WorldWideScience

Sample records for voltage dc hvdc

  1. Stability of DC Voltage Droop Controllers in VSC HVDC Systems

    DEFF Research Database (Denmark)

    Thams, Florian; Suul, Jon Are; D’Arco, Salvatore

    2015-01-01

    Future multi-terminal HVDC systems are expected to utilize dc voltage droop controllers and several control implementations have been proposed in literature. This paper first classifies possible dc droop implementations in a simple framework. Then, the small-signal stability of a VSC-based conver......Future multi-terminal HVDC systems are expected to utilize dc voltage droop controllers and several control implementations have been proposed in literature. This paper first classifies possible dc droop implementations in a simple framework. Then, the small-signal stability of a VSC...

  2. Disturbance Attenuation of DC Voltage Droop Control Structures in a Multi-Terminal HVDC Grid

    DEFF Research Database (Denmark)

    Thams, Florian; Chatzivasileiadis, Spyros; Prieto-Araujo, Eduardo

    2017-01-01

    DC voltage droop control is seen as the preferred control structure for primary voltage control of future multiterminal HVDC systems. Different droop control structures have been proposed in literature which can be classified in eight categories. This paper contributes to an analysis of the distu......DC voltage droop control is seen as the preferred control structure for primary voltage control of future multiterminal HVDC systems. Different droop control structures have been proposed in literature which can be classified in eight categories. This paper contributes to an analysis...

  3. Voltage Stability Bifurcation Analysis for AC/DC Systems with VSC-HVDC

    Directory of Open Access Journals (Sweden)

    Yanfang Wei

    2013-01-01

    Full Text Available A voltage stability bifurcation analysis approach for modeling AC/DC systems with VSC-HVDC is presented. The steady power model and control modes of VSC-HVDC are briefly presented firstly. Based on the steady model of VSC-HVDC, a new improved sequential iterative power flow algorithm is proposed. Then, by use of continuation power flow algorithm with the new sequential method, the voltage stability bifurcation of the system is discussed. The trace of the P-V curves and the computation of the saddle node bifurcation point of the system can be obtained. At last, the modified IEEE test systems are adopted to illustrate the effectiveness of the proposed method.

  4. Interactions Between Indirect DC-Voltage Estimation and Circulating Current Controllers of MMC-Based HVDC Transmission Systems

    DEFF Research Database (Denmark)

    Wickramasinghe, Harith R.; Konstantinou, Georgios; Pou, Josep

    2018-01-01

    Estimation-based indirect dc-voltage control in MMCs interacts with circulating current control methods. This paper proposes an estimation-based indirect dc-voltage control method for MMC-HVDC systems and analyzes its performance compared to alternative estimations. The interactions between......-state and transient performance is demonstrated using a benchmark MMC-HVDC transmission system, implemented in a real-time digital simulator. The results verify the theoretical evaluations and illustrate the operation and performance of the proposed indirect dc-voltage control method....

  5. DC power flow control for radial offshore multi-terminal HVDC transmission system by considering steady-state DC voltage operation range

    DEFF Research Database (Denmark)

    Irnawan, Roni; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2017-01-01

    This paper deals with a radial offshore multi-terminal HVDC (MTDC) transmission system which is formed by interconnection several existing offshore wind farm (OWF) HVDC links with a shore-to-shore (StS) HVDC link. A challenge arises when deciding the steady-state DC voltage operating level...

  6. Operational characteristics analysis of a 8 mH class HTS DC reactor for an LCC type HVDC system

    International Nuclear Information System (INIS)

    Kim, S. K.; Go, B. S.; Dinh, M. C.; Park, M.; Yu, I. K.; Kim, J. H.

    2015-01-01

    Many kinds of high temperature superconducting (HTS) devices are being developed due to its several advantages. In particular, the advantages of HTS devices are maximized under the DC condition. A line commutated converter (LCC) type high voltage direct current (HVDC) transmission system requires large capacity of DC reactors to protect the converters from faults. However, conventional DC reactor made of copper causes a lot of electrical losses. Thus, it is being attempted to apply the HTS DC reactor to an HVDC transmission system. The authors have developed a 8 mH class HTS DC reactor and a model-sized LCC type HVDC system. The HTS DC reactor was operated to analyze its operational characteristics in connection with the HVDC system. The voltage at both ends of the HTS DC reactor was measured to investigate the stability of the reactor. The voltages and currents at the AC and DC side of the system were measured to confirm the influence of the HTS DC reactor on the system. Two 5 mH copper DC reactors were connected to the HVDC system and investigated to compare the operational characteristics. In this paper, the operational characteristics of the HVDC system with the HTS DC reactor according to firing angle are described. The voltage and current characteristics of the system according to the types of DC reactors and harmonic characteristics are analyzed. Through the results, the applicability of an HTS DC reactor in an HVDC system is confirmed

  7. Operational characteristics analysis of a 8 mH class HTS DC reactor for an LCC type HVDC system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. K.; Go, B. S.; Dinh, M. C.; Park, M.; Yu, I. K. [Changwon National University, Changwon (Korea, Republic of); Kim, J. H. [Daejeon University, Daejeon (Korea, Republic of)

    2015-03-15

    Many kinds of high temperature superconducting (HTS) devices are being developed due to its several advantages. In particular, the advantages of HTS devices are maximized under the DC condition. A line commutated converter (LCC) type high voltage direct current (HVDC) transmission system requires large capacity of DC reactors to protect the converters from faults. However, conventional DC reactor made of copper causes a lot of electrical losses. Thus, it is being attempted to apply the HTS DC reactor to an HVDC transmission system. The authors have developed a 8 mH class HTS DC reactor and a model-sized LCC type HVDC system. The HTS DC reactor was operated to analyze its operational characteristics in connection with the HVDC system. The voltage at both ends of the HTS DC reactor was measured to investigate the stability of the reactor. The voltages and currents at the AC and DC side of the system were measured to confirm the influence of the HTS DC reactor on the system. Two 5 mH copper DC reactors were connected to the HVDC system and investigated to compare the operational characteristics. In this paper, the operational characteristics of the HVDC system with the HTS DC reactor according to firing angle are described. The voltage and current characteristics of the system according to the types of DC reactors and harmonic characteristics are analyzed. Through the results, the applicability of an HTS DC reactor in an HVDC system is confirmed.

  8. Modeling of HVDC System to Improve Estimation of Transient DC Current and Voltages for AC Line-to-Ground Fault—An Actual Case Study in Korea

    Directory of Open Access Journals (Sweden)

    Dohoon Kwon

    2017-10-01

    Full Text Available A new modeling method for high voltage direct current (HVDC systems and associated controllers is presented for the power system simulator for engineering (PSS/E simulation environment. The aim is to improve the estimation of the transient DC voltage and current in the event of an AC line-to-ground fault. The proposed method consists primary of three interconnected modules for (a equation conversion; (b control-mode selection; and (c DC-line modeling. Simulation case studies were carried out using PSS/E and a power systems computer aided design/electromagnetic transients including DC (PSCAD/EMTDC model of the Jeju– Haenam HVDC system in Korea. The simulation results are compared with actual operational data and the PSCAD/EMTDC simulation results for an HVDC system during single-phase and three-phase line-to-ground faults, respectively. These comparisons show that the proposed PSS/E modeling method results in the improved estimation of the dynamic variation in the DC voltage and current in the event of an AC network fault, with significant gains in computational efficiency, making it suitable for real-time analysis of HVDC systems.

  9. Voltage-current characteristics of multiterminal HVDC-VSC for offshore wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Gomis-Bellmunt, Oriol [Centre d' Innovacio Tecnologica en Convertidors Estatics i Accionaments (CITCEA-UPC), Universitat Politecnica de Catalunya UPC, Av. Diagonal, 647, Pl. 2., 08028 Barcelona (Spain); IREC Catalonia Institute for Energy Research, Barcelona (Spain); Liang, Jun; Ekanayake, Janaka; Jenkins, Nicholas [School of Engineering, Cardiff University, Queen' s Buildings, The Parade, Cardiff CF24 3AA, Wales (United Kingdom)

    2011-02-15

    Voltage-current characteristics and equilibrium points for the DC voltages of multiterminal HVDC systems using voltage source converters are discussed. The wind farm rectifiers and grid connected inverters are analyzed through their operating modes, governing equations and graphical characteristics. Using the converter equations and the HVDC grid conductance matrix the equilibrium voltages and currents are found. Case studies are presented considering wind power generation, loss of a converter and voltage sags in the AC grid. (author)

  10. Passive AC network supplying the integration of CCC-HVDC and VSC-HVDC systems

    OpenAIRE

    BIDADFAR, Ali; ABEDI, Mehrdad; KARRARI, Mehdi

    2014-01-01

    The integration of a capacitor-commutated converter (CCC) high-voltage direct current (HVDC) (CCC-HVDC) and voltage source converter (VSC) HVDC (VSC-HVDC) is proposed in this paper to supply entirely passive AC networks. The key point of this integration is the flat characteristic of the DC voltage of the CCC-HVDC, which provides the condition for the VSC to connect to the CCC DC link via a current regulator. The advantages of the proposed combined infeeding system are the requirement o...

  11. DC Voltage Droop Control Structures and its Impact on the Interaction Modes in Interconnected AC-HVDC Systems

    DEFF Research Database (Denmark)

    Thams, Florian; Chatzivasileiadis, Spyros; Eriksson, Robert

    2017-01-01

    Different dc voltage droop control structures for future multi-terminal HVDC systems have been proposed in literature. This paper contributes to the evaluation of those structures by an analysis of their impact on the coupling of the interconnected subsystems. In particular, the modes...... of the systems are classified in different subsets according to the participation of the various subsystems. Those subsets are then evaluated qualitatively and quantitatively indicating which impact the choice of the droop control structure has on the degree of coupling between the connected ac and dc systems...

  12. PowerFactory model for multi-terminal HVDC network with DC voltage droop control

    DEFF Research Database (Denmark)

    Korompili, Asimenia; Wu, Qiuwei

    Nowadays, most of the installed HVDC systems are based on line commutated converters (LCC), since this technology offers a series of advantages, mainly low costs and losses. However, voltage source converters (VSCs) have recently drawn more and more attention, due to their high controllability....... Moreover, recent developments have improved efficiency and power quality. For multi-terminal HVDC grids, the advantages of VSCs become so large, that VSC-HVDC systems are the only viable solution. Nevertheless, no VSC-based multi-terminal HVDC grids exist to date. This is the reason for which many research...

  13. DC Fault Analysis and Clearance Solutions of MMC-HVDC Systems

    Directory of Open Access Journals (Sweden)

    Zheng Xu

    2018-04-01

    Full Text Available In this paper, the DC short-circuit fault and corresponding clearance solutions of modular multilevel converter-based high-voltage direct current (MMC-HVDC systems are analyzed in detail. Firstly, the analytical expressions of DC fault currents before and after blocking the MMC are derived based on the operation circuits. Before blocking the MMC, the sub-module (SM capacitor discharge current is the dominant component of the DC fault current. It will reach the blocking threshold value in several milliseconds. After blocking the MMC, the SM capacitor is no longer discharged. Therefore, the fault current from the AC system becomes the dominant component. Meanwhile, three DC fault clearance solutions and the corresponding characteristics are discussed in detail, including tripping AC circuit breaker, adopting the full-bridge MMC and employing the DC circuit breaker. A simulation model of the MMC-HVDC is realized in PSCAD/EMTDC and the results of the proposed analytical expressions are compared with those of the simulation. The results show that the analytical DC fault currents coincide well with the simulation results.

  14. Review of the development of multi-terminal HVDC and DC power grid

    Science.gov (United States)

    Chen, Y. X.

    2017-11-01

    Traditional power equipment, power-grid structures, and operation technology are becoming increasingly powerless with the large-scale renewable energy access to the grid. Thus, we must adopt new technologies, new equipment, and new grid structure to satisfy future requirements in energy patterns. Accordingly, the multiterminal direct current (MTDC) transmission system is receiving increasing attention. This paper starts with a brief description of current developments in MTDC worldwide. The MTDC project, which has been placed into practical operation, is introduced by the Italian-Corsica-Sardinian three-terminal high-voltage DC (HVDC) project. We then describe the basic characteristics and regulations of multiterminal DC transmission. The current mainstream of several control methods are described. In the third chapter, the key to the development of MTDC system or hardware and software technology that restricts the development of multiterminal DC transmission is discussed. This chapter focuses on the comparison of double-ended HVDC and multiterminal HVDC in most aspects and subsequently elaborates the key and difficult point of MTDC development. Finally, this paper summarizes the prospect of a DC power grid. In a few decades, China can build a strong cross-strait AC-DC hybrid power grid.

  15. A comprehensive analysis and hardware implementation of control strategies for high output voltage DC-DC boost power converter

    OpenAIRE

    Padmanaban, Sanjeevikumar; Grandi, Gabriele; Blaabjerg, Frede; Wheeler, Patrick; Siano, Pierluigi; Hammami, Manel

    2017-01-01

    Classical DC-DC converters used in high voltage direct current (HVDC) power transmission systems, lack in terms of efficiency, reduced transfer gain and increased cost with sensor (voltage/current) numbers. Besides, the internal self-parasitic behavior of the power components reduces the output voltage and efficiency of classical HV converters. This paper deals with extra high-voltage (EHV) dc-dc boost converter by the application of voltage-lift technique to overcome the aforementioned defic...

  16. Coordinated Control Strategies of VSC-HVDC-Based Wind Power Systems for Low Voltage Ride Through

    Directory of Open Access Journals (Sweden)

    Xinyin Zhang

    2015-07-01

    Full Text Available The Voltage Source Converter-HVDC (VSC-HVDC system applied to wind power generation can solve large scale wind farm grid-connection and long distance transmission problems. However, the low voltage ride through (LVRT of the VSC-HVDC connected wind farm is a key technology issue that must be solved, and it is currently lacking an economic and effective solution. In this paper, a LVRT coordinated control strategy is proposed for the VSC-HVDC-based wind power system. In this strategy, the operation and control of VSC-HVDC and wind farm during the grid fault period is improved. The VSC-HVDC system not only provides reactive power support to the grid, but also effectively maintains the power balance and DC voltage stability by reducing wind-farm power output, without increasing the equipment investment. Correspondingly, to eliminate the influence on permanent magnet synchronous generator (PMSG-based wind turbine (WT systems, a hierarchical control strategy is designed. The speed and validity of the proposed LVRT coordinated control strategy and hierarchical control strategy were verified by MATLAB/Simulink simulations.

  17. Hybrid AC-High Voltage DC Grid Stability and Controls

    Science.gov (United States)

    Yu, Jicheng

    The growth of energy demands in recent years has been increasing faster than the expansion of transmission facility construction. This tendency cooperating with the continuous investing on the renewable energy resources drives the research, development, and construction of HVDC projects to create a more reliable, affordable, and environmentally friendly power grid. Constructing the hybrid AC-HVDC grid is a significant move in the development of the HVDC techniques; the form of dc system is evolving from the point-to-point stand-alone dc links to the embedded HVDC system and the multi-terminal HVDC (MTDC) system. The MTDC is a solution for the renewable energy interconnections, and the MTDC grids can improve the power system reliability, flexibility in economic dispatches, and converter/cable utilizing efficiencies. The dissertation reviews the HVDC technologies, discusses the stability issues regarding the ac and HVDC connections, proposes a novel power oscillation control strategy to improve system stability, and develops a nonlinear voltage droop control strategy for the MTDC grid. To verify the effectiveness the proposed power oscillation control strategy, a long distance paralleled AC-HVDC transmission test system is employed. Based on the PSCAD/EMTDC platform simulation results, the proposed power oscillation control strategy can improve the system dynamic performance and attenuate the power oscillations effectively. To validate the nonlinear voltage droop control strategy, three droop controls schemes are designed according to the proposed nonlinear voltage droop control design procedures. These control schemes are tested in a hybrid AC-MTDC system. The hybrid AC-MTDC system, which is first proposed in this dissertation, consists of two ac grids, two wind farms and a five-terminal HVDC grid connecting them. Simulation studies are performed in the PSCAD/EMTDC platform. According to the simulation results, all the three design schemes have their unique salient

  18. Cooperative control of VSC-HVDC connected offshore wind farm with Low-Voltage Ride-Through capability

    DEFF Research Database (Denmark)

    Liu, Yan; Wang, Xiongfei; Chen, Zhe

    2012-01-01

    The Low-Voltage Ride-Through (LVRT) has become an important grid requirement for offshore wind farms connecting with Voltage Source Converter based High Voltage Direct Current (VSC-HVDC) links. In this paper, a cooperative control strategy with LVRT ability is proposed for a VSC-HVDC connected...... variable speed Squirrel-Cage Induction Generator (SCIG) wind farm. The approach employs a DC-link voltage versus offshore AC-bus frequency droop control on the offshore converter of VSC-HVDC link. Thus, the back-to-back converters of SCIG wind turbines can adjust the generated active power based on the AC......-bus frequency deviations, so that a fast power reduction on the wind farm side can be achieved. The EMTDC/PSCAD simulations are performed on a 300 MW offshore variable speed SCIG wind farm. Simulation results confirm the effectiveness of the proposed control method....

  19. Performance analysis of a model-sized superconducting DC transmission system based VSC-HVDC transmission technologies using RTDS

    International Nuclear Information System (INIS)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun

    2012-01-01

    The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.

  20. Performance analysis of a model-sized superconducting DC transmission system based VSC-HVDC transmission technologies using RTDS

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Minh-Chau, E-mail: thanchau7787@gmail.com [Changwon National University, 9 Sarim-Dong, Changwon 641-733 (Korea, Republic of); Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon [Changwon National University, 9 Sarim-Dong, Changwon 641-733 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, 9 Sarim-Dong, Changwon 641-733 (Korea, Republic of)

    2012-08-15

    The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.

  1. A New Coordinated Voltage Control Scheme for Offshore AC Grid of HVDC Connected Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Sakamuri, Jayachandra N.; Cutululis, Nicolaos Antonio; Rather, Zakir Hussain

    2015-01-01

    This paper proposes a coordinated voltage control scheme (CVCS) which enhances the voltage ride through (VRT) capability of an offshore AC grid comprised of a cluster of offshore wind power plants (WPP) connected through AC cables to the offshore voltage source converter based high voltage DC (VSC......-HVDC) converter station. Due to limited short circuit power contribution from power electronic interfaced variable speed wind generators and with the onshore main grid decoupled by the HVDC link, the offshore AC grid becomes more vulnerable to dynamic voltage events. Therefore, a short circuit fault...... in the offshore AC Grid is likely to have significant implications on the voltage of the offshore AC grid, hence on the power flow to the onshore mainland grid. The proposed CVCS integrates individual local reactive power control of wind turbines and of the HVDC converter with the secondary voltage controller...

  2. Transient analysis of an HTS DC power cable with an HVDC system

    International Nuclear Information System (INIS)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun; Yang, Byeongmo

    2013-01-01

    Highlights: •A model of an HTS DC power cable was developed using real time digital simulator. •The simulations of the HTS DC power cable in connection with an HVDC system were performed. •The transient analysis results of the HTS DC power cable were presented. -- Abstract: The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system

  3. Transient analysis of an HTS DC power cable with an HVDC system

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Minh-Chau, E-mail: thanchau7787@gmail.com [Department of Electrical Engineering, Changwon National University, 9 Sarim-Dong, Changwon 641-773 (Korea, Republic of); Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon [Department of Electrical Engineering, Changwon National University, 9 Sarim-Dong, Changwon 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@cwnu.ac.kr [Department of Electrical Engineering, Changwon National University, 9 Sarim-Dong, Changwon 641-773 (Korea, Republic of); Yang, Byeongmo [Korea Electric Power Research Institute, 105 Munji-Ro, Yuseong-Gu, Daejon 305-760 (Korea, Republic of)

    2013-11-15

    Highlights: •A model of an HTS DC power cable was developed using real time digital simulator. •The simulations of the HTS DC power cable in connection with an HVDC system were performed. •The transient analysis results of the HTS DC power cable were presented. -- Abstract: The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system.

  4. Operating characteristic analysis of a 400 mH class HTS DC reactor in connection with a laboratory scale LCC type HVDC system

    Science.gov (United States)

    Kim, Sung-Kyu; Kim, Kwangmin; Park, Minwon; Yu, In-Keun; Lee, Sangjin

    2015-11-01

    High temperature superconducting (HTS) devices are being developed due to their advantages. Most line commutated converter based high voltage direct current (HVDC) transmission systems for long-distance transmission require large inductance of DC reactor; however, generally, copper-based reactors cause a lot of electrical losses during the system operation. This is driving researchers to develop a new type of DC reactor using HTS wire. The authors have developed a 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC system and applied the HTS DC reactor to the HVDC system to investigate their operating characteristics. The 400 mH class HTS DC reactor is designed using a toroid type magnet. The HVDC system is designed in the form of a mono-pole system with thyristor-based 12-pulse power converters. In this paper, the investigation results of the HTS DC reactor in connection with the HVDC system are described. The operating characteristics of the HTS DC reactor are analyzed under various operating conditions of the system. Through the results, applicability of an HTS DC reactor in an HVDC system is discussed in detail.

  5. Transient analysis of an HTS DC power cable with an HVDC system

    Science.gov (United States)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun; Yang, Byeongmo

    2013-11-01

    The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system.

  6. Voltage sensitivity based reactive power control on VSC-HVDC in a wind farm connected hybrid multi-infeed HVDC system

    DEFF Research Database (Denmark)

    Liu, Yan; Chen, Zhe

    2013-01-01

    With increasing application of both Line Commutated Converter based High Voltage Direct Current (LCC-HVDC) systems and Voltage Source Converter based HVDC (VSC-HVDC) links, a new type of system structure named Hybrid Multi-Infeed HVDC (HMIDC) system is formed in the modern power systems. This paper...... presents the operation and control method of the wind farm connected HMIDC system. The wind power fluctuation takes large influence to the system voltages. In order to reduce the voltage fluctuation of LCC-HVDC infeed bus caused by the wind power variation, a voltage sensitivity-based reactive power...

  7. Hybrid HVDC (H2VDC System Using Current and Voltage Source Converters

    Directory of Open Access Journals (Sweden)

    José Rafael Lebre

    2018-05-01

    Full Text Available This paper presents an analysis of a new high voltage DC (HVDC transmission system, which is based on current and voltage source converters (CSC and VSC in the same circuit. This proposed topology is composed of one CSC (rectifier and one or more VSCs (inverters connected through an overhead transmission line in a multiterminal configuration. The main purpose of this Hybrid HVDC (H2VDC, as it was designed, is putting together the best benefits of both types of converters in the same circuit: no commutation failure and system’s black start capability in the VSC side, high power converter capability and low cost at the rectifier side, etc. A monopole of the H2VDC system with one CSC and two VSCs—here, the VSC is the Modular Multilevel Converter (MMC considered with full-bridge submodules—in multiterminal configuration is studied. The study includes theoretical analyses, development of the CSC and VSCs control philosophies and simulations. The H2VDC system’s behavior is analyzed by computational simulations considering steady-state operation and short-circuit conditions at the AC and DC side. The obtained results and conclusions show a promising system for very high-power multiterminal HVDC transmission.

  8. Operating characteristic analysis of a 400 mH class HTS DC reactor in connection with a laboratory scale LCC type HVDC system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Kyu, E-mail: power@changwon.ac.kr [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Kim, Kwangmin; Park, Minwon [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Lee, Sangjin [Uiduk University, Gyeongju 780-713 (Korea, Republic of)

    2015-11-15

    Highlights: • A 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC transmission system. • The 400 mH class HTS DC reactor was connected to real power network via the HVDC system. • The DC current flowed in HTS DC reactor has several harmonic components and it was analyzed using FFT. - Abstract: High temperature superconducting (HTS) devices are being developed due to their advantages. Most line commutated converter based high voltage direct current (HVDC) transmission systems for long-distance transmission require large inductance of DC reactor; however, generally, copper-based reactors cause a lot of electrical losses during the system operation. This is driving researchers to develop a new type of DC reactor using HTS wire. The authors have developed a 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC system and applied the HTS DC reactor to the HVDC system to investigate their operating characteristics. The 400 mH class HTS DC reactor is designed using a toroid type magnet. The HVDC system is designed in the form of a mono-pole system with thyristor-based 12-pulse power converters. In this paper, the investigation results of the HTS DC reactor in connection with the HVDC system are described. The operating characteristics of the HTS DC reactor are analyzed under various operating conditions of the system. Through the results, applicability of an HTS DC reactor in an HVDC system is discussed in detail.

  9. Operating characteristic analysis of a 400 mH class HTS DC reactor in connection with a laboratory scale LCC type HVDC system

    International Nuclear Information System (INIS)

    Kim, Sung-Kyu; Kim, Kwangmin; Park, Minwon; Yu, In-Keun; Lee, Sangjin

    2015-01-01

    Highlights: • A 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC transmission system. • The 400 mH class HTS DC reactor was connected to real power network via the HVDC system. • The DC current flowed in HTS DC reactor has several harmonic components and it was analyzed using FFT. - Abstract: High temperature superconducting (HTS) devices are being developed due to their advantages. Most line commutated converter based high voltage direct current (HVDC) transmission systems for long-distance transmission require large inductance of DC reactor; however, generally, copper-based reactors cause a lot of electrical losses during the system operation. This is driving researchers to develop a new type of DC reactor using HTS wire. The authors have developed a 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC system and applied the HTS DC reactor to the HVDC system to investigate their operating characteristics. The 400 mH class HTS DC reactor is designed using a toroid type magnet. The HVDC system is designed in the form of a mono-pole system with thyristor-based 12-pulse power converters. In this paper, the investigation results of the HTS DC reactor in connection with the HVDC system are described. The operating characteristics of the HTS DC reactor are analyzed under various operating conditions of the system. Through the results, applicability of an HTS DC reactor in an HVDC system is discussed in detail.

  10. Push-pull with recovery stage high-voltage DC converter for PV solar generator

    Science.gov (United States)

    Nguyen, The Vinh; Aillerie, Michel; Petit, Pierre; Pham, Hong Thang; Vo, Thành Vinh

    2017-02-01

    A lot of systems are basically developed on DC-DC or DC-AC converters including electronic switches such as MOS or bipolar transistors. The limits of efficiency are quickly reached when high output voltages and high input currents are needed. This work presents a new high-efficiency-high-step-up based on push-pull DC-DC converter integrating recovery stages dedicated to smart HVDC distributed architecture in PV solar energy production systems. Appropriate duty cycle ratio assumes that the recovery stage work with parallel charge and discharge to achieve high step-up voltage gain. Besides, the voltage stress on the main switch is reduced with a passive clamp circuit and thus, low on-state resistance Rdson of the main switch can be adopted to reduce conduction losses. Thus, the efficiency of a basic DC-HVDC converter dedicated to renewable energy production can be further improved with such topology. A prototype converter is developed, and experimentally tested for validation.

  11. A Droop Line Tracking Control for Multi-terminal VSC-HVDC Transmission System

    DEFF Research Database (Denmark)

    Irnawan, Roni; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2018-01-01

    Generally, a voltage-sourced converter (VSC) within a multi-terminal HVDC (MTDC) system can be operated either in constant DC voltage, constant flow (AC active power or DC current) or DC voltage droop control. These control modes can be easily represented as the droop characteristic line with dif......Generally, a voltage-sourced converter (VSC) within a multi-terminal HVDC (MTDC) system can be operated either in constant DC voltage, constant flow (AC active power or DC current) or DC voltage droop control. These control modes can be easily represented as the droop characteristic line...

  12. AC Voltage Control of DC/DC Converters Based on Modular Multilevel Converters in Multi-Terminal High-Voltage Direct Current Transmission Systems

    Directory of Open Access Journals (Sweden)

    Rui Li

    2016-12-01

    Full Text Available The AC voltage control of a DC/DC converter based on the modular multilevel converter (MMC is considered under normal operation and during a local DC fault. By actively setting the AC voltage according to the two DC voltages of the DC/DC converter, the modulation index can be near unity, and the DC voltage is effectively utilized to output higher AC voltage. This significantly decreases submodule (SM capacitance and conduction losses of the DC/DC converter, yielding reduced capital cost, volume, and higher efficiency. Additionally, the AC voltage is limited in the controllable range of both the MMCs in the DC/DC converter; thus, over-modulation and uncontrolled currents are actively avoided. The AC voltage control of the DC/DC converter during local DC faults, i.e., standby operation, is also proposed, where only the MMC connected on the faulty cable is blocked, while the other MMC remains operational with zero AC voltage output. Thus, the capacitor voltages can be regulated at the rated value and the decrease of the SM capacitor voltages after the blocking of the DC/DC converter is avoided. Moreover, the fault can still be isolated as quickly as the conventional approach, where both MMCs are blocked and the DC/DC converter is not exposed to the risk of overcurrent. The proposed AC voltage control strategy is assessed in a three-terminal high-voltage direct current (HVDC system incorporating a DC/DC converter, and the simulation results confirm its feasibility.

  13. Reprint of “Performance analysis of a model-sized superconducting DC transmission system based VSC-HVDC transmission technologies using RTDS”

    International Nuclear Information System (INIS)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun

    2013-01-01

    Highlights: ► A model-sized superconducting VSC-HVDC system was designed and fabricated. ► A real-time simulation using Real Time Digital Simulator has been performed. ► The AC loss characteristics of HTS DC power cable caused by harmonics were analyzed. ► The AC loss of the HTS DC power cable will be used as a parameter to design the cable cooling system. -- Abstract: The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail

  14. Reprint of “Performance analysis of a model-sized superconducting DC transmission system based VSC-HVDC transmission technologies using RTDS”

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Minh-Chau, E-mail: thanchau7787@gmail.com [Changwon National University, 9 Sarim-Dong, Changwon 641-733 (Korea, Republic of); Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon [Changwon National University, 9 Sarim-Dong, Changwon 641-733 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, 9 Sarim-Dong, Changwon 641-733 (Korea, Republic of)

    2013-01-15

    Highlights: ► A model-sized superconducting VSC-HVDC system was designed and fabricated. ► A real-time simulation using Real Time Digital Simulator has been performed. ► The AC loss characteristics of HTS DC power cable caused by harmonics were analyzed. ► The AC loss of the HTS DC power cable will be used as a parameter to design the cable cooling system. -- Abstract: The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.

  15. PI and Fuzzy Control Strategies for High Voltage Output DC-DC Boost Power Converter - Hardware Implementation and Analysis

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Siano, Pierluigi

    2016-01-01

    This paper presents the control strategies by Proportional-Integral (P-I) and Fuzzy Logic (FL) for a DC-DC boost power converter for high output voltage configuration. Standard DC-DC converters are traditionally used for high voltage direct current (HVDC) power transmission systems. But, lack its...... converter with inbuilt voltage-lift technique and overcome the aforementioned deficiencies. Further, the control strategy is adapted based on proportional-integral (P-I) and fuzzy logic, closed-loop controller to regulate the outputs and ensure the performances. Complete hardware prototype of EHV converter...... performances in terms of efficiency, reduced transfer gain and increased cost with sensor units. Moreover, the internal self-parasitic components reduce the output voltage and efficiency of classical high voltage converters (HVC). This investigation focused on extra high-voltage (EHV) DC-DC boost power...

  16. Fault Ride-Through Capability Enhancement of VSC HVDC connected Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Sharma, Ranjan; Wu, Qiuwei; Cha, Seung-Tae

    2015-01-01

    This paper presents a feed forward direct current (DC) voltage control based fault ride-through (FRT) scheme for voltage source converter (VSC) high voltage DC (HVDC) connected offshore wind power plants (WPPs) in order to achieve active control of the WPP collector network AC voltage magnitude......, and to improve the FRT capability. During steady state operation, an open loop AC voltage control is implemented at the WPP side VSC of the HVDC system such that any possible control interactions between the WPP side VSC and the wind turbine VSC are minimized. Whereas during any grid faults, a dynamic AC voltage...... reference is applied based on both the DC voltage error and the AC active-current from the WPP collector system which ensures fast and robust FRT of the VSC HVDC connected offshore WPPs. Under unbalanced fault conditions in the host power system, the resulting oscillatory DC voltage is directly used...

  17. Transient Voltage Stability Analysis and Improvement of A Network with different HVDC Systems

    DEFF Research Database (Denmark)

    Liu, Yan; Chen, Zhe

    2011-01-01

    This paper presents transient voltage stability analysis of an AC system with multi-infeed HVDC links including a traditional LCC HVDC link and a VSC HVDC link. It is found that the voltage supporting capability of the VSC-HVDC link is significantly influenced by the tie-line distance between the...

  18. Research on the Inductance/Capacitance Switch Model for an LCC-HVDC Converter in an AC/DC Hybrid Grid

    Directory of Open Access Journals (Sweden)

    Yangyang He

    2018-03-01

    Full Text Available In order to improve the simulation speed of the AC/DC hybrid grid, the inductance/capacitance (L/C switch model for line-commutated converter of high-voltage direct current (LCC-HVDC is presented in this study. The time domain modeling method is used to analyze the circuit of L/C switch model for the six-pulse system in LCC-HVDC in a switching period. A parameter setting method of L/C switch model is proposed considering the transient response, the steady state performance, switching losses and simulation error of the switch. The inductance/capacitance (L/C switch model for LCC-HVDC has the advantage of keeping the admittance matrix unchanged regardless of the change of switching state, which improves the simulation efficiency. Finally, the validity of the parameter setting method is verified. Compared with the test results of PSCAD/EMTDC, the accuracy of the proposed LCC-HVDC simulation model is proved. The model is suitable for real-time or offline simulation of AC/DC hybrid grid.

  19. Power Hardware In The Loop Validation of Fault Ride Through of VSC HVDC Connected Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Sharma, Ranjan; Wu, Qiuwei; Cha, Seung-Tae

    2014-01-01

    This paper presents the power hardware in the loop (PHIL) validation of a feed forward DC voltage control scheme for the fault ride through (FTR) of voltage source converter (VSC) high voltage DC (HVDC) connected offshore wind power plants (WPPs). In the proposed FRT scheme, the WPP collector...... network AC voltage is actively controlled by considering both the DC voltage error and the AC current from the WPP AC collector system which ensures fast and robust FRT of the VSC HVDC connected offshore WPPs. The PHIL tests were carried out in order to verify the efficacy of the proposed feed forward DC...... voltage control scheme for enhancing the FRT capability of the VSC HVDC connected WPPs. The PHIL test results have demonstrated the proper control coordination between the offshore WPP and the WPP side VSC and the efficient FRT of the VSC HVDC connected WPPs....

  20. Application of Multipoint DC Voltage Control in VSC-MTDC System

    Directory of Open Access Journals (Sweden)

    Yang Xi

    2013-01-01

    Full Text Available The voltage-source-converter- (VSC- based multiterminal VSC-HVDC power transmission system (VSC-MTDC is an ideal approach to connect wind farm with power grid. Analyzing the characteristics of doubly fed induction generators as well as the basic principle and the control strategy of VSC-MTDC, a multiterminal DC voltage control strategy suitable for wind farm connected with VSC-MTDC is proposed. By use of PSCAD/EMTDC, the proposed control strategy is simulated, and simulation results show that using the proposed control strategy the conversion between constant power control mode and constant DC voltage control mode can be automatically implemented; thus the DC voltage stability control and reliable power output of wind farm can be ensured after the fault-caused outage of converter station controlled by constant DC voltage and under other faults. The simulation result shows that the model can fulfill multiterminal power transmission and fast response control.

  1. Electrical Tree Initiation and Growth in Silicone Rubber under Combined DC-Pulse Voltage

    Directory of Open Access Journals (Sweden)

    Tao Han

    2018-03-01

    Full Text Available Electrical tree is a serious threat to silicone rubber (SIR insulation and can even cause breakdown. Electrical trees under alternating current (AC and direct current (DC voltage have been widely researched. While there are pulses in high-voltage direct current (HVDC cables under operating conditions caused by lightning and operating overvoltage in the power system, little research has been reported about trees under combined DC-pulse voltage. Their inception and growth mechanism is still not clear. In this paper, electrical trees are studied under several types of combined DC-pulse voltage. The initiation and growth process was recorded by a digital microscope system. The experimental results indicate that the inception pulse voltage is different under each voltage type and is influenced by the combined DC. The initial tree has two structures, determined by the pulse polarity. With increased DC prestressing time, tree inception pulse voltage with the same polarity is clearly decreased. Moreover, a special initial bubble tree was observed after the prestressing DC.

  2. DC breakdown characteristics of silicone polymer composites for HVDC insulator applications

    Science.gov (United States)

    Han, Byung-Jo; Seo, In-Jin; Seong, Jae-Kyu; Hwang, Young-Ho; Yang, Hai-Won

    2015-11-01

    Critical components for HVDC transmission systems are polymer insulators, which have stricter requirements that are more difficult to achieve compared to those of HVAC insulators. In this study, we investigated the optimal design of HVDC polymer insulators by using a DC electric field analysis and experiments. The physical properties of the polymer specimens were analyzed to develop an optimal HVDC polymer material, and four polymer specimens were prepared for DC breakdown experiments. Single and reverse polarity breakdown tests were conducted to analyze the effect of temperature on the breakdown strength of the polymer. In addition, electric fields were analyzed via simulations, in which a small-scale polymer insulator model was applied to prevent dielectric breakdown due to electric field concentration, with four DC operating conditions taken into consideration. The experimental results show that the electrical breakdown strength and the electric field distribution exhibit significant differences in relation to different DC polarity transition procedures.

  3. Influence of current limitation on voltage stability with voltage sourced converter HVDC

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Jóhannsson, Hjörtur; Hansen, Anca Daniela

    2013-01-01

    A first study of voltage stability with relevant amount of Voltage Sourced Converter based High Voltage Direct Current (VSC-HVDC) transmission is presented, with particular focus on the converters’ behaviour when reaching their rated current. The detrimental effect of entering the current...

  4. Controller Architecture Design for MMC-HVDC

    Directory of Open Access Journals (Sweden)

    ZHANG, B.

    2014-05-01

    Full Text Available Compared with high voltage direct current (HVDC, the primary and secondary systems of modular multilevel converter based HVDC (MMC-HVDC are complicated. And the characteristics of the control system determine the properties of the MMC-HVDC system to a certain extent. This paper investigates the design of control architecture. First, the structure and parameters of the 21-level MMC-HVDC are designed. Second, the framework of the control system is studied in details and a complete control system is established. The communication mode and content are built between each layer, and the control system program is developed and debugged. Then The steady state test platform of the sub-module and the relevant control system are designed. Finally, the steady-state tests and the system test of the physical MMC-HVDC simulation system are conducted, which prove that the SMC can control the sub-module (SM efficiently, and the control system could realize efficient start and stop of the physical system. Meanwhile, the capacitor voltage balance between the sub-modules and the basic fault protection and control of the DC voltage and power are verified to be effective.

  5. Active Power Control with Undead-Band Voltage & Frequency Droop for HVDC Converters in Large Meshed DC Grids

    DEFF Research Database (Denmark)

    Vrana, Til Kristian; Zeni, Lorenzo; Fosso, Olav Bjarte

    A new control method for large meshed HVDC grids has been developed, which helps to keep the active power balance at the AC and the DC side. The method definition is kept wide, leaving the possibility for control parameter optimisation. Other known control methods can be seen as specific examples...

  6. Investigation of multimodule buck–boost inverter-based HVDC transmission system

    Directory of Open Access Journals (Sweden)

    Ahmed A. Elserougi

    2015-01-01

    Full Text Available In high voltage direct current (HVDC systems, the semiconductor devices have to be connected in series to obtain the required high-voltage ratings. This study proposes a new HVDC configuration, namely, multimodule buck–boost inverter for HVDC transmission applications which avoids series connection of large number of semiconductor switches. In addition, it provides a blocking capability against DC side faults. The proposed configuration consists of several simple buck–boost converters which are assembled together to meet the requirements of high-voltage high-power applications. This paper studies the dynamic performance of the proposed system under different operating conditions, and the results were satisfactory. The main advantages of the proposed configuration are: (i pure sinusoidal output which minimises/eliminates the requirements for supplementary AC filters and offers an inherent suppression to the common mode voltages, (ii very low dv/dt stresses and (iii complete blocking capability of AC side contributions during DC side faults. This study discusses the system architecture, passive components selections, voltage and current ratings of its semiconductor devices and the required controllers. A comparison between the proposed configuration and other existing HVDC technologies is also presented in this study.

  7. Modelling and Simulation of SVPWM Based Vector Controlled HVDC Light Systems

    Directory of Open Access Journals (Sweden)

    Ajay Kumar MOODADLA

    2012-11-01

    Full Text Available Recent upgrades in power electronics technology have lead to the improvements of insulated gate bipolar transistor (IGBT based Voltage source converter High voltage direct current (VSC HVDC transmission systems. These are also commercially known as HVDC Light systems, which are popular in renewable, micro grid, and electric power systems. Out of different pulse width modulation (PWM schemes, Space vector PWM (SVPWM control scheme finds growing importance in power system applications because of its better dc bus utilization. In this paper, modelling of the converter is described, and SVPWM scheme is utilized to control the HVDC Light system in order to achieve better DC bus utilization, harmonic reduction, and for reduced power fluctuations. The simulations are carried out in the MATLAB/SIMULINK environment and the results are provided for steady state and dynamic conditions. Finally, the performance of SVPWM based vector controlled HVDC Light transmission system is compared with sinusoidal pulse width modulation (SPWM based HVDC Light system in terms of output voltage and total harmonic distortion (THD.

  8. Contribution of VSC-HVDC to Frequency Regulation of Power Systems With Offshore Wind Generation

    DEFF Research Database (Denmark)

    Liu, Hongzhi; Chen, Zhe

    2015-01-01

    to the onshore system grid through voltage-source converter-based–high voltage direct current (VSC-HVdc) transmission systems. Due to the decoupling of VSC-HVdc and signal transmission delay, offshore wind farms may not be able to respond to the onshore grid frequency excursion in time and, consequently......, the stability and security of the power system will be put at risk, especially for those with high wind penetration. This paper proposes a coordinated control scheme to allow VSC-HVdc link to contribute to the system frequency regulation by adjusting its dc-link voltage. By means of this approach, the dc...... capacitors of VSC-HVdc are controlled to absorb or release energy so as to provide frequency support. To further enhance the system frequency response, the frequency support from VSC-HVdc is also finely coordinated with that from offshore wind farm according to the latency of offshore wind farm responding...

  9. A Comprehensive Analysis and Hardware Implementation of Control Strategies for High Output Voltage DC-DC Boost Power Converter

    Directory of Open Access Journals (Sweden)

    Sanjeevikumar Padmanaban

    2017-01-01

    Full Text Available Classical DC-DC converters used in high voltage direct current (HVDC power transmission systems, lack in terms of efficiency, reduced transfer gain and increased cost with sensor (voltage/current numbers. Besides, the internal self-parasitic behavior of the power components reduces the output voltage and efficiency of classical HV converters. This paper deals with extra high-voltage (EHV dc-dc boost converter by the application of voltage-lift technique to overcome the aforementioned deficiencies. The control strategy is based on classical proportional-integral (P-I and fuzzy logic closed-loop controller to get high and stable output voltage. Complete hardware prototype of EHV is implemented and experimental tasks are carried out with digital signal processor (DSP TMS320F2812. The control algorithms P-I, fuzzy logic and the pulse-width modulation (PWM signals for N-channel MOSFET device are performed by the DSP. The experimental results provided show good conformity with developed hypothetical predictions. Additionally, the presented study confirms that the fuzzy logic controller provides better performance than classical P-I controller under different perturbation conditions.

  10. HVDC transmission from nuclear power plant

    International Nuclear Information System (INIS)

    Yoshida, Yukio; Takenaka, Kiyoshi; Ichikawa, Takemi; Ueda, Kiyotaka; Machida, Takehiko

    1979-01-01

    The HVDC transmission directly from nuclear power plants is one of the patterns of long distance and large capacity HVDC transmission systems. In this report, the double pole, two-circuit HVDC transmission from a BWR nuclear power plant is considered, and the dynamic response characteristics due to the faults in dc line and ac line of inverter side are analyzed, to clarify the dynamic characteristics of the BWR nuclear power plant and dc system due to system faults and the effects of dc power control to prevent reactor scram. (1) In the instantaneous earthing fault of one dc line, the reactor is not scrammed by start-up within 0.8 sec. (2) When the earthing fault continues, power transmission drops to 75% by suspending the faulty pole, and the reactor is scrammed. (3) In the instantaneous ground fault of 2 dc lines, the reactor is not scrammed if the faulty dc lines are started up within 0.4 sec. (4) In the existing control of dc lines, the reactor is scrammed when the ac voltage at an ac-dc connection point largely drops due to ac failure. (J.P.N.)

  11. Optical fiber sensor of partial discharges in High Voltage DC experiments

    Science.gov (United States)

    Búa-Núñez, I.; Azcárraga-Ramos, C. G.; Posada-Román, J. E.; Garcia-Souto, J. A.

    2014-05-01

    A setup simulating High Voltage DC (HVDC) transformers barriers was developed to demonstrate the effectiveness of an optical fiber (OF) sensor in detecting partial discharges (PD) under these peculiar conditions. Different PD detection techniques were compared: electrical methods, and acoustic methods. Standard piezoelectric sensors (R15i-AST) and the above mentioned OF sensors were used for acoustic detection. The OF sensor was able to detect PD acoustically with a sensitivity better than the other detection methods. The multichannel instrumentation system was tested in real HVDC conditions with the aim of analyzing the behavior of the insulation (mineral oil/pressboard).

  12. Redundancy Determination of HVDC MMC Modules

    Directory of Open Access Journals (Sweden)

    Chanki Kim

    2015-08-01

    Full Text Available An availability and a reliability prediction has been made for a high-voltage direct-current (HVDC module of VSC (Voltage Source Converter containing DC/DC converter, gate driver, capacitor and insulated gate bipolar transistors (IGBT. This prediction was made using published failure rates for the electronic equipment. The purpose of this prediction is to determinate the additional module redundancy of VSC and the used method is “binomial failure method”.

  13. DC Grid Control Concept for Expandable Multi-terminal HVDC Transmission Systems

    DEFF Research Database (Denmark)

    Irnawan, Roni; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2018-01-01

    In areas where there are already several HVDC links in operation or under construction, it is more likely that a DC grid emerges as a gradual process. Although the DC grid control concept has been widely discussed, the implementation in the expandable multi-terminal HVDC (MTDC) transmission systems...... still faces challenges. The existing converter control system needs to be adjusted when a point-to-point (PtP) link is operated into MTDC system, or when an additional converter is interconnected with an existing MTDC system, or even when a new DC grid control strategy is applied. In this paper, a new...... DC grid control concept is proposed that conserves and uses the existing converter control when an existing PtP link is extended into MTDC system or the existing MTDC system is expanded. An interface is proposed to decouple the DC grid secondary with converter control structures. By using...

  14. HVDC grids for offshore and supergrid of the future

    CERN Document Server

    Gomis-Bellmunt, Oriol; Liang, Jun

    2016-01-01

    Presents the advantages, challenges, and technologies of High Voltage Direct Current (HVDC) Grids This book discusses HVDC grids based on multi-terminal voltage-source converters (VSC), which is suitable for the connection of offshore wind farms and a possible solution for a continent wide overlay grid. HVDC Grids: For Offshore and Supergrid of the Future begins by introducing and analyzing the motivations and energy policy drives for developing offshore grids and the European Supergrid. HVDC transmission technology and offshore equipment are described in the second part of the book. The third part of the book discusses how HVDC grids can be developed and integrated in the existing power system. The fourth part of the book focuses on HVDC grid integration, in studies, for different time domains of electric power systems. The book concludes by discussing developments of advanced control methods and control devices for enabling DC grids.

  15. improvement of power system quality using vsc-based hvdc

    African Journals Online (AJOL)

    HOD

    transmission is its ability to independently control the reactive and real power flow ... Key words: HVDC, Voltage source converter (VSC), Current and Voltage Control Loop; FFT Analysis ..... waveform and FFT wave spectrum, the DC side filters.

  16. Non-Pilot Protection of the HVDC Grid

    Science.gov (United States)

    Badrkhani Ajaei, Firouz

    This thesis develops a non-pilot protection system for the next generation power transmission system, the High-Voltage Direct Current (HVDC) grid. The HVDC grid protection system is required to be (i) adequately fast to prevent damages and/or converter blocking and (ii) reliable to minimize the impacts of faults. This study is mainly focused on the Modular Multilevel Converter (MMC) -based HVDC grid since the MMC is considered as the building block of the future HVDC systems. The studies reported in this thesis include (i) developing an enhanced equivalent model of the MMC to enable accurate representation of its DC-side fault response, (ii) developing a realistic HVDC-AC test system that includes a five-terminal MMC-based HVDC grid embedded in a large interconnected AC network, (iii) investigating the transient response of the developed test system to AC-side and DC-side disturbances in order to determine the HVDC grid protection requirements, (iv) investigating the fault surge propagation in the HVDC grid to determine the impacts of the DC-side fault location on the measured signals at each relay location, (v) designing a protection algorithm that detects and locates DC-side faults reliably and sufficiently fast to prevent relay malfunction and unnecessary blocking of the converters, and (vi) performing hardware-in-the-loop tests on the designed relay to verify its potential to be implemented in hardware. The results of the off-line time domain transients studies in the PSCAD software platform and the real-time hardware-in-the-loop tests using an enhanced version of the RTDS platform indicate that the developed HVDC grid relay meets all technical requirements including speed, dependability, security, selectivity, and robustness. Moreover, the developed protection algorithm does not impose considerable computational burden on the hardware.

  17. Steady-state operational range evolution from a two-terminal to a multiterminal HVDC transmission system

    DEFF Research Database (Denmark)

    Irnawan, Roni; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2017-01-01

    DC grids are anticipated to grow organically with one possible initial configuration being formed by interconnecting an additional HVDC converter into an existing shore-to-shore (StS) HVDC link. In order to ensure the performance of this MTDC system, the DC voltage at each converter terminal within...

  18. Precharge strategies for isolated modular DC-DC converters under two different start-up conditions

    DEFF Research Database (Denmark)

    Zhang, Yi; Wang, Huai; Li, Binbin

    2017-01-01

    The isolated modular DC-DC converter (IMDCC) is a new topology designed to connect high-voltage direct current (HVDC) lines with different voltage levels, which ties two DC grids by using two modular multilevel converters (MMCs) via a medium-frequency transformer. Due to the large value of capaci......The isolated modular DC-DC converter (IMDCC) is a new topology designed to connect high-voltage direct current (HVDC) lines with different voltage levels, which ties two DC grids by using two modular multilevel converters (MMCs) via a medium-frequency transformer. Due to the large value...... of capacitance in the IMDCC, proper precharge strategies before the start-up are significant for the safety and reliability of the whole system. This paper presents two closed-loop precharge control strategies to fully charge the sub-module (SM) capacitors of the IMDCC, considering two different start...

  19. High voltage direct current transmission converters, systems and DC grids

    CERN Document Server

    Jovcic, Dragan

    2015-01-01

    This comprehensive reference guides the reader through all HVDC technologies, including LCC (Line Commutated Converter), 2-level VSC and VSC HVDC based on modular multilevel converters (MMC) for an in-depth understanding of converters, system level design, operating principles and modeling. Written in a tutorial style, the book also describes the key principles of design, control, protection and operation of DC transmission grids, which will be substantially different from the practice with AC transmission grids. The first dedicated reference to the latest HVDC technologies and DC grid developments; this is an essential resource for graduate students and researchers as well as engineers and professionals working on the design, modeling and operation of DC grids and HVDC.

  20. Comparative study of superconducting fault current limiter both for LCC-HVDC and VSC-HVDC systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong-Geon; Khan, Umer Amir; Lim, Sung-Woo; Shin, Woo-ju; Seo, In-Jin; Lee, Bang-Wook, E-mail: bangwook@hanyang.ac.kr

    2015-11-15

    Highlights: • The role of SFCL in types of HVDC system was evaluated. • A simulation model based on Korea Jeju–Haenam HVDC power system was designed in Matlab/Simulink. • Utilizing the designed both HVDC power system models, the efficiency of DC-SFCL was relatively low, compared to AC-SFCL. • It was deduced that the AC-SFCL was more effective in LCC-HVDC system than VSC-HVDC system. - Abstract: High Voltage Direct Current (HVDC) system has been evaluated as the optimum solution for the renewable energy transmission and long-distance power grid connections. In spite of the various advantages of HVDC system, it still has been regarded as an unreliable system compared to AC system due to its vulnerable characteristics on the power system fault. Furthermore, unlike AC system, optimum protection and switching device has not been fully developed yet. Therefore, in order to enhance the reliability of the HVDC systems mitigation of power system fault and reliable fault current limiting and switching devices should be developed. In this paper, in order to mitigate HVDC fault, both for Line Commutated Converter HVDC (LCC-HVDC) and Voltage Source Converter HVDC (VSC-HVDC) system, an application of resistive superconducting fault current limiter which has been known as optimum solution to cope with the power system fault was considered. Firstly, simulation models for two types of LCC-HVDC and VSC-HVDC system which has point to point connection model were developed. From the designed model, fault current characteristics of faulty condition were analyzed. Second, application of SFCL on each types of HVDC system and comparative study of modified fault current characteristics were analyzed. Consequently, it was deduced that an application of AC-SFCL on LCC-HVDC system with point to point connection was desirable solution to mitigate the fault current stresses and to prevent commutation failure in HVDC electric power system interconnected with AC grid.

  1. Comparative study of superconducting fault current limiter both for LCC-HVDC and VSC-HVDC systems

    International Nuclear Information System (INIS)

    Lee, Jong-Geon; Khan, Umer Amir; Lim, Sung-Woo; Shin, Woo-ju; Seo, In-Jin; Lee, Bang-Wook

    2015-01-01

    Highlights: • The role of SFCL in types of HVDC system was evaluated. • A simulation model based on Korea Jeju–Haenam HVDC power system was designed in Matlab/Simulink. • Utilizing the designed both HVDC power system models, the efficiency of DC-SFCL was relatively low, compared to AC-SFCL. • It was deduced that the AC-SFCL was more effective in LCC-HVDC system than VSC-HVDC system. - Abstract: High Voltage Direct Current (HVDC) system has been evaluated as the optimum solution for the renewable energy transmission and long-distance power grid connections. In spite of the various advantages of HVDC system, it still has been regarded as an unreliable system compared to AC system due to its vulnerable characteristics on the power system fault. Furthermore, unlike AC system, optimum protection and switching device has not been fully developed yet. Therefore, in order to enhance the reliability of the HVDC systems mitigation of power system fault and reliable fault current limiting and switching devices should be developed. In this paper, in order to mitigate HVDC fault, both for Line Commutated Converter HVDC (LCC-HVDC) and Voltage Source Converter HVDC (VSC-HVDC) system, an application of resistive superconducting fault current limiter which has been known as optimum solution to cope with the power system fault was considered. Firstly, simulation models for two types of LCC-HVDC and VSC-HVDC system which has point to point connection model were developed. From the designed model, fault current characteristics of faulty condition were analyzed. Second, application of SFCL on each types of HVDC system and comparative study of modified fault current characteristics were analyzed. Consequently, it was deduced that an application of AC-SFCL on LCC-HVDC system with point to point connection was desirable solution to mitigate the fault current stresses and to prevent commutation failure in HVDC electric power system interconnected with AC grid.

