WorldWideScience

Sample records for volcanic rift zones

  1. Inter-rifting Deformation in an Extensional Rift Segment; the Northern Volcanic Zone, Iceland

    Science.gov (United States)

    Pedersen, R.; Masterlark, T.; Sigmundsson, F.; Arnadottir, T.; Feigl, K. L.

    2006-12-01

    The Northern Volcanic Zone (NVZ) in Iceland is an extensional rift segment, forming a sub-aerial exposure of a part of the Mid-Atlantic ridge. The NVZ is bounded to the south by the Icelandic mantle plume, currently beneath the Vatnajökull ice cap, and to the north by the Tjörnes Fracture zone, a transform zone connecting the offset on- and offshore rift segments of the Mid-Atlantic ridge. Based on geologic and tectonic mapping, the NVZ has been divided into five partly overlapping en-echelon fissure swarms, each with a central main volcanic production area. The two fissure swarms with known activity in historic time are, based on geodetic and seismic data, interpreted to have associated shallow crustal magma chambers. These central volcanoes are furthermore the only with caldera collapses associated, reflecting on the maturity of the systems. A series of newly formed InSAR images of the NVZ, spanning the interval from 1993-2006, have been formed, revealing a complex interplay of several tectonic and magmatic processes. Deformation from two subsiding shallow sources appear at the sites of the known crustal magma chambers. Furthermore, subsidence is occurring at varying degrees within the associated relatively narrow fissure swarms (15-20 km). However, the horizontal plate spreading signal is not confined to the fissure systems, and appears to be distributed over a much wider zone (about 100 km). This wide zone of horizontal spreading has previously been measured with campaign GPS surveys. A broad area of uplift situated about 18 km to the north of one of the subsidence centres (Krafla) suggests a deep seated pressurization source near the crust mantle boundary. Movements on previously unrecognized faults are apparent in the data, correlating well with the location of earthquake epicentres from minor seismic activity. Finally, utilization of geothermal resources in the Krafla area affects the deformation fields created by magmatic and tectonic processes, further

  2. Local stresses, dyke arrest and surface deformation in volcanic edificesand rift zones

    Directory of Open Access Journals (Sweden)

    L. S. Brenner

    2004-06-01

    Full Text Available Field studies indicate that nearly all eruptions in volcanic edifices and rift zones are supplied with magma through fractures (dykes that are opened by magmatic overpressure. While (inferred dyke injections are frequent during unrest periods, volcanic eruptions are, in comparison, infrequent, suggesting that most dykes become arrested at certain depths in the crust, in agreement with field studies. The frequency of dyke arrest can be partly explained by the numerical models presented here which indicate that volcanic edifices and rift zones consisting of rocks of contrasting mechanical properties, such as soft pyroclastic layers and stiff lava flows, commonly develop local stress fields that encourage dyke arrest. During unrest, surface deformation studies are routinely used to infer the geometries of arrested dykes, and some models (using homogeneous, isotropic half-spaces infer large grabens to be induced by such dykes. Our results, however, show that the dyke-tip tensile stresses are normally much greater than the induced surface stresses, making it difficult to explain how a dyke can induce surface stresses in excess of the tensile (or shear strength while the same strength is not exceeded at the (arrested dyke tip. Also, arrested dyke tips in eroded or active rift zones are normally not associated with dyke-induced grabens or normal faults, and some dykes arrested within a few metres of the surface do not generate faults or grabens. The numerical models show that abrupt changes in Young's moduli(stiffnesses, layers with relatively high dyke-normal compressive stresses (stress barriers, and weak horizontal contacts may make the dyke-induced surface tensile stresses too small for significant fault or graben formation to occur in rift zones or volcanic edifices. Also, these small surface stresses may have no simple relation to the dyke geometry or the depth to its tip. Thus, for a layered crust with weak contacts, straightforward

  3. Magma genesis of the acidic volcanism in the intra-arc rift zone of the Izu volcanic arc, Japan

    Science.gov (United States)

    Haraguchi, S.; Tokuyama, H.; Ishii, T.

    2010-12-01

    The Izu volcanic arc extends over 550 km from the Izu Peninsula, Japan, to the Nishinoshima Trough or Sofugan tectonic line. It is the northernmost segment of the Izu-Bonin-Mariana arc system, which is located at the eastern side of the Philippine Sea Plate. The recent magmatism of the Izu arc is bimodal and characterized by basalt and rhyolite (e.g. Tamura and Tatsumi 2002). In the southern Izu arc, volcanic front from the Aogashima to the Torishima islands is characterized by submarine calderas and acidic volcanisms. The intra-arc rifting, characterized by back-arc depressions, small volcanic knolls and ridges, is active in this region. Volcanic rocks were obtained in 1995 during a research cruise of the R/V MOANA WAVE (Hawaii University, cruise MW9507). Geochemical variation of volcanic rocks and magma genesis was studied by Hochstaedter et al. (2000, 2001), Machida et al (2008), etc. These studies focused magma and mantle dynamics of basaltic volcanism in the wedge mantle. Acidic volcanic rocks were also dredged during the curies MW9507. However, studies of these acidic volcanics were rare. Herein, we present petrographical and chemical analyses of these acidic rocks, and compare these results with those of other acidic rocks in the Izu arc and lab experiments, and propose a model of magma genesis in a context of acidic volcanism. Dredge sites by the cruise MW9507 are 120, and about 50 sites are in the rift zone. Recovered rocks are dominated by the bimodal assemblage of basalt-basaltic andesite and dacite-rhyolite. The most abundant phase is olivine basalt, less than 50 wt% SiO2. Andesites are minor in volume and compositional gap from 56 to 65 wt% SiO2 exists. The across-arc variation of the HFSE contents and ratios, such as Zr/Y and Nb/Zr of rhyolites exhibit depleted in the volcanic front side and enriched in reararc side. This characteristic is similar to basaltic volcanism pointed out by Hochstaedter et al (2000). The petrographical features of rhyolites

  4. Structure and evolution of the volcanic rift zone at Ponta de São Lourenço, eastern Madeira

    Science.gov (United States)

    Klügel, Andreas; Schwarz, Stefanie; van den Bogaard, Paul; Hoernle, Kaj A.; Wohlgemuth-Ueberwasser, Cora C.; Köster, Jana J.

    2009-08-01

    Ponta de São Lourenço is the deeply eroded eastern end of Madeira’s east-west trending rift zone, located near the geometric intersection of the Madeira rift axis with that of the Desertas Islands to the southeast. It dominantly consists of basaltic pyroclastic deposits from Strombolian and phreatomagmatic eruptions, lava flows, and a dike swarm. Main differences compared to highly productive rift zones such as in Hawai’i are a lower dike intensity (50-60 dikes/km) and the lack of a shallow magma reservoir or summit caldera. 40Ar/39Ar age determinations show that volcanic activity at Ponta de São Lourenço lasted from >5.2 to 4 Ma (early Madeira rift phase) and from 2.4 to 0.9 Ma (late Madeira rift phase), with a hiatus dividing the stratigraphy into lower and upper units. Toward the east, the distribution of eruptive centers becomes diffuse, and the rift axis bends to parallel the Desertas ridge. The bending may have resulted from mutual gravitational influence of the Madeira and Desertas volcanic edifices. We propose that Ponta de São Lourenço represents a type example for the interior of a fading rift arm on oceanic volcanoes, with modern analogues being the terminations of the rift zones at La Palma and El Hierro (Canary Islands). There is no evidence for Ponta de São Lourenço representing a former central volcano that interconnected and fed the Madeira and Desertas rifts. Our results suggest a subdivision of volcanic rift zones into (1) a highly productive endmember characterized by a central volcano with a shallow magma chamber feeding one or more rift arms, and (2) a less productive endmember characterized by rifts fed from deep-seated magma reservoirs rather than from a central volcano, as is the case for Ponta de São Lourenço.

  5. Tectonic localization of multi-plume hydrothermal fluid flow in a segmented rift system, Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Rowland, J. V.; Downs, D. T.; Scholz, C.; de P. S. Zuquim, M.

    2013-05-01

    High-temperature (>250°C) multi-plume hydrothermal systems occur in a range of tectonic settings, though most are extensional or transtensional. A key feature of such settings is their tendency to partition into discrete structural elements that scale with the thickness of the seismogenic zone. The late Miocene to present record of arc magmatism and rifting in the North Island of New Zealand illustrates the importance of structural segmentation and reactivation of inherited basement fabrics on the localisation of hydrothermal upflow. The 15 My record of similarly-oriented magmatism, rifting and hydrothermal activity associated with subduction of the Pacific Plate beneath the North Island of New Zealand. Lateral migration of the locus of arc magmatism, concomitant with roll-back of the subducting slab, is supported by the SE-directed younging of: 1) volcanism; 2) fault-controlled rift basins; and 3) hydrothermal activity, represented by the distribution of epithermal mineralisation within the ~15-3 Ma Coromandel Volcanic Zone (CVZ), and geothermal activity within the TVZ. Currently the TVZ is extending in a NW-SE direction at a rate that varies from ~3 mm/yr to ~15 mm/yr from SW to NE, respectively. The TVZ is partitioned into discrete rift segments, comprising arrays of NE-striking normal faults of ~20 km in length, as expected on mechanical grounds for the 6-8 km-thick seismogenic zone. Transfer zones between rift segments coincide with N-to-NW-trending alignments of geothermal fields, spaced ~ 30 km apart can be recognized elsewhere within the CVZ. The most productive epithermal deposits to date are localised where these inferred transfer zones intersect arc-parallel fault arrays. A similar tectonic configuration occurs in the Deseado Massif, Argentinian Patagonia, where interplay between transfer and rift faults is inferred to have localized hydrothermal fluids in small pull-apart basins and arrays of extension veins for durations >30 My.

  6. Off-axis magmatism along a subaerial back-arc rift: Observations from the Taupo Volcanic Zone, New Zealand.

    Science.gov (United States)

    Hamling, Ian J; Hreinsdóttir, Sigrun; Bannister, Stephen; Palmer, Neville

    2016-06-01

    Continental rifting and seafloor spreading play a fundamental role in the generation of new crust. However, the distribution of magma and its relationship with tectonics and volcanism remain poorly understood, particularly in back-arc settings. We show evidence for a large, long-lived, off-axis magmatic intrusion located on the margin of the Taupo Volcanic Zone, New Zealand. Geodetic data acquired since the 1950s show evidence for uplift outside of the region of active extension, consistent with the inflation of a magmatic body at a depth of ~9.5 km. Satellite radar interferometry and Global Positioning System data suggest that there was an increase in the inflation rate from 2003 to 2011, which correlates with intense earthquake activity in the region. Our results suggest that the continued growth of a large magmatic body may represent the birth of a new magma chamber on the margins of a back-arc rift system.

  7. Isotopic Ages of the Carbonatitic Volcanic Rocks in the Kunyang Rift Zone in Central Yunnan,China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yongbei; WANG Guilan; NIE Jianfeng; ZHAO Chongshun; XU Chengyan; QIU Jiaxiang; Wang Hao

    2003-01-01

    The Mesoproterozoic Kunyang rift, which is located on the western margin of the Yangtze platform and the southern section of the Kangdian axis, is a rare massive Precambrian iron-copper polymetallic mineralization zone in China. The Mesoproterozoic Wulu (Wuding(Lufeng) basin in the middle of the rift is an elliptic basin controlled by a ring fracture system. Moreover, volcanic activities in the basin display zonation of an outer ring, a middle ring and an inner ring with carbonatitic volcanic rocks and sub-volcanic dykes discovered in the outer and middle rings. The Sm-Nd isochron ages have been determined for the outer-ring carbonatitic lavas (1685 Ma) and basaltic porphyrite of the radiating dyke swarm (1645 Ma) and the Rb-Sr isochron ages for the out-ring carbonatitic lavas (893 Ma) and the middle-ring dykes (1048 Ma). In combination of the U-Pb concordant ages of zircon (1743 Ma) in trachy-andesite of the corresponding period and stratum (1569 Ma) of the Etouchang Formation, as well as the Rb-Sr isochron age (1024 Ma) and K-Ar age (1186 Ma) of the dykes in the middle ring, the age of carbonatites in the basin is preliminarily determined. It is ensured that all of these carbonatites were formed in the Mesoproterozoic period, whereby two stages could be identified as follows: in the first stage, carbonatitic volcanic groups, such as lavas, pyroclastic rocks and volcaniclastic sedimentary rocks, were formed in the outer ring; in the second stage, carbonatitic breccias and dykes appeared in the middle ring. The metamorphic age of the carbonatitic lavas in the outer ring was determined to be concurrent with the end of the first stage of the Neoproterozoic period, corresponding to the Jinning movement in central Yunnan.

  8. Inferno Chasm Rift Zone, Idaho: A Terrestrial Analog for Plains-style Volcanism in Southeastern Mare Serenitatis on the Moon

    Science.gov (United States)

    Garry, W. B.; Hughes, S. S.; Kobs-Nawotniak, S. E.

    2015-12-01

    Volcanic features aligned along a linear graben in southeastern Mare Serenitatis (19°N, 27.5°E) on the Moon resemble a series of effusive basaltic landforms erupted along the Inferno Chasm rift zone within Craters of the Moon National Monument and Preserve (COTM), Idaho (42°58'00"N, 113°11'25"W). This region in Idaho is the type-locale for terrestrial plains-style volcanism. Examples of lunar plains-style volcanism have previously been described within Orientale Basin at Lacus Veris and Lacus Autumni, but this eruption style has not been used to describe the site in Mare Serenitatis. The SSERVI FINESSE team (Field Investigations to Enable Solar System Science and Exploration) has documented the features along Inferno Chasm rift using a LiDAR, Differential Global Positioning Systems, and Unmanned Aerial Vehicles (UAV) to compare with Lunar Reconnaissance Orbiter Narrow-Angle Camera images and digital terrain models. The region in southeastern Mare Serenitatis provides one of the best concentrations of features representative of lunar plains-style volcanism. On the Moon, these features include a cone (Osiris), a flat-topped dome, a rille-like channel (Isis), a vent, and a possible perched lava pond. In Idaho, the analog features include a dome (Grand View Crater), a rille-like channel (Inferno Chasm), vents (Cottrells Blowout, Horse Butte), and a perched lava pond (Papadakis). Both the scale and morphology of the features on the Moon are similar to the features in Idaho. For example, the channel in Isis is ~3 km long, 283 m-wide, and 25 m deep compared to Inferno Chasm which is ~1.7 km long, 100 m wide, and 20 m deep. The slope of the channel in Isis is -1.2°, while the channel in Inferno Chasm has a slope of -0.33°. The alignment of landforms on the Moon and Idaho are both consistent with dike emplacement. Observations of the flow stratigraphy for features in Idaho will inform the potential eruption conditions of the individual features on the Moon.

  9. Monitoring the NW volcanic rift-zone of Tenerife, Canary Islands, Spain: sixteen years of diffuse CO_{2} degassing surveys

    Science.gov (United States)

    Rodríguez, Fátima; Halliwell, Simon; Butters, Damaris; Padilla, Germán; Padrón, Eleazar; Hernández, Pedro A.; Pérez, Nemesio M.

