluation. The comparison results show that estimator 2 (based on the incremental OCV test) has higher tracking accuracy and is more robust against varied loading conditions and different initial values of SOC than estimator 1 (based on the low-current OCV test) with regard to ambient temperature. Therefore, the incremental OCV test is recommended for predetermining the OCV-SOCs for battery SOC online estimation in BMSs.

  3. Nursing Errors in Intensive Care Unit by Human Error Identification in Systems Tool: A Case Study

    Directory of Open Access Journals (Sweden)

    Nezamodini

    2016-03-01

    Full Text Available Background Although health services are designed and implemented to improve human health, the errors in health services are a very common phenomenon and even sometimes fatal in this field. Medical errors and their cost are global issues with serious consequences for the patients’ community that are preventable and require serious attention. Objectives The current study aimed to identify possible nursing errors applying human error identification in systems tool (HEIST in the intensive care units (ICUs of hospitals. Patients and Methods This descriptive research was conducted in the intensive care unit of a hospital in Khuzestan province in 2013. Data were collected through observation and interview by nine nurses in this section in a period of four months. Human error classification was based on Rose and Rose and Swain and Guttmann models. According to HEIST work sheets the guide questions were answered and error causes were identified after the determination of the type of errors. Results In total 527 errors were detected. The performing operation on the wrong path had the highest frequency which was 150, and the second rate with a frequency of 136 was doing the tasks later than the deadline. Management causes with a frequency of 451 were the first rank among identified errors. Errors mostly occurred in the system observation stage and among the performance shaping factors (PSFs, time was the most influencing factor in occurrence of human errors. Conclusions Finally, in order to prevent the occurrence and reduce the consequences of identified errors the following suggestions were proposed : appropriate training courses, applying work guidelines and monitoring their implementation, increasing the number of work shifts, hiring professional workforce, equipping work space with appropriate facilities and equipment.

  4. Soft error evaluation in SRAM using α sources

    International Nuclear Information System (INIS)

    He Chaohui; Chu Jun; Ren Xueming; Xia Chunmei; Yang Xiupei; Zhang Weiwei; Wang Hongquan; Xiao Jiangbo; Li Xiaolin

    2006-01-01

    Soft errors in memories influence directly the reliability of products. To compare the ability of three different memories against soft errors by experiments of alpha particles irradiation, the numbers of soft errors are measured for three different SRAMs and the cross sections of single event upset (SEU) and failures in time (FIT) are calculated. According to the cross sections of SEU, the ability of A166M against soft errors is the best and then B166M, the last B200M. The average FIT of B166M is smaller than that of B200M, and that of A166M is the biggest among them. (authors)

  5. Stability Analysis of a Voltage-Based Controller for Robot Manipulators

    Directory of Open Access Journals (Sweden)

    Jorge Orrante-Sakanassi

    2013-01-01

    Full Text Available A voltage-based control scheme for robot manipulators has been presented in recent literature, where feedback linearization is applied in the electrical equations of the DC motors in order to cancel the electrical current terms. However, in this paper we show that this control technique generates a system of the form Ex = Ax + Bu, where E is a singular matrix, that is to say, a generalized state-space system or singular system. This paper introduces a formal stability analysis of the respective system by considering the state-space equation as a singular system. Furthermore, in order to avoid the singularity of the closed-loop system, modified voltage-based control schemes are proposed, whose Lyapunov stability analyses conclude semiglobal asymptotic stability for the set-point control case and uniform boundedness of the solutions and semiglobal convergence of the position, as well as velocity errors for the tracking control case. The proposed control systems are simulated for the tracking and set-point cases using the CICESE Pelican robot driven by DC motors.

  6. Common errors of drug administration in infants: causes and avoidance.

    Science.gov (United States)

    Anderson, B J; Ellis, J F

    1999-01-01

    Drug administration errors are common in infants. Although the infant population has a high exposure to drugs, there are few data concerning pharmacokinetics or pharmacodynamics, or the influence of paediatric diseases on these processes. Children remain therapeutic orphans. Formulations are often suitable only for adults; in addition, the lack of maturation of drug elimination processes, alteration of body composition and influence of size render the calculation of drug doses complex in infants. The commonest drug administration error in infants is one of dose, and the commonest hospital site for this error is the intensive care unit. Drug errors are a consequence of system error, and preventive strategies are possible through system analysis. The goal of a zero drug error rate should be aggressively sought, with systems in place that aim to eliminate the effects of inevitable human error. This involves review of the entire system from drug manufacture to drug administration. The nuclear industry, telecommunications and air traffic control services all practise error reduction policies with zero error as a clear goal, not by finding fault in the individual, but by identifying faults in the system and building into that system mechanisms for picking up faults before they occur. Such policies could be adapted to medicine using interventions both specific (the production of formulations which are for children only and clearly labelled, regular audit by pharmacists, legible prescriptions, standardised dose tables) and general (paediatric drug trials, education programmes, nonpunitive error reporting) to reduce the number of errors made in giving medication to infants.

  7. Field angle dependence of voltage-induced ferromagnetic resonance under DC bias voltage

    International Nuclear Information System (INIS)

    Shiota, Yoichi; Miwa, Shinji; Tamaru, Shingo; Nozaki, Takayuki; Kubota, Hitoshi; Fukushima, Akio; Suzuki, Yoshishige; Yuasa, Shinji

    2016-01-01

    We studied the rectification function of microwaves in CoFeB/MgO-based magnetic tunnel junctions using voltage-induced ferromagnetic resonance (FMR). Our findings reveal that the shape of the structure of the spectrum depends on the rotation angle of the external magnetic field, providing clear evidence that FMR dynamics are excited by voltage-induced magnetic anisotropy changes. Further, enhancement of the rectified voltage was demonstrated under a DC bias voltage. In our experiments, the highest microwave detection sensitivity obtained was 350 mV/mW, at an RF frequency of 1.0 GHz and field angle of θ_H=80°, ϕ_H=0°. The experimental results correlated with those obtained via simulation, and the calculated results revealed the magnetization dynamics at the resonance state. - Highlights: • Examined voltage-induced ferromagnetic resonance (FMR) under various field angles. • FMR dynamics are excited by voltage-induced magnetic anisotropy changes. • Microwave detection sensitivity depends on input RF and elevation angle. • Microwave detection sensitivity=350 mV/mW at RF=1.0 GHz, θ_H=80°, ϕ_H=0°.

  8. Combined influence of CT random noise and HU-RSP calibration curve nonlinearities on proton range systematic errors

    Science.gov (United States)

    Brousmiche, S.; Souris, K.; Orban de Xivry, J.; Lee, J. A.; Macq, B.; Seco, J.

    2017-11-01

    Proton range random and systematic uncertainties are the major factors undermining the advantages of proton therapy, namely, a sharp dose falloff and a better dose conformality for lower doses in normal tissues. The influence of CT artifacts such as beam hardening or scatter can easily be understood and estimated due to their large-scale effects on the CT image, like cupping and streaks. In comparison, the effects of weakly-correlated stochastic noise are more insidious and less attention is drawn on them partly due to the common belief that they only contribute to proton range uncertainties and not to systematic errors thanks to some averaging effects. A new source of systematic errors on the range and relative stopping powers (RSP) has been highlighted and proved not to be negligible compared to the 3.5% uncertainty reference value used for safety margin design. Hence, we demonstrate that the angular points in the HU-to-RSP calibration curve are an intrinsic source of proton range systematic error for typical levels of zero-mean stochastic CT noise. Systematic errors on RSP of up to 1% have been computed for these levels. We also show that the range uncertainty does not generally vary linearly with the noise standard deviation. We define a noise-dependent effective calibration curve that better describes, for a given material, the RSP value that is actually used. The statistics of the RSP and the range continuous slowing down approximation (CSDA) have been analytically derived for the general case of a calibration curve obtained by the stoichiometric calibration procedure. These models have been validated against actual CSDA simulations for homogeneous and heterogeneous synthetical objects as well as on actual patient CTs for prostate and head-and-neck treatment planning situations.

  9. High voltage test techniques

    CERN Document Server

    Kind, Dieter

    2001-01-01

    The second edition of High Voltage Test Techniques has been completely revised. The present revision takes into account the latest international developments in High Voltage and Measurement technology, making it an essential reference for engineers in the testing field.High Voltage Technology belongs to the traditional area of Electrical Engineering. However, this is not to say that the area has stood still. New insulating materials, computing methods and voltage levels repeatedly pose new problems or open up methods of solution; electromagnetic compatibility (EMC) or components and systems al

  10. Pulse-voltage fast generator

    International Nuclear Information System (INIS)

    Valeev, R.I.; Nikiforov, M.G.; Kharchenko, A.F.

    1988-01-01

    The design is described and the test results of a four-channel pulse-voltage generator with maximum output voltage 200 kV are presented. The measurement results of generator triggering time depending on the value and polarity of the triggering voltage pulse for different triggering circuits are presented. The tests have shown stable triggering of all four channels of the generator in the range up to 40 % from selfbreakdown voltage. The generator triggering delay in the given range is <25 ns, asynchronism in channel triggering is <±1 ns

  11. Low-Power, Low-Voltage Resistance-to-Digital Converter for Sensing Applications

    Directory of Open Access Journals (Sweden)

    Sergey Y. YURISH

    2016-09-01

    Full Text Available IC (ASIP of Universal Sensors and Transducers Interface (USTI-MOB with low power consumption, working in the resistive measurement mode (one of 26 possible measuring modes is described in the article. The proposed IC has 20 W to 4.5 M W range of measurement, relative error< ±0.04 %, 0.85 mA supply current and 1.2 V supply voltage. The worst-case error of about< ±1.54 % is observed. IC has three popular serial interfaces: I2C, SPI and RS232/USB. Due to high metrological performance and technical characteristics the USTI- MOB is well suitable for such application as: sensor systems for IoT, wearable and mobile devices, and digital multimeters. The ICs can also work with any quasi-digital resistive converters, in which the resistance is converted to frequency, period, duty-cycle or pulse width.

  12. Modulation linearization of a frequency-modulated voltage controlled oscillator, part 3

    Science.gov (United States)

    Honnell, M. A.

    1975-01-01

    An analysis is presented for the voltage versus frequency characteristics of a varactor modulated VHF voltage controlled oscillator in which the frequency deviation is linearized by using the nonlinear characteristics of a field effect transistor as a signal amplifier. The equations developed are used to calculate the oscillator output frequency in terms of pertinent circuit parameters. It is shown that the nonlinearity exponent of the FET has a pronounced influence on frequency deviation linearity, whereas the junction exponent of the varactor controls total frequency deviation for a given input signal. A design example for a 250 MHz frequency modulated oscillator is presented.

  13. Low-voltage gyrotrons

    International Nuclear Information System (INIS)

    Glyavin, M. Yu.; Zavolskiy, N. A.; Sedov, A. S.; Nusinovich, G. S.

    2013-01-01

    For a long time, the gyrotrons were primarily developed for electron cyclotron heating and current drive of plasmas in controlled fusion reactors where a multi-megawatt, quasi-continuous millimeter-wave power is required. In addition to this important application, there are other applications (and their number increases with time) which do not require a very high power level, but such issues as the ability to operate at low voltages and have compact devices are very important. For example, gyrotrons are of interest for a dynamic nuclear polarization, which improves the sensitivity of the nuclear magnetic resonance spectroscopy. In this paper, some issues important for operation of gyrotrons driven by low-voltage electron beams are analyzed. An emphasis is made on the efficiency of low-voltage gyrotron operation at the fundamental and higher cyclotron harmonics. These efficiencies calculated with the account for ohmic losses were, first, determined in the framework of the generalized gyrotron theory based on the cold-cavity approximation. Then, more accurate, self-consistent calculations for the fundamental and second harmonic low-voltage sub-THz gyrotron designs were carried out. Results of these calculations are presented and discussed. It is shown that operation of the fundamental and second harmonic gyrotrons with noticeable efficiencies is possible even at voltages as low as 5–10 kV. Even the third harmonic gyrotrons can operate at voltages about 15 kV, albeit with rather low efficiency (1%–2% in the submillimeter wavelength region).

  14. A Novel Index for Online Voltage Stability Assessment Based on Correlation Characteristic of Voltage Profiles

    Directory of Open Access Journals (Sweden)

    M. R. Aghamohammadi

    2011-06-01

    Full Text Available Abstract: Voltage instability is a major threat for security of power systems. Preserving voltage security margin at a certain limit is a vital requirement for today’s power systems. Assessment of voltage security margin is a challenging task demanding sophisticated indices. In this paper, for the purpose of on line voltage security assessment a new index based on the correlation characteristic of network voltage profile is proposed. Voltage profile comprising all bus voltages contains the effect of network structure, load-generation patterns and reactive power compensation on the system behaviour and voltage security margin. Therefore, the proposed index is capable to clearly reveal the effect of system characteristics and events on the voltage security margin. The most attractive feature for this index is its fast and easy calculation from synchronously measured voltage profile without any need to system modelling and simulation and without any dependency on network size. At any instant of system operation by merely measuring network voltage profile and no further simulation calculation this index could be evaluated with respect to a specific reference profile. The results show that the behaviour of this index with respect to the change in system security is independent of the selected reference profile. The simplicity and easy calculation make this index very suitable for on line application. The proposed approach has been demonstrated on IEEE 39 bus test system with promising results showing its effectiveness and applicability.

  15. Angle Stability Analysis for Voltage-Controlled Converters

    DEFF Research Database (Denmark)

    Lin, Hengwei; Jia, Chenxi; Guerrero, Josep M.

    2017-01-01

    a criterion to analyze the quasi-steady angle stability and the direct current (DC) side stability for VSCs. The operating limit and the angle instability mechanism are revealed, which is generally applicable to the voltage-controlled converters. During the analysis, the influence of the parameters on angle...... stability is studied. Further, the difference on instability mechanism between power electronic converters and synchronous generators are explained in detail. Finally, experiment results with corrective actions verify the analysis....

  16. Advanced Control of the Dynamic Voltage Restorer for Mitigating Voltage Sags in Power Systems

    Directory of Open Access Journals (Sweden)

    Dung Vo Tien

    2018-01-01

    Full Text Available The paper presents a vector control with two cascaded loops to improve the properties of Dynamic Voltage Restorer (DVR to minimize Voltage Sags on the grid. Thereby, a vector controlled structure was built on the rotating dq-coordinate system with the combination of voltage control and the current control. The proposed DVR control method is modelled using MATLAB-Simulink. It is tested using balanced/unbalanced voltage sags as well as fluctuant and distorted voltages. As a result, by using this controlling method, the dynamic characteristics of the system have been improved significantly. The system performed with higher accuracy, faster response and lower distortion in the voltage sags compensation. The paper presents real time experimental results to verify the performance of the proposed method in real environments.

  17. A Circulating Current Suppression Method for Parallel Connected Voltage-Source-Inverters (VSI) with Common DC and AC Buses

    DEFF Research Database (Denmark)

    Wei, Baoze; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2016-01-01

    This paper describes a theoretical with experiment study on a control strategy for the parallel operation of threephase voltage source inverters (VSI), to be applied to uninterruptible power systems (UPS). A circulating current suppression strategy for parallel VSIs is proposed in this paper based...... on circulating current control loops used to modify the reference currents by compensating the error currents among parallel inverters. Both of the cross and zero-sequence circulating currents are considered. The proposed method is coordinated together with droop and virtual impedance control. In this paper......, droop control is used to generate the reference voltage of each inverter, and the virtual impedance is used to fix the output impedance of the inverters. In addition, a secondary control is used in order to recover the voltage deviation caused by the virtual impedance. And the auxiliary current control...

  18. Improvement of diagnostic techniques and electrical circuit in azo dye degradation by high voltage electrical discharge

    International Nuclear Information System (INIS)

    Shen Yongjun; Lei Lecheng; Zhang Xingwang; Zhou Minghua; Zhang Yi

    2008-01-01

    Fast electrical diagnostics and improvement of electrical circuits for methyl orange (MO) degradation by high voltage pulsed electrical discharge were investigated. To eliminate electromagnetic radiation, several effective methods were employed. RG 218 coaxial cable was substituted for the common transmission lines to transmit high voltage pulses, and multi-lines in parallel were earthed to avoid electromagnetic interference and, additionally, to reduce the stray inductance of the electrical circuit and increase the pulse rise rate to reduce the energy losses in the transmission system. The problem of the differences in the bandwidths of voltage and current probes causing an error in the calculation of energy dissipation was avoided by reducing the bandwidths of voltage and current measurements to the same value. The real discharge current was obtained by subtracting the capacitive current from the total current. The energy per pulse obtained in the reactor before and after improvement of the diagnostics and electrical circuit were 15.5 mJ and 26.8 mJ, respectively, and the energy efficiencies of MO degradation were 1.34 x 10 -9 mol/J and 1.95 x 10 -9 mol/J, respectively

  19. Temporal development and chemical efficiency of positive streamers in a large scale wire-plate reactor as a function of voltage waveform parameters

    Science.gov (United States)

    Winands, G. J. J.; Liu, Z.; Pemen, A. J. M.; van Heesch, E. J. M.; Yan, K.; van Veldhuizen, E. M.

    2006-07-01

    In this paper a large-scale pulsed corona system is described in which pulse parameters such as pulse rise-time, peak voltage, pulse width and energy per pulse can be varied. The chemical efficiency of the system is determined by measuring ozone production. The temporal and spatial development of the discharge streamers is recorded using an ICCD camera with a shortest exposure time of 5 ns. The camera can be triggered at any moment starting from the time the voltage pulse arrives on the reactor, with an accuracy of less than 1 ns. Measurements were performed on an industrial size wire-plate reactor. The influence of pulse parameters like pulse voltage, DC bias voltage, rise-time and pulse repetition rate on plasma generation was monitored. It was observed that for higher peak voltages, an increase could be seen in the primary streamer velocity, the growth of the primary streamer diameter, the light intensity and the number of streamers per unit length of corona wire. No significant separate influence of DC bias voltage level was observed as long as the total reactor voltage (pulse + DC bias) remained constant and the DC bias voltage remained below the DC corona onset. For those situations in which the plasma appearance changed (e.g. different streamer velocity, diameter, intensity), a change in ozone production was also observed. The best chemical yields were obtained for low voltage (55 kV), low energetic pulses (0.4 J/pulse): 60 g (kWh)-1. For high voltage (86 kV), high energetic pulses (2.3 J/pulse) the yield decreased to approximately 45 g (kWh)-1, still a high value for ozone production in ambient air (RH 42%). The pulse repetition rate has no influence on plasma generation and on chemical efficiency up to 400 pulses per second.

  20. Temporal development and chemical efficiency of positive streamers in a large scale wire-plate reactor as a function of voltage waveform parameters

    Energy Technology Data Exchange (ETDEWEB)

    Winands, G J J [EPS Group, Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven (Netherlands); Liu, Z [EPS Group, Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven (Netherlands); Pemen, A J M [EPS Group, Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven (Netherlands); Heesch, E J M van [EPS Group, Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven (Netherlands); Yan, K [EPS Group, Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven (Netherlands); Veldhuizen, E M van [EPG Group, Department of Applied Physics, Eindhoven University of Technology, 5600 MB, Eindhoven (Netherlands)

    2006-07-21

    In this paper a large-scale pulsed corona system is described in which pulse parameters such as pulse rise-time, peak voltage, pulse width and energy per pulse can be varied. The chemical efficiency of the system is determined by measuring ozone production. The temporal and spatial development of the discharge streamers is recorded using an ICCD camera with a shortest exposure time of 5 ns. The camera can be triggered at any moment starting from the time the voltage pulse arrives on the reactor, with an accuracy of less than 1 ns. Measurements were performed on an industrial size wire-plate reactor. The influence of pulse parameters like pulse voltage, DC bias voltage, rise-time and pulse repetition rate on plasma generation was monitored. It was observed that for higher peak voltages, an increase could be seen in the primary streamer velocity, the growth of the primary streamer diameter, the light intensity and the number of streamers per unit length of corona wire. No significant separate influence of DC bias voltage level was observed as long as the total reactor voltage (pulse + DC bias) remained constant and the DC bias voltage remained below the DC corona onset. For those situations in which the plasma appearance changed (e.g. different streamer velocity, diameter, intensity), a change in ozone production was also observed. The best chemical yields were obtained for low voltage (55 kV), low energetic pulses (0.4 J/pulse): 60 g (kWh){sup -1}. For high voltage (86 kV), high energetic pulses (2.3 J/pulse) the yield decreased to approximately 45 g (kWh){sup -1}, still a high value for ozone production in ambient air (RH 42%). The pulse repetition rate has no influence on plasma generation and on chemical efficiency up to 400 pulses per second.

  1. Temporal development and chemical efficiency of positive streamers in a large scale wire-plate reactor as a function of voltage waveform parameters

    International Nuclear Information System (INIS)

    Winands, G J J; Liu, Z; Pemen, A J M; Heesch, E J M van; Yan, K; Veldhuizen, E M van

    2006-01-01

    In this paper a large-scale pulsed corona system is described in which pulse parameters such as pulse rise-time, peak voltage, pulse width and energy per pulse can be varied. The chemical efficiency of the system is determined by measuring ozone production. The temporal and spatial development of the discharge streamers is recorded using an ICCD camera with a shortest exposure time of 5 ns. The camera can be triggered at any moment starting from the time the voltage pulse arrives on the reactor, with an accuracy of less than 1 ns. Measurements were performed on an industrial size wire-plate reactor. The influence of pulse parameters like pulse voltage, DC bias voltage, rise-time and pulse repetition rate on plasma generation was monitored. It was observed that for higher peak voltages, an increase could be seen in the primary streamer velocity, the growth of the primary streamer diameter, the light intensity and the number of streamers per unit length of corona wire. No significant separate influence of DC bias voltage level was observed as long as the total reactor voltage (pulse + DC bias) remained constant and the DC bias voltage remained below the DC corona onset. For those situations in which the plasma appearance changed (e.g. different streamer velocity, diameter, intensity), a change in ozone production was also observed. The best chemical yields were obtained for low voltage (55 kV), low energetic pulses (0.4 J/pulse): 60 g (kWh) -1 . For high voltage (86 kV), high energetic pulses (2.3 J/pulse) the yield decreased to approximately 45 g (kWh) -1 , still a high value for ozone production in ambient air (RH 42%). The pulse repetition rate has no influence on plasma generation and on chemical efficiency up to 400 pulses per second

  2. The influence of random and systematic errors on a general definition of minimum detectable amount (MDA) applicable to all radiobioassay measurements

    International Nuclear Information System (INIS)

    Brodsky, A.