  2. Suggested Methods for Preventing Core Saturation Instability in HVDC Transmission Systems

    Energy Technology Data Exchange (ETDEWEB)

    Norheim, Ian

    2002-07-01

    In this thesis a study of the HVDC related phenomenon core saturation instability and methods to prevent this phenomenon is performed. It is reason to believe that this phenomenon caused disconnection of the Skagerrak HVDC link 10 August 1993. Internationally, core saturation instability has been reported at several HVDC schemes and thorough complex studies of the phenomenon has been performed. This thesis gives a detailed description of the phenomenon and suggest some interesting methods to prevent the development of it. Core saturation instability and its consequences can be described in a simplified way as follows: It is now assumed that a fundamental harmonic component is present in the DC side current. Due to the coupling between the AC side and the DC side of the HVDC converter, a subsequent second harmonic positive-sequence current and DC currents will be generated on the AC side. The DC currents will cause saturation in the converter transformers. This will cause the magnetizing current to also have a second harmonic positive-sequence component. If a high second harmonic impedance is seen from the commutation bus, a high positive-sequence second harmonic component will be present in the commutation voltages. This will result in a relatively high fundamental frequency component in the DC side voltage. If the fundamental frequency impedance at the DC side is relatively low the fundamental component in the DC side current may become larger than it originally was. In addition the HVDC control system may contribute to the fundamental frequency component in the DC side voltage, and in this way cause a system even more sensitive to core saturation instability. The large magnetizing currents that eventually will flow on the AC side cause large zero-sequence currents in the neutral conductors of the AC transmission lines connected to the HVDC link. This may result in disconnection of the lines. Alternatively, the harmonics in the large magnetizing currents may cause

  3. Evaluation of HVDC interconnection models for considering its impact in real-time voltage stability assessment

    DEFF Research Database (Denmark)

    Perez, Angel; Jóhannsson, Hjörtur; Lund, P.

    2015-01-01

    An approach to evaluate the HVDC interconnectionsmodels to be used in real-time voltage stability assessment is proposed.The existing models for the HVDC interconnections, thatare based on voltage source converter, were studied selecting theones that are suitable for its application in Thevenin...... equivalent ´methods for voltage stability assessment. The proposed methodis to evaluate the validity of the models by using synthetizedPMU measurements from simulations and from PMUs connectedto the danish system. Wide-area measurements are used toestimate the HVDC model parameters which are needed...

  4. Steady-state and transient performance of HVDC link based 3-level ...

    African Journals Online (AJOL)

    Administrateur

    DC (HVDC) transmission systems based on three-level voltage source converters. The study involves ..... voltage drops due to the currents across the impedance .... IEEE/PES Transmission and Distribution Conference &. Exhibition: Asia and ...

  5. A novel power control strategy of Modular Multi-level Converter in HVDC-AC hybrid transmission systems for passive networks

    DEFF Research Database (Denmark)

    Hu, Zhenda; Wu, Rui; Yang, Xiaodong

    2014-01-01

    With the development of High Voltage DC Transmission (HVDC) technology, there will be more and more HVDC-AC hybrid transmission system in the world. A basic challenge in HVDC-AC hybrid transmission systems is to optimize the power sharing between DC and AC lines, which become more severe when sup...... control strategy of Modular Multi-level Converter in VSC-HVDC, which can optimize converter output power according to passive network loading variation. Proposal method is studied with a case study of a VSC-HVDC AC hybrid project by PSCAD/EMTDC simulations....

  6. Coordinated system services from offshore wind power plants connected through HVDC networks

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Glasdam, Jakob; Hesselbæk, Bo

    2014-01-01

    This paper presents an overview of power system services in networks involving multiple onshore power systems, a voltage sourced converter (VSC) based high voltage direct current (HVDC) offshore network and an offshore wind power plant (OWPP). A comprehensive list of services regarding onshore...... as well as offshore network operation – both AC and DC – will be discussed from a state of the art perspective. Among them, the most interesting have been selected and will be treated in more detail and the main contribution of this paper will be to shed light on the most relevant aspects related...... to their implementation. For example, new findings on onshore AC voltage control are reported, that help the characterisation of potential AC voltage control that a VSC-HVDC station may offer to an onshore AC grid. The HVDC system behind the VSC-HVDC station may connect, through other converters, to another AC power...

  7. Dynamic simulation of hvdc transmission systems on digital computers

    Energy Technology Data Exchange (ETDEWEB)

    Hingorani, N G; Hay, J L; Crosbie, R E

    1966-05-01

    A digital computer technique is based on the fact that the operation of an hvdc converter consists of similar consecutive processes, each process having features which are common to all processes. Each bridge converter of an hvdc system is represented by a central process, and repetitive use of the latter simulates continuous converter operation. This technique may be employed to obtain the waveforms of transient or steady state voltages and currents anywhere in the dc system. To illustrate the method, an hvdc link is considered; the link which connects two independent ac systems conprises two converters with their control systems, and a dc transmission line. As an example, the transient behavior of the system is examined following changes in the current settings of the control system.

  8. Study on emergency power control strategy for AC/DC hybrid power system containing VSC-HVDC

    Science.gov (United States)

    Liu, Lin; Hu, Zhenda; Ye, Rong; Lin, Zhangsui; Yang, Xiaodong; Yi, Yang

    2018-04-01

    This paper presents a comprehensive emergency power control strategy for AC/DC hybrid power systems containing VSC-HVDC. Firstly, the paper analyzes the power support of the VSC-HVDC to the AC lines using the Power Transferring Relativity Factor (PTRF). Then the power adjustment of the VSC-HVDC in several different circumstances are calculated. Finally, the online power control strategies of VSC-HVDC are designed, which could rapidly control the power of the VSC-HVDC, keeping the power flow of AC lines below the upper limit. Furthermore, the strategy is proven to be effective by the simulations with EMTDC/PSCAD.

  9. Line-to-Line Fault Analysis and Location in a VSC-Based Low-Voltage DC Distribution Network

    Directory of Open Access Journals (Sweden)

    Shi-Min Xue

    2018-03-01

    Full Text Available A DC cable short-circuit fault is the most severe fault type that occurs in DC distribution networks, having a negative impact on transmission equipment and the stability of system operation. When a short-circuit fault occurs in a DC distribution network based on a voltage source converter (VSC, an in-depth analysis and characterization of the fault is of great significance to establish relay protection, devise fault current limiters and realize fault location. However, research on short-circuit faults in VSC-based low-voltage DC (LVDC systems, which are greatly different from high-voltage DC (HVDC systems, is currently stagnant. The existing research in this area is not conclusive, with further study required to explain findings in HVDC systems that do not fit with simulated results or lack thorough theoretical analyses. In this paper, faults are divided into transient- and steady-state faults, and detailed formulas are provided. A more thorough and practical theoretical analysis with fewer errors can be used to develop protection schemes and short-circuit fault locations based on transient- and steady-state analytic formulas. Compared to the classical methods, the fault analyses in this paper provide more accurate computed results of fault current. Thus, the fault location method can rapidly evaluate the distance between the fault and converter. The analyses of error increase and an improved handshaking method coordinating with the proposed location method are presented.

  10. Optimization-based reactive power control in HVDC-connected wind power plants

    OpenAIRE

    Schönleber, Kevin; Collados Rodríguez, Carlos; Teixeira Pinto, Rodrigo; Ratés Palau, Sergi; Gomis Bellmunt, Oriol

    2017-01-01

    One application of high–voltage dc (HVdc) systems is the connection of remotely located offshore wind power plants (WPPs). In these systems, the offshore WPP grid and the synchronous main grid operate in decoupled mode, and the onshore HVdc converter fulfills the grid code requirements of the main grid. Thus, the offshore grid can be operated independently during normal conditions by the offshore HVdc converter and the connected wind turbines. In general, it is well known that optimized react...

  11. Integral Plus Resonant Sliding Mode Direct Power Control for VSC-HVDC Systems under Unbalanced Grid Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Weipeng Yang

    2017-10-01

    Full Text Available An integral plus resonant sliding mode direct power control (IRSMC DPC strategy for voltage source converter high voltage direct current (VSC-HVDC systems under unbalanced grid voltage conditions is proposed in this paper. Through detailed instantaneous power flow analysis, a generalized power compensation method, by which the ratio between the amplitude of active and reactive power ripples can be controlled continuously, is obtained. This enables the system to provide flexible power control, so that the desired performance of the system on both the ac and dc sides can be attained under different operating conditions. When the grid voltage is unbalanced, one or both of the active and reactive power terms contain ripples, oscillating at twice the grid frequency, to obtain non-distorted ac current. A power controller consisting of the proportional, integral and resonant control laws is designed using the sliding mode control approach, to achieve accurate power control objective. Simulation studies on a two-terminal VSC-HVDC system using MATLAB/SIMULINK (R2013b, Mathworks, Natick, MA, USA are conducted to verify the effectiveness of the IRSMC DPC strategy. The results show that this strategy ensures satisfactory performance of the system over a wide range of operating conditions.

  12. DC Vs AC - War Of Currents For Future Power Systems A HVDC Technology Overview

    Directory of Open Access Journals (Sweden)

    Anil K. Rai

    2015-08-01

    Full Text Available DC vs AC discussion began in 1880s with development of first commercial power transmission in Wall Street New York. Later when AC technology came into notice by efforts of inventor and researcher Sir Nicola Tesla soon the advantages of AC transmission and AC devices overtook the DC technology. It was hoped that DC technology had lost battle of currents. Today with researches going on FACTS devices and bulk power transmission HVDC has again gained a reputation in power sector. Solution of this centuries old debate is to develop HVDC systems that assists HVAC systems for better performance stability and control

  13. Advanced hybrid transient stability and EMT simulation for VSC-HVDC systems

    NARCIS (Netherlands)

    Van Der Meer, A.A.; Gibescu, M.; Van Der Meijden, M.A.M.M.; Kling, W.L.; Ferreira, J.A.

    2015-01-01

    This paper deals with advanced hybrid transient stability and electromagnetic-transient (EMT) simulation of combined ac/dc power systems containing large amounts of renewable energy sources interfaced through voltage-source converter-high-voltage direct current (VSC-HVDC). The concerning transient

  14. Fault Ride-through Capability Enhancement of Voltage Source Converter-High Voltage Direct Current Systems with Bridge Type Fault Current Limiters

    Directory of Open Access Journals (Sweden)

    Md Shafiul Alam

    2017-11-01

    Full Text Available This paper proposes the use of bridge type fault current limiters (BFCLs as a potential solution to reduce the impact of fault disturbance on voltage source converter-based high voltage DC (VSC-HVDC systems. Since VSC-HVDC systems are vulnerable to faults, it is essential to enhance the fault ride-through (FRT capability with auxiliary control devices like BFCLs. BFCL controllers have been developed to limit the fault current during the inception of system disturbances. Real and reactive power controllers for the VSC-HVDC have been developed based on current control mode. DC link voltage control has been achieved by a feedback mechanism such that net power exchange with DC link capacitor is zero. A grid-connected VSC-HVDC system and a wind farm integrated VSC-HVDC system along with the proposed BFCL and associated controllers have been implemented in a real time digital simulator (RTDS. Symmetrical three phase as well as different types of unsymmetrical faults have been applied in the systems in order to show the effectiveness of the proposed BFCL solution. DC link voltage fluctuation, machine speed and active power oscillation have been greatly suppressed with the proposed BFCL. Another significant feature of this work is that the performance of the proposed BFCL in VSC-HVDC systems is compared to that of series dynamic braking resistor (SDBR. Comparative results show that the proposed BFCL is superior over SDBR in limiting fault current as well as improving system fault ride through (FRT capability.

  15. A Review of LCC-HVDC and VSC-HVDC Technologies and Applications

    Directory of Open Access Journals (Sweden)

    Oluwafemi Emmanuel Oni

    2016-09-01

    Full Text Available High Voltage Direct Current (HVDC systems has been an alternative method of transmitting electric power from one location to another with some inherent advantages over AC transmission systems. The efficiency and rated power carrying capacity of direct current transmission lines highly depends on the converter used in transforming the current from one form to another (AC to DC and vice versa. A well configured converter reduces harmonics, increases power transfer capabilities, and reliability in that it offers high tolerance to fault along the line. Different HVDC converter topologies have been proposed, built and utilised all over the world. The two dominant types are the line commutated converter LCC and the voltage source converter VSC. This review paper evaluates these two types of converters, their operational characteristics, power rating capability, control capability and losses. The balance of the paper addresses their applications, advantages, limitations and latest developments with these technologies.

  16. The need for a common standard for voltage levels of HVDC VSC technology

    International Nuclear Information System (INIS)

    Müller, H.K.; Torbaghan, S. Shariat; Gibescu, M.; Roggenkamp, M.M.; Meijden, M.A.M.M. van der

    2013-01-01

    The expansion of offshore wind energy as well as the increase in electricity trade between the North Sea countries leads to a growing need for additional transmission capacity. Due to the predominantly remote locations of offshore wind farms, the majority of future connections will be high-voltage direct current (HVDC) connections. In order to make the construction of offshore infrastructure more efficient, the North Sea states are currently discussing the development of a common offshore grid. Although this development still stands at the very beginning, we argue in this paper that some crucial elements should be standardized from the outset; the most important one being a common voltage level. Without such standardization, the development of a European offshore grid may be suboptimal, not cost-efficient and might even be prevented from coming into existence. We examine the technical and legal issues associated with introducing a common voltage level for the use of HVDC VSC technology, and discuss the optimal standard as well as the way in which this common standard can best be achieved. - Highlights: • We highlight the need for a common standard for HVDC VSC technology. • We outline that a standardized voltage level at ± 500 kV should be the initial focus. • We discuss the developments regarding standardization of HVDC VSC technology. • We conclude that current developments are not sufficient

  17. Development of toroid-type HTS DC reactor series for HVDC system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwangmin, E-mail: kwangmin81@gmail.com [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Lee, Sangjin [Uiduk University, Gyeongju 780-713 (Korea, Republic of); Oh, Yunsang [Vector Fields Korea Inc., Pohang 790-834 (Korea, Republic of); Park, Minwon; Yu, In-Keun [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of)

    2015-11-15

    Highlights: • The authors developed the 400 mH, 400 A class toroid-type HTS DC reactor system. • The target temperature, inductance and operating current are under 20 K at magnet, 400 mH and 400 A, respectively. All target performances of the HTS DC reactor were achieved. • The HTS DC reactor was conducted through the interconnection operation with a LCC type HVDC system. • Now, the authors are studying the 400 mH, 1500 A class toroid-type HTS DC reactor for the next phase HTS DC reactor. - Abstract: This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.

  18. Development of toroid-type HTS DC reactor series for HVDC system

    International Nuclear Information System (INIS)

    Kim, Kwangmin; Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho; Lee, Sangjin; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2015-01-01

    Highlights: • The authors developed the 400 mH, 400 A class toroid-type HTS DC reactor system. • The target temperature, inductance and operating current are under 20 K at magnet, 400 mH and 400 A, respectively. All target performances of the HTS DC reactor were achieved. • The HTS DC reactor was conducted through the interconnection operation with a LCC type HVDC system. • Now, the authors are studying the 400 mH, 1500 A class toroid-type HTS DC reactor for the next phase HTS DC reactor. - Abstract: This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.

  19. An improved droop control method for multi-terminal VSC-HVDC converter stations

    DEFF Research Database (Denmark)

    Wang, Hao; Wang, Yue; Duan, Guozhao

    2017-01-01

    Multi-terminal high voltage direct current transmission based on voltage source converter (VSC-HVDC) grids can connect non-synchronous alternating current (AC) grids to a hybrid alternating current and direct current (AC/DC) power system, which is one of the key technologies in the construction...

  20. Negative sequence current control in wind power plants with VSC-HVDC connection

    DEFF Research Database (Denmark)

    Chaudhary, Sanjay; Teodorescu, Remus; Rodriguez, Pedro

    2012-01-01

    Large offshore wind power plants may have multi-MW wind turbine generators (WTG) equipped with full-scale converters (FSC) and voltage source converter (VSC) based high voltaage direct-current (HVDC) transmission for grid connection. The power electronic converters in theWTG-FSC and the VSC......-HVDC allow fast current control in the offshore grid. This paper presents a method of controlling the negative sequence current injection into the offshore grid from the VSC-HVDC as well as WTG-FSCs. This would minimize the power oscillations and hence reduce the dc voltage overshoots in the VSC-HVDC system...... as well as in the WTG-FSCs; especially when the offshore grid is unbalanced due to asymmetric faults. The formulation for negative sequence current injection is mathematically derived and then implemented in electromagnetic transients (EMT) simulation model. The simulated results show that the negative...

  1. Voltage Balancing Method on Expert System for 51-Level MMC in High Voltage Direct Current Transmission

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2016-01-01

    Full Text Available The Modular Multilevel Converters (MMC have been a spotlight for the high voltage and high power transmission systems. In the VSC-HVDC (High Voltage Direct Current based on Voltage Source Converter transmission system, the energy of DC link is stored in the distributed capacitors, and the difference of capacitors in parameters and charge rates causes capacitor voltage balance which affects the safety and stability of HVDC system. A method of MMC based on the expert system for reducing the frequency of the submodules (SMs of the IGBT switching frequency is proposed. Firstly, MMC with 51 levels for HVDC is designed. Secondly, the nearest level control (NLC for 51-level MMC is introduced. Thirdly, a modified capacitor voltage balancing method based on expert system for MMC-based HVDC transmission system is proposed. Finally, a simulation platform for 51-level Modular Multilevel Converter is constructed by using MATLAB/SIMULINK. The results indicate that the strategy proposed reduces the switching frequency on the premise of keeping submodule voltage basically identical, which greatly reduces the power losses for MMC-HVDC system.

  2. HVDC Solution for Offshore Wind Park Comprising Turbines Equipped with Full-Range Converters

    DEFF Research Database (Denmark)

    Sharma, Ranjan; Rasmussen, Tonny Wederberg; Jensen, Kim Høj

    2010-01-01

    a voltage drop is created at the collection grid, the wind turbines go into fault-ride-through mode. The power output from each of the wind turbines is thus reduced to balance the system power. The detailed explanation of the strategy is presented in the paper. Matlab simulation model was prepared and some...... of a HVDC transmission system. The power system under study includes an offshore wind farm comprising turbines equipped with full range converters. The collection network is a local AC grid. Power transmission is done through HVDC system. The grid side VSC (voltage source converter) controls the DC voltage...

  3. Application of VSC-HVDC with Shunt Connected SMES for Compensation of Power Fluctuation

    Science.gov (United States)

    Linn, Zarchi; Kakigano, Hiroaki; Miura, Yushi; Ise, Toshifumi

    This paper describes the application of VSC-HVDC (High Voltage DC Transmission using Voltage Source Converter) with shunt connected SMES (Superconducting Magnetic Energy Storage) for compensation of power fluctuation caused by fluctuating power source such as photovoltaics and wind turbines. The objectives of this proposed system is to smooth out fluctuating power in one terminal side of HVDC in order to avoid causing power system instability and frequency deviation by absorbing or providing power according to the system requirement while another terminal side power is fluctuated. The shunt connected SMES charges and discharges the energy to and from the dc side and it compensates required power of fluctuation to obtain constant power flow in one terminal side of VSC-HVDC system. This system configuration has ability for power system stabilization in the case of power fluctuation from natural energy source. PSCAD/EMTDC simulation is used to evaluate the performance of applied system configuration and control method.

  4. Assessment on the influence of resistive superconducting fault current limiter in VSC-HVDC system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong-Geon; Khan, Umer Amir; Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Park, Byung-Bae; Lee, Bang-Wook, E-mail: bangwook@hanyang.ac.kr

    2014-09-15

    Highlights: • The role of SFCLs in VSC-HVDC systems was evaluated. • Simulation model based on Korea Jeju-Haenam HVDC power system was designed. • An effect and the feasible locations of resistive SFCLs were evaluated. • DC line-to-line, DC line-to-ground and 3 phase AC faults were imposed and analyzed. - Abstract: Due to fewer risk of commutation failures, harmonic occurrences and reactive power consumptions, Voltage Source Converter (VSC) based HVDC system is known as the optimum solution of HVDC power system for the future power grid. However, the absence of suitable fault protection devices for HVDC system hinders the efficient VSC-HVDC power grid design. In order to enhance the reliability of the VSC-HVDC power grid against the fault current problems, the application of resistive Superconducting Fault Current Limiters (SFCLs) could be considered. Also, SFCLs could be applied to the VSC-HVDC system with integrated AC Power Systems in order to enhance the transient response and the robustness of the system. In this paper, in order to evaluate the role of SFCLs in VSC-HVDC systems and to determine the suitable position of SFCLs in VSC-HVDC power systems integrated with AC power System, a simulation model based on Korea Jeju-Haenam HVDC power system was designed in Matlab Simulink/SimPowerSystems. This designed model was composed of VSC-HVDC system connected with an AC microgrid. Utilizing the designed VSC-HVDC systems, the feasible locations of resistive SFCLs were evaluated when DC line-to-line, DC line-to-ground and three phase AC faults were occurred. Consequently, it was found that the simulation model was effective to evaluate the positive effects of resistive SFCLs for the effective suppression of fault currents in VSC-HVDC systems as well as in integrated AC Systems. Finally, the optimum locations of SFCLs in VSC-HVDC transmission systems were suggested based on the simulation results.

  5. Assessment on the influence of resistive superconducting fault current limiter in VSC-HVDC system

    International Nuclear Information System (INIS)

    Lee, Jong-Geon; Khan, Umer Amir; Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Park, Byung-Bae; Lee, Bang-Wook

    2014-01-01

    Highlights: • The role of SFCLs in VSC-HVDC systems was evaluated. • Simulation model based on Korea Jeju-Haenam HVDC power system was designed. • An effect and the feasible locations of resistive SFCLs were evaluated. • DC line-to-line, DC line-to-ground and 3 phase AC faults were imposed and analyzed. - Abstract: Due to fewer risk of commutation failures, harmonic occurrences and reactive power consumptions, Voltage Source Converter (VSC) based HVDC system is known as the optimum solution of HVDC power system for the future power grid. However, the absence of suitable fault protection devices for HVDC system hinders the efficient VSC-HVDC power grid design. In order to enhance the reliability of the VSC-HVDC power grid against the fault current problems, the application of resistive Superconducting Fault Current Limiters (SFCLs) could be considered. Also, SFCLs could be applied to the VSC-HVDC system with integrated AC Power Systems in order to enhance the transient response and the robustness of the system. In this paper, in order to evaluate the role of SFCLs in VSC-HVDC systems and to determine the suitable position of SFCLs in VSC-HVDC power systems integrated with AC power System, a simulation model based on Korea Jeju-Haenam HVDC power system was designed in Matlab Simulink/SimPowerSystems. This designed model was composed of VSC-HVDC system connected with an AC microgrid. Utilizing the designed VSC-HVDC systems, the feasible locations of resistive SFCLs were evaluated when DC line-to-line, DC line-to-ground and three phase AC faults were occurred. Consequently, it was found that the simulation model was effective to evaluate the positive effects of resistive SFCLs for the effective suppression of fault currents in VSC-HVDC systems as well as in integrated AC Systems. Finally, the optimum locations of SFCLs in VSC-HVDC transmission systems were suggested based on the simulation results

  6. Enhanced Dynamic Voltage Stability Support by VSC-HVDC for Offshore Wind Applications using Trajectory Sensitivity Analysis

    DEFF Research Database (Denmark)

    Liu, Hongzhi; Chen, Zhe; Liu, Leo

    2013-01-01

    The integration of large-scale wind power plants changes the structure, configuration and operation of conventional power systems and brings challenges to the security and stability of power systems. Dynamic voltage stability of power systems with high wind penetration is one of the critical issues....... In this paper, VSC-HVDC transmission system is used to integrate a large-scale wind power plant into the onshore power grid. For different voltage support strategies of VSC-HVDC, a trajectory sensitivity analysisbased approach is proposed to find the minimum onshore VSC capacity with which the VSC-HVDC can...... provide enough support for the improvement of system voltage stability after a disturbance. Sensitivities of reactive power output of VSC to its capacity increase are calculated instead of the sensitivities of bus voltage magnitude towards the reactive power injection variation of VSC. Simulation results...

  7. Development of a coordinated control system for BWR nuclear power plant and HVDC transmission system

    International Nuclear Information System (INIS)

    Ishikawa, M.; Hara, T.; Hirayama, K.; Sekiya, K.

    1986-01-01

    The combined use of dc and ac transmissions or so-called hybrid transmission was under study, employing both dc and ac systems to enable stable transmission of 10,000 MW of electric power generated by the BWR nuclear plant, scheduled to be built about 800 km away from the center of the load. It was thus necessary to develop a hybrid power transmission control system, the hybrid power transmission system consisting of a high voltage dc transmission system (HVDC) and an ultrahigh ac transmission system (UHVAC). It was also necessary to develop a control system for HVDC transmission which protects the BWR nuclear power plant from being influenced by any change in transmission mode that occurs as a result of faults on the UHVAC side when the entire power of the BWR plant is being sent by the HVDC transmission. This paper clarifies the requirements for the HVDC system control during hybrid transmission and also during dc transmission. The control method that satisfies these requirements was studied to develop a control algorithm

  8. Coordinated Voltage Control Scheme for VSC-HVDC Connected Wind Power Plants

    DEFF Research Database (Denmark)

    Guo, Yifei; Gao, Houlei; Wu, Qiuwei

    2017-01-01

    This paper proposes a coordinated voltage control scheme based on model predictive control (MPC) for voltage source converter‐based high voltage direct current (VSC‐HVDC) connected wind power plants (WPPs). In the proposed scheme, voltage regulation capabilities of VSC and WTGs are fully utilized...... and optimally coordinated. Two control modes, namely operation optimization mode and corrective mode, are designed to coordinate voltage control and economic operation of the system. In the first mode, the control objective includes the bus voltages, power losses and dynamic Var reserves of wind turbine...

  9. Feasibility analysis of a novel hybrid-type superconducting circuit breaker in multi-terminal HVDC networks

    Science.gov (United States)

    Khan, Umer Amir; Lee, Jong-Geon; Seo, In-Jin; Amir, Faisal; Lee, Bang-Wook

    2015-11-01

    Voltage source converter-based HVDC systems (VSC-HVDC) are a better alternative than conventional thyristor-based HVDC systems, especially for developing multi-terminal HVDC systems (MTDC). However, one of the key obstacles in developing MTDC is the absence of an adequate protection system that can quickly detect faults, locate the faulty line and trip the HVDC circuit breakers (DCCBs) to interrupt the DC fault current. In this paper, a novel hybrid-type superconducting circuit breaker (SDCCB) is proposed and feasibility analyses of its application in MTDC are presented. The SDCCB has a superconducting fault current limiter (SFCL) located in the main current path to limit fault currents until the final trip signal is received. After the trip signal the IGBT located in the main line commutates the current into a parallel line where DC current is forced to zero by the combination of IGBTs and surge arresters. Fault simulations for three-, four- and five-terminal MTDC were performed and SDCCB performance was evaluated in these MTDC. Passive current limitation by SFCL caused a significant reduction of fault current interruption stress in the SDCCB. It was observed that the DC current could change direction in MTDC after a fault and the SDCCB was modified to break the DC current in both the forward and reverse directions. The simulation results suggest that the proposed SDCCB could successfully suppress the DC fault current, cause a timely interruption, and isolate the faulty HVDC line in MTDC.

  10. A study of offshore wind HVDC system stability and control

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hanchao; Sun, Jian [Rensselaer Polytechnic Institute, Troy, NY (United States). Dept. of Electrical, Computer and Systems Engineering

    2011-07-01

    This work is concerned with the stability and control of ac power collection buses in offshore wind farms with high-voltage dc (HVDC) transmission connection to onshore power grid. The focus of the work is high-frequency interactions among the wind turbines, the ac collection bus and the filters, as well as the HVDC rectifier. Both voltage-source converter and line-commutated converter based HVDC systems are considered. To study high-frequency stability, particularly harmonic resonance in the ac bus, small-signal impedance models are developed for the wind inverters and the HVDC rectifier by using harmonic linearization techniques. An impedance-based stability criterion is applied to assess system stability in both positive- and negative-sequence domain. Small-signal stability conditions and requirements are developed from analytical impedance models. Detailed system-level simulation is used to validated the small-signal analysis. The goal of the study is to develop system design and control techniques that minimize the cost of the offshore infrastructure while guaranteeing system stability and power quality. (orig.)

  11. Examination of fault ride-through methods for off-shore wind farms connected to the grid through VSC-based HVDC transmission

    Energy Technology Data Exchange (ETDEWEB)

    Karaagac, U.; Mahseredjian, J.; Saad, H. [Ecole Polytechnique de Montreal, QC (Canada); Jensen, S.; Cai, L. [REpower Systems AG, Hamburg (Germany)

    2012-07-01

    The fault ride-through (FRT) performance of offshore wind farms (OWFs) is a challenging task when the OWF is connected to the onshore ac grid through a voltage source converter (VSC) based HVDC transmission system. The injected power from the OWF cannot be reduced by the offshore VSC during onshore ac faults and this causes a fast increase in the dc network voltage. Without any special FRT method, the dc network voltage may increase up to intolerable levels and cause operation of dc overvoltage protection. This paper compares various FRT methods based on fast reduction of power generation in OWFs. In addition, this paper proposes an improved FRT method based on controlled voltage drop for output power reduction in OWFs. The proposed improvement reduces mechanical stress on the wind turbine (WT) drive train, and electrical stress on the insulated gate bipolar transistors (IGBTs) of the HVDC and doubly-fed induction generator (DFIG) converters. Practical onshore ac fault scenarios are simulated for an OWF composed of DFIG type WTs and connected to a practical ac grid through a point-to-point modular multilevel converter (MMC) based HVDC system. (orig.)

  12. Mitigation of commutation failures in LCC–HVDC systems based on superconducting fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong-Geon; Khan, Umer Amir; Lee, Ho-Yun; Lim, Sung-Woo; Lee, Bang-Wook, E-mail: bangwook@hanyang.ac.kr

    2016-11-15

    Commutation failure in line commutated converter based HVDC systems cause severe damages on the entire power grid system. For LCC–HVDC, thyristor valves are turned on by a firing signal but turn off control is governed by the external applied AC voltage from surrounding network. When the fault occurs in AC system, turn-off control of thyristor valves is unavailable due to the voltage collapse of point of common coupling (PCC), which causes the commutation failure in LCC–HVDC link. Due to the commutation failure, the power transfer interruption, dc voltage drop and severe voltage fluctuation in the AC system could be occurred. In a severe situation, it might cause the protection system to block the valves. In this paper, as a solution to prevent the voltage collapse on PCC and to limit the fault current, the application study of resistive superconducting fault current limiter (SFCL) on LCC–HVDC grid system was performed with mathematical and simulation analyses. The simulation model was designed by Matlab/Simulink considering Haenam-Jeju HVDC power grid in Korea which includes conventional AC system and onshore wind farm and resistive SFCL model. From the result, it was observed that the application of SFCL on LCC–HVDC system is an effective solution to mitigate the commutation failure. And then the process to determine optimum quench resistance of SFCL which enables the recovery of commutation failure was deeply investigated.

  13. Mitigation of commutation failures in LCC–HVDC systems based on superconducting fault current limiters

    International Nuclear Information System (INIS)

    Lee, Jong-Geon; Khan, Umer Amir; Lee, Ho-Yun; Lim, Sung-Woo; Lee, Bang-Wook

    2016-01-01

    Commutation failure in line commutated converter based HVDC systems cause severe damages on the entire power grid system. For LCC–HVDC, thyristor valves are turned on by a firing signal but turn off control is governed by the external applied AC voltage from surrounding network. When the fault occurs in AC system, turn-off control of thyristor valves is unavailable due to the voltage collapse of point of common coupling (PCC), which causes the commutation failure in LCC–HVDC link. Due to the commutation failure, the power transfer interruption, dc voltage drop and severe voltage fluctuation in the AC system could be occurred. In a severe situation, it might cause the protection system to block the valves. In this paper, as a solution to prevent the voltage collapse on PCC and to limit the fault current, the application study of resistive superconducting fault current limiter (SFCL) on LCC–HVDC grid system was performed with mathematical and simulation analyses. The simulation model was designed by Matlab/Simulink considering Haenam-Jeju HVDC power grid in Korea which includes conventional AC system and onshore wind farm and resistive SFCL model. From the result, it was observed that the application of SFCL on LCC–HVDC system is an effective solution to mitigate the commutation failure. And then the process to determine optimum quench resistance of SFCL which enables the recovery of commutation failure was deeply investigated.

  14. Mitigation of commutation failures in LCC-HVDC systems based on superconducting fault current limiters

    Science.gov (United States)

    Lee, Jong-Geon; Khan, Umer Amir; Lee, Ho-Yun; Lim, Sung-Woo; Lee, Bang-Wook

    2016-11-01

    Commutation failure in line commutated converter based HVDC systems cause severe damages on the entire power grid system. For LCC-HVDC, thyristor valves are turned on by a firing signal but turn off control is governed by the external applied AC voltage from surrounding network. When the fault occurs in AC system, turn-off control of thyristor valves is unavailable due to the voltage collapse of point of common coupling (PCC), which causes the commutation failure in LCC-HVDC link. Due to the commutation failure, the power transfer interruption, dc voltage drop and severe voltage fluctuation in the AC system could be occurred. In a severe situation, it might cause the protection system to block the valves. In this paper, as a solution to prevent the voltage collapse on PCC and to limit the fault current, the application study of resistive superconducting fault current limiter (SFCL) on LCC-HVDC grid system was performed with mathematical and simulation analyses. The simulation model was designed by Matlab/Simulink considering Haenam-Jeju HVDC power grid in Korea which includes conventional AC system and onshore wind farm and resistive SFCL model. From the result, it was observed that the application of SFCL on LCC-HVDC system is an effective solution to mitigate the commutation failure. And then the process to determine optimum quench resistance of SFCL which enables the recovery of commutation failure was deeply investigated.

  15. HVDC-System-Interaction Assessment through Line-Flow Change-Distribution Factor and Transient-Stability Analysis at Planning Stage

    Directory of Open Access Journals (Sweden)

    Sungchul Hwang

    2016-12-01

    Full Text Available Many of the recent projects for new transmission line have considered the high-voltage direct current (HVDC system, owing to the many advantages of the direct current (DC system. The most noteworthy advantage is that a cable can serve as a substitute for the overhead transmission line in residential areas; therefore, the HVDC system application is increasing, and as the number of DC systems in the power system increases, the interaction assessment regarding the HVDC system gains importance. An index named multi-infeed interaction factor (MIIF is commonly used to estimate the interaction between power converters; however, the HVDC system is composed of two converters and a transmission line. The MIIF represents the interaction between the rectifiers and inverters, but not for the whole system. In this work, a method to assess the interaction of the whole system was therefore studied. To decide on the location of the new HVDC transmission system at the planning stage, in consideration of the interaction of the existing DC system, the line flow change distribution factor, according to the HVDC-transmission capacity change, was examined. Also, a power system transient -stability analysis was performed with different HVDC system locations, depending on the distribution factor. The simulation results indicate that when the factor is higher, two HVDC systems have a stronger interaction and are less stable in the transient state.

  16. Assessment on the influence of resistive superconducting fault current limiter in VSC-HVDC system

    Science.gov (United States)

    Lee, Jong-Geon; Khan, Umer Amir; Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Park, Byung-Bae; Lee, Bang-Wook

    2014-09-01

    Due to fewer risk of commutation failures, harmonic occurrences and reactive power consumptions, Voltage Source Converter (VSC) based HVDC system is known as the optimum solution of HVDC power system for the future power grid. However, the absence of suitable fault protection devices for HVDC system hinders the efficient VSC-HVDC power grid design. In order to enhance the reliability of the VSC-HVDC power grid against the fault current problems, the application of resistive Superconducting Fault Current Limiters (SFCLs) could be considered. Also, SFCLs could be applied to the VSC-HVDC system with integrated AC Power Systems in order to enhance the transient response and the robustness of the system. In this paper, in order to evaluate the role of SFCLs in VSC-HVDC systems and to determine the suitable position of SFCLs in VSC-HVDC power systems integrated with AC power System, a simulation model based on Korea Jeju-Haenam HVDC power system was designed in Matlab Simulink/SimPowerSystems. This designed model was composed of VSC-HVDC system connected with an AC microgrid. Utilizing the designed VSC-HVDC systems, the feasible locations of resistive SFCLs were evaluated when DC line-to-line, DC line-to-ground and three phase AC faults were occurred. Consequently, it was found that the simulation model was effective to evaluate the positive effects of resistive SFCLs for the effective suppression of fault currents in VSC-HVDC systems as well as in integrated AC Systems. Finally, the optimum locations of SFCLs in VSC-HVDC transmission systems were suggested based on the simulation results.

  17. A novel concept of fault current limiter based on saturable core in high voltage DC transmission system

    Science.gov (United States)

    Yuan, Jiaxin; Zhou, Hang; Gan, Pengcheng; Zhong, Yongheng; Gao, Yanhui; Muramatsu, Kazuhiro; Du, Zhiye; Chen, Baichao

    2018-05-01

    To develop mechanical circuit breaker in high voltage direct current (HVDC) system, a fault current limiter is required. Traditional method to limit DC fault current is to use superconducting technology or power electronic devices, which is quite difficult to be brought to practical use under high voltage circumstances. In this paper, a novel concept of high voltage DC transmission system fault current limiter (DCSFCL) based on saturable core was proposed. In the DCSFCL, the permanent magnets (PM) are added on both up and down side of the core to generate reverse magnetic flux that offset the magnetic flux generated by DC current and make the DC winding present a variable inductance to the DC system. In normal state, DCSFCL works as a smoothing reactor and its inductance is within the scope of the design requirements. When a fault occurs, the inductance of DCSFCL rises immediately and limits the steepness of the fault current. Magnetic field simulations were carried out, showing that compared with conventional smoothing reactor, DCSFCL can decrease the high steepness of DC fault current by 17% in less than 10ms, which verifies the feasibility and effectiveness of this method.

  18. Power control method on VSC-HVDC in a hybrid multi-infeed HVDC system

    DEFF Research Database (Denmark)

    Liu, Yan; Chen, Zhe

    2012-01-01

    Multi-infeed HVDC (MIDC) system connected with VSC-HVDC links and LCC-HVDC links is a new structure in modern power systems, which can be called hybrid multi-infeed HVDC (HMIDC) system. The paper presents the voltage stability analysis of a HMIDC system modeled from a possible future Danish power...

  19. Nonlinear control of voltage source converters in AC-DC power system.

    Science.gov (United States)

    Dash, P K; Nayak, N

    2014-07-01

    This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Optimal Power Transmission of Offshore Wind Power Using a VSC-HVdc Interconnection

    Directory of Open Access Journals (Sweden)

    Miguel E. Montilla-DJesus

    2017-07-01

    Full Text Available High-voltage dc transmission based on voltage-source converter (VSC-HVdc is quickly increasing its power rating, and it can be the most appropriate link for the connection of offshore wind farms (OWFs to the grid in many locations. This paper presents a steady-state operation model to calculate the optimal power transmission of an OWF connected to the grid through a VSC-HVdc link. The wind turbines are based on doubly fed induction generators (DFIGs, and a detailed model of the internal OWF grid is considered in the model. The objective of the optimization problem is to maximize the active power output of the OWF, i.e., the reduction of losses, by considering the optimal reactive power allocation while taking into account the restrictions imposed by the available wind power, the reactive power capability of the DFIG, the DC link model, and the operating conditions. Realistic simulations are performed to evaluate the proposed model and to execute optimal operation analyses. The results show the effectiveness of the proposed method and demonstrate the advantages of using the reactive control performed by DFIG to achieve the optimal operation of the VSC-HVdc.

  1. Feasibility analysis of a novel hybrid-type superconducting circuit breaker in multi-terminal HVDC networks

    International Nuclear Information System (INIS)

    Khan, Umer Amir; Lee, Jong-Geon; Seo, In-Jin; Amir, Faisal; Lee, Bang-Wook

    2015-01-01

    Highlights: • A novel hybrid-type superconducting circuit breaker (SDCCB) is proposed. • SDCCB has SFCL located in the main current path to limit the fault current until the final trip signal. • SFCL in SDCCB suppressed the fast rising DC fault current for a predefined time. • SFCL significantly reduced the DC current breaking stress on SDCCB components. • SDCCB isolated the HVDC faulty line in three, four, and five converter stations MTDC. - Abstract: Voltage source converter-based HVDC systems (VSC-HVDC) are a better alternative than conventional thyristor-based HVDC systems, especially for developing multi-terminal HVDC systems (MTDC). However, one of the key obstacles in developing MTDC is the absence of an adequate protection system that can quickly detect faults, locate the faulty line and trip the HVDC circuit breakers (DCCBs) to interrupt the DC fault current. In this paper, a novel hybrid-type superconducting circuit breaker (SDCCB) is proposed and feasibility analyses of its application in MTDC are presented. The SDCCB has a superconducting fault current limiter (SFCL) located in the main current path to limit fault currents until the final trip signal is received. After the trip signal the IGBT located in the main line commutates the current into a parallel line where DC current is forced to zero by the combination of IGBTs and surge arresters. Fault simulations for three-, four- and five-terminal MTDC were performed and SDCCB performance was evaluated in these MTDC. Passive current limitation by SFCL caused a significant reduction of fault current interruption stress in the SDCCB. It was observed that the DC current could change direction in MTDC after a fault and the SDCCB was modified to break the DC current in both the forward and reverse directions. The simulation results suggest that the proposed SDCCB could successfully suppress the DC fault current, cause a timely interruption, and isolate the faulty HVDC line in MTDC.

  2. Feasibility analysis of a novel hybrid-type superconducting circuit breaker in multi-terminal HVDC networks

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Umer Amir [Hanyang University, Sa-3dong, Sangrok-gu, Ansan 426-791 (Korea, Republic of); National University of Sciences and Technology, PNEC Campus, Habib Rehmatullah Road, Karachi (Pakistan); Lee, Jong-Geon; Seo, In-Jin [Hanyang University, Sa-3dong, Sangrok-gu, Ansan 426-791 (Korea, Republic of); Amir, Faisal [National University of Sciences and Technology, PNEC Campus, Habib Rehmatullah Road, Karachi (Pakistan); Lee, Bang-Wook, E-mail: bangwook@hanyang.ac.kr [Hanyang University, Sa-3dong, Sangrok-gu, Ansan 426-791 (Korea, Republic of)

    2015-11-15

    Highlights: • A novel hybrid-type superconducting circuit breaker (SDCCB) is proposed. • SDCCB has SFCL located in the main current path to limit the fault current until the final trip signal. • SFCL in SDCCB suppressed the fast rising DC fault current for a predefined time. • SFCL significantly reduced the DC current breaking stress on SDCCB components. • SDCCB isolated the HVDC faulty line in three, four, and five converter stations MTDC. - Abstract: Voltage source converter-based HVDC systems (VSC-HVDC) are a better alternative than conventional thyristor-based HVDC systems, especially for developing multi-terminal HVDC systems (MTDC). However, one of the key obstacles in developing MTDC is the absence of an adequate protection system that can quickly detect faults, locate the faulty line and trip the HVDC circuit breakers (DCCBs) to interrupt the DC fault current. In this paper, a novel hybrid-type superconducting circuit breaker (SDCCB) is proposed and feasibility analyses of its application in MTDC are presented. The SDCCB has a superconducting fault current limiter (SFCL) located in the main current path to limit fault currents until the final trip signal is received. After the trip signal the IGBT located in the main line commutates the current into a parallel line where DC current is forced to zero by the combination of IGBTs and surge arresters. Fault simulations for three-, four- and five-terminal MTDC were performed and SDCCB performance was evaluated in these MTDC. Passive current limitation by SFCL caused a significant reduction of fault current interruption stress in the SDCCB. It was observed that the DC current could change direction in MTDC after a fault and the SDCCB was modified to break the DC current in both the forward and reverse directions. The simulation results suggest that the proposed SDCCB could successfully suppress the DC fault current, cause a timely interruption, and isolate the faulty HVDC line in MTDC.

  3. Fault Ride Through Enhancement of VSC‐HVDC Connected Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Sharma, Ranjan; Wu, Qiuwei; Jensen, Kim Høj

    2018-01-01

    the model of a VSC‐HVDC‐connected offshore wind power plant (WPP) with an external grid. It proposes a feedforward DC voltage control based FRT technique to control the AC voltage at the WPP collector network during grid‐side faults. Time‐domain simulations have been used to verify the efficacy......Voltage source converter‐high voltage direct current (VSC‐HVDC) connections have become a new trend for long‐distance offshore wind power transmission. In order to facilitate the derivation of the feedforward DC voltage control based fault ride through (FRT) technique, this chapter describes...... of the proposed feedforward DC voltage control based FRT technique for VSC‐HVDC‐connected WPPs. Time‐domain simulation results shows that the proposed FRT scheme can successfully enable VSC‐HVDC‐connected WPPs to ride through balanced and unbalanced faults in host power systems, as well as faults in the WPP...

  4. Electronic Current Transducer (ECT) for high voltage dc lines

    Science.gov (United States)

    Houston, J. M.; Peters, P. H., Jr.; Summerayes, H. R., Jr.; Carlson, G. J.; Itani, A. M.

    1980-02-01

    The development of a bipolar electronic current transducer (ECT) for measuring the current in a high voltage dc (HVDC) power line at line potential is discussed. The design and construction of a free standing ECT for use on a 400 kV line having a nominal line current of 2000 A is described. Line current is measured by a 0.0001 ohm shunt whose voltage output is sampled by a 14 bit digital data link. The high voltage interface between line and ground is traversed by optical fibers which carry digital light signals as far as 300 m to a control room where the digital signal is converted back to an analog representation of the shunt voltage. Two redundant electronic and optical data links are used in the prototype. Power to operate digital and optical electronics and temperature controlling heaters at the line is supplied by a resistively and capacitively graded 10 stage cascade of ferrite core transformers located inside the hollow, SF6 filled, porcelain support insulator. The cascade is driven by a silicon controlled rectifier inverter which supplies about 100 W of power at 30 kHz.

  5. HVDC transmission from nuclear power plant

    International Nuclear Information System (INIS)

    Yoshida, Yukio; Takenaka, Kiyoshi; Taniguchi, Haruto; Ueda, Kiyotaka

    1980-01-01

    HVDC transmission directly from a nuclear power plant is expected as one of the bulk power transmission systems from distant power generating area. Successively from the analysis of HVDC transmission from BWR-type nuclear power plant, this report discusses dynamic response characteristics of HVDC transmission (double poles, two circuits) from PWR type nuclear power plant due to dc-line faults (DC-1LG, 2LG) and ac-line faults (3LG) near inverter station. (author)

  6. Multi-Port High Voltage Gain Modular Power Converter for Offshore Wind Farms

    Directory of Open Access Journals (Sweden)

    Sen Song

    2018-06-01

    Full Text Available In high voltage direct current (HVDC power transmission of offshore wind power systems, DC/DC converters are applied to transfer power from wind generators to HVDC terminals, and they play a crucial role in providing a high voltage gain, high efficiency, and high fault tolerance. This paper introduces an innovative multi-port DC/DC converter with multiple modules connected in a scalable matrix configuration, presenting an ultra-high voltage step-up ratio and low voltage/current rating of components simultaneously. Additionally, thanks to the adoption of active clamping current-fed push–pull (CFPP converters as sub-modules (SMs, soft-switching is obtained for all power switches, and the currents of series-connected CFPP converters are auto-balanced, which significantly reduce switching losses and control complexity. Furthermore, owing to the expandable matrix structure, the output voltage and power of a modular converter can be controlled by those of a single SM, or by adjusting the column and row numbers of the matrix. High control flexibility improves fault tolerance. Moreover, due to the flexible control, the proposed converter can transfer power directly from multiple ports to HVDC terminals without bus cable. In this paper, the design of the proposed converter is introduced, and its functions are illustrated by simulation results.

  7. Offshore Wind Farms and HVDC Grids Modeling as a Feedback Control System for Stability Analysis

    OpenAIRE

    Bidadfar, Ali; Saborío-Romano, Oscar; Altin, Müfit; Göksu, Ömer; Cutululis, Nicolaos Antonio; Sørensen, Poul Ejnar

    2017-01-01

    The low impedance characteristics of DC transmission lines cause the voltage source converter (VSC) in HVDC networks to become electrically closer together and increase the risk of severe interactions between the converters. Such interactions, in turn, intensify the implementation of the grid control schemes and may lead the entire system to instability. Assessing the stability and adopting complex coordinated control schemes in an HVDC grid and wind farm turbines are challenging and require ...

  8. Performance Analysis of a Voltage Source Converter (VSC based HVDC Transmission System under Faulted Conditions

    Directory of Open Access Journals (Sweden)

    Amiri RABIE

    2009-12-01

    Full Text Available Voltage Source Converter (VSC based HVDC transmission technology hasbeen selected as the basis for several recent projects due to its controllability,compact modular design, ease of system interface, and low environmentalimpact. This paper investigates the dynamic performance of a 200MW,±100kV VSC-HVDC transmission system under some faulted conditionsusing MATLAB/Simulink. Simulation results confirm the satisfactoryperformance of the proposed system under active and reactive powervariations and fault conditions.

  9. Development of toroid-type HTS DC reactor series for HVDC system

    Science.gov (United States)

    Kim, Kwangmin; Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho; Lee, Sangjin; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2015-11-01

    This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.

  10. Triple voltage dc-to-dc converter and method

    Science.gov (United States)

    Su, Gui-Jia

    2008-08-05

    A circuit and method of providing three dc voltage buses and transforming power between a low voltage dc converter and a high voltage dc converter, by coupling a primary dc power circuit and a secondary dc power circuit through an isolation transformer; providing the gating signals to power semiconductor switches in the primary and secondary circuits to control power flow between the primary and secondary circuits and by controlling a phase shift between the primary voltage and the secondary voltage. The primary dc power circuit and the secondary dc power circuit each further comprising at least two tank capacitances arranged in series as a tank leg, at least two resonant switching devices arranged in series with each other and arranged in parallel with the tank leg, and at least one voltage source arranged in parallel with the tank leg and the resonant switching devices, said resonant switching devices including power semiconductor switches that are operated by gating signals. Additional embodiments having a center-tapped battery on the low voltage side and a plurality of modules on both the low voltage side and the high voltage side are also disclosed for the purpose of reducing ripple current and for reducing the size of the components.

  11. Comparative study of superconducting fault current limiter both for LCC-HVDC and VSC-HVDC systems

    Science.gov (United States)

    Lee, Jong-Geon; Khan, Umer Amir; Lim, Sung-Woo; Shin, Woo-ju; Seo, In-Jin; Lee, Bang-Wook

    2015-11-01

    High Voltage Direct Current (HVDC) system has been evaluated as the optimum solution for the renewable energy transmission and long-distance power grid connections. In spite of the various advantages of HVDC system, it still has been regarded as an unreliable system compared to AC system due to its vulnerable characteristics on the power system fault. Furthermore, unlike AC system, optimum protection and switching device has not been fully developed yet. Therefore, in order to enhance the reliability of the HVDC systems mitigation of power system fault and reliable fault current limiting and switching devices should be developed. In this paper, in order to mitigate HVDC fault, both for Line Commutated Converter HVDC (LCC-HVDC) and Voltage Source Converter HVDC (VSC-HVDC) system, an application of resistive superconducting fault current limiter which has been known as optimum solution to cope with the power system fault was considered. Firstly, simulation models for two types of LCC-HVDC and VSC-HVDC system which has point to point connection model were developed. From the designed model, fault current characteristics of faulty condition were analyzed. Second, application of SFCL on each types of HVDC system and comparative study of modified fault current characteristics were analyzed. Consequently, it was deduced that an application of AC-SFCL on LCC-HVDC system with point to point connection was desirable solution to mitigate the fault current stresses and to prevent commutation failure in HVDC electric power system interconnected with AC grid.

  12. Design of protective inductors for HVDC transmission line within DC grid offshore wind farms

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2013-01-01

    in the HVDC link between the offshore station and the onshore station. The transient characteristics of the transmission system are analyzed in detail. The criteria of selecting protective inductors are proposed to effectively limit the short-circuit current and avoid the damage to the converters. A dc grid...

  13. Modeling and real time simulation of an HVDC inverter feeding a weak AC system based on commutation failure study.

    Science.gov (United States)

    Mankour, Mohamed; Khiat, Mounir; Ghomri, Leila; Chaker, Abdelkader; Bessalah, Mourad

    2018-06-01

    This paper presents modeling and study of 12-pulse HVDC (High Voltage Direct Current) based on real time simulation where the HVDC inverter is connected to a weak AC system. In goal to study the dynamic performance of the HVDC link, two serious kind of disturbance are applied at HVDC converters where the first one is the single phase to ground AC fault and the second one is the DC link to ground fault. The study is based on two different mode of analysis, which the first is to test the performance of the DC control and the second is focalized to study the effect of the protection function on the system behavior. This real time simulation considers the strength of the AC system to witch is connected and his relativity with the capacity of the DC link. The results obtained are validated by means of RT-lab platform using digital Real time simulator Hypersim (OP-5600), the results carried out show the effect of the DC control and the influence of the protection function to reduce the probability of commutation failures and also for helping inverter to take out from commutation failure even while the DC control fails to eliminate them. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Advanced fault ride-through control of DFIG based wind turbines including grid connection via VSC-HVDC

    Energy Technology Data Exchange (ETDEWEB)

    Feltes, Christian

    2012-07-01

    With the growing renewable energy share in the power generation mix it becomes inevitable that also these new generation technologies participate on the provision of grid services to guarantee stable operation of the grid, especially when one considers the decreasing number of conventional power plants in operation as a result of the expansion of wind based generation plants. These so-called ancillary services include frequency / active power control, voltage / reactive power control and fault ride-through (FRT) with fast voltage control and are stipulated in modern grid codes. In the context of this thesis advanced control algorithms have been developed for wind turbines based on doubly-fed induction generator (DFIG) to allow safe FRT during symmetrical and unsymmetrical faults. This covers the control for conventional AC grid connection as well as for the connection through voltage source converter (VSC) based high voltage direct current transmission (HVDC). Currently, the DFIG is the most used generator technology in modem wind turbines, since it combines a relatively simple slip-ring induction machine with a frequency converter rated to only approx. 30% of the total power. This makes the DFIG a cost-effective concept, which offers a variable speed range and a high degree of flexibility in control. However, due to the direct coupling of the generator stator circuit to the grid, grid faults are a special challenge for the frequency converter, its protection circuits and control algorithms. As base for the detailed evaluation of the impact of grid faults to the DFIG, this thesis contains the analytical derivation of the DFIG short circuit currents under consideration of frequency converter control. The DFIG concept presented in this thesis makes use of a DC chopper in the frequency converter, which allows safe FRT with grid voltage support through both converter sides. The developed control contains a new algorithm for a clear separation and control of positive

  15. Fault ride-through and grid support of permanent magnet synchronous generator-based wind farms with HVAC and VSC-HVDC transmission systems

    DEFF Research Database (Denmark)

    Liu, Hongzhi; Chen, Zhe

    2012-01-01

    This paper describes fault ride-through and grid support of offshore wind farms based on permanent magnet synchronous generator (PMSG) wind turbines connected to the onshore AC network through two alternative transmission systems: high voltage AC (HVAC) or high voltage DC (HVDC) based on voltage...... source converters (VSC). The proposed configurations of the PMSG-based offshore wind farm and VSC-based HVDC are given as well as their control strategies under both steady state and fault state. The PMSG-based offshore wind farm is integrated into a test power transmission system via either HVAC or VSC...