    2016-04-01

    Tenerife is the largest of the Canary Islands and, together with Gran Canaria, is the only one that has developed a central volcanic complex characterized by the eruption of differentiated magmas. At present, one of the most active volcanic structures in Tenerife is the North-West Rift-Zone (NWRZ), which has hosted two historical eruptions: Arenas Negras in 1706 and Chinyero in 1909. Since the year 2000, 47 soil CO2 efflux surveys have been undertaken at the NWRZ of Tenerife Island to evaluate the temporal and spatial variations of CO2 efflux and their relationships with the volcanic-seismic activity. We report herein the last results of diffuse CO2 efflux survey at the NWRZ carried out in July 2015 to constrain the total CO2 output from the studied area. Measurements were performed in accordance with the accumulation chamber method. Spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. During 2015 survey, soil CO2 efflux values ranged from non-detectable up to 103 g m-2 d-1. The total diffuse CO2 output released to atmosphere was estimated at 403 ± 17 t d-1, values higher than the background CO2 emission estimated on 143 t d-1. For all campaigns, soil CO2 efflux values ranged from non-detectable up to 141 g m-2 d-1, with the highest values measured in May 2005. Total CO2 output from the studied area ranged between 52 and 867 t d-1. Temporal variations in the total CO2 output showed a temporal correlation with the onsets of seismic activity, supporting unrest of the volcanic system, as is also suggested by anomalous seismic activity recorded in the area during April 22-29, 2004. Spatial distribution of soil CO2 efflux values also showed changes in magnitude and amplitude, with higher CO2 efflux values located along a trending WNW-ESE area. Subsurface magma movement is proposed as a cause for the observed changes in the total output of diffuse CO2 emission, as well as for the spatial distribution of soil CO2 efflux

  10. Classification of the rift zones of venus: Rift valleys and graben belts

    Science.gov (United States)

    Guseva, E. N.

    2016-05-01

    The spatial distribution of rift zones of Venus, their topographic configuration, morphometric parameters, and the type of volcanism associating with rifts were analyzed. This allowed the main characteristic features of rifts to be revealed and two different types of rift-forming structures, serving for classification of rift zones as rift valleys and graben belts, to be isolated. These structural types (facies) of rift zones are differently expressed in the relief: rift valleys are individual deep (several kilometers) W-shaped canyons, while graben belts are clusters of multiple V-shaped and rather shallow (hundreds of meters) depressions. Graben belts are longer and wider, as compared to rift valleys. Rift valleys are spatially associated with dome-shaped volcanic rises and large volcanos (concentrated volcanic sources), while graben belts do not exhibit such associations. Volcanic activity in the graben belts are presented by spacious lava fields with no apparent sources of volcanism. Graben belts and rift valleys were formed during the Atlian Period of geologic history of Venus, and they characterized the tectonic style of the planet at the late stages of its geologic evolution. Formation of this or that structural facies of the rift zones of Venus were probably governed by the thickness of the lithosphere, its rheological properties, and the development degree of the mantle diapirs associating with rift zones.

  11. Diffuse CO2 emission from the NE volcanic rift-zone of Tenerife (Canary Islands, Spain): a 15 years geochemical monitoring

    Science.gov (United States)

    Padilla, Germán; Alonso, Mar; Shoemaker, Trevor; Loisel, Ariane; Padrón, Eleazar; Hernández, Pedro A.; Pérez, Nemesio M.

    2016-04-01

    The North East Rift (NER) volcanic zone of Tenerife Island is one of the three volcanic rift-zones of the island (210 km2). The most recent eruptive activity along the NER volcanic zone took place in the 1704-1705 period with the volcanic eruptions of Siete Fuentes, Fasnia and Arafo volcanoes. The aim of this study was to report the results of a soil CO2 efflux survey undertaken in June 2015, with approximately 580 measuring sites. In-situ measurements of CO2 efflux from the surface environment of NER volcanic zone were performed by means of a portable non-dispersive infrared spectrophotometer (NDIR) model LICOR Li800 following the accumulation chamber method. To quantify the total CO2 emission from NER volcanic zone, soil CO2 efflux contour maps were constructed using sequential Gaussian simulation (sGs) as interpolation method. The total diffuse CO2 emission rate was estimated in 1209 t d-1, with CO2 efflux values ranging from non-detectable (˜0.5 g m-2 d-1) up to 123 g m-2 d-1, with an average value of 5.9 g m-2 d-1. If we compare these results with those obtained in previous surveys developed in a yearly basis, they reveal slightly variations from 2006 to 2015, with to pulses in the CO2 emission observed in 2007 and 2014. The main temporal variation in the total CO2 output does not seem to be masked by external variations. First peak precedes the anomalous seismicity registered in and around Tenerife Island between 2009 and 2011, suggesting stress-strain changes at depth as a possible cause for the observed changes in the total output of diffuse CO2 emission. Second peak could be related with futures changes in the seismicity. This study demonstrates the importance of performing soil CO2 efflux surveys as an effective surveillance volcanic tool.

  12. Spatial and temporal variations of diffuse CO_{2} degassing at the N-S volcanic rift-zone of Tenerife (Canary Islands, Spain) during 2002-2015 period

    Science.gov (United States)

    Alonso, Mar; Ingman, Dylan; Alexander, Scott; Barrancos, José; Rodríguez, Fátima; Melián, Gladys; Pérez, Nemesio M.

    2016-04-01

    Tenerife is the largest of the Canary Islands and, together with Gran Canaria Island, is the only one with a central volcanic complex that started to grow at about 3.5 Ma. Nowadays the central complex is formed by Las Cañadas caldera, a volcanic depression measuring 16×9 km that resulted from multiple vertical collapses and was partially filled by post-caldera volcanic products. Up to 297 mafic monogenetic cones have been recognized on Tenerife, and they represent the most common eruptive activity occurring on the island during the last 1 Ma (Dóniz et al., 2008). Most of the monogenetic cones are aligned following a triple junction-shaped rift system, as result of inflation produced by the concentration of emission vents and dykes in bands at 120o to one another as a result of minimum stress fracturing of the crust by a mantle upwelling. The main structural characteristic of the southern volcanic rift (N-S) of the island is an apparent absence of a distinct ridge, and a fan shaped distribution of monogenetic cones. Four main volcanic successions in the southern volcanic rift zone of Tenerife, temporally separated by longer periods (˜70 - 250 ka) without volcanic activity, have been identified (Kröchert and Buchner, 2008). Since there are currently no visible gas emissions at the N-S rift, diffuse degassing surveys have become an important geochemical tool for the surveillance of this volcanic system. We report here the last results of diffuse CO2 efflux survey at the N-S rift of Tenerife, performed using the accumulation chamber method in the summer period of 2015. The objectives of the surveys were: (i) to constrain the total CO2 output from the studied area and (ii) to evaluate occasional CO2 efflux surveys as a volcanic surveillance tool for the N-S rift of Tenerife. Soil CO2 efflux values ranged from non-detectable up to 31.7 g m-2 d-1. A spatial distribution map, constructed following the sequential Gaussian simulation (sGs) procedure, did not show an

  13. Volcanic Zone, New Zealand

    Directory of Open Access Journals (Sweden)

    Graham J. Weir

    2001-01-01

    Full Text Available A conceptual model of the Taupo Volcanic Zone (TVZ is developed, to a depth of 25 km, formed from three constant density layers. The upper layer is formed from eruption products. A constant rate of eruption is assumed, which eventually implies a constant rate of extension, and a constant rate of volumetric creation in the middle and bottom layers. Tectonic extension creates volume which can accomodate magmatic intrusions. Spreading models assume this volume is distributed throughout the whole region, perhaps in vertical dykes, whereas rifting models assume the upper crust is thinned and the volume created lies under this upper crust. Bounds on the heat flow from such magmatic intrusions are calculated. Heat flow calculations are performed and some examples are provided which match the present total heat output from the TVZ of about 4200 MW, but these either have extension rates greater than the low values of about 8 ± 4 mm/a being reported from GPS measurements, or else consider extension rates in the TVZ to have varied over time.

  14. A pulse of mid-Pleistocene rift volcanism in Ethiopia at the dawn of modern humans

    Science.gov (United States)

    Hutchison, William; Fusillo, Raffaella; Pyle, David M.; Mather, Tamsin A.; Blundy, Jon D.; Biggs, Juliet; Yirgu, Gezahegn; Cohen, Benjamin E.; Brooker, Richard A.; Barfod, Dan N.; Calvert, Andrew T.

    2016-10-01

    The Ethiopian Rift Valley hosts the longest record of human co-existence with volcanoes on Earth, however, current understanding of the magnitude and timing of large explosive eruptions in this region is poor. Detailed records of volcanism are essential for interpreting the palaeoenvironments occupied by our hominin ancestors; and also for evaluating the volcanic hazards posed to the 10 million people currently living within this active rift zone. Here we use new geochronological evidence to suggest that a 200 km-long segment of rift experienced a major pulse of explosive volcanic activity between 320 and 170 ka. During this period, at least four distinct volcanic centres underwent large-volume (>10 km3) caldera-forming eruptions, and eruptive fluxes were elevated five times above the average eruption rate for the past 700 ka. We propose that such pulses of episodic silicic volcanism would have drastically remodelled landscapes and ecosystems occupied by early hominin populations.

  15. Crustal-scale recycling in caldera complexes and rift zones along the Yellowstone hotspot track: O and Hf isotopic evidence in diverse zircons from voluminous rhyolites of the Picabo volcanic field, Idaho

    Science.gov (United States)

    Drew, Dana L.; Bindeman, Ilya N.; Watts, Kathryn E.; Schmitt, Axel K.; Fu, Bin; McCurry, Michael

    2013-01-01

    followed by rapid batch assembly prior to eruption. However, due to the greater abundance of low-δ18O rhyolites at Picabo, the eruptive framework may reflect an intertwined history of caldera collapse and coeval Basin and Range rifting and hydrothermal alteration. We speculate that the source rocks with pre-existing low-δ18O alteration may be related to: (1) deeply buried and unexposed older deposits of Picabo-age or Twin Falls-age low-δ18O volcanics; and/or (2) regionally-abundant late Eocene Challis volcanics, which were hydrothermally altered near the surface prior to or during peak Picabo magmatism. Basin and Range extension, specifically the formation of metamorphic core complexes exposed in the region, could have facilitated the generation of low-δ18O magmas by exhuming heated rocks and creating the large water-rock ratios necessary for shallow hydrothermal alteration of tectonically (rift zones) and volcanically (calderas) buried volcanic rocks. These interpretations highlight the major processes by which supereruptive volumes of magma are generated in the SRP, mechanisms applicable to producing rhyolites worldwide that are facilitated by plume driven volcanism and extensional tectonics.

  16. Origin of three-armed rifts in volcanic islands: the case of El Hierro (Canary Islands)

    Science.gov (United States)

    Galindo Jiménez, Inés; Becerril Carretero, Laura; Martí Molist, Joan; Gudmundsson, Agust

    2015-04-01

    Rifts zones in volcanic oceanic islands are common structures that have been explained through several theories/models. However, despite all these models it is as yet unclear whether it is the intense intrusive activity or the sector collapses that actually control the structural evolution and geometry of oceanic-island rift zones. Here we provide a new hypothesis to explain the origin and characteristics of the feeding system of oceanic-island rift zones based on the analysis of more than 1700 surface, subsurface (water galleries), and submarine structural data from El Hierro (Canary Islands). El Hierro's geological structure is primarily controlled by a three-armed rift-zone, the arms striking NE, WSW and S. Between the rift axes there are three valleys formed during huge landslides: El Golfo, El Julan, and Las Playas. Our results show: (1) a predominant NE-SW strike of structural elements, which coincides with the main regional trend of the Canary Archipelago as a whole; (2) a clear radial strike distribution of structural elements for the whole volcanic edifice (including submarine flanks) with respect to the centre of the island; (3) that the rift zones are mainly subaerial structures and do not propagate through the submarine edifice; (4) that it is only in the NE rift that structures have a general strike similar to that of the rift as a whole, and; (5) that in the W and S rifts there is not clear main direction, showing the structural elements in the W rift a fan distribution coinciding with the general radial pattern in the island as a whole. Based on these data, we suggest that the radial-striking structures reflect comparatively uniform stress fields that operated during the constructive episodes, mainly conditioned by the combination of overburden pressure, gravitational spreading, and magma-induced stresses. By contrast, in the shallower parts of the edifice, that is, the NE-SW, N-S and WNW-ESE-striking structures, reflect local stress fields related

  17. Geochemical and 40Ar/39Ar constraints on the evolution of volcanism in the Woodlark Rift, Papua New Guinea

    Science.gov (United States)

    Catalano, Joseph P.

    The tectonic mechanisms producing Pliocene to active volcanism in eastern Papua New Guinea (PNG) have been debated for decades. In order to assess mechanisms that produce volcanism in the Woodlark Rift, we evaluate the evolution of volcanism in eastern PNG using 40Ar/39Ar thermochronology and whole rock geochemistry. Active volcanism in southeastern Papua New Guinea occurs on the Papuan Peninsula (Mt. Lamington, Mt. Victory and Waiwa), in the Woodlark Rift (Dobu Island, SE Goodenough Island, and Western Fergusson Island), and in the Woodlark Basin. In the Woodlark Basin, seafloor spreading is active and decompression melting of the upper mantle is producing basaltic magmatism. However, the cause of Pliocene and younger volcanism in the Woodlark Rift is controversial. Two hypotheses for the tectonic setting have been proposed to explain Pliocene and younger volcanism in the Woodlark Rift: (1) southward subduction of Solomon Sea lithosphere beneath eastern PNG at the Trobriand Tough and (2) decompression melting of mantle, previously modified by subduction, as the lithosphere undergoes extension associated with the opening of the Woodlark Basin. A comparison of 40Ar/39Ar ages with high field strength element (HFSE) concentrations in primary magmas indicates that HFSE concentrations correlate with age in the Woodlark rift. These data support the hypothesis that Pliocene to active volcanism in the Woodlark Rise and D'Entrecasteaux Islands results from decompression melting of a relict mantle wedge. The subduction zone geochemical signatures (negative HFSE anomalies) in Woodlark Rift lavas younger than 4 m.y. are a relict from older subduction beneath eastern Papua, likely in the middle Miocene. As the lithosphere is extended ahead of the tip of the westward propagating seafloor spreading center in the Woodlark Basin, the composition of volcanism is inherited from prior arc magmatism (via flux melting) and through time evolves toward magmatism associated with a rifting

  18. Quantifying the morphometric variability of monogenetic cones in volcanic fields: the Virunga Volcanic Province, East African Rift

    Science.gov (United States)

    Poppe, Sam; Grosse, Pablo; Barette, Florian; Smets, Benoît; Albino, Fabien; Kervyn, François; Kervyn, Matthieu

    2016-04-01

    Volcanic cone fields are generally made up of tens to hundreds of monogenetic cones, sometimes related to larger polygenetic edifices, which can exhibit a wide range of morphologies and degrees of preservation. The Virunga Volcanic Province (VVP) developed itself in a transfer zone which separates two rift segments (i.e. Edward and Kivu rift) within the western branch of the East-African Rift. As the result of volcanic activity related to this tectonic regime of continental extension, the VVP hosts eight large polygenetic volcanoes, surrounded by over 500 monogenetic cones and eruptive fissures, scattered over the vast VVP lava flow fields. Some cones lack any obvious geo-structural link to a specific Virunga volcano. Using recent high-resolution satellite images (SPOT, Pléiades) and a newly created 5-m-resolution digital elevation model (TanDEM-X), we have mapped and classified all monogenetic cones and eruptive fissures of the VVP. We analysed the orientation of all mapped eruptive fissures and, using the MORVOLC program, we calculated a set of morphometric parameters to highlight systematic spatial variations in size or morphometric ratios of the cones. Based upon morphological indicators, we classified the satellite cones into 4 categories: 1. Simple cones with one closed-rim crater; 2. Breached cones with one open-rim crater; 3. Complex cones with two or more interconnected craters and overlapping cones; 4. Other edifices without a distinguishable crater or cone shape (e.g. spatter mounds and levees along eruptive fissures). The results show that cones are distributed in clusters and along alignments, in some cases parallel with the regional tectonic orientations. Contrasts in the volumes of cones positioned on the rift shoulders compared to those located on the rift valley floor can possibly be attributed to contrasts in continental crust thickness. Furthermore, higher average cone slopes in the East-VVP (Bufumbira zone) and central-VVP cone clusters suggest

  19. Volcanic rifts bracketing volcanoes: an analogue answer to an old unsolved problem

    Science.gov (United States)

    Mussetti, Giulio; van Wyk de Vries, Benjamin; Corti, Giacomo; Hagos, Miruts

    2015-04-01

    It has been observed in Central America that many volcanoes have volcanic alignments and faults at their east and west feet. A quick look at many rifts indicates that this also occurs elsewhere. While this feature has been noted for at least 30 years, no explanation has ever really been convincingly put forward. During analogue experiments on rifting volcanoes we have mixed the presence of a volcanic edifice with an underlying intrusive complex. The models use a rubber sheet that is extended and provides a broad area of extension (in contrast to many moving plate models that have one localised velocity discontinuity). This well suits the situation in many rifts and diffuse strike-slip zones (i.e. Central America and the East African Rift). We have noted the formation of localised extension bracketing the volcano, the location of which depends on the position of the analogue intrusion. Thus, we think we have found the answer to this long standing puzzle. We propose that diffuse extension of a volcano and intrusive complex generates two zones of faulting at the edge of the intrusion along the axis of greatest extensional strain. These serve to create surface faulting and preferential pathways for dykes. This positioning may also create craters aligned along the axis of extension, which is another notable feature of volcanoes in Central America. Paired volcanoes and volcanic uplifts in the Danakil region of Ethiopia may also be a consequence of such a process and lead us to draw some new preliminary cross sections of the Erta Ale volcanic range.

