WorldWideScience

Sample records for volcano izu-bonin arc

  1. Progressive enrichment of arc magmas caused by the subduction of seamounts under Nishinoshima volcano, Izu-Bonin Arc, Japan

    Science.gov (United States)

    Sano, Takashi; Shirao, Motomaro; Tani, Kenichiro; Tsutsumi, Yukiyasu; Kiyokawa, Shoichi; Fujii, Toshitsugu

    2016-06-01

    The chemical composition of intraplate seamounts is distinct from normal seafloor material, meaning that the subduction of seamounts at a convergent margin can cause a change in the chemistry of the mantle wedge and associated arc magmas. Nishinoshima, a volcanic island in the Izu-Bonin Arc of Japan, has been erupting continuously over the past 2 years, providing an ideal opportunity to examine the effect of seamount subduction on the chemistry of arc magmas. Our research is based on the whole-rock geochemistry and the chemistry of minerals within lavas and air-fall scoria from Nishinoshima that were erupted before 1702, in 1973-1974, and in 2014. The mineral phases within the analyzed samples crystallized under hydrous conditions (H2O = 3-4 wt.%) at temperatures of 970 °C-990 °C in a shallow (3-6 km depth) magma chamber. Trace element data indicate that the recently erupted Nishinoshima volcanics are much less depleted in the high field strength elements (Nb, Ta, Zr, Hf) than other volcanics within the Izu-Bonin Arc. In addition, the level of enrichment in the Nishinoshima magmas has increased in recent years, probably due to the addition of material from HIMU-enriched (i.e., high Nb/Zr and Ta/Hf) seamounts on the Pacific Plate, which is being subducted westwards beneath the Philippine Sea Plate. This suggests that the chemistry of scoria from Nishinoshima volcano records the progressive addition of components derived from subducted seamounts.

  2. Two types of gabbroic xenoliths from rhyolite dominated Niijima volcano, northern part of Izu-Bonin arc: petrological and geochemical constraints

    Science.gov (United States)

    Arakawa, Yoji; Endo, Daisuke; Ikehata, Kei; Oshika, Junya; Shinmura, Taro; Mori, Yasushi

    2017-03-01

    We examined the petrography, petrology, and geochemistry of two types of gabbroic xenoliths (A- and B-type xenoliths) in olivine basalt and biotite rhyolite units among the dominantly rhyolitic rocks in Niijima volcano, northern Izu-Bonin volcanic arc, central Japan. A-type gabbroic xenoliths consisting of plagioclase, clinopyroxene, and orthopyroxene with an adcumulate texture were found in both olivine basalt and biotite rhyolite units, and B-type gabbroic xenoliths consisting of plagioclase and amphibole with an orthocumulate texture were found only in biotite rhyolite units. Geothermal- and barometricmodelling based on mineral chemistry indicated that the A-type gabbro formed at higher temperatures (899-955°C) and pressures (3.6-5.9 kbar) than the B-type gabbro (687-824°C and 0.8-3.6 kbar). These findings and whole-rock chemistry suggest different parental magmas for the two types of gabbro. The A-type gabbro was likely formed from basaltic magma, whereas the B-type gabbro was likely formed from an intermediate (andesitic) magma. The gabbroic xenoliths in erupted products at Niijima volcano indicate the presence of mafic to intermediate cumulate bodies of different origins at relatively shallower levels beneath the dominantly rhyolitic volcano.

  3. Two types of gabbroic xenoliths from rhyolite dominated Niijima volcano, northern part of Izu-Bonin arc: petrological and geochemical constraints

    Directory of Open Access Journals (Sweden)

    Arakawa Yoji

    2017-03-01

    Full Text Available We examined the petrography, petrology, and geochemistry of two types of gabbroic xenoliths (A- and B-type xenoliths in olivine basalt and biotite rhyolite units among the dominantly rhyolitic rocks in Niijima volcano, northern Izu-Bonin volcanic arc, central Japan. A-type gabbroic xenoliths consisting of plagioclase, clinopyroxene, and orthopyroxene with an adcumulate texture were found in both olivine basalt and biotite rhyolite units, and B-type gabbroic xenoliths consisting of plagioclase and amphibole with an orthocumulate texture were found only in biotite rhyolite units. Geothermal- and barometricmodelling based on mineral chemistry indicated that the A-type gabbro formed at higher temperatures (899–955°C and pressures (3.6–5.9 kbar than the B-type gabbro (687–824°C and 0.8–3.6 kbar. These findings and whole-rock chemistry suggest different parental magmas for the two types of gabbro. The A-type gabbro was likely formed from basaltic magma, whereas the B-type gabbro was likely formed from an intermediate (andesitic magma. The gabbroic xenoliths in erupted products at Niijima volcano indicate the presence of mafic to intermediate cumulate bodies of different origins at relatively shallower levels beneath the dominantly rhyolitic volcano.

  4. Discovery of an active shallow submarine silicic volcano in the northern Izu-Bonin Arc: volcanic structure and potential hazards of Oomurodashi Volcano (Invited)

    Science.gov (United States)

    Tani, K.; Ishizuka, O.; Nichols, A. R.; Hirahara, Y.; Carey, R.; McIntosh, I. M.; Masaki, Y.; Kondo, R.; Miyairi, Y.

    2013-12-01

    Oomurodashi is a bathymetric high located ~20 km south of Izu-Oshima, an active volcanic island of the northern Izu-Bonin Arc. Using the 200 m bathymetric contour to define its summit dimensions, the diameter of Oomurodashi is ~20 km. Oomurodashi has been regarded as inactive, largely because it has a vast flat-topped summit at 100 - 150 meters below sea level (mbsl). During cruise NT07-15 of R/V Natsushima in 2007, we conducted a dive survey in a small crater, Oomuro Hole, located in the center of the flat-topped summit, using the remotely-operated vehicle (ROV) Hyper-Dolphin. The only heat flow measurement conducted on the floor of Oomuro Hole during the dive recorded an extremely high value of 4,200 mW/m2. Furthermore, ROV observations revealed that the southwestern wall of Oomuro Hole consists of fresh rhyolitic lavas. These findings suggest that Oomurodashi is in fact an active silicic submarine volcano. To confirm this hypothesis, we conducted detailed geological and geophysical ROV Hyper-Dolphin (cruise NT12-19). In addition to further ROV surveys, we carried out single-channel seismic (SCS) surveys across Oomurodashi in order to examine the shallow structures beneath the current edifice. The ROV surveys revealed numerous active hydrothermal vents on the floor of Oomuro Hole, at ~200 mbsl, with maximum water temperature measured at the hydrothermal vents reaching 194°C. We also conducted a much more detailed set of heat flow measurements across the floor of Oomuro Hole, detecting very high heat flows of up to 29,000 mW/m2. ROV observations revealed that the area surrounding Oomuro Hole on the flat-topped summit of Oomurodashi is covered by extensive fresh rhyolitic lava and pumice clasts with minimum biogenetic or manganese cover, suggesting recent eruption(s). These findings strongly indicate that Oomurodashi is an active silicic submarine volcano, with recent eruption(s) occurring from Oomuro Hole. Since the summit of Oomurodashi is in shallow water, it

  5. S-wave attenuation structure beneath the northern Izu-Bonin arc

    Science.gov (United States)

    Takahashi, Tsutomu; Obana, Koichiro; Kodaira, Shuichi

    2016-04-01

    To understand temperature structure or magma distribution in the crust and uppermost mantle, it is essential to know their attenuation structure. This study estimated the 3-D S-wave attenuation structure in the crust and uppermost mantle at the northern Izu-Bonin arc, taking into account the apparent attenuation due to multiple forward scattering. In the uppermost mantle, two areas of high seismic attenuation (high Q -1) imaged beneath the volcanic front were mostly colocated with low-velocity anomalies. This coincidence suggests that these high- Q -1 areas in low-velocity zones are the most likely candidates for high-temperature regions beneath volcanoes. The distribution of random inhomogeneities indicated the presence of three anomalies beneath the volcanic front: Two were in high- Q -1 areas but the third was in a moderate- Q -1 area, indicating a low correlation between random inhomogeneities and Q -1. All three anomalies of random inhomogeneities were rich in short-wavelength spectra. The most probable interpretation of such spectra is the presence of volcanic rock, which would be related to accumulated magma intrusion during episodes of volcanic activity. Therefore, the different distributions of Q -1 and random inhomogeneities imply that the positions of hot regions in the uppermost mantle beneath this arc have changed temporally; therefore, they may provide important constraints on the evolutionary processes of arc crust and volcanoes.

  6. Eruption Depths, Magma Storage and Magma Degassing at Sumisu Caldera, Izu-Bonin Arc: Evidence from Glasses and Melt Inclusions

    Science.gov (United States)

    Johnson, E. R.

    2015-12-01

    Island arc volcanoes can become submarine during cataclysmal caldera collapse. The passage of a volcanic vent from atmospheric to under water environment involves complex modifications of the eruption style and subsequent transport of the pyroclasts. Here, we use FTIR measurements of the volatile contents of glass and melt inclusions in the juvenile pumice clasts in the Sumisu basin and its surroundings (Izu-Bonin arc) to investigate changes in eruption depths, magma storage and degassing over time. This study is based on legacy cores from ODP 126, where numerous unconsolidated (250 m), massive to normally graded pumice lapilli-tuffs were recovered over four cores (788C, 790A, 790B and 791A). Glass and clast geochemistry indicate the submarine Sumisu caldera as the source of several of these pumice lapilli-tuffs. Glass chips and melt inclusions from these samples were analyzed using FTIR for H2O and CO2 contents. Glass chips record variable H2O contents; most chips contain 0.6-1.6 wt% H2O, corresponding to eruption depths of 320-2100 mbsl. Variations in glass H2O and pressure estimates suggest that edifice collapse occurred prior-to or during eruption of the oldest of these samples, and that the edifice may have subsequently grown over time. Sanidine-hosted melt inclusions from two units record variably degassed but H2O-rich melts (1.1-5.6 wt% H2O). The lowest H2O contents overlap with glass chips, consistent with degassing and crystallization of melts until eruption, and the highest H2O contents suggest that large amounts of degassing accompanied likely explosive eruptions. Most inclusions, from both units, contain 2-4 wt% H2O, which further indicates that the magmas crystallized at pressures of ~50-100 MPa, or depths ~400-2800 m below the seafloor. Further glass and melt inclusion analyses, including major element compositions, will elucidate changes in magma storage, degassing and evolution over time.

  7. Geochemical Variation of Subducting Pacific Crust Along the Izu-Bonin Arc System and its Implications on the Generation of Arc Magmas

    Science.gov (United States)

    Durkin, K.; Castillo, P.; Abe, N.; Kaneko, R.; Straub, S. M.; Garcia, E. S. M.; Yan, Q.; Tamura, Y.

    2015-12-01

    Subduction zone magmatism primarily occurs due to flux melting of the mantle wedge that has been metasomatized by the slab component. The latter is enriched in volatiles and fluid-mobile elements and derived mainly from subducted sediments and altered oceanic crust (AOC). Subduction input has been linked to arc output in many studies, but this relationship is especially well documented in sedimented arc-trench systems. However, the Izu-Bonin system is sediment-poor, therefore the compositional and latitudinal variations (especially in Pb isotopes) of its arc magmas must be sourced from the subduction component originating primarily from the AOC. Pb is a very good tracer of recycled AOC that may contribute 50% or more of arc magma Pb. Izu-Bonin arc chemistry suggests a subduction influx of Indian-type crust, but the subducting crust sampled at ODP Site 1149 is Pacific-type. The discrepancy between subduction input and arc output calls into question the importance of the AOC as a source of the subduction component, and raises major concerns with our understanding of slab input. During the R/V Revelle 1412 cruise in late 2014, we successfully dredged vertical fault scarps at several sites from 27.5 N to 34.5 N, spanning a range of crustal ages that include a suggested compositional change at ~125 Ma. Major element data show an alkali enrichment towards the north of the study transect. Preliminary incompatible trace element data (e.g. Ba, Zr and Sr) data support this enrichment trend. Detailed mass balance calculations supported by Sr, Nd, Hf and especially Pb isotope analyses will be performed to evaluate whether the AOC controls the Pb isotope chemistry of the Izu-Bonin volcanic arc.

  8. Rock magnetic signature of paleoenvironmental changes in the Izu Bonin rear arc over the last 1 Ma

    Science.gov (United States)

    Kars, Myriam; Vautravers, Maryline; Musgrave, Robert; Kodama, Kazuto

    2015-04-01

    During April and May 2014, IODP Expedition 350 drilled a 1806.5 m deep hole at Site U1437 in the Izu-Bonin rear arc, in order to understand, among other objectives, the compositional evolution of the arc since the Miocene and track the missing half of the subduction factory. The good recovery of mostly fine grained sediments at this site enables a high resolution paleontological and rock magnetic studies. Particularly, variations in magnetic properties and mineralogy are well documented. Natural remanent magnetization and magnetic susceptibility vary with a saw-tooth pattern. Routine rock magnetic measurements performed on about 400 samples in the first 120 meters of Hole U1437B showed that pseudo single domain to multidomain magnetite is the main carrier of the remanence. The origin of magnetite is likely detrital. The magnetic susceptibility variations depend on many factors (e.g. lithology, magnetic mineralogy, and also dilution by the carbonate matrix). The magnetic susceptibility is also used as a proxy, at first order, for magnetic minerals concentration. In order to highlight changes in magnetic minerals concentration, it's necessary to correct for the carbonate dilution effect. Onboard and onshore carbonate measurements by coulometry show that the carbonate content of the samples can be up to ~60%. About 70 samples were measured onshore. After correcting the susceptibility by the carbonate content measured on the same samples, it appears that the pattern of the magnetic susceptibility before and after correction is similar. Then the magnetic susceptibility variations do not result from carbonate dilution but reflect fluctuating influx of the detrital sediment component. The delta O18 variations obtained on foraminifers (N. dutertrei) show MIS 1 to MIS 25 over the studied interval covering the last 1 Ma (see Vautravers et al., this meeting). Rock magnetic properties, concentration and grain size variations of the magnetic minerals will be compared to

  9. Tectonic evolution of the outer Izu-Bonin-Mariana fore arc system: initial results from IODP Expedition 352

    Science.gov (United States)

    Kurz, W.; Ferre, E. C.; Robertson, A. H. F.; Avery, A. J.; Kutterolf, S.

    2015-12-01

    During International Ocean Discovery Program (IODP) Expedition 352, a section through the volcanic stratigraphy of the outer fore arc of the Izu-Bonin-Mariana (IBM) system was drilled to trace magmatism, tectonics, and crustal accretion associated with subduction initiation. Structures within drill cores, borehole and site survey seismic data indicate that tectonic deformation in the outer IBM fore arc is mainly post-magmatic. Extension generated asymmetric sediment basins such as half-grabens at sites 352-U1439 and 352-U1442 on the upper trench slope. Along their eastern margins the basins are bounded by west-dipping normal faults. Deformation was localized along multiple sets of faults, accompanied by syn-tectonic pelagic and volcaniclastic sedimentation. The lowermost sedimentary units were tilted eastward by ~20°. Tilted beds were covered by sub-horizontal beds. Biostratigraphic constraints reveal a minimum age of the oldest sediments at ~ 35 Ma; timing of the sedimentary unconformities is between ~ 27 and 32 Ma. At sites 352-U1440 and 352-U1441 on the outer fore arc strike-slip faults are bounding sediment basins. Sediments were not significantly affected by tectonic tilting. Biostratigraphy gives a minimum age of the basement-cover contact between ~29.5 and 32 Ma. The post-magmatic structures reveal a multiphase tectonic evolution of the outer IBM fore arc. At sites 352-U1439 and 352-U1442, shear with dominant reverse to oblique reverse displacement was localized along subhorizontal fault zones, steep slickensides and shear fractures. These were either re-activated as or cut by normal-faults and strike-slip faults. Extension was also accommodated by steep to subvertical mineralized veins and extensional fractures. Faults at sites 352-U1440 and 352-U1441 show mainly strike-slip kinematics. Sediments overlying the igneous basement(maximum Late Eocene to Recent age), document ash and aeolian input, together with mass wasting of the fault-bounded sediment ponds.

  10. Forearc oceanic crust in the Izu-Bonin arc - new insights from active-source seismic survey -

    Science.gov (United States)

    Kodaira, S.; Noguchi, N.; Takahashi, N.; Ishizuka, O.; Kaneda, Y.

    2009-12-01

    Petrological studies have suggested that oceanic crust is formed in forearc areas during the initial stage of subduction. However, there is little geophysical evidence for the formation of oceanic crust in those regions. In order to examine crustal formation process associated with a subduction initiation process, we conducted an active-source seismic survey at a forearc region in the Izu-Bonin intra-oceanic arc. The resultant seismic image shows a remarkably thin crust (less than 10 km) at the northern half of the Bonin ridge (at the north of the Chichi-jima) and abrupt thickening the crust (~ 20 km thick) toward the south (at the Haha-jima). Comparison of velocity-depth profiles of the thin forearc crust of the Bonin ridge with those of typical oceanic crusts showed them to be seismologically identical. The observed structural variation also well corresponds to magmatic activities along the forearc. Boninitic magmatism is evident in the area of thin crust and tholeiitic-calcalkaline andesitic volcanism in the area of thick crust. Based on high precision dating studies of those volcanic rocks, we interpreted that the oceanic-type thin crust associated with boninitic volcanism has been created soon after the initiation of subduction (45-48 Ma) and and that the nonoceanic thick crust was created by tholeiitic-calcalkaline andesitic magmatism after the boninitic magmatism was ceased. The above seismological evidences strongly support the idea of forearc oceanic crust (or phiolite) created by forearc spreading in the initial stage of subduction along the intra-oceanic arc.

  11. Source Evolution After Subduction Initiation as Recorded in the Izu-Bonin-Mariana Fore-arc Crust

    Science.gov (United States)

    Shervais, J. W.; Reagan, M. K.; Pearce, J. A.; Shimizu, K.

    2015-12-01

    Drilling in the Izu-Bonin-Mariana (IBM) fore-arc during IODP Expedition 352 and DSDP Leg 60 recovered consistent stratigraphic sequences of volcanic rocks reminiscent of those found in many ophiolites. The oldest lavas in these sections are "fore-arc basalts" (FAB) with ~51.5 Ma ages. Boninites began eruption approximately 2-3 m.y. later (Ishizuka et al., 2011, EPSL; Reagan et al., 2013, EPSL) and further from the trench. First results from IODP Expedition 352 and preliminary post-cruise data suggest that FAB at Sites U1440 and U1441 were generated by decompression melting during near-trench sea-floor spreading, and that fluids from the subducting slab were not involved in their genesis. Temperatures appear to have been unusually high and pressures of melting appear to have been unusually low compared to mid-ocean ridges. Spreading rates at this time appear to have been robust enough to maintain a stable melt lens. Incompatible trace element abundances are low in FAB compared to even depleted MORB. Nd and Hf Isotopic compositions published before the expedition suggest that FAB were derived from typical MORB source mantle. Thus, their extreme deletion resulted from unusually high degrees of melting immediately after subduction initiation. The oldest boninites from DSDP Site 458 and IODP Sites U1439 and U1442 have relatively high concentrations of fluid-soluble elements, low concentrations of REE, and light depleted REE patterns. Younger boninites, have even lower REE concentrations, but have U-shaped REE patterns. Our first major and trace element compositions for the FAB through boninite sequence suggests that melting pressures and temperatures decreased through time, mantle became more depleted though time, and spreading rates waned during boninite genesis. Subduction zone fluids involved in boninite genesis appear to have been derived from progressively higher temperatures and pressures over time as the subducting slab thermally matured.

  12. Differences between boninite and tholeiite primary magmas in Izu-Bonin-Mariana arc: constraints from an Os isotope perspective

    Science.gov (United States)

    Senda, R.; Shimizu, K.; Suzuki, K.

    2010-12-01

    Geochemical data of arc primary magmas provide information on how elements behave in the subduction system. In order to constrain Os behavior in a subduction system, Os isotope ratios of whole rock and chromium spinels (Cr-spinels) in boninites, a type of high-Mg andesite, and tholeiites from Izu-Bonin-Mariana (IBM) arc, have been determined. Cr-spinel crystallizes at an early stage of fractional crystallization and therefore can preserve primary information of its magma source. Furthermore Os is highly compatible in Cr-spinels, and thus Os isotope ratios determined from Cr-spinel in volcanic rocks provide information on the magmatic history and origin. We investigated the difference in Os isotopic compositions between the primary boninite and primary tholeiite in IBM arc to understand the behavior of Os during arc magma generation. The whole rock Os isotope ratios of both boninites (187Os/188Os = 0.1240-0.1828) and tholeiites (187Os/188Os = 0.1658-0.2832) are higher and more variable than those of Cr-spinels (from boninites: 187Os/188Os = 0.1229-0.1242, from tholeiites: 187Os/188Os = 0.1429-0.1512). In both cases, this is likely to be due to the rock assimilating crustal materials with more radiogenic Os isotope ratios than the mantle during magma ascent after Cr-spinel crystallization. The initial Os isotope ratios of Cr-spinel from boninites (187Os/188Os(i) = 0.1206-0.1242) are similar to those of abyssal peridotites from the forearc region of IBM [1]. This suggests that the Os in the boninite primary magma originates from unradiogenic depleted mantle, not from radiogenic fertile mantle or subducted materials. On the other hand, Os isotope ratios of Cr-spinels from tholeiites are higher than those from boninites. Crustal contamination possibly contributed to the more radiogenic Os isotopic composition of the tholeiite magma. The difference in Os isotope ratios between boninite and tholeiites indicate that they have a different origin and evolutionary history

  13. Behavior of trace metals in the hydrothermal plume at two sites on the Izu-Bonin-Mariana Arc

    Science.gov (United States)

    Shitashima, K.

    2004-12-01

    Deep-sea hydrothermal systems play an important role in the oceanic geochemical cycles of trace metals. High concentration of trace metals of the basalt origin is discharged into the deep sea via the hydrothermal plume. The hydrothermal plume is widely diffused to the ocean by mixing with ambient seawater. The processes of input and removal in the diffusing hydrothermal plume differ by individual hydrothermal systems. In this presentation, the behavior of trace metals in the hydrothermal plume of two sites on the Izu-Bonin-Mariana Arc is compared. This study was funded by the O`Archaean ParkO_L project of MEXT. The hydrothermal plume samples were taken from the Suiyo Seamount and the southern Mariana Trough (Pika Site). The mini CTDT-RMS mounted twelve 1.2L Niskin bottles was installed onto the manned submersible. And the hydrothermal plume samples were collected with monitoring the anomaly of temperature and turbidity. The samples were immediately filtered in an onboard clean bench. Unfiltered sample for analysis of total (particulate + dissolved) trace metal and filtered sample for analysis of dissolved trace metal were acidified. Trace metals (Al, Mn, Fe, Cu and Zn) in the hydrothermal plume samples were analyzed by GFAAS. The ranges of concentration of Al, Mn, Fe, Cu and Zn in the hydrothermal plume samples collected from two sites are _`15uM, _`5uM, _`5uM, _` 0.2uM and _`0.6uM, respectively. The particulate phase is predominant form in Al, Fe, Cu and Zn, and Mn shows the superiority of dissolved form. At the Suiyo Seamount, the hydrothermal active site is located in the bottom of caldera. On the other hand, the hydrothermal active site exists on the top of off-ridge seamount at the southern Mariana Trough. The diffusion process of trace metals in the hydrothermal plume to the ocean differed by the topographic factor in two sites. It suggests that trace metals discharged from the vents are hardly diffused to the ocean surmounting the Suiyo Seamount caldera

  14. From vein precipitates to deformation and fluid rock interaction within a SSZ: Insights from the Izu-Bonin-Mariana fore arc

    Science.gov (United States)

    Micheuz, Peter; Quandt, Dennis; Kurz, Walter

    2017-04-01

    International Ocean Discovery Program (IODP) expeditions 352 and 351 drilled through oceanic crust of the Philippine Sea plate. The two study areas are located near the outer Izu-Bonin-Mariana (IBM) fore arc and in the Amami Sankaku Basin. The primary objective was to improve our understanding of supra-subduction zones (SSZ) and the process of subduction initiation. The recovered drill cores during IODP expedition 352 represent approximately 50 Ma old fore arc basalts (FAB) and boninites revealing an entire volcanic sequence of a SSZ. Expedition 351 drilled FAB like oceanic crust similar in age to the FABs of expedition 352. In this study we present data on vein microstructures, geochemical data and isotopic signatures of vein precipitates to give new insights into fluid flow and precipitation processes and deformation within the Izu-Bonin fore arc. Veins formed predominantly as a consequence of hydrofracturing resulting in the occurrence of branched vein systems and brecciated samples. Along these hydrofractures the amount of altered host rock fragments varies and locally alters the host rock completely to zeolites and carbonates. Subordinately extensional veins released after the formation of the host rocks. Cross-cutting relationships of different vein types point to multiple fracturing events subsequently filled with minerals originating from a fluid with isotopic seawater signature. Based on vein precipitates, their morphology and their growth patterns four vein types have been defined. Major vein components are (Mg-) calcite and various zeolites determined by Raman spectra and electron microprobe analyses. Zeolites result from alteration of volcanic glass during interaction with a seawaterlike fluid. Type I veins which are characterized by micritic infill represent neptunian dykes. They predominantly occur in the upper levels of drill cores being the result of an initial volume change subsequently to crystallization of the host rocks. Type II veins are

  15. The Upper- to Middle-Crustal Section of the Alisitos Oceanic Arc, (Baja, Mexico): an Analog of the Izu-Bonin-Marianas (IBM) Arc

    Science.gov (United States)

    Medynski, S.; Busby, C.; DeBari, S. M.; Morris, R.; Andrews, G. D.; Brown, S. R.; Schmitt, A. K.

    2016-12-01

    The Rosario segment of the Cretaceous Alisitos arc in Baja California is an outstanding field analog for the Izu-Bonin-Mariana (IBM) arc, because it is structurally intact, unmetamorphosed, and has superior three-dimensional exposures of an upper- to middle-crustal section through an extensional oceanic arc. Previous work1, done in the pre-digital era, used geologic mapping to define two phases of arc evolution, with normal faulting in both phases: (1) extensional oceanic arc, with silicic calderas, and (2) oceanic arc rifting, with widespread diking and dominantly mafic effusions. Our new geochemical data match the extensional zone immediately behind the Izu arc front, and is different from the arc front and rear arc, consistent with geologic relations. Our study is developing a 3D oceanic arc crustal model, with geologic maps draped on Google Earth images, and GPS-located outcrop information linked to new geochemical, geochronological and petrographic data, with the goal of detailing the relationships between plutonic, hypabyssal, and volcanic rocks. This model will be used by scientists as a reference model for past (IBM-1, 2, 3) and proposed IBM (IBM-4) drilling activities. New single-crystal zircon analysis by TIMS supports the interpretation, based on batch SIMS analysis of chemically-abraded zircon1, that the entire upper-middle crustal section accumulated in about 1.5 Myr. Like the IBM, volcanic zircons are very sparse, but zircon chemistry on the plutonic rocks shows trace element compositions that overlap to those measured in IBM volcanic zircons by A. Schmitt (unpublished data). Zircons have U-Pb ages up to 20 Myr older than the eruptive age, suggesting remelting of older parts of the arc, similar to that proposed for IBM (using different evidence). Like IBM, some very old zircons are also present, indicating the presence of old crustal fragments, or sediments derived from them, in the basement. However, our geochemical data show that the magmas are

  16. Meso- and microscale structures related to post-magmatic deformation of the outer Izu-Bonin-Mariana fore arc system: preliminary results from IODP Expedition 352

    Science.gov (United States)

    Micheuz, P.; Kurz, W.; Ferre, E. C.

    2015-12-01

    IODP Expedition 352 aimed to drill through the entire volcanic sequence of the Bonin fore arc. Four sites were drilled, two on the outer fore arc and two on the upper trench slope. Analysis of structures within drill cores, combined with borehole and site survey seismic data, indicates that tectonic deformation in the outer Izu-Bonin-Mariana fore arc is mainly post-magmatic, associated with the development of syn-tectonic sedimentary basins. Within the magmatic basement, deformation was accommodated by shear along cataclastic fault zones, and the formation of tension fractures, hybrid (tension and shear) fractures, and shear fractures. Veins commonly form by mineral filling of tension or hybrid fractures and, generally, show no or limited observable macroscale displacement along the fracture plane. The vein filling generally consists of (Low Mg-) calcite and/or various types of zeolite as well as clay. Vein frequency varies with depth but does not seem to correlate with the proximity of faults. This may indicate that these veins are genetically related to hydrothermal activity taking place shortly after magma cooling. Host-rock fragments are commonly embedded within precipitated vein material pointing to a high fluid pressure. Vein thickness varies from < 1 mm up to 15 mm. The wider veins appear to have formed in incremental steps of extension. Calcite veins tend to be purely dilational at shallow depths, but gradually evolve towards oblique tensional veins at depth, as shown by the growth of stretched calcite and/or zeolites (idiomorphic and/or stretched) with respect to vein margins. With increasing depth, the calcite grains exhibit deformation microstructures more frequently than at shallower core intervals. These microstructures include thin twinning (type I twins), increasing in width with depth (type I and type II twins), curved twins, and subgrain boundaries indicative of incipient plastic deformation.

  17. 3-D simulation of temporal change in tectonic deformation pattern and evolution of the plate boundary around the Kanto Region of Japan due to the collision of the Izu-Bonin Arc

    Science.gov (United States)

    Hashima, A.; Sato, T.; Ito, T.; Miyauchi, T.; Furuya, H.; Tsumura, N.; Kameo, K.; Yamamoto, S.

    2010-12-01

    The Kanto region of Japan is in a highly complex tectonic setting with four plates interacting with each other: beneath Kanto, situated on the Eurasian and North American plates, the Philippine sea plate subducts and the Pacific plate further descends beneath the North American and Philippine sea plates, forming the unique trench-trench-trench triple junction on the earth. In addition, the Izu-Bonin (Ogasawara) arc on the Philippine sea plate is colliding with the Japan islands, which is considered to be a significant effect on the tectonics of Kanto. To reveal the present crustal structure and the present internal stress fields in such a complex tectonic setting, it is essential to comprehend them through the long-term tectonic evolution process. In this study, we estimate the temporal change in tectonic deformation pattern along with the geometry of the plate boundary around Kanto by numerical simulation with a kinematic plate subduction model based on the elastic dislocation theory. This model is based on the idea that mechanical interaction between plates can rationally be represented by the increase of the displacement discontinuity (dislocation) across plate interfaces. Given the 3-D geometry of plate interfaces, the distribution of slip rate vectors for simple plate subduction can be obtained directly from relative plate velocities. In collision zones, the plate with arc crust cannot easily descend because of its buoyancy. This can be represented by giving slip-rate deficit. When crustal deformation occurs, it also causes change in geometry of the plate boundary itself. This geometry change sensitively affects mechanical interaction at the plate boundary. Then the renewed plate-to-plete interaction alters crustal deformation rates. This feedback system has a large effect on collision zones. Indeed, the plate boundary around the Izu peninsula, the northernmost end of the Izu-Bonin arc, intends landward as large as 100 km. Iterating this effect sequentially

  18. Meso- and microscale vein structures in fore-arc basalts and boninites related to post-magmatic tectonic deformation in the outer Izu-Bonin-Mariana fore arc system: preliminary results from IODP Expedition 352

    Science.gov (United States)

    Quandt, Dennis; Micheuz, Peter; Kurz, Walter

    2016-04-01

    The International Ocean Discovery Program (IODP) Expedition 352 aimed to drill through the entire volcanic sequence of the Izu-Bonin-Mariana fore arc. Two drill sites are situated on the outer fore arc composed of fore arc basalts (FAB) whereas two more sites are located on the upper trench slope penetrating the younger boninites. First results from IODP Expedition 352 and preliminary post-cruise data suggest that FAB were generated by decompression melting during near-trench sea-floor spreading, and that fluids from the subducting slab were not involved in their genesis. Subduction zone fluids involved in boninite genesis appear to have been derived from progressively higher temperatures and pressures over time as the subducting slab thermally matured. Structures within the drill cores combined with borehole and site survey seismic data indicate that tectonic deformation in the outer Izu-Bonin-Mariana fore arc is mainly post-magmatic associated with the development of syn-tectonic sedimentary basins. Within the magmatic basement deformation was accommodated by shear along cataclastic fault zones and the formation of tension fractures, shear fractures and hybrid (tension and shear) fractures. Veins form by mineral filling of tension or hybrid fractures and show no or limited observable macroscale displacement along the fracture plane. (Low Mg-) Calcite and/or various types of zeolite are the major vein constituents, where the latter are considered to be alteration products of basaltic glass. Micrite contents vary significantly and are related to neptunian dikes. In boninites calcite develops mainly blocky shapes but veins with fibrous and stretched crystals also occur in places indicating antitaxial as well as ataxial growth, respectively. In FAB calcite forms consistently blocky crystals without any microscopic identifiable growth direction suggesting precipitation from a highly supersaturated fluid under dropping fluid pressure conditions. However, fluid pressure

  19. In situ ore formation experiment: Amino acids and amino sugars trapped in artificial chimneys on deep-sea hydrothermal systems at Suiyo Seamount, Izu-Bonin Arc, Pacific Ocean

    CERN Document Server

    Takano,; Marumo,; K.,; Ebashi,; T.,; Gupta,; P., L; Kawahata,; H.,; Kobayashi,; K.,; Yamagishi,; A.,; Kuwabara,; T,

    2013-01-01

    The present study reports on the bio-organic composition of a deep-sea venting hydrothermal system originating from arc volcanism; the origin of the particulates in hydrothermal fluids from the Suiyo Seamount in the southern Izu-Bonin (Ogasawara) Arc is discussed with regard to amino compounds. Chimney samples on deep-sea hydrothermal systems and core samples at Suiyo Seamount were determined for amino acids, and occasionally amino sugars. Two types of chimney samples were obtained from active hydrothermal systems by submersible vehicles: one was natural chimney (NC) on a hydrothermal natural vent; the other was artificial chimneys (AC), mainly formed by the growth and deposition of sulfide-rich particulate components in a Kuwabara-type in situ incubator (KI incubator). Total hydrolyzed amino acids (THAA) and hydrolyzed hexosamines (HA) in AC ranged from 10.7 nmol/g to 64.0 nmol/g and from 0 nmol/g to 8.1 nmol/g, respectively, while THAA in hydrothermally altered core samples ranged from 26.0 nmol/g to 107.4 ...

  20. Transition of magma genesis estimated by change of chemical composition of Izu-bonin arc volcanism associated with spreading of Shikoku Basin

    Science.gov (United States)

    Haraguchi, S.; Ishii, T.

    2006-12-01

    Arc volcanism in the Izu-Ogasawara arc is separated into first and latter term at the separate of Shikoku Basin. Middle to late Eocene early arc volcanism formed a vast terrane of boninites and island arc tholeiites that is unlike active arc systems. A following modern-style arc volcanism was active during the Oligocene, along which intense tholeiitic and calc-alkaline volcanism continued until 29Ma, before spreading of the back- arc basin. The recent arc volcanism in the Izu-Ogasawara arc have started in the middle Miocene, and it is assumed that arc volcanism were decline during spreading of back-arc basin. In the northern Kyushu-Palau Ridge, submarine bottom materials were dredged during the KT95-9 and KT97-8 cruise by the R/V Tansei-maru, Ocean Research Institute, university of Tokyo, and basaltic to andesitic volcanic rocks were recovered during both cruise except for Komahashi-Daini Seamount where recovered acidic plutonic rocks. Komahashi-Daini Seamount tonalite show 37.5Ma of K-Ar dating, and this age indicates early stage of normal arc volcanism. These volcanic rocks are mainly cpx basalt to andesite. Two pyroxene basalt and andesite are only found from Miyazaki Seamount, northern end of the Kyushu-Palau Ridge. Volcanic rocks show different characteristics from first term volcanism in the Izu-Ogasawara forearc rise and recent arc volcanism. The most characteristic is high content of incompatible elements, that is, these volcanics show two to three times content of incompatible elements to Komahashi-Daini Seamount tonalite and former normal arc volcanism in the Izu outer arc (ODP Leg126), and higher content than recent Izu arc volcanism. This characteristic is similar to some volcanics at the ODP Leg59 Site448 in the central Kyushu- Palau Ridge. Site448 volcanic rocks show 32-33Ma of Ar-Ar ages, which considered beginning of activity of Parece Vela Basin. It is considered that the dredged volcanic rocks are uppermost part of volcanism before spreading of

  1. Geochemistry of Volcanic Rocks from International Ocean Discovery Program (IODP) Site 1438, Amami Sankaku Basin: Implications for Izu-Bonin-Mariana (IBM) Arc Initiation

    Science.gov (United States)

    Hickey-Vargas, R.; Ishizuka, O.; Yogodzinski, G. M.; Bizimis, M.; Savov, I. P.; McCarthy, A. J.; Arculus, R. J.; Bogus, K.

    2015-12-01

    IODP Expedition 351 drilled 150 m of volcanic basement overlain by 1461 m of sedimentary material at Site 1438 in the Amami Sankaku basin, just west of the Kyushu Palau Ridge, the locus of IBM arc initiation. Age interpretations based on biostratigraphy (Arculus et al., Nat. Geosci., in-press) determined that the age of the basement section is between 64 and 51 Ma, encompassing the age of the earliest volcanic products of the IBM arc. The Site 1438 volcanic basement consists of multiple flows of aphyric microcrystalline to finely crystalline basalts containing plagioclase and clinopyroxene with rare olivine pseudomorphs. New XRF major and ICPMS trace element data confirm findings of shipboard analysis that the basalts are moderately differentiated (6-14 % MgO; Mg# = 51-83; 73-490 ppm Cr and 58-350 ppm Ni) with downcore variations related to flow units. Ti/V and Ti/Sc ratios are 16-27 and 75-152, respectively, with lowest values at the base of the core. One prominent characteristic of the basalts is their depletion of immobile highly incompatible elements compared with MORB. Basalts have MORB-normalized La/Nd of 0.5 to 0.9, and most have Th/La andesites from three sills in the lowermost sedimentary unit have arc-like trace element patterns with La/Nb > 3 and primitive mantle normalized La/Yb > 1. Our results suggest that mantle melting at the onset of subduction involved exceptionally depleted sources. Enrichment over time may be related to increasing subduction inputs and/or other processes, such as entrainment of fertile asthenosphere during extension of the overriding plate.

  2. Mantle discontinuities beneath Izu-Bonin and the implications

    Institute of Scientific and Technical Information of China (English)

    臧绍先; 周元泽; 蒋志勇

    2003-01-01

    The SdP, pdP and sdP phases are picked up with the Nth root slant stack method from the digital waveform data recorded by the networks and arrays in USA, Germany and Switzerland for the earthquakes occurring beneath Izu-Bonin and Japan Sea. The mantle discontinuities and the effects of subducting slab on the 660 km and 410 km discontinuities are studied. It is found that there are mantle discontinuities existing at the depths of 170, 220, 300, 410, 660, 850 and 1150 km. Beneath Izu-Bonin, the 410 km discontinuity is elevated, while the 660 km discontinuity is depressed; for both discontinuities, there are regionalized differences. Beneath Japan Sea, however, there is no depth variation of the 410 km discontinuity, and the 660 km discontinuity is depressed without obvious effect of the subducting slab.

  3. Online Classroom Research and Analysis Activities Using MARGINS-Related Resources for the Izu-Bonin-Mariana Subduction System

    Science.gov (United States)

    Ryan, J. G.

    2007-12-01

    Students today have online access to nearly unlimited scientific information in an entirely unfiltered state. As such, they need guidance and training in identifying and assessing high-quality information resources for educational and research use. The extensive research data resources available online for the Izu-Bonin-Mariana (IBM) subduction system that have been developed with MARGINS Program and related NSF funding are an ideal venue for focused Web research exercises that can be tailored to a range of undergraduate geoscience courses. This presentation highlights student web research activities examining: a) The 2003-2005 eruptions of Anatahan Volcano in the Mariana volcanic arc. MARGINS-supported geophysical research teams were in the region when the eruption initiated, permitting a unique "event response" data collection and analysis process, with preliminary results presented online at websites linked to the MARGINS homepage, and ultimately published in a special issue of the Journal of Volcanology and Geothermal Research. In this activity, students will conduct a directed Web surf/search effort for information on and datasets from the Anatahan arc volcano, which they will use in an interpretive study of recent magmatic activity in the Mariana arc. This activity is designed as a homework exercise for use in a junior-senior level Petrology course, but could easily be taken into greater depth for the benefit of graduate-level volcanology or geochemistry offerings. b) Geochemical and mineralogical results from ODP Legs 125 and 195 focused on diapiric serpentinite mud volcanoes, which erupt cold, high pH fluids, serpentine muds, and serpentinized ultramafic clasts at a number of sites in the forearc region of the Mariana subduction zone. The focus of this activity is an examination of the trace element chemistry of the forearc serpentines and their associated upwelling porefluids as a means of understanding the roles of ionic radius, valence, and system

  4. Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction

    Science.gov (United States)

    Lallemand, Serge

    2016-12-01

    We compiled the most relevant data acquired throughout the Philippine Sea Plate (PSP) from the early expeditions to the most recent. We also analyzed the various explanatory models in light of this updated dataset. The following main conclusions are discussed in this study. (1) The Izanagi slab detachment beneath the East Asia margin around 60-55 Ma likely triggered the Oki-Daito plume occurrence, Mesozoic proto-PSP splitting, shortening and then failure across the paleo-transform boundary between the proto-PSP and the Pacific Plate, Izu-Bonin-Mariana subduction initiation and ultimately PSP inception. (2) The initial splitting phase of the composite proto-PSP under the plume influence at ˜54-48 Ma led to the formation of the long-lived West Philippine Basin and short-lived oceanic basins, part of whose crust has been ambiguously called "fore-arc basalts" (FABs). (3) Shortening across the paleo-transform boundary evolved into thrusting within the Pacific Plate at ˜52-50 Ma, allowing it to subduct beneath the newly formed PSP, which was composed of an alternance of thick Mesozoic terranes and thin oceanic lithosphere. (4) The first magmas rising from the shallow mantle corner, after being hydrated by the subducting Pacific crust beneath the young oceanic crust near the upper plate spreading centers at ˜49-48 Ma were boninites. Both the so-called FABs and the boninites formed at a significant distance from the incipient trench, not in a fore-arc position as previously claimed. The magmas erupted for 15 m.y. in some places, probably near the intersections between back-arc spreading centers and the arc. (5) As the Pacific crust reached greater depths and the oceanic basins cooled and thickened at ˜44-45 Ma, the composition of the lavas evolved into high-Mg andesites and then arc tholeiites and calc-alkaline andesites. (6) Tectonic erosion processes removed about 150-200 km of frontal margin during the Neogene, consuming most or all of the Pacific ophiolite

  5. Submarine canyon development in the Izu-Bonin forearc: A SeaMARC II and seismic survey of Aoga Shima Canyon

    Science.gov (United States)

    Klaus, Adam; Taylor, Brian

    1991-05-01

    SeaMARC II sidescan (imagery and bathymetry) and seismic data reveal the morphology, sedimentary processes, and structural controls on submarine canyon development in the central Izu-Bonin forearc, south of Japan. Canyons extend up to 150 km across the forearc from the trench-slope break to the active volcanic arc. The canyons are most deeply incised (1200 1700 m) into the gentle gradients (1 2°) upslope on the outer arc high (OAH) and lose bathymetric expression on the steep (6 18°) inner trench-slope. The drainage patterns indicate that canyons are formed by both headward erosion and downcutting. Headward erosion proceeds on two scales. Initially, pervasive small-scale mass wasting creates curvilinear channels and pinnate drainage patterns. Large-scale slumping, evidenced by abundant crescent-shaped scarps along the walls and tributaries of Aoga Shima Canyon, occurs only after a channel is present, and provides a mechanism for canyon branching. The largest slump has removed >16 km3 of sediment from an ˜85 km2 area of seafloor bounded by scarps more than 200 m high and may be in the initial stages of forming a new canyon branch. The northern branch of Aoga Shima Canyon has eroded upslope to the flanks of the arc volcanoes allowing direct tapping of this volcaniclastic sediment source. Headward erosion of the southern branch is not as advanced but the canyon may capture sediments supplied by unconfined (non-channelized) mass flows. Oligocene forearc sedimentary processes were dominated by unconfined mass flows that created sub-parallel and continuous sedimentary sequences. Pervasive channel cut-and-fill is limited to the Neogene forearc sedimentary sequences which are characterized by migrating and unconformable seismic sequences. Extensive canyon formation permitting sediment bypassing of the forearc by canyon-confined mass flows began in the early Miocene after the basin was filled to the spill points of the OAH. Structural lows in the OAH determined the

  6. Izu-Bonin-Mariana forearc crust as a modern ophiolite analogue

    Science.gov (United States)

    Ishizuka, Osamu; Tani, Kenichiro; Reagan, Mark; Kanayama, Kyoko; Umino, Susumu; Harigane, Yumiko

    2013-04-01

    Recent geological and geophysical surveys in the Izu-Bonin-Mariana (IBM) fore-arc have revealed the occurrence on the seafloor of oceanic crust generated in the initial stages of subduction and embryonic island arc formation. The observed forearc section is composed of (from bottom to top): (1) mantle peridotite, (2) gabbroic rocks, (3) a sheeted dyke complex, (4) basaltic pillow lavas, (5) boninites and magnesian andesites, and (6) tholeiites and calc-alkaline arc lavas. The oldest magmatism after subduction initiation generated forearc basalts (FAB) between 52 and 48 Ma, and then boninitic and calc-alkaline lavas that collectively make up the extrusive sequence of the forearc oceanic crust. The change from FAB magmatism to flux melting and boninitic volcanism took 2-4 m.y., and the change to flux melting in counter-flowing mantle and "normal" arc magmatism took 7-8 m.y. This evolution from subduction initiation to true subduction occurred nearly simultaneously along the entire length of the IBM subduction system. One important characteristic feature of the common forearc stratigraphy in the IBM forearc is the association of sheeted dykes with basaltic pillow lavas, which strongly implies that the eruption of FAB was associated with seafloor spreading. This is supported by the seismic velocity structure of the Bonin Ridge area (Kodaira et al., 2010), showing it to have a thin ocean-ridge-like crust (spreading associated with subduction initiation along the length of the IBM forearc. A potential location of subduction nucleation along the Mesozoic-aged crust has been found along the margins of the West Philippine Basin. One possible scenario for subduction initiation at the IBM arc was that it was induced by overthrusting of the Mesozoic arc and backarc or forearc terranes bounding the east side of the Asian Plate over the Pacific Plate, followed by failure of the Pacific plate lithosphere and subduction initiation. Alternatively, subduction could have begun

  7. Segmentation of the Izu-Bonin and Mariana slabs based on the analysis of the Benioff seismicity distribution and regional tomography results

    Directory of Open Access Journals (Sweden)

    K. Jaxybulatov

    2013-01-01

    Full Text Available We present a new model of P and S velocity anomalies in the mantle down to a depth of 1300 km beneath the Izu-Bonin and Mariana (IBM arcs. This model is derived based on tomographic inversion of global travel time data from the revised ISC catalogue. The results of inversion are thoroughly verified using a series of different tests. The obtained model is generally consistent with previous studies by different authors. We also present the distribution of relocated deep events projected to the vertical surface along the IBM arc system. Unexpectedly, the seismicity forms elongated vertical clusters instead of horizontal zones indicating phase transitions in the slab. We propose that these vertical seismicity zones mark zones of intense deformation and boundaries between semi-autonomous segments of the subducting plate. The P and S seismic tomography models consistently display the slab as prominent high-velocity anomalies coinciding with the distribution of deep seismicity. We can distinguish at least four segments which subduct differently. The northernmost segment of the Izu-Bonin arc has the gentlest angle of dipping which is explained by backward displacement of the trench. In the second segment, the trench stayed at the same location, and we observe the accumulation of the slab material in the transition zone and its further descending to the lower mantle. In the third segment, the trench is moving forward causing the steepening of the slab. Finally, for the Mariana segment, despite the backward displacement of the arc, the subducting slab is nearly vertical. Between the Izu-Bonin and Mariana arcs we clearly observe a gap which can be traced down to about 400 km in depth. Based on joint consideration of the tomography results and the seismicity distribution, we propose two different scenarios of the subduction evolution in the IBM zone during the recent time, depending on the reference frame of plate displacements. In the first case, we

  8. Regionalized difference of the 660 km discontinuity beneath Izu-Bonin

    Institute of Scientific and Technical Information of China (English)

    周元泽; 蒋志勇; 臧绍先

    2002-01-01

    Digital waveform data recorded by the vertical component short period stations at the American networks of SCSN, NCSN and PNSN and three components broadband stations at the Germany and Swiss networks and arrays of GRFN, GRSN and SDSNet for the events between 1981 and 2000 under Izu-Bonin are used as data sets. The N-th root slant stack method was used to pick up the SdP phase converted at the velocity interface beneath source and the regionalized difference of the 660 km discontinuity beneath Izu-Bonin is studied. It is found that while the dip angles of the subducting slab and the maximal depths of sources increase gradually from 35(N to 26(N, the 660 km discontinuity appears regionalized differences. The discontinuity exists at 660 km while there is no effect from subducting slab, but it is depressed to the depth of 720 km while there are obvious effects. The dispersion of converted points is still an unsolved problem which maybe result from the complex structure of the discontinuity, converted phases which were misjudged, or the assumption of one dimensional spherical earth model.

  9. Peridotites of the Izu-Bonin-Mariana forearc and the Eastern Mirdita ophiolite (Albania) : implications for igneous activity during subduction initiation

    Science.gov (United States)

    Morishita, T.; Tani, K.; Dilek, Y.

    2011-12-01

    There have been few studies of the mantle evolution related to igneous activity in the earliest stages of subduction initiation. We examined peridotites recovered from an exhumed crust/mantle section exposed along the landward slopes of the northern Izu-Bonin Trench (Morishita et al., Geology, 2011) and peridotite bodies in the Eastern Mirdita ophiolite, Albania (Morishita et al., Lithos, 2011). Based on the Cr# (=Cr/(Cr+Al) atomic ratio) of spinel in the IBM, two distinctive groups, (1) High-Cr# (> 0.8) dunite and (2) Medium-Cr# (0.4-0.6) dunite, occur close to each other and are associated with refractory harzburgite. Two distinctive melts were in equilibrium with these dunites. In the case of the Eastern Mirdita ophiolite, cpx porphyroclast-bearing harzburgite (Cpx-harzburgite) occurs structurally in the lower parts of the peridotite massifs, whereas harzburgite and dunite are more abundant towards the upper parts. The Cpx-harzburgite was formed as the residue of less-flux partial melting, which are similar to those in abyssal peridotites from MOR systems. On the other hand, harzburgite was produced as a result of enhanced partial melting of depleted peridotites due to infiltration of hydrous LREE-enriched fluids/melts. The wide range of variation in dunites from the IBM forearc and the uppermost section of the EMO probably reflects changing melt compositions from MORB-like melts to boninitic melts in the forearc setting due to an increase of slab-derived hydrous fluids/melts during subduction initiation. This scenario is consistent with the temporal and spatial variation of volcanic rocks in the Izu-Bonin-Mariana (IBM) arc (Reagan et al., G-cubed, 2010). If the "MORB-like" FAB is a ubiquitous phenomenon during the initiation of subduction, we should reconsider our interpretation of the ophiolites.

  10. Mantle contamination and the Izu-Bonin-Mariana (IBM) 'high-tide mark': evidence for mantle extrusion caused by Tethyan closure

    Science.gov (United States)

    Flower, M. F. J.; Russo, R. M.; Tamaki, K.; Hoang, N.

    2001-04-01

    Western Pacific basins are characterized by three remarkable attributes: (1) complex kinematic histories linked to global-scale plate interactions; (2) DUPAL-like contaminated mantle; and (3) rapid post-Mesozoic rollback of the confining arc-trench systems. The coincidence of slab steepening, extreme arc curvature, and vigorous basin opening associated with the Mariana convergent margin suggests that rollback continues in response to an east-directed mantle 'wind'. Against a backdrop of conflicting kinematic and genetic interpretations we explore the notion that eastward asthenospheric flow driven by diachronous Tethyan closure caused stretching of eastern Eurasia and concomitant opening of western Pacific basins. Marking the eastern boundary of the latter, the Izu-Bonin-Mariana forearc may be regarded as a litho-tectonic 'high-tide mark' comprising igneous and metamorphic products from successive episodes (since ca. 45 Ma.) of arc sundering and backarc basin opening. The forearc also forms an isotopic boundary separating contaminated western Pacific mantle from the N-MORB Pacific Ocean reservoir. While the isotopic composition of western Pacific mantle resembles that feeding Indian Ocean hotspot and spreading systems, its spatial-temporal variation and the presence of subduction barriers to the south appear to preclude northward flow of Indian Ocean mantle and require an endogenous origin for sub-Eurasian contaminated mantle. It is concluded that the extrusion of Tethyan asthenosphere, contaminated by sub-Asian cratonic lithosphere, was a major cause of western Pacific arc rollback and basin opening. The model is consistent with paleomagnetic and geologic evidence supporting independent kinematic histories for constituent parts of the Philippine Sea and Sunda plates although interpretation of these is speculative. Compounded by effects of the Australia-Indonesia collision, late-Tethyan mantle extrusion appears to have produced the largest DUPAL domain in the

  11. A record of spontaneous subduction initiation in the Izu-Bonin-Mariana arc

    NARCIS (Netherlands)

    Arculus, Richard J.; Ishizuka, Osamu; Bogus, Kara A.; Gurnis, Michael; Hickey-Vargas, Rosemary; Aljahdali, Mohammed H.; Bandini-Maeder, Alexandre N.; Barth, Andrew P.; Brandl, Philipp A.; Drab, Laureen; Do Monte Guerra, Rodrigo; Hamada, Morihisa; Jiang, Fuqing; Kanayama, Kyoko; Kender, Sev; Kusano, Yuki; Li, He; Loudin, Lorne C.; Maffione, Marco; Marsaglia, Kathleen M.; McCarthy, Anders; Meffre, Sebastién; Morris, Antony; Neuhaus, Martin; Savov, Ivan P.; Sena, Clara; Tepley, Frank J.; Van Der Land, Cees; Yogodzinski, Gene M.; Zhang, Zhaohui

    2015-01-01

    The initiation of tectonic plate subduction into the mantle is poorly understood. If subduction is induced by the push of a distant mid-ocean ridge or subducted slab pull, we expect compression and uplift of the overriding plate. In contrast, spontaneous subduction initiation, driven by subsidence o

  12. Geochemical Relationships between Middle- to Upper-Crustal Exposures of the Alisitos Oceanic Arc (Baja California, Mexico): An Outstanding Field Analog to Active Extensional Oceanic Arcs

    Science.gov (United States)

    Morris, R.; DeBari, S. M.; Busby, C.; Medynski, S.

    2016-12-01

    The southern volcano-bounded basin of the Rosario segment of the Cretaceous Alisitos oceanic arc provides outstanding 3-D exposures of an extensional arc, where crustal generation processes are recorded in the upper-crustal volcanic units and underlying middle-crustal plutonic rocks. Geochemical linkages between exposed crustal levels provide an analog for extensional arc systems such as the Izu-Bonin-Mariana (IBM) Arc. Upper-crustal units comprise a 3-5 km thick volcanic-volcaniclastic stratigraphy with hypabyssal intrusions. Deep-seated plutonic rocks intrude these units over a transition of overlap. The most mafic compositions occur in upper-crustal hypabyssal units, and as amphibole cumulates in the plutonic rocks ( 51% SiO2). The most felsic compositions occur in welded ignimbrites and a tonalite pluton ( 71% SiO2). All units are low K with flat REE patterns, and show LILE enrichment and HFSE depletion. Trace element ratios show limited variation throughout the crustal section. Zr/Y and Nb/Y ratios are similar to the Izu active ( 3 Ma to present) zone of extension immediately behind the arc front, suggesting comparable mantle melt % during extension. Th/Zr ratios are more enriched in Alisitos compared to Izu, suggesting greater subducted sediment input. The Alisitos crustal section shows a limited range in ɛNd (5.7-7.1), but a wider range in 87Sr/86Sr (0.7035-0.7055) and 206Pb/204Pb (18.12-19.12); the latter is likely alteration effects. Arc magmas were derived from a subduction-modified MORB mantle source, less depleted than Izu arc front and less enriched than the rear arc, but is a good match with the zone of extension that lies between. Differentiation occurred in a closed system (i.e., fractional crystallization/self-melting with back mixing), producing the entire crustal section in <3 Ma.

  13. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael P.; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Ben

    2017-08-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  14. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Benjamin

    2017-01-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  15. Submarine volcanoes along the Aegean volcanic arc

    Science.gov (United States)

    Nomikou, Paraskevi; Papanikolaou, Dimitrios; Alexandri, Matina; Sakellariou, Dimitris; Rousakis, Grigoris

    2013-06-01

    The Aegean volcanic arc has been investigated along its offshore areas and several submarine volcanic outcrops have been discovered in the last 25 years of research. The basic data including swath bathymetric maps, air-gun profiles, underwater photos and samples analysis have been presented along the four main volcanic groups of the arc. The description concerns: (i) Paphsanias submarine volcano in the Methana group, (ii) three volcanic domes to the east of Antimilos Volcano and hydrothermal activity in southeast Milos in the Milos group, (iii) three volcanic domes east of Christiana and a chain of about twenty volcanic domes and craters in the Kolumbo zone northeast of Santorini in the Santorini group and (iv) several volcanic domes and a volcanic caldera together with very deep slopes of several volcanic islands in the Nisyros group. The tectonic structure of the volcanic centers is described and related to the geometry of the arc and the neotectonic graben structures that usually host them. The NE-SW direction is dominant in the Santorini and Nisyros volcanic groups, located at the eastern part of the arc, where strike-slip is also present, whereas NW-SE direction dominates in Milos and Methana at the western part, where co-existence of E-W disrupting normal faults is observed. The volcanic relief reaches 1100-1200 m in most cases. This is produced from the outcrops of the volcanic centers emerging usually at 400-600 m depth and ending either below sea level or at high altitudes of 600-700 m on the islands. Hydrothermal activity at relatively high temperatures observed in Kolumbo is remarkable whereas low temperature phenomena have been detected in the Santorini caldera around Kameni islands and in the area southeast of Milos. In Methana and Nisyros, hydrothermal activity seems to be limited in the coastal areas without other offshore manifestations.

  16. Linear volcanic segments in the Sunda Arc, Indonesia: Implications for arc lithosphere control upon volcano distribution

    Science.gov (United States)

    Macpherson, C. G.; Pacey, A.; McCaffrey, K. J.

    2012-12-01

    The overall curvature of many subduction zones is immediately apparent and the term island arc betrays the common assumption that subduction zone magmatism occurs in curved zones. This assumption can be expressed by approximating island arcs as segments of small circles on the surface of a sphere. Such treatments predict that the location of arc volcanoes is related to their vertical separation from the slab (in fact, the depth to seismicity in the slab) and require that the primary control on the locus of magmatism lies either within the subducted slab or the mantle wedge that separates the subducted and overriding lithospheric plates. The concept of curved arcs ignores longstanding observations that magmatism in many subduction systems occurs as segments of linearly arranged volcanic centres. Further evidence for this distribution comes from the close relationship between magmatism and large scale, arc-parallel fabrics in some arcs. Similarly, exposures of deep arc crust or mantle often reveal elongation of magmatic intrusions sub-parallel to the inferred trend of the arc. The Sunda Arc forms the Indonesian islands from Sumatra to Alor and provides an important test for models of volcano distribution for several reasons. First, Sunda has hosted abundant historic volcanic activity. Second, with the notable exception of Krakatau, every volcano in the arc is subaerial from base to cone and, therefore, can be readily identified where there is a suitable extent of local mapping that can be used to ground-truth satellite imagery. Third, there are significant changes in the stress regime along the length of the arc, allowing the influence of the upper plate to be evaluated by comparison of different arc segments. Finally, much of the Sunda Arc has proved difficult to accommodate in models that try to relate volcano distribution to the depth to the subducted slab. We apply an objective line-fitting protocol; the Hough Transform, to explore the distribution of volcanoes

  17. Submarine Arc Volcanism in the Southern Mariana Arc: Results of Recent ROV studies

    Science.gov (United States)

    Nichols, A. R.; Tamura, Y.; Stern, R. J.; Embley, R. W.; Hein, J. R.; Jordan, E.; Ribeiro, J. M.; Sica, N.; Kohut, E. J.; Whattam, S. A.; Hirahara, Y.; Senda, R.; Nunokawa, A.

    2009-12-01

    The submarine Diamante cross-arc volcanoes (~16°N) and the Sarigan-Zealandia Bank Multi-Volcano Complex (SZBMVC; ~16°45’N), north and south, respectively, of Anatahan Island in the southern Mariana Arc, were studied during several dives in June 2009 using the ROV Hyper-Dolphin, cruise NT09-08 (R/V Natsushima); neither has been studied in detail before. The data collected provide a new perspective on how the subduction factory operates to complement previous studies on other cross-arc volcanic chains in the Izu-Bonin-Mariana Arc. The Diamante complex consists of three major edifices, two cones (West and Central Diamante) and a more complex caldera-like edifice at the volcanic front (East Diamante). West and Central Diamante are basaltic volcanoes but East Diamante has a more complex history. Our studies indicate initial construction of a basaltic volcano. Magmatic evolution led to a violent caldera-forming and quieter dome-building events. Post-caldera quiescence allowed a carbonate platform to grow, now preserved on the eastern caldera wall. Felsic magma or hot rock provides a heat source for an active hydrothermal field associated with felsic domes in the caldera, which NOAA investigators discovered in 2004. A new type of hydrothermal deposit was discovered in the hydrothermal field, consisting of large sulfide-sulfate mounds topped by bulbous constructions of low-temperature Fe and Mn oxides. Vents on the mounds were observed to emit shimmering water. The SZBMVC consists of six closely spaced edifices whose loci are aligned along two parallel trends, one along the volcanic front (Zealandia Bank, Sarigan and South Sarigan), and one about 15 km west towards the rear-arc (Northwest Zealandia, West Zealandia and West Sarigan). Zealandia Bank dives revealed that, as with East Diamante, initial activity was basaltic and became more evolved with time. The western half of Zealandia Bank is dominated by felsic lavas centered on a small (~2 km diameter) caldera and

  18. Long-term eruptive activity at a submarine arc volcano.

    Science.gov (United States)

    Embley, Robert W; Chadwick, William W; Baker, Edward T; Butterfield, David A; Resing, Joseph A; de Ronde, Cornel E J; Tunnicliffe, Verena; Lupton, John E; Juniper, S Kim; Rubin, Kenneth H; Stern, Robert J; Lebon, Geoffrey T; Nakamura, Ko-ichi; Merle, Susan G; Hein, James R; Wiens, Douglas A; Tamura, Yoshihiko

    2006-05-25

    Three-quarters of the Earth's volcanic activity is submarine, located mostly along the mid-ocean ridges, with the remainder along intraoceanic arcs and hotspots at depths varying from greater than 4,000 m to near the sea surface. Most observations and sampling of submarine eruptions have been indirect, made from surface vessels or made after the fact. We describe here direct observations and sampling of an eruption at a submarine arc volcano named NW Rota-1, located 60 km northwest of the island of Rota (Commonwealth of the Northern Mariana Islands). We observed a pulsating plume permeated with droplets of molten sulphur disgorging volcanic ash and lapilli from a 15-m diameter pit in March 2004 and again in October 2005 near the summit of the volcano at a water depth of 555 m (depth in 2004). A turbid layer found on the flanks of the volcano (in 2004) at depths from 700 m to more than 1,400 m was probably formed by mass-wasting events related to the eruption. Long-term eruptive activity has produced an unusual chemical environment and a very unstable benthic habitat exploited by only a few mobile decapod species. Such conditions are perhaps distinctive of active arc and hotspot volcanoes.

  19. Volcano collapse along the Aleutian Ridge (western Aleutian Arc

    Directory of Open Access Journals (Sweden)

    C. Montanaro

    2011-03-01

    Full Text Available The Aleutian Ridge, in the western part of the Aleutian Arc, consists of a chain of volcanic islands perched atop the crest of a submarine ridge with most of the active Quaternary stratocones or caldera-like volcanoes being located on the northern margins of the Aleutian Islands. Integrated analysis of marine and terrestrial data resulted in the identification and characterization of 17 extensive submarine debris avalanche deposits from 11 volcanoes. Two morphological types of deposits are recognizable, elongate and lobate, with primary controls on the size and distribution of the volcanic debris being the volume and nature of material involved, proportion of fine grained material, depth of emplacement and the paleo-bathymetry. Volume calculations show the amount of material deposited in debris avalanches is as much as three times larger than the amount of material initially involved in the collapse, suggesting the incorporation of large amounts of submarine material during transport. The orientation of the collapse events is influenced by regional fault systems underling the volcanoes. The western Aleutian Arc has a significant tsunamigenic potential and communities within the Aleutian Islands and surrounding areas of the North Pacific as well as shipping and fishing fleets that cross the North Pacific may be at risk during future eruptions in this area.

  20. The Global Array of Primitve Arc Melts

    Science.gov (United States)

    Schmidt, M. W.; Jagoutz, O. E.

    2015-12-01

    A longstanding question concerns the nature of the melts forming in the subarc mantle and giving rise to arc magmatism. The global array of primitive arc melts (1180 volcanic rocks in 25 arcs extracted from the georoc database, calculated to be in equilibrium with mantle olivine) yields five principal melt types: calc-alkaline basalts and high-Mg andesites, tholeiitic basalts and high-Mg andesites, and shoshonitic or alkaline arc melts; many arcs have more than one type. Primitive calc-alkaline basalts occur in 11 arcs but most strikingly, 8 continental arcs (incl. Aleutians, Cascades, Japan, Mexico, Kamtschatka) have a continuous range of calc-alkaline basalts to high-Mg andesites with mostly 48-58 wt% SiO2. In each arc, these are spatially congruent, trace element patterns overlap, and major elements form a continuum. Their Ca-Mg-Si systematics suggests saturation in olivine+opx+cpx. We hence interpret the large majority of high-Mg andesites as derived from primitive calc-alkaline basalts through fractionation and reaction in the shallower mantle. Removal of anhydrous mantle phases at lower pressures increases SiO2 and H2O-contents while Mg# and Ni remain buffered to mantle values. Primitive tholeiitic basalts (Cascades, Kermadec, Marianas, Izu-Bonin, Japan, Palau, Sunda) have a much lesser subduction signal (e.g. in LILE) than the calc-alkaline suite. These tholeiites have been interpreted to form through decompression melting, but also characterize young intraoceanic arcs. In the two continental arcs with both tholeiitic and calc-alkaline primitive basalts (clearly distinct in trace patterns), there is no clear spatial segregation (Casacades, Japan). Three intraoceanic arcs (Marianas, Izu-Bonin, Tonga) have primitive tholeiitic, highly depleted high-Mg andesites (boninites) with HFSE and HREE slightly above primitive mantle values. These deviate in majors from the array formed by the basalts and calc-alkaline andesites suggesting that only these formed from a

  1. Controls on the location of arc volcanoes: an Andean study

    Science.gov (United States)

    Scott, Erin; Allen, Mark B.; McCaffrey, Kenneth J. W.; Macpherson, Colin G.; Davidson, Jon P.; Saville, Christopher

    2016-04-01

    Depth corrected data of earthquake hypocentres from South America are used to generate new models of depth to the subducting Nazca slab. This new slab model shows a general correlation between the 100 km depth to the slab, the western edge of the Altiplano-Puna Plateau (defined by the 3500 m elevation contour) and the frontal volcanic arc. Across the entire Altiplano-Puna Plateau, volcanic centres are found to be either at or above the 3500 m critical elevation contour, which also defines the cut off for seismogenic thrusting. Normal faults are only found above this critical elevation contour, suggesting that there may be a change in the stress regime associated with high elevations in the plateau. The Salar de Atacama basin (23-24oS) defines a major break in topography on the west side of the Puna Plateau. Here, the volcanism deviates around the eastern edge of the basin, approximately 80 km inland from the general trend of the arc, remaining above the 3500 m elevation contour. The volcanoes bordering the Salar de Atacama have a depth to slab approximately 30 km deeper than those in the adjacent arc segment 200 km to the north of the basin. Across this distance there is no significant difference in subduction parameters such as the slab dip, subduction rate and age of the oceanic plate entering the trench. It is likely, therefore, that melt forms at the same depth in both locations, as the factors affecting the melt source are constant. However, in the case of the Salar de Atacama region, magma is diverted to the east due to preferential emplacement under the higher elevations of the plateau. We suggest that although mantle and subduction processes have a primary control on the location of arc volcanoes, shaping the general trend of the arc, they cannot explain anomalies from the trend. Such anomalies, such as the arc deviation around the Atacama basin, can be explained by the influence of structures and stress regime within the overriding plate.

  2. Systematic Osmium Isotope Binary Mixing Arrays in Arc Volcanism

    Science.gov (United States)

    Alves, S.; Alves, S.; Schiano, P.; Capmas, F.; Allegre, C. J.

    2001-12-01

    Isotopic and geochemical studies on subduction-related lavas aim at constraining the nature of their mantle sources and the respective roles of source heterogeneity and petrogenetic processes in their compositions. Many components are potentially involved in producing the geochemical signatures of arc lavas: depleted mantle, subducted oceanic crust and sediments, and the overlying continental or oceanic crust. A further complication in characterizing mantle sources of arc lavas is complex mixing of some component parts via derivative fluids or melts released from the slab. Os isotope ratios are potential tracers of slab contribution in arc lavas because 1) subducted sediments are very radiogenic in Os compared to the upper mantle, and 2) Re behaves as a moderately incompatible element during mantle partial melting, whereas Os is highly compatible. Therefore, MORB have much higher Re/Os ratios than peridotites. Consequently, old oceanic crust is likely to be extremely more radiogenic than the depleted upper mantle so that recycled basaltic components should be identified by their elevated 187Os/188Os ratios. Os isotope ratios and Os and Re concentrations have been measured in 55 lavas coming from 10 different subduction zones. Samples span a large range of major element concentrations (from basalts to dacites) and Mg# (from 0.32 to 0.81). The 10 subduction zones, namely the Lesser Antilles, Java, Papua-New Guinea, the Philippines, Izu-Bonin, Kamchatka, the Aleutians, Mexico, Colombia and Peru-Chile, have a range of basement nature and thickness, as well as a range of age and sediment cover of the subducting plate. Measured 187Os/188Os ratios range from 0.130 to 1.524 and Os concentrations range from 0.048 to 46 ppt. Re concentrations range from 37 to 915 ppt. Os initial isotope ratios are systematically positively and linearly correlated with the inverse of Os concentrations in arc lavas from a given volcano, indicating that the Os isotopic compositions always

  3. Temporal magma source changes at Gaua volcano, Vanuatu island arc

    Science.gov (United States)

    Beaumais, Aurélien; Bertrand, Hervé; Chazot, Gilles; Dosso, Laure; Robin, Claude

    2016-08-01

    Gaua Island (also called Santa Maria), from the central part of the Vanuatu arc, consists of a large volcano marked by a caldera that hosts the active Mount Garet summit cone. In this paper, a geochemical study including Sr, Nd, Pb and Hf isotopic compositions of 25 lavas emitted since 1.8 Ma is presented, with a focus on the volcanic products that preceded (old volcanics, main cone and pyroclastic series) and followed (Mount Garet) the caldera forming event. All lavas show an island arc signature with enrichment in LILE and depletion in HFSE. Post-caldera lavas define a medium-K calc-alkaline trend, whereas lavas from the former main cone have high-K calc-alkaline compositions. Compared to the pre-caldera volcanic suite, the Mount Garet lavas have similar Th/Nb ( 1.5), 143Nd/144Nd ( 0.51295) and 176Hf/177Hf ( 0.28316) ratios, but higher Ba/La ( 42 vs. 27) and 87Sr/86Sr (0.70417 vs. 0.70405) ratios and lower Ce/Pb ( 2.7 vs. 4.6), La/Sm ( 2.5 vs. 4.0) and 206Pb/204Pb (18.105 vs. 18.176) ratios. High Th/Nb and low Nd and Hf isotopic ratios compared to N-MORB suggest the contribution of 2% of subducted sediment melt to the mantle source of Gaua magmas. Most of the observed differences between pre- and post-caldera lavas can be accounted for by the involvement of at least two portions of the mantle wedge, metasomatized by different slab-derived aqueous fluids. In addition, the lower La/Sm (at a given 143Nd/144Nd) ratios of Mount Garet lavas suggest a higher degree of partial melting ( 10-15%) compared to the pre-caldera lavas ( 5%). The Santa Maria Pyroclastic Series (SMPS) eruption probably triggered the caldera collapse, in response to emptying of the magmatic chamber. This event may have allowed new access to the surface for a geochemically distinct batch of magma issued from a separate magma chamber, resulting in the birth and construction of Mount Garet within the caldera. As both magmatic suites were emitted over a very short time, the storage of their parental

  4. Hf-Nd Isotopes in West Philippine Basin Basalts: Results from International Ocean Discovery Program (IODP) Site U1438 and Implications for the Early History of the Izu-Bonin-Mariana (IBM) Subduction System

    Science.gov (United States)

    Yogodzinski, G. M.; Hocking, B.; Bizimis, M.; Hickey-Vargas, R.; Ishizuka, O.; Bogus, K.; Arculus, R. J.

    2015-12-01

    Drilling at IODP Site U1438, located immediately west of Kyushu-Palau Ridge (KPR), the site of IBM subduction initiation, penetrated 1460 m of volcaniclastic sedimentary rock and 150 m of underlying basement. Biostratigraphic controls indicate a probable age for the oldest sedimentary rocks at around 55 Ma (51-64 Ma - Arculus et al., Nat Geosci in-press). This is close to the 48-52 Ma time period of IBM subduction initiation, based on studies in the forearc. There, the first products of volcanism are tholeiitic basalts termed FAB (forearc basalt), which are more depleted than average MORB and show subtle indicators of subduction geochemical enrichment (Reagan et al., 2010 - Geochem Geophy Geosy). Shipboard data indicate that Site U1438 basement basalts share many characteristics with FABs, including primitive major elements (high MgO/FeO*) and strongly depleted incompatible element patterns (Ti, Zr, Ti/V and Zr/Y below those of average MORB). Initial results thus indicate that FAB geochemistry may have been produced not only in the forearc, but also in backarc locations (west of the KPR) at the time of subduction initiation. Hf-Nd isotopes for Site 1438 basement basalts show a significant range of compositions from ɛNd of 7.0 to 9.5 and ɛHf of 14.5 to 19.8 (present-day values). The data define a well-correlated and steep array in Hf-Nd isotope space. Relatively radiogenic Hf compared to Nd indicates an Indian Ocean-type MORB source, but the dominant signature, with ɛHf >16.5, is more radiogenic than most Indian MORB. The pattern through time is from more-to-less radiogenic and more variable Hf-Nd isotopes within the basement section. This pattern culminates in basaltic andesite sills, which intrude the lower parts of the sedimentary section. The sills have the least radiogenic compositions measured so far (ɛNd ~6.6, ɛHf ~13.8), and are similar to those of boninites of the IBM forearc and modern IBM arc and reararc rocks. The pattern within the basement

  5. Making and breaking an Island arc: a new perspective from the Oligocene Kyushu-Palau arc

    Science.gov (United States)

    Ishizuka, O.; Taylor, R. N.; Yuasa, M.; Ohara, Y.