  16. Capacitor voltage ripple reduction and arm energy balancing in MMC-HVDC

    DEFF Research Database (Denmark)

    Parikh, Harsh; Martin-Loeches, Ruben Sánches; Tsolaridis, Georgios

    2016-01-01

    Modular Multilevel Converters are emerging and widely used in HVDC applications. However, the submodule capacitors are still large and the energy balancing under unbalanced conditions is a challenge. In this paper, an analytical model focusing on the energy stored in the capacitors and voltage...... variations is utilized in order to achieve better performance. By injecting a second order harmonic component into the circulating current, the energy variation and consequently the capacitor voltage ripple is reduced allowing for a capacitor size reduction. At the same time, an arm energy balancing...

  17. An Examination of AC/HVDC Power Circuits for Interconnecting Bulk Wind Generation with the Electric Grid

    Directory of Open Access Journals (Sweden)

    Daniel Ludois

    2010-06-01

    Full Text Available The application of high voltage dc (HVDC transmission for integrating large scale and/or off-shore wind generation systems with the electric grid is attractive in comparison to extra high voltage (EHV ac transmission due to a variety of reasons. While the technology of classical current sourced converters (CSC using thyristors is well established for realization of large HVDC systems, the technology of voltage sourced converters (VSC is emerging to be an alternative approach, particularly suitable for multi-terminal interconnections. More recently, a more modular scheme that may be termed ‘bridge of bridge’ converters (BoBC has been introduced to realize HVDC systems. While all these three approaches are functionally capable of realizing HVDC systems, the converter power circuit design trade-offs between these alternatives are not readily apparent. This paper presents an examination of these topologies from the point of view of power semiconductor requirements, reactive component requirements, operating losses, fault tolerance, multi-terminal operation, modularity, complexity, etc. Detailed analytical models will be used along with a benchmark application to develop a comparative evaluation of the alternatives that maybe used by wind energy/bulk transmission developers for performing engineering trade-off studies.

  18. Five-Level Active-Neutral-Point-Clamped DC/DC Converter for Medium-Voltage DC Grids

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Chen, Zhe

    2017-01-01

    This paper proposes a five-level active-neutralpoint- clamped (5L-ANPC) dc/dc converter for applications in medium voltage dc (MVDC) grids. A modulation strategy is proposed for the 5L-ANPC dc/dc converter to generate multilevel voltage waveforms, which can effectively reduce voltage change rate dv...... effectively eliminate high voltage leaps caused by the dead time effect. In addition, a capacitor voltage control strategy is proposed for the 5L-ANPC dc/dc converter to ensure the balanced flying capacitor voltage and desired five-level voltage waveforms. Finally, simulation and experimental studies...

  19. Offshore Wind Farms and HVDC Grids Modeling as a Feedback Control System for Stability Analysis

    DEFF Research Database (Denmark)

    Bidadfar, Ali; Saborío-Romano, Oscar; Altin, Müfit

    The low impedance characteristics of DC transmission lines cause the voltage source converter (VSC) in HVDC networks to become electrically closer together and increase the risk of severe interactions between the converters. Such interactions, in turn, intensify the implementation of the grid...... control schemes and may lead the entire system to instability. Assessing the stability and adopting complex coordinated control schemes in an HVDC grid and wind farm turbines are challenging and require a precise model of the HVDC grid, wind farm, and the controllers. In this paper, a linear multivariable...... feedback control system (FCS) model is proposed to represent the dynamic characteristics of HVDC grids and their controllers. The FCS model can be used for different dynamic analyses in time and frequency domains. Moreover, using the FCS model the system stability is analyzed in both open- and closed...

  20. The effect of FRT behavior of VSC-HVDC-connected offshore wind power plants on AC/DC system dynamics

    NARCIS (Netherlands)

    van der Meer, A.A.; Ndreko, M.; Gibescu, M.; van der Meijden, M.A.M.M.

    2016-01-01

    Future power systems will contain more converter-based generation, among which are the voltage-source converter-high-voltage direct-current (VSC-HVDC)-connected offshore wind power plants (WPP). Their interaction with the onshore system influences power system dynamics in the transient stability

  1. Novel composite resonance DC-DC converter with voltage doubler rectifier

    OpenAIRE

    Kato, Hisatsugu; Matsuo, Hirohumi; Eguchi, Masaki; Sakamoto, Yukitaka; Nakaishi, Masaki

    2009-01-01

    This paper deals with a novel composite resonance DC-DC converter with the voltage doubler rectifier, which is developed to be applied to the power conditioner of the photovoltaic generation system. The proposed DC-DC converter has the current and voltage resonance functions. Therefore, the output voltage regulation can be achieved for the large variations of the input voltage and load. Also, this converter has the high power efficiency. The maximum power efficiency 96.1% can be realized.

  2. A Bidirectional Multi-Port DC-DC Converter Integrating Voltage Equalizer

    DEFF Research Database (Denmark)

    Chen, Jianfei; Hou, Shiying; Deng, Fujin

    2015-01-01

    A novel bidirectional multi-port dc-dc converter integrating voltage equalizer based on switched-capacitor voltage accumulator (SCVA) is proposed. It has two operating modes of charging and discharging for battery modules. All battery modules are connected in series indirectly and can be equalize...... battery modules with different voltages. Simulation results has shown the feasibility of the proposed converter.......A novel bidirectional multi-port dc-dc converter integrating voltage equalizer based on switched-capacitor voltage accumulator (SCVA) is proposed. It has two operating modes of charging and discharging for battery modules. All battery modules are connected in series indirectly and can be equalized...

  3. DC-Voltage Fluctuation Elimination Through a DC-Capacitor Current Control for DFIG Converters Under Unbalanced Grid Voltage Conditions

    DEFF Research Database (Denmark)

    Liu, Changjin; Xu, Dehong; Zhu, Nan

    2013-01-01

    Unbalanced grid voltage causes a large second-order harmonic current in the dc-link capacitors as well as dc-voltage fluctuation, which potentially will degrade the lifespan and reliability of the capacitors in voltage source converters. This paper proposes a novel dc-capacitor current control...... method for a grid-side converter (GSC) to eliminate the negative impact of unbalanced grid voltage on the dc-capacitors. In this method, a dc-capacitor current control loop, where a negative-sequence resonant controller is used to increase the loop gain, is added to the conventional GSC current control...... loop. The rejection capability to the unbalanced grid voltage and the stability of the proposed control system are discussed. The second-order harmonic current in the dc capacitor as well as dc-voltage fluctuation is very well eliminated. Hence, the dc capacitors will be more reliable under unbalanced...

  4. Influence of Load Modes on Voltage Stability of Receiving Network at DC/AC System

    Directory of Open Access Journals (Sweden)

    Mao Chizu

    2016-01-01

    Full Text Available This paper analyses influence of load modes on DC/AC system. Because of widespread use of HVDC, DC/AC system become more complex than before and the present modes used in dispatch and planning departments are not fit in simulation anymore. So it is necessary to find load modes accurately reflecting characteristics of the system. For the sake of the voltage stability, commutation failure, etc. the practical example of the receiving network in a large DC/AC system in China is simulated with BPA, and the influence of Classical Load Mode (CLM and Synthesis load model (SLM on simulation results is studies. Furthermore, some important parameters of SLM are varied respectively among an interval to analyse how they affect the system. According to this practical examples, the result is closely related to load modes and their parameters, and SLM is more conservative but more reasonable than the present modes. The consequences indicate that at critical states, micro variation in parameters may give rise to change in simulation results radically. Thus, correct mode and parameters are important to enhance simulation accuracy of DC/AC system and researches on how they affect the system make senses.

  5. Coordinated frequency control from offshore wind power plants connected to multi terminal DC system considering wind speed variation

    DEFF Research Database (Denmark)

    Sakamuri, Jayachandra N.; Altin, Müfit; Hansen, Anca Daniela

    2017-01-01

    A coordinated fast primary frequency control scheme from offshore wind power plants (OWPPs) integrated to a three terminal high voltage DC (HVDC) system is proposed in this study. The impact of wind speed variation on the OWPP active power output and thus on the AC grid frequency and DC grid...... the active power support from OWPP with a ramp rate limiter and (iii) An alternative method for the wind turbine overloading considering rotor speed. The effectiveness of the proposed control scheme is demonstrated on a wind power plant integrated into a three terminal HVDC system developed in DIg......SILIENT PowerFactory. The results show that the proposed coordinated frequency control method performs effectively at different wind speeds and minimises the secondary effects on frequency and DC voltage....

  6. Barriers and solutions for AC low voltage fault ride-through on multi-terminal HVDC grids

    Energy Technology Data Exchange (ETDEWEB)

    Silva, B.; Moreira, C.L.; Leite, H.; Pecas Lopes, J.A. [Porto Univ. (Portugal). Dept. de Engenharia Electrotecnica e de Computadores (DEEC); Tecnologia e Ciencia, Porto (Portugal). Inst. de Engenharia de Sistemas e Computadores (INESCTEC)

    2012-07-01

    This work analyzes the multi-terminal DC grids dynamics under AC mainland grid fault events envisioning to assess the feasibility of fault ride-through provision. The major bottleneck related with the operation under AC fault consists on the DC side power imbalance that takes place due to the HVDC converter current limits and consequent incapability of delivering all the generated power to the grid. It was also verified that the power imbalance leads to a DC overvoltage occurrence. The mechanism of including chopper devices at the onshore converters DC terminals has been studied as a mean of power equilibrium promotion. Simulations comparing the both cases were performed and the comparison and the effectiveness of the adopted approach are also presented. (orig.)

  7. Economics and a novel voltage conversion technique associated with exporting Wyoming's energy by HVDC transmission

    Science.gov (United States)

    Xu, Kaili

    Wyoming is by far the largest coal producing state in the US, but local utilization is extremely low. As much as 92% of Wyoming's coal is shipped to the other states and is mainly consumed by their electricity producers. Coal accounts for more than 50% of the US electricity generation and is one of the least expensive energy sources. Wyoming could utilize its coal better by exporting electricity instead of exporting the coal only in its raw form. Natural gas is another important energy resource in Wyoming but local utilization is even lower. As a result of the development in coalbed methane fields, natural gas production in Wyoming is almost in pace with its coal production. In addition to constructing more new pipelines, new transmission lines should be considered as an alternative way of exporting this energy. Because of their enormous electricity market sizes and high electricity prices, California, Texas and Illinois are chosen to be the target markets for Wyoming's electricity. The proposed transmission schemes use High Voltage DC (HVDC) lines, which are suitable for long distance and cross-system power transmission. Technical and economic feasibilities are studied in details. The Wyoming-California scheme has a better return of investment than both the Wyoming-Texas and the Wyoming-Illinois schemes. A major drawback of HVDC transmission is the high level of harmonics generated by the converters. Elaborate filtering is required at both the AC and the DC sides. A novel pulse-multiplication method is proposed in the thesis to reduce the harmonics from the converter source. By introducing an averaging inductor, the proposed method uses less thyristors to achieve the same high-pulse operation as the existing series scheme. The reduction of thyristors makes the switching circuit more reliable and easier to control and maintain. Harmonic analysis shows that the harmonic level can be reduced to about one third of the original system. The proposed method is also

  8. Fundamental study of bulk power HVDC transmission

    International Nuclear Information System (INIS)

    1981-01-01

    Study on the HVDC power transmission have been conducted since 1956. Shinshinano-Frequency Changer had been operated at first on 1977, as our home product, and Hokkaido-Honshu DC transmission also realized at 1979. Research and Development of the bulk power HVDC have been promoted by the UHV transmission special committee in our Institute from 1980. This paper is a comprehensive report published in the parts of operating control, insulation of DC line and countermeasure of fault current, and interferences in order to contribute for planning, design and operating of the UHV DC transmission in future. (author)

  9. Power-hardware-in-the-loop test of VSC-HVDC connection for off-shore wind power plants

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ranjan [Siemens Wind Power A/S, Brande (Denmark); Technical Univ. of Denmark (Denmark). Center for Electric Technology; Cha, Seung T.; Wu, Qiuwei; Rasmussen, Tonny W.; Oestergaard, Jacob [Technical Univ. of Denmark (Denmark). Center for Electric Technology; Jensen, Kim H. [Siemens Wind Power A/S, Brande (Denmark)

    2011-07-01

    This paper present a power-hardware-in-the-loop (PHIL) test of an off-shore wind power plant (WPP) interconnected to the on-shore grid via a VSC-HVDC connection. The intention of the PHIL test is to verify the hardware interaction and the control co-ordination between the plant side VSC of the HVDC system and the wind turbines within the WPP in order to ensure smooth operation of the WPP under both normal and fault operating condition. The PHIL test platform is comprised of a real time digital simulator (RTDS), a Spitzenberger Spies three phase 7,5 kW power amplifier, a purpose built VSC and a DC chopper. The WPP is simulated in the RTDS as a single full-scale wind turbine. The simulated WPP interacts with the WPP side VSC through the power amplifier. The interface between the RTDS and the power amplifier is done via an analogue GTAO I/O card of the RTDS and the input channel of the amplifier. The amplifier scales up the voltages at the point of connection of the WPP in the RTDS to the voltage level for the WPP side VSC. The WPP side VSC converter is equipped with a DC chopper. The test results show the successful control coordination between the WPP and the plant side VSC converter of the HVDC connection of the WPP. (orig.)

  10. A Component-Reduced Zero-Voltage Switching Three-Level DC-DC Converter

    DEFF Research Database (Denmark)

    Qin, Zian; Pang, Ying; Wang, Huai

    2016-01-01

    The basic Zero-Voltage Switching (ZVS) three-level DC-DC converter has one clamping capacitor to realize the ZVS of the switches, and two clamping diodes to clamp the voltage of the clamping capacitor. In order to reduce the reverse recovery loss of the diode as well as its cost, this paper...... proposes to remove one of the clamping diodes in basic ZVS three-level DC-DC converter. With less components, the proposed converter can still have a stable clamping capacitor voltage, which is clamped at half of the dc link voltage. Moreover, the ZVS performance will be influenced by removing the clamping...

  11. Marine High Voltage Power Conditioning and Transmission System with Integrated Storage DE-EE0003640 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Frank Hoffmann, PhD; Aspinall, Rik

    2012-12-10

    Design, Development, and test of the three-port power converter for marine hydrokinetic power transmission. Converter provides ports for AC/DC conversion of hydrokinetic power, battery storage, and a low voltage to high voltage DC port for HVDC transmission to shore. The report covers the design, development, implementation, and testing of a prototype built by PPS.

  12. Coordinated Voltage Control in Offshore HVDC Connected Cluster of Wind Power Plants

    DEFF Research Database (Denmark)

    Sakamuri, Jayachandra N.; Rather, Zakir Hussain; Rimez, Johan

    2016-01-01

    This paper presents a coordinated voltage control scheme (CVCS) for a cluster of offshore wind power plants (OWPPs) connected to a VSC HVDC system. The primary control point of the proposed voltage control scheme is the introduced Pilot bus, which is having the highest short circuit capacity...... in the offshore AC grid. The developed CVCS comprehends an optimization algorithm, aiming for minimum active power losses in the offshore grid, to generate voltage reference to the Pilot bus. During steady state operation, the Pilot bus voltage is controlled by dispatching reactive power references to each wind...... turbine (WT) in the WPP cluster based on their available reactive power margin and network sensitivity based participation factors, which are derived from the dV/dQ sensitivity of a WT bus w.r.t the Pilot bus. This method leads to minimization of the risk of undesired effects, particularly overvoltage...

  13. Method and system for a gas tube switch-based voltage source high voltage direct current transmission system

    Science.gov (United States)

    She, Xu; Chokhawala, Rahul Shantilal; Zhou, Rui; Zhang, Di; Sommerer, Timothy John; Bray, James William

    2016-12-13

    A voltage source converter based high-voltage direct-current (HVDC) transmission system includes a voltage source converter (VSC)-based power converter channel. The VSC-based power converter channel includes an AC-DC converter and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and a DC-AC inverter include at least one gas tube switching device coupled in electrical anti-parallel with a respective gas tube diode. The VSC-based power converter channel includes a commutating circuit communicatively coupled to one or more of the at least one gas tube switching devices. The commutating circuit is configured to "switch on" a respective one of the one or more gas tube switching devices during a first portion of an operational cycle and "switch off" the respective one of the one or more gas tube switching devices during a second portion of the operational cycle.

  14. Models and methods for assessing the value of HVDC and MVDC technologies in modern power grids

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, Yuri V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elizondo, Marcelo A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); O' Brien, James G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Qiuhua [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kirkham, Harold [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Zhenyu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chinthavali, Madhu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Suman, Debnath [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mohan, Nihal [Mid-Continent Independent System Operator (MISO), St. Paul, MN (United States); Hess, Warren [Mid-Continent Independent System Operator (MISO), St. Paul, MN (United States); Duebner, David [Mid-Continent Independent System Operator (MISO), St. Paul, MN (United States); Orser, David [Mid-Continent Independent System Operator (MISO), St. Paul, MN (United States); Brown, Hilary [Mid-Continent Independent System Operator (MISO), St. Paul, MN (United States); Osborn, Dale [Mid-Continent Independent System Operator (MISO), St. Paul, MN (United States); Feltes, James [Siemens, Knoxville, TN (United States); Kurthakoti Chandrashekhara, Divya [Siemens, Knoxville, TN (United States); Zhu, Wenchun [Siemens, Knoxville, TN (United States)

    2017-07-31

    This report reflects the results of U.S. Department of Energy’s (DOE) Grid Modernization project 0074 “Models and methods for assessing the value of HVDC [high-voltage direct current] and MTDC [multi-terminal direct current] technologies in modern power grids.” The work was done by the Pacific Northwest National Laboratory (PNNL) and Oak Ridge National Laboratory (ORNL) in cooperation with Mid-Continent Independent System Operator (MISO) and Siemens. The main motivation of this study was to show the benefit of using direct current (DC) systems larger than those in existence today as they overlap with the alternating current (AC) systems. Proper use of their flexibility in terms of active/reactive power control and fast response can provide much-needed services to the grid at the same time as moving large blocks of energy to take advantage of cost diversity. Ultimately, the project’s success will enable decision-makers and investors to make well-informed decisions regarding this use of DC systems. This project showed the technical feasibility of HVDC macrogrid for frequency control and congestion relief in addition to bulk power transfers. Industry-established models for commonly used technologies were employed, along with high-fidelity models for recently developed HVDC converter technologies; like the modular multilevel converters (MMCs), a voltage source converters (VSC). Models for General Electric Positive Sequence Load Flow (GE PSLF) and Siemens Power System Simulator (PSS/E), widely used analysis programs, were for the first time adapted to include at the same time both Western Electricity Coordinating Council (WECC) and Eastern Interconnection (EI), the two largest North American interconnections. The high-fidelity models and their control were developed in detail for MMC system and extended to HVDC systems in point-to-point and in three-node multi-terminal configurations. Using a continental-level mixed AC-DC grid model, and using a HVDC macrogrid

  15. Review of VSC HVDC Connection for Offshore Wind Power Integration

    DEFF Research Database (Denmark)

    Korompili, Asimenia; Wu, Qiuwei; Zhao, Haoran

    2016-01-01

    Voltage Source Converter (VSC) High Voltage Direct Current (HVDC) connection has become a new trend for long distance offshore wind power transmission. It has been confirmed by a lot of research that the maximum distance of a High Voltage Alternative Current (HVAC) sub-marine cable transmission...... system is limited due to surplus charging current of the cables. The VSC HVDC transmission system has the ability to overcome the limitation and offers other advantages over the HVAC transmission system. This paper is to review the VSC HVDC transmission technology and its application for offshore wind...

  16. Overvoltage and Insulation Coordination of Overhead Lines in Multiple-Terminal MMC-HVDC Link for Wind Power Delivery

    Directory of Open Access Journals (Sweden)

    Huiwen He

    2017-01-01

    Full Text Available The voltage-sourced converter-based HVDC link, including the modular multilevel converter (MMC configuration, is suitable for wind power, photovoltaic energy, and other kinds of new energy delivery and grid-connection. Current studies are focused on the MMC principles and controls and few studies have been done on the overvoltage of transmission line for the MMC-HVDC link. The main reason is that environmental factors have little effect on DC cables and the single-phase/pole fault rate is low. But if the cables were replaced by the overhead lines, although the construction cost of the project would be greatly reduced, the single-pole ground fault rate would be much higher. This paper analyzed the main overvoltage types in multiple-terminal MMC-HVDC network which transmit electric power by overhead lines. Based on ±500 kV multiple-terminal MMC-HVDC for wind power delivery project, the transient simulation model was built and the overvoltage types mentioned above were studied. The results showed that the most serious overvoltage was on the healthy adjacent line of the faulty line caused by the fault clearing of DC breaker. Then the insulation coordination for overhead lines was conducted according to the overvoltage level. The recommended clearance values were given.

  17. High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    Science.gov (United States)

    Shimer, Daniel W.; Lange, Arnold C.

    1995-01-01

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  18. High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    Science.gov (United States)

    Shimer, D.W.; Lange, A.C.

    1995-05-23

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

  19. Research on resistance characteristics of YBCO tape under short-time DC large current impact

    Science.gov (United States)

    Zhang, Zhifeng; Yang, Jiabin; Qiu, Qingquan; Zhang, Guomin; Lin, Liangzhen

    2017-06-01

    Research of the resistance characteristics of YBCO tape under short-time DC large current impact is the foundation of the developing DC superconducting fault current limiter (SFCL) for voltage source converter-based high voltage direct current system (VSC-HVDC), which is one of the valid approaches to solve the problems of renewable energy integration. SFCL can limit DC short-circuit and enhance the interrupting capabilities of DC circuit breakers. In this paper, under short-time DC large current impacts, the resistance features of naked tape of YBCO tape are studied to find the resistance - temperature change rule and the maximum impact current. The influence of insulation for the resistance - temperature characteristics of YBCO tape is studied by comparison tests with naked tape and insulating tape in 77 K. The influence of operating temperature on the tape is also studied under subcooled liquid nitrogen condition. For the current impact security of YBCO tape, the critical current degradation and top temperature are analyzed and worked as judgment standards. The testing results is helpful for in developing SFCL in VSC-HVDC.

  20. A Novel Topology of Hybrid HVDC Circuit Breaker for VSC-HVDC Application

    Directory of Open Access Journals (Sweden)

    Van-Vinh Nguyen

    2017-10-01

    Full Text Available The use of high voltage direct current (HVDC circuit breakers (CBs with the capabilities of bidirectional fault interruption, reclosing, and rebreaking can improve the reliable and safe operation of HVDC grids. Although several topologies of CBs have been proposed to perform these capabilities, the limitation of these topologies is either high on-state losses or long time interruption in the case bidirectional fault current interruption. Long time interruption results in the large magnitude of the fault current in the voltage source converter based HVDC (VSC-HVDC system due to the high rate of rise of fault current. This paper proposes a new topology of hybrid CB (HCB with lower conduction loss and lower interruption time to solve the problems. The proposed topology is based on the inverse current injection method, which uses the capacitor to enforce the fault current to zero. In the case of the bidirectional fault current interruption, the capacitor does not change its polarity after identifying the direction of fault current, which can reduce the interruption time accordingly. A switching control algorithm for the proposed topology is presented in detail. Different operation modes of proposed HCB, such as normal current mode, breaking fault current mode, discharging, and reversing capacitor voltage modes after clearing the fault, are considered in the proposed algorithm. The proposed topology with the switching control algorithm is tested in a simulation-based system. Different simulation scenarios such as temporary and permanent faults are carried out to verify the performance of the proposed topology. The simulation is performed in the Matlab/Simulink environment.

  1. DC Voltage Control and Power-Sharing of Multi-Terminal DC Grids Based on Optimal DC Power Flow and Flexible Voltage Droop Strategy

    Directory of Open Access Journals (Sweden)

    F. Azma

    2015-06-01

    Full Text Available This paper develops an effective control framework for DC voltage control and power-sharing of multi-terminal DC (MTDC grids based on an optimal power flow (OPF procedure and the voltage-droop control. In the proposed approach, an OPF algorithm is executed at the secondary level to find optimal reference of DC voltages and active powers of all voltage-regulating converters. Then, the voltage droop characteristics of voltage-regulating converters, at the primary level, are tuned based on the OPF results such that the operating point of the MTDC grid lies on the voltage droop characteristics. Consequently, the optimally-tuned voltage droop controller leads to the optimal operation of the MTDC grid. In case of variation in load or generation of the grid, a new stable operating point is achieved based on the voltage droop characteristics. By execution of a new OPF, the voltage droop characteristics are re-tuned for optimal operation of the MTDC grid after the occurrence of the load or generation variations. The results of simulation on a grid inspired by CIGRE B4 DC grid test system demonstrate efficient grid performance under the proposed control strategy.

  2. Modeling and application of VSC-HVDC in the European transmission system

    International Nuclear Information System (INIS)

    L'Abatte, A.; Fulli, G.

    2010-01-01

    This paper investigated the potential technical, environmental, and economic impacts of voltage source converter (VSC) based high voltage direct current (HVDC) technologies on the European power system, with particular emphasis on enhancing the attainable transmission capacity in specific applications. To this end, an original steady-state model of the VSC-HVDC was presented and tested. A techno-economic analysis of the potential impact of VSC-HVDC on liberalized power systems in Europe was performed to determine the feasibility of such investment compared to building conventional high voltage alternating current (HVAC) transmission infrastructures. The land use and environmental impact of HVDC may be lower than HVAC technologies. VSC-HVDC offers several advantages over conventional HVDC, including flexibility and range of power control, compactness and modularity of converter stations, easier expandability for multi-terminal configurations, and greater environmental friendliness. The relative disadvantages of the VSC-HVDC include a greater expense and higher converter losses. When replacing existing HVAC lines, some targeted VSC-HVDC installations were shown to be technologically and economically feasible, particularly when installed on lines between regions with a high electricity price differential, although less profitable than building new HVAC lines. VSC-HVDC can be a more feasible option when socio-political and environmental restraints curtail the extension of the HVAC transmission system. 29 refs., 6 tabs., 4 figs.

  3. Design and power management of an offshore medium voltage DC microgrid realized through high voltage power electronics technologies and control

    Science.gov (United States)

    Grainger, Brandon Michael

    The growth in the electric power industry's portfolio of Direct Current (DC) based generation and loads have captured the attention of many leading research institutions. Opportunities for using DC based systems have been explored in electric ship design and have been a proven, reliable solution for transmitting bulk power onshore and offshore. To integrate many of the renewable resources into our existing AC grid, a number of power conversions through power electronics are required to condition the equipment for direct connection. Within the power conversion stages, there is always a requirement to convert to or from DC. The AC microgrid is a conceptual solution proposed for integrating various types of renewable generation resources. The fundamental microgrid requirements include the capability of operating in islanding mode and/or grid connected modes. The technical challenges associated with microgrids include (1) operation modes and transitions that comply with IEEE1547 without extensive custom engineering and (2) control architecture and communication. The Medium Voltage DC (MVDC) architecture, explored by the University of Pittsburgh, can be visualized as a special type of DC microgrid. This dissertation is multi-faceted, focused on many design aspects of an offshore DC microgrid. The focal points of the discussion are focused on optimized high power, high frequency magnetic material performance in electric machines, transformers, and DC/DC power converters---all components found within offshore, power system architectures. A new controller design based upon model reference control is proposed and shown to stabilize the electric motor drives (modeled as constant power loads), which serve as the largest power consuming entities in the microgrid. The design and simulation of a state-of-the-art multilevel converter for High Voltage DC (HVDC) is discussed and a component sensitivity analysis on fault current peaks is explored. A power management routine is

  4. Modeling and simulation of large HVDC systems

    Energy Technology Data Exchange (ETDEWEB)

    Jin, H.; Sood, V.K.

    1993-01-01

    This paper addresses the complexity and the amount of work in preparing simulation data and in implementing various converter control schemes and the excessive simulation time involved in modelling and simulation of large HVDC systems. The Power Electronic Circuit Analysis program (PECAN) is used to address these problems and a large HVDC system with two dc links is simulated using PECAN. A benchmark HVDC system is studied to compare the simulation results with those from other packages. The simulation time and results are provided in the paper.

  5. The Study on Hybrid Multi-Infeed HVDC System Connecting with Offshore Wind Farm

    DEFF Research Database (Denmark)

    Liu, Yan

    furnish the VSC-HVDC connected wind farm with a fast and reliable LVRT ability. The voltage fluctuation caused by the intermittent wind power is another important challenge to the system stability. As in the case of the LCC-HVDC links, their stable operations are highly dependent on the AC side voltage...... with the short electrical distance. And consequently, a so-called Multi-Infeed Direct Current (MIDC) transmission system is formed. On the other hand, as the fast growing of wind power in electrical grids, the Voltage Source Converter based HVDC (VSC-HVDC) links have becoming a favorable choice for connecting...

  6. Coordinated Control Scheme for Ancillary Services from Offshore Wind Power Plants to AC and DC Grids

    DEFF Research Database (Denmark)

    Sakamuri, Jayachandra N.; Altin, Müfit; Hansen, Anca Daniela

    2016-01-01

    This paper proposes a new approach of providing ancillary services to AC and DC grids from offshore wind power plants (OWPPs), connected through multi-terminal HVDC network. A coordinated control scheme where OWPP’s AC grid frequency modulated according to DC grid voltage variations is used...... to detect and provide the ancillary service requirements of both AC and DC grids, is proposed in this paper. In particular, control strategies for onshore frequency control, fault ridethrough support in the onshore grid, and DC grid voltage control are considered. The proposed control scheme involves only...

  7. HVDC transmission from isorated nuclear power plant

    International Nuclear Information System (INIS)

    Takenaka, Kiyoshi; Takasaki, Masahiro; Ichikawa, Tatemi; Hayashi, Toshiyuki

    1985-01-01

    HVDC transmission directly from nuclear power plant is considered as one of the patterns of long distance and large capacity transmission system. This reports considers two route HVDC transmission from PWR type nuclear power plant, and analyzes dynamic response characteristics due to bus fault, main protection failure and etc. using the AC-DC Power System Simulator. (author)

  8. A Flexible Power Control Method of VSC-HVDC Link for the Enhancement of Effective Short-Circuit Ratio in a Hybrid Multi-Infeed HVDC System

    DEFF Research Database (Denmark)

    Liu, Yan; Chen, Zhe

    2013-01-01

    . To evaluate the contribution of the VSC-HVDC link on the voltage stability of HMIDC system, this paper proposes an effective short circuit ratio (ESCR) calculation method. Through the calculation, the voltage support capability of the VSC-HVDC link can be quantitatively represented by the ESCR. Furthermore......, based on the calculation results, a flexible power control strategy for the VSC-HVDC link is developed to provide maximum reactive power support under grid faults. The theoretical analysis of the HMIDC system is based on the Danish transmission grid, evaluated through PSCAD simulations under different...

  9. A high voltage ratio and low ripple interleaved DC-DC converter for fuel cell applications.

    Science.gov (United States)

    Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih

    2012-01-01

    This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters.

  10. Modelling of HVDC wall bushing flashover in nonuniform rain

    International Nuclear Information System (INIS)

    Rizk, F.A.M.; Kamel, S.I.

    1991-01-01

    This paper presents the first mathematical model to provide necessary and sufficient conditions for flashover of an HVDC wall bushing under nonuniform rain. The suggested mechanism is initiated by streamer bridging of the dry zone enhanced by nonuniform voltage distribution along the bushing and within the dry zone. Fast voltage collapse across the dry zone die to energy stored in the bushing stray capacitance to ground leads to impulsive stressing of the wet part of the bushing. The nonuniform distribution of the impulse stress and the process of streamer bridging, fast voltage collapse as well as subsequent recharging of the bushing capacitances can lead to continued discharge propagation and flashover of the complete bushing. The findings of the model have been satisfactorily compared with previous experiments and field observations and can, for the first time, account for the following aspects of the flashover mechanism: critical dry zone length, polarity effect, specific leakage path, wet layer conductance per unit leakage length as well as the DC system voltage

  11. Zero-voltage DC/DC converter with asymmetric pulse-width modulation for DC micro-grid system

    Science.gov (United States)

    Lin, Bor-Ren

    2018-04-01

    This paper presents a zero-voltage switching DC/DC converter for DC micro-grid system applications. The proposed circuit includes three half-bridge circuit cells connected in primary-series and secondary-parallel in order to lessen the voltage rating of power switches and current rating of rectifier diodes. Thus, low voltage stress of power MOSFETs can be adopted for high-voltage input applications with high switching frequency operation. In order to achieve low switching losses and high circuit efficiency, asymmetric pulse-width modulation is used to turn on power switches at zero voltage. Flying capacitors are used between each circuit cell to automatically balance input split voltages. Therefore, the voltage stress of each power switch is limited at Vin/3. Finally, a prototype is constructed and experiments are provided to demonstrate the circuit performance.

  12. HVDC System Characteristics and Simulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S.I.; Han, B.M.; Jang, G.S. [Electric Enginnering and Science Research Institute, Seoul (Korea)

    2001-07-01

    This report deals with the AC-DC power system simulation method by PSS/E and EUROSTAG for the development of a strategy for the reliable operation of the Cheju-Haenam interconnected system. The simulation using both programs is performed to analyze HVDC simulation models. In addition, the control characteristics of the Cheju-Haenam HVDC system as well as Cheju AC system characteristics are described in this work. (author). 104 figs., 8 tabs.

  13. Hard- and software of real time simulation tools of Electric Power System for adequate modeling power semiconductors in voltage source convertor based HVDC and FACTS

    Directory of Open Access Journals (Sweden)

    Ufa Ruslan A.

    2014-01-01

    Full Text Available The motivation of the presented research is based on the needs for development of new methods and tools for adequate simulation of Flexible Alternating Current Transmission System (FACTS devices and High Voltage Direct Current Transmission (HVDC system as part of real electric power systems (EPS. For that, a hybrid approach for advanced simulation of the FACTS and HVDC based on Voltage Source is proposed. The presented simulation results of the developed hybrid model of VSC confirm the achievement of the desired properties of the model and the effectiveness of the proposed solutions.

  14. Separate Poles Mode for Large-Capacity HVDC System

    Science.gov (United States)

    Zhu, Lin; Gao, Qin

    2017-05-01

    This paper proposes a novel connection mode, separate poles mode (SPM), for large-capacity HVDC systems. The proposed mode focuses on the core issues of HVDC connection in interconnected power grids and principally aims at increasing effective electric distance between poles, which helps to mitigate the interaction problems between AC system and DC system. Receiving end of bipolar HVDC has been divided into different inverter stations under the mode, and thus significantly alleviates difficulties in power transmission and consumption of receiving-end AC grids. By investigating the changes of multi-feed short-circuit ratio (MISCR), finding that HVDC with SPM shows critical impacts upon itself and other HVDC systems with conventional connection mode, which demonstrates that SPM can make balance between MISCR increase and short-circuit current limit.

  15. High Voltage Coil Current Sensor for DC-DC Converters Employing DDCC

    Directory of Open Access Journals (Sweden)

    M. Drinovsky

    2015-12-01

    Full Text Available Current sensor is an integral part of every switching converter. It is used for over-current protection, regulation and in case of multiphase converters for balancing. A new high voltage current sensor for coil-based current sensing in DC-DC converters is presented. The sensor employs DDCC with high voltage input stage and gain trimming. The circuit has been simulated and implemented in 0.35 um BCD technology as part of a multiphase DC-DC converter where its function has been verified. The circuit is able to sustain common mode voltage on the input up to 40 V, it occupies 0.387*0.345 mm2 and consumes 3.2 mW typically.

  16. High-performance HVDC transmission over long distances; Hochleistungsuebertragung ueber grosse Entfernungen mit hochgespanntem Gleichstrom

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, U. [PreussenElektra AG, Hannover (Germany)

    1998-12-31

    High-voltage DC transmission is a world-wide established technology for low-cost transmission of large amounts of electricity over long distances. Thanks to HVDC transmission, large amounts of electricity can now for the first time also be transmitted over long distances via ocean cable, something that cannot be done with AC power cables. HVDC transmission is independent of grid frequencies and can link grids of different frequency and different quality of frequency. Interconnected grids coupled via DC circuits can exploit additional technical and economic advantages such as mutual supply of power reserves, balancing of peak load, and modulation of active and reactive power. (orig.) [Deutsch] Die Hochspannungs-Gleichstromuebertragung (HGUe) ist eine weltweit etablierte Technik zur kostenguenstigen Uebertragung grosser elektrischer Leistungen ueber grosse Entfernungen. Sie schafft erstmals die Moeglichkeit, auch mittels Seekabel grosse Leistungen ueber Entfernungen zu uebertragen, die mit der Drehstromtechnik nicht moeglich sind. HGUeist unabhaengig von den Netzfrequenzen und kann Netze unterschiedlicher Frequenz und Frequenzguete miteinander verbinden. Ueber Gleichstromkreise gekuppelte Verbundnetze koennen zusaetzliche technische und wirtschaftliche Vorteile wie gegenseitige Bereitstellung von Kraftwerksreserven, Spitzenlastausgleich sowie Wirk- und Blindleistungsmodulation nutzt. (orig.)

  17. High-voltage direct current (HVDC) transmission - a key technology for our power supply

    International Nuclear Information System (INIS)

    Dorn, J.

    2016-01-01

    The phasing-out of nuclear power in some countries and the aspirations of reducing carbon dioxide emissions have far-reaching implications for electric power generation in Europe. In the future, renewable electricity generation will account for a considerable share of the energy mix, but this type of production is often far from the load centers. In Germany, for example, large quantities of wind energy are already generated in the north and in the North Sea, but large load centers are located several hundred kilometers south of there. This requires an expansion of the transmission network with innovative solutions. High-voltage direct-current (HVDC) transmission plays an important role, since it brings a number of advantages over conventional AC technology and makes certain requirements feasible, for example Cable transmission over longer distances. The lecture presents the advantages of HVDC, the semiconductors used as well as the basic functions and typical performance of the used converter topopologies. The plant configurations and main components are illustrated using current projects. (rössner) [de

  18. Grid Integration of Offshore Wind Farms via VSC-HVDC – Dynamic Stability Study

    DEFF Research Database (Denmark)

    Liu, Hongzhi

    farms could seriously impact the operation and stability of their interconnected power system. To assist in maintaining the power system stability when large disturbances occur in the grid, modern offshore wind farms consisting of variable-speed wind turbines are required to provide ancillary services...... such as voltage and frequency control. The greater distance to shore makes commonly used high voltage AC (HVAC) connection unsuitable economically and technically for large offshore wind farms. Alternatively, voltage source converter (VSC)-based high voltage DC (HVDC) transmission becomes more attractive...... and practical to integrate large-scale offshore wind farms into the onshore power grid, owing to its high capacity, advanced controllability and stabilization potential for AC networks etc. In this dissertation, some of the key technical issues with grid integration of large-scale offshore wind farms via VSC...

  19. HVDC power transmission technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hauth, R.L.; Tatro, P.J.; Railing, B.D. [New England Power Service Co., Westborough, MA (United States); Johnson, B.K.; Stewart, J.R. [Power Technologies, Inc., Schenectady, NY (United States); Fink, J.L.

    1997-04-01

    The purpose of this study was to develop an assessment of the national utility system`s needs for electric transmission during the period 1995-2020 that could be met by future reduced-cost HVDC systems. The assessment was to include an economic evaluation of HVDC as a means for meeting those needs as well as a comparison with competing technologies such as ac transmission with and without Flexible AC Transmission System (FACTS) controllers. The role of force commutated dc converters was to be assumed where appropriate. The assessment begins by identifying the general needs for transmission in the U.S. in the context of a future deregulated power industry. The possible roles for direct current transmission are then postulated in terms of representative scenarios. A few of the scenarios are illustrated with the help of actual U.S. system examples. non-traditional applications as well as traditional applications such as long lines and asynchronous interconnections are discussed. The classical ``break-even distance`` concept for comparing HVDC and ac lines is used to assess the selected scenarios. The impact of reduced-cost converters is reflected in terms of the break-even distance. This report presents a comprehensive review of the functional benefits of HVDC transmission and updated cost data for both ac and dc system components. It also provides some provocative thoughts on how direct current transmission might be applied to better utilize and expand our nation`s increasingly stressed transmission assets.

  20. A Bidirectional Resonant DC-DC Converter Suitable for Wide Voltage Gain Range

    DEFF Research Database (Denmark)

    Shen, Yanfeng; Wang, Huai; Al-Durra, Ahmed

    2018-01-01

    This paper proposes a new bidirectional resonant dc-dc converter suitable for wide voltage gain range applications (e.g., energy storage systems). The proposed converter overcomes the narrow voltage gain range of conventional resonant dc-dc converters, and meanwhile achieves high efficiency...... losses. The operation principles and characteristics of the proposed converter are firstly analyzed in this paper. Then the analytical solutions for the voltage gain, soft-switching, and rms currents are derived, which facilitates the parameters design and optimization. Finally, the proposed topology...... and analysis are verified with experimental results obtained from a 1-kW converter prototype....

  1. Comparison of PI and PR current controllers applied on two-level VSC-HVDC transmission system

    DEFF Research Database (Denmark)

    Manoloiu, A.; Pereria, H.A.; Teodorescu, Remus

    2015-01-01

    This paper analyzes differences between αβ and dq reference frames regarding the control of two-level VSC-HVDC current loop and dc-link voltage outer loop. In the first part, voltage feedforward effect is considered with PI and PR controllers. In the second part, the feedforward effect is removed...... and the PR gains are tuned to keep the dynamic performance. Also, the power feedforward is removed and the outer loop PI controller is tuned in order to maintain the system dynamic performance. The paper is completed with simulation results, which highlight the advantages of using PR controller....

  2. A Zero-Voltage Switching Control Strategy for Dual Half-Bridge Cascaded Three-Level DC/DC Converter with Balanced Capacitor Voltages

    DEFF Research Database (Denmark)

    Liu, Dong; Wang, Yanbo; Chen, Zhe

    2017-01-01

    The input capacitor's voltages are unbalanced under the conventional control strategy in a dual half-bridge cascaded three-level (TL) DC/DC converter, which would affect the high voltage stresses on the capacitors. This paper proposes a pulse-wide modulation (PWM) strategy with two working modes...... for the dual half-bridge cascaded TL DC/DC converter, which can realize the zero-voltage switching (ZVS). More significantly, a capacitor voltage balance control is proposed by alternating the two working modes of the proposed ZVS PWM strategy, which can eliminate the voltage unbalance on the four input...... capacitors. Therefore, the proposed control strategy can improve the converter's performances in: 1) reducing the switching losses and noises of the power switches; and 2) reducing the voltage stresses on the input capacitors. Finally, the simulation results are conducted to verify the proposed control...

  3. A Four-Phase High Voltage Conversion Ratio Bidirectional DC-DC Converter for Battery Applications

    Directory of Open Access Journals (Sweden)

    Li-Kun Xue

    2015-06-01

    Full Text Available This study presents a four-phase interleaved high voltage conversion ratio bidirectional DC-DC converter circuit based on coupled inductors and switched capacitors, which can eliminate the defects of conventional high voltage conversion ratio bidirectional DC-DC converters in terms of high-voltage/current stress, less efficiency and low-power limitation. Parallel channels are used to reduce current stress at the low-voltage side and series connected switched capacitors are used to enlarge voltage conversion ratio, reduce voltage stress and achieve auto current sharing. This paper proposes the operation principle, feature analysis and optimization design considerations. On this basis the objectives of high voltage conversion ratio, low voltage/current stress, high power density, high efficiency and high-power applications can be achieved. Some experimental results based on a 500 W prototype converter (24 V to 48 V at low-voltage side, 400 V at high-voltage side are given to verify the theoretical analysis and the effectiveness of the proposed converter.

  4. A Novel Quasi-SEPIC High-Voltage Boost DC-DC Converter

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; N. Soltani, Mohsen; Blaabjerg, Frede

    2017-01-01

    This paper proposes a modified coupled-inductor SEPIC dc-dc converter for low power and high voltage gain applications such as for piezoelectric drive systems. The converter uses the same components as of SEPIC converter with an additional diode. Compared to conventional topologies with similar...... voltage gain expression, the proposed topology uses less components to achieve same or even higher voltage gain. This helps to design a very compact and light weight converter with higher power density at lower cost. Due to brevity, the principle of operation, theoretical analysis and comparison supported...

  5. Wind Farm Grid Integration Using VSC Based HVDC Transmission - An Overview

    DEFF Research Database (Denmark)

    Chaudhary, Sanjay Kumar; Teodorescu, Remus; Rodriguez, Pedro

    2008-01-01

    The paper gives an overview of HVAC and HVDC connection of wind farm to the grid, with an emphasis on Voltage Source Converter (VSC)-based HVDC for large wind farms requiring long distance cable connection. Flexible control capabilities of a VSC-based HVDC system enables smooth integration of wind...... farm into the power grid network while meeting the Grid Code Requirements (GCR). Operation of a wind farm with VSC-based HVDC connection is described....

  6. Dynamic Performance of an HVDC Link

    Directory of Open Access Journals (Sweden)

    S. A. ZIDI

    2005-09-01

    Full Text Available This paper presents the results of a simulation study on a 12 pulse HVDC (High Voltage Direct Current using a system in Matlab/Simulink. The object of the study is to investigate the steady state and dynamic performance of the system. First we examine response of current regulator after change in current reference in order to see the behavior of the controllers in controlling the desired current. Next, we present the digital simulation of a test system and show the response to a DC fault in the line and the AC fault at inverter side. The results are evaluated to enhance the recovery of the system from the disturbances for a full range of typical disturbances. The presented approach benefits from Simulink’s advantages in modeling and simulating dynamical systems.

  7. Analysis of high voltage step-up nonisolated DC-DC boost converters

    Science.gov (United States)

    Alisson Alencar Freitas, Antônio; Lessa Tofoli, Fernando; Junior, Edilson Mineiro Sá; Daher, Sergio; Antunes, Fernando Luiz Marcelo

    2016-05-01

    A high voltage step-up nonisolated DC-DC converter based on coupled inductors suitable to photovoltaic (PV) systems applications is proposed in this paper. Considering that numerous approaches exist to extend the voltage conversion ratio of DC-DC converters that do not use transformers, a detailed comparison is also presented among the proposed converter and other popular topologies such as the conventional boost converter and the quadratic boost converter. The qualitative analysis of the coupled-inductor-based topology is developed so that a design procedure can be obtained, from which an experimental prototype is implemented to validate the theoretical assumptions.

  8. Surface Layer Fluorination-Modulated Space Charge Behaviors in HVDC Cable Accessory

    Directory of Open Access Journals (Sweden)

    Jin Li

    2018-05-01

    Full Text Available Space charges tend to accumulate on the surface and at the interface of ethylene–propylene–diene terpolymer (EPDM, serving as high voltage direct current (HVDC cable accessory insulation, which likely induces electrical field distortion and dielectric breakdown. Direct fluorination is an effective method to modify the surface characteristics of the EPDM without altering the bulk properties too much. In this paper, the surface morphology, hydrophobic properties, relative permittivity, and DC conductivity of the EPDM before and after fluorination treatment were tested. Furthermore, the surface and interface charge behaviors in the HVDC cable accessory were investigated by the pulsed electroacoustic (PEA method, and explained from the point of view of trap distribution. The results show that fluorination helps the EPDM polymer obtain lower surface energy and relative permittivity, which is beneficial to the interface match in composite insulation systems. The lowest degree of space charge accumulation occurs in EPDM with 30 min of fluorination. After analyzing the results of the 3D potentials and the density of states (DOS behaviors in EPDM before and after fluorination, it can be found that fluorination treatment introduces shallower electron traps, and the special electrostatic potential after fluorination can significantly suppress the space charge accumulation at the interface in the HVDC cable accessory.

  9. Studies for Characterisation of Electrical Properties of DC Collection System in Offshore Wind Farms

    DEFF Research Database (Denmark)

    Chen, Yu-Hsing; Dincan, Catalin Gabriel; Olsen, Rolant Joannesarson

    2016-01-01

    Offshore HVDC-connected wind farms where the wind plant power collection network becomes DC, rather than AC, offer reduced electrical losses, lower equipment ratings potentially leading to lower bill-of-material cost, and undiminished functionality. However, no standards exist for an offshore...... medium-voltage DC power collection cable-based system, routing power from MVDC wind turbines all the way to the HVDC export cable. To progress, it is therefore important to establish some common reference for the design and performance of the components needed in an MVDC collection network. Any suggested...... of the MVDC power collection, regardless of choice of turbine converter circuit, MVDC cable configuration, use of DC circuit breakers, substation converter circuit, control and protection. The paper presents the necessary list of studies, and includes examples of simulation results for an exemplary MVDC wind...

  10. Coordinated Control of Multi-terminal DC Grid for Wind Power Integration

    DEFF Research Database (Denmark)

    Hao, Yu; Zhao, Haoran; Wu, Qiuwei

    2016-01-01

    Multi-terminal HVDC (MTDC) technology using voltage source converter (VSC) is a good option for wind power integration. Compared with point to point DC connection, MTDC provide better controllability based on different control strategies. In this paper, proportional-integral (PI) controllers...... with tuned PI parameters are designed to coordinate DC flow among the DC grid with good dynamic performance. In order to overcome the disadvantages of the conventional PI control, a simple adaptive PI control strategy is proposed based on the system transfer function. Case studies were conducted with PowerFactory....

  11. Grid-connection of offshore wind farms using VSC-HVDC systems

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xiaofan; Dessaint, Louis A. [Ecole de Technologie Superieure, Montreal, QC (Canada). Dept. of Electrical Engineering; Gagnon, Richard [Hydro-Quebec Research Institute, Montreal, QC (Canada)

    2011-07-01

    In this paper, the structure of variable speed PMSG-based offshore wind farms connected to the grid through VSC-HVDC link is presented. And the system models are developed. Also, the corresponding control strategy for this system is proposed. The control objective of the generator side VSC is to achieve the optimal wind power by adjusting the speed of permanent magnet synchronous generator, while the grid side VSC is to maintain DC voltage constant. Furthermore, a case study of 100MW offshore wind farm consisting of 50 individual 2MW PSMG-based wind turbines is developed in MATLAB/SimPowerSystems. Simulation results show the proposed scheme works well. (orig.)

  12. Thyristors for dc transmission

    Energy Technology Data Exchange (ETDEWEB)

    1966-05-06

    As a first stage towards determining the feasibility of applying thyristors to hvdc converter terminals, the Westinghouse Electric Corporation has built a converter laboratory capable of testing thyristors under conditions similar to those which would have to be met in a 200 kV dc system. The equipment has been designed to test a 5 kV 600 A group of thyrisotrs, elevated 200 kV above earth. This rating has been chosen so that there would be a sufficient number of thyristors in series to enable the gating and voltage division characteristics to be investigated and at the same time the group could be operated at a potential equivalent to a complete 200 kV dc bridge.

  13. Breakdown Characteristic Analysis of Paper- Oil Insulation under AC and DC Voltage

    Science.gov (United States)

    Anuar, N. F.; Jamail, N. A. M.; Rahman, R. A.; Kamarudin, M. S.

    2017-08-01

    This paper presents the study of breakdown characteristic of Kraft paper insulated with two different types of insulating fluid, which are Palm oil and Coconut oil. Palm oil and Coconut oil are chosen as the alternative fluid to the transformer oil because it has high potential and environmentally-friendly. The Segezha Kraft papers with various thicknesses (65.5 gsm, 75 gsm, 85gsm, 90 gsm) have been used in this research. High Voltage Direct Current (HVDC), High Voltage Alternating Current (HVAC) and carbon track and severity analysis is conducted to observe the sample of aging Kraft paper. These samples have been immersed using Palm oil and Coconut oil up to 90 days to observe the absorption rate. All samples started to reach saturation level at 70 days of immersion. HVDC and HVAC breakdown experiments have been done after the samples had reached the saturation level based on normal condition, immersed in Palm oil and immersed in Coconut oil. All samples immersed in liquid show different breakdown voltage reading compared to normal condition. The analysis of carbon track and severity on surface has been done using Analytical Scanning Electron Microscope (SEM) Analysis. The results of the experiment show that the sample of Kraft paper immersed in Palm oil was better than Coconut oil immersed sample. Therefore the sample condition was the main factor that determines the value of breakdown voltage test. Introduction

  14. Modeling of HVDC in Dynamic State Estimation Using Unscented Kalman Filter Method

    DEFF Research Database (Denmark)

    Khazraj, Hesam; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2016-01-01

    HVDC transmission is an integral part of various power system networks. This article presents an Unscented Kalman Filter dynamic state estimator algorithm that considers the presence of HVDC links. The AC - DC power flow analysis, which is implemented as power flow solver for Dynamic State...

  15. A high voltage gain quasi Z-source isolated DC/DC converter

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Blaabjerg, Frede; Loh, Poh Chiang

    2014-01-01

    A compact quasi-Z-source DC/DC converter is presented with high voltage gain, isolated output, and improved efficiency. The improvements in size and performance were achieved by using a square wave inverter with only two output switches driving an isolating transformer in push-pull mode, followed...... by a voltage doubling output rectifier. The converter is well-suited to applications requiring a high voltage gain, especially renewable energy sources such as photovoltaic and fuel-cell power supplies. To demonstrate the converter's performance a prototype designed to output 400 V at 500 W was constructed...