  20. A Volcanic Hydrogen Habitable Zone

    Science.gov (United States)

    Ramirez, Ramses M.; Kaltenegger, Lisa

    2017-03-01

    The classical habitable zone (HZ) is the circular region around a star in which liquid water could exist on the surface of a rocky planet. The outer edge of the traditional N2–CO2–H2O HZ extends out to nearly ∼1.7 au in our solar system, beyond which condensation and scattering by CO2 outstrips its greenhouse capacity. Here, we show that volcanic outgassing of atmospheric H2 can extend the outer edge of the HZ to ∼2.4 au in our solar system. This wider volcanic-hydrogen HZ (N2–CO2–H2O–H2) can be sustained as long as volcanic H2 output offsets its escape from the top of the atmosphere. We use a single-column radiative-convective climate model to compute the HZ limits of this volcanic hydrogen HZ for hydrogen concentrations between 1% and 50%, assuming diffusion-limited atmospheric escape. At a hydrogen concentration of 50%, the effective stellar flux required to support the outer edge decreases by ∼35%–60% for M–A stars. The corresponding orbital distances increase by ∼30%–60%. The inner edge of this HZ only moves out ∼0.1%–4% relative to the classical HZ because H2 warming is reduced in dense H2O atmospheres. The atmospheric scale heights of such volcanic H2 atmospheres near the outer edge of the HZ also increase, facilitating remote detection of atmospheric signatures.

  1. Formation of the volcanic rifted margin off Argentina/Uruguay, South Atlantic

    Science.gov (United States)

    Franke, D.; Reichert, C.; Ladage, S.; Schnabel, M.; Schreckenberger, B.; Neben, S.; Hinz, K.

    2009-04-01

    The Federal Institute for Geosciences and Natural Resources (BGR), Germany has investigated the passive continental margins offshore Argentina and Uruguay since the early 90ies. Numerous marine geophysical surveys have meanwhile established a databasis of more than 25.000 km of regional multi-channel reflection seismic lines, accompanied with magnetic and gravity profiles. These data document that the Early Cretaceous South Atlantic continental break-up and initial sea-floor spreading were accompanied by large-scale, transient volcanism emplacing voluminous extrusives, manifested in the seismic data by huge wedges of seaward dipping reflectors (SDRs). These deeply buried and 60-120 km wide SDRs were emplaced episodically as suggested by at least three superimposed SDRS units. Distinct along-margin variations in the architecture, volume, and width of the SDRs wedges correlate with large scale margin segmentation. We identify at least four domains bounded by the Falkland Fracture Zone/Falkland Transfer, the Colorado Transfer, the Ventana Transfer and the Salado Transfer. The individual transfer zones may have acted as barriers for propagating rifts during the SDR emplacement phase, selectively directing rift segments in left stepping patterns along the western South Atlantic margin. The rift segments are offset systematically in a left stepping pattern along the western South Atlantic margin. Albeit we found extensive variations in the architecture, style and extent of the seaward dipping reflector sequences a general trend is that the largest volumes are emplaced close to the proposed transfer zones and the width of the SDRs wedges decreases northward within the individual margin segments. The different volcano-tectonic architectures of the margin segments and the distribution of the extruded magmas indicates that the emplacement of the volcanic material was controlled by the tectonic setting and the pre-rift lithosphere configuration within individual margin

  2. Magma ascent and emplacement in a continental rift setting: lessons from alkaline complexes in active and ancient rift zones

    Science.gov (United States)

    Hutchison, William; Lloyd, Ryan; Birhanu, Yelebe; Biggs, Juliet; Mather, Tamsin; Pyle, David; Lewi, Elias; Yirgu, Gezahgen; Finch, Adrian

    2017-04-01

    A key feature of continental rift evolution is the development of large chemically-evolved alkaline magmatic systems in the shallow crust. At active alkaline systems, for example in the East African Rift, the volcanic complexes pose significant hazards to local populations but can also sustain major geothermal resources. In ancient rifts, for example the Gardar province in Southern Greenland, these alkaline magma bodies can host some of the world's largest rare element deposits in resources such as rare earths, niobium and tantalum. Despite their significance, there are major uncertainties about how such magmas are emplaced, the mechanisms that trigger eruptions and the magmatic and hydrothermal processes that generate geothermal and mineral resources. Here we compare observations from active caldera volcanoes in the Ethiopian Rift with compositionally equivalent ancient (1300-1100 Ma) plutonic systems in the Gardar Rift province (Greenland). In the Ethiopian Rift Valley we use InSAR and GPS data to evaluate the temporal and spatial evolution of ground deformation at Aluto and Corbetti calderas. We show that unrest at Aluto is characterized by short (3-6 month) accelerating uplift pulses likely caused by magmatic fluid intrusion at 5 km. At Corbetti, uplift is steady ( 6.6 cm/yr) and sustained over many years with analytical source models suggesting deformation is linked to sill intrusion at depths of 7 km. To evaluate the validity of these contrasting deformation mechanisms (i.e. magmatic fluid intrusion and sill emplacement) we carried out extensive field, structural and geochemical analysis in the roof zones of two alkaline plutons (Ilímaussaq and Motzfeldt) in Greenland. Our results show that the volatile contents (F, Cl, OH and S) of these magmas were exceptionally high and that there is evidence for ponding of magmatic fluids in the roof zone of the magma reservoir. We also identified extensive sill networks at the contact between the magma reservoir and the

  3. Lithology and temperature: How key mantle variables control rift volcanism

    Science.gov (United States)

    Shorttle, O.; Hoggard, M.; Matthews, S.; Maclennan, J.

    2015-12-01

    Continental rifting is often associated with extensive magmatic activity, emplacing millions of cubic kilometres of basalt and triggering environmental change. The lasting geological record of this volcanic catastrophism are the large igneous provinces found at the margins of many continents and abrupt extinctions in the fossil record, most strikingly that found at the Permo-Triassic boundary. Rather than being considered purely a passive plate tectonic phenomenon, these episodes are frequently explained by the involvement of mantle plumes, upwellings of mantle rock made buoyant by their high temperatures. However, there has been debate over the relative role of the mantle's temperature and composition in generating the large volumes of magma involved in rift and intra-plate volcanism, and even when the mantle is inferred to be hot, this has been variously attributed to mantle plumes or continental insulation effects. To help resolve these uncertainties we have combined geochemical, geophysical and modelling results in a two stage approach: Firstly, we have investigated how mantle composition and temperature contribute to melting beneath Iceland, the present day manifestation of the mantle plume implicated in the 54Ma break up of the North Atlantic. By considering both the igneous crustal production on Iceland and the chemistry of its basalts we have been able to place stringent constraints on the viable temperature and lithology of the Icelandic mantle. Although a >100°C excess temperature is required to generate Iceland's thick igneous crust, geochemistry also indicates that pyroxenite comprises 10% of its source. Therefore, the dynamics of rifting on Iceland are modulated both by thermal and compositional mantle anomalies. Secondly, we have performed a global assessment of the mantle's post break-up thermal history to determine the amplitude and longevity of continental insulation in driving excess volcanism. Using seismically constrained igneous crustal

  4. Magma-compensated crustal thinning in continental rift zones.

    Science.gov (United States)

    Thybo, H; Nielsen, C A

    2009-02-12

    Continental rift zones are long, narrow tectonic depressions in the Earth's surface where the entire lithosphere has been modified in extension. Rifting can eventually lead to rupture of the continental lithosphere and creation of new oceanic lithosphere or, alternatively, lead to formation of wide sedimentary basins around failed rift zones. Conventional models of rift zones include three characteristic features: surface manifestation as an elongated topographic trough, Moho shallowing due to crustal thinning, and reduced seismic velocity in the uppermost mantle due to decompression melting or heating from the Earth's interior. Here we demonstrate that only the surface manifestation is observed at the Baikal rift zone, whereas the crustal and mantle characteristics can be ruled out by a new seismic profile across southern Lake Baikal in Siberia. Instead we observe a localized zone in the lower crust which has exceptionally high seismic velocity and is highly reflective. We suggest that the expected Moho uplift was compensated by magmatic intrusion into the lower crust, producing the observed high-velocity zone. This finding demonstrates a previously unknown role for magmatism in rifting processes with significant implications for estimation of stretching factors and modelling of sedimentary basins around failed rift structures.

  5. The Cenozoic volcanism in the Kivu rift: Assessment of the tectonic setting, geochemistry, and geochronology of the volcanic activity in the South-Kivu and Virunga regions

    Science.gov (United States)

    Pouclet, A.; Bellon, H.; Bram, K.

    2016-09-01

    The Kivu rift is part of the western branch of the East African Rift system. From Lake Tanganyika to Lake Albert, the Kivu rift is set in a succession of Precambrian zones of weakness trending NW-SE, NNE-SSW and NE-SW. At the NW to NNE turn of the rift direction in the Lake Kivu area, the inherited faults are crosscut by newly born N-S fractures which developed during the late Cenozoic rifting and controlled the volcanic activity. From Lake Kivu to Lake Edward, the N-S faults show a right-lateral en echelon pattern. Development of tension gashes in the Virunga area indicates a clockwise rotation of the constraint linked to dextral oblique motion of crustal blocks. The extensional direction was W-E in the Mio-Pliocene and ENE-WSW in the Pleistocene to present time. The volcanic rocks are assigned to three groups: (1) tholeiites and sodic alkali basalts in the South-Kivu, (2) sodic basalts and nephelinites in the northern Lake Kivu and western Virunga, and (3) potassic basanites and potassic nephelinites in the Virunga area. South-Kivu magmas were generated by melting of spinel + garnet lherzolite from two sources: an enriched lithospheric source and a less enriched mixed lithospheric and asthenospheric source. The latter source was implied in the genesis of the tholeiitic lavas at the beginning of the South-Kivu tectono-volcanic activity, in relationships with asthenosphere upwelling. The ensuing outpouring of alkaline basaltic lavas from the lithospheric source attests for the abortion of the asthenospheric contribution and a change of the rifting process. The sodic nephelinites of the northern Lake Kivu originated from low partial melting of garnet peridotite of the sub-continental mantle due to pressure release during swell initiation. The Virunga potassic magmas resulted from the melting of garnet peridotite with an increasing degree of melting from nephelinite to basanite. They originated from a lithospheric source enriched in both K and Rb, suggesting the

  6. Incipient continental rifting: Insights from the Okavango Rift Zone, northwestern Botswana

    Science.gov (United States)

    Kinabo, Baraka Damas

    In this dissertation aeromagnetic, gravity, and Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) data from the Okavango Rift Zone in northwest Botswana are used to map the distribution of rift and basement structures. The distribution of these structures provide useful insights into the early stages of continental rifting. The objectives of this study are (1) assessing the role of pre-existing structures on rift basin development, (2) characterizing the geometry of the nascent rift basins, (3) documenting fault growth and propagation patterns, and (4) investigating the border fault development. Potential field data especially aeromagnetic data are used to map out structures in the sediment covered basement, whereas SRTM DEM data express the surface morphology of the structures. The azimuth of rift faults parallel the orientation of the fold axes and the prominent foliation directions of the basement rocks. This indicates that pre-existing structures in the basement influenced the development of the rift structures. NE dipping faults consistently exhibit greater displacements than SE dipping faults, suggesting a developing half-graben geometry. Individual faults grow by along axis linkage of small segments that develop from soft linkage (under lapping to overlapping segments) to hard linkage (hooking, fused segments). Major rifts faults are also linking through transfer zones by the process of "fault piracy" to establish an immature border fault system. The relationships between scam heights and vertical throws reveal that the young and active faults are located outside the rift while the faults with no recent activities are in the middle suggesting that the rift is also growing in width. This study demonstrates the utility of potential field data and SRTM DEM to provide a 3-D view of incipient continental rifting processes such as fault growth and propagation.

  7. New age constraints on the timing of volcanism in central Afar, in the presence of propagating rifts

    Science.gov (United States)

    Lahitte, Pierre; Gillot, Pierre-Yves; Kidane, Tesfaye; Courtillot, Vincent; Bekele, Abebe

    2003-02-01

    We investigate the relationship between rift propagation and volcanism in the Afar Depression in the last 4 Myr. Potassium-argon and thermoluminescence dating allow detailed reconstruction of the temporal evolution of volcanism. Volcanic activity is almost continuous since 3.5 Ma, with intervals characterized by more intense activity, especially around 2 Ma. Spatial distribution of ages reveals that Stratoid Series volcanism migrated northward along a 200-km trend between 3 and 1 Ma, at about 10 cm/yr, linked to northward propagation of the Gulf of Aden Ridge, after it had cut across the Danakil horst at 4 Ma. Our work underlines the role of rhyolitic volcanism in initiation of rifting. Acid volcanoes, initially formed near the axes of extensional zones, have been subsequently dissected and are presently located on both sides of active rift segments. These lavas were the first to be erupted in areas of low extensional strain and were followed by basaltic lavas as extension increased. Differentiated volcanoes acted as zones of local weakness and guided localization of fractures, then leading to fissural magmatism. This regional-scale, composite style of rifting, including volcanic and tectonic components, can be compared to the large-scale continental breakup process itself. Deformation occurs through propagation of faults and fissures under a regional stress field. These become localized because of weakening of the crust (or lithosphere) due to emplacement of magmas, under the influence of a plume in the large-scale case, or of silicic centers linked to magma chambers in the regional-scale case.