    2010-12-01

    The Kyushu-Palau Ridge (KPR) is a 2000km long remnant island arc that is separated from the active Izu-Bonin-Mariana (IBM) arc system by a series of spreading and rift basins. In this study we present 40Ar/39Ar ages and geochemical data for new samples taken from the entire length of the Kyushu-Palau arc. As such, this data provides the first comprehensive evaluation of temporal and spatial changes that are present in an Eocene-Oligocene island arc. Kyushu-Palau arc geochemistry is evaluated alongside new data from the conjugate arc which is stranded within the IBM fore-arc. Boninitic magmatism gave way to transitional arc suites including high-Mg andesites at c. 45 Ma (Ishizuka et al., 2006). After the transitional 45-41 Ma period, a mature arc system developed through the Eocene-Oligocene time: This volcanism is now preserved as the KPR. Dating results from 33 sites indicate that the KPR was active between 25 and 43 Ma, but the majority of the exposed volcanism occurred in the final phase of this arc, between 25 and 27 Ma. Unlike the IBM, the KPR has only limited systematic along-arc trends and does not include any of the strongly HIMU lavas found to the south of Izu-Bonin. Two components found along the KPR are found to have geochemistry that suggests an origin in the supra-subduction mantle rather than from the descending ocean crust. Firstly, in the south of the arc, EM-2-like lavas are present where the West Philippine Basin was in the final stages of spreading. Secondly, EM-1-like lavas are present in a restricted section of the arc, suggesting a localised heterogeneity. Subduction flux beneath the KPR generally imparted a Pb isotope vector towards low Δ8/4 (19). This is a similar trend to the Eocene/Oligocene lavas found on the eastern side of the basins which split the arc at 25Ma. Another geochemical heterogeneity is found at the KPR-Daito Ridge intersection where arc magmatism occurred on pre-existing Daito Ridge crust: a Cretaceous remnant arc

  6. Formation of lower continental crust by relamination of buoyant arc lavas and plutons

    Science.gov (United States)

    Kelemen, Peter B.; Behn, Mark D.

    2016-03-01

    The formation of the Earth's continents is enigmatic. Volcanic arc magmas generated above subduction zones have geochemical compositions that are similar to continental crust, implying that arc magmatic processes played a central role in generating continental crust. Yet the deep crust within volcanic arcs has a very different composition from crust at similar depths beneath the continents. It is therefore unclear how arc crust is transformed into continental crust. The densest parts of arc lower crust may delaminate and become recycled into the underlying mantle. Here we show, however, that even after delamination, arc lower crust still has significantly different trace element contents from continental lower crust. We suggest that it is not delamination that determines the composition of continental crust, but relamination. In our conceptual model, buoyant magmatic rocks generated at arcs are subducted. Then, upon heating at depth, they ascend and are relaminated at the base of the overlying crust. A review of the average compositions of buoyant magmatic rocks -- lavas and plutons -- sampled from the Aleutians, Izu-Bonin-Marianas, Kohistan and Talkeetna arcs reveals that they fall within the range of estimated major and trace elements in lower continental crust. Relamination may thus provide an efficient process for generating lower continental crust.

  7. Volcano-Hydrothermal Systems of the Central and Northern Kuril Island Arc - a Review

    Science.gov (United States)

    Kalacheva, E.; Taran, Y.; Voloshina, E.; Ptashinsky, L.

    2015-12-01

    More than 20 active volcanoes with historical eruptions are known on 17 islands composing the Central and Northern part of the Kurilian Arc. Six islands - Paramushir, Shiashkotan, Rasshua, Ushishir, Ketoy and Simushir - are characterized by hydrothermal activity, complementary to the fumarolic activity in their craters. There are several types of volcano-hydrothermal systems on the islands. At Paramushir, Shiashkotan and Ketoy the thermal manifestations are acidic to ultra-acidic water discharges associated with hydrothermal aquifers inside volcano edifices and formed as the result of the absorption of magmatic gases by ground waters. A closest known analogue of such activity is Satsuma-Iwojima volcano-island at the Ryukyu Arc. Another type of hydrothermal activity are wide spread coastal hot springs (Shiashkotan, Rasshua), situated as a rule within tide zones and formed by mixing of the heated seawater with cold groundwater or, in opposite, by mixing of the steam- or conductively heated groundwater with seawater. This type of thermal manifestation is similar to that reported for other volcanic islands of the world (Satsuma Iwojima, Monserrat, Ischia, Socorro). Ushishir volcano-hydrothermal system is formed by the absorption of magmatic gases by seawater. Only Ketoy Island hosts a permanent acidic crater lake. At Ebeko volcano (Paramushir) rapidly disappearing small acidic lakes (formed after phreatic eruptions) have been reported. The main hydrothermal manifestation of Simushir is the Zavaritsky caldera lake with numerous coastal thermal springs and weak steam vents. The last time measured temperatures of fumaroles at the islands are: >500ºC at Pallas Peak (Ketoy), 480ºC at Kuntamintar volcano (Shiashkotan), variable and fast changing temperatures from 120º C to 500ºC at Ebeko volcano (Paramushir), 150ºC in the Rasshua crater, and > 300ºC in the Chirpoy crater (Black Brothers islands). The magmatic and rock-forming solute output by the Kurilian volcano

  8. Fundamental structure model of island arcs and subducted plates in and around Japan

    Science.gov (United States)

    Iwasaki, T.; Sato, H.; Ishiyama, T.; Shinohara, M.; Hashima, A.

    2015-12-01

    The eastern margin of the Asian continent is a well-known subduction zone, where the Pacific (PAC) and Philippine Sea (PHS) plates are being subducted. In this region, several island arcs (Kuril, Northeast Japan, Southwest Japan, Izu-Bonin and Ryukyu arcs) meet one another to form a very complicated tectonic environment. At 2014, we started to construct fundamental structure models for island arcs and subducted plates in and around Japan. Our research is composed of 6 items of (1) topography, (2) plate geometry, (3) fault models, (4) the Moho and brittle-ductile transition zone, (5) the lithosphere-asthenosphere boundary, and (6) petrological/rheological models. Such information is basic but inevitably important in qualitative understanding not only for short-term crustal activities in the subduction zone (particularly caused by megathrust earthquakes) but also for long-term cumulative deformation of the arcs as a result of strong plate-arc/arc-arc interactions. This paper is the first presentation of our research, mainly presenting the results of items (1) and (2). The area of our modelling is 12o-54o N and 118o-164o E to cover almost the entire part of Japanese Islands together with Kuril, Ryukyu and Izu-Bonin trenches. The topography model was constructed from the 500-m mesh data provided from GSJ, JODC, GINA and Alaska University. Plate geometry models are being constructed through the two steps. In the first step, we modelled very smooth plate boundaries of the Pacific and Philippine Sea plates in our whole model area using 42,000 earthquake data from JMA, USGS and ISC. For 7,800 cross sections taken with several directions to the trench axes, 2D plate boundaries were defined by fitting to the earthquake distribution (the Wadati-Benioff zone), from which we obtained equi-depth points of the plate boundary. These equi-depth points were then approximated by spline interpolation technique to eliminate shorter wave length undulation (plate geometry with longer

  9. Behavior of volatiles in arc volcanism : geochemical and petrologic evidence from active volcanoes in Indonesia

    NARCIS (Netherlands)

    Hoog, J.C.M. de

    2001-01-01

    Large amounts of material are recycled along subduction zones by uprising magmas, of which volcanoes are the surface expression. This thesis focuses on the behavior of volatiles elements (S, Cl, H) during these recycling processes. The study area is the Indonesian arc system, which hosts

  10. Behavior of volatiles in arc volcanism : geochemical and petrologic evidence from active volcanoes in Indonesia

    NARCIS (Netherlands)

    Hoog, J.C.M. de

    2001-01-01

    Large amounts of material are recycled along subduction zones by uprising magmas, of which volcanoes are the surface expression. This thesis focuses on the behavior of volatiles elements (S, Cl, H) during these recycling processes. The study area is the Indonesian arc system, which hosts

  11. The magmatic and eruptive response of arc volcanoes to deglaciation: insights from southern Chile

    Science.gov (United States)

    Rawson, Harriet; Mather, Tamsin A.; Pyle, David M.; Smith, Victoria C.; Fontijn, Karen; Lachowycz, Stefan; Naranjo, José A.; Watt, Sebastian F. L.

    2016-04-01

    Volcanism exerts a major influence on Earth's atmosphere and surface environments. Understanding feedbacks between climate and long-term changes in rates or styles of volcanism is important, but unresolved. For example, it has been proposed that a pulse of activity at once-glaciated volcanoes contributed to increasing atmospheric carbon dioxide accelerating early Holocene climate change. In plate-tectonic settings where magmatism is driven by decompression melting there is convincing evidence that activity is modulated by changes in ice- or water-loading across glacial/interglacial cycles. The response of subduction-related volcanoes, where the crust is typically thicker and mantle melting is dominated by flux melting, remains unclear. Since arc volcanoes account for 90% of subaerial eruptions, they are the most significant sources of volcanic gases and tephra directly to the atmosphere. Testing the response of arc volcanoes to deglaciation requires careful work to piece together eruption archives. Records of effusive eruptions from long-lived, arc stratovolcanoes are challenging to obtain and date; while deposits from the explosive eruptions, which dominate arc records, are prone to erosion and reworking. Our new high-resolution post-glacial (Phase 3), eruptive fluxes have been elevated, and dominated by explosive eruptions of intermediate magmas. We propose that this time-varying behaviour reflects changes in crustal plumbing systems, and magma storage timescales. During glaciations, magmas stall in the crust and differentiate to form large, evolved melt reservoirs. After the ice load is removed, much of this stored magma erupts (Phase 1). Subsequently, less-differentiated melts infiltrate the shallow crust (Phase 2). Then, as storage timescales increase, volcanism returns towards more evolved compositions (Phase 3). We suggest that on these short timescales, these observed variations are unlikely to reflect changes in mantle melt flux. Instead, the phenomena are

  12. Temporal source evolution and crustal contamination at Lopevi Volcano, Vanuatu Island Arc

    OpenAIRE

    2013-01-01

    Here we present a new geochemical study of Lopevi volcano, one the most active volcanoes in the Vanuatu island arc. We focus on the temporally well-defined sequence of lava flows emitted since 1960, and for the first time, on pre-1960 volcanic products, including high-MgO basalts and felsic andesites, the most evolved lavas sampled so far on this island. This work reports the first Pb and Hf isotopic study of lavas from Lopevi island. These lavas display correlations between differentiation i...

  13. The arc arises: The links between volcanic output, arc evolution and melt composition

    Science.gov (United States)

    Brandl, Philipp A.; Hamada, Morihisa; Arculus, Richard J.; Johnson, Kyle; Marsaglia, Kathleen M.; Savov, Ivan P.; Ishizuka, Osamu; Li, He

    2017-03-01

    Subduction initiation is a key process for global plate tectonics. Individual lithologies developed during subduction initiation and arc inception have been identified in the trench wall of the Izu-Bonin-Mariana (IBM) island arc but a continuous record of this process has not previously been described. Here, we present results from International Ocean Discovery Program Expedition 351 that drilled a single site west of the Kyushu-Palau Ridge (KPR), a chain of extinct stratovolcanoes that represents the proto-IBM island arc, active for ∼25 Ma following subduction initiation. Site U1438 recovered 150 m of oceanic igneous basement and ∼1450 m of overlying sediments. The lower 1300 m of these sediments comprise volcaniclastic gravity-flow deposits shed from the evolving KPR arc front. We separated fresh magmatic minerals from Site U1438 sediments, and analyzed 304 glass (formerly melt) inclusions, hosted by clinopyroxene and plagioclase. Compositions of glass inclusions preserve a temporal magmatic record of the juvenile island arc, complementary to the predominant mid-Miocene to recent activity determined from tephra layers recovered by drilling in the IBM forearc. The glass inclusions record the progressive transition of melt compositions dominated by an early 'calc-alkalic', high-Mg andesitic stage to a younger tholeiitic stage over a time period of 11 Ma. High-precision trace element analytical data record a simultaneously increasing influence of a deep subduction component (e.g., increase in Th vs. Nb, light rare earth element enrichment) and a more fertile mantle source (reflected in increased high field strength element abundances). This compositional change is accompanied by increased deposition rates of volcaniclastic sediments reflecting magmatic output and maturity of the arc. We conclude the 'calc-alkalic' stage of arc evolution may endure as long as mantle wedge sources are not mostly advected away from the zones of arc magma generation, or the rate of

  14. Esmeralda Bank: Geochemistry of an active submarine volcano in the Mariana Island Arc

    Science.gov (United States)

    Stern, Robert J.; Bibee, L. D.

    1984-05-01

    Esmeralda Bank is the southernmost active volcano in the Izu-Volcano-Mariana Arc. This submarine volcano is one of the most active vents in the western Pacific. It has a total volume of about 27 km3, rising to within 30 m of sea level. Two dredge hauls from Esmeralda recovered fresh, nearly aphyric, vesicular basalts and basaltic andesites and minor basaltic vitrophyre. These samples reflect uniform yet unusual major and trace element chemistries. Mean abundances of TiO2 (1.3%) and FeO* (12.6%) are higher and CaO (9.2%) and Al2O3 (15.1%) are lower than rocks of similar silica content from other active Mariana Arc volcanoes. Mean incompatible element ratios K/Rb (488) and K/Ba (29) of Esmeralda rocks are indistinguishable from those of other Mariana Arc volcanoes. On a Ti-Zr plot, Esmeralda samples plot in the field of oceanic basalts while other Mariana Arc volcanic rocks plot in the field for island arcs. Incompatible element ratios K/Rb and K/Ba and isotopic compositions of Sr (87Sr/86Sr=0.70342 0.70348), Nd (ɛND=+7.6 to +8.1), and O(δ18O=+5.8 to +5.9) are incompatible with models calling for the Esmeralda source to include appreciable contributions from pelagic sediments or fresh or altered abyssal tholeiite from subduction zone melting. Instead, incompatible element and isotopic ratios of Esmeralda rocks are similar to those of intra-plate oceanic islands or “hot-spot” volcanoes in general and Kilauean tholeiites in particular. The conclusion that the source for Esmeralda lavas is an ocean-island type mantle reservoir is preferred. Esmeralda Bank rare earth element patterns are inconsistent with models calling for residual garnet in the source region, but are adequately modelled by 7 10% equilibrium partial melting of spinel lherzolite. This is supported by consideration of the results of melting experiments at 20 kbars, 1,150° C with CO2 and H2O as important volatile components. These experiments further indicate that low MgO (4.1%), MgO/FeO*(0.25) and

  15. Kinematic variables and water transport control the formation and location of arc volcanoes.

    Science.gov (United States)

    Grove, T L; Till, C B; Lev, E; Chatterjee, N; Médard, E

    2009-06-01

    The processes that give rise to arc magmas at convergent plate margins have long been a subject of scientific research and debate. A consensus has developed that the mantle wedge overlying the subducting slab and fluids and/or melts from the subducting slab itself are involved in the melting process. However, the role of kinematic variables such as slab dip and convergence rate in the formation of arc magmas is still unclear. The depth to the top of the subducting slab beneath volcanic arcs, usually approximately 110 +/- 20 km, was previously thought to be constant among arcs. Recent studies revealed that the depth of intermediate-depth earthquakes underneath volcanic arcs, presumably marking the slab-wedge interface, varies systematically between approximately 60 and 173 km and correlates with slab dip and convergence rate. Water-rich magmas (over 4-6 wt% H(2)O) are found in subduction zones with very different subduction parameters, including those with a shallow-dipping slab (north Japan), or steeply dipping slab (Marianas). Here we propose a simple model to address how kinematic parameters of plate subduction relate to the location of mantle melting at subduction zones. We demonstrate that the location of arc volcanoes is controlled by a combination of conditions: melting in the wedge is induced at the overlap of regions in the wedge that are hotter than the melting curve (solidus) of vapour-saturated peridotite and regions where hydrous minerals both in the wedge and in the subducting slab break down. These two limits for melt generation, when combined with the kinematic parameters of slab dip and convergence rate, provide independent constraints on the thermal structure of the wedge and accurately predict the location of mantle wedge melting and the position of arc volcanoes.

  16. A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites.

    Science.gov (United States)

    Reubi, Olivier; Blundy, Jon

    2009-10-29

    Andesites represent a large proportion of the magmas erupted at continental arc volcanoes and are regarded as a major component in the formation of continental crust. Andesite petrogenesis is therefore fundamental in terms of both volcanic hazard and differentiation of the Earth. Andesites typically contain a significant proportion of crystals showing disequilibrium petrographic characteristics indicative of mixing or mingling between silicic and mafic magmas, which fuels a long-standing debate regarding the significance of these processes in andesite petrogenesis and ultimately questions the abundance of true liquids with andesitic composition. Central to this debate is the distinction between liquids (or melts) and magmas, mixtures of liquids with crystals, which may or may not be co-genetic. With this distinction comes the realization that bulk-rock chemical analyses of petrologically complex andesites can lead to a blurred picture of the fundamental processes behind arc magmatism. Here we present an alternative view of andesite petrogenesis, based on a review of quenched glassy melt inclusions trapped in phenocrysts, whole-rock chemistry, and high-pressure and high-temperature experiments. We argue that true liquids of intermediate composition (59 to 66 wt% SiO(2)) are far less common in the sub-volcanic reservoirs of arc volcanoes than is suggested by the abundance of erupted magma within this compositional range. Effective mingling within upper crustal magmatic reservoirs obscures a compositional bimodality of melts ascending from the lower crust, and masks the fundamental role of silicic melts (>/=66 wt% SiO(2)) beneath intermediate arc volcanoes. This alternative view resolves several puzzling aspects of arc volcanism and provides important clues to the integration of plutonic and volcanic records.

  17. Overview for geologic field-trip guides to volcanoes of the Cascades Arc in northern California

    Science.gov (United States)

    Muffler, L. J. Patrick; Donnelly-Nolan, Julie M.; Grove, Timothy L.; Clynne, Michael A.; Christiansen, Robert L.; Calvert, Andrew T.; Ryan-Davis, Juliet

    2017-08-15

    The California Cascades field trip is a loop beginning and ending in Portland, Oregon. The route of day 1 goes eastward across the Cascades just south of Mount Hood, travels south along the east side of the Cascades for an overview of the central Oregon volcanoes (including Three Sisters and Newberry Volcano), and ends at Klamath Falls, Oregon. Day 2 and much of day 3 focus on Medicine Lake Volcano. The latter part of day 3 consists of a drive south across the Pit River into the Hat Creek Valley and then clockwise around Lassen Volcanic Center to the town of Chester, California. Day 4 goes from south to north across Lassen Volcanic Center, ending at Burney, California. Day 5 and the first part of day 6 follow a clockwise route around Mount Shasta. The trip returns to Portland on the latter part of day 6, west of the Cascades through the Klamath Mountains and the Willamette Valley. Each of the three sections of this guidebook addresses one of the major volcanic regions: Lassen Volcanic Center (a volcanic field that spans the volcanic arc), Mount Shasta (a fore-arc stratocone), and Medicine Lake Volcano (a rear-arc, shield-shaped edifice). Each section of the guide provides (1) an overview of the extensive field and laboratory studies, (2) an introduction to the literature, and (3) directions to the most important and accessible field localities. The field-trip sections contain far more stops than can possibly be visited in the actual 6-day 2017 IAVCEI excursion from Portland. We have included extra stops in order to provide a field-trip guide that will have lasting utility for those who may have more time or may want to emphasize one particular volcanic area.

  18. Geochemistry of the Bonin Fore-arc Volcanic Sequence: Results from IODP Expedition 352

    Science.gov (United States)

    Godard, M.; Ryan, J. G.; Shervais, J. W.; Whattam, S. A.; Sakuyama, T.; Kirchenbaur, M.; Li, H.; Nelson, W. R.; Prytulak, J.; Pearce, J. A.; Reagan, M. K.

    2015-12-01

    The Izu-Bonin-Mariana intraoceanic arc system, in the western Pacific, results from ~52 My of subduction of the Pacific plate beneath the eastern margin of the Philippine Sea plate. Four sites were drilled south of the Bonin Islands during IODP Expedition 352 and 1.22 km of igneous basement was cored upslope to the west of the trough. These stratigraphically controlled igneous suites allow study of the earliest stages of arc development from seafloor spreading to convergence. We present the preliminary results of a detailed major and trace element (ICPMS) study on 128 igneous rocks drilled during Expedition 352. Mainly basalts and basaltic andesites were recovered at the two deeper water sites (U1440 and U1441) and boninites at the two westernmost sites (U1439 and U1442). Sites U1440 and U1441 basaltic suites are trace element depleted (e.g. Yb 4-6 x PM); they have fractionated REE patterns (LREE/HREE = 0.2-0.4 x C1-chondrites) compared to mid-ocean ridge basalts. They have compositions overlapping that of previously sampled Fore-Arc Basalts (FAB) series. They are characterized also by an increase in LILE contents relative to neighboring elements up-section (e.g. Rb/La ranging from FAB generation into their mantle source.

  19. Looking for Larvae Above an Erupting Submarine Volcano, NW Rota-1, Mariana Arc

    Science.gov (United States)

    Hanson, M.; Beaulieu, S.; Tunnicliffe, V.; Chadwick, W.; Breuer, E. R.

    2015-12-01

    In 2009 the first marine protected areas for deep-sea hydrothermal vents in U.S. waters were established as part of the Volcanic Unit of the Marianas Trench Marine National Monument. In this region, hydrothermal vents are located along the Mariana Arc and back-arc spreading center. In particular hydrothermal vents are located near the summit of NW Rota-1, an active submarine volcano on the Mariana Arc which was erupting between 2003 through 2010 and ceased as of 2014. In late 2009, NW Rota-1 experienced a massive landslide decimating the habitat on the southern side of the volcano. This presented an enormous natural disturbance to the community. This project looked at zooplankton tow samples taken from the water column above NW Rota-1 in 2010, searching specifically for larvae which have the potential to recolonize the sea floor after such a major disturbance. We focused on samples for which profiles with a MAPR sensor indicated hydrothermal plumes in the water column. Samples were sorted in entirety into coarse taxa, and then larvae were removed for DNA barcoding. Overall zooplankton composition was dominated by copepods, ostracods, and chaetognaths, the majority of which are pelagic organisms. Comparatively few larvae of benthic invertebrates were found, but shrimp, gastropod, barnacle, and polychaete larvae did appear in low numbers in the samples. Species-level identification obtained via genetic barcoding will allow for these larvae to be matched to species known to inhabit the benthic communities at NW Rota-1. Identified larvae will give insight into the organisms which can re-colonize the seafloor vent communities after a disturbance such as the 2009 landslide. Communities at hydrothermal vents at other submarine volcanoes in the Monument also can act as sources for these planktonic, recolonizing larvae. As the microinvertebrate biodiversity in the Monument has yet to be fully characterized, our project also provides an opportunity to better describe both

  20. Isotopic evidence for quick freshening of magmatic chlorine in the Lesser Antilles arc volcanoes

    Science.gov (United States)

    Li, L.; Jendrzejewski, N.; Aubaud, C. P.; Bonifacie, M.; Crispi, O.; Dessert, C.; Agrinier, P.

    2012-12-01

    Despite numerous geophysical and geochemical monitoring techniques developed over the last 50 years to detect magma activities in volcanoes, it is still challenging to evaluate the state of magmatic activity during its decreasing phase (transitory quiet stage and/or final stage of the magma intrusion which may last for decades) for those infrequent, slow developing, and dangerous explosive eruptive arc volcanoes, attributed to the interaction between the magma and hydrothermal cells at shallow depths to produce complex phreato-magmatic events. Recent studies have implied that chloride in intrusion-induced thermal springs could be a potential sensitive indicator of shallow magma degassing. However, possible contamination from surface chlorine reservoirs, such as seawater, may overprint the magmatic signature and complicate the interpretation of field observation. Here, based on chlorine isotope examination of various water samples from two recently erupted volcanoes in the Lesser Antilles arc (Soufrière in Guadeloupe: phreatic eruption in1976-1977; Montagne Pelée in Martinique: pelean eruption in 1929-1932), we show that magmatic chlorine is isotopically distinct from surface chlorine (seawater, meteoric water, and ground water). A chlorine isotopic survey on thermal springs in Guadeloupe and Martinique indicate that the magmatic chlorine signature is still present in some of the thermal springs in Guadeloupe but completely disappeared in Martinique. This suggests that magmatic chlorine be rapidly flushed from hydrothermal system within < 30 to 80 years after the magmatic eruption. This enables chlorine isotopes to be a sensitive proxy to monitor shallow magmatic activities, particularly practicable at centennial scale.

  1. Relationships between Microbial Activities and Subduction-related Outgassing and Volatile Flux at Aleutian Arc Volcanoes

    Science.gov (United States)

    Miller, H.; Lopez, T. M.; Fischer, T. P.; Schrenk, M. O.

    2016-12-01

    Subduction-related processes, including the movement and alteration of carbon compounds, are an important component of global geochemical cycles. Actively degassing volcanoes of the Aleutian Island arc offer interesting opportunities to not only characterize the composition and abundance of volatiles, but also to identify the origin of the discharging gases (e.g. mantle, organic matter, or carbonates). Taking this approach a step further, microbial activities in and around volcanic fumarole areas may impact the composition and flux of reduced volcanic gases, either through their modification or their assimilation into fixed biomass. Microbiological studies of these systems can be used to develop predictive models to complement those based upon geochemical data while providing greater understanding of the causal relationships between microbial populations and their environment, and ultimately refine estimates of volcanic outgassing. Coupled fumarole soil and gas samples were collected from several Aleutian Island volcanoes in 2015 (Gareloi, Kanaga, Kiska, Little Sitkin) and 2016 (Okmok, Resheschnoi). DNA was extracted from the soil and used to describe microbial community composition, while gas samples were analyzed through chromatography and mass spectrometry. Preliminary data suggests a relationship between the abundance of specific groups of prokaryotes known to metabolize reduced gases, such as sulfur-oxidizers and methanotrophs, and the abundances of the degassing volatiles, including sulfur dioxide and methane. Ongoing studies aimed at investigating the relationship between the genomic composition of the fumarolic microbial community and the physical and chemical properties of the soil (i.e. mineralogy, bulk geochemistry, nutrient concentration, gas flux, and environmental measurements) are underway. These data will be used to evaluate the potential for microbial communities to remove volcanic carbon and store it as biomass, or to modify the volatile carbon

  2. Controls on long-term low explosivity at andesitic arc volcanoes: Insights from Mount Hood, Oregon

    Science.gov (United States)

    Koleszar, Alison M.; Kent, Adam J. R.; Wallace, Paul J.; Scott, William E.

    2012-03-01

    The factors that control the explosivity of silicic volcanoes are critical for hazard assessment, but are often poorly constrained for specific volcanic systems. Mount Hood, Oregon, is a somewhat atypical arc volcano in that it is characterized by a lack of large explosive eruptions over the entire lifetime of the current edifice (~ 500,000 years). Erupted Mount Hood lavas are also compositionally homogeneous, with ~ 95% having SiO2 contents between 58 and 66 wt.%. The last three eruptive periods in particular have produced compositionally homogeneous andesite-dacite lava domes and flows. In this paper we report major element and volatile (H2O, CO2, Cl, S, F) contents of melt inclusions and selected phenocrysts from these three most recent eruptive phases, and use these and other data to consider possible origins for the low explosivity of Mount Hood. Measured volatile concentrations of melt inclusions in plagioclase, pyroxene, and amphibole from pumice indicate that the volatile contents of Mount Hood magmas are comparable to those in more explosive silicic arc volcanoes, including Mount St. Helens, Mount Mazama, and others, suggesting that the lack of explosive activity is unlikely to result solely from low intrinsic volatile concentrations or from substantial degassing prior to magma ascent and eruption. We instead argue that an important control over explosivity is the increased temperature and decreased magma viscosity that results from mafic recharge and magma mixing prior to eruption, similar to a model recently proposed by Ruprecht and Bachmann (2010). Erupted Mount Hood magmas show extensive evidence for mixing between magmas of broadly basaltic and dacitic-rhyolitic compositions, and mineral zoning studies show that mixing occurred immediately prior to eruption. Amphibole chemistry and thermobarometry also reveal the presence of multiple amphibole populations and indicate that the mixed andesites and dacites are at least 100 °C hotter than the high-SiO2

  3. Chlorine isotopes of thermal springs in arc volcanoes for tracing shallow magmatic activity

    Science.gov (United States)

    Li, Long; Bonifacie, Magali; Aubaud, Cyril; Crispi, Olivier; Dessert, Céline; Agrinier, Pierre

    2015-03-01

    The evaluation of the status of shallow magma body (i.e., from the final intrusion stage, to quiescence, and back to activity), one of the key parameters that trigger and sustain volcanic eruptions, has been challenging in modern volcanology. Among volatile tracers, chlorine (Cl) uniquely exsolves at shallow depths and is highly hydrophilic. Consequently, Cl enrichment in volcanic gases and thermal springs has been proposed as a sign for shallow magmatic activities. However, such enrichment could also result from numerous other processes (e.g., water evaporation, dissolution of old chloride mineral deposits, seawater contamination) that are unrelated to magmatic activity. Here, based on stable isotope compositions of chloride and dissolved inorganic carbon, as well as previous published 3He/4He data obtained in thermal springs from two recently erupted volcanoes (La Soufrière in Guadeloupe and Montagne Pelée in Martinique) in the Lesser Antilles Arc, we show that the magmatic Cl efficiently trapped in thermal springs displays negative δ37Cl values (≤ - 0.65 ‰), consistent with a slab-derived origin but distinct from the isotope compositions of chloride in surface reservoirs (e.g. seawater, local meteoric waters, rivers and cold springs) displaying common δ37Cl values of around 0‰. Using this δ37Cl difference as an index of magmatic Cl, we further examined thermal spring samples including a 30-year archive from two thermal springs in Guadeloupe covering samples from its last eruption in 1976-1977 to 2008 and an island-wide sampling event in Martinique in 2008 to trace the evolution of magmatic Cl in the volcanic hydrothermal systems over time. The results show that magmatic Cl can be rapidly flushed out of the hydrothermal systems within <30 to 80 years after the eruption, much quicker than other volatile tracers such as CO2 and noble gases, which can exsolve at greater depths and constantly migrate to the surface. Because arc volcanoes often have well

  4. Structural features of Panarea volcano in the frame of the Aeolian Arc (Italy): Implications for the 2002-2003 unrest

    Science.gov (United States)

    Acocella, Valerio; Neri, Marco; Walter, Thomas R.

    2009-05-01

    Panarea, characterized by gas unrest in 2002-2003, is the volcanic island with the least constrained structure in the eastern-central Aeolian Arc (Italy). Based on structural measurements, we define here its deformation pattern relative to the Arc. The main deformations are subvertical extension fractures (63% of data), normal faults (25%) and dikes (12%). The mean orientation of the extension fractures and faults is ˜N38°E, with a mean opening direction of N135° ± 8°, implying extension with a moderate component of dextral shear. These data, matched with those available for Stromboli volcano (pure opening) and Vulcano, Lipari and Salina volcanoes (predominant dextral motions) along the eastern-central Arc, suggest a progressive westward rotation of the extension direction and an increase in the dextral shear. The dextral shear turns into compression in the western arc. The recent unrest at Panarea, coeval to that of nearby Stromboli, may also be explained by the structural context, as both volcanoes lie along the portion of the Arc subject to extension.

  5. Bacterial diversity in Fe-rich hydrothermal sediments at two South Tonga Arc submarine volcanoes.

    Science.gov (United States)

    Forget, N L; Murdock, S A; Juniper, S K

    2010-12-01

    Seafloor iron oxide deposits are a common feature of submarine hydrothermal systems. Morphological study of these deposits has led investigators to suggest a microbiological role in their formation, through the oxidation of reduced Fe in hydrothermal fluids. Fe-oxidizing bacteria, including the recently described Zetaproteobacteria, have been isolated from a few of these deposits but generally little is known about the microbial diversity associated with this habitat. In this study, we characterized bacterial diversity in two Fe oxide samples collected on the seafloor of Volcanoes 1 and 19 on the South Tonga Arc. We were particularly interested in confirming the presence of Zetaproteobacteria at these two sites and in documenting the diversity of groups other than Fe oxidizers. Our results (small subunit rRNA gene sequence data) showed a surprisingly high bacterial diversity, with 150 operational taxonomic units belonging to 19 distinct taxonomic groups. Both samples were dominated by Zetaproteobacteria Fe oxidizers. This group was most abundant at Volcano 1, where sediments were richer in Fe and contained more crystalline forms of Fe oxides. Other groups of bacteria found at these two sites include known S- and a few N-metabolizing bacteria, all ubiquitous in marine environments. The low similarity of our clones with the GenBank database suggests that new species and perhaps new families were recovered. The results of this study suggest that Fe-rich hydrothermal sediments, while dominated by Fe oxidizers, can be exploited by a variety of autotrophic and heterotrophic micro-organisms.

  6. Petrological model for the Minamigassan volcano, Nasu volcanoes, northeast Japan arc. Higashi Nippon ko, Nasu kazangun, Minamigassan kazan no gansekigakuteki model

    Energy Technology Data Exchange (ETDEWEB)

    Ban, M. (Yamagata University, Yamagata (Japan). Faculty of Science)

    1991-07-15

    Nasu volcanoes in Northeast Japan arc comprise ten small volcanoes, and Minamigassan is one of these volcanoes. A model of magmatic process of Minamigassan volcano is presented, based on the mineralogical and whole-rock chemical composition data. The eruption products of this volcano are divided into five units, E-1, E-2, L-1, L-2, and L-3 units from lower to upper. E-1, E-2, and L-2 units belong to tholeiite series and L-1 and L-3 units belong to calc-alkaline series. The caldera collapse occurred at the beginning stage of L-1 unit. The chemical variation within E-1 and E-2 units can be interpreted by fractional crystallization of phenocrystic minerals. On the other hand, calc-alkaline suites of L-1 and L-3 units suffered magma mixing, and were formed by mixing between basic magma which resembles E-1 unit magma and felsic magma which is derived from early stage magma through crustal contamination or crustal melt. 34 refs., 13 figs., 3 tabs.

  7. Hydrodynamic modeling of magmatic-hydrothermal activity at submarine arc volcanoes, with implications for ore formation

    Science.gov (United States)

    Gruen, Gillian; Weis, Philipp; Driesner, Thomas; Heinrich, Christoph A.; de Ronde, Cornel E. J.

    2014-10-01

    Subduction-related magmas have higher volatile contents than mid-ocean ridge basalts, which affects the dynamics of associated submarine hydrothermal systems. Interaction of saline magmatic fluids with convecting seawater may enhance ore metal deposition near the seafloor, making active submarine arcs a preferred modern analogue for understanding ancient massive sulfide deposits. We have constructed a quantitative hydrological model for sub-seafloor fluid flow based on observations at Brothers volcano, southern Kermadec arc, New Zealand. Numerical simulations of multi-phase hydrosaline fluid flow were performed on a two-dimensional cross-section cutting through the NW Caldera and the Upper Cone sites, two regions of active venting at the Brothers volcanic edifice, with the former hosting sulfide mineralization. Our aim is to explore the flow paths of saline magmatic fluids released from a crystallizing magma body at depth and their interaction with seawater circulating through the crust. The model includes a 3×2 km sized magma chamber emplaced at ∼2.5 km beneath the seafloor connected to the permeable cone via a ∼200 m wide feeder dike. During the simulation, a magmatic fluid was temporarily injected from the top of the cooling magma chamber into the overlying convection system, assuming hydrostatic conditions and a static permeability distribution. The simulations predict a succession of hydrologic regimes in the subsurface of Brothers volcano, which can explain some of the present-day hydrothermal observations. We find that sub-seafloor phase separation, inferred from observed vent fluid salinities, and the temperatures of venting at Brothers volcano can only be achieved by input of a saline magmatic fluid at depth, consistent with chemical and isotopic data. In general, our simulations show that the transport of heat, water, and salt from magmatic and seawater sources is partly decoupled. Expulsion of magmatic heat and volatiles occurs within the first few

  8. On the time-scales of magmatism at island-arc volcanoes.

    Science.gov (United States)

    Turner, S P

    2002-12-15

    Precise information on time-scales and rates of change is fundamental to an understanding of natural processes and the development of quantitative physical models in the Earth sciences. U-series isotope studies are revolutionizing this field by providing time information in the range 10(2)-10(4) years, which is similar to that of many modern Earth processes. I review how the application of U-series isotopes has been used to constrain the time-scales of magma formation, ascent and storage beneath island-arc volcanoes. Different elements are distilled-off the subducting plate at different times and in different places. Contributions from subducted sediments to island-arc lava sources appear to occur some 350 kyr to 4 Myr prior to eruption. Fluid release from the subducting oceanic crust into the mantle wedge may be a multi-stage process and occurs over a period ranging from a few hundred kyr to less than one kyr prior to eruption. This implies that dehydration commences prior to the initiation of partial melting within the mantle wedge, which is consistent with recent evidence that the onset of melting is controlled by an isotherm and thus the thermal structure within the wedge. U-Pa disequilibria appear to require a component of decompression melting, possibly due to the development of gravitational instabilities. The preservation of large (226)Ra disequilibria permits only a short period of time between fluid addition and eruption. This requires rapid melt segregation, magma ascent by channelled flow and minimal residence time within the lithosphere. The evolution from basalt to basaltic andesite probably occurs rapidly during ascent or in magma reservoirs inferred from some geophysical data to lie within the lithospheric mantle. The flux across the Moho is broadly andesitic, and some magmas subsequently stall in more shallow crustal-level magma chambers, where they evolve to more differentiated compositions on time-scales of a few thousand years or less.

  9. A distinct source and differentiation history for Kolumbo submarine volcano, Santorini volcanic field, Aegean arc.

    Science.gov (United States)

    Klaver, Martijn; Carey, Steven; Nomikou, Paraskevi; Smet, Ingrid; Godelitsas, Athanasios; Vroon, Pieter

    2016-08-01

    This study reports the first detailed geochemical characterization of Kolumbo submarine volcano in order to investigate the role of source heterogeneity in controlling geochemical variability within the Santorini volcanic field in the central Aegean arc. Kolumbo, situated 15 km to the northeast of Santorini, last erupted in 1650 AD and is thus closely associated with the Santorini volcanic system in space and time. Samples taken by remotely-operated vehicle that were analyzed for major element, trace element and Sr-Nd-Hf-Pb isotope composition include the 1650 AD and underlying K2 rhyolitic, enclave-bearing pumices that are nearly identical in composition (73 wt.% SiO2, 4.2 wt.% K2O). Lava bodies exposed in the crater and enclaves are basalts to andesites (52-60 wt.% SiO2). Biotite and amphibole are common phenocryst phases, in contrast with the typically anhydrous mineral assemblages of Santorini. The strong geochemical signature of amphibole fractionation and the assimilation of lower crustal basement in the petrogenesis of the Kolumbo magmas indicates that Kolumbo and Santorini underwent different crustal differentiation histories and that their crustal magmatic systems are unrelated. Moreover, the Kolumbo samples are derived from a distinct, more enriched mantle source that is characterized by high Nb/Yb (>3) and low (206)Pb/(204)Pb (<18.82) that has not been recognized in the Santorini volcanic products. The strong dissimilarity in both petrogenesis and inferred mantle sources between Kolumbo and Santorini suggests that pronounced source variations can be manifested in arc magmas that are closely associated in space and time within a single volcanic field.

  10. Localised magmatic constraints on continental back-arc volcanism in southern Mendoza, Argentina: the Santa Maria Volcano

    Science.gov (United States)

    Espanon, Venera R.; Chivas, Allan R.; Turner, Simon P.; Kinsley, Leslie P. J.; Dosseto, Anthony

    2016-11-01

    The Payún Matrú Volcanic Field constitutes part of the continental back-arc in Argentina. This volcanic field has been the focus of several regional investigations; however, geochemical analysis of recent volcanoes (<8 ka) at the scale of an individual volcano has not been conducted. We present a morphological description for the Santa Maria Volcano in addition to results from major and trace element analysis and 238U-230Th-226Ra disequilibria. The trace element evidence suggests that the Santa Maria magmatic source has a composition similar to that of the local intraplate end member (resembling an ocean island basalt-like source), with a slight contribution from subduction-related material. The U-series analyses suggest a high 226Ra excess over 230Th for this volcano, which is not derived from a shallow process such as hydrothermal alteration or upper crustal contamination. Furthermore, intermediate-depth processes such as fractional crystallisation have been inferred for the Santa Maria Volcano, but they are not capable of producing the 226Ra excess measured. The 226Ra excess is explained by deep processes like partial melting of mantle lithologies with some influence from subducted Chilean trench sediments. Due to the short half-life of 226Ra (1600 years), we infer that fast magma ascent rates are required to preserve the high 226Ra excess.

  11. Volcanoes

    Science.gov (United States)

    ... or more from a volcano. Before a Volcanic Eruption The following are things you can do to ... in case of an emergency. During a Volcanic Eruption Follow the evacuation order issued by authorities and ...

  12. Geochronology of Zircon from Modern Plutons Beneath Two Contrasting Arc Volcanoes

    Science.gov (United States)

    Bacon, C. R.

    2006-12-01

    Ion microprobe (SHRIMP RG) 238U-230Th zircon dating documents recent crystallization of shallow plutons beneath two caldera volcanoes where magmas evolved mainly by crystallization differentiation. Mount Mazama, Oregon, is a medium-K calc-alkaline Cascade arc volcano whose 7.7-ka climactic eruption ejected granodiorite and related plutonic blocks during formation of Crater Lake caldera. Mount Veniaminof, Alaska, is a medium-K tholeiitic Aleutian arc volcano that ejected granodiorite, diorite, and gabbro blocks in its 3.7-ka caldera-enlarging eruption. Zircons in four granodiorite blocks from Mazama crystallized at various times between 20 ka and greater than 300 ka, with concentrations of model ages near 50-70, 110, and 200 ka that correspond to periods of dacitic volcanism dated by K-Ar (Bacon and Lowenstern, 2005, EPSL 233:277-293). Multiple-age zircon populations are common. The youngest zircon model ages in blocks from different locations around the caldera are similar to ages of nearby volcanic vents and may help map the distribution of intrusions within a composite pluton. Mazama zircons typically have many 10's to 100's of ppm U and Th, and grew relatively late in high- crystallinity magmas. U-Th model ages of zircon from a 27-ka rhyodacite, the only eruptive unit known with common zircon, are similar to those from granodiorite. Survival of these recycled crystals in zircon- undersaturated hydrous rhyodacitic magma suggests little time from entrainment to the 27-ka eruption. In contrast, the voluminous 7.7-ka climactic rhyodacite is virtually lacking in zircon, indicating dissolution of any granodioritic debris in the hot, vigorously growing silicic magma body during the intervening period. Veniaminof erupted basaltic through rhyodacitic magmas over the past 250 kyr. Gabbro, diorite, and miarolitic granodiorite blocks from Veniaminof represent cumulate mush and vapor-saturated residual melt segregations (Bacon, Sisson, and Mazdab, 2006, EOS 87:36:U41B-05

  13. Effect of mechanical heterogeneity in arc crust on volcano deformation with application to Soufrière Hills Volcano, Montserrat, West Indies

    Science.gov (United States)

    Hautmann, Stefanie; Gottsmann, Joachim; Sparks, R. Stephen J.; Mattioli, Glen S.; Sacks, I. Selwyn; Strutt, Michael H.

    2010-09-01

    Analyses of volcano surface deformation are commonly based on models that assume mechanical homogeneity of rocks surrounding the causative pressure source. Here we present a detailed study that shows the differences in deduced surface deformation caused by source pressurization accounting for either mechanical homogeneity or mechanical heterogeneity of encasing rocks in a volcanic arc setting using finite element models. Accounting for crustal heterogeneity from seismic data, we test for a range of source geometries and intermediate crustal depths and explore the misfits of deduced source parameters from the two families of models. In the second part of this study, we test the results from the generic study against cGPS data from two deformation periods (the 2003-2005 ground inflation and the 2005-2007 ground deflation) at Soufrière Hills Volcano, Montserrat, West Indies, to inform on source parameters. Accounting for a variable crustal rigidity with depth as deduced by seismic analysis beneath Montserrat, we find the data to be best explained by pressurization and depressurization of a slightly prolate midcrustal magma chamber that is centered between 11.5 and 13 km below sea level, about 640 m NE of the active vent. Considering source dimension and source pressure changes, we demonstrate that magma compressibility and viscoelasticity of host rocks considerably affect dynamics in the midcrustal magmatic system of Soufrière Hills Volcano and need to be accounted for as first-order effects in geodetic data analyses and modeling.

  14. Sediment wave-forms and modes of construction on Mariana (and other) intra-oceanic arc volcanoes

    Science.gov (United States)

    Embley, R. W.; Stern, R. J.; Chadwick, B.; Tamura, Y.; Merle, S. G.

    2014-12-01

    Most intra-oceanic arc volcanoes are composite edifices constructed primarily in the submarine environment, built up by volcaniclastic sediments derived from hydroclastic and pyroclastic processes at/near the summits, punctuated by occasional lava flows and intrusions. Of particular interest in the mode of construction are extensive fields of large sediment waveforms (SWFs), up to >2 km wavelength and >100 m amplitude, on the submarine flanks of many islands and seamounts within the Mariana and other intra-oceanic subduction zones. These SWFs are composed of coarse-grained volcaniclastic sediments derived from the (approximate) point source summits of the island and submarine volcanoes. SWFs around some seamounts and islands, particularly those with large calderas, define quasi-concentric ring-like ridges, suggesting formation by density currents generated during submarine and island eruptions, and preserved for 10s of thousands of years. Some types of SWFs appear to have formed by progressive slumping of oversteepened slopes without fluidization. General conclusions about the origin of SWFs are hampered by the dearth of samples and high resolution seismic reflection profiles. However, large coherent slumps and debris avalanches documented for some ocean islands (e.g., Hawaiian Islands) are (mostly) are not as evident on the composite arc volcanoes. Submarine Mariana arc (and other intra-oceanic arc) volcanism probably spread volcaniclastic material primarily during submarine "Neptunian" eruptions and by progressive slides and other sediment flow rather than by catastrophic flank collapse. These processes could mitigate the Hawaiian-style of tsumami hazard, but Krakatoa-type tsunami hazards exist.

  15. Intensive hydration of the wedge mantle at the Kuril arc - NE Japan arc junction: implications from mafic lavas from Usu Volcano, northern Japan

    Science.gov (United States)

    Kuritani, T.; Tanaka, M.; Yokoyama, T.; Nakagawa, M.; Matsumoto, A.

    2015-12-01

    The southwestern part of Hokkaido, northern Japan, is located at the junction of the NE Japan arc and the Kuril arc. The subducting Pacific plate under this region shows a hinge-like shape due to the dip change of the subducting plate along the trench. Because of the interest in this unique tectonic setting, this arc-arc junction has been the focus of extensive geophysical studies (e.g. Kita et al., 2010, Morishige and van Keken, 2014; Wada et al., 2015). This region is also known as an area in which magmatism has been intense; there are many active volcanoes such as Usu, Tarumae, and Komagatake, and large calderas including Toya, Shikotsu, and Kuttara. In this region, the temporal and spatial evolution of the volcanism and the chemical compositions of the volcanic rocks are well characterized (e.g. Nakagawa, 1992). However, the generation conditions of magmas have not been estimated for these volcanoes, probably because of the scarcity of basaltic products. Therefore, a possible link between the tectonic setting and the intense magmatism is still unclear. In this study, we carried out a petrological and geochemical study on mafic lavas (49.6-51.3 wt.% SiO2) from Usu Volcano, and estimated the conditions under which the magmas were generated. By application of a plagioclase-melt hygrometer to the plagioclase and the host magma, the water content of ~6.5 wt.% was obtained for the basaltic magma. Using this information, as well as the olivine maximum fractionation model (Tatsumi et al., 1983), the composition of the primary magma is estimated to be 47.9 wt.% SiO2, 15.1 wt.% MgO, and 4.1 wt.% H2O. Analyses using the multi-component thermodynamics suggest that the primary magma was generated in the source mantle with 0.9 wt.% H2O at 1310ºC and at 1.6 GPa. The water content of 0.9 wt.% of the source mantle is significantly higher than the estimates for the source mantle in the main NE Japan arc (hinge-like shape, and many fractures might have been developed in the slab

  16. Numerical Tsunami Hazard Assessment of the Only Active Lesser Antilles Arc Submarine Volcano: Kick 'em Jenny.

    Science.gov (United States)

    Dondin, F. J. Y.; Dorville, J. F. M.; Robertson, R. E. A.

    2015-12-01

    The Lesser Antilles Volcanic Arc has potentially been hit by prehistorical regional tsunamis generated by voluminous volcanic landslides (volume > 1 km3) among the 53 events recognized so far. No field evidence of these tsunamis are found in the vincity of the sources. Such a scenario taking place nowadays would trigger hazardous tsunami waves bearing potentially catastrophic consequences for the closest islands and regional offshore oil platforms.Here we applied a complete hazard assessment method on the only active submarine volcano of the arc Kick 'em Jenny (KeJ). KeJ is the southernmost edifice with recognized associated volcanic landslide deposits. From the three identified landslide episodes one is associated with a collapse volume ca. 4.4 km3. Numerical simulations considering a single pulse collapse revealed that this episode would have produced a regional tsunami. An edifice current volume estimate is ca. 1.5 km3.Previous study exists in relationship to assessment of regional tsunami hazard related to shoreline surface elevation (run-up) in the case of a potential flank collapse scenario at KeJ. However this assessment was based on inferred volume of collapse material. We aim to firstly quantify potential initial volumes of collapse material using relative slope instability analysis (RSIA); secondly to assess first order run-ups and maximum inland inundation distance for Barbados and Trinidad and Tobago, i.e. two important economic centers of the Lesser Antilles. In this framework we present for seven geomechanical models tested in the RSIA step maps of critical failure surface associated with factor of stability (Fs) for twelve sectors of 30° each; then we introduce maps of expected potential run-ups (run-up × the probability of failure at a sector) at the shoreline.The RSIA evaluates critical potential failure surface associated with Fs sources characteristics are retrieved from numerical simulation using an hydraulic equations-based code (Volc

  17. Geochemistry and solute fluxes from volcano-hydrothermal system of Ketoy, Kuril Island arc

    Science.gov (United States)

    Kalacheva, Elena; Taran, Yuri; Voloshina, Ekaterina; Tarasov, Kirill; Kotenko, Tatiana

    2017-04-01

    Ketoy is a volcanic island in the middle of the Kuril Island arc. With an area of ˜70 km2 it consists of two volcanic structures of different ages. The younger Pallas cone (960 m asl) is characterized by a strong fumarolic activity with maximum temperature of 720˚ C (August 2016) and hosts a cold acid crater lake in the summit crater. The older Ketoy cone (1172 m) at the NE of the island is cut by the erosion crater that open to the east and known as a canyon of Gorchichny Stream. There is a strong hydrothermal activity within the canyon with boiling springs and steam vents. We present our data obtained during the fieldwork in August 2016 on the chemical (major and trace elements including REE) and isotopic (H, O, C, S) composition of thermal fluids from both Gorchichny canyon and thermal fields on the slopes of the Pallas cone. Thermal field of the Gorchichny Stream discharges acid Ca-SO4 and near neutral unusual, Cl-poor, Na-Ca-SO4 hot-to-boiling waters with TDS 2-3 g/L. Thermal field of the summit plateau at the base of the Pallas cone discharges acid Ca-SO4 warm water that can be the seepage from the crater lake. Isotopic compositions of thermal waters are close to the meteoric water line but with a clear positive shift in both δ18O and δD with a trend directed to the isotopic composition of condensates of fumarolic gases of the Pallas cone. For the first time the outflow rates of the draining streams have been measured and hydrothermal solute fluxes from the volcano-hydrothermal system have been estimated. The total hydrothermal flux of chloride and sulfate from Ketoy Island is estimated as 8.5 t/d of Cl and 30 t/d of SO4. This work was supported by the RSF grant #15-17-20011.

  18. Paleozoic subduction complex and Paleozoic-Mesozoic island-arc volcano-plutonic assemblages in the northern Sierra terrane

    Science.gov (United States)

    Hanson, Richard E.; Girty, Gary H.; Harwood, David S.; Schweickert, Richard A.

    2000-01-01

    This field trip provides an overview of the stratigraphic and structural evolution of the northern Sierra terrane, which forms a significant part of the wall rocks on the western side of the later Mesozoic Sierra Nevada batholith in California. The terrane consists of a pre-Late Devonian subduction complex (Shoo Fly Complex) overlain by submarine arc-related deposits that record the evolution of three separate island-arc systems in the Late Sevonian-Early Mississippian, Permian, and Late Triassic-Jurassic. The two Paleozoic are packages and the underlying Shoo Fly Complex have an important bearing on plate-tectonic processes affecting the convergent margin outboard of the Paleozoic Cordilleran miogeocline, although their original paleogeographic relations to North America are controversial. The third arc package represents an overlap assemblage that ties the terrane to North America by the Late Triassic and helps constrain the nature and timing of Mesozoic orogenesis. Several of the field-trip stops examine the record of pre-Late Devonian subduction contained in the Shoo Fly Complex, as well as the paleovolcanology of the overlying Devonian to Jurassic arc rocks. Excellent glaciated exposures provide the opportunity to study a cross section through a tilted Devonian volcano-plutonic association. Additional stops focus on plutonic rocks emplaced during the Middle Jurassic arc magmatism in the terrane, and during the main pulse of Cretaceous magmatism in the Sierra Nevada batholith to the east.

  19. Locations and focal mechanisms of deep long period events beneath Aleutian Arc volcanoes using back projection methods

    Science.gov (United States)

    Lough, A. C.; Roman, D. C.; Haney, M. M.

    2015-12-01

    Deep long period (DLP) earthquakes are commonly observed in volcanic settings such as the Aleutian Arc in Alaska. DLPs are poorly understood but are thought to be associated with movements of fluids, such as magma or hydrothermal fluids, deep in the volcanic plumbing system. These events have been recognized for several decades but few studies have gone beyond their identification and location. All long period events are more difficult to identify and locate than volcano-tectonic (VT) earthquakes because traditional detection schemes focus on high frequency (short period) energy. In addition, DLPs present analytical challenges because they tend to be emergent and so it is difficult to accurately pick the onset of arriving body waves. We now expect to find DLPs at most volcanic centers, the challenge lies in identification and location. We aim to reduce the element of human error in location by applying back projection to better constrain the depth and horizontal position of these events. Power et al. (2004) provided the first compilation of DLP activity in the Aleutian Arc. This study focuses on the reanalysis of 162 cataloged DLPs beneath 11 volcanoes in the Aleutian arc (we expect to ultimately identify and reanalyze more DLPs). We are currently adapting the approach of Haney (2014) for volcanic tremor to use back projection over a 4D grid to determine position and origin time of DLPs. This method holds great potential in that it will allow automated, high-accuracy picking of arrival times and could reduce the number of arrival time picks necessary for traditional location schemes to well constrain event origins. Back projection can also calculate a relative focal mechanism (difficult with traditional methods due to the emergent nature of DLPs) allowing the first in depth analysis of source properties. Our event catalog (spanning over 25 years and volcanoes) is one of the longest and largest and enables us to investigate spatial and temporal variation in DLPs.

  20. Volcanoes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the past thousand years,volcanoes have claimed more than 300,000 lives. Volcanology is ayoung and dangerous science that helps us against the power of the Earth itself.We live on a fiery planet. Nearly 2000 miles beneath our feet, the Earth's inner core reachestemperatures of 12,000 degrees Fahrenheit. Molten rock or magma, rises to the earth's surface. Acold, rigid crust fractured into some twenty plates. When magma breaks through crust it becomes

  1. The subsurface three-dimensional modeling of volcano arc of Flores island based on gravity data analysis

    Science.gov (United States)

    Titi, Yopiter Lukas Alexander; Minarto, Eko

    2017-01-01

    The interpretation and three-dimensional modeling of the subsurface structure of the volcano arc of the Flores island based on the gravity data analysis have been done. This research is aimed for modeling subsurface structure utilized a secondary data of complete Bouguer anomaly gravity data obtained from Bureau Gravimetric International (BGI) using Grablox and Bloxer software. The modeling construction was performed by inversion technique applying the method of Singular Value Decomposition (SVD) and Occam inversion. The result indicates that Subsurface structure of the volcano area of the Flores island consists of sandstone, breccia and andesite have density value ranging from 2,42 g/cm3 to 2,62 g/cm3 and basaltic and lava have density values ranging from 2,65 g/cm3 to 3,24 g/cm3. The most dominating rocks in the study area are basaltic rocks have 2.73 g/cm3 point of average density. The existence of magma chamber in the volcanic arc of Flores island was estimated at a depth of 6 km.

  2. The temporal evolution of back-arc magmas from the Auca Mahuida shield volcano (Payenia Volcanic Province, Argentina)

    Science.gov (United States)

    Pallares, Carlos; Quidelleur, Xavier; Gillot, Pierre-Yves; Kluska, Jean-Michel; Tchilinguirian, Paul; Sarda, Philippe

    2016-09-01

    In order to better constrain the temporal volcanic activity of the back-arc context in Payenia Volcanic Province (PVP, Argentina), we present new K-Ar dating, petrographic data, major and trace elements from 23 samples collected on the Auca Mahuida shield volcano. Our new data, coupled with published data, show that this volcano was built from about 1.8 to 1.0 Ma during five volcanic phases, and that Auca Mahuida magmas were extracted from, at least, two slightly different OIB-type mantle sources with a low partial melting rate. The first one, containing more garnet, was located deeper in the mantle, while the second contains more spinel and was thus shallower. The high-MgO basalts (or primitive basalts) and the low-MgO basalts (or evolved basalts), produced from the deeper and shallower lherzolite mantle sources, respectively, are found within each volcanic phase, suggesting that both magmatic reservoirs were sampled during the 1 Myr lifetime of the Auca Mahuida volcano. However, a slight increase of the proportion of low-MgO basalts, as well as of magmas sampled from the shallowest source, can be observed through time. Similar overall petrological characteristics found in the Pleistocene-Holocene basaltic rocks from Los Volcanes and Auca Mahuida volcano suggest that they originated from the same magmatic source. Consequently, it can be proposed that the thermal asthenospheric anomaly is probably still present beneath the PVP. Finally, our data further support the hypothesis that the injection of hot asthenosphere with an OIB mantle source signature, which was triggered by the steepening of the Nazca subducting plate, induced the production of a large volume of lavas within the PVP since 2 Ma.

  3. Gas flux Estimates: Problems of Scaling from one Volcano and Instantaneous Measurements to Decadal-Millenial Rates for Whole Arc Systems.

    Science.gov (United States)

    Rose, W. I.; Carn, S. A.; Bluth, G. J.

    2002-05-01

    We have remote sensing tools to measure volcanic SO2 releases to the atmosphere by volcanoes in terms of kg/s-1 (Rodriguez et al, this session) but to use these data to develop estimates of arc gas release rates to compare with subduction zone rates (subduction factory) is far from straightforward. We have investigated this by considering how to convert the last 20 years of SO2 remote sensing at one Guatemalan volcano to a millenial gas release rate. We have chosen Fuego Volcano as a focal point because much is known about its activity (eruption rates and times) and magma characteristics (composition, intensive parameters, melt inclusion analyses), and because its behavior over the past 500 years consists of frequent eruptions and continual gas emissions. A steady-state rate conversion (20 x 50 = 1000) for Fuego may nonetheless be a basis for considering the whole arc, because it tends to release its volatiles readily. Even with this kind of open vent behavior and abundant helpful lab data we need to use speculative assumptions to get a result. One of these speculations involves excess gas release: Fuego is well known to exhibit this, but data collected in many geochemical studies of Fuego suggest it is highly variable. Lacking understanding of the process which causes the excess leaves us puzzled how to generalize it, even for only one volcanic system. Evaluating the rest of the arc and computing a flux per unit of arc length seems much more difficult than evaluating Fuego alone. Other volcanoes in the arc tend to retain their volatiles (in part for later release) and are therefore not well-estimated from sparse measurements. Another question is whether the relatively constant activity representative exhibited by Fuego is representative of arc activity. Volcanoes with compositional variability and long reposes require integration of robust data over periods much longer than 20 years to determine an accurate rate. Other examples of open vent volcanoes (eg Pacaya

  4. Water content of primitive low-K tholeiitic basalt magma from Iwate Volcano, NE Japan arc: implications for differentiation mechanism of frontal-arc basalt magmas

    Science.gov (United States)

    Kuritani, Takeshi; Yoshida, Takeyoshi; Kimura, Jun-Ichi; Hirahara, Yuka; Takahashi, Toshiro

    2014-02-01

    The water content of low-K tholeiitic basalt magma from Iwate volcano, which is located on the volcanic front of the NE Japan arc, was estimated using multi-component thermodynamic models. The Iwate lavas are moderately porphyritic, consisting of ~8 vol.% olivine and ~20 vol.% plagioclase phenocrysts. The olivine and plagioclase phenocrysts show significant compositional variations, and the Mg# of olivine phenocrysts (Mg#78-85) correlates positively with the An content of coexisting plagioclase phenocrysts (An85-92). The olivine phenocrysts with Mg# > ~82 do not form crystal aggregates with plagioclase phenocrysts. It is inferred from these observations that the phenocrysts with variable compositions were primarily derived from mushy boundary layers along the walls of a magma chamber. By using thermodynamic calculations with the observed petrological features of the lavas, the water content of the Iwate magma was estimated to be 4-5 wt.%. The high water content of the magma supports the recent consensus that frontal-arc magmas are remarkably hydrous. Using the estimated water content of the Iwate magma, the water content and temperature of the source mantle were estimated. Given that the Iwate magma was derived from a primary magma solely by olivine fractionation, the water content and temperature were estimated to be ~0.7 wt.% and ~1,310 °C, respectively. Differentiation mechanisms of low-K frontal-arc basalt magmas were also examined by application of a thermodynamics-based mass balance model to the Iwate magma. It is suggested that magmatic differentiation proceeds primarily through fractionation of crystals from the main molten part of a magma chamber when it is located at ~200 MPa.

  5. A bird's eye view of "Understanding volcanoes in the Vanuatu arc"

    Science.gov (United States)

    Vergniolle, S.; Métrich, N.

    2016-08-01

    The Vanuatu intra-oceanic arc, located between 13 and 22°S in the southwest Pacific Ocean (Fig. 1), is one of the most seismically active regions with almost 39 earthquakes magnitude 7 + in the past 43 years (Baillard et al., 2015). Active deformation in both the Vanuatu subduction zone and the back-arc North-Fiji basin accommodates the variation of convergence rates which are c.a. 90-120 mm/yr along most of the arc (Taylor et al., 1995; Pelletier et al., 1998). The convergence rate is slowed down to 25-43 mm/yr (Baillard et al., 2015) in the central segment where the D'Entrecasteaux ridge - an Eocene-Oligocene island arc complex on the Australian subducting plate - collides and is subducted beneath the fore-arc (Taylor et al., 2005). Hence, the Vanuatu arc is segmented in three blocks which move independently; as the north block rotates counter-clockwise in association with rapid back-arc spreading ( 80 mm/year), the central block translates eastward and the south block rotates clockwise (Calmant et al., 2003; Bergeot et al., 2009). (See Fig. 1.)

  6. Fate of an Oceanic Island-arc at the Collision Zone: Insight From a Modern Case at the Izu Collision Zone, Central Japan

    Science.gov (United States)

    Aoike, K.

    2003-12-01

    Arc-arc or arc-continent collision zone, which separates an arc crust into materials to be left on the earth_fs surface and to be returned to the mantle, is regarded as the final disposal place of the subduction factory product. Mass balance across the collision boundary, therefore, should have great significance in the processes of continental growth and mantle evolution. The Izu Collision Zone (ICZ) located at the conjunction of the Honshu arc and the Izu-Bonin arc (IBA), is a place of ongoing orthogonal arc-arc collision, where the middle to upper crust of the northern IBA is exposed on land as accretionary terranes. The IBA-ICZ system is much advantageous for elucidating the mass balance, because that the product is simple and fresh and the flow from manufacture to disposal is quite clear. Across arc variation of buoyancy and rheological state of the lithosphere controlled principally by geothermal gradient would regulate the regime of collision tectonics. Crust-scale accretion is taking place associated with conspicuous crustal shortening and thickening in the central ICZ where the active arc that is about 100 km wide and 20 km thick is colliding. By contrast, almost the whole arc crust is subducting, leaving the off-scraped sediments as accretionary prisms in the eastern and western areas where the inactive forearc and backarc, totally 200 km wide and averagely 14 km thick, are colliding. Based on the land geology and existing seismic structure, crustal volume of the accreted IBA is estimated for the line along the axis of the ICZ and another line passing through the Tanzawa Terrane situated eastward 30 km apart from the axis. The estimation indicates that the volume of the Tanzawa line is significantly smaller (16 %) than that of the axis, in spite of being very close. This difference is explainable, if the Philippine Sea Plate slab including expected aseismic part is accompanied with 7 km thick subducted arc crust. This result of calculation implies that

  7. Volcano-sedimentary processes operating on a marginal continental arc: the Archean Raquette Lake Formation, Slave Province, Canada

    Science.gov (United States)

    Mueller, W. U.; Corcoran, P. L.

    2001-06-01

    The 200-m thick, volcano-sedimentary Raquette Lake Formation, located in the south-central Archean Slave Province, represents a remnant arc segment floored by continental crust. The formation overlies the gneissic Sleepy Dragon Complex unconformably, is laterally interstratified with subaqueous mafic basalts of the Cameron River volcanic belt, and is considered the proximal equivalent of the turbidite-dominated Burwash Formation. A continuum of events associated with volcanism and sedimentation, and controlled by extensional tectonics, is advocated. A complex stratigraphy with three volcanic and three sedimentary lithofacies constitute the volcano-sedimentary succession. The volcanic lithofacies include: (1) a mafic volcanic lithofacies composed of subaqueous pillow-pillow breccia, and subaerial massive to blocky flows, (2) a felsic volcanic lithofacies representing felsic flows that were deposited in a subaerial environment, and (3) a felsic volcanic sandstone lithofacies interpreted as shallow-water, wave- and storm-reworked pyroclastic debris derived from explosive eruptions. The sedimentary lithofacies are represented by: (1) a conglomerate-sandstone lithofacies consistent with unconfined debris flow, hyperconcentrated flood flow and talus scree deposits, as well as minor high-energy stream flow conglomerates that formed coalescing, steep-sloped, coarse-clastic fan deltas, (2) a sandstone lithofacies, interpreted as hyperconcentrated flood flow deposits that accumulated at the subaerial-subaqueous interface, and (3) a mudstone lithofacies consistent with suspension sedimentation in a small restricted lagoon-type setting. The Raquette Lake Formation is interpreted as a fringing continental arc that displays both high-energy clastic sedimentation and contemporaneous effusive and explosive mafic and felsic volcanism. Modern analogues that develop along active plate margins in which continental crust plays a significant role include Japan and the Baja California

  8. Spatial and temporal evolution of a back-arc Plio-pleistocene magmatic series: an example of Auca Mahuida and El Tromen volcanoes from Payenia Basaltic Province, Argentina

    Science.gov (United States)

    Pallares, C.; Quidelleur, X.; Debreil, J. A.; Gillot, P. Y.; Tchilinguirian, P.

    2012-04-01

    The Auca Mahuida and El Tromen volcanoes are located in southern Payenia Basaltic Province (PBP), within a back-arc zone. New K-Ar ages and geochemistry analysis confirm that during the Plio-pleistocene epoch they erupted mainly basaltic and andesitic lavas. Normative minerals (Ol: 17.61, Ne: 3.86 and Ab: 23.57) of shield Auca Mahuida lavas characterize these rocks in the boundary between alkali basalts and basanites. Compatible elements (Ni: 227.30 ppm, Co: 50.75 ppm) and MgO values (9.70 %) reveal their primitive origin (OIB type). On the contrary, major and trace elements data from El Tromen volcano expose typical characteristics of more evolved laves. The Auca Mahuida magmas plotted in incompatible multi-element diagram [normalised to the primitive mantle (MP) of Sun & Mcdonough,1989] show moderately fractioned patterns (50 to 100 times the MP), a slight depletion in heavy REE and Y and a very slight depletion in Nb (signature of subduction?). However, the lavas of El Tromen show spidergrams similar to calc-alkaline or Low Silica Adakites patters: moderate enrichment in the most incompatible elements, negative anomaly in Nb, positive anomalies in K, Pb, Sr and depletion in heavy REE and Y. Furthermore, the Ba/La and La/Ta ratios of El Tromen lavas confirm an arc signature (20 and 29 respectively). The geochemical affinity of El Tromen volcano could be due to geographical proximity of the Andes arc. The very slight arc signature exposed by the shield Auca Mahuida volcano could be due to this volcano location (130 km SE of El Tromen) within a intersection between the PBP and Tromen-Domuyo belt, thus the alkaline source was only slightly modified. Finally, we think that in this region magmatic mantle sources were probably modified by subduction-related fluids; this metasomatism would generate the lavas of El Tromen volcano, while magmatic mantle sources of the shield Auca Mahuida were not considerably influenced by this metasomatism. Finally, our new K-Ar ages

  9. Degassing dynamics of basaltic lava lake at a top-ranking volatile emitter: Ambrym volcano, Vanuatu arc

    Science.gov (United States)

    Allard, Patrick; Burton, Mike; Sawyer, Georgina; Bani, Philipson

    2016-08-01

    Persistent lava lakes are rare on Earth and provide volcanologists with a remarkable opportunity to directly investigate magma dynamics and degassing at the open air. Ambrym volcano, in Vanuatu, is one of the very few basaltic arc volcanoes displaying such an activity and voluminous gas emission, but whose study has long remained hampered by challenging accessibility. Here we report the first high temporal resolution (every 5 s) measurements of vigorous lava lake degassing inside its 300 m deep Benbow crater using OP-FTIR spectroscopy. Our results reveal a highly dynamic degassing pattern involving (i) recurrent (100-200 s) short-period oscillations of the volcanic gas composition and temperature, correlating with pulsated gas emission and sourced in the upper part of the lava lake, (ii) a continuous long period (∼8 min) modulation probably due to the influx of fresh magma at the bottom of the lake, and (iii) discrete CO2 spike events occurring in coincidence with the sequential bursting of meter-sized bubbles, which indicates the separate ascent of large gas bubbles or slugs in a feeder conduit with estimated diameter of 6 ± 1 m. This complex degassing pattern, measured with unprecedented detail and involving both coupled and decoupled magma-gas ascent over short time scales, markedly differs from that of quieter lava lakes at Erebus and Kilauea. It can be accounted for by a modest size of Benbow lava lake and its very high basalt supply rate (∼20 m3 s-1), favouring its rapid overturn and renewal. We verify a typical basaltic arc signature for Ambrym volcanic gas and, based on contemporaneous SO2 flux measurements, we evaluate huge emission rates of 160 Gg d-1 of H2O, ∼10 Gg d-1 of CO2 and ∼8 Gg d-1 of total acid gas (SO2, HCl and HF) during medium activity of the volcano in 2008. Such rates make Ambrym one of the three most powerful volcanic gas emitters at global scale, whose atmospheric impact at local and regional scale may be considerable.

  10. New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece.

    Science.gov (United States)

    Kilias, Stephanos P; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Polymenakou, Paraskevi N; Godelitsas, Athanasios; Argyraki, Ariadne; Carey, Steven; Gamaletsos, Platon; Mertzimekis, Theo J; Stathopoulou, Eleni; Goettlicher, Joerg; Steininger, Ralph; Betzelou, Konstantina; Livanos, Isidoros; Christakis, Christos; Bell, Katherine Croff; Scoullos, Michael

    2013-01-01

    We report on integrated geomorphological, mineralogical, geochemical and biological investigations of the hydrothermal vent field located on the floor of the density-stratified acidic (pH ~ 5) crater of the Kolumbo shallow-submarine arc-volcano, near Santorini. Kolumbo features rare geodynamic setting at convergent boundaries, where arc-volcanism and seafloor hydrothermal activity are occurring in thinned continental crust. Special focus is given to unique enrichments of polymetallic spires in Sb and Tl (±Hg, As, Au, Ag, Zn) indicating a new hybrid seafloor analogue of epithermal-to-volcanic-hosted-massive-sulphide deposits. Iron microbial-mat analyses reveal dominating ferrihydrite-type phases, and high-proportion of microbial sequences akin to "Nitrosopumilus maritimus", a mesophilic Thaumarchaeota strain capable of chemoautotrophic growth on hydrothermal ammonia and CO2. Our findings highlight that acidic shallow-submarine hydrothermal vents nourish marine ecosystems in which nitrifying Archaea are important and suggest ferrihydrite-type Fe(3+)-(hydrated)-oxyhydroxides in associated low-temperature iron mats are formed by anaerobic Fe(2+)-oxidation, dependent on microbially produced nitrate.

  11. Anatomy of Intra-Oceanic Arc Systems

    Science.gov (United States)

    Stern, R. J.