  16. Heat control in HVDC resistive divider by PID and NN controllers

    International Nuclear Information System (INIS)

    Yilmaz, S.; Dincer, H.; Eksin, I.; Kalenderli, O.

    2007-01-01

    In this study, a control system is presented that is devised to increase measurement precisions within a prototype high voltage DC resistive divider (HVDC-RD). Since one of the major sources of measurement errors in such devices is the self heating effect, a system controlling the temperature within the high voltage DC resistive divider is devised so that suitable and stable temperature conditions are maintained that, in return, will decrease the measurement errors. The resistive divider system is cooled by oil, and PID and neural network (NN) controllers try to keep the temperature within the prescribed limits. The system to be controlled exhibits a nonlinear character, and therefore, a control approach based on NN controllers is proposed. Thus, a system that can fulfill the various requirements dictated by the designer is constructed. The performance of the NN controller is compared with that of the PID controller developed for the same purpose, and the values of the performance indices indicate the superiority of the NN controller over that of the classical PID controller

  17. DC-link Voltage Control to Compensate Voltage Deviation for PV–BESSs Integrated System in Low-Voltage (LV Networks

    Directory of Open Access Journals (Sweden)

    Lee Gyu-sub

    2016-01-01

    Full Text Available The exhaustion of fossil fuel and the greenhouse gas emission are one of the most significant energy and environmental issues, respectively. Photovoltaic (PV generators and battery energy storage systems (BESSs have been significantly increased for recent years. The BESSs are mainly used for smoothing active power fluctuation of the PV. In this paper, PV–BESSs integration of two DC/DC converters and one AC/DC converter is investigated and DC-link voltage control to compensate the AC voltage deviation is proposed for the PV‒BESS system in low-voltage (LV networks.

  18. Limiting electric fields of HVDC overhead power lines.

    Science.gov (United States)

    Leitgeb, N

    2014-05-01

    As a consequence of the increased use of renewable energy and the now long distances between energy generation and consumption, in Europe, electric power transfer by high-voltage (HV) direct current (DC) overhead power lines gains increasing importance. Thousands of kilometers of them are going to be built within the next years. However, existing guidelines and regulations do not yet contain recommendations to limit static electric fields, which are one of the most important criteria for HVDC overhead power lines in terms of tower design, span width and ground clearance. Based on theoretical and experimental data, in this article, static electric fields associated with adverse health effects are analysed and various criteria are derived for limiting static electric field strengths.

  19. A Fixed-Frequency Bidirectional Resonant DC-DC Converter Suitable for Wide Voltage Gain Range

    DEFF Research Database (Denmark)

    Shen, Yanfeng; Wang, Huai; Blaabjerg, Frede

    2017-01-01

    This paper proposes a new bidirectional resonant dc-dc converter suitable for wide voltage gain range applications (e.g., energy storage systems). The proposed converter overcomes the narrow voltage gain range of conventional resonant DC-DC converters, and meanwhile achieves high efficiency...... and characteristics of the proposed converter are analyzed. Finally, a 1-kW converter prototype is built and the experimental results verify the theoretical analyses....

  20. Elimination of output voltage oscillations in DC-DC converter using PWM with PI controller

    Directory of Open Access Journals (Sweden)

    Sreenivasappa Veeranna Bhupasandra

    2010-01-01

    Full Text Available In this paper the SIMULINK model of a PWM controlled DC-DC converter is modeled using switching function concept to control the speed of the DC motor. The presence of the voltage oscillation cycles due to higher switching frequency in the DC-DC converter is identified. The effect of these oscillations on the output voltage of the converter, Armature current, Developed torque and Speed of the DC motor is analyzed. In order to minimize the oscillation cycles the PI controller is proposed in the PWM controller.

  1. A New Control Structure for Multi-Terminal dc Grids to Damp Inter-Area Oscillations

    DEFF Research Database (Denmark)

    Eriksson, Robert

    2014-01-01

    This article analyzes the control structure of the multi-terminal dc (MTDC) system to damp ac system interarea oscillations through active power modulation. A new control structure is presented that maximizes the relative controllability without the need for communication among the dc terminals....... In point-to-point high voltage dc (HVDC) transmission, the active power modulation of the two terminals occurs in opposite directions. In this case the control direction is given and only needs to be phase compensated to align for maximal damping. In the case of MTDC systems the control direction...... interrelates with the active power modulation share of the dc terminals and the relative controllability depends on this. The new control structure eliminates the need of communication between the dc terminals by performing dc voltage feedback loop shaping. This makes it possible to modulate the power in one...

  2. High-Voltage DC-DC Converter Topology for PV Energy Utilization - Investigation and Implementation

    DEFF Research Database (Denmark)

    Sanjeevikumar, Padmanaban; Blaabjerg, Frede; Wheeler, Patrick

    2017-01-01

    This paper exploited the utilization of photovoltaic (PV) energy system with high-voltage (HV) output DC-DC converter. Classical boost converters are used for both renewable energy integration and HV applications, but limited by reducing output/efficiency in performance. Moreover, as parasitic...... elements suppress the power transfer ratio, converter needs to maximize the PV energy utilization. This investigation study focused to include additional parasitic elements (voltage-lift technique) to a standard DC-DC buck converter and to overcome all the above drawbacks to maximize the PV power...

  3. A New Approach to HVDC Grid Voltage Control Based on Generalized State Feedback

    DEFF Research Database (Denmark)

    Beerten, Jef; Eriksson, Robert; Van Hertem, Dirk

    2014-01-01

    in the system hamper a straight-forward definition of the power sharing. The use of a common DC voltage signal for the control can solve some of the problems. However, it disregards some of the benefits that are associated with the use of a local voltage control, such as the tendency of a controller using local...... by combining the local voltage signal available at the converter terminals with remote voltage signals at different locations in the DC system by means of communication. The local voltage feedback control is used for a fast, reliable system response. The introduction of the remote voltage signals...... in the control allows to differentiate the system response for different converter outages. Simulation results show the validity of the proposed control scheme....

  4. improvement of power system quality using vsc-based hvdc

    African Journals Online (AJOL)

    HOD

    Key words: HVDC, Voltage source converter (VSC), Current and Voltage Control Loop; FFT Analysis ... The main requirement in a power transmission system is .... drop over the reactor (. ) ..... Distribution Conference and Exhibition: Asia and.

  5. On the modelling of linear-assisted DC-DC voltage regulators for photovoltaic solar energy systems

    Science.gov (United States)

    Martínez-García, Herminio; García-Vílchez, Encarna

    2017-11-01

    This paper shows the modelling of linear-assisted or hybrid (linear & switching) DC/DC voltage regulators. In this kind of regulators, an auxiliary linear regulator is used, which objective is to cancel the ripple at the output voltage and provide fast responses for load variations. On the other hand, a switching DC/DC converter, connected in parallel with the linear regulator, allows to supply almost the whole output current demanded by the load. The objective of this topology is to take advantage of the suitable regulation characteristics that series linear voltage regulators have, but almost achieving the high efficiency that switching DC/DC converters provide. Linear-assisted DC/DC regulators are feedback systems with potential instability. Therefore, their modelling is mandatory in order to obtain design guidelines and assure stability of the implemented power supply system.

  6. Total Magnetic Field Signatures over Submarine HVDC Power Cables

    Science.gov (United States)

    Johnson, R. M.; Tchernychev, M.; Johnston, J. M.; Tryggestad, J.

    2013-12-01

    Mikhail Tchernychev, Geometrics, Inc. Ross Johnson, Geometrics, Inc. Jeff Johnston, Geometrics, Inc. High Voltage Direct Current (HVDC) technology is widely used to transmit electrical power over considerable distances using submarine cables. The most commonly known examples are the HVDC cable between Italy and Greece (160 km), Victoria-Tasmania (300 km), New Jersey - Long Island (82 km) and the Transbay cable (Pittsburg, California - San-Francisco). These cables are inspected periodically and their location and burial depth verified. This inspection applies to live and idle cables; in particular a survey company could be required to locate pieces of a dead cable for subsequent removal from the sea floor. Most HVDC cables produce a constant magnetic field; therefore one of the possible survey tools would be Marine Total Field Magnetometer. We present mathematical expressions of the expected magnetic fields and compare them with fields observed during actual surveys. We also compare these anomalies fields with magnetic fields produced by other long objects, such as submarine pipelines The data processing techniques are discussed. There include the use of Analytic Signal and direct modeling of Total Magnetic Field. The Analytic Signal analysis can be adapted using ground truth where available, but the total field allows better discrimination of the cable parameters, in particular to distinguish between live and idle cable. Use of a Transverse Gradiometer (TVG) allows for easy discrimination between cable and pipe line objects. Considerable magnetic gradient is present in the case of a pipeline whereas there is less gradient for the DC power cable. Thus the TVG is used to validate assumptions made during the data interpretation process. Data obtained during the TVG surveys suggest that the magnetic field of a live HVDC cable is described by an expression for two infinite long wires carrying current in opposite directions.

  7. Simplified Analytic Approach of Pole-to-Pole Faults in MMC-HVDC for AC System Backup Protection Setting Calculation

    Directory of Open Access Journals (Sweden)

    Tongkun Lan

    2018-01-01

    Full Text Available AC (alternating current system backup protection setting calculation is an important basis for ensuring the safe operation of power grids. With the increasing integration of modular multilevel converter based high voltage direct current (MMC-HVDC into power grids, it has been a big challenge for the AC system backup protection setting calculation, as the MMC-HVDC lacks the fault self-clearance capability under pole-to-pole faults. This paper focused on the pole-to-pole faults analysis for the AC system backup protection setting calculation. The principles of pole-to-pole faults analysis were discussed first according to the standard of the AC system protection setting calculation. Then, the influence of fault resistance on the fault process was investigated. A simplified analytic approach of pole-to-pole faults in MMC-HVDC for the AC system backup protection setting calculation was proposed. In the proposed approach, the derived expressions of fundamental frequency current are applicable under arbitrary fault resistance. The accuracy of the proposed approach was demonstrated by PSCAD/EMTDC (Power Systems Computer-Aided Design/Electromagnetic Transients including DC simulations.

  8. Efficiency Analyses of a DC Residential Power Distribution System for the Modern Home

    Directory of Open Access Journals (Sweden)

    GELANI, H. E.

    2015-02-01

    Full Text Available The electric power system started as DC back in the nineteenth century. However, the DC paradigm was soon ousted by AC due to inability of DC to change its voltage level. Now, after many years, with the development of power electronic converters capable of stepping-up and down DC voltage and converting it to-and-from AC, DC appears to be challenging AC and attempting a comeback. We now have DC power generation by solar cells, fuel cells and wind farms, DC power transmission in the form of HVDC (High Voltage DC transmission, DC power utilization by various modern electronic loads and DC power distribution that maybe regarded as still in research phase. This paper is an attempt to investigate feasibility of DC in the distribution portion of electrical power system. Specifically, the efficiency of a DC distribution system for residential localities is determined while keeping in view the concept of daily load variation. The aim is to bring out a more practical value of system efficiency as the efficiencies of DC/DC converters making up the system vary with load variation. This paper presents the modeling and simulation of a DC distribution system and efficiency results for various scenarios are presented.

  9. Parallel operation of voltage-source converters: issues and applications

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, F.C.B.; Silva, D.S. [Federal University of Juiz de Fora (UFJF), MG (Brazil)], Emails: felipe.brum@engenharia.ufjf.br, salomaoime@yahoo.com.br; Ribeiro, P.F. [Calvin College, Grand Rapids, MI (United States); Federal University of Juiz de Fora (UFJF), MG (Brazil)], E-mail: pfribeiro@ieee.org

    2009-07-01

    Technological advancements in power electronics have prompted the development of advanced AC/DC conversion systems with high efficiency and flexible performance. Among these devices, the Voltage-Source Converter (VSC) has become an essential building block. This paper considers the parallel operation of VSCs under different system conditions and how they can assist the operation of highly complex power networks. A multi-terminal VSC-based High Voltage Direct Current (M-VSC-HVDC) system is chosen to be modeled, simulated and then analyzed as an example of VSCs operating in parallel. (author)

  10. Novel Step-Up DC/DC Converter with No Right Half Plane Zero and Reduced Switched Voltage Stress Characteristics

    DEFF Research Database (Denmark)

    Mostaan, Ali; Alizadeh, Ebrahim; Soltani, Mohsen

    2014-01-01

    and the voltage transfer gain is obtained. It is also demonstrated that the voltage stress on all semiconductor devices is restricted to input voltage which allows the utilization of a power switch with lower drain source resistance. In order to further increase the voltage gain another switched capacitor voltage......Novel step-up DC/DC converter is introduced in this paper. This converter is realized with adding the switched capacitor voltage multiplier cell to the three switch step-down DC/DC converter that has been proposed in the literature. The proposed converter is analyzed in the steady state...

  11. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  12. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge.

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  13. Experimental Investigation of the Corona Discharge in Electrical Transmission due to AC/DC Electric Fields

    Directory of Open Access Journals (Sweden)

    Fuangpian Phanupong

    2016-01-01

    Full Text Available Nowadays, using of High Voltage Direct Current (HVDC transmission to maximize the transmission efficiency, bulk power transmission, connection of renewable power source from wind farm to the grid is of prime concern for the utility. However, due to the high electric field stress from Direct Current (DC line, the corona discharge can easily be occurred at the conductor surface leading to transmission loss. Therefore, the polarity effect of DC lines on corona inception and breakdown voltage should be investigated. In this work, the effect of DC polarity and Alternating Current (AC field stress on corona inception voltage and corona discharge is investigated on various test objects, such as High Voltage (HV needle, needle at ground plane, internal defect, surface discharge, underground cable without cable termination, cable termination with simulated defect and bare overhead conductor. The corona discharge is measured by partial discharge measurement device with high-frequency current transformer. Finally, the relationship between supply voltage and discharge intensity on each DC polarity and AC field stress can be successfully determined.

  14. Integrated Three-Voltage-Booster DC-DC Converter to Achieve High Voltage Gain with Leakage-Energy Recycling for PV or Fuel-Cell Power Systems

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2015-09-01

    Full Text Available In this paper, an integrated three-voltage-booster DC-DC (direct current to direct current converter is proposed to achieve high voltage gain for renewable-energy generation systems. The proposed converter integrates three voltage-boosters into one power stage, which is composed of an active switch, a coupled-inductor, five diodes, and five capacitors. As compared with conventional high step-up converters, it has a lower component count. In addition, the features of leakage-energy recycling and switching loss reduction can be accomplished for conversion efficiency improvement. While the active switch is turned off, the converter can inherently clamp the voltage across power switch and suppress voltage spikes. Moreover, the reverse-recovery currents of all diodes can be alleviated by leakage inductance. A 200 W prototype operating at 100 kHz switching frequency with 36 V input and 400 V output is implemented to verify the theoretical analysis and to demonstrate the feasibility of the proposed high step-up DC-DC converter.

  15. A Review on VSC-HVDC Reliability Modeling and Evaluation Techniques

    Science.gov (United States)

    Shen, L.; Tang, Q.; Li, T.; Wang, Y.; Song, F.

    2017-05-01

    With the fast development of power electronics, voltage-source converter (VSC) HVDC technology presents cost-effective ways for bulk power transmission. An increasing number of VSC-HVDC projects has been installed worldwide. Their reliability affects the profitability of the system and therefore has a major impact on the potential investors. In this paper, an overview of the recent advances in the area of reliability evaluation for VSC-HVDC systems is provided. Taken into account the latest multi-level converter topology, the VSC-HVDC system is categorized into several sub-systems and the reliability data for the key components is discussed based on sources with academic and industrial backgrounds. The development of reliability evaluation methodologies is reviewed and the issues surrounding the different computation approaches are briefly analysed. A general VSC-HVDC reliability evaluation procedure is illustrated in this paper.

  16. SSP Technology Investigation of a High-Voltage DC-DC Converter

    Science.gov (United States)

    Pappas, J. A.; Grady, W. M.; George, Patrick J. (Technical Monitor)

    2002-01-01

    The goal of this project was to establish the feasibility of a high-voltage DC-DC converter based on a rod-array triggered vacuum switch (RATVS) for the Space Solar Power system. The RATVS has many advantages over silicon and silicon-carbide devices. The RATVS is attractive for this application because it is a high-voltage device that has already been demonstrated at currents in excess of the requirement for an SSP device and at much higher per-device voltages than existing or near-term solid state switching devices. The RATVS packs a much higher specific power rating than any solid-state device and it is likely to be more tolerant of its surroundings in space. In addition, pursuit of an RATVS-based system would provide NASA with a nearer-term and less expensive power converter option for the SSP.

  17. Modelisation et simulation d'une liaison HVDC de type VSC-MMC

    Science.gov (United States)

    Saad, Hani Aziz

    High-voltage direct current transmission systems (HVDC) are rapidly expanding in the world. Two main factors are responsible for this expansion. The first is related to the difficulty of building new overhead lines to ensure the development of high-voltage AC grids, which makes the usage of underground cables more common. However, the use of such cables is limited in length to a few tens of km because of the capacitive current generated by the cable itself. Beyond this length limit, the solution is usually to transmit in DC. The second factor is related to the development of offshore wind power plants that require connecting powers of several hundred of MW to the mainland grid by cables whose lengths can reach several hundreds of km and consequently require HVDC transmission system. Several HVDC projects are currently planned and developed by the French transmission system operator RTE. One of such projects is the INELFE interconnection project, with a capacity of 2,000 MW, between France and Spain. This thesis has been funded by RTE, in order to model and simulate in off-line and real time modes, modern HVDC interconnections. The delivered simulation means are used to examine targeted HVDC system performances and risks of abnormal interactions with surrounding power systems. The particularity of the INELFE HVDC system is the usage of a dedicated control system that will largely determine the dynamic behaviour of the system for both large disturbances (faults on the network) and small perturbations (power step changes). Various VSC topologies, including the conventional two-level, multi-level diode-clamped and floating capacitor multi-level converters, have been proposed and reported in the literature. However, due to the complexity of controls and practical limitations, the VSC-HVDC system installations have been limited to the two-level and three-level diode-clamped converters. Recently, the development of modular technology called MMC (Modular Multilevel

  18. Modified High Voltage Conversion Inverting Cuk DC-DC Converter for Renewable Energy Application

    DEFF Research Database (Denmark)

    Maroti, Pandav Kiran; Padmanaban, Sanjeevikumar; Wheeler, Patrick

    2017-01-01

    controlled device DC-DC topology. The voltage conversion ratio of proposed converter has increased by ten times of the conventional Cuk converterat a duty ratio of 90%. The detailed analysis of the voltage conversion ratio and losses occur due to internal resistance of components is done in the paper......The proposed exertion represents the modified high voltage conversion Cuk converter for renewable energy application. The proposed Cuk converter is a combination of the conventional boost converter and Cuk converter. The arrangement of the proposed converter make, such as, it becomes the single...

  19. Comparison CCEM-K8 of DC voltage ratio: results

    CSIR Research Space (South Africa)

    Marullo-Reedtz, G

    2003-04-01

    Full Text Available , he has been with VNIIM where he has been involved in inves- tigation and development of electrical standards of dc voltage and dc current, using quantum effects in LT- and HT-superconductors and ratio voltage mea- surement up to 1000 V. Ronald...

  20. DC-link Voltage Coordinative-Proportional Control in Cascaded Converter Systems

    DEFF Research Database (Denmark)

    Tian, Yanjun; Loh, Poh Chiang; Deng, Fujin

    2015-01-01

    PI controllers are frequently implemented in cascaded converter system to control the DC-link voltage, because they can achieve zero steady state error. However the PI controller adds a pole at the origin point and a zero on the left half plane, and it increases the control system type number......, and then the system is more difficult to control. This paper proposed a DC-link control method for the two stages cascaded converter, and it uses proportional controller for the DC-link voltage control. This control method can achieve zero steady state error on the DC-link voltage; reduce the control system type...

  1. Review of fault diagnosis and fault-tolerant control for modular multilevel converter of HVDC

    DEFF Research Database (Denmark)

    Liu, Hui; Loh, Poh Chiang; Blaabjerg, Frede

    2013-01-01

    This review focuses on faults in Modular Multilevel Converter (MMC) for use in high voltage direct current (HVDC) systems by analyzing the vulnerable spots and failure mechanism from device to system and illustrating the control & protection methods under failure condition. At the beginning......, several typical topologies of MMC-HVDC systems are presented. Then fault types such as capacitor voltage unbalance, unbalance between upper and lower arm voltage are analyzed and the corresponding fault detection and diagnosis approaches are explained. In addition, more attention is dedicated to control...

  2. DC injection into low voltage AC networks

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This report summarises the results of a study investigating the impact of levels of injected DC current injections on a low voltage AC distribution network systems in order to recommend acceptable limits of DC from microgeneration. Relevant literature is reviewed, and the impact of DC levels in distribution transformers, transformer modelling, and instrumental transformers are discussed. The impact of DC in residual current devices (RCD) and in domestic electricity watt hour meters is examined along with DC enhanced corrosion, corrosion failure, and the measurement of DC current injection. Sources of DC injection outlined include DC from computer power supplies, network faults, geomagnetic phenomena, lighting circuits/dimmers, and embedded generators.

  3. Experimental and analytical study of the DC breakdown characteristics of polypropylene laminated paper with a butt gap condition considering the insulation design of superconducting cable

    Science.gov (United States)

    Seo, In-jin; Choi, Won; Seong, Jae-gyu; Lee, Bang-wook; Koo, Ja-yoon

    2014-08-01

    It has been reported that the insulation design under DC stress is considered as one of the critical factors in determining the performance of high-voltage direct current (HVDC) superconducting cable. Therefore, it is fundamentally necessary to investigate the DC breakdown characteristics of the composite insulation system consisting of liquid nitrogen (LN2)/polypropylene-laminated-paper (PPLP). In particular, the insulation characteristics under DC polarity reversal condition should be verified to understand the polarity effect of the DC voltage considering the unexpected incidents taking place at line-commutated-converters (LCC) under service at a DC power grid. In this study, to examine the variation of DC electric field strength, the step voltage and polarity reversal breakdown tests are performed under DC stress. Also, we investigate the electric field distributions in a butt gap of the LN2/PPLP condition considering the DC polarity reversal by using simulation software.

  4. Fast response double series resonant high-voltage DC-DC converter

    International Nuclear Information System (INIS)

    Lee, S S; Iqbal, S; Kamarol, M

    2012-01-01

    In this paper, a novel double series resonant high-voltage dc-dc converter with dual-mode pulse frequency modulation (PFM) control scheme is proposed. The proposed topology consists of two series resonant tanks and hence two resonant currents flow in each switching period. Moreover, it consists of two high-voltage transformer with the leakage inductances are absorbed as resonant inductor in the series resonant tanks. The secondary output of both transformers are rectified and mixed before supplying to load. In the resonant mode operation, the series resonant tanks are energized alternately by controlling two Insulated Gate Bipolar Transistor (IGBT) switches with pulse frequency modulation (PFM). This topology operates in discontinuous conduction mode (DCM) with all IGBT switches operating in zero current switching (ZCS) condition and hence no switching loss occurs. To achieve fast rise in output voltage, a dual-mode PFM control during start-up of the converter is proposed. In this operation, the inverter is started at a high switching frequency and as the output voltage reaches 90% of the target value, the switching frequency is reduced to a value which corresponds to the target output voltage. This can effectively reduce the rise time of the output voltage and prevent overshoot. Experimental results collected from a 100-W laboratory prototype are presented to verify the effectiveness of the proposed system.

  5. An Initial Topology of Multi-terminal HVDC Transmission System in Europe

    DEFF Research Database (Denmark)

    Irnawan, Roni; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2016-01-01

    In this paper, technical challenges for realizing offshore multi-terminal HVDC (MTDC) transmission system in Europe is evaluated. An offshore MTDC topology is projected by interconnecting point-to-point HVDC links with the same voltage level and technology found in south-eastern part of North Sea....... Availability analysis is done to evaluate the feasibility of the proposed offshore MTDC topology. As compared to point-to-point (PtP) HVDC link, MTDC operation gives a more secure and reliable system. This paper shows that the proposed MTDC topology can operate 98.36% of the time....

  6. Active Power Filter DC Bus Voltage Piecewise Reaching Law Variable Structure Control

    OpenAIRE

    Liu, Baolian; Ding, Zujun; Zhao, Huanyu; Jin, Defei

    2014-01-01

    The DC bus voltage stability control is one key technology to ensure that Active Power Filter (APF) operates stably. The external disturbances such as power grid and load fluctuation and the system parameters changing may affect the stability of APF DC bus voltage and the normal operation of APF. The mathematical model of DC bus voltage is established according to power balance principle and a DC bus voltage piecewise reaching law variable structure control algorithm is proposed to solve the ...

  7. Calculation of single phase AC and monopolar DC hybrid corona effects

    International Nuclear Information System (INIS)

    Zhao, T.; Sebo, S.A.; Kasten, D.G.

    1996-01-01

    Operating a hybrid HVac and HVdc line is an option for increasing the efficiency of power transmission and overcoming the difficulties in obtaining a new right-of-way. This paper proposes a new calculation method for the study of hybrid line corona. The proposed method can be used to calculate dc corona losses and corona currents in dc or ac conductors for single phase ac and monopolar dc hybrid lines. Profiles of electric field strength and ion current density at ground level can be estimated. The effects of the presence of an energized ac conductor on dc conductor corona and dc voltage on ac conductor corona are included in the method. Full-scale and reduced-scale experiments were utilized to investigate the hybrid line corona effects. Verification of the proposed calculation method is given

  8. Voltage Control System of A DC Generator Using PLC

    OpenAIRE

    Subrata CHATTOPADHYAY; Sagarika PAL

    2008-01-01

    The voltage control system of a DC generator may suffer from high frequency oscillations without offset or low frequency oscillation with offset. A PID controller can eliminate both these errors. In the present paper, the voltage control system of a DC generator using a PLC based PID controller has been designed. Operation of PLC as a continuous controller has been described and the load characteristic of DC generator with and without controller have been determined experimentally and reporte...

  9. Protection of Multi-Terminal VSC-HVDC Grids Based on the Response of the First Carrier Frequency Harmonic Current

    DEFF Research Database (Denmark)

    Ashouri, Mani; Khazraj, Hesam; Silva, Filipe Miguel Faria da

    This paper investigates the response of first carrier frequency harmonic (FCFH) current for designing a protection algorithm for multi-terminal Voltage source converter-based HVDC (VSC-MTDC) transmission grids. This transient harmonic current has been used before, to discriminate external AC faults...... various kinds of faults with different locations and resistances. This paper will also consider half-bridge MMC instead of two-level VSCs to test the sensitivity of the FCFH based algorithm for lower harmonic values. A modified meshed version of CIGRE DC model has been used in PSCAD and the signal...

  10. Simulative Study into the Development of a Hybrid HVDC System Through a Comparative Research with HVAC: a Futuristic Approach

    Directory of Open Access Journals (Sweden)

    R. S. Narayan

    2017-06-01

    Full Text Available High Voltage Direct Current Transmission (HVDC is considered a better solution for bulk long distance transmissions. The increased use of HVDC is a result of its advantages over the HVAC systems and especially of its fault stability nature. A better solution is proposed by using a Voltage Source Controlled–HVDC as one of the infeed for the Multi-Infeed HVDC (MIDC or MI-HVDC systems. The main advantage with the VSC converter is its flexible power control which enhances the stability of the MIDC systems. In this paper, the behavior of an HVDC system is compared with that of an HVAC during faults. A Hybrid HVDC system that includes a LCC as a rectifier unit and a VSC converter as the inverter is being proposed. It is considered suitable for MIDC systems and particularly for supplying a weak AC system. The performance of the system during steady state and transient conditions for all the proposed topologies including HVDC, HVAC and Hybrid HVDC are studied in MATLAB/SIMULINK. All of the proposed control strategies are evaluated via a series of simulation case studies.

  11. Mixed Inter Second Order Cone Programming Taking Appropriate Approximation for the Unit Commitment in Hybrid AC-DC Grid

    DEFF Research Database (Denmark)

    Zhou, Bo; Ai, Xiaomeng; Fang, Jiakun

    2017-01-01

    With the rapid development and deployment of voltage source converter (VSC) based HVDC, the traditional power system is evolving to the hybrid AC-DC grid. New optimization methods are urgently needed for these hybrid AC-DC power systems. In this paper, mixed-integer second order cone programming...... (MISOCP) for the hybrid AC-DC power systems is proposed. The second order cone (SOC) relaxation is adopted to transform the AC and DC power flow constraints to MISOCP. Several IEEE test systems are used to validate the proposed MISCOP formulation of the optimal power flow (OPF) and unit commitment (UC...

  12. Control Of Stepper Motor Movement By DC Voltage

    International Nuclear Information System (INIS)

    Gayani, Didi; Margono; Indasah, Iin; Sugito

    2000-01-01

    Instrumentation for controlling the power of reactor of TRIGA Mark II uses the stepper motor to move the control rod of neutron absorbers. The direction and speed of control rod movement are determined by the polarity and the amplitude of DC voltage as an error signal that is the difference of set point of power and the power of being measured on the control system. The unit of stepper motor controller of reactor instrumentation of TRIGA Mark II uses patent module of trade Mark of Vexta, USA. In this chance, the electronic circuit is made to function as the control of stepper motor movement by using the DC voltage to anticipate the problem may be faced in case of repair and maintenance of reactor instrumentation. As a result of experiment, it is stated that the control of motor movement by using DC voltage is performed into 2 stages. First, by making the oscillator that is proportional to the positive DC voltage. Secondly, by making the translator to translate the oscillator signal to be a logic pattern for controlling the movement of stepper motor. Translator and motor driver are made by using the L297 and L298 as a pair of stepper motor controller of SGS T HOMSON

  13. Model Based Optimization of Integrated Low Voltage DC-DC Converter for Energy Harvesting Applications

    Science.gov (United States)

    Jayaweera, H. M. P. C.; Muhtaroğlu, Ali

    2016-11-01

    A novel model based methodology is presented to determine optimal device parameters for the fully integrated ultra low voltage DC-DC converter for energy harvesting applications. The proposed model feasibly contributes to determine the maximum efficient number of charge pump stages to fulfill the voltage requirement of the energy harvester application. The proposed DC-DC converter based power consumption model enables the analytical derivation of the charge pump efficiency when utilized simultaneously with the known LC tank oscillator behavior under resonant conditions, and voltage step up characteristics of the cross-coupled charge pump topology. The verification of the model has been done using a circuit simulator. The optimized system through the established model achieves more than 40% maximum efficiency yielding 0.45 V output with single stage, 0.75 V output with two stages, and 0.9 V with three stages for 2.5 kΩ, 3.5 kΩ and 5 kΩ loads respectively using 0.2 V input.

  14. Discussion - a high voltage DC generator

    International Nuclear Information System (INIS)

    Bhagwat, P.V.; Singh, Jagir; Hattangadi, V.A.

    1993-01-01

    One of the requirements for a high power ion source is a high voltage, high current DC generator. The high voltage, high current generator, DISCATRON, presently under development in our laboratory is a rotating disc type electrostatic generator similar in design to the one reported by A. Isoya et al. (1985). It is compact and rugged electrostatic DC generator based on the principle of induction charging by pellet chains used in the pelletron accelerator. It is, basically, a constant-current device with little stored energy, so that, in case of a breakdown, damage to the equipment connected to the output terminals is minimal. Since the present generator is only a proto-type, meant for a study of the practical difficulties that would be encountered in its manufacture, the output voltage and current specified has been kept quite modest viz., 300 kV at 500 μA, maximum. Some results of the preliminary tests carried out with this generator are described. (author). 4 figs

  15. Design and development of high voltage and high frequency center tapped transformer for HVDC test generator

    International Nuclear Information System (INIS)

    Thaker, Urmil; Saurabh Kumar; Amal, S.; Baruah, U.K.; Bhatt, Animesh

    2015-01-01

    A High Voltage center tapped transformer for high frequency application had been designed, fabricated, and tested. It was designed as a part of 200 kV HVDC Test Generator. The High Frequency operation of transformer increases power density. Therefore it is possible to reduce power supply volume. The step up ratio in High Voltage transformer is limited due to stray capacitance and leakage inductance. The limit was overcome by winding multi secondary outputs. Switching frequency of transformer was 15.8 kHz. Input and output voltages of transformer were 270V and 16.5kV-0V-16.5kV respectively. Power rating of transformer is 7kVA. High Voltage transformer with various winding and core arrangement was fabricated to check variation in electrical characteristics. The transformer used a ferrite core (E Type) and nylon insulated primary and secondary bobbins. Two set of E-E geometry cores had been stacked in order to achieve the estimated core volume. Compared with traditional high voltage transformer, this transformer had good thermal behavior, good line insulation properties and a high power density. In this poster, design procedures, development stages and test results of high voltage and high frequency transformer are presented. Results of various parameters such as transformer loss, temperature rise, insulation properties, impedance of primary and secondary winding, and voltage regulation are discussed. (author)

  16. New non-linear control strategy for non-isolated DC/DC converter with high voltage ratio

    Energy Technology Data Exchange (ETDEWEB)

    Shahin, A.; Huang, B.; Martin, J.P.; Pierfederici, S.; Davat, B. [Groupe de Recherche en Electronique et en Electrotechnique de Nancy - INPL - Nancy Universite, 2, Avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy Cedex (France)

    2010-01-15

    In this paper, a non-isolated DC/DC converter with high voltage ratio is proposed to allow the interface between a low voltage power source like fuel cell and a high voltage DC bus. To take into account the low voltage-high density characteristics of power sources, a cascaded structure composed of two sub-converters has been chosen and allows obtaining a high voltage ratio. The choice of each sub-converter is based on the requirements of the source and its performances. Consequently, we have chosen a three-interleaved boost converter as the 1st sub-converter whereas the 2nd sub-converter is a three-level boost converter. The control of the whole system is realized thanks to energetic trajectories planning based on flatness properties of the system. The control of both the current and the balance of voltage across the output serial capacitors of the three-level boost converter is ensured by non-linear controllers based on a new non-linear model. Experimental results allow validating the proposed power architecture and its associated control. (author)

  17. New non-linear control strategy for non-isolated DC/DC converter with high voltage ratio

    International Nuclear Information System (INIS)

    Shahin, A.; Huang, B.; Martin, J.P.; Pierfederici, S.; Davat, B.

    2010-01-01

    In this paper, a non-isolated DC/DC converter with high voltage ratio is proposed to allow the interface between a low voltage power source like fuel cell and a high voltage DC bus. To take into account the low voltage-high density characteristics of power sources, a cascaded structure composed of two sub-converters has been chosen and allows obtaining a high voltage ratio. The choice of each sub-converter is based on the requirements of the source and its performances. Consequently, we have chosen a three-interleaved boost converter as the 1st sub-converter whereas the 2nd sub-converter is a three-level boost converter. The control of the whole system is realized thanks to energetic trajectories planning based on flatness properties of the system. The control of both the current and the balance of voltage across the output serial capacitors of the three-level boost converter is ensured by non-linear controllers based on a new non-linear model. Experimental results allow validating the proposed power architecture and its associated control.

  18. Power system analysis of Hanlim superconducting HVDC system using real time digital simulator

    International Nuclear Information System (INIS)

    Won, Y.J.; Kim, J.G.; Kim, A.R.; Kim, G.H.; Park, M.; Yu, I.K.; Sim, K.D.; Cho, J.; Lee, S.; Jeong, K.W.; Watanabe, K.

    2011-01-01

    KEPCO has planned to construct a test site for renewable energy in Jeju power system. One kilometer length of total 8 km was designed as superconducting DC cable. We have developed a simulation model of the 8 km HVDC system using real time digital simulator. The simulation result shows that the HVDC line was not affected by wind power variation. Jeju island is located approximately 100 km south from the mainland of Korea, and had a peak load of about 553 MW in 2008. The demand increases 7.2% a year over the last 5 years. Since the wind profiles of Jeju island are more favorable than mainland of Korea, many companies have shown interest in the wind power business at the Jeju island. Moreover KEPCO has a plan for renewable energy test too whose power will be delivered by HVDC system. One kilometer length of total 8 km was designed as superconducting DC cable. Rest 7 km will be the conventional overhead line. In this paper, the authors have developed a simulation model of the power network around 8 km HVDC system using real time digital simulator (RTDS).

  19. Two coupled Josephson junctions: dc voltage controlled by biharmonic current

    International Nuclear Information System (INIS)

    Machura, L; Spiechowicz, J; Kostur, M; Łuczka, J

    2012-01-01

    We study transport properties of two Josephson junctions coupled by an external shunt resistance. One of the junctions (say, the first) is driven by an unbiased ac current consisting of two harmonics. The device can rectify the ac current yielding a dc voltage across the first junction. For some values of coupling strength, controlled by an external shunt resistance, a dc voltage across the second junction can be generated. By variation of system parameters such as the relative phase or frequency of two harmonics, one can conveniently manipulate both voltages with high efficiency, e.g. changing the dc voltages across the first and second junctions from positive to negative values and vice versa. (paper)

  20. Control of a hybrid HVDC link to increase inter-regional power transfer

    DEFF Research Database (Denmark)

    Kotb, Omar; Ghandhari, Mehrdad; Eriksson, Robert

    2016-01-01

    This paper examines the application of a hybrid HVDC link in a two area power system with the purpose of increasing the inter-regional power transfer. A hybrid HVDC system combines both LCCs and VSCs, and hence it is capable of combining the benefits of both converter technologies, such as reduced...... cost and power losses due to the LCCs, and ability to connect to weak AC grids due to the VSCs. The mathematical model of the power system including the HVDC link is presented. The increase in inter-area power transfer is demonstrated and compared to the case when the hybrid HVDC link is not used....... Furthermore, the transient stability of the AC/DC power system was enhanced using auxiliary controllers for Power Oscillation Damping (POD). The results show the ability of the hybrid HVDC link to increase the unidirectional inter-area power transfer, while enhancing the transient stability of the power...

  1. Voltage Weak DC Distribution Grids

    NARCIS (Netherlands)

    Hailu, T.G.; Mackay, L.J.; Ramirez Elizondo, L.M.; Ferreira, J.A.

    2017-01-01

    This paper describes the behavior of voltage weak DC distribution systems. These systems have relatively small system capacitance. The size of system capacitance, which stores energy, has a considerable effect on the value of fault currents, control complexity, and system reliability. A number of

  2. Impacts of an underwater high voltage DC power cable on fish migration movements in the San Francisco Bay.

    Science.gov (United States)

    Wyman, M. T.; Kavet, R.; Klimley, A. P.

    2016-02-01

    There is an increasingly strong interest on a global scale in offshore renewable energy production and transportation. However, there is concern that the electromagnetic fields (EMF) produced by these underwater cables may alter the behavior and physiology of marine species. Despite this concern, few studies have investigated these effects in free-living species. In 2009, a 85 km long high-voltage DC (HVDC) power cable was placed within the San Francisco Bay, running parallel, then perpendicular to, the migration route of anadromous species moving from the inland river system to the oceans. In this study, we assess the impacts of this HVDC cable on the migration behaviors of EMF-sensitive fish, including juvenile salmonids (Chinook salmon, Oncorhynchus tshawytscha, and steelhead trout, Oncorhynchus mykiss) and adult green sturgeon, Acipenser medirostris. Acoustic telemetry techniques were used to track fish migration movements through the San Francisco Bay both before and after the cable was activated; individuals implanted with acoustic transmitters were detected on cross-channel hydrophone arrays at key locations in the system. Magnetic fields were surveyed and mapped at these locations using a transverse gradiometer, and models of the cable's magnetic field were developed that closely matched the empirically measured values. Here, we present our analyses on the relationships between migration-related behavioral metrics (e.g., percent of successful migrations, duration of migration, time spent near vs. far from cable location, etc.) and environmental parameters, such as cable activation and load level, local magnetic field levels, depth, and currents.

  3. Voltage Control System of A DC Generator Using PLC

    Directory of Open Access Journals (Sweden)

    Subrata CHATTOPADHYAY

    2008-06-01

    Full Text Available The voltage control system of a DC generator may suffer from high frequency oscillations without offset or low frequency oscillation with offset. A PID controller can eliminate both these errors. In the present paper, the voltage control system of a DC generator using a PLC based PID controller has been designed. Operation of PLC as a continuous controller has been described and the load characteristic of DC generator with and without controller have been determined experimentally and reported in this paper.

  4. Dynamic modelling of VSC-HVDC for connection of offshore wind farms

    DEFF Research Database (Denmark)

    Rios, Bardo; Garcia-Valle, Rodrigo

    2011-01-01

    A VSC-HVDC (Voltage Source Converter – High Voltage Direct Current) dynamic model with a set of control strategies is developed in DIgSILENT Power-Factory with the objective of analyzing the converter’s operating capability for grid support during grid faults. The investigation is carried out based...... on a 165 MW offshore wind farm with induction generators and a Low Voltage Ride-Through solution of the offshore wind turbines and Static Voltage Compensator units in the point of connection with a grid represented by a reduced four-generator power grid model. VSC-HVDC promises to be a reliable alternative...... solution for interconnection with off-shore wind farms as they become larger, with a higher installed power capacity, increased number of wind turbines, and geographically situated at larger distances from suitable connection points in the transmission grids....

  5. Analysis of dc-Link Voltage Switching Ripple in Three-Phase PWM Inverters

    Directory of Open Access Journals (Sweden)

    Marija Vujacic

    2018-02-01

    Full Text Available The three-phase voltage source inverter (VSI is de facto standard in power conversion systems. To realize high power density systems, one of the items to be correctly addressed is the design and selection of the dc-link capacitor in relation to the voltage switching ripple. In this paper, effective formulas for designing the dc-link capacitor as a function of the switching voltage ripple amplitude are obtained, considering the operating conditions such as the modulation index and the output current amplitude. The calculations are obtained considering the requirements and restrictions referring to the high (switching-frequency dc-link voltage ripple component. Analyses have been performed considering the dc source impedance (non-ideal dc voltage source at the switching frequency and a balanced load. Analytical expressions are derived for the dc-link voltage switching ripple amplitude and its maximum value over the fundamental period. Different values of modulation index and output phase angle have been considered and different diagrams are presented. Analytical results were validated both by simulations and comprehensive experimental tests.

  6. Digital model for harmonic interactions in AC/DC/AC systems

    Energy Technology Data Exchange (ETDEWEB)

    Guarini, A P; Rangel, R D; Pilotto, L A.S.; Pinto, R J; Passos, Junior, R [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)

    1994-12-31

    The main purpose of this paper is to present a model for calculation of HVdc converter harmonics taking into account the influence of the harmonic interactions between the ac systems in dc link transmissions. The ideas and methodologies used in the model development take into account the dc current ripple and ac voltage distortion in the ac systems. The theory of switching functions is applied to contemplate for the frequency conversions between the ac and dc sides, in an iterative process. It is possible then to obtain, even in balanced situations, non-characteristic harmonics that are produced by frequencies originated in the other terminal, which can be significant in a strongly coupled system, such as back-to-back configuration. (author) 9 refs., 3 figs.

  7. Frequency Support from OWPPs connected to HVDC via Diode Rectifiers

    DEFF Research Database (Denmark)

    Saborío-Romano, Oscar; Bidadfar, Ali; Göksu, Ömer

    This paper presents a study assessing the actual capability of an offshore wind power plant (offshore WPP, OWPP) to provide frequency support (FS) to an onshore network, when connected through a high-voltage direct-current (HVDC) link having a diode rectifier (DR) offshore terminal and a voltage...

  8. A Reconfigurable Series Resonant DC-DC Converter for Wide-Input and Wide-Output Voltages

    DEFF Research Database (Denmark)

    Shen, Yanfeng; Wang, Huai; Qin, Zian

    2017-01-01

    This paper proposes a dual-bridge based LC series resonant dc-dc converter. The input inverter unit incorporates two bridge structures, i.e., a full-bridge inverter and a half-bridge inverter. For the output rectifier, it can be a full-bridge rectifier or an asymmetric half-bridge rectifier....... Different from the conventional resonant converter, a fixed-frequency PWM control is employed which makes the optimization of magnetic components easier. The primary-side switches can achieve ZVS and the secondary-side diodes turn off with ZCS. In addition, the root-mean-square (RMS) values...... of the transformer currents do not significantly vary with respect to the voltage variation. Therefore, this converter can maintain high efficiency over a wide voltage range. The topology and operating principle are firstly described. Then the dc voltage gain and the RMS current characteristics are detailed. Finally...

  9. Reliability analysis of HVDC grid combined with power flow simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongtao; Langeland, Tore; Solvik, Johan [DNV AS, Hoevik (Norway); Stewart, Emma [DNV KEMA, Camino Ramon, CA (United States)

    2012-07-01

    Based on a DC grid power flow solver and the proposed GEIR, we carried out reliability analysis for a HVDC grid test system proposed by CIGRE working group B4-58, where the failure statistics are collected from literature survey. The proposed methodology is used to evaluate the impact of converter configuration on the overall reliability performance of the HVDC grid, where the symmetrical monopole configuration is compared with the bipole with metallic return wire configuration. The results quantify the improvement on reliability by using the later alternative. (orig.)

  10. Active Power Filter DC Bus Voltage Piecewise Reaching Law Variable Structure Control

    Directory of Open Access Journals (Sweden)

    Baolian Liu

    2014-01-01

    Full Text Available The DC bus voltage stability control is one key technology to ensure that Active Power Filter (APF operates stably. The external disturbances such as power grid and load fluctuation and the system parameters changing may affect the stability of APF DC bus voltage and the normal operation of APF. The mathematical model of DC bus voltage is established according to power balance principle and a DC bus voltage piecewise reaching law variable structure control algorithm is proposed to solve the above problem, and the design method is given. The simulation and experiment results proved that the proposed variable structure control algorithm can eliminate the chattering problem existing in traditional variable structure control effectively, is insensitive to system disturbance, and has good robustness and fast dynamic response speed and stable DC bus voltage with small fluctuation. The above advantages ensure the compensation effect of APF.

  11. Impact of Cyber Attacks on High Voltage DC Transmission Damping Control

    Directory of Open Access Journals (Sweden)

    Rui Fan

    2018-04-01

    Full Text Available Hybrid AC/HVDC (AC-HVDC grids have evolved to become huge cyber-physical systems that are vulnerable to cyber attacks because of the wide attack surface and increasing dependence on intelligent electronic devices, computing resources and communication networks. This paper, for the first time, studies the impact of cyber attacks on HVDC transmission oscillation damping control.Three kinds of cyber attack models are considered: timing attack, replay attack and false data injection attack. Followed by a brief introduction of the HVDC model and conventional oscillation damping control method, the design of three attack models is described in the paper. These attacks are tested on a modified IEEE New England 39-Bus AC-HVDC system. Simulation results have shown that all three kinds of attacks are capable of driving the AC-HVDC system into large oscillations or even unstable conditions.

  12. Effects of balanced and unbalanced voltage sags on DC adjustable-speed drives

    Energy Technology Data Exchange (ETDEWEB)

    Pedra, Joaquin; Sainz, Luis; Corcoles, Felipe; Bergas, Joan [Department of Electrical Engineering, ETSEIB-UPC, Av. Diagonal, 647, 08028 Barcelona (Spain); de Blas, Alfredo [Department of Electrical Engineering, EUETIB-UPC, C. d' Urgell, 187, 08036 Barcelona (Spain)

    2008-06-15

    This paper analyzes the sensitivity of DC adjustable-speed drives to balanced and unbalanced voltage sags. The influence of sag type, depth, duration and phase-angle jump on DC drives is studied. The control of the DC drive has been taken into account to understand drive behavior in the presence of voltage sags. Two working modes of the DC motor are considered in the study: as a consumer load and as a regenerative load. When the DC motor works as a consumer load, the study shows that sag type and depth have a significant influence on drive behavior. However, the voltage sag can be ridden through if the rectifier firing angle is set correctly by the control. When the DC motor works as a regenerative load, the study shows the consequences of the three-phase rectifier commutation failure due to the voltage sag. (author)

  13. Coordinated Control Strategies for Offshore Wind Farm Integration via VSC-HVDC for System Frequency Support

    DEFF Research Database (Denmark)

    Li, Yujun; Xu, Zhao; Østergaard, Jacob

    2017-01-01

    Coordinated control strategies to provide system inertia support for main grid from offshore wind farm that is integrated through HVdc transmission is the subject matter of this paper. The strategy that seeks to provide inertia support to the main grid through simultaneous utilization of HVdc...... capacitors energy, and wind turbines (WTs) inertia without installing the remote communication of two HVdc terminals is introduced in details. Consequently, a novel strategy is proposed to improve system inertia through sequentially exerting dc capacitors energy and then WTs inertia via a cascading control...

  14. Light-weight DC to very high voltage DC converter

    Energy Technology Data Exchange (ETDEWEB)

    Druce, Robert L. (Union City, CA); Kirbie, Hugh C. (Dublin, CA); Newton, Mark A. (Livermore, CA)

    1998-01-01

    A DC-DC converter capable of generating outputs of 100 KV without a transformer comprises a silicon opening switch (SOS) diode connected to allow a charging current from a capacitor to flow into an inductor. When a specified amount of charge has flowed through the SOS diode, it opens up abruptly; and the consequential collapsing field of the inductor causes a voltage and current reversal that is steered into a load capacitor by an output diode. A switch across the series combination of the capacitor, inductor, and SOS diode closes to periodically reset the SOS diode by inducing a forward-biased current.

  15. Modeling and power system stability of VSC-HVDC systems for grid-connection of large offshore windfarms

    Energy Technology Data Exchange (ETDEWEB)

    Xue Yijing [Vestas China, Beijing (China); Akhmatov, Vladislav [Technical Univ. of Denmark, Lyngby (Denmark). Centre for Electric Technology

    2009-07-01

    Utilization of Voltage Source Converter (VSC) - High Voltage Direct Current (HVDC) systems for grid-connection of large offshore windfarms becomes relevant as installed power capacities as well as distances to the connection points of on-land transmission systems increase. At the same time, the grid code requirements of the Transmission System Operators (TSO), including ancillary system services and Low-Voltage Fault-Ride-Through (LVFRT) capability of large offshore windfarms, become more demanding. This paper presents a general-level model of and a LVFRT solution for a VSC-HVDC system for grid-connection of large offshore windfarms. The VSC-HVDC model is implemented using a general approach of independent control of active and reactive power in normal operations. The on-land VSC inverter, i.e. a grid-side inverter, provides voltage support to the transmission system and comprises a LVFRT solution in short-circuit faults. The presented model, LVFRT solution and impact on the system stability are investigated as a case study of a 1,000 MW offshore windfarm grid-connected through a VSC-HVDC system. The investigation is carried out on a model of the west Danish, with some elements of the north German, 400 kV, 220 kV and 150 kV transmission systems stage 2005-2006 using the DIgSILENT PowerFactory simulation program. In the investigation, a thermal power plant just south to the Danish border has been substituted by this 1,000 MW offshore windfarm utilizing the VSC-HVDC system. The investigation has shown that the substitution of a thermal power plant by a VSC-HVDC connected offshore windfarm should not have any negative impact on the short-term stability of the west Danish transmission system. The investigation should be repeated applying updated system model stages and offshore wind power commissioning schedules in the North and Baltic Seas. (orig.)

  16. A generic inertia emulation controller for multi-terminal VSC-HVDC systems

    DEFF Research Database (Denmark)

    Zhu, Jiebei; Guerrero, Josep M.; Booth, Campbell

    2013-01-01

    A generic Inertia Emulation Controller (INEC) for Multi-Terminal Voltage-source-converter based HVDC (VSC-MTDC) is proposed in this paper. The proposed INEC can be incorporated in any grid-side-voltage-source-converter (GVSC) station, allowing the MTDC terminal to contribute an inertial response...

  17. Impacts on the Voltage Profile of DC Distribution Network with DG Access

    Science.gov (United States)

    Tu, J. J.; Yin, Z. D.

    2017-07-01

    With the development of electronic, more and more distributed generations (DGs) access into grid and cause the research fever of direct current (DC) distribution network. Considering distributed generation (DG) location and capacity have great impacts on voltage profile, so use IEEE9 and IEEE33 typical circuit as examples, with DGs access in centralized and decentralized mode, to compare voltage profile in alternating and direct current (AC/DC) distribution network. Introducing the voltage change ratio as an evaluation index, so gets the general results on voltage profile of DC distributed network with DG access. Simulation shows that, in the premise of reasonable location and capacity, DC distribution network is more suitable for DG access.

  18. Application of Grey Wolf Optimizer Algorithm for Optimal Power Flow of Two-Terminal HVDC Transmission System

    Directory of Open Access Journals (Sweden)

    Heba Ahmed Hassan

    2017-01-01

    Full Text Available This paper applies a relatively new optimization method, the Grey Wolf Optimizer (GWO algorithm for Optimal Power Flow (OPF of two-terminal High Voltage Direct Current (HVDC electrical power system. The OPF problem of pure AC power systems considers the minimization of total costs under equality and inequality constraints. Hence, the OPF problem of integrated AC-DC power systems is extended to incorporate HVDC links, while taking into consideration the power transfer control characteristics using a GWO algorithm. This algorithm is inspired by the hunting behavior and social leadership of grey wolves in nature. The proposed algorithm is applied to two different case-studies: the modified 5-bus and WSCC 9-bus test systems. The validity of the proposed algorithm is demonstrated by comparing the obtained results with those reported in literature using other optimization techniques. Analysis of the obtained results show that the proposed GWO algorithm is able to achieve shorter CPU time, as well as minimized total cost when compared with already existing optimization techniques. This conclusion proves the efficiency of the GWO algorithm.

  19. Characterization of diode valve in medium voltage dc/dc converter for wind turbines

    DEFF Research Database (Denmark)

    Dincan, Catalin Gabriel; Kjær, Philip Carne

    2016-01-01

    This paper proposes a methodology for characterization of medium voltage (MV), medium frequency (MF) rectifier diode valve. The intended application is for 10MW dc/dc converters used in DC offshore wind turbines. Sensitivity to semiconductor component parameter variation, snubber component tolera...... tolerance, influence of temperature and stray capacitance are analyzed. It is concluded that the largest impact on sensitivity is given by reverse recovery charge variation and differences of temperature between adjacent devices....

  20. Light-weight DC to very high voltage DC converter

    Science.gov (United States)

    Druce, R.L.; Kirbie, H.C.; Newton, M.A.

    1998-06-30

    A DC-DC converter capable of generating outputs of 100 KV without a transformer comprises a silicon opening switch (SOS) diode connected to allow a charging current from a capacitor to flow into an inductor. When a specified amount of charge has flowed through the SOS diode, it opens up abruptly; and the consequential collapsing field of the inductor causes a voltage and current reversal that is steered into a load capacitor by an output diode. A switch across the series combination of the capacitor, inductor, and SOS diode closes to periodically reset the SOS diode by inducing a forward-biased current. 1 fig.

