WorldWideScience

Sample records for volcano emissions project

  1. OMI Observations of Bromine Monoxide Emissions from Volcanoes

    Science.gov (United States)

    Suleiman, R. M.; Chance, K.; Liu, X.; Gonzalez Abad, G.; Kurosu, T. P.

    2016-12-01

    We analyze bromine monoxide (BrO) data from the Ozone Monitoring Instrument (OMI) for emissions from various volcanoes. We use OMI data from 2005 to 2014 to investigate BrO signatures from Galapagos, Kasatochi and Eyjafjallajökull volcanoes. Elevated signatures of BrO daily averages were found over Eyjafjallajökull. SO2 cross sections are updated in the operational BrO algorithm and their effect on the volcanic BrO signature is studied. Comparison between two different sets of SO2 cross sections is made and results still show BrO enhancement over the Eyjafjallajökull region.

  2. Electron Emission Projection Imager

    CERN Document Server

    Baturin, Stanislav S

    2016-01-01

    A new projection type imaging system is presented. The system can directly image the field emission site distribution on a cathode surface by making use of anode screens in the standard parallel plate configuration. The lateral spatial resolution of the projector is on the order of 1 {\\mu}m. The imaging sensitivity to the field emission current can be better than the current sensitivity of a typical electrometer, i.e. less than 1 nA.

  3. The Mediterranean Supersite Volcanoes (MED-SUV) Project: an overview

    Science.gov (United States)

    Puglisi, Giuseppe

    2014-05-01

    The EC FP7 MEDiterranean SUpersite Volcanoes (MED-SUV) EC-FP7 Project, which started on June 2013, aims to improve the capacity of the scientific institutions, end users and SME forming the project consortium to assess the volcanic hazards at Italian Supersites, i.e. Mt. Etna and Campi Flegrei/Vesuvius. The Project activities will focus on the optimisation and integration of ground and space monitoring systems, the breakthrough in understanding of volcanic processes, and on the increase of the effectiveness of the coordination between the scientific and end-user communities in the hazard management. The overall goal of the project is to apply the rationale of the Supersites GEO initiative to Mt. Etna and Campi Flegrei/Vesuvius, considered as cluster of Supersites. For the purpose MED-SUV will integrate long-term observations of ground-based multidisciplinary data available for these volcanoes, i.e. geophysical, geochemical, and volcanological datasets, with Earth Observation (EO) data. Merging of different parameters over a long period will provide better understanding of the volcanic processes. In particular, given the variety of styles and intensities of the volcanic activity observed at these volcanoes, and which make them sort of archetypes for 'closed conduit ' and 'open conduit' volcanic systems, the combination of different data will allow discrimination between peculiar volcano behaviours associated with pre-, syn- and post-eruptive phases. Indeed, recognition of specific volcano patterns will allow broadening of the spectrum of knowledge of geo-hazards, as well as better parameterisation and modelling of the eruptive phenomena and of the processes occurring in the volcano supply system; thus improving the capability of carrying out volcano surveillance activities. Important impacts on the European industrial sector, arising from a partnership integrating the scientific community and SMEs to implement together new observation/monitoring sensors/systems, are

  4. Volcanoes

    Science.gov (United States)

    ... or more from a volcano. Before a Volcanic Eruption The following are things you can do to ... in case of an emergency. During a Volcanic Eruption Follow the evacuation order issued by authorities and ...

  5. The Mediterranean Supersite Volcanoes (MED-SUV) Project: an overview

    Science.gov (United States)

    Puglisi, Giuseppe

    2013-04-01

    In response to the EC call ENV.2012.6.4-2 (Long-term monitoring experiments in geologically active regions of Europe prone to natural hazards: the Supersite concept - FP7-ENV-2012-two-stage) a wide community of volcanological institutions proposed the project Mediterranean Supersite Volcanoes (MED-SUV), which is in the negotiation phase at the time of writing. The Consortium is composed by 18 European University and research institutes, four Small or Medium Enterprises (SME) and two non-European University and research institutes. MED-SUV will improve the consortium capacity of assessment of volcanic hazards in Supersites of Southern Italy by optimising and integrating existing and new observation/monitoring systems, by a breakthrough in understanding of volcanic processes and by increasing the effectiveness of the coordination between the scientific and end-user communities. More than 3 million of people are exposed to potential volcanic hazards in a large region in the Mediterranean Sea, where two among the largest European volcanic areas are located: Mt. Etna and Campi Flegrei/Vesuvius. This project will fully exploit the unique detailed long-term in-situ monitoring data sets available for these volcanoes and integrate with Earth Observation (EO) data, setting the basic tools for a significant step ahead in the discrimination of pre-, syn- and post-eruptive phases. The wide range of styles and intensities of volcanic phenomena observed on these volcanoes, which can be assumed as archetypes of 'closed conduit ' and 'open conduit' volcano, together with the long-term multidisciplinary data sets give an exceptional opportunity to improve the understanding of a very wide spectrum of geo-hazards, as well as implementing and testing a large variety of innovative models of ground deformation and motion. Important impacts on the European industrial sector are expected, arising from a partnership integrating the scientific community and SMEs to implement together new

  6. Volcanoes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the past thousand years,volcanoes have claimed more than 300,000 lives. Volcanology is ayoung and dangerous science that helps us against the power of the Earth itself.We live on a fiery planet. Nearly 2000 miles beneath our feet, the Earth's inner core reachestemperatures of 12,000 degrees Fahrenheit. Molten rock or magma, rises to the earth's surface. Acold, rigid crust fractured into some twenty plates. When magma breaks through crust it becomes

  7. Volcano emissions of trace metals, atmospheric deposition, and supply to biogeochemical cycles

    Science.gov (United States)

    Hinkley, T.; Thornber, C. R.; Matsumoto, A.

    2003-12-01

    Quiescently degassing (not exploding) volcanoes inject into the troposphere plumes that have remarkably high concentrations of ordinarily-rare, volatile trace metals. In pre-industrial times, these emissions appear to have accounted for the strong "enrichments" (relative to concentrations in crustal material or in ocean solute) of many such trace metals in the material deposited from the atmosphere. This has been shown by measuring the source strength of the emissions of metals from volcanoes, and comparing that to the amounts of the metals (excess over amounts accounted for by rock dust and sea salt) deposited onto high-latitude ice sheets: volcano degassing outputs of metals and deposition masses of metals to ice are comparable, on the basis of the masses (fluxes) and proportions of the metals, and from the proportions of lead (Pb) isotopes. There is indication that in modern industrial times the elevated trace metal fractions in the atmospheric material that has small particle size and long atmospheric residence time is still more strongly influenced by volcano emissions than by industrial emissions. Throughout earth's history it is likely that volcano emissions were a major control on the environmental background levels of trace elements, in which plants and animals evolved their tolerances to these mostly-poisonous substances.

  8. The MEDiterranean SUpersite Volcanoes (MED-SUV) project

    Science.gov (United States)

    Puglisi, Giuseppe

    2014-05-01

    The MEDiterranean SUpersite Volcanoes (MED-SUV) project aims at gaining new insights in the knowledge of the processes on the base of the volcanic phenomena observable at the surface by using the broad inventory of multidisciplinary data available for Mt. Etna and Campi Flegrei/Vesuvius. These active volcanic areas, which have been here considered as a cluster of supersites, represent test cases since they embrace the main characteristics typical of both "opened- and closed-conduit" volcanic systems. For the purpose, MED-SUV objectives focus on the (i) development of novel monitoring instrumentations and data collection methods, (ii) implementation of the current observation infrastructures, (iii) better constraint of crucial volcanic parameters by integration of in-situ and satellite data, and (iv) the development of an e-infrastructure for data sharing. In this framework, MED-SUV is a great opportunity for scientific collaboration among diverse research institutions and industrial sectors. MED-SUV aims to use the achieved results to gain robust sets of multi-parametric observations using the most advanced analytic data processing techniques and volcanic process and hazard modelling methods. These will provide new insights in the current and past eruptive activity of the three test case volcanoes that will increase our technical-scientific ability of tracking volcanic-related hazards in the targeted areas, and of communicating with the proper decision-maker bodies. The implementation of an e-infrastructure compliant with EPOS and the other two supersite projects, MARsite and FUTUREVOLC, will contribute to the GEO/GEOSS interoperability principles and to the GEO 2012-15 work plan.

  9. Sulfur dioxide emissions from Alaskan volcanoes quantified using an ultraviolet SO_{2} camera

    Science.gov (United States)

    Kern, Christoph; Werner, Cynthia; Kelly, Peter; Brewer, Ian; Ketner, Dane; Paskievitch, John; Power, John

    2016-04-01

    Alaskan volcanoes are difficult targets for direct gas measurements as they are extremely remote and their peaks are mostly covered in ice and snow throughout the year. This makes access extremely difficult. In 2015, we were able to make use of an ultraviolet SO2 camera to quantify the SO2 emissions from Augustine Volcano, Redoubt Volcano, Mount Cleveland and Shishaldin Volcano in the Aleutian Arc. An airborne gas survey performed at Augustine Volcano in April 2015 found that the SO2 emission rate from the summit area was below 10 tonnes per day (t/d). SO2 camera measurements were performed two months later (June 2015) from a snow-free area just 100 meters from the fumarole on the south side of Augustine's summit dome to maximize camera sensitivity. Though the visible appearance of the plume emanating from the fumarole was opaque, the SO2 emissions were only slightly above the 40 ppmṡm detection limit of the SO2 camera. Still, SO2 could be detected and compared to coincident MultiGAS measurements of SO2, CO2 and H2S. At Redoubt Volcano, SO2 camera measurements were conducted on 13 June 2015 from a location 2 km to the north of the final 72x106 m3 dome extruded during the 2009 eruption. Imagery was collected of the plume visibly emanating from the top of the dome. Preliminary evaluation of the imagery and comparison with a coincident, helicopter-based DOAS survey showed that SO2 emission rates had dropped below 100 t/d (down from 180 t/d measured in April 2014). Mount Cleveland and Shishaldin Volcano were visited in August 2015 as part of an NSF-funded ship-based research expedition in the Central Aleutian Arc. At Mount Cleveland, inclement weather prohibited the collection of a lengthy time-series of SO2 camera imagery, but the limited data that was collected shows an emission rate of several hundred t/d. At Shishaldin, several hours of continuous imagery was acquired from a location 5 km east of the summit vent. The time series shows an SO2 emission rate of

  10. Spatial Vegetation Data for Sunset Crater Volcano National Monument Vegetation Mapping Project

    Data.gov (United States)

    National Park Service, Department of the Interior — This metadata is for the vegetation and land-use geo-spatial database for Sunset Crater Volcano National Monument and surrounding areas. The project is authorized as...

  11. Volcanoes as emission sources of atmospheric mercury in the Mediterranean basin

    Science.gov (United States)

    Ferrara; Mazzolai; Lanzillotta; Nucaro; Pirrone

    2000-10-01

    Emissions from volcanoes, fumaroles and solfataras as well as contributions from widespread geological anomalies could represent an important source of mercury released to the atmosphere in the Mediterranean basin. Volcanoes located in this area (Etna, Stromboli and Vulcano) are the most active in Europe; therefore, it is extremely important to know their mercury contributions to the regional atmospheric budget. Two main methods are used for the evaluation of volcanic mercury flux: a direct determination of the flux (by measuring in the plume) and an indirect one derived from the determination of the Hg/SO2 (or Hg/S) ratio value, as SO2 emissions are constantly monitored by volcanologists. An attempt to estimate mercury flux from the Vulcano volcano and to establish the Hg/S ratio value has been made along three field campaigns carried out in October 1998, in February and May 1999 sampling several fumaroles. Traditional sampling methods were used to collect both total Hg and S. The average Hg/S ratio value resulted to be 1.2 x 10(-7). From the Hg/S value we derived the Hg/SO2 value, and by assuming that all the volcanoes located in this area have the same Hg/SO2 ratio, mercury emissions from Vulcano and Stromboli were estimated to be in the range 1.3-5.5 kg/year and 7.3-76.6 kg/year respectively, while for Etna mercury flux ranged from 61.8 to 536.5 kg/year. Data reported in literature appear to be overestimated (Fitzgerald WF. Mercury emission from volcanos. In: 4th International conference on mercury as a global pollutant, August 4-8 1996, Hamburg, Germany), volcanic mercury emission does not constitute the main natural source of the metal.

  12. Dynamics of diffuse carbon dioxide emissions from Cumbre Vieja volcano, La Palma, Canary Islands

    Science.gov (United States)

    Padrón, Eleazar; Pérez, Nemesio M.; Rodríguez, Fátima; Melián, Gladys V.; Hernández, Pedro A.; Sumino, Hirochika; Padilla, Germán; Barrancos, José; Dionis, Samara; Notsu, Kenji; Calvo, David

    2015-04-01

    La Palma Island, the fifth longest (706 km2) and the second in elevation (2,423 m asl) of the Canary Islands, is located at the northwestern extreme of the archipelago. Volcanic activity in the last 123 ka has taken place exclusively at the southern part of the island, where Cumbre Vieja volcano, the most active basaltic volcano in the Canaries, has been constructed. Cumbre Vieja includes a main north-south rift zone 20 km long up to 1,950 m in elevation, and covers 220 km2 with vents located also at the northwest and northeast. Nowadays there are no visible gas emission from fumaroles or hot springs at Cumbre Vieja. For this reason, diffuse CO2 degassing studies may provide important information about subsurface magma movement. Since diffuse CO2 emission rate may increase extraordinarily before a volcanic eruption, it is very important to map surface CO2 efflux anomalies and determine the total output of this gas prior to volcanic activity, in order to have a better understanding during future volcanic events. This study report the results of 13 soil CO2 efflux surveys at Cumbre Vieja volcano. The CO2 efflux measurements were undertaken using the accumulation chamber method between 2001 and 2013 to constrain the total CO2 output from the studied area and to evaluate occasional CO2 efflux surveys as a volcanic surveillance tool for Cumbre Vieja. Soil CO2 efflux values ranged from non-detectable up to 2,442 g m-2 d-1, with the highest values observed in the south, where the last volcanic eruption took place (Teneguía, 1971). Isotopic analyses of soil gas carbon dioxide suggest an organic origin as the main contribution to the CO2 efflux, with a very slight magmatic degassing being observed at the southern part of the volcano. Total CO2 emission rates showed a high temporal variability, ranging between 320 and 1,544 t d-1 and averaging 1,147 t d-1 over the 220 km2 region. Two significant increases in the CO2 emission observed in 2011 and 2013, were likely caused by

  13. Monitoring methane emission of mud volcanoes by seismic tremor measurements: a pilot study

    Directory of Open Access Journals (Sweden)

    D. Albarello

    2012-12-01

    Full Text Available A new approach for estimating methane emission at mud volcanoes is here proposed based on measurements of the seismic tremor on their surface. Data obtained at the Dashgil mud volcano in Azerbaijan reveal the presence of energy bursts characterized by well-determined features (i.e. waveforms, spectra and polarization properties that can be associated with bubbling at depth. Counting such events provides a possible tool for monitoring gas production in the reservoir, thus minimizing logistic troubles and representing a cheap and effective alternative to more complex approaches. Specifically, we model the energy bursts as the effect of resonant gas bubbles at depth. This modelling allows to estimate the dimension of the bubbles and, consequently, the gas outflow from the main conduit in the assumption that all emissions from depth occur by bubble uprising. The application of this model to seismic events detected at the Dashgil mud volcano during three sessions of measurements carried out in 2006 and 2007 provides gas flux estimates that are in line with those provided by independent measurements at the same structure. This encouraging result suggests that the one here proposed could be considered a new promising, cheap and easy to apply tool for gas flux measurements in bubbling gas seepage areas.

  14. Characterization of the recent ash emissions at Popocatepetl Volcano, Mexico

    Science.gov (United States)

    Martin-Del Pozzo, A. L.; González-Morán, T.; Espinasa-Pereña, R.; Butron, M. A.; Reyes, M.

    2008-02-01

    Nine representative ash emissions from 1994-1997 were studied to characterize the recent activity and the eruptive process at Popocatepetl. A series of tephra eruptions began on December 21, 1994 and intermittent activity continues to present. The first eruptions were phreatomagmatic but in mid-March 1996 they turned magmatic. Cumulative volumes (529-1810 × 10 3 m 3), were determined for the first eruptions. However, when eruptions grew larger, more widely spaced (and magmatic), the volumes were then calculated individually (22-1107 × 10 3 m 3), both using the Simpson Rule and based on 244 sampling sites. This numerical integration method is more precise than other methods especially since sub-mm isopachs are neglected in most cases. Dominant winds carried ash mainly to the east (January through April 1995 and April 1996) except for the summer months when ash fell on Mexico City to the northwest (October 28 1996 and June 30 1997). In March 1996, changing wind direction produced ash fall to the southwest as well. During the first year, volume calculations indicated that emission rate was higher at the beginning of the eruptions and then declined and stopped. Activity resumed the following year with a similar pattern until larger amounts of magma ascended. Detailed studies of the ashfall provided constraints on the dynamics of the volcanic plumbing system. Tephra emission was related with clearing (December 1994 to March 1995), and clogging of the vent (May 1995 to February 1996), until a larger new ascending batch was able to clear its way to the surface (March 1996). After April 1996, dome formation and explosive destruction were related to individual small ascending magma batches. Tephra from December 1994 to early March 1996 was made up mostly of andesitic lithic clasts and plagioclase and pyroxene crystals with minor amounts of accidental and accessory minerals. In March 1996, prior to dome formation, glass was also detected. Afterwards, ash components were

  15. Effect of gas emissions from Tianchi volcano (NE China) on environment and its potential volcanic hazards

    Institute of Scientific and Technical Information of China (English)

    GUO; Zhengfu; LIU; Jiaqi; HAN; Jingtai; HE; Huaiyu; DAI; Guoliang; YOU; Haitao

    2006-01-01

    The Tianchi volcano in the Changbai Mountains is located on the boundary between China and North Korea. There are many times of eruptions of the Tianchi volcano during the Holocene. One of its large eruptions occurred around 1000 years ago dated by 14C method and historical records. Composition of products of the largest Tianchi volcanic eruption studied is characterized by comenditic Plinian fallout and unwelded ignimbrite, which are mainly distributed in China and North Korea. Caldera is about 4.4 km long and 3.4 km wide, which had filled with water (e.g. Tianchi Lake). The Tianchi volcanic cone is about 2700 m high above sea level. The Tianchi Lake is located on the summit of the volcanic cone, that is also highest peak of the Changbai Mountains in northeastern China. This study analyzed Cl, F, S and H2O concentrations of melt inclusions in the phenocryst minerals (anorthoclase and quartz) and co-existing matrix glasses using the electron microprobe and estimated environmental effect of Tianchi volcanic gases. The authors proposed a new method to evaluate future eruption of active volcano and estimate potential volcanic hazards based on contents of volatile emissions. Using this method, we made a perspective of future volcanic hazard in this region.

  16. Alteration, slope-classified alteration, and potential lahar inundation maps of volcanoes for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Volcano Archive

    Science.gov (United States)

    Mars, John C.; Hubbard, Bernard E.; Pieri, David; Linick, Justin

    2015-01-01

    This study identifies areas prone to lahars from hydrothermally altered volcanic edifices on a global scale, using visible and near infrared (VNIR) and short wavelength infrared (SWIR) reflectance data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and digital elevation data from the ASTER Global Digital Elevation Model (GDEM) dataset. This is the first study to create a global database of hydrothermally altered volcanoes showing quantitatively compiled alteration maps and potentially affected drainages, as well as drainage-specific maps illustrating modeled lahars and their potential inundation zones. We (1) identified and prioritized 720 volcanoes based on population density surrounding the volcanoes using the Smithsonian Institution Global Volcanism Program database (GVP) and LandScan™ digital population dataset; (2) validated ASTER hydrothermal alteration mapping techniques using Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) and ASTER data for Mount Shasta, California, and Pico de Orizaba (Citlaltépetl), Mexico; (3) mapped and slope-classified hydrothermal alteration using ASTER VNIR-SWIR reflectance data on 100 of the most densely populated volcanoes; (4) delineated drainages using ASTER GDEM data that show potential flow paths of possible lahars for the 100 mapped volcanoes; (5) produced potential alteration-related lahar inundation maps using the LAHARZ GIS code for Iztaccíhuatl, Mexico, and Mount Hood and Mount Shasta in the United States that illustrate areas likely to be affected based on DEM-derived volume estimates of hydrothermally altered rocks and the ~2x uncertainty factor inherent within a statistically-based lahar model; and (6) saved all image and vector data for 3D and 2D display in Google Earth™, ArcGIS® and other graphics display programs. In addition, these data are available from the ASTER Volcano Archive (AVA) for distribution (available at http://ava.jpl.nasa.gov/recent_alteration_zones.php).

  17. Soil CO2 emissions at Furnas volcano, São Miguel Island, Azores archipelago: Volcano monitoring perspectives, geomorphologic studies, and land use planning application

    Science.gov (United States)

    Viveiros, FáTima; Cardellini, Carlo; Ferreira, Teresa; Caliro, Stefano; Chiodini, Giovanni; Silva, Catarina

    2010-12-01

    Carbon dioxide (CO2) diffuse degassing structures (DDS) at Furnas volcano (São Miguel Island, Azores) are mostly associated with the main fumarolic fields, evidence that CO2 soil degassing is the surface expression of rising steam from the hydrothermal system. Locations with anomalous CO2 flux are mainly controlled by tectonic structures oriented WNW-ESE and NW-SE and by the geomorphology of the volcano, as evidenced by several DDS located in depressed areas associated with crater margins. Hydrothermal soil CO2 emissions in Furnas volcano are estimated to be ˜968 t d-1. Discrimination between biogenic and hydrothermal CO2 was determined using a statistical approach and the carbon isotope composition of the CO2 efflux. Different sampling densities were used to evaluate uncertainty in the estimation of the total CO2 flux and showed that a low density of points may not be adequate to quantify soil emanations from a relatively small DDS. Thermal energy release associated with diffuse degassing at Furnas caldera is about 118 MW (from an area of ˜4.8 km2) based on the H2O/CO2 ratio in fumarolic gas. The DDS also affect Furnas and Ribeira Quente villages, which are located inside the caldera and in the south flank of the volcano, respectively. At these sites, 58% and 98% of the houses are built over hydrothermal CO2 emanations, and the populations are at risk due to potential high concentrations of CO2 accumulating inside the dwellings.

  18. Impact of volcanic fluoride and SO/sub 7/ emissions from moderated activity volcanoes on the surrounding vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Garrec, J.P.; Plebin, R.; Faivre-Pierret, R.X.

    1984-01-01

    Studies in the regions of the volcanoes Etna (Italy) and Masaya (Nicaragua) show that the continuous emissions of gaseous pollutants (HF and SO/sub 2/) from moderated activity volcanoes causes a chronic pollution in the surrounding vegetation with certain economical and ecological consequences. Reciprocally the measure of the pollutants in the plants growing in volcanic regions may be a simple and fast method to investigate some characteristics of the volcanic plume: for example, intensity of the emissions of gas, direction and extent of the plume. 12 references.

  19. SO2 emissions from Popocatépetl volcano: emission rates and plume imaging using optical remote sensing techniques

    Science.gov (United States)

    Grutter, M.; Basaldud, R.; Rivera, C.; Harig, R.; Junkerman, W.; Caetano, E.; Delgado-Granados, H.

    2008-11-01

    Sulfur dioxide emissions from the Popocatépetl volcano in central Mexico were measured during the MILAGRO field campaign in March 2006. A stationary scanning DOAS (Differential Optical Absorption Spectrometer) was used to monitor the SO2 emissions from the volcano and the results were compared with traverses done with a COSPEC from the ground and a DOAS instrument on board an ultra-light aircraft. Daytime evolutions as well as day-to-day variation of the SO2 emissions are reported. A value of 2.45±1.39 Gg/day of SO2 is reported from all the daily averages obtained during the month of March 2006, with large variation in maximum and minimum daily averages of 5.97 and 0.56 Gg/day, respectively. The large short-term fluctuations in the SO2 emissions obtained could be confirmed through 2-D visualizations of the SO2 plume measured with a scanning imaging infrared spectrometer. This instrument, based on the passive detection of thermal radiation from the volcanic gas and analysis with FTIR spectrometry, is used for the first time for plume visualization of a specific volcanic gas. A 48-h forward trajectory analysis indicates that the volcanic plume was predominantly directed towards the Puebla/Tlaxcala region (63%), followed by the Mexico City and Cuernavaca/Cuautla regions with 19 and 18% occurrences, respectively. 25% of the modeled trajectories going towards the Puebla region reached altitudes lower than 4000 m a.s.l. but all trajectories remained over this altitude for the other two regions.

  20. SO2 emissions from Popocatépetl volcano: emission rates and plume imaging using optical remote sensing techniques

    Directory of Open Access Journals (Sweden)

    H. Delgado-Granados

    2008-11-01

    Full Text Available Sulfur dioxide emissions from the Popocatépetl volcano in central Mexico were measured during the MILAGRO field campaign in March 2006. A stationary scanning DOAS (Differential Optical Absorption Spectrometer was used to monitor the SO2 emissions from the volcano and the results were compared with traverses done with a COSPEC from the ground and a DOAS instrument on board an ultra-light aircraft. Daytime evolutions as well as day-to-day variation of the SO2 emissions are reported. A value of 2.45±1.39 Gg/day of SO2 is reported from all the daily averages obtained during the month of March 2006, with large variation in maximum and minimum daily averages of 5.97 and 0.56 Gg/day, respectively. The large short-term fluctuations in the SO2 emissions obtained could be confirmed through 2-D visualizations of the SO2 plume measured with a scanning imaging infrared spectrometer. This instrument, based on the passive detection of thermal radiation from the volcanic gas and analysis with FTIR spectrometry, is used for the first time for plume visualization of a specific volcanic gas. A 48-h forward trajectory analysis indicates that the volcanic plume was predominantly directed towards the Puebla/Tlaxcala region (63%, followed by the Mexico City and Cuernavaca/Cuautla regions with 19 and 18% occurrences, respectively. 25% of the modeled trajectories going towards the Puebla region reached altitudes lower than 4000 m a.s.l. but all trajectories remained over this altitude for the other two regions.

  1. SO2 emissions from Popocatépetl volcano: emission rates and plume imaging using optical remote sensing techniques

    Directory of Open Access Journals (Sweden)

    E. Caetano

    2008-04-01

    Full Text Available Sulfur dioxide emissions from Popocatépetl volcano in central Mexico were measured during the MILAGRO field campaign in March 2006. A stationary scanning DOAS (Differential Optical Absorption Spectrometer was used to monitor the SO2 emissions from the volcano and the results were compared with traverses done with a COSPEC from the ground and a DOAS instrument on board an ultra-light aircraft. Daytime evolutions as well as day-to-day variation of the SO2 emissions are reported. A value of 2.45±1.39 Gg/day of SO2 is reported from all the daily averages obtained during the month of March 2006, with large variation in maximum and minimum daily averages of 5.97 and 0.56 Gg/day, respectively. The large short-term fluctuations in the SO2 emissions obtained could be confirmed through 2-D visualizations of the SO2 plume measured with a scanning imaging infrared spectrometer. This instrument, based on the passive detection of thermal radiation from the volcanic gas and analysis with FTIR spectrometry, is used for the first time for plume visualization of a specific volcanic gas. A 48-h forward trajectory analysis indicates that the volcanic plume was predominately directed towards the Puebla/Tlaxcala region (63%, followed by the Mexico City and Cuernavaca/Cuautla regions with 19 and 18% occurrences, respectively. 25% of the modeled trajectories going towards the Puebla region reached altitudes lower than 4000 m a.s.l. and all trajectories remained over this altitude for the other two regions.

  2. Continuous measurements of volcanic gases from Popocatepetl volcano by thermal emission spectroscopy

    Science.gov (United States)

    Taquet, Noemie; Stremme, Wolfgang; Meza, Israel; Grutter, Michel

    2016-04-01

    Passive volcanic gas emissions have been poorly studied despite their impact on the atmospheric chemistry with important consequences on its geochemical cycles and climate change on regional and global scale. Therefore, long-term monitoring of volcanic gas plumes and their composition are of prime importance for climatic models and the estimation of the volcanic contribution to climate change. We present a new measurement and analysis strategy based on remote thermal emission spectroscopy which can provide continuous (day and night) information of the composition of the volcanic plume. In this study we show results from the Popocatepetl volcano in Mexico with measurements performed during the year 2015 from the Altzomoni Atmospheric Observatory (19.12N, -98.65W, 3,985 masl). This site, which forms part of the RUOA (www.ruoa.unam.mx) and NDACC (https://www2.acom.ucar.edu/irwg) networks, is located north of the crater of this active volcano at 12 km distance. Emission spectra were recorded with an FTIR spectrometer (OPAG22, Bruker) at 0.5 cm-1 spectral resolution and processed using the SFIT4 radiative transfer and profile retrieval code, based on the Optimal Estimation method (Rodgers, 1976; 1990; 2000). This newly improved methodology is intercompared to a former retrieval strategy using measurements from 2008 and recent results of the variability of the SiF4/SO2 composition ratio during 2015 is presented. A discussion of how the new measurements improve the understating of the impact of volcanic gas emissions on the atmosphere on global and regional scale is included.

  3. The KISS Project - Exploring the magmatic system beneath Kamchatka's volcanoes

    Science.gov (United States)

    Luehr, Birger-G.; Shapiro, Nikolai; Abkadyrov, Ilyas; Sens-Schönfelder, Christoph; Koulakov, Ivan; Jakovlev, Andrey; Abramenkov, Sergey; Saltykov, Vadim A.; Heit, Benjamin; Weber, Michael; Gordeev, Evgeny I.; Chebrov, Victor N.

    2016-04-01

    In a joint initiative of GFZ with Russian (IPGG, IVS, KGBS) and a French partner (IPGP) a temporary seismological network has been installed around the Klyuchevskoy volcanic group in Central Kamchatka. The Klyuchevskoy volcanic group is an ensemble of 13 stratovolcanoes with very different compositions and eruption styles in a ~70km diameter area which produced at least 30 VEI≥2 episodes during the last 15 years. Latest activity of the highest volcano Klyuchevskoy (4754 m) was in spring 2015. The group is located right on the triple junction between Asian, Pacifc and North American plates where the Hawaiian-Emperor seamount chain separates the Aleutian and the Kuril-Kamchatka trenches. The complex setting presumably leads to processes like increased melting at slab edges and/or accelerated mantle flow which affect the volcanism and might be responsible for the unparalleled concentration of volcanic activity in the Klyuchevskoy group. Due to the difficult field conditions and special permitting regulations seismological investigations have been rare in Kamchatka. In this consortium we build strongly on the experience of the Kamchatkan partners for permitting and logistics. Installation was done to about 50% by helicopter. Funding was provided via a grant from the Russian Science Foundation (grant 14-47-00002) to the IVS/KBGS/IPGG, the GFZ, and the IPGP. 60 of the stations were provided by the GFZ instrument pool GIPP. Including the permanent stations operated by KGBS and temporary stations provided by the partners, the network consist of 98 stations and will record earthquakes volcanic signals and the ambient field over one year in an area of approximately 150 by 150km.

  4. Metal emissions from Kilauea, and a suggested revision of the estimated worldwide metal output by quiescent degassing of volcanoes

    Science.gov (United States)

    Hinkley, T.K.; Lamothe, P.J.; Wilson, S.A.; Finnegan, David L.; Gerlach, T.M.

    1999-01-01

    Measurements of a large suite of metals (Pb, Cd, Cu, Zn and several others) and sulfur at Kilauea volcano over an extended period of time has yielded a detailed record of the atmospheric injection of ordinarily-rare metals from this quiescently degassing volcano, representative of an important type. We have combined the Kilauea data with data of recent studies by others (emissions from volcanoes in the Indonesian arc; the large Laki eruption of two centuries ago; Etna: estimates of total volcanic emissions of sulfur) to form the basis for a new working estimate of the rate of worldwide injection of metals to the atmosphere by volcanoes. The new estimate is that volcanoes inject a substantially smaller mass of ordinarily-rare metals into the atmosphere than was stated in a widely cited previous estimate [J.O. Nriagu, A global assessment of natural sources of atmospheric trace metals, Nature 338 (1989) 47-49]. Our estimate, which is an upper limit, is an annual injection mass of about 10,000 tons of the metals considered, versus the earlier estimate of about 23,000 tons. Also, the proportions of the metals are substantially different in our new estimate.

  5. Emission of gas and atmospheric dispersion of SO2 during the December 2013 eruption at San Miguel volcano (El Salvador)

    Science.gov (United States)

    Salerno, Giuseppe G.; Granieri, Domenico; Liuzzo, Marco; La Spina, Alessandro; Giuffrida, Giovanni B.; Caltabiano, Tommaso; Giudice, Gaetano; Gutierrez, Eduardo; Montalvo, Francisco; Burton, Michael; Papale, Paolo

    2016-04-01

    San Miguel volcano, also known as Chaparrastique, is a basaltic volcano along the Central American Volcanic Arc (CAVA). Volcanism is induced by the convergence of the Cocos Plate underneath the Caribbean Plate, along a 1200-km arc, extending from Guatemala to Costa Rica and parallel to the Central American Trench. The volcano is located in the eastern part of El Salvador, in proximity to the large communities of San Miguel, San Rafael Oriente, and San Jorge. Approximately 70,000 residents, mostly farmers, live around the crater and the city of San Miguel, the second largest city of El Salvador, ten km from the summit, has a population of ~180,000 inhabitants. The Pan-American and Coastal highways cross the north and south flanks of the volcano.San Miguel volcano has produced modest eruptions, with at least 28 VEI 1-2 events between 1699 and 1967 (datafrom Smithsonian Institution http://www.volcano.si.edu/volcano.cfm?vn=343100). It is characterized by visible milddegassing from a summit vent and fumarole field, and by intermittent lava flows and Strombolian activity. Since the last vigorous fire fountaining of 1976, San Miguel has only experienced small steam explosions and gas emissions, minor ash fall and rock avalanches. On 29 December 2013 the volcano erupted producing an eruption that has been classified as VEI 2. While eruptions tend to be low-VEI, the presence of major routes and the dense population in the surrounding of the volcano increases the risk that weak explosions with gas and/or ash emission may pose. In this study, we present the first inventory of SO2, CO2, HCl, and HF emission rates on San Miguel volcano, and an analysis of the hazard from volcanogenic SO2 discharged before, during, and after the December 2013 eruption. SO2 was chosen as it is amongst the most critical volcanogenic pollutants, which may cause acute and chronicle disease to humans. Data were gathered by the geochemical monitoring network managed by the Ministerio de Medio Ambiente

  6. Emission rates of sulfur dioxide and carbon dioxide from Redoubt Volcano, Alaska during the 1989-1990 eruptions

    Science.gov (United States)

    Casadevall, T.J.; Doukas, M.P.; Neal, C.A.; McGimsey, R.G.; Gardner, C.A.

    1994-01-01

    Airborne measurements of sulfur dioxide emission rates in the gas plume emitted from fumaroles in the summit crater of Redoubt Volcano were started on March 20, 1990 using the COSPEC method. During the latter half of the period of intermittent dome growth and destruction, between March 20 and mid-June 1990, sulfur dioxide emission rates ranged from approximately 1250 to 5850 t/d, rates notably higher than for other convergent-plate boundary volcanoes during periods of active dome growth. Emission rates following the end of dome growth from late June 1990 through May 1991 decreased steadily to less than 75 t/d. The largest mass of sulfur dioxide was released during the period of explosive vent clearing when explosive degassing on December 14-15 injected at least 175,000 ?? 50,000 tonnes of SO2 into the atmosphere. Following the explosive eruptions of December 1989, Redoubt Volcano entered a period of intermittent dome growth from late December 1989 to mid-June 1990 during which Redoubt emitted a total mass of SO2 ranging from 572,000 ?? 90,000 tonnes to 680,000 ?? 90,000 tonnes. From mid-June 1990 through May 1991, the volcano was in a state of posteruption degassing into the troposphere, producing approximately 183,000 ?? 50,000 tonnes of SO2. We estimate that Redoubt Volcano released a minimum mass of sulfur dioxide of approximately 930,000 tonnes. While COSPEC data were not obtained frequently enough to enable their use in eruption prediction, SO2 emission rates clearly indicated a consistent decline in emission rates between March through October 1990 and a continued low level of emission rates through the first half of 1991. Values from consecutive daily measurements of sulfur dioxide emission rates spanning the March 23, 1990 eruption decreased in the three days prior to eruption. That decrease was coincident with a several-fold increase in the frequency of shallow seismic events, suggesting partial sealing of the magma conduit to gas loss that resulted in

  7. Trace metal suites in Antarctic pre-industrial ice are consistent with emissions from quiescent degassing of volcanoes worldwide

    Science.gov (United States)

    Matsumoto, A.; Hinkley, T.K.

    2001-01-01

    Trace metals are more abundant in atmospheric load and deposition material than can be due to rock and soil dusts and ocean salt. In pre-industrial ice from coastal west Antarctica, dust and salt account for only a few percent of the lead, cadmium, and indium that is present in most samples, less than half in any sample. For these trace metals, the deposition rate to the pre-industrial ice is approximately matched by the output rate to the atmosphere by quiescent (non-explosive) degassing of volcanoes worldwide, according to a new estimate. The basis of the match is the masses and proportions of the metals, and the proportions of Pb isotopes, in ice and in volcano emissions. The isotopic compositions of Pb in ice are similar to those of a suite of ocean island volcanoes, mostly in the southern hemisphere. The natural baseline values for pre-industrial atmospheric deposition fluxes of trace metal suites at Taylor Dome, and the worldwide quiescent volcano emissions fluxes to which they are linked, constitute a reasonably well-constrained baseline component for deposition fluxes of metals in modern times. ?? 2001 Elsevier Science B.V. All rights reserved.

  8. MEditerranean Supersite Volcanoes (MED-SUV) project: from objectives to results

    Science.gov (United States)

    Puglisi, Giuseppe; Spampinato, Letizia

    2017-04-01

    The MEditerranean Supersite Volcanoes (MED-SUV) was a FP7 3-year lasting project aimed at improving the assessment of volcanic hazards at two of the most active European volcanic areas - Campi Flegrei/Vesuvius and Mt. Etna. More than 3 million people are exposed to potential hazards in the two areas, and the geographic location of the volcanoes increases the number of people extending the impact to a wider region. MED-SUV worked on the (1) optimisation and integration of the existing and new monitoring systems, (2) understanding of volcanic processes, and on the (3) relationship between the scientific and end-user communities. MED-SUV fully exploited the unique multidisciplinary long-term in-situ datasets available for these volcanoes and integrated them with Earth observations. Technological developments and implemented algorithms allowed better constraint of pre-, sin- and post-eruptive phases. The wide range of styles and intensities of the volcanic phenomena observed at the targeted volcanoes - archetypes of 'closed' and 'open' conduit systems - observed by using the long-term multidisciplinary datasets, exceptionally upgraded the understanding of a variety of geo-hazards. Proper experiments and studies were carried out to advance the understanding of the volcanoes' internal structure and processes, and to recognise signals related to impending unrest/eruptive phases. Indeed, the hazard quantitative assessment benefitted from the outcomes of these studies and from their integration with cutting edge monitoring approaches, thus leading to step-changes in hazard awareness and preparedness, and leveraging the close relationship between scientists, SMEs, and end-users. Among the MED-SUV achievements, we can list the (i) implementation of a data policy compliant with the GEO Open Data Principles for ruling the exploitation and shared use of the project outcomes; (ii) MED-SUV e-infrastructure creation as test bed for designing an interoperable infrastructure to

  9. Projecting human development and CO2 emissions

    CERN Document Server

    Costa, Luís; Kropp, Jürgen P

    2012-01-01

    We estimate cumulative CO2 emissions during the period 2000 to 2050 from developed and developing countries based on the empirical relationship between CO2 per capita emissions (due to fossil fuel combustion and cement production) and corresponding HDI. In order to project per capita emissions of individual countries we make three assumptions which are detailed below. First, we use logistic regressions to fit and extrapolate the HDI on a country level as a function of time. This is mainly motivated by the fact that the HDI is bounded between 0 and 1 and that it decelerates as it approaches 1. Second, we employ for individual countries the correlations between CO2 per capita emissions and HDI in order to extrapolate their emissions. This is an ergodic assumption. Third, we let countries with incomplete data records evolve similarly as their close neighbors (in the emissions-HDI plane, see Fig. 1 in the main text) with complete time series of CO2 per capita emissions and HDI. Country-based emissions estimates a...

  10. Particle physics seminar: Muon radiography of volcanoes and the MU-RAY project

    CERN Multimedia

    Université de Genève

    2011-01-01

    UNIVERSITE DE GENEVE Ecole de physique Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet 1211 GENEVE 4 Tél: (022) 379 62 73 Fax: (022) 379 69 92   Wednesday 25  May 2011 PARTICLE PHYSICS SEMINAR at 17.00 hrs – Stückelberg Auditorium Muon radiography of volcanoes and the MU-RAY project Par Prof. Paolo Strolin, Università Federico II and INFN, Napoli Thanks to their penetration power, high energy muons generated in the interactions of cosmic rays with the Earth’s atmosphere offer the possibility to perform “muon radiographies” of geological structures and in particular volcanoes. The principle is similar to that of the imaging of the interior of human body through the observation of the absorption of X rays. Muon radiography has been first applied in 1970 to the search of unknown burial chambers in the Chefren’s pyramid. In the years 2000, the technique has been ...

  11. Stratigraphy of the Hawai'i Scientific Drilling Project core (HSDP2): Anatomy of a Hawaiian shield volcano

    OpenAIRE

    Garcia, Michael O.; Haskins, Eric H.; Stolper, Edward M.; Baker, Michael

    2007-01-01

    The Hawai'i Scientific Drilling Project (HSDP2) successfully drilled ∼3.1 km into the island of Hawai'i. Drilling started on Mauna Loa volcano, drilling 247 m of subaerial lavas before encountering 832 m of subaerial Mauna Kea lavas, followed by 2019 m of submarine Mauna Kea volcanic and sedimentary units. The 2.85 km stratigraphic record of Mauna Kea volcano spans back to ∼650 ka. Mauna Kea subaerial lavas have high average olivine contents (13 vol.%) and low average vesicle abundances (10 v...

  12. Remote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopy

    Science.gov (United States)

    Kern, Christoph; Masias, Pablo; Apaza, Fredy; Reath, Kevin; Platt, Ulrich

    2017-01-01

    Water (H2O) is by far the most abundant volcanic volatile species and plays a predominant role in driving volcanic eruptions. However, numerous difficulties associated with making accurate measurements of water vapor in volcanic plumes have limited their use as a diagnostic tool. Here we present the first detection of water vapor in a volcanic plume using passive visible-light differential optical absorption spectroscopy (DOAS). Ultraviolet and visible-light DOAS measurements were made on 21 May 2016 at Sabancaya Volcano, Peru. We find that Sabancaya's plume contained an exceptionally high relative water vapor abundance 6 months prior to its November 2016 eruption. Our measurements yielded average sulfur dioxide (SO2) emission rates of 800–900 t/d, H2O emission rates of around 250,000 t/d, and an H2O/SO2 molecular ratio of 1000 which is about an order of magnitude larger than typically found in high-temperature volcanic gases. We attribute the high water vapor emissions to a boiling-off of Sabancaya's hydrothermal system caused by intrusion of magma to shallow depths. This hypothesis is supported by a significant increase in the thermal output of the volcanic edifice detected in infrared satellite imagery leading up to and after our measurements. Though the measurement conditions encountered at Sabancaya were very favorable for our experiment, we show that visible-light DOAS systems could be used to measure water vapor emissions at numerous other high-elevation volcanoes. Such measurements would provide observatories with additional information particularly useful for forecasting eruptions at volcanoes harboring significant hydrothermal systems.

  13. The Merapi Interactive Project: Offering a Fancy Cross-Disciplinary Scientific Understanding of Merapi Volcano to a Wide Audience.

    Science.gov (United States)

    Morin, J.; Kerlow, I.

    2015-12-01

    The Merapi volcano is of great interest to a wide audience as it is one of the most dangerous volcanoes worldwide and a beautiful touristic spot. The scientific literature available on that volcano both in Earth and Social sciences is rich but mostly inaccessible to the public because of the scientific jargon and the restricted database access. Merapi Interactive aims at developing clear information and attractive content about Merapi for a wide audience. The project is being produced by the Art and Media Group at the Earth Observatory of Singapore, and it takes the shape of an e-book. It offers a consistent, comprehensive, and jargon-filtered synthesis of the main volcanic-risk related topics about Merapi: volcanic mechanisms, eruptive history, associated hazards and risks, the way inhabitants and scientists deal with it, and what daily life at Merapi looks like. The project provides a background to better understand volcanoes, and it points out some interactions between scientists and society. We propose two levels of interpretation: one that is understandable by 10-year old kids and above and an expert level with deeper presentations of specific topics. Thus, the Merapi Interactive project intends to provide an engaging and comprehensive interactive book that should interest kids, adults, as well as Earth Sciences undergraduates and academics. Merapi Interactive is scheduled for delivery in mid-2016.

  14. Volcanic emissions of metals and halogens from White Island (New Zealand) and Erebus volcano (Antarctica) determined with chemical traps

    Science.gov (United States)

    Wardell, L. J.; Kyle, P. R.; Counce, D.

    2008-11-01

    Volcanic emission rates of As, Sb, Pb, Hg, Se, Cl, and F were determined at Erebus volcano, Antarctica and White Island, New Zealand, using chemical traps. The trace metal fluxes were determined by combining the species to S ratios in the solutions with SO 2 emission rates measured by correlation spectrometry at the two volcanoes. At Erebus volcano, fluxes for the metals Pb and Hg were 2.0 × 10 - 4 and 8.1 × 10 - 6 kg s - 11 , respectively. Fluxes for Cl, F, As, Sb and Se (0.35, 0.15, 2.5 × 10 - 4 , 1.2 × 10 - 5 , and 4.5 × 10 - 6 kg s - 1 , respectively) agreed within error limits for values determined previously by the LiOH impregnated filter method [Zreda-Gostynska, G., Kyle, P., Finnegan, D., Prestbo, K., 1997. Volcanic gas emissions from Mount Erebus and their impact on the Antarctic environment. Journal of Geophysical Research, 102(B7): 15039-15055.], demonstrating the utility of the chemical trap method. A fall in the As/S ratio from 7 × 10 - 4 in 1997/1999 to 3 × 10 - 4 in 2000 at Erebus coincided with a change in the frequency and style of eruptive activity that may have been due to injection of magma into the system. At White Island, chemical trap data indicated fluxes of Cl = 0.90, F = 0.0079, Pb = 2.7 × 10 - 4 , Hg = 1.1 × 10 - 5 , As = 1.3 × 10 - 4 , Sb = 1.9 × 10 - 5 and Se = 1.5 × 10 - 5 kg s - 1 . Samples collected 600 m downwind of the active crater were comparable to samples collected adjacent to the main gas vent, showing that this method can still be used at some distance from a degassing vent.

  15. MEDiterranean Supersite Volcanoes (MED-SUV) project: state of the art and main achievements after the first 18 months

    Science.gov (United States)

    Puglisi, Giuseppe; Spampinato, Letizia; Allard, Patrick; Baills, Audrey; Briole, Pierre; D'Auria, Luca; Dingwell, Donald; Martini, Marcello; Kueppers, Ulrich; Marzocchi, Warner; Minet, Christian; Vagner, Amélie

    2015-04-01

    Taking account of the valuable resources and information available for Mt. Etna, Campi Flegrei, and Vesuvius Supersites, MED-SUV aims at exploiting the huge record of geophysical, geochemical and volcanological data available for the three Supersite volcanoes and carry out experiments to fill gaps in the knowledge of the structure of these volcanoes and of the processes driving their activity. The project's activities have focused on (1) gaining new insights into the inner structure of these volcanoes; (2) evaluating the suitability of the current EO and in-situ observations to track the dynamics of the volcano supply system and/or the eruptive phenomena, (3) making the access to observations easy; (4) defining the effects of magma ascent on the stress/strain field (and vice versa); (5) assessing the capability of the Earth science community to forecast the occurrence of eruptions in terms of both location and time of an eruption; (6) optimizing the chain from observations to end-users during an eruptive event; and (7) making the project outcomes "exportable" to other European volcanic areas and elsewhere. Indeed, the overall goal of the project is to apply the rationale of the Geohazard Supersites and Natural Laboratories GEO-GEOSS initiative to the three volcanoes, in order to better assess the volcanic hazards they posed. In the first 18 months, MED-SUV consortium carried out activities relating to coordination, scientific/technological development, and dissemination. Coordination included mainly meetings organised in order to start the project and consortium activity and to strengthen the synergy with EC and international initiatives, such as geohazard activities of GEO-GEOSS, EPOS-PP and the other two FP7 Supersite projects, MARsite and FUTUREVOLC. The main scientific/technological results included the design and development of a prototype (NETVIS) for the optimization and implementation of processing tools for the analysis of Mt. Etna's camera network, design

  16. Eruption parameters elicitation for volcanoes in Ethiopia and Kenya Informing a World Bank GFDRR project on volcanic threat in sub-Saharan Africa

    Science.gov (United States)

    Jenkins, Susanna; Lark, Murray; Loughlin, Sue; Fontijn, Karen; Mather, Tamsin; Pyle, David; Lewi, Elias; Yirgu, Gezahegn; Vye-Brown, Charlotte; Sparks, Steve

    2016-04-01

    Despite large numbers of very visible active volcanoes in sub-Saharan Africa, data about eruptions are limited compared to elsewhere in the world. We present the method and findings from elicitations carried out to characterise likely future eruptions in the region as part of a World Bank GFDRR risk profiling project for sub-Saharan Africa. The purpose of the elicitations was to better understand the characteristics and frequencies of explosive eruptions at volcanoes in Ethiopia and Kenya. The elicitations will provide source parameters for tephra fall modelling at select volcanoes in Ethiopia (Aluto, Corbetti, Fentale) and Kenya (Menegai, Longonot, Suswa). There were two stages of elicitation: 1) a 'sanity check' of initial assumptions around likely eruption style, magnitude and frequency for the six selected volcanoes; 2) a formal SHELF (SHeffield ELicitation Framework) elicitation that centred round establishing frequency-magnitude relationships for the volcanoes. The elicitation suggested that explosive eruptions at Aluto and Corbetti were less likely than at the other volcanoes, although the uncertainty was significant. Menengai and Rungwe volcano in Tanzania (elicited as an analogue for Fentale, Longonot and Suswa volcanoes) were characterised by approximately similar probabilities of eruption. However, Rungwe was considered more likely to produce larger explosive (VEI ≥ 4) eruptions than Menengai. Elicitation discussions highlighted the knowledge and data gaps for African volcanoes and raised important questions around whether gaps in the eruption record were real and related to changing regimes at the volcanoes over time or if they were a function of under-recording or lack of preservation. Further investigation is therefore needed to validate the findings of the elicitation. It is hoped that continued collaboration with local partners and studies within the ongoing NERC-funded RiftVolc project will address these issues and help to improve our knowledge

  17. Lessons learnt from Volcanoes' Night I-II-III - a Marie Curie Researchers' Night project series dedicated to geosciences

    Science.gov (United States)

    Cseko, Adrienn; Bodo, Balazs; Ortega Rodriguez, Ariadna

    2017-04-01

    European Researchers' Nights (ERNs) are a pan-European series of events funded by the European Commission, organised on the last Friday of every September since 2005. ERNs mobilise scientific, academic and research organisations with the aim of giving the public the opportunity to meet researchers in an informal setting. The overall objective of ERNs is to achieve better awareness among the general public concerning the importance of science in everyday life and to combat stereotypes about researchers. The longer-term strategic objective of ERNs is to encourage young people to embark on a scientific career. Volcanoes' Night I-II-III has been an ERN project series funded by the EC FP7 and H2020 programmes between 2012-2015 (EC contract No. 316558, 610050, 633310, www.nochedevolcanes.es). The concept of Volcanoes' Night was created by researchers from the Canary Islands, Spain, where both the researchers and the public live in the close vicinity of volcanoes. The objective of the project was to use volcanoes as a background against which the role of geoscientists could be explained to the public. The scope of Volcanoes' Night was exclusively dedicated to geoscience, and in this respect it stands out among all other ERN projects, which are always more general in scope. During its four years of EC funding, the geographical coverage of Volcanoes' Night expanded substantially from a single location in 2012 (Fuencaliente de La Palma, Spain) to a dozen locations in 2015, mobilising multiple scientific organisations, researchers, and public authorities for engagement with the public. The last EC-funded project, Volcanoes' Night III, which was organised in 2014 and 2015, engaged approximately 21,000 visitors through its outreach activities, which included experiments, science cafés, volcano movies, My Day presentations, excursions, science workshops and more. The impact of the project was carefully assessed via surveys and social studies during its lifetime, and an Impact

  18. Deep Drilling into a Mantle Plume Volcano: The Hawaii Scientific Drilling Project

    Directory of Open Access Journals (Sweden)

    Donald M. Thomas

    2009-03-01

    Full Text Available Oceanic volcanoes formed by mantle plumes, such as those of Hawaii and Iceland, strongly influence our views about the deep Earth (Morgan, 1971; Sleep, 2006. These volcanoes are the principal geochemical probe into the deep mantle, a testing ground for understanding mantle convection, plate tectonics and volcanism, and an archive of information on Earth’s magnetic field and lithospheredynamics. Study of the petrology, geochemistry, and structure of oceanic volcanoes has contributed immensely to our present understanding of deep Earth processes, but virtually all of this study has been concentrated on rocks available at the surface. In favorable circumstances, surface exposures penetrate to a depth of a few hundred meters, which is a small fraction of the 10- to 15-kilometer height of Hawaiian volcanoes above the depressed seafloor (Moore, 1987; Watts, 2001.

  19. Diffuse H_{2} emission: a useful geochemical tool to monitor the volcanic activity at El Hierro volcano system

    Science.gov (United States)

    Pérez, Nemesio M.; Melián, Gladys; González-Santana, Judit; Barrancos, José; Padilla, Germán; Rodríguez, Fátima; Padrón, Eleazar; Hernández, Pedro A.

    2016-04-01

    The occurrence of interfering processes affecting reactive gases as CO2 during its ascent from magmatic bodies or hydrothermal systems toward the surface environment hinders the interpretation of their enrichments in the soil atmosphere and fluxes for volcano monitoring purposes (Marini and Gambardella, 2005). These processes include gas scrubbing by ground-waters and interaction with rocks, decarbonatation processes, biogenic production, etc. Within the rest of the soil gases, particularly interest has been addressed to light and highly mobile gases. They offer important advantages for the detection of vertical permeability structures, because their interaction with the surrounding rocks or fluids during the ascent toward the surface is minimum. H2 is one of the most abundant trace species in volcano-hydrothermal systems and is a key participant in many redox reactions occurring in the hydrothermal reservoir gas (Giggenbach, 1987). Although H2 can be produced in soils by N2-fixing and fertilizing bacteria, soils are considered nowadays as sinks of molecular hydrogen (Smith-Downey et al., 2006). Because of its chemical and physical characteristics, H2 generated within the crust moves rapidly and escapes to the atmosphere. These characteristics make H2 one of the best geochemical indicators of magmatic and geothermal activity at depth. El Hierro is the youngest and the SW-most of the Canary Islands and the scenario of the last volcanic eruption of the archipelago, a submarine eruption that took place 2 km off the southern coast of the island from October 2011 to March 2012. Since at El Hierro Island there are not any surface geothermal manifestations (fumaroles, etc), we have focused our studies on soil degassing surveys. Here we show the results of soil H2 emission surveys that have been carried out regularly since mid-2012. Soil gas samples were collected in ˜600 sites selected based on their accessibility and geological criteria. Soil gases were sampled at ˜40

  20. Magmatic gas flux emissions from Gorelyi volcano, Kamchatka, and implications for volatile recycling in the NW Pacific

    Science.gov (United States)

    Aiuppa, A.; Bagnato, E.; Calabrese, S.; Giudice, G.; Liuzzo, M.; Tamburello, G.; Allard, P.; Chaplygin, I.; Taran, Y.

    2012-04-01

    The Kamchatka peninsula, in the north-western part of the Pacific 'Ring of Fire', is one of the most active volcanic realms on Earth, with 29 historically erupting volcanoes along its ~700 km-long Eastern Volcanic Belt (EVB). This notwithstanding, volatile input and output fluxes along this arc sector have remained poorly characterised until very recently. We here report on the very first assessment of volatile flux emissions from Gorelyi, a large (25 km3, 1830 m high) and most active shield-like Holocene volcano located on the southern segment of the Kamchatka EVB. By combing results from a variety of in situ and remote sensing techniques (MultiGAS, filter packs, and UV camera), we determine the bulk plume molar concentrations of major (H2O 93.5%, CO2 2.6%, SO2 2.2%, HCl 1.1%, HF 0.3%, H2 0.2%) to trace-halogens (Br, I) and trace-element volatile species, and we estimate a total gas release of ~11,000 t/day from Gorelyi during ~900°C non-eruptive degassing. Using this observation, we derive new constraints on the abundances and origins of volatiles in the subduction-modified mantle source feeding magmatism in Kamchatka.

  1. Global forestry emission projections and abatement costs

    Science.gov (United States)

    Böttcher, H.; Gusti, M.; Mosnier, A.; Havlik, P.; Obersteiner, M.

    2012-04-01

    In this paper we present forestry emission projections and associated Marginal Abatement Cost Curves (MACCs) for individual countries, based on economic, social and policy drivers. The activities cover deforestation, afforestation, and forestry management. The global model tools G4M and GLOBIOM, developed at IIASA, are applied. GLOBIOM uses global scenarios of population, diet, GDP and energy demand to inform G4M about future land and commodity prices and demand for bioenergy and timber. G4M projects emissions from afforestation, deforestation and management of existing forests. Mitigation measures are simulated by introducing a carbon tax. Mitigation activities like reducing deforestation or enhancing afforestation are not independent of each other. In contrast to existing forestry mitigation cost curves the presented MACCs are not developed for individual activities but total forest land management which makes the estimated potentials more realistic. In the assumed baseline gross deforestation drops globally from about 12 Mha in 2005 to below 10 Mha after 2015 and reach 0.5 Mha in 2050. Afforestation rates remain fairly constant at about 7 Mha annually. Although we observe a net area increase of global forest area after 2015 net emissions from deforestation and afforestation are positive until 2045 as the newly afforested areas accumulate carbon rather slowly. About 200 Mt CO2 per year in 2030 in Annex1 countries could be mitigated at a carbon price of 50 USD. The potential for forest management improvement is very similar. Above 200 USD the potential is clearly constrained for both options. In Non-Annex1 countries avoided deforestation can achieve about 1200 Mt CO2 per year at a price of 50 USD. The potential is less constrained compared to the potential in Annex1 countries, achieving a potential of 1800 Mt CO2 annually in 2030 at a price of 1000 USD. The potential from additional afforestation is rather limited due to high baseline afforestation rates assumed

  2. A study of SO2 emissions and ground surface displacements at Lastarria volcano, Antofagasta Region, Northern Chile

    Science.gov (United States)

    Krewcun, Lucie G.

    Lastarria volcano (Chile) is located at the North-West margin of the 'Lazufre' ground inflation signal (37x45 km2), constantly uplifting at a rate of ˜2.5 cm/year since 1996 (Pritchard and Simons 2002; Froger et al. 2007). The Lastarria volcano has the double interest to be superimposed on a second, smaller-scale inflation signal and to be the only degassing area of the Lazufre signal. In this project, we compared daily SO2 burdens recorded by AURA's OMI mission for 2005-2010 with Ground Surface Displacements (GSD) calculated from the Advanced Synthetic Aperture Radar (ASAR) images for 2003-2010. We found a constant maximum displacement rate of 2.44 cm/year for the period 2003-2007 and 0.80- 0.95 cm/year for the period 2007-2010. Total SO 2 emitted is 67.0 kT for the period 2005-2010, but detection of weak SO2 degassing signals in the Andes remains challenging owing to increased noise in the South Atlantic radiation Anomaly region.

  3. Carbon dioxide emission rate of Kīlauea Volcano: Implications for primary magma and the summit reservoir

    Science.gov (United States)

    Gerlach, T.M.; McGee, K.A.; Elias, T.; Sutton, A.J.; Doukas, M.P.

    2002-01-01

     We report a CO2 emission rate of 8500 metric tons per day (t d−1) for the summit of Kīlauea Volcano, several times larger than previous estimates. It is based on three sets of measurements over 4 years of synchronous SO2 emission rates and volcanic CO2/SO2concentration ratios for the summit correlation spectrometer (COSPEC) traverse. Volcanic CO2/SO2 for the traverse is representative of the global ratio for summit emissions. The summit CO2 emission rate is nearly constant, despite large temporal variations in summit CO2/SO2 and SO2 emission rates. Summit CO2 emissions comprise most of Kīlauea's total CO2 output (∼9000 t d−1). The bulk CO2 content of primary magma determined from CO2emission and magma supply rate data is ∼0.70 wt %. Most of the CO2 is present as exsolved vapor at summit reservoir depths, making the primary magma strongly buoyant. Turbulent mixing with resident reservoir magma, however, prevents frequent eruptions of buoyant primary magma in the summit region. CO2 emissions confirm that the magma supply enters the edifice through the summit reservoir. A persistent several hundred parts per million CO2 anomaly arises from the entry of magma into the summit reservoir beneath a square kilometer area east of Halemaumau pit crater. Since most of the CO2 in primary magma is degassed in the summit, the summit CO2 emission rate is an effective proxy for the magma supply rate. Both scrubbing of SO2 and solubility controls on CO2and S in basaltic melt cause high CO2/SO2 in summit emissions and spatially uncorrelated distributions of CO2 and SO2 in the summit plume.

  4. Locations and focal mechanisms of deep long period events beneath Aleutian Arc volcanoes using back projection methods

    Science.gov (United States)

    Lough, A. C.; Roman, D. C.; Haney, M. M.

    2015-12-01

    Deep long period (DLP) earthquakes are commonly observed in volcanic settings such as the Aleutian Arc in Alaska. DLPs are poorly understood but are thought to be associated with movements of fluids, such as magma or hydrothermal fluids, deep in the volcanic plumbing system. These events have been recognized for several decades but few studies have gone beyond their identification and location. All long period events are more difficult to identify and locate than volcano-tectonic (VT) earthquakes because traditional detection schemes focus on high frequency (short period) energy. In addition, DLPs present analytical challenges because they tend to be emergent and so it is difficult to accurately pick the onset of arriving body waves. We now expect to find DLPs at most volcanic centers, the challenge lies in identification and location. We aim to reduce the element of human error in location by applying back projection to better constrain the depth and horizontal position of these events. Power et al. (2004) provided the first compilation of DLP activity in the Aleutian Arc. This study focuses on the reanalysis of 162 cataloged DLPs beneath 11 volcanoes in the Aleutian arc (we expect to ultimately identify and reanalyze more DLPs). We are currently adapting the approach of Haney (2014) for volcanic tremor to use back projection over a 4D grid to determine position and origin time of DLPs. This method holds great potential in that it will allow automated, high-accuracy picking of arrival times and could reduce the number of arrival time picks necessary for traditional location schemes to well constrain event origins. Back projection can also calculate a relative focal mechanism (difficult with traditional methods due to the emergent nature of DLPs) allowing the first in depth analysis of source properties. Our event catalog (spanning over 25 years and volcanoes) is one of the longest and largest and enables us to investigate spatial and temporal variation in DLPs.

  5. Emission rate, isotopic composition and origin(s) of magmatic carbon dioxide at Merapi volcano, Indonesia

    Science.gov (United States)

    Allard, P.

    2012-12-01

    Merapi volcano, located on a ~25 thick continental-type arc crust in central Java, is one of the most active arc volcanoes worldwide, where high temperature summit degassing and extrusion of basic andesite lava domes have persisted for several centuries at least. Carbon dioxide is the main anhydrous component of emitted magmatic gases [1,2] and is released at a time-averaged rate of ~500 tons/day from both high-temperature (900-600°C) gas venting [3] and soil degassing in the summit area [4]. Its δ13C averages -4.0±0.2 ‰ at the extruding lava dome and at all other degassing sites [1-4], thus evidencing its overall magmatic derivation. However, its ultimate origin is still debated. Merapi lavas indeed contain abundant calc-silicate (skarn-type) xenoliths and Ca-rich xenocrysts [5-7] which demonstrates shallow magma interactions with carbonate sediments present in the basement and renders plausible a crustal contribution to the magmatic CO2 output [1,6,7]. Here I outline a number of geochemical constraints which suggest that such a shallow crustal contribution may be of second order with respect to a deep slab carbon contribution: (i) The CO2/3He ratio of Merapi magmatic gases (5 times higher than the average MORB ratio), combined with the δ13C for MORB-type upper mantle carbon (-7 to -4‰), implies that the volcanic CO2 contains 80% of non-mantle carbon with maximum δ13C of -3.25‰. This is much lower than the potential δ13C of metamorphic CO2 generated from local carbonate sediments (-2.2 to +1.4‰; [1,8]); (ii) The δ13C of Merapi volcanic CO2 has remained remarkably constant over 30 years of standard eruptive activity, implying steady conditions of genesis and transfer from depth to the surface. This discards a permanent influence of likely variable magma-carbonate interactions. Instead, such interactions could well be responsible of one single 'anomalous' transient δ13C value (-2.4‰) measured just after a nearby tectonic earthquake in 2006 [8]; and

  6. Powering Africa - Projected costs and emissions

    Science.gov (United States)

    Pappis, Ioannis; Taliotis, Constantinos; Howells, Mark; Lindblad, Nicolina

    2017-04-01

    Energy is a fundamental driver of economic growth. Several Sub-Saharan African countries are amongst the least developing economies in the world. A large proportion of the population in the region also lacks access to electricity and other modern energy services, while the individuals who have access are faced with frequent outages. This paper presents scenarios in which universal electricity access across the African continent is achieved by 2030 at a range of electricity consumption levels. A cost-optimization model is used to identify the least-cost generation mix in each country individually so as to meet the projected demand. Several generation options are allowed in each nation, while cross-border electricity trade is enabled at existing and future planned levels, so as to allow exploitation of untapped energy resources in remote regions of the continent. The results indicate that with a higher electricity consumption, CO2 emissions in generation increase considerably. This is due to coal rising as one of the dominant fuels in the supply of centralized electricity, and is of particular importance in climate change negotiations.

  7. An automated SO2 camera system for continuous, real-time monitoring of gas emissions from Kīlauea Volcano's summit Overlook Crater

    Science.gov (United States)

    Kern, Christoph; Sutton, Jeff; Elias, Tamar; Lee, Robert Lopaka; Kamibayashi, Kevan P.; Antolik, Loren; Werner, Cynthia A.

    2015-01-01

    SO2 camera systems allow rapid two-dimensional imaging of sulfur dioxide (SO2) emitted from volcanic vents. Here, we describe the development of an SO2 camera system specifically designed for semi-permanent field installation and continuous use. The integration of innovative but largely “off-the-shelf” components allowed us to assemble a robust and highly customizable instrument capable of continuous, long-term deployment at Kīlauea Volcano's summit Overlook Crater. Recorded imagery is telemetered to the USGS Hawaiian Volcano Observatory (HVO) where a novel automatic retrieval algorithm derives SO2 column densities and emission rates in real-time. Imagery and corresponding emission rates displayed in the HVO operations center and on the internal observatory website provide HVO staff with useful information for assessing the volcano's current activity. The ever-growing archive of continuous imagery and high-resolution emission rates in combination with continuous data from other monitoring techniques provides insight into shallow volcanic processes occurring at the Overlook Crater. An exemplary dataset from September 2013 is discussed in which a variation in the efficiency of shallow circulation and convection, the processes that transport volatile-rich magma to the surface of the summit lava lake, appears to have caused two distinctly different phases of lake activity and degassing. This first successful deployment of an SO2 camera for continuous, real-time volcano monitoring shows how this versatile technique might soon be adapted and applied to monitor SO2 degassing at other volcanoes around the world.

  8. Emission of gas and atmospheric dispersion of SO2 during the December 2013 eruption at San Miguel volcano (El Salvador, Central America)

    Science.gov (United States)

    Granieri, Domenico; Salerno, Giuseppe; Liuzzo, Marco; La Spina, Alessandro; Giuffrida, Giovanni; Caltabiano, Tommaso; Giudice, Gaetano; Gutierrez, Eduardo; Montalvo, Francisco; Burton, Michael R.; Papale, Paolo

    2015-07-01

    San Miguel volcano, El Salvador, erupted on 29 December 2013, after a 46 year period characterized by weak activity. Prior to the eruption a trend of increasing SO2 emission rate was observed, with all values measured after mid-November greater than the average value of the previous year (~310 t d-1). During the eruption, SO2 emissions increased from the level of ~330 t d-1 to 2200 t d-1, dropping after the eruption to an average level of 680 t d-1. Wind measurements and SO2 emission rates during the preeruptive, syneruptive, and posteruptive stages were used to model SO2 dispersion around the volcano. Atmospheric SO2 concentration exceeded the dangerous threshold of 5 ppm in the crater region and in some sectors with medium elevation of the highly visited volcanic cone. Combining the SO2 emission rate with measured CO2/SO2, HCl/SO2, and HF/SO2 plume gas ratios, we estimate the CO2, HCl, and HF outputs for the first time on this volcano.

  9. Health hazards and disaster potential of ground gas emissions at Furnas volcano, São Miguel, Azores

    Science.gov (United States)

    Baxter, Peter J.; Baubron, Jean-Claude; Coutinho, Rui

    1999-09-01

    A health hazard assessment of exposure to soil gases (carbon dioxide and radon) was undertaken in the village of Furnas, located in the caldera of an active volcano. A soil survey to map the area of soil gas flow was undertaken, gas emissions were monitored at fumaroles and in eight houses, and a preliminary radon survey of 23 houses in the main anomaly area was performed. Potential volcanic sources of toxic contamination of air, food, and water were also investigated, and ambient air quality was evaluated. About one-third (41 ha) of the houses were located in areas of elevated carbon dioxide soil degassing. Unventilated, confined spaces in some houses contained levels of carbon dioxide which could cause asphyxiation. Mean indoor radon levels exceeded UK and US action levels in the winter months. A tenfold increase in radon levels in one house over 2 h indicated that large and potentially lethal surges of carbon dioxide could occur without warning. Toxic exposures from the gaseous emissions and from contamination of soil and water were minimal, but sulphur dioxide levels were mildly elevated close to fumaroles. In contrast, evidence of dental fluorosis was manifested in the population of the nearby fishing village of Ribeira Quente where drinking water in the past had contained elevated levels of fluoride. The disaster potential of volcanic carbon dioxide in the area could also be associated with the hydrothermal system storing dissolved carbon dioxide beneath the village. Felt, or unfelt, seismic activity, or magma unrest, especially with a reawakening of explosive volcanic activity (30% probability in the next 100 years) could result in an increase in gas flow or even a gas burst from the hydrothermal system. A survey of all houses in Furnas is advised as structural measures to prevent the ingress of soil gases, including radon, were needed in some of the study houses. Evaluations of the human hazards of volcanic gases should be undertaken in all settlements in

  10. Estimating eruption temperature from thermal emission spectra of lava fountain activity in the Erta'Ale (Ethiopia) volcano lava lake: Implications for observing Io's volcanoes

    Science.gov (United States)

    Davies, Ashley G.; Keszthelyi, Laszlo P.; McEwen, Alfred S.