    1985-01-01

    An approach to defining minimum detectable amount (MDA) of radioactivity in a sample will be discussed, with the aim of obtaining comments helpful in developing a formulation of MDA that will be broadly applicable to all kinds of radiobioassay measurements, and acceptable to the scientists who make these measurements. Also, the influence of random and systematic errors on the defined MDA are examined

  3. Voltage Dependence of Supercapacitor Capacitance

    Directory of Open Access Journals (Sweden)

    Szewczyk Arkadiusz

    2016-09-01

    Full Text Available Electronic Double-Layer Capacitors (EDLC, called Supercapacitors (SC, are electronic devices that are capable to store a relatively high amount of energy in a small volume comparing to other types of capacitors. They are composed of an activated carbon layer and electrolyte solution. The charge is stored on electrodes, forming the Helmholtz layer, and in electrolyte. The capacitance of supercapacitor is voltage- dependent. We propose an experimental method, based on monitoring of charging and discharging a supercapacitor, which enables to evaluate the charge in an SC structure as well as the Capacitance-Voltage (C-V dependence. The measurement setup, method and experimental results of charging/discharging commercially available supercapacitors in various voltage and current conditions are presented. The total charge stored in an SC structure is proportional to the square of voltage at SC electrodes while the charge on electrodes increases linearly with the voltage on SC electrodes. The Helmholtz capacitance increases linearly with the voltage bias while a sublinear increase of total capacitance was found. The voltage on SC increases after the discharge of electrodes due to diffusion of charges from the electrolyte to the electrodes. We have found that the recovery voltage value is linearly proportional to the initial bias voltage value.

  4. Voltage-sensing phosphatase modulation by a C2 domain.

    Science.gov (United States)

    Castle, Paul M; Zolman, Kevin D; Kohout, Susy C

    2015-01-01

    The voltage-sensing phosphatase (VSP) is the first example of an enzyme controlled by changes in membrane potential. VSP has four distinct regions: the transmembrane voltage-sensing domain (VSD), the inter-domain linker, the cytosolic catalytic domain, and the C2 domain. The VSD transmits the changes in membrane potential through the inter-domain linker activating the catalytic domain which then dephosphorylates phosphatidylinositol phosphate (PIP) lipids. The role of the C2, however, has not been established. In this study, we explore two possible roles for the C2: catalysis and membrane-binding. The Ci-VSP crystal structures show that the C2 residue Y522 lines the active site suggesting a contribution to catalysis. When we mutated Y522 to phenylalanine, we found a shift in the voltage dependence of activity. This suggests hydrogen bonding as a mechanism of action. Going one step further, when we deleted the entire C2 domain, we found voltage-dependent enzyme activity was no longer detectable. This result clearly indicates the entire C2 is necessary for catalysis as well as for modulating activity. As C2s are known membrane-binding domains, we tested whether the VSP C2 interacts with the membrane. We probed a cluster of four positively charged residues lining the top of the C2 and suggested by previous studies to interact with phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] (Kalli et al., 2014). Neutralizing those positive charges significantly shifted the voltage dependence of activity to higher voltages. We tested membrane binding by depleting PI(4,5)P2 from the membrane using the 5HT2C receptor and found that the VSD motions as measured by voltage clamp fluorometry (VCF) were not changed. These results suggest that if the C2 domain interacts with the membrane to influence VSP function it may not occur exclusively through PI(4,5)P2. Together, this data advances our understanding of the VSP C2 by demonstrating a necessary and critical role for the C2 domain in

  5. The Influence of Training Phase on Error of Measurement in Jump Performance.

    Science.gov (United States)

    Taylor, Kristie-Lee; Hopkins, Will G; Chapman, Dale W; Cronin, John B

    2016-03-01

    The purpose of this study was to calculate the coefficients of variation in jump performance for individual participants in multiple trials over time to determine the extent to which there are real differences in the error of measurement between participants. The effect of training phase on measurement error was also investigated. Six subjects participated in a resistance-training intervention for 12 wk with mean power from a countermovement jump measured 6 d/wk. Using a mixed-model meta-analysis, differences between subjects, within-subject changes between training phases, and the mean error values during different phases of training were examined. Small, substantial factor differences of 1.11 were observed between subjects; however, the finding was unclear based on the width of the confidence limits. The mean error was clearly higher during overload training than baseline training, by a factor of ×/÷ 1.3 (confidence limits 1.0-1.6). The random factor representing the interaction between subjects and training phases revealed further substantial differences of ×/÷ 1.2 (1.1-1.3), indicating that on average, the error of measurement in some subjects changes more than in others when overload training is introduced. The results from this study provide the first indication that within-subject variability in performance is substantially different between training phases and, possibly, different between individuals. The implications of these findings for monitoring individuals and estimating sample size are discussed.

  6. Voltage-Sensitive Load Controllers for Voltage Regulation and Increased Load Factor in Distribution Systems

    DEFF Research Database (Denmark)

    Douglass, Philip James; Garcia-Valle, Rodrigo; Østergaard, Jacob

    2014-01-01

    This paper presents a novel controller design for controlling appliances based on local measurements of voltage. The controller finds the normalized voltage deviation accounting for the sensitivity of voltage measurements to appliance state. The controller produces a signal indicating desired pow...

  7. Cohesive Errors in Writing among ESL Pre-Service Teachers

    Science.gov (United States)

    Kwan, Lisa S. L.; Yunus, Melor Md

    2014-01-01

    Writing is a complex skill and one of the most difficult to master. A teacher's weak writing skills may negatively influence their students. Therefore, reinforcing teacher education by first determining pre-service teachers' writing weaknesses is imperative. This mixed-methods error analysis study aims to examine the cohesive errors in the writing…

  8. Technique for human-error sequence identification and signification

    International Nuclear Information System (INIS)

    Heslinga, G.

    1988-01-01

    The aim of the present study was to investigate whether the event-tree technique can be used for the analysis of sequences of human errors that could cause initiating events. The scope of the study was limited to a consideration of the performance of procedural actions. The event-tree technique was modified to adapt it for this study and will be referred to as the 'Technique for Human-Error-Sequence Identification and Signification' (THESIS). The event trees used in this manner, i.e. THESIS event trees, appear to present additional problems if they are applied to human performance instead of technical systems. These problems, referred to as the 'Man-Related Features' of THESIS, are: the human capability to choose among several procedures, the ergonomics of the panel layout, human actions of a continuous nature, dependence between human errors, human capability to recover possible errors, the influence of memory during the recovery attempt, variability in human performance and correlations between human;erropr probabilities. The influence of these problems on the applicability of THESIS was assessed by means of mathematical analysis, field studies and laboratory experiments (author). 130 refs.; 51 figs.; 24 tabs

  9. Quick-low-density parity check and dynamic threshold voltage optimization in 1X nm triple-level cell NAND flash memory with comprehensive analysis of endurance, retention-time, and temperature variation

    Science.gov (United States)

    Doi, Masafumi; Tokutomi, Tsukasa; Hachiya, Shogo; Kobayashi, Atsuro; Tanakamaru, Shuhei; Ning, Sheyang; Ogura Iwasaki, Tomoko; Takeuchi, Ken

    2016-08-01

    NAND flash memory’s reliability degrades with increasing endurance, retention-time and/or temperature. After a comprehensive evaluation of 1X nm triple-level cell (TLC) NAND flash, two highly reliable techniques are proposed. The first proposal, quick low-density parity check (Quick-LDPC), requires only one cell read in order to accurately estimate a bit-error rate (BER) that includes the effects of temperature, write and erase (W/E) cycles and retention-time. As a result, 83% read latency reduction is achieved compared to conventional AEP-LDPC. Also, W/E cycling is extended by 100% compared with conventional Bose-Chaudhuri-Hocquenghem (BCH) error-correcting code (ECC). The second proposal, dynamic threshold voltage optimization (DVO) has two parts, adaptive V Ref shift (AVS) and V TH space control (VSC). AVS reduces read error and latency by adaptively optimizing the reference voltage (V Ref) based on temperature, W/E cycles and retention-time. AVS stores the optimal V Ref’s in a table in order to enable one cell read. VSC further improves AVS by optimizing the voltage margins between V TH states. DVO reduces BER by 80%.

  10. Observation of Sinusoidal Voltage Behaviour in Silver Doped YBCO

    Science.gov (United States)

    Altinkok, Atilgan; Olutas, Murat; Kilic, Kivilcim; Kilic, Atilla

    The influence of bi-directional square wave (BSW) current was investigated on the evolution of the V - t curves at different periods (P) , temperatures and external magnetic fields. It was observed that slow transport relaxation measurements result in regular sinusoidal voltage oscillations which were discussed mainly in terms of the dynamic competition between pinning and depinning.The symmetry in the voltage oscillations was attributed to the elastic coupling between the flux lines and the pinning centers along grain boundaries and partly inside the grains. This case was also correlated to the equality between flux entry and exit along the YBCO/Ag sample during regular oscillations. It was shown that the voltage oscillations can be described well by an empirical expression V (t) sin(wt + φ) . We found that the phase angle φgenerally takes different values for the repetitive oscillations. Fast Fourier Transform analysis of the V - t oscillations showed that the oscillation period is comparable to that (PI) of the BSW current. This finding suggests a physical mechanism associated with charge density waves (CDWs), and, indeed, the weakly pinned flux line system in YBCO/Ag resembles the general behavior of CDWs. At certain values of PI, amplitude of BSW current, H and T, the YBCO/Ag sample behaves like a double-integrator, since it converts the BSW current to sinusoidal voltage oscillations in time.

  11. INFLUENCE OF SHOCK VOLTAGE FROM THE ELECTRIC DISCHARGE ON THE FATIGUE ENDURANCE OF CARBON STEEL IN WATER

    Directory of Open Access Journals (Sweden)

    I. O. Vakulenko

    2015-09-01

    Full Text Available Purpose. The research supposes the explanation of influence of stress impulses from an electrical discharge in water on the level of the limited endurance at a cyclic loading of the thermally work-hardened carbon steel. Methodology. Material for research was steel 45 (0,45 % carbon with сoncentration of chemical elements within the limits of steel composition. Specimens for tests are made as plates in 1 thick, width 15 and length 120-180 mm. The structural state of steel corresponded to quenching on a martensite from the normal temperatures of annealing and tempering at 300C, duration of 1 h. Microstructure was investigated with the use of electronic microscopy, the density of dislocations was estimated on the methods of X-ray analysis. Hardness was measured on the method of Rockwell (scale of «C». A cyclic loading was carried out in the conditions of symmetric bend on a tester «Saturn-10» at a temperature +20C. The treatment by shock voltage from the electrical discharge was carried out in water on setting of bath type «Iskra-23», used for cleaning of castings manufactures. Electric impulses were formed at 15-18 kV with energy of 10-12 kJ and amplitude of 1-2 GPа. Findings. As a result of processing pulses of a pressure wave of heat-strengthened steel 45 found the increase of endurance under the cyclic loading corresponds to an increased amount of accumulated dislocations on the fracture surface. The use of Coffin–Manson Equation allowed finding the decrease of deformation per cycle of loading as a result of arising stress from an electrical discharge in water. On the fracture surface (after pulse exposure was found the increased number of dislocations, located in different crystallographic systems, that is a testament to the rather complicated development of dislocation transformations in the structure of steel, which provide an increase of endurance at a fatigue. The increase of the limited endurance became as a result of impulsive

  12. Symmetric voltage-controlled variable resistance

    Science.gov (United States)

    Vanelli, J. C.

    1978-01-01

    Feedback network makes resistance of field-effect transistor (FET) same for current flowing in either direction. It combines control voltage with source and load voltages to give symmetric current/voltage characteristics. Since circuit produces same magnitude output voltage for current flowing in either direction, it introduces no offset in presense of altering polarity signals. It is therefore ideal for sensor and effector circuits in servocontrol systems.

  13. Exploration of genetically encoded voltage indicators based on a chimeric voltage sensing domain

    Directory of Open Access Journals (Sweden)

    Yukiko eMishina

    2014-09-01

    Full Text Available Deciphering how the brain generates cognitive function from patterns of electrical signals is one of the ultimate challenges in neuroscience. To this end, it would be highly desirable to monitor the activities of very large numbers of neurons while an animal engages in complex behaviours. Optical imaging of electrical activity using genetically encoded voltage indicators (GEVIs has the potential to meet this challenge. Currently prevalent GEVIs are based on the voltage-sensitive fluorescent protein (VSFP prototypical design or on the voltage dependent state transitions of microbial opsins.We recently introduced a new VSFP design in which the voltage-sensing domain (VSD is sandwiched between a FRET pair of fluorescent proteins (termed VSFP-Butterflies and also demonstrated a series of chimeric VSD in which portions of the VSD of Ciona intestinalis voltage-sensitive phosphatase (Ci-VSP are substituted by homologous portions of a voltage-gated potassium channel subunit. These chimeric VSD had faster sensing kinetics than that of the native Ci-VSD. Here, we describe a new set of VSFPs that combine chimeric VSD with the Butterfly structure. We show that these chimeric VSFP-Butterflies can report membrane voltage oscillations of up to 200 Hz in cultured cells and report sensory evoked cortical population responses in living mice. This class of GEVIs may be suitable for imaging of brain rhythms in behaving mammalians.

  14. Exploration of genetically encoded voltage indicators based on a chimeric voltage sensing domain.

    Science.gov (United States)

    Mishina, Yukiko; Mutoh, Hiroki; Song, Chenchen; Knöpfel, Thomas

    2014-01-01

    Deciphering how the brain generates cognitive function from patterns of electrical signals is one of the ultimate challenges in neuroscience. To this end, it would be highly desirable to monitor the activities of very large numbers of neurons while an animal engages in complex behaviors. Optical imaging of electrical activity using genetically encoded voltage indicators (GEVIs) has the potential to meet this challenge. Currently prevalent GEVIs are based on the voltage-sensitive fluorescent protein (VSFP) prototypical design or on the voltage-dependent state transitions of microbial opsins. We recently introduced a new VSFP design in which the voltage-sensing domain (VSD) is sandwiched between a fluorescence resonance energy transfer pair of fluorescent proteins (termed VSFP-Butterflies) and also demonstrated a series of chimeric VSD in which portions of the VSD of Ciona intestinalis voltage-sensitive phosphatase are substituted by homologous portions of a voltage-gated potassium channel subunit. These chimeric VSD had faster sensing kinetics than that of the native Ci-VSD. Here, we describe a new set of VSFPs that combine chimeric VSD with the Butterfly structure. We show that these chimeric VSFP-Butterflies can report membrane voltage oscillations of up to 200 Hz in cultured cells and report sensory evoked cortical population responses in living mice. This class of GEVIs may be suitable for imaging of brain rhythms in behaving mammalians.

  15. Cognitive errors: thinking clearly when it could be child maltreatment.

    Science.gov (United States)

    Laskey, Antoinette L

    2014-10-01

    Cognitive errors have been studied in a broad array of fields, including medicine. The more that is understood about how the human mind processes complex information, the more it becomes clear that certain situations are particularly susceptible to less than optimal outcomes because of these errors. This article explores how some of the known cognitive errors may influence the diagnosis of child abuse, resulting in both false-negative and false-positive diagnoses. Suggested remedies for these errors are offered. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Error sensitivity analysis in 10-30-day extended range forecasting by using a nonlinear cross-prediction error model

    Science.gov (United States)

    Xia, Zhiye; Xu, Lisheng; Chen, Hongbin; Wang, Yongqian; Liu, Jinbao; Feng, Wenlan

    2017-06-01

    Extended range forecasting of 10-30 days, which lies between medium-term and climate prediction in terms of timescale, plays a significant role in decision-making processes for the prevention and mitigation of disastrous meteorological events. The sensitivity of initial error, model parameter error, and random error in a nonlinear crossprediction error (NCPE) model, and their stability in the prediction validity period in 10-30-day extended range forecasting, are analyzed quantitatively. The associated sensitivity of precipitable water, temperature, and geopotential height during cases of heavy rain and hurricane is also discussed. The results are summarized as follows. First, the initial error and random error interact. When the ratio of random error to initial error is small (10-6-10-2), minor variation in random error cannot significantly change the dynamic features of a chaotic system, and therefore random error has minimal effect on the prediction. When the ratio is in the range of 10-1-2 (i.e., random error dominates), attention should be paid to the random error instead of only the initial error. When the ratio is around 10-2-10-1, both influences must be considered. Their mutual effects may bring considerable uncertainty to extended range forecasting, and de-noising is therefore necessary. Second, in terms of model parameter error, the embedding dimension m should be determined by the factual nonlinear time series. The dynamic features of a chaotic system cannot be depicted because of the incomplete structure of the attractor when m is small. When m is large, prediction indicators can vanish because of the scarcity of phase points in phase space. A method for overcoming the cut-off effect ( m > 4) is proposed. Third, for heavy rains, precipitable water is more sensitive to the prediction validity period than temperature or geopotential height; however, for hurricanes, geopotential height is most sensitive, followed by precipitable water.

  17. Using HET taxonomy to help stop human error

    OpenAIRE

    Li, Wen-Chin; Harris, Don; Stanton, Neville A.; Hsu, Yueh-Ling; Chang, Danny; Wang, Thomas; Young, Hong-Tsu

    2010-01-01

    Flight crews make positive contributions to the safety of aviation operations. Pilots have to assess continuously changing situations, evaluate potential risks, and make quick decisions. However, even well-trained and experienced pilots make errors. Accident investigations have identified that pilots’ performance is influenced significantly by the design of the flightdeck interface. This research applies hierarchical task analysis (HTA) and utilizes the Human Error Template (HET) taxonomy to ...

  18. Action errors, error management, and learning in organizations.

    Science.gov (United States)

    Frese, Michael; Keith, Nina

    2015-01-03

    Every organization is confronted with errors. Most errors are corrected easily, but some may lead to negative consequences. Organizations often focus on error prevention as a single strategy for dealing with errors. Our review suggests that error prevention needs to be supplemented by error management--an approach directed at effectively dealing with errors after they have occurred, with the goal of minimizing negative and maximizing positive error consequences (examples of the latter are learning and innovations). After defining errors and related concepts, we review research on error-related processes affected by error management (error detection, damage control). Empirical evidence on positive effects of error management in individuals and organizations is then discussed, along with emotional, motivational, cognitive, and behavioral pathways of these effects. Learning from errors is central, but like other positive consequences, learning occurs under certain circumstances--one being the development of a mind-set of acceptance of human error.

  19. Quantifying the Contributions of Environmental Parameters to Ceres Surface Net Radiation Error in China

    Science.gov (United States)

    Pan, X.; Yang, Y.; Liu, Y.; Fan, X.; Shan, L.; Zhang, X.

    2018-04-01

    Error source analyses are critical for the satellite-retrieved surface net radiation (Rn) products. In this study, we evaluate the Rn error sources in the Clouds and the Earth's Radiant Energy System (CERES) project at 43 sites from July in 2007 to December in 2007 in China. The results show that cloud fraction (CF), land surface temperature (LST), atmospheric temperature (AT) and algorithm error dominate the Rn error, with error contributions of -20, 15, 10 and 10 W/m2 (net shortwave (NSW)/longwave (NLW) radiation), respectively. For NSW, the dominant error source is algorithm error (more than 10 W/m2), particularly in spring and summer with abundant cloud. For NLW, due to the high sensitivity of algorithm and large LST/CF error, LST and CF are the largest error sources, especially in northern China. The AT influences the NLW error large in southern China because of the large AT error in there. The total precipitable water has weak influence on Rn error even with the high sensitivity of algorithm. In order to improve Rn quality, CF and LST (AT) error in northern (southern) China should be decreased.

  20. Chapter 8: Design and Control of Voltage Source Converters With LCL-Filters

    DEFF Research Database (Denmark)

    Pena-Alzola, Rafael; Blaabjerg, Frede

    2018-01-01

    presents many options for the LCL-filter design, passive damping design, and active damping design, and this chapter will present well-known practical methods. In this chapter, the LCL-filter design uses a step-by-step procedure with simple formulas that avoid trial-and-error iterations. Different......-type procedures result in a robust design against line inductance variations. The capacitor-current feedback method requires an additional sensor and the lead-lag network avoid additional sensors by using the capacitor voltage also for synchronization. The filter-based procedure presented in the chapter uses...

  1. Modeling coherent errors in quantum error correction

    Science.gov (United States)

    Greenbaum, Daniel; Dutton, Zachary

    2018-01-01

    Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.

  2. Optimization of Pockels electric field in transverse modulated optical voltage sensor

    Science.gov (United States)

    Huang, Yifan; Xu, Qifeng; Chen, Kun-Long; Zhou, Jie

    2018-05-01

    This paper investigates the possibilities of optimizing the Pockels electric field in a transverse modulated optical voltage sensor with a spherical electrode structure. The simulations show that due to the edge effect and the electric field concentrations and distortions, the electric field distributions in the crystal are non-uniform. In this case, a tiny variation in the light path leads to an integral error of more than 0.5%. Moreover, a 2D model cannot effectively represent the edge effect, so a 3D model is employed to optimize the electric field distributions. Furthermore, a new method to attach a quartz crystal to the electro-optic crystal along the electric field direction is proposed to improve the non-uniformity of the electric field. The integral error is reduced therefore from 0.5% to 0.015% and less. The proposed method is simple, practical and effective, and it has been validated by numerical simulations and experimental tests.

  3. Comparative Study of Si and SiC MOSFETs for High Voltage Class D Audio Amplifiers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    Silicon (Si) Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) are traditional utilised in class D audio amplifiers. It has been proposed to replace the traditional inefficient electrodynamic transducer with the electrostatic transducer. This imposes new high voltage requirements...... on the MOSFETs of class D amplifiers, and significantly reduces the selection of suitable MOSFETs. As a consequence it is investigated, if Silicon-Carbide (SiC) MOSFETs could represent a valid alternative. The theory of pulse timing errors are revisited for the application of high voltage and capactive loaded...... class D amplifiers. It is shown, that SiC MOSFETs can compete with Si MSOFETs in terms of THD. Validation is done using simulations and a 500 V amplifier driving a 100 nF load. THD+N below 0.3 % is reported...