  8. Historical volcanism and the state of stress in the East African Rift System

    Directory of Open Access Journals (Sweden)

    Geoffrey Wadge

    2016-09-01

    Full Text Available Crustal extension at the East African Rift System (EARS should, as a tectonic ideal, involve a stress field in which the direction of minimum horizontal stress is perpendicular to the rift. A volcano in such a setting should produce dykes and fissures parallel to the rift. How closely do the volcanoes of the EARS follow this? We answer this question by studying the 21 volcanoes that have erupted historically (since about 1800 and find that 7 match the (approximate geometrical ideal. At the other 14 volcanoes the orientation of the eruptive fissures/dykes and/or the axes of the host rift segments are oblique to the ideal values. To explain the eruptions at these volcanoes we invoke local (non-plate tectonic variations of the stress field caused by: crustal heterogeneities and anisotropies (dominated by NW structures in the Protoerozoic basement, transfer zone tectonics at the ends of offset rift segments, gravitational loading by the volcanic edifice (typically those with 1-2 km relief and magmatic pressure in central reservoirs. We find that the more oblique volcanoes tend to have large edifices, large eruptive volumes and evolved and mixed magmas capable of explosive behaviour. Nine of the volcanoes have calderas of varying ellipticity, 6 of which are large, reservoir-collapse types mainly elongated across rift (e.g. Kone and 3 are smaller, elongated parallel to the rift and contain active lava lakes (e.g. Erta Ale, suggesting different mechanisms of formation and stress fields. Nyamuragira is the only EARS volcano with enough sufficiently well-documented eruptions to infer its long-term dynamic behaviour. Eruptions within 7 km of the volcano are of relatively short duration (<100 days, but eruptions with more distal fissures tend to have greater obliquity and longer durations, indicating a changing stress field away from the volcano. There were major changes in long-term magma extrusion rates in 1977 (and perhaps in 2002 due to major along-rift

  9. Historical volcanism and the state of stress in the East African Rift System

    Science.gov (United States)

    Wadge, Geoffrey; Biggs, Juliet; Lloyd, Ryan; Kendall, Michael

    2016-09-01

    Crustal extension at the East African Rift System (EARS) should, as a tectonic ideal, involve a stress field in which the direction of minimum horizontal stress is perpendicular to the rift. A volcano in such a setting should produce dykes and fissures parallel to the rift. How closely do the volcanoes of the EARS follow this? We answer this question by studying the 21 volcanoes that have erupted historically (since about 1800) and find that 7 match the (approximate) geometrical ideal. At the other 14 volcanoes the orientation of the eruptive fissures/dykes and/or the axes of the host rift segments are oblique to the ideal values. To explain the eruptions at these volcanoes we invoke local (non-plate tectonic) variations of the stress field caused by: crustal heterogeneities and anisotropies (dominated by NW structures in the Protoerozoic basement), transfer zone tectonics at the ends of offset rift segments, gravitational loading by the volcanic edifice (typically those with 1-2 km relief) and magmatic pressure in central reservoirs. We find that the more oblique volcanoes tend to have large edifices, large eruptive volumes and evolved and mixed magmas capable of explosive behaviour. Nine of the volcanoes have calderas of varying ellipticity, 6 of which are large, reservoir-collapse types mainly elongated across rift (e.g. Kone) and 3 are smaller, elongated parallel to the rift and contain active lava lakes (e.g. Erta Ale), suggesting different mechanisms of formation and stress fields. Nyamuragira is the only EARS volcano with enough sufficiently well-documented eruptions to infer its long-term dynamic behaviour. Eruptions within 7 km of the volcano are of relatively short duration (<100 days), but eruptions with more distal fissures tend to have greater obliquity and longer durations, indicating a changing stress field away from the volcano. There were major changes in long-term magma extrusion rates in 1977 (and perhaps in 2002) due to major along-rift dyking

  10. Backarc rifting, constructional volcanism and nascent disorganised spreading in the southern Havre Trough backarc rifts (SW Pacific)

    Science.gov (United States)

    Wysoczanski, R. J.; Todd, E.; Wright, I. C.; Leybourne, M. I.; Hergt, J. M.; Adam, C.; Mackay, K.

    2010-02-01

    High resolution multibeam (EM300 and SEABEAM) data of the Southern Havre Trough (SHT), combined with observations and sample collections from the submersible Shinkai6500 and deep-tow camera, are used to develop a model for the evolution and magmatism of this backarc system. The Havre Trough and the associated Kermadec Arc are the product of westward subduction at the Pacific-Australian plate boundary. Detailed studies focus on newly discovered features including a seamount (Saito Seamount) and a deep graben (Ngatoroirangi Rift, > 4000 m water depth floored with a constructional axial volcanic ridge > 5 km in length and in excess of 200 m high), both of which are characterised by pillow and lobate flows estimated at Mass balance modelling indicates a maximum crustal thickness of ~ 11 km to magmatism within deep SHT rifts, we propose that the SHT is in an incipient phase of distributed and "disorganised" oceanic crustal accretion in multiple, ephemeral, and short but deep (> 4000 m) spreading systems. These discontinuous spreading systems are characterised by failed rifts, rift segmentation, and propagation. Successive episodes of magmatic intrusion into thinned faulted arc basement results in defocused asymmetrical accretion. Cross-arc volcanic chains, isolated volcanoes and underlying basement plateaus are interpreted to represent a "cap" of recent extrusives. However, they may also be composed entirely of newly accreted crust and the spatially extensive basement fabric of elongated volcanic ridges may be the surface expression of pervasive dike intrusion that has thoroughly penetrated and essentially replaced the original arc crust with newly accreted intrusives.

  11. Arc-rift transition volcanism in the Volcanic Hills, Jacumba and Coyote Mountains, San Diego and Imperial Counties, california

    Science.gov (United States)

    Fisch, Gregory Zane

    Neogene volcanism associated with the subduction of the Farallon-Pacific spreading center and the transition from a subduction zone to a rift zone has been studied extensively in Baja, California, Mexico. One of the main goals of these studies was to find a geochemical correlation with slab windows that may have formed during that complicated transition. While workers have been able to find distinct geochemical signatures in samples from Baja California, none have shown statistically significant correlation with samples from southern California that are thought to be related to the same arc-rift transition events. All of the basaltic samples from this study of southern California rocks have prominent Nb depletions typical of island-arc subduction-related volcanism, in contrast to the chemistry of Baja California volcanics that have trace element patterns typical of synrift related volcanism. The work done by previous investigators has been additionally complicated due to each investigator's choice of important ratios or patterns, which bears little, if any, correlation with work done by others working in the same area. For example, Martin-Barajas et al. (1995) use K/Rb ratios in their study of the Puertocitos Volcanic Province, while Castillo (2008) argues that Sr/Y vs. Y is a better indicator of petrogenetic processes. Little petrologic work has been done on Neogene volcanic rocks in the Imperial Valley and eastern San Diego County region of Southern California. This thesis combines new research with that of previous workers and attempts to establish a better understanding of the processes involved with the transition volcanism. Prior work documents significant differences in the geochemistry between some of these areas, especially those in close proximity to each other (e.g. the Volcanic Hills and Coyote Mountains). These differences were thought to be largely the result different magmatic sources. The potential of finding two differing magma types in close

  12. Lower crustal intrusions beneath the southern Baikal Rift Zone

    DEFF Research Database (Denmark)

    Nielsen, Christoffer; Thybo, Hans

    2009-01-01

    The Cenozoic Baikal Rift Zone (BRZ) is situated in south-central Siberia in the suture between the Precambrian Siberian Platform and the Amurian plate. This more than 2000-km long rift zone is composed of several individual basement depressions and half-grabens with the deep Lake Baikal at its...... centre. The BEST (Baikal Explosion Seismic Transect) project acquired a 360-km long, deep seismic, refraction/wide-angle reflection profile in 2002 across southern Lake Baikal. The data from this project is used for identification of large-scale crustal structures and modelling of the seismic velocities...... of the crust and uppermost mantle. Previous interpretation and velocity modelling of P-wave arrivals in the BEST data has revealed a multi layered crust with smooth variation in Moho depth between the Siberian Platform (41 km) and the Sayan-Baikal fold belt (46 km). The lower crust exhibits normal seismic...

  13. No Moho uplift below the Baikal Rift Zone

    DEFF Research Database (Denmark)

    Nielsen, Christoffer; Thybo, Hans

    2009-01-01

    The late Cenozoic Baikal Rift Zone (BRZ) in southern Siberia is composed of several individual topographic depressions and half grabens with the deep Lake Baikal at its center. We have modeled the seismic velocity structure of the crust and uppermost mantle along a 360 km long profile of the Baikal...... Explosion Seismic Transects (BEST) project across the rift zone in the southern part of Lake Baikal. The seismic velocity structure along the profile is determined by tomographic inversion of first arrival times and 2-D ray tracing of first arrivals and reflections. The velocity model shows a gently...... deepening Moho from the Siberian Platform (41 km depth) into the Sayan-Baikal Fold Belt (46 km depth). We can exclude the presence of any Moho uplift around the ~10 km deep sedimentary graben structure of southern Lake Baikal. The lower crust includes a distinct 50-80 km wide high-velocity anomaly (7...

  14. Andesite petrogenesis in a hybrid arc-rift setting: the Western Trans-Mexican Volcanic Belt

    Science.gov (United States)

    Gómez-Tuena, A.; Vázquez-Duarte, A.; Díaz-Bravo, B.; Mori, L.

    2011-12-01

    The western sector of the Mexican subduction zone is characterized by the steep subduction of one of the youngest slabs on the planet (Rivera plate), and by the existence of a continental rift at ~230 km to the north from the trench (the so-called Tepic-Zacoalco rift, TZR), under which the subducted slab is either extremely deep or even absent (>250 km). The volcanic front is located at ~170 km from the trench and contains abundant potassic-alkaline lamprophyres with strong subduction (Ba/Ta= 1600-6000) and garnet signatures (Gd/Yb= 2-8), that have been recently interpreted as influenced by deep K2O-rich slab melts or supercritical fluids (Gómez-Tuena et al., 2011, GCA). In contrast, the most mafic rocks within the TZR are high-Nb, intraplate-like basalts that appear to derive from low extents of melting of a dryer (Ba/Ta= 800-60) and shallower (Gd/Yb= 2-2.5) mantle source. Even though a simple transition from an arc environment to an extensional tectonic regime is apparent when only the most primitive volcanic rocks are taken into account, the scenario becomes more complicated since at least five stratovolcanoes have been erupting typical arc andesites within the TZR over the last million years (San Juan, Sanganguey, Tepetiltic, Ceboruco and Tequila). Surprisingly, true calc-alkaline basalts that could be parental to andesites have not been found, indicating that andesites may have a direct mantle origin. Indeed, mayor and trace element compositions of volcanic rocks from western Mexico arrange in discrete suites with linear trends that are indicative of mixing, but they form sub-parallel arrays that do not converge to a common primitive basaltic melt, and often follow diverging trends in trace element-ratio plots. Melt-crust interactions likely occurred during magma ascent, since the volcanic rocks frequently include xenoliths and disequilibrium textures, but correlations among isotopic compositions and indexes of fractionation are not clearly observed in the

  15. Geochronological and geochemical assessment of Cenozoic volcanism from the Terror Rift region of the West Antarctic Rift System

    Science.gov (United States)

    Rilling, Sarah E.

    The work presented in this dissertation explains results from three different methods to determine the relation between tectonism and rift-related volcanism in the Terror Rift region of the West Antarctic Rift System (WARS). Alkaline lavas from seven submarine features, Beaufort Island and Franklin Islands, and several locations near Mt Melbourne were dated by 40Ar/39Ar geochronology and analyzed for elemental and isotopic chemical signatures. Each chapter addresses a different aspect of the hypothesis that the presence of volatiles, primarily H2O or CO2, in the magma source has led to anomalously high volumes of magmatism after rift-related decompressional melting rather than requiring an active mantle plume source. Chapter 2 provides the temporal framework, illustrating that the sampled features range in age from 6.7 Ma to 89 ka, post-dating the main Miocene age phase of Terror Rift extension. Chapter 3 illustrates the traditional enriched elemental and isotopic chemical signatures to support the overall homogeneity of these lavas and previously analyzed areas of the WARS. This chapter also provides a new model for the generation of the Pb isotopic signatures consistent with a history of metasomatism in the magma source. Chapter 4 provides an entirely new chemical dataset for the WARS. The first platinum group element (PGE) abundances and extremely unradiogenic Os isotopic signatures of Cenozoic lavas from Antarctica provide the strongest evidence of melting contributions from a lithospheric mantle source. The combined results from these three studies consistently support the original hypothesis of this dissertation. New evidence suggests that WARS related lavas are not related to a mantle plume(s) as previously proposed. Instead, they are generated by passive, decompressional melting of a source, likely a combination of the asthenospheric and lithospheric mantle, which has undergone previous melting events and metasomatism.

  16. Geomorphological Approach for Regional Zoning In The Merapi Volcanic Area

    Directory of Open Access Journals (Sweden)

    Langgeng Wahyu Santosa

    2013-07-01

    Full Text Available Geomorphologial approach can be used as the basic for identifying and analyzing the natural resources potentials, especially in volcanic landscape. Based on its geomorphology, Merapi volcanic landscape can be divided into 5 morphological units, i.e.: volcanic cone, volcanic slope, volcanic foot, volcanic foot plain, and fluvio-volcanic plain. Each of these morphological units has specific characteristic and natural resources potential. Based on the condition of geomorphology, the regional zoning can be compiled to support the land use planning and to maintain the conservation of environmental function in the Merapi Volcanic area.

  17. Evolution of the Latir volcanic field, Northern New Mexico, and its relation to the Rio Grande Rift, as indicated by potassium-argon and fission track dating

    Science.gov (United States)

    Lipman, Peter W.; Mehnert, Harald H.; Naeser, Charles W.

    1986-05-01

    Remnants of the Latir volcanic field and cogenetic plutonic rocks are exceptionally exposed along the east margin of the present-day Rio Grande rift by topographic and structural relief in the Sangre de Cristo Mountains of northern New Mexico. Evolution of the magmatic system associated with the Latir field, which culminated in eruption of a regional ash flow sheet (the Amalia Tuff) and collapse of the Questa caldera 26 m.y. ago, has been documented by 74 new potassium-argon (K-Ar) and fission track (F-T) ages. The bulk of the precaldera volcanism, ash flow eruptions and caldera formation, and initial crystallization of the associated shallow granitic batholith took place between 28 and 25 Ma; economically important molybdenum mineralization is related to smaller granitic intrusions along the south margin of the Questa caldera at about 23 Ma. Interpretation of the radiogenic ages within this relatively restricted time span is complicated by widespread thermal resetting of earlier parts of the igneous sequence by later intrusions. Many samples yielded discordant ages for different mineral phases. Thermal blocking temperatures decrease in the order: K-Ar sanidine > K-Ar biotite > F-T zircon ≫ F-T apatite. The F-T results are especially useful indicators of cooling and uplift rates. Upper portions of the subvolcanic batholith, that underlay the Questa caldera, cooled to about 100°C within about a million years of emplacement; uplift of the batholith increases to the south along this segment of the Sangre de Cristo Mountains. Activity in the Latir volcanic field was concurrent with southwest directed extension along the early Rio Grande rift zone in northern New Mexico and southern Colorado. The geometry of this early rifting is compatible with interpretation as back arc extension related to a subduction system dipping gently beneath the cordilleran region of the American plate. The Latir field lies at the southern end of a southward migrating Tertiary magmatic

  18. The 2011-2012 unrest at Santorini rift: Stress interaction between active faulting and volcanism

    Science.gov (United States)

    Feuillet, Nathalie

    2013-07-01

    Santorini, active normal faulting controls the emission of volcanic products. Such geometry has implication on seismic activity around the plumbing system during unrest. Static Coulomb stress changes induced by the 2011-2012 inflation within a preexisting NW-SE extensional regional stress field, compatible with fault geometry, increased by more than 0.5 MPa in an ellipsoid-shaped zone beneath the Minoan caldera where almost all earthquakes (96%) have occurred since beginning of unrest. Magmatic processes perturb the regional stress in the caldera where strike-slip rather than normal faulting along NE-SW striking planes are expected. The inflation may have also promoted more distant moderate earthquakes on neighboring faults as the M > 5 January 2012, south of Christiania. Santorini belongs to a set of en echelon NE-SW striking rifts (Milos, Nysiros) oblique to the Aegean arc that may have initiated in the Quaternary due to propagation of the North Anatolian fault into the Southern Aegean Sea.