    2011-01-01

    We have analysed high-spatial-resolution and high-temporal-resolution temperature measurements of the active lava lake at Erta'Ale volcano, Ethiopia, to derive requirements for measuring eruption temperatures at Io's volcanoes. Lava lakes are particularly attractive targets because they are persistent in activity and large, often with ongoing lava fountain activity that exposes lava at near-eruption temperature. Using infrared thermography, we find that extracting useful temperature estimates from remote-sensing data requires (a) high spatial resolution to isolate lava fountains from adjacent cooler lava and (b) rapid acquisition of multi-color data. Because existing spacecraft data of Io's volcanoes do not meet these criteria, it is particularly important to design future instruments so that they will be able to collect such data. Near-simultaneous data at more than two relatively short wavelengths (shorter than 1 μm) are needed to constrain eruption temperatures. Resolving parts of the lava lake or fountains that are near the eruption temperature is also essential, and we provide a rough estimate of the required image scale.

  11. Quantifying gas emissions from the "Millennium Eruption" of Paektu volcano, Democratic People's Republic of Korea/China.

    Science.gov (United States)

    Iacovino, Kayla; Ju-Song, Kim; Sisson, Thomas; Lowenstern, Jacob; Kuk-Hun, Ri; Jong-Nam, Jang; Kun-Ho, Song; Song-Hwan, Ham; Oppenheimer, Clive; Hammond, James O S; Donovan, Amy; Liu, Kosima W; Kum-Ran, Ryu

    2016-11-01

    Paektu volcano (Changbaishan) is a rhyolitic caldera that straddles the border between the Democratic People's Republic of Korea and China. Its most recent large eruption was the Millennium Eruption (ME; 23 km(3) dense rock equivalent) circa 946 CE, which resulted in the release of copious magmatic volatiles (H2O, CO2, sulfur, and halogens). Accurate quantification of volatile yield and composition is critical in assessing volcanogenic climate impacts but is challenging, particularly for events before the satellite era. We use a geochemical technique to quantify volatile composition and upper bounds to yields for the ME by examining trends in incompatible trace and volatile element concentrations in crystal-hosted melt inclusions. We estimate that the ME could have emitted as much as 45 Tg of S to the atmosphere. This is greater than the quantity of S released by the 1815 eruption of Tambora, which contributed to the "year without a summer." Our maximum gas yield estimates place the ME among the strongest emitters of climate-forcing gases in the Common Era. However, ice cores from Greenland record only a relatively weak sulfate signal attributed to the ME. We suggest that other factors came into play in minimizing the glaciochemical signature. This paradoxical case in which high S emissions do not result in a strong glacial sulfate signal may present a way forward in building more generalized models for interpreting which volcanic eruptions have produced large climate impacts.

  12. Kenya Airways Launches New Project to Reduce Carbon Emissions

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Kenya Airways announced its new carbon offset project in May,aiming to have guests directly take part in a carbon emissions reduction plan for environmental protection.Titus Naikuni,Managing Director of

  13. A prototype of an automated high resolution InSAR volcano-monitoring system in the MED-SUV project

    Science.gov (United States)

    Chowdhury, Tanvir A.; Minet, Christian; Fritz, Thomas

    2016-04-01

    Volcanic processes which produce a variety of geological and hydrological hazards are difficult to predict and capable of triggering natural disasters on regional to global scales. Therefore it is important to monitor volcano continuously and with a high spatial and temporal sampling rate. The monitoring of active volcanoes requires the reliable measurement of surface deformation before, during and after volcanic activities and it helps for the better understanding and modelling of the involved geophysical processes. Space-borne synthetic aperture radar (SAR) interferometry (InSAR), persistent scatterer interferometry (PSI) and small baseline subset algorithm (SBAS) provide a powerful tool for observing the eruptive activities and measuring the surface changes of millimetre accuracy. All the mentioned techniques with deformation time series extraction address the challenges by exploiting medium to large SAR image stacks. The process of selecting, ordering, downloading, storing, logging, extracting and preparing the data for processing is very time consuming has to be done manually for every single data-stack. In many cases it is even an iterative process which has to be done regularly and continuously. Therefore, data processing becomes slow which causes significant delays in data delivery. The SAR Satellite based High Resolution Data Acquisition System, which will be developed at DLR, will automate this entire time consuming tasks and allows an operational volcano monitoring system. Every 24 hours the system runs for searching new acquired scene over the volcanoes and keeps track of the data orders, log the status and download the provided data via ftp-transfer including E-Mail alert. Furthermore, the system will deliver specified reports and maps to a database for review and use by specialists. The user interaction will be minimized and iterative processes will be totally avoided. In this presentation, a prototype of SAR Satellite based High Resolution Data

  14. Gas and particle emissions from Soufrière Hills Volcano, Montserrat, West Indies: characterization and health hazard assessment

    Science.gov (United States)

    Allen, Andrew G.; Baxter, Peter J.; Ottley, Christopher J.

    The Soufrière Hills Volcano, Montserrat, erupting since 18 July 1995, intensified its degassing in early 1996 with the continuing growth of the lava dome inside the summit crater. During this period of increased activity, between 11 and 18 March 1996, we measured gases and particles within the visible plume to determine whether at that time it posed a health risk to the population of Plymouth, the capital town, which is 5km southwest (downwind) and was then still occupied. Gravimetric measurements were made of total suspended particles (TSP) and particles having an aerodynamic diameter of less than 10μm (PM10). Measurements were made of sulphur dioxide (SO2), hydrochloric acid (HCl), hydrofluoric acid (HF), nitric acid (HNO3), acetic acid (CH3COOH), formic acid (HCOOH), and particulate sulphate (SO42-), chloride (Cl-), nitrate (NO3-), fluoride (F-), methanesulphonate (CH3SO3-), acetate (CH3COO-), formate (HCOO-), ammonium (NH4+), sodium (Na+) and acidity (H+). Trace metals having human health implications [chromium (Cr), nickel (Ni), cobalt (Co), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), cadmium (Cd), tin (Sn), mercury (Hg) and lead (Pb)] were also determined. Mean concentrations of HCl, SO2 and HF obtained in the town of Plymouth were 14.0, 5.9 and 0.8ppbv, respectively. Corresponding concentrations in the mixed plume on the crater edge were 533, 168 and 22ppbv. There were no direct emissions of HNO3, although nitrate was detected in coarse particles at the source. Higher concentrations of CH3COOH and HCOOH were measured close to the crater. Mean TSP and PM10 were 64 and 15μgm-3 in Plymouth, and 455 and 47μgm-3 on the upper volcano slope. Aerosols were highly acidic at the source but rapidly neutralised during transport. Trace metals were enriched in the aerosol relative to crater surface material. The concentrations of the acid gases, sulphur dioxide in particular, and particles were found to be too small to pose a health hazard at the time of

  15. CALIPSO Borehole Instrumentation Project at Soufriere Hills Volcano, Montserrat, BWI: Data Acquisition, Telemetry, Integration, and Archival Systems

    Science.gov (United States)

    Mattioli, G. S.; Linde, A. T.; Sacks, I. S.; Malin, P. E.; Shalev, E.; Elsworth, D.; Hidayat, D.; Voight, B.; Young, S. R.; Dunkley, P. N.; Herd, R.; Norton, G.

    2003-12-01

    The CALIPSO Project (Caribbean Andesite Lava Island-volcano Precision Seismo-geodetic Observatory) has greatly enhanced the monitoring and scientific infrastructure at the Soufriere Hills Volcano, Montserrat with the recent installation of an integrated array of borehole and surface geophysical instrumentation at four sites. Each site was designed to be sufficiently hardened to withstand extreme meteorological events (e.g. hurricanes) and only require minimum routine maintenance over an expected observatory lifespan of >30 y. The sensor package at each site includes: a single-component, very broad band, Sacks-Evertson strainmeter, a three-component seismometer ( ˜Hz to 1 kHz), a Pinnacle Technologies series 5000 tiltmeter, and a surface Ashtech u-Z CGPS station with choke ring antenna, SCIGN mount and radome. This instrument package is similar to that envisioned by the Plate Boundary Observatory for deployment on EarthScope target volcanoes in western North America and thus the CALIPSO Project may be considered a prototype PBO installation with real field testing on a very active and dangerous volcano. Borehole sites were installed in series and data acquisition began immediately after the sensors were grouted into position at 200 m depth, with the first completed at Trants (5.8 km from dome) in 12-02, then Air Studios (5.2 km), Geralds (9.4 km), and Olveston (7.0 km) in 3-03. Analog data from the strainmeter (50 Hz sync) and seismometer (200 Hz) were initially digitized and locally archived using RefTek 72A-07 data acquisition systems (DAS) on loan from the PASSCAL instrument pool. Data were downloaded manually to a laptop approximately every month from initial installation until August 2003, when new systems were installed. Approximately 0.2 Tb of raw data in SEGY format have already been acquired and are currently archived at UARK for analysis by the CALIPSO science team. The July 12th dome collapse and vulcanian explosion events were recorded at 3 of the 4

  16. Projection of Greenhouse Gas Emissions 2009 to 2030

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Winther, Morten; Mikkelsen, Mette Hjorth;

    This report contains a description of models, background data and projections of CO2, CH4, N2O, HFCs, PFCs and SF6 for Denmark. The emissions are projected to 2030 using basic scenarios together with the expected results of a few individual policy measures. Official Danish forecasts of activity...

  17. Projection of greenhouse gas emissions 2007 to 2025

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Winther, Morten; Mikkelsen, Mette Hjorth;

    This report contains a description of models and background data for projection of CO2, CH4, N2O, HFCs, PFCs and SF6 for Denmark. The emissions are projected to 2025 using basic scenarios together with the expected results of a few individual policy measures. Official Danish forecasts of activity...

  18. Projection of Greenhouse Gas Emissions 2010 to 2030

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Winther, Morten; Nielsen, Malene;

    This report contains a description of models, background data and projections of CO2, CH4, N2O, HFCs, PFCs and SF6 for Denmark. The emissions are projected to 2030 using a scenario combined with the expected results of a few individual policy measures. Official Danish forecasts of activity rates...

  19. Atmospheric contribution of gas emissions from Augustine volcano, Alaska during the 2006 eruption

    Science.gov (United States)

    McGee, K.A.; Doukas, M.P.; McGimsey, R.G.; Neal, C.A.; Wessels, R.L.

    2008-01-01

    Airborne surveillance of gas emissions from Augustine for SO2, CO2 and H2S showed no evidence of anomalous degassing from 1990 through May 2005. By December 20, 2005, Augustine was degassing 660 td-1 of SO2, and ten times that by January 4, 2006. The highest SO2 emission rate measured during the 2006 eruption was 8650 td-1 (March 1); for CO2, 13000 td-1 (March 9), and H2S, 8 td-1 (January 19). Thirty-four SO2 measurements were made from December 2005 through 2006, with 9 each for CO2 and H2S. Augustine released 1 ?? 106 tonnes of CO2 to the atmosphere during 2006, a level similar to the output of a medium-sized natural gas-fired power plant, and thus was not a significant contributor of greenhouse gas to the atmosphere compared to anthropogenic sources. Augustine released about 5 ?? 105 tonnes of SO2 during 2006, similar to that released in 1976 and 1986.

  20. Projection of greenhouse gas emissions 2009 to 2030

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M.; Hjorth Mikkelsen, M.; Gyldenkaerne, S.; Lyck, E.; Plejdrup, M.; Hoffmann, L.; Thomsen, M.; Hjelgaard, K.; Fauser, P.

    2010-09-15

    This report contains a description of models, background data and projections of CO{sub 2}, CH{sub 4}, N{sub 2}O, HFCs, PFCs and SF{sub 6} for Denmark. The emissions are projected to 2030 using basic scenarios together with the expected results of a few individual policy measures. Official Danish forecasts of activity rates are used in the models for those sectors for which the forecasts are available, i.e. the latest official forecast from the Danish Energy Agency. The emission factors refer to international guidelines and some are country-specific and refer to Danish legislation, Danish research reports or calculations based on emission data from a considerable number of plants. The projection models are based on the same structure and method as the Danish emission inventories in order to ensure consistency. (Author)

  1. Projection of greenhouse gas emissions 2007 to 2025

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M.; Hjorth Mikkelsen, M.; Gyldenkaerne, S.; Lyck, E.; Plejdrup, M.; Hoffmann, L.; Thomsen, Marianne; Fauser, P.

    2009-02-15

    This report contains a description of models and background data for projection of CO{sub 2}, CH{sub 4}, N{sub 2}O, HFCs, PFCs and SF{sub 6} for Denmark. The emissions are projected to 2025 using basic scenarios together with the expected results of a few individual policy measures. Official Danish forecasts of activity rates are used in the models for those sectors for which the forecasts are available, i.e. the latest official forecast from the Danish Energy Agency. The emission factors refer to international guidelines and some are country-specific and refer to Danish legislation, Danish research reports or calculations based on emission data from a considerable number of plants. The projection models are based on the same structure and method as the Danish emission inventories in order to ensure consistency. (au)

  2. Projection of greenhouse gas emissions 2010 to 2030

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M.; Nielsen, Malene; Hjorth Mikkelsen, M.; Albrektsen, R.; Gyldenkaerne, S.; Plejdrup, M.; Hoffmann, L.; Thomsen, M.; Hjelgaard, K.; Fauser, P.

    2011-09-15

    This report contains a description of models, background data and projections of CO{sub 2}, CH{sub 4}, N{sub 2}O, HFCs, PFCs and SF{sub 6} for Denmark. The emissions are projected to 2030 using a scenario together with the expected results of a few individual policy measures. Official Danish forecasts of activity rates are used in the models for those sectors for which the forecasts are available, i.e. the latest official forecast from the Danish Energy Agency. The emission factors refer to international guidelines and some are country-specific and refer to Danish legislation, Danish research reports or calculations based on emission data from a considerable number of industrial plants. The projection models are based on the same structure and method as the Danish emission inventories in order to ensure consistency. (Author)

  3. Projection of greenhouse gas emissions - 2005 to 2030

    Energy Technology Data Exchange (ETDEWEB)

    Illerup, J.B.; Nielsen, Ole-Kenneth; Winther, Morten; Hjort Mikekkelsen, M.; Lyck, E.; Nielsen, Malene; Hoffmann, L.; Gyldenkaerne, S.; Thomsen, Marianne [DMU-AU, Dept. of Policy Analysis (Denmark)

    2007-01-15

    This report contains a description of models and background data for projection of CO{sub 2}, CH{sub 4}, N{sub 2}O, HFCs, PFCs and SF{sub 6} for Denmark. The emissions are projected to 2030 using basic scenarios together with the expected results of a few individual policy measures. Official Danish forecasts of activity rates are used in the models for those sectors for which the forecasts are available, i.e. the latest official forecast from the Danish Energy Authority. The emission factors refer to international guidelines and some are country-specific and refer to Danish legislation, Danish research reports or calculations based on emission data from a considerable number of plants. The projection models are based on the same structure and method as the Danish emission inventories in order to ensure consistency. (au)

  4. The implementation of the Open Access paradigm to the EC-FP7 MED-SUV (Mediterranean Supersite Volcanoes) project

    Science.gov (United States)

    Puglisi, Giuseppe; Brito, Fabrice; Caumont, Hervé; D'Auria, Luca; Fernandez, José; Mazzetti, Paolo; Mathieu, Pierre Philippe; Nativi, Stefano; Papeschi, Fabrizio; Pepe, Antonio; Reitano, Danilo; Sangianantoni, Agata; Scarpato, Giovanni; Spampinato, Letizia

    2016-04-01

    The overall goal of the EC-FP7 Mediterranean Supersite Volcanoes (MED-SUV) project is to apply the rationale of the Supersites GEO initiative to Campi Flegrei/Vesuvius and Mt. Etna to reduce the volcanic risk, by improving the understanding of the underlying geophysical processes, through the integration and sharing of the in-situ and Earth Observation (EO) data sets and the implementation of new instruments and monitoring systems. The project involves 24 EU and no-EU partners, including research and academic institutions, space agencies and SMEs. In this framework, the application of the Open Access paradigm has offered the opportunity to study and apply practical solutions concerning the data management (i.e. data polices, foreground exploitation and sustainability), intellectual property rights (i.e., ownership, licences, agreements) and technical issues (i.e., design and implementation of an interoperability e-infrastructure, access systems, etc.). This contribution presents pro and cons encountered in the project, as well as the main outcomes of the implementation of the Open Access to the Italian Supersites. This experience will be exploited in the building of international research infrastructures, such as EPOS, and the outcomes of the project will contribute to foster the Open Access to the research data in a wide context, as the GEO-GEOSS framework.

  5. European collaboration for improved monitoring of Icelandic volcanoes: Status of the FUTUREVOLC project after the initial 18 months

    Science.gov (United States)

    Dumont, Stéphanie; Parks, Michelle; Sigmundsson, Freysteinn; Vogfjörð, Kristín; Einarsdóttir, Heiðveig Maria; Tumi Gudmundsson, Magnús; Kristinsson, Ingvar; Loughlin, Sue; Ilyinskaya, Evgenia; Hooper, Andrew; Kylling, Arve; Witham, Claire; Bean, Chris; Braiden, Aoife; Ripepe, Maurizio; Prata, Fred; Pétur Heiðarsson, Einar; Other Members Of The Futurevolc Team

    2014-05-01

    The FUTUREVOLC project funded by the European Union (FP7) is devoted to volcanic hazard assessment and establishing an integrated volcanological monitoring procedure through a European collaboration. To reach these objectives the project combines broad expertise from 26 partners from 10 countries, focusing on the four most active volcanoes of Iceland: Grímsvötn, Katla, Hekla and Bárdarbunga. The geological setting of Iceland, the high rate of eruptions and the various eruption styles make this country an optimal natural laboratory to study volcanic processes from crustal depths to the atmosphere. The project, which began on 1 October 2012, integrates advanced monitoring and analytical techniques in an innovative way, focusing on (i) detailed monitoring to improve our understanding of the seismic/magmatic unrest, in order to estimate the amount of magma available for an eruption and to provide early warnings (ii) the dynamics of magma in the conduit and a near real time estimation of the mass eruption rate and (iii) observing and modelling the plume dynamics. The project design considers effective collaboration between partners and aims for efficient cross-disciplinary workflows. A major step during the first 18 months of the project was the installation of additional equipment in the volcanic regions of Iceland to reinforce and complement the existing monitoring. The instruments include: seismometers, GPS stations, MultigGAS detectors, DOAS, infrasonic arrays, electric field sensors, radars, and optical particle sizers. Data streaming is designed to withstand extreme weather conditions. The FUTUREVOLC project has an open data policy for real and near-time data. Implementation of a data hub is currently under way, based on open access to data from the 2010 Eyjafjallajökull eruption. Access to volcano monitoring data through a common interface will allow timely information on magma movements facilitated through combined analysis. A key part of the project is to

  6. Volcano Preparedness

    Science.gov (United States)

    ... You might feel better to learn that an ‘active’ volcano is one that has erupted in the past ... miles away. If you live near a known volcano, active or dormant, following these tips will help you ...

  7. Aircraft emission research within ISTC project

    Energy Technology Data Exchange (ETDEWEB)

    Dedesh, V.; Leut, A.; Boris, S. [Scientific Research Center at the Gromov Flight, Research Institute (Russian Federation)

    2001-08-01

    This research is aimed at obtaining experimental data on contamination of the atmosphere by emissions from aircraft engines in cruise flight conditions, to establish and improve models of the physical and chemical processes which take place in the aircraft wake and in the general zone of air traffic corridors. An Su-24 'sounder' aircraft equipped with an air sampling and collection system has been established to obtain the necessary atmospheric samples in flight, and procedures have been developed for performing the research flights. Techniques have also been developed for chemical analysis of the samples. (authors)

  8. Summit CO2 emission rates by the CO2/SO2 ratio method at Kīlauea Volcano, Hawaiʻi, during a period of sustained inflation

    Science.gov (United States)

    Hager, S.A.; Gerlach, T.M.; Wallace, P.J.

    2008-01-01

    The emission rate of carbon dioxide escaping from the summit of Kīlauea Volcano, Hawaiʻi, proved highly variable, averaging 4900 ± 2000 metric tons per day (t/d) in June–July 2003 during a period of summit inflation. These results were obtained by combining over 90 measurements of COSPEC-derived SO2emission rates with synchronous CO2/SO2 ratios of the volcanic gas plume along the summit COSPEC traverse. The results are lower than the CO2 emission rate of 8500 ± 300 t/d measured by the same method in 1995–1999 during a period of long-term summit deflation [Gerlach, T.M., McGee, K.A., Elias, T., Sutton, A.J. and Doukas, M.P., 2002. Carbon dioxide emission rate of Kīlauea Volcano: Implications for primary magma and the summit reservoir. Journal of Geophysical Research-Solid Earth, 107(B9): art. no.-2189.]. Analysis of the data indicates that the emission rates of the present study likely reflect changes in the magma supply rate and residence time in the summit reservoir. It is also likely that emission rates during the inflation period were heavily influenced by SO2 pulses emitted adjacent to the COSPEC traverse, which biased CO2/SO2 ratios towards low values that may be unrepresentative of the global summit gas plume. We conclude that the SO2 pulses are consequences of summit re-inflation under way since 2003 and that CO2 emission rates remain comparable to, but more variable than, those measured prior to re-inflation.

  9. Quantification of carbon dioxide emissions of Ciomadul, the youngest volcano of the Carpathian-Pannonian Region (Eastern-Central Europe, Romania)

    Science.gov (United States)

    Kis, Boglárka-Mercédesz; Ionescu, Artur; Cardellini, Carlo; Harangi, Szabolcs; Baciu, Călin; Caracausi, Antonio; Viveiros, Fátima

    2017-07-01

    We provide the first high-resolution CO2 flux data for the Neogene to Quaternary volcanic regions of the entire Carpathian-Pannonian Region, Eastern-Central Europe, and estimate the CO2 emission of the seemingly inactive Ciomadul volcanic complex, the youngest volcano of this area. Our estimate includes data from focused and diffuse CO2 emissions from soil. The CO2 fluxes of focused emissions range between 277 and 8172 g d- 1, corresponding to a CO2 output into the atmosphere between 0.1 and 2.98 t per year. The investigated areas for diffuse soil gas emissions were characterized by wide range of CO2 flux values, at Apor Baths, ranging from 1.7 × 101 to 8.2 × 104 g m- 2 d- 1, while at Lăzărești ranging between 1.43 and 3.8 × 104 g m- 2 d- 1. The highest CO2 focused gas fluxes at Ciomadul were found at the periphery of the youngest volcanic complex, which could be explained either by tectonic control across the brittle older volcanic edifices or by degassing from a deeper crustal zone resulting in CO2 flux at the periphery of the supposed melt-bearing magma body beneath Ciomadul. The estimate of the total CO2 output in the area is 8.70 × 103 t y- 1, and it is consistent with other long (> 10 kyr) dormant volcanoes with similar age worldwide, such as in Italy and USA. Taking into account the isotopic composition of the gases that indicate deep origin of the CO2 emissions, this yields further support that Ciomadul may be considered indeed a dormant, or PAMS volcano (volcano with potentially active magma storage) rather than an inactive one. Furthermore, hazard of CO2 outpourings has to be taken into account and it has to be communicated to the visitors. Finally, we suggest that CO2 output of dormant volcanic systems has to be also accounted in the estimation of the global volcanic CO2 budget.

  10. Observations of Gas Emissions from Cascade Range Volcanoes (USA) using a Portable Real-Time Sensor Package and Evacuated Flasks

    Science.gov (United States)

    Kelly, P. J.; Werner, C. A.; Evans, W.; Ingebritsen, S.; Tucker, D.

    2012-12-01

    Degassing from most Cascade Range Volcanoes, USA, is characterized by low-temperature hydrothermal emissions. It is important to monitor these emissions as part of a comprehensive monitoring strategy yet access is often difficult and most features are sampled by the USGS only once per year at best. In an effort to increase the sampling frequency of major gas species and in preparation for building permanent, autonomous units, we built a portable sensor package capable of measuring H2O, CO2, SO2, and H2S in volcanic gas plumes. Here we compare results from the portable sensor package with gas analyses from direct samples obtained using a titanium tube and evacuated glass flasks collected at the same time. The sensor package is housed in a small, rugged case, weighs 5 kg, and includes sensors for measuring H2O (0-16 parts per thousand), CO2 (0-5000 ppmv), SO2 (0-100 ppm), and H2S (0-20 ppm) gases. Additional temperature and pressure sensors, a micro air pump, datalogger, and an internal battery are also incorporated. H2O and CO2 are measured using an infrared spectrometer (Licor 840) and sulfur-containing gases are measured using electrochemical sensors equipped with filters to mitigate cross-sensitivities. Data are collected at a 1 Hz sampling rate and can be recorded and displayed in real-time using a netbook computer or can be saved to the onboard datalogger. The data display includes timeseries of H2O, CO2, SO2, and H2S mixing ratios, the four-component bulk composition of the plume, and automated calculation of gas ratios commonly used in volcanic gas monitoring, such as H2O/CO2, CO2/SO2, and CO2/H2S . In the Cascade Range, the sensor package has been tested at Mt. Baker, Mt. St. Helens, Mt. Hood, and in Lassen Volcanic National Park. In each case, the instrument was placed 5 to 30 meters from the fumarole or fumarole field and emissions were sampled for 5 to 30 minutes. No SO2 was detected at any location. At Mt. Hood the sensor package yielded average CO2/H2S

  11. Assessing Embodied Energy and Greenhouse Gas Emissions in Infrastructure Projects

    Directory of Open Access Journals (Sweden)

    Jan Krantz

    2015-10-01

    Full Text Available Greenhouse gas (GHG emissions from construction processes are a serious concern globally. Of the several approaches taken to assess emissions, Life Cycle Assessment (LCA based methods do not just take into account the construction phase, but consider all phases of the life cycle of the construction. However, many current LCA approaches make general assumptions regarding location and effects, which do not do justice to the inherent dynamics of normal construction projects. This study presents a model to assess the embodied energy and associated GHG emissions, which is specifically adapted to address the dynamics of infrastructure construction projects. The use of the model is demonstrated on the superstructure of a prefabricated bridge. The findings indicate that Building Information Models/Modeling (BIM and Discrete Event Simulation (DES can be used to efficiently generate project-specific data, which is needed for estimating the embodied energy and associated GHG emissions in construction settings. This study has implications for the advancement of LCA-based methods (as well as project management as a way of assessing embodied energy and associated GHG emissions related to construction.

  12. Projections of global emissions of fluorinated greenhouse gases in 2050

    Energy Technology Data Exchange (ETDEWEB)

    Gschrey, Barbara; Schwarz, Winfried [Oeko-Recherche Buero fuer Umweltforschung und -beratung GmbH, Frankfurt/Main (Germany)

    2009-11-15

    Emissions of fluorinated greenhouse gases are currently covered under the Montreal Protocol, which focuses on ozone-depleting substances such as CFCs (chlorofluorocarbons) and HCFCs (hydrochlorofluorocarbons), and under the Kyoto Protocol, which controls emissions of HFCs (hydrofluorocarbons), PFCs (perfluorocarbons) and SF{sub 6} (sulfur hexafluoride). This study bridges the gap between political regimes and their reporting systems by giving an overview of banks and emissions of all fluorinated gases in 2005, and projections of banks and emissions of fluorinated gases in 2050. The Montreal Protocol and its amendments will eventually result in the full phase out of CFCs and HCFCs. Developed countries have already completed the phase out of CFCs and will reach full phase out of HCFCs by 2020. Developing countries, in contrast, will phase out CFCs by 2010 and HCFCs by 2030. Although climate-friendly technology is available for most applications, the risk occurs that substitutes for ozone-depleting substances rely on HFCs, which cause global warming. This study determines global emissions of HFCs, PFCs and SF{sub 6} (Kyoto F-gases) in 2050 in a ''business-as-usual'' scenario. The global population is expected to increase to ca. 8.7 billion people, and high economic growth of 3.5% per year is assumed. Emissions in 2050 are quantified for each sector of application as well as for developed and developing countries based on growth rates of each sector. In 2050, total global emissions of fluorinated greenhouse gases are projected to amount to 4 GT CO{sub 2} eq. which equals ca. 5.9% of the total greenhouse gas emissions at this time. Compared to a relatively small share of F-gas emissions ranging around 1.3% of total greenhouse gas emissions in 2004, this percentage reflects an enormous increase. Relative to projected direct CO{sub 2} emissions alone, the 2050 F-gas emissions will even account for ca. 7.9%. In case of CO{sub 2} mitigation, this share

  13. Remote sensing of thermal state of volcanoes in Turkey and neighbouring countries using ASTER nighttime images

    Science.gov (United States)

    Ulusoy, İnan; Diker, Caner

    2016-04-01

    Ongoing studies are increasingly revealing that Holocene and historical activity has been reported for many of the Anatolian volcanoes. So far, hydrothermal activity have been observed on Nemrut, Tendürek, Aǧrı (Ararat), Hasan daǧ and Kula. Fumaroles, steam vents, steam/gas emission and zones of hot grounds have been reported. Thermal state of Anatolian volcanoes have been investigated using ASTER nighttime satellite imagery. We have analyzed the nighttime thermal images of Aǧrı, Akça, Çandarlı, Erciyes, Gölcük, Göllüdaǧ, Hasandaǧ, Kula, Meydan, Nemrut, Süphan and Tendürek volcanoes in Turkey and Demavand and Nisyros volcanoes in the neighboring countries. In order to quantify the current thermal state of the volcanos studied, we have used ASTER Thermal Infrared spectra. Several ASTER nighttime images have been used to calculate land surface temperature, surface thermal anomaly and relative radiative heat flux on the volcanoes. Following the atmospheric correction of thermal images, temperature and emissivity have been separated and then land surface temperature have been calculated from 5 thermal bands. Surface temperature images have been topographically corrected. Relative radiative heat flux have been calculated using corrected surface temperature data, emissivity, vapor pressure and height-dependent air temperature values. These values have been correlated with ongoing activity observed on active Indonesian volcanoes Sinabung, Semeru and Bromo Tengger. (This study have been financially supported by TUBITAK project no: 113Y032).

  14. Hydrovolcanic ash emission between August 14 and 24, 2015 at Cotopaxi volcano (Ecuador): Characterization and eruption mechanisms

    Science.gov (United States)

    Troncoso, Liliana; Bustillos, Jorge; Romero, Jorge E.; Guevara, Alicia; Carrillo, Janina; Montalvo, Estefano; Izquierdo, Tatiana

    2017-07-01

    Cotopaxi is an active, hazardous and ice-covered stratovolcano 60 km southeast of Quito, (Ecuador) whose last major eruption occurred in 1877. During 2001-2002, volcanic unrest characterized by volcanic seismicity and deformation ended without eruptive activity. On April 2015, a new increase of seismicity, SO2 emissions, thermal anomalies and edifice deformation, evolved into the onset of a new eruptive cycle, beginning August 14. We sampled and measured the ash fall deposits to the west of Cotopaxi between August 14 and 24, 2015. The ash collected was analyzed using grain size, X-Ray fluorescence, X-Ray diffraction and scanning electron microscope (SEM-EDS), revealing the eruptive products to be compound of dense fragments (mostly lithics), diverse types of scoria, pumice, free fractured crystals, glassy particles and aggregates. Most of hydrothermal alteration is observed during the initial stage of the eruption (14-15 August; including Cu oxides and Fe minerals in the lithics). The glassy particles were blocky morphology, and textural changes were recognized over 10 days of eruption, varying from null or low vesicularity to low-to-moderate vesicularity, occasionally exhibiting molten or subrounded textures. The bulk ash has a basaltic-andesitic composition ( 55.67 wt% of SiO2), while clusters of selected particles (likely juvenile) analyzed through SEM + EDS reveal dacitic composition (65.67 and 65.8 wt% SiO2). Plagioclase, clinopyroxene and orthopyroxene are the main minerals present, with accessory anhydrite, melanterite and pyrite (these typically observed during the initial stage of eruption). These variations in addition to the geophysical background, led us to interpret this eruption as the result of the volcano's hydrothermal system disruption due to a shallow, low-volume magma input, which initially evolved into phreatic activity at surface level. Further activity up to 24 August was triggered by the indirect interaction between magma and the depleted

  15. A compilation of sulfur dioxide and carbon dioxide emission-rate data from Cook Inlet volcanoes (Redoubt, Spurr, Iliamna, and Augustine), Alaska during the period from 1990 to 1994

    Science.gov (United States)

    Doukas, Michael P.

    1995-01-01

    Airborne sulfur dioxide (SO2) gas sampling of the Cook Inlet volcanoes (Mt. Spurr, Redoubt, Iliamna, and Augustine) began in 1986 when several measurements were carried out at Augustine volcano during the eruption of 1986 (Rose and others, 1988). More systematic monitoring for SO2 began in March 1990 and for carbon dioxide (CO2) began in June, 1990 at Redoubt Volcano (Brantley, 1990 and Casadevall and others, 1994) and continues to the present. This report contains all of the available daily SO2 and CO2 emission rates determined by the U.S. Geological Survey (USGS) from March 1990 through July 1994. Intermittent measurements (four to six month intervals) at Augustine and Iliamna began in 1990 and continues to the present. Intermittent measurements began at Mt. Spurr volcano in 1991, and were continued at more regular intervals from June, 1992 through the 1992 eruption at the Crater Peak vent to the present.

  16. Estimating the volcanic emission rate and atmospheric lifetime of SO2 from space: a case study for Kīlauea volcano, Hawai`i

    Directory of Open Access Journals (Sweden)

    S. Beirle

    2014-08-01

    Full Text Available We present an analysis of SO2 column densities derived from GOME-2 satellite measurements for the Kīlauea volcano (Hawai`i for 2007–2012. During a period of enhanced degassing activity in March–November 2008, monthly mean SO2 emission rates and effective SO2 lifetimes are determined simultaneously from the observed downwind plume evolution and meteorological wind fields, without further model input. Kīlauea is particularly suited for quantitative investigations from satellite observations owing to the absence of interfering sources, the clearly defined downwind plumes caused by steady trade winds, and generally low cloud fractions. For March–November 2008, the effective SO2 lifetime is 1–2 days, and Kīlauea SO2 emission rates are 9–21 kt day−1, which is about 3 times higher than initially reported from ground-based monitoring systems.

  17. Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882. Project report 5 - Emission factors and emission inventory for decentralised CHP production

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Thomsen, M.

    2010-06-15

    Updated emission factors for decentralised combined heat and power (CHP) plants with a capacity < 25MWe have been estimated based on project emission measurements as well as emission measurements performed in recent years that were collected. The emission factors valid for 2006/2007 have been estimated for the plant technologies: Municipal solid waste (MSW) incineration plants, plants combusting straw or wood, natural gas fuelled reciprocating engines, biogas fuelled engines, natural gas fuelled gas turbines, gas oil fuelled reciprocating engines, gas oil fuelled gas turbines, steam turbines combusting residual oil and reciprocating engines combusting biomass producer gas based on wood. The emission factors for MSW incineration plants are much lower than the emission factors that were estimated for year 2000. The considerable reduction in the emission factors is a result of lower emission limit values in Danish legislation since 2006 that has lead to installation of new and improved flue gas cleaning systems in most MSW incineration plants. For CHP plants combusting wood or straw no major technical improvements have been implemented. The emission factors for natural gas fuelled reciprocating engines have been reduced since year 2000 as a result of technical improvements that have been carried out due to lower emission limit values in Danish legislation. The NO{sub x} emission factor for natural gas fuelled gas turbines has decreased 62 % since year 2000. This is a result of installation of low-NO{sub x} burners in almost all gas turbines that has been necessary to meet new emission limits in Danish legislation. The emission measurements programme included screening of the emissions of HCB, PCB, PCDD/-F and PBDD/-F. Compared to the Danish national emission decentralized CHP plants are major emission sources for CH{sub 4}, NO{sub x}, SO{sub 2}, heavy metals and HCB. (author)

  18. Urban CO2 emissions metabolism: The Hestia Project

    Science.gov (United States)

    Gurney, K. R.; Razlivanov, I.; Zhou, Y.; Song, Y.

    2011-12-01

    A central expression of urban metabolism is the consumption of energy and the resulting environmental impact, particularly the emission of CO2 and other greenhouse gases. Quantification of energy and emissions has been performed for numerous cities but rarely has this been done in explicit space/time detail. Here, we present the Hestia Project, an effort aimed at building a high resolution (eg. building and road link-specific, hourly) fossil fuel CO2 emissions data product for the urban domain. A complete data product has been built for the city of Indianapolis and work is ongoing for the city of Los Angeles (Figure 1). The effort in Indianapolis is now part of a larger effort aimed at a convergent top-down/bottom-up assessment of greenhouse gas emissions, called INFLUX. Our urban-level quantification relies on a mixture of data and modeling structures. We start with the sector-specific Vulcan Project estimate at the mix of geocoded and county-wide levels. The Hestia aim is to distribute the Vulcan result in space and time. Two components take the majority of effort: buildings and onroad emissions. For the buildings, we utilize an energy building model which we constrain through lidar data, county assessor parcel data and GIS layers. For onroad emissions, we use a combination of traffic data and GIS road layers maintaining vehicle class information. Finally, all pointwise data in the Vulcan Project are transferred to our urban landscape and additional time distribution is performed. A key benefit of the approach taken in this study is the tracking and archiving of fuel and process-level detail (eg. combustion process, other pollutants), allowing for a more thorough understanding and analysis of energy throughputs in the urban environment. Next steps in this research from the metabolism perspective is to consider the carbon footprint of material goods and their lateral transfer in addition to the connection between electricity consumption and production.

  19. Soufriere Hills Volcano

    Science.gov (United States)

    2002-01-01

    In this ASTER image of Soufriere Hills Volcano on Montserrat in the Caribbean, continued eruptive activity is evident by the extensive smoke and ash plume streaming towards the west-southwest. Significant eruptive activity began in 1995, forcing the authorities to evacuate more than 7,000 of the island's original population of 11,000. The primary risk now is to the northern part of the island and to the airport. Small rockfalls and pyroclastic flows (ash, rock and hot gases) are common at this time due to continued growth of the dome at the volcano's summit.This image was acquired on October 29, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA

  20. Passive degassing at Nyiragongo (D.R. Congo) and Etna (Italy) volcanoes: the chemical characterization of the emissions and assessment of their uptake of trace elements emissions on the local environment

    Science.gov (United States)

    Calabrese, Sergio; Scaglione, Sarah; Milazzo, Silvia; D'Alessandro, Walter; Bobrowski, Nicole; Giuffrida, Giovanni; Tedesco, Dario; Parello, Francesco

    2014-05-01

    Volcanoes are well known as an impressive large natural source of trace elements into the troposphere. Among others, Etna (Italy) and Nyiragongo (D.R. Congo), two noteworthy emitters on Earth, are two stratovolcanoes located in different geological settings, both characterized by persistent passive degassing from their summit craters. Here, we present some results on trace element composition in volcanic plume emissions, atmospheric bulk deposition (rainwater) and their uptake of the surrounding vegetation, with the aim to compare and identify differences and similarities between this these two volcanoes. Volcanic emissions were sampled by using active filter-pack for acid gases (sulfur and halogens) and specific teflon filters for particulates (major and trace elements). The impact of the volcanogenic deposition in the surrounding of the crater rims was investigated by using different sampling techniques: bulk rain collectors gauges were used to collect atmospheric bulk deposition, and biomonitoring technique was carried out to collect gases and particulates by using endemic plant species. Concentrations of major and trace elements of volcanic plume emissions (gases and particulates) were obtained by elution and microwave digestion of the collected filters: sulfur and halogens were determined by ion chromatography and ICP-MS, and untreated filters for particulate were acid digested and analysed by ICP-OES and ICP-MS. Rain water and plant samples were also analysed for major and trace elements by using ICP-OES and ICP-MS. In total 55 elements were determined. The estimates of the trace element fluxes confirm that Etna and Nyiragongo are large sources of metals to the atmosphere, especially considering their persistent state of passive degassing. In general, chemical composition of the volcanic aerosol particles of both volcanoes is characterized by two main components: one is related to the silicic component produced by magma bursting and fragmentation, enriching

  1. Isotopic evolution of Mauna Kea volcano: Results from the initial phase of the Hawaii Scientific Drilling Project

    Science.gov (United States)

    Lassiter, J.C.; DePaolo, D.J.; Tatsumoto, M.

    1996-01-01

    We have examined the Sr, Nd, and Pb isotopic compositions of Mauna Kea lavas recovered by the first drilling phase of the Hawaii Scientific Drilling Project. These lavas, which range in age from ???200 to 400 ka, provide a detailed record of chemical and isotopic changes in basalt composition during the shied/postshield transition and extend our record of Mauna Kea volcanism to a late-shield period roughly equivalent to the last ???100 ka of Mauna Loa activity. Stratigraphic variations in isotopic composition reveal a gradual shift over time toward a more depleted source composition (e.g., higher 143Nd/144Nd, lower 87Sr/86Sr, and lower 3He/4He). This gradual evolution is in sharp contrast with the abrupt appearance of alkalic lavas at ???240 ka recorded by the upper 50 m of Mauna Kea lavas from the core. Intercalated tholeiitic and alkalic lavas from the uppermost Mauna Kea section are isotopically indistinguishable. Combined with major element evidence (e.g., decreasing SiO2 and increasing FeO) that the depth of melt segregation increased during the transition from tholeiitic to alkalic volcanism, the isotopic similarity of tholeiitic and alkalic lavas argues against significant lithosphere involvement during melt generation. Instead, the depleted isotopic signatures found in late shield-stage lavas are best explained by increasing the proportion of melt generated from a depleted upper mantle component entrained and heated by the rising central plume. Direct comparison of Mauna Kea and Mauna Loa lavas erupted at equivalent stages in these volcanoes' life cycles reveals persistent chemical and isotopic differences independent of the temporal evolution of each volcano. The oldest lavas recovered from the drillcore are similar to modern Kilauea lavas, but are distinct from Mauna Loa lavas. Mauna Kea lavas have higher 143Nd/144Nd and 206Pb/204Pb and lower 87Sr/86Sr. Higher concentrations of incompatible trace elements in primary magmas, lower SiO2, and higher FeO also

  2. Compositional variation within thick (>10 m) flow units of Mauna Kea Volcano cored by the Hawaii Scientific Drilling Project

    Science.gov (United States)

    Huang, Shichun; Vollinger, Michael J.; Frey, Frederick A.; Rhodes, J. Michael; Zhang, Qun

    2016-07-01

    Geochemical analyses of stratigraphic sequences of lava flows are necessary to understand how a volcano works. Typically one sample from each lava flow is collected and studied with the assumption that this sample is representative of the flow composition. This assumption may not be valid. The thickness of flows ranges from 100 m. Geochemical heterogeneity in thin flows may be created by interaction with the surficial environment whereas magmatic processes occurring during emplacement may create geochemical heterogeneities in thick flows. The Hawaii Scientific Drilling Project (HSDP) cored ∼3.3 km of basalt erupted at Mauna Kea Volcano. In order to determine geochemical heterogeneities in a flow, multiple samples from four thick (9.3-98.4 m) HSDP flow units were analyzed for major and trace elements. We found that major element abundances in three submarine flow units are controlled by the varying proportion of olivine, the primary phenocryst phase in these samples. Post-magmatic alteration of a subaerial flow led to loss of SiO2, CaO, Na2O, K2O and P2O5, and as a consequence, contents of immobile elements, such as Fe2O3 and Al2O3, increase. The mobility of SiO2 is important because Mauma Kea shield lavas divide into two groups that differ in SiO2 content. Post-magmatic mobility of SiO2 adds complexity to determining if these groups reflect differences in source or process. The most mobile elements during post-magmatic subaerial and submarine alteration are K and Rb, and Ba, Sr and U were also mobile, but their abundances are not highly correlated with K and Rb. The Ba/Th ratio has been used to document an important role for a plagioclase-rich source component for basalt from the Galapagos, Iceland and Hawaii. Although Ba/Th is anomalously high in Hawaiian basalt, variation in Ba abundance within a single flow shows that it is not a reliable indicator of a deep source component. In contrast, ratios involving elements that are typically immobile, such as La/Nb, La

  3. Hyaloclastites and the slope stability of Hawaiian volcanoes: Insights from the Hawaiian Scientific Drilling Project's 3-km drill core

    Science.gov (United States)

    Schiffman, Peter; Watters, Robert J.; Thompson, Nick; Walton, Anthony W.

    2006-03-01

    Core samples recovered during the Hawaiian Scientific Drilling Project (HSDP) drilling project reveal that the upper 1 km of the submarine flank of Mauna Kea is comprised mainly of hyaloclastites. Progressive, very low-temperature alteration of these hyaloclastites has been accompanied by systematic transformations in physical properties of these deposits. Hyaloclastite deposits which directly underlie ca. 1 km of subaerially-emplaced lavas are very poorly consolidated. But over a depth interval of ca. 500 m, compaction and, especially, precipitation of zeolitic, pore-filling cements associated with palagonitization of sideromelane, have eliminated porosity as well as promoted the consolidation of these hyaloclastites. The latter is reflected in unconfined compressive strengths which increase from mean values, respectively, of 2.5 and 4.6 MPa in weakly consolidated, smectite-rich hyaloclastites from the incipient (1080 to 1335 mbsl) and smectitic (1405-1573 mbsl) alteration zones, to a mean value of 10.0 MPa in the more highly consolidated hyaloclastites of the palagonitic zone of alteration (from 1573 mbsl to the bottom of the drill hole). Conversely, overlying, intercalated, and underlying lava flows are generally much less altered, and have mean compressive strengths which are 1 to 2 orders of magnitude greater then hyaloclastites at equivalent depths. The shear strengths of the hyaloclastites also increase with depth and grade of alteration, but are uniformly and substantially lower in the lavas. Those hyaloclastites exhibiting the highest grade of alteration (i.e., palagonitic) also exhibit the highest measured strengths, and thus the alteration of hyaloclastites appears to strengthen as opposed to weaken the flanks of the edifice. However, the contrast in strength between hyaloclastites and lavas may be a primary factor in localizing destabilization, and the zones of weak and poorly consolidated hyaloclastites may facilitate slumping by servings as hosts for

  4. Vanishing Volcano

    Institute of Scientific and Technical Information of China (English)

    杨树仁

    1995-01-01

    Mauna Loa, the world’s largest active volcano,is sinking into the Pacific Ocean——and it’s taking the main island of Hawaii with it! The problem:The mighty volcano has gained too much weight, says Peter Lipman of the U. S. Geological Survey.

  5. Development and testing of an automated High-resolution InSAR volcano-monitoring system in the MED-SUV project

    Science.gov (United States)

    Chowdhury, Tanvir Ahmed; Minet, Christian; Fritz, Thomas; Rodriguez Gonzalez, Fernando

    2015-04-01

    Volcanic unrest which produces a variety of geological and hydrological hazards is difficult to predict. Therefore it is important to monitor volcanoes continuously. The monitoring of active volcanoes requires the reliable measurement of surface deformation before, during and after volcanic activities. Besides the improvements of the understanding of geophysical processes underlying the volcanic systems of Vesuvius/ Campi Flegrei and Mt. Etna, one of the main goals of the MED-SUV (MEDiterranean SUpersite Volcanoes) project is to design a system for automatically monitoring ground deformations over active volcanoes. Space-borne synthetic aperture radar (SAR) interferometry (InSAR), persistent scatterer interferometry (PSI) and small baseline subset algorithm (SBAS) provide powerful tools for observing the surface changes with millimeter accuracy. All the mentioned techniques address the challenges by exploiting medium to large SAR image stacks. The generation of interferometric products constitutes a major effort in terms of processing and planning. It requires a high degree of automation, robustness and quality control of the overall process. As a consequence of these requirements and constrains, the Integrated Wide Area Processor (IWAP) developed at DLR is introduced in the framework of a remote sensing task of MED-SUV project. The IWAP has been conceived and designed to optimize the processing workflow in order to minimize the processing time. Moreover, a quality control concept has been developed and integrated in the workflow. The IWAP is structured into three parts: (i) firstly, preparation of an order file containing some configuration parameters and invokes the processor; (ii) secondly, upon request from the processor, the operator performs some manual interactions by means of visual interfaces; (iii) analysis of the final product supported by extensive product visualization. This visualization supports the interpretation of the results without the need of

  6. A New Breed of Database System: Volcano Global Risk Identification and Analysis Project (VOGRIPA)

    Science.gov (United States)

    Crosweller, H. S.; Sparks, R. S.; Siebert, L.

    2009-12-01

    VOGRIPA originated as part of the Global Risk Identification Programme (GRIP) that is being co-ordinated from the Earth Institute of Columbia University under the auspices of the United Nations and World Bank. GRIP is a five-year programme aiming at improving global knowledge about risk from natural hazards and is part of the international response to the catastrophic 2004 Asian tsunami. VOGRIPA is also a formal IAVCEI project. The objectives of VOGRIPA are to create a global database of volcanic activity, hazards and vulnerability information that can be analysed to identify locations at high risk from volcanism, gaps in knowledge about hazards and risk, and will allow scientists and disaster managers at specific locations to analyse risk within a global context of systematic information. It is this added scope of risk and vulnerability as well as hazard which sets VOGRIPA apart from most previous databases. The University of Bristol is the central coordinating centre for the project, which is an international partnership including the Smithsonian Institution, the Geological Survey of Japan, the Earth Observatory of Singapore (Chris Newhall), the British Geological Survey, the University of Buffalo (SUNY) and Munich Re. The partnership is intended to grow and any individuals or institutions who are able to contribute resources to VOGRIPA objectives are welcome to participate. Work has already begun (funded principally by Munich Re) on populating a database of large magnitude explosive eruptions reaching back to the Quaternary, with extreme-value statistics being used to evaluate the magnitude-frequency relationship of such events, and also an assessment of how the quality of records affect the results. The following 4 years of funding from the European Research Council for VOGRIPA will be used to establish further international collaborations in order to develop different aspects of the database, with the data being accessible online once it is sufficiently

  7. Prodigious emission rates and magma degassing budget of major, trace and radioactive volatile species from Ambrym basaltic volcano, Vanuatu island Arc

    Science.gov (United States)

    Allard, P.; Aiuppa, A.; Bani, P.; Métrich, N.; Bertagnini, A.; Gauthier, P.-J.; Shinohara, H.; Sawyer, G.; Parello, F.; Bagnato, E.; Pelletier, B.; Garaebiti, E.

    2016-08-01

    Ambrym volcano, in the Vanuatu arc, is one of the most active volcanoes of the Southwest Pacific region, where persistent lava lake and/or Strombolian activity sustains voluminous gas plume emissions. Here we report on the first comprehensive budget for the discharge of major, minor, trace and radioactive volatile species from Ambrym volcano, as well as the first data for volatiles dissolved in its basaltic magma (olivine-hosted melt inclusions). In situ MultiGAS analysis of H2O, CO2, SO2 and H2S in crater rim emissions, coupled with filter-pack determination of SO2, halogens, stable and radioactive metals demonstrates a common magmatic source for volcanic gases emitted by its two main active craters, Benbow and Marum. These share a high water content ( 93 mol%), similar S/Cl, Cl/F, Br/Cl molar ratios, similar (210Po/210Pb) and (210Bi/210Pb) activity ratios, as well as comparable proportions in most trace metals. Their difference in CO2/SO2 ratio (1.0 and 5.6-3.0, respectively) is attributed to deeper gas-melt separation at Marum (Strombolian explosions) than Benbow (lava lake degassing) during our measurements in 2007. Airborne UV sensing of the SO2 plume flux (90 kg s- 1 or 7800 tons d- 1) demonstrates a prevalent degassing contribution ( 65%) of Benbow crater in that period and allows us to quantify the total volatile fluxes during medium-level eruptive activity of the volcano. Results reveal that Ambrym ranks among the most powerful volcanic gas emitters on Earth, producing between 5% and 9% of current estimates for global subaerial volcanic emissions of H2O, CO2, HCl, Cu, Cr, Cd, Au, Cs and Tl, between 10% and 17% of SO2, HF, HBr, Hg, 210Po and 210Pb, and over 30% of Ag, Se and Sn. Global flux estimates thus need to integrate its contribution and be revised accordingly. Prodigious gas emission from Ambrym does not result from an anomalous volatile enrichment nor a differential excess degassing of its feeding basalt: this latter contains relatively modest

  8. Innovations in projecting emissions for air quality modeling ...

    Science.gov (United States)

    Air quality modeling is used in setting air quality standards and in evaluating their costs and benefits. Historically, modeling applications have projected emissions and the resulting air quality only 5 to 10 years into the future. Recognition that the choice of air quality management strategy has climate change implications is encouraging longer modeling time horizons. However, for multi-decadal time horizons, many questions about future conditions arise. For example, will current population, economic, and land use trends continue, or will we see shifts that may alter the spatial and temporal pattern of emissions? Similarly, will technologies such as building-integrated solar photovoltaics, battery storage, electric vehicles, and CO2 capture emerge as disruptive technologies - shifting how we produce and use energy - or will these technologies achieve only niche markets and have little impact? These are some of the questions that are being evaluated by researchers within the U.S. EPA’s Office of Research and Development. In this presentation, Dr. Loughlin will describe a range of analytical approaches that are being explored. These include: (i) the development of alternative scenarios of the future that can be used to evaluate candidate management strategies over wide-ranging conditions, (ii) the application of energy system models to project emissions decades into the future and to assess the environmental implications of new technologies, (iii) and methodo

  9. Dante's volcano

    Science.gov (United States)

    1994-09-01

    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  10. From high quality seismic data acquisition in remote volcanic area to fast data distribution to scientific community: The UnderVolc project on Piton de la Fournaise volcano

    Science.gov (United States)

    Brenguier, Florent; Kowalski, Philippe; Pequegnat, Catherine; Lauret, Frédéric; Cougoulat, Glenn; Boissier, Patrice; Catherine, Philippe

    2010-05-01

    Piton de la Fournaise basaltic volcano (La Réunion island, France) is one of the most active volcano in the world with an average of one eruption every year. This volcano is thus an ideal case study for research projects focusing on studying magmatic, seismic and deformation processes occurring in volcanic areas. The UNDERVOLC (UNDERstanding VOLCanic Processes) research project main goal is to provide high quality 3-component broadband continuous seismic data to an amount of about 30 volcano-seismologists from different international research teams (including Japan and New-Zealand). This data acquisition system is moreover dedicated to the monitoring of Piton de la Fournaise volcano by providing real-time seismic data to the Piton de la Fournaise volcanological Observatory/IPGP. The network consists of 21 fully autonomous stations composed of CMG40-T seismometers associated to high dynamic digitizers and linked to wireless digital radio stations. The seismic signal is sent by UDP protocol to the observatory through a network of wireless LAN over large distances (~10 km) and possibly through the internet to the Observatory. The acquisition system at the observatory is composed of: 1-An Earthworm system (USGS - ISTI - CERI) with a Q330 to Earthworm data acquisition module (6 permanent stations from the observatory) 2-An Apollo server system (Nanometrics) for 15 stations (for which seismometers and digitizers belong to the French national pool of portable seismic instruments Sismob, INSU-CNRS) In both case, requests are sent back to the stations in case of loss of udp packets. This system allows us producing miniseed files every hour. Since September 2009, the full dataset has less then 1 % of gaps. In order to provide a fast data access to the scientific community, we synchronize our dataset every night with the SISMOB datacenter located in France (LGIT, Grenoble). After a quality check, seed data volumes are produced and distributed by standard NETDC requests from

  11. What Are Volcano Hazards?

    Science.gov (United States)

    ... Sheet 002-97 Revised March 2008 What Are Volcano Hazards? Volcanoes give rise to numerous geologic and ... as far as 15 miles from the volcano. Volcano Landslides A landslide or debris avalanche is a ...

  12. Observed changes of the diffuse H_{2} emission at the summit cone of Teide volcano (Tenerife, Canary Islands): a geochemical evidence of processes operating deep in the magmatic system

    Science.gov (United States)

    Pérez, Nemesio M.; Melián, Gladys V.; Padrón, Eleazar; Asensio-Ramos, María; Padilla, Germán; Rodríguez, Fátima; Calvo, David; Barrancos, José; Hernández, Pedro A.

    2017-04-01

    Hydrogen is one of the most abundant trace species in volcano-hydrothermal systems and is a key participant in many redox reactions occurring in the hydrothermal reservoir gas (Giggenbach 1987; Chiodini and Marini 1998). Because of its chemical and physical characteristics such as low weight and low solubility in groundwater and hydrothermal fluids, H2 moves rapidly within the crust and escapes easily to the atmosphere. These characteristics make H2a potentially excellent tracer of processes operating deep in magmatic systems. Most of the diffuse degassing studies on active volcanic-hydrothermal systems is primarily focused on CO2, the second major component of volcanic gases. Unfortunately however, few studies of surface H2efflux measurements at active volcanoes have been performed to evaluate diffuse H2 emission rates from active volcanic systems. Here, we report a time series on diffuse H2 emission rates from surveys carried out in yearly basis at the summit cone of Teide volcano, where most obvious geothermal features at Tenerife occurs, during the 2006-2016 period. Thousands of samples of volcanic gases from the surface environment, at 40 cm depth, have been collected during this 2006-2016 period to estimate surface H2 efflux values from 150 observation sites selected to cover the 0.5 Km2 area of the summit cone Teide volcano. Most of the surveys showed diffuse H2 emission rate values lower than 40 kgṡd-1 from the summit cone of Teide volcano. On the contrary, an increasing trend of diffuse H2 emission rate from 35 ± 7 to 122 ± 36 kgṡd-1 was observed during the 2006 to 2009 period. This increase trend of diffuse H2 emission rate was detected before a raise of seismic activity in and around Tenerife from November 2009 to June 2011, with about 1176 seismic events recorded by Spanish-IGN in 2010 (Pérez and Schmincke, 2016). The observed increased trend of diffuse H2 emission occurs simultaneously with an increase trend of diffuse CO2 emission at the summit

  13. An Instrument to Measure Aircraft Sulfate Particle Emissions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft particle emissions contribute a modest, but growing, portion of the overall particle emissions budget. Characterizing aircraft particle emissions is...

  14. Volcano monitoring with an infrared camera: first insights from Villarrica Volcano

    Science.gov (United States)

    Rosas Sotomayor, Florencia; Amigo Ramos, Alvaro; Velasquez Vargas, Gabriela; Medina, Roxana; Thomas, Helen; Prata, Fred; Geoffroy, Carolina

    2015-04-01

    This contribution focuses on the first trials of the, almost 24/7 monitoring of Villarrica volcano with an infrared camera. Results must be compared with other SO2 remote sensing instruments such as DOAS and UV-camera, for the ''day'' measurements. Infrared remote sensing of volcanic emissions is a fast and safe method to obtain gas abundances in volcanic plumes, in particular when the access to the vent is difficult, during volcanic crisis and at night time. In recent years, a ground-based infrared camera (Nicair) has been developed by Nicarnica Aviation, which quantifies SO2 and ash on volcanic plumes, based on the infrared radiance at specific wavelengths through the application of filters. Three Nicair1 (first model) have been acquired by the Geological Survey of Chile in order to study degassing of active volcanoes. Several trials with the instruments have been performed in northern Chilean volcanoes, and have proven that the intervals of retrieved SO2 concentration and fluxes are as expected. Measurements were also performed at Villarrica volcano, and a location to install a ''fixed'' camera, at 8km from the crater, was discovered here. It is a coffee house with electrical power, wifi network, polite and committed owners and a full view of the volcano summit. The first measurements are being made and processed in order to have full day and week of SO2 emissions, analyze data transfer and storage, improve the remote control of the instrument and notebook in case of breakdown, web-cam/GoPro support, and the goal of the project: which is to implement a fixed station to monitor and study the Villarrica volcano with a Nicair1 integrating and comparing these results with other remote sensing instruments. This works also looks upon the strengthen of bonds with the community by developing teaching material and giving talks to communicate volcanic hazards and other geoscience topics to the people who live "just around the corner" from one of the most active volcanoes

  15. Catalogue of Icelandic Volcanoes

    Science.gov (United States)

    Ilyinskaya, Evgenia; Larsen, Gudrun; Gudmundsson, Magnus T.; Vogfjord, Kristin; Pagneux, Emmanuel; Oddsson, Bjorn; Barsotti, Sara; Karlsdottir, Sigrun

    2016-04-01

    The Catalogue of Icelandic Volcanoes is a newly developed open-access web resource in English intended to serve as an official source of information about active volcanoes in Iceland and their characteristics. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland GOSVÁ (commenced in 2012), as well as being part of the effort of FUTUREVOLC (2012-2016) on establishing an Icelandic volcano supersite. Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene (the time since the end of the last glaciation - approximately the last 11,500 years). In the last 50 years, over 20 eruptions have occurred in Iceland displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and the distribution lava and tephra. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in numerous scientific papers and other publications. In 2010, the International Civil Aviation Organisation (ICAO) funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU through the FP7 project FUTUREVOLC. The Catalogue of Icelandic Volcanoes is a collaboration of the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Civil Protection Department of the National Commissioner of the Iceland Police, with contributions from a large number of specialists in Iceland and elsewhere. The Catalogue is built up of chapters with texts and various

  16. The polonium 210 in aerosols: contribution to the study of savannah fires and volcano emissions; Le polonium 210 dans les aerosols: contribution a l`etude des feux de savanes et des emissions volcaniques

    Energy Technology Data Exchange (ETDEWEB)

    Nho-Kim, E.Y

    1996-06-27

    Natural sources plan a fundamental role on the emission of the species causing climatic variations. The aim of this study is, on the one hand, to estimate fluxes of different components emitted by biomass burning and volcanoes, and on the other hand, to trace these components in time and space. We used {sup 210}Po, last decay product in the {sup 238}U series, as a tracer, as it is one of the characteristic species emitted by these sources: it is highly enriched in these plumes compared to the usual atmosphere and the {sup 210}Po radioactivity is not affected by chemical transformation. We have shown that the contribution of biomass burning on the {sup 210}Po concentration in local background atmosphere is minor during the dry season, compared to that of Saharan soil dusts despite of the importance of this source in the global budget of {sup 210}Po (10%). However, the good correlation observed between the {sup 210}Po concentration and that of carbonaceous aerosols and of CO{sub 2} in biomass burning plumes reveals that {sup 210}Po can be used as a reference of the components emitted by biomass burning. We have estimated the contribution of the Indonesian volcanoes which represent about 5 to 30 % of the global volcanic budget of trace metals. Atmospheric transport of these volcanic plumes was simulated using the {sup 210}Po as a tracer. Due to the characteristic atmospheric circulation in this region, vertical transport is predominant over meridian dispersion, which is moderated by the convergence of the trade winds. The impact of these volcanic emissions on the atmospheric concentration of the trace metals remains a local effect when the volcanic activity is out of cataclysmal eruptions. (author)

  17. A Compilation of Gas Emission-Rate Data from Volcanoes of Cook Inlet (Spurr, Crater Peak, Redoubt, Iliamna, and Augustine) and Alaska Peninsula (Douglas, Fourpeaked, Griggs, Mageik, Martin, Peulik, Ukinrek Maars, and Veniaminof), Alaska, from 1995-2006

    Science.gov (United States)

    Doukas, Michael P.; McGee, Kenneth A.

    2007-01-01

    INTRODUCTION This report presents gas emission rates from data collected during numerous airborne plume-measurement flights at Alaskan volcanoes since 1995. These flights began in about 1990 as means to establish baseline values of volcanic gas emissions during periods of quiescence and to identify anomalous levels of degassing that might signal the beginning of unrest. The primary goal was to make systematic measurements at the major volcanic centers around the Cook Inlet on at least an annual basis, and more frequently during periods of unrest and eruption. A secondary goal was to measure emissions at selected volcanoes on the Alaska Peninsula. While the goals were not necessarily met in all cases due to weather, funding, or the availability of suitable aircraft, a rich dataset of quality measurements is the legacy of this continuing effort. An earlier report (Doukas, 1995) presented data for the period from 1990 through 1994 and the current report provides data through 2006. This report contains all of the available measurements for SO2, CO2, and H2S emission rates in Alaska determined by the U. S. Geological Survey from 1995 through 2006; airborne measurements for H2S began in Alaska in 2001. The results presented here are from Cook Inlet volcanoes at Spurr, Crater Peak, Redoubt, Iliamna, and Augustine and cover periods of unrest at Iliamna (1996) and Spurr (2004-2006) as well as the 2006 eruption of Augustine. Additional sporadic measurements at volcanoes on the Alaska Peninsula (Douglas, Martin, Mageik, Griggs, Veniaminof, Ukinrek Maars, Peulik, and Fourpeaked during its 2006 unrest) are also reported here.

  18. In Situ Observations and Sampling of Volcanic Emissions with Unmanned Aircraft: A NASA/UCR Case Study at Turrialba Volcano, Costa Rica

    Science.gov (United States)

    Pieri, David; Diaz, Jorge Andres; Bland, Geoffrey; Fladeland, Matthew; Madrigal, Yetty; Corrales, Ernesto; Alan, Alfredo; Alegria, Oscar; Realmuto, Vincent; Miles, Ted

    2011-01-01

    Burgeoning new technology in the design and development of robotic aircraft-unmanned aerial vehicles (UAVs)-presents unprecedented opportunities for the volcanology community to observe, measure, and sample eruption plumes and drifting volcanic clouds in situ. While manned aircraft can sample dilute parts of such emissions, demonstrated hazards to air breathing, and most particularly turbine, engines preclude penetration of the zones of highest ash concentrations. Such areas within plumes are often of highest interest with respect to boundary conditions of applicable mass-loading retrieval models, as well as Lagrangian, Eulerian, and hybrid transport models used by hazard responders to predict plume trajectories, particularly in the context of airborne hazards. Before the 2010 Ejyafyallajokull eruption in Iceland, ICAO zero-ash-tolerance rules were typically followed, particularly for relatively uncrowded Pacific Rim airspace, and over North and South America, where often diversion of aircraft around ash plumes and clouds was practical. The 2010 eruption in Iceland radically changed the paradigm, in that critical airspace over continental Europe and the United Kingdom were summarily shut by local civil aviation authorities and EURO CONTROL. A strong desire emerged for better real-time knowledge of ash cloud characteristics, particularly ash concentrations, and especially for validation of orbital multispectral imaging. UAV platforms appear to provide a viable adjunct, if not a primary source, of such in situ data for volcanic plumes and drifting volcanic clouds from explosive eruptions, with prompt and comprehensive application to aviation safety and to the basic science of volcanology. Current work is underway in Costa Rica at Turrialba volcano by the authors, with the goal of developing and testing new small, economical UAV platforms, with miniaturized instrument payloads, within a volcanic plume. We are underway with bi-monthly deployments of tethered SO2-sondes

  19. Catalogue of Icelandic volcanoes

    Science.gov (United States)

    Ilyinskaya, Evgenia; Larsen, Gudrun; Vogfjörd, Kristin; Tumi Gudmundsson, Magnus; Jonsson, Trausti; Oddsson, Björn; Reynisson, Vidir; Barsotti, Sara; Karlsdottir, Sigrun

    2015-04-01

    Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene. In the last 100 years, over 30 eruptions have occurred displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and their distribution. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in scientific papers and other publications. In 2010, the International Civil Aviation Organisation funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland (commenced in 2012), and the EU FP7 project FUTUREVOLC (2012-2016), establishing an Icelandic volcano Supersite. The Catalogue is a collaborative effort between the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Icelandic Civil Protection, with contributions from a large number of specialists in Iceland and elsewhere. The catalogue is scheduled for opening in the first half of 2015 and once completed, it will be an official publication intended to serve as an accurate and up to date source of information about active volcanoes in Iceland and their characteristics. The Catalogue is an open web resource in English and is composed of individual chapters on each of the volcanic systems. The chapters include information on the geology and structure of the volcano; the eruption history, pattern and products; the known precursory signals

  20. Quantifying gas emissions from the “Millennium Eruption” of Paektu volcano, Democratic People’s Republic of Korea/China

    Science.gov (United States)

    Iacovino, Kayla; Ju-Song, Kim; Sisson, Thomas; Lowenstern, Jacob; Kuk-Hun, Ri; Jong-Nam, Jang; Kun-Ho, Song; Song-Hwan, Ham; Oppenheimer, Clive; Hammond, James O. S.; Donovan, Amy; Liu, Kosima W.; Kum-Ran, Ryu

    2016-01-01

    Paektu volcano (Changbaishan) is a rhyolitic caldera that straddles the border between the Democratic People’s Republic of Korea and China. Its most recent large eruption was the Millennium Eruption (ME; 23 km3 dense rock equivalent) circa 946 CE, which resulted in the release of copious magmatic volatiles (H2O, CO2, sulfur, and halogens). Accurate quantification of volatile yield and composition is critical in assessing volcanogenic climate impacts but is challenging, particularly for events before the satellite era. We use a geochemical technique to quantify volatile composition and upper bounds to yields for the ME by examining trends in incompatible trace and volatile element concentrations in crystal-hosted melt inclusions. We estimate that the ME could have emitted as much as 45 Tg of S to the atmosphere. This is greater than the quantity of S released by the 1815 eruption of Tambora, which contributed to the “year without a summer.” Our maximum gas yield estimates place the ME among the strongest emitters of climate-forcing gases in the Common Era. However, ice cores from Greenland record only a relatively weak sulfate signal attributed to the ME. We suggest that other factors came into play in minimizing the glaciochemical signature. This paradoxical case in which high S emissions do not result in a strong glacial sulfate signal may present a way forward in building more generalized models for interpreting which volcanic eruptions have produced large climate impacts. PMID:28138521

  1. Santorini Volcano

    Science.gov (United States)

    Druitt, T.H.; Edwards, L.; Mellors, R.M.; Pyle, D.M.; Sparks, R.S.J.; Lanphere, M.; Davies, M.; Barreirio, B.

    1999-01-01

    Santorini is one of the most spectacular caldera volcanoes in the world. It has been the focus of significant scientific and scholastic interest because of the great Bronze Age explosive eruption that buried the Minoan town of Akrotiri. Santorini is still active. It has been dormant since 1950, but there have been several substantial historic eruptions. Because of this potential risk to life, both for the indigenous population and for the large number of tourists who visit it, Santorini has been designated one of five European Laboratory Volcanoes by the European Commission. Santorini has long fascinated geologists, with some important early work on volcanoes being conducted there. Since 1980, research groups at Cambridge University, and later at the University of Bristol and Blaise Pascal University in Clermont-Ferrand, have collected a large amount of data on the stratigraphy, geochemistry, geochronology and petrology of the volcanics. The volcanic field has been remapped at a scale of 1:10 000. A remarkable picture of cyclic volcanic activity and magmatic evolution has emerged from this work. Much of this work has remained unpublished until now. This Memoir synthesizes for the first time all the data from the Cambridge/Bristol/Clermont groups, and integrates published data from other research groups. It provides the latest interpretation of the tectonic and magmatic evolution of Santorini. It is accompanied by the new 1:10 000 full-colour geological map of the island.

  2. Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 2 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    2006-06-01

    This report summarizes the results of the second phase of a lubricants project, which investigated the impact of engine oil formulation on diesel vehicle emissions and the performance of a nitrogen oxide adsorber catalyst (NAC).