  4. Errors in causal inference: an organizational schema for systematic error and random error.

    Science.gov (United States)

    Suzuki, Etsuji; Tsuda, Toshihide; Mitsuhashi, Toshiharu; Mansournia, Mohammad Ali; Yamamoto, Eiji

    2016-11-01

    To provide an organizational schema for systematic error and random error in estimating causal measures, aimed at clarifying the concept of errors from the perspective of causal inference. We propose to divide systematic error into structural error and analytic error. With regard to random error, our schema shows its four major sources: nondeterministic counterfactuals, sampling variability, a mechanism that generates exposure events and measurement variability. Structural error is defined from the perspective of counterfactual reasoning and divided into nonexchangeability bias (which comprises confounding bias and selection bias) and measurement bias. Directed acyclic graphs are useful to illustrate this kind of error. Nonexchangeability bias implies a lack of "exchangeability" between the selected exposed and unexposed groups. A lack of exchangeability is not a primary concern of measurement bias, justifying its separation from confounding bias and selection bias. Many forms of analytic errors result from the small-sample properties of the estimator used and vanish asymptotically. Analytic error also results from wrong (misspecified) statistical models and inappropriate statistical methods. Our organizational schema is helpful for understanding the relationship between systematic error and random error from a previously less investigated aspect, enabling us to better understand the relationship between accuracy, validity, and precision. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. A dynamic voltage restorer (DVR) with selective harmonic compensation at medium voltage level

    DEFF Research Database (Denmark)

    Newman, M.J.; Holmes, D.G.; Nielsen, J.G.

    2005-01-01

    Dynamic voltage restorers (DVRs) are now becoming more established in industry to reduce the impact of voltage sags to sensitive loads. However, DVRs spend most of their time in standby mode, since voltage sags occur very infrequently, and hence their utilization is low. In principle, it would...... be advantageous if the series-connected inverter of a DVR could also be used to compensate for any steady-state load voltage harmonics, since this would increase the power quality "value-added" benefits to the grid system. However, before this can be done, consideration must be given to the control of steady......-state power through the DVR, the increased losses, and the low modulation depths at which the scheme must operate to achieve acceptable harmonic compensation performance. This paper presents a selective harmonic feedback control strategy that can be easily added to medium-voltage DVR systems to provide...

  6. Slow voltage oscillations in Ag-doped superconducting Y-Ba-Cu-O

    International Nuclear Information System (INIS)

    Altinkok, A.; Yetis, H.; Kilic, K.; Kilic, A.; Olutas, M.

    2008-01-01

    The time effects in Ag-doped YBa 2 Cu 3 O 7-x sample (YBCO/Ag) were examined by means of transport relaxation measurements (V-t curves). At well-defined values of transport current (I), temperature (T) and external magnetic field (H), an abrupt rise in sample voltage was observed at the early stage of the relaxation process. After reducing the initial current to a finite value, the sample voltage levels off within a very short time. The rapid voltage drops seen in V-t curves were attributed to the rapid dynamic reorganization of flux lines traversing the sample edges. These observations were also interpreted as an indication of doping of YBCO with Ag and easy suppression of superconducting order parameter due to the presence of Ag. In addition, we investigated the influence of bidirectional square wave (BSW) current on the evolution of V-t curves at different temperatures and external magnetic fields. It was observed that a nonlinear response seen in V-t curves to BSW current with sufficiently short periods or sufficiently low amplitude reflects itself as regular sinusoidal- type voltage oscillations, which were discussed mainly in terms of the dynamic competition between pinning and depinning

  7. Genetically encoded fluorescent voltage sensors using the voltage-sensing domain of Nematostella and Danio phosphatases exhibit fast kinetics.

    Science.gov (United States)

    Baker, Bradley J; Jin, Lei; Han, Zhou; Cohen, Lawrence B; Popovic, Marko; Platisa, Jelena; Pieribone, Vincent

    2012-07-15

    A substantial increase in the speed of the optical response of genetically encoded fluorescent protein voltage sensors (FP voltage sensors) was achieved by using the voltage-sensing phosphatase genes of Nematostella vectensis and Danio rerio. A potential N. vectensis voltage-sensing phosphatase was identified in silico. The voltage-sensing domain (S1-S4) of the N. vectensis homolog was used to create an FP voltage sensor called Nema. By replacing the phosphatase with a cerulean/citrine FRET pair, a new FP voltage sensor was synthesized with fast off kinetics (Tau(off)voltage-sensing phosphatase homolog, designated Zahra and Zahra 2, exhibited fast on and off kinetics within 2ms of the time constants observed with the organic voltage-sensitive dye, di4-ANEPPS. Mutagenesis of the S4 region of the Danio FP voltage sensor shifted the voltage dependence to more negative potentials but did not noticeably affect the kinetics of the optical signal. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Genetically-encoded fluorescent voltage sensors using the voltage-sensing domain of Nematostella and Danio phosphatases exhibit fast kinetics

    Science.gov (United States)

    Baker, Bradley J.; Jin, Lei; Han, Zhou; Cohen, Lawrence B.; Popovic, Marko; Platisa, Jelena; Pieribone, Vincent

    2012-01-01

    A substantial increase in the speed of the optical response of genetically-encoded Fluorescent Protein voltage sensors (FP voltage sensors) was achieved by using the voltage-sensing phosphatase genes of Nematostella vectensis and Danio rerio. A potential N. vectensis voltage-sensing phosphatase was identified in silico. The voltage-sensing domain (S1–S4) of the N. vectensis homolog was used to create an FP voltage sensor called Nema. By replacing the phosphatase with a cerulean/citrine FRET pair, a new FP voltage sensor was synthesized with fast off kinetics (Tauoff voltage-sensing phosphatase homolog, designated Zahra and Zahra 2, exhibited fast on and off kinetics within 2 msec of the time constants observed with the organic voltage-sensitive dye, di4-ANEPPS. Mutagenesis of the S4 region of the Danio FP voltage sensor shifted the voltage dependence to more negative potentials but did not noticeably affect the kinetics of the optical signal. PMID:22634212

  9. The Amalgamation of SVR and ANFIS Models with Synchronized Phasor Measurements for On-Line Voltage Stability Assessment

    Directory of Open Access Journals (Sweden)

    Mohammed Amroune

    2017-10-01

    Full Text Available This paper presents the application of support vector regression (SVR and adaptive neuro-fuzzy inference system (ANFIS models that are amalgamated with synchronized phasor measurements for on-line voltage stability assessment. As the performance of SVR model extremely depends on the good selection of its parameters, the recently developed ant lion optimizer (ALO is adapted to seek for the SVR’s optimal parameters. In particular, the input vector of ALO-SVR and ANFIS soft computing models is provided in the form of voltage magnitudes provided by the phasor measurement units (PMUs. In order to investigate the effectiveness of ALO-SVR and ANFIS models towards performing the on-line voltage stability assessment, in-depth analyses on the results have been carried out on the IEEE 30-bus and IEEE 118-bus test systems considering different topologies and operating conditions. Two statistical performance criteria of root mean square error (RMSE and correlation coefficient (R were considered as metrics to further assess both of the modeling performances in contrast with the power flow equations. The results have demonstrated that the ALO-SVR model is able to predict the voltage stability margin with greater accuracy compared to the ANFIS model.

  10. Membrane voltage changes in passive dendritic trees: a tapering equivalent cylinder model.

    Science.gov (United States)

    Poznański, R R

    1988-01-01

    An exponentially tapering equivalent cylinder model is employed in order to approximate the loss of the dendritic trunk parameter observed from anatomical data on apical and basilar dendrites of CA1 and CA3 hippocampal pyramidal neurons. This model allows dendritic trees with a relative paucity of branching to be treated. In particular, terminal branches are not required to end at the same electrotonic distance. The Laplace transform method is used to obtain analytic expressions for the Green's function corresponding to an instantaneous pulse of current injected at a single point along a tapering equivalent cylinder with sealed ends. The time course of the voltage in response to an arbitrary input is computed using the Green's function in a convolution integral. Examples of current input considered are (1) an infinitesimally brief (Dirac delta function) pulse and (2) a step pulse. It is demonstrated that inputs located on a tapering equivalent cylinder are more effective at the soma than identically placed inputs on a nontapering equivalent cylinder. Asymptotic solutions are derived to enable the voltage response behaviour over both relatively short and long time periods to be analysed. Semilogarithmic plots of these solutions provide a basis for estimating the membrane time constant tau m from experimental transients. Transient voltage decrement from a clamped soma reveals that tapering tends to reduce the error associated with inadequate voltage clamping of the dendritic membrane. A formula is derived which shows that tapering tends to increase the estimate of the electrotonic length parameter L.

  11. Sensing voltage across lipid membranes

    Science.gov (United States)

    Swartz, Kenton J.

    2009-01-01

    The detection of electrical potentials across lipid bilayers by specialized membrane proteins is required for many fundamental cellular processes such as the generation and propagation of nerve impulses. These membrane proteins possess modular voltage-sensing domains, a notable example being the S1-S4 domains of voltage-activated ion channels. Ground-breaking structural studies on these domains explain how voltage sensors are designed and reveal important interactions with the surrounding lipid membrane. Although further structures are needed to fully understand the conformational changes that occur during voltage sensing, the available data help to frame several key concepts that are fundamental to the mechanism of voltage sensing. PMID:19092925

  12. Effect of unbalanced voltage on windings temperature, operational life and load carrying capacity of induction machine

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime University, Department of Ship Electrical Power Engineering, Morska Street 83, 81-225 Gdynia (Poland)

    2008-04-15

    This paper investigates the influence of the CVUF angle on the windings temperature rise and the derating factor of an induction machine supplied with unbalanced voltage. The effect of simultaneous voltage unbalance and harmonics on its operational life is analyzed as well. The results of calculations and experimental investigations are presented for two induction cage machines of rated power 3 and 5.5 kW. (author)

  13. Effects of Shame and Guilt on Error Reporting Among Obstetric Clinicians.

    Science.gov (United States)

    Zabari, Mara Lynne; Southern, Nancy L

    2018-04-17

    To understand how the experiences of shame and guilt, coupled with organizational factors, affect error reporting by obstetric clinicians. Descriptive cross-sectional. A sample of 84 obstetric clinicians from three maternity units in Washington State. In this quantitative inquiry, a variant of the Test of Self-Conscious Affect was used to measure proneness to guilt and shame. In addition, we developed questions to assess attitudes regarding concerns about damaging one's reputation if an error was reported and the choice to keep an error to oneself. Both assessments were analyzed separately and then correlated to identify relationships between constructs. Interviews were used to identify organizational factors that affect error reporting. As a group, mean scores indicated that obstetric clinicians would not choose to keep errors to themselves. However, bivariate correlations showed that proneness to shame was positively correlated to concerns about one's reputation if an error was reported, and proneness to guilt was negatively correlated with keeping errors to oneself. Interview data analysis showed that Past Experience with Responses to Errors, Management and Leadership Styles, Professional Hierarchy, and Relationships With Colleagues were influential factors in error reporting. Although obstetric clinicians want to report errors, their decisions to report are influenced by their proneness to guilt and shame and perceptions of the degree to which organizational factors facilitate or create barriers to restore their self-images. Findings underscore the influence of the organizational context on clinicians' decisions to report errors. Copyright © 2018 AWHONN, the Association of Women’s Health, Obstetric and Neonatal Nurses. Published by Elsevier Inc. All rights reserved.

  14. 76 FR 72203 - Voltage Coordination on High Voltage Grids; Notice of Reliability Workshop Agenda

    Science.gov (United States)

    2011-11-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD12-5-000] Voltage Coordination on High Voltage Grids; Notice of Reliability Workshop Agenda As announced in the Notice of Staff..., from 9 a.m. to 4:30 p.m. to explore the interaction between voltage control, reliability, and economic...

  15. On-line self-learning time forward voltage prognosis for lithium-ion batteries using adaptive neuro-fuzzy inference system

    Science.gov (United States)

    Fleischer, Christian; Waag, Wladislaw; Bai, Ziou; Sauer, Dirk Uwe

    2013-12-01

    The battery management system (BMS) of a battery-electric road vehicle must ensure an optimal operation of the electrochemical storage system to guarantee for durability and reliability. In particular, the BMS must provide precise information about the battery's state-of-functionality, i.e. how much dis-/charging power can the battery accept at current state and condition while at the same time preventing it from operating outside its safe operating area. These critical limits have to be calculated in a predictive manner, which serve as a significant input factor for the supervising vehicle energy management (VEM). The VEM must provide enough power to the vehicle's drivetrain for certain tasks and especially in critical driving situations. Therefore, this paper describes a new approach which can be used for state-of-available-power estimation with respect to lowest/highest cell voltage prediction using an adaptive neuro-fuzzy inference system (ANFIS). The estimated voltage for a given time frame in the future is directly compared with the actual voltage, verifying the effectiveness and accuracy of a relative voltage prediction error of less than 1%. Moreover, the real-time operating capability of the proposed algorithm was verified on a battery test bench while running on a real-time system performing voltage prediction.

  16. Effect of applied DC voltages and temperatures on space charge behaviour of multi-layer oil-paper insulation

    Energy Technology Data Exchange (ETDEWEB)

    Tang Chao; Liao Ruijin [The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University (China); Chen, G [School of Electronics and Computer Science, University of Southampton (United Kingdom); Fu, M, E-mail: tangchao_1981@163.co [AVERA T and D Technology Centre, Stafford (United Kingdom)

    2009-08-01

    In this paper, space charge in a multi-layer oil-paper insulation system was investigated using the pulsed electroacoustic (PEA) technique. A series of measurements had been carried following subjection of the insulation system to different applied voltages and different temperatures. Charge behaviours in the insulation system were analyzed and the influence of temperature on charge dynamics was discussed. The test results shows that homocharge injection takes place under all the test conditions, the applied DC voltage mainly affects the amount of space charge, while the temperature has greater influence on the distribution and mobility of space charge inside oil-paper samples.

  17. Voltage-dependent motion of the catalytic region of voltage-sensing phosphatase monitored by a fluorescent amino acid.

    Science.gov (United States)

    Sakata, Souhei; Jinno, Yuka; Kawanabe, Akira; Okamura, Yasushi

    2016-07-05

    The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane.

  18. Voltage-dependent motion of the catalytic region of voltage-sensing phosphatase monitored by a fluorescent amino acid

    Science.gov (United States)

    Sakata, Souhei; Jinno, Yuka; Kawanabe, Akira; Okamura, Yasushi

    2016-01-01

    The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane. PMID:27330112

  19. Influence of cooling rate in planar thermally assisted magnetic random access memory: Improved writeability due to spin-transfer-torque influence

    International Nuclear Information System (INIS)

    Chavent, A.; Ducruet, C.; Portemont, C.; Creuzet, C.; Alvarez-Hérault, J.; Vila, L.; Sousa, R. C.; Prejbeanu, I. L.; Dieny, B.

    2015-01-01

    This paper investigates the effect of a controlled cooling rate on magnetic field reversal assisted by spin transfer torque (STT) in thermally assisted magnetic random access memory. By using a gradual linear decrease of the voltage at the end of the write pulse, the STT decays more slowly or at least at the same rate as the temperature. This condition is necessary to make sure that the storage layer magnetization remains in the desired written direction during cooling of the cell. The influence of the write current pulse decay rate was investigated on two exchange biased synthetic ferrimagnet (SyF) electrodes. For a NiFe based electrode, a significant improvement in writing reproducibility was observed using a gradual linear voltage transition. The write error rate decreases by a factor of 10 when increasing the write pulse fall-time from ∼3 ns to 70 ns. For comparison, a second CoFe/NiFe based electrode was also reversed by magnetic field assisted by STT. In this case, no difference between sharp and linear write pulse fall shape was observed. We attribute this observation to the higher thermal stability of the CoFe/NiFe electrode during cooling. In real-time measurements of the magnetization reversal, it was found that Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling in the SyF electrode vanishes for the highest pulse voltages that were used due to the high temperature reached during write. As a result, during the cooling phase, the final state is reached through a spin-flop transition of the SyF storage layer

  20. Grinding Method and Error Analysis of Eccentric Shaft Parts

    Science.gov (United States)

    Wang, Zhiming; Han, Qiushi; Li, Qiguang; Peng, Baoying; Li, Weihua

    2017-12-01

    RV reducer and various mechanical transmission parts are widely used in eccentric shaft parts, The demand of precision grinding technology for eccentric shaft parts now, In this paper, the model of X-C linkage relation of eccentric shaft grinding is studied; By inversion method, the contour curve of the wheel envelope is deduced, and the distance from the center of eccentric circle is constant. The simulation software of eccentric shaft grinding is developed, the correctness of the model is proved, the influence of the X-axis feed error, the C-axis feed error and the wheel radius error on the grinding process is analyzed, and the corresponding error calculation model is proposed. The simulation analysis is carried out to provide the basis for the contour error compensation.

  1. Quantitative interpretation of the transition voltages in gold-poly(phenylene) thiol-gold molecular junctions

    KAUST Repository

    Wu, Kunlin

    2013-01-01

    The transition voltage of three different asymmetric Au/poly(phenylene) thiol/Au molecular junctions in which the central molecule is either benzene thiol, biphenyl thiol, or terphenyl thiol is investigated by first-principles quantum transport simulations. For all the junctions, the calculated transition voltage at positive polarity is in quantitative agreement with the experimental values and shows weak dependence on alterations of the Au-phenyl contact. When compared to the strong coupling at the Au-S contact, which dominates the alignment of various molecular orbitals with respect to the electrode Fermi level, the coupling at the Au-phenyl contact produces only a weak perturbation. Therefore, variations of the Au-phenyl contact can only have a minor influence on the transition voltage. These findings not only provide an explanation to the uniformity in the transition voltages found for π-conjugated molecules measured with different experimental methods, but also demonstrate the advantage of transition voltage spectroscopy as a tool for determining the positions of molecular levels in molecular devices. © 2013 AIP Publishing LLC.

  2. High voltage performance of a dc photoemission electron gun with centrifugal barrel-polished electrodes

    Science.gov (United States)

    Hernandez-Garcia, C.; Bullard, D.; Hannon, F.; Wang, Y.; Poelker, M.

    2017-09-01

    The design and fabrication of electrodes for direct current (dc) high voltage photoemission electron guns can significantly influence their performance, most notably in terms of maximum achievable bias voltage. Proper electrostatic design of the triple-point junction shield electrode minimizes the risk of electrical breakdown (arcing) along the insulator-cable plug interface, while the electrode shape is designed to maintain work, we describe a centrifugal barrel-polishing technique commonly used for polishing the interior surface of superconducting radio frequency cavities but implemented here for the first time to polish electrodes for dc high voltage photoguns. The technique reduced polishing time from weeks to hours while providing surface roughness comparable to that obtained with diamond-paste polishing and with unprecedented consistency between different electrode samples. We present electrode design considerations and high voltage conditioning results to 360 kV (˜11 MV/m), comparing barrel-polished electrode performance to that of diamond-paste polished electrodes. Tests were performed using a dc high voltage photogun with an inverted-geometry ceramic insulator design.

  3. Dimerization of the voltage-sensing phosphatase controls its voltage-sensing and catalytic activity.

    Science.gov (United States)

    Rayaprolu, Vamseedhar; Royal, Perrine; Stengel, Karen; Sandoz, Guillaume; Kohout, Susy C

    2018-05-07

    Multimerization is a key characteristic of most voltage-sensing proteins. The main exception was thought to be the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP). In this study, we show that multimerization is also critical for Ci-VSP function. Using coimmunoprecipitation and single-molecule pull-down, we find that Ci-VSP stoichiometry is flexible. It exists as both monomers and dimers, with dimers favored at higher concentrations. We show strong dimerization via the voltage-sensing domain (VSD) and weak dimerization via the phosphatase domain. Using voltage-clamp fluorometry, we also find that VSDs cooperate to lower the voltage dependence of activation, thus favoring the activation of Ci-VSP. Finally, using activity assays, we find that dimerization alters Ci-VSP substrate specificity such that only dimeric Ci-VSP is able to dephosphorylate the 3-phosphate from PI(3,4,5)P 3 or PI(3,4)P 2 Our results indicate that dimerization plays a significant role in Ci-VSP function. © 2018 Rayaprolu et al.

  4. Emotions, Coping and Learning in Error Situations in the Workplace

    Science.gov (United States)

    Rausch, Andreas; Seifried, Jürgen; Harteis, Christian

    2017-01-01

    Purpose: This paper aims to investigate the complex relationship between emotions, coping approaches and learning in error situations in the workplace. The study also examines the influence of individual error orientation, as well as psychological safety, and team learning behaviour as contextual factors. Design/methodology/approach: To measure…

  5. Genetic influences on functional connectivity associated with feedback processing and prediction error: Phase coupling of theta-band oscillations in twins.