  19. Rifting and lower crustal reflectivity: A case study of the intracratonic Dniepr-Donets rift zone, Ukraine

    Science.gov (United States)

    Lyngsie, Stig B.; Thybo, Hans; Lang, Rasmus

    2007-12-01

    Intracratonic rifting, caused by late Devonian extensional stresses in the East European Craton, created the largest rift zone in Europe, the Pripyat-Dniepr-Donets rift (southeast Ukraine). The rift basin is approximately 2000 km long, up to 170 km wide, and 22 km deep. Wide-angle refraction and reflection seismic data from the Donbas Basin deep seismic Refraction and Reflection Experiments (DOBRE'99) project together with gravity and magnetic data are analyzed for the structure and evolution of the Donbas Fold Belt, which is the uplifted and deformed part of the Dniepr-Donets Basin. The seismic data are used for identification of large-scale crustal structures and modeling of the seismic velocities of the crust and uppermost mantle. A ray-trace-based velocity and density model is derived by joint inversion of gravity and traveltime data. The inversion result reveals a zone of high density and velocity beneath the basin at middle to lower crustal levels, slightly offset to the NE of the rift axis. Full waveform synthetic seismograms, matching the observed data, show high-amplitude and low-frequency arrivals from this high-density body as well as from the Moho. We interpret the high-amplitude, low-frequency signals as reflections from layered magmatic rocks, which intruded into the ductile lower crust during the main rift phase and subsequently were sorted by fractional crystallization. The intrusive material thickened the lower crust by approximately 50%. This may explain the enigmatic flat Moho topography across the rift zone which has been significantly stretched (β = 1.3). The rifting initiated in the late Devonian (Frasnien) as a consequence of back-arc extension in relation to subduction of the Paleo-Tethys Ocean. The subducting oceanic slab may have enriched the mantle with volatiles and created convection, leading to strong partial melting, upwelling, and continued rifting in the Famennien. We interpret the asymmetrical rift geometry as a combination of

  20. Diachronism in the late Neoproterozoic-Cambrian arc-rift transition of North Gondwana: A comparison of Morocco and the Iberian Ossa-Morena Zone

    Science.gov (United States)

    Álvaro, J. Javier; Bellido, Félix; Gasquet, Dominique; Pereira, M. Francisco; Quesada, Cecilio; Sánchez-García, Teresa

    2014-10-01

    In the northwestern border of the West African craton (North Gondwana), a transition from late Neoproterozoic subduction/collision to Cambrian rift processes was recorded in the Anti-Atlas (Morocco) and in the Ossa-Morena Zone (Iberia). Cambrian rifting affected both Pan-African and Cadomian basements in a stepwise and diachronous way. Subsequently, both areas evolved into a syn-rift margin episodically punctuated by uplift and tilting that precluded Furongian sedimentation. A comparison of sedimentary, volcanic and geodynamic evolution is made in the late Neoproterozoic (Pan-African and Cadomian) belts and Cambrian rifts trying to solve the apparent diachronous (SW-NE-trending) propagation of an early Palaeozoic rifting regime that finally led to the opening of the Rheic Ocean.

  1. Submarine volcanoes of the Kolumbo volcanic zone NE of Santorini Caldera, Greece

    Science.gov (United States)

    Nomikou, P.; Carey, S.; Papanikolaou, D.; Croff Bell, K.; Sakellariou, D.; Alexandri, M.; Bejelou, K.

    2012-06-01

    The seafloor northeast of Santorini volcano in Greece consists of a small, elongated rifted basin that has been the site of recent submarine volcanism. This area lies within the Cyclades back-arc region of the present Hellenic subduction zone where the seafloor of the eastern Mediterranean Sea is descending beneath the Aegean microplate. The Cycladic region and the Aegean Sea as a whole are known to be regions of north-south back-arc extension and thinning of continental crust. Nineteen submarine volcanic cones occur within this small rift zone, the largest of these being Kolumbo which last erupted explosively in 1650 AD, causing significant damage and fatalities on the nearby island of Santorini. Previous SEABEAM mapping and seismic studies from HCMR indicate that many of the smaller v'olcanic cones have been built above the present seafloor, while others are partly buried, indicating a range of ages for the activity along this volcanic line. None of the cones to the northeast of Kolumbo had been explored in detail prior to a cruise of the E/V Nautilus (NA007) in August 2010. The ROV Hercules was used to explore the slopes, summits and craters of 17 of the 19 centers identified on multibeam maps of the area. Water depths of the submarine volcano's summits ranged from 18 to 450 m. In general, the domes/craters northeast of Kolumbo were sediment covered and showed little evidence of recent volcanic activity. Outcrops of volcanic rock were found in the crater walls and slopes of some of the cones but they typically consisted of volcanic fragments of pumice and lava that have been cemented together by biological activity, indicative of the lack of recent eruptions. Geochemical analysis of samples collected on the northeast cones showed evidence of low temperature hydrothermal circulation on the summit and upper flanks in the form of stream-like manganese precipitates emanating from pits and fractures.

  2. The Role of Magmatic and Volcanic Loads in Generating Seaward Dipping Reflector Structures on Volcanic Rifted Margins

    Science.gov (United States)

    Tian, X.; Buck, W. R.

    2016-12-01

    The largest volcanic constructs on Earth are the seismically imaged seaward dipping reflector (SDR) units found offshore of many rifted continental margins, including a large portion that border the Atlantic Ocean. There is considerable controversy over whether their formation requires large offset (i.e. 10s of km) normal faults or not. Although there is some evidence for faulting in association with SDRs, we here show that a wide range of SDRs structures can be produced solely by volcanic loading. To do this we first derive a simple analytic description of a particular type of volcanic construct. We assume that the increase in density when fluid magma in a dike solidifies provides load at the rift center onto the end of a lithospheric plate. Extrusives are assumed to form flat-topped layers that fill in the flexural depression produced by the load of the solidified dike. The thin-plate flexure approximation is used to calculate the deflections due to the vertical load. This simple model produces structures similar to the observed SDRs. Expressions for the maximum thickness of the volcanic pile and the dip of an individual SDR are derived in terms of the flexure parameter and material densities. Asymmetry of SDR units seen across some conjugate margins can be explained with this model if periodic offsets, or jumps of the center of magmatism are included. In addition, we developed a numerical model of lithospheric extension, magma intrusion and volcanism with a temperature dependent elasto-viscous and brittle-plastic rheology. Results of these 2D cross-sectional models with fixed thermal structure confirm the qualitative predictions of the analytic model without the simplified uniform plate assumption. Preliminary results suggest that the rapid subsidence of SDRs, inferred for some rifted margins, can occur if magma is supplied only to the brittle upper layer and the hot weak lower crust is thinned by stretching. This numerical approach may also allow us to test

  3. Gas Geochemistry of Volcanic and Geothermal Areas in the Kenya Rift: Implications for the Role of Fluids in Continental Rifting

    Science.gov (United States)

    Lee, H.; Fischer, T. P.; Ranka, L. S.; Onguso, B.; Kanda, I.; Opiyo-Akech, N.; Sharp, Z. D.; Hilton, D. R.; Kattenhorn, S. A.; Muirhead, J.

    2013-12-01

    The East African Rift (EAR) is an active continental rift and ideal to investigate the processes of rift initiation and the breaking apart of continental lithosphere. Mantle and crust-derived fluids may play a pivotal role in both magmatism and faulting in the EAR. For instance, large quantities of mantle-derived volatiles are emitted at Oldoinyo Lengai volcano [1, 2]. Throughout the EAR, CO2-dominated volatile fluxes are prevalent [3, 4] and often associated with faults (i.e. Rungwe area, Tanzania, [5, 6]). The purpose of this study is to examine the relationship between volcanism, faulting and the volatile compositions, focusing on the central and southern Kenyan and northern Tanzanian section of the EAR. We report our analysis results for samples obtained during a 2013 field season in Kenya. Gases were sampled at fumaroles and geothermal plants in caldera volcanoes (T=83.1-120.2°C) and springs (T=40-79.6°C and pH 8.5-10) located near volcanoes, intra-rift faults, and a transverse fault (the Kordjya fault, a key fluid source in the Magadi rift) by 4N-NaOH solution-filled and empty Giggenbach bottles. Headspace gases were analyzed by a Gas Chromatograph and a Quadrupole Mass Spectrometer at the University of New Mexico. Both N2/Ar and N2/He ratios of all gases (35.38-205.31 and 142.92-564,272, respectively) range between air saturated water (ASW, 40 and ≥150,000) and MORB (100-200 and 40-50). In addition, an N2-Ar-He ternary diagram supports that the gases are produced by two component (mantle and air) mixing. Gases in the empty bottles from volcanoes and springs have N2 (90.88-895.99 mmom/mol), CO2 (2.47-681.21 mmom/mol), CH4 (0-214.78 mmom/mol), O2 (4.47-131.12 mmom/mol), H2 (0-35.78 mmom/mol), Ar (0.15-10.65 mmom/mol), He (0-2.21 mmom/mol), and CO (0-0.08 mmom/mol). Although some of the samples show an atmospheric component, CO2 is a major component in most samples, indicating both volcanoes and springs are emitting CO2. Gases from volcanoes are enriched in

  4. Magma storage under Iceland's Eastern Volcanic Zone

    Science.gov (United States)

    Maclennan, J.; Neave, D.; Hartley, M. E.; Edmonds, M.; Thordarson, T.; Morgan, D. J.

    2014-12-01

    The Eastern Volcanic Zone (EVZ) of Iceland is defined by a number of volcanic systems and large basaltic eruptions occur both through central volcanoes (e.g. Grímsvötn) and on associated fissure rows (e.g. Laki, Eldgjá). We have collected a large quantity of micro-analytical data from a number of EVZ eruptions, with the aim of identifying common processes that occur in the premonitory stages of significant volcanic events. Here, we focus on the AD 1783 Laki event, the early postglacial Saksunarvatn tephra and the sub-glacially erupted Skuggafjöll tindar and for each of these eruptions we have >100 olivine-hosted or plagioclase-hosted melt inclusion analyses for major, trace and volatile elements. These large datasets are vital for understanding the history of melt evolution in the plumbing system of basaltic volcanoes. Diverse trace element compositions in melt inclusions hosted in primitive macrocrysts (i.e. Fo>84, An>84) indicate that the mantle melts supplied to the plumbing system of EVZ eruptions are highly variable in composition. Concurrent mixing and crystallisation of these melts occurs in crustal magma bodies. The levels of the deepest of these magma bodies are not well constrained by EVZ petrology, with only a handful of high-CO2 melt inclusions from Laki providing evidence for magma supply from >5 kbar. In contrast, the volatile contents of melt inclusions in evolved macrocrysts, which are close to equilibrium with the carrier liquids, indicate that final depths of inclusion entrapment are 0.5-2 kbar. The major element composition of the matrix glasses shows that the final pressure of equilibration between the melt and its macrocryst phases also occurred at 0.5-2 kbar. The relationship between these pressures and seismic/geodetic estimates of chamber depths needs to be carefully evaluated. The melt inclusion and macrocryst compositional record indicates that injection of porphyritic, gas-rich primitive melt into evolved/enriched and degassed shallow

  5. Evolution of the East African rift: Drip magmatism, lithospheric thinning and mafic volcanism

    Science.gov (United States)

    Furman, Tanya; Nelson, Wendy R.; Elkins-Tanton, Linda T.

    2016-07-01

    The origin of the Ethiopian-Yemeni Oligocene flood basalt province is widely interpreted as representing mafic volcanism associated with the Afar mantle plume head, with minor contributions from the lithospheric mantle. We reinterpret the geochemical compositions of primitive Oligocene basalts and picrites as requiring a far more significant contribution from the metasomatized subcontinental lithospheric mantle than has been recognized previously. This region displays the fingerprints of mantle plume and lithospheric drip magmatism as predicted from numerical models. Metasomatized mantle lithosphere is not dynamically stable, and heating above the upwelling Afar plume caused metasomatized lithosphere with a significant pyroxenite component to drip into the asthenosphere and melt. This process generated the HT2 lavas observed today in restricted portions of Ethiopia and Yemen now separated by the Red Sea, suggesting a fundamental link between drip magmatism and the onset of rifting. Coeval HT1 and LT lavas, in contrast, were not generated by drip melting but instead originated from shallower, dominantly anhydrous peridotite. Looking more broadly across the East African Rift System in time and space, geochemical data support small volume volcanic events in Turkana (N. Kenya), Chyulu Hills (S. Kenya) and the Virunga province (Western Rift) to be derived ultimately from drip melting. The removal of the gravitationally unstable, metasomatized portion of the subcontinental lithospheric mantle via dripping is correlated in each case with periods of rapid uplift. The combined influence of thermo-mechanically thinned lithosphere and the Afar plume together thus controlled the locus of continental rift initiation between Africa and Arabia and provide dynamic support for the Ethiopian plateau.

  6. 40Ar/39Ar Geochronology, Isotope Geochemistry (Sr, Nd, Pb), and petrology of alkaline lavas near Yampa, Colorado: migration of alkaline volcanism and evolution of the northern Rio Grande rift

    Science.gov (United States)

    Cosca, Michael A.; Thompson, Ren A.; Lee, John P.; Turner, Kenzie J.; Neymark, Leonid A.; Premo, Wayne R.