  1. Offshore VSC-HVDC Networks : Impact on Transient Stability of AC Transmission Systems

    NARCIS (Netherlands)

    van der Meer, A.A.

    2017-01-01

    The transition towards a sustainable society calls for the massive deployment of renewable energy sources such as large wind parks located far offshore. High-voltage direct current transmission based on voltage sourced converter technology (VSC-HVDC) offers a wide range of technological benefits

  2. Voltage control of DC islanded microgrids

    DEFF Research Database (Denmark)

    Tucci, Michele; Riverso, Stefano; Quintero, Juan Carlos Vasquez

    2015-01-01

    We propose a new decentralized control scheme for DC Islanded microGrids (ImGs) composed by several Distributed Generation Units (DGUs) with a general interconnection topology. Each local controller regulates to a reference value the voltage of the Point of Common Coupling (PCC...

  3. Cluster Control of Offshore Wind Power Plants Connected to a Common HVDC Station

    DEFF Research Database (Denmark)

    Göksu, Ömer; Sakamuri, Jayachandra N.; Rapp, C. Andrea

    2016-01-01

    of offshore AC grid voltage control and onshore ancillary services provision, i.e. POD by the active power modulation of the cluster. The two cases are simulated using DIgSILENT PowerFactory, where the IEC 61400-27-1 wind turbine and WPP control models and a generic offshore layout with cluster of three WPPs......In this paper a coordinated control for cluster of offshore WPPs connected to the same HVDC connection is being implemented and analyzed. The study is targeting two cases as; coordination of reactive power flow between HVDC converter and the WPP cluster while providing offshore AC grid voltage...... control, and coordinated closed loop control between the HVDC and the WPPs while the cluster is providing Power Oscillation Damping ( POD) via active power modulation. It is shown that the coordinated cluster control helps to improve the steady-state and dynamic response of the offshore AC grid in case...

  4. Boost Half-Bridge DC-DC Converter with Reconfigurable Rectifier for Ultra-Wide Input Voltage Range Applications

    DEFF Research Database (Denmark)

    Vinnikov, Dmitri; Chub, Andrii; Liivik, Elizaveta

    2018-01-01

    This paper introduces a novel galvanically isolated boost half-bridge dc-dc converter intended for modern power electronic applications where ultra-wide input voltage regulation range is needed. A reconfigurable output rectifier stage performs a transition between the voltage doubler and the full......-bridge diode rectifiers and, by this means, extends the regulation range significantly. The converter features a low number of components and resonant soft switching of semiconductors, which result in high power conversion efficiency over a wide input voltage and load range. The paper presents the operating...

  5. Optimisation of VSC-HVDC Transmission for Wind Power Plants

    DEFF Research Database (Denmark)

    Silva, Rodrigo Da

    Connection of Wind Power Plants (WPP), typically oshore, using VSCHVDC transmission is an emerging solution with many benefits compared to the traditional AC solution, especially concerning the impact on control architecture of the wind farms and the grid. The VSC-HVDC solution is likely to meet...... more stringent grid codes than a conventional AC transmission connection. The purpose of this project is to analyse how HVDC solution, considering the voltage-source converter based technology, for grid connection of large wind power plants can be designed and optimised. By optimisation, the project...... the robust control technique is applied is compared with the classical proportional-integral (PI) performance, by means of time domain simulation in a point-to-point HVDC connection. The three main parameters in the discussion are the wind power delivered from the offshore wind power plant, the variation...

  6. Economic Aspect of HVDC Transmission System for Indonesia Consideration in Nuclear Power Development

    International Nuclear Information System (INIS)

    Edwaren Liun

    2009-01-01

    As a country with hundreds million people, Indonesia needs to generate large scale power and distribute it to thorough country to improve gross domestic product of the population. In the power transmission domain, the High Voltage Direct Current (HVDC) transmission system should be considered for the next decades concerning any technical and economical problems with HVAC transmission. HVDC transmission system is the answer for the Indonesian condition. This system can connect the high energy potential regions to the high energy demand regions. HVDC is the most efficient to transport energy from one region to another one region. Dismantling and removing assets costs are included to the estimated for capital costs, while the environmental and property costs are the costs of securing designations and resource consents, and valuation and legal advice for the HVDC investment. Although converter terminals are expensive however, for long transmissions HVDC system can compensate the costs over breakeven distance through very efficient transmission system. Efficiency of HVDC is appearing from conductor wire, supporting tower, low energy loses and free space used by route of the transmission line. HVDC system is also free from some problem, concerning stability, inductive and capacitive load components, phase differences and frequency system. In the economic aspect the HVDC capital costs for the transmission options comprise estimates of the cost to design, purchase and construct new HVDC transmission components. While operating and maintenance costs of HVDC assets comprise the costs for replacement the old existing overhead transmission lines, underground and submarine cables, and HVDC converter station components. (author)

  7. Precision High-Voltage DC Dividers and Their Calibration

    Czech Academy of Sciences Publication Activity Database

    Dragounová, Naděžda

    2005-01-01

    Roč. 54, č. 5 (2005), s. 1911-1915 ISSN 0018-9456 R&D Projects: GA AV ČR KSK1048102; GA ČR GA202/03/0889 Keywords : calibration * dc voltage * high voltage (HV) Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.665, year: 2005

  8. Impedance-based Analysis of DC Link Control in Voltage Source Rectifiers

    DEFF Research Database (Denmark)

    Lu, Dapeng; Wang, Xiongfei; Blaabjerg, Frede

    2018-01-01

    This paper analyzes the dynamics influences of the outer dc link control in the voltage source rectifiers based on the impedance model. The ac-dc interactions are firstly presented by means of full order small signal model in dq frame, which shows the input voltage and load condition are the two...

  9. AC Transmission Emulation Control Strategies for the BTB VSC HVDC System in the Metropolitan Area of Seoul

    Directory of Open Access Journals (Sweden)

    Sungyoon Song

    2017-08-01

    Full Text Available In the Korean power system, growing power loads have recently created the problems of voltage instability and fault current in the Seoul Capital Area (SCA. Accordingly, the back-to-back (BTB voltage source converter (VSC high-voltage direct-current (HVDC system is emerging to resolve such problems with grid segmentation. However, non-convergence problems occur in this metropolitan area, due to the large change of power flow in some contingencies. Therefore, this paper proposes two kinds of AC transmission emulation control (ATEC strategies to improve the metropolitan transient stability, and to resolve the non-convergence problem. The proposed ATEC strategies are able to mitigate possible overloading of adjacent AC transmission, and maintain power balance between metropolitan regions. The first ATEC strategy uses a monitoring system that permits the reverse power flow of AC transmission, and thus effectively improves the grid stability based on the power transfer equation. The second ATEC strategy emulates AC transmission with DC link capacitors in a permissible DC-link voltage range according to angle difference, and securely improves the gird stability, without requiring grid operator schedule decisions. This paper compares two kinds of ATEC schemes: it demonstrates the first ATEC strategy with specific fault scenario with PSS/E (Power Transmission System Planning Software, and evaluates the second ATEC strategy with internal controller performance with PSCAD/EMTDC (Power System Electromagnetic Transients Simulation Software.

  10. Stability analysis of multi-infeed HVDC system applying VSC-HVDC

    DEFF Research Database (Denmark)

    Liu, Yan; Chen, Zhe

    2010-01-01

    This paper presents a general model of dual infeed HVDC system applying VSC-HVDC, which can be used as an element in large multi infeed HVDC system. The model may have different structure under different grid faults because of the action of breakers. Hence power flow of the system based on this m...

  11. DC Voltage Droop Control Implementation in the AC/DC Power Flow Algorithm: Combinational Approach

    DEFF Research Database (Denmark)

    Akhter, F.; Macpherson, D.E.; Harrison, G.P.

    2015-01-01

    of operational flexibility, as more than one VSC station controls the DC link voltage of the MTDC system. This model enables the study of the effects of DC droop control on the power flows of the combined AC/DC system for steady state studies after VSC station outages or transient conditions without needing...... to use its complete dynamic model. Further, the proposed approach can be extended to include multiple AC and DC grids for combined AC/DC power flow analysis. The algorithm is implemented by modifying the MATPOWER based MATACDC program and the results shows that the algorithm works efficiently....

  12. Modular VSC converter based HVDC power transmission from offshore wind power plant: Compared to the conventional HVAC system

    DEFF Research Database (Denmark)

    Sharma, Ranjan; Rasmussen, Tonny Wederberg; Jensen, Kim Høj

    2010-01-01

    power transmission options with HVDC systems are under consideration. In this paper, a comparison between a conventional HVAC transmission system and a HVDC system equipped with modular voltage source converters is provided. The comparison is based on the total energy transmission capability...

  13. Voltage Control Scheme with Distributed Generation and Grid Connected Converter in a DC Microgrid

    Directory of Open Access Journals (Sweden)

    Jong-Chan Choi

    2014-10-01

    Full Text Available Direct Current (DC microgrids are expected to become larger due to the rapid growth of DC energy sources and power loads. As the scale of the system expends, the importance of voltage control will be increased to operate power systems stably. Many studies have been performed on voltage control methods in a DC microgrid, but most of them focused only on a small scale microgrid, such as a building microgrid. Therefore, a new control method is needed for a middle or large scale DC microgrid. This paper analyzes voltage drop problems in a large DC microgrid and proposes a cooperative voltage control scheme with a distributed generator (DG and a grid connected converter (GCC. For the voltage control with DGs, their location and capacity should be considered for economic operation in the systems. Accordingly, an optimal DG allocation algorithm is proposed to minimize the capacity of a DG for voltage control in DC microgrids. The proposed methods are verified with typical load types by a simulation using MATLAB and PSCAD/EMTDC.

  14. Design and implementation of a bidirectional current-controlled voltage-regulated DC-DC switched-mode converter

    CSIR Research Space (South Africa)

    Coetzer, A

    2016-01-01

    Full Text Available The design and implementation of a bidirectional current-controlled voltage-regulated DC-DC converter is presented. The converter is required to connect a battery of electrochemical cells (the battery) to an asynchronous motor-drive unit via a...

  15. Optimal Constant DC Link Voltage Operation of aWave Energy Converter

    Directory of Open Access Journals (Sweden)

    Mats Leijon

    2013-04-01

    Full Text Available This article proposes a simple and reliable damping strategy for wave powerfarm operation of small-scale point-absorber converters. The strategy is based on passiverectification onto a constant DC-link, making it very suitable for grid integration of the farm.A complete model of the system has been developed in Matlab Simulink, and uses real sitedata as input. The optimal constant DC-voltage is evaluated as a function of the significantwave height and energy period of the waves. The total energy output of the WEC is derivedfor one year of experimental site data. The energy output is compared for two cases, onewhere the optimal DC-voltage is determined and held constant at half-hour basis throughoutthe year, and one where a selected value of the DC-voltage is kept constant throughout theyear regardless of sea state.

  16. Harmonic elimination technique for a single-phase multilevel converter with unequal DC link voltage levels

    DEFF Research Database (Denmark)

    Ghasemi, N.; Zare, F.; Boora, A.A.

    2012-01-01

    Multilevel converters, because of the benefits they attract in generating high quality output voltage, are used in several applications. Various modulation and control techniques are introduced by several researchers to control the output voltage of the multilevel converters like space vector...... modulation and harmonic elimination (HE) methods. Multilevel converters may have a DC link with equal or unequal DC voltages. In this study a new HE technique based on the HE method is proposed for multilevel converters with unequal DC link voltage. The DC link voltage levels are considered as additional...

  17. Connection of OWPPs to HVDC networks using VSCs and Diode Rectifiers: an Overview

    DEFF Research Database (Denmark)

    Saborío-Romano, Oscar; Bidadfar, Ali; Göksu, Ömer

    This paper provides an overview of two technologies for connecting offshore wind power plants (offshore WPPs, OWPPs) to high-voltage direct current (HVDC) networks: voltage source converters (VSCs) and diode rectifiers (DRs). Current grid code requirements for the connection of such power plants...

  18. Computationally Efficient Transient Stability Modeling of multi-terminal VSC-HVDC

    DEFF Research Database (Denmark)

    van der Meer, Arjen A; Rueda-Torres, José; Silva, Filipe Miguel Faria da

    2016-01-01

    This paper studies the inclusion of averaged VSC-based grid interfaces and HVDC networks into stability type simulations, and compares the accuracy and speed of three multi-terminal DC dynamic models: 1) a state-space based model, 2) a multi-rate improved model, and 3) a reduced-order model...

  19. High-voltage direct-current circuit breakers

    International Nuclear Information System (INIS)

    Yoshioka, Y.; Hirasawa, K.

    1991-01-01

    This paper reports that in 1954 the first high-voltage direct-current (HVDC) transmission system was put into operation between Gotland and the mainland of Sweden. Its system voltage and capacity were 100 kV and 20 MW, respectively. Since then many HVDC transmission systems have been planned, constructed, or commissioned in more than 30 places worldwide, and their total capacity is close to 40 GW. Most systems commissioned to date are two-terminal schemes, and HVDC breakers are not yet used in the high-potential main circuit of those systems, because the system is expected to perform well using only converter/inverter control even at a fault stage of the transmission line. However, even in a two-terminal scheme there are not a few merits in using an HVDC breaker when the system has two parallel transmission lines, that is, when it is a double-circuit system

  20. An Assessment of Converter Modelling Needs for Offshore Wind Power Plants Connected via VSC-HVDC Networks

    DEFF Research Database (Denmark)

    Glasdam, Jakob; Zeni, Lorenzo; Hjerrild, Jesper

    2013-01-01

    Modular multilevel cascaded converter (MMCC) based high voltage direct current (HVDC) transmission is technically superior to other technologies, especially in case of connection of offshore wind power plants (OWPPs). Modelling challenges are faced by OWPP developers, who are not acquainted...... with detailed information regarding the internal behaviour of such complex devices. This paper presents an investigation of the modelling requirements of the MMCC HVDC system, based on comparison between simulation results using a detailed HVDC representation in PSCAD/EMTDC and two less detailed models realised...

  1. Method and system for a gas tube-based current source high voltage direct current transmission system

    Science.gov (United States)

    She, Xu; Chokhawala, Rahul Shantilal; Bray, James William; Sommerer, Timothy John; Zhou, Rui; Zhang, Di

    2017-08-29

    A high-voltage direct-current (HVDC) transmission system includes an alternating current (AC) electrical source and a power converter channel that includes an AC-DC converter electrically coupled to the electrical source and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and the DC-AC inverter each include a plurality of legs that includes at least one switching device. The power converter channel further includes a commutating circuit communicatively coupled to one or more switching devices. The commutating circuit is configured to "switch on" one of the switching devices during a first portion of a cycle of the H-bridge switching circuits and "switch off" the switching device during a second portion of the cycle of the first and second H-bridge switching circuits.

  2. The limits of HVDC transmission

    International Nuclear Information System (INIS)

    Pickard, William F.

    2013-01-01

    Renewable energy is abundant, but not necessarily near the urban centers where it will be used. Therefore, it must be transported; and this transport entails a systemic energy penalty. In this paper simple qualitative calculations are introduced to show (i) that high-voltage direct-current (HVDC) power lines for megameter and greater distances are unlikely to achieve power capacities much beyond 2 GW, although they can be paralleled; (ii) that most sources and sinks of electric power are rather less than 10,000 km apart; (iii) that such long lines can be constructed to have transmission losses -tilde 2%; and (iv) that lines of such low loss in fact meet minimal standards of intergenerational equity. - Highlights: • Renewable Energy is abundant, but not necessarily near population centers. • Its transportation requires energy and can be a major systemic inefficiency. • HVDC can be transmitted 10,000 km with 2% loss and near-optimal embodied energy. • Such transmission meets the requirements of intergenerational equity

  3. State-plane analysis of zero-voltage-switching resonant dc/dc power converters

    Science.gov (United States)

    Kazimierczuk, Marian K.; Morse, William D.

    The state-plane analysis technique for the zero-voltage-switching resonant dc/dc power converter family of topologies, namely the buck, boost, buck-boost, and Cuk converters is established. The state plane provides a compression of information that allows the designer to uniquely examine the nonlinear dynamics of resonant converter operation. Utilizing the state plane, resonant converter modes of operation are examined and the switching frequencies are derived for the boundaries between these modes, including the boundary of energy conversion.

  4. Control and Protection of Wind Power Plants with VSC-HVDC Connection

    DEFF Research Database (Denmark)

    Chaudhary, Sanjay

    oscillations, and hence, lower dc voltage overshoots in the VSC-HVDC system. On the protection side, the coordination of over-current relays has been analysed in the new environment. A simple yet reliable scheme utilizing the well-known over-current relay characteristics has been presented for the detection...... grid frequency from the onshore grid frequency. Three different methods have been evaluated here for relaying the onshore grid frequency to the offshore grid, such that the wind power plant can participate in the grid frequency control. One of the schemes does not involve communication, while the other...... of faults and the determination of faulted feeder in the offshore grid. It is demonstrated that the communication capability of modern relays can help avoid the potential cases of over-reach. The test system is modelled for real time simulation in RSCAD/RTDS platform, such that the physical relays could...

  5. A comprehensive analysis and hardware implementation of control strategies for high output voltage DC-DC boost power converter

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevikumar; Grandi, Gabriele; Blaabjerg, Frede

    2017-01-01

    voltage and efficiency of classical HV converters. This paper deals with extra high-voltage (EHV) dc-dc boost converter by the application of voltage-lift technique to overcome the aforementioned deficiencies. The control strategy is based on classical proportional-integral (P-I) and fuzzy logic closed...... are performed by the DSP. The experimental results provided show good conformity with developed hypothetical predictions. Additionally, the presented study confirms that the fuzzy logic controller provides better performance than classical P-I controller under different perturbation conditions....

  6. Asymmetrical Fault Analysis at the Offshore Network of HVDC connected Wind Power Plants

    DEFF Research Database (Denmark)

    Goksu, Omer; Cutululis, Nicolaos Antonio; Sorensen, Poul

    2017-01-01

    Short-circuit faults for HVDC connected Wind Power Plants (WPPs) have been studied mostly for dc link and onshore ac grid faults, while the offshore ac faults, especially asymmetrical faults, have been mostly omitted in the literature. Requirements related to the offshore asymmetrical faults have...... been kept as future development at national levels in the recent ENTSO-E HVDC network code. In this paper offshore ac faults are studied using the classical power system fault analysis methods. It is shown that suppression of negative sequence current flow is not applicable and negative sequence...

  7. Five-Level Converter with Low Switching Frequency Applied as DC Voltage Supply

    DEFF Research Database (Denmark)

    Rasmussen, Tonny Wederberg

    1999-01-01

    This paper describes the use of a multi-level converter as a DC supply. Equations for the converter will be deduced in the nondissipative case. The equations provide solutions to DC voltage and the angle of converter voltage. In addition the spectrum for the harmonics after the elimination of sel...

  8. Site Selection for Hvdc Ground Electrodes

    Science.gov (United States)

    Freire, P. F.; Pereira, S. Y.

    2014-12-01

    High-Voltage Direct Current (HVDC) transmission systems are composed of a bipole transmission line with a converter substation at each end. Each substation may be equipped with a HVDC ground electrode, which is a wide area (up to 1 km Ø) and deep (from 3 to 100m) electrical grounding. When in normal operation, the ground electrode will dissipate in the soil the unbalance of the bipole (~1.5% of the rated current). When in monopolar operation with ground return, the HVDC electrode will inject in the soil the nominal pole continuous current, of about 2000 to 3000 Amperes, continuously for a period up to a few hours. HVDC ground electrodes site selection is a work based on extensive geophysical and geological surveys, in order to attend the desired design requirements established for the electrodes, considering both its operational conditions (maximum soil temperature, working life, local soil voltage gradients etc.) and the interference effects on the installations located up to 50 km away. This poster presents the geophysical investigations conducted primarily for the electrodes site selection, and subsequently for the development of the crust resistivity model, which will be used for the interference studies. A preliminary site selection is conducted, based on general geographical and geological criteria. Subsequently, the geology of each chosen area is surveyed in detail, by means of electromagnetic/electrical geophysical techniques, such as magnetotelluric (deep), TDEM (near-surface) and electroresistivity (shallow). Other complementary geologic and geotechnical surveys are conducted, such as wells drilling (for geotechnical characterization, measurement of the water table depth and water flow, and electromagnetic profiling), and soil and water sampling (for measurement of thermal parameters and evaluation of electrosmosis risk). The site evaluation is a dynamic process along the surveys, and some sites will be discarded. For the two or three final sites, the

  9. A High-Voltage Low-Power Switched-Capacitor DC-DC Converter Based on GaN and SiC Devices for LED Drivers

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2018-01-01

    Previous research on switched-capacitor DC-DC converters has focused on low-voltage and/or high-power ranges where the efficiencies are dominated by conduction loss. Switched-capacitor DC-DC converters at high-voltage (> 100 V) low-power (high efficiency and high power density...... are anticipated to emerge. This paper presents a switched-capacitor converter with an input voltage up to 380 V (compatible with rectified European mains) and a maximum output power of 10 W. GaN switches and SiC diodes are analytically compared and actively combined to properly address the challenges at high......-voltage low-current levels, where switching loss becomes significant. Further trade-off between conduction loss and switching loss is experimentally optimized with switching frequencies. Three variant designs of the proposed converter are implemented, and the trade-off between the efficiency and the power...

  10. OPF-Based Optimal Location of Two Systems Two Terminal HVDC to Power System Optimal Operation

    Directory of Open Access Journals (Sweden)

    Mehdi Abolfazli

    2013-04-01

    Full Text Available In this paper a suitable mathematical model of the two terminal HVDC system is provided for optimal power flow (OPF and optimal location based on OPF such power injection model. The ability of voltage source converter (VSC-based HVDC to independently control active and reactive power is well represented by the model. The model is used to develop an OPF-based optimal location algorithm of two systems two terminal HVDC to minimize the total fuel cost and active power losses as objective function. The optimization framework is modeled as non-linear programming (NLP and solved by Matlab and GAMS softwares. The proposed algorithm is implemented on the IEEE 14- and 30-bus test systems. The simulation results show ability of two systems two terminal HVDC in improving the power system operation. Furthermore, two systems two terminal HVDC is compared by PST and OUPFC in the power system operation from economical and technical aspects.

  11. An Improved Droop Control Method for DC Microgrids Based on Low Bandwidth Communication with DC Bus Voltage Restoration and Enhanced Current Sharing Accuracy

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Guerrero, Josep M.; Sun, Kai

    2014-01-01

    Droop control is the basic control method for load current sharing in dc microgrid applications. The conventional dc droop control method is realized by linearly reducing the dc output voltage as the output current increases. This method has two limitations. First, with the consideration of line...... resistance in a droop-controlled dc microgrid, since the output voltage of each converter cannot be exactly the same, the output current sharing accuracy is degraded. Second, the DC bus voltage deviation increases with the load due to the droop action. In this paper, in order to improve the performance......, and the LBC system is only used for changing the values of the dc voltage and current. Hence, a decentralized control scheme is accomplished. The simulation test based on Matlab/Simulink and the experimental validation based on a 2×2.2 kW prototype were implemented to demonstrate the proposed approach....

  12. Power system integration of VSC-HVDC connected offshore wind power plants

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Kjær, Philip Carne

    This report presents an overview of challenges and solutions for the integration into the power system of offshore wind power plants (WPPs) connected to onshore grids through a voltage-source converter based high voltage direct current (VSC-HVDC) transmission system. Aspects that are touched upon...... of the network in the vicinity of the HVDC station and (iii) limiting characteristics of WPPs such as inherent control and communication delays, presence of mechanical resonances at the same frequency as POD and active power ramp-rate limitations. Clustering of wind power plants The proof of concept...... introduction to justify the study, describe the state-of-art and formulate the project’s objectives, the report is essentially divided into three parts, as follows. Control principles of offshore AC networks The control of offshore AC networks relies purely on power electronics, especially if Type 4 wind...

  13. An Optimal Control Strategy for DC Bus Voltage Regulation in Photovoltaic System with Battery Energy Storage

    Directory of Open Access Journals (Sweden)

    Muhamad Zalani Daud

    2014-01-01

    Full Text Available This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV system with battery energy storage (BES. The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC. For the grid side VSC (G-VSC, two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods.

  14. An optimal control strategy for DC bus voltage regulation in photovoltaic system with battery energy storage.

    Science.gov (United States)

    Daud, Muhamad Zalani; Mohamed, Azah; Hannan, M A

    2014-01-01

    This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV) system with battery energy storage (BES). The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC). For the grid side VSC (G-VSC), two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods.

  15. Formulation and Analysis of an Approximate Expression for Voltage Sensitivity in Radial DC Distribution Systems

    Directory of Open Access Journals (Sweden)

    Ho-Yong Jeong

    2015-08-01

    Full Text Available Voltage is an important variable that reflects system conditions in DC distribution systems and affects many characteristics of a system. In a DC distribution system, there is a close relationship between the real power and the voltage magnitude, and this is one of major differences from the characteristics of AC distribution systems. One such relationship is expressed as the voltage sensitivity, and an understanding of voltage sensitivity is very useful to describe DC distribution systems. In this paper, a formulation for a novel approximate expression for the voltage sensitivity in a radial DC distribution system is presented. The approximate expression is derived from the power flow equation with some additional assumptions. The results of approximate expression is compared with an exact calculation, and relations between the voltage sensitivity and electrical quantities are analyzed analytically using both the exact form and the approximate voltage sensitivity equation.

  16. DC-bus voltage control of grid-connected voltage source converter by using space vector modulated direct power control under unbalanced network conditions

    DEFF Research Database (Denmark)

    Xiao, Lei; Huang, Shoudao; Lu, Kaiyuan

    2013-01-01

    Unbalanced grid voltage will cause large dc-bus voltage ripple and introduce high harmonic current components on the grid side. This will severely threaten the safety of the grid-connected voltage source converter (VSC) and consequently, affect the healthy operation condition of the load. In this......Unbalanced grid voltage will cause large dc-bus voltage ripple and introduce high harmonic current components on the grid side. This will severely threaten the safety of the grid-connected voltage source converter (VSC) and consequently, affect the healthy operation condition of the load....... In this study, a new proportional-integral-resonant (PI-RES) controller-based, space vector modulated direct power control topology is proposed to suppress the dc-bus voltage ripple and in the same time, controlling effectively the instantaneous power of the VSC. A special ac reactive power reference component...... is introduced in the controller, which is necessary in order to reduce the dc-bus voltage ripple and active power harmonics at the same time. The proposed control topology is implemented in the lab. Simulation and experimental results are provided to validate its performance and the analysis presented...

  17. A Half-Bridge Voltage Balancer with New Controller for Bipolar DC Distribution Systems

    Directory of Open Access Journals (Sweden)

    Byung-Moon Han

    2016-03-01

    Full Text Available This paper proposes a half-bridge voltage balancer with a new controller for bipolar DC distribution systems. The proposed control scheme consists of two cascaded Proportional Integral (PI controls rather than one PI control for balancing the pole voltage. In order to confirm the excellence of voltage balancing performance, a typical bipolar DC distribution system including a half-bridge voltage balancer with proposed controller was analyzed by computer simulations. Experiments with a scaled prototype were also carried out to confirm the simulation results. The half-bridge voltage balancer with proposed controller shows better performance than the half-bridge voltage balancer with one PI control for balancing the pole voltage.

  18. Conducted EMI Prediction and Mitigation Strategy Based on Transfer Function for a High-Low Voltage DC-DC Converter in Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Li Zhai

    2018-04-01

    Full Text Available The high dv/dt and di/dt outputs from power devices in a high-low voltage DC-DC converter on electric vehicles (EVs can always introduce the unwanted conducted electromagnetic interference (EMI emissions. A conducted EMI prediction and mitigation strategy that is based on transfer function for the high-low voltage DC-DC converter in EVs are proposed. A complete test for the DC-DC converter is conducted to obtain the conducted EMI from DC power cables in the frequency band of 150 kHz-108 MHz. The equivalent circuit with high-frequency parasitic parameters of the DC-DC converter is built`1 based on the measurement results to acquire the characteristics of the conducted EMI of the DC power cables. The common mode (CM and differential mode (DM propagation coupling paths are determined, and the corresponding transfer functions of the DM interference and CM interference are established. The simulation results of the conducted EMI can be obtained by software Matlab and Computer Simulation Technology (CST. By analyzing the transfer functions and the simulation results, the dominated interference is the CM interference, which is the main factor of the conducted EMI. A mitigation strategy for the design of the CM interference filter based on the dominated CM interference is proposed. Finally, the mitigation strategy of the conducted EMI is verified by performing the conducted voltage experiment. From the experiment results, the conducted voltage of the DC power cables is decreased, respectively, by 58 dBμV, 55 dBμV, 65 dBμV, 53 dBμV, and 54 dBμV at frequency 200 kHz, 400 kHz, 600 kHz, 1.4 MHz, and 50 MHz. The conduced voltage in the frequency band of 150 kHz–108 MHz can be mitigated by adding the CM interference filters, and the values are lower than the limit level-3 of CISPR25 standard (GB/T 18655-2010.

  19. Enhanced DC-Link Capacitor Voltage Balancing Control of DC–AC Multilevel Multileg Converters

    DEFF Research Database (Denmark)

    Busquets-Monge, Sergio; Maheshwari, Ram Krishan; Nicolas-Apruzzese, Joan

    2015-01-01

    This paper presents a capacitor voltage balancing control applicable to any multilevel dc–ac converter formed by a single set of series-connected capacitors implementing the dc link and semiconductor devices, such as the diode-clamped topology. The control is defined for any number of dc-link vol......This paper presents a capacitor voltage balancing control applicable to any multilevel dc–ac converter formed by a single set of series-connected capacitors implementing the dc link and semiconductor devices, such as the diode-clamped topology. The control is defined for any number of dc...

  20. Control Method for DC-Link Voltage Ripple Cancellation in Voltage Source Inverter under Unbalanced Three-Phase Voltage Supply Conditions

    Czech Academy of Sciences Publication Activity Database

    Chomát, Miroslav; Schreier, Luděk

    2005-01-01

    Roč. 152, č. 3 (2005), s. 494-500 ISSN 1350-2352 R&D Projects: GA ČR(CZ) GA102/02/0554 Institutional research plan: CEZ:AV0Z20570509 Keywords : DC-link voltage * unbalanced three-phase voltage Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.587, year: 2005

  1. HVDC Transmission an Outlook and Significance for Pakistani Power Sector

    Science.gov (United States)

    Ahmad, Muhammad; Wang, Zhixin; Wang, Jinjian; Baloach, Mazhar H.; Longxin, Bao; Hua, Qing

    2018-04-01

    Recently a paradigm shift in the power sector is observed, i.e., countries across the globe have deviated their attention to distributed generation rather than conventional centralized bulk generation. Owing to the above narrative, distributed energy resources e.g., wind and PV have gained the adequate attention of governments and researchers courtesy to their eco-friendly nature. On the contrary, the increased infiltration of distributed generation to the power system has introduced many technical and economical glitches such as long-distance transmission, transmission lines efficiency, control capability and cost etc. To mitigate these complications, the utility of high voltage direct current (HVDC) transmission has emerged as a possible solution. In this context, this paper includes a brief discussion on the fundamentals HVDC and its significance in Pakistani power sector. Furthermore, the potential of distributed energy resources for Pakistan is also the subject matter of this paper, so that significance of HVDC transmission can effectively be deliberated.

  2. Tailored sPP/Silica Nanocomposite for Ecofriendly Insulation of Extruded HVDC Cable

    Directory of Open Access Journals (Sweden)

    Bin Dang

    2015-01-01

    Full Text Available Cross-linked polyethylene (XLPE is a thermosetting material that cannot be recycled at the end of its lifetime. This study investigated the potential of syndiotactic polypropylene (sPP/silica as an ecofriendly extruded insulation system for HVDC cables. We investigated the morphology, Fourier transform infrared, and thermal, thermomechanical, and electrical behaviors of sPP modified with 0.5–3% nanosilica. We found that the silica/sPP nanocomposite without cross-linking offered a suitable mechanical modulus at room temperature and sufficient intensity at high temperatures, and adding nanosilica modified by a silane coupling agent to the sPP resulted in significant DC resistivity and space charge improvement. The optimal nanosilica content in the sPP was determined by balancing the mechanical and thermomechanical characteristics and the DC resistivity. The sPP/silica nanocomposite reported here shows great potential as a candidate insulation material for future ecofriendly extruded HVDC cables.

  3. Distributed Control to Ensure Proportional Load Sharing and Improve Voltage Regulation in Low-Voltage DC Microgrids

    DEFF Research Database (Denmark)

    Anand, Sandeep; G. Fernandes, Baylon; Guerrero, Josep M.

    2013-01-01

    DC microgrids are gaining popularity due to high efficiency, high reliability, and easy interconnection of renewable sources as compared to the ac system. Control objectives of dc microgrid are: 1) to ensure equal load sharing (in per unit) among sources; and 2) to maintain low-voltage regulation...

  4. Space Charge Modulated Electrical Breakdown of Oil Impregnated Paper Insulation Subjected to AC-DC Combined Voltages

    Directory of Open Access Journals (Sweden)

    Yuanwei Zhu

    2018-06-01

    Full Text Available Based on the existing acknowledgment that space charge modulates AC and DC breakdown of insulating materials, this investigation promotes the related investigation into the situations of more complex electrical stress, i.e., AC-DC combined voltages. Experimentally, the AC-DC breakdown characteristics of oil impregnated paper insulation were systematically investigated. The effects of pre-applied voltage waveform, AC component ratio, and sample thickness on AC-DC breakdown characteristics were analyzed. After that, based on an improved bipolar charge transport model, the space charge profiles and the space charge induced electric field distortion during AC-DC breakdown were numerically simulated to explain the differences in breakdown characteristics between the pre-applied AC and pre-applied DC methods under AC-DC combined voltages. It is concluded that large amounts of homo-charges are accumulated during AC-DC breakdown, which results in significantly distorted inner electric field, leading to variations of breakdown characteristics of oil impregnated paper insulation. Therefore, space charges under AC-DC combined voltages must be considered in the design of converter transformers. In addition, this investigation could provide supporting breakdown data for insulation design of converter transformers and could promote better understanding on the breakdown mechanism of insulating materials subjected to AC-DC combined voltages.

  5. Model, Characterization, and Analysis of Steady-State Security Region in AC/DC Power System with a Large Amount of Renewable Energy

    Directory of Open Access Journals (Sweden)

    Zhong Chen

    2017-08-01

    Full Text Available A conventional steady-state power flow security check only implements point-by-point assessment, which cannot provide a security margin for system operation. The concept of a steady-state security region is proposed to effectively tackle this problem. Considering that the commissioning of the increasing number of HVDC (High Voltage Direct Current and the fluctuation of renewable energy have significantly affected the operation and control of a conventional AC system, the definition of the steady-state security region of the AC/DC power system is proposed in this paper based on the AC/DC power flow calculation model including LCC/VSC (Line Commutated Converter/Voltage Sourced Converter-HVDC transmission and various AC/DC constraints, and hence the application of the security region is extended. In order to ensure that the proposed security region can accurately provide global security information of the power system under the fluctuations of renewable energy, this paper presents four methods (i.e., a screening method of effective boundary surfaces, a fitting method of boundary surfaces, a safety judging method, and a calculation method of distances and corrected distance between the steady-state operating point and the effective boundary surfaces based on the relation analysis between the steady-state security region geometry and constraints. Also, the physical meaning and probability analysis of the corrected distance are presented. Finally, a case study is demonstrated to test the feasibility of the proposed methods.

  6. Optimized Controller Design for a 12-Pulse Voltage Source Converter Based HVDC System

    Science.gov (United States)

    Agarwal, Ruchi; Singh, Sanjeev

    2017-12-01

    The paper proposes an optimized controller design scheme for power quality improvement in 12-pulse voltage source converter based high voltage direct current system. The proposed scheme is hybrid combination of golden section search and successive linear search method. The paper aims at reduction of current sensor and optimization of controller. The voltage and current controller parameters are selected for optimization due to its impact on power quality. The proposed algorithm for controller optimizes the objective function which is composed of current harmonic distortion, power factor, and DC voltage ripples. The detailed designs and modeling of the complete system are discussed and its simulation is carried out in MATLAB-Simulink environment. The obtained results are presented to demonstrate the effectiveness of the proposed scheme under different transient conditions such as load perturbation, non-linear load condition, voltage sag condition, and tapped load fault under one phase open condition at both points-of-common coupling.

  7. Direct current power delivery system and method

    Science.gov (United States)

    Zhang, Di; Garces, Luis Jose; Dai, Jian; Lai, Rixin

    2016-09-06

    A power transmission system includes a first unit for carrying out the steps of receiving high voltage direct current (HVDC) power from an HVDC power line, generating an alternating current (AC) component indicative of a status of the first unit, and adding the AC component to the HVDC power line. Further, the power transmission system includes a second unit for carrying out the steps of generating a direct current (DC) voltage to transfer the HVDC power on the HVDC power line, wherein the HVDC power line is coupled between the first unit and the second unit, detecting a presence or an absence of the added AC component in the HVDC power line, and determining the status of the first unit based on the added AC component.

  8. Lifetime Estimation of MMC for Offshore Wind Power HVDC Application

    DEFF Research Database (Denmark)

    Liu, Hui; Ma, Ke; Loh, Poh Chiang

    2014-01-01

    of these could lead to thermo-mechanical fatigues in the components and joints of the power modules and thereby causing reliability challenge. This study focuses on the lifetime evaluation of MMC based on power cycling and thermal cycling considering the mission profiles in the High Voltage Direct Current (HVDC...

  9. Lifetime Estimation of MMC for Offshore Wind Power HVDC Application

    DEFF Research Database (Denmark)

    Liu, Hui; Ma, Ke; Qin, Zian

    2016-01-01

    of these could lead to thermomechanical fatigues in the components and joints of the power modules and thereby causing reliability challenge. This study focuses on the lifetime evaluation of MMC based on power cycling and thermal cycling considering the mission profiles in the High Voltage Direct Current (HVDC...

  10. Short Circuit Ratio analysis of multi-infeed HVDC system with a VSC-HVDC link

    DEFF Research Database (Denmark)

    Liu, Yan; Chen, Zhe

    2011-01-01

    As an important indicator of system stability, Short Circuit Ratio (SCR) is commonly used in power system analysis. For systems include HVDC link connection, the Effective SCR (ESCR) is mostly applied to indicate the strength of HVDC infeed bus. The contribution of VSC-HVDC link to multi......-infeed HVDC system stability has been analyzed a lot but the study on ESCR of this kind of system is still insufficient. This paper presents a calculation method for ESCR of the hybrid multi infeed HVDC system based on a simple two-infeed HVDC system model. The equivalent circuit of this system under short...... circuit situation is firstly obtained based on the model. Then its Thevenin equivalent circuit is derived and system ESCR can be calculated. At last, simulation study verified that the calculated ESCR value under different cases can indicate the change of system stability....

  11. Nonlinear Control of Back-to-Back VSC-HVDC System via Command-Filter Backstepping

    Directory of Open Access Journals (Sweden)

    Jie Huang

    2017-01-01

    Full Text Available This paper proposed a command-filtered backstepping controller to improve the dynamic performance of back-to-back voltage-source-converter high voltage direct current (BTB VSC-HVDC. First, the principle and model of BTB VSC-HVDC in abc and d-q frame are described. Then, backstepping method is applied to design a controller to maintain the voltage balance and realize coordinated control of active and reactive power. Meanwhile, command filter is introduced to deal with the problem of input saturation and explosion of complexity in conventional backstepping, and a filter compensation signal is designed to diminish the adverse effects caused by the command filter. Next, the stability and convergence of the whole system are proved via the Lyapunov theorem of asymptotic stability. Finally, simulation results are given to demonstrate that proposed controller has a better dynamic performance and stronger robustness compared to the traditional PID algorithm, which also proves the effectiveness and possibility of the designed controller.

  12. HVDC Connected Offshore Wind Power Plants: Review and Outlook of Current Research

    DEFF Research Database (Denmark)

    Glasdam, Jakob; Zeni, Lorenzo; Gryning, Mikkel

    2013-01-01

    This paper presents a state-of-the-art review on grid integration of large offshore wind power plants (OWPPs) using high voltage direct voltage (HVDC) for grid connection. The paper describes in detail selected challenges hereto and presents how DONG Energy Wind Power (DEWP) is addressing...... these challenges through three coordinated PhD projects in close collaboration with leading academia within the field. The overall goal of these projects is to acquire in-depth knowledge of relevant operating phenomena in the offshore OWPP grid, rich with power electronics devices (PEDs) such as the HVDC...... and the PED widely used in the wind turbine generators (WTGs). Challenges hereto include PED control system interaction (from a stability point of view), assessment of the quality of vendor supplied control systems and their robustness against e.g. short circuits and load rejection. Furthermore, the outcome...

  13. Solid-state high voltage modulator and its application to rf source high voltage power supplies

    International Nuclear Information System (INIS)

    Tooker, J.F.; Huynh, P.; Street, R.W.

    2009-01-01

    A solid-state high voltage modulator is described in which series-connected insulated-gate bipolar transistors (IGBTs) are switched at a fixed frequency by a pulse width modulation (PWM) regulator, that adjusts the pulse width to control the voltage out of an inductor-capacitor filter network. General Atomics proposed the HV power supply (HVPS) topology of multiple IGBT modulators connected to a common HVdc source for the large number of 1 MW klystrons in the linear accelerator of the Accelerator Production of Tritium project. The switching of 24 IGBTs to obtain 20 kVdc at 20 A for short pulses was successfully demonstrated. This effort was incorporated into the design of a -70 kV, 80 A, IGBT modulator, and in a short-pulse test 12 IGBTs regulated -5 kV at 50 A under PWM control. These two tests confirm the practicality of solid-state IGBT modulators to regulate high voltage at reasonable currents. Tokamaks such as ITER require large rf heating and current drive systems with multiple rf sources. A HVPS topology is presented that readily adapts to the three rf heating systems on ITER. To take advantage of the known economy of scale for power conversion equipment, a single HVdc source feeds multiple rf sources. The large power conversion equipment, which is located outside, converts the incoming utility line voltage directly to the HVdc needed for the class of rf sources connected to it, to further reduce cost. The HVdc feeds a set of IGBT modulators, one for each rf source, to independently control the voltage applied to each source, maximizing operational flexibility. Only the modulators are indoors, close to the rf sources, minimizing the use of costly near-tokamak floor space.

  14. HVDC Ground Electrodes - a Source of Geophysical Data

    Science.gov (United States)

    Freire, P. F.; Pereira, S. Y.

    2015-12-01

    The HVDC electrode is a component of a High Voltage Direct Current energy transmission system, and is designed to inject into the ground continuous currents up to 3500 A. The typical HVDC ground electrode is a ring of vertical conductors, 1 km wide, buried a few tens of meters.The design of a HVDC electrode is based on extensive geological, geotechnical and geophysical surveys. Geophysical data are usually electrical (VES) and electromagnetic (TEM/MT) acquisitions, for the modeling of the shallow, near-surface and deep layers of the crust. This survey aims, first, the electrode site selection, and then, at the selected site, this data is combined into a single apparent resistivity curve, which is inverted, allowing for the determination of the layered geoelectric crust model. The injection of electrical continuous current in the electrode is then simulated, with the geoelectric crust model, for the determination of the soil surface potential profile (which is usually asymmetric for different directions, due to non-1D geoelectric models).For the commissioning of a HVDC electrode, field measurements are done, such as electrode grounding resistance, soil surface potentials and metal-to-soil potentials at specific structures (buried pipelines, for instance).The geophysical data acquired during the design phase is a set of data completely independent from the electrical data acquired during the electrode commissioning phase, and both are correlated by the geoelectric model. It happens, therefore, that the geoelectric model can be calibrated based on the electrical data, with the correction of static shifts and other adjustments.This paper suggests that the commissioning of HVDC systems should be associated to a research & development program, with a university or foundation. The idea is to enjoy the opportunity of a more complete field survey, with the acquisition of a wide set of data for a better geological characterization of the area where the electrode was built.

  15. Control and operation of wind turbine converters during faults in an offshore wind power plant grid with VSC-HVDC connection

    DEFF Research Database (Denmark)

    Chaudhary, Sanjay; Teodorescu, Remus; Rodriguez, Pedro

    2011-01-01

    Voltage source converter (VSC) based high voltage dc (HVDC) transmission is an attractive technique for large offshore wind power plants, especially when long cable transmission is required for connection to the onshore grid. New multi-MW wind turbines are likely to be equipped with full scale...... converters to meet the stringent grid code requirements. In such a scenario, the offshore grid is terminated to the power electronic converters on all the ends. This paper presents a control scheme for the synchronization and control of the grid side converters (GSC) of the wind turbine generators (WTG......). Current limit control enables the GSC to sustain the fault currents during short circuits in the offshore wind collector system grid. However, power transmission is affected, and the fault has to be isolated. It can be resynchronized after the fault has been cleared and the breaker reclosed. Healthy WTG...

  16. Performance of 22.4-kW nonlaminated-frame dc series motor with chopper controller. [a dc to dc voltage converter

    Science.gov (United States)

    Schwab, J. R.

    1979-01-01

    Performance data obtained through experimental testing of a 22.4 kW traction motor using two types of excitation are presented. Ripple free dc from a motor-generator set for baseline data and pulse width modulated dc as supplied by a battery pack and chopper controller were used for excitation. For the same average values of input voltage and current, the motor power output was independent of the type of excitation. However, at the same speeds, the motor efficiency at low power output (corresponding to low duty cycle of the controller) was 5 to 10 percentage points lower on chopped dc than on ripple free dc. The chopped dc locked-rotor torque was approximately 1 to 3 percent greater than the ripple free dc torque for the same average current.

  17. DC Model Cable under Polarity Inversion and Thermal Gradient: Build-Up of Design-Related Space Charge

    Directory of Open Access Journals (Sweden)

    Nugroho Adi

    2017-07-01

    Full Text Available In the field of energy transport, High-Voltage DC (HVDC technologies are booming at present due to the more flexible power converter solutions along with needs to bring electrical energy from distributed production areas to consumption sites and to strengthen large-scale energy networks. These developments go with challenges in qualifying insulating materials embedded in those systems and in the design of insulations relying on stress distribution. Our purpose in this communication is to illustrate how far the field distribution in DC insulation systems can be anticipated based on conductivity data gathered as a function of temperature and electric field. Transient currents and conductivity estimates as a function of temperature and field were recorded on miniaturized HVDC power cables with construction of 1.5 mm thick crosslinked polyethylene (XLPE insulation. Outputs of the conductivity model are compared to measured field distributions using space charge measurements techniques. It is shown that some features of the field distribution on model cables put under thermal gradient can be anticipated based on conductivity data. However, space charge build-up can induce substantial electric field strengthening when materials are not well controlled.

  18. Frequency Regulation Strategies in Grid Integrated Offshore Wind Turbines via VSC-HVDC Technology: A Review

    Directory of Open Access Journals (Sweden)

    Jafar Jallad

    2017-08-01

    Full Text Available The inclusion of wind energy in a power system network is currently seeing a significant increase. However, this inclusion has resulted in degradation of the inertia response, which in turn seriously affects the stability of the power system’s frequency. This problem can be solved by using an active power reserve to stabilize the frequency within an allowable limit in the event of a sudden load increment or the loss of generators. Active power reserves can be utilized via three approaches: (1 de-loading method (pitching or over-speeding by a variable speed wind turbine (VSWT; (2 stored energy in the capacitors of voltage source converter-high voltage direct current (VSC-HVDC transmission; and (3 coordination of frequency regulation between the offshore wind farms and the VSC-HVDC transmission. This paper reviews the solutions that can be used to overcome problems related to the frequency stability of grid- integrated offshore wind turbines. It also details the permanent magnet synchronous generator (PMSG with full-scale back to back (B2B converters, its corresponding control strategies, and a typical VSC-HVDC system with an associated control system. The control methods, both on the levels of a wind turbine and the VSC-HVDC system that participate in a system’s primary frequency control and emulation inertia, are discussed.

  19. Design of interleaved multilayer rosen type piezoelectric transformer for high voltage dc/dc applications

    DEFF Research Database (Denmark)

    Rødgaard, Martin Schøler; Andersen, Thomas; Meyer, Kaspar Sinding

    2012-01-01

    Research and development within piezoelectric transformer (PT) based converters are rapidly increasing as the technology is maturing and starts to prove its capabilities. Especially for high voltage and high step-up applications, PT based converters have demonstrated good performance and DC...

  20. Small-Signal Dynamic Analysis of LCC-HVDC with STATCOM at the Inverter Busbar

    Science.gov (United States)

    Liu, Dong; Jiang, Wen; Guo, Chunyi; Rehman, Atiq Ur; Zhao, Chengyong

    2018-01-01

    This paper develops a linearized small-signal dynamic model of a Line-Commutated-Converter based HVDC (LCC-HVDC) system with STATCOM at the inverter busbar, and validates its accuracy by comparing time-domain responses from small-signal model and PSCAD-based simulation results. Considering the potential impact of Phase-Locked-Loop (PLL) parameters on the study system and the close connection of STATCOM and LCC inverter station at AC busbar, this paper investigates the impact of PLL gains and AC voltage control parameters of STATCOM on the system small-signal stability. The studies show that (i) the PLL gain has highly impact on the study system and smaller PLL gains are preferable; (ii) larger values of both the proportional gain and the integral gain of AC voltage controller of STATCOM could result in oscillation/instability of the system.

  1. Gas tube-switched high voltage DC power converter

    Science.gov (United States)

    She, Xu; Bray, James William; Sommerer, Timothy John; Chokhawala, Rahul

    2018-05-15

    A direct current (DC)-DC converter includes a transformer and a gas tube-switched inverter circuit. The transformer includes a primary winding and a secondary winding. The gas tube-switched inverter circuit includes first and second inverter load terminals and first and second inverter input terminals. The first and second inverter load terminals are coupled to the primary winding. The first and second inverter input terminals are couplable to a DC node. The gas tube-switched inverter circuit further includes a plurality of gas tube switches respectively coupled between the first and second inverter load terminals and the first and second inverter input terminals. The plurality of gas tube switches is configured to operate to generate an alternating current (AC) voltage at the primary winding.

  2. Adaptive Sliding-Mode Control in Bus Voltage for an Islanded DC Microgrid

    Directory of Open Access Journals (Sweden)

    Dan Zhang

    2017-01-01

    Full Text Available The control of bus voltage is a crucial task for the stable operation of islanded DC microgrids. To improve the DC bus voltage control dynamics and stability, this paper proposes an adaptive sliding-mode control method based on large-signal model. The sliding-mode control, adaptive observation, and fix-frequency pulse width modulation technology are adopted and combined efficiently, which guarantee stable bus voltage and the constant switching frequency of closed-loop system, regardless of how the parameters vary with the variable constant-power loads and uncertainties. In addition, the reference values can be quickly tracked by the state variables using the proposed method without any additional sensors/hardware circuits. Therefore, this method is beneficial for the scalability and plug-play of the distributed generators and loads within the DC microgrids. The performance of the proposed control method has been successfully verified in simulation.

  3. Kingsnorth-London dc transmission link

    Energy Technology Data Exchange (ETDEWEB)

    1966-03-11

    The hvdc transmission link between one of the 500 MW generators at Kingsnorth Power Station and two receiving stations in London will use a three-wire dc cable system rated to carry 1200 A at +- 266 kV. This 51-mile system will be the first dc link in the world to be used as an integral part of a complex interconnected ac network.

  4. Field angle dependence of voltage-induced ferromagnetic resonance under DC bias voltage

    International Nuclear Information System (INIS)

    Shiota, Yoichi; Miwa, Shinji; Tamaru, Shingo; Nozaki, Takayuki; Kubota, Hitoshi; Fukushima, Akio; Suzuki, Yoshishige; Yuasa, Shinji

    2016-01-01

    We studied the rectification function of microwaves in CoFeB/MgO-based magnetic tunnel junctions using voltage-induced ferromagnetic resonance (FMR). Our findings reveal that the shape of the structure of the spectrum depends on the rotation angle of the external magnetic field, providing clear evidence that FMR dynamics are excited by voltage-induced magnetic anisotropy changes. Further, enhancement of the rectified voltage was demonstrated under a DC bias voltage. In our experiments, the highest microwave detection sensitivity obtained was 350 mV/mW, at an RF frequency of 1.0 GHz and field angle of θ_H=80°, ϕ_H=0°. The experimental results correlated with those obtained via simulation, and the calculated results revealed the magnetization dynamics at the resonance state. - Highlights: • Examined voltage-induced ferromagnetic resonance (FMR) under various field angles. • FMR dynamics are excited by voltage-induced magnetic anisotropy changes. • Microwave detection sensitivity depends on input RF and elevation angle. • Microwave detection sensitivity=350 mV/mW at RF=1.0 GHz, θ_H=80°, ϕ_H=0°.

  5. Intelligent voltage control in a DC micro-grid containing PV generation and energy storage

    OpenAIRE

    Rouzbehi, Kumars; Miranian, Arash; Candela García, José Ignacio; Luna Alloza, Álvaro; Rodríguez Cortés, Pedro

    2014-01-01

    This paper proposes an intelligent control scheme for DC voltage regulationin a DC micro-grid integrating photovoltaic (PV) generation, energy storage and electric loads. The maximum power generation of the PV panel is followed using the incremental conductance (IC) maximum power point tracking (MPPT) algorithm while a high-performance local linear controller (LLC)is developed for the DC voltage control in the micro-grid.The LLC, as a data-driven control strategy, controls the bidirectional c...

  6. Step-Up DC-DC converters

    DEFF Research Database (Denmark)

    Forouzesh, Mojtaba; Siwakoti, Yam P.; Gorji, Saman A.

    2017-01-01

    on the general law and framework of the development of next-generation step-up dc-dc converters, this paper aims to comprehensively review and classify various step-up dc-dc converters based on their characteristics and voltage-boosting techniques. In addition, the advantages and disadvantages of these voltage......DC-DC converters with voltage boost capability are widely used in a large number of power conversion applications, from fraction-of-volt to tens of thousands of volts at power levels from milliwatts to megawatts. The literature has reported on various voltage-boosting techniques, in which......-boosting techniques and associated converters are discussed in detail. Finally, broad applications of dc-dc converters are presented and summarized with comparative study of different voltage-boosting techniques....

  7. Zero-Voltage Switching PWM Strategy Based Capacitor Current-Balancing Control for Half-Bridge Three-Level DC/DC Converter

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Zhang, Qi

    2018-01-01

    The current imbalance among the two input capacitors is one of the important issues of the half-bridge threelevel (HBTL) DC/DC converter, which would affect system performance and reliability. In this paper, a zero-voltage switching (ZVS) pulse-wide modulation (PWM) strategy including two operation...