  3. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-01-01

    To accurately represent how conservation and efficiency policies affect energy demand, both direct and indirect impacts need to be included in the accounting. The indirect impacts are defined here as the resource savings that accrue over the fuel production chain, which when added to the energy consumed at the point of use, constitute the full-fuel- cycle (FFC) energy. This paper uses the accounting framework developed in (Coughlin 2012) to calculate FFC energy metrics as time series for the period 2010-2040. The approach is extended to define FFC metrics for the emissions of greenhouse gases (GHGs) and other air-borne pollutants. The primary focus is the types of energy used in buildings and industrial processes, mainly natural gas and electricity. The analysis includes a discussion of the fuel production chain for coal, which is used extensively for electric power generation, and for diesel and fuel oil, which are used in mining, oil and gas operations, and fuel distribution. Estimates of the energy intensity parameters make use of data and projections from the Energy Information Agency’s National Energy Modeling System, with calculations based on information from the Annual Energy Outlook 2012.

  4. Compilation and analyses of emissions inventories for the NOAA atmospheric chemistry project. Progress report, August 1997

    Energy Technology Data Exchange (ETDEWEB)

    Benkovitz, C.M.

    1997-09-01

    Global inventories of anthropogenic emissions of oxides of nitrogen for circa 1985 and 1990 and non-methane volatile organic compounds (NMVOCs) for circa 1990 have been compiled by this project. Work on the inventories has been carried out under the umbrella of the Global Emissions Inventory Activity of the International Global Atmospheric Chemistry program. Global emissions of NOx for 1985 are estimated to be 21 Tg N/yr, with approximately 84% originating in the Northern Hemisphere. The global emissions for 1990 are 31 Tg N/yr for NOx and 173 Gg NMVOC/yr. Ongoing research activities for this project continue to address emissions of both NOx and NMVOCs. Future tasks include: evaluation of more detailed regional emissions estimates and update of the default 1990 inventories with the appropriate estimates; derivation of quantitative uncertainty estimates for the emission values; and development of emissions estimates for 1995.

  5. Road project opportunity costs subject to a regional constraint on greenhouse gas emissions.

    Science.gov (United States)

    Martin, Jean-Christophe; Point, Patrick

    2012-12-15

    France has constrained the Aquitaine region to set up a climate plan to avoid an emission of 2883 ktCO(2)eq for the period 2007-2013. In parallel, the region has decided to carry out the construction of road infrastructures in order to avoid very high congestion costs. Those road projects will involve an increase in greenhouse gas (GHG) emissions during that period. In the present context of strong sustainability, all emissions (direct and indirect) generated by those projects should be offset. At the regional level, the offsetting of GHG emissions is usually carried out by implementing carbon sequestration projects or projects that reduce energy demand. This paper aims at determining the maximum budget for financing GHG emissions offsetting projects, with computation being based on the opportunity costs of projects, the minimum cost of economic activity reduction required to offset emissions from those projects. The maximum budget devoted to GHG emissions offsetting projects should not exceed €(2001) 1920 M to €(2001) 3592 M, according to low/high traffic growth assumptions.

  6. Factorization of air pollutant emissions: projections versus observed trends in Europe.

    Science.gov (United States)

    Rafaj, Peter; Amann, Markus; Siri, José G

    2014-10-01

    This paper revisits the emission scenarios of the European Commission's 2005 Thematic Strategy on Air Pollution (TSAP) in light of today's knowledge. We review assumptions made in the past on the main drivers of emission changes, i.e., demographic trends, economic growth, changes in the energy intensity of GDP, fuel-switching, and application of dedicated emission control measures. Our analysis shows that for most of these drivers, actual trends have not matched initial expectations. Observed ammonia and sulfur emissions in European Union in 2010 were 10% to 20% lower than projected, while emissions of nitrogen oxides and particulate matter exceeded estimates by 8% to 15%. In general, a higher efficiency of dedicated emission controls compensated for a lower-than-expected decline in total energy consumption as well as a delay in the phase-out of coal. For 2020, updated projections anticipate lower sulfur and nitrogen oxide emissions than those under the 2005 baseline, whereby the degree to which these emissions are lower depends on what assumptions are made for emission controls and new vehicle standards. Projected levels of particulates are about 10% higher, while smaller differences emerge for other pollutants. New emission projections suggest that environmental targets established by the TSAP for the protection of human health, eutrophication and forest acidification will not be met without additional measures.

  7. Hawaiian Volcano Flank Stability Appraised From Strength Testing the Hawaiian Scientific Drilling Project's (HSDP) 3.1-km Drill Core

    Science.gov (United States)

    Thompson, N.; Watters, R. J.; Schiffman, P.

    2005-12-01

    the means of the basaltic flows, intrusive and pillow lava values. The test results imply that shallow rotational slumps that develop within the upper few kilometers of spreading Hawai'ian volcanoes within low strength, poorly-consolidated, smectite-rich hyaloclastites are similar to those we have found from the incipient and smectitic alteration zones of the HSDP cores. Deeper slumps might be directed through over-pressured pillow lava units as a result of the stronger pillow lava units permitting deeper failure surfaces to develop. Petrographically the Mauna Kea hyaloclastites appear similar to those from actively spreading Hawai'ian shield volcanoes. Alteration processes apparently affect the strength of these hyaloclastites. In the shallower zones of incipient and smectitic alteration, hyaloclastites generally retain their high primary porosities. In the deeper, palagonitic zone of alteration, the hyaloclastites gain both compressive and shear strength, primarily through consolidation and zeolitic cementation. The marked strength contrast between hyaloclastites, and the lavas that overlie and underlie them is significant, and may be a primary factor in localizing the destabilization of the flanks of Hawaiian volcanoes.

  8. Acoustic Emissions (AE) Electrical Systems' Health Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Acoustic Emissions (AE) are associated with physical events, such as thermal activity, dielectric breakdown, discharge inception, as well as crack nucleation and...

  9. Air Pollutant Emissions Projections for the Cement and Steel Industry in China and the Impact of Emissions Control Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Khanna, Nina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-03-01

    China’s cement and steel industry accounts for approximately half of the world’s total cement and steel production. These two industries are two of the most energy-intensive and highest carbon dioxide (CO2)-emitting industries and two of the key industrial contributors to air pollution in China. For example, the cement industry is the largest source of particulate matter (PM) emissions in China, accounting for 40 percent of its industrial PM emissions and 27 percent of its total national PM emissions. The Chinese steel industry contributed to approximately 20 percent of sulfur dioxide (SO2) emissions and 27 percent of PM emissions for all key manufacturing industries in China in 2013. In this study, we analyzed and projected the total PM and SO2 emissions from the Chinese cement and steel industry from 2010–2050 under three different scenarios: a Base Case scenario, an Advanced scenario, and an Advanced EOP (end-of-pipe) scenario. We used bottom-up emissions control technologies data and assumptions to project the emissions. In addition, we conducted an economic analysis to estimate the cost for PM emissions reductions in the Chinese cement industry using EOP control technologies, energy efficiency measures, and product change measures. The results of the emissions projection showed that there is not a substantial difference in PM emissions between the Base Case and Advanced scenarios, for both the cement and steel industries. This is mainly because PM emissions in the cement industry caused mainly by production process and not the fuel use. Since our forecast for the cement production in the Base Case and Advanced scenarios are not too different from each other, this results in only a slight difference in PM emissions forecast for these two scenarios. Also, we assumed a similar share and penetration rate of control technologies from 2010 up to 2050 for these two scenarios for the cement and steel industry. However, the Advanced EOP

  10. ESP 2.0: Improved method for projecting U.S. GHG and air pollution emissions through 2055

    Science.gov (United States)

    The Emission Scenario Projection (ESP) method is used to develop multi-decadal projections of U.S. Greenhouse Gas (GHG) and criteria pollutant emissions. The resulting future-year emissions can then translated into an emissions inventory and applied in climate and air quality mod...

  11. Characterizing the emissivity of materials under dynamic compression (final report for LDRD project 79877).

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Daniel H.

    2007-10-01

    Temperature measurements are crucial to equation of state development, but difficult to perform reliably. In the case of infrared pyrometry, a large uncertainty comes from the fact that sample emissivity (the deviation from a blackbody) is unknown. In this project, a method for characterizing the emissivity of shocked materials was developed. By coupling infrared radiation from the National Synchrotron Light Source to a gas gun system, broad spectrum emissivity changes were studied to a peak stress of 8 GPa. Emissivity measurements were performed on standard metals (Al, Cr, Cu, and Pt) as well as a high emissivity coating developed at Sandia.

  12. An Adaptive Chemistry Approach to Modeling Emissions Performance of Gas Turbine Combustors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposed SBIR project, we seek to implement the Adaptive Chemistry methodology in existing CFD codes used to investigate the emissions performance of gas...

  13. Uncertainty in greenhouse-gas emission scenario projections: Experiences from Mexico and South Africa

    DEFF Research Database (Denmark)

    Puig, Daniel

    This report outlines approaches to quantify the uncertainty associated with national greenhouse-gas emission scenario projections. It does so by describing practical applications of those approaches in two countries – Mexico and South Africa. The goal of the report is to promote uncertainty...... quantification, because quantifying uncertainty has the potential to foster more robust climate-change mitigation plans. To this end the report also summarises the rationale for quantifying uncertainty in greenhouse-gas emission scenario projections....

  14. Linking space observations to volcano observatories in Latin America: Results from the CEOS DRM Volcano Pilot

    Science.gov (United States)

    Delgado, F.; Pritchard, M. E.; Biggs, J.; Arnold, D. W. D.; Poland, M. P.; Ebmeier, S. K.; Wauthier, C.; Wnuk, K.; Parker, A. L.; Amelug, F.; Sansosti, E.; Mothes, P. A.; Macedo, O.; Lara, L.; Zoffoli, S.; Aguilar, V.

    2015-12-01

    Within Latin American, about 315 volcanoes that have been active in the Holocene, but according to the United Nations Global Assessment of Risk 2015 report (GAR15) 202 of these volcanoes have no seismic, deformation or gas monitoring. Following the 2012 Santorini Report on satellite Earth Observation and Geohazards, the Committee on Earth Observation Satellites (CEOS) has developed a 3-year pilot project to demonstrate how satellite observations can be used to monitor large numbers of volcanoes cost-effectively, particularly in areas with scarce instrumentation and/or difficult access. The pilot aims to improve disaster risk management (DRM) by working directly with the volcano observatories that are governmentally responsible for volcano monitoring, and the project is possible thanks to data provided at no cost by international space agencies (ESA, CSA, ASI, DLR, JAXA, NASA, CNES). Here we highlight several examples of how satellite observations have been used by volcano observatories during the last 18 months to monitor volcanoes and respond to crises -- for example the 2013-2014 unrest episode at Cerro Negro/Chiles (Ecuador-Colombia border); the 2015 eruptions of Villarrica and Calbuco volcanoes, Chile; the 2013-present unrest and eruptions at Sabancaya and Ubinas volcanoes, Peru; the 2015 unrest at Guallatiri volcano, Chile; and the 2012-present rapid uplift at Cordon Caulle, Chile. Our primary tool is measurements of ground deformation made by Interferometric Synthetic Aperture Radar (InSAR) but thermal and outgassing data have been used in a few cases. InSAR data have helped to determine the alert level at these volcanoes, served as an independent check on ground sensors, guided the deployment of ground instruments, and aided situational awareness. We will describe several lessons learned about the type of data products and information that are most needed by the volcano observatories in different countries.

  15. The large contribution of projected HFC emissions to future climate forcing.

    Science.gov (United States)

    Velders, Guus J M; Fahey, David W; Daniel, John S; McFarland, Mack; Andersen, Stephen O

    2009-07-01

    The consumption and emissions of hydrofluorocarbons (HFCs) are projected to increase substantially in the coming decades in response to regulation of ozone depleting gases under the Montreal Protocol. The projected increases result primarily from sustained growth in demand for refrigeration, air-conditioning (AC) and insulating foam products in developing countries assuming no new regulation of HFC consumption or emissions. New HFC scenarios are presented based on current hydrochlorofluorocarbon (HCFC) consumption in leading applications, patterns of replacements of HCFCs by HFCs in developed countries, and gross domestic product (GDP) growth. Global HFC emissions significantly exceed previous estimates after 2025 with developing country emissions as much as 800% greater than in developed countries in 2050. Global HFC emissions in 2050 are equivalent to 9-19% (CO(2)-eq. basis) of projected global CO(2) emissions in business-as-usual scenarios and contribute a radiative forcing equivalent to that from 6-13 years of CO(2) emissions near 2050. This percentage increases to 28-45% compared with projected CO(2) emissions in a 450-ppm CO(2) stabilization scenario. In a hypothetical scenario based on a global cap followed by 4% annual reductions in consumption, HFC radiative forcing is shown to peak and begin to decline before 2050.

  16. Examination of oil sands projects : gasification, CO{sub 2} emissions and supply costs

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, K. [Energy Resources Conservation Board, Calgary, AB (Canada)

    2008-10-15

    Non-conventional resources such as Alberta's oil sands are experiencing increased global interest because of the decline in global conventional oil and natural gas reserves. Bitumen extraction and upgrading is an energy intensive process. This paper provided a general discussion of Alberta's oil sands reserves, production and energy requirements. The paper discussed the application of different technologies to the oil sands, and in particular, the use of gasification as a method to produce bitumen-derived synthesis gas. Two oil sands projects currently under construction and implementing gasification technology were briefly described. The paper also provided a comparison of emission intensities from projects that employ gasification leading to a forecast of carbon dioxide equivalent emissions from the oil sands. The impact of Alberta's legislation and the federal framework on greenhouse gas emissions were also examined. Last, the paper discussed a supply cost methodology to compare an integrated extraction and upgrading project using gasification versus a similar project using a conventional steam methane reforming process (SMR). It was concluded that after comparing carbon dioxide emission intensities across different types of projects, the type of project that would be most heavily impacted by greenhouse gas emissions penalties was an in-situ extraction with an upgrading project that employed gasification technology. 36 refs., 5 tabs., 12 figs., 1 appendix.

  17. Projection of SO2, NOx, NMVOC, particulate matter and black carbon emissions - 2015-2030

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt; Hjelgaard, Katja Hossy

    This report contains a description of models and background data for projection of SO2, NOX, NMVOC, PM2.5 and black carbon for Denmark. The emissions are projected to 2030 using basic scenarios together with the expected results of a few individual policy measures. Official Danish forecasts...... of activity rates are used in the models for those sectors for which the forecasts are available, i.e. the latest official forecast from the Danish Energy Agency. The emission factors refer either to international guidelines or are country-specific and refer to Danish legislation, Danish research reports...... or calculations based on emission data from a considerable number of plants. The projection models are based on the same structure and method as the Danish emission inventories in order to ensure consistency....

  18. Assessment of Carbon Emission Reduction for Buildings Projects in Malaysia-A Comparative Analysis

    Directory of Open Access Journals (Sweden)

    Klufallah Mustafa M. A.

    2014-01-01

    Full Text Available The Malaysian construction industry significantly contributes as an empowerment to its development vision of 2020 by reducing 40% of carbon emission. Moreover, this industry accounts as a threat to the environment, not only in terms of consumption of natural resources but also in emitting million tons of carbon emission annually. In fact, Malaysia is categorized the 30th in the world's ranking in carbon emission level. To mitigate the raise of carbon emission level from the buildings construction, several studies identified some of the effective carbon emission assessment tools for construction projects but it is lack of implementation in Malaysia. The green building index (GBI, Malaysian CIB Report has been introduced to assist the construction stakeholders in reducing the level of carbon emission and the impact of buildings on the environment. This paper presents an analysis of carbon emission from housing projects and office buildings in order to identify and quantify the main sources of carbon emission for each project and it proposes environmental friendly materials as replacement for conventional construction materials to achieve the implementation of sustainability in Malaysia.

  19. Analytic evaluation of statistical projection operators for emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kuruc, A.

    1996-05-01

    The purpose of this report is to outline an approach to the numerical construction of statistically efficient estimators for linear functionals in emission tomography (ET) that is more efficient than the approach used in [Kur97]. For the sake of brevity, we will assume familiarity with the notation and material in [Kur97].

  20. Greenhouse gas emissions trading and project-based mechanisms. Proceedings - CATEP

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-01-01

    Greenhouse gas emissions trading and project-based mechanisms for greenhouse gas reduction are emerging market-based instruments for climate change policy. This book presents a selection of papers from an international workshop co-sponsored by the OECD and Concerted Action on Tradeable Emissions Permits (CATEP), to discuss key research and policy issues relating to the design and implementation of these instruments. The papers cover the experience of developing and transition countries with greenhouse gas emissions trading and project-based mechanisms. In addition, the papers examine the use of tradeable permits in policy mixes and harmonisation of emissions trading schemes, as well as transition issues relating to greenhouse gas emissions trading markets.

  1. Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2002-07-31

    as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

  2. GlobVolcano pre-operational services for global monitoring active volcanoes

    Science.gov (United States)

    Tampellini, Lucia; Ratti, Raffaella; Borgström, Sven; Seifert, Frank Martin; Peltier, Aline; Kaminski, Edouard; Bianchi, Marco; Branson, Wendy; Ferrucci, Fabrizio; Hirn, Barbara; van der Voet, Paul; van Geffen, J.

    2010-05-01

    The GlobVolcano project (2007-2010) is part of the Data User Element programme of the European Space Agency (ESA). The project aims at demonstrating Earth Observation (EO) based integrated services to support the Volcano Observatories and other mandate users (e.g. Civil Protection) in their monitoring activities. The information services are assessed in close cooperation with the user organizations for different types of volcano, from various geographical areas in various climatic zones. In a first phase, a complete information system has been designed, implemented and validated, involving a limited number of test areas and respective user organizations. In the currently on-going second phase, GlobVolcano is delivering pre-operational services over 15 volcanic sites located in three continents and as many user organizations are involved and cooperating with the project team. The set of GlobVolcano offered EO based information products is composed as follows: Deformation Mapping DInSAR (Differential Synthetic Aperture Radar Interferometry) has been used to study a wide range of surface displacements related to different phenomena (e.g. seismic faults, volcanoes, landslides) at a spatial resolution of less than 100 m and cm-level precision. Permanent Scatterers SAR Interferometry method (PSInSARTM) has been introduced by Politecnico of Milano as an advanced InSAR technique capable of measuring millimetre scale displacements of individual radar targets on the ground by using multi-temporal data-sets, estimating and removing the atmospheric components. Other techniques (e.g. CTM) have followed similar strategies and have shown promising results in different scenarios. Different processing approaches have been adopted, according to data availability, characteristic of the area and dynamic characteristics of the volcano. Conventional DInSAR: Colima (Mexico), Nyiragongo (Congo), Pico (Azores), Areanal (Costa Rica) PSInSARTM: Piton de la Fournaise (La Reunion Island

  3. Global emission projections for the transportation sector using dynamic technology modeling

    Directory of Open Access Journals (Sweden)

    F. Yan

    2013-09-01

    Full Text Available In this study, global emissions of gases and particles from the transportation sector are projected from the year 2010 to 2050. The Speciated Pollutant Emission Wizard (SPEW-Trend model, a dynamic model that links the emitter population to its emission characteristics, is used to project emissions from on-road vehicles and non-road engines. Unlike previous models of global emission estimates, SPEW-Trend incorporates considerable details on the technology stock and builds explicit relationships between socioeconomic drivers and technological changes, such that the vehicle fleet and the vehicle technology shares change dynamically in response to economic development. Emissions from shipping, aviation, and rail are estimated based on other studies so that the final results encompass the entire transportation sector. The emission projections are driven by four commonly-used IPCC scenarios (A1B, A2, B1, and B2. We project that global fossil-fuel use (oil and coal in the transportation sector will be in the range of 3.0–4.0 Gt across the four scenarios in the year 2030. Corresponding global emissions are projected to be 101–138 Tg of carbon monoxide (CO, 44–54 Tg of nitrogen oxides (NOx, 14–18 Tg of total hydrocarbons (THC, and 3.6–4.4 Tg of particulate matter (PM. At the global level, a common feature of the emission scenarios is a projected decline in emissions during the first one or two decades (2010–2030, because the effects of stringent emission standards offset the growth in fuel use. Emissions increase slightly in some scenarios after 2030, because of the fast growth of on-road vehicles with lax or no emission standards in Africa and increasing emissions from non-road gasoline engines and shipping. On-road vehicles and non-road engines contribute the most to global CO and THC emissions, while on-road vehicles and shipping contribute the most to NOx and PM emissions. At the regional level, Latin America and East Asia are the two

  4. Italian Volcano Supersites

    Science.gov (United States)

    Puglisi, G.

    2011-12-01

    Volcanic eruptions are among the geohazards that may have a substantial economic and social impact, even at worldwide scale. Large populated regions are prone to volcanic hazards worldwide. Even local phenomena may affect largely populated areas and in some cases even megacities, producing severe economic losses. On a regional or global perspective, large volcanic eruptions may affect the climate for years with potentially huge economic impacts, but even relatively small eruptions may inject large amounts of volcanic ash in the atmosphere and severely affect air traffic over entire continents. One of main challenges of the volcanological community is to continuously monitor and understand the internal processes leading to an eruption, in order to give substantial contributions to the risk reduction. Italian active volcanoes constitute natural laboratories and ideal sites where to apply the cutting-edge volcano observation systems, implement new monitoring systems and to test and improve the most advanced models and methods for investigate the volcanic processes. That's because of the long tradition of volcanological studies resulting into long-term data sets, both in-situ and from satellite systems, among the most complete and accurate worldwide, and the large spectrum of the threatening volcanic phenomena producing high local/regional/continental risks. This contribution aims at presenting the compound monitoring systems operating on the Italian active volcanoes, the main improvements achieved during the recent studies direct toward volcanic hazard forecast and risk reductions and the guidelines for a wide coordinated project aimed at applying the ideas of the GEO Supersites Initiative at Mt. Etna and Campi Flegrei / Vesuvius areas.

  5. Global Volcano Locations Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC maintains a database of over 1,500 volcano locations obtained from the Smithsonian Institution Global Volcanism Program, Volcanoes of the World publication. The...

  6. Global emission projections for the transportation sector using dynamic technology modeling

    Science.gov (United States)

    Yan, F.; Winijkul, E.; Streets, D. G.; Lu, Z.; Bond, T. C.; Zhang, Y.

    2014-06-01

    In this study, global emissions of gases and particles from the transportation sector are projected from the year 2010 to 2050. The Speciated Pollutant Emission Wizard (SPEW)-Trend model, a dynamic model that links the emitter population to its emission characteristics, is used to project emissions from on-road vehicles and non-road engines. Unlike previous models of global emission estimates, SPEW-Trend incorporates considerable detail on the technology stock and builds explicit relationships between socioeconomic drivers and technological changes, such that the vehicle fleet and the vehicle technology shares change dynamically in response to economic development. Emissions from shipping, aviation, and rail are estimated based on other studies so that the final results encompass the entire transportation sector. The emission projections are driven by four commonly-used IPCC (Intergovernmental Panel on Climate Change) scenarios (A1B, A2, B1, and B2). With global fossil-fuel use (oil and coal) in the transportation sector in the range of 128-171 EJ across the four scenarios, global emissions are projected to be 101-138 Tg of carbon monoxide (CO), 44-54 Tg of nitrogen oxides (NOx), 14-18 Tg of non-methane total hydrocarbons (THC), and 3.6-4.4 Tg of particulate matter (PM) in the year 2030. At the global level, a common feature of the emission scenarios is a projected decline in emissions during the first one or two decades (2010-2030), because the effects of stringent emission standards offset the growth in fuel use. Emissions increase slightly in some scenarios after 2030, because of the fast growth of on-road vehicles with lax or no emission standards in Africa and increasing emissions from non-road gasoline engines and shipping. On-road vehicles and non-road engines contribute the most to global CO and THC emissions, while on-road vehicles and shipping contribute the most to NOx and PM emissions. At the regional level, Latin America and East Asia are the two

  7. Bayesian Event Tree (BET) approach to Near Real Time monitoring on active volcanoes within ASI-SRV project: Mt. Etna test case

    Science.gov (United States)

    Silvestri, Malvina; Musacchio, Massimo; Taroni, Matteo; Fabrizia Buongiorno, Maria; Dini, Luigi

    2010-05-01

    ASI-Sistema Rischio Vulcanico (SRV) project is devoted to the development of a pre-operative integrated system managing different Earth Observation (EO) and Non EO data to respond to specific needs of the Italian Civil Protection Department (DPC) and improve the monitoring of Italian active volcanoes. The project provides the capability to maintain a repository where the acquired data are stored and generates products offering a support to risk managers during the different volcanic activity phases. All the products are obtained considering technical choices and developments of ASI-SRV based on flexible and scalable modules which take into account also the new coming space sensors and new processing algorithms. An important step of the project development regards the technical and scientific feasibility of the provided products that depends on the data availability, accuracy algorithms and models used in the processing and of course the possibility to validate the results by means of comparison with non-EO independent measurements. The multivariate analysis allows to perform multiple comparisons in order to have a first idea of which variables are largely preferentially or rather rarely distributed, also considering their geographic localization. The "Volcanic Parameter" cross correlation will allow to define the weight of each product that will be used as input in the BET-EF model (Bayesian Event Tree model for eruption forecasting ) which is an already developed algorithm for the eruption model, and will be adapt, as it is, to the ASI-SRV needs. The BET model represents a flexible tool to provide probabilities of any specific event at which we are interested in, by merging any kind of available and relevant information, such as theoretical models, a priori beliefs, monitoring measures, and past data. It is mainly based on a Bayesian procedure and it relies on the fuzzy approach to manage monitoring data. The method deals with short- and long-term forecasting

  8. Trends and Projected Estimates of GHG Emissions from Indian Livestock in Comparisons with GHG Emissions from World and Developing Countries

    Directory of Open Access Journals (Sweden)

    Amlan Kumar Patra

    2014-04-01

    Full Text Available This study presents trends and projected estimates of methane and nitrous oxide emissions from livestock of India vis-à-vis world and developing countries over the period 1961 to 2010 estimated based on IPCC guidelines. World enteric methane emission (EME increased by 54.3% (61.5 to 94.9 ×109 kg annually from the year 1961 to 2010, and the highest annual growth rate (AGR was noted for goat (2.0%, followed by buffalo (1.57% and swine (1.53%. Global EME is projected to increase to 120×109 kg by 2050. The percentage increase in EME by Indian livestock was greater than world livestock (70.6% vs 54.3% between the years 1961 to 2010, and AGR was highest for goat (1.91%, followed by buffalo (1.55%, swine (1.28%, sheep (1.25% and cattle (0.70%. In India, total EME was projected to grow by 18.8×109 kg in 2050. Global methane emission from manure (MEM increased from 6.81 ×109 kg in 1961 to 11.4×109 kg in 2010 (an increase of 67.6%, and is projected to grow to 15×109 kg by 2050. In India, the annual MEM increased from 0.52×109 kg to 1.1×109 kg (with an AGR of 1.57% in this period, which could increase to 1.54×109 kg in 2050. Nitrous oxide emission from manure in India could be 21.4×106 kg in 2050 from 15.3×106 kg in 2010. The AGR of global GHG emissions changed a small extent (only 0.11% from developed countries, but increased drastically (1.23% for developing countries between the periods of 1961 to 2010. Major contributions to world GHG came from cattle (79.3%, swine (9.57% and sheep (7.40%, and for developing countries from cattle (68.3%, buffalo (13.7% and goat (5.4%. The increase of GHG emissions by Indian livestock was less (74% vs 82% over the period of 1961 to 2010 than the developing countries. With this trend, world GHG emissions could reach 3,520×109 kg CO2-eq by 2050 due to animal population growth driven by increased demands for meat and dairy products in the world.

  9. Trends and Projected Estimates of GHG Emissions from Indian Livestock in Comparisons with GHG Emissions from World and Developing Countries.

    Science.gov (United States)

    Patra, Amlan Kumar

    2014-04-01

    This study presents trends and projected estimates of methane and nitrous oxide emissions from livestock of India vis-à-vis world and developing countries over the period 1961 to 2010 estimated based on IPCC guidelines. World enteric methane emission (EME) increased by 54.3% (61.5 to 94.9 ×10(9) kg annually) from the year 1961 to 2010, and the highest annual growth rate (AGR) was noted for goat (2.0%), followed by buffalo (1.57%) and swine (1.53%). Global EME is projected to increase to 120×10(9) kg by 2050. The percentage increase in EME by Indian livestock was greater than world livestock (70.6% vs 54.3%) between the years 1961 to 2010, and AGR was highest for goat (1.91%), followed by buffalo (1.55%), swine (1.28%), sheep (1.25%) and cattle (0.70%). In India, total EME was projected to grow by 18.8×10(9) kg in 2050. Global methane emission from manure (MEM) increased from 6.81 ×10(9) kg in 1961 to 11.4×10(9) kg in 2010 (an increase of 67.6%), and is projected to grow to 15×10(9) kg by 2050. In India, the annual MEM increased from 0.52×10(9) kg to 1.1×10(9) kg (with an AGR of 1.57%) in this period, which could increase to 1.54×10(9) kg in 2050. Nitrous oxide emission from manure in India could be 21.4×10(6) kg in 2050 from 15.3×10(6) kg in 2010. The AGR of global GHG emissions changed a small extent (only 0.11%) from developed countries, but increased drastically (1.23%) for developing countries between the periods of 1961 to 2010. Major contributions to world GHG came from cattle (79.3%), swine (9.57%) and sheep (7.40%), and for developing countries from cattle (68.3%), buffalo (13.7%) and goat (5.4%). The increase of GHG emissions by Indian livestock was less (74% vs 82% over the period of 1961 to 2010) than the developing countries. With this trend, world GHG emissions could reach 3,520×10(9) kg CO2-eq by 2050 due to animal population growth driven by increased demands for meat and dairy products in the world.

  10. A Scientific Excursion: Volcanoes.

    Science.gov (United States)

    Olds, Henry, Jr.

    1983-01-01

    Reviews an educationally valuable and reasonably well-designed simulation of volcanic activity in an imaginary land. VOLCANOES creates an excellent context for learning information about volcanoes and for developing skills and practicing methods needed to study behavior of volcanoes. (Author/JN)

  11. Sulphur dioxide from Nyiragongo volcano measured from UV camera

    Science.gov (United States)

    Brenot, Hugues; Theys, Nicolas; Minani, Abel; d'Oreye, Nicolas; Yalire Mapendano, Mathieu; Syauswa, Muhindo; Celli, Gilles; Kervyn, François; Van Roozendael, Michel

    2017-04-01

    Nyiragongo and Nyamuragira, DR Congo, are the most active African volcanoes, and pose a direct threat to local populations. The Remote Sensing and In Situ Detection and Tracking of Geohazards project (RESIST; http://resist.africamuseum.be) aims at a more in-depth understanding of the source mechanisms driving volcanic eruptions and landslides in the Kivu region. A key objective of RESIST is to combine complementary data sets from ground-based instrument networks (seismic, infrasound, GNSS), field surveys and Earth Observation techniques (SAR, DOAS, TRMM) to obtain added value information. This study focuses on retrieving the emission of sulphur dioxide from Nyiragongo, using a ground-based fast sampling UV camera (Envicam3) providing insight on emissions changes, at different temporal scales. This camera has been installed in December 2015 at Rusayo site, located 8 km on the south-east side of Nyiragongo volcano. The view of the camera is generally perpendicular to the mean direction of the wind in this area (NW-SE) giving an opportunity for estimating the SO2 flux emitted from this volcano. However the Kivu region is a tricky area for operating such an instrument (societal and meteorological reasons). The ideal cloud free conditions are extremely rare in this place and usually restricted to some early morning or the late afternoon time windows. The technique to retrieve SO2 emission from the UV images requires some knowledge about the background in order to apply the necessary correction. The camera is operating automatically from a fixed point. No clear sky data can be measured on a daily routine. The only way to obtain the background correction is to implement a synthetic background. An automatized strategy to obtain such background will be presented and illustrated with the analysis of one year of data.

  12. Volcano seismology

    Science.gov (United States)

    Chouet, B.

    2003-01-01

    A fundamental goal of volcano seismology is to understand active magmatic systems, to characterize the configuration of such systems, and to determine the extent and evolution of source regions of magmatic energy. Such understanding is critical to our assessment of eruptive behavior and its hazardous impacts. With the emergence of portable broadband seismic instrumentation, availability of digital networks with wide dynamic range, and development of new powerful analysis techniques, rapid progress is being made toward a synthesis of high-quality seismic data to develop a coherent model of eruption mechanics. Examples of recent advances are: (1) high-resolution tomography to image subsurface volcanic structures at scales of a few hundred meters; (2) use of small-aperture seismic antennas to map the spatio-temporal properties of long-period (LP) seismicity; (3) moment tensor inversions of very-long-period (VLP) data to derive the source geometry and mass-transport budget of magmatic fluids; (4) spectral analyses of LP events to determine the acoustic properties of magmatic and associated hydrothermal fluids; and (5) experimental modeling of the source dynamics of volcanic tremor. These promising advances provide new insights into the mechanical properties of volcanic fluids and subvolcanic mass-transport dynamics. As new seismic methods refine our understanding of seismic sources, and geochemical methods better constrain mass balance and magma behavior, we face new challenges in elucidating the physico-chemical processes that cause volcanic unrest and its seismic and gas-discharge manifestations. Much work remains to be done toward a synthesis of seismological, geochemical, and petrological observations into an integrated model of volcanic behavior. Future important goals must include: (1) interpreting the key types of magma movement, degassing and boiling events that produce characteristic seismic phenomena; (2) characterizing multiphase fluids in subvolcanic

  13. Mount Rainier, a decade volcano

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, S.C.; Hooper, P.R. (Washington State Univ., Pullman, WA (United States). Dept. of Geology); Eggers, A.E. (Univ. of Puget Sound, Tacoma, WA (United States). Dept. of Geology)

    1993-04-01

    Mount Rainier, recently designated as a decade volcano, is a 14,410 foot landmark which towers over the heavily populated southern Puget Sound Lowland of Washington State. It last erupted in the mid-1800's and is an obvious threat to this area, yet Rainier has received little detailed study. Previous work has divided Rainier into two distinct pre-glacial eruptive episodes and one post-glacial eruptive episode. In a pilot project, the authors analyzed 253 well-located samples from the volcano for 27 major and trace elements. Their objective is to test the value of chemical compositions as a tool in mapping the stratigraphy and understanding the eruptive history of the volcano which they regard as prerequisite to determining the petrogenesis and potential hazard of the volcano. The preliminary data demonstrates that variation between flows is significantly greater than intra-flow variation -- a necessary condition for stratigraphic use. Numerous flows or groups of flows can be distinguished chemically. It is also apparent from the small variation in Zr abundances and considerable variation in such ratios as Ba/Nb that fractional crystallization plays a subordinate role to some form of mixing process in the origin of the Mount Rainier lavas.

  14. Historical and projected emissions of major halocarbons in China

    Science.gov (United States)

    Wan, Dan; Xu, Jianhua; Zhang, Jianbo; Tong, Xuanchang; Hu, Jianxin

    2009-12-01

    The halocarbons studied here are chemicals controlled in the 1987 Montreal Protocol on Substances that Deplete the Ozone Layer and its Amendments, which have both high ozone depleting potentials (ODPs) and high global warming potentials (GWPs). These halocarbons are mainly used for refrigeration, air-conditioning, foam blowing, tobacco expansion, aerosol propulsion, solvent cleaning, and fire fighting. China ratified the Montreal Protocol in 1991 and has been implementing the phase-out of halocarbons since then. In this paper, the emissions of halocarbons from China were estimated for 1995-2024 based on the historical consumption, the country program for complying with the Montreal Protocol, and the sector plans for phasing out halocarbons. The results show that China's compliance with the Montreal Protocol contributes greatly to both ozone protection and climate protection.

  15. Earthquakes - Volcanoes (Causes and Forecast)

    Science.gov (United States)

    Tsiapas, E.

    2009-04-01

    EARTHQUAKES - VOLCANOES (CAUSES AND FORECAST) ELIAS TSIAPAS RESEARCHER NEA STYRA, EVIA,GREECE TEL.0302224041057 tsiapas@hol.gr The earthquakes are caused by large quantities of liquids (e.g. H2O, H2S, SO2, ect.) moving through lithosphere and pyrosphere (MOHO discontinuity) till they meet projections (mountains negative projections or projections coming from sinking lithosphere). The liquids are moved from West Eastward carried away by the pyrosphere because of differential speed of rotation of the pyrosphere by the lithosphere. With starting point an earthquake which was noticed at an area and from statistical studies, we know when, where and what rate an earthquake may be, which earthquake is caused by the same quantity of liquids, at the next east region. The forecast of an earthquake ceases to be valid if these components meet a crack in the lithosphere (e.g. limits of lithosphere plates) or a volcano crater. In this case the liquids come out into the atmosphere by the form of gasses carrying small quantities of lava with them (volcano explosion).

  16. Quantitative assessment of industrial VOC emissions in China: Historical trend, spatial distribution, uncertainties, and projection

    Science.gov (United States)

    Zheng, Chenghang; Shen, Jiali; Zhang, Yongxin; Huang, Weiwei; Zhu, Xinbo; Wu, Xuecheng; Chen, Linghong; Gao, Xiang; Cen, Kefa

    2017-02-01

    The temporal trends of industrial volatile organic compound (VOC) emissions was comprehensively summarized for the 2011 to 2013 period, and the projections for 2020 to 2050 for China were set. The results demonstrate that industrial VOC emissions in China increased from 15.3 Tg in 2011 to 29.4 Tg in 2013 at an annual average growth rate of 38.3%. Guangdong (3.45 Tg), Shandong (2.85 Tg), and Jiangsu (2.62 Tg) were the three largest contributors collectively accounting for 30.4% of the national total emissions in 2013. The top three average industrial VOC emissions per square kilometer were Shanghai (247.2 ton/km2), Tianjin (62.8 ton/km2), and Beijing (38.4 ton/km2), which were 12-80 times of the average level in China. The data from the inventory indicate that the use of VOC-containing products, as well as the production and use of VOCs as raw materials, as well as for storage and transportation contributed 75.4%, 10.3%, 9.1%, and 5.2% of the total emissions, respectively. ArcGIS was used to display the remarkable spatial distribution variation by allocating the emission into 1 km × 1 km grid cells with a population as surrogate indexes. Combined with future economic development and population change, as well as implementation of policy and upgrade of control technologies, three scenarios (scenarios A, B, and C) were set to project industrial VOC emissions for the years 2020, 2030, and 2050, which present the industrial VOC emissions in different scenarios and the potential of reducing emissions. Finally, the result shows that the collaborative control policies considerably influenced industrial VOC emissions.

  17. COMPILATION AND ANALYSES OF EMISSIONS INVENTORIES FOR THE NOAA ATMOSPHERIC CHEMISTRY PROJECT. PROGRESS REPORT, AUGUST 1997.

    Energy Technology Data Exchange (ETDEWEB)

    BENKOVITZ,C.M.

    1997-09-01

    Global inventories of anthropogenic emissions of oxides of nitrogen (NO{sub x}) for circa 1985 and 1990 and Non-Methane Volatile Organic Compounds (NMVOCs) for circa 1990 have been compiled by this project. Work on the inventories has been carried out under the umbrella of the Global Emissions Inventory Activity (GEIA) of the International Global Atmospheric Chemistry (IGAC) Program. The 1985 NO{sub x} inventory was compiled using default data sets of global emissions that were refined via the use of more detailed regional data sets; this inventory is being distributed to the scientific community at large as the GEIA Version 1A inventory. Global emissions of NO{sub x} for 1985 are estimated to be 21 Tg N y{sup -1}, with approximately 84% originating in the Northern Hemisphere. The 1990 inventories of NO{sub x} and NMVOCs were compiled using unified methodologies and data sets in collaboration with the Netherlands National Institute of Public Health and Environmental Protection (Rijksinstituut Voor Volksgezondheid en Milieuhygiene, RIVM) and the Division of Technology for Society of the Netherlands Organization for Applied Scientific Research, (IMW-TNO); these emissions will be used as the default estimates to be updated with more accurate regional data. The NMVOC inventory was gridded and speciated into 23 chemical categories. The resulting global emissions for 1990 are 31 Tg N yr{sup -1} for NO{sub x} and 173 Gg NMVOC yr{sup -1}. Emissions of NO{sub x} are highest in the populated and industrialized areas of eastern North America and across Europe, and in biomass burning areas of South America, Africa, and Asia. Emissions of NMVOCs are highest in biomass burning areas of South America, Africa, and Asia. The 1990 NO{sub x} emissions were gridded to 1{sup o} resolution using surrogate data, and were given seasonal, two-vertical-level resolution and speciated into NO and NO{sub 2} based on proportions derived from the 1985 GEIA Version 1B inventory. Global NMVOC

  18. Volcanoes: Nature's Caldrons Challenge Geochemists.

    Science.gov (United States)

    Zurer, Pamela S.

    1984-01-01

    Reviews various topics and research studies on the geology of volcanoes. Areas examined include volcanoes and weather, plate margins, origins of magma, magma evolution, United States Geological Survey (USGS) volcano hazards program, USGS volcano observatories, volcanic gases, potassium-argon dating activities, and volcano monitoring strategies.…

  19. Energy Storage/Conservation and Carbon Emissions Reduction Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Bigelow, Erik [Center For Transportation And The Environment, Inc., Atlanta, GA (United States)

    2013-01-01

    The U.S. Department of Energy (DOE) awarded the Center for Transportation and the Environment (CTE) federal assistance for the management of a project to develop and test a prototype flywheel-based energy recovery and storage system in partnership with Test Devices, Inc. (TDI). TDI specializes in the testing of jet engine and power generation turbines, which uses a great deal of electrical power for long periods of time. In fact, in 2007, the company consumed 3,498,500 kW-­hr of electricity in their operations, which is equivalent to the electricity of 328 households. For this project, CTE and TDI developed and tested a prototype flywheel-based energy recovery and storage system. This technology is being developed at TDI’s facilities to capture and reuse the energy necessary for the company’s core process. The new technology and equipment is expected to save approximately 80% of the energy used in the TDI process, reducing total annual consumption of power by approximately 60%, saving approximately two million kilowatt-hours annually. Additionally, the energy recycling system will allow TDI and other end users to lower their peak power demand and reduce associated utility demand charges. The use of flywheels in this application is novel and requires significant development work from TDI. Flywheels combine low maintenance costs with very high cycle life with little to no degradation over time, resulting in lifetimes measured in decades. All of these features make flywheels a very attractive option compared to other forms of energy storage, including batteries. Development and deployment of this energy recycling technology will reduce energy consumption during jet engine and stationary turbine development. By reengineering the current inefficient testing process, TDI will reduce risk and time to market of efficiency upgrades of gas turbines across the entire spectrum of applications. Once in place the results from this program will also help other US industries

  20. MIX: a mosaic Asian anthropogenic emission inventory for the MICS-Asia and the HTAP projects

    Science.gov (United States)

    Li, M.; Zhang, Q.; Kurokawa, J.; Woo, J.-H.; He, K. B.; Lu, Z.; Ohara, T.; Song, Y.; Streets, D. G.; Carmichael, G. R.; Cheng, Y. F.; Hong, C. P.; Huo, H.; Jiang, X. J.; Kang, S. C.; Liu, F.; Su, H.; Zheng, B.

    2015-12-01

    An anthropogenic emission inventory for Asia is developed for the years 2008 and 2010 to support the Model Inter-Comparison Study for Asia (MICS-Asia) and the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) projects by a mosaic of up-to-date regional emission inventories. Emissions are estimated for all major anthropogenic sources in 30 countries and regions in Asia. We conducted detailed comparisons of different regional emission inventories and incorporated the best-available ones for each region into the mosaic inventory at a uniform spatial and temporal resolution. We estimate the total Asian emissions of ten species in 2010 as follows: 51.3 Tg SO2, 52.1 Tg NOx, 336.6 Tg CO, 67.0 Tg NMVOC (non-methane volatile organic compounds), 28.8 Tg NH3, 31.7 Tg PM10, 22.7 Tg PM2.5, 3.5 Tg BC, 8.3 Tg OC and 17.3 Pg CO2. Emissions from China and India dominate the emissions of Asia for most of the species. We also estimated Asian emissions in 2006 using the same methodology of MIX. The relative change rates of Asian emissions for the period of 2006-2010 are estimated as follows: -8.0 % for SO2, +19 % for NOx, +4 % for CO, +15 % for NMVOC, +2 % for NH3, -3 % for PM10, -2 % for PM2.5, +6 % for BC, +2 % for OC and +20 % for CO2. Model-ready speciated NMVOC emissions for SAPRC-99 and CB05 mechanisms were developed following a profile-assignment approach. Monthly gridded emissions at a spatial resolution of 0.25° × 0.25° are developed and can be accessed from http://www.meicmodel.org/dataset-mix.

  1. MIX: a mosaic Asian anthropogenic emission inventory for the MICS-Asia and the HTAP projects

    Directory of Open Access Journals (Sweden)

    M. Li

    2015-12-01

    Full Text Available An anthropogenic emission inventory for Asia is developed for the years 2008 and 2010 to support the Model Inter-Comparison Study for Asia (MICS-Asia and the Task Force on Hemispheric Transport of Air Pollution (TF HTAP projects by a mosaic of up-to-date regional emission inventories. Emissions are estimated for all major anthropogenic sources in 30 countries and regions in Asia. We conducted detailed comparisons of different regional emission inventories and incorporated the best-available ones for each region into the mosaic inventory at a uniform spatial and temporal resolution. We estimate the total Asian emissions of ten species in 2010 as follows: 51.3 Tg SO2, 52.1 Tg NOx, 336.6 Tg CO, 67.0 Tg NMVOC (non-methane volatile organic compounds, 28.8 Tg NH3, 31.7 Tg PM10, 22.7 Tg PM2.5, 3.5 Tg BC, 8.3 Tg OC and 17.3 Pg CO2. Emissions from China and India dominate the emissions of Asia for most of the species. We also estimated Asian emissions in 2006 using the same methodology of MIX. The relative change rates of Asian emissions for the period of 2006–2010 are estimated as follows: −8.0 % for SO2, +19 % for NOx, +4 % for CO, +15 % for NMVOC, +2 % for NH3, −3 % for PM10, −2 % for PM2.5, +6 % for BC, +2 % for OC and +20 % for CO2. Model-ready speciated NMVOC emissions for SAPRC-99 and CB05 mechanisms were developed following a profile-assignment approach. Monthly gridded emissions at a spatial resolution of 0.25° × 0.25° are developed and can be accessed from http://www.meicmodel.org/dataset-mix.

  2. Projecting insect voltinism under high and low greenhouse gas emission conditions

    Science.gov (United States)

    Shi Chen; Shelby J. Fleischer; Patrick C. Tobin; Michael C. Saunders

    2011-01-01

    We develop individual-based Monte Carlo methods to explore how climate change can alter insect voltinism under varying greenhouse gas emissions scenarios by using input distributions of diapause termination or spring emergence, development rate, and diapause initiation, linked to daily temperature and photoperiod. We show concurrence of these projections with a field...

  3. Human factors engineering for the TERF (Tritium Emissions Reduction Facility) project. [Tritium Emissions Reduction Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hedley, W.H.; Adams, F.S. (EG and G Mound Applied Technologies, Miamisburg, OH (USA)); Wells, J.E. (Lawrence Livermore National Lab., CA (USA))

    1990-12-14

    The Tritium Emissions Reduction Facility (TERF) is being built by EG G Mound Applied Technologies to provide improved control of the tritium emissions from gas streams being processed. Mound handles tritium in connection with production, development, research, disassembly, recovery, and surveillance operations. During these operations, a small fraction of the tritium being processed escapes from its original containment. The objective of this report is to describe the human factors engineering as performed in connection with the design, construction, and testing of the TERF as required in DOE Order 6430.1A, section 1300-12. Human factors engineering has been involved at each step of the process and was considered during the preliminary research on tritium capture before selecting the specific process to be used. Human factors engineering was also considered in determining the requirements for the TERF and when the specific design work was initiated on the facility and the process equipment. Finally, human factors engineering was used to plan the specific acceptance tests that will be made during TERF installation and after its completion. These tests will verify the acceptability of the final system and its components. 16 refs., 8 figs.

  4. Using growth and decline factors to project VOC emissions from oil and gas production.

    Science.gov (United States)

    Oswald, Whitney; Harper, Kiera; Barickman, Patrick; Delaney, Colleen

    2015-01-01

    Projecting future-year emission inventories in the oil and gas sector is complicated by the fact that there is a life cycle to the amount of production from individual wells and thus from well fields in aggregate. Here we present a method to account for that fact in support of regulatory policy development. This approach also has application to air quality modeling inventories by adding a second tier of refinement to the projection methodology. Currently, modeling studies account for the future decrease in emissions due to new regulations based on the year those regulations are scheduled to take effect. The addition of a year-by-year accounting of production decline provides a more accurate picture of emissions from older, uncontrolled sources. This proof of concept approach is focused solely on oil production; however, it could be used for the activity and components of natural gas production to compile a complete inventory for a given area.

  5. ESP v2.0: Improved method for projecting U.S. GHG and air pollution emissions through 2055

    Science.gov (United States)

    This product includes both a presentation and an extended abstract. We describe the Emission Scenario Projection (ESP) method, version 2.0. ESP is used to develop multi-decadal projections of U.S. greenhouse gas (GHG) and criteria pollutant emissions. The resulting future-year em...

  6. The Effect of the Hayward Corridor Improvement Project on Carbon Monoxide Emission

    Science.gov (United States)

    Muhlfelder, M.; Martinez, E.; Maestas, A.; Peek, A.

    2013-12-01

    In August of 2010, construction began on a stretch of road in Downtown Hayward to address a problem with traffic flow. Known as the Hayward Corridor, the project reshaped the flow of traffic, replacing the two way streets of Foothill, Mission, and A Street with a loop between them. This project began with the initiative of reducing congestion in this area and improving access to businesses for pedestrians. The project was expected to have little environmental impact in most common assessments of degree of effect, including particulate matter, ozone and carbon monoxide levels. This report will discuss the effect of the Hayward Corridor Improvement Project on carbon monoxide emission. Data available to the public in the project's Environmental Impact Report shows that carbon monoxide levels before construction began were at an acceptable level according to federal and state standards. Projections for future concentrations both with and without the project show a decrease in carbon monoxide levels due to technological improvements and the gradual replacement of older, less efficient vehicles. The Environmental Impact Report projected that there would be little difference in carbon monoxide levels whether the project took place or not, at an average of 1.67x102 fewer parts per million per 1 hour period of measurement emitted in the case of the project not taking place. While it is not possible to draw a conclusion on what the current carbon monoxide levels would be if the project had not taken place due to the changes in traffic flow and other surrounding roads as a result of the project, the data gathered in June of 2013 suggested that carbon monoxide levels are higher than the values projected in 2007. This report summarizes both the accuracy of these carbon monoxide level projections and the effect of construction on carbon monoxide levels in the Hayward Corridor and the surrounding area.

  7. Emission Baselines for Clean Development Mechanism Projects: Residential Heating Case in Beijing

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To explore emission baseline, technically the most difficult issue for Clean Development Mechanism (CDM) project development, as well as to examine whether CDM is a possible way to help Beijing restructure its heating energy consumption, this paper conducts a CDM baseline case study on residential heating in Beijing. Based on investigation, energy consumption forecast and economic analysis of future technology options, the technology benchmark and site-specific baselines for both retrofit projects and new heating projects have been discussed. The results indicate that fuel switching from coal to natural gas can meet the additionality criteria in many cases and will be the main type of CDM project. In addition, it also proves that the technology benchmark and the case-by-case baseline setting approach are applicable for future CDM cooperation projects on heating in Beijing.

  8. Foci of Volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, I.

    1974-01-01

    One may assume a center of volcanic activities beneath the edifice of an active volcano, which is here called the focus of the volcano. Sometimes it may be a ''magma reservoir''. Its depth may differ with types of magma and change with time. In this paper, foci of volcanoes are discussed from the viewpoints of four items: (1) Geomagnetic changes related with volcanic activities; (2) Crustal deformations related with volcanic activities; (3) Magma transfer through volcanoes; and (4) Subsurface structure of calderas.

  9. The seismicity of Marapi volcano, West Sumatra.

    Science.gov (United States)

    D'Auria, L.

    2009-04-01

    Marapi is one of the active volcanoes in West Sumatra. It is a stratovolcano with an edifice that is elongated in the ENE-WSW direction. Its elevation is about 2,900 m a.s.l. The summit area is characterized by a caldera that contains some active craters aligned along the ENE-WSW direction. The Marapi volcano is an attractive region for tourists and hosts many small communities its surrounding areas. The recent history of Mt. Marapi is characterized by explosive activity at the summit craters. No lava flows have passed the rim of the summit caldera in recent times. The last eruption occurred on August 5, 2004, and consisted of moderate explosive activity from the central crater. In 1975 an eruption with magmatic and phreatic explosive phases and mudflows and lahars occurred that caused fatalities in the surrounding areas. Since 1980 other eruptions have occurred at Marapi volcano. Even if the explosive intensities of those eruptions have been small to moderate, in some cases, there were fatalities. A cooperation project started between Italy and Indonesia (COVIN) for the monitoring of volcanoes in West Sumatra. In the context of this project a monitoring centre has been set up at the Bukittinggi Observatory and a seismological monitoring system for Marapi volcano has been realized. This system is based on a broadband seismic network including 4 three-component stations. The data acquired by the broadband network of Marapi volcano are continuous recordings of the seismic signals starting from 19/10/2006. Volcano-Tectonic and Long Period events of Marapi volcano together with regional and teleseismic earthquakes are recorded. Several events of high magnitude located at short distances from the network were also recorded such as on March 6, 2007, when two events of Magnitudes Mw 6.4 and 6.3 were recorded with the epicentres near the Marapi volcano. During the following days, there was a sequence of hundreds of aftershocks. The preliminary analysis of the seismicity of

  10. Analysis of the Emission Inventories and Model-Ready Emission Datasets of Europe and North America for Phase 2 of the AQMEII Project

    Science.gov (United States)

    This paper highlights the development of the emission inventories and emission processing for Europe (EU) and North America (NA) in the second phase of the Air Quality Model Evaluation International Initiative (AQMEII) project. The main purpose of the second phase of the AQMEII...

  11. Advanced emissions control development project. Final report, November 1, 1993--February 29, 1996. Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Farthing, G.A.

    1996-02-29

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (baghouses), and wet flue gas desulfurization. B&W`s Clean Environment Development Facility (CEDF) and the AECDP equipment combined to form a state-of-the-art facility for integrated evaluation of combustion and post-combustion emissions control options. Phase I activities were primarily directed at providing a reliable, representative test facility for conducting air toxic emission control development work later in the project. This report summarizes the AECDP Phase I activities which consisted of the design, installation, shakedown, verification, and air toxics benchmarking of the AECDP facility. The AECDP facility consists of an ESP, pulse-jet baghouse, and wet scrubber. All verification and air toxic tests were conducted with a high sulfur, bituminous Ohio coal. In order to successfully apply the results of the program to utility systems, the relationship between the performance of the CEDF/AECDP test equipment and commercial units had to be established. The first step in the verification process was to validate that the flue gas treatment devices - boiler/convection pass simulator, ESP, baghouse, and wet SO{sub 2} scrubber - operate in a manner representative of commercial units.

  12. Advanced emissions control development project. Phase I, Final report, November 1, 1993--February 19, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-29

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESP`s), fabric filters (baghouse), and wet flue gas desulfurization. B&W`s Clean Environment Development Facility (CEDF) and the AECDP equipment combined to form a state-of-the-art facility for integrated evaluation of combustion and post-combustion emissions control options. Phase 1 activities were primarily aimed at providing a reliable, representative test facility for conducting air toxic emissions control development work later in the project. This report summarizes the AECDP Phase I activities which consisted of the design, installation, shakedown, verification, and air toxics benchmarking of the AECDP facility. All verification and air toxic tests were conducted with a high sulfur, bituminous Ohio coal.

  13. Restructuring of the Jordanian Utility Sector and its Associated Ghg Emissions: a Future Projection

    Science.gov (United States)

    Fouad, Rami Hikmat; Al-Ghandoor, Ahmed; Al-Khateeb, Mohammad; Bata, Hamada

    2008-10-01

    As a small, non-oil producing, Middle Eastern country of a young and growing population and rapid urbanization, Jordan, like many countries all over the world, was and is still facing the problem of meeting the rapidly increasing demand of electricity. The main objective of this study is to review many current aspects of the Jordanian electricity sector, including electricity generation, electricity consumption, energy related emissions, and future possibilities, based on time series forecasting, through the term of the Clean Development Mechanism (CDM) arrangement under the Kyoto Protocol, in which the Hashemite Kingdom of Jordan had signed lately, which allows industrialized countries with a greenhouse gas reduction commitment to invest in projects that reduce emissions in developing countries as an alternative to more expensive emission reductions in their own countries. Several scenarios are proposed in this study, based on projected electricity consumption data until year 2028. Without attempting to replace the currently existing fossil-fuel based power plant technologies in Jordan by clean ones, electricity consumption and associated GHG emissions are predicted to rise by 138% by year 2028; however, if new clean technologies are adopted gradually over the same period, electricity consumption as well as GHG emissions will ascend at a lower rate.

  14. The Pulse of the Volcano: Discovery of Episodic Activity at Prometheus on Io

    Science.gov (United States)

    Davies, A. G.

    2003-01-01

    The temporal behaviour of thermal output from a volcano yields valuable clues to the processes taking place at and beneath the surface. Galileo Near Infrared Mapping Spectrometer (NIMS) data show that the ionian volcanoes Prometheus and Amirani have significant thermal emission in excess of nonvolcanic background emission in every geometrically appropriate NIMS observation. The 5 micron brightness of these volcanoes shows considerable variation from orbit to orbit. Prometheus in particular exhibits an episodicity that yields valuable constraints to the mechanisms of magma supply and eruption. This work is part of an on-going study to chart and quantify the thermal emission of Io's volcanoes, determine mass eruption rates, and note eruption style.

  15. Reducing Emissions from Deforestation and Forest Degradation (REDD+: Transaction Costs of Six Peruvian Projects

    Directory of Open Access Journals (Sweden)

    Olivia R. Rendón Thompson

    2013-03-01

    Full Text Available Reduced Emissions from Deforestation and Forest Degradation (REDD+ has received strong support as a major component of future global climate change policy. The financial mechanism of REDD+ is payment for the ecosystem service of carbon sequestration in tropical forests that is expected to create incentives for conservation of forest cover and condition. However, the costs of achieving emissions reduction by these means remain largely unknown. We assess the set-up, implementation, and monitoring costs, i.e., collectively the transaction costs, of six of the first seven REDD+ project designs from the Peruvian Amazon and compare them with established projects in Brazil and Bolivia. The estimated costs vary greatly among the assessed projects from US$0.16 to 1.44 ha-1 yr-1, with an average of US$0.73 ha-1 yr-1, though they are comparable to earlier published estimates. The results indicate that the costs of implementing REDD+ are highly uncertain for participating developing countries because of issues such as inadequate project design and how additionality is determined. Furthermore, some insight is obtained into how different activities to reduce deforestation and forest degradation, the type of implementer, and project location affect implementation costs of REDD+ projects. Even with these first estimates, the cost of preserving existing intact forests in the Peruvian Amazon may have been underestimated.

  16. Future fire emissions associated with projected land use change in Indonesia

    Science.gov (United States)

    Marlier, M. E.; DeFries, R. S.; Pennington, D.; Ordway, E.; Nelson, E.; Mickley, L.; Koplitz, S.

    2013-12-01

    Indonesia has experienced rapid land use change in past decades as forests and peatlands are cleared for agricultural development, including oil palm and timber plantations1. Fires are the predominant method of clearing and the subsequent emissions can have important public health impacts by contributing to regional particulate matter and ozone concentrations2. This regional haze was dramatically seen in Singapore during June 2013 due to the transport of emissions from fires in Sumatra. Our study is part of a larger project that will quantify the public health impact of various land use development scenarios for Sumatra over the coming decades. Here, we describe how we translate economic projections of land use change into future fire emissions inventories for GEOS-Chem atmospheric transport simulations. We relate past GFED3 fire emissions3 to detailed 1-km land use change data and MODIS fire radiative power observations, and apply these relationships to future estimates of land use change. The goal of this interdisciplinary project is to use modeling results to interact with policy makers and influence development strategies in ways that protect public health. 1Miettinen et al. 2011. Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob. Change Biol.,17 (7), 2261-2270. 2Marlier et al. 2013. El Niño and health risks from landscape fire emissions in southeast Asia. Nature Clim. Change, 3, 131-136. 3van der Werf et al. 2010. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmos. Chem. Physics, 10 (23), 11707-11735.

  17. The critical role of volcano monitoring in risk reduction

    Directory of Open Access Journals (Sweden)

    R. I. Tilling

    2008-01-01

    Full Text Available Data from volcano-monitoring studies constitute the only scientifically valid basis for short-term forecasts of a future eruption, or of possible changes during an ongoing eruption. Thus, in any effective hazards-mitigation program, a basic strategy in reducing volcano risk is the initiation or augmentation of volcano monitoring at historically active volcanoes and also at geologically young, but presently dormant, volcanoes with potential for reactivation. Beginning with the 1980s, substantial progress in volcano-monitoring techniques and networks – ground-based as well space-based – has been achieved. Although some geochemical monitoring techniques (e.g., remote measurement of volcanic gas emissions are being increasingly applied and show considerable promise, seismic and geodetic methods to date remain the techniques of choice and are the most widely used. Availability of comprehensive volcano-monitoring data was a decisive factor in the successful scientific and governmental responses to the reawakening of Mount St. elens (Washington, USA in 1980 and, more recently, to the powerful explosive eruptions at Mount Pinatubo (Luzon, Philippines in 1991. However, even with the ever-improving state-of-the-art in volcano monitoring and predictive capability, the Mount St. Helens and Pinatubo case histories unfortunately still represent the exceptions, rather than the rule, in successfully forecasting the most likely outcome of volcano unrest.

  18. Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development

    Energy Technology Data Exchange (ETDEWEB)

    Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

    2002-09-01

    Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs

  19. Distinguishing contributions to diffuse CO2 emissions in volcanic areas from magmatic degassing and thermal decarbonation using soil gas 222Rn-δ13C systematics: Application to Santorini volcano, Greece

    Science.gov (United States)

    Parks, Michelle M.; Caliro, Stefano; Chiodini, Giovanni; Pyle, David M.; Mather, Tamsin A.; Berlo, Kim; Edmonds, Marie; Biggs, Juliet; Nomikou, Paraskevi; Raptakis, Costas

    2013-09-01

    Between January 2011 and April 2012, Santorini volcano (Greece) experienced a period of unrest characterised by the onset of detectable seismicity and caldera-wide uplift. This episode of inflation represented the first sizeable intrusion of magma beneath Santorini in the past 50 years. We employ a new approach using 222Rn-δ13C systematics to identify and quantify the source of diffuse degassing at Santorini during the period of renewed activity. Soil CO2 flux measurements were made across a network of sites on Nea Kameni between September 2010 and January 2012. Gas samples were collected in April and September 2011 for isotopic analysis of CO2 (δ13C), and radon detectors were deployed during September 2011 to measure (222Rn). Our results reveal a change in the pattern of degassing from the summit of the volcano (Nea Kameni) and suggest an increase in diffuse CO2 emissions between September 2010 and January 2012. High-CO2-flux soil gas samples have δ13C˜0‰. Using this value and other evidence from the literature we conclude that these CO2 emissions from Santorini were a mixture between CO2 sourced from magma, and CO2 released by the thermal or metamorphic breakdown of crustal limestone. We suggest that this mixing of magmatic and crustal carbonate sources may account more broadly for the typical range of δ13C values of CO2 (from ˜-4‰ to ˜+1‰) in diffuse volcanic and fumarole gas emissions around the Mediterranean, without the need to invoke unusual mantle source compositions. At Santorini a mixing model involving magmatic CO2 (with δ13C of -3±2‰ and elevated (222Rn)/CO2 ratios ˜105-106 Bqkg) and CO2 released from decarbonation of crustal limestone (with (222Rn)/CO2 ˜ 30-300 Bq kg-1, and δ13C of +5‰) can account for the δ13C and (222Rn)/CO2 characteristics of the 'high flux' gas source. This model suggests ˜60% of the carbon in the high flux deep CO2 end member is of magmatic origin. This combination of δ13C and (222Rn) measurements has

  20. Emission Impacts of Electric Vehicles in the US Transportation Sector Following Optimistic Cost and Efficiency Projections.

    Science.gov (United States)

    Keshavarzmohammadian, Azadeh; Henze, Daven K; Milford, Jana B

    2017-06-20

    This study investigates emission impacts of introducing inexpensive and efficient electric vehicles into the US light duty vehicle (LDV) sector. Scenarios are explored using the ANSWER-MARKAL model with a modified version of the Environmental Protection Agency's (EPA) 9-region database. Modified cost and performance projections for LDV technologies are adapted from the National Research Council (2013) optimistic case. Under our optimistic scenario (OPT) we find 15% and 47% adoption of battery electric vehicles (BEVs) in 2030 and 2050, respectively. In contrast, gasoline vehicles (ICEVs) remain dominant through 2050 in the EPA reference case (BAU). Compared to BAU, OPT gives 16% and 36% reductions in LDV greenhouse gas (GHG) emissions for 2030 and 2050, respectively, corresponding to 5% and 9% reductions in economy-wide emissions. Total nitrogen oxides, volatile organic compounds, and SO2 emissions are similar in the two scenarios due to intersectoral shifts. Moderate, economy-wide GHG fees have little effect on GHG emissions from the LDV sector but are more effective in the electricity sector. In the OPT scenario, estimated well-to-wheels GHG emissions from full-size BEVs with 100-mile range are 62 gCO2-e mi(-1) in 2050, while those from full-size ICEVs are 121 gCO2-e mi(-1).

  1. Projections of air pollutant emissions and its impacts on regional air quality in China in 2020

    Directory of Open Access Journals (Sweden)

    J. Xing

    2011-04-01

    Full Text Available Anthropogenic emissions of air pollutants in China influence not only local and regional environments but also the global atmospheric environment; therefore, it is important to understand how China's air pollutant emissions will change and how they will affect regional air quality in the future. Emission scenarios in 2020 were projected using forecasts of energy consumption and emission control strategies based on emissions in 2005, and on recent development plans for key industries in China. We developed four emission scenarios: REF[0] (current control legislations and implementation status, PC[0] (improvement of energy efficiencies and current environmental legislation, PC[1] (improvement of energy efficiencies and better implementation of environmental legislation, and PC[2] (improvement of energy efficiencies and strict environmental legislation. Under the REF[0] scenario, the emission of SO2, NOx, VOC and NH3 will increase by 17%, 50%, 49% and 18% in 2020, while PM10 emissions will be reduced by 10% over East China, compared to that in 2005. In PC[2], sustainable energy polices will reduce SO2, NOx and PM10 emissions by 4.1 Tg, 2.6 Tg and 1.8 Tg, respectively; better implementation of current control policies will reduce SO2, NOx and PM10 emission by 2.9 Tg, 1.8 Tg, and 1.4 Tg, respectively; strict emission standards will reduce SO2, NOx and PM10 emissions by 3.2 Tg, 3.9 Tg, and 1.7 Tg, respectively. Under the PC[2] scenario, SO2 and PM10 emissions will decrease by 18% and 38%, while NOx and VOC emissions will increase by 3% and 8%, compared to that in 2005. Future air quality in China was simulated using the Community Multi-scale Air Quality Model (CMAQ. Under REF[0] emissions, compared to 2005, the surface concentrations of SO2, NO2, hourly

  2. Partitioning uncertainty in ocean carbon uptake projections: Internal variability, emission scenario, and model structure

    Science.gov (United States)

    Lovenduski, Nicole S.; McKinley, Galen A.; Fay, Amanda R.; Lindsay, Keith; Long, Matthew C.

    2016-09-01

    We quantify and isolate the sources of projection uncertainty in annual-mean sea-air CO2 flux over the period 2006-2080 on global and regional scales using output from two sets of ensembles with the Community Earth System Model (CESM) and models participating in the 5th Coupled Model Intercomparison Project (CMIP5). For annual-mean, globally-integrated sea-air CO2 flux, uncertainty grows with prediction lead time and is primarily attributed to uncertainty in emission scenario. At the regional scale of the California Current System, we observe relatively high uncertainty that is nearly constant for all prediction lead times, and is dominated by internal climate variability and model structure, respectively in the CESM and CMIP5 model suites. Analysis of CO2 flux projections over 17 biogeographical biomes reveals a spatially heterogenous pattern of projection uncertainty. On the biome scale, uncertainty is driven by a combination of internal climate variability and model structure, with emission scenario emerging as the dominant source for long projection lead times in both modeling suites.

  3. Greenhouse gas emission trends and projections in Europe 2011. Tracking progress towards Kyoto and 2020 targets

    Energy Technology Data Exchange (ETDEWEB)

    Busche, J.; Scheffler, M.; Graichen, V. (Umweltbundesamt, Vienna (Austria)) (and others)

    2011-10-15

    At the end of 2010, the EU-15 was on track to achieve its Kyoto target but three EU-15 Member States (Austria, Italy and Luxembourg) were not on track to meet their burden-sharing targets. These countries must therefore seriously consider further action to ensure compliance, in particular revising their plans on using flexible mechanisms. Among the EEA member countries outside the EU, Liechtenstein and Switzerland were not on track to achieve their Kyoto target at the end of 2009. All other European countries are on track to meet their targets, either based on domestic emissions only or with the assistance of Kyoto mechanisms. The economic recession had a significant impact on the EU's total greenhouse gas (GHG) emission trends but a more limited effect on progress towards Kyoto targets. This is because emissions in the sectors covered by the EU Emissions Trading Scheme (ETS), which were most affected by the crisis, do not affect Kyoto compliance once ETS caps have been set. With existing national measures, Member States do not project enough emission reductions for the EU to meet its unilateral 20 % reduction commitment in 2020. Additional measures currently planned by Member States will help further reduce emissions but will be insufficient to achieve the important emission cuts needed in the longer term. By 2020 Member States must enhance their efforts to reduce emissions in non-EU ETS sectors, such as the residential, transport or agriculture sectors, where legally binding national targets have been set under the EU's 2009 climate and energy package. (Author)

  4. Renewed unrest at Mount Spurr Volcano, Alaska

    Science.gov (United States)

    Power, John A.

    2004-01-01

    The Alaska Volcano Observatory (AVO),a cooperative program of the U.S. Geological Survey, the University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys, has detected unrest at Mount Spurr volcano, located about 125 km west of Anchorage, Alaska, at the northeast end of the Aleutian volcanic arc.This activity consists of increased seismicity melting of the summit ice cap, and substantial rates of C02 and H2S emission.The current unrest is centered beneath the volcano's 3374-m-high summit, whose last known eruption was 5000–6000 years ago. Since then, Crater Peak, 2309 m in elevation and 4 km to the south, has been the active vent. Recent eruptions occurred in 1953 and 1992.

  5. The Protonics project: distributed observations of auroral dayside Doppler-shifted hydrogen emissions

    OpenAIRE

    Holmes, Jeffrey Morgan

    2014-01-01

    The Protonics project is an effort to further understand the spatio-temporal dynamics of dayside auroral hydrogen emissions, also known as dayside proton aurorae. Spectrometers measuring dayside Balmer α (Hα) and Balmer β (Hβ) were deployed to two locations on Svalbard at Longyearbyen and Ny-Ålesund. Measured hydrogen Doppler profiles were analysed via a Monte Carlo model of proton precipitation, resulting in an estimate of characteristic energy of the precipitating proton/hydrogen population...