    Science.gov (United States)

    Demiral, Şükrü Barış; Golosheykin, Simon; Anokhin, Andrey P

    2017-05-01

    Detection and evaluation of the mismatch between the intended and actually obtained result of an action (reward prediction error) is an integral component of adaptive self-regulation of behavior. Extensive human and animal research has shown that evaluation of action outcome is supported by a distributed network of brain regions in which the anterior cingulate cortex (ACC) plays a central role, and the integration of distant brain regions into a unified feedback-processing network is enabled by long-range phase synchronization of cortical oscillations in the theta band. Neural correlates of feedback processing are associated with individual differences in normal and abnormal behavior, however, little is known about the role of genetic factors in the cerebral mechanisms of feedback processing. Here we examined genetic influences on functional cortical connectivity related to prediction error in young adult twins (age 18, n=399) using event-related EEG phase coherence analysis in a monetary gambling task. To identify prediction error-specific connectivity pattern, we compared responses to loss and gain feedback. Monetary loss produced a significant increase of theta-band synchronization between the frontal midline region and widespread areas of the scalp, particularly parietal areas, whereas gain resulted in increased synchrony primarily within the posterior regions. Genetic analyses showed significant heritability of frontoparietal theta phase synchronization (24 to 46%), suggesting that individual differences in large-scale network dynamics are under substantial genetic control. We conclude that theta-band synchronization of brain oscillations related to negative feedback reflects genetically transmitted differences in the neural mechanisms of feedback processing. To our knowledge, this is the first evidence for genetic influences on task-related functional brain connectivity assessed using direct real-time measures of neuronal synchronization. Copyright © 2016

  6. Ultra Low-Voltage Energy Harvesting

    Science.gov (United States)

    2013-09-01

    if in a solar battery charger the level of illumination were to drop due to cloud cover, the diode would prevent discharging of the battery when...the source voltage becomes lower than battery voltage. The drawback of a simple circuit like this is that once the source voltage is lower than the...longer charged when the battery voltage is above the OV setting. Figure 13. Block diagram of BQ25504 circuit . (From [10]) 18 THIS PAGE

  7. Calculation and simulation on mid-spatial frequency error in continuous polishing

    International Nuclear Information System (INIS)

    Xie Lei; Zhang Yunfan; You Yunfeng; Ma Ping; Liu Yibin; Yan Dingyao

    2013-01-01

    Based on theoretical model of continuous polishing, the influence of processing parameters on the polishing result was discussed. Possible causes of mid-spatial frequency error in the process were analyzed. The simulation results demonstrated that the low spatial frequency error was mainly caused by large rotating ratio. The mid-spatial frequency error would decrease as the low spatial frequency error became lower. The regular groove shape was the primary reason of the mid-spatial frequency error. When irregular and fitful grooves were adopted, the mid-spatial frequency error could be lessened. Moreover, the workpiece swing could make the polishing process more uniform and reduce the mid-spatial frequency error caused by the fix-eccentric plane polishing. (authors)

  8. Technical errors in MR arthrography

    International Nuclear Information System (INIS)

    Hodler, Juerg

    2008-01-01

    This article discusses potential technical problems of MR arthrography. It starts with contraindications, followed by problems relating to injection technique, contrast material and MR imaging technique. For some of the aspects discussed, there is only little published evidence. Therefore, the article is based on the personal experience of the author and on local standards of procedures. Such standards, as well as medico-legal considerations, may vary from country to country. Contraindications for MR arthrography include pre-existing infection, reflex sympathetic dystrophy and possibly bleeding disorders, avascular necrosis and known allergy to contrast media. Errors in injection technique may lead to extra-articular collection of contrast agent or to contrast agent leaking from the joint space, which may cause diagnostic difficulties. Incorrect concentrations of contrast material influence image quality and may also lead to non-diagnostic examinations. Errors relating to MR imaging include delays between injection and imaging and inadequate choice of sequences. Potential solutions to the various possible errors are presented. (orig.)

  9. Technical errors in MR arthrography

    Energy Technology Data Exchange (ETDEWEB)

    Hodler, Juerg [Orthopaedic University Hospital of Balgrist, Radiology, Zurich (Switzerland)

    2008-01-15

    This article discusses potential technical problems of MR arthrography. It starts with contraindications, followed by problems relating to injection technique, contrast material and MR imaging technique. For some of the aspects discussed, there is only little published evidence. Therefore, the article is based on the personal experience of the author and on local standards of procedures. Such standards, as well as medico-legal considerations, may vary from country to country. Contraindications for MR arthrography include pre-existing infection, reflex sympathetic dystrophy and possibly bleeding disorders, avascular necrosis and known allergy to contrast media. Errors in injection technique may lead to extra-articular collection of contrast agent or to contrast agent leaking from the joint space, which may cause diagnostic difficulties. Incorrect concentrations of contrast material influence image quality and may also lead to non-diagnostic examinations. Errors relating to MR imaging include delays between injection and imaging and inadequate choice of sequences. Potential solutions to the various possible errors are presented. (orig.)

  10. Design of shielded voltage divider for impulse voltage measurement

    International Nuclear Information System (INIS)

    Kato, Shohei; Kouno, Teruya; Maruyama, Yoshio; Kikuchi, Koji.

    1976-01-01

    The dividers used for the study of the insulation and electric discharge phenomena in high voltage equipments have the problems of the change of response characteristics owing to adjacent bodies and of induced noise. To improve the characteristics, the enclosed type divider shielded with metal has been investigated, and the divider of excellent response has been obtained by adopting the frequency-separating divider system, which is divided into two parts, resistance divider (lower frequency region) and capacitance divider (higher frequency region), for avoiding to degrade the response. Theoretical analysis was carried out in the cases that residual inductance can be neglected or can not be neglected in the small capacitance divider, and that the connecting wires are added. Next, the structure of the divider and the design of the electric field for the divider manufactured on the basis of the theory are described. The response characteristics were measured. The results show that 1 MV impulse voltage can be measured within the response time of 10 ns. Though this divider aims at the impulse voltage, the duration time of which is about that of standard lightning impulse, in view of the heat capacity because of the input resistance of 10.5 kΩ, it is expected that the divider can be applied to the voltage of longer duration time by increasing the input resistance in future. (Wakatsuki, Y.)

  11. Evaluation of the Voltage Support Strategies for the Low Voltage Grid Connected PV

    DEFF Research Database (Denmark)

    Demirok, Erhan; Sera, Dezso; Teodorescu, Remus

    2010-01-01

    Admissible range of grid voltage is one of the strictest constraints for the penetration of distributed photovoltaic (PV) generators especially connection to low voltage (LV) public networks. Voltage limits are usually fulfilled either by network reinforcements or limiting of power injections from...... PVs. In order to increase PV penetration level further, new voltage support control functions for individual inverters are required. This paper investigates distributed reactive power regulation and active power curtailment strategies regarding the development of PV connection capacity by evaluation...... of reactive power efforts and requirement of minimum active power curtailment. Furthermore, a small scale experimental setup is built to reflect real grid interaction in the laboratory by achieving critical types of grid (weak and sufficiently stiff)....

  12. Modulating the Voltage-sensitivity of a Genetically Encoded Voltage Indicator.

    Science.gov (United States)

    Jung, Arong; Rajakumar, Dhanarajan; Yoon, Bong-June; Baker, Bradley J

    2017-10-01

    Saturation mutagenesis was performed on a single position in the voltage-sensing domain (VSD) of a genetically encoded voltage indicator (GEVI). The VSD consists of four transmembrane helixes designated S1-S4. The V220 position located near the plasma membrane/extracellular interface had previously been shown to affect the voltage range of the optical signal. Introduction of polar amino acids at this position reduced the voltage-dependent optical signal of the GEVI. Negatively charged amino acids slightly reduced the optical signal by 33 percent while positively charge amino acids at this position reduced the optical signal by 80%. Surprisingly, the range of V220D was similar to that of V220K with shifted optical responses towards negative potentials. In contrast, the V220E mutant mirrored the responses of the V220R mutation suggesting that the length of the side chain plays in role in determining the voltage range of the GEVI. Charged mutations at the 219 position all behaved similarly slightly shifting the optical response to more negative potentials. Charged mutations to the 221 position behaved erratically suggesting interactions with the plasma membrane and/or other amino acids in the VSD. Introduction of bulky amino acids at the V220 position increased the range of the optical response to include hyperpolarizing signals. Combining The V220W mutant with the R217Q mutation resulted in a probe that reduced the depolarizing signal and enhanced the hyperpolarizing signal which may lead to GEVIs that only report neuronal inhibition.

  13. Dynamic Pull-In Investigation of a Clamped-Clamped Nanoelectromechanical Beam under Ramp-Input Voltage and the Casimir Force

    Directory of Open Access Journals (Sweden)

    Amir R. Askari

    2014-01-01

    Full Text Available The influence of the Casimir excitation on dynamic pull-in instability of a nanoelectromechanical beam under ramp-input voltage is studied. The ramp-input actuation has applications in frequency sweeping of RF-N/MEMS. The presented model is nonlinear due to the inherent nonlinearity of electrostatics and the Casimir excitations as well as the geometric nonlinearity of midplane stretching. A Galerkin based reduced order modeling is utilized. It is found that the calculated dynamic pull-in ramp input voltage leads to dynamic pull-in step input voltage by increasing the slope of voltage-time diagram. This fact is utilized to verify the results of present study.

  14. High voltage investigations for ITER coils

    International Nuclear Information System (INIS)

    Fink, S.; Fietz, W.H.

    2006-01-01

    The superconducting ITER magnets will be excited with high voltage during operation and fast discharge. Because the coils are complex systems the internal voltage distribution can differ to a large extent from the ideal linear voltage distribution. In case of fast excitations internal voltages between conductor and radial plate of a TF coil can be even higher than the terminal voltage of 3.5 kV to ground which appears during a fast discharge without a fault. Hence the determination of the transient voltage distribution is important for a proper insulation co-ordination and will provide a necessary basis for the verification of the individual insulation design and the choice of test voltages and waveforms. Especially the extent of internal overvoltages in case of failures, e. g. malfunction of discharge units and / or arcing is of special interest. Transient calculations for the ITER TF coil system have been performed for fast discharge and fault scenarios to define test voltages for ITER TF. The conductor and radial plate insulation of the ITER TF Model Coil were exposed at room temperature to test voltages derived from the results from these calculations. Breakdown appeared during the highest AC voltage step. A fault scenario for the TF fast discharge system is presented where one fault triggers a second fault, leading to considerable voltage stress. In addition a FEM model of Poloidal Field Coil 3 for the determination of the parameters of a detailed network model is presented in order to prepare detailed investigations of the transient voltage behaviour of the PF coils. (author)

  15. Benchmarking of Voltage Sag Generators

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Zou, Zhixiang

    2012-01-01

    The increased penetration of renewable energy systems, like photovoltaic and wind power systems, rises the concern about the power quality and stability of the utility grid. Some regulations for Low Voltage Ride-Through (LVRT) for medium voltage or high voltage applications, are coming into force...

  16. Low-Voltage Switched-Capacitor Circuits

    DEFF Research Database (Denmark)

    Bidari, E.; Keskin, M.; Maloberti, F.

    1999-01-01

    Switched-capacitor stages are described which can function with very low (typically 1 V) supply voltages, without using voltage boosting or switched op-amps. Simulations indicate that high performance may be achieved using these circuits in filter or data converter applications.......Switched-capacitor stages are described which can function with very low (typically 1 V) supply voltages, without using voltage boosting or switched op-amps. Simulations indicate that high performance may be achieved using these circuits in filter or data converter applications....

  17. Algorithm оf Computer Model Realization оf High-Frequency Processes in Switchgears Containing Non-Linear Over-Voltage Limiters

    Directory of Open Access Journals (Sweden)

    Ye. V. Dmitriev

    2007-01-01

    Full Text Available Analysis of the Over-Voltage Limiter (OVL influence on electromagnetic high-frequency over-voltages at commutations with isolators of unloaded sections of wires and possibility of application of a frequency-dependent resistor in case of necessity to facilitate OVL operation conditions is provided in the paper.It is shown that it is necessary to take into account characteristics of OVL by IEEE circuit and its modifications at computer modeling of high-frequency over-voltages.

  18. Pull-in voltage of microswitch rough plates in the presence of electromagnetic and acoustic Casimir forces

    NARCIS (Netherlands)

    Palasantzas, George

    2007-01-01

    In this work, we investigate the combined influence of electromagnetic and acoustic Casimir forces on the pull-in voltage of microswitches with self-affine rough plates. It is shown that for plate separations within the micron range the acoustic term arising from pressure fluctuations can influence

  19. Reactive Power Compensation of a 24 MW Wind Farm using a 12-Pulse Voltage Source Converter

    DEFF Research Database (Denmark)

    Søbrink, K.H.; Pedersen, Jørgen Kaas; Pedersen, Knud Ole Helgesen

    1998-01-01

    Integration of large wind farms in distribution and transmission systems may have severe influence on the power quality at the connection point and may also influence the voltage controlling capability of the electrical system. The purpose of the described project has been to develop and investig...

  20. Bootstrapped Low-Voltage Analog Switches

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    1999-01-01

    Novel low-voltage constant-impedance analog switch circuits are proposed. The switch element is a single MOSFET, and constant-impedance operation is obtained using simple circuits to adjust the gate and bulk voltages relative to the switched signal. Low-voltage (1-volt) operation is made feasible...

  1. [Development of residual voltage testing equipment].

    Science.gov (United States)

    Zeng, Xiaohui; Wu, Mingjun; Cao, Li; He, Jinyi; Deng, Zhensheng

    2014-07-01

    For the existing measurement methods of residual voltage which can't turn the power off at peak voltage exactly and simultaneously display waveforms, a new residual voltage detection method is put forward in this paper. First, the zero point of the power supply is detected with zero cross detection circuit and is inputted to a single-chip microcomputer in the form of pulse signal. Secend, when the zero point delays to the peak voltage, the single-chip microcomputer sends control signal to power off the relay. At last, the waveform of the residual voltage is displayed on a principal computer or oscilloscope. The experimental results show that the device designed in this paper can turn the power off at peak voltage and is able to accurately display the voltage waveform immediately after power off and the standard deviation of the residual voltage is less than 0.2 V at exactly one second and later.

  2. Control Method for DC-Link Voltage Ripple Cancellation in Voltage Source Inverter under Unbalanced Three-Phase Voltage Supply Conditions

    Czech Academy of Sciences Publication Activity Database

    Chomát, Miroslav; Schreier, Luděk

    2005-01-01

    Roč. 152, č. 3 (2005), s. 494-500 ISSN 1350-2352 R&D Projects: GA ČR(CZ) GA102/02/0554 Institutional research plan: CEZ:AV0Z20570509 Keywords : DC-link voltage * unbalanced three-phase voltage Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.587, year: 2005

  3. Voltage-sensing phosphatase modulation by a C2 domain

    Directory of Open Access Journals (Sweden)

    Paul M. Castle

    2015-04-01

    Full Text Available The voltage-sensing phosphatase (VSP is the first example of an enzyme controlled by changes in membrane potential. VSP has four distinct regions: the transmembrane voltage-sensing domain (VSD, the inter-domain linker, the cytosolic catalytic domain and the C2 domain. The VSD transmits the changes in membrane potential through the inter-domain linker activating the catalytic domain which then dephosphorylates phosphatidylinositol phosphate lipids. The role of the C2, however, has not been established. In this study, we explore two possible roles for the C2: catalysis and membrane-binding. The Ci-VSP crystal structures show that the C2 residue Y522 lines the active site suggesting a contribution to catalysis. When we mutated Y522 to phenylalanine, we found a shift in the voltage dependence of activity. This suggests hydrogen bonding as a mechanism of action. Going one step further, when we deleted the entire C2 domain, we found voltage-dependent enzyme activity was no longer detectable. This result clearly indicates the entire C2 is necessary for catalysis as well as for modulating activity. As C2s are known membrane-binding domains, we tested whether the VSP C2 interacts with the membrane. We probed a cluster of four positively charged residues lining the top of the C2 and suggested by previous studies to interact with phosphatidylinositol 4,5-bisphosphate (PI(4,5P2 (Kalli et al., 2014. Neutralizing those positive charges significantly shifted the voltage dependence of activity to higher voltages. We tested membrane binding by depleting PI(4,5P2 from the membrane using the 5HT2C receptor and found that the VSD motions as measured by voltage clamp fluorometry were not changed. These results suggest that if the C2 domain interacts with the membrane to influence VSP function it may not occur exclusively through PI(4,5P2. Together, this data advances our understanding of the VSP C2 by demonstrating a necessary and critical role for the C2 domain in

  4. Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements

    DEFF Research Database (Denmark)

    Lundby, Alicia; Mutoh, Hiroki; Dimitrov, Dimitar

    2008-01-01

    Ci-VSP contains a voltage-sensing domain (VSD) homologous to that of voltage-gated potassium channels. Using charge displacement ('gating' current) measurements we show that voltage-sensing movements of this VSD can occur within 1 ms in mammalian membranes. Our analysis lead to development...

  5. An Adaptive Estimation Scheme for Open-Circuit Voltage of Power Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Yun Zhang

    2013-01-01

    Full Text Available Open-circuit voltage (OCV is one of the most important parameters in determining state of charge (SoC of power battery. The direct measurement of it is costly and time consuming. This paper describes an adaptive scheme that can be used to derive OCV of the power battery. The scheme only uses the measurable input (terminal current and the measurable output (terminal voltage signals of the battery system and is simple enough to enable online implement. Firstly an equivalent circuit model is employed to describe the polarization characteristic and the dynamic behavior of the lithium-ion battery; the state-space representation of the electrical performance for the battery is obtained based on the equivalent circuit model. Then the implementation procedure of the adaptive scheme is given; also the asymptotic convergence of the observer error and the boundedness of all the parameter estimates are proven. Finally, experiments are carried out, and the effectiveness of the adaptive estimation scheme is validated by the experimental results.

  6. The humidity effect on the breakdown voltage characteristics and the transport parameters of air

    International Nuclear Information System (INIS)

    Radmilović-Radjenović, M.; Radjenović, B.; Nikitović, Ž.; Matejčik, Š.; Klas, M.

    2012-01-01

    This paper contains experimental results for the direct current (DC) breakdown voltages and calculated transport parameters for dry, synthetic and ambient air. The breakdown voltage curves for dry, ambient and synthetic air at the gap size of 100μm are very similar. The differences between them are much more pronounced at the interelectrode separation of 20μm, especially at the right hand branch of the breakdown voltage curves. On the other hand, the effective yields γ for dry and synthetic air are in disagreement at lower values of the E/p. Results of calculations based on the Two Term Approximation indicate that the humidity has no a great influence on the transport parameters at all range of the reduce field E/N.

  7. Voltage-dependent gating of KCNH potassium channels lacking a covalent link between voltage-sensing and pore domains

    Science.gov (United States)

    Lörinczi, Éva; Gómez-Posada, Juan Camilo; de La Peña, Pilar; Tomczak, Adam P.; Fernández-Trillo, Jorge; Leipscher, Ulrike; Stühmer, Walter; Barros, Francisco; Pardo, Luis A.

    2015-03-01

    Voltage-gated channels open paths for ion permeation upon changes in membrane potential, but how voltage changes are coupled to gating is not entirely understood. Two modules can be recognized in voltage-gated potassium channels, one responsible for voltage sensing (transmembrane segments S1 to S4), the other for permeation (S5 and S6). It is generally assumed that the conversion of a conformational change in the voltage sensor into channel gating occurs through the intracellular S4-S5 linker that provides physical continuity between the two regions. Using the pathophysiologically relevant KCNH family, we show that truncated proteins interrupted at, or lacking the S4-S5 linker produce voltage-gated channels in a heterologous model that recapitulate both the voltage-sensing and permeation properties of the complete protein. These observations indicate that voltage sensing by the S4 segment is transduced to the channel gate in the absence of physical continuity between the modules.

  8. Development of Multi-Functional Voltage Restore System

    Science.gov (United States)

    Suzuki, Satoshi; Ueda, Yoshinobu; Koganezawa, Takehisa; Ogihara, Yoshinori; Mori, Kenjiro; Fukazu, Naoaki

    Recently, with the dawn of the electric deregulation, the installation of distributed generation with power electronics device has grown. This current causes a greater concern of power quality, primarily voltage disturbance for power companies, and their interest in power quality is peaking. Utilities are also interested in keeping their customers satisfied, as well as keeping them on-line and creating more revenue for the utility. As a countermeasure against the above surroundings, a variety type of devices based on power electronics has been developed to protect customers' load from power line voltage disturbance. One of them is the series type voltage restore. The series device is an active device, designed to provide a pure sinusoidal load voltage at all times, correcting voltage disturbance. Series type device compensates for voltage anomalies by inserting the ‘missing’ voltage onto the line through insertion transformer and inverter. This paper shows the setting guideline of target level to compensate voltage disturbance, that is, voltage dip, voltage harmonics, voltage imbalance and voltage flicker, and the design approach of the prototype of series voltage restores to accomplish the required compensation level. The prototype system gives satisfactory compensation performance through evaluation tests, which confirm the validity and effectiveness of the system.

  9. Triple Line-Voltage Cascaded VIENNA Converter Applied as the Medium-Voltage AC Drive

    Directory of Open Access Journals (Sweden)

    Jia Zou

    2018-04-01

    Full Text Available A novel rectifier based on a triple line-voltage cascaded VIENNA converter (LVC-VC was proposed. Compared to the conventional cascaded H-bridge converters, the switch voltage stress is lower, and the numbers of switches and dc capacitors are fewer under similar operating conditions in the proposed new multilevel converter. The modeling and control for the LVC-VC ware presented. Based on the analysis of the operation principle of the new converter, the power factor correction of the proposed converter was realized by employing a traditional one-cycle control strategy. The minimum average value and maximum harmonic components of the dc-link voltages of the three VIENNA rectifier modules ware calculated. Three VIENNA dc-link voltages were unbalanced under the unbalanced load conditions, so the zero sequence current was injected to the three inner currents for balancing three VIENNA dc-link voltages. Simulation and the results of the experiment verified the availability of the new proposed multilevel converter and the effectiveness of the corresponding control strategy applied.

  10. Coordinated single-phase control scheme for voltage unbalance reduction in low voltage network.

    Science.gov (United States)

    Pullaguram, Deepak; Mishra, Sukumar; Senroy, Nilanjan

    2017-08-13

    Low voltage (LV) distribution systems are typically unbalanced in nature due to unbalanced loading and unsymmetrical line configuration. This situation is further aggravated by single-phase power injections. A coordinated control scheme is proposed for single-phase sources, to reduce voltage unbalance. A consensus-based coordination is achieved using a multi-agent system, where each agent estimates the averaged global voltage and current magnitudes of individual phases in the LV network. These estimated values are used to modify the reference power of individual single-phase sources, to ensure system-wide balanced voltages and proper power sharing among sources connected to the same phase. Further, the high X / R ratio of the filter, used in the inverter of the single-phase source, enables control of reactive power, to minimize voltage unbalance locally. The proposed scheme is validated by simulating a LV distribution network with multiple single-phase sources subjected to various perturbations.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  11. Actuator Location and Voltages Optimization for Shape Control of Smart Beams Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Georgios E. Stavroulakis

    2013-10-01

    Full Text Available This paper presents a numerical study on optimal voltages and optimal placement of piezoelectric actuators for shape control of beam structures. A finite element model, based on Timoshenko beam theory, is developed to characterize the behavior of the structure and the actuators. This model accounted for the electromechanical coupling in the entire beam structure, due to the fact that the piezoelectric layers are treated as constituent parts of the entire structural system. A hybrid scheme is presented based on great deluge and genetic algorithm. The hybrid algorithm is implemented to calculate the optimal locations and optimal values of voltages, applied to the piezoelectric actuators glued in the structure, which minimize the error between the achieved and the desired shape. Results from numerical simulations demonstrate the capabilities and efficiency of the developed optimization algorithm in both clamped−free and clamped−clamped beam problems are presented.