    2014-01-01

    Volcanic rocks near Yampa, Colorado (USA), represent one of several small late Miocene to Quaternary alkaline volcanic fields along the northeast margin of the Colorado Plateau. Basanite, trachybasalt, and basalt collected from six sites within the Yampa volcanic field were investigated to assess correlations with late Cenozoic extension and Rio Grande rifting. In this paper we report major and trace element rock and mineral compositions and Ar, Sr, Nd, and Pb isotope data for these volcanic rocks. High-precision 40Ar/39Ar geochronology indicates westward migration of volcanism within the Yampa volcanic field between 6 and 4.5 Ma, and the Sr, Nd, and Pb isotope values are consistent with a primary source in the Proterozoic subcontinental lithospheric mantle. Relict olivine phenocrysts have Mg- and Ni-rich cores, whereas unmelted clinopyroxene cores are Na and Si enriched with finely banded Ca-, Mg-, Al-, and Ti-enriched rims, thus tracing their crystallization history from a lithospheric mantle source region to one in contact with melt prior to eruption. A regional synthesis of Neogene and younger volcanism within the Rio Grande rift corridor, from northern New Mexico to southern Wyoming, supports a systematic overall southwest migration of alkaline volcanism. We interpret this Neogene to Quaternary migration of volcanism toward the northeast margin of the Colorado Plateau to record passage of melt through subvertical zones within the lithosphere weakened by late Cenozoic extension. If the locus of Quaternary alkaline magmatism defines the current location of the Rio Grande rift, it includes the Leucite Hills, Wyoming. We suggest that alkaline volcanism in the incipient northern Rio Grande rift, north of Leadville, Colorado, represents melting of the subcontinental lithospheric mantle in response to transient infiltration of asthenospheric mantle into deep, subvertical zones of dilational crustal weakness developed during late Cenozoic extension that have been

  7. The distribution of volcanism in the Beta-Atla-Themis region of Venus: Its relationship to rifting and implications for global tectonic regimes

    Science.gov (United States)

    Airey, M. W.; Mather, T. A.; Pyle, D. M.; Ghail, R. C.

    2017-08-01

    A new analysis of the spatial relationships between volcanic features and rifts on Venus provides new constraints on models of planetary evolution. We developed a new database of volcanic features for the Beta-Atla-Themis (BAT) region and used nearest neighbor measurements to determine relationships between different types of volcanic features and the rifts. Nearest neighbor analysis shows that all the dome-type and corona-type subpopulations tend to cluster. Rift associations were inferred from the deviation of a feature's population distribution (as a function of distance from rift) from that of a random population. Dome-type features in general have no discernible relationship with rifts. Most corona-type features have a strong association with rifts, with intermediate and large volcanoes also tending to occur close to or on rifts. Shield fields, on the other hand, tend to occur away from rifts. Our new evidence supports classifications of rifts on Venus into different types, possibly by age, with a shift from globally dispersed (more uniform) volcanism toward the more rift-focused distribution, which suggests a shift in tectonic regime. Our observations are consistent with recent models proposing the evolution of Venus from a stagnant lid regime to a subcrustal spreading regime. We also present evidence for a failed rift on Venus and note that this process may be analogous, albeit on a larger scale, to a proposed model for the evolution of the East African rift system.

  8. Volcanic evolution of an active magmatic rift segment on a 100 Kyr timescale: exposure dating of lavas from the Manda Hararo/Dabbahu segment of the Afar Rift

    Science.gov (United States)

    Medynski, S.; Williams, A.; Pik, R.; Burnard, P.; Vye, C.; France, L.; Ayalew, D.; Yirgu, G.

    2012-12-01

    In the Afar depression (Ethiopia), extension is already organised along rift segments which morphologically resemble oceanic rifts. Segmentation here results from interactions between dyke injection and volcanism, as observed during the well documented 2005 event on the Dabbahu rift segment. During this tectono-volcanic crisis, a megadyke was injected, followed by 12 subsequent dike intrusions, sometimes associated with fissure flow eruptions. Despite the accurate surveying of the magmatic and tectonic interplay during this event via remote sensing techniques, there is a lack of data on timescales of 1 to 100 kyr, the period over which the main morphology of a rift is acquired. The Dabbahu rift segment represents an ideal natural laboratory to study the evolution of rift morphology as a response to volcanic and tectonic influences. It is possible to constrain the timing of fault growth relative to the infilling of the rift axial depression by lava flows, and to assess the influence of the different magma bodies involved in lava production along the rift-segment. We use cosmogenic nuclides (3He) to determine the ages of young (cartography (Landsat, ASTER and SPOT imagery), the rift geomorphology can be linked to the magmatic and tectonic history defined by surface exposure dating. The results show that over the last 100 ka the Northern part of the Dabbahu segment was supplied by two different magma reservoirs which can be identified based on their distinctive chemistries. The main reservoir is located beneath Dabbahu volcano, and has been supplied with magma for at least 72 ka. This magmatic centre supplies magma to most of the northern third of the rift segment. The second reservoir is located further south, on the axis, close to the current mid-segment magma chamber, which was responsible for the 2005 rifting episode. This second magmatic centre supplies magma to the remaining 2/3 of the segment, but scarcely impacts its Northern termination (where the Dabbahu

  9. Deformation and seismicity associated with continental rift zones propagating toward continental margins

    Science.gov (United States)

    Lyakhovsky, V.; Segev, A.; Schattner, U.; Weinberger, R.

    2012-01-01

    We study the propagation of a continental rift and its interaction with a continental margin utilizing a 3-D lithospheric model with a seismogenic crust governed by a damage rheology. A long-standing problem in rift-mechanics, known as thetectonic force paradox, is that the magnitude of the tectonic forces required for rifting are not large enough in the absence of basaltic magmatism. Our modeling results demonstrate that under moderate rift-driving tectonic forces the rift propagation is feasible even in the absence of magmatism. This is due to gradual weakening and "long-term memory" of fractured rocks that lead to a significantly lower yielding stress than that of the surrounding intact rocks. We show that the style, rate and the associated seismicity pattern of the rift zone formation in the continental lithosphere depend not only on the applied tectonic forces, but also on the rate of healing. Accounting for the memory effect provides a feasible solution for thetectonic force paradox. Our modeling results also demonstrate how the lithosphere structure affects the geometry of the propagating rift system toward a continental margin. Thinning of the crystalline crust leads to a decrease in the propagation rate and possibly to rift termination across the margin. In such a case, a new fault system is created perpendicular to the direction of the rift propagation. These results reveal that the local lithosphere structure is one of the key factors controlling the geometry of the evolving rift system and seismicity pattern.

  10. Creating global comparative analyses of tectonic rifts, monogenetic volcanism and inverted relief

    Science.gov (United States)

    van Wyk de Vries, Benjamin

    2016-04-01

    I have been all around the world, and to other planets and have travelled from the present to the Archaean and back to seek out the most significant tectonic rifts, monogenetic volcanoes and examples of inverted relief. I have done this to provide a broad foundation of the comparative analysis for the Chaîne des Puys - Limagne fault nomination to UNESCO world Heritage. This would have been an impossible task, if not for the cooperation of the scientific community and for Google Earth, Google Maps and academic search engines. In preparing global comparisons of geological features, these quite recently developed tools provide a powerful way to find and describe geological features. The ability to do scientific crowd sourcing, rapidly discussing with colleagues about features, allows large numbers of areas to be checked and the open GIS tools (such as Google Earth) allow a standardised description. Search engines also allow the literature on areas to be checked and compared. I will present a comparative study of rifts of the world, monogenetic volcanic field and inverted relief, integrated to analyse the full geological system represented by the Chaîne des Puys - Limagne fault. The analysis confirms that the site is an exceptional example of the first steps of continental drift in a mountain rift setting, and that this is necessarily seen through the combined landscape of tectonic, volcanic and geomorphic features. The analysis goes further to deepen the understanding of geological systems and stresses the need for more study on geological heritage using such a global and broad systems approach.

  11. The Temporal and Spatial Association of Faulting and Volcanism in the Cerros del Rio Volcanic Field - Rio Grande Rift, USA

    Science.gov (United States)

    Thompson, R. A.; Hudson, M. R.; Minor, S. A.; McIntosh, W. C.; Miggins, D. P.; Grauch, V.

    2008-12-01

    The Plio-Pleistocene Cerros del Rio volcanic field (CdRVF) in northern New Mexico is one of the largest ( greater than 700 square kilometers) predominantly basaltic and andesitic volcanic centers of the Rio Grande rift; it records the late-stage, volcano-tectonic evolution of the SW part of the Espanola Basin. The CdRVF reflects both regional proclivity toward Pliocene basaltic volcanism following protracted Neogene extensional tectonism and localized eruptive response to migration of basin- bounding faults. Approximately 180 cubic kilometers of flat lying to gently dipping basalt, andesite, and minor dacite lava flows and pyroclastic deposits of the CdRVF were erupted from more than 50 exposed vents between 2.8 Ma and 1.14 Ma. Subsurface interpretations of drill hole data and incised canyon exposures of the Rio Grande show that volcanic deposits are interbedded with Santa Fe Group sediments deposited in actively subsiding sub-basins of the southernmost Espanola Basin. Major basin-bounding faults in this area strike north to northwest, dip basinward, and have mostly dip-slip and subordinate strike-slip displacement. Although major basin-bounding faults were active prior to the onset of volcanism in the CdRVF, protracted extension resulted in a westward migration of graben-bounding faults. Phases of coeval volcanism at 2.8-2.6 Ma, 2.5-2.2 Ma, and 1.5-1.1 Ma, decreased in eruptive volume through time and are delineated on the basis of mapped stratigraphy, argon geochronology, paleomagnetic and aeromagnetic properties, and record a syntectonic westward migration of eruptive centers. The alignment of vent areas with mapped faults strongly suggests deep magmatic sources utilized local structures as conduits (i.e. faults and fractures developed in response to regional stress). However, some near-surface feeder dikes associated with eroded cinder cones record orientations that are not typically correlative with regional fault patterns suggesting near-surface conduits are

  12. Volcanic activities in the Southern part of East African rift initiation: Melilitites and nephelinites from the Manyara Basin (North Tanzania rift axis)

    Science.gov (United States)

    Baudouin, Celine; Parat, Fleurice; Tiberi, Christel; Gautier, Stéphanie; Peyrat, Sophie

    2016-04-01

    The East African Rift exposes different stages of plate boundary extension, from the initiation of the rift (North (N) Tanzania) to oceanic accretion (Afar). The N Tanzania rift-axis (north-south (S) trend) is divided into 2 different volcanic and seismic activities: (1) the Natron basin (N) with shallow seismicity and intense volcanism and (2) the Manyara basin (S) with deep crustal earthquakes and sparse volcanism. The Natron basin is characterized by extinct volcanoes (2 Ma-0.75 Ma) and active volcano (Oldoinyo Lengai) and a link between seismicity and volcanism has been observed during the Oldoinyo Lengai crisis in 2007. In the S part of the N Tanzanian rift, volcanoes erupted in the Manyara basin between 0.4 and 0.9 Ma. In this study, we used geochemical signature of magmas and deep fluids that percolate into the lithosphere beneath Manyara basin, to define the compositions of magmas and fluids at depth beneath the S part of the N Tanzania rift, compare to the Natron basin and place constrain on the volcanic and seismic activities. The Manyara basin has distinct volcanic activities with mafic magmas as melilitites (Labait) and Mg-nephelinites (carbonatite, Kwaraha), and more differentiated magmas as Mg-poor nephelinites (Hanang). Melilitites and Mg-nephelinites are primary magmas with olivine, clinopyroxene (cpx), and phlogopite recording high-pressure crystallization environment, (melilitites >4 GPa and Mg-nephelinites>1 GPa) with high volatile contents (whole rock: 0.7-4.6 wt% CO2, 0.1-0.3 wt% F and 0.1 wt% Cl). FTIR analyses of olivine constrained the water content of Labait and Kwaraha magmas at 0.1 and 0.4 wt% H2O, respectively. Geochemical modelling suggests that mafic magmas result from a low degree of partial melting (1-2%) of a peridotitic source with garnet and phlogopite (high Tb/Yb (>0.6) and Rb/Sr (0.03-0.12) ratio). Mg-poor nephelinites from Hanang volcano crystallized cpx, Ti-garnet, and nepheline as phenocrysts. Magmas result from fractional

  13. Post-rift volcanic structures of the Pernambuco Plateau, northeastern Brazil

    Science.gov (United States)

    Buarque, Bruno V.; Barbosa, José A.; Magalhães, José R. G.; Cruz Oliveira, Jefferson T.; Filho, Osvaldo J. Correia

    2016-10-01

    The Pernambuco marginal basin is located on the eastern continental margin of northeastern Brazil, covers an area of 20,800 km2, and represents one of the most prominent frontiers for deep water oil and gas exploration off the Brazilian coast. The onshore region of this basin was highly affected by extrusive and intrusive magmatism during the Upper Albian, and the relation of that event with the volcanic structures observed in the offshore sector has not been thoroughly characterized to date. This study aims to characterize the major extrusive and intrusive volcanic structures of the offshore portion of this basin, which is dominated by the Pernambuco Plateau, and its stratigraphic relations. A set of 143 2D multichannel seismic sections that cover the Pernambuco Plateau region are used to interpret the major tectono-stratigraphic sequences and describe the distribution of volcanoes, sills, vent complexes and related volcaniclastic sequences. The interpretations are supported by aeromagnetic and gravimetric geophysical surveys. Volcanoes are classified into two groups that differ in terms of their morphology: shield-like structures and cone-shaped volcanic structures. Sill intrusions are mainly identified beneath the volcanic structures and are characterized by high-amplitude reflectors with short extensions and abrupt terminations. Volcaniclastic sequences are found adjacent to the volcanoes and are characterized by high-amplitude, disrupted reflections with local chaotic configurations. Vent complexes are classified on the basis of their morphologies as either eye-shaped or crater-shaped. The volcanic features identified within the available seismic dataset are concentrated in two main areas: in the centre of the plateau and near its northeastern border. These two regions are host basement outer highs and are surrounded by hyper-extended continental crust, which forms the plateau itself. The extrusive and intrusive features described in the offshore region were

  14. 40Ar-39Ar Age Constraints on Volcanism and Tectonism in the Terror Rift of the Ross Sea, Antarctica

    Science.gov (United States)

    2007-01-01

    Volcanic sills and dikes inferred from seismic reflection profiles and geophysical studies of the Ross Sea are thought to be related to the rift basins in the region, and their emplacement to be coeval with extension. However, lack of precise geochronology in the Terror Rift of the Ross Sea region has left these inferred relationships poorly constrained and has hindered neotectonic studies, because of the large temporal gaps between seismic reflectors of known ages. New 40Ar/39Ar geochronology presented here for submarine volcanic rocks provides better age constraints for neotectonic interpretations within the Terror Rift. Several samples from seamounts yielded young ages between 156 ± 21 and 122 ± 26 Ka. These ages support interpretations that extension within the Terror Rift was active at least through the Pleistocene. Three evenly spaced samples from the lowermost 100 m of Franklin Island range in age from 3.28 ± 0.04 to 3.73 ± 0.05 Ma. These age determinations demonstrate that construction of a small volcanic edifice such as Franklin Island took at least several hundred thousand years, and therefore that much larger ones in the Erebus Volcanic Province are likely to have taken considerably longer than previously inferred. This warrants caution in applying a limited number of age determinations to define the absolute ages of events in the Ross Sea region

  15. Strain Localisation at Rift Segment Boundaries: An Example from the Bocana Transfer Zone in Central Baja California, Mexico

    Science.gov (United States)

    Seiler, C.; Gleadow, A. J.; Kohn, B. P.

    2012-12-01

    pre-rift strata in this area. The BTZ itself is characterized by two en echelon WNW-ESE striking dextral-oblique transfer faults with a significant down-to-the-NNE extensional component. Strain is transferred from the Libertad breakaway fault onto the transfer faults over a distance of >20km through a network of interacting normal, oblique and strike-slip faults. The shape, location and orientation of the main faults were strongly influenced by pre-existing rheological heterogeneities. Major normal faults are parallel to either the Mesozoic metamorphic foliation or Cretaceous intrusive contacts, and developed where the foliation was at a high angle to the extension direction. In contrast, the oblique-slip faults of the BTZ formed parallel to the metamorphic foliation where formlines are at a small angle to the regional extension direction. Compared to other, less well-understood accommodation zones in the Gulf of California rift, the BTZ shows a distinct lack of volcanic activity, which may help explain the different exposure and structural expression of the various segment boundaries.