  8. Generic inertia emulation controller for multi-terminal voltage-source-converter high voltage direct current systems

    DEFF Research Database (Denmark)

    Zhu, Jiebei; Guerrero, Josep M.; Hung, William

    2014-01-01

    A generic Inertia Emulation Controller (INEC) scheme for Multi-Terminal Voltage-Source-Converter based HVDC (VSC-MTDC) systems is proposed and presented in this paper. The proposed INEC can be incorporated in any Grid-side Voltage-Source-Converter (GVSC) station, allowing the MTDC terminal...

  9. Tailored sPP/Silica Nano composite for Eco friendly Insulation of Extruded HVDC Cable

    International Nuclear Information System (INIS)

    Dang, B.; He, J.; Hu, J.; Zhou, Y.

    2015-01-01

    Cross-linked polyethylene (XLPE) is a thermosetting material that cannot be recycled at the end of its lifetime. This study investigated the potential of syndiotactic polypropylene (sPP)/silica as an eco friendly extruded insulation system for HVDC cables. We investigated the morphology, Fourier transform infrared, and thermal, thermomechanical, and electrical behaviors of sPP modified with 0.5-3% nano silica. We found that the silica/sPP nano composite without cross-linking offered a suitable mechanical modulus at room temperature and sufficient intensity at high temperatures, and adding nano silica modified by a silane coupling agent to the sPP resulted in significant DC resistivity and space charge improvement. The optimal nano silica content in the sPP was determined by balancing the mechanical and thermomechanical characteristics and the DC resistivity. The sPP/silica nano composite reported here shows great potential as a candidate insulation material for future eco friendly extruded HVDC cables.

  10. The role of facts and HVDC in the future pan-European transmission system development

    NARCIS (Netherlands)

    L'Abbate, A.; Migliavacca, G.; Hager, U.; Rehtanz, C.; Ruberg, S.; Lopes Ferreira, H.M.; Fulli, G.; Purvins, A.

    2010-01-01

    The present paper focuses on FACTS (Flexible Alternating Current Transmission System) and HVDC (High Voltage Direct Current) transmission technologies. Particular attention is paid to different specific technical, economic and environmental features of these power electronics-based devices. Final

  11. Integration of wind power in Germany's transmission grid by using HVDC links

    Energy Technology Data Exchange (ETDEWEB)

    Wasserrab, Andreas; Fleckenstein, Marco; Balzer, Gerd [Technische Univ. Darmstadt (Germany). Inst. of Electrical Power and Energy

    2012-07-01

    This paper deals with the challenges for the integration of wind power in Germany's transmission grid. Several options for the expansion of transmission grids are discussed. The consideration focuses on HVDC technologies, which are used for further analyses. The basis of the analysis is the transmission grid of a German transmission system operator, which is implemented in a simulation tool. The model consists of the 110-kV-, 220-kV- and the 380-kV-system. In different scenarios the integration of wind power is analysed by applying HVDC links to connect the northern part of the grid with the load centres in the South. The results of load flow calculations are discussed focusing on transmission line loading and voltage stability. The paper concludes with future prospects of HVDC applications in Germany. (orig.)

  12. Variable Frequency Operations of an Offshore Wind Power Plant with HVDC-VSC: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, V.; Singh, M.; Muljadi, E.

    2011-12-01

    In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated. Based on DOE study, wind power generation may reach 330 GW by 2030 at the level of penetration of 20% of the total energy production. From this amount of wind power, 54 GW of wind power will be generated at offshore wind power plants. The deployment of offshore wind power plants requires power transmission from the plant to the load center inland. Since this power transmission requires submarine cable, there is a need to use High-Voltage Direct Current (HVDC) transmission. Otherwise, if the power is transmitted via alternating current, the reactive power generated by the cable capacitance may cause an excessive over voltage in the middle of the transmission distance which requires unnecessary oversized cable voltage breakdown capability. The use of HVDC is usually required for transmission distance longer than 50 kilometers of submarine cables to be economical. The use of HVDC brings another advantage; it is capable of operating at variable frequency. The inland substation will be operated to 60 Hz synched with the grid, the offshore substation can be operated at variable frequency, thus allowing the wind power plant to be operated at constant Volt/Hz. In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated.

  13. Stability analysis of a three-phase grid-connected DC power supply with small DC-link capacitor and voltage feed-forward compensation

    DEFF Research Database (Denmark)

    Török, Lajos; Mathe, L.

    2017-01-01

    The purpose of this work was to investigate effect of the DC-link voltage feed-forward compensation on the stability of the three-phase-grid connected DC power supply, used for electrolysis application, equipped with small DC link capacitor. In case of weak grid condition, the system...

  14. State-plane trajectories used to observe and control the behavior of a voltage step-up dc-to-dc converter

    Science.gov (United States)

    Burns, W. W., III; Wilson, T. G.

    1976-01-01

    State-plane analysis techniques are employed to study the voltage step up energy storage dc-to-dc converter. Within this framework, an example converter operating under the influence of a constant on time and a constant frequency controller is examined. Qualitative insight gained through this approach is used to develop a conceptual free running control law for the voltage step up converter which can achieve steady state operation in one on/off cycle of control. Digital computer simulation data is presented to illustrate and verify the theoretical discussions presented.

  15. HVDC keitiklių charakteristikų tyrimas

    OpenAIRE

    Miliauskas, Tadas

    2016-01-01

    Nowadays HVDC technology are rapidly evolving in the world. Number of HVDC interconnectios are constantly growing and a lot of asychonous systems are connected using the HVDC interconnections. There are two HVDC interconnections started working in Lithuania this year: NordBalt – Connection with Sweden and LitPol Link – connection with Poland. In this final project are widely considered LitPol Link system, investigating characteristics of this connection. Using modeling program ...

  16. High voltage performance of a dc photoemission electron gun with centrifugal barrel-polished electrodes

    Science.gov (United States)

    Hernandez-Garcia, C.; Bullard, D.; Hannon, F.; Wang, Y.; Poelker, M.

    2017-09-01

    The design and fabrication of electrodes for direct current (dc) high voltage photoemission electron guns can significantly influence their performance, most notably in terms of maximum achievable bias voltage. Proper electrostatic design of the triple-point junction shield electrode minimizes the risk of electrical breakdown (arcing) along the insulator-cable plug interface, while the electrode shape is designed to maintain work, we describe a centrifugal barrel-polishing technique commonly used for polishing the interior surface of superconducting radio frequency cavities but implemented here for the first time to polish electrodes for dc high voltage photoguns. The technique reduced polishing time from weeks to hours while providing surface roughness comparable to that obtained with diamond-paste polishing and with unprecedented consistency between different electrode samples. We present electrode design considerations and high voltage conditioning results to 360 kV (˜11 MV/m), comparing barrel-polished electrode performance to that of diamond-paste polished electrodes. Tests were performed using a dc high voltage photogun with an inverted-geometry ceramic insulator design.

  17. Adapting AC Lines to DC Grids for Large-Scale Renewable Power Transmission

    Directory of Open Access Journals (Sweden)

    D. Marene Larruskain

    2014-10-01

    Full Text Available All over the world, governments of different countries are nowadays promoting the use of clean energies in order to achieve sustainable energy systems. In this scenario, since the installed capacity is continuously increasing, renewable sources can play an important role. Notwithstanding that, some important problems may appear when connecting these sources to the grid, being the overload of distribution lines one of the most relevant. In fact, renewable generation is usually connected to the nearest AC grid, although this HV system may not have been designed considering distributed generation. In the particular case of large wind farms, the electrical grid has to transmit all the power generated by wind energy and, as a consequence, the AC system may get overloaded. It is therefore necessary to determine the impact of wind power transmission so that appropriate measures can be taken. Not only are these measures influenced by the amount of power transmitted, but also by the quality of the transmitted power, due to the output voltage fluctuation caused by the highly variable nature of wind. When designing a power grid, although AC systems are usually the most economical solution because of its highly proven technology, HVDC may arise in some cases (e.g. offshore wind farms as an interesting alternative, offering some added values such as lower losses and better controllability. This way, HVDC technology can solve most of the aforementioned problems and has a good potential for future use. Additionally, the fast development of power electronics based on new and powerful semiconductor devices allow the spread of innovative technologies, such as VSC-HVDC, which can be applied to create DC grids. This paper focuses on the main aspects involved in adapting the existing overhead AC lines to DC grids, with the objective of improving the transmission of distributed renewable energy to the centers of consumption.

  18. Hopf bifurcation and chaos from torus breakdown in voltage-mode controlled DC drive systems

    International Nuclear Information System (INIS)

    Dai Dong; Ma Xikui; Zhang Bo; Tse, Chi K.

    2009-01-01

    Period-doubling bifurcation and its route to chaos have been thoroughly investigated in voltage-mode and current-mode controlled DC motor drives under simple proportional control. In this paper, the phenomena of Hopf bifurcation and chaos from torus breakdown in a voltage-mode controlled DC drive system is reported. It has been shown that Hopf bifurcation may occur when the DC drive system adopts a more practical proportional-integral control. The phenomena of period-adding and phase-locking are also observed after the Hopf bifurcation. Furthermore, it is shown that the stable torus can breakdown and chaos emerges afterwards. The work presented in this paper provides more complete information about the dynamical behaviors of DC drive systems.

  19. Low start-up voltage dc–dc converter with negative voltage control for thermoelectric energy harvesting

    Directory of Open Access Journals (Sweden)

    Pui-Sun Lei

    2015-01-01

    Full Text Available This Letter presents a low start-up voltage dc–dc converter for low-power thermoelectric systems which uses a native n-type MOS transistor as the start-up switch. The start-up voltage of the proposed converter is 300 mV and the converter does not need batteries to start up. The negative voltage control is proposed to reduce the leakage current caused by native n-type transistor and increase the efficiency. The proposed converter was designed using standard 0.18 µm CMOS process with chip size of 0.388 mm^2. The peak efficiency is 63% at load current of 1.5 mA. The proposed converter provides output voltage >1 V at maximum load current of 3.2 mA.

  20. High-voltage boost quasi-Z-source isolated DC/DC converter

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Blaabjerg, Frede; Loh, Poh Chiang

    2014-01-01

    converter uses less switches, a smaller common duty cycle and less turns for the transformer when compared with existing topologies. Its size and weight are therefore smaller, whereas its efficiency is higher. It is therefore well-suited for applications, where a wide range of voltage gain is required like...... renewable energy systems, DC power supplies found in telecom, aerospace and electric vehicles. To demonstrate the performance of the proposed converter, a 400 V, 500 W prototype has been implemented in the laboratory. Efficiency of the prototype measured is found to vary from 89.0 to 97.4% when its input...

  1. A voltage control method for an active capacitive DC-link module with series-connected circuit

    DEFF Research Database (Denmark)

    Wang, Haoran; Wang, Huai; Blaabjerg, Frede

    2017-01-01

    Many efforts have been made to improve the performance of power electronic systems with active capacitive DC-link module in terms of power density as well as reliability. One of the attractive solution is an active capacitive DC-link with the series-connected circuit because of handling small......-rated power. However, in the existing control method of this circuit, the DC-link current of the backward-stage or forward-stage need to be sensed for extracting the ripple components, which limits the flexibility of the active DC-link module. Thus, in this paper, a voltage control method of an active...... capacitive DC-link module is proposed. Current sensor at the DC-link will be cancel from the circuit. The controller of the series-connected circuit requires internal voltage signals of the DC-link module only, making it possible to be fully independent without any additional connection to the main circuit...

  2. High-voltage engineering and testing

    CERN Document Server

    Ryan, Hugh M

    2013-01-01

    This 3rd edition of High Voltage Engineering Testing describes strategic developments in the field and reflects on how they can best be managed. All the key components of high voltage and distribution systems are covered including electric power networks, UHV and HV. Distribution systems including HVDC and power electronic systems are also considered.

  3. Operation and control of a DC-grid offshore wind farm under DC transmission system faults

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2013-01-01

    . Consequently, the protection and control strategies of dc systems need to be established. This paper studies a dc-grid offshore wind farm, where the wind power collection system and power transmission system adopt dc technology. In this paper, the redundancy of the HVDC transmission system under faults...... is studied, and a fault ridethrough strategy for the dc-grid offshore wind farm is proposed. The proposed strategy can effectively minimize the impacts of the power transmission system disturbance on the offshore wind farm, and on the ac grid. A dc-grid offshore wind farm example is simulated with PSCAD....../EMTDC, and the results validate the feasibility of the presented redundancy configuration and operation approach, and the fault ridethrough control strategy....

  4. A Pilot Directional Protection for HVDC Transmission Line Based on Relative Entropy of Wavelet Energy

    Directory of Open Access Journals (Sweden)

    Sheng Lin

    2015-07-01

    Full Text Available On the basis of analyzing high-voltage direct current (HVDC transmission system and its fault superimposed circuit, the direction of the fault components of the voltage and the current measured at one end of transmission line is certified to be different for internal faults and external faults. As an estimate of the differences between two signals, relative entropy is an effective parameter for recognizing transient signals in HVDC transmission lines. In this paper, the relative entropy of wavelet energy is applied to distinguish internal fault from external fault. For internal faults, the directions of fault components of voltage and current are opposite at the two ends of the transmission line, indicating a huge difference of wavelet energy relative entropy; for external faults, the directions are identical, indicating a small difference. The simulation results based on PSCAD/EMTDC show that the proposed pilot protection system acts accurately for faults under different conditions, and its performance is not affected by fault type, fault location, fault resistance and noise.

  5. DFIG-based offshore wind power plant connected to a single VSC-HVDC operated at variable frequency: Energy yield assessment

    International Nuclear Information System (INIS)

    De-Prada-Gil, Mikel; Díaz-González, Francisco; Gomis-Bellmunt, Oriol; Sumper, Andreas

    2015-01-01

    The existence of HVDC (High Voltage Direct Current) transmission systems for remote offshore wind power plants allows devising novel wind plant concepts, which do not need to be synchronized with the main AC grid. This paper proposes an OWPP (offshore wind power plant) design based on variable speed wind turbines driven by DFIGs (doubly fed induction generators) with reduced power electronic converters connected to a single VSC-HVDC converter which operates at variable frequency and voltage within the collection grid. It is aimed to evaluate the influence of the power converter size and wind speed variability within the WPP on energy yield efficiency, as well as to develop a coordinated control between the VSC-HVDC converter and the individual back-to-back reduced power converters of each DFIG-based wind turbine in order to provide control capability for the wind power plant at a reduced cost. To maximise wind power generation by the OWPP, an optimum electrical frequency search algorithm for the VSC-HVDC converter is proposed. Both central wind power plant control level and local wind turbine control level are presented and the performance of the system is validated by means of simulations using MATLAB/Simulink ® . - Highlights: • Influence of converter size and wind speed variability on energy capture efficiency. • Coordinated control between a VSC-HVDC and DFIG WTs with reduced power converters. • Static and dynamic analysis of the performance of the implemented control scheme. • Optimal variable frequency operation to maximize WPP generation at a reduced cost

  6. Enhancement of Voltage Stability of DC Smart Grid During Islanded Mode by Load Shedding Scheme

    Science.gov (United States)

    Nassor, Thabit Salim; Senjyu, Tomonobu; Yona, Atsushi

    2015-10-01

    This paper presents the voltage stability of a DC smart grid based on renewable energy resources during grid connected and isolated modes. During the islanded mode the load shedding, based on the state of charge of the battery and distribution line voltage, was proposed for voltage stability and reservation of critical load power. The analyzed power system comprises a wind turbine, a photovoltaic generator, storage battery as controllable load, DC loads, and power converters. A fuzzy logic control strategy was applied for power consumption control of controllable loads and the grid-connected dual active bridge series resonant converters. The proposed DC Smart Grid operation has been verified by simulation using MATLAB® and PLECS® Blockset. The obtained results show the effectiveness of the proposed method.

  7. Effects of HVDC on power systems small signal angle stability

    Energy Technology Data Exchange (ETDEWEB)

    Custodio, D.T.; Paccini, R.O.; Kopcak, I.; Costa, V.F. da [State University of Campinas (UNICAMP), SP (Brazil). School of Electrical and Computer Engineering. Power Systems Dept.], Emails: totti@dsee.fee.unicamp.br, rodrigo@dsee.fee.unicamp.br, kopcak@dsee.fee.unicamp.br, vivaldo@dsee.fee.unicamp.br

    2009-07-01

    In this paper, a didactic method for parameters tuning of the Power Oscillation Damper (POD) coupled to the HVDC constant current controller is proposed utilizing the MATLAB package with a control system toolbox. First, modal analysis is done from the system state matrix to determine the critical mode and oscillation natural frequency. Input and output linearized matrixes are built to single-input and single-output (SISO) control systems. The phase to be compensated between the active power flow in the parallel AC inter-tie and the current reference signal of the HVDC constant current controller is obtained from the Nyquist theorem. Following, the POD time constants are obtained. Finally, the static gain of the POD is tuned based on the root locus method of the classical control theory. Simulations results prove that the DC power modulation is efficient to damp the AC power oscillations. This method is straightforward because only involves matrix operation. (author)

  8. Parameters Designing of Slide Mode Variable Structure Controller of Bus Voltage of DC Microgrid Based on Proportion Switching Function

    Directory of Open Access Journals (Sweden)

    Sun Zhenchuan

    2017-01-01

    Full Text Available Constant value control of the DC-bus voltage is a essential problem of the control system of the DC microgrids. DC-DC converters are applied in parallel to realize the transform of energy from the distributed generations (DGs to the DC-bus. Droop control methods are applied to the DC-bus voltage while PI controllers are used in controlling the duty ratios of the converters. This method may bring out the slow response speed of the system accompanied by the large ripple of the voltage. The slide mode variable structure control can speed up the response and reduce the ripple of the voltage as well. In the traditional slide mode control based on the proportion switching function, the denominator of the transfer function of the controlled plant is a second-order characteristic polynomial without the constant term. The denominators of the transfer functions of the buck DC-DC converters contain the constant terms. The designing of the parameters of the slide mode control based on the proportion switching function is analyzed based on mathematics deductions. Simulation results show that the selected parameters can not only speed up the response of the system but also greatly reduce the ripple of the voltage.

  9. Design and realization of assessment software for DC-bias of transformers

    Science.gov (United States)

    Liu, Chang; Liu, Lian-guang; Yuan, Zhong-chen

    2013-03-01

    The transformer working at the rated state will partically be saturated, and its mangetic current will be distorted accompanying with various of harmonic, increasing reactive power demand and some other affilicated phenomenon, which will threaten the safe operation of power grid. This paper establishes a transformer saturation circuit model of DCbias under duality principle basing on J-A theory which can reflect the hysteresis characteristics of iron core, and develops an software can assess the effects of transformer DC-bias using hybrid programming technology of C#.net and MATLAB with the microsoft.net platform. This software is able to simulate the mangnetizing current of different structures and assess the Saturation Level of transformers and the influnces of affilicated phenomenon accroding to the parameter of transformers and the DC equivalent voltage. It provides an effective method to assess the influnces of transformers caused by magnetic storm disaster and the earthing current of the HVDC project.

  10. An Improved Control Strategy of Limiting the DC-Link Voltage Fluctuation for a Doubly Fed Induction Wind Generator

    DEFF Research Database (Denmark)

    Yao, J.; Li, H.; Liao, Y.

    2008-01-01

    The paper presents to develop a new control strategy of limiting the dc-link voltage fluctuation for a back-to-back pulsewidth modulation converter in a doubly fed induction generator (DFIG) for wind turbine systems. The reasons of dc-link voltage fluctuation are analyzed. An improved control...... strategy with the instantaneous rotor power feedback is proposed to limit the fluctuation range of the dc-link voltage. An experimental rig is set up to valid the proposed strategy, and the dynamic performances of the DFIG are compared with the traditional control method under a constant grid voltage....... Furthermore, the capabilities of keeping the dc-link voltage stable are also compared in the ride-through control of DFIG during a three-phase grid fault, by using a developed 2 MW DFIG wind power system model. Both the experimental and simulation results have shown that the proposed control strategy is more...

  11. Power system analysis of Hanlim superconducting HVDC system using real time digital simulator

    Science.gov (United States)

    Won, Y. J.; Kim, J. G.; Kim, A. R.; Kim, G. H.; Park, M.; Yu, I. K.; Sim, K. D.; Cho, J.; Lee, S.; Jeong, K. W.; Watanabe, K.

    2011-11-01

    Jeju island is located approximately 100 km south from the mainland of Korea, and had a peak load of about 553 MW in 2008. The demand increases 7.2% a year over the last 5 years. Since the wind profiles of Jeju island are more favorable than mainland of Korea, many companies have shown interest in the wind power business at the Jeju island. Moreover KEPCO has a plan for renewable energy test too whose power will be delivered by HVDC system. One kilometer length of total 8 km was designed as superconducting DC cable. Rest 7 km will be the conventional overhead line. In this paper, the authors have developed a simulation model of the power network around 8 km HVDC system using real time digital simulator (RTDS).

  12. Brief analysis of Jiangsu grid security and stability based on multi-infeed DC index in power system

    Science.gov (United States)

    Zhang, Wenjia; Wang, Quanquan; Ge, Yi; Huang, Junhui; Chen, Zhengfang

    2018-02-01

    The impact of Multi-infeed HVDC has gradually increased to security and stability operating in Jiangsu power grid. In this paper, an appraisal method of Multi-infeed HVDC power grid security and stability is raised with Multi-Infeed Effective Short Circuit Ratio, Multi-Infeed Interaction Factor and Commutation Failure Immunity Index. These indices are adopted in security and stability simulating calculation of Jiangsu Multi-infeed HVDC system. The simulation results indicate that Jiangsu power grid is operating with a strong DC system. It has high level of power grid security and stability, and meet the safety running requirements. Jinpin-Suzhou DC system is located in the receiving end with huge capacity, which is easily leading to commutation failure of the transmission line. In order to resolve this problem, dynamic reactive power compensation can be applied in power grid near Jinpin-Suzhou DC system. Simulation result shows this method is feasible to commutation failure.

  13. Step-Up DC-DC converters

    DEFF Research Database (Denmark)

    Forouzesh, Mojtaba; Siwakoti, Yam P.; Gorji, Saman A.

    2017-01-01

    on the general law and framework of the development of next-generation step-up dc-dc converters, this paper aims to comprehensively review and classify various step-up dc-dc converters based on their characteristics and voltage-boosting techniques. In addition, the advantages and disadvantages of these voltage...

  14. Design of Neutral-Point Voltage Controller of a Three-level NPC Inverter with Small DC-Link Capacitors

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Munk-Nielsen, Stig; Busquets-Monge, S.

    2013-01-01

    A Neutral-Point-Clamped (NPC) three-level inverter with small dc-link capacitors is presented in this paper. The inverter requires zero average neutral-point current for stable neutral-point voltage. The small dc-link capacitors may not maintain capacitor voltage balance, even with zero neutral......-point voltage control on the basis of the continuous model. The design method for optimum performance is discussed. The implementation of the proposed modulation strategy and the controller is very simple. The controller is implemented in a 7.5 kW induction machine based drive with only 14 ìF dc-link capacitors...

  15. Investigating the impact of unanticipated market and construction delays on the development of a meshed HVDC grid using dynamic transmission planning

    NARCIS (Netherlands)

    Shariat Torbaghan, S.; Gibescu, M.; Rawn, B.G.; Müller, H.; Roggenkamp, M.; vd Meijden, M.A.M.M.

    2015-01-01

    This study presents a market-based dynamic transmission planning framework for the construction of a meshed offshore voltage source converter-high voltage direct current (VSC-HVDC) grid. Such a grid is foreseen for integrating offshore wind and electricity trade functions among the North Sea

  16. Characterization of a fully resonant, 1-MHz, 25-watt, DC/DC converter fabricated in a rad-hard BiCMOS/high-voltage process

    International Nuclear Information System (INIS)

    Titus, J.L.; Gehlhausen, M.A.; Desko, J.C. Jr.; Nguyen, T.T.; Roberts, D.J.; Shibib, M.A.; Hollenbach, K.E.

    1995-01-01

    This paper presents the characterization of a DC/DC converter prototype when its power integrated circuit (PIC) chip is exposed to total dose, dose rate, neutron, and heavy ion environments. This fully resonant, 1-MHZ, 25-Watt, DC/DC converter is composed of a brassboard, populated with input/output filters, isolation transformers, output rectifier, capacitors, resistors, and PIC chip, integrating the primary-side control circuitry, secondary-side control circuitry, power switch, gate-drive circuitry, and voltage references. The brassboard is built using commercial off-the-shelf components; and the PIC chip is fabricated using AT and T's rad-hard, bipolar complementary metal-oxide semiconductor (BiCMOS)/high-voltage process. The intent of this paper is to demonstrate that the PIC chip is fabricated with a radiation-hardened process and to demonstrate that various analog, digital, and power functions can be effectively integrated

  17. Research on Robust Control Strategies for VSC-HVDC

    Science.gov (United States)

    Zhu, Kaicheng; Bao, Hai

    2018-01-01

    In the control system of VSC-HVDC, the phase locked loop provides phase signals to voltage vector control and trigger pulses to generate the required reference phase. The PLL is a typical second-order system. When the system is in unstable state, it will oscillate, make the trigger angle shift, produce harmonic, and make active power and reactive power coupled. Thus, considering the external disturbances introduced by the PLL in VSC-HVDC control system, the parameter perturbations of the controller and the model uncertainties, a H∞ robust controller of mixed sensitivity optimization problem is designed by using the Hinf function provided by the robust control toolbox. Then, compare it with the proportional integral controller through the MATLAB simulation experiment. By contrast, when the H∞ robust controller is added, active and reactive power of the converter station can track the change of reference values more accurately and quickly, and reduce overshoot. When the step change of active and reactive power occurs, mutual influence is reduced and better independent regulation is achieved.

  18. Control and simulation of fault and change effect in a back to back system of high voltage direct current network

    International Nuclear Information System (INIS)

    Mohsen, Kalantar; Mehdi, Rashidi; Mehdi, Rashidi; Tabatabaei, Naser M.

    2005-01-01

    Full text : The primary knowledge of human being from electrical energy was in the form of statistic electricity and the first transmission line was DC. But because of primary problems in transmitting electrical power in DC form with average and low voltage levels and because of the higher efficiency of AC machines in comparison with DC machines and presence of AC transistors in different capacitance, have caused the electrical power to be transmitted in AC form. But with the avancement of electrical engineering technology in the 20th century, the transition systems were used in HVDC form, and from that time the HDVC technology passed its improvement process so fast. In this paper in addition to discussing the advantage of HDVC systems and back to back instruction, the fault and change effect in a back to back system is discussed

  19. Electron bunch structure in energy recovery linac with high-voltage dc photoelectron gun

    Directory of Open Access Journals (Sweden)

    Y. M. Saveliev

    2016-09-01

    Full Text Available The internal structure of electron bunches generated in an injector line with a dc photoelectron gun is investigated. Experiments were conducted on the ALICE (accelerators and lasers in combined experiments energy recovery linac at Daresbury Laboratory. At a relatively low dc gun voltage of 230 kV, the bunch normally consisted of two beamlets with different electron energies, as well as transverse and longitudinal characteristics. The beamlets are formed at the head and the tail of the bunch. At a higher gun voltage of 325 kV, the beam substructure is much less pronounced and could be observed only at nonoptimal injector settings. Experiments and computer simulations demonstrated that the bunch structure develops during the initial beam acceleration in the superconducting rf booster cavity and can be alleviated either by increasing the gun voltage to the highest possible level or by controlling the beam acceleration from the gun voltage in the first accelerating structure.

  20. Cooperative control scheme for an HVDC system connected to an isolated BWR nuclear power plant

    International Nuclear Information System (INIS)

    Sakurai, T.; Goto, K.; Kawai, T.; Matori, I.; Nakao, T.; Watanabe, A.

    1983-01-01

    This paper describes a cooperative control system to achieve stable operation of an isolated BWR nuclear plant linked to an HVDC system. In the proposed control system, under normal conditions the power plant is controlled according to the generating power reference and the generator frequency deviation is adjusted by converter power control. Such frequency control is also effective in the case of AC-DC system faults. In addition to the frequency control, an overload control is provided with the HVDC system, where the DC transmission power in the sound poles is increased due to a fault detection signal from the faulty pole. Effects of the above mentioned control systems were studied using digital dynamic programs. The sets of simulation results confirmed that in the case of a DC single pole fault, the plant is able to continue operation without any use of the turbine speed control units even for a restarting failure in the faulty pole. In case of a DC two pole fault, the plant is able to continue operation, being assisted by turbine speed control units when restarting in the faulty poles succeeds. In case of an AC three-line to ground fault near the AC terminal of the converter at the sending or receiving end, the system is able to continue stable operation, being supplemented by the turbine control unit when the faulty section of the AC system is isolated by a main or back-up relaying system

  1. The Development and Demonstration of a 360m/10 kA HTS DC Power Cable

    Science.gov (United States)

    Xiao, Liye

    With the quick development of renewable energy, it is expected that the electric power from renewable energy would be the dominant one for the future power grid. Due to the specialty of the renewable energy, the HVDC power transmission would be very useful for the transmission of electric power from renewable energy. DC power cable made of High Tc Superconductor (HTS) would be a possible alternative for the construction of HVDC power transmission system. In this chapter, we report the development and demonstration of a 360 m/10 kA HTS DC power cable and the test results.

  2. HVDC transmission power conversion applications in power systems

    CERN Document Server

    Kim, Chan-Ki; Jang, Gil-Soo; Lim, Seong-Joo; Lee, Seok-Jin

    2009-01-01

    HVDC is a critical solution to several major problems encountered when trying to maintain systemic links and quality in large-scale renewable energy environments. HDVC can resolve a number of issues, including voltage stability of AC power networks, reducing fault current, and optimal management of electric power, ensuring the technology will play an increasingly important role in the electric power industry. To address the pressing need for an up-to-date and comprehensive treatment of the subject, Kim, Sood, Jang, Lim and Lee have collaborated to produce this key text and reference.  Combin

  3. A novel synthetic test system for thyristor level in the converter valve of HVDC power transmission

    Directory of Open Access Journals (Sweden)

    Liu Longchen

    2016-01-01

    Full Text Available The converter valve is the core equipment in the HVDC power transmission system, a+-nd its performance has a direct effect on the reliability, stability and efficiency of the whole power system. As the basic unit of HVDC converter valve, the thyristor level needs to be test routinely in order to grasp the state of the converter valve equipment. Therefore, it is urgent to develop a novel synthetic test system for the thyristor level with thyristor control unit (TCU. However, currently there is no specific test scheme for the thyristor level of HVDC converter valve. In this paper, the synthetic test principle, content and methods for the thyristor level with TCU are presented based on the analysis of the thyristor reverse recovery characteristic and the IEC technology standard. And a transient high-voltage pulse is applied to the thyristor level during its reverse recovery period in order to test the characteristics of thyristor level. Then, the synthetic test system for the thyristor level is applied to the converter valve test of ±800 kV HVDC power transmission project, and the practical test result verifies the reasonability and validity of the proposed synthetic test system.

  4. Heat dissipation computations of a HVDC ground electrode using a supercomputer

    International Nuclear Information System (INIS)

    Greiss, H.; Mukhedkar, D.; Lagace, P.J.

    1990-01-01

    This paper reports on the temperature, of soil surrounding a High Voltage Direct Current (HVDC) toroidal ground electrode of practical dimensions, in both homogeneous and non-homogeneous soils that was computed at incremental points in time using finite difference methods on a supercomputer. Curves of the response were computed and plotted at several locations within the soil in the vicinity of the ground electrode for various values of the soil parameters

  5. Comparative Study of Breakdown Voltage of Mineral, Synthetic and Natural Oils and Based Mineral Oil Mixtures under AC and DC Voltages

    Directory of Open Access Journals (Sweden)

    Abderrahmane Beroual

    2017-04-01

    Full Text Available This paper deals with a comparative study of AC and DC breakdown voltages of based mineral oil mixtures with natural and synthetic esters mainly used in high voltage power transformers. The goal was to analyze the performances of oil mixtures from the dielectric withstand point of view and to predict the behavior of transformers originally filled with mineral oil and re-filled with synthetic or natural ester oils when emptied for maintenance. The study concerns mixtures based on 20%, 50%, and 80% of natural and synthetic ester oils. AC breakdown voltages were measured using a sphere-sphere electrode system according to IEC 60156 specifications; the same specification was adopted for DC measurements since there is no standard specifications for this voltage waveform. A statistical analysis of the mean values, standard deviations, and histograms of breakdown voltage data was carried out. The Normal and Weibull distribution functions were used to analyze the experimental data and the best function that the data followed was used to estimate the breakdown voltage with risk of 1%, 10%, and 50% probability. It was shown that whatever the applied voltage waveforms, ester oils always have a significantly higher breakdown voltage than mineral oil. The addition of only 20% of natural or synthetic ester oil was sufficient to considerably increase the breakdown voltage of mineral oil. The dielectric strength of such a mixture is much higher than that of mineral oil alone and can reach that of ester oils. From the point of view of dielectric strength, the mixtures constitute an option for improving the performance of mineral oil. Thus, re-filling of transformers containing up to 20% mineral oil residues with ester oils, does not present any problem; it is even advantageous when considering only the breakdown voltage. Under AC, the mixtures with natural ester always follow the behavior of vegetable oil alone. With the exception of the 20% mixture of natural

  6. Voltage regulation of the Y-source boost DC-DC converter considering effects of leakage inductances based on cascaded sliding-mode control

    DEFF Research Database (Denmark)

    Ahmadzadeh, Soheil; Markadeh, Gholamreza Arab; Blaabjerg, Frede

    2017-01-01

    In this study, a sliding mode-based controller is designed for regulating the output voltage of a high step-up DC-DC converter with three coupled inductors called Y-source impedance network. As Y-source converter can provide a very high boost at a lower shoot-through duty cycle of the switch...

  7. DC-Link Voltage Coordinated-Proportional Control for Cascaded Converter With Zero Steady-State Error and Reduced System Type

    DEFF Research Database (Denmark)

    Tian, Yanjun; Loh, Poh Chiang; Deng, Fujin

    2016-01-01

    Cascaded converter is formed by connecting two subconverters together, sharing a common intermediate dc-link voltage. Regulation of this dc-link voltage is frequently realized with a proportional-integral (PI) controller, whose high gain at dc helps to force a zero steady-state tracking error....... The proposed scheme can be used with either unidirectional or bidirectional power flow, and has been verified by simulation and experimental results presented in this paper........ Such precise tracking is, however, at the expense of increasing the system type, caused by the extra pole at the origin introduced by the PI controller. The overall system may, hence, be tougher to control. To reduce the system type while preserving precise dc-link voltage tracking, this paper proposes...

  8. Multilevel Modular Converter for VSC-HVDC Transmission Applications: Control and Operational Aspects

    DEFF Research Database (Denmark)

    Gnanarathna, Udana N.; Gole, Aniruddha M.; Chaudhary, Sanjay Kumar

    2010-01-01

    Control methods for a new class of converter, the multilevel modular converter (MMC), recently introduced for HVDC transmission are discussed. The paper discusses converter-level controls including firing pulse generation and capacitor voltage balancing. It also covers higher level controls...... for incorporating the converter into a larger power network, with a weak ac receiving end. The performance behavior is studied using electromagnetic transients simulation....

  9. Overmodulation of n-level three-leg DC-AC diode-clamped converters with comprehensive capacitor voltage balance

    DEFF Research Database (Denmark)

    Busquets-Monge, S.; Maheshwari, Ram Krishan; Munk-Nielsen, Stig

    2013-01-01

    This paper presents a novel PWM strategy for nlevel three-leg semiconductor-clamped dc-ac converters in the overmodulation region, with dc-link capacitor voltage balance in every switching cycle. The strategy is based on the virtual-vector concept. Suitable reference vector trajectories are selec......This paper presents a novel PWM strategy for nlevel three-leg semiconductor-clamped dc-ac converters in the overmodulation region, with dc-link capacitor voltage balance in every switching cycle. The strategy is based on the virtual-vector concept. Suitable reference vector trajectories...

  10. A novel modular multilevel converter modelling technique based on semi-analytical models for HVDC application

    Directory of Open Access Journals (Sweden)

    Ahmed Zama

    2016-12-01

    Full Text Available Thanks to scalability, performance and efficiency, the Modular Multilevel Converter (MMC, since its invention, becomes an attractive topology in industrial applications such as high voltage direct current (HVDC transmission system. However, modelling challenges related to the high number of switching elements in the MMC are highlighted when such systems are integrated into large simulated networks for stability or protection algorithms testing. In this work, a novel dynamic models for MMC is proposed. The proposed models are intended to simplify modeling challenges related to the high number of switching elements in the MMC. The models can be easily used to simulate the converter for stability analysis or protection algorithms for HVDC grids.

  11. Reconfigurable DC Links for Restructuring Existing Medium Voltage AC Distribution Grids

    NARCIS (Netherlands)

    Shekhar, A.; Ramirez Elizondo, L.M.; Feng, Xianyong; Kontos, E.; Bauer, P.

    2018-01-01

    While the scientific community recognizes the benefits of DC power transfer, the distribution network operators point out the practical and economic constraints in refurbishing the existing AC network at a medium-voltage level. Some apprehensions like reliability, cost of ownership, and safety in

  12. High power, medium voltage, series resonant converter for DC wind turbines

    DEFF Research Database (Denmark)

    Dincan, Catalin Gabriel; Kjær, Philip Carne; Chen, Yu-Hsing

    2018-01-01

    , and the resulting compact and efficient transformer, and soft-commutated inverter, present particular advantages in high-power, high-voltage applications, like DC offshore wind turbines. With transformer excitation frequency in hundreds of Hz range, line-frequency diodes can be employed in the high...

  13. Plasma surface treatment to improve surface charge accumulation and dissipation of epoxy resin exposed to DC and nanosecond-pulse voltages

    Science.gov (United States)

    Zhang, Cheng; Lin, Haofan; Zhang, Shuai; Xie, Qin; Ren, Chengyan; Shao, Tao

    2017-10-01

    In this paper, deposition by non-thermal plasma is used as a surface modification technique to change the surface characteristics of epoxy resin exposed to DC and nanosecond-pulse voltages. The corresponding surface characteristics in both cases of DC and nanosecond-pulse voltages before and after the modification are compared and investigated. The measurement of the surface potential provides the surface charge distribution, which is used to show the accumulation and dissipation process of the surface charges. Morphology observations, chemical composition and electrical parameters measurements are used to evaluate the treatment effects. The experimental results show that, before the plasma treatment, the accumulated surface charges in the case of the DC voltage are more than that in the case of the nanosecond-pulse voltage. Moreover, the decay rate of the surface charges for the DC voltage is higher than that for the nanosecond-pulse voltage. However, the decay rate is no more than 41% after 1800 s for both types of voltages. After the plasma treatment, the maximum surface potentials decrease to 57.33% and 32.57% of their values before treatment for the DC and nanosecond-pulse voltages, respectively, indicating a decrease in the accumulated surface charges. The decay rate exceeds 90% for both types of voltages. These changes are mainly attributed to a change in the surface nanostructure, an increase in conductivity, and a decrease in the depth of energy level.

  14. Plasma surface treatment to improve surface charge accumulation and dissipation of epoxy resin exposed to DC and nanosecond-pulse voltages

    International Nuclear Information System (INIS)

    Zhang, Cheng; Lin, Haofan; Zhang, Shuai; Ren, Chengyan; Shao, Tao; Xie, Qin

    2017-01-01

    In this paper, deposition by non-thermal plasma is used as a surface modification technique to change the surface characteristics of epoxy resin exposed to DC and nanosecond-pulse voltages. The corresponding surface characteristics in both cases of DC and nanosecond-pulse voltages before and after the modification are compared and investigated. The measurement of the surface potential provides the surface charge distribution, which is used to show the accumulation and dissipation process of the surface charges. Morphology observations, chemical composition and electrical parameters measurements are used to evaluate the treatment effects. The experimental results show that, before the plasma treatment, the accumulated surface charges in the case of the DC voltage are more than that in the case of the nanosecond-pulse voltage. Moreover, the decay rate of the surface charges for the DC voltage is higher than that for the nanosecond-pulse voltage. However, the decay rate is no more than 41% after 1800 s for both types of voltages. After the plasma treatment, the maximum surface potentials decrease to 57.33% and 32.57% of their values before treatment for the DC and nanosecond-pulse voltages, respectively, indicating a decrease in the accumulated surface charges. The decay rate exceeds 90% for both types of voltages. These changes are mainly attributed to a change in the surface nanostructure, an increase in conductivity, and a decrease in the depth of energy level. (paper)

  15. Fault Diagnosis and Fault-tolerant Control of Modular Multi-level Converter High-voltage DC System

    DEFF Research Database (Denmark)

    Liu, Hui; Ma, Ke; Wang, Chao

    2016-01-01

    of failures and lower the reliability of the MMC-HVDC system. Therefore, research on the fault diagnosis and fault-tolerant control of MMC-HVDC system is of great significance in order to enhance the reliability of the system. This paper provides a comprehensive review of fault diagnosis and fault handling...

  16. Assessment of environmental impact of HVDC power lines in terms of corona currents

    International Nuclear Information System (INIS)

    Tikhodeev, N.N.

    1997-01-01

    Corona loss measurements were made on a HVDC power transmission line to evaluate current density. Ion currents were obtained from unipolar and bipolar 400 to 1000 kV DC test lines. A numerical solution was proposed for assessing the maximum current density of unipolar corona currents near the lines. A larger ground clearance of line conductors was proposed as being the most effective way of lowering the current density. 11 refs., 2 tabs., 4 figs

  17. Study of Power Flow Algorithm of AC/DC Distribution System including VSC-MTDC

    Directory of Open Access Journals (Sweden)

    Haifeng Liang

    2015-08-01

    Full Text Available In recent years, distributed generation and a large number of sensitive AC and DC loads have been connected to distribution networks, which introduce a series of challenges to distribution network operators (DNOs. In addition, the advantages of DC distribution networks, such as the energy conservation and emission reduction, mean that the voltage source converter based multi-terminal direct current (VSC-MTDC for AC/DC distribution systems demonstrates a great potential, hence drawing growing research interest. In this paper, considering losses of the reactor, the filter and the converter, a mathematical model of VSC-HVDC for the load flow analysis is derived. An AC/DC distribution network architecture has been built, based on which the differences in modified equations of the VSC-MTDC-based network under different control modes are analyzed. In addition, corresponding interface functions under five control modes are provided, and a back/forward iterative algorithm which is applied to power flow calculation of the AC/DC distribution system including VSC-MTDC is proposed. Finally, by calculating the power flow of the modified IEEE14 AC/DC distribution network, the efficiency and validity of the model and algorithm are evaluated. With various distributed generations connected to the network at appropriate locations, power flow results show that network losses and utilization of transmission networks are effectively reduced.

  18. HVDC Ground Electrodes and Tectonic Setting

    Science.gov (United States)

    Freire, P. F.; Pereira, S. Y.

    2017-12-01

    Ground electrodes in HVDC transmission are huge grounding systems for the DC part of the converter substation, about 1 km wide, sized to inject in the ground DC currents up to 3.5 kA. This work presents an analysis of how the tectonic setting at converter substation location is determinant for the search of the best electrode location (Site Selection) and on its design and performance. It will briefly present the author experience on HVDC electrode design, summarized as follows: Itaipu - Foz do Iguaçu electrodes (transmitter side) located in the middle of Paraná Sedimentary Basin, and Ibiúna electrodes (receiving side) on the border of the basin, 6 km from the geological strike, where the crystalline basement outcrops in São Paulo state; Madeira River - North electrodes (transmitting side) located on the Northwest border of South Amazon Craton, where the crystalline basement is below a shallow sediments layer, and South electrodes (receiving side) located within Paraná Sedimentary Basin; Chile - electrodes located on the Andean forearc, where the Nazca Plate plunges under the South American Plate; Kenya - Ethiopia - electrodes located in the African Rift; Belo Monte - North electrodes (transmitter side) located within the Amazonian Sedimentary Basin, about 35 km of its South border, and South electrodes (receiving side) within Paraná Sedimentary Basin (bipole 1) and on crystalline metamorphic terrain "Brasília Belt" (bipole 2). This diversity of geological conditions results on ground electrodes of different topologies and dimensions, with quite different electrical and thermal performances. A brief study of the geology of the converter stations regions, the so-called Desktop Study, allows for the preview of several important parameters for the site selection and design of the electrodes, such as localization, type, size and estimate of the interference area, which are important predictors of the investment to be made and indications of the design to be

  19. Isolated DC-DC Converter for Bidirectional Power Flow Controlling with Soft-Switching Feature and High Step-Up/Down Voltage Conversion

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2017-03-01

    Full Text Available In this paper, a novel isolated bidirectional DC-DC converter is proposed, which is able to accomplish high step-up/down voltage conversion. Therefore, it is suitable for hybrid electric vehicle, fuel cell vehicle, energy backup system, and grid-system applications. The proposed converter incorporates a coupled inductor to behave forward-and-flyback energy conversion for high voltage ratio and provide galvanic isolation. The energy stored in the leakage inductor of the coupled inductor can be recycled without the use of additional snubber mechanism or clamped circuit. No matter in step-up or step-down mode, all power switches can operate with soft switching. Moreover, there is a inherit feature that metal–oxide–semiconductor field-effect transistors (MOSFETs with smaller on-state resistance can be adopted because of lower voltage endurance at primary side. Operation principle, voltage ratio derivation, and inductor design are thoroughly described in this paper. In addition, a 1-kW prototype is implemented to validate the feasibility and correctness of the converter. Experimental results indicate that the peak efficiencies in step-up and step-down modes can be up to 95.4% and 93.6%, respectively.

  20. Voltage Scheduling Droop Control for State-of-Charge Balance of Distributed Energy Storage in DC Microgrids

    DEFF Research Database (Denmark)

    Li, Chendan; Dragicevic, Tomislav; Aldana, Nelson Leonardo Diaz

    2014-01-01

    Due to higher power quality, lower conversion loss, and more DC loads, there has been an increasing awareness on DC microgrid. Previous emphasis has been on equal power sharing among different units in the DC microgrid, while overlooking the coordination of the energy storage units to maintain...... the State-of-Charge balance. In this paper, a new droop method based on voltage scheduling for State-of-Charge balance is proposed to keep the SoC balance for the energy storage units. The proposed method has the advantage of avoiding the stability problem existed in traditional methods based on droop gain...... scheduling. Simulation experiment is taken in Matlab on a DC microgrid with two distributed energy storage units. The simulation results show that the proposed method has successfully achieved SoC balance during the load changes while maintaining the DC bus voltage within the allowable range....

  1. A decentralized scalable approach to voltage control of DC islanded microgrids

    DEFF Research Database (Denmark)

    Tucci, Michele; Riverso, Stefano; Quintero, Juan Carlos Vasquez

    2016-01-01

    We propose a new decentralized control scheme for DC Islanded microGrids (ImGs) composed by several Distributed Generation Units (DGUs) with a general interconnection topology. Each local controller regulates to a reference value the voltage of the point of common coupling of the corresponding DGU...

  2. Linealización de sistemas VSC-HVDC para el diseño de un controlador PI vectorial

    Directory of Open Access Journals (Sweden)

    Nelson Díaz Aldana

    2014-01-01

    Full Text Available Los sistemas VSC-HVDC son muy utilizados para la transmisión de energía en redes de interconexión eléctrica. Uno de los principales problemas que poseen estos sistemas es la complejidad de su modelo matemático, lo que conlleva grandes dificultades para el diseño de controladores que permitan la regulación de parámetros como la tensión DC de transmisión, así como la potencia activa y reactiva del sistema VSC-HVDC. En este artículo se presenta la linealización de un sistema VSC-HVDC y el posterior diseño de un controlador lineal PI vectorial a partir del modelo linealizado. Adicionalmente, se proponen dos estrategias para la validación de este tipo de controladores, la primera consiste en un único controlador PI para regular los estados del sistema para cada VSC, la segunda consiste en el diseño de controladores PI vectoriales independientes para la regulación de cada estado del VSC.

  3. A Unidirectional DC-DC Autotransformer for DC Grid Application

    Directory of Open Access Journals (Sweden)

    Meng Zhou

    2018-03-01

    Full Text Available Conventional unidirectional DC-DC converters for DC grid application employ DC-AC-DC two-stage conversion technology and suffer from high converter cost and power loss. To solve these issues, a unidirectional step-up DC-DC autotransformer (UUDAT and a unidirectional step-down DC-DC autotransformer (DUDAT are studied. The UUDAT and DUDAT are composed of a series connection of diode bridges and voltage source converters. Topologies of UUDAT and DUDAT are detailed. The harmonic and un-controllability issues are discussed. Control and possible application scenarios for UUDAT and DUDAT are depicted. DC fault isolation mechanism and the methods of dimensioning the voltage and power ratings of the components in UUDAT and DUDAT are studied. Extensive simulations on power system level and experiments on a UUDAT and DUDAT prototype verified their technical feasibility.

  4. Step-Up DC-DC Power Converter

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a step-up DC-DC power converter which comprises a primary side circuit and a secondary side circuit coupled through a galvanic isolation barrier. The primary side circuit comprises a positive and a negative input terminal for receipt of an input voltage and an input...... being charged from the input voltage and discharged to the output capacitor through the galvanic isolation barrier in accordance with a switch control signal to produce the converter output voltage. The step-up DC-DC power converter comprises an electrical short-circuit connection across the galvanic...

  5. Decentralized control for renewable DC Microgrid with composite energy storage system and UC voltage restoration connected to the grid

    DEFF Research Database (Denmark)

    Bastos, Renan F.; Dragicevic, Tomislav; Guerrero, Josep M.

    2016-01-01

    (UC) are used as SD and the common DC-link is fed by alternative sources such as photovoltaic panels, wind turbines and fuel cells as well. The batteries are used to supply/absorb extra power in steady-state regime while the UC absorbs the power transients caused by variations on the power production......In this paper we propose a new decentralized control strategy applied to a DC Microgrid in order to manage the power delivery of storage devices into a common DC-link, avoiding high-bandwidth communication (HBC) between the storage devices (SD) and alternative sources. Batteries and Ultracapacitors...... or load connections. The proposed strategy uses as input for the batteries control only the DC-link voltage and state of charge (SOC), while for the UC only the DC-link voltage and UC terminal voltage are used to achieve the power sharing among the storage devices, equalization of the batteries...

  6. Development of a Novel Bidirectional DC/DC Converter Topology with High Voltage Conversion Ratio for Electric Vehicles and DC-Microgrids

    Directory of Open Access Journals (Sweden)

    Ching-Ming Lai

    2016-05-01

    Full Text Available The main objective of this paper was to study a bidirectional direct current to direct current converter (BDC topology with a high voltage conversion ratio for electric vehicle (EV batteries connected to a dc-microgrid system. In this study, an unregulated level converter (ULC cascaded with a two-phase interleaved buck-boost charge-pump converter (IBCPC is introduced to achieve a high conversion ratio with a simpler control circuit. In discharge state, the topology acts as a two-stage voltage-doubler boost converter to achieve high step-up conversion ratio (48 V to 385 V. In charge state, the converter acts as two cascaded voltage-divider buck converters to achieve high voltage step-down conversion ratio (385 V to 48 V. The features, operation principles, steady-state analysis, simulation and experimental results are made to verify the performance of the studied novel BDC. Finally, a 500 W rating prototype system is constructed for verifying the validity of the operation principle. Experimental results show that highest efficiencies of 96% and 95% can be achieved, respectively, in charge and discharge states.

  7. Field distribution on an HVDC wall bushing during laboratory rain tests

    International Nuclear Information System (INIS)

    Lampe, W.; Wikstrom, D.; Jacobson, B.

    1991-01-01

    This paper reports that an efficient counter-measure to suppress flashovers across HVDC wall bushings is to make their surfaces hydrophobic. This laboratory investigation reports the measured electric field along such a bushing under different environmental conditions. A significantly reduced radial field strength has been found for the hydrophobic bushing. Moreover, the total field strength distribution becomes almost independent of the prevailing dry zone. The flashover voltage for bushings with a hydrophobic surface is therefore significantly increased

  8. Second Order Cone Programming (SOCP) Relaxation Based Optimal Power Flow with Hybrid VSC-HVDC Transmission and Active Distribution Networks

    DEFF Research Database (Denmark)

    Ding, Tao; Li, Cheng; Yang, Yongheng

    2017-01-01

    The detailed topology of renewable resource bases may have the impact on the optimal power flow of the VSC-HVDC transmission network. To address this issue, this paper develops an optimal power flow with the hybrid VSC-HVDC transmission and active distribution networks to optimally schedule...... the generation output and voltage regulation of both networks, which leads to a non-convex programming model. Furthermore, the non-convex power flow equations are based on the Second Order Cone Programming (SOCP) relaxation approach. Thus, the proposed model can be relaxed to a SOCP that can be tractably solved...

  9. Deflection-voltage curve modelling in atomic force microscopy and its use in DC electrostatic manipulation of gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Toset, J; Casuso, I; Samitier, J; Gomila, G [Departament d' Electronica, Universitat de Barcelona and Laboratori de Nanobioenginyeria-CREBEC, Parc CientIfic de Barcelona, C/Josep Samitier 1-5, 08028 Barcelona (Spain)

    2007-01-10

    A model of deflection-voltage curves in atomic force microscopy and its use in DC electrostatic nanomanipulation experiments are presented. The proposed model predicts the deflection of the atomic force microscope probe as a function of the applied probe-substrate voltage, as well as the distance and voltage at which the tip collapses irreversibly onto the substrate due to electrostatic forces. The model is verified experimentally and its use in DC electrostatic manipulation of 25 nm radius gold nanoparticles is demonstrated.

  10. The Detection of Subsynchronous Oscillation in HVDC Based on the Stochastic Subspace Identification Method

    Directory of Open Access Journals (Sweden)

    Chen Shi

    2014-01-01

    Full Text Available Subsynchronous oscillation (SSO usually caused by series compensation, power system stabilizer (PSS, high voltage direct current transmission (HVDC and other power electronic equipment, which will affect the safe operation of generator shafting even the system. It is very important to identify the modal parameters of SSO to take effective control strategies as well. Since the identification accuracy of traditional methods are not high enough, the stochastic subspace identification (SSI method is proposed to improve the identification accuracy of subsynchronous oscillation modal. The stochastic subspace identification method was compared with the other two methods on subsynchronous oscillation IEEE benchmark model and Xiang-Shang HVDC system model, the simulation results show that the stochastic subspace identification method has the advantages of high identification precision, high operation efficiency and strong ability of anti-noise.