  6. Vhub: a knowledge management system to facilitate online collaborative volcano modeling and research

    National Research Council Canada - National Science Library

    Palma, Jose L; Courtland, Leah; Charbonnier, Sylvain; Tortini, Riccardo; Valentine, Greg A

    2014-01-01

    ... ) is a community cyberinfrastructure platform designed for collaboration in volcanology research, education, outreach, and discovery that complements existing volcano databases and other cyberinfrastructure projects...

  7. Seismic unrest at Katla Volcano- southern Iceland

    Science.gov (United States)

    jeddi, zeinab; Tryggvason, Ari; Gudmundsson, Olafur; Bödvarsson, Reynir; SIL Seismology Group

    2014-05-01

    Katla volcano is located on the propagating Eastern Volcanic Zone (EVZ) in South Iceland. It is located beneath Mýrdalsjökull ice-cap which covers an area of almost 600 km2, comprising the summit caldera and the eruption vents. 20 eruptions between 930 and 1918 with intervals of 13-95 years are documented at Katla which is one of the most active subglacial volcanoes in Iceland. Eruptions at Katla are mainly explosive due to the subglacial mode of extrusion and produce high eruption columns and catastrophic melt water floods (jökulhlaups). The present long Volcanic repose (almost 96 years) at Katla, the general unrest since 1955, and the 2010 eruption of the neighbouring Eyjafjallajökull volcano has prompted concerns among geoscientists about an imminent eruption. Thus, the volcano has been densely monitored by seismologists and volcanologists. The seismology group of Uppsala University as a partner in the Volcano Anatomy (VA) project in collaboration with the University of Iceland and the Icelandic Meteorological Office (IMO) installed 9 temporary seismic stations on and around the Mýrdalsjökull glacier in 2011. Another 10 permanent seismic stations are operated by IMO around Katla. The project's data collection is now finished and temporary stations were pulled down in August 2013. According to seismicity maps of the whole recording period, thousands of microearthquakes have occurred within the caldera region. At least three different source areas are active in Katla: the caldera region, the western Godaland region and a small cluster at the southern rim of Mýrdalsjökull near the glacial stream of Hafursarjökull. Seismicity in the southern flank has basically started after June 2011. The caldera events are mainly volcano-tectonic, while western and southern events are mostly long period (lp) and can be related to glacial or magmatic movement. One motivation of the VA Katla project is to better understand the physical mechanism of these lp events. Changes

  8. Reviews on current carbon emission reduction technologies and projects and their feasibilities on ships

    Science.gov (United States)

    Wang, Haibin; Zhou, Peilin; Wang, Zhongcheng

    2017-06-01

    Concern about global climate change is growing, and many projects and researchers are committed to reducing greenhouse gases from all possible sources. International Maritime (IMO) has set a target of 20% CO2 reduction from shipping by 2020 and also presented a series of carbon emission reduction methods, which are known as Energy Efficiency Design Index (EEDI) and Energy Efficiency Operation Indicator (EEOI). Reviews on carbon emission reduction from all industries indicate that, Carbon Capture and Storage (CCS) is an excellent solution to global warming. In this paper, a comprehensive literature review of EEDI and EEOI and CCS is conducted and involves reviewing current policies, introducing common technologies, and considering their feasibilities for marine activities, mainly shipping. Current projects are also presented in this paper, thereby illustrating that carbon emission reduction has been the subject of attention from all over the world. Two case ship studies indicate the economic feasibility of carbon emission reduction and provide a guide for CCS system application and practical installation on ships.

  9. GHG emission quantification for pavement construction projects using a process-based approach

    Directory of Open Access Journals (Sweden)

    Charinee Limsawasd

    2017-03-01

    Full Text Available Climate change and greenhouse gas (GHG emissions have attracted much attention for their impacts upon the global environment. Initiating of new legislation and regulations for control of GHG emissions from the industrial sectors has been applied to address this problem. The transportation industries, which include operation of road pavement and pavement construction equipment, are the highest GHG-emitting sectors. This study presents a novel quantification model of GHG emissions of pavement construction using process-based analysis. The model is composed of five modules that evaluate GHG emissions. These are: material production and acquisition, (2 material transport to a project site, (3 heavy equipment use, (4 on-site machinery use, and, (5 on-site electricity use. The model was applied to a hypothetical pavement project to compare the environmental impacts of flexible and rigid pavement types during construction. The resulting model can be used for evaluation of environmental impacts, as well as for designing and planning highway pavement construction.

  10. Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER) project and a next-generation real-time volcano hazard assessment system

    Science.gov (United States)

    Takarada, S.

    2012-12-01

    The first Workshop of Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER1) was held in Tsukuba, Ibaraki Prefecture, Japan from February 23 to 24, 2012. The workshop focused on the formulation of strategies to reduce the risks of disasters worldwide caused by the occurrence of earthquakes, tsunamis, and volcanic eruptions. More than 150 participants attended the workshop. During the workshop, the G-EVER1 accord was approved by the participants. The Accord consists of 10 recommendations like enhancing collaboration, sharing of resources, and making information about the risks of earthquakes and volcanic eruptions freely available and understandable. The G-EVER Hub website (http://g-ever.org) was established to promote the exchange of information and knowledge among the Asia-Pacific countries. Several G-EVER Working Groups and Task Forces were proposed. One of the working groups was tasked to make the next-generation real-time volcano hazard assessment system. The next-generation volcano hazard assessment system is useful for volcanic eruption prediction, risk assessment, and evacuation at various eruption stages. The assessment system is planned to be developed based on volcanic eruption scenario datasets, volcanic eruption database, and numerical simulations. Defining volcanic eruption scenarios based on precursor phenomena leading up to major eruptions of active volcanoes is quite important for the future prediction of volcanic eruptions. Compiling volcanic eruption scenarios after a major eruption is also important. A high quality volcanic eruption database, which contains compilations of eruption dates, volumes, and styles, is important for the next-generation volcano hazard assessment system. The volcanic eruption database is developed based on past eruption results, which only represent a subset of possible future scenarios. Hence, different distributions from the previous deposits are mainly observed due to the differences in

  11. Greenhouse gas emission trends and projections in Europe 2012. Tracking progress towards Kyoto and 2020 targets

    Energy Technology Data Exchange (ETDEWEB)

    Gores, S.; Scheffler, M.; Graichen, V. [Oeko-Institut (Oeko), Freiburg (Germany)] [and others

    2012-10-15

    At the end of 2011, almost all European countries were on track towards their Kyoto targets for 2008-2012. The EU-15 also remained on track to achieve its Kyoto target. Italy, however, was not on track. Spain plans to acquire a large quantity of Kyoto units through the KP's flexible mechanisms to achieve its target. With emission caps already set for the economic sectors under the EU Emissions Trading Scheme (EU ETS), emissions reductions during 2012 in the sectors outside the EU ETS together with reductions by carbon sinks will set the frame for how many Kyoto units Member States need to acquire to reach their individual targets. Hence, both the development and delivery of adequate plans to acquire enough Kyoto credits is becoming increasingly important. ETS emissions from 2008 to 2011 were on average 5 % below these caps, which results in an oversupply of allowances. The EU ETS is undergoing important changes in view of the third trading phase from 2013 to 2020. Most EU Member States project that in 2020, their emissions outside the EU ETS will be lower than their national targets set under the Climate and Energy Package. However, further efforts will be necessary to achieve longer term reductions. (Author)

  12. Sensitivity of projected long-term CO2 emissions across the Shared Socioeconomic Pathways

    Science.gov (United States)

    Marangoni, G.; Tavoni, M.; Bosetti, V.; Borgonovo, E.; Capros, P.; Fricko, O.; Gernaat, D. E. H. J.; Guivarch, C.; Havlik, P.; Huppmann, D.; Johnson, N.; Karkatsoulis, P.; Keppo, I.; Krey, V.; Ó Broin, E.; Price, J.; van Vuuren, D. P.

    2017-01-01

    Scenarios showing future greenhouse gas emissions are needed to estimate climate impacts and the mitigation efforts required for climate stabilization. Recently, the Shared Socioeconomic Pathways (SSPs) have been introduced to describe alternative social, economic and technical narratives, spanning a wide range of plausible futures in terms of challenges to mitigation and adaptation. Thus far the key drivers of the uncertainty in emissions projections have not been robustly disentangled. Here we assess the sensitivities of future CO2 emissions to key drivers characterizing the SSPs. We use six state-of-the-art integrated assessment models with different structural characteristics, and study the impact of five families of parameters, related to population, income, energy efficiency, fossil fuel availability, and low-carbon energy technology development. A recently developed sensitivity analysis algorithm allows us to parsimoniously compute both the direct and interaction effects of each of these drivers on cumulative emissions. The study reveals that the SSP assumptions about energy intensity and economic growth are the most important determinants of future CO2 emissions from energy combustion, both with and without a climate policy. Interaction terms between parameters are shown to be important determinants of the total sensitivities.

  13. An investigation of vegetation and other Earth resource/feature parameters using LANDSAT and other remote sensing data. 1: LANDSAT. 2: Remote sensing of volcanic emissions. [New England forest and emissions from Mt. St. Helens and Central American volcanoes

    Science.gov (United States)

    Birnie, R. W.; Stoiber, R. E. (Principal Investigator)

    1981-01-01

    A fanning technique based on a simplistic physical model provided a classification algorithm for mixture landscapes. Results of applications to LANDSAT inventory of 1.5 million acres of forest land in Northern Maine are presented. Signatures for potential deer year habitat in New Hampshire were developed. Volcanic activity was monitored in Nicaragua, El Salvador, and Guatemala along with the Mt. St. Helens eruption. Emphasis in the monitoring was placed on the remote sensing of SO2 concentrations in the plumes of the volcanoes.

  14. Spreading and collapse of big basaltic volcanoes

    Science.gov (United States)

    Puglisi, Giuseppe; Bonforte, Alessandro; Guglielmino, Francesco; Peltier, Aline; Poland, Michael

    2016-04-01

    Among the different types of volcanoes, basaltic ones usually form the most voluminous edifices. Because volcanoes are growing on a pre-existing landscape, the geologic and structural framework of the basement (and earlier volcanic landforms) influences the stress regime, seismicity, and volcanic activity. Conversely, the masses of these volcanoes introduce a morphological anomaly that affects neighboring areas. Growth of a volcano disturbs the tectonic framework of the region, clamps and unclamps existing faults (some of which may be reactivated by the new stress field), and deforms the substratum. A volcano's weight on its basement can trigger edifice spreading and collapse that can affect populated areas even at significant distance. Volcano instability can also be driven by slow tectonic deformation and magmatic intrusion. The manifestations of instability span a range of temporal and spatial scales, ranging from slow creep on individual faults to large earthquakes affecting a broad area. In the frame of MED-SVU project, our work aims to investigate the relation between basement setting and volcanic activity and stability at three Supersite volcanoes: Etna (Sicily, Italy), Kilauea (Island of Hawaii, USA) and Piton de la Fournaise (La Reunion Island, France). These volcanoes host frequent eruptive activity (effusive and explosive) and share common features indicating lateral spreading and collapse, yet they are characterized by different morphologies, dimensions, and tectonic frameworks. For instance, the basaltic ocean island volcanoes of Kilauea and Piton de la Fournaise are near the active ends of long hotspot chains while Mt. Etna has developed at junction along a convergent margin between the African and Eurasian plates and a passive margin separating the oceanic Ionian crust from the African continental crust. Magma supply and plate velocity also differ in the three settings, as to the sizes of the edifices and the extents of their rift zones. These

  15. The TOMO-ETNA experiment: an imaging active campaign at Mt. Etna volcano. Context, main objectives, working-plans and involved research projects

    Directory of Open Access Journals (Sweden)

    Jesús M. Ibáñez

    2016-09-01

    Full Text Available The TOMO-ETNA experiment was devised to image of the crust underlying the volcanic edifice and, possibly, its plumbing system by using passive and active refraction/reflection seismic methods. This experiment included activities both on-land and offshore with the main objective of obtaining a new high-resolution seismic tomography to improve the knowledge of the crustal structures existing beneath the Etna volcano and northeast Sicily up to Aeolian Islands. The TOMO ETNA experiment was divided in two phases. The first phase started on June 15, 2014 and finalized on July 24, 2014, with the withdrawal of two removable seismic networks (a Short Period Network and a Broadband network composed by 80 and 20 stations respectively deployed at Etna volcano and surrounding areas. During this first phase the oceanographic research vessel “Sarmiento de Gamboa” and the hydro-oceanographic vessel “Galatea” performed the offshore activities, which includes the deployment of ocean bottom seismometers (OBS, air-gun shooting for Wide Angle Seismic refraction (WAS, Multi-Channel Seismic (MCS reflection surveys, magnetic surveys and ROV (Remotely Operated Vehicle dives. This phase finished with the recovery of the short period seismic network. In the second phase the Broadband seismic network remained operative until October 28, 2014, and the R/V “Aegaeo” performed additional MCS surveys during November 19-27, 2014. Overall, the information deriving from TOMO-ETNA experiment could provide the answer to many uncertainties that have arisen while exploiting the large amount of data provided by the cutting-edge monitoring systems of Etna volcano and seismogenic area of eastern Sicily.

  16. Redoubt Volcano: 2009 Eruption Overview

    Science.gov (United States)

    Bull, K. F.

    2009-12-01

    Redoubt Volcano is a 3110-m glaciated stratovolcano located 170 km SW of Anchorage, Alaska, on the W side of Cook Inlet. The edifice comprises a oil production in Cook Inlet was halted for nearly five months. Unrest began in August, 2008 with reports of H2S odor. In late September, the Alaska Volcano Observatory (AVO)’s seismic network recorded periods of volcanic tremor. Throughout the fall, AVO noted increased fumarolic emissions and accompanying ice- and snow-melt on and around the 1990 dome, and gas measurements showed elevated H2S and CO2 emissions. On January 23, seismometers recorded 48 hrs of intermittent tremor and discrete, low-frequency to hybrid events. Over the next 6 weeks, seismicity waxed and waned, an estimated 5-6 million m3 of ice were lost due to melting, volcanic gas emissions increased, and debris flows emerged repeatedly from recently formed ice holes near the 1990 dome, located on the crater’s N (“Drift”) side. On March 15, a phreatic explosion deposited non-juvenile ash from a new vent in the summit ice cap just S of the 1990 dome. Ash from the explosion rose to ~4500 m above sea level (asl). The plume was accompanied by weak seismicity. The first magmatic explosion occurred on March 22. Over the next two weeks, more than 19 explosions destroyed at least two lava domes and produced ash plumes that reached 6-18 km asl. Tephra was deposited along variable azimuths including trace to minor amounts on Anchorage and Kenai Peninsula communities, and reached Fairbanks, ~800 km to the N. Several lahars were produced by explosive disruption and melting of the “Drift” glacier. The largest lahars followed explosions on March 23 and April 4 and inundated the Drift River valley to the coast, causing temporary evacuation of the Drift River Oil Terminal, ~40 km from the vent. Time-lapse images captured pyroclastic flows and lahars in the “Drift” glacier valley during several of the explosions. Ballistics and pyroclastic flow deposits were

  17. Volcanoes - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer includes Holocene volcanoes, which are those thought to be active in the last 10,000 years, that are within an extended area of the northern...

  18. Italian active volcanoes

    Institute of Scientific and Technical Information of China (English)

    RobertoSantacroce; RenawCristofolini; LuigiLaVolpe; GiovanniOrsi; MauroRosi

    2003-01-01

    The eruptive histories, styles of activity and general modes of operation of the main active Italian volcanoes,Etna, Vulcano, Stromboli, Vesuvio, Campi Flegrei and Ischia, are described in a short summary.

  19. Collocated infrasound/airglow observations of eruptive activity at Etna volcano

    Science.gov (United States)

    Marchetti, Emanuele; Ripepe, Maurizio; Wüst, Sabine; Schmidt, Carsten; Kramer, Ricarda; Bittner, Michael

    2014-05-01

    episodes, often associated with strong ash emissions in the atmosphere affecting local air traffic and nearby communities. The Etna volcano observation campaign represents a key activity within the WP4 of the project that investigates the civil application of the future ARISE infrastructure, with specific attention to the evaluation and reduction of volcanic hazard.

  20. The Sloan Digital Sky Survey Reverberation Mapping Project: Ensemble Spectroscopic Variability of Quasar Broad Emission Lines

    CERN Document Server

    Sun, Mouyuan; Shen, Yue; Brandt, W N; Dawson, Kyle; Denney, Kelly D; Hall, Patrick B; Ho, Luis C; Horne, Keith; Jiang, Linhua; Richards, Gordon T; Schneider, Donald P; Bizyaev, Dmitry; Kinemuchi, Karen; Oravetz, Daniel; Pan, Kaike; Simmons, Audrey

    2015-01-01

    We explore the variability of quasars in the MgII and Hbeta broad emission lines and UV/optical continuum emission using the Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM). This is the largest spectroscopic study of quasar variability to date: our study includes 29 spectroscopic epochs from SDSS-RM over $6$ months, containing 357 quasars with MgII and 41 quasars with Hbeta . On longer timescales, the study is also supplemented with two-epoch data from SDSS-I/II. The SDSS-I/II data include an additional $2854$ quasars with MgII and 572 quasars with Hbeta. The MgII emission line is significantly variable ($\\Delta f/f$ 10% on 100-day timescales), indicating that it is feasible to use the broad MgII line for reverberation mapping studies. The data also confirm that continuum variability increases with timescale and decreases with luminosity, and the continuum light curves are consistent with a damped random-walk model on rest-frame timescales of $\\gtrsim 5$ days. We compare the emission-line and...

  1. Development And Testing Unmanned Aerial Systems To Study And Monitoring Volcanoes: INGV Experience Since 2004

    Science.gov (United States)

    Buongiorno, M. F.; Amici, S.; Doumaz, F.; Diaz, J. A.; Silvestri, M.; Musacchio, M.; Pieri, D. C.; Marotta, E.; Wright, K. C.; Sansivero, F.; Caliro, S.; Falcone, S.; Giulietti, F.

    2016-12-01

    Monitoring natural hazards such as active volcanoes requires specific instruments to measure many parameters (gas emissions, surface temperatures, surface deformation etc.) to determine the activity level of the volcano. Volcanoes in most cases present difficult and dangerous environment for scientists who need to take in situ measurements but also for manned aircrafts. Remote Sensing systems on board of satellite permit to measure a large number of parameters especially during the eruptive events but still show large limits to monitor volcanic precursors and phenomena at local scale (gas species emitted by fumarole or summit craters degassing plumes and surface thermal changes of few degrees). Since 2004 INGV started the analysis of unmanned Aerial Systems (UAV) to explore the operational aspects of UAV deployments. In 2006, INGV in partnership with department of Aerospace Division at University of Bologna, stared the development of a UAV system named RAVEN-INGV. The project was anticipated by a flight test on 2004. In the last years the large diffusion of smaller UAVS and drones opened new opportunities to perform the monitoring of volcanic areas. INGV teams developed strong collaboration with Jet Propulsion Laboratory (JPL) and University of Costa Rica (UCR) to cooperate in testing both UAV and miniaturized instruments to measures gas species and surface temperatures in volcanic environment. Between 2014 and 2015 specific campaigns has been performed in the active volcanoes in Italy (Campi Flegrei and Vulcano Island). The field and airborne acquisitions have also permitted the calibration and validation of Satellite data as ASTER and LANDSAT8 (in collaboration with USGS). We hope that the rapid increasing of technology developments will permit the use UAV systems to integrate geophysical measurements and contribute to the necessary calibration and validation of current and future satellite missions dedicated to the measurements of surface temperatures and gas

  2. COMPARISON OF THREE METHODS TO PROJECT FUTURE BASELINE CARBON EMISSIONS IN TEMPERATE RAINFOREST, CURINANCO, CHILE

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Gonzalez; Antonio Lara; Jorge Gayoso; Eduardo Neira; Patricio Romero; Leonardo Sotomayor

    2005-07-14

    Deforestation of temperate rainforests in Chile has decreased the provision of ecosystem services, including watershed protection, biodiversity conservation, and carbon sequestration. Forest conservation can restore those ecosystem services. Greenhouse gas policies that offer financing for the carbon emissions avoided by preventing deforestation require a projection of future baseline carbon emissions for an area if no forest conservation occurs. For a proposed 570 km{sup 2} conservation area in temperate rainforest around the rural community of Curinanco, Chile, we compared three methods to project future baseline carbon emissions: extrapolation from Landsat observations, Geomod, and Forest Restoration Carbon Analysis (FRCA). Analyses of forest inventory and Landsat remote sensing data show 1986-1999 net deforestation of 1900 ha in the analysis area, proceeding at a rate of 0.0003 y{sup -1}. The gross rate of loss of closed natural forest was 0.042 y{sup -1}. In the period 1986-1999, closed natural forest decreased from 20,000 ha to 11,000 ha, with timber companies clearing natural forest to establish plantations of non-native species. Analyses of previous field measurements of species-specific forest biomass, tree allometry, and the carbon content of vegetation show that the dominant native forest type, broadleaf evergreen (bosque siempreverde), contains 370 {+-} 170 t ha{sup -1} carbon, compared to the carbon density of non-native Pinus radiata plantations of 240 {+-} 60 t ha{sup -1}. The 1986-1999 conversion of closed broadleaf evergreen forest to open broadleaf evergreen forest, Pinus radiata plantations, shrublands, grasslands, urban areas, and bare ground decreased the carbon density from 370 {+-} 170 t ha{sup -1} carbon to an average of 100 t ha{sup -1} (maximum 160 t ha{sup -1}, minimum 50 t ha{sup -1}). Consequently, the conversion released 1.1 million t carbon. These analyses of forest inventory and Landsat remote sensing data provided the data to

  3. Applications of geophysical methods to volcano monitoring

    Science.gov (United States)

    Wynn, Jeff; Dzurisin, Daniel; Finn, Carol A.; Kauahikaua, James P.; Lahusen, Richard G.

    2006-01-01

    The array of geophysical technologies used in volcano hazards studies - some developed originally only for volcano monitoring - ranges from satellite remote sensing including InSAR to leveling and EDM surveys, campaign and telemetered GPS networks, electronic tiltmeters and strainmeters, airborne magnetic and electromagnetic surveys, short-period and broadband seismic monitoring, even microphones tuned for infrasound. They include virtually every method used in resource exploration except large-scale seismic reflection. By “geophysical ” we include both active and passive methods as well as geodetic technologies. Volcano monitoring incorporates telemetry to handle high-bandwith cameras and broadband seismometers. Critical geophysical targets include the flux of magma in shallow reservoir and lava-tube systems, changes in active hydrothermal systems, volcanic edifice stability, and lahars. Since the eruption of Mount St. Helens in Washington State in 1980, and the eruption at Pu’u O’o in Hawai’i beginning in 1983 and still continuing, dramatic advances have occurred in monitoring technology such as “crisis GIS” and lahar modeling, InSAR interferograms, as well as gas emission geochemistry sampling, and hazards mapping and eruption predictions. The on-going eruption of Mount St. Helens has led to new monitoring technologies, including advances in broadband Wi-Fi and satellite telemetry as well as new instrumentation. Assessment of the gap between adequate monitoring and threat at the 169 potentially dangerous Holocene volcanoes shows where populations are dangerously exposed to volcanic catastrophes in the United States and its territories . This paper focuses primarily on Hawai’ian volcanoes and the northern Pacific and Cascades volcanoes. The US Geological Survey, the US National Park System, and the University of Utah cooperate in a program to monitor the huge Yellowstone volcanic system, and a separate observatory monitors the restive Long Valley

  4. Upgrading the seismic and geodetic network of the Popocatépetl volcano (Mexico).

    Science.gov (United States)

    Calò, Marco; Iglesias Mendoza, Arturo; Legrand, Denis; Valdés González, Carlos Miguel; Perez Campos, Xyoli

    2017-04-01

    The Popocatépetl is one of the most active volcanoes in Mexico and is located only 70 km from Mexico City, populated by more than 20 millions of people, and only 35 km from the Puebla municipality with almost 1.5 millions of people living. The recent activity of the volcano is generally marked by explosions emitting ash plumes often reaching the densely populated regions. In the framework of the Mexican Fund for Prevention of Natural Disasters (FOPREDEN) we are renovating and upgrading the existing geodetic and seismic networks monitoring the volcano. In this project we are installing 10 broadband seismic stations (120s-050Hz) in shallow boreholes (3-5m depth) and 4 GPS with real time sampling rate of 1 Hz. All instruments are equipped with continuous recording systems for real time monitoring purposes and research. The Popocatépetl exceeds 5400m, and the altitude of the stations ranges from 2200 m to 4300 m making it difficult their installation and maintenance. Because of ash emissions and the hard working condition, the real-time transmission is split into two systems in order to ensure the monitoring of the volcano also during the highest expected activity. Therefore we set up a network of "first order", consisting of four stations located about 20 km from the crater and equipped with satellite transmission. These stations, being far enough from the crater, ensure the real time monitoring of the major events also during intense periods of activity of the volcano. The remaining six stations are installed near to the crater (less than 10 km) and take part of the "second order" network equipped with a telemetered radio system transmitting the data either directly to the National Center of Disaster Prevention (CENAPRED) and National Seismological Service (SSN) or to the first order stations (for the sites that have not direct visible line with the monitoring centers). The four GPS sensors are all installed in the second order sites in order to monitor the largest

  5. Projected changes of rainfall seasonality and dry spells in a high greenhouse gas emissions scenario

    Science.gov (United States)

    Pascale, Salvatore; Lucarini, Valerio; Feng, Xue; Porporato, Amilcare; ul Hasson, Shabeh

    2016-02-01

    In this diagnostic study we analyze changes of rainfall seasonality and dry spells by the end of the twenty-first century under the most extreme IPCC5 emission scenario (RCP8.5) as projected by twenty-four coupled climate models contributing to Coupled Model Intercomparison Project 5 (CMIP5). We use estimates of the centroid of the monthly rainfall distribution as an index of the rainfall timing and a threshold-independent, information theory-based quantity such as relative entropy (RE) to quantify the concentration of annual rainfall and the number of dry months and to build a monsoon dimensionless seasonality index (DSI). The RE is projected to increase, with high inter-model agreement over Mediterranean-type regions—southern Europe, northern Africa and southern Australia—and areas of South and Central America, implying an increase in the number of dry days up to 1 month by the end of the twenty-first century. Positive RE changes are also projected over the monsoon regions of southern Africa and North America, South America. These trends are consistent with a shortening of the wet season associated with a more prolonged pre-monsoonal dry period. The extent of the global monsoon region, characterized by large DSI, is projected to remain substantially unaltered. Centroid analysis shows that most of CMIP5 projections suggest that the monsoonal annual rainfall distribution is expected to change from early to late in the course of the hydrological year by the end of the twenty-first century and particularly after year 2050. This trend is particularly evident over northern Africa, southern Africa and western Mexico, where more than 90 % of the models project a delay of the rainfall centroid from a few days up to 2 weeks. Over the remaining monsoonal regions, there is little inter-model agreement in terms of centroid changes.

  6. Increased Melting of Glaciers during Cotopaxi volcano awakening in 2015

    Science.gov (United States)

    Ramon, Patricio; Vallejo, Silvia; Almeida, Marco; Gomez, Juan Pablo; Caceres, Bolivar

    2016-04-01

    Cotopaxi (5897 m), located about 50 km south of Quito (Ecuador), is one of the most active volcanoes in the Andes and its historical eruptions have caused a great impact on the population by the generation of lahars along its three main drainages (N, S, E). Starting on April 2015 the seismic monitoring networks and the SO2 gas detection network in May 2015 showed a significant increase from their background values, in June a geodetic instrument located in the NE flank started to record inflation; all this indicated the beginning of a new period of unrest. On August 14, five small phreatic explosions occurred, accompanied by large gas and ash emissions, ash falls were reported to the W of the volcano and to the S of Quito capital city. Three new episodes of ash and gas emissions occurred afterwards and towards the end of November 2015, the different monitoring parameters indicated a progressive reduction in the activity of the volcano. Since August 18 almost weekly overflights were made in order to conduct thermal (FLIR camera), visual and SO2 gas monitoring. Towards the end of August thermal measurements showed for the first time the presence of new thermal anomalies (13.5 to 16.3 °C) located in the crevices of the N glaciers, at the same time fumarolic gases were observed coming out from those fractures. On a flight made on September 3, the presence of water coming out from the basal fronts of the northern glaciers was clearly observed and the formation of narrow streams of water running downslope, while it was evident the appearance of countless new crevices in the majority of glacier ends, but also new cracks and rockslides on the upper flanks. All this led to the conclusion that an abnormal process was producing the melting of the glaciers around the volcano. Starting on September it was possible to observe the presence of small secondary lahars descending several streams and we estimated that many of them are due to increased glacier melting. Later

  7. Global Volcano Model

    Science.gov (United States)

    Sparks, R. S. J.; Loughlin, S. C.; Cottrell, E.; Valentine, G.; Newhall, C.; Jolly, G.; Papale, P.; Takarada, S.; Crosweller, S.; Nayembil, M.; Arora, B.; Lowndes, J.; Connor, C.; Eichelberger, J.; Nadim, F.; Smolka, A.; Michel, G.; Muir-Wood, R.; Horwell, C.

    2012-04-01

    Over 600 million people live close enough to active volcanoes to be affected when they erupt. Volcanic eruptions cause loss of life, significant economic losses and severe disruption to people's lives, as highlighted by the recent eruption of Mount Merapi in Indonesia. The eruption of Eyjafjallajökull, Iceland in 2010 illustrated the potential of even small eruptions to have major impact on the modern world through disruption of complex critical infrastructure and business. The effects in the developing world on economic growth and development can be severe. There is evidence that large eruptions can cause a change in the earth's climate for several years afterwards. Aside from meteor impact and possibly an extreme solar event, very large magnitude explosive volcanic eruptions may be the only natural hazard that could cause a global catastrophe. GVM is a growing international collaboration that aims to create a sustainable, accessible information platform on volcanic hazard and risk. We are designing and developing an integrated database system of volcanic hazards, vulnerability and exposure with internationally agreed metadata standards. GVM will establish methodologies for analysis of the data (eg vulnerability indices) to inform risk assessment, develop complementary hazards models and create relevant hazards and risk assessment tools. GVM will develop the capability to anticipate future volcanism and its consequences. NERC is funding the start-up of this initiative for three years from November 2011. GVM builds directly on the VOGRIPA project started as part of the GRIP (Global Risk Identification Programme) in 2004 under the auspices of the World Bank and UN. Major international initiatives and partners such as the Smithsonian Institution - Global Volcanism Program, State University of New York at Buffalo - VHub, Earth Observatory of Singapore - WOVOdat and many others underpin GVM.

  8. Cook Inlet and Kenai Peninsula, Alaska ESI: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains the locations of volcanos in Cook Inlet and Kenai Peninsula, Alaska. Vector points in the data set represent the location of the volcanos....

  9. Projection of SO{sub 2}, NO{sub X}, NH{sub 3} and particle emissions - 2010-2030

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, O.-K.; Plejdrup, M.; Winther, M.; Hjorth Mikkelsen, M.; Albrektsen, R.; Nielsen, M.; Fauser, P.; Hoffmann, L.; Hjelgaard, K.; Gyldenkaerne, S.

    2012-01-15

    This report contains a description of models and background data for projection of SO{sub 2}, NO{sub x}, NH{sub 3}, NMVOC, TSP, PM{sub 10} and PM{sub 25} for Denmark. The emissions are projected to 2030 using basic scenarios together with the expected results of a few individual policy measures. Official Danish forecasts of activity rates are used in the models for those sectors for which the forecasts are available, i.e. the latest official forecast from the Danish Energy Agency. The emission factors refer either to international guidelines or are country-specific and refer to Danish legislation, Danish research reports or calculations based on emission data from a considerable number of plants. The projection models are based on the same structure and method as the Danish emission inventories in order to ensure consistency. (Author)

  10. Sulfur hexafluoride (SF6) emission estimates for China: an inventory for 1990-2010 and a projection to 2020.

    Science.gov (United States)

    Fang, Xuekun; Hu, Xia; Janssens-Maenhout, Greet; Wu, Jing; Han, Jiarui; Su, Shenshen; Zhang, Jianbo; Hu, Jianxin

    2013-04-16

    Sulfur hexafluoride (SF6) is the most potent greenhouse gas regulated under the Kyoto Protocol, with a high global warming potential. In this study, SF6 emissions from China were inventoried for 1990-2010 and projected to 2020. Results reveal that the highest SF6 emission contribution originates from the electrical equipment sector (about 70%), followed by the magnesium production sector, the semiconductor manufacture sector and the SF6 production sector (each about 10%). Both agreements and discrepancies were found in comparisons of our estimates with previously published data. An accelerated growth rate was found for Chinese SF6 emissions during 1990-2010. Because the relative growth rate of SF6 emissions is estimated to be much higher than those of CO2, CH4, and N2O, SF6 will play an increasing role in greenhouse gas emissions in China. Global contributions from China increased rapidly from 0.9 ± 0.3% in 1990 to 22.8 ± 6.3% in 2008, making China one of the crucial contributors to the recent growth in global emissions. Under the examined Business-as-usual (BAU) Scenario, projected emissions will reach 4270 ± 1020 t in 2020, but a reduction of about 90% of the projected BAU emissions would be obtained under the Alternative Scenario.

  11. SO2 camera measurements at Lastarria volcano and Lascar volcano in Chile

    Science.gov (United States)

    Lübcke, Peter; Bobrowski, Nicole; Dinger, Florian; Klein, Angelika; Kuhn, Jonas; Platt, Ulrich

    2015-04-01

    The SO2 camera is a remote-sensing technique that measures volcanic SO2 emissions via the strong SO2 absorption structures in the UV using scattered solar radiation as a light source. The 2D-imagery (usually recorded with a frame rate of up to 1 Hz) allows new insights into degassing processes of volcanoes. Besides the large advantage of high frequency sampling the spatial resolution allows to investigate SO2 emissions from individual fumaroles and not only the total SO2 emission flux of a volcano, which is often dominated by the volcanic plume. Here we present SO2 camera measurements that were made during the CCVG workshop in Chile in November 2014. Measurements were performed at Lastarria volcano, a 5700 m high stratovolcano and Lascar volcano, a 5600 m high stratovolcano both in northern Chile on 21 - 22 November, 2014 and on 26 - 27 November, 2014, respectively. At both volcanoes measurements were conducted from a distance of roughly 6-7 km under close to ideal conditions (low solar zenith angle, a very dry and cloudless atmosphere and an only slightly condensed plume). However, determination of absolute SO2 emission rates proves challenging as part of the volcanic plume hovered close to the ground. The volcanic plume therefore is in front of the mountain in our camera images. An SO2 camera system consisting of a UV sensitive CCD and two UV band-pass filters (centered at 315 nm and 330 nm) was used. The two band-pass filters are installed in a rotating wheel and images are taken with both filter sequentially. The instrument used a CCD with 1024 x 1024 pixels and an imaging area of 13.3 mm x 13.3 mm. In combination with the focal length of 32 mm this results in a field-of-view of 25° x 25°. The calibration of the instrument was performed with help of a DOAS instrument that is co-aligned with the SO2 camera. We will present images and SO2 emission rates from both volcanoes. At Lastarria gases are emitted from three different fumarole fields and we will attempt

  12. Multimodel ensemble projection of precipitation in eastern China under A1B emission scenario

    Science.gov (United States)

    Niu, Xiaorui; Wang, Shuyu; Tang, Jianping; Lee, Dong-Kyou; Gao, Xuejie; Wu, Jia; Hong, Songyou; Gutowski, William J.; McGregor, John

    2015-10-01

    As part of the Regional Climate Model Intercomparison Project for Asia, future precipitation projection in China is constructed using five regional climate models (RCMs) driven by the same global climate model (GCM) of European Centre/Hamburg version 5. The simulations cover both the control climate (1978-2000) and future projection (2041-2070) under the Intergovernmental Panel on Climate Change emission scenario A1B. For the control climate, the RCMs have an advantage over the driving GCM in reproducing the summer mean precipitation distribution and the annual cycle. The biases in simulating summer precipitation mainly are caused by the deficiencies in reproducing the low-level circulation, such as the western Pacific subtropical high. In addition, large inter-RCM differences exist in the summer precipitation simulations. For the future climate, consistent and inconsistent changes in precipitation between the driving GCM and the nested RCMs are observed. Similar changes in summer precipitation are projected by RCMs over western China, but model behaviors are quite different over eastern China, which is dominated by the Asian monsoon system. The inter-RCM difference of rainfall changes is more pronounced in spring over eastern China. North China and the southern part of South China are very likely to experience less summer rainfall in multi-RCM mean (MRM) projection, while limited credibility in increased summer rainfall MRM projection over the lower reaches of the Yangtze River Basin. The inter-RCM variability is the main contributor to the total uncertainty for the lower reaches of the Yangtze River Basin and South China during 2041-2060, while lowest for Northeast China, being less than 40%.

  13. Progresses in geology and hazards analysis of Tianchi Volcano

    Institute of Scientific and Technical Information of China (English)

    WEI Hai-quan; JIN Bo-lu; LIU Yong-shun

    2004-01-01

    A number of different lahars have been recognized from a systematic survey of a mapping project. The high setting temperature feature of the deposits indicates a relationship between the lahar and the Millennium eruption event of Tianchi Volcano. The lahars caused a dramatic disaster. Recognize of the huge avalanche scars and deposits around Tianchi Volcano imply another highly destructive hazard. Three types of different texture of the avalanche deposits have been recognized. There was often magma mixing processes during the Millennium eruption of Tianchi Volcano, indicating a mixing and co-eruption regime of the eruption.

  14. The Sloan Digital Sky Survey Reverberation Mapping Project: Velocity Shifts of Quasar Emission Lines

    CERN Document Server

    Shen, Yue; Denney, Kelly D; Greene, Jenny E; Grier, C J; Ho, Luis C; Peterson, Bradley M; Petitjean, Patrick; Richards, Gordon T; Schneider, Donald P; Tao, Charling; Trump, Jonathan R

    2016-01-01

    Quasar emission lines are often shifted from the systemic velocity due to various dynamical and radiative processes in the line-emitting region. The level of these velocity shifts depends both on the line species and on quasar properties. We study velocity shifts for the line peaks of various narrow and broad quasar emission lines relative to systemic using a sample of 849 quasars from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. The coadded (from 32 epochs) spectra of individual quasars have sufficient signal-to-noise ratio (SNR) to measure stellar absorption lines to provide reliable systemic velocity estimates, as well as weak narrow emission lines. The sample also covers a large dynamic range in quasar luminosity (~2 dex), allowing us to explore potential luminosity dependence of the velocity shifts. We derive average line peak velocity shifts as a function of quasar luminosity for different lines, and quantify their intrinsic scatter. We further quantify how well the peak velocit...

  15. Volcanoes: Coming Up from Under.

    Science.gov (United States)

    Science and Children, 1980

    1980-01-01

    Provides specific information about the eruption of Mt. St. Helens in March 1980. Also discusses how volcanoes are formed and how they are monitored. Words associated with volcanoes are listed and defined. (CS)

  16. Acoustic scattering from mud volcanoes and carbonate mounds.

    Science.gov (United States)

    Holland, Charles W; Weber, Thomas C; Etiope, Giuseppe

    2006-12-01

    Submarine mud volcanoes occur in many parts of the world's oceans and form an aperture for gas and fluidized mud emission from within the earth's crust. Their characteristics are of considerable interest to the geology, geophysics, geochemistry, and underwater acoustics communities. For the latter, mud volcanoes are of interest in part because they pose a potential source of clutter for active sonar. Close-range (single-interaction) scattering measurements from a mud volcano in the Straits of Sicily show scattering 10-15 dB above the background. Three hypotheses were examined concerning the scattering mechanism: (1) gas entrained in sediment at/near mud volcano, (2) gas bubbles and/or particulates (emitted) in the water column, (3) the carbonate bio-construction covering the mud volcano edifice. The experimental evidence, including visual, acoustic, and nonacoustic sensors, rules out the second hypothesis (at least during the observation time) and suggests that, for this particular mud volcano the dominant mechanism is associated with carbonate chimneys on the mud volcano. In terms of scattering levels, target strengths of 4-14 dB were observed from 800 to 3600 Hz for a monostatic geometry with grazing angles of 3-5 degrees. Similar target strengths were measured for vertically bistatic paths with incident and scattered grazing angles of 3-5 degrees and 33-50 degrees, respectively.

  17. Continuous measurements of SiF4 and SO2 by thermal emission spectroscopy: Insight from a 6-month survey at the Popocatépetl volcano

    Science.gov (United States)

    Taquet, N.; Meza Hernández, I.; Stremme, W.; Bezanilla, A.; Grutter, M.; Campion, R.; Palm, M.; Boulesteix, T.

    2017-07-01

    The processes linked with the emplacement and growth/destruction of a lava dome are of prime importance to understand the stability of such extrusions and assess the associated risks for local populations. During the last couple of decades, ground and space-based spectroscopic techniques have been developed to monitor such processes from a safe distance. Such approaches significantly improved our knowledge about the relationship between the chemical composition of the volcanic gas plumes and both the deep and shallow volcanic processes leading to the different types of explosive activity. The potential of the ground-based thermal emission Fourier Transform Infrared spectroscopy (FTIR) remained under-exploited due to the difficulty to properly handle the radiative-transfer phenomena. Despite the drawbacks in the complex analytical requirements, this method enables to continuously monitor (day and night) with a high temporal resolution (1 meas/3 min), relevant gas species such as SO2 and SiF4 in the volcanic plumes. Previous studies have related the temporal variations of the SiF4/SO2 ratio in volcanic plumes to the onset of vulcanian explosions. This study reports a 6-month SO2, SiF4, and SiF4/SO2 time series (from January to June 2015) of the Popocatepetl's gas plume obtained from FTIR thermal emission spectroscopic measurements. The infrared spectra were analyzed using the SFIT4 radiative transfer and inverse model, which we have adapted for this application. We obtained highly variable SiF4/SO2 ratios with a mean value of 3.6 × 10- 4, with the highest values (around 3 × 10- 3) measured during the final phase of a lava dome growth (February-March 2015). The rapid SiF4/SO2 variations were more carefully explored and compared for the first time with the seismic activity. A remarkable coincidence between sharp SiF4/SO2 rises and the seismic events are evidenced here.

  18. Organizational changes at Earthquakes & Volcanoes

    Science.gov (United States)

    Gordon, David W.

    1992-01-01

    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  19. Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M.; Huo, H.; Johnson, L.; He, D.

    2006-12-20

    As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and

  20. Hawaii's volcanoes revealed

    Science.gov (United States)

    Eakins, Barry W.; Robinson, Joel E.; Kanamatsu, Toshiya; Naka, Jiro; Smith, John R.; Takahashi, Eiichi; Clague, David A.

    2003-01-01

    Hawaiian volcanoes typically evolve in four stages as volcanism waxes and wanes: (1) early alkalic, when volcanism originates on the deep sea floor; (2) shield, when roughly 95 percent of a volcano's volume is emplaced; (3) post-shield alkalic, when small-volume eruptions build scattered cones that thinly cap the shield-stage lavas; and (4) rejuvenated, when lavas of distinct chemistry erupt following a lengthy period of erosion and volcanic quiescence. During the early alkalic and shield stages, two or more elongate rift zones may develop as flanks of the volcano separate. Mantle-derived magma rises through a vertical conduit and is temporarily stored in a shallow summit reservoir from which magma may erupt within the summit region or be injected laterally into the rift zones. The ongoing activity at Kilauea's Pu?u ?O?o cone that began in January 1983 is one such rift-zone eruption. The rift zones commonly extend deep underwater, producing submarine eruptions of bulbous pillow lava. Once a volcano has grown above sea level, subaerial eruptions produce lava flows of jagged, clinkery ?a?a or smooth, ropy pahoehoe. If the flows reach the ocean they are rapidly quenched by seawater and shatter, producing a steep blanket of unstable volcanic sediment that mantles the upper submarine slopes. Above sea level then, the volcanoes develop the classic shield profile of gentle lava-flow slopes, whereas below sea level slopes are substantially steeper. While the volcanoes grow rapidly during the shield stage, they may also collapse catastrophically, generating giant landslides and tsunami, or fail more gradually, forming slumps. Deformation and seismicity along Kilauea's south flank indicate that slumping is occurring there today. Loading of the underlying Pacific Plate by the growing volcanic edifices causes subsidence, forming deep basins at the base of the volcanoes. Once volcanism wanes and lava flows no longer reach the ocean, the volcano continues to submerge, while

  1. Applicability of CDM to civil engineering projects case study on reduction of CO2 emission by port extension

    Energy Technology Data Exchange (ETDEWEB)

    Sekimoto, T. [Penta-Ocean Construction Co. LTD, Yonku-cho 1534-1, Nishinasuno-machi, Nasu, Tochigi, 329-2746 (Japan)

    2003-07-01

    This paper investigates the applicability of CDM to civil engineering projects through a case study on the project to extend Port Samainda in Indonesia. The goal of this project is to improve the physical distribution system of the port so that it can accommodate increasing future demand for the cargo transportation. Based on the project report by JICA (2002), we first outline the predicted demand for the cargo transportation and select possible three options in which a cargo vessel with different capabilities and respective port facilities are assigned. For each option, CO2 emissions from both cargo and dredging vessels are predicted and compared. It is found that the total CO2 emission may be reduced significantly by introducing a large-draft vessel and deep navigation channels. This feature becomes more prominent if a traveling distance of the cargo vessels is long enough so that CO2 emissions from cargo vessels dominates those of dredging vessels. This observation supports the applicability of CDM to civil engineering projects because reduction of the CO2 emission is attained by improving distribution systems through civil engineering works such as extension of the port and the maintenance dredging. Finally, we discuss future problems to be investigated for the practical application of CDM to a civil engineering project.

  2. A Benthic Invertebrate Survey of Jun Jaegyu Volcano: An active undersea volcano in Antarctic Sound, Antarctica

    Science.gov (United States)

    Quinones, G.; Brachfeld, S.; Gorring, M.; Prezant, R. S.; Domack, E.

    2005-12-01

    Jun Jaegyu volcano, an Antarctic submarine volcano, was dredged in May 2004 during cruise 04-04 of the RV Laurence M. Gould to determine rock, sediment composition and marine macroinvertebrate diversity. The objectives of this study are to examine the benthic assemblages and biodiversity present on a young volcano. The volcano is located on the continental shelf of the northeastern Antarctic Peninsula, where recent changes in surface temperature and ice shelf stability have been observed. This volcano was originally swath-mapped during cruise 01-07 of the Research Vessel-Ice Breaker Nathaniel B. Palmer. During LMG04-04 we also studied the volcano using a SCUD video camera, and performed temperature surveys along the flanks and crest. Both the video and the dredge indicate a seafloor surface heavily colonized by benthic organisms. Indications of fairly recent lava flows are given by the absence of marine life on regions of the volcano. The recovered dredge material was sieved, and a total of thirty-three invertebrates were extracted. The compilation of invertebrate community data can subsequently be compared to other benthic invertebrate studies conducted along the peninsula, which can determine the regional similarity of communities over time, their relationship to environmental change and health, if any, and their relationship to geologic processes in Antarctic Sound. Twenty-two rock samples, all slightly weathered and half bearing encrusted organisms, were also analyzed using inductively coupled plasma-optical emission spectrometry (ICP-OES). Except for one conglomerate sample, all are alkali basalts and share similar elemental compositions with fresh, unweathered samples from the volcano. Two of the encrusted basalt samples have significantly different compositions than the rest. We speculate this difference could be due to water loss during sample preparation, loss of organic carbon trapped within the vesicles of the samples and/or elemental uptake by the

  3. Muons reveal the interior of volcanoes

    CERN Multimedia

    Francesco Poppi

    2010-01-01

    The MU-RAY project has the very challenging aim of providing a “muon X-ray” of the Vesuvius volcano (Italy) using a detector that records the muons hitting it after traversing the rock structures of the volcano. This technique was used for the first time in 1971 by the Nobel Prize-winner Louis Alvarez, who was searching for unknown burial chambers in the Chephren pyramid.   The location of the muon detector on the slopes of the Vesuvius volcano. Like X-ray scans of the human body, muon radiography allows researchers to obtain an image of the internal structures of the upper levels of volcanoes. Although such an image cannot help to predict ‘when’ an eruption might occur, it can, if combined with other observations, help to foresee ‘how’ it could develop and serves as a powerful tool for the study of geological structures. Muons come from the interaction of cosmic rays with the Earth's atmosphere. They are able to traverse layers of ro...

  4. Pollution from aircraft emissions in the North Atlantic flight corridor. Overview on the results of the POLINAT project

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, U.; Duerbeck, T.; Feigl, C. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany); Arnold, F.; Droste-Franke, B. [Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany); Flatoy, F. [Bergen Univ. (Norway). Inst. of Geophysics; Ford, I.J. [University Coll., London (United Kingdom); Hagen, D.E.; Hopkins, A.R. [Missouri Univ., Rolla, MO (United States). Lab. for Cloud and Aerosol Sciences; Hayman, G.D. [National Environmental Technology Centre, AEA Technology, Culham (United Kingdom); and others

    1997-12-31

    The POLINAT project (phase 1) was performed 1994 to 1996 within the Environment Research Programme of the European Commission. POLINAT-2 is being performed now since April 1996. The objectives of POLINAT-1 and -2, the methods used, the measurements, and some selected results are described. Details are given on the measured background concentrations, the emission indices of several aircraft, comparisons between modelled and measured data, and the impact of the emissions within the North Atlantic flight corridor. (author) 21 refs.

  5. Santa Maria Volcano, Guatemala

    Science.gov (United States)

    2002-01-01

    The eruption of Santa Maria volcano in 1902 was one of the largest eruptions of the 20th century, forming a large crater on the mountain's southwest flank. Since 1922, a lava-dome complex, Santiaguito, has been forming in the 1902 crater. Growth of the dome has produced pyroclastic flows as recently as the 2001-they can be identified in this image. The city of Quezaltenango (approximately 90,000 people in 1989) sits below the 3772 m summit. The volcano is considered dangerous because of the possibility of a dome collapse such as one that occurred in 1929, which killed about 5000 people. A second hazard results from the flow of volcanic debris into rivers south of Santiaguito, which can lead to catastrophic flooding and mud flows. More information on this volcano can be found at web sites maintained by the Smithsonian Institution, Volcano World, and Michigan Tech University. ISS004-ESC-7999 was taken 17 February 2002 from the International Space Station using a digital camera. The image is provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Searching and viewing of additional images taken by astronauts and cosmonauts is available at the NASA-JSC Gateway to

  6. Anatomy of a volcano

    NARCIS (Netherlands)

    Wassink, J.

    2011-01-01

    The Icelandic volcano Eyjafjallajökull caused major disruption in European airspace last year. According to his co-author, Freysteinn Sigmundsson, the reconstruction published in Nature six months later by aerospace engineering researcher, Dr Andy Hooper, opens up a new direction in volcanology. “W

  7. Methane emission from ruminants and solid waste: A critical analysis of baseline and mitigation projections for climate and policy studies

    Science.gov (United States)

    Matthews, E.

    2012-12-01

    Current and projected estimates of methane (CH4) emission from anthropogenic sources are numerous but largely unexamined or compared. Presented here is a critical appraisal of CH4 projections used in climate-chemistry and policy studies. We compare emissions for major CH4 sources from several groups, including our own new data and RCP projections developed for climate-chemistry models for the next IPCC Assessment Report (AR5). We focus on current and projected baseline and mitigation emissions from ruminant animals and solid waste that are both predicted to rise dramatically in coming decades, driven primarily by developing countries. For waste, drivers include increasing urban populations, higher per capita waste generation due to economic growth and increasing landfilling rates. Analysis of a new global data base detailing waste composition, collection and disposal indicates that IPCC-based methodologies and default data overestimate CH4 emission for the current period which cascades into substantial overestimates in future projections. CH4 emission from solid waste is estimated to be ~10-15 Tg CH4/yr currently rather than the ~35 Tg/yr often reported in the literature. Moreover, emissions from developing countries are unlikely to rise rapidly in coming decades because new management approaches, such as sanitary landfills, that would increase emissions are maladapted to infrastructures in these countries and therefore unlikely to be implemented. The low current emission associated with solid waste (~10 Tg), together with future modest growth, implies that mitigation of waste-related CH4 emission is a poor candidate for slowing global warming. In the case of ruminant animals (~90 Tg CH4/yr currently), the dominant assumption driving future trajectories of CH4 emission is a substantial increase in meat and dairy consumption in developing countries to be satisfied by growing animal populations. Unlike solid waste, current ruminant emissions among studies exhibit a

  8. The Challenge of Modelling the Meteorology of Dust Emission: Lessons Learned from the Desert Storms Project

    Science.gov (United States)

    Knippertz, Peter; Marsham, John H.; Cowie, Sophie; Fiedler, Stephanie; Heinold, Bernd; Jemmett-Smith, Bradley; Pantillon, Florian; Schepanski, Kerstin; Roberts, Alexander; Pope, Richard; Gilkeson, Carl; Hubel, Eva

    2016-04-01

    Mineral dust plays an important role in the Earth system, but a reliable quantification of the global dust budget is still not possible due to a lack of observations and insufficient representation of relevant processes in climate and weather models. Five years ago, the Desert Storms project funded by the European Research Council set out to reduce these uncertainties. Its aims were to (1) improve the understanding of key meteorological mechanisms of peak wind generation in dust emission regions (particularly in northern Africa), (2) assess their relative importance, (3) evaluate their representation in models, (4) determine model sensitivities with respect to resolution and model physics, and (5) explore the usefulness of new approaches for model improvements. Here we give an overview of the most significant findings: (1) The morning breakdown of nocturnal low-level jets is an important emission mechanism, but details depend crucially on nighttime stability, which is often badly handled by models. (2) Convective cold pools are a key control on summertime dust emission over northern Africa, directly and through their influence on the heat low; they are severely misrepresented by models using parameterized convection. A new scheme based on downdraft mass flux has been developed that can mitigate this problem. (3) Mobile cyclones make a relatively unimportant contribution, except for northeastern Africa in spring. (4) A new global climatology of dust devils identifies local hotspots but suggests a minor contribution to the global dust budget in contrast to previous studies. A new dust-devil parameterization based on data from large-eddy simulations will be presented. (5) The lack of sufficient observations and misrepresentation of physical processes lead to a considerable uncertainty and biases in (re)analysis products. (6) Variations in vegetation-related surface roughness create small-scale wind variability and support long-term dust trends in semi-arid areas.

  9. Hazard maps of Colima volcano, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Escudero Ayala, C. R.

    2011-12-01

    Colima volcano, also known as Volcan de Fuego (19° 30.696 N, 103° 37.026 W), is located on the border between the states of Jalisco and Colima and is the most active volcano in Mexico. Began its current eruptive process in February 1991, in February 10, 1999 the biggest explosion since 1913 occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching attitudes between 4,500 and 9,000 m.a.s.l., further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events ash emissions were generated in all directions reaching distances up to 100 km, slightly affected nearby villages as Tuxpan, Tonila, Zapotlán, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During the 2005 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano due to low population density and low socio-economic activities at the time. Shows the updating of the volcanic hazard maps published in 2001, where we identify whit SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano, the population inhabiting the area is approximately 517,000 people, and growing at an annual rate of 4.77%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by the construction of highways, natural gas pipelines and electrical infrastructure that connect to the Port of Manzanillo to Guadalajara city. The update the hazard maps are: a) Exclusion areas and moderate hazard for explosive events

  10. Prevented Mortality and Greenhouse Gas Emissions From Historical and Projected Nuclear Power

    Science.gov (United States)

    Kharecha, Pushker A.; Hansen, James E.

    2013-01-01

    In the aftermath of the March 2011 accident at Japan's Fukushima Daiichi nuclear power plant, the future contribution of nuclear power to the global energy supply has become somewhat uncertain. Because nuclear power is an abundant, low-carbon source of base-load power, it could make a large contribution to mitigation of global climate change and air pollution. Using historical production data, we calculate that global nuclear power has prevented an average of 1.84 million air pollution-related deaths and 64 gigatonnes of CO2-equivalent (GtCO2-eq) greenhouse gas (GHG) emissions that would have resulted from fossil fuel burning. On the basis of global projection data that take into account the effects of the Fukushima accident, we find that nuclear power could additionally prevent an average of 420 000-7.04 million deaths and 80-240 GtCO2-eq emissions due to fossil fuels by midcentury, depending on which fuel it replaces. By contrast, we assess that large-scale expansion of unconstrained natural gas use would not mitigate the climate problem and would cause far more deaths than expansion of nuclear power.

  11. Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M.; Huo, H.; Johnson, L.; He, D.

    2006-12-20

    As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and

  12. The Hestia Project: High Spatial Resolution Fossil Fuel Carbon Dioxide Emissions Quantification at Hourly Scale in Indianapolis, USA

    Science.gov (United States)

    Zhou, Y.; Gurney, K. R.

    2009-12-01

    city environmental managers and regional industry as they plan emission mitigation options and project future emission trends. The results obtained here will also be a useful comparison to atmospheric CO2 monitoring efforts from the top-down. Figure 1. Location of the study area, the building level and mobile CO2 emissions, and an enlarged example neighborhood

  13. Uncertainty in projected climate change caused by methodological discrepancy in estimating CO2 emissions from fossil fuel combustion

    Science.gov (United States)

    Quilcaille, Yann; Gasser, Thomas; Ciais, Philippe; Lecocq, Franck; Janssens-Maenhout, Greet; Mohr, Steve; Andres, Robert J.; Bopp, Laurent

    2016-04-01

    There are different methodologies to estimate CO2 emissions from fossil fuel combustion. The term "methodology" refers to the way subtypes of fossil fuels are aggregated and their implied emissions factors. This study investigates how the choice of a methodology impacts historical and future CO2 emissions, and ensuing climate change projections. First, we use fossil fuel extraction data from the Geologic Resources Supply-Demand model of Mohr et al. (2015). We compare four different methodologies to transform amounts of fossil fuel extracted into CO2 emissions based on the methodologies used by Mohr et al. (2015), CDIAC, EDGARv4.3, and IPCC 1996. We thus obtain 4 emissions pathways, for the historical period 1750-2012, that we compare to the emissions timeseries from EDGARv4.3 (1970-2012) and CDIACv2015 (1751-2011). Using the 3 scenarios by Mohr et al. (2015) for projections till 2300 under the assumption of an Early (Low emission), Best Guess or Late (High emission) extraction peaking, we obtain 12 different pathways of CO2 emissions over 1750-2300. Second, we extend these CO2-only pathways to all co-emitted and climatically active species. Co-emission ratios for CH4, CO, BC, OC, SO2, VOC, N2O, NH3, NOx are calculated on the basis of the EDGAR v4.3 dataset, and are then used to produce complementary pathways of non-CO2 emissions from fossil fuel combustion only. Finally, the 12 emissions scenarios are integrated using the compact Earth system model OSCAR v2.2, in order to quantify the impact of the selected driver onto climate change projections. We find historical cumulative fossil fuel CO2 emissions from 1750 to 2012 ranging from 365 GtC to 392 GtC depending upon the methodology used to convert fossil fuel into CO2 emissions. We notice a drastic increase of the impact of the methodology in the projections. For the High emission scenario with Late fuel extraction peaking, cumulated CO2 emissions from 1700 to 2100 range from 1505 GtC to 1685 GtC; this corresponds

  14. Projections of NH3 emissions from manure generated by livestock production in China to 2030 under six mitigation scenarios.

    Science.gov (United States)

    Xu, Peng; Koloutsou-Vakakis, Sotiria; Rood, Mark J; Luan, Shengji

    2017-07-05

    China's rapid urbanization, large population, and increasing consumption of calorie-and meat-intensive diets, have resulted in China becoming the world's largest source of ammonia (NH3) emissions from livestock production. This is the first study to use provincial, condition-specific emission factors based on most recently available studies on Chinese manure management and environmental conditions. The estimated NH3 emission temporal trends and spatial patterns are interpreted in relation to government policies affecting livestock production. Scenario analysis is used to project emissions and estimate mitigation potential of NH3 emissions, to year 2030. We produce a 1km×1km gridded NH3 emission inventory for 2008 based on county-level activity data, which can help identify locations of highest NH3 emissions. The total NH3 emissions from manure generated by livestock production in 2008 were 7.3TgNH3·yr(-1) (interquartile range from 6.1 to 8.6TgNH3·yr(-1)), and the major sources were poultry (29.9%), pigs (28.4%), other cattle (27.9%), and dairy cattle (7.0%), while sheep and goats (3.6%), donkeys (1.3%), horses (1.2%), and mules (0.7%) had smaller contributions. From 1978 to 2008, annual NH3 emissions fluctuated with two peaks (1996 and 2006), and total emissions increased from 2.2 to 7.3Tg·yr(-1) increasing on average 4.4%·yr(-1). Under a business-as-usual (BAU) scenario, NH3 emissions in 2030 are expected to be 13.9TgNH3·yr(-1) (11.5-16.3TgNH3·yr(-1)). Under mitigation scenarios, the projected emissions could be reduced by 18.9-37.3% compared to 2030 BAU emissions. This study improves our understanding of NH3 emissions from livestock production, which is needed to guide stakeholders and policymakers to make well informed mitigation decisions for NH3 emissions from livestock production at the country and regional levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. How Well Do We Know the Future of CO2 Emissions? Projecting Fleet Emissions from Light Duty Vehicle Technology Drivers.

    Science.gov (United States)

    Martin, Niall P D; Bishop, Justin D K; Boies, Adam M

    2017-03-07

    While the UK has committed to reduce CO2 emissions to 80% of 1990 levels by 2050, transport accounts for nearly a fourth of all emissions and the degree to which decarbonization can occur is highly uncertain. We present a new methodology using vehicle and powertrain parameters within a Bayesian framework to determine the impact of engineering vehicle improvements on fuel consumption and CO2 emissions. Our results show how design changes in vehicle parameters (e.g., mass, engine size, and compression ratio) result in fuel consumption improvements from a fleet-wide mean of 5.6 L/100 km in 2014 to 3.0 L/100 km by 2030. The change in vehicle efficiency coupled with increases in vehicle numbers and fleet-wide activity result in a total fleet-wide reduction of 41 ± 10% in 2030, relative to 2012. Concerted internal combustion engine improvements result in a 48 ± 10% reduction of CO2 emissions, while efforts to increase the number of diesel vehicles within the fleet had little additional effect. Increasing plug-in and all-electric vehicles reduced CO2 emissions by less (42 ± 10% reduction) than concerted internal combustion engines improvements. However, if the grid decarbonizes, electric vehicles reduce emissions by 45 ± 9% with further reduction potential to 2050.

  16. Volcano-hazard zonation for San Vicente volcano, El Salvador

    Science.gov (United States)

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Howell, M.M.

    2001-01-01

    San Vicente volcano, also known as Chichontepec, is one of many volcanoes along the volcanic arc in El Salvador. This composite volcano, located about 50 kilometers east of the capital city San Salvador, has a volume of about 130 cubic kilometers, rises to an altitude of about 2180 meters, and towers above major communities such as San Vicente, Tepetitan, Guadalupe, Zacatecoluca, and Tecoluca. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and major transportation routes are located near the lowermost southern and eastern flanks of the volcano. The population density and proximity around San Vicente volcano, as well as the proximity of major transportation routes, increase the risk that even small landslides or eruptions, likely to occur again, can have serious societal consequences. The eruptive history of San Vicente volcano is not well known, and there is no definitive record of historical eruptive activity. The last significant eruption occurred more than 1700 years ago, and perhaps long before permanent human habitation of the area. Nevertheless, this volcano has a very long history of repeated, and sometimes violent, eruptions, and at least once a large section of the volcano collapsed in a massive landslide. The oldest rocks associated with a volcanic center at San Vicente are more than 2 million years old. The volcano is composed of remnants of multiple eruptive centers that have migrated roughly eastward with time. Future eruptions of this volcano will pose substantial risk to surrounding communities.

  17. Implementing REDD+ (Reducing Emissions from Deforestation and Degradation): evidence on governance, evaluation and impacts from the REDD-ALERT project

    NARCIS (Netherlands)

    R.B. Mathews; M. van Noordwijk; E. Lambin; P. Meyfroidt; J. Gupta; L. Verchot; K. Hergoualc'h; E. Veldkamp

    2014-01-01

    The REDD-ALERT (Reducing Emissions from Deforestation and Degradation from Alternative Land Uses in the Rainforests of the Tropics) project started in 2009 and finished in 2012, and had the aim of evaluating mechanisms that translate international-level agreements into instruments that would help ch

  18. Implementing REDD+ (Reducing Emissions from Deforestation and Degradation): evidence on governance, evaluation and impacts from the REDD-ALERT project

    NARCIS (Netherlands)

    Matthews, R.B.; Noordwijk, van M.; Lambin, E.; Meyfroidt, P.; Gupta, J.; Verschot, L.; Hergoualc'h, K.; Veldkamp, E.

    2014-01-01

    Abstract The REDD-ALERT (Reducing Emissions from Deforestation and Degradation from Alternative Land Uses in the Rainforests of the Tropics) project started in 2009 and finished in 2012, and had the aim of evaluating mechanisms that translate international-level agreements into instruments that woul

  19. A conceptual framework for the evaluation of cost-effectiveness of projects to reduce GHG emissions and sequester carbon

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, J.; Norgaard, R.; Makundi, W.

    1993-07-01

    This paper proposes a conceptual framework for evaluating the cost of projects to reduce atmospheric greenhouse gases (GHGs). The evaluation of cost-effectiveness should account for both the timing of carbon emissions and the damage caused by the atmospheric stock of carbon. We develop a conceptual basis to estimate the cost-effectiveness of projects in terms of the cost of reducing atmospheric carbon (CRAC) and other GHGs. CRAC accounts for the economic discount rate, alternative functional forms of the shadow price, the residence period of carbon in the atmosphere, and the multiple monetary benefits of projects. The last item is of particular importance to the developing countries.

  20. Geology of Kilauea volcano

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.B. (Geological Survey, Denver, CO (United States). Federal Center); Trusdell, F.A. (Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory)

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.

  1. 4D volcano gravimetry

    Science.gov (United States)

    Battaglia, Maurizio; Gottsmann, J.; Carbone, D.; Fernandez, J.

    2008-01-01

    Time-dependent gravimetric measurements can detect subsurface processes long before magma flow leads to earthquakes or other eruption precursors. The ability of gravity measurements to detect subsurface mass flow is greatly enhanced if gravity measurements are analyzed and modeled with ground-deformation data. Obtaining the maximum information from microgravity studies requires careful evaluation of the layout of network benchmarks, the gravity environmental signal, and the coupling between gravity changes and crustal deformation. When changes in the system under study are fast (hours to weeks), as in hydrothermal systems and restless volcanoes, continuous gravity observations at selected sites can help to capture many details of the dynamics of the intrusive sources. Despite the instrumental effects, mainly caused by atmospheric temperature, results from monitoring at Mt. Etna volcano show that continuous measurements are a powerful tool for monitoring and studying volcanoes.Several analytical and numerical mathematical models can beused to fit gravity and deformation data. Analytical models offer a closed-form description of the volcanic source. In principle, this allows one to readily infer the relative importance of the source parameters. In active volcanic sites such as Long Valley caldera (California, U.S.A.) and Campi Flegrei (Italy), careful use of analytical models and high-quality data sets has produced good results. However, the simplifications that make analytical models tractable might result in misleading volcanological inter-pretations, particularly when the real crust surrounding the source is far from the homogeneous/ isotropic assumption. Using numerical models allows consideration of more realistic descriptions of the sources and of the crust where they are located (e.g., vertical and lateral mechanical discontinuities, complex source geometries, and topography). Applications at Teide volcano (Tenerife) and Campi Flegrei demonstrate the

  2. Pairing the Volcano

    CERN Document Server

    Ionica, Sorina

    2011-01-01

    Isogeny volcanoes are graphs whose vertices are elliptic curves and whose edges are $\\ell$-isogenies. Algorithms allowing to travel on these graphs were developed by Kohel in his thesis (1996) and later on, by Fouquet and Morain (2001). However, up to now, no method was known, to predict, before taking a step on the volcano, the direction of this step. Hence, in Kohel's and Fouquet-Morain algorithms, many steps are taken before choosing the right direction. In particular, ascending or horizontal isogenies are usually found using a trial-and-error approach. In this paper, we propose an alternative method that efficiently finds all points $P$ of order $\\ell$ such that the subgroup generated by $P$ is the kernel of an horizontal or an ascending isogeny. In many cases, our method is faster than previous methods. This is an extended version of a paper published in the proceedings of ANTS 2010. In addition, we treat the case of 2-isogeny volcanoes and we derive from the group structure of the curve and the pairing ...

  3. Acoustic emission monitoring in Cooke 4 gold mine in South Africa -summary of the main findings of a 5-year SATREPS project-

    Science.gov (United States)

    Naoi, M.; Nakatani, M.; Moriya, H.; Otsuki, K.; Kgarume, T.; Philipp, J.; Murakami, O.; Masakale, T.; Ribeiro, L.; Yabe, Y.; Kawakata, H.; Ward, A.; Durrheim, R.; Ogasawara, H.

    2015-12-01

    We deployed a network targeting acoustic emissions (AEs) down to Mw~ -5 at 1-km depth in the Cooke 4 mine in South Africa as a part of a 5-year project called "Observational Studies in South African Mines to Mitigate Seismic Risks." This network of 30 sensors spans ~100 m, and collected waveform data for more than 4.5-million triggers in 5 years. We provide an overview of the main findings. 1) Naoi et al. (2015; Pageoph) reported that 90% of observed AEs aggregated along the advancing mining front. Their size distribution obeyed the Gutenberg-Richter law down to Mw -4, and their b-values were invariant with time from blasting, contradicting a previous study. 2) Moriya et al. (under review) showed that this AE aggregation consists of several tabular clusters, which were formed regularly as the mining front advanced. Although large earthquakes (Mw > 1) were not found, the clusters likely represent the preparation process of large shear fracture events because their geometry resembles large shear fractures, known by in-situ wall-rock observation, which formed concurrently with large seismic events. 3) Naoi et al. (2015; Tectonophysics) reported that the remaining 10% of AEs exhibit very sharp, planar distributions, with high b-values. They are likely events located on pre-existing geological faults loaded by mining-induced stresses. Such on-fault events are rare for intraplate faults, where microseismic events generally occur in the surrounding region. 4) Naoi et al. (2015; JGR) found planar clusters that newly emerged ahead of a mining front and gradually expanded to 20 m. They likely represent the evolution of a slow-slip patch on a pre-existing fault. The b-value of those AEs decreased drastically from 2.5 to 1.5, consistent with stress buildup by the approaching mining front. This project is supported by JST/JICA, SATREPS, JSPS KAKENHI Grant Numbers 21224012, 21246134, 26249137, 26887022, and MEXT's Earthquake and Volcano Hazards Observation and Research Program.