    2007-12-01

    Intra-oceanic arc systems (IOAS) are ultimately embedded in orogenic belts and added to the continental crust. Reconstructing fossil IOASs in collision zones requires understanding the salient features of a typical IOAS. IOASs have the relative dimensions of tagliatelle (flat) pasta: much wider (~250 km) than thick (10-30 km), much longer (1000's of km) than wide. IOASs begin to form when subduction begins, either spontaneously (SNSZ) or by forced convergence (INSZ). For SNSZ, IOASs start as broad zones of seafloor spreading associated with subsidence of the adjacent lithosphere, whereas INSZ IOASs are built on trapped crust. IOAS magmatism manifests the evolution of its subduction zone and indirectly the breadth of the subducted ocean. Two stages in SNSZ IOAS magmato-tectonic evolution exist: infancy and maturity. Infancy lasts 5-10 Ma and results in broad zones of seafloor spreading of tholeiite/boninite; this becomes forearc for the mature IOAS and is emplaced as ophiolite during collision (subduction zone failure). Arc maturity begins with true subduction, as the subducted slab reaches depths ~130 km, focusing magmatism to begin building the magmatic arc ~200km away from the trench and allowing the forearc to cool and hydrate. Mature magmatic arcs mostly yield low-K tholeiitic and medium-K calc-alkaline magmas. Magmatic focusing begins crustal thickening beneath the magmatic arc, at ~500m/Ma for the Izu-Bonin-Mariana IOAS. No systematic compositional evolution to more LIL-enriched primitive magmas occurs once IOAS maturity is reached, except when upper plate stress regime (BAB formation, strike- slip faulting) or the nature of subducted material (more/different sediments, young oceanic crust) changes. Thickening is accompanied by processing of crust beneath the magmatic arc, with progressive differentiation into upper volcanic, middle tonalitic, and lower mafic layers, producing an increasingly effective density filter for magma ascent. Crustal layer formation

  12. Submarine explosive activity and ocean noise generation at Monowai Volcano, Kermadec Arc: constraints from hydroacoustic T-waves

    Science.gov (United States)

    Grevemeyer, Ingo; Metz, Dirk; Watts, Anthony

    2016-04-01

    Submarine volcanic activity is difficult to detect, because eruptions at depth are strongly attenuated by seawater. With increasing depth the ambient water pressure increases and limits the expansion of gas and steam such that volcanic eruptions tend to be less violent and less explosive with depth. Furthermore, the thermal conductivity and heat capacity of water causes rapid cooling of ejected products and hence erupted magma cools much more quickly than during subaerial eruptions. Therefore, reports on submarine volcanism are restricted to those sites where erupted products - like the presence of pumice rafts, gas bubbling on the sea surface, and local seawater colour changes - reach the sea surface. However, eruptions cause sound waves that travel over far distances through the Sound-Fixing-And-Ranging (SOFAR) channel, so called T-waves. Seismic networks in French Polynesia recorded T-waves since the 1980's that originated at Monowai Volcano, Kermadec Arc, and were attributed to episodic growth and collapse events. Repeated swath-mapping campaigns conducted between 1998 and 2011 confirm that Monowai volcano is a highly dynamic volcano. In July of 2007 a network of ocean-bottom-seismometers (OBS) and hydrophones was deployed and recovered at the end of January 2008. The instruments were located just to the east of Monowai between latitude 25°45'S and 27°30'S. The 23 OBS were placed over the fore-arc and on the incoming subducting plate to obtain local seismicity associated with plate bending and coupling of the subduction megathrust. However, we recognized additional non-seismic sleuths in the recordings. Events were best seen in 1 Hz high-pass filtered hydrophone records and were identified as T-waves. The term T-wave is generally used for waves travelling through the SOFAR channel over large distances. In our case, however, they were also detected on station down to ~8000 m, suggesting that waves on the sea-bed station were direct waves caused by explosive

  13. Distribution of trace elements including tellurium, gallium, indium, and select REE in sulfide chimneys from Brothers submarine volcano, Kermadec arc

    Science.gov (United States)

    Berkenbosch, H. A.; de Ronde, C. E.; McNeill, A.; Goemann, K.; Gemmell, J. B.

    2011-12-01

    Brothers volcano is a dacitic volcano located along the Kermadec arc, New Zealand, and hosts the NW Caldera hydrothermal vent field perched on part of the steep caldera walls. The field strikes for ~600 m between depths of 1550 and 1700 m and includes numerous, active, high-temperature (max 302°C) chimneys and even more dead, sulfide-rich spires. Chimney samples collected from Brothers show distinct mineralogical zonation reflecting gradients in oxidation state, temperature, and pH from the inner walls in contact with hydrothermal fluids through to the outer walls in contact with seawater. Minerals deposited from hotter fluids (e.g., chalcopyrite) are located in the interior of the chimneys and are surrounded by an external zone of minerals deposited by cooler fluids (e.g., sulfates, sphalerite). Four chimneys types are identified at Brothers volcano based on the relative proportions of chalcopyrite and sulfate layers, and the presence or absence of anhydrite. Two are Cu-rich, i.e., chalcopyrite-rich and chalcopyrite-bornite-rich chimneys, and two are Zn-rich, i.e., sphalerite-rich and sphalerite-chalcopyrite-rich. Barite and anhydrite are common to both Cu-rich chimney types whereas Zn-rich chimneys contain barite only. The main mineral phases in all the chimneys are anhydrite, barite, chalcopyrite, pyrite/marcasite, and sphalerite. Trace minerals include galena, covellite, tennantite, realgar, chalcocite, bornite, hematite, goethite, Pb-As sulfosalts, and Bi- or Au-tellurides. The vast majority of tellurides are trace elements and REE such as In (53.1 ppm), Ga (1870), Y (26), La (21.2), Ce (21), Sm (2.8), Gd (4), and Yb (3) in Brothers chimneys. To better understand the mineral associations and zonation of these and other trace elements within the chimney walls, we have undertaken element mapping on the four different chimneys types with both X-Ray fluorescence microscopy using synchrotron radiation and with Laser Ablation Inductively Coupled Plasma Mass

  14. Underestimated risks of recurrent long-range ash dispersal from northern Pacific Arc volcanoes

    Science.gov (United States)

    Bourne, A. J.; Abbott, P. M.; Albert, P. G.; Cook, E.; Pearce, N. J. G.; Ponomareva, V.; Svensson, A.; Davies, S. M.

    2016-07-01

    Widespread ash dispersal poses a significant natural hazard to society, particularly in relation to disruption to aviation. Assessing the extent of the threat of far-travelled ash clouds on flight paths is substantially hindered by an incomplete volcanic history and an underestimation of the potential reach of distant eruptive centres. The risk of extensive ash clouds to aviation is thus poorly quantified. New evidence is presented of explosive Late Pleistocene eruptions in the Pacific Arc, currently undocumented in the proximal geological record, which dispersed ash up to 8000 km from source. Twelve microscopic ash deposits or cryptotephra, invisible to the naked eye, discovered within Greenland ice-cores, and ranging in age between 11.1 and 83.7 ka b2k, are compositionally matched to northern Pacific Arc sources including Japan, Kamchatka, Cascades and Alaska. Only two cryptotephra deposits are correlated to known high-magnitude eruptions (Towada-H, Japan, ca 15 ka BP and Mount St Helens Set M, ca 28 ka BP). For the remaining 10 deposits, there is no evidence of age- and compositionally-equivalent eruptive events in regional volcanic stratigraphies. This highlights the inherent problem of under-reporting eruptions and the dangers of underestimating the long-term risk of widespread ash dispersal for trans-Pacific and trans-Atlantic flight routes.

  15. Underestimated risks of recurrent long-range ash dispersal from northern Pacific Arc volcanoes.

    Science.gov (United States)

    Bourne, A J; Abbott, P M; Albert, P G; Cook, E; Pearce, N J G; Ponomareva, V; Svensson, A; Davies, S M

    2016-01-01

    Widespread ash dispersal poses a significant natural hazard to society, particularly in relation to disruption to aviation. Assessing the extent of the threat of far-travelled ash clouds on flight paths is substantially hindered by an incomplete volcanic history and an underestimation of the potential reach of distant eruptive centres. The risk of extensive ash clouds to aviation is thus poorly quantified. New evidence is presented of explosive Late Pleistocene eruptions in the Pacific Arc, currently undocumented in the proximal geological record, which dispersed ash up to 8000 km from source. Twelve microscopic ash deposits or cryptotephra, invisible to the naked eye, discovered within Greenland ice-cores, and ranging in age between 11.1 and 83.7 ka b2k, are compositionally matched to northern Pacific Arc sources including Japan, Kamchatka, Cascades and Alaska. Only two cryptotephra deposits are correlated to known high-magnitude eruptions (Towada-H, Japan, ca 15 ka BP and Mount St Helens Set M, ca 28 ka BP). For the remaining 10 deposits, there is no evidence of age- and compositionally-equivalent eruptive events in regional volcanic stratigraphies. This highlights the inherent problem of under-reporting eruptions and the dangers of underestimating the long-term risk of widespread ash dispersal for trans-Pacific and trans-Atlantic flight routes.

  16. Molecular comparison of bacterial communities within iron-containing flocculent mats associated with submarine volcanoes along the Kermadec Arc.

    Science.gov (United States)

    Hodges, Tyler W; Olson, Julie B

    2009-03-01

    Iron oxide sheaths and filaments are commonly found in hydrothermal environments and have been shown to have a biogenic origin. These structures were seen in the flocculent material associated with two submarine volcanoes along the Kermadec Arc north of New Zealand. Molecular characterization of the bacterial communities associated with the flocculent samples indicated that no known Fe-oxidizing bacteria dominated the recovered clone libraries. However, clones related to the recently described Fe-oxidizing bacterium Mariprofundus ferrooxydans were obtained from both the iron-containing flocculent (Fe-floc) and sediment samples, and peaks corresponding to Mariprofundus ferrooxydans, as well as the related clones, were observed in several of our terminal restriction fragment length polymorphism profiles. A large group of epsilonproteobacterial sequences, for which there is no cultured representative, dominated clones from the Fe-floc libraries and were less prevalent in the sediment sample. Phylogenetic analyses indicated that several operational taxonomic units appeared to be site specific, and statistical analyses of the clone libraries found that all samples were significantly different from each other. Thus, the bacterial communities in the Fe-floc samples were not more closely related to each other than to the sediment communities.

  17. Facies And Bedding Analysis of Deep-Marine, Arc-Related, Sediementary Rocks Cored on International Ocean Drilling Program Expedition 351.

    Science.gov (United States)

    Johnson, K. E.; Marsaglia, K. M.

    2015-12-01

    The Izu-Bonin-Mariana (IBM) Arc System, south of Japan, hosts a multitude of active and extinct (remnant) arc volcanic sediment sources. Core extracted adjacent to the proto-IBM arc (Kyushu-Palau Ridge; KPR) in the Amami-Sankaku Basin on International Ocean Discovery Program (IODP) Expedition 351 contains evidence of the variety of sediment sources that have existed in the area as a result of changing tectonic regimes through arc development, backarc basin formation and remnant arc abandonment. Approximately 1000 meters of Eocene to Oligocene volcaniclastic sedimentary rocks were analyzed via shipboard core photos, core descriptions, and thin sections with the intention of understanding the depositional history at this site. These materials contain a crucial record of arc development complementary to the Neogene history preserved in the active reararc (Expedition 350) and compressed whole-arc record in the current forearc (Expedition 352). A database of stratigraphic columns was created to display grain size trends, facies changes, and bedding characteristics. Individual beds (depositional events) were classified using existing and slightly modified classification schemes for muddy, sandy and gravel-rich gravity flow deposits, as well as muddy debris flows and tuffs. Utilizing the deep marine facies classes presented by Pickering et al. (1986), up section changes are apparent. Through time, as the arc developed, facies and bedding types and their proportions change dramatically and relatively abruptly. Following arc initiation facies are primarily mud-rich with intercalated tuffaceous sand. In younger intervals, sand to gravel gravity-flow deposits dominate, becoming more mud-rich. Muddy gravity flow deposits, however, dominate farther upsection. The overall coarsening-upward pattern (Unit III) is consistent with building of the arc edifice. Farther upsection (Unit II) an abrupt fining-upward trend represents the onset of isolation of the KPR as backarc spreading

  18. The record of magma chamber processes in plagioclase phenocrysts at Thera Volcano, Aegean Volcanic Arc, Greece

    Science.gov (United States)

    Stamatelopoulou-Seymour, Karen; Vlassopoulos, Dimitrios; Pearce, Thomas H.; Rice, Craig

    1990-01-01

    Lavas and pyroclastic rocks throughout the volcanic stratigraphy of the Tertiary-Quaternary volcanic complex of Thera in the Aegean island arc display inhomogenous plagioclase populations and phenocryst resorption textures, interpreted as indicative of magma mixing. Plagioclase zoning characteristics studied by Nomarski and laser interferometry techniques establish three main categories of plagioclase: (i) inherited plagioclase (nucleated in endmember prior to initial mixing event) (ii) in situ plagioclase (nucleated in mixed or hybrid magma) and (iii) xenocrystic plagioclase. Nomarski contrast images and linearized compositional zoning profiles reveal striking differences between calcic and sodic plagioclases, depending on the composition of the lava in which they are hosted. These differences reflect the contrasting effects of changes in physical-chemical parameters in basic vis-a-vis more acidic melts during magma mixing and/or influx of new magma into the subvolcanic magma chamber, as well as the influence of magma chamber dynamics on plagioclase equilibration. Variations in bulk major and trace element abundances of Thera volcanic products reflect the dominant overprint of crystal fractionation, but decoupling between major and trace element fractionation models and variations in incompatible trace element distributions are all indicative of magma mixing processes, consistent with compositional and textural zoning in plagioclases.

  19. P, T, X magma storage conditions of the dominantly silicic explosive eruptions from Santorini volcano (Aegean Arc, Greece)

    Science.gov (United States)

    Cadoux, A.; Druitt, T. H.; Deloule, E.; Scaillet, B.

    2010-12-01

    It has been increasingly recognized that dramatic changes in magma storage conditions can occur over very short periods of time at a single volcano and might be in close relationships with stress variations imposed on the crustal plumbing by the overlying volcano as it changes shape and volume over time. The Santorini volcano (South Aegean Arc) is an ideal target to unravel these potential relationships as its history is marked by alternating episodes of edifice construction and caldera collapses and the chronostratigraphy is well constrained. We focused our study on the products of the four major, dominantly silicic, explosive eruptions of Santorini: the Lower Pumice 1 and 2 (200 to 180 ka; 1st explosive cycle) and, the Cape Riva and the Minoan (~ 21 to 3 ka, 2nd explosive cycle). In order to precisely define the P, T, fO2, X (X for volatiles) storage conditions of the silicic magmas prior to these eruptions, we carried out a detailed micro-petrological and geochemical study on natural samples combined with an experimental work. The selected silicic components of the four eruptions are dacite to rhyodacite (SiO2 = 67-70 wt.%) with similar mineral paragenesis (plagioclase, orthopyroxene, clinopyroxene, ilmenite, magnetite, apatite ± pyrrhotite) and crystallinity < 20%. High resolution BSE images of plagioclase and pyroxene phenocrysts and EMPA profiles reveal a complex crystallization history. Plagioclases display fine-scale oscillatory normal zoning, resorbtion zones where melt inclusions (MI) of rhyolitic compositions were trapped, and An-rich sieved cores. Clinopyroxenes also show zoning patterns and include rhyolitic MI. Both interstitial glass and MI are Cl-rich (~3000 ppm) while F and S are less abundant (F ≤ 700 ppm, S ≤ 100 ppm). Determination of H2O contents by SIMS is in progress at the CRPG-Nancy (previous measurements from the literature gave ~ 5 wt.% H2O in the Minoan rhyodacite and ~4 wt.% in the Lower Pumice 2). Ilmenite-magnetite geothermometry

  20. Role of large flank-collapse events on magma evolution of volcanoes. Insights from the Lesser Antilles Arc

    Science.gov (United States)

    Boudon, Georges; Villemant, Benoît; Friant, Anne Le; Paterne, Martine; Cortijo, Elsa

    2013-08-01

    Flank-collapse events are now recognized as common processes of destruction of volcanoes. They may occur several times on a volcanic edifice pulling out varying volumes of material from km3 to thousands of km3. In the Lesser Antilles Arc, a large number of flank-collapse events were identified. Here, we show that some of the largest events are correlated to significant variations in erupted magma compositions and eruptive styles. On Montagne Pelée (Martinique), magma production rate has been sustained during several thousand years following a 32 ka old flank-collapse event. Basic and dense magmas were emitted through open-vent eruptions that generated abundant scoria flows while significantly more acidic magmas were produced before the flank collapse. The rapid building of a new cone increased the load on magma bodies at depth and the density threshold. Magma production rate decreased and composition of the erupted products changed to more acidic compared to the preceding period of activity. These low density magma generated plinian and dome-forming eruptions up to the Present. In contrast at Soufrière Volcanic Centre of St. Lucia and at Pitons du Carbet in Martinique, the flank-collapses have an opposite effect: in both cases, the acidic magmas erupted immediately after the flank-collapses. These magmas are highly porphyritic (up to 60% phenocrysts) and much more viscous than the magmas erupted before the flank-collapses. They have been generally emplaced as voluminous and uptight lava domes (called “the Pitons”). Such magmas could not ascent without a significant decrease of the threshold effect produced by the volcanic edifice loading before the flank-collapse.

  1. Aqueous fluids and sedimentary melts as agents for mantle wedge metasomatism, as inferred from peridotite xenoliths at Pinatubo and Iraya volcanoes, Luzon arc, Philippines

    Science.gov (United States)

    Yoshikawa, Masako; Tamura, Akihiro; Arai, Shoji; Kawamoto, Tatsuhiko; Payot, Betchaida D.; Rivera, Danikko John; Bariso, Ericson B.; Mirabueno, Ma. Hannah T.; Okuno, Mitsuru; Kobayashi, Tetsuo

    2016-10-01

    Mantle xenoliths entrained in subduction-zone magmas often record metasomatic signature of the mantle wedge. Such xenoliths occur in magmas from Iraya and Pinatubo volcanoes, located at the volcanic front of the Luzon arc in the Philippines. In this study, we present the major element compositions of the main minerals, trace element abundances in pyroxenes and amphiboles, and Nd-Sr isotopic compositions of amphiboles in the peridotite xenoliths from Pinatubo volcano. The data indicate enrichment in fluid-mobile elements, such as Rb, Ba, U, Pb, and Sr, and Nd-Sr isotopic ratios relative to those of mantle. The results are considered in terms of mixing of asthenospheric mantle and subducting oceanic crustal components. The enrichments observed in the Pinatubo mantle xenoliths are much less pronounced than those reported for the Iraya mantle xenoliths. This disparity suggests differences in the metasomatic agents contributing to the two suites; i.e., aqueous fluids infiltrated the mantle wedge beneath the Pinatubo volcano, whereas aqueous fluids and sediment-derived melts infiltrated the mantle wedge beneath the Iraya volcano.

  2. Magma genesis of the acidic volcanism in the intra-arc rift zone of the Izu volcanic arc, Japan

    Science.gov (United States)

    Haraguchi, S.; Tokuyama, H.; Ishii, T.

    2010-12-01

    The Izu volcanic arc extends over 550 km from the Izu Peninsula, Japan, to the Nishinoshima Trough or Sofugan tectonic line. It is the northernmost segment of the Izu-Bonin-Mariana arc system, which is located at the eastern side of the Philippine Sea Plate. The recent magmatism of the Izu arc is bimodal and characterized by basalt and rhyolite (e.g. Tamura and Tatsumi 2002). In the southern Izu arc, volcanic front from the Aogashima to the Torishima islands is characterized by submarine calderas and acidic volcanisms. The intra-arc rifting, characterized by back-arc depressions, small volcanic knolls and ridges, is active in this region. Volcanic rocks were obtained in 1995 during a research cruise of the R/V MOANA WAVE (Hawaii University, cruise MW9507). Geochemical variation of volcanic rocks and magma genesis was studied by Hochstaedter et al. (2000, 2001), Machida et al (2008), etc. These studies focused magma and mantle dynamics of basaltic volcanism in the wedge mantle. Acidic volcanic rocks were also dredged during the curies MW9507. However, studies of these acidic volcanics were rare. Herein, we present petrographical and chemical analyses of these acidic rocks, and compare these results with those of other acidic rocks in the Izu arc and lab experiments, and propose a model of magma genesis in a context of acidic volcanism. Dredge sites by the cruise MW9507 are 120, and about 50 sites are in the rift zone. Recovered rocks are dominated by the bimodal assemblage of basalt-basaltic andesite and dacite-rhyolite. The most abundant phase is olivine basalt, less than 50 wt% SiO2. Andesites are minor in volume and compositional gap from 56 to 65 wt% SiO2 exists. The across-arc variation of the HFSE contents and ratios, such as Zr/Y and Nb/Zr of rhyolites exhibit depleted in the volcanic front side and enriched in reararc side. This characteristic is similar to basaltic volcanism pointed out by Hochstaedter et al (2000). The petrographical features of rhyolites

  3. Genesis of Mariana shoshonites: Contribution of the subduction component

    Science.gov (United States)

    Sun, Chih-Hsien; Stern, Robert J.

    2001-01-01

    The Izu-Bonin-Mariana arc contains a unique group of shoshonitic volcanoes from along the magmatic front of this intraoceanic arc. Shoshonites are greatly enriched in incompatible elements compared to lavas typically found in primitive arc settings but have fractionations of lithophile (LIL) and high-field strength (HFSE) incompatible elements characteristic of convergent margin magmas and thus are characterized by an unusually large "subduction component." New geochemical and isotopic data for Izu-Bonin-Mariana shoshonites and related rocks are presented and interpreted to examine the origin of these enrichments. Enrichments are associated with distinctive isotopic compositions, including the most radiogenic Pb (206Pb/204Pb ˜ 19.47) and least radiogenic Nd (ɛNd ˜ 5.6) from along the magmatic front of the arc. Despite highly elevated concentrations of fluid-mobile lithophile elements in the lavas, the similarity of diagnostic element ratios (e.g., Ba/La, Pb/Ce, and U/Th) to those in mid-ocean ridge basalts and ocean island basalts indicates little role for fluid-induced elemental fractionation in the generation of these shoshonites. Modeling isotopic data allows up to 6% subducted sediments to be involved, but oxygen isotopic evidence limits this to <3%. Low-P fractionation explains most of the chemical variations observed in these shoshonites. Removal of <2% Ti-rich phases could fractionate HFSE from LIL, indicating an important role for low-P fractionation. Although many features of these shoshonites are consistent with a greater role for subducted sediments, such a role is not accompanied by an unequivocal and universal signal in both isotopic compositions and trace element abundances and fractionations. This signifies a large role for both equilibration of these melts with mantle and for low-pressure fractionation.

  4. Fluid Source-based Modeling of Melt Initiation within the Subduction Zone Mantle Wedge: Implications for Geochemical Trends in Arc Lavas

    Science.gov (United States)

    Hebert, L. B.; Asimow, P. D.; Antoshechkina, P. M.

    2008-12-01

    The GyPSM-S (Geodynamic and Petrological Synthesis Model for Subduction) scheme couples a petrological model (pHMELTS) with a 2D thermal and variable viscosity flow model (ConMan), to describe and compare fundamental processes occurring within subduction zones. Here we supplement basic GyPSM-S models with a more sophisticated treatment of trace element partitioning in the fluid phase and of melt transport regimes to investigate the influences of slab fluid source lithology and fluid transport mechanisms on melt geochemistry, the implications of mantle source depletion related to fluid fluxing, and potential melt migration processes. Changing model parameters indicate that slab age and slab dip are the primary controls on slab-adjacent low-viscosity channel (LVC) shape and thickness, due to changes in the fluid release patterns. Slab age and convergence velocity, which contribute to the slab thermal structure, are significant for the locations of dehydration reactions within the different lithological layers of the slab. The fluid source lithology determines the fluid flux and the fluid-mobile trace element input to the wedge. This study focuses on two cases that represent extremes within our model set, an old slab with a low rate of convergence and and a relatively young slab with a higher rate of convergence. Results are compared to actual geochemical datasets for the Izu-Bonin intra-oceanic subduction system and the Central Costa Rican part of the Central American arc. We find that there is a progression of geochemical characteristics described in studies of cross-arc and along-arc lavas that can be duplicated assuming (i) limited fluid-rock interaction within the mantle wedge and (ii) that melt migration preserves the spatial distinction among melts initiated in different areas of the wedge. Specifically, volcanic front lavas have significant contributions from shallower slab fluid sources, and rear-arc lavas have significant contributions from deeper slab fluid

  5. The first Shinkai dive study of the southwestern Mariana arc system

    Science.gov (United States)

    Ohara, Y.; Martinez, F.; Brounce, M. N.; Pujana, I.; Ishii, T.; Stern, R. J.; Ribeiro, J.; Michibayashi, K.; Kelley, K. A.; Reagan, M. K.; Watanabe, H.; Okumura, T.; Oya, S.; Mizuno, T.

    2014-12-01

    The 3000 km long Izu-Bonin-Mariana (IBM) arc system is an outstanding example of an intraoceanic convergent plate margin. The IBM forearc is a typical nonaccretionary convergent plate margin; the inner trench slope exposes lithologies found in many ophiolites. To more clearly delineate the geology of the forearc, we have been investigating a ~500 km long region of the Mariana forearc south of ~13°N using the DSV Shinkai 6500 and deep-tow camera since 2006. Discoveries includes the presence of MORB-like basalts that formed during subduction initiation (~51 Ma) [Reagan et al., 2010, G3], a region of forearc rifting unusually close to the trench axis, the Southeast Mariana Forearc Rift [Ribeiro et al., 2013, G3], and a serpentinite-hosted ecosystem near the Challenger Deep, the Shinkai Seep Field [Ohara et al., 2012, PNAS]. However, there have been no studies on the southern Mariana area west of the Challenger Deep except one [Hawkins and Batiza, 1977, EPSL], hindering our understanding of the IBM system. To advance our biogeoscientific understanding of this region, a Shinkai 6500 diving cruise (YK14-13) was conducted in July 2014 on two major sites: the inner trench slope west of the Challenger Deep (Site A), and the southwesternmost tip of the Mariana Trough (Site B). Dives at Site A recovered very fresh mantle peridotite associated with troctolite and limestone. The limestone preserves the remnants of corals, clearly indicating that the limestone is an accreted material originating from the incoming (colliding) Caroline Ridge. The freshness of the peridotites also indicates that the collision is an ongoing event, resulting in a protruding peridotite ridge along the inner trench slope west of the Challenger Deep. Dives at Site B recovered basalt and gabbro, which is either new backarc basin crust or rifted West Mariana Ridge crust. This cruise allowed for continued sampling of the inner trench slope of the Mariana Trench, from south of Guam to the Yap Trench

  6. Deep geodynamics of far field intercontinental back-arc extension:Formation of Cenozoic volcanoes in northeastern China

    Institute of Scientific and Technical Information of China (English)

    石耀霖; 张健

    2004-01-01

    There are three cases of variation of trench location possible to occur during subduction: trench fixed, trench advancing, and trench retreating. Retreat of trench may lead to back-arc extension. The Pacific plate subducts at low angle beneath the Eurasia plate, tomographic results indicate that the subducted Pacific slab does not penetrate the 670 km discontinuity, instead, it is lying flat above the interface. The flattening occurred about 28 Ma ago. Geodynamic computation suggests: when the frontier of the subducted slab reaches the phase boundary of lower and upper mantle, it may be hindered and turn flat lying above the boundary, facilitates the retreat of trench and back-arc extension. Volcanism in northeastern China is likely a product of such retreat of subduction, far field back-arc extension, and melting due to reduce of pressure while mantle upwelling.

  7. Prodigious emission rates and magma degassing budget of major, trace and radioactive volatile species from Ambrym basaltic volcano, Vanuatu island Arc

    Science.gov (United States)

    Allard, P.; Aiuppa, A.; Bani, P.; Métrich, N.; Bertagnini, A.; Gauthier, P.-J.; Shinohara, H.; Sawyer, G.; Parello, F.; Bagnato, E.; Pelletier, B.; Garaebiti, E.

    2016-08-01

    Ambrym volcano, in the Vanuatu arc, is one of the most active volcanoes of the Southwest Pacific region, where persistent lava lake and/or Strombolian activity sustains voluminous gas plume emissions. Here we report on the first comprehensive budget for the discharge of major, minor, trace and radioactive volatile species from Ambrym volcano, as well as the first data for volatiles dissolved in its basaltic magma (olivine-hosted melt inclusions). In situ MultiGAS analysis of H2O, CO2, SO2 and H2S in crater rim emissions, coupled with filter-pack determination of SO2, halogens, stable and radioactive metals demonstrates a common magmatic source for volcanic gases emitted by its two main active craters, Benbow and Marum. These share a high water content ( 93 mol%), similar S/Cl, Cl/F, Br/Cl molar ratios, similar (210Po/210Pb) and (210Bi/210Pb) activity ratios, as well as comparable proportions in most trace metals. Their difference in CO2/SO2 ratio (1.0 and 5.6-3.0, respectively) is attributed to deeper gas-melt separation at Marum (Strombolian explosions) than Benbow (lava lake degassing) during our measurements in 2007. Airborne UV sensing of the SO2 plume flux (90 kg s- 1 or 7800 tons d- 1) demonstrates a prevalent degassing contribution ( 65%) of Benbow crater in that period and allows us to quantify the total volatile fluxes during medium-level eruptive activity of the volcano. Results reveal that Ambrym ranks among the most powerful volcanic gas emitters on Earth, producing between 5% and 9% of current estimates for global subaerial volcanic emissions of H2O, CO2, HCl, Cu, Cr, Cd, Au, Cs and Tl, between 10% and 17% of SO2, HF, HBr, Hg, 210Po and 210Pb, and over 30% of Ag, Se and Sn. Global flux estimates thus need to integrate its contribution and be revised accordingly. Prodigious gas emission from Ambrym does not result from an anomalous volatile enrichment nor a differential excess degassing of its feeding basalt: this latter contains relatively modest

  8. Trace element distribution, with a focus on gold, in copper-rich and zinc-rich sulfide chimneys from Brothers submarine volcano, Kermadec arc

    Science.gov (United States)

    Berkenbosch, H. A.; de Ronde, C. E.; McNeill, A.; Goemann, K.; Gemmell, J. B.

    2012-12-01

    Brothers volcano is a dacitic volcano located along the Kermadec arc, New Zealand, and hosts the NW Caldera hydrothermal vent field perched on part of the steep caldera walls. The field strikes for ~600 m between depths of 1550 and 1700 m and includes numerous, active, high-temperature (max 302°C) chimneys and even more dead, sulfide-rich spires. Chimney samples collected from Brothers show distinct mineralogical zonation reflecting gradients in oxidation state, temperature, and pH from the inner walls in contact with hydrothermal fluids through to the outer walls in contact with seawater. Minerals deposited from hotter fluids (e.g., chalcopyrite) are located in the interior of the chimneys and are surrounded by an external zone of minerals deposited by cooler fluids (e.g., sulfates, sphalerite). Four chimneys types are identified at Brothers volcano based on the relative proportions of chalcopyrite and sulfate layers, and the presence or absence of anhydrite. Two are Cu-rich, i.e., chalcopyrite-rich and chalcopyrite-bornite-rich chimneys, and two are Zn-rich, i.e., sphalerite-rich and sphalerite-chalcopyrite-rich. Barite and anhydrite are common to both Cu-rich chimney types whereas Zn-rich chimneys contain barite only. The main mineral phases in all the chimneys are anhydrite, barite, chalcopyrite, pyrite/marcasite, and sphalerite. Trace minerals include galena, covellite, tennantite, realgar, chalcocite, bornite, hematite, goethite, Pb-As sulfosalts, and Bi- or Au-tellurides. The vast majority of tellurides are vent site. These tellurides are the first gold-bearing phase to be identified in these chimneys, and the Bi-Au association suggests that gold-enrichment up to 91 ppm is due to scavenging by liquid bismuth. To better understand the mineral associations and zonation of these and other trace elements within the chimney walls, we have undertaken element mapping on the four different chimneys types with both X-Ray fluorescence microscopy using synchrotron

  9. Inland stress accumulation in the Southwest Japan arc due to interseismic coupling along the Nankai trough and slab rollback under the Ryukyu trench

    Science.gov (United States)

    Hashima, Akinori; Sato, Hiroshi; Ishiyama, Tatsuya

    2017-04-01

    In the last 20 years, Southwest (SW) Japan has experienced M7 inland earthquakes, such as the 2016 Mw 7.0 Kumamoto earthquake. Korean Peninsula, which is regarded as a stable region, also suffered by the largest earthquake (Mw5.4) ever observed in 2016. The historical earthquake catalog based on paleographical studies implies that M7-class inland earthquakes were activated from 50 years before interplate earthquakes beneath the Nankai Trough, which repeatedly occurred with the interval of 100-200 years. Considering that 70 years has passed since the last interplate ruptures in 1944 and 1946, the recent M7 inland earthquakes appear related with stress accumulation before an interplate earthquake. We attempt to reveal this relation between the inland activity and the interplate earthquakes using a 3-D finite element model (FEM) including the viscoelastic feature in the mantle. Our FEM considers a region of 3700 km x 4600 km x 700 km, incorporating the Pacific and the Philippine sea slabs by interpolating models for the Northeast (NE) and SW Japan arcs, as well as the Ryukyu, Kuril and Izu-Bonin arcs. In particular, the complex geometry of the Philippine Sea slab with the large bend due to the subduciton of the Kyushu-Palau ridge is crucial to creat the stress field in SW Japan. The model region is divided into about 1000,000 tetrahedral elements with dimension ranging from 5-100 km. Using a distribution of interplate coupling on the plate interface from previous studies, we calculated velocity field and stress accumulation rate. Calculated velocity field and stress accumulation pattern well reproduced the observed velocity field and the mechanism of the recent inland earthquakes, respectively, in the middle region of the SW Japan. However, these results cannot explain the velocity and stress fields in the southern part of the Kyushu island, which is affected by the slab rollback occurring in the Ryukyu trench. We calculate the effect of slab rollback by assigning

  10. Volatile constraints on the magma supply, dynamics and plumbing system of a top-ranking basaltic gas emitter: Ambrym volcano, Vanuatu Arc

    Science.gov (United States)

    Allard, Patrick

    2016-04-01

    P. Allard1,2, A. Aiuppa3,4, P. Bani5, N. Métrich1,6, A. Bertagnini6, M. Burton7, P-J. Gauthier5, F. Parello3, H. Shinohara8, G. Sawyer9, E. Bagnato3, E. Garaebiti10 1IPGP, UMR7154 CNRS, Paris France; 2INGV, Sezione di Catania, Italy; 3DiSTEM, Palermo University, Italy; 4INGV, Sezione di Palermo, Italy; 5LMV-OPGC, Clermont-Ferrand, France; 6INGV, Sezione di Pisa, Italy; 7SEAES, University of Manchester, UK; 8Geological Survey of Japan, Tsukuba, Japan; 9Department of Geography, University of Cambridge, UK; 10GEOHAZARD, Port Vila, Vanuatu. Ambrym basaltic volcano (central Vanuatu arc) is one of the most active volcanic systems of the Southwest Pacific region, where recurrent lava lake activity sustains voluminous gas release from two main cones, Benbow and Marum, in a 12 km-wide summit caldera. In 2007-2008 we could perform the first detailed investigations of gas emissions from this very active but remote and hardly accessible intra-oceanic arc volcano, combining ground-based and airborne measurements and using both in situ and remote sensing tools. The degassing budget of major, minor, trace and radioactive volatile species reveals that Ambrym ranks amongst the three most powerful persistent emitters of magmatic volatiles at global scale [1]. Coupled with the analysis of dissolved volatiles in the feeding basalt (olivine-hosted melt inclusions), the gas emission rates imply a very high average magma supply/degassing rate of 25 m3/s - 6 times the rate at Mount Etna - from a reservoir emplaced at about 4 km depth beneath the caldera floor. The chemical composition of emitted volcanic gases is compatible with dominant closed-system ascent and degassing of the basalt, followed by open degassing at shallow depth as water exsolution becomes extensive. The modest time-averaged extrusion rate, estimated from caldera infilling over the past 2 ka, requires convective downward recycling of the denser degassed magma in conduits with diameter of order 10 m. High resolution OP

  11. Petrogenesis of meta-volcanic rocks from the Maimón Formation (Dominican Republic): Geochemical record of the nascent Greater Antilles paleo-arc

    Science.gov (United States)

    Torró, Lisard; Proenza, Joaquín A.; Marchesi, Claudio; Garcia-Casco, Antonio; Lewis, John F.

    2017-05-01

    Metamorphosed basalts, basaltic andesites, andesites and plagiorhyolites of the Early Cretaceous, probably pre-Albian, Maimón Formation, located in the Cordillera Central of the Dominican Republic, are some of the earliest products of the Greater Antilles arc magmatism. In this article, new whole-rock element and Nd-Pb radiogenic isotope data are used to give new insights into the petrogenesis of the Maimón meta-volcanic rocks and constrain the early evolution of the Greater Antilles paleo-arc system. Three different groups of mafic volcanic rocks are recognized on the basis of their immobile element contents. Group 1 comprises basalts with compositions similar to low-Ti island arc tholeiites (IAT), which are depleted in light rare earth elements (LREE) and resemble the forearc basalts (FAB) and transitional FAB-boninitic basalts of the Izu-Bonin-Mariana forearc. Group 2 rocks have boninite-like compositions relatively rich in Cr and poor in TiO2. Group 3 comprises low-Ti island arc tholeiitic basalts with near-flat chondrite-normalized REE patterns. Plagiorhyolites and rare andesites present near-flat to subtly LREE-depleted chondrite normalized patterns typical of tholeiitic affinity. Nd and Pb isotopic ratios of plagiorhyolites, which are similar to those of Groups 1 and 3 basalts, support that these felsic lavas formed by anatexis of the arc lower crust. Geochemical modelling points that the parental basic magmas of the Maimón meta-volcanic rocks formed by hydrous melting of a heterogeneous spinel-facies mantle source, similar to depleted MORB mantle (DMM) or depleted DMM (D-DMM), fluxed by fluids from subducted oceanic crust and Atlantic Cretaceous pelagic sediments. Variations of subduction-sensitive element concentrations and ratios from Group 1 to the younger rocks of Groups 2 and 3 generally match the geochemical progression from FAB-like to boninite and IAT lavas described in subduction-initiation ophiolites. Group 1 basalts likely formed at magmatic

  12. CRED 10m Gridded bathymetry of the submarine volcanos between Olosega and Ta'u Islands of the Manu'a Island group, American Samoa (Arc ASCII Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry of the submarine volcanos between Olosega and Ta'u Islands of the Manu'a Island group, American Samoa This survey provides almost complete...

  13. Abundances of platinum group elements in native sulfur condensates from the Niuatahi-Motutahi submarine volcano, Tonga rear arc: Implications for PGE mineralization in porphyry deposits

    Science.gov (United States)

    Park, Jung-Woo; Campbell, Ian H.; Kim, Jonguk

    2016-02-01

    Some porphyry Cu-Au deposits, which are enriched in Pd, are potentially an economic source of Pd. Magmatic volatile phases are thought to transport the platinum group elements (PGEs) from the porphyry source magma to the point of deposition. However, the compatibilities of the PGEs in magmatic volatile phases are poorly constrained. We report PGE and Re contents in native sulfur condensates and associated altered dacites from the Niuatahi-Motutahi submarine volcano, Tonga rear arc, in order to determine the compatibility of PGEs and Re in magmatic volatile phases, and their mobility during secondary hydrothermal alteration. The native sulfur we analyzed is the condensate of a magmatic volatile phase exsolved from the Niuatahi-Motutahi magma. The PGEs are moderately enriched in the sulfur condensates in comparison to the associated fresh dacite, with enrichment factors of 11-285, whereas Au, Cu and Re are strongly enriched with enrichment factors of ∼20,000, ∼5000 and ∼800 respectively. Although the PGEs are moderately compatible into magmatic volatile phases, their compatibility is significantly lower than that of Au, Cu and Re. Furthermore, the compatibility of PGEs decrease in the order: Ru > Pt > Ir > Pd. This trend is also observed in condensates and sublimates from other localities. PGE mineralization in porphyry Cu-Au deposits is characterized by substantially higher Pd/Pt (∼7-60) and Pd/Ir (∼100-10,500) than typical orthomagmatic sulfide deposits (e.g. Pd/Pt ∼0.6 and Pd/Ir ∼20 for the Bushveld). It has previously been suggested that the high mobility of Pd, relative to the other PGEs, may account for the preferential enrichment of Pd in porphyry Cu-Au deposits. However, the low compatibility of Pd in the volatile phase relative to the other PGEs, shown in this study, invalidates this explanation. We suggest that the PGE geochemistry of Pd-rich Cu-Au deposits is principally derived from the PGE characteristics of the magma from which the ore

  14. Volcano-hazard zonation for San Vicente volcano, El Salvador

    Science.gov (United States)

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Howell, M.M.

    2001-01-01

    San Vicente volcano, also known as Chichontepec, is one of many volcanoes along the volcanic arc in El Salvador. This composite volcano, located about 50 kilometers east of the capital city San Salvador, has a volume of about 130 cubic kilometers, rises to an altitude of about 2180 meters, and towers above major communities such as San Vicente, Tepetitan, Guadalupe, Zacatecoluca, and Tecoluca. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and major transportation routes are located near the lowermost southern and eastern flanks of the volcano. The population density and proximity around San Vicente volcano, as well as the proximity of major transportation routes, increase the risk that even small landslides or eruptions, likely to occur again, can have serious societal consequences. The eruptive history of San Vicente volcano is not well known, and there is no definitive record of historical eruptive activity. The last significant eruption occurred more than 1700 years ago, and perhaps long before permanent human habitation of the area. Nevertheless, this volcano has a very long history of repeated, and sometimes violent, eruptions, and at least once a large section of the volcano collapsed in a massive landslide. The oldest rocks associated with a volcanic center at San Vicente are more than 2 million years old. The volcano is composed of remnants of multiple eruptive centers that have migrated roughly eastward with time. Future eruptions of this volcano will pose substantial risk to surrounding communities.

  15. Tectonostratigraphy and depositional history of the Neoproterozoic volcano-sedimentary sequences in Kid area, southeastern Sinai, Egypt: Implications for intra-arc to foreland basin in the northern Arabian-Nubian Shield

    Science.gov (United States)

    Khalaf, E. A.; Obeid, M. A.

    2013-09-01

    This paper presents a stratigraphic and sedimentary study of Neoproterozoic successions of the South Sinai, at the northernmost segment of the Arabian-Nubian Shield (ANS), including the Kid complex. This complex is composed predominantly of thick volcano-sedimentary successions representing different depositional and tectonic environments, followed by four deformational phases including folding and brittle faults (D1-D4). The whole Kid area is divisible from north to south into the lower, middle, and upper rock sequences. The higher metamorphic grade and extensive deformational styles of the lower sequence distinguishes them from the middle and upper sequences. Principal lithofacies in the lower sequence include thrust-imbricated tectonic slice of metasediments and metavolcanics, whereas the middle and upper sequences are made up of clastic sediments, intermediate-felsic lavas, volcaniclastics, and dike swarms. Two distinct Paleo- depositional environments are observed: deep-marine and alluvial fan regime. The former occurred mainly during the lower sequence, whereas the latter developed during the other two sequences. These alternations of depositional conditions in the volcano-sedimentary deposits suggest that the Kid area may have formed under a transitional climate regime fluctuating gradually from warm and dry to warm and humid conditions. Geochemical and petrographical data, in conjunction with field relationships, suggest that the investigated volcano-sedimentary rocks were built from detritus derived from a wide range of sources, ranging from Paleoproterozoic to Neoproterozoic continental crust. Deposition within the ancient Kid basin reflects a complete basin cycle from rifting and passive margin development, to intra-arc and foreland basin development and, finally, basin closure. The early phase of basin evolution is similar to various basins in the Taupo volcanics, whereas the later phases are similar to the Cordilleran-type foreland basin. The

  16. Volcano Preparedness

    Science.gov (United States)

    ... You might feel better to learn that an ‘active’ volcano is one that has erupted in the past ... miles away. If you live near a known volcano, active or dormant, following these tips will help you ...

  17. Characteristics, extent and origin of hydrothermal alteration at Mount Rainier Volcano, Cascades Arc, USA: Implications for debris-flow hazards and mineral deposits

    Science.gov (United States)

    John, D.A.; Sisson, T.W.; Breit, G.N.; Rye, R.O.; Vallance, J.W.

    2008-01-01

    Hydrothermal alteration at Mount Rainier waxed and waned over the 500,000-year episodic growth of the edifice. Hydrothermal minerals and their stable-isotope compositions in samples collected from outcrop and as clasts from Holocene debris-flow deposits identify three distinct hypogene argillic/advanced argillic hydrothermal environments: magmatic-hydrothermal, steam-heated, and magmatic steam (fumarolic), with minor superimposed supergene alteration. The 3.8??km3 Osceola Mudflow (5600??y BP) and coeval phreatomagmatic F tephra contain the highest temperature and most deeply formed hydrothermal minerals. Relatively deeply formed magmatic-hydrothermal alteration minerals and associations in clasts include quartz (residual silica), quartz-alunite, quartz-topaz, quartz-pyrophyllite, quartz-dickite/kaolinite, and quartz-illite (all with pyrite). Clasts of smectite-pyrite and steam-heated opal-alunite-kaolinite are also common in the Osceola Mudflow. In contrast, the Paradise lahar, formed by collapse of the summit or near-summit of the edifice at about the same time, contains only smectite-pyrite and near-surface steam-heated and fumarolic alteration minerals. Younger debris-flow deposits on the west side of the volcano (Round Pass and distal Electron Mudflows) contain only low-temperature smectite-pyrite assemblages, whereas the proximal Electron Mudflow and a temperatures. The pre-Osceola Mudflow alteration geometry is inferred to have consisted of a narrow feeder zone of intense magmatic-hydrothermal alteration limited to near the conduit of the volcano, which graded outward to more widely distributed, but weak, smectite-pyrite alteration within 1??km of the edifice axis, developed chiefly in porous breccias. The edifice was capped by a steam-heated alteration zone, most of which resulted from condensation of fumarolic vapor and oxidation of H2S in the unsaturated zone above the water table. Weakly developed smectite-pyrite alteration extended into the west and east

  18. Characteristics, extent and origin of hydrothermal alteration at Mount Rainier Volcano, Cascades Arc, USA: Implications for debris-flow hazards and mineral deposits

    Science.gov (United States)

    John, David A.; Sisson, Thomas W.; Breit, George N.; Rye, Robert O.; Vallance, James W.

    2008-08-01

    Hydrothermal alteration at Mount Rainier waxed and waned over the 500,000-year episodic growth of the edifice. Hydrothermal minerals and their stable-isotope compositions in samples collected from outcrop and as clasts from Holocene debris-flow deposits identify three distinct hypogene argillic/advanced argillic hydrothermal environments: magmatic-hydrothermal, steam-heated, and magmatic steam (fumarolic), with minor superimposed supergene alteration. The 3.8 km 3 Osceola Mudflow (5600 y BP) and coeval phreatomagmatic F tephra contain the highest temperature and most deeply formed hydrothermal minerals. Relatively deeply formed magmatic-hydrothermal alteration minerals and associations in clasts include quartz (residual silica), quartz-alunite, quartz-topaz, quartz-pyrophyllite, quartz-dickite/kaolinite, and quartz-illite (all with pyrite). Clasts of smectite-pyrite and steam-heated opal-alunite-kaolinite are also common in the Osceola Mudflow. In contrast, the Paradise lahar, formed by collapse of the summit or near-summit of the edifice at about the same time, contains only smectite-pyrite and near-surface steam-heated and fumarolic alteration minerals. Younger debris-flow deposits on the west side of the volcano (Round Pass and distal Electron Mudflows) contain only low-temperature smectite-pyrite assemblages, whereas the proximal Electron Mudflow and a < 100 y BP rock avalanche on Tahoma Glacier also contain magmatic-hydrothermal alteration minerals that are exposed in the avalanche headwall of Sunset Amphitheater, reflecting progressive incision into deeper near-conduit alteration products that formed at higher temperatures. The pre-Osceola Mudflow alteration geometry is inferred to have consisted of a narrow feeder zone of intense magmatic-hydrothermal alteration limited to near the conduit of the volcano, which graded outward to more widely distributed, but weak, smectite-pyrite alteration within 1 km of the edifice axis, developed chiefly in porous breccias

  19. Open-system behaviour of magmatic fluid phase and transport of copper in arc magmas at Krakatau and Batur volcanoes, Indonesia

    Science.gov (United States)

    Agangi, Andrea; Reddy, Steven M.

    2016-11-01

    The Sunda arc of Indonesia is an excellent example of how volcanic processes at convergent plate margins affect the distribution of metals and control the distribution of ore deposits. In this paper, we report microtextural observations and microanalytical data (SEM-EDS and LA-ICP-MS) of silicate and sulfide melt inclusions from fresh samples of volcanic rocks from the 2008 eruption of Mt. Krakatau and 1963 eruption of Mt. Batur, Sunda arc, Indonesia that bear implications on the concentration and transport of Cu and other chalcophile elements in mafic-intermediate magmas in arc settings. These multi-phase inclusions contain glass, amphibole and plagioclase, together with co-trapped apatite, magnetite, sulfides and lobed, drop-like Fe-oxide. We observed two stages of sulfide formation: 1) early-formed sulfide globules (pyrrhotite and intermediate solid solution), which derived from an immiscible sulfide melt and only occur as inclusions in phenocrysts; and 2) late-formed, irregular Cu-rich sulfides (intermediate solid solution to bornite), which were deposited in the presence of an aqueous fluid, and are contained as fluid phase precipitates in vapour bubbles of melt inclusions and in vesicles, as well as finely dispersed grains in the groundmass. Microtextural observations and X-ray elemental maps show that interaction between sulfide globules and aqueous fluid resulted in partial oxidation and transfer of Cu between the fluid and the sulfide phase. A compilation of whole-rock analyses from the Sunda arc indicates that Cu reaches 250-300 ppm in mafic samples (SiO2 ≤ 52 wt.%), and then suddenly drops with progressive fractionation to MS analyses of whole multi-phase melt inclusions hosted in olivine, pyroxene and plagioclase indicate variable Cu and S contents (Cu up to 6000 ppm), which do not correlate with fractionation indicators (e.g. SiO2, MgO, Rb), consistent with co-trapping of Cusbnd S phases with silicate melt. The highest Cu concentrations, Cu/S and

  20. Mount Rainier active cascade volcano

    Science.gov (United States)

    1994-01-01

    Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

  1. Mount Rainier active cascade volcano

    Science.gov (United States)

    Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

  2. Vanishing Volcano

    Institute of Scientific and Technical Information of China (English)

    杨树仁

    1995-01-01

    Mauna Loa, the world’s largest active volcano,is sinking into the Pacific Ocean——and it’s taking the main island of Hawaii with it! The problem:The mighty volcano has gained too much weight, says Peter Lipman of the U. S. Geological Survey.

  3. Geochemical study of Nea-Kameni hyalodacites (Santorini volcano, Aegean island arc). Inferences concerning the origin and effects of solfataras and magmatic evolution

    Energy Technology Data Exchange (ETDEWEB)

    Briqueu, L.; Lancelot, J.R.

    1984-03-01

    Since the Santorini Volcano collapsed, volcanic activity has been located at the center of the flooded caldera. Over the past 300 years, five lava flows have formed one of the central islets (Nea-Kameni). Since 1951, when the last eruption occurred, a permanent fumarolic activity has remained. The authors present chemical analyses (major elements, trace-elements and Sr isotopic ratios) of ten samples from the five hyalodacitic lava flows, showing different states of alteration, from a completely fresh lava up to one bearing native sulfur and other sublimates. Only the macroscopic aspect of these hyalodacites is affected by fumarolic activity. The elements that are mobile as a result of hydrothermal processes, such as the alkaline (K, Rb) or the chalcophile elements (Zn, Pb), show great homogeneity; the same can be said for the Sr isotopic compositions which range from 0.7046 to 0.7049. None of the analyzed samples has an Sr isotopic composition as high as those reported by Puchelt and Hoefs (l971) for rock samples collected in the same lava flows. If the authors take into account the marine surroundings of Nea-Kameni islet, these observations put severe restraints on the different hypotheses regarding the origin of the halogens (seawater or meteoric water). The contamination processes of these dacitic lavas are clearly less important than assumed by other authors according to previous Sr isotopic data. Finally, the homogeneity of the elements with low partition coefficients is sufficient to show that the magma has not undergone any perceptible evolution during the last 300 years. 48 references, 3 figures.

  4. Contrasting records from mantle to surface of Holocene lavas of two nearby arc volcanic complexes: Caburgua-Huelemolle Small Eruptive Centers and Villarrica Volcano, Southern Chile

    Science.gov (United States)

    Morgado, E.; Parada, M. A.; Contreras, C.; Castruccio, A.; Gutiérrez, F.; McGee, L. E.

    2015-11-01

    Most of the small eruptive centers of the Andean Southern Volcanic Zone are built over the Liquiñe-Ofqui Fault Zone (LOFZ), a NS strike-slip (> 1000 km length) major structure, and close to large stratovolcanoes. This contribution compares textural features, compositional parameters, and pre- and syn-eruptive P,T conditions, between basaltic lavas of the Caburgua-Huelemolle Small Eruptive Centers (CHSEC) and the 1971 basaltic andesite lava of the Villarrica Volcano located 10 km south of the CHSEC. Olivines and clinopyroxenes occur as phenocrysts and forming crystal clots of the studied lavas. They do not markedly show compositional differences, except for the more scattered composition of the CHSEC clinopyroxenes. Plagioclase in CHSEC lavas mainly occur as phenocrysts or as microlites in a glass-free matrix. Two groups of plagioclase phenocrysts were identified in the 1971 Villarrica lava based on crystal size, disequilibrium features and zonation patterns. Most of the CHSEC samples exhibit higher LaN/YbN and more scattered Sr-Nd values than 1971 Villarrica lava samples, which are clustered at higher 143Nd/144Nd values. Pre-eruptive temperatures of the CHSEC-type reservoir between 1162 and 1165 ± 6 °C and pressures between 10.8 and 11.4 ± 1.7 kb consistent with a deep-seated reservoir were obtained from olivine-augite phenocrysts. Conversely, olivine-augite phenocrysts of 1971 Villarrica lava samples record pre-eruptive conditions of two stages or pauses in the magma ascent to the surface: 1208 ± 6 °C and 6.3-8.1 kb ± 1.7 kb (deep-seated reservoir) and 1164-1175 ± 6 °C and ≤ 1.4 kb (shallow reservoir). At shallow reservoir conditions a magma heating prior to the 1971 Villarrica eruption is recorded in plagioclase phenocrysts. Syn-eruptive temperatures of 1081-1133 ± 6 °C and 1123-1148 ± 6 °C were obtained in CHSEC and 1971 Villarrica lava, respectively using equilibrium olivine-augite microlite pairs. The LOFZ could facilitate a direct transport to

  5. Lahar-hazard zonation for San Miguel volcano, El Salvador

    Science.gov (United States)

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Chesner, C.A.; Howell, M.M.

    2001-01-01

    San Miguel volcano, also known as Chaparrastique, is one of many volcanoes along the volcanic arc in El Salvador. The volcano, located in the eastern part of the country, rises to an altitude of about 2130 meters and towers above the communities of San Miguel, El Transito, San Rafael Oriente, and San Jorge. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and the PanAmerican and coastal highways cross the lowermost northern and southern flanks of the volcano. The population density around San Miguel volcano coupled with the proximity of major transportation routes increases the risk that even small volcano-related events, like landslides or eruptions, may have significant impact on people and infrastructure. San Miguel volcano is one of the most active volcanoes in El Salvador; it has erupted at least 29 times since 1699. Historical eruptions of the volcano consisted mainly of relatively quiescent emplacement of lava flows or minor explosions that generated modest tephra falls (erupted fragments of microscopic ash to meter sized blocks that are dispersed into the atmosphere and fall to the ground). Little is known, however, about prehistoric eruptions of the volcano. Chemical analyses of prehistoric lava flows and thin tephra falls from San Miguel volcano indicate that the volcano is composed dominantly of basalt (rock having silica content

  6. Dante's volcano

    Science.gov (United States)

    1994-09-01

    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  7. "Mediterranean volcanoes vs. chain volcanoes in the Carpathians"

    Science.gov (United States)

    Chivarean, Radu

    2017-04-01

    Volcanoes have always represent an attractive subject for students. Europe has a small number of volcanoes and Romania has none active ones. The curricula is poor in the study of volcanoes. We want to make a parallel between the Mediterranean active volcanoes and the old extinct ones in the Oriental Carpathians. We made an comparison of the two regions in what concerns their genesis, space and time distribution, the specific relief and the impact in the landscape, consequences of their activities, etc… The most of the Mediterranean volcanoes are in Italy, in the peninsula in Napoli's area - Vezuviu, Campi Flegrei, Puzzoli, volcanic islands in Tirenian Sea - Ischia, Aeolian Islands, Sicily - Etna and Pantelleria Island. Santorini is located in Aegean Sea - Greece. Between Sicily and Tunisia there are 13 underwater volcanoes. The island called Vulcano, it has an active volcano, and it is the origin of the word. Every volcano in the world is named after this island, just north of Sicily. Vulcano is the southernmost of the 7 main Aeolian Islands, all volcanic in origin, which together form a small island arc. The cause of the volcanoes appears to be a combination of an old subduction event and tectonic fault lines. They can be considered as the origin of the science of volcanology. The volcanism of the Carpathian region is part of the extensive volcanic activity in the Mediterranean and surrounding regions. The Carpathian Neogene/Quaternary volcanic arc is naturally subdivided into six geographically distinct segments: Oas, Gutai, Tibles, Calimani, Gurghiu and Harghita. It is located roughly between the Carpathian thrust-and-fold arc to the east and the Transylvanian Basin to the west. It formed as a result of the convergence between two plate fragments, the Transylvanian micro-plate and the Eurasian plate. Volcanic edifices are typical medium-sized andesitic composite volcanoes, some of them attaining the caldera stage, complicated by submittal or peripheral domes

  8. H_2O and CO_2 in magmas from the Mariana arc and back arc systems

    OpenAIRE

    Newman, Sally; Stolper, Edward; STERN, Robert

    2000-01-01

    We examined the H2O and CO2 contents of glasses from lavas and xenoliths from the Mariana arc system, an intraoceanic convergent margin in the western Pacific, which contains an active volcanic arc, an actively spreading back arc basin, and active behind-the-arc cross-chain volcanoes. Samples include (1) glass rims from Mariana arc, Mariana trough, and cross-chain submarine lavas; (2) glass inclusions in arc and trough phenocrysts; and (3) glass inclusions from a gabbro + anorthosite xenolith...

  9. What Are Volcano Hazards?

    Science.gov (United States)

    ... Sheet 002-97 Revised March 2008 What Are Volcano Hazards? Volcanoes give rise to numerous geologic and ... as far as 15 miles from the volcano. Volcano Landslides A landslide or debris avalanche is a ...

  10. Shrimp U-Pb age and Sr-Nd isotopes of the Morro do Baú mafic intrusion: implications for the evolution of the Arenópolis volcano-sedimentary sequence, Goiás Magmatic Arc

    Directory of Open Access Journals (Sweden)

    Márcio M. Pimentel

    2003-09-01

    Full Text Available The Arenópolis volcano-sedimentary sequence is located in the southern part of the Goiás Magmatic Arc and includes a ca. 900 Ma calc-alkaline arc sequence made of volcanic rocks ranging in composition from basalts to rhyolites, metamorphosed under greenschist to amphibolite facies. Small calc-alkaline gabbro to granite sub-volcanic bodies are also recognized. The Morro do Baú intrusion is the largest of these intrusions, and is made of gabbros and diorites. Zircon grains separated from one gabbro sample and analyzed by SHRIMP I yielded the mean 206Pb/238U age of 890 +/- 8 Ma, indicating that the intrusion is roughly coeval or only slightly younger than the Arenópolis volcanics. Contrary to the metavolcanics, which are juvenile, the Nd isotopic composition of the Morro do Baú gabbro indicates strong contamination with archean sialic material (T DM of 2.8 Ga and EpsilonNd(T of -9.7, represented in the area by an allochthonous sliver of archean/paleoproterozoic gneisses (Ribeirão gneiss which are the country-rocks for the gabbro/dioritic intrusion. The emplacement age of ca. 890 Ma represents a minimum age limit for the tectonic accretion of the gneiss sliver to the younger rocks of the Arenópolis sequence. The data suggest that this happened early in the evolution of the Goiás Magmatic Arc, between ca. 920 and 890 Ma.A seqüência vulcano-sedimentar de Arenópolis, localizada na porção sul do Arco Magmárico de Goiás, inclui uma associação de rochas vulcânicas calci-alcalinas de arco com ca. 900 Ma de idade, constituída de rochas variando em composição entre basaltos e riolitos, metamorfisados em fácies xisto verde a anfibolito. Pequenos corpos sub-vulcânicos de gabros a granitos calci-alcalinos são também reconhecidos. A intrusão do Morro do Baú é a maior dessas intrusões, compreendendo dioritos e gabros. Cristais de zircão separados de uma amostra de gabro e analisados no SHRIMP I indicaram a idade 206Pb/238U média de

  11. Santorini Volcano

    Science.gov (United States)

    Druitt, T.H.; Edwards, L.; Mellors, R.M.; Pyle, D.M.; Sparks, R.S.J.; Lanphere, M.; Davies, M.; Barreirio, B.

    1999-01-01

    Santorini is one of the most spectacular caldera volcanoes in the world. It has been the focus of significant scientific and scholastic interest because of the great Bronze Age explosive eruption that buried the Minoan town of Akrotiri. Santorini is still active. It has been dormant since 1950, but there have been several substantial historic eruptions. Because of this potential risk to life, both for the indigenous population and for the large number of tourists who visit it, Santorini has been designated one of five European Laboratory Volcanoes by the European Commission. Santorini has long fascinated geologists, with some important early work on volcanoes being conducted there. Since 1980, research groups at Cambridge University, and later at the University of Bristol and Blaise Pascal University in Clermont-Ferrand, have collected a large amount of data on the stratigraphy, geochemistry, geochronology and petrology of the volcanics. The volcanic field has been remapped at a scale of 1:10 000. A remarkable picture of cyclic volcanic activity and magmatic evolution has emerged from this work. Much of this work has remained unpublished until now. This Memoir synthesizes for the first time all the data from the Cambridge/Bristol/Clermont groups, and integrates published data from other research groups. It provides the latest interpretation of the tectonic and magmatic evolution of Santorini. It is accompanied by the new 1:10 000 full-colour geological map of the island.

  12. Geologic map of Medicine Lake volcano, northern California

    Science.gov (United States)

    Donnelly-Nolan, Julie M.

    2011-01-01

    Medicine Lake volcano forms a broad, seemingly nondescript highland, as viewed from any angle on the ground. Seen from an airplane, however, treeless lava flows are scattered across the surface of this potentially active volcanic edifice. Lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, cover more than 2,000 km2 east of the main axis of the Cascade Range in northern California. Across the Cascade Range axis to the west-southwest is Mount Shasta, its towering volcanic neighbor, whose stratocone shape contrasts with the broad shield shape of Medicine Lake volcano. Hidden in the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of Medicine Lake volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 8,000 ft (2,440 m). The maximum extent of lavas from this half-million-year-old volcano is about 80 km north-south by 45 km east-west. In postglacial time, 17 eruptions have added approximately 7.5 km3 to its total estimated volume of 600 km3, and it is considered to be the largest by volume among volcanoes of the Cascades arc. The volcano has erupted nine times in the past 5,200 years, a rate more frequent than has been documented at all other Cascades arc volcanoes except Mount St. Helens.

  13. Upper mantle structure of the Pacific and Philippine Sea plates revealed by seafloor seismic array observations

    Science.gov (United States)

    Isse, Takehi; Shiobara, Hajime; Suetsugu, Daisuke; Sugioka, Hiroko; Ito, Aki

    2016-04-01

    Seismic tomography studies have revealed the structure and dynamics of Earth's interior since the 1980s. However, the spatial resolution of the oceanic region is not good enough caused by sparse distribution of the seismic stations. The observations with broadband ocean-bottom seismographs (BBOBSs) since the 2000s enabled us to obtain seismic tomography models with higher spatial resolution. Our Japanese BBOBS group deployed more than 100 BBOBSs in the Pacific Ocean and obtained a high-resolution (300-500 km) three-dimensional shear wave velocity structure in the upper mantle beneath northwestern and south Pacific Ocean by using surface wave tomography technique. In the northwestern Pacific Ocean, where the Pacific plate subducts beneath the Philippine Sea plate, we found that the shear wave structure in the Philippine sea plate is well correlated with the seafloor age in the upper 120 km, three separate slow anomalies in the mantle wedge at depth shallower than 100 km beneath the Izu-Bonin-Mariana arc, which have a close relationship with the three groups of frontal and rear arc volcanoes having distinct Sr, Nd, and Pb isotope ratios, and that the Philippine Sea plate, which is a single plate, shows very large lateral variations in azimuthal and radial anisotropies compared with the Pacific plate. In the South Pacific Ocean, where midplate hotspots are concentrated, we found that the localized slow anomalies are found near hotspots in the upper mantle, estimated thickness of the lithosphere is about 90 km in average and is thinned by ~20 km in the vicinity of hotspots, which may represent thermal erosion due to mantle plumes.

  14. Spatial Analysis of Volcanoes at Convergent Margins on Earth

    Science.gov (United States)

    Roberts, R. V.; de Silva, S. L.; Meyers, M.

    2009-12-01

    One of the most obvious patterns seen on the surface of the terrestrial planets is the distribution of volcanoes. On Earth, most volcanoes are distributed in volcanic “arcs” that signal the primary relationship between subduction and volcanism. The distributions of major composite volcanoes in volcanic arcs are thought to reflect the primary magmatic pathways from source to surface. Understanding these patterns therefore may allow fundamental controls on the organization of magmatic plumbing in arcs to be identified. Using a control dataset from the Central Volcanic Zone of the Andes (de Silva and Francis, 1991; Springer-Verlag) we have examined several popular approaches to spatial analysis of volcano distribution in several volcanic arcs (Aleutian, Alaskan, Central American, Northern and Southern volcanic zones of the Andes). Restricting our analysis to major volcanoes of similar age, we find that while clustering is visually obvious in many volcanic arcs it has been rejected as a primary signal by previous analytical efforts (e.g. Bremont d'Ars et al (1995)). We show that the fractal box or grid counting method used previously does not detect clusters and statistical methods such as the Kernel Density Analysis or Single-link Cluster Analysis are better suited for cluster detection. Utilizing both ARC GIS and Matlab to conduct density analyses in combination with statistical software SPlus for the appropriate hypothesis testing methods such as the pooled variance t-test, the Welch Modified two sample t-test, and the f-test we find evidence of clustering in four volcanic arcs whose crustal thickness is greater than or equal to 40 kilometres (Central America, CVZ, NVZ, SVZ). We suggest that clustering is the surface manifestation of upper crustal diffusion of primary magmatic pathways, which in other places manifests as a single volcano. The inter-cluster distance is a thus reflection of primary magmatic pathways and thus equivalent to inter-volcano distance

  15. Copahue volcano and its regional magmatic setting

    Science.gov (United States)

    Varekamp, J C; Zareski, J E; Camfield, L M; Todd, Erin

    2016-01-01

    Copahue volcano (Province of Neuquen, Argentina) has produced lavas and strombolian deposits over several 100,000s of years, building a rounded volcano with a 3 km elevation. The products are mainly basaltic andesites, with the 2000–2012 eruptive products the most mafic. The geochemistry of Copahue products is compared with those of the main Andes arc (Llaima, Callaqui, Tolhuaca), the older Caviahue volcano directly east of Copahue, and the back arc volcanics of the Loncopue graben. The Caviahue rocks resemble the main Andes arc suite, whereas the Copahue rocks are characterized by lower Fe and Ti contents and higher incompatible element concentrations. The rocks have negative Nb-Ta anomalies, modest enrichments in radiogenic Sr and Pb isotope ratios and slightly depleted Nd isotope ratios. The combined trace element and isotopic data indicate that Copahue magmas formed in a relatively dry mantle environment, with melting of a subducted sediment residue. The back arc basalts show a wide variation in isotopic composition, have similar water contents as the Copahue magmas and show evidence for a subducted sedimentary component in their source regions. The low 206Pb/204Pb of some backarc lava flows suggests the presence of a second endmember with an EM1 flavor in its source. The overall magma genesis is explained within the context of a subducted slab with sediment that gradually looses water, water-mobile elements, and then switches to sediment melt extracts deeper down in the subduction zone. With the change in element extraction mechanism with depth comes a depletion and fractionation of the subducted complex that is reflected in the isotope and trace element signatures of the products from the main arc to Copahue to the back arc basalts.

  16. Warm storage for arc magmas.

    Science.gov (United States)

    Barboni, Mélanie; Boehnke, Patrick; Schmitt, Axel K; Harrison, T Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2016-12-06

    Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the "cold storage" model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.

  17. Cathodic arcs

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2003-10-29

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas standout due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. Industrial processes often use cathodic arc plasma in reactive mode. In contrast, the science of arcs has focused on the case of vacuum arcs. Future research directions include closing the knowledge gap for reactive mode, large area coating, linear sources and filters, metal plasma immersion process, with application in high-tech and biomedical fields.

  18. Renewed unrest at Mount Spurr Volcano, Alaska

    Science.gov (United States)

    Power, John A.

    2004-01-01

    The Alaska Volcano Observatory (AVO),a cooperative program of the U.S. Geological Survey, the University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys, has detected unrest at Mount Spurr volcano, located about 125 km west of Anchorage, Alaska, at the northeast end of the Aleutian volcanic arc.This activity consists of increased seismicity melting of the summit ice cap, and substantial rates of C02 and H2S emission.The current unrest is centered beneath the volcano's 3374-m-high summit, whose last known eruption was 5000–6000 years ago. Since then, Crater Peak, 2309 m in elevation and 4 km to the south, has been the active vent. Recent eruptions occurred in 1953 and 1992.

  19. Cathodic arcs

    OpenAIRE

    Anders, Andre

    2003-01-01

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas stand out due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bia...

  20. Field guides for excursions to the Nevado del Ruiz Volcano and to the Romeral Fault System (Colombia, in the frame of the Neotectonics of arc-continent collision concepts

    Directory of Open Access Journals (Sweden)

    Borrero Carlos

    2011-06-01

    Full Text Available Central Cordillera of Colombia near to the Nevado del Ruiz volcano, is a seismically active area above the subducting slab of the Nazca plate and deforming upper crust of the Andes. Buildings in the region require strengthening against the effects of both types of hazards: earthquakes and volcanoes. During these trips, we will discuss the 13
    November, 1985, Nevado del Ruiz Volcano eruption that destroyed the Armero city with about 22,000 deceases, as well the 25 January, 1999, Armenia earthquake (M 6.2 that killed about 2000 people and injured 4000 largely as the result of older, poorly 3 constructed buildings. The economic impact of the quake on the region was significant with about 8000 coffee farms either completely or partially destroyed and over 13,000 structures either partially damaged or completely destroyed.
    Both phenomena are associated to a large-transversal structure termed Caldas tear, which is controlling strong motion earthquakes and the Quaternary volcanism of the northern Andes.

  1. Lateral variation of H2O contents in Quaternary Magma of central Northeastern Japan arc

    Science.gov (United States)

    Miyagi, I.; Matsu'ura, T.; Itoh, J.; Morishita, Y.

    2011-12-01

    Water plays a key role in the genesis and eruptive mechanisms of subduction zone volcanoes. We estimated bulk rock water content of both frontal and back arc volcanoes from Northeastern Japan arc in order to understand the lateral variation of magmatic H2O contents in the island arc magma. Our analytical targets are the Adachi volcano located near the volcanic front and the Hijiori volcano located on back arc side. In this study, the bulk magmatic H2O content is estimated by a simple mass balance calculation of the chemistry of bulk rock and melt inclusions in phenocrysts; the melt H2O contents of melt inclusions analyzed by SIMS or EPMA are corrected according to the difference in K2O content between melt inclusions and bulk rock. The bulk magmatic H2O we obtained is 8 wt. % or even more for Adachi and is 2-3 wt. % for Hijiori. Thus, the frontal volcano has higher H2O than the back arc volcano. Although our data are opposed to the previous estimation on the lateral variation of H2O contents in Quaternary volcanoes of Northeastern Japan arc (e.g., Sakuyama, 1979), thermodynamic computations using MELTS (Ghiorso and Sack, 1995) suggest that the amount of bulk magmatic H2O we estimated is consistent with petrographical observations. Our data imply a regional characteristics in the type of eruption that the H2O rich frontal volcanoes will erupt explosively and those H2O poor back arc ones will be effusive, which implication is consistent with actual geological observations that volcanoes located on back arc side of the Northeastern Japan arc generally comprise lava flow (e.g., Iwaki, Kanpu, Chokai, Gassan), in contrast to the frontal ones that produced voluminous tephra (e.g., Osorezan, Towada, Narugo, Adachi). This research project has been conducted under the research contract with Nuclear and Industrial Safety Agency (NISA).

  2. Soft-sediment deformation structures in the Mio-Pliocene Misaki Formation within alternating deep-sea clays and volcanic ashes (Miura Peninsula, Japan)

    Science.gov (United States)

    Mazumder, Rajat; van Loon, A. J. (Tom); Malviya, Vivek P.; Arima, Makoto; Ogawa, Yujuro

    2016-10-01

    The Mio-Pliocene Misaki Formation of the Miura Group (Miura Peninsula, Japan) shows an extremely wide variety of soft-sediment deformation structures. The most common deformation structures are load casts and associated flame structures, dish-and-pillar structures, synsedimentary faults, multilobated convolutions, chaotic deformation structures, sedimentary veins and dykes, and large-scale slides and slump scars. The formation, which accumulated in a deep-sea environment (2000-3000 m), is well exposed in and around Jogashima; it consists of relative thin (commonly dm-scale) alternations of deep-marine fine-grained sediments and volcanic ejecta that are, as a rule, coarse-grained. Since the formation represents fore-arc deposits of the Izu-Bonin and the Honsu arc collision zone, it might be expected that tectonic activity also played a role as a trigger of the soft-sediment deformation structures that abound in these sediments. This is indicated, indeed, by the abundance of soft-sediment deformations over large lateral distances that occur in numerous beds that are sandwiched between undeformed beds. On the basis of their characteristics and the geological context, these layers can be explained satisfactorily only by assuming deformation triggered by seismicity, which must be related to the Izu-Bonin and Honsu arc collision. The layers thus form deep-marine seismites.

  3. Global Volcano Locations Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC maintains a database of over 1,500 volcano locations obtained from the Smithsonian Institution Global Volcanism Program, Volcanoes of the World publication. The...

  4. A Scientific Excursion: Volcanoes.

    Science.gov (United States)

    Olds, Henry, Jr.

    1983-01-01

    Reviews an educationally valuable and reasonably well-designed simulation of volcanic activity in an imaginary land. VOLCANOES creates an excellent context for learning information about volcanoes and for developing skills and practicing methods needed to study behavior of volcanoes. (Author/JN)

  5. Petrogenesis and Tectonic-Magmatic Interplays in Extensive Recent NE Lau Basin Boninite to Dacite Volcanism

    Science.gov (United States)

    Rubin, K. H.; Embley, R. W.; Hellebrand, E.; Jenner, F. E.; Glancy, S.

    2016-12-01

    The world's fastest opening back-arc region, the NE Lau Basin, hosts a large (roughly 20x20 km) province of visually young boninite volcanoes flanked on the south and west by an even more extensive young dacite volcanism terrane, all in the rear arc, near the northern plate boundary of the basin. The youngest boninite volcanoes are the Mata seamounts, including recently active W. Mata and 8 other discrete volcanoes; the young dacites (more than 300 km2) occur at Niuatahi seamount and in several large low-relief lava fields between the arc and the NE Lau Spreading Center. ROV and dredge sampling on 4 expeditions since 2009 reveals a surprising diversity of boninite and closely related high-Mg andesite lithologies in the Matas, with similar major element compositions to other western Pacific boninite localities (e.g., the Izu-Bonin-Mariana system), but that display significant trace element and isotopic variability over sub-km spatial domains. Together, magma compositions allow for a common boninite petrogenesis process but at a range of source compositions and melting conditions in the NE Lau. In contrast, the dacites are glassy and nearly aphyric, showing very limited major element range, for instance flow LL-B (at 136 km2, the largest and best sampled dacite flow) has remarkably consistent mean silica content of 65.6 ±0.2. Dacites have major and trace element patterns consistent with differentiation of one endmember boninite composition erupted nearby. The close association of boninite and dacite volcanic centers and the petrogenetic link indicate a likely common origin, with crustal storage conditions controlling the extent of pre-eruptive magma differentiation. The highly dispersed arrangement of volcanoes and large lava flow fields in this part of the basin and their association with rift structures suggest a common, widespread and highly productive boninite parent melt regime coupled to tectonic control on the sites of volcanism in the area, with migration

  6. Volcano seismology

    Science.gov (United States)

    Chouet, B.