  11. Solar photovoltaic charging of high voltage nickel metal hydride batteries using DC power conversion

    Science.gov (United States)

    Kelly, Nelson A.; Gibson, Thomas L.

    There are an increasing number of vehicle choices available that utilize batteries and electric motors to reduce tailpipe emissions and increase fuel economy. The eventual production of electricity and hydrogen in a renewable fashion, such as using solar energy, can achieve the long-term vision of having no tailpipe environmental impact, as well as eliminating the dependence of the transportation sector on dwindling supplies of petroleum for its energy. In this report we will demonstrate the solar-powered charging of the high-voltage nickel-metal hydride (NiMH) battery used in the GM 2-mode hybrid system. In previous studies we have used low-voltage solar modules to produce hydrogen via the electrolysis of water and to directly charge lithium-ion battery modules. Our strategy in the present work was to boost low-voltage PV voltage to over 300 V using DC-DC converters in order to charge the high-voltage NiMH battery, and to regulate the battery charging using software to program the electronic control unit supplied with the battery pack. A protocol for high-voltage battery charging was developed, and the solar to battery charging efficiency was measured under a variety of conditions. We believe this is the first time such high-voltage batteries have been charged using solar energy in order to prove the concept of efficient, solar-powered charging for battery-electric vehicles.

  12. Regulation of an Induction Motor under Broad Changes in DC-Link Voltage

    Czech Academy of Sciences Publication Activity Database

    Kokeš, Petr; Semerád, Radko

    2006-01-01

    Roč. 51, č. 4 (2006), s. 363-394 ISSN 0001-7043 Institutional research plan: CEZ:AV0Z20570509 Keywords : induction motor (IM) * DC-link voltage drop * stator flux vector control (SFVC) Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  13. Topologies of multiterminal HVDC-VSC transmission for large offshore wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Gomis-Bellmunt, Oriol [Centre d' Innovacio Tecnologica en Convertidors Estatics i Accionaments (CITCEA-UPC), Universitat Politecnica de Catalunya UPC, Av. Diagonal, 647, Pl. 2. 08028 Barcelona (Spain); IREC Catalonia Institute for Energy Research, Barcelona (Spain); Liang, Jun; Ekanayake, Janaka; King, Rosemary; Jenkins, Nicholas [School of Engineering, Cardiff University, Queen' s Buildings, The Parade, Cardiff CF24 3AA, Wales (United Kingdom)

    2011-02-15

    Topologies of multiterminal HVDC-VSC transmission systems for large offshore wind farms are investigated. System requirements for multiterminal HVDC are described, particularly the maximum power loss allowed in the event of a fault. Alternative control schemes and HVDC circuit topologies are reviewed, including the need for HVDC circuit breakers. Various topologies are analyzed and compared according to a number of criteria: number and capacity of HVDC circuits, number of HVDC circuit breakers, maximum power loss, flexibility, redundancy, lines utilization, need for offshore switching platforms and fast communications. (author)

  14. Control model design to limit DC-link voltage during grid fault in a dfig variable speed wind turbine

    Science.gov (United States)

    Nwosu, Cajethan M.; Ogbuka, Cosmas U.; Oti, Stephen E.

    2017-08-01

    This paper presents a control model design capable of inhibiting the phenomenal rise in the DC-link voltage during grid- fault condition in a variable speed wind turbine. Against the use of power circuit protection strategies with inherent limitations in fault ride-through capability, a control circuit algorithm capable of limiting the DC-link voltage rise which in turn bears dynamics that has direct influence on the characteristics of the rotor voltage especially during grid faults is here proposed. The model results so obtained compare favorably with the simulation results as obtained in a MATLAB/SIMULINK environment. The generated model may therefore be used to predict near accurately the nature of DC-link voltage variations during fault given some factors which include speed and speed mode of operation, the value of damping resistor relative to half the product of inner loop current control bandwidth and the filter inductance.

  15. A Feed-Forward Control Realizing Fast Response for Three-Branch Interleaved DC-DC Converter in DC Microgrid

    Directory of Open Access Journals (Sweden)

    Haojie Wang

    2016-07-01

    Full Text Available It is a common practice for storage batteries to be connected to DC microgrid buses through DC-DC converters for voltage support on islanded operation mode. A feed-forward control based dual-loop constant voltage PI control for three-branch interleaved DC-DC converters (TIDC is proposed for storage batteries in DC microgrids. The working principle of TIDC is analyzed, and the factors influencing the response rate based on the dual-loop constant voltage control for TIDC are discussed, and then the method of feed-forward control for TIDC is studied to improve the response rate for load changing. A prototype of the TIDC is developed and an experimental platform is built. The experiment results show that DC bus voltage sags or swells caused by load changing can be reduced and the time for voltage recovery can be decreased significantly with the proposed feed-forward control.

  16. A Feed-Forward Control Realizing Fast Response for Three-Branch Interleaved DC-DC Converter in DC Microgrid

    DEFF Research Database (Denmark)

    Wang, Haojie; Han, Minxiao; Yan, Wenli

    2016-01-01

    It is a common practice for storage batteries to be connected to DC microgrid buses through DC-DC converters for voltage support on islanded operation mode. A feed-forward control based dual-loop constant voltage PI control for three-branch interleaved DC-DC converters (TIDC) is proposed...... for storage batteries in DC microgrids. The working principle of TIDC is analyzed, and the factors influencing the response rate based on the dual-loop constant voltage control for TIDC are discussed, and then the method of feed-forward control for TIDC is studied to improve the response rate for load...... changing. A prototype of the TIDC is developed and an experimental platform is built. The experiment results show that DC bus voltage sags or swells caused by load changing can be reduced and the time for voltage recovery can be decreased significantly with the proposed feed-forward control....

  17. Long Lifetime DC-Link Voltage Stabilization Module for Smart Grid Application

    DEFF Research Database (Denmark)

    Wang, Huai; Chung, Henry; Liu, Wenchao

    2012-01-01

    Power converters enable efficient and flexible control and conversion of electric energy among different smart grid players (i.e. producers, energy storage systems, and loads). One of the expected features of smart grid is that it will be more reliable compared to conventional grid. However, power...... converters are one kind of the lifetime limiting components applied in smart grid. One of the major causes is the malfunction of electrolytic capacitors (E-Caps) which are widely used for stabilizing the dc-link voltage in various types of power converters applied in smart grid. A dc-link module is therefore...

  18. A Secondary Voltage Control Method for an AC/DC Coupled Transmission System Based on Model Predictive Control

    DEFF Research Database (Denmark)

    Xu, Fengda; Guo, Qinglai; Sun, Hongbin

    2015-01-01

    For an AC/DC coupled transmission system, the change of transmission power on the DC lines will significantly influence the AC systems’ voltage. This paper describes a method to coordinated control the reactive power of power plants and shunt capacitors at DC converter stations nearby, in order t...

  19. Simulation of rectifier voltage malfunction on OWECS, four-level converter, HVDC light link: Smart grid context tool

    International Nuclear Information System (INIS)

    Seixas, M.; Melício, R.; Mendes, V.M.F.

    2015-01-01

    Highlights: • Floating offshore wind turbine in deep water. • DC link and voltage malfunction. • Converter topology considered is four-level. • Controllers are based on fractional-order. • Smart grid context. - Abstract: This paper presents a model for the simulation of an offshore wind system having a rectifier input voltage malfunction at one phase. The offshore wind system model comprises a variable-speed wind turbine supported on a floating platform, equipped with a permanent magnet synchronous generator using full-power four-level neutral point clamped converter. The link from the offshore floating platform to the onshore electrical grid is done through a light high voltage direct current submarine cable. The drive train is modeled by a three-mass model. Considerations about the smart grid context are offered for the use of the model in such a context. The rectifier voltage malfunction domino effect is presented as a case study to show capabilities of the model

  20. Measurement of surface charges on the dielectric film based on field mills under the HVDC corona wire

    Science.gov (United States)

    Donglai, WANG; Tiebing, LU; Yuan, WANG; Bo, CHEN; Xuebao, LI

    2018-05-01

    The ion flow field on the ground is one of the significant parameters used to evaluate the electromagnetic environment of high voltage direct current (HVDC) power lines. HVDC lines may cross the greenhouses due to the restricted transmission corridors. Under the condition of ion flow field, the dielectric films on the greenhouses will be charged, and the electric fields in the greenhouses may exceed the limit value. Field mills are widely used to measure the ground-level direct current electric fields under the HVDC power lines. In this paper, the charge inversion method is applied to calculate the surface charges on the dielectric film according to the measured ground-level electric fields. The advantages of hiding the field mill probes in the ground are studied. The charge inversion algorithm is optimized in order to decrease the impact of measurement errors. Based on the experimental results, the surface charge distribution on a piece of quadrate dielectric film under a HVDC corona wire is studied. The enhanced effect of dielectric film on ground-level electric field is obviously weakened with the increase of film height. Compared with the total electric field strengths, the normal components of film-free electric fields at the corresponding film-placed positions have a higher effect on surface charge accumulation.

  1. Research on the correlation between corona current spectrum and audible noise spectrum of HVDC transmission line

    Science.gov (United States)

    Liu, Yingyi; Zhou, Lijuan; Liu, Yuanqing; Yuan, Haiwen; Ji, Liang

    2017-11-01

    Audible noise is closely related to corona current on a high voltage direct current (HVDC) transmission line. In this paper, we measured a large amount of audible noise and corona current waveforms simultaneously based on the largest outdoor HVDC corona cage all over the world. By analyzing the experimental data, the related statistical regularities between a corona current spectrum and an audible noise spectrum were obtained. Furthermore, the generation mechanism of audible noise was analyzed theoretically, and the related mathematical expression between the audible noise spectrum and the corona current spectrum, which is suitable for all of these measuring points in the space, has been established based on the electro-acoustic conversion theory. Finally, combined with the obtained mathematical relation, the internal reasons for these statistical regularities appearing in measured corona current and audible noise data were explained. The results of this paper not only present the statistical association regularities between the corona current spectrum and the audible noise spectrum on a HVDC transmission line, but also reveal the inherent reasons of these associated rules.

  2. Study on the characteristics of multi-infeed HVDC

    Science.gov (United States)

    Li, Ming; Song, Xinli; Liu, Wenzhuo; Xiang, Yinxing; Zhao, Shutao; Su, Zhida; Meng, Hang

    2017-09-01

    China has built more than ten HVDC transmission projects in recent years [1]. Now, east China has formed a multi-HVDC feed pattern grid. It is imminent to study the interaction of the multi-HVDC and the characteristics of it. In this paper, an electromechanical-electromagnetic hybrid model is built with electromechanical data of a certain power network. We use electromagnetic models to simulate the HVDC section and electromechanical models simulate the AC power network [2]. In order to study the characteristics of the grid, this paper adds some faults to the line and analysed the fault characteristics. At last give analysis of the fault characteristics.

  3. Construction of an input sensitivity variable CAMAC module for measuring DC voltage

    International Nuclear Information System (INIS)

    Noda, Nobuaki.

    1979-03-01

    In on-line experimental data processing systems, the collection of DC voltage data is frequently required. In plasma confinement experiments, for example, the range of input voltage is very wide from over 1 kV applied to photomultiplier tubes to 10 mV full scale of the controller output for ionization vacuum gauges. A DC voltmeter CAMAC module with variable input range, convenient for plasma experiments and inexpensive, has been constructed for trial. The number of input channels is 16, and the input range is changeable in six steps from +-10 mV to +-200 V; these are all set by commands from a computer. The module is actually used for the on-line data processing system for JIPP T-2 experiment. The ideas behind its development, and the functions, features and usage of the module are described in this report. (J.P.N.)

  4. Decision Optimization for Power Grid Operating Conditions with High- and Low-Voltage Parallel Loops

    Directory of Open Access Journals (Sweden)

    Dong Yang

    2017-05-01

    Full Text Available With the development of higher-voltage power grids, the high- and low-voltage parallel loops are emerging, which lead to energy losses and even threaten the security and stability of power systems. The multi-infeed high-voltage direct current (HVDC configurations widely appearing in AC/DC interconnected power systems make this situation even worse. Aimed at energy saving and system security, a decision optimization method for power grid operating conditions with high- and low-voltage parallel loops is proposed in this paper. Firstly, considering hub substation distribution and power grid structure, parallel loop opening schemes are generated with GN (Girvan-Newman algorithms. Then, candidate opening schemes are preliminarily selected from all these generated schemes based on a filtering index. Finally, with the influence on power system security, stability and operation economy in consideration, an evaluation model for candidate opening schemes is founded based on analytic hierarchy process (AHP. And a fuzzy evaluation algorithm is used to find the optimal scheme. Simulation results of a New England 39-bus system and an actual power system validate the effectiveness and superiority of this proposed method.

  5. Development Ground Fault Detecting System for D.C Voltage Line

    Energy Technology Data Exchange (ETDEWEB)

    Kim Taek Soo; Song Ung Il; Gwon, Young Dong; Lee Hyoung Kee [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    It is necessary to keep the security of reliability and to maximize the efficiency of maintenance by prompt detection of a D.C feeder ground fault point at the built ed or a building power plants. At present, the most of the power plants are set up the ground fault indicator lamp in the monitor room. If a ground fault occurs on DC voltage feeder, a current through the ground fault relay is adjusted and the lamps have brightened while the current flows the relay coil. In order to develop such a system, it is analyzed a D.C feeder ground circuit theoretically and studied a principles which can determine ground fault point or a polarity discrimination and a phase discrimination of the line. So, the developed system through this principles can compute a resistance ground fault current and a capacitive ground fault current. It shows that the system can defect a ground fault point or a bad insulated line by measuring a power plant D.C feeder insulation resistance at the un interruptible power status, and therefore the power plant could protect an unexpected service interruption . (author). 18 refs., figs.

  6. Design of the corona current measurement sensor with wide bandwidth under dc ultra-high-voltage environment

    International Nuclear Information System (INIS)

    Liu, Yingyi; Yuan, Haiwen; Yang, Qinghua; Cui, Yong

    2011-01-01

    The research in the field of corona discharge, which is one of the key technologies, can help us to realize ultra-high-voltage (UHV) power transmission. This paper proposes a new sampling resistance sensor to measure the dc UHV corona current in a wide band. By designing the structural and distributed parameters of the sensor, the UHV dielectric breakdown performance and the wide-band measuring characteristics of the sensor are satisfied. A high-voltage discharge test shows that the designed sensor can work under a 1200 kV dc environment without the occurrence of corona discharge. A frequency characteristic test shows that the measuring bandwidth of the sensor can be improved from the current 4.5 to 20 MHz. The test results in an actual dc UHV transmission line demonstrate that the sensor can accurately measure the corona current under the dc UHV environment

  7. Approches pour la reduction de l'impact de defaut dans le transport d'energie du parc eolien offshore via VSC-HVDC =

    Science.gov (United States)

    Benadja, Mounir

    Dans ce travail est presente un systeme de generation d'energie d'un parc eolien offshore et un systeme de transport utilisant les stations VSC-HVDC connectees au reseau principal AC onshore. Trois configurations ont ete etudiees, modelisees et validees par simulation. Dans chacune des configurations, des contributions ameliorant les cotes techniques et economiques sont decrites ci-dessous : La premiere contribution concerne un nouvel algorithme MPPT (Maximum Power Point Tracking) utilise pour l'extraction de la puissance maximale disponible dans les eoliennes des parcs offshores. Cette technique d'extraction du MPPT ameliore le rendement energetique de la chaine de conversion des energies renouvelables notamment l'energie eolienne a petite et a grande echelles (parc eolien offshore) qui constitue un probleme pour les constructeurs qui se trouvent confrontes a developper des dispositifs MPPT simples, moins couteux, robustes, fiables et capable d'obtenir un rendement energetique maximal. La deuxieme contribution concerne la reduction de la taille, du cout et de l'impact des defauts electriques (AC et DC) dans le systeme construit pour transporter l'energie d'un parc eolien offshore (OWF) vers le reseau principal AC onshore via deux stations 3L-NPC VSCHVDC. La solution developpee utilise des observateurs non-lineaires bases sur le filtre de Kalman etendu (EKF). Ce filtre permet d'estimer la vitesse de rotation et la position du rotor de chacune des generatrices du parc eolien offshore et de la tension du bus DC de l'onduleur DC-AC offshore et des deux stations 3L-NPC-VSC-HVDC (offshore et onshore). De plus, ce developpement du filtre de Kalman etendu a permis de reduire l'impact des defauts AC et DC. Deux commandes ont ete utilisees, l'une (commande indirect dans le plan abc) avec EKF integre destinee pour controler le convertisseur DC-AC offshore et l'autre (commande d-q) avec EKF integre pour controler les convertisseurs des deux stations AC-DC et DC-AC tout en

  8. Detection of high-impedance fault in low-voltage DC distribution system via mathematical morphology

    Directory of Open Access Journals (Sweden)

    Yun-Sik Oh

    2016-01-01

    Full Text Available This study presents a method for high-impedance fault (HIF detection in a low-voltage DC (LVDC distribution system via mathematical morphology (MM, which is composed of two elementary transformations, namely, dilation and erosion. Various MM-based filters are used to detect abnormal signals of current waveform. The LVDC distribution system, including power conversion devices, such as AC/DC and DC/DC converters, is modelled with electromagnetic transient program (EMTP software to verify the proposed method. The HIF arc model in the DC system is also implemented with EMTP/MODELS, which is a symbolic language interpreter for EMTP. Simulation results show that the proposed method can be applied to detect HIF effectively in the LVDC distribution system.

  9. Voltage ripple compensation for grid connected electrolyser power supply using small DC link capacitor

    DEFF Research Database (Denmark)

    Török, Lajos; Mathe, Laszlo; Munk-Nielsen, Stig

    2014-01-01

    The purpose of this work was to investigate a three-phase-grid connected power supply using small DC link capacitor for electrolyser application. The hydrogen generation system requires low voltage and high current power supply. Thus the structure of the 3-phase power supply is defined as follows......: a three phase rectification, a small DC-link capacitor and a phase-shifted full-bridge converter with current doubler rectification. Design constraints and control problems are investigated. The advantages and problems caused by the use of small DC link capacitor are presented. The control of the system...

  10. A Novel PPFHB Bidirectional DC-DC Converter for Supercapacitor Application

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael Andreas E.

    2009-01-01

    This paper presents a novel bidirectional DC-DC converter for the supercapacitor application. In the proposed converter, push-pull forward with half bridge (PPFHB) voltage doubler structure is used to reduce the number of the power switches and get higher voltage gain. Based on phase-shift modula......This paper presents a novel bidirectional DC-DC converter for the supercapacitor application. In the proposed converter, push-pull forward with half bridge (PPFHB) voltage doubler structure is used to reduce the number of the power switches and get higher voltage gain. Based on phase...

  11. SoC-Based Output Voltage Control for BESS with a Lithium-Ion Battery in a Stand-Alone DC Microgrid

    Directory of Open Access Journals (Sweden)

    Seung-Yeong Yu

    2016-11-01

    Full Text Available This paper proposes a new DC output voltage control for a battery energy storage system (BESS with a lithium-ion battery based on the state of charge (SoC. The proposed control scheme was verified through computer simulations for a typical stand-alone DC microgrid, which consists of a BESS, photovoltaic (PV panel, engine generator (EG, and DC load. A scaled hardware prototype for a stand-alone DC microgrid was set up in the lab, in which the proposed control scheme was loaded in a DSP controller. The experimental results were compared with the simulation results for performance verification. The proposed control scheme provides relatively lower variation of the DC grid voltage than the conventional droop control.

  12. Three new DC-to-DC Single-Switch Converters

    Directory of Open Access Journals (Sweden)

    Barry W. Williams

    2017-06-01

    Full Text Available This paper presents a new family of three previously unidentified dc-to-dc converters, buck, boost, and buck-boost voltage-transfer-function topologies, which offer advantageous transformer coupling features and low capacitor dc voltage stressing. The three single-switch, single-diode, converters offer the same features as basic dc-to-dc converters, such as the buck function with continuous output current and the boost function with continuous input current. Converter time-domain simulations and experimental results (including transformer coupling support and extol the dc-to-dc converter concepts and analysis presented.

  13. A Circulating-Current Suppression Method for Parallel-Connected Voltage-Source Inverters With Common DC and AC Buses

    DEFF Research Database (Denmark)

    Wei, Baoze; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    This paper presents a theoretical study with experimental validation of a circulating-current suppression method for parallel operation of three-phase voltage source inverters (VSI), which may be suitable for modular parallel uninterruptible power supply systems or hybrid AC/DC microgrid applicat......This paper presents a theoretical study with experimental validation of a circulating-current suppression method for parallel operation of three-phase voltage source inverters (VSI), which may be suitable for modular parallel uninterruptible power supply systems or hybrid AC/DC microgrid......, and added into the conventional droop plus virtual impedance control. In the control architecture, the reference voltages of the inverters are generated by the primary control loop which consists of a droop control and a virtual impedance. The secondary control is used to compensate the voltage drop...

  14. Control of improved full-bridge three-level DC/DC converter for wind turbines in a DC grid

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2013-01-01

    transformer in the IFBTL dc/dc converter. A modulation strategy, including two operation modes, is proposed for the IFBTL dc/dc converter. Then, a voltage balancing control strategy is proposed for the IFBTL dc/dc converter. Furthermore, the control of the wind turbine based on the IFBTL dc/dc converter......This paper presents an improved full-bridge three-level (IFBTL) dc/dc converter for a wind turbine in a dc grid by inserting a passive filter into the dc/dc converter to improve the performance of the converter. The passive filter can effectively reduce the voltage stress of the medium frequency...

  15. Physical processes in high field insulating liquid conduction

    Science.gov (United States)

    Mazarakis, Michael; Kiefer, Mark; Leckbee, Joshua; Anderson, Delmar; Wilkins, Frank; Obregon, Robert

    2017-10-01

    In the power grid transmission where a large amount of energy is transmitted to long distances, High Voltage DC (HVDC) transmission of up to 1MV becomes more attractive since is more efficient than the counterpart AC. However, two of the most difficult problems to solve are the cable connections to the high voltage power sources and their insulation from the ground. The insulating systems are usually composed of transformer oil and solid insulators. The oil behavior under HVDC is similar to that of a weak electrolyte. Its behavior under HVDC is dominated more by conductivity than dielectric constant. Space charge effects in the oil bulk near high voltage electrodes and impeded plastic insulators affect the voltage oil hold-off. We have constructed an experimental facility where we study the oil and plastic insulator behavior in an actual HVDC System. Experimental results will be presented and compared with the present understanding of the physics governing the oil behavior under very high electrical stresses. Sandia National Laboratories managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. D.O.E., NNSA under contract DE-NA-0003525.

  16. Calculation of DC Arc Plasma Torch Voltage- Current Characteristics Based on Steebeck Model

    International Nuclear Information System (INIS)

    Gnedenko, V.G.; Ivanov, A.A.; Pereslavtsev, A.V.; Tresviatsky, S.S.

    2006-01-01

    The work is devoted to the problem of the determination of plasma torches parameters and power sources parameters (working voltage and current of plasma torch) at the predesigning stage. The sequence of calculation of voltage-current characteristics of DC arc plasma torch is proposed. It is shown that the simple Steenbeck model of arc discharge in cylindrical channel makes it possible to carry out this calculation. The results of the calculation are confirmed by the experiments

  17. Effects of DC bias on magnetic performance of high grades grain-oriented silicon steels

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Guang; Cheng, Ling [Global Energy Interconnection Research Institute, State Key Laboratory of Advanced Transmission Technology,Beijing 102211 (China); Lu, Licheng [State Grid Corporation of China, Beijing 100031 (China); Yang, Fuyao; Chen, Xin [Global Energy Interconnection Research Institute, State Key Laboratory of Advanced Transmission Technology,Beijing 102211 (China); Zhu, Chengzhi [State Grid Zhejiang Electric Power Company, Hangzhou 310007 (China)

    2017-03-15

    When high voltage direct current (HVDC) transmission adopting mono-polar ground return operation mode or unbalanced bipolar operation mode, the invasion of DC current into neutral point of alternating current (AC) transformer will cause core saturation, temperature increasing, and vibration acceleration. Based on the MPG-200D soft magnetic measurement system, the influence of DC bias on magnetic performance of 0.23 mm and 0.27 mm series (P{sub 1.7}=0.70–1.05 W/kg, B{sub 8}>1.89 T) grain-oriented (GO) silicon steels under condition of AC / DC hybrid excitation were systematically realized in this paper. For the high magnetic induction GO steels (core losses are the same), greater thickness can lead to stronger ability of resisting DC bias, and the reasons for it were analyzed. Finally, the magnetostriction and A-weighted magnetostriction velocity level of GO steel under DC biased magnetization were researched. - Highlights: • Magnetic properties of 0.23 mm and 0.27 mm series (P{sub 1.7}=0.70–1.05 W/kg, B{sub 8}>1.89 T) grain-oriented (GO) silicon steels under condition of AC / DC hybrid excitation were systematically analyzed. • Influence of DC biased magnetization on core loss, magnetostriction, and A-weighted magnetostriction velocity level of GO steel were researched. • Greater thickness and relatively lower magnetic induction (B{sub 8}>1.89 T yet) of GO steel can lead to stronger ability of resisting DC bias, and the reasons for it were analyzed.

  18. Sliding-mode control of single input multiple output DC-DC converter

    Science.gov (United States)

    Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang

    2016-10-01

    Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.

  19. High voltage dc cables

    Energy Technology Data Exchange (ETDEWEB)

    Bjustrom, B

    1965-12-01

    How stress distribution in dc cables varies with temperature and stress level, influence of polarity reversals and space charges, and different types of overvoltage to which dc cable may be subjected are discussed. Design problems, especially as related to corrosion protection and to mechanical stress caused by wire armoring during manufacturing and laying, accessories and work done on test methods, and the possibility of designing 400 to 600 kV dc cables for transmitting 2000 to 4000 MW are described.

  20. High voltage superconducting switch for power application

    International Nuclear Information System (INIS)

    Mawardi, O.; Ferendeci, A.; Gattozzi, A.

    1983-01-01

    This paper reports the development of a novel interrupter which meets the requirements of a high voltage direct current (HVDC) power switch and at the same time doubles as a current limiter. The basic concept of the interrupter makes use of a fast superconducting, high capacity (SHIC) switch that carries the full load current while in the superconducting state and reverts to the normal resistive state when triggered. Typical design parameters are examined for the case of a HVDC transmission line handling 2.5KA at 150KVDC. The result is a power switch with superior performance and smaller size than the ones reported to date

  1. Coordinated frequency regulation by offshore wind farms and VSC-HVDC transmission

    DEFF Research Database (Denmark)

    Liu, Hongzhi; Chen, Zhe

    2014-01-01

    converter-based HVDC (VSC-HVDC) transmission system to participate in power system frequency regulation. The strategy explores the frequency support capability of offshore wind farms and VSC-HVDC. By implementing the proposed coordinated control, the VSCHVDC link is able to provide quick virtual inertial...... are presented to demonstrate the frequency regulation capability of VSC-HVDC and validate the effectiveness of the proposed coordinated control strategy....

  2. PENGGUNAAN FUZZY LOGIC UNTUK KONTROL PARALLEL CONVERTER DC-DC

    Directory of Open Access Journals (Sweden)

    Bambang Prio Hartono

    2012-09-01

    Full Text Available Abstract: Using system fuzzy logic as control  technology have been used on low load dc-dc converter with combined parallel compiled  dc-dc converter can  obtain big load.   With existence of differrence of component parameter and each parallel compiled converter can obtained different current  and voltage output.  Function of controller  for to do adjustment, so that current which is applied  to  load by each converter  can be obtained  difference error as small as possible or same. The object of research is developing design of large signal dc-dc converter which is  combined with using  FLC so that  obtain  better performance.  To get better performance have been made plant model and simulation with CDE method.  The more systematic  system and design is needed to overcome bigger load  on dc-dc converter, so that parallel  compiled current master slave control system on dc-dc converter with using fuzzy logic  controller is used. Result of  research showed that error or difference of  current  which is applied to load can handled by fuzzy logic  controller.  Technic of current and voltage controller co to do adjustment current and voltage distribution  equally to load.  Distribution of iL1,iL2 and  output voltage Vo on dc-dc  converter with load 2,25 until  7,875 and voltage  100  until 120 volt,  load current beetwen  12 until 48, % relatif  error  Vo  0,4% until  0,9%.

  3. Multilevel DC link inverter

    Science.gov (United States)

    Su, Gui-Jia

    2003-06-10

    A multilevel DC link inverter and method for improving torque response and current regulation in permanent magnet motors and switched reluctance motors having a low inductance includes a plurality of voltage controlled cells connected in series for applying a resulting dc voltage comprised of one or more incremental dc voltages. The cells are provided with switches for increasing the resulting applied dc voltage as speed and back EMF increase, while limiting the voltage that is applied to the commutation switches to perform PWM or dc voltage stepping functions, so as to limit current ripple in the stator windings below an acceptable level, typically 5%. Several embodiments are disclosed including inverters using IGBT's, inverters using thyristors. All of the inverters are operable in both motoring and regenerating modes.

  4. Soft-Switched Dual-Input DC-DC Converter Combining a Boost-Half-Bridge Cell and a Voltage-Fed Full-Bridge Cell

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2013-01-01

    This paper presents a new zero-voltage-switching (ZVS) isolated dc-dc converter which combines a boost halfbridge (BHB) cell and a full-bridge (FB) cell, so that two different type of power sources, i.e. both current-fed and voltage-fed, can be coupled effectively by the proposed converter...... for various applications, such as fuel cell and super-capacitor hybrid energy system. By fully using two high frequency transformers and a shared leg of switches, number of the power devices and associated gate driver circuits can be reduced. With phase-shift control, the converter can achieve ZVS turn......-on of active switches and zero-current switching (ZCS) turn-off of diodes. In this paper, derivation, analysis and design of the proposed converter are presented. Finally, a 25~50 V input, 300~400 V output prototype with a 600 W nominal power rating is built up and tested to demonstrate the effectiveness...

  5. OffshoreDC DC grids for integration of large scale wind power

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Endegnanew, Atsede Gualu; Stamatiou, Georgios

    The present report summarizes the main findings of the Nordic Energy Research project “DC grids for large scale integration of offshore wind power – OffshoreDC”. The project is been funded by Nordic Energy Research through the TFI programme and was active between 2011 and 2016. The overall...... objective of the project was to drive the development of the VSC based HVDC technology for future large scale offshore grids, supporting a standardised and commercial development of the technology, and improving the opportunities for the technology to support power system integration of large scale offshore...

  6. Power-flow control and stability enhancement of four parallel-operated offshore wind farms using a line-commutated HVDC link

    DEFF Research Database (Denmark)

    Wang, Li; Wang, Kuo-Hua; Lee, Wei-Jen

    2010-01-01

    This paper presents an effective control scheme using a line-commutated high-voltage direct-current (HVDC) link with a designed rectifier current regulator (RCR) to simultaneously perform both power-fluctuation mitigation and damping improvement of four parallel-operated 80-MW offshore wind farms...... delivering generated power to a large utility grid. The proposed RCR of the HVDC link is designed by using modal control theory to contribute adequate damping to the studied four offshore wind farms under various wind speeds. A systematic analysis using a frequency-domain approach based on eigenvalue...... characteristics to the studied offshore wind farms under various wind speeds but also effectively mitigate power fluctuations of the offshore wind farms under wind-speed disturbance conditions....

  7. Electrical actuation of electrically conducting and insulating droplets using ac and dc voltages

    International Nuclear Information System (INIS)

    Kumari, N; Bahadur, V; Garimella, S V

    2008-01-01

    Electrical actuation of liquid droplets at the microscale offers promising applications in the fields of microfluidics and lab-on-chip devices. Much prior research has targeted the electrical actuation of electrically conducting liquid droplets using dc voltages (classical electrowetting). Electrical actuation of conducting droplets using ac voltages and the actuation of insulating droplets (using dc or ac voltages) has remained relatively unexplored. This paper utilizes an energy-minimization-based analytical framework to study the electrical actuation of a liquid droplet (electrically conducting or insulating) under ac actuation. It is shown that the electromechanical regimes of classical electrowetting, electrowetting under ac actuation and insulating droplet actuation can be extracted from the generic electromechanical actuation framework, depending on the electrical properties of the droplet, the underlying dielectric layer and the frequency of the actuation voltage. This paper also presents experiments which quantify the influence of the ac frequency and the electrical properties of the droplet on its velocity under electrical actuation. The velocities of droplets moving between two parallel plates under ac actuation are experimentally measured; these velocities are then related to the actuation force on the droplet which is predicted by the electromechanical model developed in this work. It is seen that the droplet velocities are strongly dependent on the frequency of the ac actuation voltage; the cut-off ac frequency, above which the droplet fails to actuate, is experimentally determined and related to the electrical conductivity of the liquid. This paper then analyzes and directly compares the various electromechanical regimes for the actuation of droplets in microfluidic applications

  8. Development of modulation strategies for NPC converter addressing DC link voltage balancing and CMV reduction

    DEFF Research Database (Denmark)

    Boian, D.; Biris, C.; Teodorescu, Remus

    2012-01-01

    3L-NPC inverters are more popular due to their superior performance compared with two level inverters. One of the most optimal applications for multilevel inverter is the Adjustable Speed Drives (ASD). The industry reported numerous ASD failures due to high frequency PWM. Those failures consist i...... strategies is to reduce the Common Mode Voltage (CMV) and balance the DC Link Voltage....

  9. Experimental Results of a DC Bus Voltage Level Control for a Load-Controlled Marine Current Energy Converter

    Directory of Open Access Journals (Sweden)

    Johan Forslund

    2015-05-01

    Full Text Available This paper investigates three load control methods for a  marine current energy converter using a vertical axis current  turbine (VACT mounted on a permanent magnet synchronous generator  (PMSG. The three cases are; a fixed AC load, a fixed pulse width  modulated (PWM DC load and DC bus voltage control of a DC  load. Experimental results show that the DC bus voltage control  reduces the variations of rotational speed by a factor of 3.5 at the cost  of slightly increased losses in the generator and transmission lines.  For all three cases, the tip speed ratio \\(\\lambda\\ can be kept close to  the expected \\(\\lambda_{opt}\\. The power coefficient is estimated to be  0.36 at \\(\\lambda_{opt}\\; however, for all three cases, the average  extracted power was about \\(\\sim 19\\\\%. A maximum power point  tracking (MPPT system, with or without water velocity measurement,  could increase the average extracted power.

  10. Y-source impedance-network-based isolated boost DC/DC converter

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Town, Graham; Loh, Poh Chiang

    2014-01-01

    A dc-dc converter with very high voltage gain is proposed in this paper for any medium-power application requiring a high voltage boost with galvanic isolation. The proposed converter topology can be realized using only two switches. With this topology a very high voltage boost can be achieved even...... with a relatively low duty cycle of the switches, and the gain obtainable is presently not matched by any existing impedance network based converter operated at the same duty ratio. The proposed converter has a Y-source impedance network to boost the voltage at the intermediate dc-link side and a push......-pull transformer for square-wave AC inversion and isolation. The voltage-doubler rectifier provides a constant dc voltage at the output stage. A theoretical analysis of the converter is presented, supported by simulation and experimental results. A 250 W down-scaled prototype was implemented in the laboratory...

  11. Auxiliary resonant DC tank converter

    Science.gov (United States)

    Peng, Fang Z.

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  12. Ion Back-Bombardment of GaAs Photocathodes Inside DC High Voltage Electron Guns

    CERN Document Server

    Grames, Joseph M; Brittian, Joshua; Charles, Daniel; Clark, Jim; Hansknecht, John; Lynn Stutzman, Marcy; Poelker, Matthew; Surles-Law, Kenneth E

    2005-01-01

    The primary limitation for sustained high quantum efficiency operation of GaAs photocathodes inside DC high voltage electron guns is ion back-bombardment of the photocathode. This process results from ionization of residual gas within the cathode/anode gap by the extracted electron beam, which is subsequently accelerated backwards to the photocathode. The damage mechanism is believed to be either destruction of the negative electron affinity condition at the surface of the photocathode or damage to the crystal structure by implantation of the bombarding ions. This work characterizes ion formation within the anode/cathode gap for gas species typical of UHV vacuum chambers (i.e., hydrogen, carbon monoxide and methane). Calculations and simulations are performed to determine the ion trajectories and stopping distance within the photocathode material. The results of the simulations are compared with test results obtained using a 100 keV DC high voltage GaAs photoemission gun and beamline at currents up to 10 mA D...

  13. On and off controlled resonant dc-dc power converter

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a resonant DC-DC power converter comprising an input side circuit comprising a positive and a negative input terminal for receipt of an input voltage or current and an output side circuit comprising positive and negative output terminals for supply of a converter...... output voltage and connection to a converter load. The resonant DC-DC power converter further comprises a rectification circuit connected between an output of a resonant network and the output side circuit. The resonant network is configured for alternatingly being charged from the input voltage...... or current and discharged through the rectification circuit by a first controllable switch arrangement in accordance with a first switch control signal. A second controllable switch arrangement of the resonant DC-DC power converter is configured to select a first impedance characteristic of the resonant...

  14. Hierarchical Velocity Control Based on Differential Flatness for a DC/DC Buck Converter-DC Motor System

    Directory of Open Access Journals (Sweden)

    R. Silva-Ortigoza

    2014-01-01

    Full Text Available This paper presents a hierarchical controller that carries out the angular velocity trajectory tracking task for a DC motor driven by a DC/DC Buck converter. The high level control is related to the DC motor and the low level control is dedicated to the DC/DC Buck converter; both controls are designed via differential flatness. The high level control provides a desired voltage profile for the DC motor to achieve the tracking of a desired angular velocity trajectory. Then, a low level control is designed to ensure that the output voltage of the DC/DC Buck converter tracks the voltage profile imposed by the high level control. In order to experimentally verify the hierarchical controller performance, a DS1104 electronic board from dSPACE and Matlab-Simulink are used. The switched implementation of the hierarchical average controller is accomplished by means of pulse width modulation. Experimental results of the hierarchical controller for the velocity trajectory tracking task show good performance and robustness against the uncertainties associated with different system parameters.

  15. Dynamic Voltage Stability Studies using a Modified IEEE 30-Bus System

    Directory of Open Access Journals (Sweden)

    Oluwafemi Emmanuel Oni

    2016-09-01

    Full Text Available Power System stability is an essential study in the planning and operation of an efficient, economic, reliable and secure electric power system because it encompasses all the facet of power systems operations, from planning, to conceptual design stages of the project as well as during the systems operating life span. This paper presents different scenario of power system stability studies on a modified IEEE 30-bus system which is subjected to different faults conditions. A scenario whereby the longest high voltage alternating current (HVAC line is replaced with a high voltage direct current (HVDC line was implemented. The results obtained show that the HVDC line enhances system stability more compared to the contemporary HVAC line. Dynamic analysis using RMS simulation tool was used on DigSILENT PowerFactory.

  16. An Annotated Bibliography of High-Voltage Direct-Current Transmission and Flexible AC Transmission (FACTS) Devices, 1991-1993.

    Energy Technology Data Exchange (ETDEWEB)

    Litzenberger, Wayne; Lava, Val

    1994-08-01

    References are contained for HVDC systems, converter stations and components, overhead transmission lines, cable transmission, system design and operations, simulation of high voltage direct current systems, high-voltage direct current installations, and flexible AC transmission system (FACTS).

  17. Investigation of Hybrid Pseudo Bipolar HVDC Performances Supply Power to Passive AC Network

    Directory of Open Access Journals (Sweden)

    Kuan Li

    2014-07-01

    Full Text Available The traditional HVDC plays an important role in the development of power grid. But the traditional HVDC cannot supply power either to entirely passive AC network or to weak AC system. In fact, an entirely passive AC network can be effectively powered through VSC-HVDC. However, the cost of investment in VSC-HVDC is amazingly high due to the limitation of power electronics technology. Based on CSC and VSC, this paper proposes a method to build Hybrid HVDC, which makes the power supply to the passive AC network come true and, at the same time, lowers the investment cost. The effect of topology, steady mathematical model, startup characteristic, steady and transient characteristics in Hybrid HVDC system are systematically studied in this paper. The simulation result shows that Hybrid HVDC can supply power to the passive AC network with high stability. This study provides a theoretical basis for the further development of HVDC.

  18. Advanced medium-voltage bidirectional dc-dc conversion systems for future electric energy delivery and management systems

    Science.gov (United States)

    Fan, Haifeng

    2011-12-01

    The distributed renewable energy generation and utilization are constantly growing, and are expected to be integrated with the conventional grid. The growing pressure for innovative solutions will demand power electronics to take an even larger role in future electric energy delivery and management systems, since power electronics are required for the conversion and control of electric energy by most dispersed generation systems Furthermore, power electronics systems can provide additional intelligent energy management, grid stability and power quality capabilities. Medium-voltage isolated dc-dc converter will become one of the key interfaces for grid components with moderate power ratings. To address the demand of medium voltage (MV) and high power capability for future electric energy delivery and management systems, the power electronics community and industry have been reacting in two different ways: developing semiconductor technology or directly connecting devices in series/parallel to reach higher nominal voltages and currents while maintaining conventional converter topologies; and by developing new converter topologies with traditional semiconductor technology, known as multilevel converters or modular converters. The modular approach uses the well-known, mature, and cheaper power semiconductor devices by adopting new converter topologies. The main advantages of the modular approach include: significant improvement in reliability by introducing desired level of redundancy; standardization of components leading to reduction in manufacturing cost and time; power systems can be easily reconfigured to support varying input-output specifications; and possibly higher efficiency and power density of the overall system. Input-series output-parallel (ISOP) modular configuration is a good choice to realize MV to low voltage (LV) conversion for utility application. However, challenges still remain. First of all, for the high-frequency MV utility application, the low

  19. Performance and scalability of isolated DC-DC converter topologies in low voltage, high current applications

    Energy Technology Data Exchange (ETDEWEB)

    Vaisanen, V.

    2012-07-01

    Fuel cells are a promising alternative for clean and efficient energy production. A fuel cell is probably the most demanding of all distributed generation power sources. It resembles a solar cell in many ways, but sets strict limits to current ripple, common mode voltages and load variations. The typically low output voltage from the fuel cell stack needs to be boosted to a higher voltage level for grid interfacing. Due to the high electrical efficiency of the fuel cell, there is a need for high efficiency power converters, and in the case of low voltage, high current and galvanic isolation, the implementation of such converters is not a trivial task. This thesis presents galvanically isolated DC-DC converter topologies that have favorable characteristics for fuel cell usage and reviews the topologies from the viewpoint of electrical efficiency and cost efficiency. The focus is on evaluating the design issues when considering a single converter module having large current stresses. The dominating loss mechanism in low voltage, high current applications is conduction losses. In the case of MOSFETs, the conduction losses can be efficiently reduced by paralleling, but in the case of diodes, the effectiveness of paralleling depends strongly on the semiconductor material, diode parameters and output configuration. The transformer winding losses can be a major source of losses if the windings are not optimized according to the topology and the operating conditions. Transformer prototyping can be expensive and time consuming, and thus it is preferable to utilize various calculation methods during the design process in order to evaluate the performance of the transformer. This thesis reviews calculation methods for solid wire, litz wire and copper foil winding losses, and in order to evaluate the applicability of the methods, the calculations are compared against measurements and FEM simulations. By selecting a proper calculation method for each winding type, the winding

  20. A high voltage DC switching power supply of corona discharge for ozone tube

    International Nuclear Information System (INIS)

    Ketkaew, Siseerot

    2007-08-01

    Full text: This paper presents a study of design and construction of a high voltage DC switching power supply for corona generating of ozone gas generating. This supply uses fly back converter at 3 k Vdc 30 khz and controls its operation using PWM techniques. I C TL494 is controlled of the switching. The testing of supply by putting high voltage to ozone gas tube at one-hour, the oxygen quantity 21 % of air, which ozone tube model enables ozone gas generating capacity of 95.2 mgO3/hr

  1. Pulse-width modulated DC-DC power converters

    CERN Document Server

    Kazimierczuk, Marian K

    2008-01-01

    This book studies switch-mode power supplies (SMPS) in great detail. This type of converter changes an unregulated DC voltage into a high-frequency pulse-width modulated (PWM) voltage controlled by varying the duty cycle, then changes the PWM AC voltage to a regulated DC voltage at a high efficiency by rectification and filtering. Used to supply electronic circuits, this converter saves energy and space in the overall system. With concept-orientated explanations, this book offers state-of-the-art SMPS technology and promotes an understanding of the principle operations of PWM converters,

  2. A Current-Fed Isolated Bidirectional DC-DC Converter

    DEFF Research Database (Denmark)

    Sun, Xiaofeng; Wu, Xiaoying; Shen, Yanfeng

    2017-01-01

    This paper proposes a current-fed isolated bidirectional DC-DC converter (CF-IBDC) which has the advantages of wide input voltage range, low input current ripple, low conduction losses, and soft switching over the full operating range. Compared with conventional CF-IBDCs, the voltage spikes...

  3. An integrated low-voltage rated HTS DC power system with multifunctions to suit smart grids

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jian Xun, E-mail: jxjin@uestc.edu.cn [Center of Applied Superconductivity, School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Center of Applied Superconductivity and Electrical Engineering, School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731 (China); Chen, Xiao Yuan [School of Engineering, Sichuan Normal University, Chengdu 610101 (China); Qu, Ronghai; Fang, Hai Yang [School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Xin, Ying [Center of Applied Superconductivity, School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2015-03-15

    Highlights: • A novel LVDC HTS power transmission network is presented. • An integrated power system is achieved by using HTS DC cable and SMES. • DC superconducting cable is verified to achieve self-acting fault current limitation. • SMES is verified to achieve fast-response buffering effect under a power fluctuation. • SMES is verified to achieve favorable load voltage protection effect under a fault. - Abstract: A low-voltage rated DC power transmission network integrated with superconducting cables (SCs) and superconducting magnetic energy storage (SMES) devices has been studied with analytic results presented. In addition to the properties of loss-less and high current transportation capacity, the effectively integrated system is formed with a self-acting fault current limitation feature of the SC and a buffering effect of the SMES to power fluctuations. The results obtained show that the integrated system can achieve high-quality power transmission under common power fluctuation conditions with an advanced self-protection feature under short circuit conditions, which is identified to suit especially the smart grid applications.

  4. The Application of Auto-Disturbance Rejection Control Optimized by Least Squares Support Vector Machines Method and Time-Frequency Representation in Voltage Source Converter-High Voltage Direct Current System.

    Science.gov (United States)

    Liu, Ying-Pei; Liang, Hai-Ping; Gao, Zhong-Ke

    2015-01-01

    In order to improve the performance of voltage source converter-high voltage direct current (VSC-HVDC) system, we propose an improved auto-disturbance rejection control (ADRC) method based on least squares support vector machines (LSSVM) in the rectifier side. Firstly, we deduce the high frequency transient mathematical model of VSC-HVDC system. Then we investigate the ADRC and LSSVM principles. We ignore the tracking differentiator in the ADRC controller aiming to improve the system dynamic response speed. On this basis, we derive the mathematical model of ADRC controller optimized by LSSVM for direct current voltage loop. Finally we carry out simulations to verify the feasibility and effectiveness of our proposed control method. In addition, we employ the time-frequency representation methods, i.e., Wigner-Ville distribution (WVD) and adaptive optimal kernel (AOK) time-frequency representation, to demonstrate our proposed method performs better than the traditional method from the perspective of energy distribution in time and frequency plane.

  5. The Application of Auto-Disturbance Rejection Control Optimized by Least Squares Support Vector Machines Method and Time-Frequency Representation in Voltage Source Converter-High Voltage Direct Current System.

    Directory of Open Access Journals (Sweden)

    Ying-Pei Liu

    Full Text Available In order to improve the performance of voltage source converter-high voltage direct current (VSC-HVDC system, we propose an improved auto-disturbance rejection control (ADRC method based on least squares support vector machines (LSSVM in the rectifier side. Firstly, we deduce the high frequency transient mathematical model of VSC-HVDC system. Then we investigate the ADRC and LSSVM principles. We ignore the tracking differentiator in the ADRC controller aiming to improve the system dynamic response speed. On this basis, we derive the mathematical model of ADRC controller optimized by LSSVM for direct current voltage loop. Finally we carry out simulations to verify the feasibility and effectiveness of our proposed control method. In addition, we employ the time-frequency representation methods, i.e., Wigner-Ville distribution (WVD and adaptive optimal kernel (AOK time-frequency representation, to demonstrate our proposed method performs better than the traditional method from the perspective of energy distribution in time and frequency plane.

  6. Optimal Design of a Push-Pull-Forward Half-Bridge (PPFHB) Bidirectional DC–DC Converter With Variable Input Voltage

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2012-01-01

    This paper presents a low-cost bidirectional isolated dc–dc converte, derived from dual-active-bridge converter for the power sources with variable output voltage like supercapacitors. The proposed converter consists of push-pull-forward circuit half-bridge circuit (PPFHB) and a high-frequency tr......This paper presents a low-cost bidirectional isolated dc–dc converte, derived from dual-active-bridge converter for the power sources with variable output voltage like supercapacitors. The proposed converter consists of push-pull-forward circuit half-bridge circuit (PPFHB) and a high...

  7. Control of offshore wind farms with HVDC grid connection

    Energy Technology Data Exchange (ETDEWEB)

    Weigel, Stefan; Weise, Bernd; Poeller, Markus [DIgSILENT GmbH, Gomaringen (Germany)

    2010-07-01

    This paper analyzes various aspects related to the operation of HVDC connected offshore wind farms. The main interest is on the behavior during on- and offshore faults. Different control strategies for VSC-HVDC and ''classical'' thyristor-based HVDC links are presented and analyzed via network simulations. Wind generators with fully-rated converters and wind generators with doubly-fed induction generators are considered as generator types. The feasibility, advantages and disadvantages of the various options are discussed in detail. (orig.)

  8. Definition and Classification of Terms for HVDC Networks

    DEFF Research Database (Denmark)

    Vrana, Til Kristian; Bell, Keith; Sørensen, Poul Ejnar

    2015-01-01

    A systematic terminology for the field of HVDC networks has been developed, closing the gap between the well-established terminologies from AC power systems and HVDC technology. The most relevant items, topologies and concepts have been given clear and unique defined names, and these have been cl...

  9. Optimal Design of DC Fast-Charging Stations for EVs in Low Voltage Grids

    DEFF Research Database (Denmark)

    Gjelaj, Marjan; Træholt, Chresten; Hashemi Toghroljerdi, Seyedmostafa

    2017-01-01

    DC Fast Charging Station (DCFCS) is essential for widespread use of Electric Vehicle (EVs). It can recharge EVs in direct current in a short period of time. In recent years, the increasing penetration of EVs and their charging systems are going through a series of changes. This paper addresses...... on the power grid through the application of electrical storage systems within the DC fast charging stations. The proposed solution decreases the charging time and the impact on the low voltage (LV) grid significantly. The charger can be used as a multifunctional grid-utility such as congestion management...

  10. RESONANT STEP-DOWN DC-DC POWER CONVERTERS

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a resonant step-down DC-DC power converter which comprises a primary side circuit and a secondary side circuit coupled through a galvanic isolation barrier. The primary side circuit comprises a positive and a negative input terminal for receipt of an input voltage...... charged from the input voltage and discharged to the output capacitor through the galvanic isolation barrier by a semiconductor switch arrangement in accordance with a switch control signal to produce the converter output voltage. The resonant step-down DC-DC power converter comprises an electrical short......-circuit connection across the galvanic isolation barrier connecting, in a first case, the second negative electrode of the output capacitor to the positive input terminal of the primary side circuit or, in a second case, connecting the second positive electrode of the output capacitor to the negative input terminal...

  11. Capacitance estimation algorithm based on DC-link voltage harmonics using artificial neural network in three-phase motor drive systems

    DEFF Research Database (Denmark)

    Soliman, Hammam Abdelaal Hammam; Davari, Pooya; Wang, Huai

    2017-01-01

    to industry. In this digest, a condition monitoring methodology that estimates the capacitance value of the dc-link capacitor in a three phase Front-End diode bridge motor drive is proposed. The proposed software methodology is based on Artificial Neural Network (ANN) algorithm. The harmonics of the dc......-link voltage are used as training data to the Artificial Neural Network. Fast Fourier Transform (FFT) of the dc-link voltage is analysed in order to study the impact of capacitance variation on the harmonics order. Laboratory experiments are conducted to validate the proposed methodology and the error analysis......In modern design of power electronic converters, reliability of dc-link capacitors is one of the critical considered aspects. The industrial field have been attracted to the monitoring of their health condition and the estimation of their ageing process status. However, the existing condition...

  12. Dynamic Reactive Power Control in Offshore HVDC Connected Wind Power Plants

    DEFF Research Database (Denmark)

    Sakamuri, Jayachandra N.; Cutululis, Nicolaos Antonio; Rather, Zakir Hussain

    2016-01-01

    This paper presents a coordinated reactive power control for a HVDC connected cluster of offshore wind power plants (WPPs). The reactive power reference for the WPP cluster is estimated by an optimization algorithm aiming at minimum active power losses in the offshore AC Grid. For each optimal......, such as wind turbine (WT) terminal, collector cable, and export cable, on the dynamic voltage profile of the offshore grid is investigated. Furthermore, the dynamic reactive power contribution from WTs from different WPPs of the cluster for such faults has also been studied....... reactive power set point, the OWPP cluster controller generates reactive power references for each WPP which further sends the AC voltage/ reactive power references to the associated WTs based on their available reactive power margin. The impact of faults at different locations in the offshore grid...

  13. Commutation circuit for an HVDC circuit breaker

    Science.gov (United States)

    Premerlani, William J.

    1981-01-01

    A commutation circuit for a high voltage DC circuit breaker incorporates a resistor capacitor combination and a charging circuit connected to the main breaker, such that a commutating capacitor is discharged in opposition to the load current to force the current in an arc after breaker opening to zero to facilitate arc interruption. In a particular embodiment, a normally open commutating circuit is connected across the contacts of a main DC circuit breaker to absorb the inductive system energy trapped by breaker opening and to limit recovery voltages to a level tolerable by the commutating circuit components.

  14. Finite element modelling of ionized field quantities around a monopolar HVDC transmission line

    International Nuclear Information System (INIS)

    Jaiswal, Vinay; Thomas, M Joy

    2003-01-01

    In this paper, the Poisson's equation describing the ionized field around an HVDC line is solved using an improved finite element based technique. First order isoparametric quadrilateral elements, together with a modified updating criterion for the space charge distribution, are implemented in the iterative procedure. A novel technique is presented for mesh generation in the presence of space charges. Electric field lines and equipotential lines have been computed using the proposed technique. Total corona current at different applied voltages above corona onset voltage, electric field at the ground plane with and without the presence of space charges and current density at the ground plane have also been computed. The results are in agreement with the experimental values available in the published literature

  15. Effect of DC voltage pulses on memristor behavior.

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Brian R.