  4. 2010 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Neal, Christina A.; Herrick, Julie; Girina, O.A.; Chibisova, Marina; Rybin, Alexander; McGimsey, Robert G.; Dixon, Jim

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest at 12 volcanic centers in Alaska during 2010. The most notable volcanic activity consisted of intermittent ash emissions from long-active Cleveland volcano in the Aleutian Islands. AVO staff also participated in hazard communication regarding eruptions or unrest at seven volcanoes in Russia as part of an ongoing collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  5. Compton Positron Emission Tomography with a Liquid Xenon Time Projection Chamber

    CERN Document Server

    Giboni, K; Doke, T; Suzuki,, S; Fernandes, L M P; Lopes, J A M; Dos Santos, J M F

    2007-01-01

    Most background noise in medical Positron Emission Tomography (PET) imaging originates from photons which Compton scatter before they leave the body of the patient. In only 4% of total events do both photons leave the body un-scattered and are therefore useful for current PET imaging. In an additional 8% of the events one of the photons scatters only once. This class of events can be analyzed correctly with Compton reconstruction. A detector with sufficiently good energy, position, and multiple hit resolution can recognize these events and process them properly. By virtue of recent technological progress, Liquid Xenon Time Projection Chambers (LXeTPCs) match these requirements. A ring of small LXeTPCs can measure the energy with better than 4% FWHM and the position with less than 1 mm RMS. It also has the capability to reconstruct all interaction points. These data are required for Compton imaging. With an improved energy resolution over existing crystal scintillators (LSO/LYSO,BGO and GSO), more of the remai...

  6. An iterative virtual projection method to improve the reconstruction performance for ill-posed emission tomographic problems

    Institute of Scientific and Technical Information of China (English)

    柳华蔚; 郑树; 周怀春

    2015-01-01

    In order to improve the reconstruction performance for ill-posed emission tomographic problems with limited projec-tions, a generalized interpolation method is proposed in this paper, in which the virtual lines of projection are fabricated from, but not linearly dependent on, the measured projections. The method is called the virtual projection (VP) method. Also, an iterative correction method for the integral lengths is proposed to reduce the error brought about by the virtual lines of projection. The combination of the two methods is called the iterative virtual projection (IVP) method. Based on a scheme of equilateral triangle plane meshes and a six asymmetrically arranged detection system, numerical simulations and experimental verification are conducted. Simulation results obtained by using a non-negative linear least squares method, without any other constraints or regularization, demonstrate that the VP method can gradually reduce the reconstruction error and converges to the desired one by fabricating additional effective projections. When the mean square deviation of normal error superimposed on the simulated measured projections is smaller than 0.03, i.e., the signal-to-noise ratio (SNR) for the measured projections is higher than 30.4, the IVP method can further reduce the reconstruction error reached by the VP method apparently. In addition, as the regularization matrix in the Tikhonov regularization method is updated by an iterative correction process similar to the IVP method presented in this paper, or the Tikhonov regularization method is used in the IVP method, good improvement is achieved.

  7. Emission Line Astronomy - Coronagraphic Tunable Narrow Band Imaging and Integral Field Spectroscopy. Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to continue our program of emission line astronomy featuring three areas of emphasis: 1) The distribution and nature of high redshift emission line...

  8. Transportation and greenhouse gas emissions : exploring opportunities for the Clean Development Mechanism in Chile : highlighting project conclusions

    Energy Technology Data Exchange (ETDEWEB)

    Browne, J. [International Inst. for Sustainable Development, Winnipeg, MB (Canada); Sanhueza, E. [Climate Change and Development Consultants (Chile); Winkelman, S. [Center for Clean Air Policy, Washington, DC (United States)

    2004-12-01

    A project was launched in 2002 by the International Institute for Sustainable Development to promote sustainable development in Chile's transportation sector. This initiative was accomplished by applying the Clean Development Mechanism (CDM) which allows public or private businesses to invest in greenhouse gas mitigating activities in developing countries and earn abatement credits. In Chile, transportation is the largest source of energy-related carbon dioxide emissions, and they are expected to double by 2020 if mitigation measures are not put in place. CDM offers the potential to increase transportation funding, enhance local planning and expand technology transfer opportunities. This report highlights a bicycle infrastructure project, a project that promotes energy efficiency in public transit, and a location efficiency project in which land use patterns influence travel behaviour and transportation emissions. In 2004, the Government of Chile hosted an international workshop on transportation and the CDM which revealed that demand-side management measures, such as public transit improvement, are necessary to slow the rapid increase in transportation emissions.

  9. Investment appraisal of heat and power plants within an emissions trading scheme. Final Report of the INVIS Project

    Energy Technology Data Exchange (ETDEWEB)

    Laurikka, H.; Pirilae, P.

    2005-04-15

    The opportunity cost for carbon dioxide (CO{sub 2}) emissions has become a new factor influencing investments in heat and power production capacity globally, and in particular in countries with a greenhouse gas emissions trading system, such as the European Union Emissions Trading Scheme (EU ETS). There is a considerable power capacity investment need in the coming decades in Finland, in Europe and globally. As the economic lifetime of an investment in heat and power capacity typically ranges from 20-40 years, 'carbon finance' and the EU ETS therefore introduce a considerable and fundamental price risk to the investment problem. In Europe, the price risk is present in all investments and divestments of power production licences or capacity, be it a green-field plant, a retrofit of an existing plant or an acquisition. The objective of the INVIS research project was to extend the knowledge on strategic implications of emissions trading in investments into heat and power generation. This report gives an overview on the main findings of the project. The focus of INVIS project was on (1) quantitative investment appraisal and (2) methods rather than tools or parameter values. Particular attention in the INVIS project was paid to the incorporation of emissions trading in new methods of investment appraisal, which aim at taking into account the value of real options, rights to postpone or revise decisions. The EU ETS modifies the quantitative investment appraisal of heat and power plants directly through the emission allowance price and the number of free allowances and indirectly through impacts on output prices, input prices, taxation, and subsidies. From the risk perspective, the most problematic impact seems to be the regulatory uncertainty in the number of free allowances, which can turn out to be a barrier for investment in fossil-fuel-fired thermal power plants - even combined-cycle gas turbines. The emission allowance price is a stochastic variable, which

  10. Changes of biogeochemical activities before and after significant mud displacement at the Håkon Mosby Mud Volcano (HMMV)

    Science.gov (United States)

    Felden, J.; Wenzhöfer, F.; Yoerger, D.; Camilli, R.; German, C.; Olu, K.; Feseker, T.; de Beer, D.; Boetius, A.

    2012-04-01

    The Håkon Mosby Mud Volcano (72°N, 14° 43' E, 1250 m water depth) was studied for a period of a year by the Long-term Observatory On Mud-volcano Eruptions (LOOME) in 2009-2010, to investigate temporal variations of mud volcanism and consequences for biogeochemical processes. The HMMV is a highly active methane cold seep ecosystem characterized by high rates of methane efflux. It hosts different chemosynthetic communities such as thiotrophic bacterial mats and siboglinid tubeworm assemblages. This study focuses on changes in community composition and biogeochemical activity such as methane emission, total benthic oxygen uptake, microbial methane and sulfate consumption before and after a major mud displacement recorded by LOOME. The sensor-enabled long-term observations of the HMMV habitats were combined with short-term analyses before and after the displacement events by ROVs QUEST (MARUM) and GENESIS (University of Gent), the AUV Sentry (WHOI) equipped with a multibeam and subbottom profiler, CTD and photographic unit as well as with a mass spectrometer. We found shifts in the distribution patterns of chemosynthetic communities and also substantial changes in their activity, consistent with changes in temperature gradients. This study was sponsored by the EU-Projects HERMIONE "Hotspot Ecosystem Research and Man's Impact on European Seas", and ESONET "European Seas Observatory Network" (Demonstration Mission LOOME "Long term observations on mud volcano eruptions").

  11. Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Thomsen, Marianne

    estimated for the plant technologies: Municipal solid waste (MSW) incineration plants, plants combusting straw or wood, natural gas fuelled reciprocating engines, biogas fuelled engines, natural gas fuelled gas turbines, gas oil fuelled reciprocating engines, gas oil fuelled gas turbines, steam turbines...... engines have been reduced since year 2000 as a result of technical improvements that have been carried out due to lower emission limit values in Danish legislation. The NOx emission factor for natural gas fuelled gas turbines has decreased 62 % since year 2000. This is a result of installation of low......-NOx burners in almost all gas turbines that has been necessary to meet new emission limits in Danish legislation. The emission measurements programme included screening of the emissions of HCB, PCB, PCDD/-F and PBDD/-F. Compared to the Danish national emission decentralized CHP plants are major emission...

  12. Volcanic Environments Monitoring by Drones Mud Volcano Case Study

    Science.gov (United States)

    Amici, S.; Turci, M.; Giulietti, F.; Giammanco, S.; Buongiorno, M. F.; La Spina, A.; Spampinato, L.

    2013-08-01

    Volcanic activity has often affected human life both at large and at small scale. For example, the 2010 Eyjafjallajokull eruption caused severe economic damage at continental scale due to its strong effect on air traffic. At a local scale, ash fall and lava flow emission can cause harm and disruption. Understanding precursory signals to volcanic eruptions is still an open and tricky challenge: seismic tremor and gas emissions, for example, are related to upcoming eruptive activity but the mechanisms are not yet completely understood. Furthermore, information related to gases emission mostly comes from the summit crater area of a volcano, which is usually hard to investigate with required accuracy. Although many regulation problems are still on the discussion table, an increasing interest in the application of cutting-edge technology like unmanned flying systems is growing up. In this sense, INGV (Istituto Nazionale di Geofisica e Vulcanologia) started to investigate the possibility to use unmanned air vehicles for volcanic environment application already in 2004. A flight both in visual- and radio-controlled mode was carried out on Stromboli volcano as feasibility test. In this work we present the preliminary results of a test performed by INGV in collaboration with the University of Bologna (aerospace division) by using a multi-rotor aircraft in a hexacopter configuration. Thermal camera observations and flying tests have been realised over a mud volcano located on its SW flank of Mt. Etna and whose activity proved to be related to early stages of magma accumulation within the volcano.

  13. Seismic and infrasound monitoring at Cotopaxi volcano

    Science.gov (United States)

    Ruiz, M.; Yepes, H.; Palacios, P.; Troncoso, L.; Mothes, P.; Kumagai, H.

    2012-04-01

    Cotopaxi is an active ice-capped volcano (5967m) located 60 km SE from Quito and is one of the largest and more hazardous volcanoes in the Northern Andes. Monitoring of Cotopaxi, using seismic and infrasound techniques has improving significantly since 1976, when three short-period stations were deployed temporarily in response to an increase of fumarolic activity. Later in May 1977, a short-period vertical seismometer was installed on the NW flank at 7 km from the crater. Since 1986 a short-period seismic station is working at the northern flank of Cotopaxi and transmitting analog data to the Instituto Geofisico. In 1993 a network of 4 short-period seismic stations were installed on all flanks of the volcano. Between March 1996 and June 1997 a temporal network of 16 stations were deployed for several months in order to study local seismicity and internal structure (Metaxian et al., 1999). Since 2006, a network of five broad band stations (0.02-60 s) and low-frequency infrasound sensors (0.01-10 s) were installed through a JICA Cooperation Project (Kumagai et al., 2007). Data is transmitted to the Instituto Geofisico via a digital radio system. Through this network, LP and VLP events have been recorded and analyzed (Molina et al., 2008). VLP events were located beneath the north and north-eastern flank using waveform inversion and amplitude distribution methods (Kumagai et al., 2010).

  14. Carbon Dioxide Emission Evaluation of Porous Vegetation Concrete Blocks for Ecological Restoration Projects

    Directory of Open Access Journals (Sweden)

    Hwang-Hee Kim

    2017-02-01

    Full Text Available The purpose of this study is to determine the mix proportions that can minimize CO2 emissions while satisfying the target performance of porous vegetation concrete. The target performance of porous vegetation concrete was selected as compressive strength (>15 MPa and void ratio (>25%. This study considered the use of reinforcing fiber and styrene butadiene (SB latex to improve the strength of porous vegetation concrete, as well as the use of blast furnace slag aggregate to improve the CO2 emissions-reducing effect, and analyzed and evaluated the influence of fiber reinforcing, SB latex, and blast furnace slag aggregate on the compressive strength and CO2 emissions of porous vegetation concrete. The CO2 emissions of the raw materials were highest for cement, followed by aggregate, SB latex, and fiber. Blast furnace slag aggregate showed a 30% or more CO2 emissions-reducing effect versus crushed aggregate, and blast furnace slag cement showed a 78% CO2 emissions-reducing effect versus Portland cement. The CO2 emissions analyses for each raw material showed that the CO2 emissions during transportation were highest for the aggregate. Regarding CO2 emissions in each production stage, the materials stage produced the highest CO2 emissions, while the proportion of CO2 emissions in the transportation stage for each raw material, excluding fiber, were below 3% of total emissions. Use of blast furnace slag aggregate in porous vegetation concrete produced CO2 emissions-reducing effects, but decreased its compressive strength. Use of latex in porous vegetation concrete improved its compressive strength, but also increased CO2 emissions. Thus, it is appropriate to use latex in porous vegetation concrete to improve its strength and void ratio, and to use a blast furnace slag aggregate replacement ratio of 40% or less.

  15. Ruiz Volcano: Preliminary report

    Science.gov (United States)

    Ruiz Volcano, Colombia (4.88°N, 75.32°W). All times are local (= GMT -5 hours).An explosive eruption on November 13, 1985, melted ice and snow in the summit area, generating lahars that flowed tens of kilometers down flank river valleys, killing more than 20,000 people. This is history's fourth largest single-eruption death toll, behind only Tambora in 1815 (92,000), Krakatau in 1883 (36,000), and Mount Pelée in May 1902 (28,000). The following briefly summarizes the very preliminary and inevitably conflicting information that had been received by press time.

  16. The ICDP-CFDDP Project: Understanding caldera dynamics and mitigating the extreme risk of the most urbanised volcano in the World

    Science.gov (United States)

    De Natale, Giuseppe; Troise, Claudia; Carlino, Stefano; Somma, Renato; Piochi, Monica; Di Vito, Mauro; Isaia, Roberto; De Vita, Sandro; Sacchi, Marco; Josè Jurado, Maria; Wiersberg, Thomas; Kueck, Jochem; Molisso, Flavia; Erzinger, Joerge; Kilburn, Christopher R. J.; Gudmundsson, Agust; Burg, Jean Pierre; Zappone, Alba; Hill, David P.

    2013-04-01

    The Campi Flegrei Deep Drilling Project (CFDDP) entered the operative phase during the second half of 2012, with the pilot hole drilling. The Project was initiated to address two kinds of problems: 1) purely volcanological, to understand in detail the dynamics of the most explosive and yet mostly unknown volcanism on the Earth with the potential to generate global catastrophes, and 2) to mitigate the highest volcanic risk in the World, namely the one associated with the metropolitan area of Naples where more than 3,000,000 people are exposed to extreme risk. The CFDDP Project offers the only direct means to understand the physics driving the on-going ground uplift affecting the area since at least six centuries, through in situ and laboratory measurements of rock rheology and permeability. In particular, direct investigation at depth by drilling is essential for understanding the extent that shallow magma intrusion is involved in the uplift of 15 to 20 m accumulated over the last centuries. Such a high cumulative uplift corresponds to 1-10 km3 of new magma intruded into the system, depending on details of the model used. Such an erupted volume should be conservatively assumed as the worst scenario for a future eruption. This corresponds to a massive eruption, largest than any other one after the caldera-forming Yellow Tuff eruption of 15,000 y BP and not much smaller than that, which would anyway require evacuation of some millions people. An alternative possibility is that the cumulative uplift is mostly due to shallow geothermal perturbations as described in several recent publications. Both possibilities, each with widely differing hazard implications, rely strongly on as yet poorly known conditions at depth beneath the caldera. It is thus crucial to discriminate between these two opposing possibilities in order to clarify the worst scenario for a future eruption and to provide an invaluable tool for civil defence at this densely populated area. This

  17. Decision Analysis Tools for Volcano Observatories

    Science.gov (United States)

    Hincks, T. H.; Aspinall, W.; Woo, G.

    2005-12-01

    Staff at volcano observatories are predominantly engaged in scientific activities related to volcano monitoring and instrumentation, data acquisition and analysis. Accordingly, the academic education and professional training of observatory staff tend to focus on these scientific functions. From time to time, however, staff may be called upon to provide decision support to government officials responsible for civil protection. Recognizing that Earth scientists may have limited technical familiarity with formal decision analysis methods, specialist software tools that assist decision support in a crisis should be welcome. A review is given of two software tools that have been under development recently. The first is for probabilistic risk assessment of human and economic loss from volcanic eruptions, and is of practical use in short and medium-term risk-informed planning of exclusion zones, post-disaster response, etc. A multiple branch event-tree architecture for the software, together with a formalism for ascribing probabilities to branches, have been developed within the context of the European Community EXPLORIS project. The second software tool utilizes the principles of the Bayesian Belief Network (BBN) for evidence-based assessment of volcanic state and probabilistic threat evaluation. This is of practical application in short-term volcano hazard forecasting and real-time crisis management, including the difficult challenge of deciding when an eruption is over. An open-source BBN library is the software foundation for this tool, which is capable of combining synoptically different strands of observational data from diverse monitoring sources. A conceptual vision is presented of the practical deployment of these decision analysis tools in a future volcano observatory environment. Summary retrospective analyses are given of previous volcanic crises to illustrate the hazard and risk insights gained from use of these tools.

  18. Linking petrology and seismology at an active volcano.

    Science.gov (United States)

    Saunders, Kate; Blundy, Jon; Dohmen, Ralf; Cashman, Kathy

    2012-05-25

    Many active volcanoes exhibit changes in seismicity, ground deformation, and gas emissions, which in some instances arise from magma movement in the crust before eruption. An enduring challenge in volcano monitoring is interpreting signs of unrest in terms of the causal subterranean magmatic processes. We examined over 300 zoned orthopyroxene crystals from the 1980-1986 eruption of Mount St. Helens that record pulsatory intrusions of new magma and volatiles into an existing larger reservoir before the eruption occurred. Diffusion chronometry applied to orthopyroxene crystal rims shows that episodes of magma intrusion correlate temporally with recorded seismicity, providing evidence that some seismic events are related to magma intrusion. These time scales are commensurate with monitoring signals at restless volcanoes, thus improving our ability to forecast volcanic eruptions by using petrology.

  19. Projecting Future Nitrous Oxide Emissions From Agriculture: Importance of Ecological Feedbacks and the Environmental Benefits of Improved Nitrogen Use Efficiency

    Science.gov (United States)

    Kanter, D.; Zhang, X.; Shevliakova, E.; Malyshev, S.; Mauzerall, D. L.

    2014-12-01

    Nitrous oxide (N2O) presents a triple threat to the global environment: it is the third most important anthropogenic greenhouse gas, the largest remaining anthropogenic contributor to stratospheric ozone depletion, and an important component of the nitrogen (N) cascade - where one atom of N can interconvert between a number of forms, each with a unique set of environmental impacts. Here we use a dynamic vegetation model (Princeton-Geophysical Fluid Dynamics Lab (GFDL) LM3 - the interactive land component of the GFDL Earth System Model) to assess how changes in future climate, land-use, and global fertilizer and manure application are projected to affect global N2O emissions from agriculture by 2050. Agricultural land is defined in this study as the sum of cropland and pasture. In a baseline scenario assuming little improvement in global N use efficiency (NUE) by 2050, the model projects a 24-31% increase in global agricultural N2O emissions (with the uncertainty range stemming from differences in climate forcing, land-use and fertilizer and manure consumption between RCP2.6 and RCP8.5, the two climate scenarios used in this study) - rising from 2.9 Tg N2O-N yr-1 in 1990-2000 to 3.6-3.8 Tg N2O-N yr-1 in 2040-2050. This emission increase is considerably less than the projected increases in global fertilizer and manure consumption (42-44%) and previously published projections of global agricultural N2O emission increases (38-75% - again, the uncertainty range reflecting the differences between the climate scenarios used). This disparity appears to be a result of ecological feedbacks captured by the model, where a considerable portion of the increase in fertilizer and manure use is absorbed by agricultural plant biomass rather than lost to the environment. In addition to this dynamic, the model projects that improvements in global NUE of 20-50% could reduce global N2O emissions significantly, delivering important climate and stratospheric ozone benefits over the period

  20. Preliminary volcano-hazard assessment for Iliamna Volcano, Alaska

    Science.gov (United States)

    Waythomas, Christopher F.; Miller, Thomas P.

    1999-01-01

    Iliamna Volcano is a 3,053-meter-high, ice- and snow-covered stratovolcano in the southwestern Cook Inlet region about 225 kilometers southwest of Anchorage and about 100 kilometers northwest of Homer. Historical eruptions of Iliamna Volcano have not been positively documented; however, the volcano regularly emits steam and gas, and small, shallow earthquakes are often detected beneath the summit area. The most recent eruptions of the volcano occurred about 300 years ago, and possibly as recently as 90-140 years ago. Prehistoric eruptions have generated plumes of volcanic ash, pyroclastic flows, and lahars that extended to the volcano flanks and beyond. Rock avalanches from the summit area have occurred numerous times in the past. These avalanches flowed several kilometers down the flanks and at least two large avalanches transformed to cohesive lahars. The number and distribution of known volcanic ash deposits from Iliamna Volcano indicate that volcanic ash clouds from prehistoric eruptions were significantly less voluminous and probably less common relative to ash clouds generated by eruptions of other Cook Inlet volcanoes. Plumes of volcanic ash from Iliamna Volcano would be a major hazard to jet aircraft using Anchorage International Airport and other local airports, and depending on wind direction, could drift at least as far as the Kenai Peninsula and beyond. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Because Iliamna Volcano has not erupted for several hundred years, a future eruption could involve significant amounts of ice and snow that could lead to the formation of large lahars and downstream flooding. The greatest hazards in order of importance are described below and shown on plate 1.

  1. Projections of motor vehicle growth, fuel consumption and CO{sub 2} emissions for the next thirty years in China.

    Energy Technology Data Exchange (ETDEWEB)

    He, D.; Wang, M.

    2000-12-12

    Since the early 1990s, China's motor vehicles have entered a period of fast growth resultant from the rapid economic expansion. As the largest developing country, the fast growth of China's motor vehicles will have tremendous effects on the world's automotive and fuel market and on global CO{sub 2} emissions. In this study, we projected Chinese vehicle stocks for different vehicle types on the provincial level. First, we reviewed the historical data of China's vehicle growth in the past 10 years and the correlations between vehicle growth and economic growth in China. Second, we investigated historical vehicle growth trends in selected developed countries over the past 50 or so years. Third, we established a vehicle growth scenario based on the historical trends in several developed nations. Fourth, we estimated fuel economy, annual mileage and other vehicle usage parameters for Chinese vehicles. Finally, we projected vehicle stocks and estimated motor fuel use and CO{sub 2} emissions in each Chinese province from 2000 to 2030. Our results show that China will continue the rapid vehicle growth, increase gasoline and diesel consumption and increased CO{sub 2} emissions in the next 30 years. We estimated that by year 2030, Chinese motor vehicle fuel consumption and CO{sub 2} emissions could reach the current US levels.

  2. A methodology to compute emission projections from road transport (EmiTRANS)

    OpenAIRE

    Lumbreras Martin, Julio; Borge García, Rafael; Guijarro Lomeña, Alberto; López Martínez, José Maria; Rodriguez Hurtado, Encarnación

    2014-01-01

    Atmospheric emissions from road transport have increased all around the world during the last decades more rapidly than from other pollution sources. For instance, they contribute to more than 25% of total CO, CO2, NOx, and fine particle emissions in most of the European countries. This situation shows the importance of road transport when complying with emission ceilings and air quality standards applied to these pollutants. This paper presents a modelling system to perform atmospheric em...

  3. Deformation and rupture of the oceanic crust may control growth of Hawaiian volcanoes.

    Science.gov (United States)

    Got, Jean-Luc; Monteiller, Vadim; Monteux, Julien; Hassani, Riad; Okubo, Paul

    2008-01-24

    Hawaiian volcanoes are formed by the eruption of large quantities of basaltic magma related to hot-spot activity below the Pacific Plate. Despite the apparent simplicity of the parent process--emission of magma onto the oceanic crust--the resulting edifices display some topographic complexity. Certain features, such as rift zones and large flank slides, are common to all Hawaiian volcanoes, indicating similarities in their genesis; however, the underlying mechanism controlling this process remains unknown. Here we use seismological investigations and finite-element mechanical modelling to show that the load exerted by large Hawaiian volcanoes can be sufficient to rupture the oceanic crust. This intense deformation, combined with the accelerated subsidence of the oceanic crust and the weakness of the volcanic edifice/oceanic crust interface, may control the surface morphology of Hawaiian volcanoes, especially the existence of their giant flank instabilities. Further studies are needed to determine whether such processes occur in other active intraplate volcanoes.

  4. Variable Emissivity Electrochromics using Ionic Electrolytes and Low Solar Absorptance Coatings Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This work further developed a highly promising variable emissivity technology for spacecraft thermal control, based on unique conducting polymer (CP) electrochromics...

  5. Elementary analysis of data from Tianchi Volcano

    Institute of Scientific and Technical Information of China (English)

    LIU Guo-ming; ZHANG Heng-rong; KONG Qing-jun; WU Cheng-zhi; GUO Feng; ZHANG Chao-fan

    2004-01-01

    Tianchi Volcano is the largest potential erupticve volcano in China. Analyzing these data on seismic monitoring, deformation observation and water chemistry investigation gained from the Tianchi Volcano Observatory (TVO), the authors consider that the Tianchi Volcano is in going into a new flourishing time.

  6. Mount Rainier active cascade volcano

    Science.gov (United States)

    1994-01-01

    Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

  7. Mount Rainier active cascade volcano

    Science.gov (United States)

    Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

  8. Compilation and analyses of emissions inventories for NOAA`s atmospheric chemistry project. Progress report, August 1997

    Energy Technology Data Exchange (ETDEWEB)

    Benkovitz, C.M.; Mubaraki, M.A.

    1997-09-01

    Global inventories of anthropogenic emissions of oxides of nitrogen (NO{sub x}) for circa 1985 and 1990 and Non-Methane Volatile Organic Compounds (NMVOCs) for circa 1990 have been compiled by this project. Work on the inventories has been carried out under the umbrella of the Global Emissions Inventory Activity (GEIA) of the International Global Atmospheric Chemistry (IGAC) Program. The 1985 NO{sub x} inventory was compiled using default data sets of global emissions that were refined via the use of more detailed regional data sets; this inventory is being distributed to the scientific community at large as the GEIA Version 1A inventory. Global emissions of NO{sub x} for 1985 are estimated to be 21 Tg N y{sup -1}, with approximately 84% originating in the Northern Hemisphere. The 1990 inventories of NO{sub x} and NMVOCs were compiled using unified methodologies and data sets in collaboration with the Netherlands National Institute of Public Health and Environmental Protection (Rijksinstituut Voor Volksgezondheid en Milieuhygiene, RIVM) and the Division of Technology for Society of the Netherlands Organization for Applied Scientific Research, (IMW-TNO); these emissions will be used as the default estimates to be updated with more accurate regional data. The NMVOC inventory was gridded and speciated into 23 chemical categories.

  9. Projections of emissions from burning of biomass foruse in studies of global climate and atmospheric chemistry

    Science.gov (United States)

    Darold E. Ward; Weimin Hao

    1991-01-01

    Emissions of trace gases and particulate matter from burning of biomass are generally factored into global climate models. Models for improving the estimates of the global annual release of emissions from biomass fires are presented. Estimates of total biomass consumed on a global basis range from 2 to 10 Pg (1 petagram = 1015 g) per year. New...

  10. ETINDE. Improving the role of a methodological approach and ancillary ethnoarchaeological data application for place vulnerability and resilience to a multi-hazard environment: Mt. Cameroon volcano case study [MIA-VITA project -FP7-ENV-2007-1

    Science.gov (United States)

    Ilaria Pannaccione Apa, Maria; Kouokam, Emmanuel; Mbe Akoko, Robert; Peppoloni, Silvia; Fabrizia Buongiorno, Maria; Thierry, Pierre

    2013-04-01

    The FP7 MIA-VITA [Mitigate and assess risk from volcanic impact on terrain and human activities] project has been designed to address multidisciplinary aspects of volcanic threat assessment and management from prevention to crisis management recovery. In the socio-economic analysis carried out at Mt. Cameroon Bakweri and Bakossi ethnic groups, ancillary ethnoarchaeological information has been included to point out the cultural interaction between the volcano and its residents. In 2009-2011, ethnoanthropological surveys and interviews for data collection were carried out at Buea, Limbe, West Coast, Tiko and Muyuka sub-divisions adjacent to Mt. Cameroon. One of the outstanding, results from the Bakweri and Bakossi cultural tradition study: natural hazards are managed and produced by supernatural forces, as: Epasa Moto, God of the Mountain (Mt. Cameroon volcano) and Nyango Na Nwana , Goddess of the sea (Gulf of Guinea). In the case of Mount Cameroon, people may seek the spirit or gods of the mountain before farming, hunting and most recently the undertaking of the Mount Cameroon annual race are done. The spirit of this mountain must be seek to avert or stop a volcanic eruption because the eruption is attributed to the anger of the spirit. Among the Northern Bakweri, the association of spirits with the mountain could also be explained in terms of the importance of the mountain to the people. Most of their farming and hunting is done on the Mountain. Some forest products, for instance, wood for building and furniture is obtained from the forest of the mountain; this implies that the people rely on the Mountain for food, game and architecture/furniture etc. In addition, the eruption of the mountain is something which affects the people. It does not only destroy property, it frustrates people and takes away human lives when it occurs. Because of this economic importance of the Mountain and its unexpected and unwanted eruption, the tendency is to believe that it has some

  11. Particle reduction strategies - PAREST. Gridded European emission data for projection years 2010, 2015 and 2020 based on the IIASA GAINS NEC scenarios. Teilbericht

    Energy Technology Data Exchange (ETDEWEB)

    Gon, Hugo Denier van der; Visschedijk, Antoon; Brugh, Hans van den [TNO Earth, Environment and Life Sciences, Utrecht (Netherlands)

    2013-06-15

    Projected emissions for selected scenarios for the years 2010, 2015 and 2020 were obtained from the GAINS NEC scenario reports and distributed on a high resolution over Europe using the TNO gridding tools. These emission maps are available as model input in the PAREST project to model the contribution of Europe to air quality in Germany in 2010, 2015 and 2020 (see note Rainer Stern, May 2009). The scenarios have a significant influence on absolute emission levels for the countries that were covered by IIASA GAINS. This suggests that emission changes in countries were no scenarios were available (Armenia, Azerbaijan, Georgia) or where only a projection year baseline is available (all non-EU) may be subject to significant changes as well (but these are quite far from Germany). For future projects it is recommended to make simple and transparent scenarios for these other countries, as well as for International Shipping. The change in emissions from the base year 2005 to the projection year 2010 needs to be interpreted with care. This because some methodology differences between 2005 official emission data as used in the PAREST base year 2005 emission set and GAINS 2010 data exist. It is expected that the emission reduction steps towards 2020 are more realistic.

  12. Hydrothermal reservoir beneath Taal Volcano (Philippines): Implications to volcanic activity

    Science.gov (United States)

    Nagao, T.; Alanis, P. B.; Yamaya, Y.; Takeuchi, A.; Bornas, M. V.; Cordon, J. M.; Puertollano, J.; Clarito, C. J.; Hashimoto, T.; Mogi, T.; Sasai, Y.

    2012-12-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The first recorded eruption was in 1573. Since then it has erupted 33 times resulting in thousands of casualties and large damages to property. In 1995, it was declared as one of the 15 Decade Volcanoes. Beginning in the early 1990s it has experienced several phases of abnormal activity, including seismic swarms, episodes of ground deformation, ground fissuring and hydrothermal activities, which continues up to the present. However, it has been noted that past historical eruptions of Taal Volcano may be divided into 2 distinct cycles, depending on the location of the eruption center, either at Main Crater or at the flanks. Between 1572-1645, eruptions occurred at the Main Crater, in 1707 to 1731, they occurred at the flanks. In 1749, eruptions moved back to the Main Crater until 1911. During the 1965 and until the end of the 1977 eruptions, eruptive activity once again shifted to the flanks. As part of the PHIVOLCS-JICA-SATREPS Project magnetotelluric and audio-magnetotelluric surveys were conducted on Volcano Island in March 2011 and March 2012. Two-dimensional (2-D) inversion and 3-D forward modeling reveals a prominent and large zone of relatively high resistivity between 1 to 4 kilometers beneath the volcano almost directly beneath the Main Crater, surrounded by zones of relatively low resistivity. This anomalous zone of high resistivity is hypothesized to be a large hydrothermal reservoir filled with volcanic fluids. The presence of this large hydrothermal reservoir could be related to past activities of Taal Volcano. In particular we believe that the catastrophic explosion described during the 1911 eruption was the result of the hydrothermal reservoir collapsing. During the cycle of Main Crater eruptions, this hydrothermal reservoir is depleted, while during a cycle of flank eruptions this reservoir is replenished with hydrothermal fluids.

  13. Geologic Mapping of the Olympus Mons Volcano, Mars

    Science.gov (United States)

    Bleacher, J. E.; Williams, D. A.; Shean, D.; Greeley, R.

    2012-01-01

    We are in the third year of a three-year Mars Data Analysis Program project to map the morphology of the Olympus Mons volcano, Mars, using ArcGIS by ESRI. The final product of this project is to be a 1:1,000,000-scale geologic map. The scientific questions upon which this mapping project is based include understanding the volcanic development and modification by structural, aeolian, and possibly glacial processes. The project s scientific objectives are based upon preliminary mapping by Bleacher et al. [1] along a approx.80-km-wide north-south swath of the volcano corresponding to High Resolution Stereo Camera (HRSC) image h0037. The preliminary project, which covered approx.20% of the volcano s surface, resulted in several significant findings, including: 1) channel-fed lava flow surfaces are areally more abundant than tube-fed surfaces by a ratio of 5:1, 2) channel-fed flows consistently embay tube-fed flows, 3) lava fans appear to be linked to tube-fed flows, 4) no volcanic vents were identified within the map region, and 5) a Hummocky unit surrounds the summit and is likely a combination of non-channelized flows, dust, ash, and/or frozen volatiles. These results led to the suggestion that the volcano had experienced a transition from long-lived tube-forming eruptions to more sporadic and shorter-lived, channel-forming eruptions, as seen at Hawaiian volcanoes between the tholeiitic shield building phase (Kilauea to Mauna Loa) and alkalic capping phase (Hualalai and Mauna Kea).

  14. The added value of time-variable microgravimetry to the understanding of how volcanoes work

    Science.gov (United States)

    Carbone, Daniele; Poland, Michael; Greco, Filippo; Diament, Michel

    2017-01-01

    During the past few decades, time-variable volcano gravimetry has shown great potential for imaging subsurface processes at active volcanoes (including some processes that might otherwise remain “hidden”), especially when combined with other methods (e.g., ground deformation, seismicity, and gas emissions). By supplying information on changes in the distribution of bulk mass over time, gravimetry can provide information regarding processes such as magma accumulation in void space, gas segregation at shallow depths, and mechanisms driving volcanic uplift and subsidence. Despite its potential, time-variable volcano gravimetry is an underexploited method, not widely adopted by volcano researchers or observatories. The cost of instrumentation and the difficulty in using it under harsh environmental conditions is a significant impediment to the exploitation of gravimetry at many volcanoes. In addition, retrieving useful information from gravity changes in noisy volcanic environments is a major challenge. While these difficulties are not trivial, neither are they insurmountable; indeed, creative efforts in a variety of volcanic settings highlight the value of time-variable gravimetry for understanding hazards as well as revealing fundamental insights into how volcanoes work. Building on previous work, we provide a comprehensive review of time-variable volcano gravimetry, including discussions of instrumentation, modeling and analysis techniques, and case studies that emphasize what can be learned from campaign, continuous, and hybrid gravity observations. We are hopeful that this exploration of time-variable volcano gravimetry will excite more scientists about the potential of the method, spurring further application, development, and innovation.

  15. Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Founded in 1912 at the edge of the caldera of Kīlauea Volcano, HVO was the vision of Thomas A. Jaggar, Jr., a geologist from the Massachusetts Institute of Technology, whose studies of natural disasters around the world had convinced him that systematic, continuous observations of seismic and volcanic activity were needed to better understand—and potentially predict—earthquakes and volcanic eruptions. Jaggar summarized the aim of HVO by stating that “the work should be humanitarian” and have the goals of developing “prediction and methods of protecting life and property on the basis of sound scientific achievement.” These goals align well with those of the USGS, whose mission is to serve the Nation by providing reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage natural resources; and enhance and protect our quality of life.

  16. Io volcanism seen by new horizons: a major eruption of the Tvashtar volcano.

    Science.gov (United States)

    Spencer, J R; Stern, S A; Cheng, A F; Weaver, H A; Reuter, D C; Retherford, K; Lunsford, A; Moore, J M; Abramov, O; Lopes, R M C; Perry, J E; Kamp, L; Showalter, M; Jessup, K L; Marchis, F; Schenk, P M; Dumas, C

    2007-10-12

    Jupiter's moon Io is known to host active volcanoes. In February and March 2007, the New Horizons spacecraft obtained a global snapshot of Io's volcanism. A 350-kilometer-high volcanic plume was seen to emanate from the Tvashtar volcano (62 degrees N, 122 degrees W), and its motion was observed. The plume's morphology and dynamics support nonballistic models of large Io plumes and also suggest that most visible plume particles condensed within the plume rather than being ejected from the source. In images taken in Jupiter eclipse, nonthermal visible-wavelength emission was seen from individual volcanoes near Io's sub-Jupiter and anti-Jupiter points. Near-infrared emission from the brightest volcanoes indicates minimum magma temperatures in the 1150- to 1335-kelvin range, consistent with basaltic composition.

  17. Earth Girl Volcano: An Interactive Game for Disaster Preparedness

    Science.gov (United States)

    Kerlow, Isaac

    2017-04-01

    Earth Girl Volcano is an interactive casual strategy game for disaster preparedness. The project is designed for mainstream audiences, particularly for children, as an engaging and fun way to learn about volcano hazards. Earth Girl is a friendly character that kids can easily connect with and she helps players understand how to best minimize volcanic risk. Our previous award-winning game, Earth Girl Tsunami, has seen success on social media, and is available as a free app for both Android and iOS tables and large phones in seven languages: Indonesian, Thai, Tamil, Japanese, Chinese, Spanish, French and English. This is the first public viewing of the Earth Girl Volcano new game prototype.

  18. Assessment of possible strategies to reduce mobile sources emissions in Costa Rica, 2010-2015 projection

    Directory of Open Access Journals (Sweden)

    Jorge Herrera-Murillo

    2014-02-01

    Full Text Available The impacts of the possible strategies to reduce the emissions from mobile sources in Costa Rica were evaluated for the 2010-2015 period. The total emissions were estimated using emission factors obtained from Mobile 6 model and activity data like fuel and vehicle type distribution. This study found that 50% substitution of public transport vehicles was the most effective measure to lower the anual rate increase for NOx and Total Organic Gases (TOG. Both around 14,3% and 11,7% anually, respectively.

  19. Volcanoes in Eruption - Set 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The word volcano is used to refer to the opening from which molten rock and gas issue from Earth's interior onto the surface, and also to the cone, hill, or mountain...

  20. Volcanoes in Eruption - Set 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The word volcano is used to refer to the opening from which molten rock and gas issue from Earth's interior onto the surface, and also to the cone, hill, or mountain...

  1. USGS Volcano Notification Service (VNS)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Website provides a subscription service to receive an email when changes occur in the activity levels for monitored U.S. volcanoes and/or when information releases...

  2. Analysis of energy use and CO2 emissions in the U.S. refining sector, with projections for 2025.

    Science.gov (United States)

    Hirshfeld, David S; Kolb, Jeffrey A

    2012-04-03

    This analysis uses linear programming modeling of the U.S. refining sector to estimate total annual energy consumption and CO(2) emissions in 2025, for four projected U.S. crude oil slates. The baseline is similar to the current U.S. crude slate; the other three contain larger proportions of higher density, higher sulfur crudes than the current or any previous U.S. crude slates. The latter cases reflect aggressive assumptions regarding the volumes of Canadian crudes in the U.S. crude slate in 2025. The analysis projects U.S. refinery energy use 3.7%-6.3% (≈ 0.13-0.22 quads/year) higher and refinery CO(2) emissions 5.4%-9.3% (≈ 0.014-0.024 gigatons/year) higher in the study cases than in the baseline. Refining heavier crude slates would require significant investments in new refinery processing capability, especially coking and hydrotreating units. These findings differ substantially from a recent estimate asserting that processing heavy oil or bitumen blends could increase industry CO(2) emissions by 1.6-3.7 gigatons/year.

  3. ?Smart COPVs? - Continued Successful Development of JSC IR&D Acoustic Emissions (AE) SHM Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop and apply promising quantitative pass/fail criteria to CPV using acoustic emission (AE) and lay the foundation for continued development of an automated...

  4. DURACON - Variable Emissivity Broadband Coatings for Liquid Propellant Rocket Nozzles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The need exists for a fast drying, robust, low gloss, black, high emissivity coating that can be applied easily on aircraft rocket nozzles and nozzle extensions....

  5. Allowable CO2 emissions based on projected changes in regional extremes and related impacts

    Science.gov (United States)

    Seneviratne, Sonia I.; Donat, Markus; Pitman, Andy; Knutti, Reto; Wilby, Robert

    2016-04-01

    Global temperature targets, such as the widely accepted 2°C and 1.5° limits, may fail to communicate the urgency of reducing CO2 emissions. Translation of CO2 emissions into regional- and impact-related climate targets could be more powerful because they resonate better with national interests. We illustrate this approach using regional changes in extreme temperatures and precipitation. These scale robustly with global temperature across scenarios, and thus with cumulative CO2 emissions. This is particularly relevant for changes in regional extreme temperatures on land, which are much greater than changes in the associated global mean. Linking cumulative CO2 emission targets to regional consequences, such as changing climate extremes, would be of particular benefit for political decision making, both in the context of climate negotiations and adaptation.

  6. Using Travel Diary Data to Estimate the Emissions Impacts of Transportation Strategies: The Puget Sound Telecommuting Demonstration Project.

    Science.gov (United States)

    Henderson, Dennis K; Koenig, Brett E; Mokhtarian, Patricia L

    1996-01-01

    Transportation control measures are often implemented for their environmental benefits, but there is a need to quantify what benefits actually occur. Telecommuting has the potential to reduce the number of daily trips and miles traveled with personal vehicles and, consequently, the overall emissions resulting from vehicle activity. This search studies the emissions impacts of telecommuting for the participants of the Puget Sound Telecommuting Demonstration Project (PSTDP). The California Air Resources Board's emissions models, EMFAC7F and BURDEN7F, are used to estimate the emissions on telecommuting days and non-telecommuting days, based on travel diaries completed by program participants. This study, among the first of its kind, represents the most sophisticated application of emissions models to travel diary data. Analysis of the travel diary data and the emissions model output supports the hypothesis that telecommuting has beneficial transportation and air quality impacts. The most important results are that telecommuting decreases the number of daily trips (by 30%), the vehicle-miles traveled (VMT) (by 63%), and the number of cold starts (by 44%), especially those taking place in early morning. These reductions are shown to have a large effect on daily emissions, with a 50% to 60% decrease in pollutants generated by a telecommuter's personal vehicle use on a telecommuting day. These net savings are almost entirely due to the elimination of commute trips, as non-commute trips increased by 0.33 trips per person-day (9% of the total trips), and the non-commute VMT increased by 2.2 miles. Overall reduc- tions in travel and emissions of this magnitude are observed because the telecommuters in this sample are long-distance commuters, with commutes twice as long as the regional average. However, even as telecommuting adoption moves into the mainstream, its net impacts are still expected to be beneficial- a reduction in VMT and in emissions. It is important to note

  7. Retrospective validation of a lava-flow hazard map for Mount Etna volcano

    OpenAIRE

    Ciro Del Negro; Annamaria Vicari; Annalisa Cappello

    2011-01-01

    This report presents a retrospective methodology to validate a long-term hazard map related to lava-flow invasion at Mount Etna, the most active volcano in Europe. A lava-flow hazard map provides the probability that a specific point will be affected by potential destructive volcanic processes over the time period considered. We constructed this lava-flow hazard map for Mount Etna volcano through the identification of the emission regions with the highest probabilities of eruptive vents and t...

  8. Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Thomsen, Marianne

    Updated emission factors for decentralised combined heat and power (CHP) plants with a capacity valid for 2006/2007 have been...... values in Danish legislation since 2006 that has lead to installation of new and improved flue gas cleaning systems in most MSW incineration plants. For CHP plants combusting wood or straw no major technical improvements have been implemented. The emission factors for natural gas fuelled reciprocating...

  9. GLACIERS OF THE KORYAK VOLCANO

    Directory of Open Access Journals (Sweden)

    T. M. Manevich

    2012-01-01

    Full Text Available The paper presents main glaciological characteristics of present-day glaciers located on the Koryaksky volcano. The results of fieldwork (2008–2009 and high-resolution satellite image analysis let us to specify and complete information on modern glacial complex of Koryaksky volcano. Now there are seven glaciers with total area 8.36 km2. Three of them advance, two are in stationary state and one degrades. Moreover, the paper describes the new crater glacier.

  10. Projection of Denmark's energy consumption and emission of greenhouse gases to 2025; Fremskrivning af Danmarks energiforbrug og udledning af drivhusgasser frem til 2025

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-15

    Energy policies are changing in Denmark as well as internationally. Since the latest projection was published January 2008 the Danish political system has agreed on a national energy agreement, furthermore EU has presented a proposal concerning promotion of renewable energy and reduction of greenhouse gases. Thus a need for an update of Denmark's energy consumption and emission of greenhouse gases has arisen. Two scenarios are presented: 1) An agreement projection - Danish Energy Authority's new basic projection, 2) An updated basic projection without the energy agreement. It must be stressed that long term projections imply uncertainties which are expected to increase during the projection period. (BA)

  11. Mahukona: The missing Hawaiian volcano

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.O.; Muenow, D.W. (Univ. of Hawaii, Honolulu (USA)); Kurz, M.D. (Woods Hole Oceanographic Institution, MA (USA))

    1990-11-01

    New bathymetric and geochemical data indicate that a seamount west of the island of Hawaii, Mahukona, is a Hawaiian shield volcano. Mahukona has weakly alkalic lavas that are geochemically distinct. They have high {sup 3}He/{sup 4}He ratios (12-21 times atmosphere), and high H{sub 2}O and Cl contents, which are indicative of the early state of development of Hawaiian volcanoes. The He and Sr isotopic values for Mahukona lavas are intermediate between those for lavas from Loihi and Manuna Loa volcanoes and may be indicative of a temporal evolution of Hawaiian magmas. Mahukona volcano became extinct at about 500 ka, perhaps before reaching sea level. It fills the previously assumed gap in the parallel chains of volcanoes forming the southern segment of the Hawaiian hotspot chain. The paired sequence of volcanoes was probably caused by the bifurcation of the Hawaiian mantle plume during its ascent, creating two primary areas of melting 30 to 40 km apart that have persisted for at least the past 4 m.y.

  12. Future fire emissions associated with projected land use change in Sumatra.

    Science.gov (United States)

    Marlier, Miriam E; DeFries, Ruth; Pennington, Derric; Nelson, Erik; Ordway, Elsa M; Lewis, Jeremy; Koplitz, Shannon N; Mickley, Loretta J

    2015-01-01

    Indonesia has experienced rapid land use change over the last few decades as forests and peatswamps have been cleared for more intensively managed land uses, including oil palm and timber plantations. Fires are the predominant method of clearing and managing land for more intensive uses, and the related emissions affect public health by contributing to regional particulate matter and ozone concentrations and adding to global atmospheric carbon dioxide concentrations. Here, we examine emissions from fires associated with land use clearing and land management on the Indonesian island of Sumatra and the sensitivity of this fire activity to interannual meteorological variability. We find ~80% of 2005-2009 Sumatra emissions are associated with degradation or land use maintenance instead of immediate land use conversion, especially in dry years. We estimate Sumatra fire emissions from land use change and maintenance for the next two decades with five scenarios of land use change, the Global Fire Emissions Database Version 3, detailed 1-km2 land use change maps, and MODIS fire radiative power observations. Despite comprising only 16% of the original study area, we predict that 37-48% of future Sumatra emissions from land use change will occur in fuel-rich peatswamps unless this land cover type is protected effectively. This result means that the impact of fires on future air quality and climate in Equatorial Asia will be decided in part by the conservation status given to the remaining peatswamps on Sumatra. Results from this article will be implemented in an atmospheric transport model to quantify the public health impacts from the transport of fire emissions associated with future land use scenarios in Sumatra. © 2014 John Wiley & Sons Ltd.

  13. Projection of Denmark's energy consumption and emission of greenhouse gases 2012; Danmarks energifremskrivning 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    The Danish energy Agency's baseline projection of Denmark's energy consumption and greenhouse gas emissions is not a forecast, but describes the development which may occur in the coming years, based on a number of assumptions about technological development, prices, economic development, etc., hypothetically assuming that no new initiatives or measures beyond those already taken are implemented. The consumption of coal and natural gas are expected to fall by 50 % and 27 %, respectively, the next 8 years, and overall Denmark's fossil fuel consumption is reduced by approx. 120 PJ by 2020. Instead, renewable energy consumption will increase by more than 40 % from 2011 to 2020. The largest contribution to new renewable energy comes from the future offshore wind farms at Anholt, Krieger's Flak and Horns Rev, and from the increased use of biomass. With this conversion, the share of renewable energy in electricity supply is expected to increase from approx. 40 % in 2011 to around 69 % in 2020 and to 75 % in 2025. Final energy consumption drops from 640 PJ in 2011 to 632 PJ in 2020 as a consequence of a decline in industrial and household energy consumption, while the transport sector's energy consumption is expected to increase. With the projection's assumptions, a renewable energy share in the transport sector of 11 % may be achieved. Denmark's total greenhouse gas emissions are expected to decrease to 45.1 million tons of CO{sub 2} equivalent in 2020. This corresponds directly to the total emissions being reduced by 35 % compared to emissions in the 1990 base year. The figure is, however, highly uncertain. (LN)

  14. Emission projections for the U.S. Environmental Protection Agency Section 812 second prospective Clean Air Act cost/benefit analysis.

    Science.gov (United States)

    Wilson, James H; Mullen, Maureen A; Bollman, Andrew D; Thesing, Kirstin B; Salhotra, Manish; Divita, Frank; Neumann, James E; Price, Jason C; DeMocker, James

    2008-05-01

    Section 812 of the Clean Air Act Amendments (CAAA) of 1990 requires the U.S. Environmental Protection Agency (EPA) to perform periodic, comprehensive analyses of the total costs and total benefits of programs implemented pursuant to the CAAA. The first prospective analysis was completed in 1999. The second prospective analysis was initiated during 2005. The first step in the second prospective analysis was the development of base and projection year emission estimates that will be used to generate benefit estimates of CAAA programs. This paper describes the analysis, methods, and results of the recently completed emission projections. There are several unique features of this analysis. One is the use of consistent economic assumptions from the Department of Energy's Annual Energy Outlook 2005 (AEO 2005) projections as the basis for estimating 2010 and 2020 emissions for all sectors. Another is the analysis of the different emissions paths for both with and without CAAA scenarios. Other features of this analysis include being the first EPA analysis that uses the 2002 National Emission Inventory files as the basis for making 48-state emission projections, incorporating control factor files from the Regional Planning Organizations (RPOs) that had completed emission projections at the time the analysis was performed, and modeling the emission benefits of the expected adoption of measures to meet the 8-hr ozone National Ambient Air Quality Standards (NAAQS), the Clean Air Visibility Rule, and the PM2.5 NAAQS. This analysis shows that the 1990 CAAA have produced significant reductions in criteria pollutant emissions since 1990 and that these emission reductions are expected to continue through 2020. CAAA provisions have reduced volatile organic compound (VOC) emissions by approximately 7 million t/yr by 2000, and are estimated to produce associated VOC emission reductions of 16.7 million t by 2020. Total oxides of nitrogen (NO(x)) emission reductions attributable to the

  15. Gas discharges in fumarolic ice caves of Erebus volcano, Antarctica

    Science.gov (United States)

    Fischer, T. P.; Curtis, A. G.; Kyle, P. R.; Sano, Y.

    2013-12-01

    Fumarolic ice caves and towers on Erebus are the surface expression of flank degassing on the world's southernmost active volcano. The caves are formed by warm gases and steam escaping from small vents on the lava flow floors that melts the overlying ice and snow. Extremophiles in the caves may be analogues for extraterrestrial environments. Over the past four Austral summers, mapping, gas and thermal monitoring conducted under the Erebus Caves Project has provided insights into the ice cave formation processes and the relationships between cave structures, magmatic processes, and weather. Gas samples were collected during the 2012 - 2013 field season in 4 ice caves (Warren, Harry's Dream, Sauna, Haggis Hole) as well as the thermal ground at Tramway Ridge. The vents at all of these sites are characterized by diffuse degassing through loose lava or cracks in the lava flow floor. Vent temperatures ranged from 5 to 17°C in most caves and at Tramway Ridge. In Sauna cave the temperature was 40°C. Gases were sampled by inserting a perforated 1 m long, 5 mm diameter stainless steel tube, into the vents or hot ground. Giggenbach bottles, copper tubes and lead glass bottles were connected in series. The gases were pumped at a slow rate (about 20 ml per minute) using a battery pump for 12-24 hours to flush the system. After flushing samples were collected for later analyses. All samples are dominated by atmospheric components, however, carbon dioxide (0.1 to 1.9%), methane (0.005 to 0.01%), hydrogen (0.002 to 0.07%), and helium (0.0009 to 0.002 %) are above air background. Nitrogen (average 74%) and oxygen (23.5%) are slightly below and above air values, respectively. Helium isotopes show minor input of mantle derived helium-3 with 3He4He ratios ranging from 1.03 to 1.18 RA (where RA is the ratio of air). This represents the first detection of hydrogen and helium in the caves. Methane could be produced by anaerobic respiration of subsurface microbes or hydrothermal

  16. "Mediterranean volcanoes vs. chain volcanoes in the Carpathians"

    Science.gov (United States)

    Chivarean, Radu

    2017-04-01

    Volcanoes have always represent an attractive subject for students. Europe has a small number of volcanoes and Romania has none active ones. The curricula is poor in the study of volcanoes. We want to make a parallel between the Mediterranean active volcanoes and the old extinct ones in the Oriental Carpathians. We made an comparison of the two regions in what concerns their genesis, space and time distribution, the specific relief and the impact in the landscape, consequences of their activities, etc… The most of the Mediterranean volcanoes are in Italy, in the peninsula in Napoli's area - Vezuviu, Campi Flegrei, Puzzoli, volcanic islands in Tirenian Sea - Ischia, Aeolian Islands, Sicily - Etna and Pantelleria Island. Santorini is located in Aegean Sea - Greece. Between Sicily and Tunisia there are 13 underwater volcanoes. The island called Vulcano, it has an active volcano, and it is the origin of the word. Every volcano in the world is named after this island, just north of Sicily. Vulcano is the southernmost of the 7 main Aeolian Islands, all volcanic in origin, which together form a small island arc. The cause of the volcanoes appears to be a combination of an old subduction event and tectonic fault lines. They can be considered as the origin of the science of volcanology. The volcanism of the Carpathian region is part of the extensive volcanic activity in the Mediterranean and surrounding regions. The Carpathian Neogene/Quaternary volcanic arc is naturally subdivided into six geographically distinct segments: Oas, Gutai, Tibles, Calimani, Gurghiu and Harghita. It is located roughly between the Carpathian thrust-and-fold arc to the east and the Transylvanian Basin to the west. It formed as a result of the convergence between two plate fragments, the Transylvanian micro-plate and the Eurasian plate. Volcanic edifices are typical medium-sized andesitic composite volcanoes, some of them attaining the caldera stage, complicated by submittal or peripheral domes

  17. The CO2 inhibition of terrestrial isoprene emission significantly affects future ozone projections

    Directory of Open Access Journals (Sweden)

    J. A. Pyle

    2008-11-01

    Full Text Available Simulations of future tropospheric composition often include substantial increases in biogenic isoprene emissions arising from the Arrhenius-like leaf emission response and warmer surface temperatures, and from enhanced vegetation productivity in response to temperature and atmospheric CO2 concentration. However, a number of recent laboratory and field data have suggested a direct inhibition of leaf isoprene production by increasing atmospheric CO2 concentration, notwithstanding isoprene being produced from precursor molecules that include some of the primary products of carbon assimilation. The cellular mechanism that underlies the decoupling of leaf photosynthesis and isoprene production still awaits a full explanation but accounting for this observation in a dynamic vegetation model that contains a semi-mechanistic treatment of isoprene emissions has been shown to change future global isoprene emission estimates notably. Here we use these estimates in conjunction with a chemistry-climate model to compare the effects of isoprene simulations without and with a direct CO2-inhibition on late 21st century O3 and OH levels. The impact on surface O3 was significant. Including the CO2-inhibition of isoprene resulted in opposing responses in polluted (O3 decreases of up to 10 ppbv vs. less polluted (O3 increases of up to 10 ppbv source regions, due to isoprene nitrate and peroxy acetyl nitrate (PAN chemistry. OH concentration increased with relatively lower future isoprene emissions, decreasing methane lifetime by ~7 months. Our simulations underline the large uncertainties in future chemistry and climate studies due to biogenic emission patterns and emphasize the problems of using globally averaged climate metrics to quantify the atmospheric impact of reactive, heterogeneously distributed substances.

  18. The CO2 inhibition of terrestrial isoprene emission significantly affects future ozone projections

    Science.gov (United States)

    Young, P. J.; Arneth, A.; Schurgers, G.; Zeng, G.; Pyle, J. A.

    2009-04-01

    Simulations of future tropospheric composition often include substantial increases in biogenic isoprene emissions arising from the Arrhenius-like leaf emission response and warmer surface temperatures, and from enhanced vegetation productivity in response to temperature and atmospheric CO2 concentration. However, a number of recent laboratory and field data have suggested a direct inhibition of leaf isoprene production by increasing atmospheric CO2 concentration, notwithstanding isoprene being produced from precursor molecules that include some of the primary products of carbon assimilation. The cellular mechanism that underlies the decoupling of leaf photosynthesis and isoprene production still awaits a full explanation but accounting for this observation in a dynamic vegetation model that contains a semi-mechanistic treatment of isoprene emissions has been shown to change future global isoprene emission estimates notably. Here we use these estimates in conjunction with a chemistry-climate model to compare the effects of isoprene simulations without and with a direct CO2-inhibition on late 21st century O3 and OH levels. The impact on surface O3 was significant. Including the CO2-inhibition of isoprene resulted in opposing responses in polluted (O3 decreases of up to 10 ppbv) vs. less polluted (O3 increases of up to 10 ppbv) source regions, due to isoprene nitrate and peroxy acetyl nitrate (PAN) chemistry. OH concentration increased with relatively lower future isoprene emissions, decreasing methane lifetime by ~7 months (6.6%). Our simulations underline the large uncertainties in future chemistry and climate studies due to biogenic emission patterns and emphasize the problems of using globally averaged climate metrics (such as global radiative forcing) to quantify the atmospheric impact of reactive, heterogeneously distributed substances.

  19. Mount Meager Volcano, Canada: a Case Study for Landslides on Glaciated Volcanoes

    Science.gov (United States)

    Roberti, G. L.; Ward, B. C.; van Wyk de Vries, B.; Falorni, G.; Perotti, L.; Clague, J. J.

    2015-12-01

    Mount Meager is a strato-volcano massif in the Northern Cascade Volcanic Arc (Canada) that erupted in 2350 BP, the most recent in Canada. To study the stability of the Massif an international research project between France ( Blaise Pascal University), Italy (University of Turin) and Canada (Simon Fraser University) and private companies (TRE - sensing the planet) has been created. A complex history of glacial loading and unloading, combined with weak, hydrothermally altered rocks has resulted in a long record of catastrophic landslides. The most recent, in 2010 is the third largest (50 x 106 m3) historical landslide in Canada. Mount Meager is a perfect natural laboratory for gravity and topographic processes such as landslide activity, permafrost and glacial dynamics, erosion, alteration and uplift on volcanoes. Research is aided by a rich archive of aerial photos of the Massif (1940s up to 2006): complete coverage approximately every 10 years. This data set has been processed and multi-temporal, high resolution Orthophoto and DSMs (Digital Surface Models) have been produced. On these digital products, with the support on field work, glacial retreat and landslide activity have been tracked and mapped. This has allowed for the inventory of unstable areas, the identification of lava flows and domes, and the general improvement on the geologic knowledge of the massif. InSAR data have been used to monitor the deformation of the pre-2010 failure slope. It will also be used to monitor other unstable slopes that potentially can evolve to catastrophic collapses of up to 1 km3 in volume, endangering local communities downstream the volcano. Mount Meager is definitively an exceptional site for studying the dynamics of a glaciated, uplifted volcano. The methodologies proposed can be applied to other volcanic areas with high erosion rates such as Alaska, Cascades, and the Andes.

  20. Magmatic gas scrubbing: Implications for volcano monitoring

    Science.gov (United States)

    Symonds, R.B.; Gerlach, T.M.; Reed, M.H.

    2001-01-01

    Despite the abundance of SO2(g) in magmatic gases, precursory increases in magmatic SO2(g) are not always observed prior to volcanic eruption, probably because many terrestrial volcanoes contain abundant groundwater or surface water that scrubs magmatic gases until a dry pathway to the atmosphere is established. To better understand scrubbing and its implications for volcano monitoring, we model thermochemically the reaction of magmatic gases with water. First, we inject a 915??C magmatic gas from Merapi volcano into 25??C air-saturated water (ASW) over a wide range of gas/water mass ratios from 0.0002 to 100 and at a total pressure of 0.1 MPa. Then we model closed-system cooling of the magmatic gas, magmatic gas-ASW mixing at 5.0 MPa, runs with varied temperature and composition of the ASW, a case with a wide range of magmatic-gas compositions, and a reaction of a magmatic gas-ASW mixture with rock. The modeling predicts gas and water compositions, and, in one case, alteration assemblages for a wide range of scrubbing conditions; these results can be compared directly with samples from degassing volcanoes. The modeling suggests that CO2(g) is the main species to monitor when scrubbing exists; another candidate is H2S(g), but it can be affected by reactions with aqueous ferrous iron. In contrast, scrubbing by water will prevent significant SO2(g) and most HCl(g) emissions until dry pathways are established, except for moderate HCl(g) degassing from pH 100 t/d (tons per day) of SO2(g) in addition to CO2(g) and H2S(g) should be taken as a criterion of magma intrusion. Finally, the modeling suggests that the interpretation of gas-ratio data requires a case-by-case evaluation since ratio changes can often be produced by several mechanisms; nevertheless, several gas ratios may provide useful indices for monitoring the drying out of gas pathways. Published by Elsevier Science B.V.

  1. Optical satellite data volcano monitoring: a multi-sensor rapid response system

    Science.gov (United States)

    Duda, Kenneth A.; Ramsey, Michael; Wessels, Rick L.; Dehn, Jonathan

    2009-01-01

    In this chapter, the use of satellite remote sensing to monitor active geological processes is described. Specifically, threats posed by volcanic eruptions are briefly outlined, and essential monitoring requirements are discussed. As an application example, a collaborative, multi-agency operational volcano monitoring system in the north Pacific is highlighted with a focus on the 2007 eruption of Kliuchevskoi volcano, Russia. The data from this system have been used since 2004 to detect the onset of volcanic activity, support the emergency response to large eruptions, and assess the volcanic products produced following the eruption. The overall utility of such integrative assessments is also summarized. The work described in this chapter was originally funded through two National Aeronautics and Space Administration (NASA) Earth System Science research grants that focused on the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument. A skilled team of volcanologists, geologists, satellite tasking experts, satellite ground system experts, system engineers and software developers collaborated to accomplish the objectives. The first project, Automation of the ASTER Emergency Data Acquisition Protocol for Scientific Analysis, Disaster Monitoring, and Preparedness, established the original collaborative research and monitoring program between the University of Pittsburgh (UP), the Alaska Volcano Observatory (AVO), the NASA Land Processes Distributed Active Archive Center (LP DAAC) at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, and affiliates on the ASTER Science Team at the Jet Propulsion Laboratory (JPL) as well as associates at the Earth Remote Sensing Data Analysis Center (ERSDAC) in Japan. This grant, completed in 2008, also allowed for detailed volcanic analyses and data validation during three separate summer field campaigns to Kamchatka Russia. The second project, Expansion and synergistic use

  2. Mechanical coupling between earthquakes, volcanos and landslides

    Science.gov (United States)

    Feigl, K. L.; Retina Team

    2003-04-01

    "The eruption began as a large earthquake that triggered a massive landslide that culminated in a violent lateral explosion" [Malone et al., USGS 1981]. The 1980 eruption of Mount St. Helens taught a very powerful lesson -- that one natural hazard can trigger another. For example, earthquakes have triggered landslides in Papua New Guinea. Similarly, eruptions of Vesuvius are mechanically coupled to earthquakes in the Appenines, just as an inflating magma chamber can trigger earthquakes near Hengill volcano in SW Iceland and on the Izu Peninsula in Japan. The Luzon earthquake may have triggered the eruption of Mount Pinatubo. In many of these cases, the second triggered event caused more damage than the initial one. If we can better understand the mechanical coupling underlying the temporal and spatial correlation of such events, we will improve our assessments of the hazards they pose. The RETINA project has been funded by the European Commission's 5th Framework to study couplings between three classes of natural hazards: earthquakes, landslides, and volcanoes. These three phenomena are linked to and by the stress field in the crust. If the stress increases enough, the material will fail catastrophically. For example, magma injection beneath a volcano can trigger an earthquake by increasing stress on a fault. Increasing shear stress on unconsolidated materials on steep slopes can trigger landslides. Such stress change triggers may also be tectonic (from plate driving forces), hydrological (from heavy rain), or volcanic (magmatic injection). Any of these events can perturb the stress field enough to trigger another event. Indeed, stress changes as small as 0.1 bar (0.01 MPa) suffice to trigger an earthquake. If the medium is close to failure, this small change can increase the Coulomb stress beyond the yield threshold, breaking the material. This quantity is the primary means we will use for describing mechanical coupling. In this paper, we will review several case

  3. Projection of SO{sub 2}, NO{sub X}, NMVOC, NH{sub 3} and particle emissions - 2005 to 2030

    Energy Technology Data Exchange (ETDEWEB)

    Boll Illerup, J.; Nielsen, Ole-Kenneth; Winther, M.; Hjorth Mikkelsen, M.; Nielsen, Malene; Fauser, P.; Gyldenkaerne, S.

    2008-05-15

    This report contains a description of models and background data for projection of SO{sub 2}, NO{sub X}, NH{sub 3}, NMVOC, TSP, PM{sub 10} and PM{sub 2.5} for Denmark. The emissions are projected to 2030 using basic scenarios together with the expected results of a few individual policy measures. Official Danish forecasts of activity rates are used in the models for those sectors for which the forecasts are available, i.e. the latest official forecast from the Danish Energy Authority. The emission factors refer to international guidelines and some are country-specific and refer to Danish legislation, Danish research reports or calculations based on emission data from a considerable number of plants. The projection models are based on the same structure and method as the Danish emission inventories in order to ensure consistency. (au)

  4. The particulate project 2005-2007; Emissions from traffic in Copenhagen, Denmark; Partikelprojektet 2005-2007

    Energy Technology Data Exchange (ETDEWEB)

    Waahlin, P.

    2008-11-15

    Measurements during 2004 to 2007 of emissions of particles, soot, carbon monoxide (CO), and nitrogen oxides (NO{sub x}) from the local traffic in Copenhagen and in the countryside west of Copenhagen are analysed. The analysis shows that the use of sulphur-free petrol and diesel fuels from 2005 has resulted in reduced amount of fine particles released from the traffic. (ln)

  5. Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change

    Science.gov (United States)

    Han, Xingguo; Sun, Xue; Wang, Cheng; Wu, Mengxiong; Dong, Da; Zhong, Ting; Thies, Janice E.; Wu, Weixiang

    2016-04-01

    Elevated global temperatures and increased concentrations of carbon dioxide (CO2) in the atmosphere associated with climate change will exert profound effects on rice cropping systems, particularly on their greenhouse gas emitting potential. Incorporating biochar into paddy soil has been shown previously to reduce methane (CH4) emission from paddy rice under ambient temperature and CO2. We examined the ability of rice straw-derived biochar to reduce CH4 emission from paddy soil under elevated temperature and CO2 concentrations expected in the future. Adding biochar to paddy soil reduced CH4 emission under ambient conditions and significantly reduced emissions by 39.5% (ranging from 185.4 mg kg‑1 dry weight soil, dws season‑1 to 112.2 mg kg‑1 dws season‑1) under simultaneously elevated temperature and CO2. Reduced CH4 release was mainly attributable to the decreased activity of methanogens along with the increased CH4 oxidation activity and pmoA gene abundance of methanotrophs. Our findings highlight the valuable services of biochar amendment for CH4 control from paddy soil in a future that will be shaped by climate change.

  6. The Atlas3D project -- XXXI. Nuclear radio emission in nearby early-type galaxies

    CERN Document Server

    Nyland, Kristina; Wrobel, Joan M; Sarzi, Marc; Morganti, Raffaella; Alatalo, Katherine; Blitz, Leo; Bournaud, Frederic; Bureau, Martin; Cappellari, Michele; Crocker, Alison F; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnovic, Davor; Kuntschner, Harald; McDermid, Richard M; Naab, Thorsten; Oosterloo, Tom; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie

    2016-01-01

    We present the results of a high-resolution, 5 GHz, Karl G. Jansky Very Large Array study of the nuclear radio emission in a representative subset of the Atlas3D survey of early-type galaxies (ETGs). We find that 51 +/- 4% of the ETGs in our sample contain nuclear radio emission with luminosities as low as 10^18 W/Hz. Most of the nuclear radio sources have compact (< 25-110 pc) morphologies, although < 10% display multi-component core+jet or extended jet/lobe structures. Based on the radio continuum properties, as well as optical emission line diagnostics and the nuclear X-ray properties, we conclude that the majority of the central 5 GHz sources detected in the Atlas3D galaxies are associated with the presence of an active galactic nucleus (AGN). However, even at sub-arcsecond spatial resolution, the nuclear radio emission in some cases appears to arise from low-level nuclear star formation rather than an AGN, particularly when molecular gas and a young central stellar population is present. This is in...

  7. Estimating the confidence bounds for projected ozone design values under different emissions control options

    Science.gov (United States)

    In current regulatory applications, regional air quality model is applied for a base year and a future year with reduced emissions using the same meteorological conditions. The base year design value is multiplied by the ratio of the average of the top 10 ozone concentrations fo...

  8. Atmospheric emissions of anthropogenic lead in Europe: improvements, updates, historical data and projections

    Energy Technology Data Exchange (ETDEWEB)

    Pacyna, J.M.; Pacyna, E.G.