  16. Teleseismic Investigations of the Malawi and Luangwa Rift Zones: Ongoing Observations From the SAFARI Experiment

    Science.gov (United States)

    Reed, C. A.; Gao, S. S.; Liu, K. H.; Yu, Y.; Chindandali, P. R. N.; Massinque, B.; Mdala, H. S.; Mutamina, D. M.

    2015-12-01

    In order to evaluate the influence of crustal and mantle heterogeneities upon the initiation of the Malawi rift zone (MRZ) and reactivation of the Zambian Luangwa rift zone (LRZ) subject to Cenozoic plate boundary stress fields and mantle buoyancy forces, we installed and operated 33 Seismic Arrays For African Rift Initiation (SAFARI) three-component broadband seismic stations in Malawi, Mozambique, and Zambia from 2012 to 2014. During the twenty-four month acquisition period, nearly 6200 radial receiver functions (RFs) were recorded. Stations situated within the MRZ, either along the coastal plains or within the Shire Graben toward the south, report an average crustal thickness of 42 km relative to approximately 46 km observed at stations located along the rift flanks. This implies the juvenile MRZ is characterized by a stretching factor not exceeding 1.1. Meanwhile, P-to-S velocity ratios within the MRZ increase from 1.71 to 1.82 in southernmost Malawi, indicating a substantial modification of the crust during Recent rifting. Time-series stacking of approximately 5500 RFs recorded by the SAFARI and 44 neighboring network stations reveals an apparent uplift of 10 to 15 km along both the 410- and 660-km mantle transition zone (MTZ) discontinuities beneath the MRZ and LRZ which, coupled with an apparently normal 250-km MTZ thickness, implies a first-order high-velocity contribution from thickened lithosphere. Preliminary manual checking of SAFARI shear-wave splitting (SWS) measurements provides roughly 650 high-quality XKS phases following a component re-orientation to correct station misalignments. Regional azimuthal variations in SWS fast orientations are observed, from rift-parallel in the vicinity of the LRZ to rift-oblique in the MRZ. A major 60° rotation in the fast orientation occurs at approximately 31°E, possibly resulting from the modulation of mantle flow around a relatively thick lithospheric keel situated between the two rift zones.

  17. Chronology and volcanology of the 1949 multi-vent rift-zone eruption on La Palma (Canary Islands)

    Science.gov (United States)

    Klügel, A.; Schmincke, H.-U.; White, J. D. L.; Hoernle, K. A.

    1999-12-01

    The compositionally zoned San Juan eruption on La Palma emanated from three eruptive centers located along a north-south-trending rift zone in the south of the island. Seismic precursors began weakly in 1936 and became strong in March 1949, with their foci progressing from the north of the rift zone towards its south. This suggests that magma ascended beneath the old Taburiente shield volcano and moved southward along the rift. The eruption began on June 24, 1949, with phreatomagmatic activity at Duraznero crater on the ridgetop (ca. 1880 m above sea level), where five vents erupted tephritic lava along a 400-m-long fissure. On June 8, the Duraznero vents shut down abruptly, and the activity shifted to an off-rift fissure at Llano del Banco, located at ca. 550 m lower elevation and 3 km to the northwest. This eruptive center issued initially tephritic aa and later basanitic pahoehoe lava at high rates, producing a lava flow that entered the sea. Two days after basanite began to erupt at Llano del Banco, Hoyo Negro crater (ca. 1880 m asl), located 700 m north of Duraznero along the rift, opened on July 12 and produced ash and bombs of basanitic to phonotephritic composition in violent phreatomagmatic explosions ( White and Schmincke, 1999). Llano del Banco and Hoyo Negro were simultaneously active for 11 days and showed a co-variance of their eruption rates indicating a shallow hydraulic connection. On July 30, after 3 days of quiescence at all vents, Duraznero and Hoyo Negro became active again during a final eruptive phase. Duraznero issued basanitic lava at high rates for 12 h and produced a lava flow that descended towards the east coast. The lava contains ca. 1 vol.% crustal and mantle xenoliths consisting of 40% tholeiitic gabbros from the oceanic crust, 35% alkaline gabbros, and 20% ultramafic cumulates. The occurrence of xenoliths almost exclusively in the final lava is consistent with their origin by wall-rock collapse at depth near the end of the eruption

  18. Rifting, volcanism, and magma genesis at the northern end of the Danakil Depression: The Alid volcanic center of Eritrea (Invited)

    Science.gov (United States)

    Lowenstern, J. B.; Clynne, M. A.; Duffield, W. A.; Smith, J. G.; Woldegiorgis, L.

    2009-12-01

    The Alid volcanic center, Eritrea, is a structural dome formed by subvolcanic intrusion of pyroxene-bearing rhyolite, subsequently erupted as pumice and lava, during the period 40,000 to 15,000 years ago. The northern Danakil Depression is thought to be the most recently developed part of the Afar, and represents an active continental rift subparallel to the Red Sea spreading center. The location of Alid may be controlled by the intersection of the structural grain of the NE trending Senafe-Alid lineament with the NW trending Danakil Depression. Our work began as a geothermal assessment (Duffield et al., 1997, USGS Open-file 97-291) that found evidence for 300 meters of vertical offset of early Pleistocene basalt flows over the past 1.1 million years. Structural uplift at Alid reveals Proterozoic metamorphic basement rocks overlain by Quaternary marine sediments including siltstone, and sandstones interbedded with pillow lavas and hyaloclastites. These units are overlain by subaerial amphibole-bearing rhyolites (dated at ~200 ka), basalts, and andesites that were deposited on a relatively flat surface and before significant growth of a large volcanic edifice. About 1 km of structural uplift of the marine sediments began 40 ka when pyroxene-bearing rhyolitic magma intruded close to the surface. Uplift was accompanied by contemporaneous eruptions of pumice falls and more common obsidian domes and lava flows over the next 20,000 years. Uplift apparently ceased after eruption of pyroclastic flows and vent-clogging lava about 15 ka. The pumice deposits contain cognate xenoliths of granophyric pyroxene-granite (Lowenstern et al., 1997, J. Petrol. 38:1707). Our geochronology of the uplift is consistent with the idea that growth of the Alid volcanic center played a role in isolating the southern Danakil Depression from the Red Sea, helping to initiate dessication of the rift and producing the young evaporites found today at Baddha and further south at Dallol. U

  19. Structure and kinematics of the Livingstone Mountains border fault zone, Nyasa (Malawi) Rift, southwestern Tanzania

    Science.gov (United States)

    Wheeler, Walter H.; Karson, Jeffrey A.

    Reconnaissance mapping of the Livingstone Mountains border fault zone (LMBFZ) at the northern end of the Nyasa (Malawi) Rift in SW Tanzania constrains the geometry and movement history of this typical rift border fault. The fault is a narrow zone of complex brittle deformation, striking 320°, that overprints and reactivates an older ductile shear zone. Long, straight, NW-trending border fault segments are offset by minor NE-trending faults. These two orthogonal fault sets integrate along strike to produce an overall curved fault trace that is concave towards a major depositional basin in the rift. A typical section through the fault zone shows an E to W progression from gneissic country rock through ductilely deformed country rock, into a zone overprinted by closely spaced fractures and grading into an intensely fractured, massive, flinty, aphanitic mylonite band at the lakeshore. Pseudotachylite veins, probably generated during seismic movement on the border fault, are common within and near the aphanitic mylonite. Slickensides indicate dextral oblique-slip, whereas shear belts and rolled porphyroclasts with complex tails in the older ductile shear zone indicate sub-horizontal sinistral motion. The adjacent rift basin is typical of other East African Rift Basins, and contains at least 4 km of Recent to perhaps Mesozoic sediment. Whereas the minimum net slip on the LMBFZ, in the dominant slickenside direction, is on the order of 10 km, regional geologic considerations suggest that dominantly strike-slip motion preceded the oblique-slip phase that produced the LMBFZ and the adjacent rift basin.

  20. Magmatism in rifting and basin formation

    Science.gov (United States)

    Thybo, H.

    2008-12-01

    Whether heating and magmatism cause rifting or rifting processes cause magmatic activity is highly debated. The stretching factor in rift zones can be estimated as the relation between the initial and the final crustal thickness provided that the magmatic addition to the crust is insignificant. Recent research demonstrates substantial magmatic intrusion into the crust in the form of sill like structures in the lowest crust in the presently active Kenya and Baikal rift zones and the DonBas palaeo-rift zone in Ukraine. This result may be surprising as the Kenya Rift is associated with large amounts of volcanic products, whereas the Baikal Rift shows very little volcanism. Identification of large amounts of magmatic intrusion into the crust has strong implications for estimation of stretching factor, which in the case of Baikal Rift Zone is around 1.7 but direct estimation gives a value of 1.3-1.4 if the magmatic addition is not taken into account. This may indicate that much more stretching has taken place on rift systems than hitherto believed. Wide sedimentary basins may form around aborted rifts due to loading of the lithosphere by sedimentary and volcanic in-fill of the rift. This type of subsidence will create wide basins without faulting. The Norwegian- Danish basin in the North Sea area also has subsided gradually during the Triassic without faulting, but only few rift structures have been identified below the Triassic sequences. We have identified several mafic intrusions in the form of large batholiths, typically more than 100 km long, 20-40 km wide and 20 km thick. The associated heating would have lifted the surface by about 2 km, which may have been eroded before cooling. The subsequent contraction due to solidification and cooling would create subsidence in a geometry similar to basins that developed by loading. These new aspects of magmatism will be discussed with regard to rifting and basin formation.

  1. Fissure swarms and fracture systems within the Western Volcanic Zone, Iceland - Effects of spreading rates

    Science.gov (United States)

    Hjartardóttir, Ásta Rut; Einarsson, Páll; Björgvinsdóttir, Sigríður G.

    2016-10-01

    The Western Volcanic Zone (WVZ) in Iceland is ∼120 km long and 40 km wide. It offers an opportunity to study rift zones in a local ultra-slow spreading area close to a hotspot. Fractures were mapped from aerial photographs and digital elevation models. Most surface fractures are located in the southern part of the WVZ. The majority of the fractures have a north-northeasterly orientation, some deviations occur from this, especially in the north part of the WVZ. Fracture orientations are therefore quite uniform in the southern, faster spreading part of the WVZ, but more irregular in the slower-spreading northern part. This suggests different stress fields in the north part, which could be due to the influence of the Hreppar microplate and possibly also due to stress fields induced by crustal deformation because of changes in glacial load in the area. Such glacially-induced stress fields may have similar or even more influence than crustal spreading in the slower spreading northern part of the WVZ. Lower fracture density towards the north within the WVZ suggests lower frequency of rifting events in the north part, in accordance with less spreading in the north as measured by GPS geodetic measurements.

  2. Archaeology in the Kilauea East Rift Zone: Part 1, Land-use model and research design, Kapoho, Kamaili and Kilauea Geothermal Subzones, Puna District, Hawaii Island

    Energy Technology Data Exchange (ETDEWEB)

    Burtchard, G.C.; Moblo, P. [International Archaeological Research Inst., Inc., Honolulu, HI (United States)

    1994-07-01

    The Puna Geothermal Resource Subzones (GRS) project area encompasses approximately 22,000 acres centered on the Kilauea East Rift Zone in Puna District, Hawaii Island. The area is divided into three subzones proposed for geothermal power development -- Kilauea Middle East Rift, Kamaili and Kapoho GRS. Throughout the time of human occupation, eruptive episodes along the rift have maintained a dynamic landscape. Periodic volcanic events, for example, have changed the coastline configuration, altered patterns of agriculturally suitable sediments, and created an assortment of periodically active, periodically quiescent, volcanic hazards. Because of the active character of the rift zone, then, the area`s occupants have always been obliged to organize their use of the landscape to accommodate a dynamic mosaic of lava flow types and ages. While the specific configuration of settlements and agricultural areas necessarily changed in response to volcanic events, it is possible to anticipate general patterns in the manner in which populations used the landscape through time. This research design offers a model that predicts the spatial results of long-term land-use patterns and relates them to the character of the archaeological record of that use. In essence, the environmental/land-use model developed here predicts that highest population levels, and hence the greatest abundance and complexity of identifiable prehistoric remains, tended to cluster near the coast at places that maximized access to productive fisheries and agricultural soils. With the possible exception of a few inland settlements, the density of archaeological remains expected to decrease with distance from the coastline. The pattern is generally supported in the regions existing ethnohistoric and archaeological record.

  3. Volcanic margin formation and Mesozoic rift propagators in the Cuvier Abyssal Plain off Western Australia

    Science.gov (United States)

    Mihut, Dona; Müller, R. Dietmar

    1998-11-01

    The western margin of Australia is characterized by synrift and postrift magmatism which is not well understood. A joint interpretation of magnetic anomaly, satellite gravity anomaly and seismic data from the Cuvier Abyssal Plain and margin shows that the breakup between India and Australia started circa 136 Ma (M14) and was followed by two rift propagation events which transferred portions of the Indian Plate to the Australian Plate. Post breakup magmatism continued with the emplacement of the Wallaby and Zenith plateaus (˜17-18 km thick at their centers) along a transform margin. Two narrow magmatic edifices adjacent to the Wallaby Plateau (Sonne and Sonja ridges) represent an extinct ridge and a pseudofault, respectively. They formed by excess volcanism, probably by lateral migration of buoyant melt along upside-down crustal drainage channels from the melt source underneath the Wallaby Plateau. In a mantle plume scenario a small plume (˜400 km diameter) located underneath the rift could have locally uplifted the Bernier Platform and Exmouth Sub-basin in the Early Cretaceous and left a track consistent with the azimuth of the Wallaby and Zenith plateaus. In this case, ridge-plume interaction would have caused two consecutive ridge propagation events towards the plume while the ridge moved away from the hotspot. The abrupt end of the hotspot track west of the Zenith Plateau would be a consequence of the accelerating south-eastward motion of the spreading ridge relative to the mantle after 120 Ma, leaving the mantle plume underneath the Indian Plate. An alternative nonmantle-plume scenario is based on the observation that between breakup and chron M0 (˜120 Ma) the ocean crust in the southern Cuvier Abyssal Plain was formed while the spreading ridge abutted Indian continental crust. Small-scale convection may have been initiated during rifting in the Early Cretaceous and maintained until the Wallaby-Zenith ridge-transform intersection passed by the eastern edge

  4. Investigations into early rift development and geothermal resources in the Pyramid Lake fault zone, Western Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Eisses, A.; Kell, A.; Kent, G.; Driscoll, N. [UCSD; Karlin, R.; Baskin, R. [USGS; Louie, J. [UNR; Pullammanappallil, S. [Optim

    2016-08-01

    A. K. Eisses, A. M. Kell, G. Kent, N. W. Driscoll, R. E. Karlin, R. L. Baskin, J. N. Louie, S. Pullammanappallil, 2010, Investigations into early rift development and geothermal resources in the Pyramid Lake fault zone, Western Nevada: Abstract T33C-2278 presented at 2010 Fall Meeting, AGU, San Francisco, Calif., 13-17 Dec.

  5. A quantitative geomorphological approach to constraining the volcanic and tectonic evolution of the active Dabbahu rift segment, Afar, Ethiopia.