  12. Resilient architecture design for voltage variation

    CERN Document Server

    Reddi, Vijay Janapa

    2013-01-01

    Shrinking feature size and diminishing supply voltage are making circuits sensitive to supply voltage fluctuations within the microprocessor, caused by normal workload activity changes. If left unattended, voltage fluctuations can lead to timing violations or even transistor lifetime issues that degrade processor robustness. Mechanisms that learn to tolerate, avoid, and eliminate voltage fluctuations based on program and microarchitectural events can help steer the processor clear of danger, thus enabling tighter voltage margins that improve performance or lower power consumption. We describe

  13. Influence of refractive error on pupillary dynamics in the normal and mild traumatic brain injury (mTBI populations

    Directory of Open Access Journals (Sweden)

    James Q. Truong

    2018-04-01

    Full Text Available Purpose: There have been several studies investigating static, baseline pupil diameter in visually-normal individuals across refractive error. However, none have assessed the dynamic pupillary light reflex (PLR. In the present study, both static and dynamic pupillary parameters of the PLR were assessed in both the visually-normal (VN and the mild traumatic brain injury (mTBI populations and compared as a function of refractive error. Methods: The VN population comprised 40 adults (22–56 years of age, while the mTBI population comprised 32 adults (21–60 years of age over a range of refractive errors (−9.00 D to +1.25 D. Seven pupillary parameters (baseline static diameter, latency, amplitude, and peak and average constriction and dilation velocities were assessed and compared under four white-light stimulus conditions (dim pulse, dim step, bright pulse, and bright step. The Neuroptics, infrared, DP-2000 binocular pupillometer (30 Hz sampling rate; 0.05 mm resolution was used in the monocular (right eye stimulation mode. Results: For the majority of pupillary parameters and stimulus conditions, a Gaussian distribution best fit the data, with the apex centered in the low myopic range (−2.3 to −4.9D. Responsivity was reduced to either side of the apex. Conclusions: Over a range of dynamic and static pupillary parameters, the PLR was influenced by refractive error in both populations. In cases of high refractive error, the PLR parameters may need to be compensated for this factor for proper categorization and diagnosis. Resumen: Objetivo: Existen diversos estudios que han investigado el diámetro pupilar estático y basal en individuos con visión normal en todo el espectro de errores refractivos. Sin embargo, ninguno de ellos ha evaluado el reflejo dinámico pupilar a la luz (RPL. En el presente estudio, se evaluaron tanto los parámetros pupilares estáticos como los dinámicos en poblaciones con visión normal (VN y en las afectadas

  14. Error begat error: design error analysis and prevention in social infrastructure projects.

    Science.gov (United States)

    Love, Peter E D; Lopez, Robert; Edwards, David J; Goh, Yang M

    2012-09-01

    Design errors contribute significantly to cost and schedule growth in social infrastructure projects and to engineering failures, which can result in accidents and loss of life. Despite considerable research that has addressed their error causation in construction projects they still remain prevalent. This paper identifies the underlying conditions that contribute to design errors in social infrastructure projects (e.g. hospitals, education, law and order type buildings). A systemic model of error causation is propagated and subsequently used to develop a learning framework for design error prevention. The research suggests that a multitude of strategies should be adopted in congruence to prevent design errors from occurring and so ensure that safety and project performance are ameliorated. Copyright © 2011. Published by Elsevier Ltd.

  15. Microwave-Induced Magneto-Oscillations and Signatures of Zero-Resistance States in Phonon-Drag Voltage in Two-Dimensional Electron Systems.

    Science.gov (United States)

    Levin, A D; Momtaz, Z S; Gusev, G M; Raichev, O E; Bakarov, A K

    2015-11-13

    We observe the phonon-drag voltage oscillations correlating with the resistance oscillations under microwave irradiation in a two-dimensional electron gas in perpendicular magnetic field. This phenomenon is explained by the influence of dissipative resistivity modified by microwaves on the phonon-drag voltage perpendicular to the phonon flux. When the lowest-order resistance minima evolve into zero-resistance states, the phonon-drag voltage demonstrates sharp features suggesting that current domains associated with these states can exist in the absence of external dc driving.

  16. Power-MOSFET Voltage Regulator

    Science.gov (United States)

    Miller, W. N.; Gray, O. E.

    1982-01-01

    Ninety-six parallel MOSFET devices with two-stage feedback circuit form a high-current dc voltage regulator that also acts as fully-on solid-state switch when fuel-cell out-put falls below regulated voltage. Ripple voltage is less than 20 mV, transient recovery time is less than 50 ms. Parallel MOSFET's act as high-current dc regulator and switch. Regulator can be used wherever large direct currents must be controlled. Can be applied to inverters, industrial furnaces photovoltaic solar generators, dc motors, and electric autos.

  17. CMOS-compatible high-voltage integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Parpia, Z

    1988-01-01

    Considerable savings in cost and development time can be achieved if high-voltage ICs (HVICs) are fabricated in an existing low-voltage process. In this thesis, the feasibility of fabricating HVICs in a standard CMOS process is investigated. The high-voltage capabilities of an existing 5-{mu}m CMOS process are first studied. High-voltage n- and p-channel transistors with breakdown voltages of 50 and 190 V, respectively, were fabricated without any modifications to the process under consideration. SPICE models for these transistors are developed, and their accuracy verified by comparison with experimental results. In addition, the effect of the interconnect metallization on the high-voltage performance of these devices is also examined. Polysilicon field plates are found to be effective in preventing premature interconnect induced breakdown in these devices. A novel high-voltage transistor structure, the insulated base transistor (IBT), based on a merged MOS-bipolar concept, is proposed and implemented. In order to enhance the high-voltage device capabilities, an improved CMOS-compatible HVIC process using junction isolation is developed.

  18. Voltage-assisted polymer wafer bonding

    International Nuclear Information System (INIS)

    Varsanik, J S; Bernstein, J J

    2012-01-01

    Polymer wafer bonding is a widely used process for fabrication of microfluidic devices. However, best practices for polymer bonds do not achieve sufficient bond strength for many applications. By applying a voltage to a polymer bond in a process called voltage-assisted bonding, bond strength is shown to improve dramatically for two polymers (Cytop™ and poly(methyl methacrylate)). Several experiments were performed to provide a starting point for further exploration of this technique. An optimal voltage range is experimentally observed with a reduction in bonding strength at higher voltages. Additionally, voltage-assisted bonding is shown to reduce void diameter due to bond defects. An electrostatic force model is proposed to explain the improved bond characteristics. This process can be used to improve bond strength for most polymers. (paper)

  19. Voltage Controlled Dynamic Demand Response

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    Future power system is expected to be characterized by increased penetration of intermittent sources. Random and rapid fluctuations in demands together with intermittency in generation impose new challenges for power balancing in the existing system. Conventional techniques of balancing by large...... central or dispersed generations might not be sufficient for future scenario. One of the effective methods to cope with this scenario is to enable demand response. This paper proposes a dynamic voltage regulation based demand response technique to be applied in low voltage (LV) distribution feeders....... An adaptive dynamic model has been developed to determine composite voltage dependency of an aggregated load on feeder level. Following the demand dispatch or control signal, optimum voltage setting at the LV substation is determined based on the voltage dependency of the load. Furthermore, a new technique...

  20. LTPS-TFT Pixel Circuit Compensating for TFT Threshold Voltage Shift and IR-Drop on the Power Line for AMOLED Displays

    Directory of Open Access Journals (Sweden)

    Ching-Lin Fan

    2012-01-01

    Full Text Available We propose a new pixel design for the active matrix organic light-emitting diode (AMOLED using low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs. The proposed pixel is composed of four switching TFTs, one driving TFT (DTFT, and one capacitor. The simulation results are performed by AIM-SPICE software. The error rate of OLED output current with (threshold voltage variation (0.3 V and power line drop by 1 V are improved to about 1.67% and 15%, respectively. Thus, the proposed pixel circuit can successfully overcome drawbacks suffered from DTFT threshold voltage deviation and IR-drop on power line.

  1. A high-voltage equipment (high voltage supply, high voltage pulse generators, resonant charging inductance, synchro-instruments for gyrotron frequency measurements) for plasma applications

    International Nuclear Information System (INIS)

    Spassov, Velin

    1996-01-01

    This document reports my activities as visitor-professor at the Gyrotron Project - INPE Plasma Laboratory. The main objective of my activities was designing, construction and testing a suitable high-voltage pulse generator for plasma applications, and efforts were concentrated on the following points: Design of high-voltage resonant power supply with tunable output (0 - 50 kV) for line-type high voltage pulse generator; design of line-type pulse generator (4 microseconds pulse duration, 0 - 25 kV tunable voltage) for non linear loads such as a gyrotron and P III reactor; design of resonant charging inductance for resonant line-type pulse generator, and design of high resolution synchro instrument for gyrotron frequency measurement. (author)

  2. Capturing power at higher voltages from arrays of microbial fuel cells without voltage reversal

    KAUST Repository

    Kim, Younggy

    2011-01-01

    Voltages produced by microbial fuel cells (MFCs) cannot be sustainably increased by linking them in series due to voltage reversal, which substantially reduces stack voltages. It was shown here that MFC voltages can be increased with continuous power production using an electronic circuit containing two sets of multiple capacitors that were alternately charged and discharged (every one second). Capacitors were charged in parallel by the MFCs, but linked in series while discharging to the circuit load (resistor). The parallel charging of the capacitors avoided voltage reversal, while discharging the capacitors in series produced up to 2.5 V with four capacitors. There were negligible energy losses in the circuit compared to 20-40% losses typically obtained with MFCs using DC-DC converters to increase voltage. Coulombic efficiencies were 67% when power was generated via four capacitors, compared to only 38% when individual MFCs were operated with a fixed resistance of 250 Ω. The maximum power produced using the capacitors was not adversely affected by variable performance of the MFCs, showing that power generation can be maintained even if individual MFCs perform differently. Longer capacitor charging and discharging cycles of up to 4 min maintained the average power but increased peak power by up to 2.6 times. These results show that capacitors can be used to easily obtain higher voltages from MFCs, allowing for more useful capture of energy from arrays of MFCs. © 2011 The Royal Society of Chemistry.

  3. Slow voltage oscillations in Ag-doped superconducting Y-Ba-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Altinkok, A. [Abant Izzet Baysal University, Department of Physics, Turgut Gulez Research Laboratory, 14280 Bolu (Turkey)], E-mail: altinkok_a@ibu.edu.tr; Yetis, H.; Kilic, K.; Kilic, A.; Olutas, M. [Abant Izzet Baysal University, Department of Physics, Turgut Gulez Research Laboratory, 14280 Bolu (Turkey)

    2008-09-15

    The time effects in Ag-doped YBa{sub 2}Cu{sub 3}O{sub 7-x} sample (YBCO/Ag) were examined by means of transport relaxation measurements (V-t curves). At well-defined values of transport current (I), temperature (T) and external magnetic field (H), an abrupt rise in sample voltage was observed at the early stage of the relaxation process. After reducing the initial current to a finite value, the sample voltage levels off within a very short time. The rapid voltage drops seen in V-t curves were attributed to the rapid dynamic reorganization of flux lines traversing the sample edges. These observations were also interpreted as an indication of doping of YBCO with Ag and easy suppression of superconducting order parameter due to the presence of Ag. In addition, we investigated the influence of bidirectional square wave (BSW) current on the evolution of V-t curves at different temperatures and external magnetic fields. It was observed that a nonlinear response seen in V-t curves to BSW current with sufficiently short periods or sufficiently low amplitude reflects itself as regular sinusoidal- type voltage oscillations, which were discussed mainly in terms of the dynamic competition between pinning and depinning.

  4. Error framing effects on performance: cognitive, motivational, and affective pathways.

    Science.gov (United States)

    Steele-Johnson, Debra; Kalinoski, Zachary T

    2014-01-01

    Our purpose was to examine whether positive error framing, that is, making errors salient and cuing individuals to see errors as useful, can benefit learning when task exploration is constrained. Recent research has demonstrated the benefits of a newer approach to training, that is, error management training, that includes the opportunity to actively explore the task and framing errors as beneficial to learning complex tasks (Keith & Frese, 2008). Other research has highlighted the important role of errors in on-the-job learning in complex domains (Hutchins, 1995). Participants (N = 168) from a large undergraduate university performed a class scheduling task. Results provided support for a hypothesized path model in which error framing influenced cognitive, motivational, and affective factors which in turn differentially affected performance quantity and quality. Within this model, error framing had significant direct effects on metacognition and self-efficacy. Our results suggest that positive error framing can have beneficial effects even when tasks cannot be structured to support extensive exploration. Whereas future research can expand our understanding of error framing effects on outcomes, results from the current study suggest that positive error framing can facilitate learning from errors in real-time performance of tasks.

  5. Features of current-voltage characteristic of nonequilibrium trench MOS barrier Schottky diode

    Science.gov (United States)

    Mamedov, R. K.; Aslanova, A. R.

    2018-06-01

    The trench MOS barrier Schottky diodes (TMBS diode) under the influence of the voltage drop of the additional electric field (AEF) appearing in the near-contact region of the semiconductor are in a nonequilibrium state and their closed external circuit flows currents in the absence of an external voltage. When an external voltage is applied to the TMBS diode, the current transmission is described by the thermionic emission theory with a specific feature. Both forward and reverse I-V characteristics of the TMBS diode consist of two parts. In the initial first part of the forward I-V characteristic there are no forward currents, but reverse saturation currents flow, in its subsequent second part the currents increase exponentially with the voltage. In the initial first part of the reverse I-V characteristic, the currents increase in an abrupt way and in the subsequent second part the saturation currents flow under the action of the image force. The mathematical expressions for forward and reverse I-V characteristic of the TMBS diode and also narrow or nanostructure Schottky diode are proposed, which are in good agreement with the results of experimental and calculated I-V characteristics.

  6. The architecture design of a 2mW 18-bit high speed weight voltage type DAC based on dual weight resistance chain

    Science.gov (United States)

    Qixing, Chen; Qiyu, Luo

    2013-03-01

    At present, the architecture of a digital-to-analog converter (DAC) in essence is based on the weight current, and the average value of its D/A signal current increases in geometric series according to its digital signal bits increase, which is 2n-1 times of its least weight current. But for a dual weight resistance chain type DAC, by using the weight voltage manner to D/A conversion, the D/A signal current is fixed to chain current Icha; it is only 1/2n-1 order of magnitude of the average signal current value of the weight current type DAC. Its principle is: n pairs dual weight resistances form a resistance chain, which ensures the constancy of the chain current; if digital signals control the total weight resistance from the output point to the zero potential point, that could directly control the total weight voltage of the output point, so that the digital signals directly turn into a sum of the weight voltage signals; thus the following goals are realized: (1) the total current is less than 200 μA (2) the total power consumption is less than 2 mW; (3) an 18-bit conversion can be realized by adopting a multi-grade structure; (4) the chip area is one order of magnitude smaller than the subsection current-steering type DAC; (5) the error depends only on the error of the unit resistance, so it is smaller than the error of the subsection current-steering type DAC; (6) the conversion time is only one action time of switch on or off, so its speed is not lower than the present DAC.

  7. The architecture design of a 2mW 18-bit high speed weight voltage type DAC based on dual weight resistance chain

    International Nuclear Information System (INIS)

    Chen Qixing; Luo Qiyu

    2013-01-01

    At present, the architecture of a digital-to-analog converter (DAC) in essence is based on the weight current, and the average value of its D/A signal current increases in geometric series according to its digital signal bits increase, which is 2 n−1 times of its least weight current. But for a dual weight resistance chain type DAC, by using the weight voltage manner to D/A conversion, the D/A signal current is fixed to chain current I cha ; it is only 1/2 n−1 order of magnitude of the average signal current value of the weight current type DAC. Its principle is: n pairs dual weight resistances form a resistance chain, which ensures the constancy of the chain current; if digital signals control the total weight resistance from the output point to the zero potential point, that could directly control the total weight voltage of the output point, so that the digital signals directly turn into a sum of the weight voltage signals; thus the following goals are realized: (1) the total current is less than 200 μA; (2) the total power consumption is less than 2 mW; (3) an 18-bit conversion can be realized by adopting a multi-grade structure; (4) the chip area is one order of magnitude smaller than the subsection current-steering type DAC; (5) the error depends only on the error of the unit resistance, so it is smaller than the error of the subsection current-steering type DAC; (6) the conversion time is only one action time of switch on or off, so its speed is not lower than the present DAC. (semiconductor integrated circuits)

  8. Determination of the cathode fall voltage in fluorescent lamps by measurement of the operating voltage

    International Nuclear Information System (INIS)

    Hilscher, A.

    2002-01-01

    A new method for the determination of the cathode fall voltage of fluorescent lamps is shown. The cathode fall voltage can be determined by measurement of the lamp operating voltage at constant lamp wall temperature, constant discharge current and variation of the electrode heating current. Commercial lamps, which do not need to be specially prepared, can be used for the measurement. The results show good correlation to other measurements of the cathode fall voltage at various discharge currents by means of capacitive coupling. The measured values of the cathode fall voltage are used for determining the minimum, target and maximum setting of the sum of the squares of the pin currents of one electrode (the so-called SOS value) as a function of the discharge current in fluorescent lamp dimming. (author)

  9. High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    Science.gov (United States)

    Shimer, Daniel W.; Lange, Arnold C.

    1995-01-01

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  10. High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    Science.gov (United States)

    Shimer, D.W.; Lange, A.C.

    1995-05-23

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

  11. Voltage-gated lipid ion channels

    DEFF Research Database (Denmark)

    Blicher, Andreas; Heimburg, Thomas Rainer

    2013-01-01

    Synthetic lipid membranes can display channel-like ion conduction events even in the absence of proteins. We show here that these events are voltage-gated with a quadratic voltage dependence as expected from electrostatic theory of capacitors. To this end, we recorded channel traces and current...... histograms in patch-experiments on lipid membranes. We derived a theoretical current-voltage relationship for pores in lipid membranes that describes the experimental data very well when assuming an asymmetric membrane. We determined the equilibrium constant between closed and open state and the open...... probability as a function of voltage. The voltage-dependence of the lipid pores is found comparable to that of protein channels. Lifetime distributions of open and closed events indicate that the channel open distribution does not follow exponential statistics but rather power law behavior for long open times...

  12. Conservation voltage regulation (CVR) applied to energy savings by voltage-adjusting equipment through AMI

    Science.gov (United States)

    Lan, B.-R.; Chang, C.-A.; Huang, P.-Y.; Kuo, C.-H.; Ye, Z.-J.; Shen, B.-C.; Chen, B.-K.

    2017-11-01

    Conservation voltage reduction (CVR) includes peak demand reduction, energy conservation, carbon emission reduction, and electricity bill reduction. This paper analyzes the energy-reduction of Siwei Feeders with applying CVR, which are situated in Penghu region and equipped with smart meters. Furthermore, the applicable voltage reduction range for the feeders will be explored. This study will also investigate how the CVR effect and energy conservation are improved with the voltage control devices integrated. The results of this study can serve as a reference for the Taiwan Power Company to promote and implement voltage reduction and energy conservation techniques. This study is expected to enhance the energy-reduction performance of the Penghu Low Carbon Island Project.

  13. Improved detection of electrical activity with a voltage probe based on a voltage-sensing phosphatase.

    Science.gov (United States)

    Tsutsui, Hidekazu; Jinno, Yuka; Tomita, Akiko; Niino, Yusuke; Yamada, Yoshiyuki; Mikoshiba, Katsuhiko; Miyawaki, Atsushi; Okamura, Yasushi

    2013-09-15

      One of the most awaited techniques in modern physiology is the sensitive detection of spatiotemporal electrical activity in a complex network of excitable cells. The use of genetically encoded voltage probes has been expected to enable such analysis. However, in spite of recent progress, existing probes still suffer from low signal amplitude and/or kinetics too slow to detect fast electrical activity. Here, we have developed an improved voltage probe named Mermaid2, which is based on the voltage-sensor domain of the voltage-sensing phosphatase from Ciona intestinalis and Förster energy transfer between a pair of fluorescent proteins. In mammalian cells, Mermaid2 permits ratiometric readouts of fractional changes of more than 50% over a physiologically relevant voltage range with fast kinetics, and it was used to follow a train of action potentials at frequencies of up to 150 Hz. Mermaid2 was also able to detect single action potentials and subthreshold voltage responses in hippocampal neurons in vitro, in addition to cortical electrical activity evoked by sound stimuli in single trials in living mice.

  14. Novel Interleaved Converter with Extra-High Voltage Gain to Process Low-Voltage Renewable-Energy Generation

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2016-10-01

    Full Text Available This paper presents a novel interleaved converter (NIC with extra-high voltage gain to process the power of low-voltage renewable-energy generators such as photovoltaic (PV panel, wind turbine, and fuel cells. The NIC can boost a low input voltage to a much higher voltage level to inject renewable energy to DC bus for grid applications. Since the NIC has two circuit branches in parallel at frond end to share input current, it is suitable for high power applications. In addition, the NIC is controlled in an interleaving pattern, which has the advantages that the NIC has lower input current ripple, and the frequency of the ripple is twice the switching frequency. Two coupled inductors and two switched capacitors are incorporated to achieve a much higher voltage gain than conventional high step-up converters. The proposed NIC has intrinsic features such as leakage energy totally recycling and low voltage stress on power semiconductor. Thorough theoretical analysis and key parameter design are presented in this paper. A prototype is built for practical measurements to validate the proposed NIC.

  15. Influence of bias voltage on properties of AlCrN coatings prepared by cathodic arc deposition

    International Nuclear Information System (INIS)

    Lomello, F.; Sanchette, F.; Schuster, F.; Tabarant, M.; Billard, A.