    2003-01-01

    A fundamental goal of volcano seismology is to understand active magmatic systems, to characterize the configuration of such systems, and to determine the extent and evolution of source regions of magmatic energy. Such understanding is critical to our assessment of eruptive behavior and its hazardous impacts. With the emergence of portable broadband seismic instrumentation, availability of digital networks with wide dynamic range, and development of new powerful analysis techniques, rapid progress is being made toward a synthesis of high-quality seismic data to develop a coherent model of eruption mechanics. Examples of recent advances are: (1) high-resolution tomography to image subsurface volcanic structures at scales of a few hundred meters; (2) use of small-aperture seismic antennas to map the spatio-temporal properties of long-period (LP) seismicity; (3) moment tensor inversions of very-long-period (VLP) data to derive the source geometry and mass-transport budget of magmatic fluids; (4) spectral analyses of LP events to determine the acoustic properties of magmatic and associated hydrothermal fluids; and (5) experimental modeling of the source dynamics of volcanic tremor. These promising advances provide new insights into the mechanical properties of volcanic fluids and subvolcanic mass-transport dynamics. As new seismic methods refine our understanding of seismic sources, and geochemical methods better constrain mass balance and magma behavior, we face new challenges in elucidating the physico-chemical processes that cause volcanic unrest and its seismic and gas-discharge manifestations. Much work remains to be done toward a synthesis of seismological, geochemical, and petrological observations into an integrated model of volcanic behavior. Future important goals must include: (1) interpreting the key types of magma movement, degassing and boiling events that produce characteristic seismic phenomena; (2) characterizing multiphase fluids in subvolcanic

  7. Volcanoes: Nature's Caldrons Challenge Geochemists.

    Science.gov (United States)

    Zurer, Pamela S.

    1984-01-01

    Reviews various topics and research studies on the geology of volcanoes. Areas examined include volcanoes and weather, plate margins, origins of magma, magma evolution, United States Geological Survey (USGS) volcano hazards program, USGS volcano observatories, volcanic gases, potassium-argon dating activities, and volcano monitoring strategies.…

  8. Preliminary geochemical characterization of volcanic and geothermal fluids discharged from the Ecuadorian volcanic arc.

    OpenAIRE

    Inguaggiato, S.; Hidalgo, S.; Beate, B.; Bourquin, J.

    2009-01-01

    In Ecuador, magmatism results from the subduction of the Nazca Plate beneath the North Western part of South America (Pennington, 1981; Kellogg and Vega, 1995; Witt et al., 2006). North of 2.5°S, the Ecuadorian Quaternary volcanic arc is characterized by about 60 volcanoes distributed in three different parallel chains. Many of these volcanoes are potentially active or currently in activity and display associated geothermal fields. South of this latitude, no active arc is present in Ecuador. ...

  9. Arc Statistics

    CERN Document Server

    Meneghetti, M; Dahle, H; Limousin, M

    2013-01-01

    The existence of an arc statistics problem was at the center of a strong debate in the last fifteen years. With the aim to clarify if the optical depth for giant gravitational arcs by galaxy clusters in the so called concordance model is compatible with observations, several studies were carried out which helped to significantly improve our knowledge of strong lensing clusters, unveiling their extremely complex internal structure. In particular, the abundance and the frequency of strong lensing events like gravitational arcs turned out to be a potentially very powerful tool to trace the structure formation. However, given the limited size of observational and theoretical data-sets, the power of arc statistics as a cosmological tool has been only minimally exploited so far. On the other hand, the last years were characterized by significant advancements in the field, and several cluster surveys that are ongoing or planned for the near future seem to have the potential to make arc statistics a competitive cosmo...

  10. The origin of high-Mg magmas in Mt Shasta and Medicine Lake volcanoes, Cascade Arc (California): higher and lower than mantle oxygen isotope signatures attributed to current and past subduction

    Science.gov (United States)

    Martin, E.; Bindeman, I.; Grove, T. L.

    2011-11-01

    We report the oxygen isotope composition of olivine and orthopyroxene phenocrysts in lavas from the main magma types at Mt Shasta and Medicine Lake Volcanoes: primitive high-alumina olivine tholeiite (HAOT), basaltic andesites (BA), primitive magnesian andesites (PMA), and dacites. The most primitive HAOT (MgO > 9 wt%) from Mt. Shasta has olivine δ18O (δ18OOl) values of 5.9-6.1‰, which are about 1‰ higher than those observed in olivine from normal mantle-derived magmas. In contrast, HAOT lavas from Medicine Lake have δ18OOl values ranging from 4.7 to 5.5‰, which are similar to or lower than values for olivine in equilibrium with mantle-derived magmas. Other magma types from both volcanoes show intermediate δ18OOl values. The oxygen isotope composition of the most magnesian lavas cannot be explained by crustal contamination and the trace element composition of olivine phenocrysts precludes a pyroxenitic mantle source. Therefore, the high and variable δ18OOl signature of the most magnesian samples studied (HAOT and BA) comes from the peridotitic mantle wedge itself. As HAOT magma is generated by anhydrous adiabatic partial melting of the shallow mantle, its 1.4‰ range in δ18OOl reflects a heterogeneous composition of the shallow mantle source that has been influenced by subduction fluids and/or melts sometime in the past. Magmas generated in the mantle wedge by flux melting due to modern subduction fluids, as exemplified by BA and probably PMA, display more homogeneous composition with only 0.5‰ variation. The high-δ18O values observed in magnesian lavas, and principally in the HAOT, are difficult to explain by a single-stage flux-melting process in the mantle wedge above the modern subduction zone and require a mantle source enriched in 18O. It is here explained by flow of older, pre-enriched portions of the mantle through the slab window beneath the South Cascades.

  11. Foci of Volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, I.

    1974-01-01

    One may assume a center of volcanic activities beneath the edifice of an active volcano, which is here called the focus of the volcano. Sometimes it may be a ''magma reservoir''. Its depth may differ with types of magma and change with time. In this paper, foci of volcanoes are discussed from the viewpoints of four items: (1) Geomagnetic changes related with volcanic activities; (2) Crustal deformations related with volcanic activities; (3) Magma transfer through volcanoes; and (4) Subsurface structure of calderas.

  12. Modeling Arcs

    CERN Document Server

    Insepov, Zeke; Veitzer, Seth; Mahalingam, Sudhakar

    2011-01-01

    Although vacuum arcs were first identified over 110 years ago, they are not yet well understood. We have since developed a model of breakdown and gradient limits that tries to explain, in a self-consistent way: arc triggering, plasma initiation, plasma evolution, surface damage and gra- dient limits. We use simple PIC codes for modeling plasmas, molecular dynamics for modeling surface breakdown, and surface damage, and mesoscale surface thermodynamics and finite element electrostatic codes for to evaluate surface properties. Since any given experiment seems to have more variables than data points, we have tried to consider a wide variety of arcing (rf structures, e beam welding, laser ablation, etc.) to help constrain the problem, and concentrate on common mechanisms. While the mechanisms can be comparatively simple, modeling can be challenging.

  13. Volcano hazards at Fuego and Acatenango, Guatemala

    Science.gov (United States)

    Vallance, J.W.; Schilling, S.P.; Matías, O.; Rose, William I.; Howell, M.M.

    2001-01-01

    The Fuego-Acatenango massif comprises a string of five or more volcanic vents along a north-south trend that is perpendicular to that of the Central American arc in Guatemala. From north to south known centers of volcanism are Ancient Acatenango, Yepocapa, Pico Mayor de Acatenango, Meseta, and Fuego. Volcanism along the trend stretches back more than 200,000 years. Although many of the centers have been active contemporaneously, there is a general sequence of younger volcanism, from north to south along the trend. This massive volcano complex towers more than 3500 meters (m) above the Pacific coastal plain to the south and 2000 m above the Guatemalan Highlands to the north. The volcano complex comprises remnants of multiple eruptive centers, which periodically have collapsed to form huge debris avalanches. The largest of these avalanches extended more than 50 kilometers (km) from its source and covered more than 300 square km. The volcano has potential to produce huge debris avalanches that could inundate large areas of the Pacific coastal plain. In areas around the volcanoes and downslope toward the coastal plain, more than 100,000 people are potentially at risk from these and other flowage phenomena.

  14. Sucesiones volcánico-sedimentarias tremadocianas y arenigianas en la sierra de las Planchadas-Narváez: registros evolutivos del arco magmático Famatiano Tremadoc and Arenig volcano-sedimentary successions in the Sierra de Las Planchadas, Narváez: Evolutive records of the Famatinian magmatic arc

    Directory of Open Access Journals (Sweden)

    Clara Eugenia Cisterna

    2010-03-01

    Full Text Available Se analizan secciones volcano-sedimentarias ordovícicas del norte del Sistema de Famatina, aportando nuevos datos petrológicos para la comprensión de la naturaleza de sus magmas y de los procesos volcanológicos asociados con la evolución del arco magmático en la región. Información paleontológica previa, apoyada por estudios estructurales y por las relaciones de intrusividad con una granodiorita de 485 ± 7 Ma, asignaron edades del Tremadociano temprano a las sedimentitas de Las Angosturas y del Arenigiano temprano - medio a las de las secciones Vuelta de la Tolas - Chaschuil y quebrada Larga - Punta Pétrea. Los litotipos que integran la sucesión tremadociana son lavas basálticas, andesíticas, dacíticas y riodacíticas, interestratificadas con limolitas y psamitas finas, polideformadas y con importante alteración hidrotermal, habiéndose reconocido paragénesis de metamorfismo de bajo grado y de contacto. Los depósitos arenigianos, afectados por plegamiento y desarrollo de clivaje localmente, consisten en lavas basálticas, andesíticas, dacíticas y riolíticas, facies hialoclásticas, depósitos resedimentados sin-eruptivos y volcanogénicos. Si bien ambas asociaciones son subalcalinas y peraluminosas, se concluye, para los representantes tremadocianos, que sus características son consistentes con un ambiente donde fueron producidos fundidos de un manto empobrecido (MORB y enriquecidos durante eventos de subducción, asociados con la evolución de una cuenca marginal. Las volcanitas arenigianas muestran filiación geoquímica de arco magmático continental. Ambas asociaciones exhiben características similares a las observadas en la Puna occidental, lo que plantearía la posible continuación en la Puna del arco magmático ordovícico reconocido en el Sistema de Famatina.Volcano-sedimentary Ordovician sections from the north of the Sistema de Famatina are analyzed, contributing with new petrological data to the understanding

  15. Geochemical evolution of Bolshaya Udina, Malaya Udina, and Gorny Zub Volcanoes, Klyuchevskaya Group (Kamchatka)

    Science.gov (United States)

    Churikova, Tatiana; Gordeychik, Boris; Wörner, Gerhard; Flerov, Gleb; Hartmann, Gerald; Simon, Klaus

    2017-04-01

    The Klyuchevskaya group of volcanoes (KGV) located in the northern part of Kamchatka has the highest magma production rate for any arc worldwide and several of its volcanoes have been studied in considerable detail [e.g. Kersting & Arculus, 1995; Pineau et al., 1999; Dorendorf et al., 2000; Ozerov, 2000; Churikova et al., 2001, 2012, 2015; Mironov et al., 2001; Portnyagin et al., 2007, 2015; Turner et al., 2007]. However, some volcanoes of the KGV including Late-Pleistocene volcanoes Bolshaya Udina, Malaya Udina, Ostraya Zimina, Ovalnaya Zimina, and Gorny Zub were studied only on a reconnaissance basis [Timerbaeva, 1967; Ermakov, 1977] and the modern geochemical studies have not been carried out at all. Among the volcanoes of KGV these volcanoes are closest to the arc trench and may hold information on geochemical zonation with respect to across arc source variations. We present the first major and trace element data on rocks from these volcanoes as well as on their basement. All rocks are medium-calc-alkaline basaltic andesites to dacites except few low-Mg basalts from Malaya Udina volcano. Phenocrysts are mainly olivine, pyroxene, plagioclase and magnetite, Hb-bearing andesites and dacites are rarely found only in subvolcanic intrusions at Bolshaya Udina volcano. Lavas are geochemically similar to the active Bezymianny volcano, however, individual variations for each volcano exist in both major and trace elements. Trace element geochemistry is typical of island arc volcanism. Compared to KGV lavas all studied rocks form very narrow trends in all major element diagrams, which almost do not overlap with the fields of other KGV volcanoes. The lavas are relatively poor in alkalis, TiO2, P2O5, FeO, Ni, Zr, and enriched in SiO2 compared to other KGV volcanics and show greater geochemical and petrological evidence of magmatic differentiation during shallow crustal processing. Basement samples of the Udinskoe plateau lavas to the east of Bolshaya Udina volcano have

  16. The Fina Nagu volcanic complex: Unusual submarine arc volcanism in the rapidly deforming southern Mariana margin

    Science.gov (United States)

    Brounce, Maryjo; Kelley, Katherine A.; Stern, Robert; Martinez, Fernando; Cottrell, Elizabeth

    2016-10-01

    In the Mariana convergent margin, large arc volcanoes disappear south of Guam even though the Pacific plate continues to subduct and instead, small cones scatter on the seafloor. These small cones could form either due to decompression melting accompanying back-arc extension or flux melting, as expected for arc volcanoes, or as a result of both processes. Here, we report the major, trace, and volatile element compositions, as well as the oxidation state of Fe, in recently dredged, fresh pillow lavas from the Fina Nagu volcanic chain, an unusual alignment of small, closely spaced submarine calderas and cones southwest of Guam. We show that Fina Nagu magmas are the consequence of mantle melting due to infiltrating aqueous fluids and sediment melts sourced from the subducting Pacific plate into a depleted mantle wedge, similar in extent of melting to accepted models for arc melts. Fina Nagu magmas are not as oxidized as magmas elsewhere along the Mariana arc, suggesting that the subduction component responsible for producing arc magmas is either different or not present in the zone of melt generation for Fina Nagu, and that amphibole or serpentine mineral destabilization reactions are key in producing oxidized arc magmas. Individual Fina Nagu volcanic structures are smaller in volume than Mariana arc volcanoes, although the estimated cumulative volume of the volcanic chain is similar to nearby submarine arc volcanoes. We conclude that melt generation under the Fina Nagu chain occurs by similar mechanisms as under Mariana arc volcanoes, but that complex lithospheric deformation in the region distributes the melts among several small edifices that get younger to the northeast.

  17. Volcanoes - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer includes Holocene volcanoes, which are those thought to be active in the last 10,000 years, that are within an extended area of the northern...

  18. Italian active volcanoes

    Institute of Scientific and Technical Information of China (English)

    RobertoSantacroce; RenawCristofolini; LuigiLaVolpe; GiovanniOrsi; MauroRosi

    2003-01-01

    The eruptive histories, styles of activity and general modes of operation of the main active Italian volcanoes,Etna, Vulcano, Stromboli, Vesuvio, Campi Flegrei and Ischia, are described in a short summary.

  19. Influence of fortnightly earth tides at Kilauea Volcano, Hawaii.

    Science.gov (United States)

    Dzurisin, D.

    1980-01-01

    Analysis of 52 historic eruptions confirms the premise that fortnightly earth tides play a significant role in triggering activity at Kilauea Volcano, Hawaii. Since January 1832, nearly twice as many eruptions have occurred nearer fortnightly tidal maximum than tidal minimum (34 vs. 18). A straightforward significance test indicates that the likelihood of a fortnightly tidal influence on Kilauea eruptions is roughly 90%. This is not the case for Mauna Loa Volcano, where 37 historic eruptions have been distributed randomly with respect to the fortnightly tide. At Kilauea, stresses induced by fortnightly earth tides presumably act in concert with volcanic and tectonic stresses to trigger shallow magma movements along preexisting zones of weakness. Differences in structure or internal plumbing may limit the effectiveness of this mechanism at Mauna Loa. Tidal effects seem to be less marked at shields than at some island-arc volcanoes, possibly because higher average volcanic stress rates in Hawaii more often override the effects of tidal stresses.-Author

  20. Deep structure and origin of active volcanoes in China

    Institute of Scientific and Technical Information of China (English)

    Dapeng Zhao; Lucy Liu

    2010-01-01

    We synthesize significant recent results on the deep structure and origin of the active volcanoes in mainland China. Magmatism in the western Pacific arc and back-arc areas is caused by dehydration of the subducting slab and by corner flow in the mantle wedge, whereas the intraplate magmatism in China has different origins. The active volcanoes in Northeast China (such as the Changbai and Wudalianchi) are caused by hot upwelling in the big mantle wedge (BMW) above the stagnant slab in the mantle transition zone and deep slab dehydration as well. The Tengchong volcano in Southwest China is caused by a similar process in the BMW above the subducting Burma microplate (or Indian plate).The Hainan volcano in southernmost China is a hotspot fed by a lower-mantle plume which may be associated with the Pacific and Philippine Sea slabs' deep subduction in the east and the Indian slab's deep subduction in the west down to the lower mantle. The stagnant slab finally collapses down to the bottom of the mantle, which can trigger the upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and may cause the slab-plume interactions.

  1. Deep structure and origin of active volcanoes in China

    Directory of Open Access Journals (Sweden)

    Dapeng Zhao

    2010-10-01

    Full Text Available We synthesize significant recent results on the deep structure and origin of the active volcanoes in mainland China. Magmatism in the western Pacific arc and back-arc areas is caused by dehydration of the subducting slab and by corner flow in the mantle wedge, whereas the intraplate magmatism in China has different origins. The active volcanoes in Northeast China (such as the Changbai and Wudalianchi are caused by hot upwelling in the big mantle wedge (BMW above the stagnant slab in the mantle transition zone and deep slab dehydration as well. The Tengchong volcano in Southwest China is caused by a similar process in the BMW above the subducting Burma microplate (or Indian plate. The Hainan volcano in southernmost China is a hotspot fed by a lower-mantle plume which may be associated with the Pacific and Philippine Sea slabs’ deep subduction in the east and the Indian slab’s deep subduction in the west down to the lower mantle. The stagnant slab finally collapses down to the bottom of the mantle, which can trigger the upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and may cause the slab–plume interactions.

  2. Cook Inlet and Kenai Peninsula, Alaska ESI: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains the locations of volcanos in Cook Inlet and Kenai Peninsula, Alaska. Vector points in the data set represent the location of the volcanos....

  3. The petrological relationship between Kamen volcano and adjacent volcanoes of Klyuchevskaya group

    Science.gov (United States)

    Churikova, Tatiana; Gordeychik, Boris; Wörner, Gerhard; Ivanov, Boris; Maximov, Alexander; Lebedev, Igor; Griban, Andrey

    2010-05-01

    The Klyuchevskaya Group (KG) of volcanoes has the highest magma production rate across the Kamchatka arc and in fact for any arc worldwide. However, modern geochemical studies of Kamen volcano, which is located between Klyuchevskoy, Bezymianny and Ploskie Sopky volcanoes, were not carried out and its relation and petrogenesis in comparison to other KG volcanoes is unknown. Space-time proximity of KG volcanoes and the common zone of seismicity below them may suggest a common source and genetic relationship. However, the lavas of neighboring volcanoes are rather different: high-Mg and high-Al basalts occur at Klyuchevskoy volcano, Hbl-bearing andesites and dаcites dominate at Bezymianny and medium-high-K subalkaline rocks at Ploskie Sopky volcano. Moreover, previously it was shown that distinct fluid signatures were observed in different KG volcanoes. In this report we present geological, petrographical, mineralogical and petrochemical data on the rocks of Kamen volcano in comparison with other KG volcanoes. Three consecutive periods of volcano activity were recognized in geological history of Kamen volcano: stratovolcano formation, development of a dike complex and formation of numerous cinder and cinder-lava monogenetic cones. The rock series of volcano are divided into four groups: olivine-bearing (Ol-2Px and Ol-Cpx), olivine-free (2Px-Pl, Cpx-Pl and abundant Pl), Hb-bearing and subaphyric rocks. While olivine-bearing rocks are observed in all volcanic stages, olivine-free lavas are presented only in the stratovolcano edifice. Lavas of the monogenetic cones are presented by olivine-bearing and subaphyric rocks. Dikes are olivine-bearing and hornblende-bearing rocks. Olivines of the Kamen stratovolcano and dikes vary from Fo60 to Fo83, clinopyroxenes are augites in composition and plagioclases have a bimodal distribution with maximum modes at An50 and An86. Oxides are represented by high-Al spinel, magnetite and titaniferous magnetite. Mineral compositions of the

  4. Zircon Recycling in Arc Intrusions

    Science.gov (United States)

    Miller, J.; Barth, A.; Matzel, J.; Wooden, J.; Burgess, S.

    2008-12-01

    Recycling of zircon has been well established in arc intrusions and arc volcanoes, but a better understanding of where and how zircons are recycled can help illuminate how arc magma systems are constructed. To that end, we are conducting age, trace element (including Ti-in-zircon temperatures; TzrnTi) and isotopic studies of zircons from the Late Cretaceous (95-85 Ma) Tuolumne Intrusive Suite (TIS) in the Sierra Nevada Batholith (CA). Within the TIS zircons inherited from ancient basement sources and/or distinctly older host rocks are uncommon, but recycled zircon antecrysts from earlier periods of TIS-related magmatism are common and conspicuous in the inner and two most voluminous units of the TIS, the Half Dome and Cathedral Peak Granodiorites. All TIS units have low bulk Zr ([Zr]825°C), [Zr] in the TIS is a factor of 2 to 3 lower than saturation values. Low [Zr] in TIS rocks might be attributed to a very limited supply of zircon in the source, by disequilibrium melting and rapid melt extraction [1], by melting reactions involving formation of other phases that can incorporate appreciable Zr [2], or by removal of zircon at an earlier stage of magma evolution. Based on a preliminary compilation of literature data, low [Zr] is common to Late Cretaceous N.A. Cordilleran granodioritic/tonalitic intrusions (typically Tzrnsat [3]. A corollary is that slightly older zircon antecrysts that are common in the inner units of the TIS could be considered inherited if they are derived from remelting of slightly older intrusions. Remelting at such low temperatures in the arc would require a source of external water. Refs: [1] Sawyer, J.Pet 32:701-738; [2] Fraser et al, Geology 25:607-610; [3] Harrison et al, Geology 35:635- 638

  5. Volcanoes: Coming Up from Under.

    Science.gov (United States)

    Science and Children, 1980

    1980-01-01

    Provides specific information about the eruption of Mt. St. Helens in March 1980. Also discusses how volcanoes are formed and how they are monitored. Words associated with volcanoes are listed and defined. (CS)

  6. Organizational changes at Earthquakes & Volcanoes

    Science.gov (United States)

    Gordon, David W.

    1992-01-01

    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  7. Hawaii's volcanoes revealed

    Science.gov (United States)

    Eakins, Barry W.; Robinson, Joel E.; Kanamatsu, Toshiya; Naka, Jiro; Smith, John R.; Takahashi, Eiichi; Clague, David A.

    2003-01-01

    Hawaiian volcanoes typically evolve in four stages as volcanism waxes and wanes: (1) early alkalic, when volcanism originates on the deep sea floor; (2) shield, when roughly 95 percent of a volcano's volume is emplaced; (3) post-shield alkalic, when small-volume eruptions build scattered cones that thinly cap the shield-stage lavas; and (4) rejuvenated, when lavas of distinct chemistry erupt following a lengthy period of erosion and volcanic quiescence. During the early alkalic and shield stages, two or more elongate rift zones may develop as flanks of the volcano separate. Mantle-derived magma rises through a vertical conduit and is temporarily stored in a shallow summit reservoir from which magma may erupt within the summit region or be injected laterally into the rift zones. The ongoing activity at Kilauea's Pu?u ?O?o cone that began in January 1983 is one such rift-zone eruption. The rift zones commonly extend deep underwater, producing submarine eruptions of bulbous pillow lava. Once a volcano has grown above sea level, subaerial eruptions produce lava flows of jagged, clinkery ?a?a or smooth, ropy pahoehoe. If the flows reach the ocean they are rapidly quenched by seawater and shatter, producing a steep blanket of unstable volcanic sediment that mantles the upper submarine slopes. Above sea level then, the volcanoes develop the classic shield profile of gentle lava-flow slopes, whereas below sea level slopes are substantially steeper. While the volcanoes grow rapidly during the shield stage, they may also collapse catastrophically, generating giant landslides and tsunami, or fail more gradually, forming slumps. Deformation and seismicity along Kilauea's south flank indicate that slumping is occurring there today. Loading of the underlying Pacific Plate by the growing volcanic edifices causes subsidence, forming deep basins at the base of the volcanoes. Once volcanism wanes and lava flows no longer reach the ocean, the volcano continues to submerge, while

  8. Overview for geologic field-trip guides to Mount Mazama, Crater Lake Caldera, and Newberry Volcano, Oregon

    Science.gov (United States)

    Bacon, Charles R.; Donnelly-Nolan, Julie M.; Jensen, Robert A.; Wright, Heather M.

    2017-08-16

    These field-trip guides were written for the occasion of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) quadrennial scientific assembly in Portland, Oregon, in August 2017. The guide to Mount Mazama and Crater Lake caldera is an updated and expanded version of the guide (Bacon, 1989) for part of an earlier IAVCEI trip to the southern Cascade Range. The guide to Newberry Volcano describes the stops included in the 2017 field trip. Crater Lake and Newberry are the two best-preserved and most recent calderas in the Cascades Volcanic Arc. Although located in different settings in the arc, with Crater Lake on the arc axis and Newberry in the rear-arc, both volcanoes are located at the intersection of the arc and the northwest corner region of the extensional Basin and Range Province.

  9. Advent of Continents: A New Hypothesis and Evidence from Nishinoshima Volcano

    Science.gov (United States)

    Tamura, Y.; Ishizuka, O.; Sato, T.; Nichols, A. R.

    2016-12-01

    The straightforward but unexpected relationship relates crustal thickness to magma type in the Izu-Ogasawara (Bonin) and Aleutian oceanic arcs. Volcanoes along the southern segment of the Izu-Ogasawara arc and the western Aleutian arc (west of Adak) are underlain by thin crust (10-20 km). In contrast those along the northern segment of the Izu-Ogasawara arc and eastern Aleutian arc are underlain by crust 35 km thick. Interestingly, andesite magmas dominate eruptive products from the former volcanoes and mostly basaltic lavas erupt from the latter (Tamura et al., in review). Magmas produced by partial melting of mantle peridotite are called primary magmas. Primary magmas in the Mariana arc are basaltic (Tamura et al., 2011, 2014) and basalts have been generally deemed to be parental to new crust in subduction zones. We present petrological evidence that points towards primary andesite magmas being derived from the mantle source when the crust and lithosphere in subduction zones are thin. This evidence has been gathered from Nishinoshima, a submarine volcano in the Ogasawara arc, 1,000 km south of Tokyo, Japan, which suddenly erupted in November 2013, after 40 years of dormancy. We propose that Nishinoshima represents the missing link between the mantle and the continental crust because: (1) it erupts andesitic lava, similar in composition to the continental crust, and (2) the underlying crust is only 21 km thick, making it one of the closest arc volcanoes to the mantle. Here we report the scientific results of our endeavours to collect subaerial lavas from the current eruption and older submarine lavas from the flanks of Nishinoshima volcano. Using olivine-bearing phenocryst-poor andesite samples, we have developed a model for the genesis of the Nishinoshima andesitic lavas in which the andesites originate directly from the mantle. Melting of hydrous mantle at low pressures is necessary to produce primary andesite magmas, and thus it is achieved beneath Nishinoshima

  10. Santa Maria Volcano, Guatemala

    Science.gov (United States)

    2002-01-01

    The eruption of Santa Maria volcano in 1902 was one of the largest eruptions of the 20th century, forming a large crater on the mountain's southwest flank. Since 1922, a lava-dome complex, Santiaguito, has been forming in the 1902 crater. Growth of the dome has produced pyroclastic flows as recently as the 2001-they can be identified in this image. The city of Quezaltenango (approximately 90,000 people in 1989) sits below the 3772 m summit. The volcano is considered dangerous because of the possibility of a dome collapse such as one that occurred in 1929, which killed about 5000 people. A second hazard results from the flow of volcanic debris into rivers south of Santiaguito, which can lead to catastrophic flooding and mud flows. More information on this volcano can be found at web sites maintained by the Smithsonian Institution, Volcano World, and Michigan Tech University. ISS004-ESC-7999 was taken 17 February 2002 from the International Space Station using a digital camera. The image is provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Searching and viewing of additional images taken by astronauts and cosmonauts is available at the NASA-JSC Gateway to

  11. Anatomy of a volcano

    NARCIS (Netherlands)

    Wassink, J.

    2011-01-01

    The Icelandic volcano Eyjafjallajökull caused major disruption in European airspace last year. According to his co-author, Freysteinn Sigmundsson, the reconstruction published in Nature six months later by aerospace engineering researcher, Dr Andy Hooper, opens up a new direction in volcanology. “W

  12. Catalogue of Icelandic Volcanoes

    Science.gov (United States)

    Ilyinskaya, Evgenia; Larsen, Gudrun; Gudmundsson, Magnus T.; Vogfjord, Kristin; Pagneux, Emmanuel; Oddsson, Bjorn; Barsotti, Sara; Karlsdottir, Sigrun

    2016-04-01

    The Catalogue of Icelandic Volcanoes is a newly developed open-access web resource in English intended to serve as an official source of information about active volcanoes in Iceland and their characteristics. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland GOSVÁ (commenced in 2012), as well as being part of the effort of FUTUREVOLC (2012-2016) on establishing an Icelandic volcano supersite. Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene (the time since the end of the last glaciation - approximately the last 11,500 years). In the last 50 years, over 20 eruptions have occurred in Iceland displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and the distribution lava and tephra. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in numerous scientific papers and other publications. In 2010, the International Civil Aviation Organisation (ICAO) funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU through the FP7 project FUTUREVOLC. The Catalogue of Icelandic Volcanoes is a collaboration of the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Civil Protection Department of the National Commissioner of the Iceland Police, with contributions from a large number of specialists in Iceland and elsewhere. The Catalogue is built up of chapters with texts and various

  13. Gas arc constriction for plasma arc welding

    Science.gov (United States)

    McGee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has an inert gas applied circumferentially about the arc column externally of the constricting nozzle so as to apply a constricting force on the arc after it has exited the nozzle orifice and downstream of the auxiliary shielding gas. The constricting inert gas is supplied to a plenum chamber about the body of the torch and exits through a series of circumferentially disposed orifices in an annular wall forming a closure at the forward end of the constricting gas plenum chamber. The constricting force of the circumferential gas flow about the arc concentrates and focuses the arc column into a more narrow and dense column of energy after exiting the nozzle orifice so that the arc better retains its energy density prior to contacting the workpiece.

  14. Geologic field-trip guide to Mount Shasta Volcano, northern California

    Science.gov (United States)

    Christiansen, Robert L.; Calvert, Andrew T.; Grove, Timothy L.

    2017-08-18

    The southern part of the Cascades Arc formed in two distinct, extended periods of activity: “High Cascades” volcanoes erupted during about the past 6 million years and were built on a wider platform of Tertiary volcanoes and shallow plutons as old as about 30 Ma, generally called the “Western Cascades.” For the most part, the Shasta segment (for example, Hildreth, 2007; segment 4 of Guffanti and Weaver, 1988) of the arc forms a distinct, fairly narrow axis of short-lived small- to moderate-sized High Cascades volcanoes that erupted lavas, mainly of basaltic-andesite or low-silica-andesite compositions. Western Cascades rocks crop out only sparsely in the Shasta segment; almost all of the following descriptions are of High Cascades features except for a few unusual localities where older, Western Cascades rocks are exposed to view along the route of the field trip.The High Cascades arc axis in this segment of the arc is mainly a relatively narrow band of either monogenetic or short-lived shield volcanoes. The belt generally averages about 15 km wide and traverses the length of the Shasta segment, roughly 100 km between about the Klamath River drainage on the north, near the Oregon-California border, and the McCloud River drainage on the south (fig. 1). Superposed across this axis are two major long-lived stratovolcanoes and the large rear-arc Medicine Lake volcano. One of the stratovolcanoes, the Rainbow Mountain volcano of about 1.5–0.8 Ma, straddles the arc near the midpoint of the Shasta segment. The other, Mount Shasta itself, which ranges from about 700 ka to 0 ka, lies distinctly west of the High Cascades axis. It is notable that Mount Shasta and Medicine Lake volcanoes, although volcanologically and petrologically quite different, span about the same range of ages and bracket the High Cascades axis on the west and east, respectively.The field trip begins near the southern end of the Shasta segment, where the Lassen Volcanic Center field trip leaves

  15. Catalogue of Icelandic volcanoes

    Science.gov (United States)

    Ilyinskaya, Evgenia; Larsen, Gudrun; Vogfjörd, Kristin; Tumi Gudmundsson, Magnus; Jonsson, Trausti; Oddsson, Björn; Reynisson, Vidir; Barsotti, Sara; Karlsdottir, Sigrun

    2015-04-01

    Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene. In the last 100 years, over 30 eruptions have occurred displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and their distribution. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in scientific papers and other publications. In 2010, the International Civil Aviation Organisation funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland (commenced in 2012), and the EU FP7 project FUTUREVOLC (2012-2016), establishing an Icelandic volcano Supersite. The Catalogue is a collaborative effort between the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Icelandic Civil Protection, with contributions from a large number of specialists in Iceland and elsewhere. The catalogue is scheduled for opening in the first half of 2015 and once completed, it will be an official publication intended to serve as an accurate and up to date source of information about active volcanoes in Iceland and their characteristics. The Catalogue is an open web resource in English and is composed of individual chapters on each of the volcanic systems. The chapters include information on the geology and structure of the volcano; the eruption history, pattern and products; the known precursory signals

  16. Mount Meager Volcano, Canada: a Case Study for Landslides on Glaciated Volcanoes

    Science.gov (United States)

    Roberti, G. L.; Ward, B. C.; van Wyk de Vries, B.; Falorni, G.; Perotti, L.; Clague, J. J.

    2015-12-01

    Mount Meager is a strato-volcano massif in the Northern Cascade Volcanic Arc (Canada) that erupted in 2350 BP, the most recent in Canada. To study the stability of the Massif an international research project between France ( Blaise Pascal University), Italy (University of Turin) and Canada (Simon Fraser University) and private companies (TRE - sensing the planet) has been created. A complex history of glacial loading and unloading, combined with weak, hydrothermally altered rocks has resulted in a long record of catastrophic landslides. The most recent, in 2010 is the third largest (50 x 106 m3) historical landslide in Canada. Mount Meager is a perfect natural laboratory for gravity and topographic processes such as landslide activity, permafrost and glacial dynamics, erosion, alteration and uplift on volcanoes. Research is aided by a rich archive of aerial photos of the Massif (1940s up to 2006): complete coverage approximately every 10 years. This data set has been processed and multi-temporal, high resolution Orthophoto and DSMs (Digital Surface Models) have been produced. On these digital products, with the support on field work, glacial retreat and landslide activity have been tracked and mapped. This has allowed for the inventory of unstable areas, the identification of lava flows and domes, and the general improvement on the geologic knowledge of the massif. InSAR data have been used to monitor the deformation of the pre-2010 failure slope. It will also be used to monitor other unstable slopes that potentially can evolve to catastrophic collapses of up to 1 km3 in volume, endangering local communities downstream the volcano. Mount Meager is definitively an exceptional site for studying the dynamics of a glaciated, uplifted volcano. The methodologies proposed can be applied to other volcanic areas with high erosion rates such as Alaska, Cascades, and the Andes.

  17. Oceanographic data collected during the RB-03-03 Kick'em Jenny Volcano 2003 Expedition on NOAA Ship RONALD H. BROWN in the Caribbean Sea from 2003-03-10 to 2003-03-21 (NCEI Accession 0144307)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Kick'em Jenny is the most active volcano in the Antilles Volcanic Arc. Since its debut eruption in 1939, it has provided scientists with a rare opportunity to learn...

  18. Geology of Kilauea volcano

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.B. (Geological Survey, Denver, CO (United States). Federal Center); Trusdell, F.A. (Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory)

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.

  19. 4D volcano gravimetry

    Science.gov (United States)

    Battaglia, Maurizio; Gottsmann, J.; Carbone, D.; Fernandez, J.

    2008-01-01

    Time-dependent gravimetric measurements can detect subsurface processes long before magma flow leads to earthquakes or other eruption precursors. The ability of gravity measurements to detect subsurface mass flow is greatly enhanced if gravity measurements are analyzed and modeled with ground-deformation data. Obtaining the maximum information from microgravity studies requires careful evaluation of the layout of network benchmarks, the gravity environmental signal, and the coupling between gravity changes and crustal deformation. When changes in the system under study are fast (hours to weeks), as in hydrothermal systems and restless volcanoes, continuous gravity observations at selected sites can help to capture many details of the dynamics of the intrusive sources. Despite the instrumental effects, mainly caused by atmospheric temperature, results from monitoring at Mt. Etna volcano show that continuous measurements are a powerful tool for monitoring and studying volcanoes.Several analytical and numerical mathematical models can beused to fit gravity and deformation data. Analytical models offer a closed-form description of the volcanic source. In principle, this allows one to readily infer the relative importance of the source parameters. In active volcanic sites such as Long Valley caldera (California, U.S.A.) and Campi Flegrei (Italy), careful use of analytical models and high-quality data sets has produced good results. However, the simplifications that make analytical models tractable might result in misleading volcanological inter-pretations, particularly when the real crust surrounding the source is far from the homogeneous/ isotropic assumption. Using numerical models allows consideration of more realistic descriptions of the sources and of the crust where they are located (e.g., vertical and lateral mechanical discontinuities, complex source geometries, and topography). Applications at Teide volcano (Tenerife) and Campi Flegrei demonstrate the

  20. Pairing the Volcano

    CERN Document Server

    Ionica, Sorina

    2011-01-01

    Isogeny volcanoes are graphs whose vertices are elliptic curves and whose edges are $\\ell$-isogenies. Algorithms allowing to travel on these graphs were developed by Kohel in his thesis (1996) and later on, by Fouquet and Morain (2001). However, up to now, no method was known, to predict, before taking a step on the volcano, the direction of this step. Hence, in Kohel's and Fouquet-Morain algorithms, many steps are taken before choosing the right direction. In particular, ascending or horizontal isogenies are usually found using a trial-and-error approach. In this paper, we propose an alternative method that efficiently finds all points $P$ of order $\\ell$ such that the subgroup generated by $P$ is the kernel of an horizontal or an ascending isogeny. In many cases, our method is faster than previous methods. This is an extended version of a paper published in the proceedings of ANTS 2010. In addition, we treat the case of 2-isogeny volcanoes and we derive from the group structure of the curve and the pairing ...

  1. Geology and tectonics of Japanese islands: A review - The key to understanding the geology of Asia

    Science.gov (United States)

    Wakita, Koji

    2013-08-01

    complexes in the Japanese Islands are of Permian, Jurassic and Cretaceous-Paleogene age. These accretionary complexes became altered locally to low-temperature and high-pressure metamorphic, or high-temperature and low-pressure metamorphic rocks. Medium-pressure metamorphic rocks are limited to the Unazuki and Higo belts. Major plutonism occurred in Paleozoic, Mesozoic and Cenozoic time. Early Paleozoic Cambrian igneous activity is recorded as granites in the South Kitakami Belt. Late Paleozoic igneous activity is recognized in the Hida Belt. During Cretaceous to Paleogene time, extensive igneous activity occurred in Japan. The youngest granite in Japan is the Takidani Granite intruded at about 1-2 Ma. During Cenozoic time, the most important geologic events are back-arc opening and arc-arc collision. The major back-arc basins are the Sea of Japan and the Shikoku and Chishima basins. Arc-arc collision occurred between the Honshu and Izu-Bonin arcs, and the Honshu and Chishima arcs.

  2. Constraints on the origin and evolution of magmas in the Payún Matrú Volcanic Field, Quaternary Andean Back-arc of Western Argentina

    NARCIS (Netherlands)

    Hernando, I.R.; Aragón, E.; Frei, R.; González, P.D.; Spakman, W.

    2014-01-01

    The Payún Matrú Volcanic Field (Pleistocene–Holocene) is located in the Andean back-arc of the Southern Volcanic Zone, western Argentina, and is contemporaneous with the Andean volcanic arc at the same latitude. It includes two polygenetic, mostly trachytic volcanoes: Payún Matrú (with a summit cald

  3. Italian Volcano Supersites

    Science.gov (United States)

    Puglisi, G.

    2011-12-01

    Volcanic eruptions are among the geohazards that may have a substantial economic and social impact, even at worldwide scale. Large populated regions are prone to volcanic hazards worldwide. Even local phenomena may affect largely populated areas and in some cases even megacities, producing severe economic losses. On a regional or global perspective, large volcanic eruptions may affect the climate for years with potentially huge economic impacts, but even relatively small eruptions may inject large amounts of volcanic ash in the atmosphere and severely affect air traffic over entire continents. One of main challenges of the volcanological community is to continuously monitor and understand the internal processes leading to an eruption, in order to give substantial contributions to the risk reduction. Italian active volcanoes constitute natural laboratories and ideal sites where to apply the cutting-edge volcano observation systems, implement new monitoring systems and to test and improve the most advanced models and methods for investigate the volcanic processes. That's because of the long tradition of volcanological studies resulting into long-term data sets, both in-situ and from satellite systems, among the most complete and accurate worldwide, and the large spectrum of the threatening volcanic phenomena producing high local/regional/continental risks. This contribution aims at presenting the compound monitoring systems operating on the Italian active volcanoes, the main improvements achieved during the recent studies direct toward volcanic hazard forecast and risk reductions and the guidelines for a wide coordinated project aimed at applying the ideas of the GEO Supersites Initiative at Mt. Etna and Campi Flegrei / Vesuvius areas.

  4. Ruiz Volcano: Preliminary report

    Science.gov (United States)

    Ruiz Volcano, Colombia (4.88°N, 75.32°W). All times are local (= GMT -5 hours).An explosive eruption on November 13, 1985, melted ice and snow in the summit area, generating lahars that flowed tens of kilometers down flank river valleys, killing more than 20,000 people. This is history's fourth largest single-eruption death toll, behind only Tambora in 1815 (92,000), Krakatau in 1883 (36,000), and Mount Pelée in May 1902 (28,000). The following briefly summarizes the very preliminary and inevitably conflicting information that had been received by press time.

  5. Evolution and genesis of volcanic rocks from Mutnovsky Volcano, Kamchatka

    Science.gov (United States)

    Simon, A.; Yogodzinski, G. M.; Robertson, K.; Smith, E.; Selyangin, O.; Kiryukhin, A.; Mulcahy, S. R.; Walker, J. D.

    2014-10-01

    This study presents new geochemical data for Mutnovsky Volcano, located on the volcanic front of the southern portion of the Kamchatka arc. Field relationships show that Mutnovsky Volcano is comprised of four distinct stratocones, which have grown over that past 80 ka. The youngest center, Mutnovsky IV, has produced basalts and basaltic andesites only. The three older centers (Mutnovsky I, II, III) are dominated by basalt and basaltic andesite (60-80% by volume), but each has also produced small volumes of andesite and dacite. Across centers of all ages, Mutnovsky lavas define a tholeiitic igneous series, from 48-70% SiO2. Basalts and basaltic andesites have relatively low K2O and Na2O, and high FeO* and Al2O3 compared to volcanic rocks throughout Kamchatka. The mafic lavas are also depleted in the light rare earth elements (REEs), with chondrite-normalized La/Sm arc volcanic rocks worldwide. Radiogenic isotope ratios (Sr, Nd, Pb, Hf) are similar for samples from all four eruptive centers, and indicate that all samples were produced by melting of a similar source mixture. No clear age-progressive changes are evident in the compositions of Mutnovsky lavas. Mass balance and assimilation-fractional crystallization (AFC) modeling of major and rare earth elements (REEs) indicate that basaltic andesites were produced by FC of plagioclase, clinopyroxene and olivine from a parental basalt, combined with assimilation of a melt composition similar to dacite lavas present at Mutnovsky. This modeling also indicates that andesites were produced by FC of plagioclase from basaltic andesite, combined with assimilation of dacite. Dacites erupted from Mutnovsky I and II have low abundances of REEs, and do not appear to be related to mafic magmas by FC or AFC processes. These dacites are modeled as the products of dehydration partial melting at mid-crustal levels of a garnet-free, amphibole-bearing basaltic rock, which itself formed in the mid-crust by emplacement of magma that

  6. Preliminary volcano-hazard assessment for Iliamna Volcano, Alaska

    Science.gov (United States)

    Waythomas, Christopher F.; Miller, Thomas P.

    1999-01-01

    Iliamna Volcano is a 3,053-meter-high, ice- and snow-covered stratovolcano in the southwestern Cook Inlet region about 225 kilometers southwest of Anchorage and about 100 kilometers northwest of Homer. Historical eruptions of Iliamna Volcano have not been positively documented; however, the volcano regularly emits steam and gas, and small, shallow earthquakes are often detected beneath the summit area. The most recent eruptions of the volcano occurred about 300 years ago, and possibly as recently as 90-140 years ago. Prehistoric eruptions have generated plumes of volcanic ash, pyroclastic flows, and lahars that extended to the volcano flanks and beyond. Rock avalanches from the summit area have occurred numerous times in the past. These avalanches flowed several kilometers down the flanks and at least two large avalanches transformed to cohesive lahars. The number and distribution of known volcanic ash deposits from Iliamna Volcano indicate that volcanic ash clouds from prehistoric eruptions were significantly less voluminous and probably less common relative to ash clouds generated by eruptions of other Cook Inlet volcanoes. Plumes of volcanic ash from Iliamna Volcano would be a major hazard to jet aircraft using Anchorage International Airport and other local airports, and depending on wind direction, could drift at least as far as the Kenai Peninsula and beyond. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Because Iliamna Volcano has not erupted for several hundred years, a future eruption could involve significant amounts of ice and snow that could lead to the formation of large lahars and downstream flooding. The greatest hazards in order of importance are described below and shown on plate 1.

  7. H2O and CO2 in magmas from the Mariana arc and back arc systems

    Science.gov (United States)

    Newman, Sally; Stolper, Edward; Stern, Robert

    2000-05-01

    We examined the H2O and CO2 contents of glasses from lavas and xenoliths from the Mariana arc system, an intraoceanic convergent margin in the western Pacific, which contains an active volcanic arc, an actively spreading back arc basin, and active behind-the-arc cross-chain volcanoes. Samples include (1) glass rims from Mariana arc, Mariana trough, and cross-chain submarine lavas; (2) glass inclusions in arc and trough phenocrysts; and (3) glass inclusions from a gabbro + anorthosite xenolith from Agrigan (Mariana arc). Glass rims of submarine arc lavas contain 0.3-1.9 wt % H2O, and CO2 is below detection limits. Where they could be compared, glass inclusions in arc phenocrysts contain more H2O than their host glasses; most arc glasses and phenocryst inclusions contain no detectable CO2, with the exception of those from a North Hiyoshi shoshonite, which contains 400-600 ppm. The glass inclusions from the Agrigan xenolith contain 4-6% H2O, and CO2 is below the detection limit. Glasses from the cross-chain lavas are similar to those from the arc: H2O contents are 1.4-1.7 wt %, and CO2 is below detection limits. Volatile contents in Mariana trough lava glass rims are variable: 0.2-2.8 wt % H2O and 0-300 ppm CO2. Glass inclusions from trough phenocrysts have water contents similar to the host glass, but they can contain up to 875 ppm CO2. Volatile contents of melt inclusions from trough and arc lavas and from the xenolith imply minimum depths of crystallization of ~1-8 km. H2O and CO2 contents of Mariana trough glasses are negatively correlated, indicating saturation of the erupting magma with a CO2-H2O vapor at the pressure of eruption (~400 bars for these samples), with the vapor ranging from nearly pure CO2 at the CO2-rich end of the glass array to nearly pure H2O at the H2O-rich end. Degassing of these magmas on ascent and eruption leads to significant loss of CO2 (thereby masking preeruptive CO2 contents) but minimal disturbance of preeruptive H2O contents. For

  8. Elementary analysis of data from Tianchi Volcano

    Institute of Scientific and Technical Information of China (English)

    LIU Guo-ming; ZHANG Heng-rong; KONG Qing-jun; WU Cheng-zhi; GUO Feng; ZHANG Chao-fan

    2004-01-01

    Tianchi Volcano is the largest potential erupticve volcano in China. Analyzing these data on seismic monitoring, deformation observation and water chemistry investigation gained from the Tianchi Volcano Observatory (TVO), the authors consider that the Tianchi Volcano is in going into a new flourishing time.

  9. Geologic Mapping of the Olympus Mons Volcano, Mars

    Science.gov (United States)

    Bleacher, J. E.; Williams, D. A.; Shean, D.; Greeley, R.

    2012-01-01

    We are in the third year of a three-year Mars Data Analysis Program project to map the morphology of the Olympus Mons volcano, Mars, using ArcGIS by ESRI. The final product of this project is to be a 1:1,000,000-scale geologic map. The scientific questions upon which this mapping project is based include understanding the volcanic development and modification by structural, aeolian, and possibly glacial processes. The project s scientific objectives are based upon preliminary mapping by Bleacher et al. [1] along a approx.80-km-wide north-south swath of the volcano corresponding to High Resolution Stereo Camera (HRSC) image h0037. The preliminary project, which covered approx.20% of the volcano s surface, resulted in several significant findings, including: 1) channel-fed lava flow surfaces are areally more abundant than tube-fed surfaces by a ratio of 5:1, 2) channel-fed flows consistently embay tube-fed flows, 3) lava fans appear to be linked to tube-fed flows, 4) no volcanic vents were identified within the map region, and 5) a Hummocky unit surrounds the summit and is likely a combination of non-channelized flows, dust, ash, and/or frozen volatiles. These results led to the suggestion that the volcano had experienced a transition from long-lived tube-forming eruptions to more sporadic and shorter-lived, channel-forming eruptions, as seen at Hawaiian volcanoes between the tholeiitic shield building phase (Kilauea to Mauna Loa) and alkalic capping phase (Hualalai and Mauna Kea).

  10. Seismotectonic pattern and the source region of volcanism in the central part of Sunda Arc

    Science.gov (United States)

    Špičák, Aleš; Hanuš, Václav; Vaněk, Jiří

    2005-07-01

    The seismotectonic pattern in the central part of the Sunda Arc (Java, Nusa Tenggara) was studied in relation to the distribution of active calc-alkaline volcanoes, using global seismological data. Hypocentral determinations of the International Seismological Centre from the period 1964-1999, as relocated by Engdahl, and Harvard Centroid Moment Tensor Solutions from the period 1976-2003 were used. The following phenomena, which could assist the location of the source region of primary magma for island arc calc-alkaline volcanism, were observed: (1) An aseismic gap without any strong teleseismically recorded earthquakes was found in the Wadati-Benioff zone of the subducting slab along the whole investigated region of the Sunda Arc, forming a continuous strip of laterally variable depth and shape, at depths between 100 and 200 km. The absence of strong earthquakes (with mb>4.0) indicates a significant change in the mechanical properties of the subducting slab at intermediate depths. All active calc-alkaline volcanoes in the Sunda Arc are located above this gap. (2) The majority of earthquakes occurring in the lithospheric wedge of the Eurasian Plate above the subducted slab could be attributed to several deep-rooted seismically active fracture zones of regional extent. All delineated active fracture zones display a thrust tectonic regime as shown by the available fault plane solutions. (3) Clusters of earthquakes were found beneath active volcanoes of western Java, Bali and Nusa Tenggara in the lithospheric wedge above the slab and identified as seismically active columns. These clusters occur only beneath the volcanoes that are located at the outcrops of seismically active fracture zones. We interpret the earthquakes in these clusters beneath volcanoes as events induced by magma transport through the medium of the lithospheric wedge that has been subcritically pre-stressed by the process of plate convergence. (4) Beneath the volcanoes of central Java no seismically

  11. Slab detachment of subducted Indo-Australian plate beneath Sunda arc, Indonesia

    Indian Academy of Sciences (India)

    Bhaskar Kundu; V K Gahalaut

    2011-04-01

    Necking, tearing, slab detachment and subsequently slab loss complicate the subduction zone processes and slab architecture. Based on evidences which include patterns of seismicity, seismic tomography and geochemistry of arc volcanoes, we have identified a horizontal slab tear in the subducted Indo-Australian slab beneath the Sunda arc. It strongly reflects on trench migration, and causes along-strike variations in vertical motion and geochemically distinct subduction-related arc magmatism. We also propose a model for the geodynamic evolution of slab detachment.

  12. Wire + Arc Additive Manufacturing

    OpenAIRE

    Williams, Stewart W.; Martina, Filomeno; Addison, Adrian C.; Ding, Jialuo; Pardal, Goncalo; Colegrove, Paul A.

    2016-01-01

    Depositing large components (>10 kg) in titanium, aluminium, steel and other metals is possible using Wire + Arc Additive Manufacturing. This technology adopts arc welding tools and wire as feedstock for additive manufacturing purposes. High deposition rates, low material and equipment costs, and good structural integrity make Wire+Arc Additive Manufacturing a suitable candidate for replacing the current method of manufacturing from solid billets or large forgings, especially with regards to ...

  13. Welding arc plasma physics

    Science.gov (United States)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  14. Soufriere Hills Volcano

    Science.gov (United States)

    2002-01-01

    In this ASTER image of Soufriere Hills Volcano on Montserrat in the Caribbean, continued eruptive activity is evident by the extensive smoke and ash plume streaming towards the west-southwest. Significant eruptive activity began in 1995, forcing the authorities to evacuate more than 7,000 of the island's original population of 11,000. The primary risk now is to the northern part of the island and to the airport. Small rockfalls and pyroclastic flows (ash, rock and hot gases) are common at this time due to continued growth of the dome at the volcano's summit.This image was acquired on October 29, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA

  15. Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Founded in 1912 at the edge of the caldera of Kīlauea Volcano, HVO was the vision of Thomas A. Jaggar, Jr., a geologist from the Massachusetts Institute of Technology, whose studies of natural disasters around the world had convinced him that systematic, continuous observations of seismic and volcanic activity were needed to better understand—and potentially predict—earthquakes and volcanic eruptions. Jaggar summarized the aim of HVO by stating that “the work should be humanitarian” and have the goals of developing “prediction and methods of protecting life and property on the basis of sound scientific achievement.” These goals align well with those of the USGS, whose mission is to serve the Nation by providing reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage natural resources; and enhance and protect our quality of life.

  16. Geochemistry of southern Pagan Island lavas, Mariana arc: The role of subduction zone processes

    Science.gov (United States)

    Marske, J.P.; Pietruszka, A.J.; Trusdell, F.A.; Garcia, M.O.

    2011-01-01

    New major and trace element abundances, and Pb, Sr, and Nd isotopic ratios of Quaternary lavas from two adjacent volcanoes (South Pagan and the Central Volcanic Region, or CVR) located on Pagan Island allow us to investigate the mantle source (i.e., slab components) and melting dynamics within the Mariana intra-oceanic arc. Geologic mapping reveals a pre-caldera (780-9.4ka) and post-caldera (shaped normalized rare earth element (REE) patterns observed in Pagan lavas can arise from partial melting of a mixed source of depleted mantle and enriched sediment, and do not require amphibole interaction or fractionation to depress the middle REE abundances of the lavas. The modeled degree of mantle partial melting for Agrigan (2-5%), Pagan (3-7%), and Guguan (9-15%) lavas correlates with indicators of fluid addition (e.g., Ba/Th). This relationship suggests that the fluid flux to the mantle wedge is the dominant control on the extent of partial melting beneath Mariana arc volcanoes. A decrease in the amount of fluid addition (lower Ba/Th) and extent of melting (higher Sm/Yb), and an increase in the sediment contribution (higher Th/Nb, La/Sm, and Pb isotopic ratios) from Mt. Pagan to South Pagan could reflect systematic cross-arc or irregular along-arc melting variations. These observations indicate that the length scale of compositional heterogeneity in the mantle wedge beneath Mariana arc volcanoes is small (~10km).

  17. Volcanoes in Eruption - Set 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The word volcano is used to refer to the opening from which molten rock and gas issue from Earth's interior onto the surface, and also to the cone, hill, or mountain...

  18. Volcanoes in Eruption - Set 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The word volcano is used to refer to the opening from which molten rock and gas issue from Earth's interior onto the surface, and also to the cone, hill, or mountain...

  19. USGS Volcano Notification Service (VNS)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Website provides a subscription service to receive an email when changes occur in the activity levels for monitored U.S. volcanoes and/or when information releases...

  20. WSTF electrical arc projects

    Science.gov (United States)

    Linley, Larry

    1994-09-01

    The objectives of these projects include the following: validate method used to screen wire insulation with arc tracking characteristics; determine damage resistance to arc as a function of source voltage and insulation thickness; investigate propagation characteristics of Kapton at low voltages; and investigate pyrolytic properties of polyimide insulated (Kapton) wire for low voltage (less than 35 VDC) applications. Supporting diagrams and tables are presented.

  1. GLACIERS OF THE KORYAK VOLCANO

    Directory of Open Access Journals (Sweden)

    T. M. Manevich

    2012-01-01

    Full Text Available The paper presents main glaciological characteristics of present-day glaciers located on the Koryaksky volcano. The results of fieldwork (2008–2009 and high-resolution satellite image analysis let us to specify and complete information on modern glacial complex of Koryaksky volcano. Now there are seven glaciers with total area 8.36 km2. Three of them advance, two are in stationary state and one degrades. Moreover, the paper describes the new crater glacier.

  2. Mahukona: The missing Hawaiian volcano

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.O.; Muenow, D.W. (Univ. of Hawaii, Honolulu (USA)); Kurz, M.D. (Woods Hole Oceanographic Institution, MA (USA))

    1990-11-01

    New bathymetric and geochemical data indicate that a seamount west of the island of Hawaii, Mahukona, is a Hawaiian shield volcano. Mahukona has weakly alkalic lavas that are geochemically distinct. They have high {sup 3}He/{sup 4}He ratios (12-21 times atmosphere), and high H{sub 2}O and Cl contents, which are indicative of the early state of development of Hawaiian volcanoes. The He and Sr isotopic values for Mahukona lavas are intermediate between those for lavas from Loihi and Manuna Loa volcanoes and may be indicative of a temporal evolution of Hawaiian magmas. Mahukona volcano became extinct at about 500 ka, perhaps before reaching sea level. It fills the previously assumed gap in the parallel chains of volcanoes forming the southern segment of the Hawaiian hotspot chain. The paired sequence of volcanoes was probably caused by the bifurcation of the Hawaiian mantle plume during its ascent, creating two primary areas of melting 30 to 40 km apart that have persisted for at least the past 4 m.y.

  3. Peeking Beneath the Caldera: Communicating Subsurface Knowledge of Newberry Volcano

    Science.gov (United States)

    Mark-Moser, M.; Rose, K.; Schultz, J.; Cameron, E.

    2016-12-01

    "Imaging the Subsurface: Enhanced Geothermal Systems and Exploring Beneath Newberry Volcano" is an interactive website that presents a three-dimensional subsurface model of Newberry Volcano developed at National Energy Technology Laboratory (NETL). Created using the Story Maps application by ArcGIS Online, this format's dynamic capabilities provide the user the opportunity for multimedia engagement with the datasets and information used to build the subsurface model. This website allows for an interactive experience that the user dictates, including interactive maps, instructive videos and video capture of the subsurface model, and linked information throughout the text. This Story Map offers a general background on the technology of enhanced geothermal systems and the geologic and development history of Newberry Volcano before presenting NETL's modeling efforts that support the installation of enhanced geothermal systems. The model is driven by multiple geologic and geophysical datasets to compare and contrast results which allow for the targeting of potential EGS sites and the reduction of subsurface uncertainty. This Story Map aims to communicate to a broad audience, and provides a platform to effectively introduce the model to researchers and stakeholders.

  4. Numerical simulation of tsunami generation by cold volcanic mass flows at Augustine Volcano, Alaska

    Science.gov (United States)

    Waythomas, C.F.; Watts, P.; Walder, J.S.

    2006-01-01

    Many of the world's active volcanoes are situated on or near coastlines. During eruptions, diverse geophysical mass flows, including pyroclastic flows, debris avalanches, and lahars, can deliver large volumes of unconsolidated debris to the ocean in a short period of time and thereby generate tsunamis. Deposits of both hot and cold volcanic mass flows produced by eruptions of Aleutian arc volcanoes are exposed at many locations along the coastlines of the Bering Sea, North Pacific Ocean, and Cook Inlet, indicating that the flows entered the sea and in some cases may have initiated tsunamis. We evaluate the process of tsunami generation by cold granular subaerial volcanic mass flows using examples from Augustine Volcano in southern Cook Inlet. Augustine Volcano is the most historically active volcano in the Cook Inlet region, and future eruptions, should they lead to debris-avalanche formation and tsunami generation, could be hazardous to some coastal areas. Geological investigations at Augustine Volcano suggest that as many as 12-14 debris avalanches have reached the sea in the last 2000 years, and a debris avalanche emplaced during an A.D. 1883 eruption may have initiated a tsunami that was observed about 80 km east of the volcano at the village of English Bay (Nanwalek) on the coast of the southern Kenai Peninsula. Numerical simulation of mass-flow motion, tsunami generation, propagation, and inundation for Augustine Volcano indicate only modest wave generation by volcanic mass flows and localized wave effects. However, for east-directed mass flows entering Cook Inlet, tsunamis are capable of reaching the more populated coastlines of the southwestern Kenai Peninsula, where maximum water amplitudes of several meters are possible.

  5. Late Holocene volcanism at Medicine Lake Volcano, northern California Cascades

    Science.gov (United States)

    Donnelly-Nolan, Julie M.; Champion, Duane E.; Grove, Timothy L.

    2016-05-23

    Late Holocene volcanism at Medicine Lake volcano in the southern Cascades arc exhibited widespread and compositionally diverse magmatism ranging from basalt to rhyolite. Nine well-characterized eruptions have taken place at this very large rear-arc volcano since 5,200 years ago, an eruptive frequency greater than nearly all other Cascade volcanoes. The lavas are widely distributed, scattered over an area of ~300 km2 across the >2,000-km2 volcano. The eruptions are radiocarbon dated and the ages are also constrained by paleomagnetic data that provide strong evidence that the volcanic activity occurred in three distinct episodes at ~1 ka, ~3 ka, and ~5 ka. The ~1-ka final episode produced a variety of compositions including west- and north-flank mafic flows interspersed in time with fissure rhyolites erupted tangential to the volcano’s central caldera, including the youngest and most spectacular lava flow at the volcano, the ~950-yr-old compositionally zoned Glass Mountain flow. At ~3 ka, a north-flank basalt eruption was followed by an andesite eruption 27 km farther south that contains quenched basalt inclusions. The ~5-ka episode produced two caldera-focused dacitic eruptions. Quenched magmatic inclusions record evidence of intrusions that did not independently reach the surface. The inclusions are present in five andesitic, dacitic, and rhyolitic host lavas, and were erupted in each of the three episodes. Compositional and mineralogic evidence from mafic lavas and inclusions indicate that both tholeiitic (dry) and calcalkaline (wet) parental magmas were present. Petrologic evidence records the operation of complex, multi-stage processes including fractional crystallization, crustal assimilation, and magma mixing. Experimental evidence suggests that magmas were stored at 3 to 6 km depth prior to eruption, and that both wet and dry parental magmas were involved in generating the more silicic magmas. The broad distribution of eruptive events and the relative

  6. Late Holocene history of Chaitén Volcano: new evidence for a 17th century eruption

    Science.gov (United States)

    Lara, Luis E.; Moreno, Rodrigo; Amigo, Álvaro; Hoblitt, Richard P.; Pierson, Thomas C.

    2013-01-01

    Prior to May 2008, it was thought that the last eruption of Chaitén Volcano occurred more than 5,000 years ago, a rather long quiescent period for a volcano in such an active arc segment. However, increasingly more Holocene eruptions are being identified. This article presents both geological and historical evidence for late Holocene eruptive activity in the 17th century (AD 1625-1658), which included an explosive rhyolitic eruption that produced pumice ash fallout east of the volcano and caused channel aggradation in the Chaitén River. The extents of tephra fall and channel aggradation were similar to those of May 2008. Fine ash, pumice and obsidian fragments in the pre-2008 deposits are unequivocally derived from Chaitén Volcano. This finding has important implications for hazards assessment in the area and suggests the eruptive frequency and magnitude should be more thoroughly studied.

  7. Circular-Arc Cartograms

    CERN Document Server

    Kämper, Jan-Hinrich; Nöllenburg, Martin

    2011-01-01

    We present a new circular-arc cartogram model in which countries are drawn with circular arcs instead of straight-line segments. Given a geographic map and values associated with each country in the map, the cartogram is a new map in which the areas of the countries represent the corresponding values. In the circular-arc cartogram model straight-line segments can be replaced with circular arcs in order to achieve the desired areas, while the corners of the polygons defining each country remain fixed. The countries in circular-arc cartograms have the aesthetically pleasing appearance of clouds or snowflakes, depending on whether their edges are bent outwards or inwards. This makes is easy to determine whether a country has grown or shrunk, just by its overall shape. We show that determining whether a given map and area-values can be realized with a circular-arc cartogram is an NP-hard problem. Next we describe a heuristic method for constructing circular-arc cartograms, which uses a max-flow computation on the...

  8. Subsurface architecture of Las Bombas volcano circular structure (Southern Mendoza, Argentina) from geophysical studies

    Science.gov (United States)

    Prezzi, Claudia; Risso, Corina; Orgeira, María Julia; Nullo, Francisco; Sigismondi, Mario E.; Margonari, Liliana

    2017-08-01

    The Plio-Pleistocene Llancanelo volcanic field is located in the south-eastern region of the province of Mendoza, Argentina. This wide back-arc lava plateau, with hundreds of monogenetic pyroclastic cones, covers a large area behind the active Andean volcanic arc. Here we focus on the northern Llancanelo volcanic field, particularly in Las Bombas volcano. Las Bombas volcano is an eroded, but still recognizable, scoria cone located in a circular depression surrounded by a basaltic lava flow, suggesting that Las Bombas volcano was there when the lava flow field formed and, therefore, the lava flow engulfed it completely. While this explanation seems reasonable, the common presence of similar landforms in this part of the field justifies the need to establish correctly the stratigraphic relationship between lava flow fields and these circular depressions. The main purpose of this research is to investigate Las Bombas volcano 3D subsurface architecture by means of geophysical methods. We carried out a paleomagnetic study and detailed topographic, magnetic and gravimetric land surveys. Magnetic anomalies of normal and reverse polarity and paleomagnetic results point to the occurrence of two different volcanic episodes. A circular low Bouguer anomaly was detected beneath Las Bombas scoria cone indicating the existence of a mass deficit. A 3D forward gravity model was constructed, which suggests that the mass deficit would be related to the presence of fracture zones below Las Bombas volcano cone, due to sudden degassing of younger magma beneath it, or to a single phreatomagmatic explosion. Our results provide new and detailed information about Las Bombas volcano subsurface architecture.

  9. Active Volcanoes of the Kurile Islands: A Reference Guide for Aviation Users

    Science.gov (United States)

    Neal, Christina A.; Rybin, Alexander; Chibisova, Marina; Miller, Edward

    2008-01-01

    Introduction: The many volcanoes of the remote and mostly uninhabited Kurile Island arc (fig. 1; table 1) pose a serious hazard for air traffic in the North Pacific. Ash clouds from Kurile eruptions can impact some of the busiest air travel routes in the world and drift quickly into airspace managed by three countries: Russia, Japan, and the United States. Prevailing westerly winds throughout the region will most commonly send ash from any Kurile eruption directly across the parallel North Pacific airways between North America and Asia (Kristine A. Nelson, National Weather Service, oral commun., 2006; fig. 1). This report presents maps showing locations of the 36 most active Kurile volcanoes plotted on Operational Navigational Charts published by the Defense Mapping Agency (map sheets ONC F-10, F-11, and E-10; figs. 1, 2, 3, 4). These maps are intended to assist aviation and other users in the identification of restless Kurile volcanoes. A regional map is followed by three subsections of the Kurile volcanic arc (North, Central, South). Volcanoes and selected primary geographic features are labeled. All maps contain schematic versions of the principal air routes and selected air navigational fixes in this region.

  10. Sulfur dioxide emissions from Alaskan volcanoes quantified using an ultraviolet SO_{2} camera

    Science.gov (United States)

    Kern, Christoph; Werner, Cynthia; Kelly, Peter; Brewer, Ian; Ketner, Dane; Paskievitch, John; Power, John

    2016-04-01

    Alaskan volcanoes are difficult targets for direct gas measurements as they are extremely remote and their peaks are mostly covered in ice and snow throughout the year. This makes access extremely difficult. In 2015, we were able to make use of an ultraviolet SO2 camera to quantify the SO2 emissions from Augustine Volcano, Redoubt Volcano, Mount Cleveland and Shishaldin Volcano in the Aleutian Arc. An airborne gas survey performed at Augustine Volcano in April 2015 found that the SO2 emission rate from the summit area was below 10 tonnes per day (t/d). SO2 camera measurements were performed two months later (June 2015) from a snow-free area just 100 meters from the fumarole on the south side of Augustine's summit dome to maximize camera sensitivity. Though the visible appearance of the plume emanating from the fumarole was opaque, the SO2 emissions were only slightly above the 40 ppmṡm detection limit of the SO2 camera. Still, SO2 could be detected and compared to coincident MultiGAS measurements of SO2, CO2 and H2S. At Redoubt Volcano, SO2 camera measurements were conducted on 13 June 2015 from a location 2 km to the north of the final 72x106 m3 dome extruded during the 2009 eruption. Imagery was collected of the plume visibly emanating from the top of the dome. Preliminary evaluation of the imagery and comparison with a coincident, helicopter-based DOAS survey showed that SO2 emission rates had dropped below 100 t/d (down from 180 t/d measured in April 2014). Mount Cleveland and Shishaldin Volcano were visited in August 2015 as part of an NSF-funded ship-based research expedition in the Central Aleutian Arc. At Mount Cleveland, inclement weather prohibited the collection of a lengthy time-series of SO2 camera imagery, but the limited data that was collected shows an emission rate of several hundred t/d. At Shishaldin, several hours of continuous imagery was acquired from a location 5 km east of the summit vent. The time series shows an SO2 emission rate of

  11. Along-arc geochemical and isotopic variations in Javanese volcanic rocks: 'crustal' versus 'source' contamination at the Sunda arc, Indonesia

    Science.gov (United States)

    Handley, H.; Blichert-Toft, J.; Turner, S.; Macpherson, C. G.

    2012-12-01

    Understanding the genesis of volcanic rocks in subduction zone settings is complicated by the multitude of differentiation processes and source components that exert control on lava geochemistry. Magma genesis and evolution at the Sunda arc is controlled and influenced by 1) along arc changes in the composition and thickness of the overriding Eurasian plate, 2) the variable age of the subducting oceanic crust and, 3) changes in the type and amount of sediment deposited on the subducting plate. Along-arc changes in geochemistry have long been recognised in the Sunda arc (Whitford, 1975), but debate still prevails over the cause of such variations and the relative importance of shallow (crustal) versus deep (subduction) contamination at the Sunda arc, Indonesia. Detailed study of individual Sunda arc volcanic centres is, therefore, a prerequisite in order to establish the relative importance and contributions of various potential source components and composition modifying differentiation processes at individual volcanoes, prior to an along arc comparative petrogenetic investigation. We present new radiogenic isotope data for Javanese volcanoes, which is combined with our recently published (Handley et al., 2007; Handley et al., 2008, Handley et al., 2010; Handley et al., 2011) geochemical and isotopic data of Javanese volcanic rocks along with data from other detailed geochemical studies to establish whether variable contributions from the subducting slab, or a change in crustal architecture of the overriding plate, best explain along-arc variations in isotope ratios and trace element characteristics. In West and Central Java Sr isotope ratios of the volcanic rocks broadly correlate with inferred lithospheric thickness implicating a shallow level control on isotopic composition. However, key trace element ratios combined with Hf isotope data indicate that the subducted slab and slab thermal regime also exert major control on the composition of the erupted Javanese

  12. Mud Volcanoes Formation And Occurrence

    Science.gov (United States)

    Guliyev, I. S.

    2007-12-01

    Mud volcanoes are natural phenomena, which occur throughout the globe. They are found at a greater or lesser scale in Azerbaijan, Turkmenistan, Georgia, on the Kerch and Taman peninsulas, on Sakhalin Island, in West Kuban, Italy, Romania, Iran, Pakistan, India, Burma, China, Japan, Indonesia, Malaysia, New Zealand, Mexico, Colombia, Trinidad and Tobago, Venezuela and Ecuador. Mud volcanoes are most well-developed in Eastern Azerbaijan, where more than 30% of all the volcanoes in the world are concentrated. More than 300 mud volcanoes have already been recognized here onshore or offshore, 220 of which lie within an area of 16,000 km2. Many of these mud volcanoes are particularly large (up to 400 m high). The volcanoes of the South Caspian form permanent or temporary islands, and numerous submarine banks. Many hypotheses have been developed regarding the origin of mud volcanoes. Some of those hypotheses will be examined in the present paper. Model of spontaneous excitation-decompaction (proposed by Ivanov and Guliev, 1988, 2002). It is supposed that one of major factors of the movement of sedimentary masses and formation of hydrocarbon deposits are phase transitions in sedimentary basin. At phase transitions there are abnormal changes of physical and chemical parameters of rocks. Abnormal (high and negative) pressure takes place. This process is called as excitation of the underground environment with periodicity from several tens to several hundreds, or thousand years. The relationship between mud volcanism and the generation of hydrocarbons, particularly methane, is considered to be a critical factor in mud volcano formation. At high flow rates the gas and sediment develops into a pseudo-liquid state and as flow increases the mass reaches the "so-called hover velocity" where mass transport begins. The mass of fluid moves as a quasi-uniform viscous mass through the sediment pile in a piston like manner until expelled from the surface as a "catastrophic eruption

  13. Pulsed plasma arc cladding

    Institute of Scientific and Technical Information of China (English)

    龙; 白钢; 李振民; 张赋升; 杨思乾

    2004-01-01

    A prototype of Pulsed Plasma Arc Cladding system was developed, in which single power source supplies both transferred plasma arc (TPA) and non-transferred plasma arc (N-TPA). Both plasmas work in turn in a high frequency controlled by an IGBT connecting nozzle and workpiece. The working frequency of IGBT ranges from 50 ~ 7000Hz, in which the plasmas can work in turn smoothly. Higher than 500 Hz of working frequency is suggested for promotion of cladding quality and protection of IGBT. Drag phenomenon of TPA intensifies as the frequency goes up, which tends to increase the current proportion of TPA and suppress N-TPA. The occupation ratio of IGBT can be regulated from 5% ~ 95%, which balances the power supplies of both plasmas. An occupation ratio higher than 50% gives adequate proportion of arc current for N-TPA to preheat powder.