    2000-07-01

    This report provides estimates of lead emissions to the atmosphere in Europe, discriminated by country and by source category within each country. Estimates of past lead emissions are provided for the years 1955, 1965, 1975, 1985, 1990 and 1995. Estimates for 1955-1990 have been improved relatively to earlier estimates for these years provided in 1996 for IIASA, using recently available data. Predictions of future lead emissions are provided for the year 2010. The methodology of estimating emissions is described. (orig.) [German] Dieser Bericht enthaelt Schaetzungen ueber die nationalen Bleiemissionen der europaeischen Laender in die Atmosphaere. Dabei wurden die verschiedenen Arten von Bleiemissionsquellen differenziert beruecksichtigt. Die Schaetzungen liegen fuer die Jahre 1955, 1965, 1975, 1985, 1990 und 1995 vor. Im Vergleich zu den Berechnungen der IIASA 1996 fuer die Jahre 1955-1990, wurden die Schaetzungen in diesem Bericht aufgrund neuer, aktueller Dateninformationen deutlich verbessert. Vorhersagen fuer die zukuenftigen Bleiemissionen in Europa wurden fuer das Jahr 2010 gechaetzt. Zudem enthaelt der Bericht eine ausfuehrliche Beschreibung ueber die den Schaetzungen zugrunde liegenden Methode. (orig.)

  9. Projections of oceanic N2O emissions in the 21st century using the IPSL Earth system model

    Science.gov (United States)

    Martinez-Rey, J.; Bopp, L.; Gehlen, M.; Tagliabue, A.; Gruber, N.

    2015-07-01

    The ocean is a substantial source of nitrous oxide (N2O) to the atmosphere, but little is known about how this flux might change in the future. Here, we investigate the potential evolution of marine N2O emissions in the 21st century in response to anthropogenic climate change using the global ocean biogeochemical model NEMO-PISCES. Assuming nitrification as the dominant N2O formation pathway, we implemented two different parameterizations of N2O production which differ primarily under low-oxygen (O2) conditions. When forced with output from a climate model simulation run under the business-as-usual high-CO2 concentration scenario (RCP8.5), our simulations suggest a decrease of 4 to 12 % in N2O emissions from 2005 to 2100, i.e., a reduction from 4.03/3.71 to 3.54/3.56 TgN yr-1 depending on the parameterization. The emissions decrease strongly in the western basins of the Pacific and Atlantic oceans, while they tend to increase above the oxygen minimum zones (OMZs), i.e., in the eastern tropical Pacific and in the northern Indian Ocean. The reduction in N2O emissions is caused on the one hand by weakened nitrification as a consequence of reduced primary and export production, and on the other hand by stronger vertical stratification, which reduces the transport of N2O from the ocean interior to the ocean surface. The higher emissions over the OMZ are linked to an expansion of these zones under global warming, which leads to increased N2O production, associated primarily with denitrification. While there are many uncertainties in the relative contribution and changes in the N2O production pathways, the increasing storage seems unequivocal and determines largely the decrease in N2O emissions in the future. From the perspective of a global climate system, the averaged feedback strength associated with the projected decrease in oceanic N2O emissions amounts to around -0.009 W m-2 K-1, which is comparable to the potential increase from terrestrial N2O sources. However

  10. Mud Volcanoes Formation And Occurrence

    Science.gov (United States)

    Guliyev, I. S.

    2007-12-01

    Mud volcanoes are natural phenomena, which occur throughout the globe. They are found at a greater or lesser scale in Azerbaijan, Turkmenistan, Georgia, on the Kerch and Taman peninsulas, on Sakhalin Island, in West Kuban, Italy, Romania, Iran, Pakistan, India, Burma, China, Japan, Indonesia, Malaysia, New Zealand, Mexico, Colombia, Trinidad and Tobago, Venezuela and Ecuador. Mud volcanoes are most well-developed in Eastern Azerbaijan, where more than 30% of all the volcanoes in the world are concentrated. More than 300 mud volcanoes have already been recognized here onshore or offshore, 220 of which lie within an area of 16,000 km2. Many of these mud volcanoes are particularly large (up to 400 m high). The volcanoes of the South Caspian form permanent or temporary islands, and numerous submarine banks. Many hypotheses have been developed regarding the origin of mud volcanoes. Some of those hypotheses will be examined in the present paper. Model of spontaneous excitation-decompaction (proposed by Ivanov and Guliev, 1988, 2002). It is supposed that one of major factors of the movement of sedimentary masses and formation of hydrocarbon deposits are phase transitions in sedimentary basin. At phase transitions there are abnormal changes of physical and chemical parameters of rocks. Abnormal (high and negative) pressure takes place. This process is called as excitation of the underground environment with periodicity from several tens to several hundreds, or thousand years. The relationship between mud volcanism and the generation of hydrocarbons, particularly methane, is considered to be a critical factor in mud volcano formation. At high flow rates the gas and sediment develops into a pseudo-liquid state and as flow increases the mass reaches the "so-called hover velocity" where mass transport begins. The mass of fluid moves as a quasi-uniform viscous mass through the sediment pile in a piston like manner until expelled from the surface as a "catastrophic eruption

  11. Volcano Monitoring in Ecuador: Three Decades of Continuous Progress of the Instituto Geofisico - Escuela Politecnica Nacional

    Science.gov (United States)

    Ruiz, M. C.; Yepes, H. A.; Hall, M. L.; Mothes, P. A.; Ramon, P.; Hidalgo, S.; Andrade, D.; Vallejo Vargas, S.; Steele, A. L.; Anzieta, J. C.; Ortiz, H. D.; Palacios, P.; Alvarado, A. P.; Enriquez, W.; Vasconez, F.; Vaca, M.; Arrais, S.; Viracucha, G.; Bernard, B.

    2014-12-01

    In 1988, the Instituto Geofisico (IG) began a permanent surveillance of Ecuadorian volcanoes, and due to activity on Guagua Pichincha, SP seismic stations and EDM control lines were then installed. Later, with the UNDRO and OAS projects, telemetered seismic monitoring was expanded to Tungurahua, Cotopaxi, Cuicocha, Chimborazo, Antisana, Cayambe, Cerro Negro, and Quilotoa volcanoes. In 1992 an agreement with the Instituto Ecuatoriano de Electrificacion strengthened the monitoring of Tungurahua and Cotopaxi volcanoes with real-time SP seismic networks and EDM lines. Thus, background activity levels became established, which was helpful because of the onset of the 1999 eruptive activity at Tungurahua and Guagua Pichincha. These eruptions had a notable impact on Baños and Quito. Unrest at Cotopaxi volcano was detected in 2001-2002, but waned. In 2002 Reventador began its eruptive period which continues to the present and is closely monitored by the IG. In 2006 permanent seismic BB stations and infrasound sensors were installed at Tungurahua and Cotopaxi under a cooperative program supported by JICA, which allowed us to follow Tungurahua's climatic eruptions of 2006 and subsequent eruptions up to the present. Programs supported by the Ecuadorian Secretaria Nacional de Ciencia y Tecnologia and the Secretaria Nacional de Planificacion resulted in further expansion of the IG's monitoring infrastructure. Thermal and video imagery, SO2 emission monitoring, geochemical analyses, continuous GPS and tiltmeters, and micro-barometric surveillance have been incorporated. Sangay, Soche, Ninahuilca, Pululahua, and Fernandina, Cerro Azul, Sierra Negra, and Alcedo in the Galapagos Islands are now monitored in real-time. During this time, international cooperation with universities (Blaise Pascal & Nice-France, U. North Carolina, New Mexico Tech, Uppsala-Sweden, Nagoya, etc.), and research centers (USGS & UNAVCO-USA, IRD-France, NIED-Japan, SGC-Colombia, VAAC, MIROVA) has introduced

  12. Interactive Volcano Studies and Education Using Virtual Globes

    Science.gov (United States)

    Dehn, J.; Bailey, J. E.; Webley, P.

    2006-12-01

    Internet-based virtual globe programs such as Google Earth provide a spatial context for visualization of monitoring and geophysical data sets. At the Alaska Volcano Observatory, Google Earth is being used to integrate satellite imagery, modeling of volcanic eruption clouds and seismic data sets to build new monitoring and reporting tools. However, one of the most useful information sources for environmental monitoring is under utilized. Local populations, who have lived near volcanoes for decades are perhaps one of the best gauges for changes in activity. Much of the history of the volcanoes is only recorded through local legend. By utilizing the high level of internet connectivity in Alaska, and the interest of secondary education in environmental science and monitoring, it is proposed to build a network of observation nodes around local schools in Alaska and along the Aleutian Chain. A series of interactive web pages with observations on a volcano's condition, be it glow at night, puffs of ash, discolored snow, earthquakes, sounds, and even current weather conditions can be recorded, and the users will be able to see their reports in near real time. The database will create a KMZ file on the fly for upload into the virtual globe software. Past observations and legends could be entered to help put a volcano's long-term activity in perspective. Beyond the benefit to researchers and emergency managers, students and teachers in the rural areas will be involved in volcano monitoring, and gain an understanding of the processes and hazard mitigation efforts in their community. K-12 students will be exposed to the science, and encouraged to participate in projects at the university. Infrastructure at the university can be used by local teachers to augment their science programs, hopefully encouraging students to continue their education at the university level.

  13. Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000-2012

    Science.gov (United States)

    Anderson, Kyle R.; Poland, Michael P.

    2016-08-01

    Estimating rates of magma supply to the world's volcanoes remains one of the most fundamental aims of volcanology. Yet, supply rates can be difficult to estimate even at well-monitored volcanoes, in part because observations are noisy and are usually considered independently rather than as part of a holistic system. In this work we demonstrate a technique for probabilistically estimating time-variable rates of magma supply to a volcano through probabilistic constraint on storage and eruption rates. This approach utilizes Bayesian joint inversion of diverse datasets using predictions from a multiphysical volcano model, and independent prior information derived from previous geophysical, geochemical, and geological studies. The solution to the inverse problem takes the form of a probability density function which takes into account uncertainties in observations and prior information, and which we sample using a Markov chain Monte Carlo algorithm. Applying the technique to Kīlauea Volcano, we develop a model which relates magma flow rates with deformation of the volcano's surface, sulfur dioxide emission rates, lava flow field volumes, and composition of the volcano's basaltic magma. This model accounts for effects and processes mostly neglected in previous supply rate estimates at Kīlauea, including magma compressibility, loss of sulfur to the hydrothermal system, and potential magma storage in the volcano's deep rift zones. We jointly invert data and prior information to estimate rates of supply, storage, and eruption during three recent quasi-steady-state periods at the volcano. Results shed new light on the time-variability of magma supply to Kīlauea, which we find to have increased by 35-100% between 2001 and 2006 (from 0.11-0.17 to 0.18-0.28 km3/yr), before subsequently decreasing to 0.08-0.12 km3/yr by 2012. Changes in supply rate directly impact hazard at the volcano, and were largely responsible for an increase in eruption rate of 60-150% between 2001 and

  14. Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000–2012

    Science.gov (United States)

    Anderson, Kyle R.; Poland, Michael

    2016-01-01

    Estimating rates of magma supply to the world's volcanoes remains one of the most fundamental aims of volcanology. Yet, supply rates can be difficult to estimate even at well-monitored volcanoes, in part because observations are noisy and are usually considered independently rather than as part of a holistic system. In this work we demonstrate a technique for probabilistically estimating time-variable rates of magma supply to a volcano through probabilistic constraint on storage and eruption rates. This approach utilizes Bayesian joint inversion of diverse datasets using predictions from a multiphysical volcano model, and independent prior information derived from previous geophysical, geochemical, and geological studies. The solution to the inverse problem takes the form of a probability density function which takes into account uncertainties in observations and prior information, and which we sample using a Markov chain Monte Carlo algorithm. Applying the technique to Kīlauea Volcano, we develop a model which relates magma flow rates with deformation of the volcano's surface, sulfur dioxide emission rates, lava flow field volumes, and composition of the volcano's basaltic magma. This model accounts for effects and processes mostly neglected in previous supply rate estimates at Kīlauea, including magma compressibility, loss of sulfur to the hydrothermal system, and potential magma storage in the volcano's deep rift zones. We jointly invert data and prior information to estimate rates of supply, storage, and eruption during three recent quasi-steady-state periods at the volcano. Results shed new light on the time-variability of magma supply to Kīlauea, which we find to have increased by 35–100% between 2001 and 2006 (from 0.11–0.17 to 0.18–0.28 km3/yr), before subsequently decreasing to 0.08–0.12 km3/yr by 2012. Changes in supply rate directly impact hazard at the volcano, and were largely responsible for an increase in eruption rate of 60–150% between

  15. Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP

    Directory of Open Access Journals (Sweden)

    D. S. Stevenson

    2013-03-01

    Full Text Available Ozone (O3 from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP has been used to calculate tropospheric ozone radiative forcings (RFs. All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750 to present-day (2010 tropospheric ozone RF of 410 mW m−2. The model range of pre-industrial to present-day changes in O3 produces a spread (±1 standard deviation in RFs of ±17%. Three different radiation schemes were used – we find differences in RFs between schemes (for the same ozone fields of ±10%. Applying two different tropopause definitions gives differences in RFs of ±3%. Given additional (unquantified uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of ±30% for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44±12%, nitrogen oxides (31 ± 9%, carbon monoxide (15 ± 3% and non-methane volatile organic compounds (9 ± 2%; earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m−2 DU−1, a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m−2; relative to 1750 for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5 of 350, 420, 370 and 460 (in 2030, and 200, 300, 280 and 600 (in 2100. Models show some coherent responses of ozone to climate change

  16. Tropospheric Ozone Changes, Radiative Forcing and Attribution to Emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    Science.gov (United States)

    Stevenson, D.S.; Young, P.J.; Naik, V.; Lamarque, J.-F.; Shindell, D. T.; Voulgarakis, A.; Skeie, R. B.; Dalsoren, S. B.; Myhre, G.; Berntsen, T. K.; hide

    2013-01-01

    Ozone (O3) from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has been used to calculate tropospheric ozone radiative forcings (RFs). All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP) scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750) to present-day (2010) tropospheric ozone RF of 410 mW m-2. The model range of pre-industrial to present-day changes in O3 produces a spread (+/-1 standard deviation) in RFs of +/-17%. Three different radiation schemes were used - we find differences in RFs between schemes (for the same ozone fields) of +/-10 percent. Applying two different tropopause definitions gives differences in RFs of +/-3 percent. Given additional (unquantified) uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of +/-30 percent for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44+/-12 percent), nitrogen oxides (31 +/- 9 percent), carbon monoxide (15 +/- 3 percent) and non-methane volatile organic compounds (9 +/- 2 percent); earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m(-2) DU(-1), a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m(-2); relative to 1750) for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) of 350, 420, 370 and 460 (in 2030), and 200, 300, 280 and 600 (in 2100). Models show some

  17. Eruption of a deep-sea mud volcano triggers rapid sediment movement.

    Science.gov (United States)

    Feseker, Tomas; Boetius, Antje; Wenzhöfer, Frank; Blandin, Jerome; Olu, Karine; Yoerger, Dana R; Camilli, Richard; German, Christopher R; de Beer, Dirk

    2014-11-11

    Submarine mud volcanoes are important sources of methane to the water column. However, the temporal variability of their mud and methane emissions is unknown. Methane emissions were previously proposed to result from a dynamic equilibrium between upward migration and consumption at the seabed by methane-consuming microbes. Here we show non-steady-state situations of vigorous mud movement that are revealed through variations in fluid flow, seabed temperature and seafloor bathymetry. Time series data for pressure, temperature, pH and seafloor photography were collected over 431 days using a benthic observatory at the active Håkon Mosby Mud Volcano. We documented 25 pulses of hot subsurface fluids, accompanied by eruptions that changed the landscape of the mud volcano. Four major events triggered rapid sediment uplift of more than a metre in height, substantial lateral flow of muds at average velocities of 0.4 m per day, and significant emissions of methane and CO₂ from the seafloor.

  18. Near-specular acoustic scattering from a buried submarine mud volcano.

    Science.gov (United States)

    Gerig, Anthony L; Holland, Charles W

    2007-12-01

    Submarine mud volcanoes are objects that form on the seafloor due to the emission of gas and fluidized sediment from the Earth's interior. They vary widely in size, can be exposed or buried, and are of interest to the underwater acoustics community as potential sources of active sonar clutter. Coincident seismic reflection data and low frequency bistatic scattering data were gathered from one such buried mud volcano located in the Straits of Sicily. The bistatic data were generated using a pulsed piston source and a 64-element horizontal array, both towed over the top of the volcano. The purpose of this work was to appropriately model low frequency scattering from the volcano using the bistatic returns, seismic bathymetry, and knowledge of the general geoacoustic properties of the area's seabed to guide understanding and model development. Ray theory, with some approximations, was used to model acoustic propagation through overlying layers. Due to the volcano's size, scattering was modeled using geometric acoustics and a simple representation of volcano shape. Modeled bistatic data compared relatively well with experimental data, although some features remain unexplained. Results of an inversion for the volcano's reflection coefficient indicate that it may be acoustically softer than expected.

  19. Optimal energy options under Clean Development Mechanism: Renewable energy projects for sustainable development and carbon emission reduction

    Science.gov (United States)

    Gilau, Asmerom M.

    This dissertation addresses two distinct objectives; designing cost-effective renewable energy powered projects including seawater reverse osmosis (SWRO), aquaculture, and ice-making plant, and analyzing the cost-effectiveness of these projects in achieving low abatement costs and promoting sustainable developments under the Clean Development Mechanism. The results of SWRO analysis show that a wind powered system is the least expensive and a PV powered system the most expensive, with finished water costs of about 0.50 /m3 and 1.00 /m3, respectively. By international standards, these costs are competitive. The results of renewable energy powered commercial tilapia production indicate that a wind-diesel system has high potential for intensive tilapia production as well as carbon dioxide emission reductions. The study also investigates aeration failures in renewable energy powered tilapia production systems. With respect to the ice-making plant, unlike previous studies which consider nighttime operation only, we have found that a nighttime PV powered ice-making system is more expensive (1/kWh) than daytime ice-making system (0.70/kWh). Our optimal energy options analysis at project scale which includes SWRO, ice-making plant and household energy consumption for about 100 households shows that compared to diesel only energy option, PV-D, W-D, and PV-W-D hybrids are very cost-effective energy options. Moreover, energy options with high levels of renewable energy including 100% renewables have the lowest net present cost and they are already cost-effective without CDM. On the other hand, while the removal of about 87% carbon dioxide emissions could be achieved at negative cost, initial investment could increase by a factor of 40, which is one of the primary barriers hindering wider renewable energy applications in developing countries. Thus in order to increase developing countries' participation in the carbon market, CDM policy should shift from a purely market oriented

  20. Final report on LDRD Project: Quantum confinement and light emission in silicon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Guilinger, T.R.; Kelly, M.J.; Follstaedt, D.M. [and others

    1995-02-01

    Electrochemically formed porous silicon (PS) was reported in 1991 to exhibit visible photoluminescence. This discovery could lead to the use of integrated silicon-based optoelectronic devices. This LDRD addressed two general goals for optical emission from Si: (1) investigate the mechanisms responsible for light emission, and (2) tailor the microstructure and composition of the Si to obtain photoemission suitable for working devices. PS formation, composition, morphology, and microstructure have been under investigation at Sandia for the past ten years for applications in silicon-on-insulator microelectronics, micromachining, and chemical sensors. The authors used this expertise to form luminescent PS at a variety of wavelengths and have used analytical techniques such as in situ Raman and X-ray reflectivity to investigate the luminescence mechanism and quantify the properties of the porous silicon layer. Further, their experience with ion implantation in Si lead to an investigation into alternate methods of producing Si nanostructures that visibly luminesce.

  1. Potential projects in the metropolitan area of the Valley of Mexico for reducing emissions

    Energy Technology Data Exchange (ETDEWEB)

    Bazan, G. [Universidad nacional autonoma de Mexico (Mexico)

    2000-07-01

    This presentation describes the environmental characteristics of the metropolitan area of Mexico City, provides a statistical summary of energy consumption and emissions by the transport, industry, residential, and agricultural sectors of the economy, and some of the strategies designed to deal with the unique environmental problems of the area, including plans to extend subway transportation and interurban train lines, conversion of trucks and buses to natural gas, installation of catalytic converters in private vehicles, replacement of old trucks and cars. The role of environmental indicators and CDM in the fight against greenhouse gas emissions and climate change from the Mexican perspective are also reviewed. The scarcity of economic resources is shown to be the greatest barrier to sustained progress towards the realisation of these objectives.

  2. A projected turning point in China's CO2 emissions - an Environmental Kuznets Curve analysis

    OpenAIRE

    Xu, Bo; Wennersten, Ronald; Brandt, Nils; Sun, Qie

    2012-01-01

    This paper examines the possible existence fan Environmental Kuznets Curve (EKC) relationship between China's carbon dioxide (CO2) emissions per capita (CO2/capita) and GDP per capita (GDP/capita) during the period 1980-2008. The timing of the turning point in China's CO2/capita can be further estimated if an EKC relationship exists. In regression results, a natural logarithm-quadratic relationship was found between CO2/capita and GDP/capita, which supports the EKC hypothesis. However, China'...

  3. Projections of mid-century summer air-quality for North America: effects of changes in climate and precursor emissions

    Directory of Open Access Journals (Sweden)

    J. Kelly

    2012-06-01

    Full Text Available Ten year simulations of North American current and future air-quality were carried out using a regional air-quality model driven by a regional climate model, in turn driven by a general circulation model. Three separate summer scenarios were performed: a scenario representing the years 1997 to 2006, and two SRES A2 climate scenarios for the years 2041 to 2050. The first future climate scenario makes use of 2002 anthropogenic precursor emissions, and the second applied emissions scaling factors derived from the IPCC Representative Concentration Pathway 6 (RCP 6 scenario to estimate emissions for 2050 from existing 2020 projections. Ten-year averages of ozone and PM2.5 at North American monitoring network stations were used to evaluate the model's current chemical climatology. The model was found to have a similar performance for ozone as when driven by an operational weather forecast model. The PM2.5 predictions had larger negative biases, likely resulting from the absence of rainwater evaporation, and from sub-regional negative biases in the surface temperature fields, in the version of the climate model used here.

    The differences between the two future climate simulations and the current climate simulation were used to predict the changes to air-quality that might be expected in a future warmer climate, if anthropogenic precursor emissions remain constant at their current levels, versus if the RCP 6 emissions controls were adopted. Metrics of concentration, human health, and ecosystem damage were compared for the simulations. The scenario with future climate and current anthropogenic emissions resulted in worse air-quality than for current conditions – that is, the effect of climate-change alone, all other factors being similar, would be a worsening of air-quality. These effects are spatially inhomogeneous, with the magnitude and sign of the changes varying with region. The scenario with future climate and RCP 6

  4. Projections of mid-century summer air-quality for North America: effects of changes in climate and precursor emissions

    Directory of Open Access Journals (Sweden)

    J. Kelly

    2012-02-01

    Full Text Available Ten year simulations of North American current and future air-quality were carried out using a regional air-quality model driven by a regional climate model, in turn driven by a general circulation model. Three separate summer scenarios were performed: a scenario representing the years 1997 to 2006, and two SRES A2 climate scenarios for the years 2041 to 2050. The first future climate scenario makes use of 2002 anthropogenic precursor emissions, and the second applied emissions scaling factors derived from the IPCC Representative Concentration Pathway 6 (RCP 6 scenario to estimate emissions for 2050 from existing 2020 projections. Ten-year averages of ozone and PM2.5 at North American monitoring network stations were used to evaluate the model's current chemical climatology. The model was found to have a similar performance for ozone as when driven by an operational weather forecast model. The PM2.5 predictions had larger negative biases, likely resulting from the absence of rainwater evaporation, and from sub-regional negative biases in the surface temperature fields, in the version of the climate model used here.

    The differences between the two future climate simulations and the current climate simulation were used to predict the changes to air-quality that might be expected in a future warmer climate, if anthropogenic precursor emissions remain constant at their current levels, versus if the RCP 6 emissions controls were adopted. Metrics of concentration, human health, and ecosystem damage were compared for the simulations. The scenario with future climate and current anthropogenic emissions resulted in worse air-quality than for current conditions – that is, the effect of climate-change alone, all other factors being similar, would be a worsening of air-quality. These effects are spatially inhomogeneous, with the magnitude and sign of the changes varying with region. The scenario with future climate and RCP 6

  5. Degassing Processes at Persistently Active Explosive Volcanoes

    Science.gov (United States)

    Smekens, Jean-Francois

    Among volcanic gases, sulfur dioxide (SO2) is by far the most commonly measured. More than a monitoring proxy for volcanic degassing, SO 2 has the potential to alter climate patterns. Persistently active explosive volcanoes are characterized by short explosive bursts, which often occur at periodic intervals numerous times per day, spanning years to decades. SO 2 emissions at those volcanoes are poorly constrained, in large part because the current satellite monitoring techniques are unable to detect or quantify plumes of low concentration in the troposphere. Eruption plumes also often show high concentrations of ash and/or aerosols, which further inhibit the detection methods. In this work I focus on quantifying volcanic gas emissions at persistently active explosive volcanoes and their variations over short timescales (minutes to hours), in order to document their contribution to natural SO2 flux as well as investigate the physical processes that control their behavior. In order to make these measurements, I first develop and assemble a UV ground-based instrument, and validate it against an independently measured source of SO2 at a coal-burning power plant in Arizona. I establish a measurement protocol and demonstrate that the instrument measures SO 2 fluxes with explosions with periods of minutes to hours for the past several decades. Semeru produces an average of 21-71 tons of SO2 per day, amounting to a yearly output of 8-26 Mt. Using the Semeru data, along with a 1-D transient numerical model of magma ascent, I test the validity of a model in which a viscous plug at the top of the conduit produces cycles of eruption and gas release. I find that it can be a valid hypothesis to explain the observed patterns of degassing at Semeru. Periodic behavior in such a system occurs for a very narrow range of conditions, for which the mass balance between magma flux and open-system gas escape repeatedly generates a viscous plug, pressurizes the magma beneath the plug, and

  6. Remote Sensing of Active Volcanoes

    Science.gov (United States)

    Francis, Peter; Rothery, David

    The synoptic coverage offered by satellites provides unparalleled opportunities for monitoring active volcanoes, and opens new avenues of scientific inquiry. Thermal infrared radiation can be used to monitor levels of activity, which is useful for automated eruption detection and for studying the emplacement of lava flows. Satellite radars can observe volcanoes through clouds or at night, and provide high-resolution topographic data. In favorable conditions, radar inteferometery can be used to measure ground deformation associated with eruptive activity on a centimetric scale. Clouds from explosive eruptions present a pressing hazard to aviation; therefore, techniques are being developed to assess eruption cloud height and to discriminate between ash and meterological clouds. The multitude of sensors to be launched on future generations of space platforms promises to greatly enhance volcanological studies, but a satellite dedicated to volcanology is needed to meet requirements of aviation safety and volcano monitoring.

  7. Mount Rainier: A decade volcano

    Science.gov (United States)

    Swanson, Donald A.; Malone, Stephen D.; Samora, Barbara A.

    Mount Rainier, the highest (4392 m) volcano in the Cascade Range, towers over a population of more than 2.5 million in the Seattle-Tacoma metropolitan area, and its drainage system via the Columbia River potentially affects another 500,000 residents of southwestern Washington and northwestern Oregon (Figure 1). Mount Rainier is the most hazardous volcano in the Cascades in terms of its potential for magma-water interaction and sector collapse. Major eruptions, or debris flows even without eruption, pose significant dangers and economic threats to the region. Despite such hazard and risk, Mount Rainier has received little study; such important topics as its petrologic and geochemical character, its proximal eruptive history, its susceptibility to major edifice failure, and its development over time have been barely investigated. This situation may soon change because of Mount Rainier's recent designation as a “Decade Volcano.”

  8. Systematic radon survey over active volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, J.L.; Monnin, M.; Garcia Vindas, J.R. [Centre National de la Recherche Cientifique, Montpellier (France). Lab. GBE; Ricard, L.P.; Staudacher, T. [Observatoire Volcanologique Du Pitou de la Fournaise, La Plaine des Cafres (France)

    1999-08-01

    Data obtained since 1993 on Costa Rica volcanos are presented and radon anomalies recorded before the eruption of the Irazu volcano (December 8, 1994) are discussed. The Piton de la Fournaise volcano is inactive since mid 1992. The influence of the external parameters on the radon behaviour is studied and the type of perturbations induced on short-term measurements are individuate.

  9. Alaska volcanoes guidebook for teachers

    Science.gov (United States)

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at

  10. WOVOdat Progress 2012: Installable DB template for Volcano Monitoring Database

    Science.gov (United States)

    Ratdomopurbo, A.; Widiwijayanti, C.; Win, N.-T.-Z.; Chen, L.-D.; Newhall, C.

    2012-04-01

    WOVOdat is the World Organization of Volcano Observatories' (WOVO) Database of Volcanic Unrest. Volcanoes are frequently restless but only a fraction of unrest leads to eruptions. We aim to compile and make the data of historical volcanic unrest available as a reference tool during volcanic crises, for observatory or other user to compare or look for systematic in many unrest episodes, and also provide educational tools for teachers and students on understanding volcanic processes. Furthermore, we promote the use of relational databases for countries that are still planning to develop their own monitoring database. We are now in the process of populating WOVOdat in collaboration with volcano observatories worldwide. Proprietary data remains at the observatories where the data originally from. Therefore, users who wish to use the data for publication or to obtain detail information about the data should directly contact the observatories. To encourage the use of relational database system in volcano observatories with no monitoring database, WOVOdat project is preparing an installable standalone package. This package is freely downloadable through our website (www.wovodat.org), ready to install and serve as database system in the local domain to host various types of volcano monitoring data. The WOVOdat project is now hosted at Earth Observatory of Singapore (Nanyang Technological University). In the current stage of data population, our website supports interaction between WOVOdat developers, observatories, and other partners in building the database, e.g. accessing schematic design, information and documentation, and also data submission. As anticipation of various data formats coming from different observatories, we provide an interactive tools for user to convert their data into standard WOVOdat format file before then able to upload and store in the database system. We are also developing various visualization tools that will be integrated in the system to ease

  11. Preliminary volcano-hazard assessment for Augustine Volcano, Alaska

    Science.gov (United States)

    Waythomas, Christopher F.; Waitt, Richard B.

    1998-01-01

    Augustine Volcano is a 1250-meter high stratovolcano in southwestern Cook Inlet about 280 kilometers southwest of Anchorage and within about 300 kilometers of more than half of the population of Alaska. Explosive eruptions have occurred six times since the early 1800s (1812, 1883, 1935, 1964-65, 1976, and 1986). The 1976 and 1986 eruptions began with an initial series of vent-clearing explosions and high vertical plumes of volcanic ash followed by pyroclastic flows, surges, and lahars on the volcano flanks. Unlike some prehistoric eruptions, a summit edifice collapse and debris avalanche did not occur in 1812, 1935, 1964-65, 1976, or 1986. However, early in the 1883 eruption, a portion of the volcano summit broke loose forming a debris avalanche that flowed to the sea. The avalanche initiated a small tsunami reported on the Kenai Peninsula at English Bay, 90 kilometers east of the volcano. Plumes of volcanic ash are a major hazard to jet aircraft using Anchorage International and other local airports. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Eruptions similar to the historical and prehistoric eruptions are likely in Augustine's future.

  12. Black carbon and fine particle emissions in Finnish residential wood combustion: Emission projections, reduction measures and the impact of combustion practices

    Science.gov (United States)

    Savolahti, Mikko; Karvosenoja, Niko; Tissari, Jarkko; Kupiainen, Kaarle; Sippula, Olli; Jokiniemi, Jorma

    2016-09-01

    Residential wood combustion (RWC) is a major source of black carbon (BC) and PM2.5 emissions in Finland. Making a robust assessment of emissions on a national level is a challenge due to the varying heater technologies and the effect of users' combustion practices. In this paper we present an update of the emission calculation scheme for Finnish RWC, including technology-specific emission factors based on national measurements. Furthermore, we introduce a transparent method to assess the impact of poor combustion practices on emissions. Using a Finnish emission model, we assessed the emissions in 2000, 2010 and 2030, as well as the cost-efficiency of potential emission reduction measures. The results show that RWC is the biggest source of both PM2.5 and BC emissions in Finland, accounting for 37% and 55% of the total respective emissions. It will also remain the biggest source in the future, and it's role may become even more pronounced if wood consumption continues to increase. Sauna stoves cause the most emissions and also show the biggest potential for emission reductions. Informational campaigns targeted to improve heater users' combustion practices appear as a highly cost-efficient measure, although their impact on country-level emissions was estimated to be relatively limited.

  13. Terrestrial Real-Time Volcano Monitoring

    Science.gov (United States)

    Franke, M.

    2013-12-01

    As volcano monitoring involves more and different sensors from seismic to GPS receivers, from video and thermal cameras to multi-parameter probes measuring temperature, ph values and humidity in the ground and the air, it becomes important to design real-time networks that integrate and leverage the multitude of available parameters. In order to do so some simple principles need to be observed: a) a common time base for all measurements, b) a packetized general data communication protocol for acquisition and distribution, c) an open and well documented interface to the data permitting standard and emerging innovative processing, and d) an intuitive visualization platform for scientists and civil defense personnel. Although mentioned as simple principles, the list above does not necessarily lead to obvious solutions or integrated systems, which is, however, required to take advantage of the available data. Only once the different data streams are put into context to each other in terms of time and location can a broader view be obtained and additional information extracted. The presentation is a summary of currently available technologies and how they can achieve the goal of an integrated real-time volcano monitoring system. A common time base are standard for seismic and GPS networks. In different projects we extended this to video feeds and time-lapse photography. Other probes have been integrated with vault interface enclosures (VIE) as used in the Transportable Array (TA) of the USArray. The VIE can accommodate the sensors employed in volcano monitoring. The TA has shown that Antelope is a versatile and robust middleware. It provides the required packetized general communication protocol that is independent from the actual physical communication link leaving the network design to adopt appropriate and possible hybrid solutions. This applies for the data acquisition and the data/information dissemination providing both a much needed collaboration platform, as

  14. Permanent Infrasound Monitoring of Active Volcanoes in Ecuador

    Science.gov (United States)

    Ruiz, M. C.; Yepes, H. A.; Steele, A.; Segovia, M.; Vaca, S.; Cordova, A.; Enriquez, W.; Vaca, M.; Ramos, C.; Arrais, S.; Tapa, I.; Mejia, F.; Macias, C.

    2013-12-01

    Since 2006, infrasound monitoring has become a permanent tool for observing, analyzing and understanding volcanic activity in Ecuador. Within the framework of a cooperative project between the Japanese International Cooperation Agency (JICA) and the Instituto Geofísico to enhance volcano monitoring capabilities within the country, 10 infrasound sensors were deployed in conjunction with broadband seismic stations at Cotopaxi and Tungurahua volcanoes. Each station comprises 1 ACO microphone (model 7144) and an amplifier with a flat response down to 0.1 Hz. At Tungurahua, between July 2006 and July 2013, the network recorded more than 5,500 explosion events with peak-to-peak pressure amplitudes larger than 45 Pa at station Mason (BMAS) which is located ~ 5.5 km from the active crater. This includes 3 explosions with pressure amplitudes larger than 1,000 Pa and which all have exhibited clear shock wave components. Two seismic and infrasound arrays were also installed in 2006 under the Acoustic Surveillance for Hazardous Eruptions (ASHE) project, used in volcano monitoring at Tungurahua, Sangay, and Reventador. This venture was led by the Geological Survey of Canada and the University of Hawaii. Through the SENESCYT-IGEPN project, the Instituto Geofísico is currently installing a regional network of MB2005 microbarometers with the aim to enhance monitoring of active and potentially active volcanoes that include Reventador, Guagua Pichincha, Chimborazo, Antisana, Sangay, and Volcán Chico in the Galapagos Islands. Through the infrasound monitoring station at Volcán Chico it is also possible to extend observations to any activity initiated from Sierra Negra, Fernandina, Cerro Azul, and Alcedo volcanoes. During the past decade, a series of temporary acoustic arrays have also been deployed around Ecuador's most active volcanoes, helping to aid in short term volcanic monitoring and/or used in a series of research projects aimed at better understanding volcanic systems

  15. Robust Clustering of Acoustic Emission Signals Using Neural Networks and Signal Subspace Projections

    Directory of Open Access Journals (Sweden)

    Shi Zhiqiang

    2003-01-01

    Full Text Available Acoustic emission-based techniques are being used for the nondestructive inspection of mechanical systems. For reliable automatic fault monitoring related to the generation and propagation of cracks, it is important to identify the transient crack-related signals in the presence of strong time-varying noise and other interference. A prominent difficulty is the inability to differentiate events due to crack growth from noise of various origins. This work presents a novel algorithm for automatic clustering and separation of acoustic emission (AE events based on multiple features extracted from the experimental data. The algorithm consists of two steps. In the first step, the noise is separated from the events of interest and subsequently removed using a combination of covariance analysis, principal component analysis (PCA, and differential time delay estimates. The second step processes the remaining data using a self-organizing map (SOM neural network, which outputs the noise and AE signals into separate neurons. To improve the efficiency of classification, the short-time Fourier transform (STFT is applied to retain the time-frequency features of the remaining events, reducing the dimension of the data. The algorithm is verified with two sets of data, and a correct classification ratio over 95% is achieved.

  16. The Lick AGN Monitoring Project 2011: Spectroscopic Campaign and Emission-Line Light Curves

    CERN Document Server

    Barth, A J; Canalizo, G; Filippenko, A V; Gates, E L; Greene, J E; Li, W; Malkan, M A; Pancoast, A; Sand, D J; Stern, D; Treu, T; Woo, J -H; Assef, R J; Bae, H -J; Brewer, B J; Cenko, S B; Clubb, K I; Cooper, M C; Diamond-Stanic, A M; Hiner, K D; Hoenig, S F; Hsiao, E; Kandrashoff, M T; Lazarova, M S; Nierenberg, A M; Rex, J; Silverman, J M; Tollerud, E J; Walsh, J L

    2015-01-01

    In the Spring of 2011 we carried out a 2.5 month reverberation mapping campaign using the 3 m Shane telescope at Lick Observatory, monitoring 15 low-redshift Seyfert 1 galaxies. This paper describes the observations, reductions and measurements, and data products from the spectroscopic campaign. The reduced spectra were fitted with a multicomponent model in order to isolate the contributions of various continuum and emission-line components. We present light curves of broad emission lines and the AGN continuum, and measurements of the broad H-beta line widths in mean and root-mean square (rms) spectra. For the most highly variable AGNs we also measured broad H-beta line widths and velocity centroids from the nightly spectra. In four AGNs exhibiting the highest variability amplitudes, we detect anticorrelations between broad H-beta width and luminosity, demonstrating that the broad-line region "breathes" on short timescales of days to weeks in response to continuum variations. We also find that broad H-beta ve...

  17. EU-project AEROJET. Non-intrusive measurements of aircraft engine exhaust emissions

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, K.; Heland, J. [Fraunhofer-Inst. fuer Atmosphaerische Umweltforschung (IFU), Garmisch-Partenkirchen (Germany); Burrows, R. [Rolls-Royce Ltd. (United Kingdom). Engine Support Lab.; Bernard, M. [AUXITROL, S.A. (France). Aerospace Equipment Div.; Bishop, G. [British Aerospace (United Kingdom). Sowerby Research Centre; Lindermeir, E. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e. V. (DLR), Bonn (Germany). Inst. fuer Optoelektronik; Lister, D.H. [Defence and Research Agency, Hants (United Kingdom). Propulsion and Development Dept.; Wiesen, P. [Bergische Univ. Wuppertal (Gesamthochshule) (Germany); Hilton, M. [University of Reading (United Kingdom). Dept. of Physics

    1997-12-31

    The main goal of the AEROJET programme is to demonstrate the equivalence of remote measurement techniques to conventional extractive methods for both gaseous and particulate measurements. The different remote measurement techniques are compared and calibrated. A demonstrator measurement system for exhaust gases, temperature and particulates including data-analysis software is regarded as result of this project. Non-intrusive measurements are the method of choice within the AEROJET project promising to avoid the disadvantages of the gas sampling techniques which are currently used. Different ground based non-intrusive measurement methods are demonstrated during a final evaluation phase. Several non-intrusive techniques are compared with conventional gas sampling and analysis techniques. (R.P.) 3 refs.

  18. Final Summary Report on Project 3310 Marine Diesel Exhaust Emissions (Alternative Fuels)

    Science.gov (United States)

    1997-09-01

    soluble acid anhydrides . This was important to know since the concern of this project was under the Clean Air Act Amendments of 1990 (See Section 1.2... anhydrides (nitrogen and sulfur oxides) would end up more in the water column, rather than the air. Saturated concentrations of nitric oxide in the water...with the results of the analysis discussed in sections that follow. The procedures and nomenclature in ISO standard DP 8178-1, RIC Engines - Exhaust

  19. Reduced dust emission industrial vacuum system. Final report/project accomplishments summary, CRADA Number KCP941001

    Energy Technology Data Exchange (ETDEWEB)

    Yerganian, S. [Allied-Signal Aerospace Co., Kansas City, MO (United States). Kansas City Div.; Wilson, S. [Billy Goat Industries, Lee`s Summit, MO (United States)

    1997-02-01

    The purpose of this project was to modify the design of a Billy Goat Industries VQ series industrial litter vacuum cleaner currently in production to allow it to be effective in a dusty environment. Other desired results were that the new design be easily and economically manufacturable, safe and easy for the operator to use and maintain, and easily adaptable to the rest of the Billy Goat Industries product line. To meet these objectives, the project plan was divided into four main phases. The first phase consisted of design overview and concept development. The second phase consisted of developing a detailed design based on the lessons learned from the prototype built in the first phase. The third phase consisted of refinement of the detailed design based on testing and marketing review. The fourth phase consisted of final reporting on the activities of the CRADA. The project has been terminated due to technical difficulties and a lack of confidence that practical, marketable solutions to these problems could be found.

  20. Monitoring quiescent volcanoes by diffuse He degassing: case study Teide volcano

    Science.gov (United States)

    Pérez, Nemesio M.; Melián, Gladys; Asensio-Ramos, María; Padrón, Eleazar; Hernández, Pedro A.; Barrancos, José; Padilla, Germán; Rodríguez, Fátima; Calvo, David; Alonso, Mar

    2016-04-01

    Tenerife (2,034 km2), the largest of the Canary Islands, is the only island that has developed a central volcanic complex (Teide-Pico Viejo stratovolcanoes), characterized by the eruption of differentiated magmas. This central volcanic complex has been built in the intersection of the three major volcanic rift-zones of Tenerife, where most of the historical volcanic activity has taken place. The existence of a volcanic-hydrothermal system beneath Teide volcano is suggested by the occurrence of a weak fumarolic system, steamy ground and high rates of diffuse CO2 degassing all around the summit cone of Teide (Pérez et al., 2013). Diffuse emission studies of non-reactive and/or highly mobile gases such as helium have recently provided promising results to detect changes in the magmatic gas component at surface related to volcanic unrest episodes (Padrón et al., 2013). The geochemical properties of He minimize the interaction of this noble gas on its movement toward the earth's surface, and its isotopic composition is not affected by subsequent chemical reactions. It is highly mobile, chemically inert, physically stable, non-biogenic, sparingly soluble in water under ambient conditions, almost non-adsorbable, and highly diffusive with a diffusion coefficient ˜10 times that of CO2. As part of the geochemical monitoring program for the volcanic surveillance of Teide volcano, yearly surveys of diffuse He emission through the surface of the summit cone of Teide volcano have been performed since 2006. Soil He emission rate was measured yearly at ˜130 sampling sites selected in the surface environment of the summit cone of Teide volcano (Tenerife, Canary Islands), covering an area of ˜0.5 km2, assuming that He emission is governed by convection and diffusion. The distribution of the sampling sites was carefully chosen to homogeneously cover the target area, allowing the computation of the total He emission by sequential Gaussian simulation (sGs). Nine surveys have been

  1. Status of the first NASA EV-I Project, Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    Science.gov (United States)

    Chance, K.; Liu, X.; Suleiman, R. M.; Flittner, D. E.; Al-Saadi, J. A.; Janz, S. J.

    2013-12-01

    TEMPO is the first NASA Earth Venture Instrument. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO measures from Mexico City to the Canadian tar sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (2 km N/S × 4.5 km E/W at the center of its field of regard). The status of TEMPO including progress in instrument definition and implementation of the ground system will be presented. TEMPO provides a minimally-redundant measurement suite that includes all key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO will be delivered in 2017 for integration onto a NASA-selected GEO host spacecraft for launch as early as 2018. It will provide the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available. Additional gases not central to air quality, including BrO, OClO, and IO will also be measured. TEMPO and its Asian (GEMS) and European (Sentinel-4) constellation partners make the first tropospheric trace gas measurements from GEO, building on the heritage of six spectrometers flown in low-earth-orbit (LEO). These LEO instruments measure the needed

  2. Strategies for the implementation of a European Volcano Observations Research Infrastructure

    Science.gov (United States)

    Puglisi, Giuseppe

    2015-04-01

    and observations on active volcanoes. The issue to facilitate the access to this valued source of information is to reshape this fragmented community into a unique infrastructure concerning common technical solutions and data policies. Some of the key actions include the implementation of virtual accesses to geophysical, geochemical, volcanological and environmental raw data and metadata, multidisciplinary volcanic and hazard products, tools for modelling volcanic processes, and transnational access to facilities of volcano observatories. Indeed this implementation will start from the outcomes of the two EC-FP7 projects, Futurevolc and MED-SUV, relevant to three out of four global volcanic Supersites, which are located in Europe and managed by European institutions. This approach will ease the exchange and collaboration among the European volcano community, thus allowing better understanding of the volcanic processes occurring at European volcanoes considered worldwide as natural laboratories.

  3. The Lick AGN Monitoring Project 2011: Spectroscopic Campaign and Emission-line Light Curves

    Science.gov (United States)

    Barth, Aaron J.; Bennert, Vardha N.; Canalizo, Gabriela; Filippenko, Alexei V.; Gates, Elinor L.; Greene, Jenny E..; Li, Weidong; Malkan, Matthew A.; Pancoast, Anna; Sand, David J.; Stern, Daniel; Cenko, S. Bradley

    2016-01-01

    In the Spring of 2011 we carried out a 2.5 month reverberation mapping campaign using the 3 m Shane telescope at Lick Observatory, monitoring 15 low-redshift Seyfert 1 galaxies. This paper describes the observations, reductions and measurements, and data products from the spectroscopic campaign. The reduced spectra were fitted with a multicomponent model in order to isolate the contributions of various continuum and emission-line components. We present light curves of broad emission lines and the active galactic nucleus (AGN) continuum, and measurements of the broad Hß line widths in mean and rms spectra. For the most highly variable AGNs we also measured broad H beta line widths and velocity centroids from the nightly spectra. In four AGNs exhibiting the highest variability amplitudes, we detect anticorrelations between broad H beta width and luminosity, demonstrating that the broad-line region "breathes" on short timescales of days to weeks in response to continuum variations. We also find that broad H beta velocity centroids can undergo substantial changes in response to continuum variations; in NGC 4593, the broad H beta velocity shifted by approximately 250 km s(exp -1) over a 1 month period. This reverberation-induced velocity shift effect is likely to contribute a significant source of confusion noise to binary black hole searches that use multi-epoch quasar spectroscopy to detect binary orbital motion. We also present results from simulations that examine biases that can occur in measurement of broad-line widths from rms spectra due to the contributions of continuum variations and photon-counting noise.

  4. THE LICK AGN MONITORING PROJECT 2011: SPECTROSCOPIC CAMPAIGN AND EMISSION-LINE LIGHT CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Aaron J. [Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA, 92697-4575 (United States); Bennert, Vardha N. [Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 (United States); Canalizo, Gabriela [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Filippenko, Alexei V.; Li, Weidong [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Gates, Elinor L. [Lick Observatory, P.O. Box 85, Mount Hamilton, CA 95140 (United States); Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Malkan, Matthew A.; Treu, Tommaso [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Pancoast, Anna [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Sand, David J. [Texas Tech University, Physics Department, Box 41051, Lubbock, TX 79409-1051 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Boulevard, Pasadena, CA 91109 (United States); Woo, Jong-Hak [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Assef, Roberto J. [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Bae, Hyun-Jin [Department of Astronomy and Center for Galaxy Evolution Research, Yonsei University, Seoul 120-749 (Korea, Republic of); Brewer, Brendon J. [Department of Statistics, The University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, MC 661, Greenbelt, MD 20771 (United States); and others

    2015-04-15

    In the Spring of 2011 we carried out a 2.5 month reverberation mapping campaign using the 3 m Shane telescope at Lick Observatory, monitoring 15 low-redshift Seyfert 1 galaxies. This paper describes the observations, reductions and measurements, and data products from the spectroscopic campaign. The reduced spectra were fitted with a multicomponent model in order to isolate the contributions of various continuum and emission-line components. We present light curves of broad emission lines and the active galactic nucleus (AGN) continuum, and measurements of the broad Hβ line widths in mean and rms spectra. For the most highly variable AGNs we also measured broad Hβ line widths and velocity centroids from the nightly spectra. In four AGNs exhibiting the highest variability amplitudes, we detect anticorrelations between broad Hβ width and luminosity, demonstrating that the broad-line region “breathes” on short timescales of days to weeks in response to continuum variations. We also find that broad Hβ velocity centroids can undergo substantial changes in response to continuum variations; in NGC 4593, the broad Hβ velocity shifted by ∼250 km s{sup −1} over a 1 month period. This reverberation-induced velocity shift effect is likely to contribute a significant source of confusion noise to binary black hole searches that use multi-epoch quasar spectroscopy to detect binary orbital motion. We also present results from simulations that examine biases that can occur in measurement of broad-line widths from rms spectra due to the contributions of continuum variations and photon-counting noise.

  5. Volcanic tremor and plume height hysteresis from Pavlof Volcano, Alaska.

    Science.gov (United States)

    Fee, David; Haney, Matthew M; Matoza, Robin S; Eaton, Alexa R; Cervelli, Peter; Schneider, David J; Iezzi, Alexandra M

    2017-01-06

    The March 2016 eruption of Pavlof Volcano, Alaska, produced an ash plume that caused the cancellation of more than 100 flights in North America. The eruption generated strong tremor that was recorded by seismic and remote low-frequency acoustic (infrasound) stations, including the EarthScope Transportable Array. The relationship between the tremor amplitudes and plume height changes considerably between the waxing and waning portions of the eruption. Similar hysteresis has been observed between seismic river noise and discharge during storms, suggesting that flow and erosional processes in both rivers and volcanoes can produce irreversible structural changes that are detectable in geophysical data. We propose that the time-varying relationship at Pavlof arose from changes in the tremor source related to volcanic vent erosion. This relationship may improve estimates of volcanic emissions and characterization of eruption size and intensity.

  6. The Sloan Digital Sky Survey Reverberation Mapping Project: An Investigation of Biases in C iv Emission Line Properties

    Science.gov (United States)

    Denney, K. D.; Horne, Keith; Shen, Yue; Brandt, W. N.; Ho, Luis C.; Peterson, B. M.; Richards, Gordon T.; Trump, J. R.; Ge, J.

    2016-06-01

    We investigate the dependence on data quality of quasar properties measured from the C iv emission line region at high redshifts. Our measurements come from 32 epochs of Sloan Digital Sky Survey Reverberation Mapping Project spectroscopic observations of 482 z\\gt 1.46 quasars. We compare the differences between measurements made from the single-epoch (SE) and coadded spectra, focusing on the C iv λ1549 emission line because of its importance for studies of high-redshift quasar demographics and physical properties, including black hole masses. In addition to statistical errors increasing (by factors of ˜2-4), we find increasing systematic offsets with decreasing signal-to-noise ratio (S/N). The systematic difference (measurement uncertainty) in our lowest-S/N ( 10, although offsets in lower-S/N spectra exceed the statistical uncertainties by only a factor of ˜1.5 and may depend on the type of functional fit to the line. Characterizing the C iv line profile by the kurtosis is the least robust property investigated, as the median systematic coadded-SE measurement differences are larger than the statistical uncertainties for all S/N subsamples.

  7. The Sloan Digital Sky Survey Reverberation Mapping Project: An Investigation of Biases in CIV Emission-Line Properties

    CERN Document Server

    Denney, K D; Brandt, W N; Ho, Luis C; Peterson, B M; Richards, Gordon T; Shen, Yue; Trump, J R; Ge, J

    2016-01-01

    We investigate the dependence on data quality of quasar properties measured from the CIV emission line region at high redshifts. Our measurements come from 32 epochs of Sloan Digital Sky Survey (SDSS) Reverberation Mapping Project spectroscopic observations of 482 z>1.46 quasars. We compare the differences between measurements made from the single-epoch and coadded spectra, focusing on the CIV emission line because of its importance for studies of high-redshift quasar demographics and physical properties, including black hole masses. In addition to statistical errors increasing (by factors of ~2-4), we find increasing systematic offsets with decreasing S/N. The systematic difference (measurement uncertainty) in our lowest S/N (10, although offsets in lower S/N spectra exceed the statistical uncertainties by only a factor of ~1.5. Characterizing the CIV line profile by the kurtosis is the least robust property investigated, as the median systematic coadded--single-epoch measurement differences are larger than ...

  8. Sixteen years monitoring of Cumbre Vieja volcano (La Palma, Canary Islands) by means of diffuse CO2 degassing surveys

    Science.gov (United States)

    Cótchico, M. A.; Renee, L. K.; De Jongh, M. E.; Padron, E.; Hernandez Perez, P. A.; Perez, N. M.

    2016-12-01

    La Palma Island, the fifth longest (706 km2) and second highest (2,423 m asl) of the Canary Islands, is located at the northwestern end of the archipelago. Subaerial volcanic activity on La Palma started 2.0 My ago and has taken place exclusively at the southern part of the island during the last 123 ka, where Cumbre Vieja volcano, the most active basaltic volcano in the Canaries, has been constructed. Major volcano-structural and geomorphological features of Cumbre Vieja volcano are a north-south rift zone 20 km long, with vents located also at the northwest and northeast, and up to 1,950 m in elevation covering an área of 220 km2. Nowadays, there are no visible gas emissions from fumaroles or hot springs at Cumbre Vieja; therefore, diffuse CO2 degassing monitoring is important geochemical tool for its volcanic surveillance. Recent studies have shown that enhanced endogenous contributions of deep-seated CO2 might have been responsible for higher diffuse CO2 efflux values (Padrón et al., 2015). We report here the latest results of the diffuse CO2 emission survey at Cumbre Vieja volcano. The surface CO2 efflux measurements were taken using the accumulation chamber method in the period 1997- 2016 to evaluate their spatial distribution on this 220 km2 volcano and the diffuse CO2 emission rate from Cumbre Vieja volcano. Surface CO2 efflux values ranged from non-detectable up to 94 g m-2 d-1 in the last survey. Spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. The spatial distribution of diffuse CO2 emission values did not seem to be controlled by the main structural features of the volcano since the highest values were measured in the southern part. The diffuse CO2 emission for the 2016 survey has been estimated about 739 ± 30 t d-1. The 2016 emission rate is slightly higher than the estimated average for Cumbre Vieja volcano (493 t d-1), but within the observed background range for this volcanic system over the

  9. Utilizing NASA Earth Observations to Model Volcanic Hazard Risk Levels in Areas Surrounding the Copahue Volcano in the Andes Mountains

    Science.gov (United States)

    Keith, A. M.; Weigel, A. M.; Rivas, J.

    2014-12-01

    Copahue is a stratovolcano located along the rim of the Caviahue Caldera near the Chile-Argentina border in the Andes Mountain Range. There are several small towns located in proximity of the volcano with the two largest being Banos Copahue and Caviahue. During its eruptive history, it has produced numerous lava flows, pyroclastic flows, ash deposits, and lahars. This isolated region has steep topography and little vegetation, rendering it poorly monitored. The need to model volcanic hazard risk has been reinforced by recent volcanic activity that intermittently released several ash plumes from December 2012 through May 2013. Exposure to volcanic ash is currently the main threat for the surrounding populations as the volcano becomes more active. The goal of this project was to study Copahue and determine areas that have the highest potential of being affected in the event of an eruption. Remote sensing techniques were used to examine and identify volcanic activity and areas vulnerable to experiencing volcanic hazards including volcanic ash, SO2 gas, lava flow, pyroclastic density currents and lahars. Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Landsat 8 Operational Land Imager (OLI), EO-1 Advanced Land Imager (ALI), Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Shuttle Radar Topography Mission (SRTM), ISS ISERV Pathfinder, and Aura Ozone Monitoring Instrument (OMI) products were used to analyze volcanic hazards. These datasets were used to create a historic lava flow map of the Copahue volcano by identifying historic lava flows, tephra, and lahars both visually and spectrally. Additionally, a volcanic risk and hazard map for the surrounding area was created by modeling the possible extent of ash fallout, lahars, lava flow, and pyroclastic density currents (PDC) for future eruptions. These model results were then used to identify areas that should be prioritized for disaster relief and evacuation orders.

  10. Airborne Gas Surveillance of Volcanoes in Western USA and Alaska

    Science.gov (United States)

    Gerlach, T. M.; McGee, K. A.; Doukas, M. P.

    2002-05-01

    Volcanoes of the western USA and Alaska pose challenges to gas surveillance of volcano unrest. Locations are remote, and ground access is generally difficult. Wet climates and melt from glaciers and thick winter snowpack foster hydrothermal and ground waters that can scrub acid gases (SO2, HCl, HF) before they reach the surface, thereby masking their degassing from shallow vapor-saturated subvolcanic magma. These gases may not exhibit significant increases in emission rates until dry pathways or magma itself reaches the surface. Background or low emissions of the acid gases may thus give a false sense of security. CO2 is more likely to give early indication of subvolcanic magma degassing. It is the second most abundant magmatic volatile; it is among the least soluble magmatic volatiles; and it is far less susceptible to scrubbing than SO2, HCl, or HF. Rising H2S emissions are also a plausible early warning, since unlike SO2, HCl and HF, H2S is strongly volatilized from boiling water. Unfortunately, remote sensing of early increases in volcanic CO2 and H2S emissions is usually problematic, owing to high atmospheric CO2 levels, water vapor interference, and poor H2S infrared absorbance. We have therefore developed an aircraft-mounted system that directly measures these gases by extraction sampling of plumes. The system includes an infrared spectrometer for CO2 and an electrochemical sensor for H2S, in addition to a COSPEC and high-precision barometer, temperature probe, and GPS receiver. Measurements are made at different elevations along traverses orthogonal to plume direction or along orbits around a volcano if plume is not visible. Data for all gases are recorded in a data logger at 1-s intervals and tagged with clock time, latitude, longitude, altitude, temperature, and pressure. In-flight wind data are also acquired. Plume cross-sections are constructed with mapping software and used to calculate emission rates. Several campaigns to date show that emission rates

  11. msVolcano: A flexible web application for visualizing quantitative proteomics data.

    Science.gov (United States)

    Singh, Sukhdeep; Hein, Marco Y; Stewart, A Francis

    2016-09-01

    We introduce msVolcano, a web application for the visualization of label-free mass spectrometric data. It is optimized for the output of the MaxQuant data analysis pipeline of interactomics experiments and generates volcano plots with lists of interacting proteins. The user can optimize the cutoff values to find meaningful significant interactors for the tagged protein of interest. Optionally, stoichiometries of interacting proteins can be calculated. Several customization options are provided to the user for flexibility, and publication-quality outputs can also be downloaded (tabular and graphical). msVolcano is implemented in R Statistical language using Shiny. It can be accessed freely at http://projects.biotec.tu-dresden.de/msVolcano/. © 2016 The Authors. Proteomics Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Future climate in world regions: an intercomparison of model-based projections for the new IPCC emissions scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Ruosteenoja, K.; Carter, T.R.; Jylhae, K.; Tuomenvirta, H.

    2003-07-01

    Projections of changes in seasonal surface air temperature and precipitation for three 30-year periods during the 21st century in 32 sub-continental scale regions are presented. This information may offer useful guidance on the selection of climate scenarios for regional impact studies. The climate changes have been simulated by seven coupled atmosphere-ocean general circulation models (AOGCMs), the greenhouse gas and aerosol forcing being inferred from the SRES emission scenarios A1F1, A2, B1 and B2. For a majority of the AOGCMs, simulations have only been conducted for scenarios A2 and B2. Projections for other scenarios were then extrapolated from the available runs applying a pattern-scaling technique. In tests, this method proved to be fairly accurate, the correlation between the AOGCM-simulated and the corresponding pattern-scaled response to the A2 scenario for the end of the 21st century being generally {approx} 0.97 - 0.99 for temperature and {approx} 0.9 or higher for precipitation. Projected changes of temperature and precipitation are presented in the form of 384 scatter diagrams. The model-simulated temperature changes were almost invariably statistically significant, i.e., they fell clearly outside the natural multi-decadal variability derived from 1000-year unforced coupled AOGCM simulations. For precipitation, fewer modelled changes were statistically significant, especially in the earliest projection period 2010-2039. Differences in the projections given by various models were substantial, of the same order of magnitude by the end of the century as differences among the responses to separate forcing scenarios. Nevertheless, the surface air temperature increased in all regions and seasons. For precipitation, changes with both sign occurred, but an increase of regional precipitation was more common than a decrease. All models simulate higher precipitation at high latitudes and enhanced summer monsoon precipitation for Southern and Eastern Asia. There

  13. Deep Stimulation at Newberry Volcano EGS Demonstration

    Science.gov (United States)

    Grasso, K.; Cladouhos, T. T.; Petty, S.; Garrison, G. H.; Nordin, Y.; Uddenberg, M.; Swyer, M.

    2014-12-01

    The Newberry Volcano EGS Demonstration is a 5 year field project designed to demonstrate recent technological advances for engineered geothermal systems (EGS) development. Advances in reservoir stimulation, diverter, and monitoring are being tested in a hot (>300 C), dry well (NWG 55-29) drilled in 2008. These technologies could reduce the cost of electrical power generation. The project began in 2010 with two years of permitting, technical planning, and development of a project-specific Induced Seismicity Mitigation Plan (ISMP), and is funded in part by the Department of Energy. In 2012, the well was hydraulically stimulated with water at pressures below the principle stress for 7 weeks, resulting in hydroshearing. The depth of stimulation was successfully shifted by injection of two pills of Thermally-degradable Zonal Isolation Materials (TZIMs). Injectivity changes, thermal profiles and seismicity indicate that fracture permeability in well NWG 55-29 was enhanced during stimulation. This work successfully demonstrated the viability of large-volume (40,000 m3), low-pressure stimulation coupled with non-mechanical diverter technology, and microseismic monitoring for reservoir mapping. Further analysis and field testing in 2013 indicates further stimulation will be required in order to develop an economically viable reservoir, and is scheduled in 2014. The 2014 stimulation will use improved stimulation and monitoring equipment, better knowledge based on 2012 outcomes, and create a deep EGS reservoir in the hottest part of the wellbore.

  14. 2006-2008 Eruptions and Volcano Hazards Of Soputan Volcano, North Sulawesi, Indonesia

    Science.gov (United States)

    Hendratno, K.; Pallister, J. S.; McCausland, W. A.; Kristianto, M.; Bina, F. R.; Carn, S. A.; Haerani, N.; Griswold, J.; Keeler, R.

    2010-12-01

    Soputan is a basalt volcano located in North Sulawesi near the southern margin of the Quaternary Tondano Caldera. Unusual for a basalt volcano, Soputan produces summit lava domes and explosive eruptions, as well as voluminous basaltic tephra deposits and lava flows. Soputan erupted five times during 2006-2008: on 14 December, 2006, 12-15 August, 2007, 25-26 October, 2007, 5-6 June, 2008, and 5-6 October, 2008. The 2006-2007 eruptions destroyed a lava dome at the volcano’s summit and exposed the conduit, resulting in Vulcanian eruptions and St. Vincent type pyroclastic flows from an open vent structure. We used high-resolution satellite images and digital elevation models to make photo-geologic maps of the deposits from the 2006, 2007 and 2008 eruptions, to estimate volumes of deposits using GIS and to model potential flow hazards. In March, 2008 and in March 2009 we conducted reconnaissance geologic field investigations at Soputan. This work was done to field-check our photo-geologic mapping, to reconstruct the sequence of eruptive events in 2006-2008 and to collect samples for geochemical and petrographic analysis. We also analyzed seismic records and SO2 emission data from the eruptions and we interpreted these data in the context of our geologic and geochemical data to provide insights into the ascent and degassing of magmas. On the basis of the eruptive history and modeling of potential lahar inundation areas we present an updated assessment of volcano hazards and a forecast for future eruptions at Soputan. Our analysis of field and petrologic data indicates that Soputan is an open-system volcano, which taps basalt magma from great depth, apparently with little shallow storage of this magma. Degassing of the magma as it rises within the conduit results in growth of micro-phenocrysts, evolution of the matrix melt and a commensurate increase in the viscosity of the magma. This, in turn, results in growth of lava domes and more explosive eruptions than are

  15. Infrasonic Influence of Volcanos

    Science.gov (United States)

    Hosman, Ashley

    2014-03-01

    My presentation will consist of a poster on the use of ring laser interferometers to detect infrasound. The research was performed during the summer of 2013 and it focused on the finding infrasound emissions created by volcanic activity. I will explain how a ring laser works and discuss how I analyze the collected data using Fast Fourier Transforms. Due to the extreme distances over which infrasound can travel, I will also stress the need to compare the detected responses to specific volcanic eruptions. Finally, I will purpose practical applications of my research. One of the more promising applications is to use ring lasers to detect volcanic activity in remote areas such as parts of the Aleutian Islands. There is considerable air traffic over the Aleutian Islands. Volcanic plumes are a significant aviation hazard and can damage jet engines to the extent that they will no longer operate. Thank you to the NSF ans NASA foundations for providing funding for this reseach.

  16. Muon imaging of volcanoes with Cherenkov telescopes

    Science.gov (United States)

    Carbone, Daniele; Catalano, Osvaldo; Cusumano, Giancarlo; Del Santo, Melania; La Parola, Valentina; La Rosa, Giovanni; Maccarone, Maria Concetta; Mineo, Teresa; Pareschi, Giovanni; Sottile, Giuseppe; Zuccarello, Luciano

    2017-04-01

    La Nave (southern flank of Mt. Etna, Italy; 1740m a.s.l.), in the framework of ASTRI, a flagship project of the Italian Ministry of Education, University and Research, led by the Italian National Institute of Astrophysics (INAF). This offers the opportunity to test the use of a Cherenkov telescope for imaging volcanic structures. Starting from this know-how, we plan to develop a new prototype of Cherenkov detector with suitable characteristics for installation in the summit zone of Etna volcano (around 3000m a.s.l.).

  17. Aleutian Islands Coastal Resources Inventory and Environmental Sensitivity Maps: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains point locations of active volcanoes as compiled by Motyka et al., 1993. Eighty-nine volcanoes with eruptive phases in the Quaternary are...

  18. Long-term model-based projections of energy use and CO2emissions from the global steel and cement industries

    NARCIS (Netherlands)

    Van Ruijven, Bas J.; Van Vuuren, Detlef P.|info:eu-repo/dai/nl/11522016X; Boskaljon, Willem; Neelis, Maarten L.; Saygin, Deger|info:eu-repo/dai/nl/314118101; Patel, Martin K.

    2016-01-01

    This paper presents a global simulation-model for the steel and cement industries. The model covers the full modelling chain from economic activity, to materials consumption, trade, technology choice, production capacity, energy use and CO2emissions. Without climate policy, the future projections

  19. Long-term model-based projections of energy use and CO2emissions from the global steel and cement industries

    NARCIS (Netherlands)

    Van Ruijven, Bas J.; Van Vuuren, Detlef P.; Boskaljon, Willem; Neelis, Maarten L.; Saygin, Deger; Patel, Martin K.

    2016-01-01

    This paper presents a global simulation-model for the steel and cement industries. The model covers the full modelling chain from economic activity, to materials consumption, trade, technology choice, production capacity, energy use and CO2emissions. Without climate policy, the future projections ba

  20. Validation and Analysis of SRTM and VCL Data Over Tropical Volcanoes

    Science.gov (United States)

    Mouginis-Mark, Peter J.

    2004-01-01

    The focus of our investigation was on the application of digital topographic data in conducting first-order volcanological and structural studies of tropical volcanoes, focusing on the Java, the Philippines and the Galapagos Islands. Kilauea volcano, Hawaii, served as our test site for SRTM data validation. Volcanoes in humid tropical environments are frequently cloud covered, typically densely vegetated and erode rapidly, so that it was expected that new insights into the styles of eruption of these volcanoes could be obtained from analysis of topographic data. For instance, in certain parts of the world, such as Indonesia, even the regional structural context of volcanic centers is poorly known, and the distribution of volcanic products (e.g., lava flows, pyroclastic flows, and lahars) are not well mapped. SRTM and Vegetation Canopy Lidar (VCL) data were expected to provide new information on these volcanoes. Due to the cancellation of the VCL mission, we did not conduct any lidar studies during the duration of this project. Digital elevation models (DEMs) such as those collected by SRTM provide quantitative information about the time-integrated typical activity on a volcano and allow an assessment of the spatial and temporal contributions of various constructional and destructional processes to each volcano's present morphology. For basaltic volcanoes, P_c?w!m-d and Garbed (2000) have shown that gradual slopes (less than 5 deg.) occur where lava and tephra pond within calderas or in the saddles between adjacent volcanoes, as well as where lava deltas coalesce to form coastal plains. Vent concentration zones (axes of rift zones) have slopes ranging from 10 deg. to 12 deg. Differential vertical growth rates between vent concentration zones and adjacent mostly-lava flanks produce steep constructional slopes up to 40". The steepest slopes (locally approaching 90 deg.) are produced by fluvial erosion, caldera collapse, faulting, and catastrophic avalanches, all of

  1. Volcano Monitoring Using Google Earth

    Science.gov (United States)

    Bailey, J. E.; Dehn, J.; Webley, P.; Skoog, R.

    2006-12-01

    At the Alaska Volcano Observatory (AVO), Google Earth is being used as a visualization tool for operational satellite monitoring of the region's volcanoes. Through the abilities of the Keyhole Markup Language (KML) utilized by Google Earth, different datasets have been integrated into this virtual globe browser. Examples include the ability to browse thermal satellite image overlays with dynamic control, to look for signs of volcanic activity. Webcams can also be viewed interactively through the Google Earth interface to confirm current activity. Other applications include monitoring the location and status of instrumentation; near real-time plotting of earthquake hypocenters; mapping of new volcanic deposits; and animated models of ash plumes within Google Earth, created by a combination of ash dispersion modeling and 3D visualization packages. The globe also provides an ideal interface for displaying near real-time information on detected thermal anomalies or "hotspot"; pixels in satellite images with elevated brightness temperatures relative to the background temperature. The Geophysical Institute at the University of Alaska collects AVHRR (Advanced Very High Resolution Radiometer) and MODIS (Moderate Resolution Imaging Spectroradiometer) through its own receiving station. The automated processing that follows includes application of algorithms that search for hotspots close to volcano location, flagging those that meet certain criteria. Further automated routines generate folders of KML placemarkers, which are linked to Google Earth through the network link function. Downloadable KML files have been created to provide links to various data products for different volcanoes and past eruptions, and to demonstrate examples of the monitoring tools developed. These KML files will be made accessible through a new website that will become publicly available in December 2006.

  2. Modeling eruptions of Karymsky volcano

    OpenAIRE

    Ozerov, A.; Ispolatov, I.; Lees, J.