    2013-01-01

    AlCrN coatings were prepared by vacuum cathodic arc deposition. This low-temperature technique has been chosen due to its versatility, allowing the industrial up-scaling. In this study, the attention was focused on the correlation of the bias voltage with the resulting mechanical-tribological properties. For this purpose, the bias voltage was varied from 0 to -150 V. Indeed, the variation of grain sizes from 24 to 16 nm as well as the residual stresses from -0.68 to -8.94 GPa lead to obtain different mechanical-tribological properties. In this context, the sample deposited at -100 V exhibited an enhanced hardness (50 ± 2 GPa) and an acceptable wear resistance. (authors)

  16. Effect of refractive error on temperament and character properties

    Institute of Scientific and Technical Information of China (English)

    Emine; Kalkan; Akcay; Fatih; Canan; Huseyin; Simavli; Derya; Dal; Hacer; Yalniz; Nagihan; Ugurlu; Omer; Gecici; Nurullah; Cagil

    2015-01-01

    AIM: To determine the effect of refractive error on temperament and character properties using Cloninger’s psychobiological model of personality.METHODS: Using the Temperament and Character Inventory(TCI), the temperament and character profiles of 41 participants with refractive errors(17 with myopia,12 with hyperopia, and 12 with myopic astigmatism) were compared to those of 30 healthy control participants.Here, temperament comprised the traits of novelty seeking, harm-avoidance, and reward dependence, while character comprised traits of self-directedness,cooperativeness, and self-transcendence.RESULTS: Participants with refractive error showed significantly lower scores on purposefulness,cooperativeness, empathy, helpfulness, and compassion(P <0.05, P <0.01, P <0.05, P <0.05, and P <0.01,respectively).CONCLUSION: Refractive error might have a negative influence on some character traits, and different types of refractive error might have different temperament and character properties. These personality traits may be implicated in the onset and/or perpetuation of refractive errors and may be a productive focus for psychotherapy.

  17. Errors as a Means of Reducing Impulsive Food Choice.

    Science.gov (United States)

    Sellitto, Manuela; di Pellegrino, Giuseppe

    2016-06-05

    Nowadays, the increasing incidence of eating disorders due to poor self-control has given rise to increased obesity and other chronic weight problems, and ultimately, to reduced life expectancy. The capacity to refrain from automatic responses is usually high in situations in which making errors is highly likely. The protocol described here aims at reducing imprudent preference in women during hypothetical intertemporal choices about appetitive food by associating it with errors. First, participants undergo an error task where two different edible stimuli are associated with two different error likelihoods (high and low). Second, they make intertemporal choices about the two edible stimuli, separately. As a result, this method decreases the discount rate for future amounts of the edible reward that cued higher error likelihood, selectively. This effect is under the influence of the self-reported hunger level. The present protocol demonstrates that errors, well known as motivationally salient events, can induce the recruitment of cognitive control, thus being ultimately useful in reducing impatient choices for edible commodities.

  18. Investigation of phase-wise voltage regulator control logics for compensating voltage deviations in an experimental low voltage network

    DEFF Research Database (Denmark)

    Hu, Junjie; Zecchino, Antonio; Marinelli, Mattia

    2016-01-01

    This paper investigates the control logics of an on-load tap-changer (OLTC) transformer by means of an experimental system validation. The experimental low-voltage unbalanced system consists of a decoupled single-phase OLTC transformer, a 75-metre 16 mm2 cable, a controllable single-phase resistive...... load and an electric vehicle, which has the vehicle-to-grid function. Three control logics of the OLTC transformer are described in the study. The three control logics are classified based on their control objectives and control inputs, which include network currents and voltages, and can be measured...... either locally or remotely. To evaluate and compare the control performances of the three control logics, all the tests use the same loading profiles. The experimental results indicate that the modified line compensation control can regulate voltage in a safe band in the case of various load...

  19. Nurses' Behaviors and Visual Scanning Patterns May Reduce Patient Identification Errors

    Science.gov (United States)

    Marquard, Jenna L.; Henneman, Philip L.; He, Ze; Jo, Junghee; Fisher, Donald L.; Henneman, Elizabeth A.

    2011-01-01

    Patient identification (ID) errors occurring during the medication administration process can be fatal. The aim of this study is to determine whether differences in nurses' behaviors and visual scanning patterns during the medication administration process influence their capacities to identify patient ID errors. Nurse participants (n = 20)…

  20. Research into the Effect of Supercapacitor Terminal Voltage on Regenerative Suspension Energy-Regeneration and Dynamic Performance

    Directory of Open Access Journals (Sweden)

    Ruochen Wang

    2017-01-01

    Full Text Available To study the effect of supercapacitor initial terminal voltage on the regenerative and semiactive suspension energy-regeneration and dynamic performance, firstly, the relationship between supercapacitor terminal voltage and linear motor electromagnetic damping force and that between supercapacitor terminal voltage and recycled energy by the supercapacitor in one single switching period were both analyzed. The result shows that the linear motor electromagnetic damping force is irrelevant to the supercapacitor terminal voltage, and the recycled energy by the supercapacitor reaches the maximum when initial terminal voltage of the supercapacitor equals output terminal voltage of the linear motor. Then, performances of system dynamics and energy-regeneration were studied as the supercapacitor initial terminal voltage varied in situations of B level and C level road. The result showed that recycled energy by the supercapacitor increased at first and then decreased while the dynamic performance had no obvious change. On the basis of previous study, a mode-switching control strategy of supercapacitor for the regenerative and semiactive suspension system was proposed, and the mode-switching rule was built. According to simulation and experiment results, the system energy-regeneration efficiency can be increased by utilizing the control strategy without influencing suspension dynamic performance, which is highly valuable to practical engineering.

  1. Errors, error detection, error correction and hippocampal-region damage: data and theories.

    Science.gov (United States)

    MacKay, Donald G; Johnson, Laura W

    2013-11-01

    This review and perspective article outlines 15 observational constraints on theories of errors, error detection, and error correction, and their relation to hippocampal-region (HR) damage. The core observations come from 10 studies with H.M., an amnesic with cerebellar and HR damage but virtually no neocortical damage. Three studies examined the detection of errors planted in visual scenes (e.g., a bird flying in a fish bowl in a school classroom) and sentences (e.g., I helped themselves to the birthday cake). In all three experiments, H.M. detected reliably fewer errors than carefully matched memory-normal controls. Other studies examined the detection and correction of self-produced errors, with controls for comprehension of the instructions, impaired visual acuity, temporal factors, motoric slowing, forgetting, excessive memory load, lack of motivation, and deficits in visual scanning or attention. In these studies, H.M. corrected reliably fewer errors than memory-normal and cerebellar controls, and his uncorrected errors in speech, object naming, and reading aloud exhibited two consistent features: omission and anomaly. For example, in sentence production tasks, H.M. omitted one or more words in uncorrected encoding errors that rendered his sentences anomalous (incoherent, incomplete, or ungrammatical) reliably more often than controls. Besides explaining these core findings, the theoretical principles discussed here explain H.M.'s retrograde amnesia for once familiar episodic and semantic information; his anterograde amnesia for novel information; his deficits in visual cognition, sentence comprehension, sentence production, sentence reading, and object naming; and effects of aging on his ability to read isolated low frequency words aloud. These theoretical principles also explain a wide range of other data on error detection and correction and generate new predictions for future test. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Macroeconomic Assessment of Voltage Sags

    Directory of Open Access Journals (Sweden)

    Sinan Küfeoğlu

    2016-12-01

    Full Text Available The electric power sector has changed dramatically since the 1980s. Electricity customers are now demanding uninterrupted and high quality service from both utilities and authorities. By becoming more and more dependent on the voltage sensitive electronic equipment, the industry sector is the one which is affected the most by voltage disturbances. Voltage sags are one of the most crucial problems for these customers. The utilities, on the other hand, conduct cost-benefit analyses before going through new investment projects. At this point, understanding the costs of voltage sags become imperative for planning purposes. The characteristics of electric power consumption and hence the susceptibility against voltage sags differ considerably among different industry subsectors. Therefore, a model that will address the estimation of worth of electric power reliability for a large number of customer groups is necessary. This paper introduces a macroeconomic model to calculate Customer Voltage Sag Costs (CVSCs for the industry sector customers. The proposed model makes use of analytical data such as value added, annual energy consumption, working hours, and average outage durations and provides a straightforward, credible, and easy to follow methodology for the estimation of CVSCs.

  3. A matter of quantum voltages

    Energy Technology Data Exchange (ETDEWEB)

    Sellner, Bernhard; Kathmann, Shawn M., E-mail: Shawn.Kathmann@pnnl.gov [Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2014-11-14

    Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. The variation of voltages in matter can be measured by experiment, however, modern supercomputers allow the calculation of accurate quantum voltages with spatial resolutions of bulk systems well beyond what can currently be measured provided a sufficient level of theory is employed. Of particular interest is the Mean Inner Potential (V{sub o}) – the spatial average of these quantum voltages referenced to the vacuum. Here we establish a protocol to reliably evaluate V{sub o} from quantum calculations. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of V{sub o} for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Certain aspects in this regard are highlighted making use of simple model systems/approximations. Furthermore, we predict V{sub o} as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms.

  4. Transient voltage oscillations in coils

    International Nuclear Information System (INIS)

    Chowdhuri, P.

    1985-01-01

    Magnet coils may be excited into internal voltage oscillations by transient voltages. Such oscillations may electrically stress the magnet's dielectric components to many times its normal stress. This may precipitate a dielectric failure, and the attendant prolonged loss of service and costly repair work. Therefore, it is important to know the natural frequencies of oscillations of a magnet during the design stage, and to determine whether the expected switching transient voltages can excite the magnet into high-voltage internal oscillations. The series capacitance of a winding significantly affects its natural frequencies. However, the series capacitance is difficult to calculate, because it may comprise complex capacitance network, consisting of intra- and inter-coil turn-to-turn capacitances of the coil sections. A method of calculating the series capacitance of a winding is proposed. This method is rigorous but simple to execute. The time-varying transient voltages along the winding are also calculated

  5. Multi-isocenter stereotactic radiotherapy: implications for target dose distributions of systematic and random localization errors

    International Nuclear Information System (INIS)

    Ebert, M.A.; Zavgorodni, S.F.; Kendrick, L.A.; Weston, S.; Harper, C.S.

    2001-01-01

    Purpose: This investigation examined the effect of alignment and localization errors on dose distributions in stereotactic radiotherapy (SRT) with arced circular fields. In particular, it was desired to determine the effect of systematic and random localization errors on multi-isocenter treatments. Methods and Materials: A research version of the FastPlan system from Surgical Navigation Technologies was used to generate a series of SRT plans of varying complexity. These plans were used to examine the influence of random setup errors by recalculating dose distributions with successive setup errors convolved into the off-axis ratio data tables used in the dose calculation. The influence of systematic errors was investigated by displacing isocenters from their planned positions. Results: For single-isocenter plans, it is found that the influences of setup error are strongly dependent on the size of the target volume, with minimum doses decreasing most significantly with increasing random and systematic alignment error. For multi-isocenter plans, similar variations in target dose are encountered, with this result benefiting from the conventional method of prescribing to a lower isodose value for multi-isocenter treatments relative to single-isocenter treatments. Conclusions: It is recommended that the systematic errors associated with target localization in SRT be tracked via a thorough quality assurance program, and that random setup errors be minimized by use of a sufficiently robust relocation system. These errors should also be accounted for by incorporating corrections into the treatment planning algorithm or, alternatively, by inclusion of sufficient margins in target definition

  6. Design and Control of a Dynamic Voltage Restorer

    DEFF Research Database (Denmark)

    Nielsen, John Godsk

    voltage until the energy storage is completely drained or the voltages have returned to normal voltage levels. The control of the HV-DVR is a combined feedforward and feedback control to have a fast response time and load independent voltages. The control is implemented in a rotating dq-reference frame...... electric consumers against voltage dips and surges in the medium and low voltage distribution grid. The thesis first gives an introduction to relevant power quality issues for a DVR and power electronic controllers for voltage dip mitigation. Thereafter the operation and the elements in a DVR are described...... of symmetrical and non-symmetrical voltage dips. In most cases the DVR is capable of restoring the load voltages within 2 ms. During the transition phases load voltage oscillations can be generated and during the return of the supply voltages short time over-voltages can be generated by the DVR. Both...

  7. SVPWM Technique with Varying DC-Link Voltage for Common Mode Voltage Reduction in a Matrix Converter and Analytical Estimation of its Output Voltage Distortion

    Science.gov (United States)

    Padhee, Varsha

    Common Mode Voltage (CMV) in any power converter has been the major contributor to premature motor failures, bearing deterioration, shaft voltage build up and electromagnetic interference. Intelligent control methods like Space Vector Pulse Width Modulation (SVPWM) techniques provide immense potential and flexibility to reduce CMV, thereby targeting all the afore mentioned problems. Other solutions like passive filters, shielded cables and EMI filters add to the volume and cost metrics of the entire system. Smart SVPWM techniques therefore, come with a very important advantage of being an economical solution. This thesis discusses a modified space vector technique applied to an Indirect Matrix Converter (IMC) which results in the reduction of common mode voltages and other advanced features. The conventional indirect space vector pulse-width modulation (SVPWM) method of controlling matrix converters involves the usage of two adjacent active vectors and one zero vector for both rectifying and inverting stages of the converter. By suitable selection of space vectors, the rectifying stage of the matrix converter can generate different levels of virtual DC-link voltage. This capability can be exploited for operation of the converter in different ranges of modulation indices for varying machine speeds. This results in lower common mode voltage and improves the harmonic spectrum of the output voltage, without increasing the number of switching transitions as compared to conventional modulation. To summarize it can be said that the responsibility of formulating output voltages with a particular magnitude and frequency has been transferred solely to the rectifying stage of the IMC. Estimation of degree of distortion in the three phase output voltage is another facet discussed in this thesis. An understanding of the SVPWM technique and the switching sequence of the space vectors in detail gives the potential to estimate the RMS value of the switched output voltage of any

  8. Ripple reduction activities in the MG room at the Bevatron, August 1991 to August 1992

    International Nuclear Information System (INIS)

    Blasbalg, M.; Bennett, M.

    1992-08-01

    This report discusses the following topics: magnet - voltage dividers temperature ampersand voltage influence error calculation; magnet filters summarized data table; magnet transfer function measurement setup and connection diagrams; response of existing magnet system including ripple reduction filters - Dec 1991; magnet filters - mutual inductance problem; and damping the magnet filters

  9. Measurement error of spiral CT volumetry: influence of low dose CT technique

    International Nuclear Information System (INIS)

    Chung, Myung Jin; Cho, Jae Min; Lee, Tae Gyu; Cho, Sung Bum; Kim, Seog Joon; Baik, Sang Hyun

    2004-01-01

    To examine the possible measurement errors of lung nodule volumetry at the various scan parameters by using a small nodule phantom. We obtained images of a nodule phantom using a spiral CT scanner. The nodule phantom was made of paraffin and urethane and its real volume was known. For the CT scanning experiments, we used three different values for both the pitch of the table feed, i.e. 1:1, 1:15 and 1:2, and the tube current, i.e. 40 mA, 80 mA and 120 mA. All of the images acquired through CT scanning were reconstructed three dimensionally and measured with volumetry software. We tested the correlation between the true volume and the measured volume for each set of parameters using linear regression analysis. For the pitches of table feed of 1:1, 1:1.5 and 1:2, the mean relative errors were 23.3%, 22.8% and 22.6%, respectively. There were perfect correlations among the three sets of measurements (Pearson's coefficient = 1.000, p< 0.001). For the tube currents of 40 mA, 80 mA and 120 mA, the mean relative errors were 22.6%, 22.6% and 22.9%, respectively. There were perfect correlations among them (Pearson's coefficient=1.000, p<0.001). In the measurement of the volume of the lung nodule using spiral CT, the measurement error was not increased in spite of the tube current being decreased or the pitch of table feed being increased

  10. High-voltage picoamperemeter

    Energy Technology Data Exchange (ETDEWEB)

    Bugl, Andrea; Ball, Markus; Boehmer, Michael; Doerheim, Sverre; Hoenle, Andreas; Konorov, Igor [Technische Universitaet Muenchen, Garching (Germany); Ketzer, Bernhard [Technische Universitaet Muenchen, Garching (Germany); Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany)

    2014-07-01

    Current measurements in the nano- and picoampere region on high voltage are an important tool to understand charge transfer processes in micropattern gas detectors like the Gas Electron Multiplier (GEM). They are currently used to e.g. optimize the field configuration in a multi-GEM stack to be used in the ALICE TPC after the upgrade of the experiment during the 2nd long shutdown of the LHC. Devices which allow measurements down to 1pA at high voltage up to 6 kV have been developed at TU Muenchen. They are based on analog current measurements via the voltage drop over a switchable shunt. A microcontroller collects 128 digital ADC values and calculates their mean and standard deviation. This information is sent with a wireless transmitting unit to a computer and stored in a root file. A nearly unlimited number of devices can be operated simultaneously and read out by a single receiver. The results can also be displayed on a LCD directly at the device. Battery operation and the wireless readout are important to protect the user from any contact to high voltage. The principle of the device is explained, and systematic studies of their properties are shown.

  11. A threshold-voltage model for small-scaled GaAs nMOSFET with stacked high-k gate dielectric

    International Nuclear Information System (INIS)

    Liu Chaowen; Xu Jingping; Liu Lu; Lu Hanhan; Huang Yuan

    2016-01-01

    A threshold-voltage model for a stacked high-k gate dielectric GaAs MOSFET is established by solving a two-dimensional Poisson's equation in channel and considering the short-channel, DIBL and quantum effects. The simulated results are in good agreement with the Silvaco TCAD data, confirming the correctness and validity of the model. Using the model, impacts of structural and physical parameters of the stack high-k gate dielectric on the threshold-voltage shift and the temperature characteristics of the threshold voltage are investigated. The results show that the stacked gate dielectric structure can effectively suppress the fringing-field and DIBL effects and improve the threshold and temperature characteristics, and on the other hand, the influence of temperature on the threshold voltage is overestimated if the quantum effect is ignored. (paper)

  12. Unfolding of a Temperature-Sensitive Domain Controls Voltage-Gated Channel Activation.

    Science.gov (United States)

    Arrigoni, Cristina; Rohaim, Ahmed; Shaya, David; Findeisen, Felix; Stein, Richard A; Nurva, Shailika Reddy; Mishra, Smriti; Mchaourab, Hassane S; Minor, Daniel L

    2016-02-25

    Voltage-gated ion channels (VGICs) are outfitted with diverse cytoplasmic domains that impact function. To examine how such elements may affect VGIC behavior, we addressed how the bacterial voltage-gated sodium channel (BacNa(V)) C-terminal cytoplasmic domain (CTD) affects function. Our studies show that the BacNa(V) CTD exerts a profound influence on gating through a temperature-dependent unfolding transition in a discrete cytoplasmic domain, the neck domain, proximal to the pore. Structural and functional studies establish that the BacNa(V) CTD comprises a bi-partite four-helix bundle that bears an unusual hydrophilic core whose integrity is central to the unfolding mechanism and that couples directly to the channel activation gate. Together, our findings define a general principle for how the widespread four-helix bundle cytoplasmic domain architecture can control VGIC responses, uncover a mechanism underlying the diverse BacNa(V) voltage dependencies, and demonstrate that a discrete domain can encode the temperature-dependent response of a channel. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Application of round grating angle measurement composite error amendment in the online measurement accuracy improvement of large diameter

    Science.gov (United States)

    Wang, Biao; Yu, Xiaofen; Li, Qinzhao; Zheng, Yu

    2008-10-01

    The paper aiming at the influence factor of round grating dividing error, rolling-wheel produce eccentricity and surface shape errors provides an amendment method based on rolling-wheel to get the composite error model which includes all influence factors above, and then corrects the non-circle measurement angle error of the rolling-wheel. We make soft simulation verification and have experiment; the result indicates that the composite error amendment method can improve the diameter measurement accuracy with rolling-wheel theory. It has wide application prospect for the measurement accuracy higher than 5 μm/m.

  14. The influence of errors during practice on motor learning in young individuals with cerebral palsy.

    Science.gov (United States)

    van Abswoude, Femke; Santos-Vieira, Beatriz; van der Kamp, John; Steenbergen, Bert

    2015-01-01

    The aim of this study was to investigate the effect of errors during practice on motor skill learning in young individuals with cerebral palsy (CP). Minimizing errors has been validated in typically developing children and children with intellectual disabilities as a method for implicit learning, because it reduces working memory involvement during learning. The present study assessed whether a practice protocol that aims at minimizing errors can induce implicit learning in young individuals with CP as well. Accordingly, we hypothesized that reducing errors during practice would lead to enhanced learning and a decrease in the dependency of performance on working memory. Young individuals with CP practiced an aiming task following either an error-minimizing (N=20) or an error-strewn (N=18) practice protocol. Aiming accuracy was assessed in pre-, post- and retention test. Dual task performance was assessed to establish dependency on working memory. The two practice protocols did not invoke different amounts or types of learning in the participants with CP. Yet, participants improved aiming accuracy and showed stable motor performance after learning, irrespective of the protocol they followed. Across groups the number of errors made during practice was related to the amount of learning, and the degree of conscious monitoring of the movement. Only participants with relatively good working memory capacity and a poor initial performance showed a rudimentary form of (most likely, explicit) learning. These new findings on the effect of the amount of practice errors on motor learning in children of CP are important for designing interventions for children and adolescents with CP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Evaluation influence of machining parameters on shape form errors in turning of machine parts clamped in the chuck with adaptive jaws

    Directory of Open Access Journals (Sweden)

    I.V. Lutsiv

    2017-12-01

    Full Text Available The paper deals with the derivation problem of the dependence of machine part geometric form deviation in cross section area on clamping diameter as well as cutting speed, feed and cutting depth in semi finish machining. The analysis of single factor circular deviation dependences on machining conditions values is performed. Using the special software application package the laboratory conditions experiment results are analyzed. The dispersion analysis including options for main linear and quadratic effects evaluation is given and the simplification model of experiment results is obtained. It presents the evaluation empiric dependence of cutting conditions and clamping diameter influence on shape error forming (dynamic error. It is found that to obtain the necessary form accuracy in machining with lathe chuck equipped with the adaptive clamping jaws it is desirable to control the most statistically significant factors that actually are the cutting depth and feed.

  16. The systems approach to error reduction: factors influencing inoculation injury reporting in the operating theatre.

    Science.gov (United States)

    Cutter, Jayne; Jordan, Sue

    2013-11-01

    To examine the frequency of, and factors influencing, reporting of mucocutaneous and percutaneous injuries in operating theatres. Surgeons and peri-operative nurses risk acquiring blood-borne viral infections during surgical procedures. Appropriate first-aid and prophylactic treatment after an injury can significantly reduce the risk of infection. However, studies indicate that injuries often go unreported. The 'systems approach' to error reduction relies on reporting incidents and near misses. Failure to report will compromise safety. A postal survey of all surgeons and peri-operative nurses engaged in exposure prone procedures in nine Welsh hospitals, face-to-face interviews with selected participants and telephone interviews with Infection Control Nurses. The response rate was 51.47% (315/612). Most respondents reported one or more percutaneous (183/315, 58.1%) and/or mucocutaneous injuries (68/315, 21.6%) in the 5 years preceding the study. Only 54.9% (112/204) reported every injury. Surgeons were poorer at reporting: 70/133 (52.6%) reported all or >50% of their injuries compared with 65/71 nurses (91.5%). Injuries are frequently under-reported, possibly compromising safety in operating theatres. A significant number of inoculation injuries are not reported. Factors influencing under-reporting were identified. This knowledge can assist managers in improving reporting and encouraging a robust safety culture within operating departments. © 2012 John Wiley & Sons Ltd.