  14. Filtered cathodic arc source

    Science.gov (United States)

    Falabella, Steven; Sanders, David M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45.degree. to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  15. Global Volcano Model

    Science.gov (United States)

    Sparks, R. S. J.; Loughlin, S. C.; Cottrell, E.; Valentine, G.; Newhall, C.; Jolly, G.; Papale, P.; Takarada, S.; Crosweller, S.; Nayembil, M.; Arora, B.; Lowndes, J.; Connor, C.; Eichelberger, J.; Nadim, F.; Smolka, A.; Michel, G.; Muir-Wood, R.; Horwell, C.

    2012-04-01

    Over 600 million people live close enough to active volcanoes to be affected when they erupt. Volcanic eruptions cause loss of life, significant economic losses and severe disruption to people's lives, as highlighted by the recent eruption of Mount Merapi in Indonesia. The eruption of Eyjafjallajökull, Iceland in 2010 illustrated the potential of even small eruptions to have major impact on the modern world through disruption of complex critical infrastructure and business. The effects in the developing world on economic growth and development can be severe. There is evidence that large eruptions can cause a change in the earth's climate for several years afterwards. Aside from meteor impact and possibly an extreme solar event, very large magnitude explosive volcanic eruptions may be the only natural hazard that could cause a global catastrophe. GVM is a growing international collaboration that aims to create a sustainable, accessible information platform on volcanic hazard and risk. We are designing and developing an integrated database system of volcanic hazards, vulnerability and exposure with internationally agreed metadata standards. GVM will establish methodologies for analysis of the data (eg vulnerability indices) to inform risk assessment, develop complementary hazards models and create relevant hazards and risk assessment tools. GVM will develop the capability to anticipate future volcanism and its consequences. NERC is funding the start-up of this initiative for three years from November 2011. GVM builds directly on the VOGRIPA project started as part of the GRIP (Global Risk Identification Programme) in 2004 under the auspices of the World Bank and UN. Major international initiatives and partners such as the Smithsonian Institution - Global Volcanism Program, State University of New York at Buffalo - VHub, Earth Observatory of Singapore - WOVOdat and many others underpin GVM.

  16. Remote Sensing of Active Volcanoes

    Science.gov (United States)

    Francis, Peter; Rothery, David

    The synoptic coverage offered by satellites provides unparalleled opportunities for monitoring active volcanoes, and opens new avenues of scientific inquiry. Thermal infrared radiation can be used to monitor levels of activity, which is useful for automated eruption detection and for studying the emplacement of lava flows. Satellite radars can observe volcanoes through clouds or at night, and provide high-resolution topographic data. In favorable conditions, radar inteferometery can be used to measure ground deformation associated with eruptive activity on a centimetric scale. Clouds from explosive eruptions present a pressing hazard to aviation; therefore, techniques are being developed to assess eruption cloud height and to discriminate between ash and meterological clouds. The multitude of sensors to be launched on future generations of space platforms promises to greatly enhance volcanological studies, but a satellite dedicated to volcanology is needed to meet requirements of aviation safety and volcano monitoring.

  17. Mount Rainier: A decade volcano

    Science.gov (United States)

    Swanson, Donald A.; Malone, Stephen D.; Samora, Barbara A.

    Mount Rainier, the highest (4392 m) volcano in the Cascade Range, towers over a population of more than 2.5 million in the Seattle-Tacoma metropolitan area, and its drainage system via the Columbia River potentially affects another 500,000 residents of southwestern Washington and northwestern Oregon (Figure 1). Mount Rainier is the most hazardous volcano in the Cascades in terms of its potential for magma-water interaction and sector collapse. Major eruptions, or debris flows even without eruption, pose significant dangers and economic threats to the region. Despite such hazard and risk, Mount Rainier has received little study; such important topics as its petrologic and geochemical character, its proximal eruptive history, its susceptibility to major edifice failure, and its development over time have been barely investigated. This situation may soon change because of Mount Rainier's recent designation as a “Decade Volcano.”

  18. Systematic radon survey over active volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, J.L.; Monnin, M.; Garcia Vindas, J.R. [Centre National de la Recherche Cientifique, Montpellier (France). Lab. GBE; Ricard, L.P.; Staudacher, T. [Observatoire Volcanologique Du Pitou de la Fournaise, La Plaine des Cafres (France)

    1999-08-01

    Data obtained since 1993 on Costa Rica volcanos are presented and radon anomalies recorded before the eruption of the Irazu volcano (December 8, 1994) are discussed. The Piton de la Fournaise volcano is inactive since mid 1992. The influence of the external parameters on the radon behaviour is studied and the type of perturbations induced on short-term measurements are individuate.

  19. Alaska volcanoes guidebook for teachers

    Science.gov (United States)

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at

  20. Current perspectives on energy and mass fluxes in volcanic arcs

    Science.gov (United States)

    Leeman, William; Davidson, Jon; Fischer, Tobias; Grunder, Anita; Reagan, Mark; Streck, Martin

    Volcanoes of the Pacific Ring of Fire and other convergent margins worldwide are familiar manifestations of nature's energy, account for about 25% of global volcanic outputs, dominate volcanic gas emissions to the atmosphere, and pose significant physical threats to a large human population. Yet the processes behind this prolific activity remain poorly understood.An international “State of the Arc” (SOTA) conference was held in August on the slopes of Mt. Hood, Oregon, to address current views on the energy and mass fluxes in volcanic arcs. This meeting brought together some 90 leading experts and students of subduction zones and their related magmatism.

  1. Preliminary volcano-hazard assessment for Augustine Volcano, Alaska

    Science.gov (United States)

    Waythomas, Christopher F.; Waitt, Richard B.

    1998-01-01

    Augustine Volcano is a 1250-meter high stratovolcano in southwestern Cook Inlet about 280 kilometers southwest of Anchorage and within about 300 kilometers of more than half of the population of Alaska. Explosive eruptions have occurred six times since the early 1800s (1812, 1883, 1935, 1964-65, 1976, and 1986). The 1976 and 1986 eruptions began with an initial series of vent-clearing explosions and high vertical plumes of volcanic ash followed by pyroclastic flows, surges, and lahars on the volcano flanks. Unlike some prehistoric eruptions, a summit edifice collapse and debris avalanche did not occur in 1812, 1935, 1964-65, 1976, or 1986. However, early in the 1883 eruption, a portion of the volcano summit broke loose forming a debris avalanche that flowed to the sea. The avalanche initiated a small tsunami reported on the Kenai Peninsula at English Bay, 90 kilometers east of the volcano. Plumes of volcanic ash are a major hazard to jet aircraft using Anchorage International and other local airports. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Eruptions similar to the historical and prehistoric eruptions are likely in Augustine's future.

  2. Intraplate volcanism controlled by back-arc and continental structures in NE Asia inferred from transdimensional Bayesian ambient noise tomography

    Science.gov (United States)

    Kim, Seongryong; Tkalčić, Hrvoje; Rhie, Junkee; Chen, Youlin

    2016-08-01

    Intraplate volcanism adjacent to active continental margins is not simply explained by plate tectonics or plume interaction. Recent volcanoes in northeast (NE) Asia, including NE China and the Korean Peninsula, are characterized by heterogeneous tectonic structures and geochemical compositions. Here we apply a transdimensional Bayesian tomography to estimate high-resolution images of group and phase velocity variations (with periods between 8 and 70 s). The method provides robust estimations of velocity maps, and the reliability of results is tested through carefully designed synthetic recovery experiments. Our maps reveal two sublithospheric low-velocity anomalies that connect back-arc regions (in Japan and Ryukyu Trench) with current margins of continental lithosphere where the volcanoes are distributed. Combined with evidences from previous geochemical and geophysical studies, we argue that the volcanoes are related to the low-velocity structures associated with back-arc processes and preexisting continental lithosphere.

  3. Alteration, slope-classified alteration, and potential lahar inundation maps of volcanoes for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Volcano Archive

    Science.gov (United States)

    Mars, John C.; Hubbard, Bernard E.; Pieri, David; Linick, Justin

    2015-01-01

    This study identifies areas prone to lahars from hydrothermally altered volcanic edifices on a global scale, using visible and near infrared (VNIR) and short wavelength infrared (SWIR) reflectance data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and digital elevation data from the ASTER Global Digital Elevation Model (GDEM) dataset. This is the first study to create a global database of hydrothermally altered volcanoes showing quantitatively compiled alteration maps and potentially affected drainages, as well as drainage-specific maps illustrating modeled lahars and their potential inundation zones. We (1) identified and prioritized 720 volcanoes based on population density surrounding the volcanoes using the Smithsonian Institution Global Volcanism Program database (GVP) and LandScan™ digital population dataset; (2) validated ASTER hydrothermal alteration mapping techniques using Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) and ASTER data for Mount Shasta, California, and Pico de Orizaba (Citlaltépetl), Mexico; (3) mapped and slope-classified hydrothermal alteration using ASTER VNIR-SWIR reflectance data on 100 of the most densely populated volcanoes; (4) delineated drainages using ASTER GDEM data that show potential flow paths of possible lahars for the 100 mapped volcanoes; (5) produced potential alteration-related lahar inundation maps using the LAHARZ GIS code for Iztaccíhuatl, Mexico, and Mount Hood and Mount Shasta in the United States that illustrate areas likely to be affected based on DEM-derived volume estimates of hydrothermally altered rocks and the ~2x uncertainty factor inherent within a statistically-based lahar model; and (6) saved all image and vector data for 3D and 2D display in Google Earth™, ArcGIS® and other graphics display programs. In addition, these data are available from the ASTER Volcano Archive (AVA) for distribution (available at http://ava.jpl.nasa.gov/recent_alteration_zones.php).

  4. Modeling of Arc Force in Plasma Arc Welding

    Institute of Scientific and Technical Information of China (English)

    GAO Zhonglin; HU Shengsun; YIN Fengliang; WANG Rui

    2008-01-01

    A three. dimensional mathematical model for the transferred-type argon arc was developed to describe arc force on the anode surface. The software ANSYS was employed to solve the model. The model includes a part of torch and tungsten electrode to achieve m ore reasonable results. The arc temperature and flow fields were derived. And the influences of welding parameters on arc force were also studied. The simulated results show that arc pressure at the anode are dependent on the welding current, plasma gas flow rate and electrode neck-in, while not sensitive to arc length.

  5. MODELING PARAMETERS OF ARC OF ELECTRIC ARC FURNACE

    Directory of Open Access Journals (Sweden)

    R.N. Khrestin

    2015-08-01

    Full Text Available Purpose. The aim is to build a mathematical model of the electric arc of arc furnace (EAF. The model should clearly show the relationship between the main parameters of the arc. These parameters determine the properties of the arc and the possibility of optimization of melting mode. Methodology. We have built a fairly simple model of the arc, which satisfies the above requirements. The model is designed for the analysis of electromagnetic processes arc of varying length. We have compared the results obtained when testing the model with the results obtained on actual furnaces. Results. During melting in real chipboard under the influence of changes in temperature changes its properties arc plasma. The proposed model takes into account these changes. Adjusting the length of the arc is the main way to regulate the mode of smelting chipboard. The arc length is controlled by the movement of the drive electrode. The model reflects the dynamic changes in the parameters of the arc when changing her length. We got the dynamic current-voltage characteristics (CVC of the arc for the different stages of melting. We got the arc voltage waveform and identified criteria by which possible identified stage of smelting. Originality. In contrast to the previously known models, this model clearly shows the relationship between the main parameters of the arc EAF: arc voltage Ud, amperage arc id and length arc d. Comparison of the simulation results and experimental data obtained from real particleboard showed the adequacy of the constructed model. It was found that character of change of magnitude Md, helps determine the stage of melting. Practical value. It turned out that the model can be used to simulate smelting in EAF any capacity. Thus, when designing the system of control mechanism for moving the electrode, the model takes into account changes in the parameters of the arc and it can significantly reduce electrode material consumption and energy consumption

  6. Mount Rainier, a decade volcano

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, S.C.; Hooper, P.R. (Washington State Univ., Pullman, WA (United States). Dept. of Geology); Eggers, A.E. (Univ. of Puget Sound, Tacoma, WA (United States). Dept. of Geology)

    1993-04-01

    Mount Rainier, recently designated as a decade volcano, is a 14,410 foot landmark which towers over the heavily populated southern Puget Sound Lowland of Washington State. It last erupted in the mid-1800's and is an obvious threat to this area, yet Rainier has received little detailed study. Previous work has divided Rainier into two distinct pre-glacial eruptive episodes and one post-glacial eruptive episode. In a pilot project, the authors analyzed 253 well-located samples from the volcano for 27 major and trace elements. Their objective is to test the value of chemical compositions as a tool in mapping the stratigraphy and understanding the eruptive history of the volcano which they regard as prerequisite to determining the petrogenesis and potential hazard of the volcano. The preliminary data demonstrates that variation between flows is significantly greater than intra-flow variation -- a necessary condition for stratigraphic use. Numerous flows or groups of flows can be distinguished chemically. It is also apparent from the small variation in Zr abundances and considerable variation in such ratios as Ba/Nb that fractional crystallization plays a subordinate role to some form of mixing process in the origin of the Mount Rainier lavas.

  7. Arc Plasma Torch Modeling

    CERN Document Server

    Trelles, J P; Vardelle, A; Heberlein, J V R

    2013-01-01

    Arc plasma torches are the primary components of various industrial thermal plasma processes involving plasma spraying, metal cutting and welding, thermal plasma CVD, metal melting and remelting, waste treatment and gas production. They are relatively simple devices whose operation implies intricate thermal, chemical, electrical, and fluid dynamics phenomena. Modeling may be used as a means to better understand the physical processes involved in their operation. This paper presents an overview of the main aspects involved in the modeling of DC arc plasma torches: the mathematical models including thermodynamic and chemical non-equilibrium models, turbulent and radiative transport, thermodynamic and transport property calculation, boundary conditions and arc reattachment models. It focuses on the conventional plasma torches used for plasma spraying that include a hot-cathode and a nozzle anode.

  8. NOAA Deepwater Exploration of the Marianas 2016: Volcanic arc and Backarc Basin

    Science.gov (United States)

    Stern, R. J.; Brounce, M. N.; Chadwick, B.; Fryer, P. B.; Glickson, D.; Merle, S. G.

    2016-12-01

    Legs 1 and 3 of NOAA Okeanos Explorer EX1605 devoted a total of 17 ROV dives to exploring the Mariana magmatic arc and backarc basin (BAB). Dives were carried out on 11 submarine arc volcanoes, the submerged slopes of two volcanic islands, and at 3 BAB sites along 1000 km of the Mariana arc system. Four of the studied arc volcanoes are extinct, three are dormant, and six are active. All BAB dives were on the spreading ridge between 15-17°N, which is volcanically active. Geologic highpoints of these dives include: 1) discovery of an extinct hydrothermal chimney ( 15m tall) in Fina Nagu A (Leg 1, Dive 7; L1D7); 2) observations of very fresh (<3 years old) BAB pillow basalts (L1D9); 3) discovery of a very active BAB hydrothermal field (T 340°C, active chimneys up to 30m tall; L1D11); 4) examination of Esmeralda Bank crater floor (active venting but too murky to find vents; L1D19); 5) discovery of hydrothermal vents with vent fauna on Chamorro volcano (L3D7; T 30°C, active chimneys 2m tall); and 6) examination of active venting and S degassing at 500-350 m depth on Daikoku volcano (L3D9). Video clips of some of the most exciting discoveries and examinations will be presented. We plan to compare previous bathymetry over the active volcanoes with what was collected during EX1605 to quantify how these edifices have changed since when these were previously mapped, over the past 13 years or less. These dives also provided visual evidence in support of the hypothesis that individual edifices of the Fina Nagu Volcanic Complex increase in age from NE to SW, interpreted as due to the motion of actively-extending lithosphere of the southern Mariana BAB to the SW over a relatively fixed source of arc magma above the subducting Pacific plate (Brounce et al. G3 2016). Continuous interaction between biologists and geologists on EX1605 allowed us to identify regions of high faunal density on hard substrates around some active volcanoes, for example Esmeralda Bank, presumably

  9. Arc Heated Scramjet Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Arc Heated Scramjet Test Facility is an arc heated facility which simulates the true enthalpy of flight over the Mach number range of about 4.7 to 8 for free-jet...

  10. ARc Welding (Industrial Processing Series).

    Science.gov (United States)

    ARC WELDING , *BIBLIOGRAPHIES), (*ARC WELDS, BIBLIOGRAPHIES), ALUMINUM ALLOYS, TITANIUM ALLOYS, CHROMIUM ALLOYS, METAL PLATES, SPOT WELDING , STEEL...INERT GAS WELDING , MARAGING STEELS, MICROSTRUCTURE, HEAT RESISTANT ALLOYS, HEAT RESISTANT METALS, WELDABILITY, MECHANICAL PROPERTIES, MOLYBDENUM ALLOYS, NICKEL ALLOYS, RESISTANCE WELDING

  11. Variable polarity arc welding

    Science.gov (United States)

    Bayless, E. O., Jr.

    1991-01-01

    Technological advances generate within themselves dissatisfactions that lead to further advances in a process. A series of advances in welding technology which culminated in the Variable Polarity Plasma Arc (VPPA) Welding Process and an advance instituted to overcome the latest dissatisfactions with the process: automated VPPA welding are described briefly.

  12. Thermal Arc Spray Overview

    Science.gov (United States)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  13. ALICE: ARC integration

    CERN Document Server

    Anderlik, C; Kleist, J; Peters, A; Saiz, P

    2008-01-01

    AliEn or Alice Environment is the Grid middleware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The inter-operation has two aspects, one is the data management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. Therefore, we will concentrate on the second part. Solving it, was somewhat cumbersome, mainly due to the different computing models employed by AliEn and ARC. AliEN uses an Agent based pull model while ARC handles jobs through the more 'traditional' push model. The solution comes as a modu...

  14. ALICE-ARC integration

    DEFF Research Database (Denmark)

    Anderlik, Csaba; Gregersen, Anders Rhod; Kleist, Josva;

    2008-01-01

    Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The interoperation has two aspects, one is the data...

  15. Gas tungsten arc welder

    Science.gov (United States)

    Christiansen, D.W.; Brown, W.F.

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  16. Submarine Hydrothermal Activity on the Aeolian Arc: New evidence from Helium Isotopes

    OpenAIRE

    Lupton, John; De Ronde, Cornel; Beker, Edward; Italiano, Francesco; Sprovieri, Mario; Bruno, Pier Paolo; FAURE, Kevin; Walker, Sharon

    2008-01-01

    In November 2007 we conducted a water-column and seafloor mapping study of the submarine volcanoes of the Aeolian Arc in the southern Tyrrhenian Sea aboard the R/V Urania. A total of 26 CTD casts were completed, 13 vertical casts and 13 tows. In addition to in situ measurements of temperature, conductivity, pressure and suspended particles, we also collected discrete samples for helium isotopes, methane, and trace metals. The helium isotope ratio, which is known to be an unambiguous indica...

  17. Motion of polar cap arcs

    Science.gov (United States)

    Hosokawa, K.; Moen, J. I.; Shiokawa, K.; Otsuka, Y.

    2011-01-01

    A statistics of motion of polar cap arcs is conducted by using 5 years of optical data from an all-sky imager at Resolute Bay, Canada (74.73°N, 265.07°E). We identified 743 arcs by using an automated arc detection algorithm and statistically examined their moving velocities as estimated by the method of Hosokawa et al. (2006). The number of the arcs studied is about 5 times larger than that in the previous statistics of polar cap arcs by Valladares et al. (1994); thus, we could expect to obtain more statistically significant results. Polar cap arcs are found to fall into two distinct categories: the By-dependent and By-independent arcs. The motion of the former arcs follows the rule reported by Valladares et al. (1994), who showed that stable polar cap arcs move in the direction of the interplanetary magnetic field (IMF) By. About two thirds of the arcs during northward IMF conditions belong to this category. The latter arcs always move poleward irrespective of the sign of the IMF By, which possibly correspond to the poleward moving arcs in the morning side reported by Shiokawa et al. (1997). At least one third of the arcs belong to this category. The By-dependent arcs tend to move faster when the magnitude of the IMF By is larger, suggesting that the transport of open flux by lobe reconnection from one polar cap compartment to the other controls their motion. In contrast, the speed of the By-independent arcs does not correlate with the magnitude of the By. The motions of both the By-dependent and By-independent arcs are most probably caused by the magnetospheric convection. Convection in the region of By-dependent arcs is affected by the IMF By, which indicates that their sources may be on open field lines or in the closed magnetosphere adjacent to the open-closed boundary, whereas By-independent arcs seem to be well on closed field lines. Hence, the magnetospheric source of the two types of arc may be different. This implies that the mechanisms causing the

  18. Aleutian Islands Coastal Resources Inventory and Environmental Sensitivity Maps: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains point locations of active volcanoes as compiled by Motyka et al., 1993. Eighty-nine volcanoes with eruptive phases in the Quaternary are...

  19. Volcano-tectonic structures and CO2-degassing patterns in the Laacher See basin, Germany

    Science.gov (United States)

    Goepel, Andreas; Lonschinski, Martin; Viereck, Lothar; Büchel, Georg; Kukowski, Nina

    2015-07-01

    The Laacher See Volcano is the youngest (12,900 year BP) eruption center of the Quarternary East-Eifel Volcanic Field in Germany and has formed Laacher See, the largest volcanic lake in the Eifel area. New bathymetric data of Laacher See were acquired by an echo sounder system and merged with topographic light detection and ranging (LiDAR) data of the Laacher See Volcano area to form an integrated digital elevation model. This model provides detailed morphological information about the volcano basin and results of sediment transport therein. Morphological analysis of Laacher See Volcano indicates a steep inner crater wall (slope up to 30°) which opens to the south. The Laacher See basin is divided into a deep northern and a shallower southern part. The broader lower slopes inclined with up to 25° change to the almost flat central part (maximum water depth of 51 m) with a narrow transition zone. Erosion processes of the crater wall result in deposition of volcaniclastics as large deltas in the lake basin. A large subaqueous slide was identified at the northeastern part of the lake. CO2-degassing vents (wet mofettes) of Laacher See were identified by a single-beam echo sounder system through gas bubbles in the water column. These are more frequent in the northern part of the lake, where wet mofettes spread in a nearly circular-shaped pattern, tracing the crater rim of the northern eruption center of the Laacher See Volcano. Additionally, preferential paths for gas efflux distributed concentrically inside the crater rim are possibly related to volcano-tectonic faults. In the southern part of Laacher See, CO2 vents occur in a high spatial density only within the center of the arc-shaped structure Barschbuckel possibly tracing the conduit of a tuff ring.

  20. Investigating the long-term geodetic response to magmatic intrusions at volcanoes in northern California

    Science.gov (United States)

    Parker, A. L.; Biggs, J.; Annen, C.; Houseman, G. A.; Yamasaki, T.; Wright, T. J.; Walters, R. J.; Lu, Z.

    2014-12-01

    Ratios of intrusive to extrusive activity at volcanic arcs are thought to be high, with estimates ranging between 5:1 and 30:1. Understanding the geodetic response to magmatic intrusion is therefore fundamental to large-scale studies of volcano deformation, providing insight into the dynamics of the inter-eruptive period of the volcano cycle and the building of continental crust. In northern California, we identify two volcanoes - Medicine Lake Volcano (MLV) and Lassen Volcanic Center (LaVC) - that exhibit long-term (multi-decadal) subsidence. We test the hypothesis that deformation at these volcanoes results from processes associated with magmatic intrusions. We first constrain the spatial and temporal characteristics of the deformation fields, establishing the first time-series of deformation at LaVC using InSAR data, multi-temporal analysis techniques and global weather models. Although the rates of deformation at the two volcanoes are similar (~1 cm/yr), our results show that the ratio of vertical to horizontal displacements is significantly different, suggesting contrasting source geometries. To test the origin of deformation, we develop modeling strategies to investigate thermal and viscoelastic processes associated with magmatic intrusions. The first model we develop couples analytical geodetic models to a numerical model of volume loss due to cooling and crystallization based upon temperature-melt fraction relationships from petrological experiments. This model provides evidence that magmatic intrusion at MLV has occurred more recently than the last eruption ~1 ka. The second model we test uses a finite element approach to simulate the time-dependent viscoelastic response of the crust to magmatic intrusion. We assess the magnitude and timescales of ground deformation that may result from these processes, exploring the model parameter space before applying the models to our InSAR observations of subsidence in northern California.

  1. Volcano Monitoring Using Google Earth

    Science.gov (United States)

    Bailey, J. E.; Dehn, J.; Webley, P.; Skoog, R.

    2006-12-01

    At the Alaska Volcano Observatory (AVO), Google Earth is being used as a visualization tool for operational satellite monitoring of the region's volcanoes. Through the abilities of the Keyhole Markup Language (KML) utilized by Google Earth, different datasets have been integrated into this virtual globe browser. Examples include the ability to browse thermal satellite image overlays with dynamic control, to look for signs of volcanic activity. Webcams can also be viewed interactively through the Google Earth interface to confirm current activity. Other applications include monitoring the location and status of instrumentation; near real-time plotting of earthquake hypocenters; mapping of new volcanic deposits; and animated models of ash plumes within Google Earth, created by a combination of ash dispersion modeling and 3D visualization packages. The globe also provides an ideal interface for displaying near real-time information on detected thermal anomalies or "hotspot"; pixels in satellite images with elevated brightness temperatures relative to the background temperature. The Geophysical Institute at the University of Alaska collects AVHRR (Advanced Very High Resolution Radiometer) and MODIS (Moderate Resolution Imaging Spectroradiometer) through its own receiving station. The automated processing that follows includes application of algorithms that search for hotspots close to volcano location, flagging those that meet certain criteria. Further automated routines generate folders of KML placemarkers, which are linked to Google Earth through the network link function. Downloadable KML files have been created to provide links to various data products for different volcanoes and past eruptions, and to demonstrate examples of the monitoring tools developed. These KML files will be made accessible through a new website that will become publicly available in December 2006.

  2. Modeling eruptions of Karymsky volcano

    OpenAIRE

    Ozerov, A.; Ispolatov, I.; Lees, J.

    2001-01-01

    A model is proposed to explain temporal patterns of activity in a class of periodically exploding Strombolian-type volcanos. These patterns include major events (explosions) which follow each other every 10-30 minutes and subsequent tremor with a typical period of 1 second. This two-periodic activity is thought to be caused by two distinct mechanisms of accumulation of the elastic energy in the moving magma column: compressibility of the magma in the lower conduit and viscoelastic response of...

  3. 3-D simulation for the tectonic evolution around the Kanto Region of Japan using the kinematic plate subduction model

    Science.gov (United States)

    Hashima, A.; Sato, T.; Ito, T.; Miyauchi, T.; Kameo, K.; Yamamoto, S.

    2011-12-01

    In the Kanto region of Japan, we can observe one of the most active crustal deformations on the earth. In the southern part of the Boso peninsula to the south, the uplift rate is estimated to be 5 mm/yr from the height of marine terraces. From geological evidence, the Kanto mountains to the west are considered to uplift at 1mm/yr. In contrast, the center part of the Kanto region is stable or subsiding, covered by the Holocene sediments. The depth of the basement reaches 3 km at the deepest. Vertical deformation in the timescale of 1 Myr is being revealed by the analysis of the recent seismic reflection experiments compared with the heights of the dated sediment layers exposed on land. These crustal deformation occurs in a highly complex tectonic setting with four plates interacting with each other: beneath Kanto, situated on the Eurasian and North American plates, the Philippine sea plate subducts and the Pacific plate further descends beneath the North American and Philippine sea plates, forming the unique trench-trench-trench triple junction on the earth. In addition, the Izu-Bonin (Ogasawara) arc on the Philippine sea plate is colliding with the Japan islands due to the buoyancy of the arc crust. At the plate boundaries near the Izu-Bonin arc, large interplate earthquakes occurred at the Sagami trough in 1703 and 1923 (Kanto earthquake) and at the Nankai trough in 1707, 1854 and 1944. To reveal the crustal deformation under these plate-to-plate interactions, we use the kinematic plate subduction model based on the elastic dislocation theory. This model is based on the idea that mechanical interaction between plates can rationally be represented by the increase of the displacement discontinuity (dislocation) across plate interfaces. Given the 3-D geometry of plate interfaces, the distribution of slip rate vectors for simple plate subduction can be obtained directly from relative plate velocities. In collision zones, the plate with arc crust cannot easily descend

  4. Earthquakes - Volcanoes (Causes and Forecast)

    Science.gov (United States)

    Tsiapas, E.

    2009-04-01

    EARTHQUAKES - VOLCANOES (CAUSES AND FORECAST) ELIAS TSIAPAS RESEARCHER NEA STYRA, EVIA,GREECE TEL.0302224041057 tsiapas@hol.gr The earthquakes are caused by large quantities of liquids (e.g. H2O, H2S, SO2, ect.) moving through lithosphere and pyrosphere (MOHO discontinuity) till they meet projections (mountains negative projections or projections coming from sinking lithosphere). The liquids are moved from West Eastward carried away by the pyrosphere because of differential speed of rotation of the pyrosphere by the lithosphere. With starting point an earthquake which was noticed at an area and from statistical studies, we know when, where and what rate an earthquake may be, which earthquake is caused by the same quantity of liquids, at the next east region. The forecast of an earthquake ceases to be valid if these components meet a crack in the lithosphere (e.g. limits of lithosphere plates) or a volcano crater. In this case the liquids come out into the atmosphere by the form of gasses carrying small quantities of lava with them (volcano explosion).

  5. Comprehensive study of the seismotectonics of the eastern Aleutian arc and associated volcanic systems. Annual progress report, March 1, 1980-February 28, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, K.H.; Davies, J.N.; House, L.

    1981-01-01

    Refined hypocenter locations beneath the Shumagin Islands seismic network of the eastern Aleutian arc, Alaska, provide for the first time conclusive evidence for a double-sheeted dipping seismic (Benioff) zone in this arc. This refined seismicity structure was obtained in the arc section centered on the Shumagin seismic gap. A thorough review of three seismic gaps in the eastern Aleutian arc shows a high potential for great earthquakes within the next one to two decades in the Shumagin and Yakataga seismic gaps, and a less certain potential for a large or great earthquake in the possible Unalaska gap. A tilt reversal was geodetically observed to have occurred in 1978/79 in the forearc region of the Shumagin gap and could indicate the onset of a precursory strain relief episode prior to a great quake. A comparative study of the Pavlof volcano seismicity with that of other recently active volcanoes (i.e., Mt. St. Helens) indicates that island-arc (explosive-type) volcanoes respond to small ambient, periodic stress changes (i.e., tides). Stress drop measurements from earthquakes on the main thrust zone indicate high stress drops within the seismic gap regions of the Aleutian arc and low stress drops outside the gap region.

  6. Active Deformation of Etna Volcano Combing IFSAR and GPS data

    Science.gov (United States)

    Lundgren, Paul

    1997-01-01

    The surface deformation of an active volcano is an important indicator of its eruptive state and its hazard potential. Mount Etna volcano in Sicily is a very active volcano with well documented eruption episodes.

  7. Campgrounds in Hawaii Volcanoes National Park

    Data.gov (United States)

    National Park Service, Department of the Interior — This dataset provides campground locations in Hawaii Volcanoes National Park. Information about facilities, water availability, permit requirements and type of...

  8. The Magma-Hydrothermal System at Mutnovsky Volcano, Kamchatka Peninsula, Russia

    Directory of Open Access Journals (Sweden)

    Alexey Kiryukhin

    2009-03-01

    Full Text Available What is the relationship between the kinds of volcanoes that ring the Pacific plate and nearby hydrothermal systems? A typical geometry for stratovolcanoes and dome complexes is summit fumaroles and hydrothermal manifestations on and beyond their flanks. Analogous subsurface mineralization is porphyry copper deposits flanked by shallow Cu-As-Au acid-sulfate deposits and base metal veins. Possible reasons for this association are (1 upward and outward flow of magmatic gas and heat from the volcano’s conduit and magma reservoir, mixing with meteoric water; (2 dikes extending from or feeding towards the volcano that extend laterally well beyond the surface edifice, heating a broad region; or (3 peripheral hot intrusions that are remnants of previous volcanic episodes, unrelated to current volcanism. These hypotheses are testable through a Mutnovsky Scientific Drilling Project (MSDP that was discussed in a workshop during the last week of September 2006 at a key example, the Mutnovsky Volcano of Kamchatka. Hypothesis (1 was regarded as the most likely. It is also the most attractive since it could lead to a new understanding of themagma-hydrothermal connection and motivate global geothermal exploration of andesitic arc volcanoes.

  9. Modeling rf breakdown arcs

    CERN Document Server

    Insepov, Zeke; Huang, Dazhang; Mahalingam, Sudhakar; Veitzer, Seth

    2010-01-01

    We describe breakdown in 805 MHz rf accelerator cavities in terms of a number of mechanisms. We devide the breakdown process into three stages: (1) we model surface failure using molecular dynamics of fracture caused by electrostatic tensile stress, (2) we model the ionization of neutrals responsible for plasma initiation and plasma growth using a particle in cell code, and (3) we model surface damage by assuming a process similar to unipolar arcing. Although unipolar arcs are strictly defined with equipotential boundaries, we find that the cold, dense plasma in contact with the surface produces very small Debye lengths and very high electric fields over a large area. These high fields produce strong erosion mechanisms, primarily self sputtering, compatible with the crater formation that we see. Results from the plasma simulation are included as a guide to experimental verification of this model.

  10. ALICE - ARC integration

    DEFF Research Database (Denmark)

    Anderlik, Csaba; Gregersen, Anders Rhod; Kleist, Josva;

    AliEn or Alice Environment is the Gridware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic...... Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The interoperation has two aspects, one is the data...... management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. dCache provides support for several data management tools (among them for xrootd the tools used by AliEn) using the so called "doors". Therefore, we will concentrate on the second...

  11. The ARCS radial collimator

    OpenAIRE

    Stone M.B.; Niedziela J.L.; Overbay M.A.; Abernathy D.L.

    2015-01-01

    We have designed, installed, and commissioned a scattered beam radial collimator for use at the ARCS Wide Angular Range Chopper Spectrometer at the Spallation Neutron Source. The collimator has been designed to work effectively for thermal and epithermal neutrons and with a range of sample environments. Other design considerations include the accommodation of working within a high vacuum environment and having the ability to quickly install and remove the collimator from the scattered beam. W...

  12. Research on Methods for Building Volcano Disaster Information System--taking Changbai Mountain as an example

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xuexia; BO Liqun; LU Xingchang

    2001-01-01

    Volcano eruption is one of the most serious geological disasters in the world. There are volcanoes in every territory on the earth, about a thousand in China, among which Changbai Mountain Volcano, Wudalianchi Volcano and Tengchong Volcano are the most latent catastrophic eruptive active volcanoes. The paper, following an instance of Changbai Mountain Volcano, expounds that monitoring, forecasting and estimating volcano disaster by building Volcano Disaster Information System (VDIS) is feasible to alleviate volcano disaster.

  13. Circular arc structures

    KAUST Repository

    Bo, Pengbo

    2011-07-01

    The most important guiding principle in computational methods for freeform architecture is the balance between cost efficiency on the one hand, and adherence to the design intent on the other. Key issues are the simplicity of supporting and connecting elements as well as repetition of costly parts. This paper proposes so-called circular arc structures as a means to faithfully realize freeform designs without giving up smooth appearance. In contrast to non-smooth meshes with straight edges where geometric complexity is concentrated in the nodes, we stay with smooth surfaces and rather distribute complexity in a uniform way by allowing edges in the shape of circular arcs. We are able to achieve the simplest possible shape of nodes without interfering with known panel optimization algorithms. We study remarkable special cases of circular arc structures which possess simple supporting elements or repetitive edges, we present the first global approximation method for principal patches, and we show an extension to volumetric structures for truly threedimensional designs. © 2011 ACM.

  14. Volcanic hazards at Atitlan volcano, Guatemala

    Science.gov (United States)

    Haapala, J.M.; Escobar Wolf, R.; Vallance, James W.; Rose, William I.; Griswold, J.P.; Schilling, S.P.; Ewert, J.W.; Mota, M.

    2006-01-01

    Atitlan Volcano is in the Guatemalan Highlands, along a west-northwest trending chain of volcanoes parallel to the mid-American trench. The volcano perches on the southern rim of the Atitlan caldera, which contains Lake Atitlan. Since the major caldera-forming eruption 85 thousand years ago (ka), three stratovolcanoes--San Pedro, Toliman, and Atitlan--have formed in and around the caldera. Atitlan is the youngest and most active of the three volcanoes. Atitlan Volcano is a composite volcano, with a steep-sided, symmetrical cone comprising alternating layers of lava flows, volcanic ash, cinders, blocks, and bombs. Eruptions of Atitlan began more than 10 ka [1] and, since the arrival of the Spanish in the mid-1400's, eruptions have occurred in six eruptive clusters (1469, 1505, 1579, 1663, 1717, 1826-1856). Owing to its distance from population centers and the limited written record from 200 to 500 years ago, only an incomplete sample of the volcano's behavior is documented prior to the 1800's. The geologic record provides a more complete sample of the volcano's behavior since the 19th century. Geologic and historical data suggest that the intensity and pattern of activity at Atitlan Volcano is similar to that of Fuego Volcano, 44 km to the east, where active eruptions have been observed throughout the historical period. Because of Atitlan's moderately explosive nature and frequency of eruptions, there is a need for local and regional hazard planning and mitigation efforts. Tourism has flourished in the area; economic pressure has pushed agricultural activity higher up the slopes of Atitlan and closer to the source of possible future volcanic activity. This report summarizes the hazards posed by Atitlan Volcano in the event of renewed activity but does not imply that an eruption is imminent. However, the recognition of potential activity will facilitate hazard and emergency preparedness.

  15. USGS GNSS Applications to Volcano Disaster Response and Hazard Mitigation

    Science.gov (United States)

    Lisowski, M.; McCaffrey, R.

    2015-12-01

    Volcanic unrest is often identified by increased rates of seismicity, deformation, or the release of volcanic gases. Deformation results when ascending magma accumulates in crustal reservoirs, creates new pathways to the surface, or drains from magma reservoirs to feed an eruption. This volcanic deformation is overprinted by deformation from tectonic processes. GNSS monitoring of volcanoes captures transient volcanic deformation and steady and transient tectonic deformation, and we use the TDEFNODE software to unravel these effects. We apply the technique on portions of the Cascades Volcanic arc in central Oregon and in southern Washington that include a deforming volcano. In central Oregon, the regional TDEFNODE model consists of several blocks that rotate and deform internally and a decaying inflationary volcanic pressure source to reproduce the crustal bulge centered ~5 km west of South Sister. We jointly invert 47 interferograms that cover the interval from 1992 to 2010, as well as 2001 to 2015 continuous GNSS (cGNSS) and survey-mode (sGNSS) time series from stations in and around the Three Sisters, Newberry, and Crater Lake areas. A single, smoothly-decaying ~5 km deep spherical or prolate spheroid volcanic pressure source activated around 1998 provides the best fit to the combined geodetic data. In southern Washington, GNSS displacement time-series track decaying deflation of a ~8 km deep magma reservoir that fed the 2004 to 2008 eruption of Mount St. Helens. That deformation reversed when it began to recharge after the eruption ended. Offsets from slow slip events on the Cascadia subduction zone punctuate the GNSS displacement time series, and we remove them by estimating source parameters for these events. This regional TDEFNODE model extends from Mount Rainier south to Mount Hood, and additional volcanic sources could be added if these volcanoes start deforming. Other TDEFNODE regional models are planned for northern Washington (Mount Baker and Glacier

  16. Airborne Gas Surveillance of Volcanoes in Western USA and Alaska

    Science.gov (United States)

    Gerlach, T. M.; McGee, K. A.; Doukas, M. P.

    2002-05-01

    of <200 metric tons/day (t/d) CO2 and <10 t/d H2S are easily detected and suggest that scrubbing is widespread in Cascade and Aleutian arc volcanoes.

  17. Development of Alaska Volcano Observatory Seismic Networks, 1988-2008

    Science.gov (United States)

    Tytgat, G.; Paskievitch, J. F.; McNutt, S. R.; Power, J. A.

    2008-12-01

    The number and quality of seismic stations and networks on Alaskan volcanoes have increased dramatically in the 20 years from 1988 to 2008. Starting with 28 stations on six volcanoes in 1988, the Alaska Volcano Observatory (AVO) now operates 194 stations in networks on 33 volcanoes spanning the 2000 km Aleutian Arc. All data are telemetered in real time to laboratory facilities in Fairbanks and Anchorage and recorded on digital acquisition systems. Data are used for both monitoring and research. The basic and standard network designs are driven by practical considerations including geography and terrain, access to commercial telecommunications services, and environmental vulnerability. Typical networks consist of 6 to 8 analog stations, whose data can be telemetered to fit on a single analog telephone circuit terminated ultimately in either Fairbanks or Anchorage. Towns provide access to commercial telecommunications and signals are often consolidated for telemetry by remote computer systems. Most AVO stations consist of custom made fiberglass huts that house the batteries, electronics, and antennae. Solar panels are bolted to the south facing side of the huts and the seismometers are buried nearby. The huts are rugged and have allowed for good station survivability and performance reliability. However, damage has occurred from wind, wind-blown pumice, volcanic ejecta, lightning, icing, and bears. Power is provided by multiple isolated banks of storage batteries charged by solar panels. Primary cells are used to provide backup power should the rechargable system fail or fall short of meeting the requirement. In the worst cases, snow loading blocks the solar panels for 7 months, so sufficient power storage must provide power for at least this long. Although primarily seismic stations, the huts and overall design allow additional instruments to be added, such as infrasound sensors, webcams, electric field meters, etc. Yearly maintenance visits are desirable, but some

  18. Arc-preserving subsequences of arc-annotated sequences

    CERN Document Server

    Popov, Vladimir Yu

    2011-01-01

    Arc-annotated sequences are useful in representing the structural information of RNA and protein sequences. The longest arc-preserving common subsequence problem has been introduced as a framework for studying the similarity of arc-annotated sequences. In this paper, we consider arc-annotated sequences with various arc structures. We consider the longest arc preserving common subsequence problem. In particular, we show that the decision version of the 1-{\\sc fragment LAPCS(crossing,chain)} and the decision version of the 0-{\\sc diagonal LAPCS(crossing,chain)} are {\\bf NP}-complete for some fixed alphabet $\\Sigma$ such that $|\\Sigma| = 2$. Also we show that if $|\\Sigma| = 1$, then the decision version of the 1-{\\sc fragment LAPCS(unlimited, plain)} and the decision version of the 0-{\\sc diagonal LAPCS(unlimited, plain)} are {\\bf NP}-complete.

  19. La neotectónica del arco volcánico a la latitud delvolcán Copahue (38ºS, Andes de Neuquén Theneotectonics of the volcanic arc at the latitude of Copahue volcano (38ºS, Andes of Neuquén

    Directory of Open Access Journals (Sweden)

    Emilio Rojas Vera

    2009-10-01

    Full Text Available El cerro Chancho-Coconstituye el principal elemento positivo en el perímetro de la caldera delAgrio después del volcán Copahue ubicado inmediatamente al sur del mismo. Sudesarrollo se encuentra ligado a una serie de cabalgamientos de dirección NEque generan un abanico imbricado con vergencia al SE asociado al plegamiento desecuencias pliocenas superiores agrupadas en la Formación Las Mellizas. Elprincipal quiebre topográfico dentro de este abanico imbricado de fallascoincide con el desarrollo de la falla Copahue. Este cabalgamiento levantaunidades pliocenas sobre depósitos cuaternarios coluviales y fluviales. Elestudio de las relaciones entre secciones menores de esos depósitos muestra quela falla Copahue ha sufrido al menos dos períodos de actividad. La fallaCopahue, así como los otros cabalgamientos adyacentes han afectado las coladasdel volcán Copahue hacia el sur, permitiendo la redefinición de la geometríadel bloque de Chancho-Co. Finalmente, a partir del análisis de las anomalíasgravimétricas de la zona un mecanismo asociado a la inversión de la cuenca deCura Mallín en el subsuelo es propuesto para explicar el desarrollo de estafaja de actividad neotectónica.The Chancho-Co hill is the main positive feature inthe caldera del Agrio domain with the only exception of the Copahue volcano.Its development is linked to a series of NE-trending thrusts with a generalvergence to the SE, which affects Late Pliocene successions gathered in LasMellizas Formation. The main topographic break in this fan of reverse faultscoincides with the Copahue Fault. This structure uplifted Late Pliocenesequences over younger unconsolidated fluvial and coluvial deposits. Thedetailed study of these sequences allowed identifying at least two periods ofactivity for the Copahue Fault. This fault, as well as the other neighbor thrusts,cuts the Copahue lavas to the south showing the precise geometry of theChanchó-Co uplift. Finally, the inversion of

  20. Geologic field-trip guide to Medicine Lake Volcano, northern California, including Lava Beds National Monument

    Science.gov (United States)

    Donnelly-Nolan, Julie M.; Grove, Timothy L.

    2017-08-17

    Medicine Lake volcano is among the very best places in the United States to see and walk on a variety of well-exposed young lava flows that range in composition from basalt to rhyolite. This field-trip guide to the volcano and to Lava Beds National Monument, which occupies part of the north flank, directs visitors to a wide range of lava flow compositions and volcanic phenomena, many of them well exposed and Holocene in age. The writing of the guide was prompted by a field trip to the California Cascades Arc organized in conjunction with the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) quadrennial meeting in Portland, Oregon, in August of 2017. This report is one of a group of three guides describing the three major volcanic centers of the southern Cascades Volcanic Arc. The guides describing the Mount Shasta and Lassen Volcanic Center parts of the trip share an introduction, written as an overview to the IAVCEI field trip. However, this guide to Medicine Lake volcano has descriptions of many more stops than are included in the 2017 field trip. The 23 stops described here feature a range of compositions and volcanic phenomena. Many other stops are possible and some have been previously described, but these 23 have been selected to highlight the variety of volcanic phenomena at this rear-arc center, the range of compositions, and for the practical reason that they are readily accessible. Open ground cracks, various vent features, tuffs, lava-tube caves, evidence for glaciation, and lava flows that contain inclusions and show visible evidence of compositional zonation are described and visited along the route.

  1. Eruptive history of Chimborazo volcano (Ecuador): A large, ice-capped and hazardous compound volcano in the Northern Andes

    Science.gov (United States)

    Samaniego, Pablo; Barba, Diego; Robin, Claude; Fornari, Michel; Bernard, Benjamin

    2012-04-01

    New fieldwork, radiometric and whole-rock chemical data permit the reconstruction of the main eruptive stages of the Chimborazo compound volcano, the highest summit of the Northern Andes. Chimborazo is composed of three successive edifices. The Basal Edifice (CH-I) was active from ~ 120 to 60 ka and resulted in a large, mostly effusive edifice which was built up during two stages of cone-building, terminating with the formation of a dome complex. This edifice was affected by a huge sector collapse around 65-60 ka which produced a major debris avalanche that spread out into the Riobamba basin, covering about 280 km2 with an average thickness of 40 m and a total volume of ~ 10-12 km3. After the emplacement of the Riobamba debris avalanche, eruptive activity resumed at the eastern outlet of the avalanche scar and was responsible for the construction of a less voluminous, Intermediary Edifice (CH-II), whose current remnants are the Politécnica and Martínez peaks. This edifice developed from 60 to 35 ka. Lastly, eruptive activity shifted to the west, leading to the construction of the morphologically well-preserved Young Cone (CH-III) which currently forms the highest summit (Whymper). The average eruptive rate of Chimborazo volcano is 0.5-0.7 km3/ka. However, looking at the three successive edifices individually, we estimate that there has been a progressive decrease in magma output rate from the Basal Edifice (0.7-1.0 km3/ka), through the Intermediary Edifice (0.4-0.7 km3/ka) to the Young Cone (~ 0.1 km3/ka). However, during the main cone-building stages, the peak eruption rates are markedly higher, indicating significant variations in the magma output rate during the lifespan of this arc volcano. During the Holocene, the Chimborazo eruptive activity consisted of small-volume explosive events that occurred at quite regular intervals, between about 8000 and 1000 yr ago. Since the last eruption occurred between the early part of the 5th century and the end of the 7th

  2. Predictability of Volcano Eruption: lessons from a basaltic effusive volcano

    CERN Document Server

    Grasso, J R

    2003-01-01

    Volcano eruption forecast remains a challenging and controversial problem despite the fact that data from volcano monitoring significantly increased in quantity and quality during the last decades.This study uses pattern recognition techniques to quantify the predictability of the 15 Piton de la Fournaise (PdlF) eruptions in the 1988-2001 period using increase of the daily seismicity rate as a precursor. Lead time of this prediction is a few days to weeks. Using the daily seismicity rate, we formulate a simple prediction rule, use it for retrospective prediction of the 15 eruptions,and test the prediction quality with error diagrams. The best prediction performance corresponds to averaging the daily seismicity rate over 5 days and issuing a prediction alarm for 5 days. 65% of the eruptions are predicted for an alarm duration less than 20% of the time considered. Even though this result is concomitant of a large number of false alarms, it is obtained with a crude counting of daily events that are available fro...

  3. Newberry Volcano's youngest lava flows

    Science.gov (United States)

    Robinson, Joel E.; Donnelly-Nolan, Julie M.; Jensen, Robert A.

    2015-01-01

    Most of Newberry Volcano's youngest lava flows are found within the Newberry National Volcanic Monument in central Oregon. Established November 5, 1990, the monument is managed by the U.S. Forest Service as part of the Deschutes National Forest. Since 2011, a series of aerial surveys over the monument collected elevation data using lidar (light detection and ranging) technology, which uses lasers to directly measure the ground surface. These data record previously unseen detail in the volcano’s numerous lava flows and vents. On average, a laser return was collected from the ground’s surface every 2.17 feet (ft) with ±1.3 inches vertical precision.

  4. Geochemical features of the mantle source beneath Irazú and Turrialba volcanoes, Costa Rica

    Science.gov (United States)

    Rizzo, A. L.; Di Piazza, A.; Alvarado-Induni, G.; Carapezza, M. L.; de Moor, M. J.; Martinez, M.

    2015-12-01

    Irazú and Turrialba are active arc volcanoes located at the southeastern terminus of the Central American Volcanic Arc (CAVA). These volcanoes have been considered in literature as "twin volcanoes" or as a linked volcanic system. Effectively their proximity may lead to the assumption that they share a common plumbing system, but geochemical data on rocks and fluids reveal a more complicated framework. In this study, we analyzed the rock chemistry of a selected suite of eruptive products emitted in the last 50ka from Irazú volcano, including products from the 1963-1965 eruption. We also analyzed He-Ne-Ar isotopes in fluid inclusions hosted in olivines and pyroxenes hand-picked from these products, and we compared our results with those available for Irazú and the neighboring Turrialba. Rock samples from Irazú are basalts to andesites with MgO content ranging between 3 and 8 wt%, with a variability that follows typical trends of fractional crystallization. The pattern of trace elements is subduction-related with an OIB-like component, testified by an unusual enrichment (e.g., K, REE; e.g., Benjamin et al., 2007 and references therein), associated with the subduction of the Galapagos seamounts. In addition, Turrialba volcano shows the presence of andesites with adakite-like affinity (Di Piazza et al., 2015) which is not observed in rocks from Irazú . The 3He/4He ratio measured in olivine crystals from Irazú varies from 7.1 to 7.5 Ra, overlapping the measurements performed in surface gases (7.2 Ra; Fischer et al., 2002). This range is also comprised in the measurements carried out in gases and rocks from Turrialba (7.0-8.1 Ra; Di Piazza et al., 2015), which showed the presence of a MORB- and OIB-like component at the mantle source. Based on these evidences, we propose that the mantle beneath Irazú reflects an intermediate composition respect to the extreme components recognized at Turrialba. Irazú shows more typical arc-like geochemical signatures, whereas

  5. Numerical tsunami hazard assessment of the submarine volcano Kick 'em Jenny in high resolution are

    Science.gov (United States)

    Dondin, Frédéric; Dorville, Jean-Francois Marc; Robertson, Richard E. A.

    2016-04-01

    Landslide-generated tsunami are infrequent phenomena that can be potentially highly hazardous for population located in the near-field domain of the source. The Lesser Antilles volcanic arc is a curved 800 km chain of volcanic islands. At least 53 flank collapse episodes have been recognized along the arc. Several of these collapses have been associated with underwater voluminous deposits (volume > 1 km3). Due to their momentum these events were likely capable of generating regional tsunami. However no clear field evidence of tsunami associated with these voluminous events have been reported but the occurrence of such an episode nowadays would certainly have catastrophic consequences. Kick 'em Jenny (KeJ) is the only active submarine volcano of the Lesser Antilles Arc (LAA), with a current edifice volume estimated to 1.5 km3. It is the southernmost edifice of the LAA with recognized associated volcanic landslide deposits. The volcano appears to have undergone three episodes of flank failure. Numerical simulations of one of these episodes associated with a collapse volume of ca. 4.4 km3 and considering a single pulse collapse revealed that this episode would have produced a regional tsunami with amplitude of 30 m. In the present study we applied a detailed hazard assessment on KeJ submarine volcano (KeJ) form its collapse to its waves impact on high resolution coastal area of selected island of the LAA in order to highlight needs to improve alert system and risk mitigation. We present the assessment process of tsunami hazard related to shoreline surface elevation (i.e. run-up) and flood dynamic (i.e. duration, height, speed...) at the coast of LAA island in the case of a potential flank collapse scenario at KeJ. After quantification of potential initial volumes of collapse material using relative slope instability analysis (RSIA, VolcanoFit 2.0 & SSAP 4.5) based on seven geomechanical models, the tsunami source have been simulate by St-Venant equations-based code

  6. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  7. Metal emissions from Kilauea, and a suggested revision of the estimated worldwide metal output by quiescent degassing of volcanoes

    Science.gov (United States)

    Hinkley, T.K.; Lamothe, P.J.; Wilson, S.A.; Finnegan, David L.; Gerlach, T.M.

    1999-01-01

    Measurements of a large suite of metals (Pb, Cd, Cu, Zn and several others) and sulfur at Kilauea volcano over an extended period of time has yielded a detailed record of the atmospheric injection of ordinarily-rare metals from this quiescently degassing volcano, representative of an important type. We have combined the Kilauea data with data of recent studies by others (emissions from volcanoes in the Indonesian arc; the large Laki eruption of two centuries ago; Etna: estimates of total volcanic emissions of sulfur) to form the basis for a new working estimate of the rate of worldwide injection of metals to the atmosphere by volcanoes. The new estimate is that volcanoes inject a substantially smaller mass of ordinarily-rare metals into the atmosphere than was stated in a widely cited previous estimate [J.O. Nriagu, A global assessment of natural sources of atmospheric trace metals, Nature 338 (1989) 47-49]. Our estimate, which is an upper limit, is an annual injection mass of about 10,000 tons of the metals considered, versus the earlier estimate of about 23,000 tons. Also, the proportions of the metals are substantially different in our new estimate.

  8. Correlation methods in cutting arcs

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, L; Kelly, H, E-mail: prevosto@waycom.com.ar [Grupo de Descargas Electricas, Departamento Ing. Electromecanica, Universidad Tecnologica Nacional, Regional Venado Tuerto, Laprida 651, Venado Tuerto (2600), Santa Fe (Argentina)

    2011-05-01

    The present work applies similarity theory to the plasma emanating from transferred arc, gas-vortex stabilized plasma cutting torches, to analyze the existing correlation between the arc temperature and the physical parameters of such torches. It has been found that the enthalpy number significantly influence the temperature of the electric arc. The obtained correlation shows an average deviation of 3% from the temperature data points. Such correlation can be used, for instance, to predict changes in the peak value of the arc temperature at the nozzle exit of a geometrically similar cutting torch due to changes in its operation parameters.

  9. Numerical modeling the genetic mechanism of Cenozoic intraplate Volcanoes in Northeastern China

    Science.gov (United States)

    Qu, Wulin; Chen, Yongshun John; Zhang, Huai; Jin, Yimin; Shi, Yaolin

    2017-04-01

    Changbaishan Volcano located about 1400 km west of Japan Trench is an intra continental volcano which having different origin from island arc volcanoes. A number of different mechanisms have been proposed to interpret the origin of intraplate volcanoes, such as deep mantle plumes, back-arc extension and decompressional partial melting, asthenosphere upwelling and decompressional melting, and deep stagnant slab dehydration and partial melting. The recent geophysical research reveals that the slow seismic velocity anomaly extends continuously just below 660 km depth to surface beneath Changbaishan by seismic images and three-dimensional waveform modelling [Tang et al., 2014]. The subduction-induced upwelling occurs within a gap in the stagnant subducted Pacific Plate and produces decompressional melting. Water in deep Earth can reduce viscosity and lower melting temperature and seismic velocity and has effects on many other physical properties of mantle materials. The water-storage capacity of wadsleyite and ringwoodite, which are the main phase in the mantle transition zone, is much greater than that of upper mantle and lower mantle. Geophysical evidences have shown that water content in the mantle transition zone is exactly greater than that of upper mantle and lower mantle [Karato, 2011]. Subducted slab could make mantle transition zone with high water content upward or downward across main phase change surface to release water, and lead to partial melting. We infer that the partial melting mantle and subducted slab materials propagate upwards and form the Cenozoic intraplate Volcanoes in Northeastern China. We use the open source code ASPECT [Kronbichler et al., 2012] to simulate the formation and migration of magma contributing to Changbaishan Volcano. We find that the water entrained by subducted slab from surface has only small proportion comparing to water content of mantle transition zone. Our model provide insights into dehydration melting induced by water

  10. Continuous monitoring of diffuse CO2 degassing at Taal volcano, Philippines

    Science.gov (United States)

    Padron, E.; Hernandez Perez, P. A.; Arcilla, C. A.; Lagmay, A. M. A.; Perez, N. M.; Quina, G.; Padilla, G.; Barrancos, J.; Cótchico, M. A.; Melián, G.

    2016-12-01

    Observing changes in the composition and discharge rates of volcanic gases is an important part of volcanic monitoring programs, because some gases released by progressive depressurization of magma during ascent are highly mobile and reach the surface well before their parental magma. Among volcanic gases, CO2 is widely used in volcano studies and monitoring because it is one of the earliest released gas species from ascending magma, and it is considered conservative. Taal Volcano in Southwest Luzon, Philippines, lies between a volcanic arc front (facing the subduction zone along the Manila Trench) and a volcanic field formed from extension beyond the arc front. Taal Volcano Island is formed by a main tuff cone surrounded by several smaller tuff cones, tuff rings and scoria cones. This island is located in the center of the 30 km wide Taal Caldera, now filled by Taal Lake. To monitor the volcanic activity of Taal volcano is a priority task in the Philippines, because several million people live within a 20-km radius of Taal's caldera rim. In the period from 2010-2011, during a period of volcanic unrest, the main crater lake of Taal volcano released the highest diffuse CO2 emission rates reported to date by volcanic lakes worldwide. The maximum CO2 emission rate measured in the study period occurred two months before the strongest seismic activity recorded during the unrest period (Arpa et al., 2013, Bull Volcanol 75:747). In the light of the excellent results obtained through diffuse degassing studies, an automatic geochemical station to monitor in a continuous mode the diffuse CO2 degassing in a selected location of Taal, was installed in January 2016 to improve the early warning system at the volcano. The station is located at Daang Kastila, at the northern portion of the main crater rim. It measures hourly the diffuse CO2 efflux, atmospheric CO2 concentration, soil water content and temperature, wind speed and direction, air temperature and humidity, rainfall

  11. Geochemical monitoring of Taal volcano (Philippines) by means of diffuse CO2 degassing studies

    Science.gov (United States)

    Padrón, Eleazar; Hernández, Pedro A.; Arcilla, Carlo; Pérez, Nemesio M.; Lagmay, Alfredo M.; Rodríguez, Fátima; Quina, Gerald; Alonso, Mar; Padilla, Germán D.; Aurelio, Mario A.

    2017-04-01

    Observing changes in the discharge rate of CO2 is an important part of volcanic monitoring programs, because it is released by progressive depressurization of magma during ascent and reach the surface well before their parental magma. Taal Volcano in Southwest Luzon, Philippines, lies between a volcanic arc front facing the subduction zone along the Manila Trench and a volcanic field formed from extension beyond the arc front. Taal Volcano Island is formed by a main tuff cone surrounded by several smaller tuff cones, tuff rings and scoria cones. This island is located in the center of the 30 km wide Taal Caldera, now filled by Taal Lake. To monitor the volcanic activity of Taal volcano is a priority task in the Philippines, because several million people live within a 20-km radius of Taal's caldera rim. During the last period of volcanic unrest from 2010 to 2011, the main crater lake of Taal volcano released the highest diffuse CO2 emission rates through the water surface reported to date by volcanic lakes worldwide. The maximum CO2 emission rate measured in the study period occurred two months before the strongest seismic activity recorded during the unrest period (Arpa et al., 2013, Bull Volcanol 75:747). After the unrest period, diffuse CO2 emission has remained in the range 532-860 t/d in the period 2013-2016. In January 2016, an automatic geochemical station to monitor in a continuous mode the diffuse CO2 degassing in a selected location of Taal, was installed in January 2016 to improve the early warning system at the volcano. The station is located at Daang Kastila, at the northern portion of the main crater rim. It measures hourly the diffuse CO2 efflux, atmospheric CO2 concentration, soil water content and temperature, wind speed and direction, air temperature and humidity, rainfall, and barometric pressure. The 2016 time series show CO2 efflux values in the range 20-690 g m-2 d-1.Soil temperature, heavily influenced by rainfall, ranged between 74 and 96o

  12. Joan of Arc.

    Science.gov (United States)

    Foote-Smith, E; Bayne, L

    1991-01-01

    For centuries, romantics have praised and historians and scientists debated the mystery of Joan of Arc's exceptional achievements. How could an uneducated farmer's daughter, raised in harsh isolation in a remote village in medieval France, have found the strength and resolution to alter the course of history? Hypotheses have ranged from miraculous intervention to creative psychopathy. We suggest, based on her own words and the contemporary descriptions of observers, that the source of her visions and convictions was in part ecstatic epileptic auras and that she joins the host of creative religious thinkers suspected or known to have epilepsy, from St. Paul and Mohammed to Dostoevsky, who have changed western civilization.

  13. The ARCS radial collimator

    Directory of Open Access Journals (Sweden)

    Stone M.B.

    2015-01-01

    Full Text Available We have designed, installed, and commissioned a scattered beam radial collimator for use at the ARCS Wide Angular Range Chopper Spectrometer at the Spallation Neutron Source. The collimator has been designed to work effectively for thermal and epithermal neutrons and with a range of sample environments. Other design considerations include the accommodation of working within a high vacuum environment and having the ability to quickly install and remove the collimator from the scattered beam. We present here characterization of the collimator's performance and methodologies for its effective use.

  14. The ARCS radial collimator

    Science.gov (United States)

    Stone, M. B.; Niedziela, J. L.; Overbay, M. A.; Abernathy, D. L.

    2015-01-01

    We have designed, installed, and commissioned a scattered beam radial collimator for use at the ARCS Wide Angular Range Chopper Spectrometer at the Spallation Neutron Source. The collimator has been designed to work effectively for thermal and epithermal neutrons and with a range of sample environments. Other design considerations include the accommodation of working within a high vacuum environment and having the ability to quickly install and remove the collimator from the scattered beam. We present here characterization of the collimator's performance and methodologies for its effective use.

  15. The Guerrero suspect terrane (western Mexico) and coeval arc terranes (the Greater Antilles and the Western Cordillera of Colombia): a late Mesozoic intra-oceanic arc accreted to cratonal America during the Cretaceous

    Science.gov (United States)

    Tardy, M.; Lapierre, H.; Freydier, C.; Coulon, C.; Gill, J.-B.; de Lepinay, B. Mercier; Beck, C.; Martinez R., J.; O. Talavera, M.; E. Ortiz, H.; Stein, G.; Bourdier, J.-L.; Yta, M.

    1994-02-01

    the Cretaceous volcano-plutonic arc assemblage of Tobago share a similar magmatic evolution with the western Mexican oceanic arc. The tholeiitic plutono-volcanic assemblage of Tobago, depleted in LREE and characterized by high ɛNd values is similar to the Guanajuato volcano-plutonic sequence of Mexico, considered to represent the pristine stage of the arc. The mature tholeiitic sequences exposed in the proto-Caribbean arc show flat to moderately enriched LREE patterns like those of the Guerrero terrane. However, felsic plutonic and volcanic rocks prevail in the Caribbean. Calc-alkaline suites, accompanied locally by shoshonitic lavas, characterize the end of arc magmatic activity in both places. Thus, the geochemical features of the Late Jurassic-Cretaceous arc series of the Guerrero terrane and the proto-Caribbean are consistent with the following plate tectonic model. The Guerrero terrane and the proto-Caribbean probably belonged to the same intra-paleo-Pacific arc system the development of which was related to the subduction of oceanic basins fringing the North and northern South American cratons. This subduction zone was WSW dipping. While subduction was going on, these magmatic arcs drifted, moved closer to the North and South American cratons, and finally collided with the American borderlands at different periods during the Cretaceous. The late Mesozoic Guerrero and proto-Caribbean arc sequences show striking similarities with the Miocene calc-alkaline lavas dredged from the Banda Ridges, the North Marianas Seamount Province, and the Halmahera and Philippine arcs. We suggest that the diverse but mostly submarine segments of this late Mesozoic intra-Pacific arc rimmed the North and South American cratons as much as these Tertiary arcs rim Southeast Asia.

  16. Instrumentation Recommendations for Volcano Monitoring at U.S. Volcanoes Under the National Volcano Early Warning System

    Science.gov (United States)

    Moran, Seth C.; Freymueller, Jeff T.; LaHusen, Richard G.; McGee, Kenneth A.; Poland, Michael P.; Power, John A.; Schmidt, David A.; Schneider, David J.; Stephens, George; Werner, Cynthia A.; White, Randall A.

    2008-01-01

    As magma moves toward the surface, it interacts with anything in its path: hydrothermal systems, cooling magma bodies from previous eruptions, and (or) the surrounding 'country rock'. Magma also undergoes significant changes in its physical properties as pressure and temperature conditions change along its path. These interactions and changes lead to a range of geophysical and geochemical phenomena. The goal of volcano monitoring is to detect and correctly interpret such phenomena in order to provide early and accurate warnings of impending eruptions. Given the well-documented hazards posed by volcanoes to both ground-based populations (for example, Blong, 1984; Scott, 1989) and aviation (for example, Neal and others, 1997; Miller and Casadevall, 2000), volcano monitoring is critical for public safety and hazard mitigation. Only with adequate monitoring systems in place can volcano observatories provide accurate and timely forecasts and alerts of possible eruptive activity. At most U.S. volcanoes, observatories traditionally have employed a two-component approach to volcano monitoring: (1) install instrumentation sufficient to detect unrest at volcanic systems likely to erupt in the not-too-distant future; and (2) once unrest is detected, install any instrumentation needed for eruption prediction and monitoring. This reactive approach is problematic, however, for two reasons. 1. At many volcanoes, rapid installation of new ground-1. based instruments is difficult or impossible. Factors that complicate rapid response include (a) eruptions that are preceded by short (hours to days) precursory sequences of geophysical and (or) geochemical activity, as occurred at Mount Redoubt (Alaska) in 1989 (24 hours), Anatahan (Mariana Islands) in 2003 (6 hours), and Mount St. Helens (Washington) in 1980 and 2004 (7 and 8 days, respectively); (b) inclement weather conditions, which may prohibit installation of new equipment for days, weeks, or even months, particularly at

  17. Volcanoes

    Science.gov (United States)

    ... Part 3 of 3) Hot Weather Tips Heat Stress in Older Adults FAQs Extreme Heat PSAs Related Links MMWR Bibliography CDC's Program Floods Flood Readiness Personal Hygiene After a Disaster Cleanup of Flood Water After a Flood Worker Safety Educational Materials Floods ...

  18. Alternating-Polarity Arc Welding

    Science.gov (United States)

    Schwinghamer, R. J.

    1987-01-01

    Brief reversing polarity of welding current greatly improves quality of welds. NASA technical memorandum recounts progress in art of variable-polarity plasma-arc (VPPA) welding, with emphasis on welding of aluminum-alloy tanks. VPPA welders offer important advantages over conventional single-polarity gas/tungsten arc welders.

  19. Redoubt Volcano: 2009 Eruption Overview

    Science.gov (United States)

    Bull, K. F.

    2009-12-01

    Redoubt Volcano is a 3110-m glaciated stratovolcano located 170 km SW of Anchorage, Alaska, on the W side of Cook Inlet. The edifice comprises a oil production in Cook Inlet was halted for nearly five months. Unrest began in August, 2008 with reports of H2S odor. In late September, the Alaska Volcano Observatory (AVO)’s seismic network recorded periods of volcanic tremor. Throughout the fall, AVO noted increased fumarolic emissions and accompanying ice- and snow-melt on and around the 1990 dome, and gas measurements showed elevated H2S and CO2 emissions. On January 23, seismometers recorded 48 hrs of intermittent tremor and discrete, low-frequency to hybrid events. Over the next 6 weeks, seismicity waxed and waned, an estimated 5-6 million m3 of ice were lost due to melting, volcanic gas emissions increased, and debris flows emerged repeatedly from recently formed ice holes near the 1990 dome, located on the crater’s N (“Drift”) side. On March 15, a phreatic explosion deposited non-juvenile ash from a new vent in the summit ice cap just S of the 1990 dome. Ash from the explosion rose to ~4500 m above sea level (asl). The plume was accompanied by weak seismicity. The first magmatic explosion occurred on March 22. Over the next two weeks, more than 19 explosions destroyed at least two lava domes and produced ash plumes that reached 6-18 km asl. Tephra was deposited along variable azimuths including trace to minor amounts on Anchorage and Kenai Peninsula communities, and reached Fairbanks, ~800 km to the N. Several lahars were produced by explosive disruption and melting of the “Drift” glacier. The largest lahars followed explosions on March 23 and April 4 and inundated the Drift River valley to the coast, causing temporary evacuation of the Drift River Oil Terminal, ~40 km from the vent. Time-lapse images captured pyroclastic flows and lahars in the “Drift” glacier valley during several of the explosions. Ballistics and pyroclastic flow deposits were

  20. Characteristics of Arcs Between Porous Carbon Electrodes

    OpenAIRE

    Carvou, Erwann; Le Garrec, Jean-Luc; Mitchell, Brian

    2013-01-01

    International audience; Arcs between carbon electrodes present some specific differences compared with metallic arcs. The arc voltage is higher, but does not attain a stable value displaying large fluctuations. Indeed, the arcs are produced by the direct sublimation of the electrodes, without passing through a molten phase. The arc production is also facilitated by both circuit breaking and electric field breakdown. In this paper, arcing has been examined under various conditions (voltage, cu...

  1. Significance of an Active Volcanic Front in the Far Western Aleutian Arc

    Science.gov (United States)

    Yogodzinski, G. M.; Kelemen, P. B.; Hoernle, K.

    2015-12-01

    Discovery of a volcanic front west of Buldir Volcano, the western-most emergent Aleutian volcano, demonstrates that the surface expression of Aleutian volcanism falls below sea level just west of 175.9° E longitude, but is otherwise continuous from mainland Alaska to Kamchatka. The newly discovered sites of western Aleutian seafloor volcanism are the Ingenstrem Depression, a 60 km-long structural depression just west of Buldir, and an unnamed area 300 km further west, referred to as the Western Cones. These locations fall along a volcanic front that stretches from Buldir to Piip Seamount near the Komandorsky Islands. Western Aleutian seafloor volcanic rocks include large quantities of high-silica andesite and dacite, which define a highly calc-alkaline igneous series and carry trace element signatures that are unmistakably subduction-related. This indicates that subducting oceanic lithosphere is present beneath the westernmost Aleutian arc. The rarity of earthquakes below depths of 200 km indicates that the subducting plate is unusually hot. Some seafloor volcanoes are 6-8 km wide at the base, and so are as large as many emergent Aleutian volcanoes. The seafloor volcanoes are submerged in water depths >3000 m because they sit on oceanic lithosphere of the Bering Sea. The volcanic front is thus displaced to the north of the ridge of arc crust that underlies the western Aleutian Islands. This displacement, which developed since approximately 6 Ma when volcanism was last active on the islands, must be a consequence of oblique convergence in a system where the subducting plate and large blocks of arc crust are both moving primarily in an arc-parallel sense. The result is a hot-slab system where low subduction rates probably limit advection of hot mantle to the subarc, and produce a relatively cool and perhaps stagnant mantle wedge. The oceanic setting and highly oblique subduction geometry also severely limit rates of sediment subduction, so the volcanic rocks, which

  2. Linking space observations to volcano observatories in Latin America: Results from the CEOS DRM Volcano Pilot

    Science.gov (United States)

    Delgado, F.; Pritchard, M. E.; Biggs, J.; Arnold, D. W. D.; Poland, M. P.; Ebmeier, S. K.; Wauthier, C.; Wnuk, K.; Parker, A. L.; Amelug, F.; Sansosti, E.; Mothes, P. A.; Macedo, O.; Lara, L.; Zoffoli, S.; Aguilar, V.

    2015-12-01

    Within Latin American, about 315 volcanoes that have been active in the Holocene, but according to the United Nations Global Assessment of Risk 2015 report (GAR15) 202 of these volcanoes have no seismic, deformation or gas monitoring. Following the 2012 Santorini Report on satellite Earth Observation and Geohazards, the Committee on Earth Observation Satellites (CEOS) has developed a 3-year pilot project to demonstrate how satellite observations can be used to monitor large numbers of volcanoes cost-effectively, particularly in areas with scarce instrumentation and/or difficult access. The pilot aims to improve disaster risk management (DRM) by working directly with the volcano observatories that are governmentally responsible for volcano monitoring, and the project is possible thanks to data provided at no cost by international space agencies (ESA, CSA, ASI, DLR, JAXA, NASA, CNES). Here we highlight several examples of how satellite observations have been used by volcano observatories during the last 18 months to monitor volcanoes and respond to crises -- for example the 2013-2014 unrest episode at Cerro Negro/Chiles (Ecuador-Colombia border); the 2015 eruptions of Villarrica and Calbuco volcanoes, Chile; the 2013-present unrest and eruptions at Sabancaya and Ubinas volcanoes, Peru; the 2015 unrest at Guallatiri volcano, Chile; and the 2012-present rapid uplift at Cordon Caulle, Chile. Our primary tool is measurements of ground deformation made by Interferometric Synthetic Aperture Radar (InSAR) but thermal and outgassing data have been used in a few cases. InSAR data have helped to determine the alert level at these volcanoes, served as an independent check on ground sensors, guided the deployment of ground instruments, and aided situational awareness. We will describe several lessons learned about the type of data products and information that are most needed by the volcano observatories in different countries.

  3. Volcano Monitoring Using Google Earth

    Science.gov (United States)

    Cameron, W.; Dehn, J.; Bailey, J. E.; Webley, P.