    2001-01-01

    A model is proposed to explain temporal patterns of activity in a class of periodically exploding Strombolian-type volcanos. These patterns include major events (explosions) which follow each other every 10-30 minutes and subsequent tremor with a typical period of 1 second. This two-periodic activity is thought to be caused by two distinct mechanisms of accumulation of the elastic energy in the moving magma column: compressibility of the magma in the lower conduit and viscoelastic response of...

  3. Antarctic volcanoes: A remote but significant hazard

    Science.gov (United States)

    Geyer, Adelina; Martí, Alex; Folch, Arnau; Giralt, Santiago

    2017-04-01

    Ash emitted during explosive volcanic eruptions can be dispersed over massive areas of the globe, posing a threat to both human health and infrastructures, such as the air traffic. Some of the last eruptions occurred during this decade (e.g. 14/04/2010 - Eyjafjallajökull, Iceland; 24/05/2011-Grímsvötn, Iceland; 05/06/2011-Puyehue-Cordón Caulle, Chile) have strongly affected the air traffic in different areas of the world, leading to economic losses of billions of euros. From the tens of volcanoes located in Antarctica, at least nine are known to be active and five of them have reported volcanic activity in historical times. However, until now, no attention has been paid to the possible social, economical and environmental consequences of an eruption that would occur on high southern latitudes, perhaps because it is considered that its impacts would be minor or local, and mainly restricted to the practically inhabited Antarctic continent. We show here, as a case study and using climate models, how volcanic ash emitted during a regular eruption of one of the most active volcanoes in Antarctica, Deception Island (South Shetland Islands), could reach the African continent as well as Australia and South America. The volcanic cloud could strongly affect the air traffic not only in the region and at high southern latitudes, but also the flights connecting Africa, South America and Oceania. Results obtained are crucial to understand the patterns of volcanic ash distribution at high southern latitudes with obvious implications for tephrostratigraphical and chronological studies that provide valuable isochrones with which to synchronize palaeoclimate records. This research was partially funded by the MINECO grants VOLCLIMA (CGL2015-72629-EXP)and POSVOLDEC(CTM2016-79617-P)(AEI/FEDER, UE), the Ramón y Cajal research program (RYC-2012-11024) and the NEMOH European project (REA grant 34 agreement n° 289976).

  4. Newberry Volcano EGS Demonstration - Phase I Results

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, William L. [AltaRock Energy, Inc., Seattle, WA (United States); Petty, Susan [AltaRock Energy, Inc., Seattle, WA (United States); Cladouhos, Trenton T. [AltaRock Energy, Inc., Seattle, WA (United States); Iovenitti, Joe [AltaRock Energy, Inc., Seattle, WA (United States); Nofziger, Laura [AltaRock Energy, Inc., Seattle, WA (United States); Callahan, Owen [AltaRock Energy, Inc., Seattle, WA (United States); Perry, Douglas S. [Davenport Newberry Holdings LLC, Stamford, CT (United States); Stern, Paul L. [PLS Environmental, LLC, Boulder, CO (United States)

    2011-10-23

    Phase I of the Newberry Volcano Enhanced Geothermal System (EGS) Demonstration included permitting, community outreach, seismic hazards analysis, initial microseismic array deployment and calibration, final MSA design, site characterization, and stimulation planning. The multi-disciplinary Phase I site characterization supports stimulation planning and regulatory permitting, as well as addressing public concerns including water usage and induced seismicity. A review of the project's water usage plan by an independent hydrology consultant found no expected impacts to local stakeholders, and recommended additional monitoring procedures. The IEA Protocol for Induced Seismicity Associated with Enhanced Geothermal Systems was applied to assess site conditions, properly inform stakeholders, and develop a comprehensive mitigation plan. Analysis of precision LiDAR elevation maps has concluded that there is no evidence of recent faulting near the target well. A borehole televiewer image log of the well bore revealed over three hundred fractures and predicted stress orientations. No natural, background seismicity has been identified in a review of historic data, or in more than seven months of seismic data recorded on an array of seven seismometers operating around the target well. A seismic hazards and induced seismicity risk assessment by an independent consultant concluded that the Demonstration would contribute no additional risk to residents of the nearest town of La Pine, Oregon. In Phase II of the demonstration, an existing deep hot well, NWG 55-29, will be stimulated using hydroshearing techniques to create an EGS reservoir. The Newberry Volcano EGS Demonstration is allowing geothermal industry and academic experts to develop, validate and enhance geoscience and engineering techniques, and other procedures essential to the expansion of EGS throughout the country. Successful development will demonstrate to the American public that EGS can play a significant role

  5. Limitations of microbial hydrocarbon degradation at the Amon mud volcano (Nile deep-sea fan)

    NARCIS (Netherlands)

    Felden, J.; Lichtschlag, A.; Wenzhöfer, F.; de Beer, D.; Feseker, T.; Pop Ristova, P.; de Lange, G.; Boetius, A.

    2013-01-01

    The Amon mud volcano (MV), located at 1250m water depth on the Nile deep-sea fan, is known for its active emission of methane and non-methane hydrocarbons into the hydrosphere. Previous investigations showed a low efficiency of hydrocarbon-degrading anaerobic microbial communities inhabiting the Amo

  6. Annex 1 to: Passive Degassing at Nyiragongo (D.R. Congo and Etna (Italy Volcanoes.

    Directory of Open Access Journals (Sweden)

    Sergio Calabrese

    2015-03-01

    Full Text Available Volcanic EmissionsThe technique for the assessment of the metal output from volcanoes was based on direct (in- plume collection of the plume on filter substrates. Gas and aerosols in the volcanic plume have been sampled from the rims of the active craters. [...

  7. The potential for synthesizing multi-sensor remote sensing data for global volcano monitoring

    Science.gov (United States)

    Furtney, M.; Pritchard, M. E.; Carn, S. A.; McCormick, B.; Ebmeier, S. K.; Jay, J.

    2015-12-01

    Volcanoes exhibit variable eruption frequencies and styles, from near-continuous eruptions of effusive lavas to more intermittent, explosive eruptions. The monitoring frequency necessary to capture precursory signals at any volcano remains uncertain, as some warnings allot hours for evacuation. Likewise, no precursory signal appears deterministic for each volcano. Volcanic activity manifests in a variety of ways (i.e. tremor, deformation), thus requiring multiple monitoring mechanisms (i.e. geodetic, geochemical, geothermal). We are developing databases to compare relationships among remotely sensed volcanic unrest signals and eruptions. Satellite remote sensing utilizes frequent temporal measurements (daily to bi-weekly), an essential component of worldwide volcano monitoring. Remote sensing methods are also capable of detecting diverse precursory signals such as ground deformation from satellite interferometric synthetic aperture radar—InSAR— (multiple space agencies), degassing from satellite spectroscopy (i.e. OMI SO2 from NASA), and hot spots from thermal infrared (i.e. MODIS from NASA). We present preliminary results from seven SAR satellites and two thermal infrared satellites for 24 volcanoes with prominent SO2 emissions. We find near-continuous emissions at Ibu (Indonesia) since 2008 corresponded with hotspots and 10 cm of subsidence, with degassing and comparable subsidence observed at Pagan (Marianas). A newcomer to volcano monitoring, remote sensing data are only beginning to be utilized on a global scale, let alone as a synthesized dataset for monitoring developing eruptions. We foresee a searchable tool for rapidly accessing basic volcanic unrest characteristics for different types of volcanoes and whether or not they resulted in eruption. By including data from multiple satellite sensors in our database we hope to develop quantitative assessments for calculating the likelihood of eruption from individual events.

  8. Application of the 'Climafor' Approach to Estimate Baseline Carbon Emissions of a Forest Conservation Project in the Selva Lacandona, Chiapas, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, B.H.J.; Hellier, A.; Castillo-Santiago, M.A.; Tipper, R. [C.P. 86100 Admin. de Correos 2, Col Atasta, Villahermosa, Tabasco (Mexico)

    2005-04-15

    We present a methodology for testing and applying a regional baseline for carbon (C) emissions from land-use change, using a spatial modelling approach (hereafter called the Climafor approach). The methodology is based on an analysis of causal factors of previous land-use change (Castillo et al. 2005). Carbon risk matrices constructed from the spatial correlation analysis between observed deforestation and driving factors (Castillo et al. 2005), are used to estimate future carbon emissions within acceptable limits for a forest conservation project. The performance of two risk matrices were tested by estimating carbon emissions between 1975 and 1996 from randomly selected sample plots of sizes varying from 1,600 to 10,000 ha and comparing the results of the observed emissions from these sample plots with the model estimations. Expected emissions from continued land-use change was estimated for the community applying the risk matrices to the current land cover. The methodology provides an objective means of constructing baseline scenarios including confidence intervals, using the sum of variances of the various data sources, such as measured carbon densities, classification errors, errors in the risk matrices, and differences between the model prediction and observed emissions of sample plots due to sample size. The procedures applied in this study also give an indication of the impact of the variance in the various data sources on the size of the confidence intervals, which allows project developers to decide what data sources are essential to improve his baseline. The modelling approach to estimate the deforestation pattern is based on readily available cartographic and census data, whereas data on carbon densities are required to assess the potential for forest conservation projects to offset carbon emissions.

  9. Future Projections of Aerosol Optical Depth, Radiative Forcing, and Climate Response Due to Declining Aerosol Emissions in the Representative Concentration Pathways

    Science.gov (United States)

    Westervelt, D. M.; Mauzerall, D. L.; Horowitz, L. W.; Naik, V.

    2014-12-01

    It is widely expected that global emissions of atmospheric aerosols and their precursors will decrease strongly throughout the remainder of the 21st century, due to emission reduction policies enacted based on human health concerns. However, the resulting decrease in atmospheric aerosol burden will have unintended climate consequences. Since aerosols generally exert a net cooling influence on the climate, their removal will lead to an unmasking of global warming as well as other changes to the climate system. Aerosol and precursor global emissions decrease by as much as 80% by the year 2100, according to projections in four Representative Concentration Pathway (RCP) scenarios. We use the Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3) to simulate future climate over the 21st century with and without aerosol emission changes projected by the RCPs in order to isolate the radiative forcing and climate response due to the aerosol reductions. We find that up to 1 W m-2 of radiative forcing may be unmasked globally by 2100 due to reductions in aerosol and precursor emissions, leading to average global temperature increases up to 1 K and global precipitation rate increases up to 0.09 mm d-1 (3%). Regionally and locally, climate impacts are much larger, as RCP8.5 projects a 2.1 K warming over China, Japan, and Korea due to reduced aerosol emissions. Our results highlight the importance of crafting emissions control policies with both climate and air pollution benefits in mind. The expected unmasking of additional global warming from aerosol reductions highlights the importance of robust greenhouse gas mitigation policies and may require more aggressive policies than anticipated.

  10. Active Deformation of Etna Volcano Combing IFSAR and GPS data

    Science.gov (United States)

    Lundgren, Paul

    1997-01-01

    The surface deformation of an active volcano is an important indicator of its eruptive state and its hazard potential. Mount Etna volcano in Sicily is a very active volcano with well documented eruption episodes.

  11. Economic and emission accounting for acid-gas injection projects : an example from KeySpan Brazeau River, Alberta, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, R. [KeySpan Energy Canada, Calgary, AB (Canada); Wong, S.; Gunter, W.D. [Alberta Research Council, Edmonton, AB (Canada); Wichert, E. [Sogapro Engineering, Calgary, AB (Canada); McCulloch, M. [Pembina Inst., Calgary, AB (Canada)

    2005-07-01

    The Claus process has been used to treat the sour gas at the Brazeau River gas plant located 250 km southwest of Edmonton, Alberta since 1969, with a minimum sulphur requirement of 92.1 per cent. The process converts sulphur compounds to elemental sulphur, which can then be sold or stockpiled, while the residual carbon dioxide (CO{sub 2}) is vented to the atmosphere. A SuperClaus sulphur recovery process can be added to the Claus process to convert even more residual sulphur that remains in the acid gas after having passed through the Claus beds. However, given the current low price of sulphur, the cost of sulphur recovery exceeds the value of the sulphur. Another option would be to inject the acid gas, CO{sub 2} and hydrogen sulphide (H{sub 2}S), into the Nisku Q Pool, a depleted gas reservoir. The economic merits and emission characteristics of the two options were compared on a life cycle basis, with particular reference to an AGI operation at the KeySpan Brazeau River gas plant, Alberta. AGI involves compressing the acid gas and injecting it into a suitable underground zone, similar to deep well disposal of produced water. Although the purpose of the AGI operations is to dispose of the H{sub 2}S, significant quantities of CO{sub 2} are being injected at the same time. The injection of acid gas into a depleted gas reservoir would eliminate sulphur dioxide (SO{sub 2}) emissions at the plant site, increase plant efficiency, lower capital and life-cycle costs, extend plant life and employment. The Brazeau River Acid-Gas Injection Project effectively deals with the proactive de-grandfathering of sulphur recovery gas plants and reduction of greenhouse gas emissions to the atmosphere. It was concluded that acid-gas injection at Brazeau is cost effective. The current scheme would generate a breakeven sulphur price of at least $15.5/t net of transportation cost. Obtaining CO{sub 2} credits for CO{sub 2} storage in acid-gas injection operation was shown to be feasible

  12. Sorghum production under future climate in the Southwestern USA: model projections of yield, greenhouse gas emissions and soil C fluxes

    Science.gov (United States)

    Duval, B.; Ghimire, R.; Hartman, M. D.; Marsalis, M.

    2016-12-01

    Large tracts of semi-arid land in the Southwestern USA are relatively less important for food production than the US Corn Belt, and represent a promising area for expansion of biofuel/bioproduct crops. However, high temperatures, low available water and high solar radiation in the SW represent a challenge to suitable feedstock development, and future climate change scenarios predict that portions of the SW will experience increased temperature and temporal shifts in precipitation distribution. Sorghum (Sorghum bicolor) is a valuable forage crop with promise as a biofuel feedstock, given its high biomass under semi-arid conditions, relatively lower N fertilizer requirements compared to corn, and salinity tolerance. To evaluate the environmental impact of expanded sorghum cultivation under future climate in the SW USA, we used the DayCent model in concert with a suite of downscaled future weather projections to predict biogeochemical consequences (greenhouse gas flux and impacts on soil carbon) of sorghum cultivation in New Mexico. The model showed good correspondence with yield data from field trials including both dryland and irrigated sorghum (measured vs. modeled; r2 = 0.75). Simulation experiments tested the effect of dryland production versus irrigation, low N versus high N inputs and delayed fertilizer application. Nitrogen application timing and irrigation impacted yield and N2O emissions less than N rate and climate. Across N and irrigation treatments, future climate simulations resulted in 6% increased yield and 20% lower N2O emissions compared to current climate. Soil C pools declined under future climate. The greatest declines in soil C were from low N input sorghum simulations, regardless of irrigation (>20% declines in SOM in both cases), and requires further evaluation to determine if changing future climate is driving these declines, or if they are a function of prolonged sorghum-fallow rotations in the model. The relatively small gain in yield for

  13. Campgrounds in Hawaii Volcanoes National Park

    Data.gov (United States)

    National Park Service, Department of the Interior — This dataset provides campground locations in Hawaii Volcanoes National Park. Information about facilities, water availability, permit requirements and type of...

  14. Particulate Emissions Control using Advanced Filter Systems: Final Report for Argonne National Laboratory, Corning Inc. and Hyundai Motor Company CRADA Project

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Hee Je [Argonne National Lab. (ANL), Argonne, IL (United States); Choi, Seungmok [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-10-09

    This is a 3-way CRADA project working together with Corning, Inc. and Hyundai Motor Co. (HMC). The project is to understand particulate emissions from gasoline direct-injection engines (GDI) and their physico-chemical properties. In addition, this project focuses on providing fundamental information about filtration and regeneration mechanisms occurring in gasoline particulate filter (GPF) systems. For the work, Corning provides most advanced filter substrates for GPF applications and HMC provides three-way catalyst (TWC) coating services of these filter by way of a catalyst coating company. Then, Argonne National Laboratory characterizes fundamental behaviors of filtration and regeneration processes as well as evaluated TWC functionality for the coated filters. To examine aging impacts on TWC and GPF performance, the research team evaluates gaseous and particulate emissions as well as back-pressure increase with ash loading by using an engine-oil injection system to accelerate ash loading in TWC-coated GPFs.

  15. El Misti Volcano and the City of Arequipa, Peru

    Science.gov (United States)

    2002-01-01

    This three-dimensional perspective view was created from an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Digital Elevation Model combined with a simulated natural color ASTER image, acquired July 13, 2001. It shows El Misti volcano towering 5822 meters high above the second city of Peru, Arequipa, with a population of more than one million. Geologic studies indicate that El Misti has had five minor eruptions this century, and a major eruption in the 15th century when residents were forced to flee the city. Despite the obvious hazard, civil defense authorities see it as a remote danger, and city planners are not avoiding development on the volcano side of the city. This view shows human development extending up the flanks of the volcano along gullies which would form natural channels for flows of lava, superheated ash and gas, or melted ice, snow, and mud from the summit snowfield in the event of an eruption. Image by Mike Abrams, NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team

  16. Regional climate change over South Korea projected by the HadGEM2-AO and WRF model chain under RCP emission scenarios

    Science.gov (United States)

    Ahn, Joong-Bae; Im, Eun-Soon; Jo, Sera

    2017-04-01

    This study assesses the regional climate projection newly projected within the framework of the national downscaling project in South Korea. The fine-scale climate information (12.5 km) is produced by dynamical downscaling of the HadGEM2-AO global projections forced by the representative concentration pathway (RCP4.5 and 8.5) scenarios using the Weather Research and Forecasting (WRF) modeling system. Changes in temperature and precipitation in terms of long-term trends, daily characteristics and extremes are presented by comparing two 30 yr periods (2041-2070 vs. 2071-2100). The temperature increase presents a relevant trend, but the degree of warming varies in different periods and emission scenarios. While the temperature distribution from the RCP8.5 projection is continuously shifted toward warmer conditions by the end of the 21st century, the RCP4.5 projection appears to stabilize warming in accordance with emission forcing. This shift in distribution directly affects the magnitude of extremes, which enhances extreme hot days but reduces extreme cold days. Precipitation changes, however, do not respond monotonically to emission forcing, as they exhibit less sensitivity to different emission scenarios. An enhancement of high intensity precipitation and a reduction of weak intensity precipitation are discernible, implying an intensified hydrologic cycle. Changes in return levels of annual maximum precipitation suggest an increased probability of extreme precipitation with 20 yr and 50 yr return periods. Acknowledgement : This work was funded by the Korea Meteorological Administration Research and Development Program under grant KMIPA 2015-2081

  17. Gases in Taiwan mud volcanoes: Chemical composition, methane carbon isotopes, and gas fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Hung-Chun [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China)] [Earth Dynamic System Research Center, National Cheng Kung University, Tainan, Taiwan (China); You, Chen-Feng, E-mail: cfy20@mail.ncku.edu.tw [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China)] [Earth Dynamic System Research Center, National Cheng Kung University, Tainan, Taiwan (China); Sun, Chih-Hsien [Exploration and Production Research Institute, Chinese Petroleum Corporation, Taiwan (China)

    2010-03-15

    Mud volcanoes are important pathways for CH{sub 4} emission from deep buried sediments; however, the importance of gas fluxes have hitherto been neglected in atmospheric source budget considerations. In this study, gas fluxes have been monitored to examine the stability of their chemical compositions and fluxes spatially, and stable C isotopic ratios of CH{sub 4} were determined, for several mud volcanoes on land in Taiwan. The major gas components are CH{sub 4} (>90%), 'air' (i.e. N{sub 2} + O{sub 2} + Ar, 1-5%) and CO{sub 2} (1-5%) and these associated gas fluxes varied slightly at different mud volcanoes in southwestern Taiwan. The Hsiao-kun-shui (HKS) mud volcano emits the highest CH{sub 4} concentration (CH{sub 4} > 97%). On the other hand, the Chung-lun mud volcano (CL) shows CO{sub 2} up to 85%, and much lower CH{sub 4} content (<37%). High CH{sub 4} content (>90%) with low CO{sub 2} (<0.2%) are detected in the mud volcano gases collected in eastern Taiwan. It is suggestive that these gases are mostly of thermogenic origin based on C{sub 1} (methane)/C{sub 2} (ethane) + C{sub 3} (propane) and {delta}{sup 13}C{sub CH4} results, with the exception of mud volcanoes situated along the Gu-ting-keng (GTK) anticline axis showing unique biogenic characteristics. Only small CH{sub 4} concentration variations, <2%, were detected in four on-site short term field-monitoring experiments, at Yue-shi-jie A, B, Kun-shui-ping and Lo-shan A. Preliminary estimation of CH{sub 4} emission fluxes for mud volcanoes on land in Taiwan fall in a range between 980 and 2010 tons annually. If soil diffusion were taken into account, the total amount of mud volcano CH{sub 4} could contribute up to 10% of total natural CH{sub 4} emissions in Taiwan.

  18. Volcanic gas impacts on vegetation at Turrialba Volcano, Costa Rica

    Science.gov (United States)

    Teasdale, R.; Jenkins, M.; Pushnik, J.; Houpis, J. L.; Brown, D. L.

    2010-12-01

    Turrialba volcano is an active composite stratovolcano that is located approximately 40 km east of San Jose, Costa Rica. Seismic activity and degassing have increased since 2005, and gas compositions reflect further increased activity since 2007 peaking in January 2010 with a phreatic eruption. Gas fumes dispersed by trade winds toward the west, northwest, and southwest flanks of Turrialba volcano have caused significant vegetation kill zones, in areas important to local agriculture, including dairy pastures and potato fields, wildlife and human populations. In addition to extensive vegetative degradation is the potential for soil and water contamination and soil erosion. Summit fumarole temperatures have been measured over 200 degrees C and gas emissions are dominated by SO2; gas and vapor plumes reach up to 2 km (fumaroles and gases are measured regularly by OVSICORI-UNA). A recent network of passive air sampling, monitoring of water temperatures of hydrothermal systems, and soil pH measurements coupled with measurement of the physiological status of surrounding plants using gas exchange and fluorescence measurements to: (1) identify physiological correlations between leaf-level gas exchange and chlorophyll fluorescence measurements of plants under long term stress induced by the volcanic gas emissions, and (2) use measurements in tandem with remotely sensed reflectance-derived fluorescence ratio indices to track natural photo inhibition caused by volcanic gas emissions, for use in monitoring plant stress and photosynthetic function. Results may prove helpful in developing potential land management strategies to maintain the biological health of the area.

  19. The effects of volcanoes on health: preparedness in Mexico.

    Science.gov (United States)

    Zeballos, J L; Meli, R; Vilchis, A; Barrios, L

    1996-01-01

    The article reviews the most important aspects of volcanic eruptions and presents a summary of the harmful materials they emit. The main health effects can be classified as either physical (trauma, respiratory diseases, etc.) or psychological (depression, anxiety, nightmares, neurosis, etc.). Popocatépetl, the most famous active volcano in Mexico, lies on the borders of the States of Mexico, Puebla and Morelos. In 1993, seismic activity intensified, as did as the emission of fumaroles, followed in December 1994 by moderate tremors and strong emissions of gases and ash. In 1996, a number of seismic events led to an unexpected explosion. A daily emission of 8,000 to 15,000 tonnes of sulfur dioxide has been measured. Popocatépetl is located in a densely populated region of Mexico. A complex network to monitor the volcano using sophisticated equipment has been set up, including visual surveillance, seismic, geochemical and geodesic monitoring. An early warning system (SINAPROC/CENAPRED) has been developed to keep the population permanently informed. The warning system uses colour codes: green for normal, yellow for alert, and red for warning and evacuation. An emergency plan has been prepared, including evacuation and preparation for medical centres and hospitals in the region, as well as intense public information campaigns.

  20. Field Geological Exploration of the Ashikule Volcano Group in Western Kunlun Mountains

    Institute of Scientific and Technical Information of China (English)

    Xu Jiandong; Zhao Bo; Zhang Liuyi; Chen Zhengquan

    2012-01-01

    From May 4 to May 30, 2011, a field exploration of the Ashikule basin in the Western Kunlun Mountains area was conducted by a research team from the Institute of Geology, China Earthquake Administration and Earthquake Administration of Xinjiang Uygur Autonomous Region. This work is financially supported by the special fund for China earthquake research project " The Comprehensive Scientific Exploration of the Ms7.3 Yutian Earthquake in 2008 and the Ashikule Volcano Group". Through detailed field survey on geological and geomorphological features of the Ashikule volcano group, which is one of the highest altitude volcanic plateaus (about 5000m) in the world, we have determined the total number of volcanoes, the eruption type and structural parameters, and approximate active history of the volcano group. Our studies have provided field evidence for resolving past controversies such as the authenticity of the news report about the eruption event on May 27, 1951, the eruption pattern of the Daheishan volcano, and the reality of the Gaotaishan volcano.

  1. Report on U.S. Methane Emissions 1990-2020: Inventories, Projections, and Opportunities for Reductions: 2001 Updated emission and cost estimates

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains relative and absolute forecasts of emissions through 2020 for landfills, natural gas and oil systems, coal mines, manure management and enteric...

  2. Research on Methods for Building Volcano Disaster Information System--taking Changbai Mountain as an example

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xuexia; BO Liqun; LU Xingchang

    2001-01-01

    Volcano eruption is one of the most serious geological disasters in the world. There are volcanoes in every territory on the earth, about a thousand in China, among which Changbai Mountain Volcano, Wudalianchi Volcano and Tengchong Volcano are the most latent catastrophic eruptive active volcanoes. The paper, following an instance of Changbai Mountain Volcano, expounds that monitoring, forecasting and estimating volcano disaster by building Volcano Disaster Information System (VDIS) is feasible to alleviate volcano disaster.

  3. Characterisation of Damaged Tubular Composites by Acoustic Emission, Thermal Diffusivity Mapping and TSR-RGB Projection Technique

    Science.gov (United States)

    Chandarana, Neha; Lansiaux, Henri; Gresil, Matthieu

    2017-04-01

    An increase in the use of composite materials, owing to improved design and fabrication processes, has led to cost reductions in many industries. Resistance to corrosion, high specific strength, and stiffness are just a few of their many attractive properties. However, damage tolerance remains a major concern in the implementation of composites and uncertainty regarding component lifetimes can lead to over-design and under-use of such materials. A combination of non-destructive evaluation (NDE) and structural health monitoring (SHM) have shown promise in improving confidence by enabling data collection in-situ and in real time. In this work, infrared thermography (IRT) is employed for NDE of tubular composite specimens before and after impact. Four samples are impacted with energies of 5 J, 7.5 J, and 10 J by an un-instrumented falling weight set-up. Acoustic emissions (AE) are monitored using bonded piezoelectric sensors during one of the four impact tests. IRT data is used to generate diffusivity and thermal depth mappings of each sample using the thermographic signal reconstruction (TSR) red green blue (RGB) projection technique. Analysis of AE data alone for a 10 J impact suggest significant damage to the fibres and matrix; this is in good agreement with the generated thermal depth mappings for each sample, which indicate damage through multiple fibre layers. IRT and AE data are correlated and validated by optical micrographs taken along the cross section of damage.

  4. The Origin of T Tauri X-ray Emission: New Insights from the Chandra Orion Ultradeep Project

    CERN Document Server

    Preibisch, T; Favata, F; Feigelson, E D; Flaccomio, E; Getman, K; Micela, G; Sciortino, S; Stassun, K G; Stelzer, B; Zinnecker, H; Preibisch, Thomas; Kim, Yong -Cheol; Favata, Fabio; Feigelson, Eric D.; Flaccomio, Ettore; Getman, Konstantin; Micela, Giusi; Sciortino, Salvatore; Stassun, Keivan; Stelzer, Beate; Zinnecker, Hans

    2005-01-01

    We use the data of the Chandra Orion Ultradeep Project (COUP) to study the nearly 600 X-ray sources that can be reliably identified with optically well characterized T Tauri stars (TTS) in the Orion Nebula Cluster. We detect X-ray emission from more than 97% of the optically visible late-type (spectral types F to M) cluster stars. This proofs that there is no ``X-ray quiet'' population of late-type stars with suppressed magnetic activity. All TTS with known rotation periods lie in the saturated or super-saturated regime of the relation between activity and Rossby numbers seen for main-sequence (MS) stars, but the TTS show a much larger scatter in X-ray activity than seen for the MS stars. Strong near-linear relations between X-ray luminosities, bolometric luminosities and mass are present. We also find that the fractional X-ray luminosity rises slowly with mass over the 0.1 - 2 M_sun range. The plasma temperatures determined from the X-ray spectra of the TTS are much hotter than in MS stars, but seem to follo...

  5. Mechanism of the 1996-97 non-eruptive volcano-tectonic earthquake swarm at Iliamna Volcano, Alaska

    Science.gov (United States)

    Roman, D.C.; Power, J.A.

    2011-01-01

    A significant number of volcano-tectonic(VT) earthquake swarms, some of which are accompanied by ground deformation and/or volcanic gas emissions, do not culminate in an eruption.These swarms are often thought to represent stalled intrusions of magma into the mid- or shallow-level crust.Real-time assessment of the likelihood that a VTswarm will culminate in an eruption is one of the key challenges of volcano monitoring, and retrospective analysis of non-eruptive swarms provides an important framework for future assessments. Here we explore models for a non-eruptive VT earthquake swarm located beneath Iliamna Volcano, Alaska, in May 1996-June 1997 through calculation and inversion of fault-plane solutions for swarm and background periods, and through Coulomb stress modeling of faulting types and hypocenter locations observed during the swarm. Through a comparison of models of deep and shallow intrusions to swarm observations,we aim to test the hypothesis that the 1996-97 swarm represented a shallow intrusion, or "failed" eruption.Observations of the 1996-97 swarm are found to be consistent with several scenarios including both shallow and deep intrusion, most likely involving a relatively small volume of intruded magma and/or a low degree of magma pressurization corresponding to a relatively low likelihood of eruption. ?? 2011 Springer-Verlag.

  6. Thermal mapping of Hawaiian volcanoes with ASTER satellite data

    Science.gov (United States)

    Patrick, Matthew R.; Witzke, Coral-Nadine

    2011-01-01

    Thermal mapping of volcanoes is important to determine baseline thermal behavior in order to judge future thermal activity that may precede an eruption. We used cloud-free kinetic temperature images from the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) sensor obtained between 2000 and 2010 to produce thermal maps for all five subaerial volcanoes in Hawai‘i that have had eruptions in the Holocene (Kīlauea, Mauna Loa, Hualālai, Mauna Kea, and Haleakalā). We stacked the images to provide time-averaged thermal maps, as well as to analyze temperature trends through time. Thermal areas are conspicuous at the summits and rift zones of Kīlauea and Mauna Loa, and the summit calderas of these volcanoes contain obvious arcuate, concentric linear thermal areas that probably result from channeling of rising gas along buried, historical intracaldera scarps. The only significant change in thermal activity noted in the study period is the opening of the Halema‘uma‘u vent at Kīlauea's summit in 2008. Several small thermal anomalies are coincident with pit craters on Hualālai. We suspect that these simply result from the sheltered nature of the depression, but closer inspection is warranted to determine if genuine thermal activity exists in the craters. Thermal areas were not detected on Haleakalā or Mauna Kea. The main limitation of the study is the large pixel size (90 m) of the ASTER images, which reduces our ability to detect subtle changes or to identify small, low-temperature thermal activity. This study, therefore, is meant to characterize the broad, large-scale thermal features on these volcanoes. Future work should study these thermal areas with thermal cameras and thermocouples, which have a greater ability to detect small, low-temperature thermal features.

  7. Projected impact of climate change and chemical emissions on the water quality of the European rivers Rhine and Meuse: A drinking water perspective.

    Science.gov (United States)

    Sjerps, Rosa M A; Ter Laak, Thomas L; Zwolsman, Gertjan J J G

    2017-12-01

    Low river discharges of the rivers Rhine and Meuse are expected to occur more often and more prolonged in a changing climate. During these dry periods the dilution of point sources such as sewage effluents is reduced leading to a decline in chemical water quality. This study projects chemical water quality of the rivers Rhine and Meuse in the year 2050, based on projections of chemical emissions and two climate scenarios: moderate and fast climate change. It focuses on specific compounds known to be relevant to drinking water production, i.e. four pharmaceuticals, a herbicide and its metabolite and an artificial sweetener. Hydrological variability, climate change, and increased emission show a significant influence on the water quality in the Rhine and Meuse. The combined effect of changing future emissions of these compounds and reduced dilution due to climate change has leaded to increasing (peak) concentrations in the river water by a factor of two to four. Current water treatment efficiencies in the Netherlands are not sufficient to reduce these projected concentrations in drinking water produced from surface water below precautionary water target values. If future emissions are not sufficiently reduced or treatment efficiencies are not improved, these compounds will increasingly be found in drinking water, albeit at levels which pose no threat to human health. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Volcanic hazards at Atitlan volcano, Guatemala

    Science.gov (United States)

    Haapala, J.M.; Escobar Wolf, R.; Vallance, James W.; Rose, William I.; Griswold, J.P.; Schilling, S.P.; Ewert, J.W.; Mota, M.

    2006-01-01

    Atitlan Volcano is in the Guatemalan Highlands, along a west-northwest trending chain of volcanoes parallel to the mid-American trench. The volcano perches on the southern rim of the Atitlan caldera, which contains Lake Atitlan. Since the major caldera-forming eruption 85 thousand years ago (ka), three stratovolcanoes--San Pedro, Toliman, and Atitlan--have formed in and around the caldera. Atitlan is the youngest and most active of the three volcanoes. Atitlan Volcano is a composite volcano, with a steep-sided, symmetrical cone comprising alternating layers of lava flows, volcanic ash, cinders, blocks, and bombs. Eruptions of Atitlan began more than 10 ka [1] and, since the arrival of the Spanish in the mid-1400's, eruptions have occurred in six eruptive clusters (1469, 1505, 1579, 1663, 1717, 1826-1856). Owing to its distance from population centers and the limited written record from 200 to 500 years ago, only an incomplete sample of the volcano's behavior is documented prior to the 1800's. The geologic record provides a more complete sample of the volcano's behavior since the 19th century. Geologic and historical data suggest that the intensity and pattern of activity at Atitlan Volcano is similar to that of Fuego Volcano, 44 km to the east, where active eruptions have been observed throughout the historical period. Because of Atitlan's moderately explosive nature and frequency of eruptions, there is a need for local and regional hazard planning and mitigation efforts. Tourism has flourished in the area; economic pressure has pushed agricultural activity higher up the slopes of Atitlan and closer to the source of possible future volcanic activity. This report summarizes the hazards posed by Atitlan Volcano in the event of renewed activity but does not imply that an eruption is imminent. However, the recognition of potential activity will facilitate hazard and emergency preparedness.

  9. Odor and odorous chemical emissions from animal buildings: part 1 - project overview, collection methods, and quality control

    Science.gov (United States)

    Livestock facilities have historically generated public concerns due to their emissions of odorous air and various chemical pollutants. Odor emission factors and identification of principal odorous chemicals are needed to better understand the problem. Applications of odor emission factors include i...

  10. The unrest of the San Miguel volcano (El Salvador, Central America): installation of the monitoring network and observed volcano-tectonic ground deformation

    Science.gov (United States)

    Bonforte, Alessandro; Hernandez, Douglas Antonio; Gutiérrez, Eduardo; Handal, Louis; Polío, Cecilia; Rapisarda, Salvatore; Scarlato, Piergiorgio

    2016-08-01

    On 29 December 2013, the Chaparrastique volcano in El Salvador, close to the town of San Miguel, erupted suddenly with explosive force, forming a column more than 9 km high and projecting ballistic projectiles as far as 3 km away. Pyroclastic density currents flowed to the north-northwest side of the volcano, while tephras were dispersed northwest and north-northeast. This sudden eruption prompted the local Ministry of Environment to request cooperation with Italian scientists in order to improve the monitoring of the volcano during this unrest. A joint force, made up of an Italian team from the Istituto Nazionale di Geofisica e Vulcanologia and a local team from the Ministerio de Medio Ambiente y Recursos Naturales, was organized to enhance the volcanological, geophysical and geochemical monitoring system to study the evolution of the phenomenon during the crisis. The joint team quickly installed a multiparametric mobile network comprising seismic, geodetic and geochemical sensors (designed to cover all the volcano flanks from the lowest to the highest possible altitudes) and a thermal camera. To simplify the logistics for a rapid installation and for security reasons, some sensors were colocated into multiparametric stations. Here, we describe the prompt design and installation of the geodetic monitoring network, the processing and results. The installation of a new ground deformation network can be considered an important result by itself, while the detection of some crucial deforming areas is very significant information, useful for dealing with future threats and for further studies on this poorly monitored volcano.

  11. Predictability of Volcano Eruption: lessons from a basaltic effusive volcano

    CERN Document Server

    Grasso, J R

    2003-01-01

    Volcano eruption forecast remains a challenging and controversial problem despite the fact that data from volcano monitoring significantly increased in quantity and quality during the last decades.This study uses pattern recognition techniques to quantify the predictability of the 15 Piton de la Fournaise (PdlF) eruptions in the 1988-2001 period using increase of the daily seismicity rate as a precursor. Lead time of this prediction is a few days to weeks. Using the daily seismicity rate, we formulate a simple prediction rule, use it for retrospective prediction of the 15 eruptions,and test the prediction quality with error diagrams. The best prediction performance corresponds to averaging the daily seismicity rate over 5 days and issuing a prediction alarm for 5 days. 65% of the eruptions are predicted for an alarm duration less than 20% of the time considered. Even though this result is concomitant of a large number of false alarms, it is obtained with a crude counting of daily events that are available fro...

  12. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) after fifteen years: Review of global products

    Science.gov (United States)

    Abrams, Michael; Tsu, Hiroji; Hulley, Glynn; Iwao, Koki; Pieri, David; Cudahy, Tom; Kargel, Jeffrey

    2015-06-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a 15-channel imaging instrument operating on NASA's Terra satellite. A joint project between the U.S. National Aeronautics and Space Administration and Japan's Ministry of Economy, Trade, and Industry, ASTER has been acquiring data for 15 years, since March 2000. The archive now contains over 2.8 million scenes; for the majority of them, a stereo pair was collected using nadir and backward telescopes imaging in the NIR wavelength. The majority of users require only a few to a few dozen scenes for their work. Studies have ranged over numerous scientific disciplines, and many practical applications have benefited from ASTER's unique data. A few researchers have been able to mine the entire ASTER archive, that is now global in extent due to the long duration of the mission. Six examples of global products are described in this contribution: the ASTER Global Digital Elevation Model (GDEM), the most complete, highest resolution DEM available to all users; the ASTER Emissivity Database (ASTER GED), a global 5-band emissivity map of the land surface; the ASTER Global Urban Area Map (AGURAM), a 15-m resolution database of over 3500 cities; the ASTER Volcano Archive (AVA), an archive of over 1500 active volcanoes; ASTER Geoscience products of the continent of Australia; and the Global Ice Monitoring from Space (GLIMS) project.

  13. Newberry Volcano's youngest lava flows

    Science.gov (United States)

    Robinson, Joel E.; Donnelly-Nolan, Julie M.; Jensen, Robert A.

    2015-01-01

    Most of Newberry Volcano's youngest lava flows are found within the Newberry National Volcanic Monument in central Oregon. Established November 5, 1990, the monument is managed by the U.S. Forest Service as part of the Deschutes National Forest. Since 2011, a series of aerial surveys over the monument collected elevation data using lidar (light detection and ranging) technology, which uses lasers to directly measure the ground surface. These data record previously unseen detail in the volcano’s numerous lava flows and vents. On average, a laser return was collected from the ground’s surface every 2.17 feet (ft) with ±1.3 inches vertical precision.

  14. Estimated lag time in global carbon emissions and CO2 concentrations produced by commercial nuclear power through 2009 with projections through 2030.

    Science.gov (United States)

    Coleman, Neil M; Abramson, Lee R; Coleman, Fiona A B

    2012-03-01

    This study examines the past and future impact of nuclear reactors on anthropogenic carbon emissions to the atmosphere. If nuclear power had never been commercially developed, what additional global carbon emissions would have occurred? More than 44 y of global nuclear power have caused a lag time of at least 1.2 y in carbon emissions and CO2 concentrations through the end of 2009. This lag time incorporates the contribution of life cycle carbon emissions due to the construction and operation of nuclear plants. Cumulative global carbon emissions would have been about 13 Gt greater through 2009, and the mean annual CO2 concentration at Mauna Loa would have been ~2.7 ppm greater than without nuclear power. This study finds that an additional 14–17 Gt of atmospheric carbon emissions could be averted by the global use of nuclear power through 2030, for a cumulative total of 27–30 Gt averted during the period 1965–2030. This result is based on International Atomic Energy Agency projections of future growth in nuclear power from 2009–2030, modified by the recent loss or permanent shutdown of 14 reactors in Japan and Germany

  15. Models of Co2 emission trading system for projections in MSG6. Documentation and guidance; Utviklingen i stroemforbruket, prisfoelsomheten og stroemmarkedet

    Energy Technology Data Exchange (ETDEWEB)

    Faehn, Taran; Stroem, Birger

    2012-08-15

    Present context of the EU Co2 Emission Trading System (EU ETS) from 2008, involves new measures directed towards a large portion of present emissions sources. Currently there is no basis in statistics figures to offset the consequences of these international obligations in SSB models. In the model projections is nevertheless necessary to model both the current instruments and expected future changes in the rules and forms of association. This paper documents the Ministry of Finance to establish a arrangements for implementing Norway's association with the EU ETS in the model MSG6. It also addresses the EU ETS policy instruments interacting with other objectives and instruments of climate policy, including the Kyoto commitments and various domestic Climate tax systems. The European emissions trading price affect the Norwegian economy through several channels. Firstly, allowances mean that the EU ETS will cover activities that gets an emission rate equal to the permit price, which will influence the players to reduce emissions through various adaptations. Second, the remaining emissions occur subject to quotas, and the proportion who do not receive free allowances will give the state the auction revenue / proceeds. Third, quotas purchased in international markets will affect account surplus. This paper outlines various solutions and concludes by recommending a system that easily can be adapted for studies of any interaction between the EU ETS system and other climate policy objectives. The system can also be easily updated to new data.(eb)

  16. A Hybrid Life-Cycle Assessment of Nonrenewable Energy and Greenhouse-Gas Emissions of a Village-Level Biomass Gasification Project in China

    Directory of Open Access Journals (Sweden)

    Mingyue Pang

    2012-07-01

    Full Text Available Small-scale bio-energy projects have been launched in rural areas of China and are considered as alternatives to fossil-fuel energy. However, energetic and environmental evaluation of these projects has rarely been carried out, though it is necessary for their long-term development. A village-level biomass gasification project provides an example. A hybrid life-cycle assessment (LCA of its total nonrenewable energy (NE cost and associated greenhouse gas (GHG emissions is presented in this paper. The results show that the total energy cost for one joule of biomass gas output from the project is 2.93 J, of which 0.89 J is from nonrenewable energy, and the related GHG emission cost is 1.17 × 10−4 g CO2-eq over its designed life cycle of 20 years. To provide equivalent effective calorific value for cooking work, the utilization of one joule of biomass gas will lead to more life cycle NE cost by 0.07 J and more GHG emissions by 8.92 × 10−5 g CO2-eq compared to natural gas taking into consideration of the difference in combustion efficiency and calorific value. The small-scale bio-energy project has fallen into dilemma, i.e., struggling for survival, and for a more successful future development of village-level gasification projects, much effort is needed to tide over the plight of its development, such as high cost and low efficiency caused by decentralized construction, technical shortcomings and low utilization rate of by-products.

  17. New IGCP Projects accepted in 2005

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Project No. 506 Marine and Nonmarine Jurassic,Project No. 508 Volcano, Collapse and Fault Activity--“Young Scientists Project”,Project No. 509 Palaeoproterozoic Supercontinents and Global Evolution,Project No. 510 A-type Granites and Related Rock through Time,Project No. 511 Submarine Mass Movements and their Consequences.

  18. Vailulu'u Seamount, Samoa: Life and death on an active submarine volcano.

    Science.gov (United States)

    Staudigel, Hubert; Hart, Stanley R; Pile, Adele; Bailey, Bradley E; Baker, Edward T; Brooke, Sandra; Connelly, Douglas P; Haucke, Lisa; German, Christopher R; Hudson, Ian; Jones, Daniel; Koppers, Anthony A P; Konter, Jasper; Lee, Ray; Pietsch, Theodore W; Tebo, Bradley M; Templeton, Alexis S; Zierenberg, Robert; Young, Craig M

    2006-04-25

    Submersible exploration of the Samoan hotspot revealed a new, 300-m-tall, volcanic cone, named Nafanua, in the summit crater of Vailulu'u seamount. Nafanua grew from the 1,000-m-deep crater floor in volcano summit and rim. The moat and crater floor around the new volcano are littered with dead metazoans that apparently died from exposure to hydrothermal emissions. Acid-tolerant polychaetes (Polynoidae) live in this environment, apparently feeding on bacteria from decaying fish carcasses. Vailulu'u is an unpredictable and very active underwater volcano presenting a potential long-term volcanic hazard. Although eels thrive in hydrothermal vents at the summit of Nafanua, venting elsewhere in the crater causes mass mortality. Paradoxically, the same anticyclonic currents that deliver food to the eels may also concentrate a wide variety of nektonic animals in a death trap of toxic hydrothermal fluids.

  19. One hundred volatile years of volcanic gas studies at the Hawaiian Volcano Observatory: Chapter 7 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Sutton, A.J.; Elias, Tamar; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    The first volcanic gas studies in Hawai‘i, beginning in 1912, established that volatile emissions from Kīlauea Volcano contained mostly water vapor, in addition to carbon dioxide and sulfur dioxide. This straightforward discovery overturned a popular volatile theory of the day and, in the same action, helped affirm Thomas A. Jaggar, Jr.’s, vision of the Hawaiian Volcano Observatory (HVO) as a preeminent place to study volcanic processes. Decades later, the environmental movement produced a watershed of quantitative analytical tools that, after being tested at Kīlauea, became part of the regular monitoring effort at HVO. The resulting volatile emission and fumarole chemistry datasets are some of the most extensive on the planet. These data indicate that magma from the mantle enters the shallow magmatic system of Kīlauea sufficiently oversaturated in CO2 to produce turbulent flow. Passive degassing at Kīlauea’s summit that occurred from 1983 through 2007 yielded CO2-depleted, but SO2- and H2O-rich, rift eruptive gases. Beginning with the 2008 summit eruption, magma reaching the East Rift Zone eruption site became depleted of much of its volatile content at the summit eruptive vent before transport to Pu‘u ‘Ō‘ō. The volatile emissions of Hawaiian volcanoes are halogen-poor, relative to those of other basaltic systems. Information gained regarding intrinsic gas solubilities at Kīlauea and Mauna Loa, as well as the pressure-controlled nature of gas release, have provided useful tools for tracking eruptive activity. Regular CO2-emission-rate measurements at Kīlauea’s summit, together with surface-deformation and other data, detected an increase in deep magma supply more than a year before a corresponding surge in effusive activity. Correspondingly, HVO routinely uses SO2 emissions to study shallow eruptive processes and effusion rates. HVO gas studies and Kīlauea’s long-running East Rift Zone eruption also demonstrate that volatile emissions can

  20. Geochemical characterization of the Nirano Mud Volcano Field

    Science.gov (United States)

    Sciarra, Alessandra; Cantucci, Barbara; Ricci, Tullio; Conventi, Marzia

    2016-04-01

    Mud volcanoes, among fluid venting structures, are the most important phenomena related to natural seepage from the Earth's surface. The occurrence of mud volcanoes is controlled by several factors, such as tectonic activity and continuous hydrocarbon accumulation in a reservoir. Mud volcanoes in Italy occur along the external compressive margin of the Apennine chain. These mud volcanoes are usually small and unspectacular, when compared to other world examples. They rarely exhibit the periodic explosions, which is often related to important seismic activity. The Nirano Mud Volcano Field (NMVF) is located in the western sector of the Modena Apennine margin (Italy), which belongs to the Northern Apennines. The NMVF occurs over the crest of a thrust anticline associated with the main Pede-Apennine thrust and represents a good example of an onshore relationship between a mud volcano caldera structure and active thrust deformation, even if the fluid pathways are still not well understood at depth. The mud volcanoes are distributed along an area of about 10 ha, inside of the wider Natural Reserve, and are situated at the bottom of a wide sub-circular depression. The NMVF is currently formed by four main vents composed of a number of individual active cones (or gryphons) defining structural alignments trending ENE-WSW. A geochemical soil gas survey of 230 CO2 and CH4 fluxes and 150 CO2, CH4, Rn, He, H2 concentration measurements has been carried out inside the NMVF. Moreover, the fluid emissions from 4 active cones located in different sectors of NMVF have been sampled for chemical and isotopical analysis of water and free gas. The distribution of pathfinder elements as 222Rn, He e H2 has been studied in order to identify potential faults and/or fractures related to preferential migration pathways and the possible interactions between reservoir and surface. Soil gas data highlight two zones characterized by higher values, localized in the WSW and ENE of the NMVF area. In

  1. An Expert System for Computer-aided Volcano Monitoring on Mt. Etna

    Science.gov (United States)

    Cannavo', Flavio; Cannata, Andrea; Cassisi, Carmelo; Di Grazia, Giuseppe; Montalto, Placido; Prestifilippo, Michele; Privitera, Eugenio; Gambino, Salvatore; Coltelli, Mauro

    2017-04-01

    Constant estimation of the state of potentially hazardous volcanos plays a crucial role for civil protection purposes. In particular, the importance of monitoring volcanic activity, especially for paroxysms that usually come with tephra emissions, is crucial not only for hazards to the local population but also for airline traffic. Indeed, At present, real-time surveillance of most volcanoes worldwide is essentially deputized to one or more human experts in volcanology, who interpret data coming from different kind of monitoring networks. Unfavourably, the coupling of highly nonlinear and complex volcanic dynamic processes leads to measurable effects that can show a large variety of different behaviours. Moreover, due to intrinsic uncertainties and possible failures in some recorded data, the volcano state needs to be expressed in probabilistic terms, thus making the fast volcano state assessment sometimes impracticable for the personnel on duty at the control rooms. With the aim of aiding the personnel on duty in volcano surveillance, we present an expert system based on a probabilistic graphical model to estimate automatically the ongoing volcano state from all the available different kind of measurements. The system consists of a decision network able to represent a set of variables and their conditional dependencies via a directed acyclic graph. The model variables are both the measurements and the possible states of the volcano through the time. The model output is the most likely volcanic state. We tested the expert system on the Mt. Etna (Italy) case study by considering a long record of multivariate data from 2011 to 2015 and cross-validated it. Results indicate that the proposed model is effective and of great power for decision making purposes.

  2. Fifteen years of thermal activity at Vanuatu's volcanoes (2000-2015) revealed by MIROVA

    Science.gov (United States)

    Coppola, D.; Laiolo, M.; Cigolini, C.

    2016-08-01

    The Vanuatu archipelago consists of 80 islands and hosts 5 subaerial volcanoes (Yasur, Lopevi, Ambrym, Aoba and Gaua) that have shown sign of activity during the past decade. In this contribution we provide a 15 years-long datasets (2000-2015) of the thermal activity recorded at these active volcanoes by means of MIROVA (Middle InfraRed Observation of Volcanic Activity) a new volcanic hotspot detection system based on MODIS data. The analyzed volcanoes are characterized by a spectrum of volcanic activities whose thermal signature has been tracked and carefully analyzed. These include strombolian-vulcanian explosions at Yasur, lava flows at Lopevi, lava lakes at Ambrym, surtseyan-type eruptions within the Voui crater lake of Aoba and ash-dominated eruptions with strong degassing at Gaua. The collected data reveal several details of the long term eruptive dynamics at single sites such as a monthly long pulse in thermal emissions at Yasur volcano as well as at the two active craters of Ambrym (Benbow and Marum). Heating cycles within Aoba crater lake and intermittent pressurized eruptions at Lopevi volcano has also been detected and shed light in the eruptive dynamics of the analyzed volcanoes. In addition we were able to track a two years long intensification of thermal output at Benbow crater (Ambrym) that preceded the occurrence of the first intra-caldera eruptions of this volcano since 1989. We emphasize how the data provided by MIROVA represent a new, safe and affordable method for monitoring in near-real time a large spectrum of volcanic activities taking place at Vanuatu and other volcanic areas.

  3. Analysis on carbon dioxide emission reduction during the anaerobic synergetic digestion technology of sludge and kitchen waste: Taking kitchen waste synergetic digestion project in Zhenjiang as an example.

    Science.gov (United States)

    Guo, Qia; Dai, Xiaohu

    2017-08-30

    With the popularization of municipal sewage treatment facilities, the improvement of sewage treatment efficiency and the deepening degree of sewage treatment, the sludge production of sewage plant has been sharply increased. Carbon emission during the process of municipal sewage treatment and disposal has become one of the important sources of greenhouse gases that cause greenhouse effect. How to reduce carbon dioxide emissions during sewage treatment and disposal process is of great significance for reducing air pollution. Kitchen waste and excess sludge, as two important organic wastes, once uses anaerobic synergetic digestion technology in the treatment process can on the one hand, avoid instability of sludge individual anaerobic digestion, improve sludge degradation rate and marsh gas production rate, and on the other hand, help increase the reduction of carbon dioxide emissions to a great extent. The paper uses material balance method, analyzes and calculates the carbon dioxide emissions from kitchen waste and sludge disposed by the anaerobic synergetic digestion technology, compares the anaerobic synergetic digestion technology with traditional sludge sanitary landfill technology and works out the carbon dioxide emission reductions after synergetic digestion. It takes the kitchen waste and sludge synergetic digestion engineering project of Zhenjiang city in Jiangsu province as an example, makes material balance analysis using concrete data and works out the carbon dioxide daily emission reductions. The paper analyzes the actual situation of emission reduction by comparing the data, and found that the synergetic digestion of kitchen waste and sludge can effectively reduce the carbon dioxide emission, and the reduction is obvious especially compared with that of sludge sanitary landfill, which has a certain effect on whether to promote the use of the technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Projected response of East Asian summer monsoon system to future reductions in emissions of anthropogenic aerosols and their precursors

    Science.gov (United States)

    Wang, Zhili; Zhang, Hua; Zhang, Xiaoye

    2016-09-01

    The response of the East Asian summer monsoon (EASM) system to reductions in emissions of anthropogenic aerosols and their precursors at the end of the twenty-first century projected by Representative Concentration Pathway 4.5 is studied using an aerosol-climate model with aerosol direct, semi-direct, and indirect effects included. Our results show that the global annual mean aerosol effective radiative forcing at the top of the atmosphere (TOA) is +1.45 W m-2 from 2000 to 2100. The summer mean net all-sky shortwave fluxes averaged over the East Asian monsoon region (EAMR) at the TOA and surface increased by +3.9 and +4.0 W m-2, respectively, due to the reductions of aerosols in 2100 relative to 2000. Changes in radiations affect local thermodynamic and dynamic processes and the hydrological cycle. The summer mean surface temperature and pressure averaged over the EAMR are shown to increase by 1.7 K and decreased by 0.3 hPa, respectively, due to the reduced aerosols. The magnitudes of these changes are larger over land than ocean, causing a marked increase in the contrast of land-sea surface temperature and pressure in the EAMR, thus strengthening the EASM. The summer mean southwest and south winds at 850 hPa are enhanced over eastern and southern China and the surrounding oceans, and the East Asian subtropical jet shifted northward due to the decreases of aerosols. These factors also indicate enhanced EASM circulation, which in turn causes a 10 % increase in summer mean precipitation averaged over the EAMR.

  5. X-ray emission spectroscopy applied to glycine adsorbed on Cu(110): An atom and symmetry projected view

    Energy Technology Data Exchange (ETDEWEB)

    Hasselstroem, J.; Karis, O.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    When a molecule is adsorbed on a metal surface by chemical bonding new electronic states are formed. For noble and transition metals these adsorption-induced states overlap with the much more intense metal d-valence band, making them difficult to probe by for instance direct photoemission. However, it has recently been shown that X-ray emission spectroscopy (XES) can be applied to adsorbate systems. Since the intermediate state involves a core hole, this technique has the power to project out the partial density of states around each atomic site. Both the excitation and deexcitation processes are in general governed by the dipole selection rules. For oriented system, it is hence possible to obtain a complete separation into 2p{sub x}, 2p{sub y} and 2p{sub z} contributions using angular resolved measurements. The authors have applied XES together with other core level spectroscopies to glycine adsorption on Cu(110). Glycine (NH{sub 2}CH{sub 2}COOH) is the smallest amino acid and very suitable to study by core level spectroscopy since it has several functional groups, all well separated in energy by chemical shifts. Its properties are futhermore of biological interest. In summary, the authors have shown that it is possible to apply XES to more complicated molecular adsorbates. The assignment of different electronic states is however not as straight forward as for simple diatomic molecules. For a complete understanding of the redistribution and formation of new electronic states associated with the surface chemical bond, experimental data must be compared to theoretical calculations.

  6. VEPP Exercise: Volcanic Activity and Monitoring of Pu`u `O`o, Kilauea Volcano, Hawaii

    Science.gov (United States)

    Rodriguez, L. A.

    2010-12-01

    A 10-week project will be tested during the Fall semester 2010, for a Volcanic Hazards elective course, for undergraduate Geology students of the University of Puerto Rico at Mayaguez. This exercise was developed during the Volcanoes Exploration Project: Pu`u `O`o (VEPP) Workshop, held on the Big Island of Hawaii in July 2010. For the exercise the students will form groups (of 2-4 students), and each group will be assigned a monitoring technique or method, among the following: seismic (RSAM data), deformation (GPS and tilt data), observations (webcam and lava flow maps), gas and thermal monitoring. The project is designed for Geology undergraduates who have a background in introductory geology, types of volcanoes and eruptions, magmatic processes, characteristics of lava flows, and other related topics. It is divided in seven tasks, starting with an introduction and demonstration of the VEPP website and the VALVE3 software, which is used to access monitoring data from the current eruption of Pu`u `O`o, Kilauea volcano, Hawaii. The students will also familiarize themselves with the history of Kilauea volcano and its current eruption. At least weekly the groups will acquire data (mostly near-real-time) from the different monitoring techniques, in the form of time series, maps, videos, and images, in order to identify trends in the data. The groups will meet biweekly in the computer laboratory to work together in the analysis and interpretation of the data, with the support of the instructor. They will give reports on the progress of the exercise, and will get feedback from the instructor and from the other expert groups. All groups of experts will relate their findings to the recent and current activity of Kilauea volcano, and the importance of their specific type of monitoring. The activity will culminate with a written report and an oral presentation. The last task of the project consists of a wrap-up volcano monitoring exercise, in which the students will

  7. A collaborative project on the effects of coal quality on NO{sub x} emissions and carbon burnout in pulverised coal-fired utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Tilley, H.A.; O`Connor, M.; Stephenson, P.L.; Whitehouse, M.; Richards, D.G.; Hesselmann, G.; MacPhail, J.; Lockwood, F.C.; Williamson, J.; Williams, A.; Pourkashanian, M. [ETSU, Harwell (United Kingdom)

    1998-12-01

    This paper describes a UK Department of Trade and Industry-supported collaborative project entitled `The Effects of Coal Quality on Emission of Oxides of Nitrogen (NO{sub x}) and Carbon Burnout in Pulverised Coal-fired Utility Boilers`. The project involved extensive collaboration between the UK power generators, boiler and burner manufacturers and research groups in both industry and academia, together with several of the world`s leading computational fluid dynamics (CFD) `software houses`. The prime objectives of the project were to assess the relationship between NO{sub x} emissions and carbon burnout and to develop and validate predictive tools for assessing coals. Experimental work was carried out on various laboratory-scale apparatus and on single burner test facilities ranging from 160 kW{sub th} to 40 MW{sub th} in size and measurements were obtained from full-scale 500 MW{sub e} utility boiler trials. This data and basic coal data were then used to develop mathematical models to predict full-scale boiler performance with respect to NO{sub x} emissions and carbon-in-ash. Results showed good correlations for NO{sub x} and carbon burnout when comparing data from full-scale and large-scale rig trials. Laboratory-scale tests were found to be useful but the influence of burner aerodynamics was more difficult to quantify. Modelling showed that predicted NO{sub x} emissions were encouragingly close to measured emissions but predicting carbon burnout was less successful. 24 refs., 4 figs., 6 tabs.

  8. Emission trade balances CO2 emission. The benefits of investing in foreign environmental projects; Emissiehandel brengt CO2-uitstoot in balans. Investeren in buitenlands milieuproject loont

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, A. [ed.

    2000-02-17

    Several plans to trade CO2 emission certificates are developed by companies and institutes such as BP Amoco, Shell and the World Bank. One can make the most advantageous choice to invest in the reduction of greenhouse gases. A brief overview is given of the developments so far. 3 refs.

  9. DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    Reitz, Rolf; Foster, D.; Ghandhi, J.; Rothamer, D.; Rutland, C.; Sanders, S.; Trujillo, M.

    2012-10-26

    The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines.

  10. NOx Emissions Characteristics and Correlation Equations of Two P and W's Axially Staged Sector Combustors Developed Under NASA Environmentally Responsible Aviation (ERA) Project

    Science.gov (United States)

    He, Zhuohui J.

    2017-01-01

    Two P&W (Pratt & Whitney)'s axially staged sector combustors have been developed under NASA's Environmentally Responsible Aviation (ERA) project. One combustor was developed under ERA Phase I, and the other was developed under ERA Phase II. Nitrogen oxides (NOx) emissions characteristics and correlation equations for these two sector combustors are reported in this article. The Phase I design was to optimize the NOx emissions reduction potential, while the Phase II design was more practical and robust. Multiple injection points and fuel staging strategies are used in the combustor design. Pilot-stage injectors are located on the front dome plate of the combustor, and main-stage injectors are positioned on the top and bottom (Phase I) or on the top only (Phase II) of the combustor liners downstream. Low power configuration uses only pilot-stage injectors. Main-stage injectors are added to high power configuration to help distribute fuel more evenly and achieve lean burn throughout the combustor yielding very low NOx emissions. The ICAO (International Civil Aviation Organization) landing-takeoff NOx emissions are verified to be 88 percent (Phase I) and 76 percent (Phase II) under the ICAO CAEP/6 (Committee on Aviation Environmental Protection 6th Meeting) standard, exceeding the ERA project goal of 75 percent reduction, and the combustors proved to have stable combustion with room to maneuver on fuel flow splits for operability.

  11. Historical and projected emissions of HCFC-22 and HFC-410A from China's room air conditioning sector

    Science.gov (United States)

    Wang, Ziyuan; Fang, Xuekun; Li, Li; Bie, Pengju; Li, Zhifang; Hu, Jianxin; Zhang, Boya; Zhang, Jianbo

    2016-05-01

    Recent decades witnessed the increase in production and uses of HCFC-22 (chlorodifluoromethane, CHClF2) and its alternative, HFC-410A (a blend of difluoromethane and pentafluoroethane), in China in response to the booming of room air conditioners (RACs) for both domestic use and exports. HCFC-22 is an ozone-depleting substance under the Montreal Protocol, while both HCFC-22 and HFC-410A are greenhouse gases (GHGs). This study provides a most comprehensive consumption and emission inventory of refrigerants emissions (HCFC-22 and HFC-410A) from RAC sector during 1995-2014, for the first time. Our estimates show that HCFC-22 emissions increased from 0.7 Gg/yr in 1995 to 48.2 Gg/yr in 2014. The accumulative emissions contributed to global total HCFCs emissions by 4.4% (3.3%-6.1%) CFC-11-equivalent (CFC-11-eq) and 5.4% (4.1%-7.5%) CO2-equivalent (CO2-eq) during 1995-2012. If left uncontrolled, accumulative emissions of HFC-410A will be12.4 (7.1-20.2) CO2-eq Pg during 2015-2050, which can offset the global climate benefits achieved by the Montreal Protocol. The HFC-410A emissions from China's RAC sector are estimated to be of importance to both global HFCs emissions and China's GHG emissions. Further, we probed the emission mitigation performances of the current 2014 North American Proposal scenario and a modified more ambitious scenario. The emissions of two mitigation scenarios are only 28% and 22% of the emissions without mitigation actions, respectively. This study is the first effort to map the transition of eliminated substance HCFC-22 and its alternative HFC-410A in RAC sector. Therefore, alternative chemicals should be scrutinized with cautions before they are promoted and applied.

  12. Instrumentation Recommendations for Volcano Monitoring at U.S. Volcanoes Under the National Volcano Early Warning System

    Science.gov (United States)

    Moran, Seth C.; Freymueller, Jeff T.; LaHusen, Richard G.; McGee, Kenneth A.; Poland, Michael P.; Power, John A.; Schmidt, David A.; Schneider, David J.; Stephens, George; Werner, Cynthia A.; White, Randall A.

    2008-01-01

    As magma moves toward the surface, it interacts with anything in its path: hydrothermal systems, cooling magma bodies from previous eruptions, and (or) the surrounding 'country rock'. Magma also undergoes significant changes in its physical properties as pressure and temperature conditions change along its path. These interactions and changes lead to a range of geophysical and geochemical phenomena. The goal of volcano monitoring is to detect and correctly interpret such phenomena in order to provide early and accurate warnings of impending eruptions. Given the well-documented hazards posed by volcanoes to both ground-based populations (for example, Blong, 1984; Scott, 1989) and aviation (for example, Neal and others, 1997; Miller and Casadevall, 2000), volcano monitoring is critical for public safety and hazard mitigation. Only with adequate monitoring systems in place can volcano observatories provide accurate and timely forecasts and alerts of possible eruptive activity. At most U.S. volcanoes, observatories traditionally have employed a two-component approach to volcano monitoring: (1) install instrumentation sufficient to detect unrest at volcanic systems likely to erupt in the not-too-distant future; and (2) once unrest is detected, install any instrumentation needed for eruption prediction and monitoring. This reactive approach is problematic, however, for two reasons. 1. At many volcanoes, rapid installation of new ground-1. based instruments is difficult or impossible. Factors that complicate rapid response include (a) eruptions that are preceded by short (hours to days) precursory sequences of geophysical and (or) geochemical activity, as occurred at Mount Redoubt (Alaska) in 1989 (24 hours), Anatahan (Mariana Islands) in 2003 (6 hours), and Mount St. Helens (Washington) in 1980 and 2004 (7 and 8 days, respectively); (b) inclement weather conditions, which may prohibit installation of new equipment for days, weeks, or even months, particularly at

  13. Newberry Volcano EGS Demonstration Stimulation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Trenton T. Cladouhos, Matthew Clyne, Maisie Nichols,; Susan Petty, William L. Osborn, Laura Nofziger

    2011-10-23

    As a part of Phase I of the Newberry Volcano EGS Demonstration project, several data sets were collected to characterize the rock volume around the well. Fracture, fault, stress, and seismicity data has been collected by borehole televiewer, LiDAR elevation maps, and microseismic monitoring. Well logs and cuttings from the target well (NWG 55-29) and core from a nearby core hole (USGS N-2) have been analyzed to develop geothermal, geochemical, mineralogical and strength models of the rock matrix, altered zones, and fracture fillings (see Osborn et al., this volume). These characterization data sets provide inputs to models used to plan and predict EGS reservoir creation and productivity. One model used is AltaStim, a stochastic fracture and flow software model developed by AltaRock. The software's purpose is to model and visualize EGS stimulation scenarios and provide guidance for final planning. The process of creating an AltaStim model requires synthesis of geologic observations at the well, the modeled stress conditions, and the stimulation plan. Any geomechanical model of an EGS stimulation will require many assumptions and unknowns; thus, the model developed here should not be considered a definitive prediction, but a plausible outcome given reasonable assumptions. AltaStim is a tool for understanding the effect of known constraints, assumptions, and conceptual models on plausible outcomes.

  14. Dust and Gas in the Magellanic Clouds from the HERITAGE Herschel Key Project. I. Dust Properties and Insights into the Origin of the Submm Excess Emission

    CERN Document Server

    Gordon, Karl D; Bot, Caroline; Meixner, Margaret; Babler, Brian; Bernard, Jean-Philippe; Bolatto, Alberto; Boyer, Martha L; Clayton, Geoffrey C; Engelbracht, Charles; Fukui, Yasuo; Galametz, Maud; Galliano, Frederic; Hony, Sacha; Hughes, Annie; Indebetouw, Remy; Israel, Frank P; Jameson, Katie; Kawamura, Akiko; Lebouteiller, Vianney; Li, Aigen; Madden, Suzanne C; Matsuura, Mikako; Misselt, Karl; Montiel, Edward; Okumura, K; Onishi, Toshikazu; Panuzzo, Pasquale; Paradis, Deborah; Rubio, Monica; Sandstrom, Karin; Sauvage, Marc; Seale, Jonathan; Sewilo, Marta; Tchernyshyov, Kirill; Skibba, Ramin

    2014-01-01

    The dust properties in the Large and Small Magellanic Clouds are studied using the HERITAGE Herschel Key Project photometric data in five bands from 100 to 500 micron. Three simple models of dust emission were fit to the observations: a single temperature blackbody modified by a power- law emissivity (SMBB), a single temperature blackbody modified by a broken power-law emissivity (BEMBB), and two blackbodies with different temperatures, both modified by the same power-law emissivity (TTMBB). Using these models we investigate the origin of the submm excess; defined as the submillimeter (submm) emission above that expected from SMBB models fit to observations < 200 micron. We find that the BEMBB model produces the lowest fit residuals with pixel-averaged 500 micron submm excesses of 27% and 43% for the LMC and SMC, respectively. Adopting gas masses from previous works, the gas-to-dust ratios calculated from our the fitting results shows that the TTMBB fits require significantly more dust than are available e...

  15. Volcanoes

    Science.gov (United States)

    ... Part 3 of 3) Hot Weather Tips Heat Stress in Older Adults FAQs Extreme Heat PSAs Related Links MMWR Bibliography CDC's Program Floods Flood Readiness Personal Hygiene After a Disaster Cleanup of Flood Water After a Flood Worker Safety Educational Materials Floods ...

  16. Global projections for anthropogenic reactive nitrogen emissions to the atmosphere: An assessment of scenarios in the scientific literature

    NARCIS (Netherlands)

    van Vuuren, D.P.|info:eu-repo/dai/nl/11522016X; Bouwman, L.F.; Smith, S.J.; Dentener, F.

    2011-01-01

    Most long-term scenarios of global reactive nitrogen (Nr) emissions to the atmosphere are produced by Integrated Assessment Models in the context of climate change assessments. These scenarios indicate that these global Nr emissions are likely to increase in the next decades, followed by a

  17. Energy and Greenhouse Gas Emission Reduction Opportunities for Civil Works Projects Unique to the US Army Corps of Engineers

    Science.gov (United States)

    2012-10-26

    26 22 NOx emissions of various biodiesel blends (Kong 2008) ....................................................... 27...deposits. These issues primarily apply to 100% biodiesel (B100); the drawbacks are greatly reduced with 20% biodiesel blends (B20) and lower blends . The...emission benefits and drawbacks vary with the biodiesel blend . Figure 21 shows this effect for heavy-duty automotive diesel engines. The issue of

  18. Fuel consumption and emissions from navigation in Denmark from 1990-2005 - and projections from 2006-2030

    DEFF Research Database (Denmark)

    Winther, Morten

    sea transport is the most dominant source of emissions from navigation. For national sea transport, a new time series of fuel consumption has been calculated which is considered as much more accurate than fuel sales data reported by the Danish Energy Authority (DEA). The introduction of engine age...... dependent fuel consumption and emission factors has improved the accuracy of the inventory time series results considerably. Results show a need for more strict fuel quality and NOx emission standards for navigation in the future, in order to gain emission improvements in line with those achieved for other......This report documents the fuel consumption and emission inventory for navigation (national sea transport, fisheries and international sea transport) in Denmark, for the historical period 1990-2005 and the forecast period 2006-2030. The inventory follows the UNFCCC (United Nations Framework...