  17. Modelling voltage sag mitigation using dynamic voltage restorer and analyzing power quality issue

    Science.gov (United States)

    Ismail, Nor Laili; Hidzir, Hizrin Dayana Mohd; Thanakodi, Suresh; Nazar, Nazatul Shiema Moh; Ibrahim, Pungut; Ali, Che Ku Muhammad Sabri Che Ku

    2018-02-01

    Power quality problem which are arise due to a fault or a pulsed load can have caused an interruption of critical load. The modern power systems are becoming more sensitive to the quality of the power supplied by the utility company. Voltage sags and swells, flicker, interruptions, harmonic distortion and other distortion to the sinusoidal waveform are the examples of the power quality problems. The most affected due to these problems is industrial customers who use a lot of sensitive equipment. There has suffered a huge loss to these problems. Resulting of broken or damage equipment if voltage sag exceeds the sensitive threshold of the equipment. Thus, device such as Static Synchronous Compensator (STATCOM) and Dynamic Voltage Restorer (DVR) has been created to solve this problem among users. DVR is a custom power device that most effective and efficient. This paper intended to report the DVR operations during voltage sag compensation.

  18. A GENERAL STUDY OF THE INFLUENCE OF CATASTROPHIC PHOTOMETRIC REDSHIFT ERRORS ON COSMOLOGY WITH COSMIC SHEAR TOMOGRAPHY

    International Nuclear Information System (INIS)

    Hearin, Andrew P.; Zentner, Andrew R.; Ma Zhaoming; Huterer, Dragan

    2010-01-01

    A goal of forthcoming imaging surveys is to use weak gravitational lensing shear measurements to constrain dark energy. A challenge to this program is that redshifts to the lensed, source galaxies must be determined using photometric, rather than spectroscopic, information. We quantify the importance of uncalibrated photometric redshift outliers to the dark energy goals of forthcoming imaging surveys in a manner that does not assume any particular photometric redshift technique or template. In so doing, we provide an approximate blueprint for computing the influence of specific outlier populations on dark energy constraints. We find that outlier populations whose photo-z distributions are tightly localized about a significantly biased redshift must be controlled to a per-galaxy rate of (1-3) x 10 -3 to insure that systematic errors on dark energy parameters are rendered negligible. In the complementary limit, a subset of imaged galaxies with uncalibrated photometric redshifts distributed over a broad range must be limited to fewer than a per-galaxy error rate of F cat ∼ -4 . Additionally, we explore the relative importance of calibrating the photo-z's of a core set of relatively well-understood galaxies as compared to the need to identify potential catastrophic photo-z outliers. We discuss the degradation of the statistical constraints on dark energy parameters induced by excising source galaxies at high- and low-photometric redshifts, concluding that removing galaxies with photometric redshifts z ph ∼> 2.4 and z ph ∼< 0.3 may mitigate damaging catastrophic redshift outliers at a relatively small (∼<20%) cost in statistical error. In an Appendix, we show that forecasts for the degradation in dark energy parameter constraints due to uncertain photometric redshifts depend sensitively on the treatment of the nonlinear matter power spectrum. In particular, previous work using Peacock and Dodds may have overestimated the photo-z calibration requirements of

  19. Influence of an external voltage on the conductance through a quantum dot side-coupled to a short quantum wire

    International Nuclear Information System (INIS)

    Zhang Zhiyong; Xiong Shijie

    2005-01-01

    We investigate the influence of an external voltage V 0 on conductance G through a quantum dot (QD), which is side-coupled to a quantum wire of length L W , whose two ends are weakly connected to leads. In our calculation, the poor man's scaling law and slave-boson mean-field method are employed. With V 0 increased, a series of resonant regions is formed and G exhibits different properties in and out of these regions, which is the universal result of the finite-size effect on the Kondo correlation. In symmetric structures, the would-be resonant regions corresponding to odd wavefunctions are removed. If the symmetry is broken by changing the QD position, those regions will be recovered. In two asymmetric structures with their wire lengths being L W and L W +1, respectively, the two sets of resonant regions intersect with each other. These symmetry-related phenomena characterize side-coupled QD structures. With the barrier width increased, the number of resonant regions is increased, too

  20. Application to the system of insulated of diagnosis in high-voltage motors by partial discharge

    International Nuclear Information System (INIS)

    Mikami, M.

    2005-01-01

    In order to detect electric insulators degradation of high-voltage electric motors at an early stage, measurements of partial discharge of operating high-voltage electric motors (about 150 units) in the nuclear power plants were conducted from 2001 to 2004 by the use of on-line monitoring systems that could measure partial discharge of electric insulators. Influencing factors for measured values were identified from measured data and evaluation criteria of electric insulators integrity were established based on variations of partial discharge values. (T. Tanaka)

  1. Study on model current predictive control method of PV grid- connected inverters systems with voltage sag

    Science.gov (United States)

    Jin, N.; Yang, F.; Shang, S. Y.; Tao, T.; Liu, J. S.

    2016-08-01

    According to the limitations of the LVRT technology of traditional photovoltaic inverter existed, this paper proposes a low voltage ride through (LVRT) control method based on model current predictive control (MCPC). This method can effectively improve the photovoltaic inverter output characteristics and response speed. The MCPC method of photovoltaic grid-connected inverter designed, the sum of the absolute value of the predictive current and the given current error is adopted as the cost function with the model predictive control method. According to the MCPC, the optimal space voltage vector is selected. Photovoltaic inverter has achieved automatically switches of priority active or reactive power control of two control modes according to the different operating states, which effectively improve the inverter capability of LVRT. The simulation and experimental results proves that the proposed method is correct and effective.

  2. Influence of bias voltage on structural and optical properties of TiN{sub x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Omveer, E-mail: poonia.omveer@gmail.com [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi – 110016 (India); Dahiya, Raj P. [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi – 110016 (India); Deenbandhu Chhotu Ram University of Science and Technology, Murthal – 131039 (India); Malik, Hitendra K.; Kumar, Parmod [Department of Physics, Indian Institute of Technology Delhi, New Delhi – 110016 (India)

    2015-08-28

    In the present work, Ti thin films were deposited on Si substrate using DC sputtering technique. Indigenous hot cathode arc discharge plasma system was used for nitriding over these samples, where the plasma parameters and work piece can be controlled independently. A mixture of H{sub 2} and N{sub 2} gases (in the ratio of 80:20) was supplied into the plasma chamber. The effect of bias voltage on the crystal structure, morphology and optical properties was investigated by employing various physical techniques such as X-ray Diffraction, Atomic Force Microscopy and UV-Vis spectrometry. It was found that bias voltage affects largely the crystal structure and band gap which in turn is responsible for the modifications in optical properties of the deposited films.

  3. Performance evaluation of wideband bio-impedance spectroscopy using constant voltage source and constant current source

    International Nuclear Information System (INIS)

    Mohamadou, Youssoufa; Oh, Tong In; Wi, Hun; Sohal, Harsh; Farooq, Adnan; Woo, Eung Je; McEwan, Alistair Lee

    2012-01-01

    Current sources are widely used in bio-impedance spectroscopy (BIS) measurement systems to maximize current injection for increased signal to noise while keeping within medical safety specifications. High-performance current sources based on the Howland current pump with optimized impedance converters are able to minimize stray capacitance of the cables and setup. This approach is limited at high frequencies primarily due to the deteriorated output impedance of the constant current source when situated in a real measurement system. For this reason, voltage sources have been suggested, but they require a current sensing resistor, and the SNR reduces at low impedance loads due to the lower current required to maintain constant voltage. In this paper, we compare the performance of a current source-based BIS and a voltage source-based BIS, which use common components. The current source BIS is based on a Howland current pump and generalized impedance converters to maintain a high output impedance of more than 1 MΩ at 2 MHz. The voltage source BIS is based on voltage division between an internal current sensing resistor (R s ) and an external sample. To maintain high SNR, R s is varied so that the source voltage is divided more or less equally. In order to calibrate the systems, we measured the transfer function of the BIS systems with several known resistor and capacitor loads. From this we may estimate the resistance and capacitance of biological tissues using the least-squares method to minimize error between the measured transimpedance excluding the system transfer function and that from an impedance model. When tested on realistic loads including discrete resistors and capacitors, and saline and agar phantoms, the voltage source-based BIS system had a wider bandwidth of 10 Hz to 2.2 MHz with less than 1% deviation from the expected spectra compared to more than 10% with the current source. The voltage source also showed an SNR of at least 60 dB up to 2.2 MHz

  4. Voltage gating of mechanosensitive PIEZO channels.

    Science.gov (United States)

    Moroni, Mirko; Servin-Vences, M Rocio; Fleischer, Raluca; Sánchez-Carranza, Oscar; Lewin, Gary R

    2018-03-15

    Mechanosensitive PIEZO ion channels are evolutionarily conserved proteins whose presence is critical for normal physiology in multicellular organisms. Here we show that, in addition to mechanical stimuli, PIEZO channels are also powerfully modulated by voltage and can even switch to a purely voltage-gated mode. Mutations that cause human diseases, such as xerocytosis, profoundly shift voltage sensitivity of PIEZO1 channels toward the resting membrane potential and strongly promote voltage gating. Voltage modulation may be explained by the presence of an inactivation gate in the pore, the opening of which is promoted by outward permeation. Older invertebrate (fly) and vertebrate (fish) PIEZO proteins are also voltage sensitive, but voltage gating is a much more prominent feature of these older channels. We propose that the voltage sensitivity of PIEZO channels is a deep property co-opted to add a regulatory mechanism for PIEZO activation in widely different cellular contexts.

  5. Stabilization of Voltage Parameters of Induction Generator Excited by a Voltage Inverter

    Directory of Open Access Journals (Sweden)

    Padalko D.A.

    2017-12-01

    Full Text Available The article reveals the operational aspects of induction generator. Methods for stabilization of induction generator (IG parameters under inverter excitation are investigated. The study was carried out using mathematical description and simulation modeling in MATLAB Simulink. The paper provides analysis of causes of generated voltage amplitude and frequency displacement when the loading condition and the rate vary. Due to the parametric resonance nature of IG self-excitation, the author introduces the expression that allows estimating the capacitor capacitance required to maintain the generation process, depending on the rotor speed of electric machine, load nature and rate. Based on the studies, it was proved that it is possible to stabilize the IG voltage parameters by maintaining the magnetizing circuit inductance Lm at the constant level., and realizing a control law close to U/f = const. The study proves that using the inverter together with the voltage regulator allows ensuring the quality of electricity corresponding to modern standards. The necessity of problem solving of the required quality of the voltage by the harmonic component for the exciter - inverter with PWM is shown. The prospects of the power generation system based on induction machine (IM with a semiconductor frequency converter, which serves as an adjustable supplier of capacitive current for IM for autonomous objects, are substantiated. The use of semiconductor frequency converters makes it possible to provide high stability of the output voltage parameters and good speed of the mechatronic generation system with an asynchronous machine.

  6. Single-phased Fault Location on Transmission Lines Using Unsynchronized Voltages

    Directory of Open Access Journals (Sweden)

    ISTRATE, M.

    2009-10-01

    Full Text Available The increased accuracy into the fault's detection and location makes it easier for maintenance, this being the reason to develop new possibilities for a precise estimation of the fault location. In the field literature, many methods for fault location using voltages and currents measurements at one or both terminals of power grids' lines are presented. The double-end synchronized data algorithms are very precise, but the current transformers can limit the accuracy of these estimations. The paper presents an algorithm to estimate the location of the single-phased faults which uses only voltage measurements at both terminals of the transmission lines by eliminating the error due to current transformers and without introducing the restriction of perfect data synchronization. In such conditions, the algorithm can be used with the actual equipment of the most power grids, the installation of phasor measurement units with GPS system synchronized timer not being compulsory. Only the positive sequence of line parameters and sources are used, thus, eliminating the incertitude in zero sequence parameter estimation. The algorithm is tested using the results of EMTP-ATP simulations, after the validation of the ATP models on the basis of registered results in a real power grid.

  7. Re-evaluating the role of sterics and electronic coupling in determining the open-circuit voltage of organic solar cells

    KAUST Repository

    Graham, Kenneth; Erwin, Patrick; Nordlund, Dennis; Vandewal, Koen; Li, Ruipeng; Ngongang Ndjawa, Guy Olivier; Hoke, Eric T.; Salleo, Alberto; Thompson, Mark E.; McGehee, Michael D.; Amassian, Aram

    2013-01-01

    The effects of sterics and molecular orientation on the open-circuit voltage and absorbance properties of charge-transfer states are explored in model bilayer organic photovoltaics. It is shown that the open-circuit voltage correlates linearly with the charge-transfer state energy and is not significantly influenced by electronic coupling. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Re-evaluating the role of sterics and electronic coupling in determining the open-circuit voltage of organic solar cells

    KAUST Repository

    Graham, Kenneth

    2013-07-30

    The effects of sterics and molecular orientation on the open-circuit voltage and absorbance properties of charge-transfer states are explored in model bilayer organic photovoltaics. It is shown that the open-circuit voltage correlates linearly with the charge-transfer state energy and is not significantly influenced by electronic coupling. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Monitoring the consistency of the dynalyser output via digital display unit and calculated practical peak voltage

    International Nuclear Information System (INIS)

    Wan Hazlinda Ismail; Muhammad Jamal Mohd Isa; Abdul Aziz Mohd Ramli; Shahrul Azlan Azizan

    2010-01-01

    This study was carried out to ensure the adequacy and accuracy of the Dynalyser Digital Display unit for measuring the true kVp from the invasive kVp meter unit during calibration of non-invasive kVp meters. An invasive high voltage divider (dynalyser) coupled to the x-ray system measures the true kilo voltage supplied to the x-ray tube. The kVp output measured was displayed via its digital display unit while its waveform was acquired using a calibrated oscilloscope. The waveform was used to calculate the Practical Peak Voltage (PPV) using the International Standard method adapted from IEC 61676 and treated as the true kVp value. The kVp output was measured at 9 points ranging between 40 kV-120 kV with interval steps of 10 kV and monitored every day. The test result was evaluated for variation of output, intrinsic error and limit of variation in compliance with the IEC standard. Results showed that kVp output measured by the display unit everyday is consistent with variations of not more than ±0.45 kV, intrinsic error of not more than ±0.009 kV and limits of variation of less than 1% which comply with the IEC standard requirement. The kVp output via digital display unit has a total uncertainty of not more than 2.8 kV (k=2) while the PPV output via oscilloscope has total uncertainty of not more than 0.75 kV (k=2). As a conclusion, the dynalyser digital display unit complies with standard requirement and can be used to measure the true kVp output during the calibration of non-invasive kVp meters. (author)

  10. Application of Adaptive Neuro-Fuzzy Inference System for Prediction of Neutron Yield of IR-IECF Facility in High Voltages

    Science.gov (United States)

    Adineh-Vand, A.; Torabi, M.; Roshani, G. H.; Taghipour, M.; Feghhi, S. A. H.; Rezaei, M.; Sadati, S. M.

    2013-09-01

    This paper presents a soft computing based artificial intelligent technique, adaptive neuro-fuzzy inference system (ANFIS) to predict the neutron production rate (NPR) of IR-IECF device in wide discharge current and voltage ranges. A hybrid learning algorithm consists of back-propagation and least-squares estimation is used for training the ANFIS model. The performance of the proposed ANFIS model is tested using the experimental data using four performance measures: correlation coefficient, mean absolute error, mean relative error percentage (MRE%) and root mean square error. The obtained results show that the proposed ANFIS model has achieved good agreement with the experimental results. In comparison to the experimental data the proposed ANFIS model has MRE% training and testing data respectively. Therefore, this model can be used as an efficient tool to predict the NPR in the IR-IECF device.

  11. Voltage Unbalance Compensation with Smart Three-phase Loads

    DEFF Research Database (Denmark)

    Douglass, Philip; Trintis, Ionut; Munk-Nielsen, Stig

    2016-01-01

    unbalance originating in the power supply network. Two variants of the algorithm are tested: first, using phase-neutral voltage as input, second, using phase-phase voltage. The control algorithm is described, and evaluated in simulations and laboratory tests. Two metrics for quantifying voltage unbalance...... are evaluated: one metric based on the maximum deviation of RMS phaseneutral voltage from the average voltage and one metric based on negative sequence voltage. The tests show that controller that uses phase-neutral voltage as input can in most cases eliminate the deviations of phase voltage from the average...... is caused by asymmetrical loads. These results suggest that the optimal algorithm to reduce system unbalance depends on which system parameter is most important: phase-neutral voltage unbalance, phase-phase voltage unbalance, or current unbalance....

  12. LED-Based High-Voltage Lines Warning System

    Directory of Open Access Journals (Sweden)

    Eldar MUSA

    2013-04-01

    Full Text Available LED-based system, running with the current of high-voltage lines and converting the current flowing through the line into the light by using a toroid transformer, has been developed. The transformer’s primary winding is constituted by the high voltage power line. Toroidal core consists of two equal parts and the secondary windings are evenly placed on these two parts. The system is mounted on the high-voltage lines as a clamp. The secondary winding ends are connected in series by the connector on the clamp. LEDs are supplied by the voltage at the ends of secondary. Current flowing through highvoltage transmission lines is converted to voltage by the toroidal transformer and the light emitting LEDs are supplied with this voltage. The theory of the conversion of the current flowing through the line into the light is given. The system, running with the current of the line and converting the current into the light, has been developed. System has many application areas such as warning high voltage lines (warning winches to not hinder the high-voltage lines when working under the lines, warning planes to not touch the high-voltage lines, remote measurement of high-voltage line currents, and local illumination of the line area

  13. A CMOS integrated voltage and power efficient AC/DC converter for energy harvesting applications

    International Nuclear Information System (INIS)

    Peters, Christian; Ortmanns, Maurits; Manoli, Yiannos; Spreemann, Dirk

    2008-01-01

    In this paper, a fully CMOS integrated active AC/DC converter for energy harvesting applications is presented. The rectifier is realized in a standard 0.35 µm CMOS process without special process options. It works as a full wave rectifier and can be separated into two stages—one passive and one active. The active part is powered from the storage capacitor and consumes about 600 nA at 2 V supply. The input voltage amplitude range is between 1.25 and 3.75 V, and the operating frequency range is from 1 Hz to as much as several 100 kHz. The series voltage drop over the rectifier is less than 20 mV. Measurements in combination with an electromagnetic harvester show a significant increase in the achievable output voltage and power compared to a common, discrete Schottky diode rectifier. The measured efficiency of the rectifier is over 95%. Measurements show a negligible temperature influence on the output voltage between −40 °C and +125 °C

  14. Learning time-dependent noise to reduce logical errors: real time error rate estimation in quantum error correction

    Science.gov (United States)

    Huo, Ming-Xia; Li, Ying

    2017-12-01

    Quantum error correction is important to quantum information processing, which allows us to reliably process information encoded in quantum error correction codes. Efficient quantum error correction benefits from the knowledge of error rates. We propose a protocol for monitoring error rates in real time without interrupting the quantum error correction. Any adaptation of the quantum error correction code or its implementation circuit is not required. The protocol can be directly applied to the most advanced quantum error correction techniques, e.g. surface code. A Gaussian processes algorithm is used to estimate and predict error rates based on error correction data in the past. We find that using these estimated error rates, the probability of error correction failures can be significantly reduced by a factor increasing with the code distance.

  15. Modeling and Experimental Study of Soft Error Propagation Based on Cellular Automaton

    OpenAIRE

    He, Wei; Wang, Yueke; Xing, Kefei; Yang, Jianwei

    2016-01-01

    Aiming to estimate SEE soft error performance of complex electronic systems, a soft error propagation model based on cellular automaton is proposed and an estimation methodology based on circuit partitioning and error propagation is presented. Simulations indicate that different fault grade jamming and different coupling factors between cells are the main parameters influencing the vulnerability of the system. Accelerated radiation experiments have been developed to determine the main paramet...

  16. Influence of human-machine-interfaces on the error-proneness of operator interaction with technical systems

    International Nuclear Information System (INIS)

    Boussoffara, Badi; Elzer, Peter F.

    1999-01-01

    The paper gives an overview over a research project that has been jointly conducted by four research institutions in Germany since October 1995 with the financial support of the Volkswagen Foundation Germany. The aim of this project is to experimentally investigate the influence of the Human Computer Interface (HCI) on the error-proneness of operators during classification and diagnosis of various process states. Since evaluation of the complete chain 'activation - detection -recognition - diagnosis - action' would have caused some ambiguities with respect to the interpretation of the experimental data only detection and classification of unwanted process states have been evaluated. Depending on the requirements of the various types of experiments the following experimental environments were set up: IPP, IfKog: a simulator of a coal-fired power station (courtesy of ABB); ISTec: a simulator of a nuclear power station (courtesy of GRS); several types of interfaces designed by IPP and IfKog, implemented at IPP; interfaces designed and implemented at ISTec (author) (ml)

  17. Design of current controller of grid-connected voltage source converter based internal model control in wind power

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xianping; Guo Jindong; Xu Honghua [Inst. of Electrical Engineering, Chinese Academy of Sciences, BJ (China)

    2008-07-01

    Grid-connected voltage source converter (VSC) is important for variable speed turbines with doubly fed induction generator (DFIG), and bad performance of current loop of VSC may cause VSC inject much low and high order harmonics into grid. Therefore, design of current controller of VSC is very important. PI regulator is often used to regulate current error in dq rotating coordinate to obtain zero steady error. However, it is complex to design PI parameters, and researchers need many trial-and-error steps. Therefore, a novel and simple design method of PI regulator for grid-connected VSC, which is based internal model control (IMC), has been presented in this paper. The parameters of PI regulator can be expressed directly with certain L-type line filter parameters and the desired closed-loop bandwidth. At last, The simulation has been done and result shows that the method in this paper is easy and useful to regulate PI parameters. (orig.)