    2009-12-01

    At the Alaska Volcano Observatory (AVO), remote sensing is an important component of its daily monitoring of volcanoes. AVO’s remote sensing group (AVORS) primarily utilizes three satellite datasets; Advanced Very High Resolution Radiometer (AVHRR) data, from the National Oceanic and Atmospheric Administration’s (NOAA) Polar Orbiting Satellites (POES), Moderate Resolution Imaging Spectroradiometer (MODIS) data from the National Aeronautics and Space Administration’s (NASA) Terra and Aqua satellites, and NOAA’s Geostationary Operational Environmental Satellites (GOES) data. AVHRR and MODIS data are collected by receiving stations operated by the Geographic Information Network of Alaska (GINA) at the University of Alaska’s Geophysical Institute. An additional AVHRR data feed is supplied by NOAA’s Gilmore Creek satellite tracking station. GOES data are provided by the Naval Research Laboratory (NRL), Monterey Bay. The ability to visualize these images and their derived products is critical for the timely analysis of the data. To this end, AVORS has developed javascript web interfaces that allow the user to view images and metadata. These work well for internal analysts to quickly access a given dataset, but they do not provide an integrated view of all the data. To do this AVORS has integrated its datasets with Keyhole Markup Language (KML) allowing them to be viewed by a number of virtual globes or other geobrowsers that support this code. Examples of AVORS’ use of KML include the ability to browse thermal satellite image overlays to look for signs of volcanic activity. Webcams can also be viewed interactively through KML to confirm current activity. Other applications include monitoring the location and status of instrumentation; near real-time plotting of earthquake hypocenters; mapping of new volcanic deposits using polygons; and animated models of ash plumes, created by a combination of ash dispersion modeling and 3D visualization packages.

  4. Temporal-spatial heterogeneity of under-recording of volcanic events in Japan

    Science.gov (United States)

    Kiyosugi, Koji

    2016-04-01

    Under-recording of events must be taken into account in estimating recurrence rates of explosive eruptions using volcanic eruption record. In the Large Magnitude Explosive Volcanic Eruptions (LaMEVE) database (Crosweller et al., 2012, Brown et al., 2014), Japanese events account for about 39 % of the entire set of eruptive events (Kiyosugi et al., 2015). An analysis of the Japanese eruption events show an inverse correlation between VEI and degree of under-reporting suggesting that even larger VEI eruptions are under-recorded in the Quaternary. For example, 89 % of VEI 4 events, 65-66 % of VEI 5 events, 46-49 % of VEI 6 events and 36-39 % of VEI 7 events are missing from the record at 100 ka, 200 ka, 300 ka, and 500 ka, respectively (Kiyosugi et al., 2015). Comparison of frequencies of Japanese and global eruptions suggests that under-recording of the global database is 7.9-8.7 times larger than in the Japanese dataset (Kiyosugi et al., 2015). In addition to the analysis of the entire Japanese eruption events, temporal-spatial heterogeneity of the dataset must be considered in modeling the under-recording of events. The main mechanisms of under-recording are absence of historical records, erosion and alteration of tephra deposits, burial of tephra deposits by younger deposits and disappearance of the source volcano itself due to burial or erosion. Therefore, under-recording of events varies temporally and spatially, reflecting geological and historical backgrounds. For example, an analysis of the Japanese eruption events suggest that many large eruptions are missing in the Izu-Bonin arc because the volcanic arc consists of small volcanic islands where wide-spread tephra deposits are less likely preserved. Understandings of the under-recording in different geological settings improve the estimation of recurrence rate of volcanic eruptions. Furthermore, Koyama (1999) pointed out that the historical record of Japanese volcanic eruptions increases in two time periods

  5. The Role of Crustal Tectonics in Volcano Dynamics (ROCTEVODY) along the Southern Andes: seismological study with emphasis on Villarrica Volcano

    Science.gov (United States)

    Mora-Stock, Cindy; Tassara, Andrés

    2016-04-01

    The Southern Andean margin is intrinsically related to the Liquiñe-Ofqui Fault Zone (LOFZ), a 1000 km-long dextral strike-slip arc-parallel fault on which most of the volcanic centers of the Southern Volcanic Zone (SCVZ) of the Andes are emplaced. At large spatial (102 - 103 km) and temporal (105 - 107 yr) scales, regional tectonics linked to partitioning of the oblique convergence controls the distribution of magma reservoirs, eruption rates and style, as well as the magma evolution. At small scales in space (transiently change the regional stress field, thus leading to eruptions and fault (re)activation. However, the mechanisms by which the interaction between (megathrust and crustal) earthquakes and volcanic eruptions actually occur, in terms of generating the relationships and characteristics verified at the long term, are still poorly understood. Since 2007, the Southern Andean margin has presented an increase of its tectonic and eruptive activity with several volcanic crisis and eruptions taking place in association with significant seismicity clusters and earthquakes both in the megathrust and the LOFZ. This increased activity offers a unique opportunity to improve our understanding of the physical relation between contemporary tectono-volcanic processes and the long-term construction of the LOFZ-SVZ system. Taking advantage of this opportunity by means of an integrated analysis of geodetic and seismological data through finite element numerical modeling at the scale of the entire margin and for selected cases is the main goal of project Active Tectonics and Volcanism at the Southern Andes (ACT&VO-SA, see Tassara et al. this meeting). Into the framework of the ACT&VO-SA project, the complementary ROCTEVODY-Villarrica project concentrates on the role that inherited crustal structures have in the volcano dynamics. The focus is on Villarrica volcano, which is emplaced at the intersection of the main NNE-branch of the LOFZ and the NW-SE inherited Mocha

  6. The trace-element characteristics of Aegean and Aeolian volcanic arc marine tephra

    Science.gov (United States)

    Clift, Peter; Blusztajn, Jerzy

    1999-10-01

    High-silica volcanic ashes are found within deep-sea sediments throughout the Eastern Mediterranean. Although coring by Ocean Drilling Program has penetrated Lower Pliocene (˜4 Ma) sediments, few ashes older than 400 k.y. have been recovered, suggesting a young initiation to subaerial Aegean Arc volcanism. Ashes derived from the Aegean volcanic front were cored south and east of the arc, and are typified by medium-K, calc-alkaline major-element compositions, contrasting with high-K ashes from the Aeolian Arc found in the Ionian Sea and as far east as Crete. Ion microprobe analysis of individual glass shards shows that all the ashes have a light rare earth element (LREE)-enriched pattern after normalizing against a chondrite standard. Aeolian Arc-derived ashes show greater enrichment than those from the Aegean area. Within the latter set, two groups are discernible, a mildly enriched set similar to the volcanoes of the arc volcanic front, and a more enriched group corresponding to lavas from the backarc region or possible from western Anatolia. Multi-element `spider diagrams' also show a bimodal division of enriched and depleted Aegean ashes, possibly caused by source depletion due to melt extraction in the Aegean backarc followed by remelting under the volcanic front. Relative Nb depletion, a characteristic of arc volcanism, is seen to be modest in Aegean and non-existent in Aeolian ashes. Using B/Be as a proxy for the flux of material from the subducting slab, this influence is seen to be low in the Aeolian Arc but higher than at Vesuvius. B/Be is higher again in the Aegean Arc. These differences may reflect the rate of subduction in each system. Data suggest caution is required when correlating ashes solely on the basis of major elements, as alkaline ashes from the central part of the study may be derived from Italy or from the Aegean backarc.

  7. Field-trip guide to the geologic highlights of Newberry Volcano, Oregon

    Science.gov (United States)

    Jensen, Robert A.; Donnelly-Nolan, Julie M.

    2017-08-09

    Newberry Volcano and its surrounding lavas cover about 3,000 square kilometers (km2) in central Oregon. This massive, shield-shaped, composite volcano is located in the rear of the Cascades Volcanic Arc, ~60 km east of the Cascade Range crest. The volcano overlaps the northwestern corner of the Basin and Range tectonic province, known locally as the High Lava Plains, and is strongly influenced by the east-west extensional environment. Lava compositions range from basalt to rhyolite. Eruptions began about half a million years ago and built a broad composite edifice that has generated more than one caldera collapse event. At the center of the volcano is the 6- by 8-km caldera, created ~75,000 years ago when a major explosive eruption of compositionally zoned tephra led to caldera collapse, leaving the massive shield shape visible today. The volcano hosts Newberry National Volcanic Monument, which encompasses the caldera and much of the northwest rift zone where mafic eruptions occurred about 7,000 years ago. These young lava flows erupted after the volcano was mantled by the informally named Mazama ash, a blanket of volcanic ash generated by the eruption that created Crater Lake about 7,700 years ago. This field trip guide takes the visitor to a variety of easily accessible geologic sites in Newberry National Volcanic Monument, including the youngest and most spectacular lava flows. The selected sites offer an overview of the geologic story of Newberry Volcano and feature a broad range of lava compositions. Newberry’s most recent eruption took place about 1,300 years ago in the center of the caldera and produced tephra and lava of rhyolitic composition. A significant mafic eruptive event occurred about 7,000 years ago along the northwest rift zone. This event produced lavas ranging in composition from basalt to andesite, which erupted over a distance of 35 km from south of the caldera to Lava Butte where erupted lava flowed west to temporarily block the Deschutes

  8. Arc Interference Behavior during Twin Wire Gas Metal Arc Welding Process

    Directory of Open Access Journals (Sweden)

    Dingjian Ye

    2013-01-01

    Full Text Available In order to study arc interference behavior during twin wire gas metal arc welding process, the synchronous acquisition system has been established to acquire instantaneous information of arc profile including dynamic arc length variation as well as relative voltage and current signals. The results show that after trailing arc (T-arc is added to the middle arc (M-arc in a stable welding process, the current of M arc remains unchanged while the agitation increases; the voltage of M arc has an obvious increase; the shape of M arc changes, with increasing width, length, and area; the transfer frequency of M arc droplet increases and the droplet itself becomes smaller. The wire extension length of twin arc turns out to be shorter than that of single arc welding.

  9. Lahar hazards at Agua volcano, Guatemala

    Science.gov (United States)

    Schilling, S.P.; Vallance, J.W.; Matías, O.; Howell, M.M.

    2001-01-01

    At 3760 m, Agua volcano towers more than 3500 m above the Pacific coastal plain to the south and 2000 m above the Guatemalan highlands to the north. The volcano is within 5 to 10 kilometers (km) of Antigua, Guatemala and several other large towns situated on its northern apron. These towns have a combined population of nearly 100,000. It is within about 20 km of Escuintla (population, ca. 100,000) to the south. Though the volcano has not been active in historical time, or about the last 500 years, it has the potential to produce debris flows (watery flows of mud, rock, and debris—also known as lahars when they occur on a volcano) that could inundate these nearby populated areas.

  10. Volcanoes muon imaging using Cherenkov telescopes

    CERN Document Server

    Catalano, Osvaldo; Mineo, Teresa; Cusumano, Giancarlo; Maccarone, Maria Concetta; Pareschi, Giovanni

    2015-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energ...

  11. Radial anisotropy ambient noise tomography of volcanoes

    Science.gov (United States)

    Mordret, Aurélien; Rivet, Diane; Shapiro, Nikolai; Jaxybulatov, Kairly; Landès, Matthieu; Koulakov, Ivan; Sens-Schönfelder, Christoph

    2016-04-01

    The use of ambient seismic noise allows us to perform surface-wave tomography of targets which could hardly be imaged by other means. The frequencies involved (~ 0.5 - 20 s), somewhere in between active seismic and regular teleseismic frequency band, make possible the high resolution imaging of intermediate-size targets like volcanic edifices. Moreover, the joint inversion of Rayleigh and Love waves dispersion curves extracted from noise correlations allows us to invert for crustal radial anisotropy. We present here the two first studies of radial anisotropy on volcanoes by showing results from Lake Toba Caldera, a super-volcano in Indonesia, and from Piton de la Fournaise volcano, a hot-spot effusive volcano on the Réunion Island (Indian Ocean). We will see how radial anisotropy can be used to infer the main fabric within a magmatic system and, consequently, its dominant type of intrusion.

  12. A field guide to Newberry Volcano, Oregon

    Science.gov (United States)

    Jenson, Robert A.; Donnelly-Nolan, Julie M.; McKay, Daniele

    2009-01-01

    Newberry Volcano is located in central Oregon at the intersection of the Cascade Range and the High Lava Plains. Its lavas range in age from ca. 0.5 Ma to late Holocene. Erupted products range in composition from basalt through rhyolite and cover ~3000 km2. The most recent caldera-forming eruption occurred ~80,000 years ago. This trip will highlight a revised understanding of the volcano's history based on new detailed geologic work. Stops will also focus on evidence for ice and flooding on the volcano, as well as new studies of Holocene mafic eruptions. Newberry is one of the most accessible U.S. volcanoes, and this trip will visit a range of lava types and compositions including tholeiitic and calc-alkaline basalt flows, cinder cones, and rhyolitic domes and tuffs. Stops will include early distal basalts as well as the youngest intracaldera obsidian flow.

  13. Emission of gas and atmospheric dispersion of SO2 during the December 2013 eruption at San Miguel volcano (El Salvador)

    Science.gov (United States)

    Salerno, Giuseppe G.; Granieri, Domenico; Liuzzo, Marco; La Spina, Alessandro; Giuffrida, Giovanni B.; Caltabiano, Tommaso; Giudice, Gaetano; Gutierrez, Eduardo; Montalvo, Francisco; Burton, Michael; Papale, Paolo

    2016-04-01

    San Miguel volcano, also known as Chaparrastique, is a basaltic volcano along the Central American Volcanic Arc (CAVA). Volcanism is induced by the convergence of the Cocos Plate underneath the Caribbean Plate, along a 1200-km arc, extending from Guatemala to Costa Rica and parallel to the Central American Trench. The volcano is located in the eastern part of El Salvador, in proximity to the large communities of San Miguel, San Rafael Oriente, and San Jorge. Approximately 70,000 residents, mostly farmers, live around the crater and the city of San Miguel, the second largest city of El Salvador, ten km from the summit, has a population of ~180,000 inhabitants. The Pan-American and Coastal highways cross the north and south flanks of the volcano.San Miguel volcano has produced modest eruptions, with at least 28 VEI 1-2 events between 1699 and 1967 (datafrom Smithsonian Institution http://www.volcano.si.edu/volcano.cfm?vn=343100). It is characterized by visible milddegassing from a summit vent and fumarole field, and by intermittent lava flows and Strombolian activity. Since the last vigorous fire fountaining of 1976, San Miguel has only experienced small steam explosions and gas emissions, minor ash fall and rock avalanches. On 29 December 2013 the volcano erupted producing an eruption that has been classified as VEI 2. While eruptions tend to be low-VEI, the presence of major routes and the dense population in the surrounding of the volcano increases the risk that weak explosions with gas and/or ash emission may pose. In this study, we present the first inventory of SO2, CO2, HCl, and HF emission rates on San Miguel volcano, and an analysis of the hazard from volcanogenic SO2 discharged before, during, and after the December 2013 eruption. SO2 was chosen as it is amongst the most critical volcanogenic pollutants, which may cause acute and chronicle disease to humans. Data were gathered by the geochemical monitoring network managed by the Ministerio de Medio Ambiente

  14. Detecting hidden volcanic explosions from Mt. Cleveland Volcano, Alaska with infrasound and ground-couples airwaves

    Science.gov (United States)

    De Angelis, Slivio; Fee, David; Haney, Matthew; Schneider, David

    2012-01-01

    In Alaska, where many active volcanoes exist without ground-based instrumentation, the use of techniques suitable for distant monitoring is pivotal. In this study we report regional-scale seismic and infrasound observations of volcanic activity at Mt. Cleveland between December 2011 and August 2012. During this period, twenty explosions were detected by infrasound sensors as far away as 1827 km from the active vent, and ground-coupled acoustic waves were recorded at seismic stations across the Aleutian Arc. Several events resulting from the explosive disruption of small lava domes within the summit crater were confirmed by analysis of satellite remote sensing data. However, many explosions eluded initial, automated, analyses of satellite data due to poor weather conditions. Infrasound and seismic monitoring provided effective means for detecting these hidden events. We present results from the implementation of automatic infrasound and seismo-acoustic eruption detection algorithms, and review the challenges of real-time volcano monitoring operations in remote regions. We also model acoustic propagation in the Northern Pacific, showing how tropospheric ducting effects allow infrasound to travel long distances across the Aleutian Arc. The successful results of our investigation provide motivation for expanded efforts in infrasound monitoring across the Aleutians and contributes to our knowledge of the number and style of vulcanian eruptions at Mt. Cleveland.

  15. Controllability of arc jet from arc horns with slits. Slit tsuki arc horn no arc jet seigyo tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sunabe, K.; Inaba, T.; Fukagawa, H. (Central Research Institute of Electric Power Industry, Tokyo (Japan)); Kito, Y. (Nagoya University, Nagoya (Japan))

    1993-09-20

    To improve the corona discharge characteristics, test preparation was made of hollow rod form horns with slits for the overhead power transmission line use. Two types of horn electrode were prepared. The first horn electrode is of a hollow hemisphere fitted with and divided by slits on its tip. The second horn electrode is the first one which is further fitted with rod form electrode at the center of its tip. In experiment, relation was obtained between the deflection angle of arc jet and arc current, electrode diameter, etc., through an observation of arc jet by high speed camera. Melting loss of electrode was also made clear. The following knowledge was obtained: For the first horn electrode, the deflection angle can be limited to a narrow range by a division with slits, e.g., within 30 degrees under the condition of 5kA in arc current, 4 in number of sectors and 200mm in diameter. For the second horn electrode, the deflection angle can be limited to within 20 degrees under the condition of 5kA in arc current and 4 in number of sectors. The arc current is also limited to below 5kA by an addition of 50mm diameter central electrode. As a conclusion for the first electrode, the arc jet control characteristics excels in the stronger arc current range than 5kA, while for the second electrode, they are effective in the weaker arc current range than 5kA. 6 refs., 19 figs., 1 tab.

  16. Convergent evolution of the arginine deiminase pathway: the ArcD and ArcE arginine/ornithine exchangers.

    Science.gov (United States)

    Noens, Elke E E; Lolkema, Juke S

    2017-02-01

    The arginine deiminase (ADI) pathway converts L-arginine into L-ornithine and yields 1 mol of ATP per mol of L-arginine consumed. The L-arginine/L-ornithine exchanger in the pathway takes up L-arginine and excretes L-ornithine from the cytoplasm. Analysis of the genomes of 1281 bacterial species revealed the presence of 124 arc gene clusters encoding the pathway. About half of the clusters contained the gene encoding the well-studied L-arginine/L-ornithine exchanger ArcD, while the other half contained a gene, termed here arcE, encoding a membrane protein that is not a homolog of ArcD. The arcE gene product of Streptococcus pneumoniae was shown to take up L-arginine and L-ornithine with affinities of 0.6 and 1 μmol/L, respectively, and to catalyze metabolic energy-independent, electroneutral exchange. ArcE of S. pneumoniae could replace ArcD in the ADI pathway of Lactococcus lactis and provided the cells with a growth advantage. In contrast to ArcD, ArcE catalyzed translocation of the pathway intermediate L-citrulline with high efficiency. A short version of the ADI pathway is proposed for L-citrulline catabolism and the presence of the evolutionary unrelated arcD and arcE genes in different organisms is discussed in the context of the evolution of the ADI pathway.

  17. Monitoring changes in seismic velocity related to an ongoing rapid inflation event at Okmok volcano, Alaska

    Science.gov (United States)

    Bennington, Ninfa; Haney, Matt; De Angelis, Silvio; Thurber, Clifford; Freymueller, Jeff

    2015-01-01

    Okmok is one of the most active volcanoes in the Aleutian Arc. In an effort to improve our ability to detect precursory activity leading to eruption at Okmok, we monitor a recent, and possibly ongoing, GPS-inferred rapid inflation event at the volcano using ambient noise interferometry (ANI). Applying this method, we identify changes in seismic velocity outside of Okmok’s caldera, which are related to the hydrologic cycle. Within the caldera, we observe decreases in seismic velocity that are associated with the GPS-inferred rapid inflation event. We also determine temporal changes in waveform decorrelation and show a continual increase in decorrelation rate over the time associated with the rapid inflation event. Themagnitude of relative velocity decreases and decorrelation rate increases are comparable to previous studies at Piton de la Fournaise that associate such changes with increased production of volatiles and/ormagmatic intrusion within the magma reservoir and associated opening of fractures and/or fissures. Notably, the largest decrease in relative velocity occurs along the intrastation path passing nearest to the center of the caldera. This observation, along with equal amplitude relative velocity decreases revealed via analysis of intracaldera autocorrelations, suggests that the inflation sourcemay be located approximately within the center of the caldera and represent recharge of shallow magma storage in this location. Importantly, there is a relative absence of seismicity associated with this and previous rapid inflation events at Okmok. Thus, these ANI results are the first seismic evidence of such rapid inflation at the volcano.

  18. Arc spot grouping: An entanglement of arc spot cells

    Energy Technology Data Exchange (ETDEWEB)

    Kajita, Shin, E-mail: kajita.shin@nagoya-u.jp [EcoTopia Science Institute, Nagoya University, Nagoya 464-8603 (Japan); Hwangbo, Dogyun; Ohno, Noriyasu [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Tsventoukh, Mikhail M. [Lebedev Physical Institute, Russian Academy of Sciences, Moscow 119991 (Russian Federation); Barengolts, Sergey A. [Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow 119991 (Russian Federation)

    2014-12-21

    In recent experiments, clear transitions in velocity and trail width of an arc spot initiated on nanostructured tungsten were observed on the boundary of the thick and thin nanostructured layer regions. The velocity of arc spot was significantly decreased on the thick nanostructured region. It was suggested that the grouping decreased the velocity of arc spot. In this study, we try to explain the phenomena using a simple random walk model that has properties of directionality and self-avoidance. And grouping feature was added by installing an attractive force between spot cells with dealing with multi-spots. It was revealed that an entanglement of arc spot cells decreased the spot velocity, and spot cells tend to stamp at the same location many times.

  19. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  20. The Role of Philippine Sea Plate to the Genesis of Quaternary Magmas of Northern Kyushu Island, Japan, Inferred from Along-Arc Geochemical Variations

    Science.gov (United States)

    Shibata, T.; Yoshikawa, M.; Itoh, J.; Ujike, O.; Miyoshi, M.; Takemura, K.

    2013-12-01

    Quaternary volcanoes on Kyushu Island comprise volcanoes Himeshima, Futagoyama, Yufu-Tsurumi, Kuju, Aso, Kirishima and Sakurajima from north to south alongstrike the volcanic front. Adakitic lavas are observed from Yufu-Tsurumi and Kuju volcanoes in northern Kyushu (Kita et al., 2001; Sugimoto et al., 2007), whereas no Quaternary adakites were observed at Aso (e.g., Hunter, 1998) and the volcanoes south of Aso along the entire Ryukyu arc. Sugimoto et al. (2007) suggested that the trace element and Sr, Nd, and Pb isotopic compositions of adakitic magmas from Yufu-Tsurumi volcano indicate derivation of the magmas by partial melting of the subducting PSP. In contrast, Zellmer et al. (2012) suggested that these adakites may have formed by fractional crystallization of mantle-derived mafic magmas within the garnet stability field in the crust. The Honshu-Kyushu arc transition is a particular favorable setting to address these controversial models for the origin of the adakitic lavas, because of the potential relationship between the PSP materials and the alongstrike variation of the lava chemistry. The Palau-Kyushu ridge divides the oceanic crust of the PSP into northeastern and southwestern segments with ages of 26-15 (Shikoku Basin) and 60-40 Ma (West Philippine Basin), respectively (Mahony et al., 2011). Although there are no clear plate images beneath northern Kyushu, the northern extension of the Palau-Kyushu ridge potentially corresponds to the boundary between the SW Japan and Ryukyu arcs. If adakite genesis was related to the subducted slab rather than the overlying crust, then the spatial distribution of Quaternary adakites should correlate with the age of the subducted PSP. In order to test such correlation and elucidate the petrogenesis of the northern Kyushu adakites, we compiled major and trace elements and Sr-Nd-Pb isotope ratios from volcanoes along the arc front that includes the transition from adakitic to non-adakitic arc volcanism. Comprehensive

  1. Tectonic shortening and coeval volcanism during the Quaternary, Northeast Japan arc

    Indian Academy of Sciences (India)

    Koji Umeda; Masao Ban; Shintaro Hayashi; Tomohiro Kusano

    2013-02-01

    The Northeast Japan arc, a mature volcanic arc with a back-arc marginal basin (Japan Sea), is located on a convergent plate boundary along the subducting Pacific plate and the overriding North American plate. From a compilation and analysis of stratigraphy, radiometric age and data on erupted magma volumes, 176 eruptive episodes identified from 69 volcanoes so far, indicate that notable changes in eruption style, magma discharge rates and distribution of eruptive centres occurred around 1.0 Ma. Before ca.1.0 Ma, large-volume felsic eruptions were dominant, forming large calderas in the frontal arc, a region of low crustal strain rate. After ca. 1.0 Ma to the present, the calc-alkaline andesite magma eruptions in the frontal and rear arcs, synchronous with crustal shortening characterized by reverse faulting, resulted in stratovolcano development along narrow uplifted zones. Although, it is widely assumed that magma cannot rise easily in a compressional setting, some of the magma stored within basal sills could be extruded where N–S-trending uplifted mountains bounded by reverse faults formed since about ca.1.0 Ma.

  2. On arc efficiency in gas tungsten arc welding

    Directory of Open Access Journals (Sweden)

    Nils Stenbacka

    2013-12-01

    Full Text Available The aim of this study was to review the literature on published arc efficiency values for GTAW and, if possible, propose a narrower band. Articles between the years 1955 - 2011 have been found. Published arc efficiency values for GTAW DCEN show to lie on a wide range, between 0.36 to 0.90. Only a few studies covered DCEP - direct current electrode positive and AC current. Specific information about the reproducibility in calorimetric studies as well as in modeling and simulation studies (considering that both random and systematic errors are small was scarce. An estimate of the average arc efficiency value for GTAW DCEN indicates that it should be about 0.77. It indicates anyway that the GTAW process with DCEN is an efficient welding method. The arc efficiency is reduced when the arc length is increased. On the other hand, there are conflicting results in the literature as to the influence of arc current and travel speed.

  3. EARTHQUAKES - VOLCANOES (Causes - Forecast - Counteraction)

    Science.gov (United States)

    Tsiapas, Elias

    2014-05-01

    Earthquakes and volcanoes are caused by: 1)Various liquid elements (e.g. H20, H2S, S02) which emerge from the pyrosphere and are trapped in the space between the solid crust and the pyrosphere (Moho discontinuity). 2)Protrusions of the solid crust at the Moho discontinuity (mountain range roots, sinking of the lithosphere's plates). 3)The differential movement of crust and pyrosphere. The crust misses one full rotation for approximately every 100 pyrosphere rotations, mostly because of the lunar pull. The above mentioned elements can be found in small quantities all over the Moho discontinuity, and they are constantly causing minor earthquakes and small volcanic eruptions. When large quantities of these elements (H20, H2S, SO2, etc) concentrate, they are carried away by the pyrosphere, moving from west to east under the crust. When this movement takes place under flat surfaces of the solid crust, it does not cause earthquakes. But when these elements come along a protrusion (a mountain root) they concentrate on its western side, displacing the pyrosphere until they fill the space created. Due to the differential movement of pyrosphere and solid crust, a vacuum is created on the eastern side of these protrusions and when the aforementioned liquids overfill this space, they explode, escaping to the east. At the point of their escape, these liquids are vaporized and compressed, their flow accelerates, their temperature rises due to fluid friction and they are ionized. On the Earth's surface, a powerful rumbling sound and electrical discharges in the atmosphere, caused by the movement of the gasses, are noticeable. When these elements escape, the space on the west side of the protrusion is violently taken up by the pyrosphere, which collides with the protrusion, causing a major earthquake, attenuation of the protrusions, cracks on the solid crust and damages to structures on the Earth's surface. It is easy to foresee when an earthquake will occur and how big it is

  4. H 2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes

    Science.gov (United States)

    Sisson, T. W.; Layne, G. D.

    1993-06-01

    Total dissolved H 2O and major element abundances were measured in basalt and basaltic andesite glass inclusions in olivine phenocrysts from Quaternary eruptions of four subduction-related volcanoes to test the hypothesis that low-MgO high-alumina basalts contain high H 2O at depth [1] and to reveal any petrogenetically significant correlations between arc basalt compositions and H 2O contents. Total dissolved H 2O (combined molecular H 2O and OH groups) measured by ion microprobe in mafic glass inclusions from the 1974 eruption of Fuego, Guatemala, reaches 6.2 wt.%. Dissolved H 2O contents decrease in more evolved Fuego glasses. Correlations of H 2O with MgO, Na 2O, K 2O, S and Cl indicate that aqueous fluid exsolution during magma ascent forced crystallization and differentiation of residual liquids. Low-K 2O magnesian high-alumina basalt glass inclusions from the 3 ka eruption of Black Crater (Medicine Lake volcano, California) have low H 2O contents, near 0.2 wt.%, which are consistent with the MORB-like character of these and other primitive lavas of the Medicine Lake region. Basalt and basaltic andesite glass inclusions from Copco Cone and Goosenest volcano on the Cascade volcanic front north of Mt. Shasta have H 2O contents of up to 3.3 wt.%. The range of H 2O contents in Cascade mafic magmas is too large to have resulted solely from enrichment by crystallization and indicates the participation of an H 2O-rich component in magma generation or crustal-level modification. Whereas fluid-absent melting of amphibole-bearing peridotite can account for the H 2O in most mafic arc liquids, the very high H 2O/alkali ratios of the 1974 Fuego eruptives suggest that an aqueous fluid was involved in the generation of Fuego basalts.

  5. Spreading and collapse of big basaltic volcanoes

    Science.gov (United States)

    Puglisi, Giuseppe; Bonforte, Alessandro; Guglielmino, Francesco; Peltier, Aline; Poland, Michael

    2016-04-01

    Among the different types of volcanoes, basaltic ones usually form the most voluminous edifices. Because volcanoes are growing on a pre-existing landscape, the geologic and structural framework of the basement (and earlier volcanic landforms) influences the stress regime, seismicity, and volcanic activity. Conversely, the masses of these volcanoes introduce a morphological anomaly that affects neighboring areas. Growth of a volcano disturbs the tectonic framework of the region, clamps and unclamps existing faults (some of which may be reactivated by the new stress field), and deforms the substratum. A volcano's weight on its basement can trigger edifice spreading and collapse that can affect populated areas even at significant distance. Volcano instability can also be driven by slow tectonic deformation and magmatic intrusion. The manifestations of instability span a range of temporal and spatial scales, ranging from slow creep on individual faults to large earthquakes affecting a broad area. In the frame of MED-SVU project, our work aims to investigate the relation between basement setting and volcanic activity and stability at three Supersite volcanoes: Etna (Sicily, Italy), Kilauea (Island of Hawaii, USA) and Piton de la Fournaise (La Reunion Island, France). These volcanoes host frequent eruptive activity (effusive and explosive) and share common features indicating lateral spreading and collapse, yet they are characterized by different morphologies, dimensions, and tectonic frameworks. For instance, the basaltic ocean island volcanoes of Kilauea and Piton de la Fournaise are near the active ends of long hotspot chains while Mt. Etna has developed at junction along a convergent margin between the African and Eurasian plates and a passive margin separating the oceanic Ionian crust from the African continental crust. Magma supply and plate velocity also differ in the three settings, as to the sizes of the edifices and the extents of their rift zones. These

  6. The seismicity of Marapi volcano, West Sumatra.

    Science.gov (United States)

    D'Auria, L.

    2009-04-01

    Marapi is one of the active volcanoes in West Sumatra. It is a stratovolcano with an edifice that is elongated in the ENE-WSW direction. Its elevation is about 2,900 m a.s.l. The summit area is characterized by a caldera that contains some active craters aligned along the ENE-WSW direction. The Marapi volcano is an attractive region for tourists and hosts many small communities its surrounding areas. The recent history of Mt. Marapi is characterized by explosive activity at the summit craters. No lava flows have passed the rim of the summit caldera in recent times. The last eruption occurred on August 5, 2004, and consisted of moderate explosive activity from the central crater. In 1975 an eruption with magmatic and phreatic explosive phases and mudflows and lahars occurred that caused fatalities in the surrounding areas. Since 1980 other eruptions have occurred at Marapi volcano. Even if the explosive intensities of those eruptions have been small to moderate, in some cases, there were fatalities. A cooperation project started between Italy and Indonesia (COVIN) for the monitoring of volcanoes in West Sumatra. In the context of this project a monitoring centre has been set up at the Bukittinggi Observatory and a seismological monitoring system for Marapi volcano has been realized. This system is based on a broadband seismic network including 4 three-component stations. The data acquired by the broadband network of Marapi volcano are continuous recordings of the seismic signals starting from 19/10/2006. Volcano-Tectonic and Long Period events of Marapi volcano together with regional and teleseismic earthquakes are recorded. Several events of high magnitude located at short distances from the network were also recorded such as on March 6, 2007, when two events of Magnitudes Mw 6.4 and 6.3 were recorded with the epicentres near the Marapi volcano. During the following days, there was a sequence of hundreds of aftershocks. The preliminary analysis of the seismicity of

  7. A structural outline of the Yenkahe volcanic resurgent dome (Tanna Island, Vanuatu Arc, South Pacific)

    Science.gov (United States)

    Merle, O.; Brothelande, E.; Lénat, J.-F.; Bachèlery, P.; Garaébiti, E.

    2013-12-01

    A structural study has been conducted on the resurgent Yenkahe dome (5 km long by 3 km wide) located in the heart of the Siwi caldera of Tanna Island (Vanuatu arc, south Pacific). This spectacular resurgent dome hosts a small caldera and a very active strombolian cinder cone - the Yasur volcano - in the west and exhibits an intriguing graben in its central part. Detailed mapping and structural observations make it possible to unravel the volcano-tectonic history of the dome. It is shown that, following the early formation of a resurgent dome in the west, a complex collapse (caldera plus graben) occurred and this was associated with the recent uplift of the eastern part of the present dome. Eastward migration of the underlying magma related to regional tectonics is proposed to explain this evolution.

  8. STUDY ON THE PRESSURE IN PLASMA ARC

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The axial pressure in plasma arc is measured under different conditions. The effects of the parameters, such as welding current, plasma gas flow rate, electrode setback and arc length, on the pressure in plasma arc are investigated and quantitative analyzed to explain the relationship between the quality of weld and the matching of parameters in plasma arc welding process.

  9. Why do mafic arc magmas contain ˜4wt% water on average?

    Science.gov (United States)

    Plank, Terry; Kelley, Katherine A.; Zimmer, Mindy M.; Hauri, Erik H.; Wallace, Paul J.

    2013-02-01

    The last 15 yr have seen an explosion of data on the volatile contents of magmas parental to arc volcanoes. This has occurred due to the intense study of melt inclusions trapped in volcanic phenocrysts, aliquots of magma that have presumably escaped degassing during eruption. The surprising first-order result is the narrow range in H2O concentrations in the least degassed melt inclusions from each volcano. Nearly all arc volcanoes are sourced with mafic magmas that contain 2-6 wt% H2O. The average for each arc varies even less, from 3.2 (for the Cascades) to 4.5 (for the Marianas), with a global average of 3.9±0.4 wt% H2O. Significant variations occur from volcano to volcano within each arc, but the means are indistinguishable within one s.d. The narrow range and common average value for H2O are in stark contrast to the concentrations of most other subduction tracers, such as Nb or Ba, which vary by orders of magnitude. A modulating process, either in the crust or mantle, is likely responsible for the restricted range in the H2O contents of arc melt inclusions. One possibility is that melt inclusion H2O values reflect vapor saturation at the last storage depth in the crust prior to eruption. In this scenario, magmas rise from the mantle with variable H2O contents (>4 wt%), become vapor-saturated and start degassing, and continue to degas up until the depth at which they stall. If the stalling depths are ∼6 km, which is common for storage depths beneath volcanoes, magmas would be saturated at ∼4 wt% H2O, and melt inclusions, most of which become closed during further ascent, would thus record ≤4 wt% H2O. Another possibility is that the mantle melting process modulates water content in the melt such that magmas rise out of the mantle with ∼4 wt% H2O. A strong relationship between the water content of the source, H2O(o) and the degree of melting (F) maintains nearly constant water contents in the melt for a restricted range in mantle temperature. Magmas with

  10. Subduction Controls of Hf and Nd Isotopes in Lavas of the Aleutian Island Arc

    Energy Technology Data Exchange (ETDEWEB)

    Yogodzinski, Gene; Vervoort, Jeffery; Brown, Shaun Tyler; Gerseny, Megan

    2010-08-29

    The Hf and Nd isotopic compositions of 71 Quaternary lavas collected from locations along the full length of the Aleutian island arc are used to constrain the sources of Aleutian magmas and to provide insight into the geochemical behavior of Nd and Hf and related elements in the Aleutian subduction-magmatic system. Isotopic compositions of Aleutian lavas fall approximately at the center of, and form a trend parallel to, the terrestrial Hf-Nd isotopic array with {var_epsilon}{sub Hf} of +12.0 to +15.5 and {var_epsilon}{sub Nd} of +6.5 to +10.5. Basalts, andesites, and dacites within volcanic centers or in nearby volcanoes generally all have similar isotopic compositions, indicating that there is little measurable effect of crustal or other lithospheric assimilation within the volcanic plumbing systems of Aleutian volcanoes. Hafnium isotopic compositions have a clear pattern of along-arc increase that is continuous from the eastern-most locations near Cold Bay to Piip Seamount in the western-most part of the arc. This pattern is interpreted to reflect a westward decrease in the subducted sediment component present in Aleutian lavas, reflecting progressively lower rates of subduction westward as well as decreasing availability of trench sediment. Binary bulk mixing models (sediment + peridotite) demonstrate that 1-2% of the Hf in Aleutian lavas is derived from subducted sediment, indicating that Hf is mobilized out of the subducted sediment with an efficiency that is similar to that of Sr, Pb and Nd. Low published solubility for Hf and Nd in aqueous subduction fluids lead us to conclude that these elements are mobilized out of the subducted component and transferred to the mantle wedge as bulk sediment or as a silicate melt. Neodymium isotopes also generally increase from east to west, but the pattern is absent in the eastern third of the arc, where the sediment flux is high and increases from east to west, due to the presence of abundant terrigenous sediment in the

  11. Arc of opportunity.

    Science.gov (United States)

    Delaney, Adam Vai

    2011-07-01

    Born in Port Moresby, Papua New Guinea, the author had a 20 year career in diplomacy, political affairs, and development policy analysis at the Pacific Islands Forum, the United Nations in New York; the Prime Minister's Department in Papua New Guinea (PNG) and in the Foreign Ministry of PNG. He has also been involved in theatre for over a decade in PNG, and participated in a three-month program at the Eugene O'Neill Theatre Center in Connecticut, USA. He is currently the Business Development Manager at the Torres Strait Regional Authority (Commonwealth) on Thursday Island. Since 1975 the Australian government's overseas development policy has supported various sectoral programs in its neighbouring countries, in particular Papua New Guinea and the Solomon Islands. The "creative" field has not been prominent in this strategy. While natural resources and the sports sectors have gained much greater attention, in terms of being viable international commercial enterprises, the arts, have remained stagnant. In this paper the need for joint programs genuinely supporting "wellbeing" and promoting social enterprise throughout the "arc of opportunity" is described to harness Melanesian creativity to compete successfully in world-markets, starting with penetration of the largest economy at its door-step: Australia.

  12. Long-Term Volcanic Activity at Shiveluch Volcano: Nine Years of ASTER Spaceborne Thermal Infrared Observations  

    Directory of Open Access Journals (Sweden)

    Adam Carter

    2010-11-01

    Full Text Available Shiveluch (Kamchatka, Russia is the most active andesitic volcano of the Kuril-Kamchatka arc, typically exhibiting near-continual high-temperature fumarolic activity and periods of exogenous lava dome emplacement punctuated by discrete large explosive eruptions. These eruptions can produce large pyroclastic flow (PF deposits, which are common on the southern flank of the volcano. Since 2000, six explosive eruptions have occurred that generated ash fall and PF deposits. Over this same time period, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER instrument has been acquiring image-based visible/near infrared (VNIR, short wave infrared (SWIR and thermal infrared (TIR data globally, with a particular emphasis on active volcanoes. Shiveluch was selected as an ASTER target of interest early in the mission because of its frequent activity and potential impact to northern Pacific air transportation. The north Pacific ASTER archive was queried for Shiveluch data and we present results from 2000 to 2009 that documents three large PF deposits emplaced on 19 May 2001, 9 May 2004, and 28 February 2005. The long-term archive of infrared data provides an excellent record on the changing activity and eruption state of the volcano.

  13. Age, geochemical and isotopic variations in volcanic rocks from the Coastal Range of Taiwan: Implications for magma generation in the Northern Luzon Arc

    Science.gov (United States)

    Lai, Yu-Ming; Song, Sheng-Rong; Lo, Ching-Hua; Lin, Te-Hsien; Chu, Mei-Fei; Chung, Sun-Lin

    2017-02-01

    This paper reports the first systematic analysis of age and geochemical variations in volcanic rocks from the Coastal Range of Taiwan, the Northern Luzon Arc. The rocks, recovered from four main volcanoes, vary from low-K tholeiitic to medium-K calc-alkaline basalts to dacites. The rocks are typical of arc magmatic products, exhibiting enrichment in the large ion lithophile elements and depletion in the high field strength elements. Our new 40Ar/39Ar age data constrain the youngest eruption time in each of the four volcanoes, i.e., from north to south, at 7.2 Ma (Yuemei), 4.2 Ma (Chimei), 6.2 Ma (Chengkuang'ao) and 8.5 Ma (Tuluanshan), respectively. These data indicate that volcanism in the Northern Luzon Arc did not cease progressively from north to south, as previously alleged. The high and broadly uniform Nd isotope ratios [εNd = + 10.1 to + 8.8] and trace element characteristics of the rocks suggest a principal magma source from the depleted mantle wedge. Their overall geochemical variations are ascribed to magma chamber processes. The effects of magmatic differentiation and crustal contamination differ among each volcano, most likely owing to the discrepancy of residence time in individual magma chambers. Consequently, we propose a binary mixing model for the magma generation that involves arc magmas sourced from the depleted mantle wedge and up to 5% crustal contamination with a continental fragment split off from the Eurasian margin.

  14. The volcanic response to deglaciation: Evidence from glaciated arcs and a reassessment of global eruption records

    Science.gov (United States)

    Watt, Sebastian F. L.; Pyle, David M.; Mather, Tamsin A.

    Several lines of evidence have previously been used to suggest that ice retreat after the last glacial maximum (LGM) resulted in regionally-increased levels of volcanic activity. It has been proposed that this increase in volcanism was globally significant, forming a substantial component of the post-glacial rise in atmospheric CO2, and thereby contributing to climatic warming. However, as yet there has been no detailed investigation of activity in glaciated volcanic arcs following the LGM. Arc volcanism accounts for 90% of present-day subaerial volcanic eruptions. It is therefore important to constrain the impact of deglaciation on arc volcanoes, to understand fully the nature and magnitude of global-scale relationships between volcanism and glaciation. The first part of this paper examines the post-glacial explosive eruption history of the Andean southern volcanic zone (SVZ), a typical arc system, with additional data from the Kamchatka and Cascade arcs. In all cases, eruption rates in the early post-glacial period do not exceed those at later times at a statistically significant level. In part, the recognition and quantification of what may be small (i.e. less than a factor of two) increases in eruption rate is hindered by the size of our datasets. These datasets are limited to eruptions larger than 0.1 km3, because deviations from power-law magnitude-frequency relationships indicate strong relative under-sampling at smaller eruption volumes. In the southern SVZ, where ice unloading was greatest, eruption frequency in the early post-glacial period is approximately twice that of the mid post-glacial period (although frequency increases again in the late post-glacial). A comparable pattern occurs in Kamchatka, but is not observed in the Cascade arc. The early post-glacial period also coincides with a small number of very large explosive eruptions from the most active volcanoes in the southern and central SVZ, consistent with enhanced ponding of magma during

  15. Geology and Geochronology of the Central Part of Chiapanecan Volcanic Arc, Mexico.

    Science.gov (United States)

    Layer, P. W.

    2006-12-01

    The Chiapanecan Volcanic Arc (CVA) is a 150 km stretch of volcanoes irregularly aligned in a northwest direction, including El Chichón volcano located in the central portion of the State of Chiapas, southern Mexico. It lies between two great volcanic features: the Trans-Mexican Volcanic Arc to the northwest, and the Central American Volcanic Arc to the southeast, in a complex zone of the interaction of the North American, Caribbean and Cocos Plates. The central part of the CVA is composed of an irregular northwest alignment of at least 12 volcanic structures located 80 km to the southeast of El Chichón (the only currently active volcano in the CVA). These structures include one explosion crater (Navenchauc), one collapse structure (Apas), one dome complex (Tzontehuitz) and nine volcanic domes (Navenchauc, Huitepec, Amahuitz, La Iglesia, Mispía, La Lanza, Venustiano Carranza, Miguel Hidalgo and Santotón) with associated pyroclastic flow deposits. The juvenile lithics from these deposits have a porphyritic texture with phenocrysts of plagioclase (±), amphibole (±), clinopyroxene (±), orthopyroxene (±) and Fe-Ti oxides surrounded by a matrix composed by microlites of plagioclase and glass. The chemical results obtained from representative samples from the deposits and structures indicate that these belong to the series of subalkaline rocks, and fall into the calcalkaline field with medium to high contents of potassium. They vary in their composition from andesite to dacite with an interval of silica between a 56 to a 66% (wt.). The ages reported in the literature and obtained in this study by means of the K-Ar and the 40Ar/39Ar methods, respectively, indicated that volcanism was episodic and spanned a time from 2100 ky ago (Tzontehuitz) to 225 ky ago (Venustiano Carranza).

  16. Submarine Hydrothermal Activity on the Aeolian Arc: New Evidence from Helium Isotopes

    Science.gov (United States)

    Lupton, J.; de Ronde, C.; Baker, E.; Sprovieri, M.; Bruno, P.; Italiano, F.; Walker, S.; Faure, K.; Leybourne, M.; Britten, K.; Greene, R.

    2008-12-01

    In November 2007 we conducted a water-column and seafloor mapping study of the submarine volcanoes of the Aeolian Arc in the southern Tyrrhenian Sea aboard the R/V Urania. A total of 26 CTD casts were completed, 13 vertical casts and 13 tows. In addition to in situ measurements of temperature, conductivity, pressure and suspended particles, we also collected discrete samples for helium isotopes, methane, and trace metals. The helium isotope ratio, which is known to be an unambiguous indicator of hydrothermal input, showed a clear excess above background at 5 out of the 10 submarine volcanoes surveyed. We found the strongest helium anomaly over Marsili seamount, where the 3He/4He ratio reached maximum values of δ3He = 23% at 610 m depth compared with background values of ~7%. We also found smaller but distinct δ3He anomalies over Enerato, Eolo, Palinuro, and Secca del Capo. We interpret these results as indicating the presence of hydrothermal activity on these 5 seamounts. Hydrothermal venting has been documented at subsea vents offshore of the islands of Panarea, Stromboli, and Vulcano (Dando et al., 1999; Di Roberto et al., 2008), and hydrothermal deposits have been sampled on many of the submarine volcanoes of the Aeolian Arc (Dekov and Savelli, 2004). However, as far as we know this is the first evidence of present day hydrothermal activity on Marsili, Enerato, and Eolo. Samples collected over Filicudi, Glabro, Lamentini, Sisifo, and Alcioni had δ3He very close to the regional background values, suggesting either absence of or very weak hydrothermal activity on these seamounts. Helium isotope measurements from the background hydrocasts positioned between the volcanoes revealed the presence of an excess in 3He throughout the SE Tyrrhenian Sea. These background profiles reach a consistent maximum of about δ3He = 11% at 2300 m depth. Historical helium profiles collected in the central and northern Tyrrhenian Sea in 1987 and 1997 do not show this deep 3He

  17. Seismic unrest at Katla Volcano- southern Iceland

    Science.gov (United States)

    jeddi, zeinab; Tryggvason, Ari; Gudmundsson, Olafur; Bödvarsson, Reynir; SIL Seismology Group

    2014-05-01

    Katla volcano is located on the propagating Eastern Volcanic Zone (EVZ) in South Iceland. It is located beneath Mýrdalsjökull ice-cap which covers an area of almost 600 km2, comprising the summit caldera and the eruption vents. 20 eruptions between 930 and 1918 with intervals of 13-95 years are documented at Katla which is one of the most active subglacial volcanoes in Iceland. Eruptions at Katla are mainly explosive due to the subglacial mode of extrusion and produce high eruption columns and catastrophic melt water floods (jökulhlaups). The present long Volcanic repose (almost 96 years) at Katla, the general unrest since 1955, and the 2010 eruption of the neighbouring Eyjafjallajökull volcano has prompted concerns among geoscientists about an imminent eruption. Thus, the volcano has been densely monitored by seismologists and volcanologists. The seismology group of Uppsala University as a partner in the Volcano Anatomy (VA) project in collaboration with the University of Iceland and the Icelandic Meteorological Office (IMO) installed 9 temporary seismic stations on and around the Mýrdalsjökull glacier in 2011. Another 10 permanent seismic stations are operated by IMO around Katla. The project's data collection is now finished and temporary stations were pulled down in August 2013. According to seismicity maps of the whole recording period, thousands of microearthquakes have occurred within the caldera region. At least three different source areas are active in Katla: the caldera region, the western Godaland region and a small cluster at the southern rim of Mýrdalsjökull near the glacial stream of Hafursarjökull. Seismicity in the southern flank has basically started after June 2011. The caldera events are mainly volcano-tectonic, while western and southern events are mostly long period (lp) and can be related to glacial or magmatic movement. One motivation of the VA Katla project is to better understand the physical mechanism of these lp events. Changes

  18. Monitoring and modeling ice-rock avalanches from ice-capped volcanoes: A case study of frequent large avalanches on Iliamna Volcano, Alaska

    Science.gov (United States)

    Huggel, C.; Caplan-Auerbach, J.; Waythomas, C.F.; Wessels, R.L.

    2007-01-01

    Iliamna is an andesitic stratovolcano of the Aleutian arc with regular gas and steam emissions and mantled by several large glaciers. Iliamna Volcano exhibits an unusual combination of frequent and large ice-rock avalanches in the order of 1 ?? 106??m3 to 3 ?? 107??m3 with recent return periods of 2-4??years. We have reconstructed an avalanche event record for the past 45??years that indicates Iliamna avalanches occur at higher frequency at a given magnitude than other mass failures in volcanic and alpine environments. Iliamna Volcano is thus an ideal site to study such mass failures and its relation to volcanic activity. In this study, we present different methods that fit into a concept of (1) long-term monitoring, (2) early warning, and (3) event documentation and analysis of ice-rock avalanches on ice-capped active volcanoes. Long-term monitoring methods include seismic signal analysis, and space-and airborne observations. Landsat and ASTER satellite data was used to study the extent of hydrothermally altered rocks and surface thermal anomalies at the summit region of Iliamna. Subpixel heat source calculation for the summit regions where avalanches initiate yielded temperatures of 307 to 613??K assuming heat source areas of 1000 to 25??m2, respectively, indicating strong convective heat flux processes. Such heat flow causes ice melting conditions and is thus likely to reduce the strength at the base of the glacier. We furthermore demonstrate typical seismic records of Iliamna avalanches with rarely observed precursory signals up to two hours prior to failure, and show how such signals could be used for a multi-stage avalanche warning system in the future. For event analysis and documentation, space- and airborne observations and seismic records in combination with SRTM and ASTER derived terrain data allowed us to reconstruct avalanche dynamics and to identify remarkably similar failure and propagation mechanisms of Iliamna avalanches for the past 45??years

  19. Volcanoes in the Classroom--an Explosive Learning Experience.

    Science.gov (United States)

    Thompson, Susan A.; Thompson, Keith S.

    1996-01-01

    Presents a unit on volcanoes for third- and fourth-grade students. Includes demonstrations; video presentations; building a volcano model; and inviting a scientist, preferably a vulcanologist, to share his or her expertise with students. (JRH)

  20. Volcanostratigraphic Approach for Evaluation of Geothermal Potential in Galunggung Volcano

    Science.gov (United States)

    Ramadhan, Q. S.; Sianipar, J. Y.; Pratopo, A. K.

    2016-09-01

    he geothermal systems in Indonesia are primarily associated with volcanoes. There are over 100 volcanoes located on Sumatra, Java, and in the eastern part of Indonesia. Volcanostratigraphy is one of the methods that is used in the early stage for the exploration of volcanic geothermal system to identify the characteristics of the volcano. The stratigraphy of Galunggung Volcano is identified based on 1:100.000 scale topographic map of Tasikmalaya sheet, 1:50.000 scale topographic map and also geological map. The schematic flowchart for evaluation of geothermal exploration is used to interpret and evaluate geothermal potential in volcanic regions. Volcanostratigraphy study has been done on Galunggung Volcano and Talaga Bodas Volcano, West Java, Indonesia. Based on the interpretation of topographic map and analysis of the dimension, rock composition, age and stress regime, we conclude that both Galunggung Volcano and Talaga Bodas Volcano have a geothermal resource potential that deserve further investigation.

  1. USGS U.S. Volcanoes with Elevated Status

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Website provides list of elevated status volcanoes with access to activity updates and/or information releases for changes in activity at the volcanoes. activity at...

  2. Tertiary evolution of the Shimanto belt (Japan): A large-scale collision in Early Miocene

    Science.gov (United States)

    Raimbourg, Hugues; Famin, Vincent; Palazzin, Giulia; Yamaguchi, Asuka; Augier, Romain

    2017-07-01

    To decipher the Miocene evolution of the Shimanto belt of southwestern Japan, structural and paleothermal studies were carried out in the western area of Shikoku Island. All units constituting the belt, both in its Cretaceous and Tertiary domains, are in average strongly dipping to the NW or SE, while shortening directions deduced from fault kinematics are consistently orientated NNW-SSE. Peak paleotemperatures estimated with Raman spectra of organic matter increase strongly across the southern, Tertiary portion of the belt, in tandem with the development of a steeply dipping metamorphic cleavage. Near the southern tip of Ashizuri Peninsula, the unconformity between accreted strata and fore-arc basin, present along the whole belt, corresponds to a large paleotemperature gap, supporting the occurrence of a major collision in Early Miocene. This tectonic event occurred before the magmatic event that affected the whole belt at 15 Ma. The associated shortening was accommodated in two opposite modes, either localized on regional-scale faults such as the Nobeoka Tectonic Line in Kyushu or distributed through the whole belt as in Shikoku. The reappraisal of this collision leads to reinterpret large-scale seismic refraction profiles of the margins, where the unit underlying the modern accretionary prism is now attributed to an older package of deformed and accreted sedimentary units belonging to the Shimanto belt. When integrated into reconstructions of Philippine Sea Plate motion, the collision corresponds to the oblique collision of a paleo Izu-Bonin-Mariana Arc with Japan in Early Miocene.

  3. Kozu-Matsuda fault system in northern Izu collision zone, western part of Kanagawa Prefecture, central Japan

    Science.gov (United States)

    Odawara, K.; Aketagawa, T.; Yoshida, A.

    2010-12-01

    Western area of Kanagawa Prefecture is techtonically highlighted by its geological setting that the Izu-Bonin volcanic arc collides with the Japan Island arc there. The Kozu-Matsuda fault system which consists of the Kozu-Matsuda fault, the Matsuda-kita fault, the Hinata fault and the Hirayama fault is a surface manifestation of the plate boundary. Research of the Kozu-Matsuda fault has advanced dramatically after the 1995 Kobe Earthquake. Having conducted a trench survey, Kanagawa Prefectural Government (2004) reported that the Kozu-Matsuda fault was activated at least four times in the past 4000 years and the latest activity occurred 650-950 years ago (AD. 1350-1050). However, details of the activity of the Hinata and Hirayama faults, the northern extension of the Kozu-Matsuda fault, are not well understood. The Special Project for Earthquake Disaster Mitigation in Urban areas (DaiDaiToku) made a 2040 m deep drilling in 2004 in Yamakita Town (Hayashi et al., 2006). DaiDaiToku also carried out the seismic reflection profiling along a route from Odawara to Yamanashi in 2005 (Sato et al., 2005). The study done by DaiDaiToku elucidated presence of two north-dipping thrusts. The northern thrust corresponds to the Hinata fault, and the southern one which is also considered to be a continuation of the Kozu-Matsuda fault probably represents a frontal thrust (Miyauchi et al., 2006). We have conducted paleoseismic investigations using data from boreholes across these thrusts.

  4. Making continental crust: The sanukitoid connection

    Institute of Scientific and Technical Information of China (English)

    Yoshiyuki TATSUMI

    2008-01-01

    The average continental crust possesses intermediate compositions that typify arc magmatism and as a result it is believed to have been created at ancient convergent plate boundaries. One possible mechanism for intermediate continental crust formation is the direct production of andesitic melts in the upper mantle. Sanukitoids, which characterize the Setouchi volcanic belt, SW Japan, include unusually high-Mg andesites (HMA). They were generated by slab melting and subsequent melt-mantle interactions under unusual tectonic settings such as where warm lithosphere subducts into hot upper mantle. Such conditions would have existed in the Archean. Hydrous HMA magmas are likely to have solidified within the crust to form HMA plutons, which were then remelted to produce differentiated sanukitoids. At present, generation and differentiation of HMA magmas may be taking place in the Izu-Bonin-Mariana arc-trench system (IBM), because (1) HMA magmatism characterizes the initial stages of the iBM evolution and (2) the IBM middle crust exhibits Vp identical to that of the bulk continental crust. Vp estimates for plutonic rocks with HMA compositions support this. However tonalitic composition for middle-crust-forming rocks cannot be ruled out, suggesting an alternative possibility that the continental crust has been created by differentiation of mantle-derived basaltic magmas.

  5. Quantifying dispersal from hydrothermal vent fields in the western Pacific Ocean.

    Science.gov (United States)

    Mitarai, Satoshi; Watanabe, Hiromi; Nakajima, Yuichi; Shchepetkin, Alexander F; McWilliams, James C

    2016-03-15

    Hydrothermal vent fields in the western Pacific Ocean are mostly distributed along spreading centers in submarine basins behind convergent plate boundaries. Larval dispersal resulting from deep-ocean circulations is one of the major factors influencing gene flow, diversity, and distributions of vent animals. By combining a biophysical model and deep-profiling float experiments, we quantify potential larval dispersal of vent species via ocean circulation in the western Pacific Ocean. We demonstrate that vent fields within back-arc basins could be well connected without particular directionality, whereas basin-to-basin dispersal is expected to occur infrequently, once in tens to hundreds of thousands of years, with clear dispersal barriers and directionality associated with ocean currents. The southwest Pacific vent complex, spanning more than 4,000 km, may be connected by the South Equatorial Current for species with a longer-than-average larval development time. Depending on larval dispersal depth, a strong western boundary current, the Kuroshio Current, could bridge vent fields from the Okinawa Trough to the Izu-Bonin Arc, which are 1,200 km apart. Outcomes of this study should help marine ecologists estimate gene flow among vent populations and design optimal marine conservation plans to protect one of the most unusual ecosystems on Earth.

  6. Rates, Mechanisms, and Implications of Crustal Assimilation in Continental Arcs

    Science.gov (United States)

    Dungan, M.; Davidson, J.

    2002-12-01

    Contrary to the limiting constraints postulated by Bowen for the coupled thermal and mass balance implicated in assimilation, many studies [1-6] suggest that multi-stage and multi-component assimilation, abetted by magma mixing, may be volumetrically important and have profound consequences for the chemistry of basaltic and evolved magmas in long-lived continental magmatic systems. The probability of a primitive or evolved basalt arriving at the Earth's surface having undergone perfectly closed-system evolution during passage through 25-60 km of continental crust is vanishingly low. A case-by-case demonstration that the intra-crustal chemical overprint is trivial, or that it can be quantified and subtracted, is an essential step in any evaluation of mantle source-region chemistry and processes based on inversion of continental basalt compositions. In magmatic systems characterized by mafic magma recharge the thermal energy and physical dynamism needed for assimilation are not constrained to come uniquely from one magma batch [7, 8]. Equally important is that assimilation is rarely equivalent to bulk melting of ingested blocks followed by reservoir-wide homogenization. The mechanics of crustal assimilation are governed by grain boundary melting, disaggregation, and dispersal of refractory solids (including xenocryst settling) wherein liberated low-density, incompatible element-enriched partial melts have the capacity to render primitive arc magma batches variably modified, as well as heterogeneous on short length-scales. Evidence that basalts thermally erode surface channels and conduit walls, and new observations constraining the maximum time that some extensively melted xenoliths have resided in their host magmas, indicate that the time required to impose an open-system overprint on a hot basaltic magma (days to yrs) is far shorter than typical repose periods at most arc volcanoes (50-500 yrs). Assimilative recycling of broadly gabbroic arc cumulates has had large

  7. 3-D electrical resistivity structure based on geomagnetic transfer functions exploring the features of arc magmatism beneath Kyushu, Southwest Japan Arc

    Science.gov (United States)

    Hata, Maki; Uyeshima, Makoto; Handa, Shun; Shimoizumi, Masashi; Tanaka, Yoshikazu; Hashimoto, Takeshi; Kagiyama, Tsuneomi; Utada, Hisashi; Munekane, Hiroshi; Ichiki, Masahiro; Fuji-ta, Kiyoshi

    2017-01-01

    Our 3-D electrical resistivity model clearly detects particular subsurface features for magmatism associated with subduction of the Philippine Sea Plate (PSP) in three regions: a southern and a northern volcanic region, and a nonvolcanic region on the island of Kyushu. We apply 3-D inversion analyses for geomagnetic transfer function data of a short-period band, in combination with results of a previous 3-D model that was determined by using Network-Magnetotelluric response function data of a longer-period band as an initial model in the present inversion to improve resolution at shallow depths; specifically, a two-stage inversion is used instead of a joint inversion. In contrast to the previous model, the presented model clearly reveals a conductive block on the back-arc side of Kirishima volcano at shallow depths of 50 km; the block is associated with hydrothermal fluids and hydrothermal alteration zones related to the formation of epithermal gold deposits. A second feature revealed by the model is another conductive block regarded as upwelling fluids, extending from the upper surface of the PSP in the mantle under Kirishima volcano in the southern volcanic region. Third, a resistive crustal layer, which confines the conductive block in the mantle, is distributed beneath the nonvolcanic region. Fourth, our model reveals a significant resistive block, which extends below the continental Moho at the fore-arc side of the volcanic front and extends into the nonvolcanic region in central Kyushu.

  8. Deciphering petrogenic processes using Pb isotope ratios from time-series samples at Bezymianny and Klyuchevskoy volcanoes, Central Kamchatka Depression

    Science.gov (United States)

    Kayzar, Theresa M.; Nelson, Bruce K.; Bachmann, Olivier; Bauer, Ann M.; Izbekov, Pavel E.

    2014-10-01

    The Klyuchevskoy group of volcanoes in the Kamchatka arc erupts compositionally diverse magmas (high-Mg basalts to dacites) over small spatial scales. New high-precision Pb isotope data from modern juvenile (1956-present) erupted products and hosted enclaves and xenoliths from Bezymianny volcano reveal that Bezymianny and Klyuchevskoy volcanoes, separated by only 9 km, undergo varying degrees of crustal processing through independent crustal columns. Lead isotope compositions of Klyuchevskoy basalts-basaltic andesites are more radiogenic than Bezymianny andesites (208Pb/204Pb = 37.850-37.903, 207Pb/204Pb = 15.468-15.480, and 206Pb/204Pb = 18.249-18.278 at Bezymianny; 208Pb/204Pb = 37.907-37.949, 207Pb/204Pb = 15.478-15.487, and 206Pb/204Pb = 18.289-18.305 at Klyuchevskoy). A mid-crustal xenolith with a crystallization pressure of 5.2 ± 0.6 kbars inferred from two-pyroxene geobarometry and basaltic andesite enclaves from Bezymianny record less radiogenic Pb isotope compositions than their host magmas. Hence, assimilation of such lithologies in the middle or lower crust can explain the Pb isotope data in Bezymianny andesites, although a component of magma mixing with less radiogenic mafic recharge magmas and possible mantle heterogeneity cannot be excluded. Lead isotope compositions for the Klyuchevskoy Group are less radiogenic than other arc segments (Karymsky—Eastern Volcanic Zone; Shiveluch—Northern Central Kamchatka Depression), which indicate increased lower-crustal assimilation beneath the Klyuchevskoy Group. Decadal timescale Pb isotope variations at Klyuchevskoy demonstrate rapid changes in the magnitude of assimilation at a volcanic center. Lead isotope data coupled with trace element data reflect the influence of crustal processes on magma compositions even in thin mafic volcanic arcs.

  9. The Cenozoic Volcanoes in Northeast China

    Institute of Scientific and Technical Information of China (English)

    LIU Jiaqi; HAN Jingtai; GUO Zhengfu

    2002-01-01

    There are more than 600 Cenozoic volcanic cones and craters with abeut 50 000 km2of lava flows in northeast China, which formed many volcanic clusters and shown the features of the continental rift - type volcanoes. Most volcanic activities in this area, especially in the east part of Songliao graben, were usually controlled by rifts and faults with the main direction of NE / NNE in parallel and become younger from the central graben towards its both sides, especially to the east continental margin. It is revealed that the volcanism occurred in northeast China was as strong as that occurred in Japan during the Miocene and the Quaternary. The Quaternary basalt that is usually distributed along river valley is called "valley basalt"while Neogene basalt usually distributed in the top of mounts is called "high position basalt". These volcanoes and volcanic rocks are usually composed of alkaline basalts with ultramafic inclusions, except Changbaishan volcano that is built by trachyte and pantellerite.

  10. Geochemical models of melting and magma storage conditions for basalt lava from Santorini Volcano, Greece

    Science.gov (United States)

    Baziotis, Ioannis; Kimura, Jun-Ichi; Pantazidis, Avgoustinos; Klemme, Stephan; Berndt, Jasper; Asimow, Paul

    2017-04-01

    Santorini volcano sits ˜150 km above the Wadati-Benioff zone of the Aegean arc, where the African plate subducts northward beneath the Eurasian continent (Papazachos et al. 2000). Santorini volcano has a long history: activity started ca. 650 ka (mainly rhyolites and rhyodacites), with active pulses following ca. 550 ka (basalt to rhyodacite) and ca. 360 ka (large explosive eruptions of andesite to rhyodacite and minor basalt), culminating in the caldera-forming Bronze-age Minoan event (Druitt et al. 1999). As in many arc volcanoes, scenarios of fractional crystallization with or without mixing between felsic and mafic magmas have been proposed to explain the compositions, textures, and eruptive styles of Santorini products (e.g., Huijsmans & Barton 1989; Montazavi & Sparks 2004; Andújar et al. 2015). Here we focus on a basalt lava from the southern part of Santorini volcano (Balos cove, 36˚ 21.7'N, 25˚ 23.8'E), one of the few basaltic localities in the Aegean arc. The goals are to infer constraints on the magma chamber conditions which lead to mafic eruption at Santorini Volcano and to evaluate the slab and mantle wedge conditions via geochemical and petrological mass balance modelling. We collected and characterised 20 samples for texture (SEM), mineral chemistry (FE-EPMA) and whole-rock chemistry (XRF). The basalts contain phenocrystic olivine (Ol) and clinopyroxene (Cpx) (Santorini basalts exhibit a pilotaxitic to trachytic texture defined by randomly to flow-oriented tabular Pl, respectively. The predominant minerals are calcic Pl (core An78-85 and rim An60-76; 45-50 vol.%), Cpx (En36-48Wo41-44Fs11-21; 10-15 vol.%) and Ol (Fo74-88; 10-12 vol.%). Idiomorphic to subidiomorphic Mt (<10μm diameter) with variable TiO2 contents (1.9-16.5 wt%) is a minor constituent (˜1-2 vol.%) in the less mafic samples. Observed mineralogy and major element chemistry suggest fractionation in a shallow magma chamber. Using the major element chemistry and PRIMACALC2 (Kimura

  11. Living with Volcanoes: Year Eleven Teaching Resource Unit.

    Science.gov (United States)

    Le Heron, Kiri; Andrews, Jill; Hooks, Stacey; Larnder, Michele; Le Heron, Richard

    2000-01-01

    Presents a unit on volcanoes and experiences with volcanoes that helps students develop geography skills. Focuses on four volcanoes: (1) Rangitoto Island; (2) Lake Pupuke; (3) Mount Smart; and (4) One Tree Hill. Includes an answer sheet and resources to use with the unit. (CMK)

  12. How Do Volcanoes Affect Human Life? Integrated Unit.

    Science.gov (United States)

    Dayton, Rebecca; Edwards, Carrie; Sisler, Michelle

    This packet contains a unit on teaching about volcanoes. The following question is addressed: How do volcanoes affect human life? The unit covers approximately three weeks of instruction and strives to present volcanoes in an holistic form. The five subject areas of art, language arts, mathematics, science, and social studies are integrated into…

  13. Predicting the Timing and Location of the next Hawaiian Volcano

    Science.gov (United States)

    Russo, Joseph; Mattox, Stephen; Kildau, Nicole

    2010-01-01

    The wealth of geologic data on Hawaiian volcanoes makes them ideal for study by middle school students. In this paper the authors use existing data on the age and location of Hawaiian volcanoes to predict the location of the next Hawaiian volcano and when it will begin to grow on the floor of the Pacific Ocean. An inquiry-based lesson is also…

  14. Late Jurassic Crustal Thickening in the Mesozoic Arc of Ecuador and Colombia: Implications on the Evolution of Continental Arcs.

    Science.gov (United States)

    Vanegas, J.; Cardona, A.; Blanco-Quintero, I.; Valencia, V.

    2014-12-01

    The tectonic evolution of South America during the Jurassic is related to the subduction of the Farallon plate and the formation of a series of continental arcs. In the northern Andes such arcs have been considered as controlled by extensional dominated tectonics. Paleomagnetic constraints have also suggested that between the Early and Late Jurassic several crustal domains were translate along the continental margin in association with strain partitioning in the convergent margin. A review of the character of the Salado terrane in the Cordillera Real of Ecuador indicates that it includes extensively deformed and metamorphosed volcano-sedimentary rocks that have achieved a greenschist to amphibolite facies event with chloritoid and garnet. This rocks are tightly associated with a ca. 143 Ma syn-tectonic granodiorite to monzogranite batholith that is also extensively milonitized.A similar Late Jurassic crustal thickening event that apparently affected volcano-sedimentary rocks have been also recently suspected in the Central Cordillera of the Colombian Andes in association with Jurassic plutonic rocks (Blanco-Quintero et al., 2013) It is therefore suggested that during the Late Jurassic the Northern Andes experienced significant contractional tectonics. Such crustal thickening may be related to either the active subduction setting were the crustal slivers formed in relation to oblique convergence are transfered and re-accreted to the margin and triggered the deformational event or to a collisional event associated to the arrival of an allocthonous terrane. New geochronological constraints on the metamorphic evolution and precise understanding on the relations between magmatism and deformation are going to be obtain in the Salado Terrane to appropriately test this hypothesis and contribute to the understanding of the extensional to compressional tectonic switching in continental arcs. Blanco-Quintero, I. F., García-Casco, A., Ruíz, E. C., Toro, L. M., Moreno, M

  15. Volcanoes muon imaging using Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, O. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Del Santo, M., E-mail: melania@ifc.inaf.it [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Mineo, T.; Cusumano, G.; Maccarone, M.C. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Pareschi, G. [INAF Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807, Merate (Italy)

    2016-01-21

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  16. Applications of geophysical methods to volcano monitoring

    Science.gov (United States)

    Wynn, Jeff; Dzurisin, Daniel; Finn, Carol A.; Kauahikaua, James P.; Lahusen, Richard G.

    2006-01-01

    The array of geophysical technologies used in volcano hazards studies - some developed originally only for volcano monitoring - ranges from satellite remote sensing including InSAR to leveling and EDM surveys, campaign and telemetered GPS networks, electronic tiltmeters and strainmeters, airborne magnetic and electromagnetic surveys, short-period and broadband seismic monitoring, even microphones tuned for infrasound. They include virtually every method used in resource exploration except large-scale seismic reflection. By “geophysical ” we include both active and passive methods as well as geodetic technologies. Volcano monitoring incorporates telemetry to handle high-bandwith cameras and broadband seismometers. Critical geophysical targets include the flux of magma in shallow reservoir and lava-tube systems, changes in active hydrothermal systems, volcanic edifice stability, and lahars. Since the eruption of Mount St. Helens in Washington State in 1980, and the eruption at Pu’u O’o in Hawai’i beginning in 1983 and still continuing, dramatic advances have occurred in monitoring technology such as “crisis GIS” and lahar modeling, InSAR interferograms, as well as gas emission geochemistry sampling, and hazards mapping and eruption predictions. The on-going eruption of Mount St. Helens has led to new monitoring technologies, including advances in broadband Wi-Fi and satellite telemetry as well as new instrumentation. Assessment of the gap between adequate monitoring and threat at the 169 potentially dangerous Holocene volcanoes shows where populations are dangerously exposed to volcanic catastrophes in the United States and its territories . This paper focuses primarily on Hawai’ian volcanoes and the northern Pacific and Cascades volcanoes. The US Geological Survey, the US National Park System, and the University of Utah cooperate in a program to monitor the huge Yellowstone volcanic system, and a separate observatory monitors the restive Long Valley

  17. Volcanoes muon imaging using Cherenkov telescopes

    Science.gov (United States)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M. C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  18. High pressure neon arc lamp

    Science.gov (United States)

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  19. The origin of the Hawaiian Volcano Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Dvorak, John [University of Hawaii' s Institute for Astronomy (United States)

    2011-05-15

    I first stepped through the doorway of the Hawaiian Volcano Observatory in 1976, and I was impressed by what I saw: A dozen people working out of a stone-and-metal building perched at the edge of a high cliff with a spectacular view of a vast volcanic plain. Their primary purpose was to monitor the island's two active volcanoes, Kilauea and Mauna Loa. I joined them, working for six weeks as a volunteer and then, years later, as a staff scientist. That gave me several chances to ask how the observatory had started.