  19. Extending permanent volcano monitoring networks into Iceland's ice caps

    Science.gov (United States)

    Vogfjörd, Kristín S.; Bergsson, Bergur H.; Kjartansson, Vilhjálmur; Jónsson, Thorsteinn; Ófeigsson, Benedikt G.; Roberts, Matthew J.; Jóhannesson, Tómas; Pálsson, Finnur; Magnússon, Eyjólfur; Erlendsson, Pálmi; Ingvarsson, Thorgils; Pálssson, Sighvatur K.

    2015-04-01

    The goals of the FUTUREVOLC project are the establishment of a volcano Supersite in Iceland to enable access to volcanological data from the country's many volcanoes and the development of a multiparametric volcano monitoring and early warning system. However, the location of some of Iceland's most active volcanoes inside the country's largest ice cap, Vatnajökull, makes these goals difficult to achieve as it hinders access and proper monitoring of seismic and deformation signals from the volcanoes. To overcome these obstacles, one of the developments in the project involves experimenting with extending the permanent real-time networks into the ice cap, including installation of stations in the glacier ice. At the onset of the project, only one permanent seismic and GPS site existed within Vatnajökull, on the caldera rim of the Grímsvötn volcano. Two years into the project both seismic and GPS stations have been successfully installed and operated inside the glacier; on rock outcrops as well as on the glacier surface. The specific problems to overcome are (i) harsh weather conditions requiring sturdy and resilient equipment and site installations, (ii) darkness during winter months shutting down power generation for several weeks, (iii) high snow accumulation burying the instruments, solar panels and communication and GPS antennae, and in some locations (iv) extreme icing conditions blocking transmission signals and connection to GPS satellites, as well as excluding the possibility of power generation by wind generators. In 2013, two permanent seismic stations and one GPS station were installed on rock outcrops within the ice cap in locations with 3G connections and powered by solar panels and enough battery storage to sustain operation during the darkest winter months. These sites have successfully operated for over a year with mostly regular maintenance requirements, transmitting data in real-time to IMO for analysis. Preparations for two permanent seismic

  20. Volcano Monitoring Using Google Earth

    Science.gov (United States)

    Cameron, W.; Dehn, J.; Bailey, J. E.; Webley, P.

    2009-12-01

    At the Alaska Volcano Observatory (AVO), remote sensing is an important component of its daily monitoring of volcanoes. AVO’s remote sensing group (AVORS) primarily utilizes three satellite datasets; Advanced Very High Resolution Radiometer (AVHRR) data, from the National Oceanic and Atmospheric Administration’s (NOAA) Polar Orbiting Satellites (POES), Moderate Resolution Imaging Spectroradiometer (MODIS) data from the National Aeronautics and Space Administration’s (NASA) Terra and Aqua satellites, and NOAA’s Geostationary Operational Environmental Satellites (GOES) data. AVHRR and MODIS data are collected by receiving stations operated by the Geographic Information Network of Alaska (GINA) at the University of Alaska’s Geophysical Institute. An additional AVHRR data feed is supplied by NOAA’s Gilmore Creek satellite tracking station. GOES data are provided by the Naval Research Laboratory (NRL), Monterey Bay. The ability to visualize these images and their derived products is critical for the timely analysis of the data. To this end, AVORS has developed javascript web interfaces that allow the user to view images and metadata. These work well for internal analysts to quickly access a given dataset, but they do not provide an integrated view of all the data. To do this AVORS has integrated its datasets with Keyhole Markup Language (KML) allowing them to be viewed by a number of virtual globes or other geobrowsers that support this code. Examples of AVORS’ use of KML include the ability to browse thermal satellite image overlays to look for signs of volcanic activity. Webcams can also be viewed interactively through KML to confirm current activity. Other applications include monitoring the location and status of instrumentation; near real-time plotting of earthquake hypocenters; mapping of new volcanic deposits using polygons; and animated models of ash plumes, created by a combination of ash dispersion modeling and 3D visualization packages.

  1. Update of the volcanic risk map of Colima volcano, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Nuñez Cornu, F. J.; Marquez-Azua, B.

    2010-12-01

    The Colima volcano, located in western Mexico (19° 30.696 N, 103° 37.026 W) began its current eruptive process in February 10, 1999. This event was the basis for the development of two volcanic hazard maps: one for ballistics (rock fall) lahars, and another one for ash fall. During the period of 2003 to 2008 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-Plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano thanks to the low population density and low socio-economic activities at the time The current volcanic activity has triggered ballistic projections, pyroclastic and ash flows, and lahars, all have exceeded the maps limits established in 1999. Vulnerable elements within these areas have gradually changed due to the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano. On the slopes of the northwest side, new blue agave Tequilana weber and avocado orchard crops have emerged along with important production of greenhouse tomato, alfalfa and fruit (citrus) crops that will eventually be processed and dried for exportation to the United States and Europe. Also, in addition to the above, large expanses of corn and sugar cane have been planted on the slopes of the volcano since the nineteenth century. The increased agricultural activity has had a direct impact in the reduction of the available forest land area. Coinciding with this increased activity, the 0.8% growth population during the period of 2000 - 2005, - due to the construction of the Guadalajara-Colima highway-, also increased this impact. The growth in vulnerability changed the level of risk with respect to the one identified in the year 1999 (Suarez, 2000), thus motivating us to perform an update to the risk map at 1:25,000 using vector models of the INEGI, SPOT images of different dates, and fieldwork done in order

  2. Nitrogen multitemporal monitoring through mosses in urban areas affected by mud volcanoes around Mt. Etna, Italy.

    Science.gov (United States)

    Bonanno, Giuseppe

    2013-10-01

    Nitrogen emissions were assessed by using mosses as bioindicators in a densely inhabited area affected by mud volcanoes. Such volcanoes, locally called Salinelle, are phenomena that occur around Mt. Etna (Sicily, Italy), and are interpreted as the surface outflow of a hydrothermal system located below Mt. Etna, which releases sedimentary fluids (hydrocarbons and Na-Cl brines) along with magmatic gases (mainly CO2 and He). To date, N emissions from such mud volcanoes have been only quantitatively assessed, and no biomonitoring campaigns are reported about the cumulative effects of these emissions. This study analyzed N concentrations in moss, water and soil samples, collected in a 4-year monitoring campaign. The bryophyte Bryum argenteum, a species widely adopted in surveys of atmospheric pollution, was used as a biological indicator. N concentrations in biomonitors showed relatively low values in the study sites. However, the results of this study suggest that N emissions from Salinelle may have an impact on surrounding ecosystems because N values in moss and water showed a significant correlation. N oxides, in particular, contribute to acidification of ecosystems, thus multitemporal biomonitoring is recommended, especially in those areas where N emitting sources are anthropogenic and natural.

  3. Lahar hazards at Agua volcano, Guatemala

    Science.gov (United States)

    Schilling, S.P.; Vallance, J.W.; Matías, O.; Howell, M.M.

    2001-01-01

    At 3760 m, Agua volcano towers more than 3500 m above the Pacific coastal plain to the south and 2000 m above the Guatemalan highlands to the north. The volcano is within 5 to 10 kilometers (km) of Antigua, Guatemala and several other large towns situated on its northern apron. These towns have a combined population of nearly 100,000. It is within about 20 km of Escuintla (population, ca. 100,000) to the south. Though the volcano has not been active in historical time, or about the last 500 years, it has the potential to produce debris flows (watery flows of mud, rock, and debris—also known as lahars when they occur on a volcano) that could inundate these nearby populated areas.

  4. Volcanoes muon imaging using Cherenkov telescopes

    CERN Document Server

    Catalano, Osvaldo; Mineo, Teresa; Cusumano, Giancarlo; Maccarone, Maria Concetta; Pareschi, Giovanni

    2015-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energ...

  5. Radial anisotropy ambient noise tomography of volcanoes

    Science.gov (United States)

    Mordret, Aurélien; Rivet, Diane; Shapiro, Nikolai; Jaxybulatov, Kairly; Landès, Matthieu; Koulakov, Ivan; Sens-Schönfelder, Christoph

    2016-04-01

    The use of ambient seismic noise allows us to perform surface-wave tomography of targets which could hardly be imaged by other means. The frequencies involved (~ 0.5 - 20 s), somewhere in between active seismic and regular teleseismic frequency band, make possible the high resolution imaging of intermediate-size targets like volcanic edifices. Moreover, the joint inversion of Rayleigh and Love waves dispersion curves extracted from noise correlations allows us to invert for crustal radial anisotropy. We present here the two first studies of radial anisotropy on volcanoes by showing results from Lake Toba Caldera, a super-volcano in Indonesia, and from Piton de la Fournaise volcano, a hot-spot effusive volcano on the Réunion Island (Indian Ocean). We will see how radial anisotropy can be used to infer the main fabric within a magmatic system and, consequently, its dominant type of intrusion.

  6. A field guide to Newberry Volcano, Oregon

    Science.gov (United States)

    Jenson, Robert A.; Donnelly-Nolan, Julie M.; McKay, Daniele

    2009-01-01

    Newberry Volcano is located in central Oregon at the intersection of the Cascade Range and the High Lava Plains. Its lavas range in age from ca. 0.5 Ma to late Holocene. Erupted products range in composition from basalt through rhyolite and cover ~3000 km2. The most recent caldera-forming eruption occurred ~80,000 years ago. This trip will highlight a revised understanding of the volcano's history based on new detailed geologic work. Stops will also focus on evidence for ice and flooding on the volcano, as well as new studies of Holocene mafic eruptions. Newberry is one of the most accessible U.S. volcanoes, and this trip will visit a range of lava types and compositions including tholeiitic and calc-alkaline basalt flows, cinder cones, and rhyolitic domes and tuffs. Stops will include early distal basalts as well as the youngest intracaldera obsidian flow.

  7. From up to date climate and ocean evidence with updated UN emissions projections, the time is now to recommend an immediate massive effort on CO2.

    Science.gov (United States)

    Carter, Peter

    2017-04-01

    This paper provides further compelling evidence for 'an immediate, massive effort to control CO2 emissions, stopped by mid-century' (Cai, Lenton & Lontzek, 2016). Atmospheric CO2 which is above 405 ppm (actual and trend) still accelerating, despite flat emissions since 2014, with a 2015 >3ppm unprecedented spike in Earth history (A. Glikson),is on the worst case IPCC scenario. Atmospheric methane is increasing faster than its past 20-year rate, almost on the worst-case IPCC AR5 scenario (Global Carbon Project, 2016). Observed effects of atmospheric greenhouse gas (GHG) pollution are increasing faster. This includes long-lived atmospheric GHG concentrations, radiative forcing, surface average warming, Greenland ice sheet melting, Arctic daily sea ice anomaly, ocean heat (and rate of going deeper), ocean acidification, and ocean de-oxygenation. The atmospheric GHG concentration of 485 ppm CO2 eq (WMO, 2015) commits us to 'about 2°C' equilibrium (AR5). 2°C by 2100 would require 'substantial emissions reductions over the next few decades' (AR5). Instead, the May 2016 UN update on 'intended' national emissions targets under the Paris Agreement projects global emissions will be 16% higher by 2030 and the November 2016 International Energy Agency update projects energy-related CO2 eq emissions will be 30% higher by 2030, leading to 'around 2.7°C by 2100 and above 3°C thereafter'. Climate change feedback will be positive this century and multiple large vulnerable sources of amplifying feedback exist (AR5). 'Extensive tree mortality and widespread forest die-back linked to drought and temperature stress have been documented on all vegetated continents' (AR5). 'Recent studies suggest a weakening of the land sink, further amplifying atmospheric growth of CO2' (WMO, 2016). Under all but the best-case IPCC AR5 scenario, surface temperature is projected to increase above 2°C by 2100, which is above 3°C (equilibrium) after 2100, with ocean acidification still increasing at

  8. Modeling the reactive halogen plume from Ambrym volcano and its impact on the troposphere with the CCATT-BRAMS mesoscale model

    OpenAIRE

    Jourdain, L.; T. J. Roberts; M. Pirre; Josse, B.

    2015-01-01

    Ambrym volcano (Vanuatu, Southwest Pacific) is one of the largest sources of continuous volcanic emissions worldwide. As well as releasing SO2 that is oxidized to sulfate, volcanic plumes in the troposphere are shown to undergo reactive halogen chemistry whose atmospheric impacts have been little explored to date. Here, two-way nested simulations were performed with the regional scale model CCATT-BRAMS to test our understanding of the volcano plume chemical...

  9. A study of toxic emissions from a coal-fired power plant utilizing an ESP while demonstrating the ICCT CT-121 FGD Project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-16

    The US Department of Energy is performing comprehensive assessments of toxic emissions from eight selected coal-fired electric utility units. This program responds to the Clean Air Act Amendments of 1990, which require the US Environmental Protection Agency (EPA) to evaluate emissions of hazardous air pollutants (HAPs) from electric utility power plants for Potential health risks. The resulting data will be furnished to EPA utility power plants and health risk determinations. The assessment of emissions involves the collection and analysis of samples from the major input, process, and output streams of each of the eight power plants for selected hazardous Pollutants identified in Title III of the Clean Air Act. Additional goals are to determine the removal efficiencies of pollution control subsystems for these selected pollutants and the Concentrations associated with the particulate fraction of the flue gas stream as a function of particle size. Material balances are being performed for selected pollutants around the entire power plant and several subsystems to identify the fate of hazardous substances in each utility system. Radian Corporation was selected to perform a toxics assessment at a plant demonstrating an Innovative Clean Coal Technology (ICCT) Project. The site selected is Plant Yates Unit No. 1 of Georgia Power Company, which includes a Chiyoda Thoroughbred-121 demonstration project.

  10. Space telescope and optical reverberation mapping project. IV. Anomalous behavior of the broad ultraviolet emission lines in NGC 5548

    OpenAIRE

    Goad, Michael R.; Korista, Kirk T.; De Rosa, Gisella; Kriss, Gerard A.; Edelson, Rick A.; Barth, Aaron J.; Ferland, Gary J.; Kochanek, C. S.; Netzer, Hagai; Peterson, Bradley M.; Bentz, Misty Cherie; Bisogni, S.; Crenshaw, Daniel Michael; Denney, Kelly D.; Ely, Justin C.

    2016-01-01

    During an intensive Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS) UV monitoring campaign of the Seyfert 1 galaxy NGC 5548 performed from 2014 February to July, the normally highly correlated far UV continuum and broad emission line variations decorrelated for ∼60-70 days, starting ∼75 days after the first HST/COS observation. Following this anomalous state, the flux and variability of the broad emission lines returned to a more normal state. This transient behavior, character...

  11. DUST AND GAS IN THE MAGELLANIC CLOUDS FROM THE HERITAGE HERSCHEL KEY PROJECT. I. DUST PROPERTIES AND INSIGHTS INTO THE ORIGIN OF THE SUBMILLIMETER EXCESS EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Karl D.; Roman-Duval, Julia; Meixner, Margaret [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bot, Caroline [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l Université, F-67000 Strasbourg (France); Babler, Brian [Department of Astronomy, 475 North Charter Street, University of Wisconsin, Madison, WI 53706 (United States); Bernard, Jean-Philippe [CESR, Université de Toulouse, UPS, 9 Avenue du Colonel Roche, F-31028 Toulouse, Cedex 4 (France); Bolatto, Alberto; Jameson, Katherine [Department of Astronomy, Lab for Millimeter-wave Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Boyer, Martha L. [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Clayton, Geoffrey C. [Department of Physics and Astronomy, Louisiana State University, 233-A Nicholson Hall, Tower Drive, Baton Rouge, LA 70803 (United States); Engelbracht, Charles [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Fukui, Yasuo [Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Galametz, Maud [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching-bei-Mnchen (Germany); Galliano, Frederic; Hony, Sacha; Lebouteiller, Vianney [CEA, Laboratoire AIM, Irfu/SAp, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Hughes, Annie [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Indebetouw, Remy [Department of Astronomy, University of Virginia, and National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Israel, Frank P. [Sterrewacht Leiden, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Kawamura, Akiko [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo, 181-8588 (Japan); and others

    2014-12-20

    The dust properties in the Large and Small Magellanic clouds (LMC/SMC) are studied using the HERITAGE Herschel Key Project photometric data in five bands from 100 to 500 μm. Three simple models of dust emission were fit to the observations: a single temperature blackbody modified by a power-law emissivity (SMBB), a single temperature blackbody modified by a broken power-law emissivity (BEMBB), and two blackbodies with different temperatures, both modified by the same power-law emissivity (TTMBB). Using these models, we investigate the origin of the submillimeter excess, defined as the submillimeter emission above that expected from SMBB models fit to observations <200 μm. We find that the BEMBB model produces the lowest fit residuals with pixel-averaged 500 μm submillimeter excesses of 27% and 43% for the LMC and SMC, respectively. Adopting gas masses from previous works, the gas-to-dust ratios calculated from our fitting results show that the TTMBB fits require significantly more dust than are available even if all the metals present in the interstellar medium (ISM) were condensed into dust. This indicates that the submillimeter excess is more likely to be due to emissivity variations than a second population of colder dust. We derive integrated dust masses of (7.3 ± 1.7) × 10{sup 5} and (8.3 ± 2.1) × 10{sup 4} M {sub ☉} for the LMC and SMC, respectively. We find significant correlations between the submillimeter excess and other dust properties; further work is needed to determine the relative contributions of fitting noise and ISM physics to the correlations.

  12. Application of emulsion imaging system for cosmic-ray muon radiography to explore the internal structure of Teide and Cumbre Vieja volcanoes in the Canary Islands, Spain

    Science.gov (United States)

    Hernández, Iñigo; Hernández, Pedro; Pérez, Nemesio; Tanaka, Hiroyuki; Miyamoto, Seygo; Barrancos, José; Padrón, Eleazar

    2013-04-01

    The internal structure of volcanoes, especially in their up per part, is product of past eruptions. Therefore, the knowledge of the internal structure of a volcano is of great importance for understanding its behaviour and to forecast the nature and style of the next eruptions. For these reasons, during past years scientists have made a big effort to investigate the internal structure of the volcanoes with different geophysical techniques, including deep drilling, passive and active seismic tomography, geoelectrics and magnetotellurics and gravimetry. One of the limits of conventional geophysical methods is the spatial resolution, which typically ranges between some tens of meters up to 1 km. In this sense, the radiography of active volcanoes based on natural muons, even if limited to the external part of the volcano, represents an important tool for investigating the internal structure of a volcano at higher spatial resolution (Macedonio and Martini, 2009). Moreover, muon radiography is able to resolve density contrasts of the order of 1-3%, significantly greater than the resolution obtained with conventional methods. As example, the experiment of muon radiography carried out at Mt. Asama volcano by Tanaka et al., 2007, allowed the reconstruction of the density map of the cone and detection of a dense region that corresponds to the position and shape of a lava deposit created during the last eruption in 2004. In the framework of a research project financed by the Canary Agency of Research, Innovation and Information Society, we will implement muon measurements at Teide volcano in Tenerife Island and Cumbre Vieja volcano in La Palma Island, Canary Islands, to radiographically image the subsurface structure of these two volcanic edifices. The data analysis will involve the study both of the shallow structure of both volcanoes and of the requirements for the implementation of the muon detectors. Both Cumbre Vieja and Teide are two active volcanoes that arouse great

  13. Evolution of Irruputuncu volcano, Central Andes, northern Chile

    Science.gov (United States)

    Rodríguez, I.; Roche, O.; Moune, S.; Aguilera, F.; Campos, E.; Pizarro, M.

    2015-11-01

    The Irruputuncu is an active volcano located in northern Chile within the Central Andean Volcanic Zone (CAVZ) and that has produced andesitic to trachy-andesitic magmas over the last ˜258 ± 49 ka. We report petrographical and geochemical data, new geochronological ages and for the first time a detailed geological map representing the eruptive products generated by the Irruputuncu volcano. The detailed study on the volcanic products allows us to establish a temporal evolution of the edifice. We propose that the Irruputuncu volcanic history can be divided in two stages, both dominated by effusive activity: Irruputuncu I and II. The oldest identified products that mark the beginning of Irruputuncu I are small-volume pyroclastic flow deposits generated during an explosive phase that may have been triggered by magma injection as suggested by mingling features in the clasts. This event was followed by generation of large lava flows and the edifice grew until destabilization of its SW flank through the generation of a debris avalanche, which ended Irruputuncu I. New effusive activity generated lavas flows to the NW at the beginning of Irruputuncu II. In the meantime, lava domes that grew in the summit were destabilized, as shown by two well-preserved block-and-ash flow deposits. The first phase of dome collapse, in particular, generated highly mobile pyroclastic flows that propagated up to ˜8 km from their source on gentle slopes as low as 11° in distal areas. The actual activity is characterized by deposition of sulfur and permanent gas emissions, producing a gas plume that reaches 200 m above the crater. The maximum volume of this volcanic system is of ˜4 km3, being one of the smallest active volcano of Central Andes.

  14. Lahar-hazard zonation for San Miguel volcano, El Salvador

    Science.gov (United States)

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Chesner, C.A.; Howell, M.M.

    2001-01-01

    San Miguel volcano, also known as Chaparrastique, is one of many volcanoes along the volcanic arc in El Salvador. The volcano, located in the eastern part of the country, rises to an altitude of about 2130 meters and towers above the communities of San Miguel, El Transito, San Rafael Oriente, and San Jorge. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and the PanAmerican and coastal highways cross the lowermost northern and southern flanks of the volcano. The population density around San Miguel volcano coupled with the proximity of major transportation routes increases the risk that even small volcano-related events, like landslides or eruptions, may have significant impact on people and infrastructure. San Miguel volcano is one of the most active volcanoes in El Salvador; it has erupted at least 29 times since 1699. Historical eruptions of the volcano consisted mainly of relatively quiescent emplacement of lava flows or minor explosions that generated modest tephra falls (erupted fragments of microscopic ash to meter sized blocks that are dispersed into the atmosphere and fall to the ground). Little is known, however, about prehistoric eruptions of the volcano. Chemical analyses of prehistoric lava flows and thin tephra falls from San Miguel volcano indicate that the volcano is composed dominantly of basalt (rock having silica content

  15. EARTHQUAKES - VOLCANOES (Causes - Forecast - Counteraction)

    Science.gov (United States)

    Tsiapas, Elias

    2014-05-01

    Earthquakes and volcanoes are caused by: 1)Various liquid elements (e.g. H20, H2S, S02) which emerge from the pyrosphere and are trapped in the space between the solid crust and the pyrosphere (Moho discontinuity). 2)Protrusions of the solid crust at the Moho discontinuity (mountain range roots, sinking of the lithosphere's plates). 3)The differential movement of crust and pyrosphere. The crust misses one full rotation for approximately every 100 pyrosphere rotations, mostly because of the lunar pull. The above mentioned elements can be found in small quantities all over the Moho discontinuity, and they are constantly causing minor earthquakes and small volcanic eruptions. When large quantities of these elements (H20, H2S, SO2, etc) concentrate, they are carried away by the pyrosphere, moving from west to east under the crust. When this movement takes place under flat surfaces of the solid crust, it does not cause earthquakes. But when these elements come along a protrusion (a mountain root) they concentrate on its western side, displacing the pyrosphere until they fill the space created. Due to the differential movement of pyrosphere and solid crust, a vacuum is created on the eastern side of these protrusions and when the aforementioned liquids overfill this space, they explode, escaping to the east. At the point of their escape, these liquids are vaporized and compressed, their flow accelerates, their temperature rises due to fluid friction and they are ionized. On the Earth's surface, a powerful rumbling sound and electrical discharges in the atmosphere, caused by the movement of the gasses, are noticeable. When these elements escape, the space on the west side of the protrusion is violently taken up by the pyrosphere, which collides with the protrusion, causing a major earthquake, attenuation of the protrusions, cracks on the solid crust and damages to structures on the Earth's surface. It is easy to foresee when an earthquake will occur and how big it is

  16. Antisana volcano: A representative andesitic volcano of the eastern cordillera of Ecuador: Petrography, chemistry, tephra and glacial stratigraphy

    Science.gov (United States)

    Hall, Minard L.; Mothes, Patricia A.; Samaniego, Pablo; Militzer, Annemarie; Beate, Bernardo; Ramón, Patricio; Robin, Claude

    2017-01-01

    Antisana volcano is representative of many active andesitic strato-volcanoes of Pleistocene age in Ecuador's Eastern Cordillera. This study represents the first modern geological and volcanological investigation of Antisana since the late 1890's; it also summarizes the present geochemical understanding of its genesis. The volcano's development includes the formation and destruction of two older edifices (Antisana I and II) during some 400 + ka. Antisana II suffered a sector collapse about 15,000 years ago which was followed by the birth and growth of Antisana III. During its short life Antisana III has generated ≥50 eruptions of small to medium intensity, often associated with andesitic to dacitic lava flows and tephra, as well as with late Pleistocene and Holocene glacial advances. Throughout its long history Antisana's lavas have been characterized by a persistent mineral assemblage, consisting of 30-40 vol% phenocrysts of plagioclase, both clino- and orthopyroxene, and Fe-Ti oxides, with rare occurrences of olivine or amphibole, frequently in a microcrystalline to glassy matrix. This uniformity occurs despite the magma's progressive chemical evolution over ≥400 ka from early basic andesites (53-58 wt% SiO2) to intermediate and Si-rich andesites (58-62% SiO2), and recently to dacites (63-67% SiO2). Chemical diagrams suggest that crystal fractionation was the most likely magmatic process of evolution. The exception to this slowly evolving history was the short-lived emission at ∼210 ka of the Cuyuja lavas from Antisana II that generated a 73 km long andesitic lava flow. Contrasting with Antisana's general magmatic trend, Cuyuja lava (∼11 km3) is a high-Mg andesite with unusually high concentrations of incompatible elements. Antisana developed within the Chacana caldera complex, a large active siliceous center that began ∼3 Ma ago, however its lavas are chemically distinct from coeval lavas of Chacana.

  17. Projection of global terrestrial nitrous oxide emission using future scenarios of climate and land-use management

    Science.gov (United States)

    Inatomi, M. I.; Ito, A.

    2016-12-01

    Nitrous oxide (N2O), with a centennial mean residence time in the atmosphere, is one of the most remarkable greenhouse gases. Because natural and anthropogenic emissions make comparable contributions, we need to take account of different sources of N2O such as natural soils and fertilizer in croplands to predict the future emission change and to discuss its mitigation. In this study, we conduct a series of simulations of future change in nitrous oxide emission from terrestrial ecosystems using a process-based model, VISIT. We assume a couple of scenarios of future climate change, atmospheric nitrogen deposition, fertilizer input, and land-use change. In particular, we develop a new scenario of cropland fertilizer input on the basis of changes in crop productivity and fertilizer production cost. Expansion of biofuel crop production is considered but in a simplified manner (e.g., a specific fraction of pasture conversion to biofuel cultivation). Regional and temporal aspects of N2O emission are investigated and compared with previous studies. Finally, we make discussions, on the basis of simulated results, about the high-end of N2O emission, mitigation options, and impact of fertilizer input.

  18. Decomposing uncertainties in the future terrestrial carbon budget associated with emission scenario, climate projection, and ecosystem simulation using the ISI-MIP result

    Directory of Open Access Journals (Sweden)

    K. Nishina

    2014-10-01

    Full Text Available Changes to global net primary production (NPP, vegetation biomass carbon (VegC, and soil organic carbon (SOC estimated by six global vegetation models (GVM obtained from an Inter-Sectoral Impact Model Intercomparison Project study were examined. Simulation results were obtained using five global climate models (GCM forced with four representative concentration pathway (RCP scenarios. To clarify which component (emission scenarios, climate projections, or global vegetation models contributes the most to uncertainties in projected global terrestrial C cycling by 2100, analysis of variance (ANOVA and wavelet clustering were applied to 70 projected simulation sets. In the end of simulation period, the changes from the year of 2000 in all three variables considerably varied from net negative to positive values. ANOVA revealed that the main sources of uncertainty are different among variables and depend on the projection period. We determined that in the global VegC, and SOC projections, GVMs dominate uncertainties (60 and 90%, respectively rather than climate driving scenarios, i.e., RCPs and GCMs. These results suggested that we don't have still enough resolution among each RCP scenario to evaluate climate change impacts on ecosystem conditions in global terrestrial C cycling. In addition, we found that the contributions of each uncertainty source were spatio-temporally heterogeneous and differed among the GVM variables. The dominant uncertainty source for changes in NPP and VegC varies along the climatic gradient. The contribution of GVM to the uncertainty decreases as the climate division gets cooler (from ca. 80% in the equatorial division to 40% in the snow climatic division. To evaluate the effects of climate change on ecosystems with practical resolution in RCP scenarios, GVMs require further improvement to reduce the uncertainties in global C cycling as much as, if not more than, GCMs. Our study suggests that the improvement of GVMs is a

  19. Monitoring diffuse He degassing from the summit crater of Pico do Fogo volcano, Cape Verde

    Science.gov (United States)

    Alonso, Mar; Dionis, Samara; Fernandes, Paulo; Melián, Gladys; Asensio-Ramos, María; Padilla, Germán D.; Hernández, Pedro A.; Pérez, Nemesio M.; Silva, Sonia

    2017-04-01

    Fogo (476km2) is one of the Sotavento islands of Cape Verde archipelago. The main geomorphological feature is the presence of a 9 km wide caldera hosting one of the world's most active volcanoes, Pico do Fogo (2829 m.a.s.l.), with the last eruption occurring on November 2014. Pico do Fogo volcano is characterized by the existence of a fumarolic field situated NW inside the summit crater and composed by low- and high-temperature gas discharges (90 to above 200oC respectively) with widespread sulfur precipitates at the surface, typical of hydrothermal alteration. As part of the geochemical monitoring program for the volcanic surveillance of Fogo volcano, twelve surveys of diffuse Helium (He) emission through the surface of the crater have been performed since 2008. He emission has been measured because it is considered as an excellent geochemical indicator (Pogorsky and Quirt 1981) due to its geochemical properties. Recent results clearly show the importance of helium emission studies for the prediction of major volcanic events and the importance of continuous monitoring of this gas in active volcanic regions (Padrón et al. 2013). Soil He emission rates were measured always at the same 63 sampling sites distributed inside the crater and covering an area of 0.142km2. At each measurement site, soil gas was collected in 10 cc glass vials with a hypodermic syringe by inserting to 40 cm depth a 50 cm stainless probe and later analyzed for He content by a quadrupole mass spectrometer Pfeiffer Omnistar 422. Diffusive and convective emission values were estimated at each sampling site following the Fick and Darcy's laws. The He emission rate through the crater was estimated after making the spatial interpolation maps using sequential Gaussian simulation. The average emission rate during these eight years of study is 3.3 kg d-1. The emission rate showed an important increase (up to 5.7 kg d-1) eight months before the 2014 eruption onset. During the eruptive period the crater

  20. The Volcano Disaster Assistance Program (VDAP) - Past and Future

    Science.gov (United States)

    Ewert, J. W.; Pallister, J. S.

    2010-12-01

    For 24 years the U.S. Geological Survey and USAID’s Office of Foreign Disaster Assistance have supported a small team of scientists and the monitoring equipment required to respond to volcanic crises at short notice anywhere in the world. This VDAP team was founded following the 1985 tragedy at Nevado del Ruiz, where 23,000 perished following an eruption-triggered lahar that swept through the town of Armero, Colombia. Through its first two decades, VDAP has deployed teams and equipment to assist host-country counterparts in responding to volcanic eruptions and unrest at numerous volcanoes in Central and South America, the Caribbean, the Western Pacific and Africa and the Middle East. VDAP and the larger USGS Volcano Hazards Program (VHP) have a synergistic relationship. VDAP contributes to domestic eruption responses (e.g., Anatahan, Commonwealth of the Marianas Islands (2003-05), Mount St. Helens (2004) and several Alaskan eruptions). In turn, when VDAP lacks sufficient capability, the larger USGS Volcano Hazards Program provides a “backstop” of staff and expertise to support its international work. Between crises, VDAP conducts capacity-building projects, including construction of volcano-monitoring networks and education programs in monitoring, hazard assessment and eruption forecasting. Major capacity-building projects have focused on Central and South America (1998-present), Papua New Guinea (1998-2000) and Indonesia (2004-present). In all cases, VDAP scientists work in the background, providing support to counterpart agencies and representing the U.S. Government as scientist-diplomats. All VDAP monitoring equipment (whether used in crisis response or in capacity building) is donated to counterpart agencies as a form of U.S. foreign aid. Over the years, VDAP has helped build and sustain volcano observatories and monitoring programs in more than a dozen countries. As observatories, monitoring networks, and the science of volcanology and forecasting have

  1. Augustine Volcano, Cook Inlet, Alaska (January 31, 2006)

    Science.gov (United States)

    2006-01-01

    Since last spring, the U.S. Geological Survey's Alaska Volcano Observatory (AVO) has detected increasing volcanic unrest at Augustine Volcano in Cook Inlet, Alaska near Anchorage. Based on all available monitoring data, AVO regards that an eruption similar to 1976 and 1986 is the most probable outcome. During January, activity has been episodic, and characterized by emission of steam and ash plumes, rising to altitudes in excess of 9,000 m (30,000 ft), and posing hazards to aircraft in the vicinity. In the last week, volcanic flows have been seen on the volcano's flanks. An ASTER thermal image was acquired at night at 22:50 AST on January 31, 2006, during an eruptive phase of Augustine. The image shows three volcanic flows down the north flank of Augustine as white (hot) areas. The eruption plume spreads out to the east in a cone shape: it appears dark blue over the summit because it is cold and water ice dominates the composition; further downwind a change to orange color indicates that the plume is thinning and the signal is dominated by the presence of ash. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion

  2. Study of Seismic Activity at Ceboruco Volcano, Mexico

    Science.gov (United States)

    Nunez-Cornu, F. J.; Escudero, C. R.; Rodríguez Ayala, N. A.; Suarez-Plascencia, C.

    2013-12-01

    Many societies and their economies endure the disastrous consequences of destructive volcanic eruptions. The Ceboruco stratovolcano (2,280 m.a.s.l.) is located in Nayarit, Mexico, at the west of the Mexican volcanic belt and towards the Sierra de San Pedro southeast, which is a key communication point for coast of Jalisco and Nayarit and the northwest of Mexico. It last eruptive activity was in 1875, and during the following five years it presents superficial activity such as vapor emissions, ash falls and riodacitic composition lava flows along the southeast side. Although surface activity has been restricted to fumaroles near the summit, Ceboruco exhibits regular seismic unrest characterized by both low frequency seismic events and volcano-tectonic earthquakes. From March 2003 until July 2008 a three-component short-period seismograph Marslite station with a Lennartz 3D (1Hz) was deployed in the south flank (CEBN) and within 2 km from the summit to monitoring the seismic activity at the volcano. The LF seismicity recorded was classified using waveform characteristics and digital analysis. We obtained four groups: impulsive arrivals, extended coda, bobbin form, and wave package amplitude modulation earthquakes. The extended coda is the group with more earthquakes and present durations of 50 seconds. Using the moving particle technique, we read the P and S wave arrival times and estimate azimuth arrivals. A P-wave velocity of 3.0 km/s was used to locate the earthquakes, most of the hypocenters are below the volcanic edifice within a circular perimeter of 5 km of radius and its depths are calculated relative to the CEBN elevation as follows. The impulsive arrivals earthquakes present hypocenters between 0 and 1 km while the other groups between 0 and 4 km. Results suggest fluid activity inside the volcanic building that could be related to fumes on the volcano. We conclude that the Ceboruco volcano is active. Therefore, it should be continuously monitored due to the

  3. Three-dimensional resistivity modeling of GREATEM survey data from Ontake Volcano, northwest Japan

    Science.gov (United States)

    Abd Allah, Sabry; Mogi, Toru

    2016-05-01

    Ontake Volcano is located in central Japan, 200 km northwest of Tokyo and erupted on September 27, 2014. To study the structure of Ontake Volcano and discuss the process of its phreatic eruption, which can help in future eruptions mitigation, airborne electromagnetic (AEM) surveys using the grounded electrical-source airborne transient electromagnetic (GREATEM) system were conducted over Ontake Volcano. Field measurements and data analysis were done by OYO Company under the Sabo project managed by the Ministry of Land, Infrastructure, Transport and Tourism. Processed data and 1D resistivity models were provided by this project. We performed numerical forward modeling to generate a three-dimensional (3D) resistivity structure model that fits the GREATEM data where a composite of 1D resistivity models was used as the starting model. A 3D electromagnetic forward-modeling scheme based on a staggered-grid finite-difference method was modified and used to calculate the response of the 3D resistivity model along each survey line. We verified the model by examining the fit of magnetic-transient responses between the field data and 3D forward-model computed data. The preferred 3D resistivity models show that a moderately resistive structure (30-200 Ω m) is characteristic of most of the volcano, and were able to delineate a hydrothermal zone within the volcanic edifice. This hydrothermal zone may be caused by a previous large sector collapse.

  4. Impact of climate change on renewable groundwater resources: assessing the benefits of avoided greenhouse gas emissions using selected CMIP5 climate projections

    Science.gov (United States)

    Portmann, Felix T.; Döll, Petra; Eisner, Stephanie; Flörke, Martina

    2013-06-01

    Reduction of greenhouse gas (GHG) emissions to minimize climate change requires very significant societal effort. To motivate this effort, it is important to clarify the benefits of avoided emissions. To this end, we analysed the impact of four emissions scenarios on future renewable groundwater resources, which range from 1600 GtCO2 during the 21st century (RCP2.6) to 7300 GtCO2 (RCP8.5). Climate modelling uncertainty was taken into account by applying the bias-corrected output of a small ensemble of five CMIP5 global climate models (GCM) as provided by the ISI-MIP effort to the global hydrological model WaterGAP. Despite significant climate model uncertainty, the benefits of avoided emissions with respect to renewable groundwater resources (i.e. groundwater recharge (GWR)) are obvious. The percentage of projected global population (SSP2 population scenario) suffering from a significant decrease of GWR of more than 10% by the 2080s as compared to 1971-2000 decreases from 38% (GCM range 27-50%) for RCP8.5 to 24% (11-39%) for RCP2.6. The population fraction that is spared from any significant GWR change would increase from 29% to 47% if emissions were restricted to RCP2.6. Increases of GWR are more likely to occur in areas with below average population density, while GWR decreases of more than 30% affect especially (semi)arid regions, across all GCMs. Considering change of renewable groundwater resources as a function of mean global temperature (GMT) rise, the land area that is affected by GWR decreases of more than 30% and 70% increases linearly with global warming from 0 to 3 ° C. For each degree of GMT rise, an additional 4% of the global land area (except Greenland and Antarctica) is affected by a GWR decrease of more than 30%, and an additional 1% is affected by a decrease of more than 70%.

  5. Geochemical monitoring of Taal volcano (Philippines) by means of diffuse CO2 degassing studies

    Science.gov (United States)

    Padrón, Eleazar; Hernández, Pedro A.; Arcilla, Carlo; Pérez, Nemesio M.; Lagmay, Alfredo M.; Rodríguez, Fátima; Quina, Gerald; Alonso, Mar; Padilla, Germán D.; Aurelio, Mario A.

    2017-04-01

    Observing changes in the discharge rate of CO2 is an important part of volcanic monitoring programs, because it is released by progressive depressurization of magma during ascent and reach the surface well before their parental magma. Taal Volcano in Southwest Luzon, Philippines, lies between a volcanic arc front facing the subduction zone along the Manila Trench and a volcanic field formed from extension beyond the arc front. Taal Volcano Island is formed by a main tuff cone surrounded by several smaller tuff cones, tuff rings and scoria cones. This island is located in the center of the 30 km wide Taal Caldera, now filled by Taal Lake. To monitor the volcanic activity of Taal volcano is a priority task in the Philippines, because several million people live within a 20-km radius of Taal's caldera rim. During the last period of volcanic unrest from 2010 to 2011, the main crater lake of Taal volcano released the highest diffuse CO2 emission rates through the water surface reported to date by volcanic lakes worldwide. The maximum CO2 emission rate measured in the study period occurred two months before the strongest seismic activity recorded during the unrest period (Arpa et al., 2013, Bull Volcanol 75:747). After the unrest period, diffuse CO2 emission has remained in the range 532-860 t/d in the period 2013-2016. In January 2016, an automatic geochemical station to monitor in a continuous mode the diffuse CO2 degassing in a selected location of Taal, was installed in January 2016 to improve the early warning system at the volcano. The station is located at Daang Kastila, at the northern portion of the main crater rim. It measures hourly the diffuse CO2 efflux, atmospheric CO2 concentration, soil water content and temperature, wind speed and direction, air temperature and humidity, rainfall, and barometric pressure. The 2016 time series show CO2 efflux values in the range 20-690 g m-2 d-1.Soil temperature, heavily influenced by rainfall, ranged between 74 and 96o

  6. Role of non-mantle CO2 in the dynamics of volcano degassing: The Mount Vesuvius example

    OpenAIRE

    Iacono Marziano, Giada; Gaillard, Fabrice; Scaillet, Bruno; Chiodini, G

    2009-01-01

    International audience; Mount Vesuvius, Italy, quiescent since A. D. 1944, is a dangerous volcano currently characterized by elevated CO2 emissions of debated origin. We show that such emissions are most likely the surface manifestation of the deep intrusion of alkalic-basaltic magma into the sedimentary carbonate basement, accompanied by sidewall assimilation and CO2 volatilization. During the last eruptive period (1631-1944), the carbonate-sourced CO2 made up 4.7-5.3 wt% of the vented magma...

  7. Characterizing toxic emissions from a coal-fired power plant demonstrating the AFGD ICCT Project and a plant utilizing a dry scrubber/baghouse system: Bailly Station Units 7 and 8 and AFGD ICCT Project. Final report. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dismukes, E.B.

    1994-10-20

    This report describes results of assessment of the risk of emissions of hazardous air pollutants at one of the electric power stations, Bailly Station, which is also the site of a Clean Coal Technology project demonstrating the Pure Air Advanced Flue Gas Desulfurization process (wet limestone). This station represents the configuration of no NO{sub x} reduction, particulate control with electrostatic precipitators, and SO{sub 2} control with a wet scrubber. The test was conducted September 3--6, 1993. Sixteen trace metals were determined along with 5 major metals. Other inorganic substances and organic compounds were also determined.

  8. Closing the gap? Top-down versus bottom-up projections of China's regional energy use and CO2 emissions

    DEFF Research Database (Denmark)

    Dai, Hancheng; Mischke, Peggy; Xie, Xuxuan

    2016-01-01

    As the world's largest CO2 emitter, China is a prominent case study for scenario analysis. This study uses two newly developed global top-down and bottom-up models with a regional China focus to compare China's future energy and CO2 emission pathways toward 2050. By harmonizing the economic...

  9. Space Telescope and Optical Reverberation Mapping Project. IV. Anomalous behavior of the broad ultraviolet emission lines in NGC 5548

    CERN Document Server

    Goad, M R; De Rosa, G; Kriss, G A; Edelson, R; Barth, A J; Ferland, G J; Kochanek, C S; Netzer, H; Peterson, B M; Bentz, M C; Bisogni, S; Crenshaw, D M; Denney, K D; Ely, J; Fausnaugh, M M; Grier, C J; Gupta, A; Horne, K D; Kaastra, J; Pancoast, A; Pei, L; Pogge, R W; Skielboe, A; Starkey, D; Vestergaard, M; Zu, Y; Anderson, M D; Arevalo, P; Bazhaw, C; Borman, G A; Boroson, T A; Bottorff, M C; Brandt, W N; Breeveld, A A; Brewer, B J; Cackett, E M; Carini, M T; Croxall, K V; Bonta, E Dalla; de Lorenzo-Caceres, A; Dietrich, M; Efimova, N V; Evans, P A; Filippenko, A V; Flatland, K; Gehrels, N; Geier, S; Gelbord, G M; Gonzalez, L; Gorjian, V; Grupe, D; Hall, P B; Hicks, S; Horenstein, D; Hutchison, T; Im, M; Jensen, J J; Joner, M D; Jones, J; Kaspi, S; Kelly, B C; Kennea, J A; Kim, M; Kim, S C; Klimanov, S A; Larionov, V M; Lee, J C; Leonard, D C; Lira, P; MacInnis, F; Manne-Nicholas, E R; Mathur, S; McHardy, I M; Montouri, C; Musso, R; Nazarov, S V; Norris, R P; Nousek, J A; Okhmat, D N; Papadakis, I; Parks, J R; Pott, J -U; Rafter, S E; Rix, H -W; Saylor, D A; Schimoia, J S; Schnulle, K; Sergeev, S G; Siegel, M; Spencer, M; Sung, H -I; Teems, K G; Treu, T; Turner, C S; Uttley, P; Villforth, C; Weiss, Y; Woo, J -H; Yan, H; Young, S; Zheng, W -K

    2016-01-01

    During an intensive Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS) UV monitoring campaign of the Seyfert~1 galaxy NGC 5548 performed from 2014 February to July, the normally highly correlated far-UV continuum and broad emission-line variations decorrelated for ~60 to 70 days, starting ~75 days after the first HST/COS observation. Following this anomalous state, the flux and variability of the broad emission lines returned to a more normal state. This transient behavior, characterised by significant deficits in flux and equivalent width of the strong broad UV emission lines, is the first of its kind to be unambiguously identified in an active galactic nucleus reverberation mapping campaign. The largest corresponding emission-line flux deficits occurred for the high-ionization collisionally excited lines, C IV and Si IV(+O IV]), and also He II(+O III]), while the anomaly in Ly-alpha was substantially smaller. This pattern of behavior indicates a depletion in the flux of photons with E_{\\rm ph} >...

  10. Radioactive Air Emission Notice of Construction (NOC) for Construction of Liquid Effluent Transfer System Project W-519

    Energy Technology Data Exchange (ETDEWEB)

    HOMAN, N.A.

    2000-05-01

    The proposed action is to install a new liquid effluent transfer system (three underground waste transfer pipelines). As such, a potential new source will be created as a result of the construction activities. The anticipated emissions associated with this activity are insignificant.

  11. Fuel consumption and emissions from navigation in Denmark from 1990-2005 - and projections from 2006-2030

    DEFF Research Database (Denmark)

    Winther, Morten

    Convention of Climate Changes), and the UNECE CLRTAP (United Nations Economic Commission for Europe Convention of Long Range Transboundary Air Pollutants) convention rules. The emission components considered are SO2, NOX, VOC (NMVOC and CH4) CO, CO2, N2O and particulates (TSP, PM10 and PM2.5). International...

  12. Results from the Autonomous Triggering of in situ Sensors on Kilauea Volcano, HI, from Eruption Detection by Spacecraft

    Science.gov (United States)

    Doubleday, J.; Behar, A.; Davies, A.; Mora-Vargas, A.; Tran, D.; Abtahi, A.; Pieri, D. C.; Boudreau, K.; Cecava, J.

    2008-12-01

    Response time in acquiring sensor data in volcanic emergencies can be greatly improved through use of autonomous systems. For instance, ground-based observations and data processing applications of the JPL Volcano Sensor Web have promptly triggered spacecraft observations [e.g., 1]. The reverse command and information flow path can also be useful, using autonomous analysis of spacecraft data to trigger in situ sensors. In this demonstration project, SO2 sensors were incorporated into expendable "Volcano Monitor" capsules and placed downwind of the Pu'u 'O'o vent of Kilauea volcano, Hawai'i. In nominal (low) power conservation mode, data from these sensors were collected and transmitted every hour to the Volcano Sensor Web through the Iridium Satellite Network. When SO2 readings exceeded a predetermined threshold, the modem within the Volcano Monitor sent an alert to the Sensor Web, and triggered a request for prompt Earth Observing-1 (EO-1) spacecraft data acquisition. The Volcano Monitors were also triggered by the Sensor Web in response to an eruption detection by the MODIS instrument on Terra. During these pre- defined "critical events" the Sensor Web ordered the SO2 sensors within the Volcano Monitor to increase their sampling frequency to every 5 minutes (high power "burst mode"). Autonomous control of the sensors' sampling frequency enabled the Sensor Web to monitor and respond to rapidly evolving conditions, and allowed rapid compilation and dissemination of these data to the scientific community. Reference: [1] Davies et al., (2006) Eos, 87, (1), 1 and 5. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA. Support was provided by the NASA AIST program, the Idaho Space Grant Consortium, and the New Mexico Space Grant Program. We also especially thank the personnel of the USGS Hawaiian Volcano Observatory for their invaluable scientific guidance and logistical assistance.

  13. Volcanoes in the Classroom--an Explosive Learning Experience.

    Science.gov (United States)

    Thompson, Susan A.; Thompson, Keith S.

    1996-01-01

    Presents a unit on volcanoes for third- and fourth-grade students. Includes demonstrations; video presentations; building a volcano model; and inviting a scientist, preferably a vulcanologist, to share his or her expertise with students. (JRH)

  14. Volcanostratigraphic Approach for Evaluation of Geothermal Potential in Galunggung Volcano

    Science.gov (United States)

    Ramadhan, Q. S.; Sianipar, J. Y.; Pratopo, A. K.

    2016-09-01

    he geothermal systems in Indonesia are primarily associated with volcanoes. There are over 100 volcanoes located on Sumatra, Java, and in the eastern part of Indonesia. Volcanostratigraphy is one of the methods that is used in the early stage for the exploration of volcanic geothermal system to identify the characteristics of the volcano. The stratigraphy of Galunggung Volcano is identified based on 1:100.000 scale topographic map of Tasikmalaya sheet, 1:50.000 scale topographic map and also geological map. The schematic flowchart for evaluation of geothermal exploration is used to interpret and evaluate geothermal potential in volcanic regions. Volcanostratigraphy study has been done on Galunggung Volcano and Talaga Bodas Volcano, West Java, Indonesia. Based on the interpretation of topographic map and analysis of the dimension, rock composition, age and stress regime, we conclude that both Galunggung Volcano and Talaga Bodas Volcano have a geothermal resource potential that deserve further investigation.

  15. USGS U.S. Volcanoes with Elevated Status

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Website provides list of elevated status volcanoes with access to activity updates and/or information releases for changes in activity at the volcanoes. activity at...

  16. a Reconstruction of the 1793 Eruption of San Martin Tuxtla Volcano, Veracruz, Mexico

    Science.gov (United States)

    Espindola, J.; Zamora-Camacho, A.; Godinez, L.

    2013-05-01

    San Martin Volcano is located in the State of Veracruz, Eastern Mexico (18.572N, 95.169W, 1650 masl). The last eruption of this volcano occurred in 1793. The activity, which was documented lasted for several months and produced thick ashfall deposits in its vicinity. The blasts were heard in the coast of Tampico some 500km NW from the volcano. There are also reports of noticeable ashfall at distances as far as 200 Km from the crater. No casualties from the eruption were reported but the economic and other human activities were greatly perturbed. The center of emission eruption was a cinder cone located within the 500 wide crater in the summit of the volcano. We present isopach maps of the airfall deposits from this eruption. The 5cm isopach covers an area roughly 200 Km2 with downwind axis towards the W-SW. Based on this information we reconstructed some of the characteristics of the eruption by fitting the theoretical isopachs obtained from the well known model of ash deposition by Suzuki to the observed isopachs. The estimated height of the eruptive column is of the order of 10 km for a mass erupted of 0.5 cubic km. We used wind data from the nearby meteorological station of the city of Veracruz.

  17. First study of the heat and gas budget for Sirung volcano, Indonesia

    Science.gov (United States)

    Bani, Philipon; Alfianti, Hilma; Aiuppa, Alessandro; Oppenheimer, Clive; Sitinjak, Pretina; Tsanev, Vitchko; Saing, Ugan B.

    2017-08-01

    With at least four eruptions over the last 20 years, Sirung is currently one of the more active volcanoes in Indonesia. However, due to its remoteness, very little is known about the volcano and its hyperacid crater lake. We report here on the first measurements of gas and heat emissions from the volcano. Notable is the substantial heat loss from the crater lake surface, amounting to 220 MW. In addition, 17 Gg of SO2, representing 0.8% of Indonesian volcanic SO2 contribution into the atmosphere, 11 Gg of H2S, 17 Gg of CO2, and 550 Gg of H2O are discharged into the atmosphere from the volcano annually. The volatiles degassed from Sirung magmas are subjected to hydrothermal fluid-rock interactions and sulfide depositions, initiated by the disproportionation of SO2. These processes lead to distinct gas compositions and changing lake water chemistry (in the sub-craters and the main crater lake). However, the occurrence of SO2-rich fluids and strong gas flux appear to highlight a rapid fluid transfer to surface, avoiding re-equilibration with lower temperature rocks/fluids in the conduits.

  18. Burden differentiation. GHG emissions, undercurrents and mitigation costs. The joint CICERO-ECN project on sharing the burden greenhouse gas reduction among countries

    Energy Technology Data Exchange (ETDEWEB)

    Ybema, J.R.; Battjes, J.J.; Jansen, J.C.; Ormel, F.T. [ECN Policy Studies, Petten (Netherlands)

    2000-02-01

    The primary aim of the present report is to collect, and to perform a preliminary analysis of information on indicators that are likely to have relevance for the design of burden sharing rules. The indicators considered relate to emission figures per country, per gas, per source, data on energy efficiency, allowance factors for differences in emission levels, and information on the cost to reduce emissions of greenhouse gases. This study takes into account the six greenhouse gases mentioned in Annex A of the Kyoto protocol: carbon dioxide (CO2), methane (CH4), nitrous-oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulphur-hexafluoride (SF6). At present total CO2 emissions are by far the most important in terms of global warming potential (GWP), while the shares of CH4 and N2O in global GHG emissions are also non-negligible. The IPCC estimates that in 1995 emissions of CO2 account for 84% and the other gases for 16 % of total GWP, among which CH4 for 11% and N2O for 4%. As data on emissions for the latter two gases are available for many countries, these will be included in further project activities to the extent possible. A disadvantage of their inclusion is the low level of reliability of the corresponding emission data as compared to CO2 emission data. This disadvantage holds a fortiori for the remaining three 'Kyoto' gases. As the latter also contribute a very small share to total Global Warming Potential, inclusion of these emissions will be given low priority in subsequent research. From an historical point of view, the industrialised countries are the largest contributors to the global emissions. Particularly, Western Europe showed the highest emissions in the 19th century, while North America played a prominent role during the 20th century. Present-day developing countries are poised to become the main contributors in the 21st century. The increase of the world population is an important driving factor of GHG emissions

  19. The unrest of S. Miguel volcano (El Salvador, CA): installation of the monitoring network and observed volcano-tectonic ground deformation

    Science.gov (United States)

    Bonforte, A.; Hernandez, D.; Gutiérrez, E.; Handal, L.; Polío, C.; Rapisarda, S.; Scarlato, P.

    2015-10-01

    On 29 December 2013, the Chaparrastique volcano in El Salvador, close to the town of S. Miguel, erupted suddenly with explosive force, forming a more than 9 km high column and projecting ballistic projectiles as far as 3 km away. Pyroclastic Density Currents flowed to the north-northwest side of the volcano, while tephras were dispersed northwest and north-northeast. This sudden eruption prompted the local Ministry of Environment to request cooperation with Italian scientists in order to improve the monitoring of the volcano during this unrest. A joint force made up of an Italian team from the Istituto Nazionale di Geofisica e Vulcanologia and a local team from the Ministerio de Medio Ambiente y Recursos Naturales was organized to enhance the volcanological, geophysical and geochemical monitoring system to study the evolution of the phenomenon during the crisis. The joint team quickly installed a multi-parametric mobile network comprising seismic, geodetic and geochemical sensors, designed to cover all the volcano flanks from the lowest to the highest possible altitudes, and a thermal camera. To simplify the logistics for a rapid installation and for security reasons, some sensors were co-located into multi-parametric stations. Here, we describe the prompt design and installation of the geodetic monitoring network, the processing and results. The installation of a new ground deformation network can be considered an important result by itself, while the detection of some crucial deforming areas is very significant information, useful for dealing with future threats and for further studies on this poorly monitored volcano.

  20. Intrinsic and scattering attenuation images of Usu volcano, Japan

    Science.gov (United States)

    Prudencio, J.; Taira, T.; Aoki, Y.; Aoyama, H.; Onizawa, S.

    2017-04-01

    We present intrinsic- and scattering-Q attenuation images for Usu volcano (Japan) by analyzing over 1800 vertical seismograms. By fitting the observed envelopes to the diffusion model, we obtained intrinsic and scattering attenuation values at three different frequency bands. Using a back-projection method and assuming a Gaussian-type weighting function, we obtained the 2D images of intrinsic and scattering attenuation. Resolution tests confirm the robustness and reliability of the obtained images. We found that scattering attenuation is the dominant process of energy loss in the frequency range analyzed, which suggests strong spatial heterogeneity. The resultant scattering attenuation images show an increase of attenuation toward the southwest from Toya caldera, which may correspond to deepening of the basement. We also identify an area of low intrinsic and scattering attenuation at the summit of Usu volcano which could be associated with old magma intrusions. Our results demonstrate a strong spatial relation between structural heterogeneities and attenuation processes in volcanic areas and confirm the efficiency of the method which can be used together with conventional imaging techniques.

  1. State of Washington Department of Health radioactive air emission notice of construction phase 1 for spent nuclear fuel project - hot conditioning system annex, project W-484

    Energy Technology Data Exchange (ETDEWEB)

    Turnbaugh, J.E.

    1996-08-15

    This notice of construction (NOC) provides information regarding the source and the estimated annual possession quantity resulting from the operation of the Hot Conditioning System Annex (HCSA). This information will be discussed again in the Phase II NOC, providing additional details on emissions generated by the operation of the HCSA. This Phase I NOC is defined as construct in the substructure, including but limited to, pouring the concrete for the floor; construction of the process pits and exterior walls; making necessary interface connections to the Canister Storage Building (CSB) ventilation and utility systems for personnel comfort; and extending the multi-canister over-pack (MCO) handling machine rails into the HCSA. A Phase II NOC will be submitted for approval prior to installation and is defined as the completion of the HCSA, which will consist of installation of Hot Conditioning System Equipment (HCSA), air emissions control equipment, and emission monitoring equipment. About 80 percent of the U.S. Department of Energy`s spent nuclear fuel (SNF) inventory is stored under water in the Hanford Site K Basins. Spent nuclear fuel in the K West Basin is contained in closed canisters, while the SNF in the K East Basin is contained in open canisters, which allow free release of corrosion products to the K East Basin water. Storage in the K Basins was originally intended to be on an as-needed basis to sustain operation of the N Reactor while the Plutonium-Uranium Extraction (PUREX) Plant was refurbished and restarted. The decision in December 1992 to deactivate the PUREX Plant left approximately 2,300 MT (2,530 tons) of N Reactor SNF in the K Basins with no means for near-term removal and processing. The HCSA will be constructed as an addition to the CSB and will contain the HCSA. The hot conditioning system (HCS) will remove chemically-bound water and will passivate the exposed uranium surfaces associated,with the SNF. The HCSA will house seven hot

  2. Seismicity at Uturuncu Volcano, Bolivia: Volcano-Tectonic Earthquake Swarms Triggered by the 2010 Maule, Chile Earthquake and Non-Triggered Background Activity

    Science.gov (United States)

    Christensen, D. H.; Chartrand, Z. A.; Jay, J.; Pritchard, M. E.; West, M. E.; McNutt, S. R.

    2010-12-01

    We find that the 270 ky dormant Uturuncu Volcano in SW Bolivia exhibits relatively high rates of shallow, volcano-tectonic seismicity that is dominated by swarm-like activity. We also document that the 27 February 2010 Mw 8.8 Maule, Chile earthquake triggered an exceptionally high rate of seismicity in the seconds to days following the main event. Although dormant, Uturuncu is currently being studied due to its large-scale deformation rate of 1-2 cm/yr uplift as revealed by InSAR. As part of the NASA-funded Andivolc project to investigate seismicity of volcanoes in the central Andes, a seismic network of 15 stations (9 Mark Products L22 short period and 6 Guralp CMG40T intermediate period sensors) with an average spacing of about 10 km was installed at Uturuncu from April 2009 to April 2010. Volcano-tectonic earthquakes occur at an average rate of about 3-4 per day, and swarms of 5-60 events within a span of minutes to hours occur a few times per month. Most of these earthquakes are located close to the summit at depths near and above sea level. The largest swarm occurred on 28 September 2009 and consisted of 60 locatable events over a time span of 28 hours. The locations of volcano-tectonic earthquakes at Uturuncu are oriented in a NW-SE trend, which matches the dominant orientation of regional faults and suggests a relationship between the fault system at Uturuncu and the regional tectonics of the area; a NW-SE trending fault beneath Uturuncu may serve to localize stresses that are accumulating over the broad area of uplift. Based on automated locations, the maximum local magnitude of these events is approximately M = 4 and the average magnitude is approximately M = 2. An initial estimate of the b-value is about b = 1.2. The Mw 8.8 Maule earthquake on 27 February 2010 triggered hundreds of local volcano-tectonic events at Uturuncu. High-pass filtering of the long period surface waves reveals that the first triggered events occurred with the onset of the Rayleigh

  3. The Cenozoic Volcanoes in Northeast China

    Institute of Scientific and Technical Information of China (English)

    LIU Jiaqi; HAN Jingtai; GUO Zhengfu

    2002-01-01

    There are more than 600 Cenozoic volcanic cones and craters with abeut 50 000 km2of lava flows in northeast China, which formed many volcanic clusters and shown the features of the continental rift - type volcanoes. Most volcanic activities in this area, especially in the east part of Songliao graben, were usually controlled by rifts and faults with the main direction of NE / NNE in parallel and become younger from the central graben towards its both sides, especially to the east continental margin. It is revealed that the volcanism occurred in northeast China was as strong as that occurred in Japan during the Miocene and the Quaternary. The Quaternary basalt that is usually distributed along river valley is called "valley basalt"while Neogene basalt usually distributed in the top of mounts is called "high position basalt". These volcanoes and volcanic rocks are usually composed of alkaline basalts with ultramafic inclusions, except Changbaishan volcano that is built by trachyte and pantellerite.

  4. Living with Volcanoes: Year Eleven Teaching Resource Unit.

    Science.gov (United States)

    Le Heron, Kiri; Andrews, Jill; Hooks, Stacey; Larnder, Michele; Le Heron, Richard

    2000-01-01

    Presents a unit on volcanoes and experiences with volcanoes that helps students develop geography skills. Focuses on four volcanoes: (1) Rangitoto Island; (2) Lake Pupuke; (3) Mount Smart; and (4) One Tree Hill. Includes an answer sheet and resources to use with the unit. (CMK)

  5. How Do Volcanoes Affect Human Life? Integrated Unit.

    Science.gov (United States)

    Dayton, Rebecca; Edwards, Carrie; Sisler, Michelle

    This packet contains a unit on teaching about volcanoes. The following question is addressed: How do volcanoes affect human life? The unit covers approximately three weeks of instruction and strives to present volcanoes in an holistic form. The five subject areas of art, language arts, mathematics, science, and social studies are integrated into…

  6. Predicting the Timing and Location of the next Hawaiian Volcano

    Science.gov (United States)

    Russo, Joseph; Mattox, Stephen; Kildau, Nicole

    2010-01-01

    The wealth of geologic data on Hawaiian volcanoes makes them ideal for study by middle school students. In this paper the authors use existing data on the age and location of Hawaiian volcanoes to predict the location of the next Hawaiian volcano and when it will begin to grow on the floor of the Pacific Ocean. An inquiry-based lesson is also…

  7. Lawrence Livermore National Laboratory Quality Assurance Project Plan for National Emission Standards for Hazardous Air Pollutants (NESHAPs), Subpart H

    Energy Technology Data Exchange (ETDEWEB)

    Hall, L.; Biermann, A

    2000-06-27

    As a Department of Energy (DOE) Facility whose operations involve the use of radionuclides, Lawrence Livermore National Laboratory (LLNL) is subject to the requirements of 40 CFR 61, the National Emission Standards for Hazardous Air Pollutants (NESHAPs). Subpart H of this Regulation establishes standards for exposure of the public to radionuclides (other than radon) released from DOE Facilities (Federal Register, 1989). These regulations limit the emission of radionuclides to ambient air from DOE facilities (see Section 2.0). Under the NESHAPs Subpart H Regulation (hereafter referred to as NESHAPs), DOE facilities are also required to establish a quality assurance program for radionuclide emission measurements; specific requirements for preparation of a Quality Assurance Program Plan (QAPP) are given in Appendix B, Method 114 of 40 CFR 61. Throughout this QAPP, the specific Quality Assurance Method elements of 40 CFR 61 Subpart H addressed by a given section are identified. In addition, the US Environmental Protection Agency (US EPA) (US EPA, 1994a) published draft requirements for QAPP's prepared in support of programs that develop environmental data. We have incorporated many of the technical elements specified in that document into this QAPP, specifically those identified as relating to measurement and data acquisition; assessment and oversight; and data validation and usability. This QAPP will be evaluated on an annual basis, and updated as appropriate.

  8. Volcanoes muon imaging using Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, O. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Del Santo, M., E-mail: melania@ifc.inaf.it [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Mineo, T.; Cusumano, G.; Maccarone, M.C. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Pareschi, G. [INAF Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807, Merate (Italy)

    2016-01-21

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  9. Volcanoes muon imaging using Cherenkov telescopes

    Science.gov (United States)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M. C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  10. Incorporating Community Knowledge to Lahar Hazard Maps: Canton Buenos Aires Case Study, at Santa Ana (Ilamatepec) Volcano

    Science.gov (United States)

    Bajo, J. V.; Martinez-Hackert, B.; Polio, C.; Gutierrez, E.

    2015-12-01

    Santa Ana (Ilamatepec) Volcano is an active composite volcano located in the Apaneca Volcanic Field located in western part of El Salvador, Central America. The volcano is surrounded by rural communities in its proximal areas and the second (Santa Ana, 13 km) and fourth (Sonsosante, 15 km) largest cities of the country. On October 1st, 2005, the volcano erupted after months of increased activity. Following the eruption, volcanic mitigation projects were conducted in the region, but the communities had little or no input on them. This project consisted in the creation of lahar volcanic hazard map for the Canton Buanos Aires on the northern part of the volcano by incorporating the community's knowledge from prior events to model parameters and results. The work with the community consisted in several meetings where the community members recounted past events. They were asked to map the outcomes of those events using either a topographic map of the area, a Google Earth image, or a blank paper poster size. These maps have been used to identify hazard and vulnerable areas, and for model validation. These maps were presented to the communities and they accepted their results and the maps.

  11. Radioactive Air Emission Notice of Construction for (NOC) Plutonium Finishing Plant (PFP) Project W-460 Plutonium Stabilization and Handling

    Energy Technology Data Exchange (ETDEWEB)

    JANSKY, M.T.

    2000-03-01

    The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions & Defense Waste Section as a notice of construction (NOC) in accordance with Washington Administrative Code (WAC) 246-247, Radiation Protection-Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A,'' Appendix A (WAC 246-247-1 IO) lists the requirements that must be addressed. Additionally, the following description, attachments, and references are provided to the U.S. Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants.'' The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide greater than 0.1 millirem year total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI) and commencement is needed within a short time. Therefore, this application also is intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(a)(1), and it is requested that approval of this application also constitutes EPA acceptance of this initial startup notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2), will be provided later. This NOC covers the activities associated with the construction and operation activities involving stabilization and/or repackaging of plutonium in the 2736-ZB Building. An operations support trailer will be

  12. Radioactive Air Emission Notice of Construction (NOC) for Plutonium Finishing Plant (PFP) Project W-460 Plutonium Stabilization and Handling

    Energy Technology Data Exchange (ETDEWEB)

    JANSKY, M.T.

    2000-05-01

    The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions & Defense Waste Section as a notice of construction (NOC) in accordance with Washington Administrative Code (WAC) 246-247, Radiation Protection-Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A.'' Additionally, the following description, attachments, and references are provided to the US Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants''. The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide greater than 0.1 millirem year total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI) and commencement is needed within a short time. Therefore, this application also is intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(a)(1), and it is requested that approval of this application also constitutes EPA acceptance of this initial startup notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2), will be provided later. This NOC covers the activities associated with the construction and operation activities involving stabilization and/or repackaging of plutonium in the 2736-ZB Building. A new exhaust stack will be built and operated at the 2736-ZB Building to handle the effluents associated with the

  13. Natural emissions of methane from geothermal and volcanic sources in Europe

    Science.gov (United States)

    Etiope, G.; Fridriksson, T.; Italiano, F.; Winiwarter, W.; Theloke, J.

    2007-08-01

    It has recently been demonstrated that methane emission from lithosphere degassing is an important component of the natural greenhouse-gas atmospheric budget. Globally, the geological sources are mainly due to seepage from hydrocarbon-prone sedimentary basins, and subordinately from geothermal/volcanic fluxes. This work provides a first estimate of methane emission from the geothermal/volcanic component at European level. In Europe, 28 countries have geothermal systems and at least 10 countries host surface geothermal manifestations (hot springs, mofettes, gas vents). Even if direct methane flux measurements are available only for a few small areas in Italy, a fair number of data on CO 2, CH 4 and steam composition and flux from geothermal manifestations are today available for 6 countries (Czech Republic, Germany, Greece, Iceland, Italy, Spain). Following the emission factor and area-based approach, the available data have been analyzed and have led to an early and conservative estimate of methane emission into the atmosphere around 10,000 ton/yr (4000-16,000 ton/yr), basically from an area smaller than 4000 km 2, with a speculative upper limit in the order of 10 5 ton/yr. Only 4-18% of the conservative estimate (about 720 ton/yr) is due to 12 European volcanoes, where methane concentration in volcanic gases is generally in the order of a few tens of ppmv. Volcanoes are thus not a significant methane source. While the largest emission is due to geothermal areas, which may be situated next to volcanoes or independent. Here inorganic synthesis, thermometamorphism and thermal breakdown of organic matter are substantial. Methane flux can reach hundreds of ton/yr from small individual vents. Geothermal methane is mainly released in three countries located in the main high heat flow regions: Italy, Greece, and Iceland. Turkey is likely a fourth important contributor but the absolute lack of data prevents any emission estimate. Therefore, the actual European geothermal

  14. The origin of the Hawaiian Volcano Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Dvorak, John [University of Hawaii' s Institute for Astronomy (United States)

    2011-05-15

    I first stepped through the doorway of the Hawaiian Volcano Observatory in 1976, and I was impressed by what I saw: A dozen people working out of a stone-and-metal building perched at the edge of a high cliff with a spectacular view of a vast volcanic plain. Their primary purpose was to monitor the island's two active volcanoes, Kilauea and Mauna Loa. I joined them, working for six weeks as a volunteer and then, years later, as a staff scientist. That gave me several chances to ask how the observatory had started.

  15. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael P.; Lisowski, Michael; Dzurisin, Daniel; Kr