  18. Practical considerations in voltage stability assessment

    Energy Technology Data Exchange (ETDEWEB)

    Kundur, P; Gao, B [Powertech Labs. Inc., Surrey, BC (Canada)

    1994-12-31

    This paper deals with some of the most important practical issues related to voltage stability assessment of large practical systems. A brief discussion of the practical aspects of voltage stability problem and prevention of voltage instability is given first, followed by descriptions of different analytical techniques and tools for voltage stability analysis. Presentations of analytical tools is focused on the VSTAB program which incorporates the modal analysis, continuation power flow, and shortest distance to instability techniques, Finally, an example case study of a practical large system is presented. The case study illustrates how modal analysis is used to determine the most effective load shedding scheme for preventing voltage instability. (author) 15 refs., 2 figs., 2 tabs.

  19. 49 CFR 234.221 - Lamp voltage.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lamp voltage. 234.221 Section 234.221 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION..., Inspection, and Testing Maintenance Standards § 234.221 Lamp voltage. The voltage at each lamp shall be...

  20. The selective power of causality on memory errors.

    Science.gov (United States)

    Marsh, Jessecae K; Kulkofsky, Sarah

    2015-01-01

    We tested the influence of causal links on the production of memory errors in a misinformation paradigm. Participants studied a set of statements about a person, which were presented as either individual statements or pairs of causally linked statements. Participants were then provided with causally plausible and causally implausible misinformation. We hypothesised that studying information connected with causal links would promote representing information in a more abstract manner. As such, we predicted that causal information would not provide an overall protection against memory errors, but rather would preferentially help in the rejection of misinformation that was causally implausible, given the learned causal links. In two experiments, we measured whether the causal linkage of information would be generally protective against all memory errors or only selectively protective against certain types of memory errors. Causal links helped participants reject implausible memory lures, but did not protect against plausible lures. Our results suggest that causal information may promote an abstract storage of information that helps prevent only specific types of memory errors.

  1. Sensitivity of dose-finding studies to observation errors.

    Science.gov (United States)

    Zohar, Sarah; O'Quigley, John

    2009-11-01

    The purpose of Phase I designs is to estimate the MTD (maximum tolerated dose, in practice a dose with some given acceptable rate of toxicity) while, at the same time, minimizing the number of patients treated at doses too far removed from the MTD. Our purpose here is to investigate the sensitivity of conclusions from dose-finding designs to recording or observation errors. Certain toxicities may go undetected and, conversely, certain non-toxicities may be incorrectly recorded as dose-limiting toxicities. Recording inaccuracies would be expected to have an influence on final and within trial recommendations and, in this paper, we study in greater depth this question. We focus, in particular on three designs used currently; the standard '3+3' design, the grouped up-and-down design [M. Gezmu, N. Flournoy, Group up-and-down designs for dose finding. Journal of Statistical Planning and Inference 2006; 136 (6): 1749-1764.] and the continual reassessment method (CRM, [J. O'Quigley, M. Pepe, L. Fisher, Continual reassessment method: a practical design for phase 1 clinical trials in cancer. Biometrics 1990; 46 (1): 33-48.]). A non-toxicity incorrectly recorded as a toxicity (error of first kind) has a greater influence in general than the converse (error of second kind). These results are illustrated via figures which suggest that the standard '3+3' design in particular is sensitive to errors of the second kind. Such errors can have a very important impact on drug development in that, if carried through to the Phase 2 and Phase 3 studies, we can significantly increase the probability of failure to detect efficacy as a result of having delivered an inadequate dose.

  2. Reduced Voltage Scaling in Clock Distribution Networks

    Directory of Open Access Journals (Sweden)

    Khader Mohammad

    2009-01-01

    Full Text Available We propose a novel circuit technique to generate a reduced voltage swing (RVS signals for active power reduction on main buses and clocks. This is achieved without performance degradation, without extra power supply requirement, and with minimum area overhead. The technique stops the discharge path on the net that is swinging low at a certain voltage value. It reduces active power on the target net by as much as 33% compared to traditional full swing signaling. The logic 0 voltage value is programmable through control bits. If desired, the reduced-swing mode can also be disabled. The approach assumes that the logic 0 voltage value is always less than the threshold voltage of the nMOS receivers, which eliminate the need of the low to high voltage translation. The reduced noise margin and the increased leakage on the receiver transistors using this approach have been addressed through the selective usage of multithreshold voltage (MTV devices and the programmability of the low voltage value.

  3. Voltage Balancing Method on Expert System for 51-Level MMC in High Voltage Direct Current Transmission

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2016-01-01

    Full Text Available The Modular Multilevel Converters (MMC have been a spotlight for the high voltage and high power transmission systems. In the VSC-HVDC (High Voltage Direct Current based on Voltage Source Converter transmission system, the energy of DC link is stored in the distributed capacitors, and the difference of capacitors in parameters and charge rates causes capacitor voltage balance which affects the safety and stability of HVDC system. A method of MMC based on the expert system for reducing the frequency of the submodules (SMs of the IGBT switching frequency is proposed. Firstly, MMC with 51 levels for HVDC is designed. Secondly, the nearest level control (NLC for 51-level MMC is introduced. Thirdly, a modified capacitor voltage balancing method based on expert system for MMC-based HVDC transmission system is proposed. Finally, a simulation platform for 51-level Modular Multilevel Converter is constructed by using MATLAB/SIMULINK. The results indicate that the strategy proposed reduces the switching frequency on the premise of keeping submodule voltage basically identical, which greatly reduces the power losses for MMC-HVDC system.

  4. The effect of applied control strategy on the current-voltage correlation of a solid oxide fuel cell stack during dynamic operation

    Science.gov (United States)

    Szmyd, Janusz S.; Komatsu, Yosuke; Brus, Grzegorz; Ghigliazza, Francesco; Kimijima, Shinji; Ściążko, Anna

    2014-09-01

    This paper discusses the transient characteristics of the planar type SOFC cell stack, of which the standard output is 300 W. The transient response of the voltage to the manipulation of an electric current was investigated. The effects of the response and of the operating condition determined by the operating temperature of the stack were studied by mapping a current-voltage (I-V) correlation. The current-based fuel control (CBFC) was adopted for keeping the fuel utilization factor at constant while the value of the electric current was ramped at the constant rate. The present experimental study shows that the transient characteristics of the cell voltage are determined by primarily the operating temperature caused by the manipulation of the current. Particularly, the slope of the I-V curve and the overshoot found on the voltage was remarkably influenced by the operating temperature. The different values of the fuel utilization factor influence the height of the settled voltages. The CBFC has significance in determining the slope of the I-V characteristic, but the different values ofthe fuel utilization factor does not affect the slope as the operating temperature does. The CBFC essentially does not alter the amplitude of the overshoot on the voltage response, since this is dominated by the operating temperature and its change is caused by manipulating the current.

  5. The effect of applied control strategy on the current-voltage correlation of a solid oxide fuel cell stack during dynamic operation

    Directory of Open Access Journals (Sweden)

    Szmyd Janusz S.

    2014-09-01

    Full Text Available This paper discusses the transient characteristics of the planar type SOFC cell stack, of which the standard output is 300 W. The transient response of the voltage to the manipulation of an electric current was investigated. The effects of the response and of the operating condition determined by the operating temperature of the stack were studied by mapping a current-voltage (I-V correlation. The current-based fuel control (CBFC was adopted for keeping the fuel utilization factor at constant while the value of the electric current was ramped at the constant rate. The present experimental study shows that the transient characteristics of the cell voltage are determined by primarily the operating temperature caused by the manipulation of the current. Particularly, the slope of the I-V curve and the overshoot found on the voltage was remarkably influenced by the operating temperature. The different values of the fuel utilization factor influence the height of the settled voltages. The CBFC has significance in determining the slope of the I-V characteristic, but the different values ofthe fuel utilization factor does not affect the slope as the operating temperature does. The CBFC essentially does not alter the amplitude of the overshoot on the voltage response, since this is dominated by the operating temperature and its change is caused by manipulating the current.

  6. Choice of reference sequence and assembler for alignment of Listeria monocytogenes short-read sequence data greatly influences rates of error in SNP analyses.

    Directory of Open Access Journals (Sweden)

    Arthur W Pightling

    Full Text Available The wide availability of whole-genome sequencing (WGS and an abundance of open-source software have made detection of single-nucleotide polymorphisms (SNPs in bacterial genomes an increasingly accessible and effective tool for comparative analyses. Thus, ensuring that real nucleotide differences between genomes (i.e., true SNPs are detected at high rates and that the influences of errors (such as false positive SNPs, ambiguously called sites, and gaps are mitigated is of utmost importance. The choices researchers make regarding the generation and analysis of WGS data can greatly influence the accuracy of short-read sequence alignments and, therefore, the efficacy of such experiments. We studied the effects of some of these choices, including: i depth of sequencing coverage, ii choice of reference-guided short-read sequence assembler, iii choice of reference genome, and iv whether to perform read-quality filtering and trimming, on our ability to detect true SNPs and on the frequencies of errors. We performed benchmarking experiments, during which we assembled simulated and real Listeria monocytogenes strain 08-5578 short-read sequence datasets of varying quality with four commonly used assemblers (BWA, MOSAIK, Novoalign, and SMALT, using reference genomes of varying genetic distances, and with or without read pre-processing (i.e., quality filtering and trimming. We found that assemblies of at least 50-fold coverage provided the most accurate results. In addition, MOSAIK yielded the fewest errors when reads were aligned to a nearly identical reference genome, while using SMALT to align reads against a reference sequence that is ∼0.82% distant from 08-5578 at the nucleotide level resulted in the detection of the greatest numbers of true SNPs and the fewest errors. Finally, we show that whether read pre-processing improves SNP detection depends upon the choice of reference sequence and assembler. In total, this study demonstrates that researchers

  7. Automatic Power-Sharing Modification of P/V Droop Controllers in Low-Voltage Resistive Microgrids

    DEFF Research Database (Denmark)

    L. Vandoorn, Tine; D. M. De Kooning, Jeroen; Meersman, Bart

    2012-01-01

    Microgrids are receiving an increasing interest to integrate the growing share of distributed-generation (DG) units in the electrical network. For the islanded operation of themicrogrid, several control strategies for the primary control have been developed to ensure stable microgrid operation....... In low-voltage (LV) microgrids, active power/voltage ( P/V ) droop controllers are gaining attention as they take the resistive nature of the network lines and the lack of directly coupled rotating inertia into account. However, a problem often cited with these droop controllers is that the grid voltage...... is not a global parameter. This can influence the power sharing between different units. In this paper, it is investigated whether this is actually a disadvantage of the control strategy. It is shown that with / droop control, the DG units that are located electrically far from the load centers automatically...

  8. Microprocessor-controlled, programmable ramp voltage generator

    International Nuclear Information System (INIS)

    Hopwood, J.

    1978-11-01

    A special-purpose voltage generator has been developed for driving the quadrupole mass filter of a residual gas analyzer. The generator is microprocessor-controlled with desired ramping parameters programmed by setting front-panel digital thumb switches. The start voltage, stop voltage, and time of each excursion are selectable. A maximum of five start-stop levels may be pre-selected for each program. The ramp voltage is 0 to 10 volts with sweep times from 0.1 to 999.99 seconds

  9. Detailed semantic analyses of human error incidents occurring at nuclear power plants. Extraction of periodical transition of error occurrence patterns by applying multivariate analysis

    International Nuclear Information System (INIS)

    Hirotsu, Yuko; Suzuki, Kunihiko; Takano, Kenichi; Kojima, Mitsuhiro

    2000-01-01

    It is essential for preventing the recurrence of human error incidents to analyze and evaluate them with the emphasis on human factor. Detailed and structured analyses of all incidents at domestic nuclear power plants (NPPs) reported during last 31 years have been conducted based on J-HPES, in which total 193 human error cases are identified. Results obtained by the analyses have been stored into the J-HPES database. In the previous study, by applying multivariate analysis to above case studies, it was suggested that there were several occurrence patterns identified of how errors occur at NPPs. It was also clarified that the causes related to each human error are different depending on age of their occurrence. This paper described the obtained results in respects of periodical transition of human error occurrence patterns. By applying multivariate analysis to the above data, it was suggested there were two types of error occurrence patterns as to each human error type. First type is common occurrence patterns, not depending on the age, and second type is the one influenced by periodical characteristics. (author)

  10. A novel single-phase phase space-based voltage mode controller for distributed static compensator to improve voltage profile of distribution systems

    International Nuclear Information System (INIS)

    Shokri, Abdollah; Shareef, Hussain; Mohamed, Azah; Farhoodnea, Masoud; Zayandehroodi, Hadi

    2014-01-01

    Highlights: • A new phase space based voltage mode controller for D-STATCOM was proposed. • The proposed compensator was tested to mitigate voltage disturbances in distribution systems. • Voltage fluctuation, voltage sag and voltage swell are considered to evaluate the performance of the proposed compensator. - Abstract: Distribution static synchronous compensator (D-STATCOM) has been developed and attained a great interest to compensate the power quality disturbances of distribution systems. In this paper, a novel single-phase control scheme for D-STATCOM is proposed to improve voltage profile at the Point of Common Coupling (PCC). The proposed voltage mode (VM) controller is based on the phase space algorithm, which is able to rapidly detect and mitigate any voltage deviations from reference voltage including voltage sags and voltage swells. To investigate the efficiency and accuracy of the proposed compensator, a system is modeled using Matlab/Simulink. The simulation results approve the capability of the proposed VM controller to provide a regulated and disturbance-free voltage for the connected loads at the PCC

  11. Design and implementation of channel estimation for low-voltage power line communication systems based on OFDM

    International Nuclear Information System (INIS)

    Zhao Huidong; Hei Yong; Qiao Shushan; Ye Tianchun

    2012-01-01

    An optimized channel estimation algorithm based on a time-spread structure in OFDM low-voltage power line communication (PLC) systems is proposed to achieve a lower bit error rate (BER). This paper optimizes the best maximum multi-path delay of the linear minimum mean square error (LMMSE) algorithm in time-domain spread OFDM systems. Simulation results indicate that the BER of the improved method is lower than that of conventional LMMSE algorithm, especially when the signal-to-noise ratio (SNR) is lower than 0 dB. Both the LMMSE algorithm and the proposed algorithm are implemented and fabricated in CSMC 0.18 μm technology. This paper analyzes and compares the hardware complexity and performance of the two algorithms. Measurements indicate that the proposed channel estimator has better performance than the conventional estimator.

  12. Ground potential rise on the high voltage substation during lightning strike measurement and simulation results

    Energy Technology Data Exchange (ETDEWEB)

    Wiater, Jaroslaw [Bialystok Technical University (Poland). Electrical Dept.], E-mail: jaroslawwiater@we.pb.edu.pl

    2007-07-01

    This paper will present a ground potential rise (GPR) measurement results. All measurements were made during normal work of the real high voltage substation and according a special procedure developed for this occasion. This procedure does not influence on the protection relays and ensures a proper work of the substation even for 6 kV surges. During measurements current and voltage surges were produced by the impulse generator - UCS 500M6B. Measurement results are compared to simulation results performed in CDEGS software for the same initial conditions. (author)

  13. Voltage-Controlled Floating Resistor Using DDCC

    Directory of Open Access Journals (Sweden)

    M. Kumngern

    2011-04-01

    Full Text Available This paper presents a new simple configuration to realize the voltage-controlled floating resistor, which is suitable for integrated circuit implementation. The proposed resistor is composed of three main components: MOS transistor operating in the non-saturation region, DDCC, and MOS voltage divider. The MOS transistor operating in the non-saturation region is used to configure a floating linear resistor. The DDCC and the MOS transistor voltage divider are used for canceling the nonlinear component term of MOS transistor in the non-saturation region to obtain a linear current/voltage relationship. The DDCC is employed to provide a simple summer of the circuit. This circuit offers an ease for realizing the voltage divider circuit and the temperature effect that includes in term of threshold voltage can be compensated. The proposed configuration employs only 16 MOS transistors. The performances of the proposed circuit are simulated with PSPICE to confirm the presented theory.

  14. Errors in dual x-ray beam differential absorptiometry

    International Nuclear Information System (INIS)

    Bolin, F.; Preuss, L.; Gilbert, K.; Bugenis, C.

    1977-01-01

    Errors pertinent to the dual beam absorptiometry system have been studied and five areas are given in detail: (1) scattering, in which a computer analysis of multiple scattering shows little error due to this effect; (2) geometrical configuration effects, in which the slope of the sample is shown to influence the accuracy of the measurement; (3) Poisson variations, wherein it is shown that a simultaneous reduction can be obtained in both dosage and statistical error; (4) absorption coefficients, in which the effect of variation in absorption coefficient compilations is shown to have a critical effect on the interpretations of experimental data; and (5) filtering, wherein is shown the need for filters on dual beam systems using a characteristic x-ray output. A zero filter system is outlined

  15. Modeling and Experimental Study of Soft Error Propagation Based on Cellular Automaton

    Directory of Open Access Journals (Sweden)

    Wei He

    2016-01-01

    Full Text Available Aiming to estimate SEE soft error performance of complex electronic systems, a soft error propagation model based on cellular automaton is proposed and an estimation methodology based on circuit partitioning and error propagation is presented. Simulations indicate that different fault grade jamming and different coupling factors between cells are the main parameters influencing the vulnerability of the system. Accelerated radiation experiments have been developed to determine the main parameters for raw soft error vulnerability of the module and coupling factors. Results indicate that the proposed method is feasible.

  16. Fiber-optic voltage measuring system

    Science.gov (United States)

    Ye, Miaoyuan; Nie, De-Xin; Li, Yan; Peng, Yu; Lin, Qi-Qing; Wang, Jing-Gang

    1993-09-01

    A new fibre optic voltage measuring system has been developed based on the electrooptic effect of bismuth germanium oxide (Bi4Ge3O12)crystal. It uses the LED as the light source. The light beam emitted from the light source is transmitted to the sensor through the optic fibre and the intensity of the output beam is changed by the applied voltage. This optic signal is transmitted to the PIN detector and converted to an electric signal which is processed by the electronic circuit and 8098 single chip microcomputer the output voltage signal obtained is directly proportional to the applied voltage. This paper describes the principle the configuration and the performance parameters of the system. Test results are evaluated and discussed.

  17. Role of memory errors in quantum repeaters

    International Nuclear Information System (INIS)

    Hartmann, L.; Kraus, B.; Briegel, H.-J.; Duer, W.

    2007-01-01

    We investigate the influence of memory errors in the quantum repeater scheme for long-range quantum communication. We show that the communication distance is limited in standard operation mode due to memory errors resulting from unavoidable waiting times for classical signals. We show how to overcome these limitations by (i) improving local memory and (ii) introducing two operational modes of the quantum repeater. In both operational modes, the repeater is run blindly, i.e., without waiting for classical signals to arrive. In the first scheme, entanglement purification protocols based on one-way classical communication are used allowing to communicate over arbitrary distances. However, the error thresholds for noise in local control operations are very stringent. The second scheme makes use of entanglement purification protocols with two-way classical communication and inherits the favorable error thresholds of the repeater run in standard mode. One can increase the possible communication distance by an order of magnitude with reasonable overhead in physical resources. We outline the architecture of a quantum repeater that can possibly ensure intercontinental quantum communication

  18. Medication errors: prescribing faults and prescription errors.

    Science.gov (United States)

    Velo, Giampaolo P; Minuz, Pietro

    2009-06-01

    1. Medication errors are common in general practice and in hospitals. Both errors in the act of writing (prescription errors) and prescribing faults due to erroneous medical decisions can result in harm to patients. 2. Any step in the prescribing process can generate errors. Slips, lapses, or mistakes are sources of errors, as in unintended omissions in the transcription of drugs. Faults in dose selection, omitted transcription, and poor handwriting are common. 3. Inadequate knowledge or competence and incomplete information about clinical characteristics and previous treatment of individual patients can result in prescribing faults, including the use of potentially inappropriate medications. 4. An unsafe working environment, complex or undefined procedures, and inadequate communication among health-care personnel, particularly between doctors and nurses, have been identified as important underlying factors that contribute to prescription errors and prescribing faults. 5. Active interventions aimed at reducing prescription errors and prescribing faults are strongly recommended. These should be focused on the education and training of prescribers and the use of on-line aids. The complexity of the prescribing procedure should be reduced by introducing automated systems or uniform prescribing charts, in order to avoid transcription and omission errors. Feedback control systems and immediate review of prescriptions, which can be performed with the assistance of a hospital pharmacist, are also helpful. Audits should be performed periodically.

  19. A threshold-voltage model for small-scaled GaAs nMOSFET with stacked high-k gate dielectric

    Science.gov (United States)

    Chaowen, Liu; Jingping, Xu; Lu, Liu; Hanhan, Lu; Yuan, Huang

    2016-02-01

    A threshold-voltage model for a stacked high-k gate dielectric GaAs MOSFET is established by solving a two-dimensional Poisson's equation in channel and considering the short-channel, DIBL and quantum effects. The simulated results are in good agreement with the Silvaco TCAD data, confirming the correctness and validity of the model. Using the model, impacts of structural and physical parameters of the stack high-k gate dielectric on the threshold-voltage shift and the temperature characteristics of the threshold voltage are investigated. The results show that the stacked gate dielectric structure can effectively suppress the fringing-field and DIBL effects and improve the threshold and temperature characteristics, and on the other hand, the influence of temperature on the threshold voltage is overestimated if the quantum effect is ignored. Project supported by the National Natural Science Foundation of China (No. 61176100).

  20. Simulations of momentum transfer process between solar wind plasma and bias voltage tethers of electric sail thruster

    Science.gov (United States)

    Xia, Guangqing; Han, Yajie; Chen, Liuwei; Wei, Yanming; Yu, Yang; Chen, Maolin

    2018-06-01

    The interaction between the solar wind plasma and the bias voltage of long tethers is the basic mechanism of the electric sail thruster. The momentum transfer process between the solar wind plasma and electric tethers was investigated using a 2D full particle PIC method. The coupled electric field distribution and deflected ion trajectory under different bias voltages were compared, and the influence of bias voltage on momentum transfer process was analyzed. The results show that the high potential of the bias voltage of long tethers will slow down, stagnate, reflect and deflect a large number of ions, so that ion cavities are formed in the vicinity of the tether, and the ions will transmit the axial momentum to the sail tethers to produce the thrust. Compared to the singe tether, double tethers show a better thrust performance.