  20. Seismicity of the Earth 1900-2010 Aleutian arc and vicinity

    Science.gov (United States)

    Benz, Harley M.; Herman, Matthew; Tarr, Arthur C.; Hayes, Gavin P.; Furlong, Kevin P.; Villaseñor, Antonio; Dart, Richard L.; Rhea, Susan

    2011-01-01

    This map shows details of the Aleutian arc not visible in an earlier publication. The Aleutian arc extends about 3,000 km from the Gulf of Alaska to the Kamchatka Peninsula. It marks the region where the Pacific plate subducts into the mantle beneath the North America plate. This subduction is responsible for the generation of the Aleutian Islands and the deep offshore Aleutian Trench. Relative to a fixed North America plate, the Pacific plate is moving northwest at a rate that increases from about 55 mm per year at the arc's eastern edge to 75 mm per year near its western terminus. In the east, the convergence of the plates is nearly perpendicular to the plate boundary. However, because of the boundary's curvature, as one travels westward along the arc, the subduction becomes more and more oblique to the boundary until the relative plate motion becomes parallel to the arc at the Near Islands near its western edge. Subduction zones such as the Aleutian arc are geologically complex and produce numerous earthquakes from multiple sources. Deformation of the overriding North America plate generates shallow crustal earthquakes, whereas slip at the interface of the plates generates interplate earthquakes that extend from near the base of the trench to depths of 40 to 60 km. At greater depths, Aleutian arc earthquakes occur within the subducting Pacific plate and can reach depths of 300 km. Since 1900, six great earthquakes have occurred along the Aleutian Trench, Alaska Peninsula, and Gulf of Alaska: M8.4 1906 Rat Islands; M8.6 1938 Shumagin Islands; M8.6 1946 Unimak Island; M8.6 1957 Andreanof Islands; M9.2 1964 Prince William Sound; and M8.7 1965 Rat Islands. Several relevant tectonic elements (plate boundaries and active volcanoes) provide a context for the seismicity presented on the main map panel. The plate boundaries are most accurate along the axis of the Aleutian Trench and more diffuse or speculative in extreme northeastern Russia. The active volcanoes parallel

  1. Insights from Pb and O isotopes into along-arc variations in subduction inputs and crustal assimilation for volcanic rocks in Java, Sunda arc, Indonesia

    Science.gov (United States)

    Handley, Heather K.; Blichert-Toft, Janne; Gertisser, Ralf; Macpherson, Colin G.; Turner, Simon P.; Zaennudin, Akhmad; Abdurrachman, Mirzam

    2014-08-01

    New Pb isotope data are presented for Gede Volcanic Complex, Salak and Galunggung volcanoes in West Java, Merbabu and Merapi volcanoes in Central Java and Ijen Volcanic Complex in East Java of the Sunda arc, Indonesia. New O isotope data for Merbabu and new geochemical and radiogenic isotope data (Sr-Nd-Hf-Pb) for three West Javanese, upper crustal, Tertiary sedimentary rocks are also presented. The data are combined with published geochemical and isotopic data to constrain the relative importance of crustal assimilation and subducted input of crustal material in petrogenesis in Java. Also discussed are the significance of limestone assimilation in controlling the geochemical and isotopic characteristics of erupted Javanese rocks and the geochemical impact upon central and eastern Javanese arc rocks due to the subduction of Roo Rise between 105 and 109°E. The negative correlation between Pb isotopes and SiO2, combined with mantle-like δ18O values in Gede Volcanic Complex rocks, West Java, are most likely explained by assimilation of more isotopically-primitive arc rocks and/or ophiolitic crust known to outcrop in West Java. The negative Pb isotope-SiO2 trend cannot be explained by assimilation of the known compositions of the upper crustal rocks. A peak in δ18O whole-rock and mineral values in Central Javanese volcanic rocks (Merbabu and Merapi) combined with along-arc trends in Sr isotope ratios suggest that a different or additional crustal assimilant exerts control on the isotopic composition of Central Javanese volcanic rocks. This assimilant (likely carbonate material) is characterised by high δ18O and high Sr isotope ratio but is not particularly elevated in its Pb isotopic ratio. Once the effects of crustal assimilation are accounted for, strong East to West Java regional variations in Ba concentration, Ba/Hf ratio and Pb isotopic composition are evident. These differences are attributed to heterogeneity in the subducted source input component along the

  2. Arcing phenomena in fusion devices workshop

    Energy Technology Data Exchange (ETDEWEB)

    Clausing, R.E.

    1979-01-01

    The workshop on arcing phenomena in fusion devices was organized (1) to review the pesent status of our understanding of arcing as it relates to confinement devices, (2) to determine what informaion is needed to suppress arcing and (3) to define both laboratory and in-situ experiments which can ultimately lead to reduction of impurities in the plasma caused by arcing. The workshop was attended by experts in the area of vacuum arc electrode phenomena and ion source technology, materials scientists, and both theoreticians and experimentalists engaged in assessing the importance of unipolar arcing in today's tokamaks. Abstracts for papers presented at the workshop are included.

  3. Ascent Rates from Melt Embayments: Insights into the Eruption Dynamics of Arc Volcanoes

    Science.gov (United States)

    Ruprecht, P.; Lloyd, A. S.; Hauri, E.; Rose, W. I.; Gonnermann, H. M.; Plank, T. A.

    2014-12-01

    A significant fraction of the magma that is added from the mantle to the subvolcanic plumbing system ultimately erupts at the surface. The initial volatile content of the magmas as well as the interplay between volatile loss and magma ascent plays a significant role in determining the eruption style (effusive versus explosive) as well as the magnitude of the eruption. The October 17, 1974 sub-Plinian eruption of Volcán de Fuego represents a particularly well-characterized system in terms of volatile content and magma chemistry to investigate the relation between initial water content of the magmas and the ascent rate. By modeling volatile element distribution in melt embayments through diffusion and degassing during ascent we can estimate magma ascent from the storage region in the crust to the surface. The novel aspect is the measurement of concentration gradients multiple volatile elements (in particular CO2, H2O, S) at fine-scale (5-10 μm) using the NanoSIMS. The wide range in diffusivity and solubility of these different volatiles provides multiple constraints on ascent timescales over a range of depths. H2O, CO2, and S all decrease toward the embayment outlet bubble documenting the loss of H2O and CO2 compared to an extensive melt inclusion suite from the same day of the eruption. The data is best described by a two-stage model. At high pressure (>145 MPa) decompression is slow (0.05- 0.3 MPa/s) and CO2 is bled off predominantly. At shallow levels decompression accelerates to 0.3-0.5 MPa/s at the point of H2O exsolution, which strongly affects the buoyancy of the ascending magma. The magma ascent rates presented are among the first for explosive basaltic eruptions and demonstrate the potential of the embayment method for quantifying magmatic timescales associated with eruptions of different vigor. [1] Lloyd et al. (2014) JVGR, http://dx.doi.org/10.1016/j.jvolgeores.2014.06.002

  4. Volcano shapes, entropies, and eruption probabilities

    Science.gov (United States)

    Gudmundsson, Agust; Mohajeri, Nahid

    2014-05-01

    We propose that the shapes of polygenetic volcanic edifices reflect the shapes of the associated probability distributions of eruptions. In this view, the peak of a given volcanic edifice coincides roughly with the peak of the probability (or frequency) distribution of its eruptions. The broadness and slopes of the edifices vary widely, however. The shapes of volcanic edifices can be approximated by various distributions, either discrete (binning or histogram approximation) or continuous. For a volcano shape (profile) approximated by a normal curve, for example, the broadness would be reflected in its standard deviation (spread). Entropy (S) of a discrete probability distribution is a measure of the absolute uncertainty as to the next outcome/message: in this case, the uncertainty as to time and place of the next eruption. A uniform discrete distribution (all bins of equal height), representing a flat volcanic field or zone, has the largest entropy or uncertainty. For continuous distributions, we use differential entropy, which is a measure of relative uncertainty, or uncertainty change, rather than absolute uncertainty. Volcano shapes can be approximated by various distributions, from which the entropies and thus the uncertainties as regards future eruptions can be calculated. We use the Gibbs-Shannon formula for the discrete entropies and the analogues general formula for the differential entropies and compare their usefulness for assessing the probabilities of eruptions in volcanoes. We relate the entropies to the work done by the volcano during an eruption using the Helmholtz free energy. Many factors other than the frequency of eruptions determine the shape of a volcano. These include erosion, landslides, and the properties of the erupted materials (including their angle of repose). The exact functional relation between the volcano shape and the eruption probability distribution must be explored for individual volcanoes but, once established, can be used to

  5. Another Explanation for Neptune's Ring Arcs

    Science.gov (United States)

    Namouni, F.; Porco, C.

    2001-11-01

    Recent HST and Earth-based observations (Dumas et al 1999, Nature 400, 733; Sicardy et al 1999, Nature 400, 731) indicate that Neptune's ring arcs are not located at the corotation resonance with Galatea thought to be responsible for the azimuthal confinement of the arc system (Porco, 1991 Science 253, 995). Although small (5x 10-3od-1), the new observed mean motion offset puts the arcs near the resonance separatrix where the particles' semimajor axes would experience chaotic motion leading to the azimuthal spreading of the arcs within months, thereby calling into question their very existence. We have found a new resonant structure, dependent on the arcs having a small fraction of the mass of Galatea, in which Galatea's 43:42 eccentric corotation resonance, located (in the massless case) ~ 3 km inside the arcs' orbit, is made coincident with the arcs' semimajor axis. The arcs are primarily confined by this resonance, which is stronger ( e Galatea) than the inclined corotation resonance ( I2 Galatea) invoked in the Porco model. Moreover, the coupling of all the resonances in the arcs' neighborhood (eccentric corotation, inclined corotation and Lindblad resonances) modifies the interaction potential, creating smaller structures at the arcs' location. Consequently, this new confinement mechanism can simultaneously explain the arcs' confinement, the general spacing of the arcs, the Fraternité arc length of ~ 10o, and smaller-scale features seen in the arc system. Finally, the possibility of non-massless arcs supports an earlier suggestion by Porco et al (1991, in Neptune and Triton, the University of Arizona Series) that the rapid expected radial migration of the arc system, due to Galatea's secular torques, can be slowed down if the arcs have substantial mass.

  6. Gas Tungsten Arc Welding and Plasma Arc Cutting. Teacher Edition.

    Science.gov (United States)

    Fortney, Clarence; And Others

    This welding curriculum guide treats two topics in detail: the care of tungsten electrodes and the entire concept of contamination control and the hafnium electrode and its importance in dual-air cutting systems that use compressed shop air for plasma arc cutting activities. The guide contains three units of instruction that cover the following…

  7. Isotopically (δ13C and δ18O) heavy volcanic plumes from Central Andean volcanoes: a field study

    Science.gov (United States)

    Schipper, C. Ian; Moussallam, Yves; Curtis, Aaron; Peters, Nial; Barnie, Talfan; Bani, Philipson; Jost, H. J.; Hamilton, Doug; Aiuppa, Alessandro; Tamburello, Giancarlo; Giudice, Gaetano

    2017-08-01

    Stable isotopes of carbon and oxygen in volcanic gases are key tracers of volatile transfer between Earth's interior and atmosphere. Although important, these data are available for few volcanoes because they have traditionally been difficult to obtain and are usually measured on gas samples collected from fumaroles. We present new field measurements of bulk plume composition and stable isotopes (δ13CCO2 and δ18OH2O+CO2) carried out at three northern Chilean volcanoes using MultiGAS and isotope ratio infrared spectroscopy. Carbon and oxygen in magmatic gas plumes of Lastarria and Isluga volcanoes have δ13C in CO2 of +0.76‰ to +0.77‰ (VPDB), similar to slab carbonate; and δ18O in the H2O + CO2 system ranging from +12.2‰ to +20.7‰ (VSMOW), suggesting significant contributions from altered slab pore water and carbonate. The hydrothermal plume at Tacora has lower δ13CCO2 of -3.2‰ and δ18OH2O+CO2 of +7.0‰, reflecting various scrubbing, kinetic fractionation, and contamination processes. We show the isotopic characterization of volcanic gases in the field to be a practical complement to traditional sampling methods, with the potential to remove sampling bias that is a risk when only a few samples from accessible fumaroles are used to characterize a given volcano's volatile output. Our results indicate that there is a previously unrecognized, relatively heavy isotopic signature to bulk volcanic gas plumes in the Central Andes, which can be attributed to a strong influence from components of the subducting slab, but may also reflect some local crustal contamination. The techniques we describe open new avenues for quantifying the roles that subduction zones and arc volcanoes play in the global carbon cycle.

  8. Influence of substrate tectonic heritage on the evolution of composite volcanoes: Predicting sites of flank eruption, lateral collapse, and erosion

    Science.gov (United States)

    Tibaldi, Alessandro; Corazzato, Claudia; Kozhurin, Andrey; Lagmay, Alfredo F. M.; Pasquarè, Federico A.; Ponomareva, Vera V.; Rust, Derek; Tormey, Daniel; Vezzoli, Luigina

    2008-04-01

    This paper aims to aid understanding of the complicated interplay between construction and destruction of volcanoes, with an emphasis on the role of substrate tectonic heritage in controlling magma conduit geometry, lateral collapse, landslides, and preferential erosion pathways. The influence of basement structure on the development of six composite volcanoes located in different geodynamic/geological environments is described: Stromboli (Italy), in an island arc extensional tectonic setting, Ollagüe (Bolivia-Chile) in a cordilleran extensional setting, Kizimen (Russia) in a transtensional setting, Pinatubo (Philippines) in a transcurrent setting, Planchon (Chile) in a compressional cordilleran setting, and Mt. Etna (Italy) in a complex tectonic boundary setting. Analogue and numerical modelling results are used to enhance understanding of processes exemplified by these volcanic centres. We provide a comprehensive overview of this topic by considering a great deal of relevant, recently published studies and combine these with the presentation of new results, in order to contribute to the discussion on substrate tectonics and its control on volcano evolution. The results show that magma conduits in volcanic rift zones can be geometrically controlled by the regional tectonic stress field. Rift zones produce a lateral magma push that controls the direction of lateral collapse and can also trigger collapse. Once lateral collapse occurs, the resulting debuttressing produces a reorganization of the shallow-level magma migration pathways towards the collapse depression. Subsequent landslides and erosion tend to localize along rift zones. If a zone of weakness underlies a volcano, long-term creep can occur, deforming a large sector of the cone. This deformation can trigger landslides that propagate along the destabilized flank axis. In the absence of a rift zone, normal and transcurrent faults propagating from the substrate through the volcano can induce flank

  9. Growth and degradation of Hawaiian volcanoes: Chapter 3 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Clague, David A.; Sherrod, David R.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    The 19 known shield volcanoes of the main Hawaiian Islands—15 now emergent, 3 submerged, and 1 newly born and still submarine—lie at the southeast end of a long-lived hot spot chain. As the Pacific Plate of the Earth’s lithosphere moves slowly northwestward over the Hawaiian hot spot, volcanoes are successively born above it, evolve as they drift away from it, and eventually die and subside beneath the ocean surface.

  10. Oligocene and Miocene arc volcanism in northeastern California: evidence for post-Eocene segmentation of the subducting Farallon plate

    Science.gov (United States)

    Colgan, J.P.; Egger, A.E.; John, D.A.; Cousens, B.; Fleck, R.J.; Henry, C.D.

    2011-01-01

    The Warner Range in northeastern California exposes a section of Tertiary rocks over 3 km thick, offering a unique opportunity to study the long-term history of Cascade arc volcanism in an area otherwise covered by younger volcanic rocks. The oldest locally sourced volcanic rocks in the Warner Range are Oligocene (28–24 Ma) and include a sequence of basalt and basaltic andesite lava flows overlain by hornblende and pyroxene andesite pyroclastic flows and minor lava flows. Both sequences vary in thickness (0–2 km) along strike and are inferred to be the erosional remnants of one or more large, partly overlapping composite volcanoes. No volcanic rocks were erupted in the Warner Range between ca. 24 and 16 Ma, although minor distally sourced silicic tuffs were deposited during this time. Arc volcanism resumed ca. 16 Ma with eruption of basalt and basaltic andesite lavas sourced from eruptive centers 5–10 km south of the relict Oligocene centers. Post–16 Ma arc volcanism continued until ca. 8 Ma, forming numerous eroded but well-preserved shield volcanoes to the south of the Warner Range. Oligocene to Late Miocene volcanic rocks in and around the Warner Range are calc-alkaline basalts to andesites (48%–61% SiO2) that display negative Ti, Nb, and Ta anomalies in trace element spider diagrams, consistent with an arc setting. Middle Miocene lavas in the Warner Range are distinctly different in age, composition, and eruptive style from the nearby Steens Basalt, with which they were previously correlated. Middle to Late Miocene shield volcanoes south of the Warner Range consist of homogeneous basaltic andesites (53%–57% SiO2) that are compositionally similar to Oligocene rocks in the Warner Range. They are distinctly different from younger (Late Miocene to Pliocene) high-Al, low-K olivine tholeiites, which are more mafic (46%–49% SiO2), did not build large edifices, and are thought to be related to backarc extension. The Warner Range is ∼100 km east of the

  11. Insights on volcanic behaviour from the 2015 July 23-24 T-phase signals generated by eruptions at Kick-'em-Jenny Submarine Volcano, Grenada, Lesser Antilles

    Science.gov (United States)

    Dondin, F. J. Y.; Latchman, J. L.; Robertson, R. E. A.; Lynch, L.; Stewart, R.; Smith, P.; Ramsingh, C.; Nath, N.; Ramsingh, H.; Ash, C.

    2015-12-01

    Kick-'em-Jenny volcano (KeJ) is the only known active submarine volcano in the Lesser Antilles Arc. Since 1939, the year it revealed itself, and until the volcano-seismic unrest of 2015 July 11-25 , the volcano has erupted 12 times. Only two eruptions breached the surface: 1939, 1974. The volcano has an average eruption cycle of about 10-11 years. Excluding the Montserrat, Soufrière Hills, KeJ is the most active volcano in the Lesser Antilles arc. The University of the West Indies, Seismic Research Centre (SRC) has been monitoring KeJ since 1953. On July 23 and 24 at 1:42 am and 0:02 am local time, respectively, the SRC recorded T-phase signals , considered to have been generated by KeJ. Both signals were recorded at seismic stations in and north of Grenada: SRC seismic stations as well as the French volcano observatories in Guadeloupe and Martinique, Montserrat Volcano Observatory, and the Puerto Rico Seismic Network. These distant recordings, along with the experience of similar observations in previous eruptions, allowed the SRC to confirm that two explosive eruptions occurred in this episode at KeJ. Up to two days after the second eruption, when aerial surveillance was done, there was no evidence of activity at the surface. During the instrumental era, eruptions of the KeJ have been identified from T-phases recorded at seismic stations from Trinidad, in the south, to Puerto Rico, in the north. In the 2015 July eruption episode, the seismic station in Trinidad did not record T-phases associated with the KeJ eruptions. In this study we compare the T-phase signals of 2015 July with those recorded in KeJ eruptions up to 1974 to explore possible causative features for the T-phase recording pattern in KeJ eruptions. In particular, we investigate the potential role played by the Sound Fixing and Ranging (SOFAR) layer in influencing the absence of the T-phase on the Trinidad seismic station during this eruption.

  12. Muons reveal the interior of volcanoes

    CERN Multimedia

    Francesco Poppi

    2010-01-01

    The MU-RAY project has the very challenging aim of providing a “muon X-ray” of the Vesuvius volcano (Italy) using a detector that records the muons hitting it after traversing the rock structures of the volcano. This technique was used for the first time in 1971 by the Nobel Prize-winner Louis Alvarez, who was searching for unknown burial chambers in the Chephren pyramid.   The location of the muon detector on the slopes of the Vesuvius volcano. Like X-ray scans of the human body, muon radiography allows researchers to obtain an image of the internal structures of the upper levels of volcanoes. Although such an image cannot help to predict ‘when’ an eruption might occur, it can, if combined with other observations, help to foresee ‘how’ it could develop and serves as a powerful tool for the study of geological structures. Muons come from the interaction of cosmic rays with the Earth's atmosphere. They are able to traverse layers of ro...

  13. The reawakening of Alaska's Augustine volcano

    Science.gov (United States)

    Power, John A.; Nye, Christopher J.; Coombs, Michelle L.; Wessels, Rick L.; Cervelli, Peter F.; Dehn, Jon; Wallace, Kristi L.; Freymueller, Jeffrey T.; Doukas, Michael P.

    2006-01-01

    Augustine volcano, in south central Alaska, ended a 20-year period of repose on 11 January 2006 with 13 explosive eruptions in 20 days. Explosive activity shifted to a quieter effusion of lava in early February, forming a new summit lava dome and two short, blocky lava flows by late March (Figure 1).

  14. New volcanoes discovered in southeast Australia

    Science.gov (United States)

    Wendel, JoAnna

    2014-07-01

    Scientists have discovered three new active volcanoes in the Newer Volcanics Province (NVP) in southeast Australia. Researchers from Monash University in Melbourne describe in the Australian Journal of Earth Sciences how they used a combination of satellite photographs, detailed topography models from NASA, the distribution of magnetic minerals in the rocks, and site visits to analyze the region.

  15. Carbonate assimilation at Merapi volcano, Java Indonesia

    DEFF Research Database (Denmark)

    Chadwick, J.P; Troll, V.R; Ginibre,, C.

    2007-01-01

    Recent basaltic andesite lavas from Merapi volcano contain abundant, complexly zoned, plagioclase phenocrysts, analysed here for their petrographic textures, major element composition and Sr isotope composition. Anorthite (An) content in individual crystals can vary by as much as 55 mol% (An40^95...

  16. Degassing and differentiation in subglacial volcanoes, Iceland

    Science.gov (United States)

    Moore, J.G.; Calk, L.C.

    1991-01-01

    Within the neovolcanic zones of Iceland many volcanoes grew upward through icecaps that have subsequently melted. These steep-walled and flat-topped basaltic subglacial volcanoes, called tuyas, are composed of a lower sequence of subaqueously erupted, pillowed lavas overlain by breccias and hyaloclastites produced by phreatomagmatic explosions in shallow water, capped by a subaerially erupted lava plateau. Glass and whole-rock analyses of samples collected from six tuyas indicate systematic variations in major elements showing that the individual volcanoes are monogenetic, and that commonly the tholeiitic magmas differentiated and became more evolved through the course of the eruption that built the tuya. At Herdubreid, the most extensively studies tuya, the upward change in composition indicates that more than 50 wt.% of the first erupted lavas need crystallize over a range of 60??C to produce the last erupted lavas. The S content of glass commonly decreases upward in the tuyas from an average of about 0.08 wt.% at the base to crystallization that generates the more evolved, lower-temperature melts during the growth of the tuyas, apparently results from cooling and degassing of magma contained in shallow magma chambers and feeders beneath the volcanoes. Cooling may result from percolation of meltwater down cracks, vaporization, and cycling in a hydrothermal circulation. Degassing occurs when progressively lower pressure eruption (as the volcanic vent grows above the ice/water surface) lowers the volatile vapour pressure of subsurface melt, thus elevating the temperature of the liquidus and hastening liquid-crystal differentiation. ?? 1991.

  17. Hazard maps of Colima volcano, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Escudero Ayala, C. R.

    2011-12-01

    Colima volcano, also known as Volcan de Fuego (19° 30.696 N, 103° 37.026 W), is located on the border between the states of Jalisco and Colima and is the most active volcano in Mexico. Began its current eruptive process in February 1991, in February 10, 1999 the biggest explosion since 1913 occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching attitudes between 4,500 and 9,000 m.a.s.l., further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events ash emissions were generated in all directions reaching distances up to 100 km, slightly affected nearby villages as Tuxpan, Tonila, Zapotlán, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During the 2005 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano due to low population density and low socio-economic activities at the time. Shows the updating of the volcanic hazard maps published in 2001, where we identify whit SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano, the population inhabiting the area is approximately 517,000 people, and growing at an annual rate of 4.77%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by the construction of highways, natural gas pipelines and electrical infrastructure that connect to the Port of Manzanillo to Guadalajara city. The update the hazard maps are: a) Exclusion areas and moderate hazard for explosive events

  18. Rotating Drive for Electrical-Arc Machining

    Science.gov (United States)

    Fransen, C. D.

    1986-01-01

    Rotating drive improves quality of holes made by electrical-arc machining. Mechanism (Uni-tek, rotary head, or equivalent) attached to electrical-arc system. Drive rotates electrode as though it were mechanical drill, while an arc disintegrates metal in workpiece, thereby creating hole. Rotating electrode method often used in electric-discharge machining. NASA innovation is application of technique to electrical-arc machining.

  19. Vacuum Gas Tungsten Arc Welding

    Science.gov (United States)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  20. Hooded arc ion-source

    CERN Multimedia

    1972-01-01

    The positioning system for the hooded arc ion-source, shown prior to mounting, consists of four excentric shafts to locate the ion-source and central electrodes. It will be placed on the axis of the SC and introduced into the vacuum tank via the air locks visible in the foreground.

  1. STRUVE arc and EUPOS® stations

    Science.gov (United States)

    Lasmane, Ieva; Kaminskis, Janis; Balodis, Janis; Haritonova, Diana

    2013-04-01

    The Struve Geodetic Arc was developed in Years 1816 to 1855, 200 years ago. Historic information on the points of the Struve Geodetic Arc are included in the UNESCO World Heritage list in 2005. Nevertheless, the sites of many points are still not identified nor included in the data bases nowadays. Originally STRUVE arc consisted of 258 main triangles with 265 triangulation points. Currently 34 of the original station points are identified and included in the in the UNESCO World Heritage list. identified original measurement points of the Meridian Arc are located in Sweden (7 points), Norway (15), Finland (83), Russia (1), Estonia (22), Latvia (16), Lithuania (18), Belorussia (28), Ukraine (59) and Moldova (27). In Year 2002 was initiated another large coverage project - European Position Determination System "EUPOS®". Currently there are about 400 continuously operating GNSS (Global Navigation Satellite Systems) stations covering EU countries Estonia, Latvia, Lithuania, Poland, Czech Republic, Slovakia, Hungary, Bulgaria, Romania and East European countries Ukraine and Moldavia. EUPOS® network is a ground based GNSS augmentation system widely used for geodesy, land surveying, geophysics and navigation. It gives the opportunity for fast and accurate position determination never available before. It is an honorable task to use the EUPOS® system for research of the Struve triangulation former sites. Projects with Struve arc can popularize geodesy, geo-information and its meaning in nowadays GIS and GNSS systems. Struve Arc and its points is unique cooperation cross-border object which deserve special attention because of their natural beauty and historical value for mankind. GNSS in geodesy discovers a powerful tool for the verification and validation of the height values of geodetic leveling benchmarks established historically almost 200 years ago. The differential GNSS and RTK methods appear very useful to identify vertical displacement of landscape by means of

  2. The structure and singularities of arc complexes

    DEFF Research Database (Denmark)

    Penner, Robert

    boundary components. The main result of this paper is the determination of those arc complexes Arc(F) that are also spherical. This classification has consequences for Riemann's moduli space via its known identification with an analogous arc complex in the punctured case with no boundary. Namely...

  3. Laboratory experiments on arc deflection and instability

    Energy Technology Data Exchange (ETDEWEB)

    Zweben, S.; Karasik, M.

    2000-03-21

    This article describes experiments on arc deflection instability carried out during the past few years at the Princeton University Plasma Physics Laboratory (PPPL). The approach has been that of plasma physicists interested in arcs, but they believe these results may be useful to engineers who are responsible for controlling arc behavior in large electric steel furnaces.

  4. Making Conductive Polymers By Arc Tracking

    Science.gov (United States)

    Daech, Alfred F.

    1992-01-01

    Experimental technique for fabrication of electrically conductive polymeric filaments based on arc tracking, in which electrical arc creates conductive carbon track in material that initially was insulator. Electrically conductive polymeric structures made by arc tracking aligned along wire on which formed. Alignment particularly suited to high conductivity and desirable in materials intended for testing as candidate superconductors.

  5. Magnification Bias in Gravitational Arc Statistics

    Energy Technology Data Exchange (ETDEWEB)

    Caminha, G. B. [Rio de Janeiro, CBPF; Estrada, J. [Fermilab; Makler, M. [Rio de Janeiro, CBPF

    2013-08-29

    The statistics of gravitational arcs in galaxy clusters is a powerful probe of cluster structure and may provide complementary cosmological constraints. Despite recent progresses, discrepancies still remain among modelling and observations of arc abundance, specially regarding the redshift distribution of strong lensing clusters. Besides, fast "semi-analytic" methods still have to incorporate the success obtained with simulations. In this paper we discuss the contribution of the magnification in gravitational arc statistics. Although lensing conserves surface brightness, the magnification increases the signal-to-noise ratio of the arcs, enhancing their detectability. We present an approach to include this and other observational effects in semi-analytic calculations for arc statistics. The cross section for arc formation ({\\sigma}) is computed through a semi-analytic method based on the ratio of the eigenvalues of the magnification tensor. Using this approach we obtained the scaling of {\\sigma} with respect to the magnification, and other parameters, allowing for a fast computation of the cross section. We apply this method to evaluate the expected number of arcs per cluster using an elliptical Navarro--Frenk--White matter distribution. Our results show that the magnification has a strong effect on the arc abundance, enhancing the fraction of arcs, moving the peak of the arc fraction to higher redshifts, and softening its decrease at high redshifts. We argue that the effect of magnification should be included in arc statistics modelling and that it could help to reconcile arcs statistics predictions with the observational data.

  6. Thermal analysis of an arc heater electrode with a rotating arc foot

    Science.gov (United States)

    Milos, Frank S.; Shepard, Charles E.

    1993-01-01

    A smoothly rotating arc foot and an arc foot that jumps between multiple sticking points were analyzed using analytic formulations and numerical solution procedures. For each case the temperature distribution for a copper electrode was obtained for the plausible range of operating conditions. It is shown that the smoothly rotating arc foot is an extremely safe mode of operation, whereas the jumping arc foot produces excessively high electrode surface temperatures which are not greatly alleviated by increasing the average rotational frequency of the arc foot. It is suggested to eliminate arc-foot rotation and rely on the distribution of fixed electrodes with stationary arc attachment to avoid electrode failure at high current.

  7. New insights on Panarea volcano from terrestrial, marine and airborne data

    Science.gov (United States)

    Anzidei, Marco

    2010-05-01

    The Panarea volcano belongs to the Aeolian arc system and its activity, which recently produced impacts on the environment as well as on human settlements, is known since historical times. This volcano, which includes Panarea island and its archipelago, is the emergent portion of submarine stratovolcano more than 2000 m high and 20 Km across. In November 2002 a submarine gas eruption started offshore 3 Km east of Panarea on top of a shallow rise of 2.3 km2 surrounded by the islets of Lisca Bianca, Bottaro and Lisca Nera. This event has posed new concern on a volcano generally considered extinct. Soon after the submarine eruption, this area has been surveyed under multidisciplinary programs funded by the Italian Department of the Civil Protection and INGV. Monitoring programs included subaerial and sea bottom DEM of Panarea volcano by merging aerial digital photogrammetry, aerial laser scanning and multibeam bathymetry. A GPS ground deformation network (PANANET) was designed, set up and measured during time span December 2002 - October 2007. GPS data show rates of motion and strain values typical of volcanic areas which are in agreement with the NE-SW and NW-SE tectonic systems. The latter coincide with the main pathways for the upwelling of hydrothermal fluids. GPS data inferred a pre-event uplift followed by a general subsidence and shortening across the area that could be interpreted as the response to the surface of the inflation and deflation of the hydrothermal system reservoir which is progressively reducing its pressure after the 2002 gas eruption. Magnetic and gravimetric data depict the deep and shallow structure of the volcano. From geochemical surveys were calculated energetic conditions at craters. Data were coupled with the computed physic-chemical state of the fluids at the level of the deep reservoir and provided the boundary conditions of the occurred event, and suggesting that a low-energy explosion was responsible for producing the craters at the

  8. The Chahnaly low sulfidation epithermal gold deposit, western Makran volcanic arc, southeastern Iran

    Science.gov (United States)

    Sholeh, Ali; Rastad, Ebrahim; Huston, David L.; Gemmell, J. Bruce; Taylor, Ryan D.

    2016-01-01

    The Chahnaly low-sulfidation epithermal Au deposit and nearby Au prospects are located northwest of the intermittently active Bazman stratovolcano on the western end of the Makran volcanic arc, which formed as the result of subduction of the remnant Neo-Tethyan oceanic crust beneath the Lut block. The arc hosts the Siah Jangal epithermal and Kharestan porphyry prospects, near Taftan volcano, as well as the Saindak Cu-Au porphyry deposit and world-class Reko Diq Cu-Au porphyry deposit, near Koh-i-Sultan volcano to the east-northeast in Pakistan. The host rocks for the Chahnaly deposit include early Miocene andesite and andesitic volcaniclastic rocks that are intruded by younger dacitic domes. Unaltered late Miocene dacitic ignimbrites overlie these rocks. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb zircon geochronology data yield ages between 21.8 and 9.9 Ma for the acidic-intermediate regional volcanism. The most recent volcanic activity of the Bazman stratovolcano involved extrusion of an olivine basalt during Pliocene to Quaternary times. Interpretation of geochemical data indicate that the volcanic rocks are synsubduction and calc-alkaline to subalkaline. The lack of a significant negative Eu anomaly, a listric-shaped rare earth element pattern, and moderate La/Yb ratios of host suites indicate a high water content of the source magma.

  9. Uzon-Geysernaya volcano-tectonic depression: geodynamics phenomena last years

    Science.gov (United States)

    Kugaenko, Yulia

    2010-05-01

    One of the most active volcanic arcs in the Pacific Rim, Kamchatka is also one with poor geophysical constraints on its shallow magma plumbing systems. Uzon calderas lie within a graben approximately 20 km wide running beneath the eastern Kamchatka volcanic group. Cross sections of the shallow crustal graben show that it steps WNW from its southeasterly bounding fault beneath Kikhpinych volcano, deepening toward Uzon caldera. Uzon Caldera Summary (by Global Volcanism Program, http://www.volcano.si.edu ): Country, Subregion Name: Russia; Kamchatka Peninsula Volcano Number: 1000-17 Volcano Type: Calderas Last Known Eruption: 200 AD +/- 300 years Summit Elevation: 1617 m (5,305 feet) Coordinates: 54.50°N, 159.97°E Kikhpinych volcano Summary (by Global Volcanism Program, http://www.volcano.si.edu ): Country, Subregion Name: Russia, Kamchatka Peninsula Volcano Number: 1000-18 Volcano Type: Stratovolcanoes Last Known Eruption: 1550 (?) Summit Elevation: 1552 m (5,092 feet) Coordinates: 160.253°N, 160.253°E The twin Uzon and Geysernaya calderas, containing Kamchatka's largest geothermal area, from a 7x18 km Uzon-Geysernaya volcano-tectonic depression that originated during multiple eruptions during the mid-Pleistocene. Post-caldera activity was largely Pleistocene in age and consisted of the extrusion of small silicic lava domes and flows, maar formation and several Holocene phreatic eruptions. The extensive high-temperature hydrothermal system includes the many hot springs, mudpots, and geysers of the Valley of the Geysers on the SE margin of the Uzon-Geysernaya depression. Hydrothermal explosions took place in the western part of caldera in 1986 and 1989. The Valley of the Geysers in the far eastern portion of Uzon caldera is considered derived from shallow meteoric water in contact with a heat source associated with Kikhpinych volcano The general structure places a deep aquifer shallower than a depth of about 2 km with the top of a cooling magma chamber at depths

  10. Geochemistry and Stable Isotopes of Tacana Volcano-Hydrothermal System, Mexico-Guatemala

    Science.gov (United States)

    Rouwet, D. /; Inguaggiato, S.; Taran, Y. /; Varley, N. /

    2003-12-01

    Tacana volcano (4100 m.s.n.m.), situated on the border between Chiapas (Mexico) and Guatemala is considered an active volcano. In May 1986, after a minor phreatic explosion, a fumarole field was formed at an altitude between 3200 and 3600 m.a.s.l. Around the volcano, at altitudes between 1500 and 2000 m.a.s.l., exist several thermal springs, with temperatures up to 63 degrees C. Incomplete chemical composition of the Agua Caliente thermal waters in the period 1986-1993 were presented by Medina (1986), De la Cruz-Reyna et al. (1989) and Armienta and De la Cruz-Reyna (1995), a chemical analysis of fumarole gases were published by Martini et al. (1986). This study presents the first series of isotope data of water and gases: hydrogen, oxygen, carbon and helium. Data on gas and water chemistry of several thermal spring waters and gases are presented in more detail than ever. Hydrogen and oxygen isotopes of Tacana thermal spring waters show that meteoric water is the main contribution for the thermal waters. Cation geothermometry of the spring waters confirm these meteoric contribution, as all waters are immature in a dynamic system of water-rock interaction with a constant infiltration of fresh meteoric waters (precipitation of 6000 mm per year). The relatively high bicarbonate (up to 1100 ppm) and sulphate (up to 1200 ppm) concentrations in the thermal waters suggest an important degassing up to 2500 m below the volcano summit, which indicates the presence of a extended and complex volcano-hydrothermal system. Helium isotopes of free and dissolved gases confirm the existence of a magmatic contribution, so as for fumarole gases (6.6 R/Ra) as for gases sampled at the thermal springs (5.7-6.2 R/Ra for free gases and between 0.50 and 5.55 R/Ra for dissolved gases). These values are typical for gases liberated at volcanoes in clasic volcanic arcs. The lower values for the dissolved He is probably due to an interaction with the granitic basement, which can be found at

  11. Geothermal structure of the Miura-Boso plate subduction margin, central Japan

    Science.gov (United States)

    Yamamoto, Yuzuru; Hamada, Yohei; Kamiya, Nana; Ojima, Takanori; Chiyonobu, Shun; Saito, Saneatsu

    2017-07-01

    We have constrained the geothermal structure of the Miura-Boso plate subduction margin, located in central Japan, using maximum paleo-temperature data derived from vitrinite reflectance measurements. We established that higher maximum paleo-temperatures are restricted to the western part of the early Miocene Hota accretionary complex (Hota and Hayama groups), indicating a spatial difference in the amount of slip upon the out-of-sequence thrust potentially associated with the Izu-Bonin Island Arc collision. The weakly deformed sedimentary sequences overlying the highly deformed Hota Group strata have much lower vitrinite reflectance values than the latter. This variation indicates that the sedimentary sequences of the trench slope experienced a markedly lower maximum burial depth than the relatively deep-buried and uplifted Hota accretionary complex. Conversely, maximum paleo-temperatures obtained for tectonic blocks hosted by the neighboring Mineoka ophiolite complex are very high: ca. 140 °C for the large, early Miocene Haccho Formation blocks, and 65-90 °C for the other blocks. This result suggests that the individual tectonic blocks enclosed in the ophiolite complex were subjected exhumation from depths of 3-5 km.

  12. Silicic Arc Magmas And Silicic Slab Melts: The Melt-Rock Reaction Link

    Science.gov (United States)

    Straub, S. M.; Gomez-Tuena, A.; Bolge, L. L.; Espinasa-Perena, R.; Bindeman, I. N.; Stuart, F. M.; Zellmer, G. F.

    2013-12-01

    While a genetic link between silicic arc magmas and silicic melts from the subducted slab has long been proposed, this hypothesis is commonly refuted because most arc magmas lack a 'garnet-signature' which such slab melts must have. A comprehensive geochemical study of high-Mg# arc magmas from the Quaternary central Mexican Volcanic Belt (MVB), however, shows that this conflict can be reconciled if melt-rock reaction processes in the mantle wedge were essential to arc magma formation. In the central MVB, monogenetic and composite volcanoes erupt high-Mg# basalts to andesites with highly variable trace element patterns. These magmas contain high-Ni olivines (olivine Ni higher than permissible for olivines in partial peridotite melts) with high 3He/4He = 7-8 Ra that provide strong evidence for silicic slab components that infiltrate the subarc mantle to produce olivine-free segregations of 'reaction pyroxenite' in the sources of individual volcanoes. Melting of silica-excess and silica-deficient reaction pyroxenites can then produce high-Mg# basaltic and dacitic primary melts that mix during ascent through mantle and crust to form high-Mg# andesites. Mass balance requires that reaction pyroxenites contain at least >15-18 wt%, and likely more, of slab component. However, because the HREE of the slab component are efficiently retained in the eclogitic slab, elements Ho to Lu in partial melts from reaction pyroxenites remain controlled by the mantle and maintain MORB-normalized Ho/Lun ˜1.15 close to unity. In contrast, the MREE to LREE and fluid mobile LILE of the arc magmas are either controlled, or strongly influenced, by slab-contributions. The origin from hybrid sources also shows in the major elements that are blends of mantle-derived elements (Mg, Ca, Mn, Fe, Ti) and elements augmented by slab contributions (Si, Na, K, P, and possibly Al). Moreover, strong correlations between bulk rock SiO2, 87Sr/86Sr and δ18O (olivines) can be interpreted as mixtures of subarc

  13. Space Radar Image of Colombian Volcano

    Science.gov (United States)

    1999-01-01

    This is a radar image of a little known volcano in northern Colombia. The image was acquired on orbit 80 of space shuttle Endeavour on April 14, 1994, by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The volcano near the center of the image is located at 5.6 degrees north latitude, 75.0 degrees west longitude, about 100 kilometers (65 miles) southeast of Medellin, Colombia. The conspicuous dark spot is a lake at the bottom of an approximately 3-kilometer-wide (1.9-mile) volcanic collapse depression or caldera. A cone-shaped peak on the bottom left (northeast rim) of the caldera appears to have been the source for a flow of material into the caldera. This is the northern-most known volcano in South America and because of its youthful appearance, should be considered dormant rather than extinct. The volcano's existence confirms a fracture zone proposed in 1985 as the northern boundary of volcanism in the Andes. The SIR-C/X-SAR image reveals another, older caldera further south in Colombia, along another proposed fracture zone. Although relatively conspicuous, these volcanoes have escaped widespread recognition because of frequent cloud cover that hinders remote sensing imaging in visible wavelengths. Four separate volcanoes in the Northern Andes nations ofColombia and Ecuador have been active during the last 10 years, killing more than 25,000 people, including scientists who were monitoring the volcanic activity. Detection and monitoring of volcanoes from space provides a safe way to investigate volcanism. The recognition of previously unknown volcanoes is important for hazard evaluations because a number of major eruptions this century have occurred at mountains that were not previously recognized as volcanoes. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of

  14. Postglacial eruptive history, geochemistry, and recent seismicity of Aniakchak volcano, Alaska Peninsula

    Science.gov (United States)

    Bacon, Charles R.; Neal, Christina A.; Miller, Thomas P.; McGimsey, Robert G.; Nye, Christopher J.

    2014-01-01

    Aniakchak is a Pleistocene to Holocene composite volcano of the Alaska–Aleutian arc that suffered at least one caldera-forming eruption in postglacial time and last erupted in 1931. The oldest recognized postglacial eruption, Aniakchak I, produced andesite ignimbrite ca. 9,500–7,500 14C yr B.P. Subsequently, a vent northeast of the summit issued dacite–rhyodacite magma ca. 7,000 14C yr B.P. mainly as the Black Nose Pumice falls. The ca. 3,430 14C yr B.P. Aniakchak II eruption produced rhyodacite plinian fall followed by rhyodacite and andesite ignimbrite extending ≥50 km to the Bering Sea and Pacific coasts and resulted in collapse of the 10-km-diameter caldera.

  15. Common processes at unique volcanoes – a volcanological conundrum

    Directory of Open Access Journals (Sweden)

    Katharine eCashman

    2014-11-01

    Full Text Available An emerging challenge in modern volcanology is the apparent contradiction between the perception that every volcano is unique, and classification systems based on commonalities among volcano morphology and eruptive style. On the one hand, detailed studies of individual volcanoes show that a single volcano often exhibits similar patterns of behaviour over multiple eruptive episodes; this observation has led to the idea that each volcano has its own distinctive pattern of behaviour (or personality. In contrast, volcano classification schemes define eruption styles referenced to type volcanoes (e.g. Plinian, Strombolian, Vulcanian; this approach implicitly assumes that common processes underpin volcanic activity and can be used to predict the nature, extent and ensuing hazards of individual volcanoes. Actual volcanic eruptions, however, often include multiple styles, and type volcanoes may experience atypical eruptions (e.g., violent explosive eruptions of Kilauea, Hawaii1. The volcanological community is thus left with a fundamental conundrum that pits the uniqueness of individual volcanic systems against generalization of common processes. Addressing this challenge represents a major challenge to volcano research.

  16. Tephra-Producing Eruptions of Holocene Age at Akutan Volcano, Alaska; Frequency, Magnitude, and Hazards

    Science.gov (United States)

    Waythomas, C. F.; Wallace, K. L.; Schwaiger, H.

    2012-12-01

    Akutan Volcano in the eastern Aleutian Islands of Alaska is one of the most historically active volcanoes in the Aleutian arc (43 eruptions in about the past 250 years). Explosive eruptions pose major hazards to aircraft flying north Pacific air routes and to local infrastructure on Akutan and neighboring Unalaska Island. Air travel, infrastructure, and population in the region have steadily increased during the past several decades, and thus it is important to better understand the frequency, magnitude, and characteristics of tephra-producing eruptions. The most recent eruption was a VEI 2 event on March 8-May 21, 1992 that resulted in minor ash emissions and trace amounts of proximal fallout. Nearly continuous low-level emission of ash and steam is typical of historical eruptions, and most of the historical events have been similar in magnitude to the 1992 event. The most recent major eruption occurred about 1600 yr. B.P. and likely produced the ca. 2-km diameter summit caldera and inundated valleys that head on the volcano with pyroclastic-flow and lahar deposits that are tens of meters thick. The 1600 yr. B.P. eruption covered most of Akutan Island with up to 2.5 m of coarse scoriaceous tephra fall, including deposits 0.5-1 m thick near the City of Akutan. Tephra-fall deposits associated with this eruption exhibit a continuous sequence of black, fine to coarse scoriaceous lapilli overlain by a lithic-rich facies and finally a muddy aggregate-rich facies indicating water involvement during the latter stages of the eruption. Other tephra deposits of Holocene age on Akutan Island include more than a dozen discrete fine to coarse ash beds and 3-6 beds of scoriaceous, coarse lapilli tephra indicating that there have been several additional major eruptions (>VEI 3) of Akutan Volcano during the Holocene. Radiocarbon dates on these events are pending. In addition to tephra falls from Akutan, other fine ash deposits are found on the island that originated from other

  17. Tectonomagmatism in continental arcs: evidence from the Sark arc complex

    Science.gov (United States)

    Gibbons, Wes; Moreno, Teresa

    2002-07-01

    The island of Sark (Channel Islands, UK) exposes syntectonic plutons and country rock gneisses within a Precambrian (Cadomian) continental arc. This Sark arc complex records sequential pulses of magmatism over a period of 7 Ma (ca. 616-609 Ma). The earliest intrusion (ca. 616 Ma) was a composite sill that shows an ultramafic base overlain by a magma-mingled net vein complex subsequently deformed at near-solidus temperatures into the amphibolitic and tonalitic Tintageu banded gneisses. The deformation was synchronous with D 2 deformation of the paragneissic envelope, with both intrusion and country rock showing flat, top-to-the-south LS fabrics. Later plutonism injected three homogeneous quartz diorite-granodiorite sheets: the Creux-Moulin pluton (150-250 m; ca. 614 Ma), the Little Sark pluton (>700 m; 611 Ma), and the Northern pluton (>500 m; 609 Ma). Similar but thinner sheets in the south (Derrible-Hogsback-Dixcart) and west (Port es Saies-Brecqhou) are interpreted as offshoots from the Creux-Moulin pluton and Little Sark pluton, respectively. All these plutons show the same LS fabric seen in the older gneisses, with rare magmatic fabrics and common solid state fabrics recording syntectonic crystallisation and cooling. The cooling rate increased rapidly with decreasing crystallisation age: >9 Ma for the oldest intrusion to cool to lower amphibolite conditions, 7-8 Ma for the Creux Moulin pluton, 5-6 Ma for the Little Sark pluton, and 10 -14 s -1) that focussed extensional deformation into the Sark area. The increased rates of extension allowed ingress of the subsequent quartz diorite-granodiorite sheets, although strain rate slowly declined as the whole complex cooled during exhumation. The regional architecture of syntectonic Cadomian arc complexes includes flat-lying "Sark-type" and steep "Guernsey-type" domains produced synchronously in shear zone networks induced by oblique subduction: a pattern seen in other continental arcs such as that running from Alaska

  18. Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: earthquake locations and source parameters

    Science.gov (United States)

    Ruppert, Natalia G.; Prejean, Stephanie G.; Hansen, Roger A.

    2011-01-01

    An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field.

  19. Submarine volcanoes of the Kolumbo volcanic zone NE of Santorini Caldera, Greece

    Science.gov (United States)

    Nomikou, P.; Carey, S.; Papanikolaou, D.; Croff Bell, K.; Sakellariou, D.; Alexandri, M.; Bejelou, K.

    2012-06-01

    The seafloor northeast of Santorini volcano in Greece consists of a small, elongated rifted basin that has been the site of recent submarine volcanism. This area lies within the Cyclades back-arc region of the present Hellenic subduction zone where the seafloor of the eastern Mediterranean Sea is descending beneath the Aegean microplate. The Cycladic region and the Aegean Sea as a whole are known to be regions of north-south back-arc extension and thinning of continental crust. Nineteen submarine volcanic cones occur within this small rift zone, the largest of these being Kolumbo which last erupted explosively in 1650 AD, causing significant damage and fatalities on the nearby island of Santorini. Previous SEABEAM mapping and seismic studies from HCMR indicate that many of the smaller v'olcanic cones have been built above the present seafloor, while others are partly buried, indicating a range of ages for the activity along this volcanic line. None of the cones to the northeast of Kolumbo had been explored in detail prior to a cruise of the E/V Nautilus (NA007) in August 2010. The ROV Hercules was used to explore the slopes, summits and craters of 17 of the 19 centers identified on multibeam maps of the area. Water depths of the submarine volcano's summits ranged from 18 to 450 m. In general, the domes/craters northeast of Kolumbo were sediment covered and showed little evidence of recent volcanic activity. Outcrops of volcanic rock were found in the crater walls and slopes of some of the cones but they typically consisted of volcanic fragments of pumice and lava that have been cemented together by biological activity, indicative of the lack of recent eruptions. Geochemical analysis of samples collected on the northeast cones showed evidence of low temperature hydrothermal circulation on the summit and upper flanks in the form of stream-like manganese precipitates emanating from pits and fractures.

  20. Field-trip guides to selected volcanoes and volcanic landscapes of the western United States

    Science.gov (United States)

    ,

    2017-06-23

    The North American Cordillera is home to a greater diversity of volcanic provinces than any comparably sized region in the world. The interplay between changing plate-margin interactions, tectonic complexity, intra-crustal magma differentiation, and mantle melting have resulted in a wealth of volcanic landscapes.  Field trips in this guide book collection (published as USGS Scientific Investigations Report 2017–5022) visit many of these landscapes, including (1) active subduction-related arc volcanoes in the Cascade Range; (2) flood basalts of the Columbia Plateau; (3) bimodal volcanism of the Snake River Plain-Yellowstone volcanic system; (4) some of the world’s largest known ignimbrites from southern Utah, central Colorado, and northern Nevada; (5) extension-related volcanism in the Rio Grande Rift and Basin and Range Province; and (6) the eastern Sierra Nevada featuring Long Valley Caldera and the iconic Bishop Tuff.  Some of the field trips focus on volcanic eruptive and emplacement processes, calling attention to the fact that the western United States provides opportunities to examine a wide range of volcanological phenomena at many scales.The 2017 Scientific Assembly of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) in Portland, Oregon, was the impetus to update field guides for many of the volcanoes in the Cascades Arc, as well as publish new guides for numerous volcanic provinces and features of the North American Cordillera. This collection of guidebooks summarizes decades of advances in understanding of magmatic and tectonic processes of volcanic western North America. These field guides are intended for future generations of scientists and the general public as introductions to these fascinating areas; the hope is that the general public will be enticed toward further exploration and that scientists will pursue further field-based research.

  1. A Contribution to Arc Length Discussion

    Directory of Open Access Journals (Sweden)

    Stephan Egerland

    2015-09-01

    Full Text Available Abstract An investigation was raising the question: "What does 'arc length' mean?" Actually, it is considered expressing a kind of natural relationship between arc voltage and arc column shape. Statements such as "The higher the voltage the longer the arc" or "The arc voltage proves approximately proportional to the arc length", are frequently noticed in this conjunction. However, the author suggests that there is no general possibility of describing 'arc length' over the whole welding process range. Instances are represented in this paper, showing both theoretical attempts of definition and practical observations. This paper intends to contribute to a serious discussion of something trivial, indeed very well-known or used among welding experts, but actually yet hardly understood, at least as when it comes to closer examination

  2. High resolution seismic data coupled to Multibeam bathymetry of Stromboli island collected in the frame of the Stromboli geophysical experiment: implications with the marine geophysics and volcanology of the Aeolian Arc volcanic complex (Sicily, Southern Tyrrhenian sea, Italy).

    Science.gov (United States)

    Aiello, Gemma; Di Fiore, Vincenzo; Marsella, Ennio; Passaro, Salvatore

    2014-01-01

    New high resolution seismic data (Subbottom Chirp) coupled to high resolution Multibeam bathymetry collected in the frame of the Stromboli geophysical experiment aimed at recording active seismic data and tomography of the Stromboli Island are here presented. The Stromboli geophysical experiment has been already carried out based on onshore and offshore data acquisition in order to investigate the deep structure and the location of the magma chambers of the Stromboli volcano. A new detailed swath bathymetry of Stromboli Island is here shown and discussed to reconstruct an up-to-date morpho-bathymetry and marine geology of the area compared to the volcanologic setting of the Aeolian Arc volcanic complex. Due to its high resolution the new Digital Terrain Model of the Stromboli Island gives interesting information about the submerged structure of the volcano, particularly about the volcano-tectonic and gravitational processes involving the submarine flanks of the edifice. Several seismic units have been identified based on the geologic interpretation of Subbottom Chirp profiles recorded around the volcanic edifice and interpreted as volcanic acoustic basement pertaining to the volcano and overlying slide chaotic bodies emplaced during its complex volcano-tectonic evolution. They are related to the eruptive activity of Stromboli, mainly poliphasic and to regional geological processes involving the intriguing geology of the Aeolian Arc, a volcanic area still in activity and needing improved research interest.

  3. International Collaboration on Building Local Technical Capacities for Monitoring Volcanic Activity at Pacaya Volcano, Guatemala.

    Science.gov (United States)

    Escobar-Wolf, R. P.; Chigna, G.; Morales, H.; Waite, G. P.; Oommen, T.; Lechner, H. N.

    2015-12-01

    Pacaya volcano is a frequently active and potentially dangerous volcano situated in the Guatemalan volcanic arc. It is also a National Park and a major touristic attraction, constituting an important economic resource for local municipality and the nearby communities. Recent eruptions have caused fatalities and extensive damage to nearby communities, highlighting the need for risk management and loss reduction from the volcanic activity. Volcanic monitoring at Pacaya is done by the Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hidrologia (INSIVUMEH), instrumentally through one short period seismic station, and visually by the Parque Nacional Volcan de Pacaya y Laguna de Calderas (PNVPLC) personnel. We carry out a project to increase the local technical capacities for monitoring volcanic activity at Pacaya. Funding for the project comes from the Society of Exploration Geophysicists through the Geoscientists Without Borders program. Three seismic and continuous GPS stations will be installed at locations within 5 km from the main vent at Pacaya, and one webcam will aid in the visual monitoring tasks. Local educational and outreach components of the project include technical workshops on data monitoring use, and short thesis projects with the San Carlos University in Guatemala. A small permanent exhibit at the PNVPLC museum or visitor center, focusing on the volcano's history, hazards and resources, will also be established as part of the project. The strategy to involve a diverse group of local collaborators in Guatemala aims to increase the chances for long term sustainability of the project, and relies not only on transferring technology but also the "know-how" to make that technology useful. Although not a primary research project, it builds on a relationship of years of joint research projects at Pacaya between the participants, and could be a model of how to increase the broader impacts of such long term collaboration partnerships.

  4. Faults and volcanoes: Main volcanic structures in the Acambay Graben, Mexico

    Science.gov (United States)

    Aguirre-Diaz, G. J.; Pedrazzi, D.; Suñe-Puchol, I.; Lacan, P.

    2016-12-01

    The Mexican Volcanic Belt (MVB) province is best known by the major stratovolcanoes, such as Popocatepetl and Colima, but most of the province is formed by modest size stratovolcanoes and monogenetic cones. Regional fault systems were developed together with the building of the volcanic province; the most notorious one is Chapala-Tula Fault System (CTFS), which runs parallel to the central sector of the MVB, and thus it is also referred to as the Intra-Arc fault system. Acambay graben (AG) is part of this central system. It is a 20 x 70 km depression located 100 km to the NW of Mexico City, at the easternmost end of the E-W trending CTFS, and was formed as the result of NS to NE oriented extension. Seismically active normal faults, such as the Acambay-Tixmadejé fault, with a mB =7 earthquake in 1912, delimit the AG. The graben includes several volcanic structures and associated deposits ranging in age from Miocene to 3 ka. The main structures are two stratovolcanoes, Altamirano (900 m high) and Temascalcingo (800 m high). There are also several Miocene-Pliocene lava domes, and Quaternary small cinder cones and shield volcanoes. Faulting of the Acambay graben affects all these volcanic forms, but depending on their ages, the volcanoes are cut by several faults or by a few. That is the case of Altamirano and Temascalcingo volcanoes, where the former is almost unaffected whereas the latter is highly dissected by faults. Altamirano is younger than Temascalcingo; youngest pyroclastic deposits from Altamirano are dated at 12-3 ka, and those from Temascalcingo at 40-25 ka (radiocarbon ages). The relatively young ages found in volcanic deposits within the Acambay graben raise the volcanic danger level in this area, originally marked as an inactive volcanic zone, but activity could restart at any time. Supported by DGAPA-PAPIIT-UNAM grant IN-104615.

  5. Formation and Significance of Magmatic Enclaves in From the 2006 Eruption of Augustine Volcano, Alaska

    Science.gov (United States)

    Browne, B. L.; Vitale, M. L.

    2011-12-01

    Deposits from the 2006 eruption of Augustine Volcano, Alaska, record a complicated history of open system magmatic processes that produced a suite of intermediate (56.5 to 63.3% SiO2) lithologies containing rare and variably quenched basaltic to basaltic-andesite enclaves (49.5-57.3% SiO2). The eruption transitioned from an explosive phase (Jan 11-28) to a continuous phase (Jan 28-Feb 10) before ending following a month-long effusive phase in March. Whereas the explosive phase is dominated by a low-silica andesite (LSAS, 56.5-58.7% SiO2) lithology, high-silica andesite (HSA, 62.2-63.3% SiO2) is more common during the continuous phase and dense low-silica andesite (DLSA, 56.4-59.3% SiO2) occurs mostly during the effusive phase. Enclaves occur in all lithologies, although most commonly in DLSA and LSAS. Point-counting of enclaves in outcrop reveals an average abundance of Augustine Volcano record a complex and multi-step mixing and mingling scenario between intruding basalt and resident silicic mush, and possibly gabbroic cumulates/wall rock, that is inconsistent with any single currently employed mingling model (e.g., buoyant lift-off of vesiculated and undercooled basalt, prolonged undercooling of intruded basalt punctuated by subsequent intrusions, enclave dissagregation and ripening, or violent intrusion of bubbly basaltic plumes) that has been used to explain magmatic enclave formation at other arc systems characterized by lower magma temperature, higher crystallinity, and larger eruptive volumes (e.g., Unzen Volcano, Mt. Lassen, Soufriere Hills).

  6. Darwin's triggering mechanism of volcano eruptions

    Science.gov (United States)

    Galiev, Shamil

    2010-05-01

    Charles Darwin wrote that ‘… the elevation of many hundred square miles of territory near Concepcion is part of the same phenomenon, with that splashing up, if I may so call it, of volcanic matter through the orifices in the Cordillera at the moment of the shock;…' and ‘…a power, I may remark, which acts in paroxysmal upheavals like that of Concepcion, and in great volcanic eruptions,…'. Darwin reports that ‘…several of the great chimneys in the Cordillera of central Chile commenced a fresh period of activity ….' In particular, Darwin reported on four-simultaneous large eruptions from the following volcanoes: Robinson Crusoe, Minchinmavida, Cerro Yanteles and Peteroa (we cite the Darwin's sentences following his The Voyage of the Beagle and researchspace. auckland. ac. nz/handle/2292/4474). Let us consider these eruptions taking into account the volcano shape and the conduit. Three of the volcanoes (Minchinmavida (2404 m), Cerro Yanteles (2050 m), and Peteroa (3603 m)) are stratovolcanos and are formed of symmetrical cones with steep sides. Robinson Crusoe (922 m) is a shield volcano and is formed of a cone with gently sloping sides. They are not very active. We may surmise, that their vents had a sealing plug (vent fill) in 1835. All these volcanoes are conical. These common features are important for Darwin's triggering model, which is discussed below. The vent fill material, usually, has high level of porosity and a very low tensile strength and can easily be fragmented by tension waves. The action of a severe earthquake on the volcano base may be compared with a nuclear blast explosion of the base. It is known, that after a underground nuclear explosion the vertical motion and the surface fractures in a tope of mountains were observed. The same is related to the propagation of waves in conical elements. After the explosive load of the base. the tip may break and fly off at high velocity. Analogous phenomenon may be generated as a result of a

  7. A Benthic Invertebrate Survey of Jun Jaegyu Volcano: An active undersea volcano in Antarctic Sound, Antarctica

    Science.gov (United States)

    Quinones, G.; Brachfeld, S.; Gorring, M.; Prezant, R. S.; Domack, E.

    2005-12-01

    Jun Jaegyu volcano, an Antarctic submarine volcano, was dredged in May 2004 during cruise 04-04 of the RV Laurence M. Gould to determine rock, sediment composition and marine macroinvertebrate diversity. The objectives of this study are to examine the benthic assemblages and biodiversity present on a young volcano. The volcano is located on the continental shelf of the northeastern Antarctic Peninsula, where recent changes in surface temperature and ice shelf stability have been observed. This volcano was originally swath-mapped during cruise 01-07 of the Research Vessel-Ice Breaker Nathaniel B. Palmer. During LMG04-04 we also studied the volcano using a SCUD video camera, and performed temperature surveys along the flanks and crest. Both the video and the dredge indicate a seafloor surface heavily colonized by benthic organisms. Indications of fairly recent lava flows are given by the absence of marine life on regions of the volcano. The recovered dredge material was sieved, and a total of thirty-three invertebrates were extracted. The compilation of invertebrate community data can subsequently be compared to other benthic invertebrate studies conducted along the peninsula, which can determine the regional similarity of communities over time, their relationship to environmental change and health, if any, and their relationship to geologic processes in Antarctic Sound. Twenty-two rock samples, all slightly weathered and half bearing encrusted organisms, were also analyzed using inductively coupled plasma-optical emission spectrometry (ICP-OES). Except for one conglomerate sample, all are alkali basalts and share similar elemental compositions with fresh, unweathered samples from the volcano. Two of the encrusted basalt samples have significantly different compositions than the rest. We speculate this difference could be due to water loss during sample preparation, loss of organic carbon trapped within the vesicles of the samples and/or elemental uptake by the

  8. The historical (218 ± 14 aBP) explosive eruption of Tutupaca volcano (Southern Peru)

    Science.gov (United States)

    Samaniego, Pablo; Valderrama, Patricio; Mariño, Jersy; van Wyk de Vries, Benjamín; Roche, Olivier; Manrique, Nélida; Chédeville, Corentin; Liorzou, Céline; Fidel, Lionel; Malnati, Judicaëlle

    2015-06-01

    The little known Tutupaca volcano (17° 01' S, 70° 21' W), located at the southern end of the Peruvian arc, is a dacitic dome complex that experienced a large explosive eruption during historical times. Based on historic chronicles and our radiometric data, this eruption occurred 218 ± 14 aBP, probably between 1787 and 1802 AD. This eruption was characterised by a large sector collapse that triggered a small debris avalanche (<1 km3) and an associated pyroclastic eruption whose bulk volume was 6.5-7.5 × 107 m3. Both units were emplaced synchronously and spread onto the plain situated to the northeast of Tutupaca volcano. The spatial and temporal relationship between the debris avalanche and the pyroclastic density current deposits, coupled with the petrological similarity between the juvenile fragments in the debris avalanche, the pyroclastic density current deposits and the pre-avalanche domes, indicates that juvenile magma was involved in the sector collapse. Large amounts of hydrothermally altered material are also found in the avalanche deposit. Thus, the ascent of a dacitic magma, coupled with the fact that the Tutupaca dome complex was constructed on top of an older, altered volcanic sequence, probably induced the destabilisation of the hydrothermally active edifice, producing the debris avalanche and its related pyroclastic density currents. This eruption probably represents the youngest debris avalanche in the Andes and was accompanied by one of the larger explosive events to have occurred in Southern Peru during historical times.

  9. Kolumbo submarine volcano (Greece): An active window into the Aegean subduction system

    Science.gov (United States)

    Rizzo, Andrea Luca; Caracausi, Antonio; Chavagnac, Valèrie; Nomikou, Paraskevi; Polymenakou, Paraskevi N.; Mandalakis, Manolis; Kotoulas, Georgios; Magoulas, Antonios; Castillo, Alain; Lampridou, Danai

    2016-01-01

    Submarine volcanism represents ~80% of the volcanic activity on Earth and is an important source of mantle-derived gases. These gases are of basic importance for the comprehension of mantle characteristics in areas where subaerial volcanism is missing or strongly modified by the presence of crustal/atmospheric components. Though, the study of submarine volcanism remains a challenge due to their hazardousness and sea-depth. Here, we report 3He/4He measurements in CO2–dominated gases discharged at 500 m below sea level from the high-temperature (~220 °C) hydrothermal system of the Kolumbo submarine volcano (Greece), located 7 km northeast off Santorini Island in the central part of the Hellenic Volcanic Arc (HVA). We highlight that the mantle below Kolumbo and Santorini has a 3He/4He signature of at least 7.0 Ra (being Ra the 3He/4He ratio of atmospheric He equal to 1.39×10−6), 3 Ra units higher than actually known for gases-rocks from Santorini. This ratio is also the highest measured across the HVA and is indicative of the direct degassing of a Mid-Ocean-Ridge-Basalts (MORB)-like mantle through lithospheric faults. We finally highlight that the degassing of high-temperature fluids with a MORB-like 3He/4He ratio corroborates a vigorous outgassing of mantle-derived volatiles with potential hazard at the Kolumbo submarine volcano. PMID:27311383

  10. Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life.

    Science.gov (United States)

    Pons, Marie-Laure; Quitté, Ghylaine; Fujii, Toshiyuki; Rosing, Minik T; Reynard, Bruno; Moynier, Frederic; Douchet, Chantal; Albarède, Francis

    2011-10-25

    The Isua Supracrustal Belt, Greenland, of Early Archean age (3.81-3.70 Ga) represents the oldest crustal segment on Earth. Its complex lithology comprises an ophiolite-like unit and volcanic rocks reminiscent of boninites, which tie Isua supracrustals to an island arc environment. We here present zinc (Zn) isotope compositions measured on serpentinites and other rocks from the Isua supracrustal sequence and on serpentinites from modern ophiolites, midocean ridges, and the Mariana forearc. In stark contrast to modern midocean ridge and ophiolite serpentinites, Zn in Isua and Mariana serpentinites is markedly depleted in heavy isotopes with respect to the igneous average. Based on recent results of Zn isotope fractionation between coexisting species in solution, the Isua serpentinites were permeated by carbonate-rich, high-pH hydrothermal solutions at medium temperature (100-300 °C). Zinc isotopes therefore stand out as a pH meter for fossil hydrothermal solutions. The geochemical features of the Isua fluids resemble the interstitial fluids sampled in the mud volcano serpentinites of the Mariana forearc. The reduced character and the high pH inferred for these fluids make Archean serpentine mud volcanoes a particularly favorable setting for the early stabilization of amino acids.

  11. Kolumbo submarine volcano (Greece): An active window into the Aegean subduction system

    Science.gov (United States)

    Rizzo, Andrea Luca; Caracausi, Antonio; Chavagnac, Valèrie; Nomikou, Paraskevi; Polymenakou, Paraskevi N.; Mandalakis, Manolis; Kotoulas, Georgios; Magoulas, Antonios; Castillo, Alain; Lampridou, Danai

    2016-06-01

    Submarine volcanism represents ~80% of the volcanic activity on Earth and is an important source of mantle-derived gases. These gases are of basic importance for the comprehension of mantle characteristics in areas where subaerial volcanism is missing or strongly modified by the presence of crustal/atmospheric components. Though, the study of submarine volcanism remains a challenge due to their hazardousness and sea-depth. Here, we report 3He/4He measurements in CO2-dominated gases discharged at 500 m below sea level from the high-temperature (~220 °C) hydrothermal system of the Kolumbo submarine volcano (Greece), located 7 km northeast off Santorini Island in the central part of the Hellenic Volcanic Arc (HVA). We highlight that the mantle below Kolumbo and Santorini has a 3He/4He signature of at least 7.0 Ra (being Ra the 3He/4He ratio of atmospheric He equal to 1.39×10-6), 3 Ra units higher than actually known for gases-rocks from Santorini. This ratio is also the highest measured across the HVA and is indicative of the direct degassing of a Mid-Ocean-Ridge-Basalts (MORB)-like mantle through lithospheric faults. We finally highlight that the degassing of high-temperature fluids with a MORB-like 3He/4He ratio corroborates a vigorous outgassing of mantle-derived volatiles with potential hazard at the Kolumbo submarine volcano.

  12. Mid-Holocene Sector Collapse at Mount Spurr Volcano, South-Central Alaska

    Science.gov (United States)

    Waythomas, Christopher F.

    2007-01-01

    Radiocarbon-dated volcanic mass-flow deposits on the southeast flank of Mount Spurr in south-central Alaska provide strong evidence for the timing of large-scale destruction of the south flank of the volcano by sector collapse at 4,769^ndash;4,610 yr B.P. The sector collapse created an avalanche caldera and produced an ~1-km3-volume clay-rich debris avalanche that flowed into the glacially scoured Chakachatna River valley, where it transformed into a lahar that extended an unknown distance beyond the debris avalanche. Hydrothermal alteration, an unbuttressed south flank of the volcano, and local structure have been identified as plausible factors contributing to the instability of the edifice. The sector collapse at Mount Spurr is one of the later known large-volume (>1 km,sup>3) flank failures recognized in the Aleutian Arc and one of the few known Alaskan examples of transformation of a debris avalanche into a lahar.

  13. Geologic map of Oldonyo Lengai (Oldoinyo Lengai) Volcano and surroundings, Arusha Region, United Republic of Tanzania

    Science.gov (United States)

    Sherrod, David R.; Magigita, Masota M.; Kwelwa, Shimba

    2013-01-01

    The geology of Oldonyo Lengai volcano and the southernmost Lake Natron basin, Tanzania, is presented on this geologic map at scale 1:50,000. The map sheet can be downloaded in pdf format for online viewing or ready to print (48 inches by 36 inches). A 65-page explanatory pamphlet describes the geologic history of the area. Its goal is to place the new findings into the framework of previous investigations while highlighting gaps in knowledge. In this way questions are raised and challenges proposed to future workers. The southernmost Lake Natron basin is located along the East African rift zone in northern Tanzania. Exposed strata provide a history of volcanism, sedimentation, and faulting that spans 2 million years. It is here where Oldonyo Lengai, Tanzania’s most active volcano of the past several thousand years, built its edifice. Six new radiometric ages, by the 40Ar/39Ar method, and 48 new geochemical analyses from Oldonyo Lengai and surrounding volcanic features deepen our understanding of the area. Those who prefer the convenience and access offered by Geographic Information Systems (GIS) may download an electronic database, suitable for most GIS software applications. The GIS database is in a Transverse Mercator projection, zone 36, New (1960) Arc datum. The database includes layers for hypsography (topography), hydrography, and infrastructure such as roads and trails.

  14. Potentially active volcanoes of Peru - Observations using Landsat Thematic Mapper and Space Shuttle imagery

    Science.gov (United States)

    De Silva, S. L.; Francis, P. W.

    1990-01-01

    A synoptic study of the volcanoes of southern Peru (14-17 deg S), the northernmost part of the Central Volcanic Zone (CVZ 14-28 deg S) of the Andes, was conducted on the basis of Landsat TM images and color photography. The volcanoes were classified and their relative ages determined using subtle glacial-morphological features. Eight of them were postulated as potentially active. These are located in a narrow volcanic zone which probably reflects a steep dip of the Nazca plate through the zone of magma generation. The break in the trend of the volcanic arc possibly reflects the complexity of the crustal stress field above a major segment boundary in the subducting plate. There are also fields of mafic monogenetic centers in this region. In comparison with the southern part of the CVZ, the general paucity of older volcanic edifices north of 17 deg S suggested a more recent onset of volcanism, a possible result of the oblique subduction of the Nazca ridge and the consequent northward migration of its intersection with the Peru-Chile trench. This, together with the lack of any large silicic caldera systems and youthful dacite domes, suggested that there are real differences in the volcanic evolution of the two parts of the CVZ.

  15. Post-Eruptive Inflation of Okmok Volcano, Alaska, from InSAR, 2008–2014

    Directory of Open Access Journals (Sweden)

    Feifei Qu

    2015-12-01

    Full Text Available Okmok, a ~10-km wide caldera that occupies most of the northeastern end of Umnak Island, is one of the most active volcanoes in the Aleutian arc. The most recent eruption at Okmok during July–August 2008 was by far its largest and most explosive since at least the early 19th century. We investigate post-eruptive magma supply and storage at the volcano during 2008–2014 by analyzing all available synthetic aperture radar (SAR images of Okmok acquired during that time period using the multi-temporal InSAR technique. Data from the C-band Envisat and X-band TerraSAR-X satellites indicate that Okmok started inflating very soon after the end of 2008 eruption at a time-variable rate of 48–130 mm/y, consistent with GPS measurements. The “model-assisted” phase unwrapping method is applied to improve the phase unwrapping operation for long temporal baseline pairs. The InSAR time-series is used as input for deformation source modeling, which suggests magma accumulating at variable rates in a shallow storage zone at ~3.9 km below sea level beneath the summit caldera, consistent with previous studies. The modeled volume accumulation in the six years following the 2008 eruption is ~75% of the 1997 eruption volume and ~25% of the 2008 eruption volume.

  16. August 2008 eruption of Kasatochi volcano, Aleutian Islands, Alaska-resetting an Island Landscape

    Science.gov (United States)

    Scott, W.E.; Nye, C.J.; Waythomas, C.F.; Neal, C.A.

    2010-01-01

    Kasatochi Island, the subaerial portion of a small volcano in the western Aleutian volcanic arc, erupted on 7-8 August 2008. Pyroclastic flows and surges swept the island repeatedly and buried most of it and the near-shore zone in decimeters to tens of meters of deposits. Several key seabird rookeries in taluses were rendered useless. The eruption lasted for about 24 hours and included two initial explosive pulses and pauses over a 6-hr period that produced ash-poor eruption clouds, a 10-hr period of continuous ash-rich emissions initiated by an explosive pulse and punctuated by two others, and a final 8-hr period of waning ash emissions. The deposits of the eruption include a basal muddy tephra that probably reflects initial eruptions through the shallow crater lake, a sequence of pumiceous and lithic-rich pyroclastic deposits produced by flow, surge, and fall processes during a period of energetic explosive eruption, and a fine-grained upper mantle of pyroclastic-fall and -surge deposits that probably reflects the waning eruptive stage as lake and ground water again gained access to the erupting magma. An eruption with similar impact on the island's environment had not occurred for at least several centuries. Since the 2008 eruption, the volcano has remained quiet other than emission of volcanic gases. Erosion and deposition are rapidly altering slopes and beaches. ?? 2010 Regents of the University of Colorado.