    2013-10-01

    Current knowledge of memristor behavior is limited to a few physical models of which little comprehensive data collection has taken place. The purpose of this research is to collect data in search of exploitable memristor behavior by designing and implementing tests on a HP Labs Rev2 Memristor Test Board. The results are then graphed in their optimal format for conceptualizing behavioral patterns. This series of experiments has concluded the existence of an additional memristor state affecting the behavior of memristors when pulsed with positively polarized DC voltages. This effect has been observed across multiple memristors and data sets. The following pages outline the process that led to the hypothetical existence and eventual proof of this additional state of memristor behavior.

  16. Sheppard-Taylor Isolated High Boost DC-DC Converter

    DEFF Research Database (Denmark)

    Chub, Andrii; Siwakoti, Yam Prasad; Vinnikov, Dmitri

    2017-01-01

    This paper presents a new galvanically isolated step-up dc-dc converter intended for low-power but high step-up applications. The proposed converter is capable of regulating output voltage within a wide range of the input voltage or load variations. In contrast to competitors, the converter can...

  17. Single Event Burnout in DC-DC Converters for the LHC Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Claudio H. Rivetta et al.

    2001-09-24

    High voltage transistors in DC-DC converters are prone to catastrophic Single Event Burnout in the LHC radiation environment. This paper presents a systematic methodology to analyze single event effects sensitivity in converters and proposes solutions based on de-rating input voltage and output current or voltage.

  18. Sample-Data Modeling of a Zero Voltage Transition DC-DC Converter for On-Board Battery Charger in EV

    Directory of Open Access Journals (Sweden)

    Teresa R. Granados-Luna

    2014-01-01

    Full Text Available Battery charger is a key device in electric and hybrid electric vehicles. On-board and off-board topologies are available in the market. Lightweight, small, high performance, and simple control are desired characteristics for on-board chargers. Moreover, isolated single-phase topologies are the most common system in Level 1 battery charger topologies. Following this trend, this paper proposes a sampled-data modelling strategy of a zero voltage transition (ZVT DC-DC converter for an on-board battery charger. A piece-wise linear analysis of the converter is the basis of the technique presented such that a large-signal model and, therefore, a small-signal model of the converter are derived. Numerical and simulation results of a 250 W test rig validate the model.

  19. An Original Transformer and Switched-Capacitor (T & SC-Based Extension for DC-DC Boost Converter for High-Voltage/Low-Current Renewable Energy Applications: Hardware Implementation of a New T & SC Boost Converter

    Directory of Open Access Journals (Sweden)

    Sanjeevikumar Padmanaban

    2018-03-01

    Full Text Available In this article a new Transformer and Switched Capacitor-based Boost Converter (T & SC-BC is proposed for high-voltage/low-current renewable energy applications. The proposed T & SC-BC is an original extension for DC-DC boost converter which is designed by utilizing a transformer and switched capacitor (T & SC. Photovoltaic (PV energy is a fast emergent segment among the renewable energy systems. The proposed T & SC-BC combines the features of the conventional boost converter and T & SC to achieve a high voltage conversion ratio. A Maximum Power Point Tracking (MPPT controller is compulsory and necessary in a PV system to extract maximum power. Thus, a photovoltaic MPPT control mechanism also articulated for the proposed T & SC-BC. The voltage conversion ratio (Vo/Vin of proposed converter is (1 + k/(1 − D where, k is the turns ratio of the transformer and D is the duty cycle (thus, the converter provides 9.26, 13.88, 50/3 voltage conversion ratios at 78.4 duty cycle with k = 1, 2, 2.6, respectively. The conspicuous features of proposed T & SC-BC are: (i a high voltage conversion ratio (Vo/Vin; (ii continuous input current (Iin; (iii single switch topology; (iv single input source; (v low drain to source voltage (VDS rating of control switch; (vi a single inductor and a single untapped transformer are used. Moreover, the proposed T & SC-BC topology was compared with recently addressed DC-DC converters in terms of number of components, cost, voltage conversion ratio, ripples, efficiency and power range. Simulation and experimental results are provided which validate the functionality, design and concept of the proposed approach.

  20. Electrical Power Supply to Offshore Oil Installations by High Voltage Direct Current Transmission

    Energy Technology Data Exchange (ETDEWEB)

    Myhre, Joergen Chr.

    2001-07-01

    of the main features when the details of the transients are of less importance. The study indicates that power supply by HVDC transmission from land to offshore oil installations could be technically feasible, even without the large synchronous compensators normally required. It has been shown that in a network only supplied by an inverter, variations of active and reactive loads have significant influence on both voltage and frequency. Particularly it should be noted that the frequency shows a positive sensitivity to increases in load. This could make the system intrinsically unstable in the case of a frequency dependent load such as motors. It was not a part of the study to optimize controllers, but even with simple controllers it was possible to keep the frequency within limits given by norms and regulations, but the voltages were dynamically outside the limits, though not very far. These voltage overswings take place in the first few instances after a disturbance, so it takes unrealistically fast controllers to handle them. They are partly due to the model, where the land based rectifier and the DC reactors are simulated by a constant current source, but partly they have to be handled by overdimensioning of the system. The simulations indicate that it should be technically possible to supply an oil platform with electrical power from land by means of HVDC transmission with small synchronous compensators. Whether this is financially feasible has not been investigated. Neither has it been considered whether the necessary equipment can actually be installed on an oil platform. Recently both ABB and Siemens have presented solutions for HVDC transmission in the lower and medium power range based on voltage source converters based on IGBTs. Fully controllable voltage source HVDC converters have properties that may be better suited than conventional line commutated current source thyristor inverters, to supply weak or passive networks, such as offshore oil installations

  1. Development of a New Cascade Voltage-Doubler for Voltage Multiplication

    OpenAIRE

    Toudeshki, Arash; Mariun, Norman; Hizam, Hashim; Abdul Wahab, Noor Izzri

    2014-01-01

    For more than eight decades, cascade voltage-doubler circuits are used as a method to produce DC output voltage higher than the input voltage. In this paper, the topological developments of cascade voltage-doublers are reviewed. A new circuit configuration for cascade voltage-doubler is presented. This circuit can produce a higher value of the DC output voltage and better output quality compared to the conventional cascade voltage-doubler circuits, with the same number of stages.

  2. Design, construction and testing of a DC bioeffects test enclosure for small animals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, M J; Preache, M M

    1980-11-01

    This final report describes both the engineering development of a DC bioeffects test enclosure for small laboratory animals, and the biological protocol for the use of such enclosures in the testing of animals to determine possible biological effects of the environment associated with HVDC transmission lines. The test enclosure which has been designed is a modular unit, which will house up to eight rat-sized animals in individual compartments. Multiple test enclosures can be used to test larger numbers of animals. A prototype test enclosure has been fabricated and tested to characterize its electrical performance characteristics. The test enclosure provides a simulation of the dominant environment associated with HVDC transmission lines; namely, a static electric field and an ion current density. A biological experimental design has been developed for assessing the effects of the dominant components of the HVDC transmission line environment.

  3. Fulfilment of Grid Code Obligations by Large Offshore Wind Farms Clusters Connected via HVDC Corridors

    OpenAIRE

    Attya, A.B.; Anaya-Lara, Olimpo; Ledesma, P.; Svendsen, Harald Georg

    2016-01-01

    - The foreseen high penetration levels of wind power will force the systems operators to apply restrictive constraints on wind power plants. The ability of offshore wind clusters, which are connected via HVDC, to fulfill the grid codes, especially those related to voltage stability is investigated. This came in the frame of a project to develop an integrated and practical tool to design offshore wind clusters (EERA-DTOC). The applied case studies examine the system stability during and aft...

  4. Robust Frequency and Voltage Stability Control Strategy for Standalone AC/DC Hybrid Microgrid

    Directory of Open Access Journals (Sweden)

    Furqan Asghar

    2017-05-01

    Full Text Available The microgrid (MG concept is attracting considerable attention as a solution to energy deficiencies, especially in remote areas, but the intermittent nature of renewable sources and varying loads cause many control problems and thereby affect the quality of power within a microgrid operating in standalone mode. This might cause large frequency and voltage deviations in the system due to unpredictable output power fluctuations. Furthermore, without any main grid support, it is more complex to control and manage the system. In past, droop control and various other coordination control strategies have been presented to stabilize the microgrid frequency and voltages, but in order to utilize the available resources up to their maximum capacity in a positive way, new and robust control mechanisms are required. In this paper, a standalone microgrid is presented, which integrates renewable energy-based distributed generations and local loads. A fuzzy logic-based intelligent control technique is proposed to maintain the frequency and DC (direct current-link voltage stability for sudden changes in load or generation power. Also from a frequency control perspective, a battery energy storage system (BESS is suggested as a replacement for a synchronous generator to stabilize the nominal system frequency as a synchronous generator is unable to operate at its maximum efficiency while being controlled for stabilization purposes. Likewise, a super capacitor (SC and BESS is used to stabilize DC bus voltages even though maximum possible energy is being extracted from renewable generated sources using maximum power point tracking. This newly proposed control method proves to be effective by reducing transient time, minimizing the frequency deviations, maintaining voltages even though maximum power point tracking is working and preventing generators from exceeding their power ratings during disturbances. However, due to the BESS limited capacity, load switching

  5. Control of transformerless MMC-HVDC during asymmetric grid faults

    DEFF Research Database (Denmark)

    Timofejevs, Artjoms; Gamboa, Daniel; Liserre, Marco

    2013-01-01

    Modular multilevel converter (MMC) is the latest converter topology suitable for the transformerless applications in HVDC transmission. HVDC systems are required to remain connected during grid faults, provide grid support and completely decouple the healthy side from the faulty one. The MMC...

  6. Interior point algorithm-based power flow optimisation of a combined AC and DC multi-terminal grid

    Directory of Open Access Journals (Sweden)

    Farhan Beg

    2015-01-01

    Full Text Available The high cost of power electronic equipment, lower reliability and poor power handling capacity of the semiconductor devices had stalled the deployment of systems based on DC (multi-terminal direct current system (MTDC networks. The introduction of voltage source converters (VSCs for transmission has renewed the interest in the development of large interconnected grids based on both alternate current (AC and DC transmission networks. Such a grid platform also realises the added advantage of integrating the renewable energy sources into the grid. Thus a grid based on DC MTDC network is a possible solution to improve energy security and check the increasing supply demand gap. An optimal power solution for combined AC and DC grids obtained by the solution of the interior point algorithm is proposed in this study. Multi-terminal HVDC grids lie at the heart of various suggested transmission capacity increases. A significant difference is observed when MTDC grids are solved for power flows in place of conventional AC grids. This study deals with the power flow problem of a combined MTDC and an AC grid. The AC side is modelled with the full power flow equations and the VSCs are modelled using a connecting line, two generators and an AC node. The VSC and the DC losses are also considered. The optimisation focuses on several different goals. Three different scenarios are presented in an arbitrary grid network with ten AC nodes and five converter stations.

  7. Active pre-filters for dc/dc Boost regulators

    Directory of Open Access Journals (Sweden)

    Carlos Andrés Ramos-Paja

    2014-05-01

    Full Text Available This paper proposes an active pre-filter to mitigate the current harmonics generated by classical dc/dc Boost regulators, which generate current ripples proportional to the duty cycle. Therefore, high output voltage conditions, i.e., high voltage conversion ratios, produce high current harmonics that must be filtered to avoid damage or source losses. Traditionally, these current components are filtered using electrolytic capacitors, which introduce reliability problems because of their high failure rate. The solution introduced in this paper instead uses a dc/dc converter based on the parallel connection of the Boost canonical cells to filter the current ripples generated by the Boost regulator, improving the system reliability. This solution provides the additional benefits of improving the overall efficiency and the voltage conversion ratio. Finally, the solution is validated with simulations and experimental results.

  8. Isolated PWM DC-AC SICAM with an active capacitive voltage clamp[Pulse Density Modulated; Pulse Width Modulation

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.

    2004-03-15

    In this report an isolated PWM DC-AC SICAM with an active capacitive voltage clamp is presented. AC-DC power supply is implemented in its simplest form: diode rectifier followed by a medium-size charge-storage capacitors and possibly with an EMC filter on the mains entrance. Isolation from the AC mains is achieved using a high frequency (HF) transformer, whose voltages are not audio-modulated. The latter simplifies the design and is expected to have many advantages over the approach where the transformer voltages are modulated in regards to the audio signal reference. Input stage is built as a DC-AC inverter (push-pull, half-bridge or a full-bridge) and operated with 50% duty cycle, with all the challenges to avoid transformer saturation and obtain symmetrical operation. On the secondary side the output section is implemented as rectifier+inverter AC-AC stage, i.e. a true bidirectional bridge, which operation is aimed towards amplification of the audio signal. In order to solve the problem with the commutation of the load current, a dead time between the incoming and outgoing bidirectional switch is implemented, while a capacitive voltage clamp is used to keep the induced overvoltage to reasonable levels. The energy stored in the clamping capacitor is not wasted as in the dissipative clamps, but is rather transferred back to the primary side for further processing using an auxiliary isolated single-switch converter, i.e. an active clamping technique is used. (au)

  9. Design and application of the high-voltage DC power-supply control system based on PLC

    International Nuclear Information System (INIS)

    Huang Yiyun; Zheng Guanghua; Wu Junshuan; Yang Chunsheng; Hu Huaichuan

    2002-03-01

    The design and application of A kind of high-voltage DC power-supply control system based on PLC is referred, in addition, KingView is used to monitor the system in real time and manage the man-machine conversation ideally

  10. Cost and Benefit Analysis of VSC-HVDC Schemes for Offshore Wind Power Transmission

    Institute of Scientific and Technical Information of China (English)

    Sheng WANG; Chunmei FENG; An WEN; Jun LIANG

    2013-01-01

    Due to low load factors of wind power generation,it is possible to reduce transmission capacity to minimize the cost of transmission system construction.Two VSC-HVDC schemes for offshore wind farm,called the point to point (PTP) and DC mesh connections are compared in terms of the utilization of transmission system and its cost.A Weibull distribution is used for estimating offshore wind power generation,besides,the cross correlation between wind farms is considered.The wind energy curtailment is analyzed using the capacity output possibility table (COPT).The system power losses,costs of transmission investment and wind energy curtailment are also computed.A statistic model for the wind generation and transmission is built and simulated in MATLAB to validate the study.It is concluded that a DC mesh transmission can reduce the energy curtailment and power losses.Further benefit is achievable as the wind cross correlation between wind farms decreases.

  11. Plug-and-Play Voltage/Current Stabilization DC Microgrid Clusters with Grid-Forming/Feeding Converters

    DEFF Research Database (Denmark)

    Han, Renke; Tucci, Michele; Martinelli, Andrea

    2018-01-01

    In this paper, we propose a new decentralized control scheme for Microgrid (MG) clusters, given by the interconnection of atomic dc MGs, each composed by grid-forming and grid-feeding converters. In particular, we develop a new Plug-and-Play (PnP) voltage/current controller for each MG in order...... to achieve simultaneous voltage support and current feeding function with local references. The coefficients of each stabilizing controller are characterized by explicit inequalities, which are related only to local electrical parameters of the MG. With the proposed controller, each MG can plug...

  12. Development and Evaluation of cooperative control system for an HVDC transmission system connected with an isolated BWR power plant

    International Nuclear Information System (INIS)

    Horiuchi, Susumu; Hara, Tsukusi; Matori, Iwao; Hirayama, Kaiichirou.

    1987-01-01

    In the cooperative control system developed for an HVDC transmission system connected with an isolated BWR power plant, the equilibrium state between power plant output and DC transmission power is examined by way of the detection of the generator frequency. And, thereby start-up and shutdown of the DC system and controlling of the transmission power are made, so that the signal transmission with the power plant becomes unnecessary, enabling the easy cooperative operation. In order to investigate validity of this control system, various digital simulation and simulator test with the control system were carried out. In this way, behavior of the power plant and stability of the DC transmission system were evaluated in the connection to the DC system at power plant start-up, follow of the transmission power in change of the power plant output and in various system failures. (Mori, K.)

  13. Design and Implementation of Anti-windup PI Control on DC-DC Bidirectional Converter for Hybrid Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Muh. Zakiyullah Romdlony

    2012-07-01

    Full Text Available Well-regulated DC bus voltage is the important point to guarantee the power demand in hybrid vehicle applications. Voltage regulation can be achieved with control method that build switching signal on DC-DC converter. This paper describes design and small scale experimental results of bus voltage regulation control of the DC-DC bidirectional converter with battery and supercapacitor as energy source. The control system consists of two control loops, the outer loop that get DC bus voltage feedback using PI anti-windup back calculation control method. This outer loop will generate a reference current for the inner loop that implement hysteresis control. The inner control loop will compare that reference curent with the source current obtained from the current sensor. Simulation and experimental results show that bus voltage is well-regulated under the load changes with 1% voltage ripple.

  14. Stability Enhancement of Multi machine AC Systems by Synchronverter HVDC control

    Directory of Open Access Journals (Sweden)

    Raouia Aouini

    2016-06-01

    Full Text Available This paper investigates the impact of the Synchronverter based HVDC control on power system stability. The study considers multi machine power systems, with realistic parameters. A specific tuning method of the parameters of the regulators is used. The proposed control scheme is based on the sensitivity of the poles of the HVDC neighbor zone to the control parameters, and next, on their placement using residues. The transient stability of the HVDC neighbor zone is a priori taken into account at the design stage. The new tuning method is evaluated in comparison with the standard vector control via simulation tests. Extensive tests are performed using Matlab/Simulink implementation of the IEEE 9 bus/3 machines test system. The results prove the superiority of the proposed control to the classic vector control. The synchronverter control allows to improve not only the local performances of the HVDC link, but also the overall transient stability of the AC zone in which the HVDC is inserted. (where

  15. Analog Circuit Design Low Voltage Low Power; Short Range Wireless Front-Ends; Power Management and DC-DC

    CERN Document Server

    Roermund, Arthur; Baschirotto, Andrea

    2012-01-01

    The book contains the contribution of 18 tutorials of the 20th workshop on Advances in Analog Circuit Design.  Each part discusses a specific to-date topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art information is shared and overviewed. This book is number 20 in this successful series of Analog Circuit Design, providing valuable information and excellent overviews of Low-Voltage Low-Power Data Converters - Chaired by Prof. Anderea Baschirotto, University of Milan-Bicocca Short Range Wireless Front-Ends - Chaired by Prof. Arthur van Roermund, Eindhoven University of Technology Power management and DC-DC - Chaired by Prof. M. Steyaert, Katholieke University Leuven Analog Circuit Design is an essential reference source for analog circuit designers and researchers wishing to keep abreast with the latest development in the field. The tutorial coverage also makes it suitable for use in an advanced design.

  16. Comparison of alternative offshore wind farms and HVDC systems

    Energy Technology Data Exchange (ETDEWEB)

    Bruns, M. [Technische Univ. Dresden (Germany); Lilje, P.; Poeller, M. [DIgSILENT GmbH, Gomaringen (Germany); Basteck, A. [Voith Turbo Wind GmbH und Co. KG, Crailsheim (Germany)

    2010-07-01

    This paper investigates the stability of offshore wind farms connected to the main power system via HVDC systems. Wind farms consisting of different ratios of directly connected synchronous machines and doubly-fed induction machines are considered. In addition, both conventional LCC- and VSC-type HVDC systems are considered. Furthermore, different control strategies are considered. Furthermore, different control strategies are considered for the VSC-based system, including constant frequency control and frequency regulation. The stability analysis is done by means of time-domain simulation. The maximum and minimum ratio of the two wind turbine technologies is found for each of the different HVDC systems. (orig.)

  17. A control strategy for DC-link voltage control containing PV generation and energy storage — An intelligent approach

    OpenAIRE

    Rouzbehi, Kumars; Miranian, Arash; Candela García, José Ignacio; Luna Alloza, Álvaro; Rodríguez Cortés, Pedro

    2014-01-01

    In this paper, DC-link voltage control in DC microgrids with photovoltaic (PV) generation and battery, is addressed based on an intelligent approach. The proposed strategy is based on the modeling of the power interface, i.e. power electronic converter, located between the PV array, battery and DC bus, by use of measurement data. For this purpose, a local model network (LMN) is developed to model the converter and then a local linear control (LLC) strategy is designed based on the LMN. Simula...

  18. An offshore wind farm with dc grid connection and its performance under power system transients

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2011-01-01

    by disconnections. This paper presents a transient performance study of an offshore wind farm with HVDC transmission for grid connection, where the wind turbines in the offshore wind farm are also connected with dc collection network. A power-reduction control strategy (PRCS) for transient performance improvement...

  19. A single-phase embedded Z-source DC-AC inverter.

    Science.gov (United States)

    Kim, Se-Jin; Lim, Young-Cheol

    2014-01-01

    In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively.

  20. Exploration of Charge Recycling DC-DC Conversion Using a Switched Capacitor Regulator

    Directory of Open Access Journals (Sweden)

    Mircea R. Stan

    2013-07-01

    Full Text Available The increasing popularity of DVFS (dynamic voltage frequency scaling schemes for portable low power applications demands highly efficient on-chip DC-DC converters. The primary aim of this work is to enable increased efficiency of on-chip DC-DC conversion for near-threshold operation of multicore chips. The idea is to supply nominal (high off-chip voltage to the cores which are then “voltage-stacked” to generate the near-threshold (low voltages based on Kirchhoff’s voltage law through charge recycling. However, the effectiveness of this implicit down-conversion is affected by the current imbalance among the cores. The paper presents a design methodology and optimization strategy for highly efficient charge recycling on-chip regulation using a push-pull switched capacitor (SC circuit. A dual-boundary hysteretic feedback control circuit has been designed for stacked loads. A stacked-voltage domain with its self-regulation capability combined with a SC converter has shown average efficiency of 78%–93% for 2:1 down-conversion with ILoad (max of 200 mA and workload imbalance varying from 0–100%.

  1. The judgement of simultaneous commutation failure in HVDC about hierarchical connection to AC grid

    Science.gov (United States)

    Li, Ming; Song, Xinli; Huang, Daoshan; Liu, Wenzhuo; Zhao, Shutao; Ye, Xiaohui; Meng, Hang

    2017-09-01

    The hierarchical connection to AC grid at inverter sides in UHVDC has been take in several projects. This paper introduced the frame of the connection mode in hierarchical access system and compared it with the traditional one at the case of HVDC-Cigre. Then the criterion of commutation failure according to the same valves current was deduced. In order to verify the accuracy of the criterion, this paper used PSD-BPA (Bonneville Power Administration) to simulate the setting voltage drop in the East China power grid and certified the correctness of the formula.

  2. Independent control strategy of two DC-link voltages for separate MPPTs in transformerless photovoltaic systems using neutral-point-clamped inverters

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede; Lee, Kyo-Beum

    2014-01-01

    To improve the efficiency of the photovoltaic (PV) system, the centralized topology using three-level inverters are widely used. In this system, PV modules are separately connected to the split DC-links. This causes a decrease of maximum power point tracking (MPPT) efficiency under the partial...... shading condition. This paper proposes an independent control of two DC-link voltages for separate MPPT of each PV module in three-level inverters. The proposed method is simply implemented by adding or subtracting the time-offset to the three-phase turn-on times and modifying the reference voltages...

  3. Comparison of three-phase three-level voltage source inverter with intermediate dc–dc boost converter and quasi-Z-source inverter

    DEFF Research Database (Denmark)

    Panfilov, Dmitry; Husev, Oleksandr; Blaabjerg, Frede

    2016-01-01

    This study compares a three-phase three-level voltage source inverter with an intermediate dc-dc boost converter and a quasi-Z-source inverter in terms of passive elements values and dimensions, semiconductor stresses, and overall efficiency. A comparative analysis was conducted with relative...

  4. Multi-Agent-Based Controller for Voltage Enhancement in AC/DC Hybrid Microgrid Using Energy Storages

    Directory of Open Access Journals (Sweden)

    Ahmadali Khatibzadeh

    2017-02-01

    Full Text Available Development of renewable energies and DC loads have led microgrids toward the creation of DC networks. The predictions show that the hybrid microgrids will be used widely in the future. This article has studied the voltage stability in the presence of sources of energy storage in AC/DC hybrid networks. However, because the different dynamics of hybrid networks applying centralized and distributed controllers will be faced with different problems, in this study, a multi-agent control for the microgrid has been used. A new structure referred to here as an event-driven microgrid control management (EDMCM has been developed to control the microgrid. This method increases response speed and accuracy of decision making. Hybrid Network Simulation results confirm the validity of the developed model.

  5. Differential Mode EMI Filter Design for Isolated DC-DC Boost Converter

    DEFF Research Database (Denmark)

    Makda, Ishtiyaq Ahmed; Nymand, Morten

    2014-01-01

    A Differential Mode EMI filter for a low input voltage high-current isolated dc-dc boost converter is designed and presented in this paper. The primary side Differential Mode noise voltage is low due to the high transformer turn ratio, however, the input current is very high and since the EMI limit...... also does not change for such converters, it requires greatly optimized design approach for the filter including the correct sizing of the filter components. A complete analytical filter design process is carried out such a way that the Differential Mode noise voltage source in the converter...... is identified first. The DM noise model is then established and based on the harmonic analysis of the noise source voltage waveform, the complete Differential Mode EMI filter, including the filter resonance damping branch, is designed for a 3kW isolated dc-dc boost converter. The noise model and its theoretical...

  6. Current Mode Control for LLC Series Resonant DC-to-DC Converters

    Directory of Open Access Journals (Sweden)

    Jinhaeng Jang

    2015-06-01

    Full Text Available Conventional voltage mode control only offers limited performance for LLC series resonant DC-to-DC converters experiencing wide variations in operational conditions. When the existing voltage mode control is employed, the closed-loop performance of the converter is directly affected by unavoidable changes in power stage dynamics. Thus, a specific control design optimized at one particular operating point could become unacceptable when the operational condition is varied. This paper presents a new current mode control scheme which could consistently provide good closed-loop performance for LLC resonant converters for the entire operational range. The proposed control scheme employs an additional feedback from the current of the resonant tank network to overcome the limitation of the existing voltage mode control. The superiority of the proposed current mode control over the conventional voltage mode control is verified using an experimental 150 W LLC series resonant DC-to-DC converter.

  7. Evaluation of Niobium as Candidate Electrode Material for DC High Voltage Photoelectron Guns

    Science.gov (United States)

    BastaniNejad, M.; Mohamed, Abdullah; Elmustafa, A. A.; Adderley, P.; Clark, J.; Covert, S.; Hansknecht, J.; Hernandez-Garcia, C.; Poelker, M.; Mammei, R.; hide

    2012-01-01

    The field emission characteristics of niobium electrodes were compared to those of stainless steel electrodes using a DC high voltage field emission test apparatus. A total of eight electrodes were evaluated: two 304 stainless steel electrodes polished to mirror-like finish with diamond grit and six niobium electrodes (two single-crystal, two large-grain, and two fine-grain) that were chemically polished using a buffered-chemical acid solution. Upon the first application of high voltage, the best large-grain and single-crystal niobium electrodes performed better than the best stainless steel electrodes, exhibiting less field emission at comparable voltage and field strength. In all cases, field emission from electrodes (stainless steel and/or niobium) could be significantly reduced and sometimes completely eliminated, by introducing krypton gas into the vacuum chamber while the electrode was biased at high voltage. Of all the electrodes tested, a large-grain niobium electrode performed the best, exhibiting no measurable field emission (< 10 pA) at 225 kV with 20 mm cathode/anode gap, corresponding to a field strength of 18:7 MV/m.

  8. The Applicability of Traditional Protection Methods to Lines Emanating from VSC-HVDC Interconnectors and a Novel Protection Principle

    Directory of Open Access Journals (Sweden)

    Shimin Xue

    2016-05-01

    Full Text Available Voltage source converter (VSC-based high voltage direct current (VSC-HVDC interconnectors can realize accurate and fast control of power transmission among AC networks, and provide emergency power support for AC networks. VSC-HVDC interconnectors bring exclusive fault characteristics to AC networks, thus influencing the performance of traditional protections. Since fault characteristics are related to the control schemes of interconnectors, a fault ride-through (FRT strategy which is applicable to the interconnector operating characteristic of working in four quadrants and capable of eliminating negative-sequence currents under unbalanced fault conditions is proposed first. Then, the additional terms of measured impedances of distance relays caused by fault resistances are derived using a symmetrical component method. Theoretical analysis shows the output currents of interconnectors are controllable after faults, which may cause malfunctions in distance protections installed on lines emanating from interconnectors under the effect of fault resistances. Pilot protection is also inapplicable to lines emanating from interconnectors. Furthermore, a novel pilot protection principle based on the ratio between phase currents and the ratio between negative-sequence currents flowing through both sides is proposed for lines emanating from the interconnectors whose control scheme aims at eliminating negative-sequence currents. The validity of theoretical analysis and the protection principle is verified by PSCAD/EMTDC simulations.

  9. Milliwatt dc/dc Inverter

    Science.gov (United States)

    Mclyman, C. W.

    1983-01-01

    Compact dc/dc inverter uses single integrated-circuit package containing six inverter gates that generate and amplify 100-kHz square-wave switching signal. Square-wave switching inverts 10-volt local power to isolated voltage at another desired level. Relatively high operating frequency reduces size of filter capacitors required, resulting in small package unit.

  10. A High-Gain Reflex-Based Bidirectional DC Charger with Efficient Energy Recycling for Low-Voltage Battery Charging-Discharging Power Control

    Directory of Open Access Journals (Sweden)

    Ching-Ming Lai

    2018-03-01

    Full Text Available This study proposes a high-gain reflex-charging-based bidirectional DC charger (RC-BDC to enhance the battery charging efficiency of light electric vehicles (LEV in a DC-microgrid. The proposed charger topology consists of an unregulated level converter (ULC and a two-phase interleaved buck-boost charge-pump converter (IBCPC, which together provide low ripple and high voltage conversion ratio. As the high-gain RC-BDC charges, the LEV’s battery with reflex charging currents, high battery charging efficiency, and prolonged battery life cycles are achieved. This is possible due to the recovering of negative pulse energy of reflex charging currents to reduce charge dissipations within LEV’s batteries. Derivations of the operating principles of the high-gain RC-BDC, analyses of its topology, and the closed-loop control designs were presented. Simulations and experiments were implemented with battery voltage of 48 V and DC-bus voltage of 400 V for a 500 W prototype. The results verify the feasibility of the proposed concept and were compared with the typical constant-current/constant-voltage (CC/CV charger. The comparison shows that the proposed high gain RC-BDC improves battery charging speed and reduces the battery thermal deterioration effect by about 12.7% and 25%, respectively.

  11. The interaction of vacuum arcs with magnetic fields and applications

    International Nuclear Information System (INIS)

    Gorman, J.G.; Kimblin, C.W.; Slade, P.G.; Voshall, R.E.; Wien, R.E.

    1983-01-01

    Vacuum arc/magnetic field interactions are reviewed and extended. An axial magnetic field (parallel to current flow) produces a stable and diffuse vacuum arc. These properties have been used to build a reliable dc switch for the Tokamak Fusion Test Reactor at Princeton. The switching duty for this Ohmic Heating Interrupter involves repetitive interruption of 24kA dc against a 27kV recovery voltage. A transverse magnetic field (perpendicular to current flow) produces an unstable arc with an ensuing high arc voltage. This property has been used to complete a metallic return transfer breaker for the Pacific HVDC Intertie, here the switching duty involves interruption of currents up to 2200A dc against an 80kV recovery voltage

  12. A Novel High-Frequency Voltage Standing-Wave Ratio-Based Grounding Electrode Line Fault Supervision in Ultra-High Voltage DC Transmission Systems

    Directory of Open Access Journals (Sweden)

    Yufei Teng

    2017-03-01

    Full Text Available In order to improve the fault monitoring performance of grounding electrode lines in ultra-high voltage DC (UHVDC transmission systems, a novel fault monitoring approach based on the high-frequency voltage standing-wave ratio (VSWR is proposed in this paper. The VSWR is defined considering a lossless transmission line, and the characteristics of the VSWR under different conditions are analyzed. It is shown that the VSWR equals 1 when the terminal resistance completely matches the characteristic impedance of the line, and when a short circuit fault occurs on the grounding electrode line, the VSWR will be greater than 1. The VSWR will approach positive infinity under metallic earth fault conditions, whereas the VSWR in non-metallic earth faults will be smaller. Based on these analytical results, a fault supervision criterion is formulated. The effectiveness of the proposed VSWR-based fault supervision technique is verified with a typical UHVDC project established in Power Systems Computer Aided Design/Electromagnetic Transients including DC(PSCAD/EMTDC. Simulation results indicate that the proposed strategy can reliably identify the grounding electrode line fault and has strong anti-fault resistance capability.

  13. Hybrid Models of Alternative Current Filter for Hvdc

    Directory of Open Access Journals (Sweden)

    Ufa Ruslan A.

    2017-01-01

    Full Text Available Based on a hybrid simulation concept of HVDC, the developed hybrid AC filter models, providing the sufficiently full and adequate modeling of all single continuous spectrum of quasi-steady-state and transient processes in the filter, are presented. The obtained results suggest that usage of the hybrid simulation approach is carried out a methodically accurate with guaranteed instrumental error solution of differential equation systems of mathematical models of HVDC.

  14. Control strategy and hardware implementation for DC–DC boost power circuit based on proportional–integral compensator for high voltage application

    Directory of Open Access Journals (Sweden)

    Sanjeevikumar Padmanaban

    2015-06-01

    Full Text Available For high-voltage (HV applications, the designers mostly prefer the classical DC–DC boost converter. However, it lacks due to the limitation of the output voltage by the gain transfer ratio, decreased efficiency and its requirement of two sensors for feedback signals, which creates complex control scheme with increased overall cost. Furthermore, the output voltage and efficiency are reduced due to the self-parasitic behavior of power circuit components. To overcome these drawbacks, this manuscript provides, the theoretical development and hardware implementation of DC–DC step-up (boost power converter circuit for obtaining extra output-voltage high-performance. The proposed circuit substantially improves the high output-voltage by voltage-lift technology with a closed loop proportional–integral controller. This complete numerical model of the converter circuit including closed loop P-I controller is developed in simulation (Matlab/Simulink software and the hardware prototype model is implemented with digital signal processor (DSP TMS320F2812. A detailed performance analysis was carried out under both line and load regulation conditions. Numerical simulation and its verification results provided in this paper, prove the good agreement of the circuit with theoretical background.

  15. Modeling of Pressure Effects in HVDC Cables

    DEFF Research Database (Denmark)

    Szabo, Peter; Hassager, Ole; Strøbech, Esben

    1999-01-01

    A model is developed for the prediction of pressure effects in HVDC mass impregnatedcables as a result of temperature changes.To test the model assumptions, experiments were performed in cable like geometries.It is concluded that the model may predict the formation of gas cavities.......A model is developed for the prediction of pressure effects in HVDC mass impregnatedcables as a result of temperature changes.To test the model assumptions, experiments were performed in cable like geometries.It is concluded that the model may predict the formation of gas cavities....

  16. Compact Digital High Voltage Charger

    CERN Document Server

    Li, Ge

    2005-01-01

    The operation of classical resonant circuit developed for the pulse energizing is investigated. The HV pulse or generator is very compact by a soft switching circuit made up of IGBT working at over 30 kHZ. The frequencies of macro pulses andμpulses can be arbitrarily tuned below resonant frequency to digitalize the HV pulse power. Theμpulses can also be connected by filter circuit to get the HVDC power. The circuit topology is given and its novel control logic is analyzed by flowchart. The circuit is part of a system consisting of a AC or DC LV power supply, a pulse transformer, the pulse generator implemented by LV capacitor and leakage inductance of the transformer, a HV DC or pulse power supply and the charged HV capacitor of the modulators.

  17. A high-DC-voltage GaAs photoemission gun: Transverse emittance and momentum spread measurements

    International Nuclear Information System (INIS)

    Engwall, D.; Bohn, C.; Cardman, L.

    1997-01-01

    We have built a high-DC-voltage photoemission gun and a diagnostic beamline permitting us to measure rms transverse emittance (ε x ) and rms momentum spread (δ) of short-duration electron pulses produced by illuminating the cathode with light from a mode-locked, frequency-doubled Nd:YLF laser. The electron gun is a GaAs photocathode source designed to operate at 500kV. We have measured ε x and δ for conditions ranging from emittance-dominated to space-charge-dominated. We report these measurements as functions of microbunch charge for different beam radii, pulse lengths, and voltages/field gradients at the cathode, and compare them with PARMELA calculations

  18. Modular high voltage power supply for chemical analysis

    Science.gov (United States)

    Stamps, James F [Livermore, CA; Yee, Daniel D [Dublin, CA

    2008-07-15

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  19. Rats avoid exposure to HVdc electric fields: a dose response study.

    Science.gov (United States)

    Creim, J A; Lovely, R H; Weigel, R J; Forsythe, W C; Anderson, L E

    1993-01-01

    Rats, given the choice, avoid exposure to alternating current (ac) 60-Hz electric fields at intensities > or = 75 kV/m. This study investigated the generality of this behavior by studying the response of rats when exposed to high voltage direct current (HVdc) electric fields. Three hundred eighty male Long Evans rats were studied in 9 experiments with 40 rats per experiment and in one experiment with 20 rats to determine 1) if rats avoid exposure to HVdc electric fields of varying field strengths, and 2) if avoidance did occur, what role, if any, the concentration of air ions would have on the avoidance behavior. In all experiments a three-compartment glass shuttlebox was used; either the left or right compartment could be exposed to a combination of HVdc electric fields and air ions while the other compartment remained sham-exposed. The third, center compartment was a transition zone between exposure and sham-exposure. In each experiment, the rats were individually assessed in 1-h sessions where half of the rats (n = 20) had the choice to locomote between the two sides being exposed or sham-exposed, while the other half of the rats (n = 20) were sham-exposed regardless of their location, except in one experiment where there was no sham-exposed group. The exposure levels for the first six experiments were 80, 55, 42.5, 30, -36, and -55 kV/m, respectively. The air ion concentration was constant at 1.4 x 10(6) ions/cc for the four positive exposure levels and -1.4 x 10(6) ions/cc for the two negative exposure levels. Rats having a choice between exposure and non-exposure relative to always sham-exposed control animals significantly reduced the amount of time spent on the exposed side at 80 kV/m (P HVdc exposure level was held constant at either -55 kV/m (for three experiments) or -55 kV/m (for 1 experiment) while the air ion concentration was varied between experiments at 2.5 x 10(5) ions/cc, 1.0 x 10(4) for two of the experiments and was below the measurement limit

  20. A New Sliding Mode Controller for DC/DC Converters in Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    M. Sarvi

    2013-01-01

    Full Text Available DC/DC converters are widely used in many industrial and electrical systems. As DC/DC converters are nonlinear and time-variant systems, the application of linear control techniques for the control of these converters is not suitable. In this paper, a new sliding mode controller is proposed as the indirect control method and compared to a simple direct control method in order to control a buck converter in photovoltaic applications. The solar arrays are dependent power sources with nonlinear voltage-current characteristics under different environmental conditions (insolation and temperature. From this point of view, the DC/DC converter is particularly suitable for the application of the sliding mode control in photovoltaic application, because of its controllable states. Simulations are performed in Matlab/Simulink software. The simulation results are presented for a step change in reference voltage and input voltage as well as step load variations. The simulations results of proposed method are compared with the conventional PID controller. The results show the good performance of the proposed sliding mode controller. The proposed method can be used for the other DC/DC converter.

  1. Increase in fault ride through capability of direct drive permanent magnet based wind farm using VSC-HVDC

    International Nuclear Information System (INIS)

    Maleki, Hesamaldin; Ramachandaramurthy, V K; Lak, Moein

    2013-01-01

    Burning of fossil fuels and green house gasses causes global warming. This has led to governments to explore the use of green energies instead of fossil fuels. The availability of wind has made wind technology a viable alternative for generating electrical power. Hence, many parts of the world, especially Europe are experiencing a growth in wind farms. However, by increasing the number of wind farms connected to the grid, power quality and voltage stability of grid becomes a matter of concern. In this paper, VSC-HVDC control strategy which enables the wind farm to ride-through faults and regulate voltage for fault types is proposed. The results show that the wind turbine output voltage fulfills the E.ON grid code requirements, when subjected to three phase to ground fault. Hence, continues operation of the wind farm is achieved.

  2. Increase in fault ride through capability of direct drive permanent magnet based wind farm using VSC-HVDC

    Science.gov (United States)

    Maleki, Hesamaldin; Ramachandaramurthy, V. K.; Lak, Moein

    2013-06-01

    Burning of fossil fuels and green house gasses causes global warming. This has led to governments to explore the use of green energies instead of fossil fuels. The availability of wind has made wind technology a viable alternative for generating electrical power. Hence, many parts of the world, especially Europe are experiencing a growth in wind farms. However, by increasing the number of wind farms connected to the grid, power quality and voltage stability of grid becomes a matter of concern. In this paper, VSC-HVDC control strategy which enables the wind farm to ride-through faults and regulate voltage for fault types is proposed. The results show that the wind turbine output voltage fulfills the E.ON grid code requirements, when subjected to three phase to ground fault. Hence, continues operation of the wind farm is achieved.

  3. Evaluation of niobium as candidate electrode material for dc high voltage photoelectron guns

    Directory of Open Access Journals (Sweden)

    M. BastaniNejad

    2012-08-01

    Full Text Available The field emission characteristics of niobium electrodes were compared to those of stainless steel electrodes using a DC high voltage field emission test apparatus. A total of eight electrodes were evaluated: two 304 stainless steel electrodes polished to mirrorlike finish with diamond grit and six niobium electrodes (two single-crystal, two large-grain, and two fine-grain that were chemically polished using a buffered-chemical acid solution. Upon the first application of high voltage, the best large-grain and single-crystal niobium electrodes performed better than the best stainless steel electrodes, exhibiting less field emission at comparable voltage and field strength. In all cases, field emission from electrodes (stainless steel and/or niobium could be significantly reduced and sometimes completely eliminated, by introducing krypton gas into the vacuum chamber while the electrode was biased at high voltage. Of all the electrodes tested, a large-grain niobium electrode performed the best, exhibiting no measurable field emission (<10  pA at 225 kV with 20 mm cathode/anode gap, corresponding to a field strength of 18.7  MV/m.

  4. TiN coated aluminum electrodes for DC high voltage electron guns

    International Nuclear Information System (INIS)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-01-01

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloy (Ti-6Al-4V). Following gas conditioning, each TiN-coated aluminum electrode reached −225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ∼22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes

  5. Series-Connected High Frequency Converters in a DC Microgrid System for DC Light Rail Transit

    Directory of Open Access Journals (Sweden)

    Bor-Ren Lin

    2018-01-01

    Full Text Available This paper studies and presents a series-connected high frequency DC/DC converter connected to a DC microgrid system to provide auxiliary power for lighting, control and communication in a DC light rail vehicle. Three converters with low voltage and current stresses of power devices are series-connected with single transformers to convert a high voltage input to a low voltage output for a DC light rail vehicle. Thus, Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs with a low voltage rating and a turn-on resistance are adopted in the proposed circuit topology in order to decrease power losses on power switches and copper losses on transformer windings. A duty cycle control with an asymmetric pulse-width modulation is adopted to control the output voltage at the desired voltage level. It is also adopted to reduce switching losses on MOSFETs due to the resonant behavior from a leakage inductor of an isolated transformer and output capacitor of MOSFETs at the turn-on instant. The feasibility and effectiveness of the proposed circuit have been verified by a laboratory prototype with a 760 V input and a 24 V/60 A output.

  6. Design and Control of a Multiple Input DC/DC Converter for Battery/Ultra-capacitor Based Electric Vehicle Power System

    DEFF Research Database (Denmark)

    Schaltz, Erik; Li, Zhihao; Onar, Omer

    2009-01-01

    Battery/Ultra-capacitor based electrical vehicles (EV) combine two energy sources with different voltage levels and current characteristics. This paper focuses on design and control of a multiple input DC/DC converter, to regulate output voltage from different inputs. The proposed multi-input con......Battery/Ultra-capacitor based electrical vehicles (EV) combine two energy sources with different voltage levels and current characteristics. This paper focuses on design and control of a multiple input DC/DC converter, to regulate output voltage from different inputs. The proposed multi...

  7. A resonant dc-dc power converter assembly

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor of the s......The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor...... of the second resonant DC-DC power converter are configured for magnetically coupling the first and second resonant DC-DC power converters to each other to forcing substantially 180 degrees phase shift, or forcing substantially 0 degree phase shift, between corresponding resonant voltage waveforms of the first...

  8. Impacts of large-scale offshore wind farm integration on power systems through VSC-HVDC

    DEFF Research Database (Denmark)

    Liu, Hongzhi; Chen, Zhe

    2013-01-01

    The potential of offshore wind energy has been commonly recognized and explored globally. Many countries have implemented and planned offshore wind farms to meet their increasing electricity demands and public environmental appeals, especially in Europe. With relatively less space limitation......, an offshore wind farm could have a capacity rating to hundreds of MWs or even GWs that is large enough to compete with conventional power plants. Thus the impacts of a large offshore wind farm on power system operation and security should be thoroughly studied and understood. This paper investigates...... the impacts of integrating a large-scale offshore wind farm into the transmission system of a power grid through VSC-HVDC connection. The concerns are focused on steady-state voltage stability, dynamic voltage stability and transient angle stability. Simulation results based on an exemplary power system...

  9. A CMOS integrated voltage and power efficient AC/DC converter for energy harvesting applications

    International Nuclear Information System (INIS)

    Peters, Christian; Ortmanns, Maurits; Manoli, Yiannos; Spreemann, Dirk

    2008-01-01

    In this paper, a fully CMOS integrated active AC/DC converter for energy harvesting applications is presented. The rectifier is realized in a standard 0.35 µm CMOS process without special process options. It works as a full wave rectifier and can be separated into two stages—one passive and one active. The active part is powered from the storage capacitor and consumes about 600 nA at 2 V supply. The input voltage amplitude range is between 1.25 and 3.75 V, and the operating frequency range is from 1 Hz to as much as several 100 kHz. The series voltage drop over the rectifier is less than 20 mV. Measurements in combination with an electromagnetic harvester show a significant increase in the achievable output voltage and power compared to a common, discrete Schottky diode rectifier. The measured efficiency of the rectifier is over 95%. Measurements show a negligible temperature influence on the output voltage between −40 °C and +125 °C

  10. Power flow analysis for DC voltage droop controlled DC microgrids

    DEFF Research Database (Denmark)

    Li, Chendan; Chaudhary, Sanjay; Dragicevic, Tomislav

    2014-01-01

    This paper proposes a new algorithm for power flow analysis in droop controlled DC microgrids. By considering the droop control in the power flow analysis for the DC microgrid, when compared with traditional methods, more accurate analysis results can be obtained. The algorithm verification is ca...

  11. Light weight, high power, high voltage dc/dc converter technologies

    Science.gov (United States)

    Kraus, Robert; Myers, Ira; Baumann, Eric

    1990-01-01

    Power-conditioning weight reductions by orders of magnitude will be required to enable the megawatt-power-level space systems envisioned by the Strategic Defense Initiative, the Air Force, and NASA. An interagency program has been initiated to develop an 0.1-kg/kW dc/dc converter technology base for these future space applications. Three contractors are in the first phase of a competitive program to develop a megawatt dc/dc converter. Researchers at NASA Lewis Research Center are investigating innovative converter topology control. Three different converter subsystems based on square wave, resonant, and super-resonant topologies are being designed. The components required for the converter designs cover a wide array of technologies. Two different switches, one semiconductor and the other gas, are under development. Issues related to thermal management and material reliability for inductors, transformers, and capacitors are being investigated in order to maximize power density. A brief description of each of the concepts proposed to meet the goals of this program is presented.

  12. Pull-in behavior analysis of vibrating functionally graded micro-cantilevers under suddenly DC voltage

    Directory of Open Access Journals (Sweden)

    Jamal Zare

    2015-01-01

    Full Text Available The present research attempts to explain dynamic pull-in instability of functionally graded micro-cantilevers actuated by step DC voltage while the fringing-field effect is taken into account in the vibrational equation of motion. By employing modern asymptotic approach namely Homotopy Perturbation Method with an auxiliary term, high-order frequency-amplitude relation is obtained, then the influences of material properties and actuation voltage on dynamic pull-in behavior are investigated. It is demonstrated that the auxiliary term in the homotopy perturbation method is extremely effective for higher order approximation and two terms in series expansions are sufficient to produce an acceptable solution. The strength of this analytical procedure is verified through comparison with numerical results.

  13. Generic Models of Wind Turbine Generators for Advanced Applications in a VSC-based Offshore HVDC Network

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Margaris, Ioannis; Hansen, Anca Daniela

    This paper focuses on generic Type 4 wind turbine generators models, their applicability in modern HVDC connections and their capability to provide advanced ancillary services therefrom. A point-to-point HVDC offshore connection is considered. Issues concerning coordinated HVDC and wind farm...... involving the HVDC converters- The performance against frequency disturbances of the two presented configurations is assessed and discussed by means of simulations....

  14. Ultra-Step-Up DC-DC Converter with Integrated Autotransformer and Coupled Inductor

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede; Loh, Poh Chiang

    2016-01-01

    This paper introduces a new single-switch nonisolated dc-dc converter with very high voltage transfer ratio and reduced semiconductor voltage stress. The converter utilizes an integrated autotransformer and a coupled inductor on the same core to achieve a high step-up voltage gain without extreme...... duty cycle. Further, an integrated passive regenerative circuit recycles the leakage energy of the coupled magnetics and transfer the leakage energy to the load, which helps to avoid high voltage spikes across the switch. This feature along with low stress on the switching device enables the designer...

  15. IGBT Based DC/DC Converter

    Directory of Open Access Journals (Sweden)

    M. Akherraz

    1997-12-01

    Full Text Available This paper presents an in-depth analytical and experimental investigation of an indirect DC-DC converter. The DC-AC conversion is a full bridge based on IGBT power modules, and the AC-DC conversion is done via a high  frequency AC link and a first diode bridge. The AC link, which consists of snubbing capacitors and a variable air-gap transformer, is analytically designed to fulfill Zero Voltage commutation requirement. The proposed converter is simulated using PSPICE and a prototype is designed built and tested in the laboratory. PSPICE simulation and experimental results are presented and compared.

  16. Investigation of Grid-connected Voltage Source Converter Performance under Unbalanced Faults

    DEFF Research Database (Denmark)

    Jia, Jundi; Yang, Guangya; Nielsen, Arne Hejde

    2016-01-01

    Renewable energy sources (RES) and HVDC links are typically interfaced with the grid by power converters, whose performance during grid faults is significantly different from that of traditional synchronous generators. This paper investigates the performance of grid-connected voltage source...... that the performance of VSCs varies with their control strategies. Negative-sequence current control is necessary to restrict converter current in each phase under unbalanced faults. Among presented control strategies, the balanced current control strategy complies with the present voltage support requirement best...

  17. Power-MOSFET Voltage Regulator

    Science.gov (United States)

    Miller, W. N.; Gray, O. E.

    1982-01-01

    Ninety-six parallel MOSFET devices with two-stage feedback circuit form a high-current dc voltage regulator that also acts as fully-on solid-state switch when fuel-cell out-put falls below regulated voltage. Ripple voltage is less than 20 mV, transient recovery time is less than 50 ms. Parallel MOSFET's act as high-current dc regulator and switch. Regulator can be used wherever large direct currents must be controlled. Can be applied to inverters, industrial furnaces photovoltaic solar generators, dc motors, and electric autos.

  18. Modular Multilevel Converters: Control and Applications

    Directory of Open Access Journals (Sweden)

    Fernando Martinez-Rodrigo

    2017-10-01

    Full Text Available This review article is mainly oriented to the control and applications of modular multilevel converters (MMC. The main topologies of the switching modules are presented, for normal operation and for the elimination of DC faults. Methods to keep the capacitor voltage balanced are included. The voltage and current modulators, that are the most internal loops of control, are detailed. Voltage control and current control schemes are included which regulate DC link voltage and reactive power. The cases of unbalanced and distorted networks are analyzed, and schemes are proposed so that MMC contribute to improve the quality of the grid in these situations. The main applications in high voltage direct current (HVDC transmission along with other medium voltage (MV and low voltage (LV applications are included. Finally, the application to offshore wind farms is specifically analyzed.

  19. Relative localization in wireless sensor networks for measurement of electric fields under HVDC transmission lines.

    Science.gov (United States)

    Cui, Yong; Wang, Qiusheng; Yuan, Haiwen; Song, Xiao; Hu, Xuemin; Zhao, Luxing

    2015-02-04

    In the wireless sensor networks (WSNs) for electric field measurement system under the High-Voltage Direct Current (HVDC) transmission lines, it is necessary to obtain the electric field distribution with multiple sensors. The location information of each sensor is essential to the correct analysis of measurement results. Compared with the existing approach which gathers the location information by manually labelling sensors during deployment, the automatic localization can reduce the workload and improve the measurement efficiency. A novel and practical range-free localization algorithm for the localization of one-dimensional linear topology wireless networks in the electric field measurement system is presented. The algorithm utilizes unknown nodes' neighbor lists based on the Received Signal Strength Indicator (RSSI) values to determine the relative locations of nodes. The algorithm is able to handle the exceptional situation of the output permutation which can effectively improve the accuracy of localization. The performance of this algorithm under real circumstances has been evaluated through several experiments with different numbers of nodes and different node deployments in the China State Grid HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 96% under different conditions.

  20. Relative Localization in Wireless Sensor Networks for Measurement of Electric Fields under HVDC Transmission Lines

    Directory of Open Access Journals (Sweden)

    Yong Cui

    2015-02-01

    Full Text Available In the wireless sensor networks (WSNs for electric field measurement system under the High-Voltage Direct Current (HVDC transmission lines, it is necessary to obtain the electric field distribution with multiple sensors. The location information of each sensor is essential to the correct analysis of measurement results. Compared with the existing approach which gathers the location information by manually labelling sensors during deployment, the automatic localization can reduce the workload and improve the measurement efficiency. A novel and practical range-free localization algorithm for the localization of one-dimensional linear topology wireless networks in the electric field measurement system is presented. The algorithm utilizes unknown nodes’ neighbor lists based on the Received Signal Strength Indicator (RSSI values to determine the relative locations of nodes. The algorithm is able to handle the exceptional situation of the output permutation which can effectively improve the accuracy of localization. The performance of this algorithm under real circumstances has been evaluated through several experiments with different numbers of nodes and different node deployments in the China State Grid HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 96% under different conditions.