  17. Post-eruptive inflation of Okmok Volcano, Alaska, from InSAR, 2008–2014

    Science.gov (United States)

    Qu, Feifei; Lu, Zhong; Poland, Michael; Freymueller, Jeffrey T.; Zhang, Qin; Jung, Hyung-Sup

    2016-01-01

    Okmok, a ~10-km wide caldera that occupies most of the northeastern end of Umnak Island, is one of the most active volcanoes in the Aleutian arc. The most recent eruption at Okmok during July-August 2008 was by far its largest and most explosive since at least the early 19th century. We investigate post-eruptive magma supply and storage at the volcano during 2008–2014 by analyzing all available synthetic aperture radar (SAR) images of Okmok acquired during that time period using the multi-temporal InSAR technique. Data from the C-band Envisat and X-band TerraSAR-X satellites indicate that Okmok started inflating very soon after the end of 2008 eruption at a time-variable rate of 48-130 mm/y, consistent with GPS measurements. The “model-assisted” phase unwrapping method is applied to improve the phase unwrapping operation for long temporal baseline pairs. The InSAR time-series is used as input for deformation source modeling, which suggests magma accumulating at variable rates in a shallow storage zone at ~3.9 km below sea level beneath the summit caldera, consistent with previous studies. The modeled volume accumulation in the 6 years following the 2008 eruption is ~75% of the 1997 eruption volume and ~25% of the 2008 eruption volume.

  18. Kolumbo submarine volcano (Greece): An active window into the Aegean subduction system.

    Science.gov (United States)

    Rizzo, Andrea Luca; Caracausi, Antonio; Chavagnac, Valèrie; Nomikou, Paraskevi; Polymenakou, Paraskevi N; Mandalakis, Manolis; Kotoulas, Georgios; Magoulas, Antonios; Castillo, Alain; Lampridou, Danai

    2016-06-17

    Submarine volcanism represents ~80% of the volcanic activity on Earth and is an important source of mantle-derived gases. These gases are of basic importance for the comprehension of mantle characteristics in areas where subaerial volcanism is missing or strongly modified by the presence of crustal/atmospheric components. Though, the study of submarine volcanism remains a challenge due to their hazardousness and sea-depth. Here, we report (3)He/(4)He measurements in CO2-dominated gases discharged at 500 m below sea level from the high-temperature (~220 °C) hydrothermal system of the Kolumbo submarine volcano (Greece), located 7 km northeast off Santorini Island in the central part of the Hellenic Volcanic Arc (HVA). We highlight that the mantle below Kolumbo and Santorini has a (3)He/(4)He signature of at least 7.0 Ra (being Ra the (3)He/(4)He ratio of atmospheric He equal to 1.39×10(-6)), 3 Ra units higher than actually known for gases-rocks from Santorini. This ratio is also the highest measured across the HVA and is indicative of the direct degassing of a Mid-Ocean-Ridge-Basalts (MORB)-like mantle through lithospheric faults. We finally highlight that the degassing of high-temperature fluids with a MORB-like (3)He/(4)He ratio corroborates a vigorous outgassing of mantle-derived volatiles with potential hazard at the Kolumbo submarine volcano.

  19. Satellite and ground observations of the June 2009 eruption of Sarychev Peak volcano, Matua Island, Central Kuriles

    Science.gov (United States)

    Rybin, A.; Chibisova, M.; Webley, P.; Steensen, T.; Izbekov, P.; Neal, C.; Realmuto, V.

    2011-01-01

    After 33 years of repose, one of the most active volcanoes of the Kurile island arc-Sarychev Peak on Matua Island in the Central Kuriles-erupted violently on June 11, 2009. The eruption lasted 9 days and stands among the largest of recent historical eruptions in the Kurile Island chain. Satellite monitoring of the eruption, using Moderate Resolution Imaging Spectroradiometer, Meteorological Agency Multifunctional Transport Satellite, and Advanced Very High Resolution Radiometer data, indicated at least 23 separate explosions between 11 and 16 June 2009. Eruptive clouds reached altitudes of generally 8-16 km above sea level (ASL) and in some cases up to 21 km asl. Clouds of volcanic ash and gas stretched to the north and northwest up to 1,500 km and to the southeast for more than 3,000 km. For the first time in recorded history, ash fall occurred on Sakhalin Island and in the northeast sector of the Khabarovsky Region, Russia. Based on satellite image analysis and reconnaissance field studies in the summer of 2009, the eruption produced explosive tephra deposits with an estimated bulk volume of 0. 4 km3. The eruption is considered to have a Volcanic Explosivity Index of 4. Because the volcano is remote, there was minimal risk to people or infrastructure on the ground. Aviation transport, however, was significantly disrupted because of the proximity of air routes to the volcano. ?? 2011 Springer-Verlag.

  20. Voluminous submarine lava flows from Hawaiian volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, R.T.; Moore, J.G.; Lipman, P.W.; Belderson, R.H.

    1988-05-01

    The GLORIA long-range sonar imaging system has revealed fields of large lava flows in the Hawaiian Trough east and south of Hawaii in water as deep as 5.5 km. Flows in the most extensive field (110 km long) have erupted from the deep submarine segment of Kilauea's east rift zone. Other flows have been erupted from Loihi and Mauna Loa. This discovery confirms a suspicion, long held from subaerial studies, that voluminous submarine flows are erupted from Hawaiian volcanoes, and it supports an inference that summit calderas repeatedly collapse and fill at intervals of centuries to millenia owing to voluminous eruptions. These extensive flows differ greatly in form from pillow lavas found previously along shallower segments of the rift zones; therefore, revision of concepts of volcano stratigraphy and structure may be required.

  1. Vulcan's fury: Man against the volcano

    Science.gov (United States)

    Varekamp, Johan C.

    I read this book on an 11-hour flight back from a field trip in the Andes, where I got first-hand insight into how people live with a volcano that now and then explodes. Appropriate reading, I felt, especially as the fascination of the human world with volcanoes and eruptive disasters is indeed long standing. This book is a recent addition to a list of titles in this genre (e.g., the new book by Sigurdsson to be reviewed in Eos shortly). The scope of the book is summarized in the introductory sentence of the preface: “This book is about an unequal contest. It describes human reactions to volcanic eruptions.” This is the perspective of the book's descriptions of 16 large and not-so-large eruptions over the last two millennia.

  2. Stromboli volcano (Aeolian Archipelago, Italy): An open window on the deep-feeding system of a steady state basaltic volcano

    Science.gov (United States)

    Bertagnini, A.; MéTrich, N.; Landi, P.; Rosi, M.

    2003-07-01

    Paroxysms at Stromboli are the most violent manifestations of the persistent activity and are related to the emission of small volumes (103-105 m3) of nearly aphyric HK-basaltic pumices. They offer the exceptional opportunity to detail the mixing-crystallization-degassing processes that occur in a steady state basaltic arc volcano. We present mineralogy, major, volatile, and trace element geochemistry of olivine-hosted melt inclusions of these pumices. In all the paroxysms, melt inclusions hosted in olivines Fo88-91 have recorded the parental melts rich in CaO (up to 14.5 wt %) but low in FeO (6-7 wt %). They demonstrate recurrent variations in the K2O content (1.6-1.3 wt %) and S/Cl ratios (1.2-0.8) of the melts that entered the deep system. Dynamic magma mixing between melts slightly distinct by their degree of evolution, rapid crystallization, and entrapment of gas-oversaturated melts during decompression are indicated by (1) the high density of irregular, clear melt inclusions, and embayments in homogeneous olivines (Fo87±0.5-Fo83±0.5), (2) the variable ratio between melt and gas bubble, and (3) the variability of melt inclusion compositions in both major (CaO/Al2O3 = 1-0.59) and volatile (3.4-1.8 wt % H2O, 1582-1017 ppm CO2) elements. FeO-rich melt inclusions in patchy, reversely zoned olivines also demonstrate interactions between ascending melt blobs and inherited olivine crystals. We propose a model involving a vertically extended dike-like system, where magmas progress and differentiate. On the basis of olivine growth rate calculations the volatile-rich magma blobs may ascend within few hours to few tenths of hours. Finally, we propose that sulfur degassing is possibly initiated during the early stage of magma differentiation.

  3. History of Red Crater volcano, Tongariro Volcanic Centre (New Zealand): Abrupt shift in magmatism following recharge and contrasting evolution between neighboring volcanoes

    Science.gov (United States)

    Shane, Phil; Maas, Roland; Lindsay, Jan

    2017-06-01

    also evident, larger volumes of magma with more radiogenic compositions were erupted and the history of activity extends farther back in time than that of Red Crater. This is consistent with the development of a larger silicic reservoir beneath Ngauruhoe that could have acted as a buoyancy filter preventing direct eruption of mafic magma. The eruptive products of the two volcanoes reveal the diverging development of adjacent magmatic reservoirs that lack lateral connectivity at a scale in the order of 102-103 m. There is limited literature on the comparative magmatic evolution of closely-spaced conduit/storage systems at arc volcanoes, reflecting the limitations of geochronological data at centennial and millennial timescales. However, such investigations provide insight into andesite assembly and the contrasting volcanism that could be expected in future activity.

  4. Decision Analysis Tools for Volcano Observatories

    Science.gov (United States)

    Hincks, T. H.; Aspinall, W.; Woo, G.

    2005-12-01

    Staff at volcano observatories are predominantly engaged in scientific activities related to volcano monitoring and instrumentation, data acquisition and analysis. Accordingly, the academic education and professional training of observatory staff tend to focus on these scientific functions. From time to time, however, staff may be called upon to provide decision support to government officials responsible for civil protection. Recognizing that Earth scientists may have limited technical familiarity with formal decision analysis methods, specialist software tools that assist decision support in a crisis should be welcome. A review is given of two software tools that have been under development recently. The first is for probabilistic risk assessment of human and economic loss from volcanic eruptions, and is of practical use in short and medium-term risk-informed planning of exclusion zones, post-disaster response, etc. A multiple branch event-tree architecture for the software, together with a formalism for ascribing probabilities to branches, have been developed within the context of the European Community EXPLORIS project. The second software tool utilizes the principles of the Bayesian Belief Network (BBN) for evidence-based assessment of volcanic state and probabilistic threat evaluation. This is of practical application in short-term volcano hazard forecasting and real-time crisis management, including the difficult challenge of deciding when an eruption is over. An open-source BBN library is the software foundation for this tool, which is capable of combining synoptically different strands of observational data from diverse monitoring sources. A conceptual vision is presented of the practical deployment of these decision analysis tools in a future volcano observatory environment. Summary retrospective analyses are given of previous volcanic crises to illustrate the hazard and risk insights gained from use of these tools.

  5. On the morphometry of terrestrial shield volcanoes

    Science.gov (United States)

    Grosse, Pablo; Kervyn, Matthieu

    2016-04-01

    Shield volcanoes are described as low angle edifices that have convex up topographic profiles and are built primarily by the accumulation of lava flows. This generic view of shields' morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galapagos). Here, the morphometry of over 150 monogenetic and polygenetic shield volcanoes, identified inthe Global Volcanism Network database, are analysed quantitatively from 90-meter resolution DEMs using the MORVOLC algorithm. An additional set of 20 volcanoes identified as stratovolcanoes but having low slopes and being dominantly built up by accumulation of lava flows are documented for comparison. Results show that there is a large variation in shield size (volumes range from 0.1 to >1000 km3), profile shape (height/basal width ratios range from 0.01 to 0.1), flank slope gradients, elongation and summit truncation. Correlation and principal component analysis of the obtained quantitative database enables to identify 4 key morphometric descriptors: size, steepness, plan shape and truncation. Using these descriptors through clustering analysis, a new classification scheme is proposed. It highlights the control of the magma feeding system - either central, along a linear structure, or spatially diffuse - on the resulting shield volcano morphology. Genetic relationships and evolutionary trends between contrasted morphological end-members can be highlighted within this new scheme. Additional findings are that the Galapagos-type morphology with a central deep caldera and steep upper flanks are characteristic of other shields. A series of large oceanic shields have slopes systematically much steeper than the low gradients (<4-8°) generally attributed to large Hawaiian-type shields. Finally, the continuum of morphologies from flat shields to steeper complex volcanic constructs considered as stratovolcanoes calls for a revision of this oversimplified

  6. Buried caldera of mauna kea volcano, hawaii.

    Science.gov (United States)

    Porter, S C

    1972-03-31

    An elliptical caldera (2.1 by 2.8 kilometers) at the summit of Mauna Kea volcano is inferred to lie buried beneath hawaiite lava flows and pyroclastic cones at an altitude of approximately 3850 meters. Stratigraphic relationships indicate that hawaiite eruptions began before a pre-Wisconsin period of ice-cap glaciation and that the crest of the mountain attained its present altitude and gross form during a glaciation of probable Early Wisconsin age.

  7. Publications of the Volcano Hazards Program 2014

    Science.gov (United States)

    Nathenson, Manuel

    2016-04-08

    The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Natural Hazards activity, as funded by Congressional appropriation. Investigations are carried out by the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Hawaiʻi Mānoa and Hilo, University of Utah, and University of Washington Geophysics Program. This report lists publications from all of these institutions.

  8. History of Neptune's Ring Arcs

    Science.gov (United States)

    Esposito, L. W.; Colwell, J. E.; Canup, R. M.

    1997-07-01

    The recent dynamical calculations for Neptune's Adams ring arcs by Foryta and Sicardy (1996) and Hanninen and Porco (1997) determine the basic evolutionary parameters for this system. The ring evolution is dominated by stochastic events, particularly chaotic motion that causes a migration between the corotation sites (FS96) and collisions near quadrature (HP97). A basic problem is that the high velocity collisions that produce the dusty arcs at the Galatea corotation resonances rapidly depopulate these sites (Colwell and Esposito 1990). With the new results in hand for the evolution of the ring particles over periods of less than a century, we can now calculate the long-term stochastic evolution of the Adams ring. Using a finite Markov chain as a model for this stochastic process, we follow the suggestion by FS96 that corotation sites provide preferential locations for accretion. A more general conclusion is that the longitudinal concentration of material in a few nearby sites (and that the majority of the Adams ring material is residing there) requires either an exceedingly recent event (EC92) or that the corotation sites be absorbing states of the Markov chain.In the latter case, the competing processes of chaotic diffusion and frustrated accretion can provide the arc and clump features as recurrent transient events near the Roche limit. Similar phenomena would be expected for Saturn's F and G rings.

  9. Monitoring active volcanoes: The geochemical approach

    Directory of Open Access Journals (Sweden)

    Takeshi Ohba

    2011-06-01

    Full Text Available

    The geochemical surveillance of an active volcano aims to recognize possible signals that are related to changes in volcanic activity. Indeed, as a consequence of the magma rising inside the volcanic "plumbing system" and/or the refilling with new batches of magma, the dissolved volatiles in the magma are progressively released as a function of their relative solubilities. When approaching the surface, these fluids that are discharged during magma degassing can interact with shallow aquifers and/or can be released along the main volcano-tectonic structures. Under these conditions, the following main degassing processes represent strategic sites to be monitored.

    The main purpose of this special volume is to collect papers that cover a wide range of topics in volcanic fluid geochemistry, which include geochemical characterization and geochemical monitoring of active volcanoes using different techniques and at different sites. Moreover, part of this volume has been dedicated to the new geochemistry tools.

  10. Geothermal Exploration of Newberry Volcano, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Waibel, Albert F. [Columbia Geoscience, Pasco, WA (United States); Frone, Zachary S. [Southern Methodist Univ., Dallas, TX (United States); Blackwell, David D. [Southern Methodist Univ., Dallas, TX (United States)

    2014-12-01

    Davenport Newberry (Davenport) has completed 8 years of exploration for geothermal energy on Newberry Volcano in central Oregon. Two deep exploration test wells were drilled by Davenport on the west flank of the volcano, one intersected a hydrothermal system; the other intersected isolated fractures with no hydrothermal interconnection. Both holes have bottom-hole temperatures near or above 315°C (600°F). Subsequent to deep test drilling an expanded exploration and evaluation program was initiated. These efforts have included reprocessing existing data, executing multiple geological, geophysical, geochemical programs, deep exploration test well drilling and shallow well drilling. The efforts over the last three years have been made possible through a DOE Innovative Exploration Technology (IET) Grant 109, designed to facilitate innovative geothermal exploration techniques. The combined results of the last 8 years have led to a better understanding of the history and complexity of Newberry Volcano and improved the design and interpretation of geophysical exploration techniques with regard to blind geothermal resources in volcanic terrain.

  11. Seismic and infrasound monitoring at Cotopaxi volcano

    Science.gov (United States)

    Ruiz, M.; Yepes, H.; Palacios, P.; Troncoso, L.; Mothes, P.; Kumagai, H.

    2012-04-01

    Cotopaxi is an active ice-capped volcano (5967m) located 60 km SE from Quito and is one of the largest and more hazardous volcanoes in the Northern Andes. Monitoring of Cotopaxi, using seismic and infrasound techniques has improving significantly since 1976, when three short-period stations were deployed temporarily in response to an increase of fumarolic activity. Later in May 1977, a short-period vertical seismometer was installed on the NW flank at 7 km from the crater. Since 1986 a short-period seismic station is working at the northern flank of Cotopaxi and transmitting analog data to the Instituto Geofisico. In 1993 a network of 4 short-period seismic stations were installed on all flanks of the volcano. Between March 1996 and June 1997 a temporal network of 16 stations were deployed for several months in order to study local seismicity and internal structure (Metaxian et al., 1999). Since 2006, a network of five broad band stations (0.02-60 s) and low-frequency infrasound sensors (0.01-10 s) were installed through a JICA Cooperation Project (Kumagai et al., 2007). Data is transmitted to the Instituto Geofisico via a digital radio system. Through this network, LP and VLP events have been recorded and analyzed (Molina et al., 2008). VLP events were located beneath the north and north-eastern flank using waveform inversion and amplitude distribution methods (Kumagai et al., 2010).

  12. Detecting Blackholes and Volcanoes in Directed Networks

    CERN Document Server

    Li, Zhongmou; Liu, Yanchi

    2010-01-01

    In this paper, we formulate a novel problem for finding blackhole and volcano patterns in a large directed graph. Specifically, a blackhole pattern is a group which is made of a set of nodes in a way such that there are only inlinks to this group from the rest nodes in the graph. In contrast, a volcano pattern is a group which only has outlinks to the rest nodes in the graph. Both patterns can be observed in real world. For instance, in a trading network, a blackhole pattern may represent a group of traders who are manipulating the market. In the paper, we first prove that the blackhole mining problem is a dual problem of finding volcanoes. Therefore, we focus on finding the blackhole patterns. Along this line, we design two pruning schemes to guide the blackhole finding process. In the first pruning scheme, we strategically prune the search space based on a set of pattern-size-independent pruning rules and develop an iBlackhole algorithm. The second pruning scheme follows a divide-and-conquer strategy to fur...

  13. Nanoscale volcanoes: accretion of matter at ion-sculpted nanopores.

    Science.gov (United States)

    Mitsui, Toshiyuki; Stein, Derek; Kim, Young-Rok; Hoogerheide, David; Golovchenko, J A

    2006-01-27

    We demonstrate the formation of nanoscale volcano-like structures induced by ion-beam irradiation of nanoscale pores in freestanding silicon nitride membranes. Accreted matter is delivered to the volcanoes from micrometer distances along the surface. Volcano formation accompanies nanopore shrinking and depends on geometrical factors and the presence of a conducting layer on the membrane's back surface. We argue that surface electric fields play an important role in accounting for the experimental observations.

  14. Citizen empowerment in volcano monitoring, communication and decision-making at Tungurahua volcano, Ecuador

    Science.gov (United States)

    Bartel, B. A.; Mothes, P. A.

    2013-12-01

    Trained citizen volunteers called vigías have worked to help monitor and communicate warnings about Tungurahua volcano, in Ecuador, since the volcano reawoke in 1999. The network, organized by the scientists of Ecuador's Instituto Geofísico de la Escuela Politécnica Nacional (Geophysical Institute) and the personnel from the Secretaría Nacional de Gestión de Riesgos (Risk Management, initially the Civil Defense), has grown to more than 20 observers living around the volcano who communicate regularly via handheld two-way radios. Interviews with participants conducted in 2010 indicate that the network enables direct communication between communities and authorities; engenders trust in scientists and emergency response personnel; builds community; and empowers communities to make decisions in times of crisis.

  15. Arc Root Attachment on the Anode Surface of Arc Plasma Torch Observed with a Novel Method

    Institute of Scientific and Technical Information of China (English)

    PAN Wen-Xia; LI Teng; MENG Xian; CHEN Xi; WU Cheng-Kang

    2005-01-01

    @@ The arc-root attachment on the anode surface of a dc non-transferred arc plasma torch has been successfullyobserved using a novel approach. A specially designed copper mirror with a boron nitride film coated on itssurface central-region is employed to avoid the effect of intensive light emitted from the arc column upon theobservation of weakly luminous arc root. It is found that the arc-root attachment is diffusive on the anode surfaceof the argon plasma torch, while constricted arc roots often occur when hydrogen or nitrogen is added into argonas the plasma-forming gas.

  16. July 1973 ground survey of active Central American volcanoes

    Science.gov (United States)

    Stoiber, R. E. (Principal Investigator); Rose, W. I., Jr.

    1973-01-01

    The author has identified the following significant results. Ground survey has shown that thermal anomalies of various sizes associated with volcanic activity at several Central American volcanoes should be detectable from Skylab. Anomalously hot areas of especially large size (greater than 500 m in diameter) are now found at Santiaguito and Pacaya volcanoes in Guatemala and San Cristobal in Nicaragua. Smaller anomalous areas are to be found at least seven other volcanoes. This report is completed after ground survey of eleven volcanoes and ground-based radiation thermometry mapping at these same points.

  17. The critical role of volcano monitoring in risk reduction

    Directory of Open Access Journals (Sweden)

    R. I. Tilling

    2008-01-01

    Full Text Available Data from volcano-monitoring studies constitute the only scientifically valid basis for short-term forecasts of a future eruption, or of possible changes during an ongoing eruption. Thus, in any effective hazards-mitigation program, a basic strategy in reducing volcano risk is the initiation or augmentation of volcano monitoring at historically active volcanoes and also at geologically young, but presently dormant, volcanoes with potential for reactivation. Beginning with the 1980s, substantial progress in volcano-monitoring techniques and networks – ground-based as well space-based – has been achieved. Although some geochemical monitoring techniques (e.g., remote measurement of volcanic gas emissions are being increasingly applied and show considerable promise, seismic and geodetic methods to date remain the techniques of choice and are the most widely used. Availability of comprehensive volcano-monitoring data was a decisive factor in the successful scientific and governmental responses to the reawakening of Mount St. elens (Washington, USA in 1980 and, more recently, to the powerful explosive eruptions at Mount Pinatubo (Luzon, Philippines in 1991. However, even with the ever-improving state-of-the-art in volcano monitoring and predictive capability, the Mount St. Helens and Pinatubo case histories unfortunately still represent the exceptions, rather than the rule, in successfully forecasting the most likely outcome of volcano unrest.

  18. Age and chemical constraints of Volcán Tunupa: Implications for behind arc volcanism in the Bolivian central Andes

    Science.gov (United States)

    salisbury, M. J.; Kent, A. J.; Jiménez, N.; Jicha, B. R.

    2011-12-01

    New 40Ar/39Ar age determinations of groundmass separates and whole-rock geochemical data constrain the Pleistocene eruptive history of Volcán Tunupa, a glacially-dissected composite volcano (~50 km3) situated between the Salar de Uyuni and Salar de Coipasa. Tunupa erupted ~110 km east of the arc front of the Western Cordillera of the central Andes near the eastern edge of the Intersalar Volcanic Field, an arc-perpendicular expression of volcanism that extends to the central Altiplano basin of Bolivia. 40Ar/39Ar age determinations indicate that the edifice was constructed between ~1.40 and 1.55 Ma, whereas nearby Cerro Huayrana lavas erupted ~ 11 Ma. Published ages from the Western Cordillera that are concordant with both Tunupa and Huayrana lavas demonstrate that the central Altiplano lavas are a long-lived expression of behind arc volcanism. The Tunupa lavas define a calc-alkaline trend from trachyandesite to trachydacite (wt.% SiO2 = 60.6 - 63.6; wt.% K2O + Na2O = 7.5 - 8.3) and are overlain by younger, more silicic (wt.% SiO2 = 66) trachydacitic domes. Major element compositions of Tunupa and Huayrana are enriched in FeO and TiO2 compared to the arc front. These lavas are also enriched in high field strength elements, notably Nb and Ta, and are characterized by considerably lower Ba/Nb and La/Ta ratios than arc front lavas in northern Chile. The geochemical and spatiotemporal patterns of the behind arc Tunupa and Huayrana lavas suggest different petrogenetic histories from typical central Andean arc lavas.

  19. Magma Supply System at Batur Volcano Inferred from Volcano-Tectonic Earthquakes and Their Focal Mechanism

    Directory of Open Access Journals (Sweden)

    Sri Hidayati

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v8i2.159The Volcano-Tectonic (VT earthquakes occurring during September - November 2009 were analyzed. The result shows that the epicentres aligning in NE- SW direction coincided with the weak zone of Batur Volcano Complex. The focal zone is located at the depth around 1.5 - 5.5 km beneath the summit. Migration of magma was detected by ground deformation measured by GPS and focal mechanism. Mechanism of VT earthquake shows mostly normal fault types during the swarm in November 2009.

  20. Benthic carbon mineralization in hadal trenches

    DEFF Research Database (Denmark)

    Wenzhöfer, F.; Oguri, K.; Middelboe, Mathias;

    2016-01-01

    consumption rates and sediment characteristics from the trench axis of two contrasting trench systems in the Pacific Ocean; the Izu-Bonin Trench underlying mesotrophic waters and the Tonga Trench underlying oligotrophic waters. In situ oxygen consumption at the Izu-Bonin Trench axis site (9200 m; 746 +/- 103...... mu mol m(-2) d(-1); n=27) was 3-times higher than at the Tonga Trench axis site (10800 m; 225 +/- 50 pmol m(-2) d(-1); n=7) presumably reflecting the higher surface water productivity in the Northern Pacific. Comparing benthic O-2 consumption rates measured in the central hadal Tonga Trench...

  1. Stability of Neptune's ring arcs in question

    Science.gov (United States)

    Dumas, Christophe; Terrile, Richard J.; Smith, Bradford A.; Schneider, Glenn; Becklin, E. E.

    1999-08-01

    Although all four of the gas-giant planets in the Solar System have ring systems, only Neptune exhibits `ring arcs'-stable clumps of dust that are discontinuous from each other. Two basic mechanisms for confining the dust to these arcs have been proposed. The firstrelies on orbital resonances with two shepherding satellites, while the second invokes a single satellite (later suggested to be Galatea) to produce the observed ring arc structures. Here we report observations of the ring arcs and Galatea, which show that there isa mismatch between the locations of the arcs and the site of Galatea's co-rotation inclined resonance. This result calls into question Galatea's sole role in confining the arcs.

  2. Seismic scattering and absorption mapping of debris flows, feeding paths, and tectonic units at Mount St. Helens volcano

    Science.gov (United States)

    De Siena, L.; Calvet, M.; Watson, K. J.; Jonkers, A. R. T.; Thomas, C.

    2016-05-01

    Frequency-dependent peak-delay times and coda quality factors have been used jointly to separate seismic absorption from scattering quantitatively in Earth media at regional and continental scale; to this end, we measure and map these two quantities at Mount St. Helens volcano. The results show that we can locate and characterize volcanic and geological structures using their unique contribution to seismic attenuation. At 3 Hz a single high-scattering and high-absorption anomaly outlines the debris flows that followed the 1980 explosive eruption, as deduced by comparison with remote sensing imagery. The flows overlay a NNW-SSE interface, separating rocks of significant varying properties down to 2-4 km, and coinciding with the St. Helens Seismic Zone. High-scattering and high-absorption anomalies corresponding to known locations of magma emplacement follow this signature under the volcano, showing the important interconnections between its feeding systems and the regional tectonic boundaries. With frequency increasing from 6 to 18 Hz the NNW-SSE tectonic/feeding trends rotate around an axis centered on the volcano in the direction of the regional-scale magmatic arc (SW-NE). While the aseismic high-scattering region WSW of the volcano shows no evidence of high absorption, the regions of highest-scattering and absorption are consistently located at all frequencies under either the eastern or the south-eastern flank of the volcanic edifice. From the comparison with the available geological and geophysical information we infer that these anomalies mark both the location and the trend of the main feeding systems at depths greater than 4 km.

  3. Emission rate, isotopic composition and origin(s) of magmatic carbon dioxide at Merapi volcano, Indonesia

    Science.gov (United States)

    Allard, P.

    2012-12-01

    Merapi volcano, located on a ~25 thick continental-type arc crust in central Java, is one of the most active arc volcanoes worldwide, where high temperature summit degassing and extrusion of basic andesite lava domes have persisted for several centuries at least. Carbon dioxide is the main anhydrous component of emitted magmatic gases [1,2] and is released at a time-averaged rate of ~500 tons/day from both high-temperature (900-600°C) gas venting [3] and soil degassing in the summit area [4]. Its δ13C averages -4.0±0.2 ‰ at the extruding lava dome and at all other degassing sites [1-4], thus evidencing its overall magmatic derivation. However, its ultimate origin is still debated. Merapi lavas indeed contain abundant calc-silicate (skarn-type) xenoliths and Ca-rich xenocrysts [5-7] which demonstrates shallow magma interactions with carbonate sediments present in the basement and renders plausible a crustal contribution to the magmatic CO2 output [1,6,7]. Here I outline a number of geochemical constraints which suggest that such a shallow crustal contribution may be of second order with respect to a deep slab carbon contribution: (i) The CO2/3He ratio of Merapi magmatic gases (5 times higher than the average MORB ratio), combined with the δ13C for MORB-type upper mantle carbon (-7 to -4‰), implies that the volcanic CO2 contains 80% of non-mantle carbon with maximum δ13C of -3.25‰. This is much lower than the potential δ13C of metamorphic CO2 generated from local carbonate sediments (-2.2 to +1.4‰; [1,8]); (ii) The δ13C of Merapi volcanic CO2 has remained remarkably constant over 30 years of standard eruptive activity, implying steady conditions of genesis and transfer from depth to the surface. This discards a permanent influence of likely variable magma-carbonate interactions. Instead, such interactions could well be responsible of one single 'anomalous' transient δ13C value (-2.4‰) measured just after a nearby tectonic earthquake in 2006 [8]; and

  4. Programming ArcGIS with Python cookbook

    CERN Document Server

    Pimpler, Eric

    2015-01-01

    Programming ArcGIS with Python Cookbook, Second Edition, is written for GIS professionals who wish to revolutionize their ArcGIS workflow with Python. Whether you are new to ArcGIS or a seasoned professional, you almost certainly spend time each day performing various geoprocessing tasks. This book will teach you how to use the Python programming language to automate these geoprocessing tasks and make you a more efficient and effective GIS professional.

  5. Contrasting compositional trends of rocks and olivine-hosted melt inclusions from Cerro Negro volcano (Central America): implications for decompression-driven fractionation of hydrous magmas

    Science.gov (United States)

    Portnyagin, Maxim V.; Hoernle, Kaj; Mironov, Nikita L.

    2014-10-01

    Melt inclusions in olivine Fo83-72 from tephras of 1867, 1971 and 1992 eruptions of Cerro Negro volcano represent a series of basaltic to andesitic melts of narrow range of MgO (5.6-8 wt %) formed by ~46 wt % fractional crystallization of olivine (~6 wt %), plagioclase (~27 wt %), pyroxene (~13 wt %) and magnetite (high-Mg basalts reflects the process of phenocryst re-distribution in progressively evolving melt. The crystallization scenario is anticipated to operate everywhere in dykes feeding basaltic volcanoes and can explain the predominance of plagioclase-rich high-Al basalts in island arc as well as typical compositional variations of magmas during single eruptions.

  6. Statistical analysis of geographic information with ArcView GIS and ArcGIS

    National Research Council Canada - National Science Library

    Wong, David W. S; Lee, Jay

    2005-01-01

    ... of its capabilities for spatial-quantitative synthesis. Now, David Wong and Jay Lee update their comprehensive handbook with Statistical Analysis of Geographic Information with ArcView GIS and ArcGIS...

  7. Differentiation mechanism of frontal-arc basalt magmas

    Science.gov (United States)

    Kuritani, T.; Yoshida, T.; Kimura, J.; Hirahara, Y.; Takahashi, T.

    2012-04-01

    In a cooling magma chamber, magmatic differentiation can proceed both by fractionation of crystals from the main molten part of the magma body (homogeneous fractionation) and by mixing of the main magma with fractionated melt derived from low-temperature mush zones (boundary layer fractionation) (Jaupart and Tait, 1995, and references therein). The geochemical path caused by boundary layer fractionation can be fairly different from a path resulting from homogeneous fractionation (e.g., Langmuir, 1989). Therefore, it is important to understand the relative contributions of these fractionation mechanisms in magma chambers. Kuritani (2009) examined the relative roles of the two fractionation mechanisms in cooling basaltic magma chambers using a thermodynamics-based mass balance model. However, the basaltic magmas examined in the work were alkali-rich (Na2O+K2O > 4 wt.%). In this study, to explore differentiation mechanisms of frontal-arc basalt magmas that are volumetrically much more important than rear-arc alkali basalt magmas, the relative roles of the two fractionation mechanisms are examined for low-K tholetiitic basalt magma from Iwate Volcano, NE Japan arc, using the same mass balance model. First, the water content and the temperature of the Iwate magma were estimated. The Iwate lavas are moderately porphyritic, consisting of ~8 vol.% olivine and ~20 vol.% plagioclase phenocrysts. The olivine and plagioclase phenocrysts show significant compositional variations, and the Mg# of olivine phenocrysts (Mg#78-81) correlates positively with the An content of coexisting plagioclase phenocrysts (An85-92). The olivine phenocrysts with Mg# > ~82 do not form crystal aggregates with plagioclase. It is inferred from these observations that the phenocrysts with variable compositions were derived from a common magma with variable temperature in a magma chamber, and the plagioclase phenocrysts were all derived from mushy boundary layers along the walls of the magma chamber. By

  8. The Confinement of Neptune's Ring Arcs

    Science.gov (United States)

    Porco, C.; Namouni, F.

    2002-09-01

    The stability of the narrow ring arcs of Neptune has been a puzzle since their discovery. First detected in 1984 from the Earth in stellar occultations and imaged by the Voyager spacecraft in 1989, the 5 arcs spanning approximately 40 deg in longitude are apparently confined against the rapid azimuthal and radial spreading that results from energy dissipation in inter-particle collisions. Voyager data were used to argue in favor of an arc confinement model (Goldreich et al. AJ 1986; Porco, Science 1991) that relies on both the vertical and mean angular motions of the nearby Neptunian moon, Galatea, to produce a pair of Lindblad (LR) and corotation inclination (CIR) resonances capable of trapping ring particles into a sequence of arcs. However, HST and Earth-based observations taken in 1998 (Dumas et al. Nature 1999; Sicardy et al. Nature 1999) indicate a revised arc mean angular motion which displaces the arcs away from the CIR, leaving their stability once again unexplained. In this presentation, we will discuss the workings of a hitherto neglected resonance which relies on Galatea's orbital eccentricity and which, together with the LR, is likely responsible for the angular confinement of the arcs. The action of this resonance, which operates through the precession of Galatea's eccentric orbit forced by the arcs' inertia, will allow a determination of the arcs' mass from future measurements of Galatea's eccentricity. We acknowledge the financial support of NASA's Planetary Geology and Geophysics Program and the Southwest Research Institute's Internal Research Grant program.

  9. The Team Orienteering Arc Routing Problem

    OpenAIRE

    Archetti, Claudia; Speranza, M. Grazia; Corberan, Angel; Sanchís Llopis, José María; Plana, Isaac

    2014-01-01

    The team orienteering arc routing problem (TOARP) is the extension to the arc routing setting of the team orienteering problem. In the TOARP, in addition to a possible set of regular customers that have to be serviced, another set of potential customers is available. Each customer is associated with an arc of a directed graph. Each potential customer has a profit that is collected when it is serviced, that is, when the associated arc is traversed. A fleet of vehicles with a given maximum trav...

  10. Electrode Evaporation Effects on Air Arc Behavior

    Institute of Scientific and Technical Information of China (English)

    LI Xingwen; CHEN Degui; LI Rui; WU Yi; NIU Chunping

    2008-01-01

    A numerical study of the effects of copper and silver vapours on the air arc behavior is performed. The commercial software FLUENT is adapted and modified to develop a two-dimensional magneto-hydrodynamic (MHD) models of arc with the thermodynamic properties and transport coefficients, net emission coefficient for the radiation model of 99% ai-1% Cu, 99% air-1% Ag, and pure air, respectively. The simulation result demonstrates that vaporization of the electrode material may cool the arc center region and reduce the arc velocity. The effects of Ag vapour are stronger compared to those of Cu vapour.

  11. Metals purification by improved vacuum arc remelting

    Science.gov (United States)

    Zanner, Frank J.; Williamson, Rodney L.; Smith, Mark F.

    1994-12-13

    The invention relates to improved apparatuses and methods for remelting metal alloys in furnaces, particularly consumable electrode vacuum arc furnaces. Excited reactive gas is injected into a stationary furnace arc zone, thus accelerating the reduction reactions which purify the metal being melted. Additionally, a cooled condensation surface is disposed within the furnace to reduce the partial pressure of water in the furnace, which also fosters the reduction reactions which result in a purer produced ingot. Methods and means are provided for maintaining the stationary arc zone, thereby reducing the opportunity for contaminants evaporated from the arc zone to be reintroduced into the produced ingot.

  12. Class `E` protective headwear: electric arc exposure

    Energy Technology Data Exchange (ETDEWEB)

    Jones, E.

    1997-04-01

    A series of tests were conducted using electric arcs under laboratory conditions to determine what, if any, damages can be inflicted upon class `E` hard hats. Ten hard hats were subjected to different levels of arc exposure to see if the hat would ignite, melt, drip, stick to the head, etc. It was noted that there is no standard on hard hat exposure to an electric arc. It was recommended that the CSA committee revise the protective headwear standard to include a requirement for flame/arc resistance, including specification of pass/fail criteria. 1 tab., 3 figs.

  13. Miniaturized cathodic arc plasma source

    Science.gov (United States)

    Anders, Andre; MacGill, Robert A.

    2003-04-15

    A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  14. Mesoproterozoic Continental Arc Type Granite in the Central Tianshan Mountains: Zircon SHRIMP U-Pb Dating and Geochemical Analyses

    Institute of Scientific and Technical Information of China (English)

    YANG Tiannan; LI Jinyi; SUN Guihua; WANG Yanbin

    2008-01-01

    The Central Tianshan belt in northwestern China is a small Precambrian block located in the southern part of the Central Asia Orogenic Belt (CAOB), which is considered as "the most voluminous block of young continental crust in the world" that comprises numerous small continental blocks separated by Paleozoic magmatic arcs. The Precambrian basement of the central Tianshan Mountains is composed of volcanic rocks and associated volcano-sedimentary rocks that were intruded by granitic plutons. Geochemical analyses demonstrate that the granitic plutons and volcanic rocks were generated in the Andean-type active continental arc environment like today's Chile, and the zircon U-Pb SHRIMP dating indicates that they were developed at about 956 Ma, possibly corresponding to the subduction of the inferred Mozambique Ocean under the Baltic-African super-continent.

  15. Boxicity of Circular Arc Graphs

    OpenAIRE

    Bhowmick, Diptendu; Chandran, L. Sunil

    2008-01-01

    A $k$-dimensional box is the cartesian product $R_1 \\times R_2 \\times ... \\times R_k$ where each $R_i$ is a closed interval on the real line. The {\\it boxicity} of a graph $G$, denoted as $box(G)$, is the minimum integer $k$ such that $G$ can be represented as the intersection graph of a collection of $k$-dimensional boxes: that is two vertices are adjacent if and only if their corresponding boxes intersect. A circular arc graph is a graph that can be represented as the intersection graph of ...

  16. Instability of Hawaiian volcanoes: Chapter 4 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Denlinger, Roger P.; Morgan, Julia K.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Hawaiian volcanoes build long rift zones and some of the largest volcanic edifices on Earth. For the active volcanoes on the Island of Hawai‘i, the growth of these rift zones is upward and seaward and occurs through a repetitive process of decades-long buildup of a magma-system head along the rift zones, followed by rapid large-scale displacement of the seaward flank in seconds to minutes. This large-scale flank movement, which may be rapid enough to generate a large earthquake and tsunami, always causes subsidence along the coast, opening of the rift zone, and collapse of the magma-system head. If magma continues to flow into the conduit and out into the rift system, then the cycle of growth and collapse begins again. This pattern characterizes currently active Kīlauea Volcano, where periods of upward and seaward growth along rift zones were punctuated by large (>10 m) and rapid flank displacements in 1823, 1868, 1924, and 1975. At the much larger Mauna Loa volcano, rapid flank movements have occurred only twice in the past 200 years, in 1868 and 1951.

  17. Feedback Linearization Based Arc Length Control for Gas Metal Arc Welding

    DEFF Research Database (Denmark)

    Thomsen, Jesper Sandberg

    2005-01-01

    In this paper a feedback linearization based arc length controller for gas metal arc welding (GMAW) is described. A nonlinear model describing the dynamic arc length is transformed into a system where nonlinearities can be cancelled by a nonlinear state feedback control part, and thus, leaving only...

  18. Volcano monitoring with an infrared camera: first insights from Villarrica Volcano

    Science.gov (United States)

    Rosas Sotomayor, Florencia; Amigo Ramos, Alvaro; Velasquez Vargas, Gabriela; Medina, Roxana; Thomas, Helen; Prata, Fred; Geoffroy, Carolina

    2015-04-01

    This contribution focuses on the first trials of the, almost 24/7 monitoring of Villarrica volcano with an infrared camera. Results must be compared with other SO2 remote sensing instruments such as DOAS and UV-camera, for the ''day'' measurements. Infrared remote sensing of volcanic emissions is a fast and safe method to obtain gas abundances in volcanic plumes, in particular when the access to the vent is difficult, during volcanic crisis and at night time. In recent years, a ground-based infrared camera (Nicair) has been developed by Nicarnica Aviation, which quantifies SO2 and ash on volcanic plumes, based on the infrared radiance at specific wavelengths through the application of filters. Three Nicair1 (first model) have been acquired by the Geological Survey of Chile in order to study degassing of active volcanoes. Several trials with the instruments have been performed in northern Chilean volcanoes, and have proven that the intervals of retrieved SO2 concentration and fluxes are as expected. Measurements were also performed at Villarrica volcano, and a location to install a ''fixed'' camera, at 8km from the crater, was discovered here. It is a coffee house with electrical power, wifi network, polite and committed owners and a full view of the volcano summit. The first measurements are being made and processed in order to have full day and week of SO2 emissions, analyze data transfer and storage, improve the remote control of the instrument and notebook in case of breakdown, web-cam/GoPro support, and the goal of the project: which is to implement a fixed station to monitor and study the Villarrica volcano with a Nicair1 integrating and comparing these results with other remote sensing instruments. This works also looks upon the strengthen of bonds with the community by developing teaching material and giving talks to communicate volcanic hazards and other geoscience topics to the people who live "just around the corner" from one of the most active volcanoes

  19. SO2 camera measurements at Lastarria volcano and Lascar volcano in Chile

    Science.gov (United States)

    Lübcke, Peter; Bobrowski, Nicole; Dinger, Florian; Klein, Angelika; Kuhn, Jonas; Platt, Ulrich

    2015-04-01

    The SO2 camera is a remote-sensing technique that measures volcanic SO2 emissions via the strong SO2 absorption structures in the UV using scattered solar radiation as a light source. The 2D-imagery (usually recorded with a frame rate of up to 1 Hz) allows new insights into degassing processes of volcanoes. Besides the large advantage of high frequency sampling the spatial resolution allows to investigate SO2 emissions from individual fumaroles and not only the total SO2 emission flux of a volcano, which is often dominated by the volcanic plume. Here we present SO2 camera measurements that were made during the CCVG workshop in Chile in November 2014. Measurements were performed at Lastarria volcano, a 5700 m high stratovolcano and Lascar volcano, a 5600 m high stratovolcano both in northern Chile on 21 - 22 November, 2014 and on 26 - 27 November, 2014, respectively. At both volcanoes measurements were conducted from a distance of roughly 6-7 km under close to ideal conditions (low solar zenith angle, a very dry and cloudless atmosphere and an only slightly condensed plume). However, determination of absolute SO2 emission rates proves challenging as part of the volcanic plume hovered close to the ground. The volcanic plume therefore is in front of the mountain in our camera images. An SO2 camera system consisting of a UV sensitive CCD and two UV band-pass filters (centered at 315 nm and 330 nm) was used. The two band-pass filters are installed in a rotating wheel and images are taken with both filter sequentially. The instrument used a CCD with 1024 x 1024 pixels and an imaging area of 13.3 mm x 13.3 mm. In combination with the focal length of 32 mm this results in a field-of-view of 25° x 25°. The calibration of the instrument was performed with help of a DOAS instrument that is co-aligned with the SO2 camera. We will present images and SO2 emission rates from both volcanoes. At Lastarria gases are emitted from three different fumarole fields and we will attempt

  20. Early Paleozoic subduction initiation volcanism of the Iwatsubodani Formation, Hida Gaien belt, Southwest Japan

    Science.gov (United States)

    Tsukada, Kazuhiro; Yamamoto, Koshi; Gantumur, Onon; Nuramkhaan, Manchuk

    2017-01-01

    In placing Japanese tectonics in an Asian context, variation in the Paleozoic geological environment is a significant issue. This paper investigates the geochemistry of the lower Paleozoic basalt formation (Iwatsubodani Formation) in the Hida Gaien belt, Japan, to consider its tectonic setting. This formation includes the following two types of rock in ascending order: basalt A with sub-ophitic texture and basalt B with porphyritic texture. Basalt A has a high and uniform FeO*/MgO ratio, moderate TiO2, high V, and low Ti/V. The HFSE and REE are nearly the same as those in MORB, and all the data points to basalt A being the "MORB-like fore-arc tholeiitic basalt (FAB)" reported, for example, from the Izu-Bonin-Mariana arc. By contrast, basalt B has a low FeO*/MgO ratio, low TiO2, and low V and Ti/V. It has an LREE-enriched trend and a distinct negative Nb anomaly in the MORB-normalized multi-element pattern and a moderately high LREE/HREE. All these factors suggest that basalt B is calc-alkaline basalt. It is known that FAB is erupted at the earliest stage of arc formation—namely, subduction initiation—and that boninitic/tholeiitic/calc-alkaline volcanism follows at the supra-subduction zone (SSZ). Thus, the occurrence of basalts A (FAB) and B (calc-alkaline rock) is strong evidence of early Paleozoic arc-formation initiation at an SSZ. Evidence for an early Paleozoic SSZ arc is also recognized from the Oeyama, Hayachine-Miyamori, and Sergeevka ophiolites. Hence, both these ophiolites and the Iwatsubodani Formation probably coexisted in a primitive SSZ system in the early Paleozoic.

  1. Subduction-related oceanic crust in the Khantaishir ophiolite (western Mongolia).

    Science.gov (United States)

    Gianola, O.; Schmidt, M. W.; Jagoutz, O. E.

    2014-12-01

    Most of the oceanic crust is generated at mid oceanic ridges and only a minor portion results from magmatism related to subduction zones (i.e. back-arc basins or in incipient arcs). However it has been observed that several ophiolites preserve an oceanic crust displaying a subduction zone signature. Such a signature is also found in the Khantaishir ophiolite located in western Mongolia. This ~570 m.y. old ophiolite is ~480 km2 in size and displays a complete sequence, tectonically slightly dismembered during the emplacement process. The ophiolite exposes ~130 km2 of highly refractory harzburgitic mantle with local dunite channels and lenses. Towards its top the mantle is replaced by sub-horizontal km-wide discrete zones of pyroxenites situated either in the mantle or forming a crust-mantle transition zone overlain by gabbros. The crust is then composed of various gabbros and minor gabbronorite (both in part replaced by pyroxenites and/or cut by intermediate dykes), by a dyke/sill-complex and by pillow lavas. The entire ophiolite is re-equilibrated at lower greenschist facies conditions. Major and trace elements of the crustal rocks of the Khantaishir ophiolite show trends similar to those observed for the Izu-Bonin-Mariana subduction system. Mafic dykes/sills and pillow lavas of the Khantaishir ophiolite have overall basaltic-andesite compositions, resembling high-Mg andesites with an average SiO2 of 57 wt%. Their low TiO2 (high-Mg andesites and boninites from modern island arcs. This evidence suggests that the Kantaishir crust might represent the submarine initial stage of an incipient arc, probably when the preexisting oceanic crust is spread and incipient island arc crust is formed.

  2. Spatial distribution of helium isotopes in volcanic gases and thermal waters along the Vanuatu (New Hebrides) volcanic arc

    Science.gov (United States)

    Jean-Baptiste, P.; Allard, P.; Fourré, E.; Bani, P.; Calabrese, S.; Aiuppa, A.; Gauthier, P. J.; Parello, F.; Pelletier, B.; Garaebiti, E.

    2016-08-01

    We report the first helium isotope survey of volcanic gases, hot springs and some olivine phenocrysts along the Vanuatu island arc, from Tanna in the south to Vanua Lava in the north. Low CO2 content and low 3He/4He ratios in thermal fluids of Epi (4.0 ± 0.1 Ra), Efate (4.5 ± 0.1 Ra) and Pentecost (5.3 ± 0.5 Ra) islands coherently indicate reduced mantle gas leakage and crustal contamination by radiogenic helium on these extinct volcanic systems of the former (Pliocene) arc. Instead, presently active Vanuatu volcanoes display 3He/4He and C/3He ratios typical of subduction-related volcanic arcs: 3He/4He ratios range from 6.4 ± 0.5 Ra in southernmost Tanna and 7.23 ± 0.09 Ra in northernmost Vanua Lava to typical MORB values in the central islands of Gaua (7.68 ± 0.06 Ra), Ambrym (7.6 ± 0.8 Ra) and Ambae (7 ± 2 Ra in groundwaters, 7.9 ± 1.4 Ra in olivine phenocrysts, and 8.0 ± 0.1 Ra in summit fumaroles of Aoba volcano). On Ambrym, however, we discover that hydrothermal manifestations separated by only 10-15 km on both sides of a major E-W transverse fault zone crossing the island are fed by two distinct helium sources, with different 3He/4He signatures: while fluids in southwest Ambrym (Baiap and Sesivi areas) have typical arc ratios (7.6 ± 0.8 Ra), fluids on the northwest coast (Buama Bay area) display both higher 3He/4He ratios (9.8 ± 0.2 Ra in waters to 10.21 ± 0.08 Ra in bubbling gases) and lower C/3He ratios that evidence a hotspot influence. We thus infer that the influx of Indian MORB mantle beneath the central Vanuatu arc, from which Ambrym magmas originate, also involves a 3He-rich hotspot component, possibly linked to a westward influx of Samoan hotspot material or another yet unknown local source. This duality in magmatic He source at Ambrym fits with the bimodal composition and geochemistry of the erupted basalts, implying two distinct magma sources and feeding systems. More broadly, the wide He isotopic variations detected along the Vanuatu

  3. Imaging magma plumbing beneath Askja volcano, Iceland

    Science.gov (United States)

    Greenfield, Tim; White, Robert S.

    2015-04-01

    Volcanoes during repose periods are not commonly monitored by dense instrumentation networks and so activity during periods of unrest is difficult to put in context. We have operated a dense seismic network of 3-component, broadband instruments around Askja, a large central volcano in the Northern Volcanic Zone, Iceland, since 2006. Askja last erupted in 1961, with a relatively small basaltic lava flow. Since 1975 the central caldera has been subsiding and there has been no indication of volcanic activity. Despite this, Askja has been one of the more seismically active volcanoes in Iceland. The majority of these events are due to an extensive geothermal area within the caldera and tectonically induced earthquakes to the northeast which are not related to the magma plumbing system. More intriguing are the less numerous deeper earthquakes at 12-24km depth, situated in three distinct areas within the volcanic system. These earthquakes often show a frequency content which is lower than the shallower activity, but they still show strong P and S wave arrivals indicative of brittle failure, despite their location being well below the brittle-ductile boundary, which, in Askja is ~7km bsl. These earthquakes indicate the presence of melt moving or degassing at depth while the volcano is not inflating, as only high strain rates or increased pore fluid pressures would cause brittle fracture in what is normally an aseismic region in the ductile zone. The lower frequency content must be the result of a slower source time function as earthquakes which are both high frequency and low frequency come from the same cluster, thereby discounting a highly attenuating lower crust. To image the plumbing system beneath Askja, local and regional earthquakes have been used as sources to solve for the velocity structure beneath the volcano. Travel-time tables were created using a finite difference technique and the residuals were used to solve simultaneously for both the earthquake locations

  4. Lahar Hazard Modeling at Tungurahua Volcano, Ecuador

    Science.gov (United States)

    Sorensen, O. E.; Rose, W. I.; Jaya, D.

    2003-04-01

    Tungurahua Volcano (Lat. 01^o28'S; Long. 78^o27'W), located in the central Ecuadorian Andes, is an active edifice that rises more than 3 km above surrounding topography. Since European settlement in 1532, Tungurahua has experienced four major eruptive episodes: 1641-1646, 1773-1781, 1886-1888 and 1916-1918 (Hall et al, JVGR V91; p1-21, 1999). In September 1999, Tungurahua began a new period of activity that continues to the present. During this time, the volcano has erupted daily, depositing ash and blocks on its steep flanks. A pattern of continuing eruptions, coupled with rainfall up to 28 mm in a 6 hour period (rain data collected in Baños at 6-hr intervals, 3000 meters below Tungurahua’s summit), has produced an environment conducive to lahar mobilization. Tungurahua volcano presents an immediate hazard to the town of Baños, an important tourist destination and cultural center with a population of about 25,000 residents located 8 km from the crater. During the current eruptive episode, lahars have occurred as often as 3 times per week on the northern and western slopes of the volcano. Consequently, the only north-south trending highway on the west side of Tungurahua has been completely severed at the intersection of at least ten drainages, where erosion has exceeded 10 m since 1999. The La Pampa quebrada, located 1 km west of Baños, is the most active of Tungurahua's drainages. At this location, where the slope is moderate, lahars continue to inundate the only highway linking Baños to the Pan American Highway. Because of steep topography, the conventional approach of measuring planimetric inundation areas to determine the scale of lahars could not be employed. Instead, cross sections were measured in the channels using volume/cross-sectional inundation relationships determined by (Iverson et al, GSABull V110; no. 8, p972-984, 1998). After field observations of the lahars, LAHARZ, a program used in a geographic information system (GIS) to objectively map

  5. 36 CFR 7.25 - Hawaii Volcanoes National Park.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Hawaii Volcanoes National Park. 7.25 Section 7.25 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.25 Hawaii Volcanoes National Park....

  6. A Probabilistic Approach for Real-Time Volcano Surveillance

    Science.gov (United States)

    Cannavo, F.; Cannata, A.; Cassisi, C.; Di Grazia, G.; Maronno, P.; Montalto, P.; Prestifilippo, M.; Privitera, E.; Gambino, S.; Coltelli, M.

    2016-12-01

    Continuous evaluation of the state of potentially dangerous volcanos plays a key role for civil protection purposes. Presently, real-time surveillance of most volcanoes worldwide is essentially delegated to one or more human experts in volcanology, who interpret data coming from different kind of monitoring networks. Unfavorably, the coupling of highly non-linear and complex volcanic dynamic processes leads to measurable effects that can show a large variety of different behaviors. Moreover, due to intrinsic uncertainties and possible failures in some recorded data, the volcano state needs to be expressed in probabilistic terms, thus making the fast volcano state assessment sometimes impracticable for the personnel on duty at the control rooms. With the aim of aiding the personnel on duty in volcano surveillance, we present a probabilistic graphical model to estimate automatically the ongoing volcano state from all the available different kind of measurements. The model consists of a Bayesian network able to represent a set of variables and their conditional dependencies via a directed acyclic graph. The model variables are both the measurements and the possible states of the volcano through the time. The model output is an estimation of the probability distribution of the feasible volcano states. We tested the model on the Mt. Etna (Italy) case study by considering a long record of multivariate data from 2011 to 2015 and cross-validated it. Results indicate that the proposed model is effective and of great power for decision making purposes.

  7. Using Google Earth to Study the Basic Characteristics of Volcanoes

    Science.gov (United States)

    Schipper, Stacia; Mattox, Stephen

    2010-01-01

    Landforms, natural hazards, and the change in the Earth over time are common material in state and national standards. Volcanoes exemplify these standards and readily capture the interest and imagination of students. With a minimum of training, students can recognize erupted materials and types of volcanoes; in turn, students can relate these…

  8. Volcano ecology: Disturbance characteristics and assembly of biological communities

    Science.gov (United States)

    Volcanic eruptions are powerful expressions of Earth’s geophysical forces which have shaped and influenced ecological systems since the earliest days of life. The study of the interactions of volcanoes and ecosystems, termed volcano ecology, focuses on the ecological responses of organisms and biolo...

  9. Volcanological implications of crystal-chemical variations in clinopyroxenes from the Aeolian Arc, Southern Tyrrhenian Sea (Italy)

    Science.gov (United States)

    Nazzareni, Sabrina; Molin, Gianmario; Peccerillo, Angelo; Zanazzi, Pier Francesco

    2001-03-01

    Crystal chemistry and structural data for clinopyroxene from the Aeolian islands (Southern Tyrrhenian Sea, Italy) were determined with the aim of obtaining geobarometric information and exploring implications for the structure of volcanic plumbing systems. Cell and M1 site volumes for clinopyroxenes, which are known to decrease with increasing pressure of crystallization, revealed variable values, both within some single islands and along the entire arc, indicating polybaric conditions of crystallization. The lowest cell and M1 volumes were found at Filicudi, plotting close to values of clinopyroxenes from high-pressure ultramafic xenoliths entrained in alkali basalts. Indications of high-pressure crystallization were also found at Salina and, to a lesser extent, at Alicudi, all situated in the western sector of the Aeolian Arc. The central and eastern islands of Lipari, Vulcano, Panarea and Stromboli generally show higher values of cell parameters, suggesting crystallization in shallow magma chambers. These islands are characterized by the occurrence of large calderas, which are apparently lacking at Salina and Filicudi. Time-related variations were observed for cell and M1 volumes of clinopyroxene for some islands. At Salina, the early-erupted products display low values of cell parameters with respect to later activity, thus indicating a decrease in crystallization pressure with time. A similar, although less striking, pattern is observed at Alicudi and Lipari. An overall increase in cell parameters with time was observed at the scale of the entire arc. The observed variations in clinopyroxene structural parameters highlight the significance of pyroxene crystal chemistry for petrogenetic and volcanological interpretation. Correlation with time and the structural characteristics of volcanoes suggest significant regional and temporal modifications in the plumbing systems of Aeolian volcanoes. Clinopyroxenes from Filicudi and the older Salina crystallized at high

  10. Monte Carlo Volcano Seismic Moment Tensors

    Science.gov (United States)

    Waite, G. P.; Brill, K. A.; Lanza, F.

    2015-12-01

    Inverse modeling of volcano seismic sources can provide insight into the geometry and dynamics of volcanic conduits. But given the logistical challenges of working on an active volcano, seismic networks are typically deficient in spatial and temporal coverage; this potentially leads to large errors in source models. In addition, uncertainties in the centroid location and moment-tensor components, including volumetric components, are difficult to constrain from the linear inversion results, which leads to a poor understanding of the model space. In this study, we employ a nonlinear inversion using a Monte Carlo scheme with the objective of defining robustly resolved elements of model space. The model space is randomized by centroid location and moment tensor eigenvectors. Point sources densely sample the summit area and moment tensors are constrained to a randomly chosen geometry within the inversion; Green's functions for the random moment tensors are all calculated from modeled single forces, making the nonlinear inversion computationally reasonable. We apply this method to very-long-period (VLP) seismic events that accompany minor eruptions at Fuego volcano, Guatemala. The library of single force Green's functions is computed with a 3D finite-difference modeling algorithm through a homogeneous velocity-density model that includes topography, for a 3D grid of nodes, spaced 40 m apart, within the summit region. The homogenous velocity and density model is justified by long wavelength of VLP data. The nonlinear inversion reveals well resolved model features and informs the interpretation through a better understanding of the possible models. This approach can also be used to evaluate possible station geometries in order to optimize networks prior to deployment.

  11. VALVE: Volcano Analysis and Visualization Environment

    Science.gov (United States)

    Cervelli, D. P.; Cervelli, P.; Miklius, A.; Krug, R.; Lisowski, M.

    2002-12-01

    Modern volcano observatories collect data using a wide variety of instruments. Visualizing these disparate data on a common time base is critical to interpreting and reacting to geophysical changes. With this in mind, the Hawaiian Volcano Observatory (HVO) created Valve, the Volcano Analysis and Visualization Environment. Valve integrates a wide range of both continuous and discontinuous data sources into a common, internet web-browser based interface that allows scientists to interactively select and visualize these data on a common time base and, if appropriate, in three dimensions. Advances in modern internet browser technology allow for a truly interactive user-interface experience that could previously only be found in stand-alone applications--all while maintaining client platform independence and network portability. This system aids more traditional in-depth analysis by providing a common front-end to retrieving raw data. In most cases, the raw data are being served from an SQL database, a system that lends itself to quickly retrieving, logically arranging, and safely storing data. Beyond Valve's visualization capabilities, the system also provides a variety of tools for time series analysis and source modeling. For example, a user could load several tilt and GPS time series, estimate co-seismic or co-intrusive deformation, and then model the event with an elastic point source or dislocation. From the source model, Coulomb stress changes could be calculated and compared to pre- and post-event hypocenter distribution. Employing a heavily object-oriented design, Valve is easily extensible, modular, portable, and remarkably cost efficient. Quickly visualizing arbitrary data is a trivial matter, while implementing methods for permanent, continuous data streams requires only minimal programming. Portability is ensured by using software that is readily available on a wide variety of operating systems; cost efficiency is achieved by using software that is open

  12. Mechanical coupling between earthquakes, volcanos and landslides

    Science.gov (United States)

    Feigl, K. L.; Retina Team

    2003-04-01

    "The eruption began as a large earthquake that triggered a massive landslide that culminated in a violent lateral explosion" [Malone et al., USGS 1981]. The 1980 eruption of Mount St. Helens taught a very powerful lesson -- that one natural hazard can trigger another. For example, earthquakes have triggered landslides in Papua New Guinea. Similarly, eruptions of Vesuvius are mechanically coupled to earthquakes in the Appenines, just as an inflating magma chamber can trigger earthquakes near Hengill volcano in SW Iceland and on the Izu Peninsula in Japan. The Luzon earthquake may have triggered the eruption of Mount Pinatubo. In many of these cases, the second triggered event caused more damage than the initial one. If we can better understand the mechanical coupling underlying the temporal and spatial correlation of such events, we will improve our assessments of the hazards they pose. The RETINA project has been funded by the European Commission's 5th Framework to study couplings between three classes of natural hazards: earthquakes, landslides, and volcanoes. These three phenomena are linked to and by the stress field in the crust. If the stress increases enough, the material will fail catastrophically. For example, magma injection beneath a volcano can trigger an earthquake by increasing stress on a fault. Increasing shear stress on unconsolidated materials on steep slopes can trigger landslides. Such stress change triggers may also be tectonic (from plate driving forces), hydrological (from heavy rain), or volcanic (magmatic injection). Any of these events can perturb the stress field enough to trigger another event. Indeed, stress changes as small as 0.1 bar (0.01 MPa) suffice to trigger an earthquake. If the medium is close to failure, this small change can increase the Coulomb stress beyond the yield threshold, breaking the material. This quantity is the primary means we will use for describing mechanical coupling. In this paper, we will review several case

  13. Geology of El Chichon volcano, Chiapas, Mexico

    Science.gov (United States)

    Duffield, W.A.; Tilling, R.I.; Canul, R.

    1984-01-01

    The (pre-1982) 850-m-high andesitic stratovolcano El Chicho??n, active during Pleistocene and Holocene time, is located in rugged, densely forested terrain in northcentral Chiapas, Me??xico. The nearest neighboring Holocene volcanoes are 275 km and 200 km to the southeast and northwest, respectively. El Chicho??n is built on Tertiary siltstone and sandstone, underlain by Cretaceous dolomitic limestone; a 4-km-deep bore hole near the east base of the volcano penetrated this limestone and continued 770 m into a sequence of Jurassic or Cretaceous evaporitic anhydrite and halite. The basement rocks are folded into generally northwest-trending anticlines and synclines. El Chicho??n is built over a small dome-like structure superposed on a syncline, and this structure may reflect cumulative deformation related to growth of a crustal magma reservoir beneath the volcano. The cone of El Chicho??n consists almost entirely of pyroclastic rocks. The pre-1982 cone is marked by a 1200-m-diameter (explosion?) crater on the southwest flank and a 1600-m-diameter crater apparently of similar origin at the summit, a lava dome partly fills each crater. The timing of cone and dome growth is poorly known. Field evidence indicates that the flank dome is older than the summit dome, and K-Ar ages from samples high on the cone suggest that the flank dome is older than about 276,000 years. At least three pyroclastic eruptions have occurred during the past 1250 radiocarbon years. Nearly all of the pyroclastic and dome rocks are moderately to highly porphyritic andesite, with plagioclase, hornblende and clinopyroxene the most common phenocrysts. Geologists who mapped El Chicho??n in 1980 and 1981 warned that the volcano posed a substantial hazard to the surrounding region. This warning was proven to be prophetic by violent eruptions that occurred in March and April of 1982. These eruptions blasted away nearly all of the summit dome, blanketed the surrounding region with tephra, and sent

  14. Mud Volcanoes as Exploration Targets on Mars

    Science.gov (United States)

    Allen, Carlton C.; Oehler, Dorothy Z.

    2010-01-01

    Tens of thousands of high-albedo mounds occur across the southern part of the Acidalia impact basin on Mars. These structures have geologic, physical, mineralogic, and morphologic characteristics consistent with an origin from a sedimentary process similar to terrestrial mud volcanism. The potential for mud volcanism in the Northern Plains of Mars has been recognized for some time, with candidate mud volcanoes reported from Utopia, Isidis, northern Borealis, Scandia, and the Chryse-Acidalia region. We have proposed that the profusion of mounds in Acidalia is a consequence of this basin's unique geologic setting as the depocenter for the tune fraction of sediments delivered by the outflow channels from the highlands.

  15. Galactic Super-volcano in Action

    Science.gov (United States)

    2010-08-01

    A galactic "super-volcano" in the massive galaxy M87 is erupting and blasting gas outwards, as witnessed by NASA's Chandra X-ray Observatory and NSF's Very Large Array. The cosmic volcano is being driven by a giant black hole in the galaxy's center and preventing hundreds of millions of new stars from forming. Astronomers studying this black hole and its effects have been struck by the remarkable similarities between it and a volcano in Iceland that made headlines earlier this year. At a distance of about 50 million light years, M87 is relatively close to Earth and lies at the center of the Virgo cluster, which contains thousands of galaxies. M87's location, coupled with long observations over Chandra's lifetime, has made it an excellent subject for investigations of how a massive black hole impacts its environment. "Our results show in great detail that supermassive black holes have a surprisingly good control over the evolution of the galaxies in which they live," said Norbert Werner of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University and the SLAC National Accelerator Laboratory, who led one of two papers describing the study. "And it doesn't stop there. The black hole's reach extends ever farther into the entire cluster, similar to how one small volcano can affect practically an entire hemisphere on Earth." The cluster surrounding M87 is filled with hot gas glowing in X-ray light, which is detected by Chandra. As this gas cools, it can fall toward the galaxy's center where it should continue to cool even faster and form new stars. However, radio observations with the Very Large Array suggest that in M87 jets of very energetic particles produced by the black hole interrupt this process. These jets lift up the relatively cool gas near the center of the galaxy and produce shock waves in the galaxy's atmosphere because of their supersonic speed. The scientists involved in this research have found the interaction of this cosmic

  16. Volcano morphometry and volume scaling on Venus

    Science.gov (United States)

    Garvin, J. B.; Williams, R. S., Jr.

    1994-03-01

    A broad variety of volcanic edifices have been observed on Venus. They ranged in size from the limits of resolution of the Magellan SAR (i.e., hundreds of meters) to landforms over 500 km in basal diameter. One of the key questions pertaining to volcanism on Venus concerns the volume eruption rate or VER, which is linked to crustal productivity over time. While less than 3 percent of the surface area of Venus is manifested as discrete edifices larger than 50 km in diameter, a substantial component of the total crustal volume of the planet over the past 0.5 Ga is related to isolated volcanoes, which are certainly more easily studied than the relatively diffusely defined plains volcanic flow units. Thus, we have focused our efforts on constraining the volume productivity of major volcanic edifices larger than 100 km in basal diameter. Our approach takes advantage of the topographic data returned by Magellan, as well as our database of morphometric statistics for the 20 best known lava shields of Iceland, plus Mauna Loa of Hawaii. As part of this investigation, we have quantified the detailed morphometry of nearly 50 intermediate to large scale edifices, with particular attention to their shape systematics. We found that a set of venusian edifices which include Maat, Sapas, Tepev, Sif, Gula, a feature at 46 deg S, 215 deg E, as well as the shield-like structure at 10 deg N, 275 deg E are broadly representative of the approx. 400 volcanic landforms larger than 50 km. The cross-sectional shapes of these 7 representative edifices range from flattened cones (i.e., Sif) similar to classic terrestrial lava shields such as Mauna Loa and Skjaldbreidur, to rather dome-like structures which include Maat and Sapas. The majority of these larger volcanoes surveyed as part of our study displayed cross-sectional topographies with paraboloidal shaped, in sharp contrast with the cone-like appearance of most simple terrestrial lava shields. In order to more fully explore the

  17. Volcano deformation and subdaily GPS products

    Science.gov (United States)

    Grapenthin, Ronni

    Volcanic unrest is often accompanied by hours to months of deformation of the ground that is measurable with high-precision GPS. Although GPS receivers are capable of near continuous operation, positions are generally estimated for daily intervals, which I use to infer characteristics of a volcano’s plumbing system. However, GPS based volcano geodesy will not be useful in early warning scenarios unless positions are estimated at high rates and in real time. Visualization and analysis of dynamic and static deformation during the 2011 Tohokuoki earthquake in Japan motivates the application of high-rate GPS from a GPS seismology perspective. I give examples of dynamic seismic signals and their evolution to the final static offset in 30 s and 1 s intervals, which demonstrates the enhancement of subtle rupture dynamics through increased temporal resolution. This stresses the importance of processing data at recording intervals to minimize signal loss. Deformation during the 2009 eruption of Redoubt Volcano, Alaska, suggested net deflation by 0.05 km³ in three distinct phases. Mid-crustal aseismic precursory inflation began in May 2008 and was detected by a single continuous GPS station about 28 km NE of Redoubt. Deflation during the explosive and effusive phases was sourced from a vertical ellipsoidal reservoir at about 7-11.5 km. From this I infer a model for the temporal evolution of a complex plumbing system of at least 2 sources during the eruption. Using subdaily GPS positioning solutions I demonstrate that plumes can be detected and localized by utilizing information on phase residuals. The GPS network at Bezymianny Volcano, Kamchatka, records network wide subsidence at rapid rates between 8 and 12 mm/yr from 2005-2010. I hypothesize this to be caused by continuous deflation of a ˜30 km deep sill under Kluchevskoy Volcano. Interestingly, 1-2 explosive events per year cause little to no deformation at any site other than the summit site closest to the vent. I

  18. Magmatic gas scrubbing: Implications for volcano monitoring

    Science.gov (United States)

    Symonds, R.B.; Gerlach, T.M.; Reed, M.H.

    2001-01-01

    Despite the abundance of SO2(g) in magmatic gases, precursory increases in magmatic SO2(g) are not always observed prior to volcanic eruption, probably because many terrestrial volcanoes contain abundant groundwater or surface water that scrubs magmatic gases until a dry pathway to the atmosphere is established. To better understand scrubbing and its implications for volcano monitoring, we model thermochemically the reaction of magmatic gases with water. First, we inject a 915??C magmatic gas from Merapi volcano into 25??C air-saturated water (ASW) over a wide range of gas/water mass ratios from 0.0002 to 100 and at a total pressure of 0.1 MPa. Then we model closed-system cooling of the magmatic gas, magmatic gas-ASW mixing at 5.0 MPa, runs with varied temperature and composition of the ASW, a case with a wide range of magmatic-gas compositions, and a reaction of a magmatic gas-ASW mixture with rock. The modeling predicts gas and water compositions, and, in one case, alteration assemblages for a wide range of scrubbing conditions; these results can be compared directly with samples from degassing volcanoes. The modeling suggests that CO2(g) is the main species to monitor when scrubbing exists; another candidate is H2S(g), but it can be affected by reactions with aqueous ferrous iron. In contrast, scrubbing by water will prevent significant SO2(g) and most HCl(g) emissions until dry pathways are established, except for moderate HCl(g) degassing from pH 100 t/d (tons per day) of SO2(g) in addition to CO2(g) and H2S(g) should be taken as a criterion of magma intrusion. Finally, the modeling suggests that the interpretation of gas-ratio data requires a case-by-case evaluation since ratio changes can often be produced by several mechanisms; nevertheless, several gas ratios may provide useful indices for monitoring the drying out of gas pathways. Published by Elsevier Science B.V.

  19. Slow slip event at Kilauea Volcano

    Science.gov (United States)

    Poland, Michael P.; Miklius, Asta; Wilson, J. David; Okubo, Paul G.; Montgomery-Brown, Emily; Segall, Paul; Brooks, Benjamin; Foster, James; Wolfe, Cecily; Syracuse, Ellen; Thurbe, Clifford

    2010-01-01

    Early in the morning of 1 February 2010 (UTC; early afternoon 31 January 2010 local time), continuous Global Positioning System (GPS) and tilt instruments detected a slow slip event (SSE) on the south flank of Kilauea volcano, Hawaii. The SSE lasted at least 36 hours and resulted in a maximum of about 3 centimeters of seaward displacement. About 10 hours after the start of the slip, a flurry of small earthquakes began (Figure 1) in an area of the south flank recognized as having been seismically active during past SSEs [Wolfe et al., 2007], suggesting that the February earthquakes were triggered by stress associated with slip [Segall et al., 2006].

  20. Arc dacite genesis pathways: Evidence from mafic enclaves and their hosts in Aegean lavas

    Science.gov (United States)

    Zellmer, G. F.; Turner, S. P.

    2007-05-01

    for the eruptive products of mafic arc volcanoes. Finally, the data presented here provide constraints on the rates of differentiation from primitive arc basalts to dacites (less than ˜ 140 kyrs), and on the crustal residence time of evolved igneous protoliths prior to their remobilization by mafic arc magmas (greater than ˜ 350 kyrs).