    Science.gov (United States)

    Medynski, Sarah; Pik, Raphaël; Burnard, Peter; Vye-Brown, Charlotte; Blard, Pierre-Henri; France, Lydéric; Dumont, Stéphanie; Grandin, Raphaël; Schimmelpfennig, Irene; Benedetti, Lucilla; Ayalew, Dereje; Yirgu, Gezahegn

    2013-04-01

    In the Afar depression (Ethiopia), extension is organised along rift segments that morphologically resemble oceanic rifts. Segmentation results from interactions between dyke injection and volcanism, as observed during the well-documented 2005 rifting event on the Dabbahu rift segment. This tectono-volcanic crisis was observed in detail via remote sensing techniques, providing invaluable information on the present-day tectonic - magmatic interplay during a sequence of dyke intrusions. However, lack of data remains on timescales of 1 to 100 kyr, the period over which the main morphology of the rift is acquired. The Dabbahu rift segment represents an ideal natural laboratory to study the evolution of rift morphology as a response to volcanic and tectonic influences. We use cosmogenic nuclides (3He and 36Cl) to determine the ages of young (<100 kyr) lava flows and to date the initiation and movement of fault scarps, which cut the lavas. Where possible, we analysed vertical profiles along fault scarps, in an attempt to distinguish individual tectonic events that offset the scarp, estimate their amplitudes and date the recurrence intervals. These geochronological constraints, combined with major & trace element compositions, field mapping and digital mapping (Landsat, ASTER and SPOT imagery), provide valuable insights on the magmatic and tectonic history of the segment. The results show that over the last 100 ka, the northern part of the Dabbahu segment was supplied by at least two different magma reservoirs, which can be identified from their distinctive chemistries. The main reservoir is located beneath Dabbahu volcano at the northern tip of the rift segment, and has been supplied with magma for at least 72 ka. The second reservoir is located further south on the rift axis and corresponds to the current mid-segment magma chamber, which was responsible for the 2005 rifting episode. Two magmatic cycles linked to the Dabbahu magma chamber were recorded, lasting 20-30 kyr

  6. A refinement of the chronology of rift-related faulting in the Broadly Rifted Zone, southern Ethiopia, through apatite fission-track analysis

    Science.gov (United States)

    Balestrieri, Maria Laura; Bonini, Marco; Corti, Giacomo; Sani, Federico; Philippon, Melody

    2016-03-01

    To reconstruct the timing of rift inception in the Broadly Rifted Zone in southern Ethiopia, we applied the fission-track method to basement rocks collected along the scarp of the main normal faults bounding (i) the Amaro Horst in the southern Main Ethiopian Rift and (ii) the Beto Basin in the Gofa Province. At the Amaro Horst, a vertical traverse along the major eastern scarp yielded pre-rift ages ranging between 121.4 ± 15.3 Ma and 69.5 ± 7.2 Ma, similarly to two other samples, one from the western scarp and one at the southern termination of the horst (103.4 ± 24.5 Ma and 65.5 ± 4.2 Ma, respectively). More interestingly, a second traverse at the Amaro northeastern terminus released rift-related ages spanning between 12.3 ± 2.7 and 6.8 ± 0.7 Ma. In the Beto Basin, the ages determined along the base of the main (northwestern) fault scarp vary between 22.8 ± 3.3 Ma and 7.0 ± 0.7 Ma. We ascertain through thermal modeling that rift-related exhumation along the northwestern fault scarp of the Beto Basin started at 12 ± 2 Ma while in the eastern margin of the Amaro Horst faulting took place later than 10 Ma, possibly at about 8 Ma. These results suggest a reconsideration of previous models on timing of rift activation in the different sectors of the Ethiopian Rift. Extensional basin formation initiated more or less contemporaneously in the Gofa Province (~ 12 Ma) and Northern Main Ethiopian Rift (~ 10-12 Ma) at the time of a major reorganization of the Nubia-Somalia plate boundary (i.e., 11 ± 2 Ma). Afterwards, rift-related faulting involved the Southern MER (Amaro Horst) at ~ 8 Ma, and only later rifting seemingly affected the Central MER (after ~ 7 Ma).

  7. Tectonic, volcanic and human activity ground deformation signals detected by multitemporal InSAR techniques in the Colima Volcanic Complex (Mexico) rift

    Science.gov (United States)

    Brunori, C.; Norini, G.; Bignami, C.; Groppelli, G.; Zucca, F.; Stramondo, S.; Capra, L.; Cabral-Cano, E.

    2010-12-01

    The evolution of volcanoes is strictly related with their substratum and the regional tectonics. The link among morphology, geology and structure of volcanic edifices and the geological-structural characteristics of the basement is important to understand hazardous phenomena as flank eruptions and lateral collapses of volcanoes. The Colima Rift is an active regional structure, N-S oriented and more than 100 km long and 10 wide. This rift is filled by a ~1 km-thick sequence of quaternary lacustrine sediments, alluvium, and colluvium, mostly underling the about 3000 m thick volcanic pile of the Colima Volcanic Complex (CVC). In addition to the regional structures curved faults, roughly E-W oriented, are observed on the CVC edifice due to the spreading of the volcano moving southward on the weak basement. So in the CVC edifice and surrounding area we can observe the interaction of regional structures and volcanic ones due to the gravitational loading of the volcanic edifice on the weak substratum of the graben. To measure displacements due to magma movement at depth and interaction of regional structures and volcanic ones, SAR interferometry has proven to be a reliable method; however, andesitic stratovolcanoes like the CVC indeed,remain difficult to survey using this technique. The main causes are their specific geometry (steep topography), which induces strong tropospheric artefacts, environmental conditions (e.g., mainly vegetation, ash and/or snow cover), leading to a loss of coherency. In this work we try to detect deformations phenomena for the wide CVC using a robust multitemporal InSAR approach Differential Synthetic Aperture Radar Interferometry (DInSAR). We apply the Hooper (2008) DInSAR algorithm (StamPS/MTI) both to ENVISAT ASARr images acquired from 1993 to 2007 and to ALOS PALSAR (datasets from 2006 to 2010) in order to determine the deformation patterns in the CVC.

  8. Evolution of an Interbasin Mountain-Block Extensional Accommodation Zone Within the Central Colorado Rio Grande Rift, USA

    Science.gov (United States)

    Minor, S. A.; Caine, J. S.; Fridrich, C.; Hudson, M. R.

    2015-12-01

    Our understanding of extensional strain transfer and accommodation in continental rifts has grown considerably, but few studied transfer zones exhibit high internal topographic and structural relief. In the Rio Grande rift of Colorado the WNW-trending northern tip of the Sangre de Cristo Range separates the opposite-tilted Upper Arkansas River (UAR) and San Luis half grabens. We have investigated the development and role of faults flanking this "Poncha" intrarift mountain block in transferring extension between rift basins, mountain block surface uplift, and landscape evolution. The topographically rugged Poncha block consists of Proterozoic metamorphic and plutonic rocks overlain on its west and southwest flanks by 34.5-33-Ma volcanic rocks and alluvial deposits of the Mio-Pliocene Dry Union Formation. Similar Dry Union sediments underlie a moderately elevated, strongly dissected older piedmont along the northern front of the mountain block. All of these units are tilted 10-35º to the W and SW. A WNW-trending, right-stepping fault system > 25 km in length separates the piedmont and UAR basin from the steep northern Poncha mountain front. Slip measurements along this fault system, cutting deposits as young as ~200 ka, indicate dextral-normal oblique movement. The NNW-striking, down-to-E southern Sawatch range-front fault system forms the western terminus of the Poncha block where it juxtaposes Dry Union deposits against Sawatch Proterozoic basement rocks. Gently tilted proximal diamicton and alluvial deposits on the downthrown blocks of both range-front faults likely mark Plio-Pleistocene(?) mountain block uplift. Arrays of NNW- to WNW-striking faults cutting volcanic and Dry Union units on the flanks of the Poncha block commonly have normal-oblique slip, with greater tendency for dextral strike-slip components on WNW-striking faults. Preliminary paleomagnetic data from the volcanic rocks detect no significant vertical-axis rotation that accompanied oblique

  9. Basaltic Martian analogues from the Baikal Rift Zone and Mongolian terranes

    Science.gov (United States)

    Gurgurewicz, J.; Kostylew, J.

    2007-08-01

    In order to compare the results of studies of the western part of the Valles Marineris canyon on Mars there have been done field works on terrestrial surface areas similar with regard to geological setting and environmental conditions. One of the possible terrestrial analogues of the Valles Marineris canyon is the Baikal Rift Zone [1]. Field investigations have been done on the south end of the Baikal Lake, in the Khamar-Daban massif, where the outcrops of volcanic rocks occur. The second part of the field works has been done in the Mongolian terranes: Mandalovoo, Gobi Altay and Bayanhongor, because of environmental conditions being similar to those on Mars. The Mandalovoo terrane comprises a nearly continuous Paleozoic islandarc sequence [2]. In the Gobi Altay terrane an older sequence is capped by younger Devonian-Triassic volcanic-sedimentary deposits [2]. The Bayanhongor terrane forms a northwest-trending, discontinuous, narrow belt that consists of a large ophiolite allochton [3]. The collected samples of basalts derive from various geologic environments. The CORONA satellite-images have been used for the imaging of the Khamar-Daban massif and the Mandalovoo terrane. These images have the same spatial resolution and range as the Mars Orbiter Camera images of the Mars Global Surveyor mission. In the Mandalovoo terrane these images allowed to find an area with large amounts of tectonic structures, mainly faults (part of the Ongi massif), similar to the studied area on Mars. Microscopic observations in thin sections show diversification of composition and structures of basalts. These rocks have mostly a porphyric structure, rarely aphyric. The main components are plagioclases, pyroxenes and olivines phenocrysts, in different proportions. The groundmass usually consist of plagioclases, pyroxenes and opaques. The most diversified are basalts from the Mandalovoo terrane. Infrared spectroscopy has been used to analyse the composition of the rock material and compare

  10. Sr isotope geochemistry of megacrysts from continental rift and converging plate margin alkaline volcanism in South Italy

    Science.gov (United States)

    Vollmer, R.; Johnston, Kate; Ghiara, M. R.; Lirer, L.; Munno, Rosalba

    1981-12-01

    Mineral phases of two-clinopyroxene alkaline lavas from continental rift and plate margin volcanism in South Italy have been analyzed for their Sr isotopic composition and concentration. Sr isotope disequilibria are observed between megacrysts and groundmass in all seven analysed Campanian potassic lavas, but not in a lava from Stromboli, a volcano in the Eolian arc. Variations in 87Sr/ 86Sr ratios for different phases in the lavas are likely to reflect primary Sr isotope variations in the primitive lavas (rather than crustal contamination effects). It is suggested that the observed mineral disequilibria point to the intimate association of a range of primary magmas and small-scale source heterogeneities for the Campanian volcanism. The lack of mineral disequilibria for Stromboli suggests that here source heterogeneities are absent or else exist on a very much larger scale. It is therefore unlikely that there is any genetic connection between these two types of alkaline volcanism in South Italy.

  11. Relationships between Basic and Silicic Magmatism in Continental Rift Settings: A Petrogeochemical Study of Carboniferous Post-collisional Rift Silicic Volcanics in Tianshan, NW China

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Petrogeochemical data are reported for silicic volcanic rocks from the Tianshan Carboniferous rift, with the aim of discussing the petrogenesis of silicic magmas. Incompatible element vs. incompatible element diagrams display smooth positive trends for the Tianshan Carboniferous rift-related volcanic rocks; the isotope ratios of the silicic lavas [87Sr/86Sr(t)=0.69988-0.70532; εNd(t)=4.76-8.00; 206Pb/204Pb(t)=17.435-18.017; 207Pb/204Pb(t)=15.438-15.509; 208Pb/204Pb(t) = 37.075-37.723] encompass those of the basic lavas. These data suggest a genetic link between rhyolites and basalts, but are not definitive in establishing whether silicic rocks are related to basalts through fractional crystallization or partial melting. Geochemical modeling of incompatible vs. compatible elements excludes the possibility that silicic melts are generated by the melting of basaltic rocks, and indicates a derivation by fractional crystallization plus moderate assimilation of wall rocks (AFC) starting from intermediate rocks to silicic rocks. Continuous AFC from basalt to rhyolite,with small rates of crustal assimilation, best explains the geochemical data. The presence or absence of bimodal volcanism (the "Daly Gap") might be related to cooling rates of magma chambers. In central and eastern Tianshan, the crust was thinner and the cooling rates of the magma chamber within the crust were greater. These conditions resulted in a rapid fall in temperature within the magma reservoir and caused a narrow temperature interval over which intermediate melts formed, effectively reducing the volume of the intermediate melts.

  12. Role of Variscan tectonics inheritance in the Jurassic rifting of the passive margin of Adria: insights from the Canavese Zone (Western Southern Alps, Italy)

    Science.gov (United States)

    De Caroli, Sara; Succo, Andrea; Centelli, Arianna; Barbero, Edoardo; Borghi, Alessandro; Balestro, Gianni; Festa, Andrea

    2017-04-01

    The formation of rifted continental margins by extension of continental lithosphere leading to seafloor spreading is a complex component of the plate tectonic cycle. Geological mapping, supported by multidisciplinary analyses of rifted continental margins may thus provide significant information to better understand and model the related processes, and explain the geometry of those margins as observed by means of seismic imaging. We present here our new findings on the Canavese Zone (Italian Western Alps), which is inferred to represent the remnant of the Jurassic syn-rift stretching, thinning and dismemberment of the distal passive margin of Adria, occurred during the opening of the Northern Alpine Tethys. Through multiscale and multidisciplinary, field- and laboratory-based structural, stratigraphic and petrographic studies (from geological map scale to mesoscale and microscope scale), we document that the tectonic dismemberment of the rifted continental margin of Adria did not simply result from the syn-rift Jurassic extension, but was strongly favored by the inheritance of older (Variscan and post-Variscan) tectonic stages, which controlled earlier lithospheric weakness. Our findings show the existence of two different tectonic units of the pre-Variscan basement, which were deformed, juxtaposed and exhumed already during the Variscan orogeny as constraint by (i) intrusion of early Permian granitoids, (ii) emplacement of volcanic rocks and (iii) unconformable overlie of Permian deposits on those metamorphic units. The syn-extensional (syn-rift) Jurassic faults, which affect the Mesozoic sedimentary succession, show only limited vertical displacement that was ineffective in producing and justifying the crustal thinning observed in pre-Variscan basement units. Finally, Late Cretaceous-Early Paleocene and Late Cenozoic strike-slip faulting (i.e. Alpine and Insubric tectonic stages) reactivated previously formed faults, leading to the formation of a complex tectonic

  13. Reconnaissance gas measurements on the East Rift Zone of Kilauea Volcano, Hawai'i by Fourier transform infrared spectroscopy

    Science.gov (United States)

    McGee, Kenneth A.; Elias, Tamar; Sutton, A. Jefferson; Doukas, Michael P.; Zemek, Peter G.; Gerlach, Terrence M.

    2005-01-01

    We report the results of a set of measurements of volcanic gases on two small ground level plumes in the vicinity of Pu`u `O`o cone on the middle East Rift Zone (ERZ) of Kilauea volcano, Hawai`i on 15 June 2001 using open-path Fourier transform infrared (FTIR) spectroscopy. The work was carried out as a reconnaissance survey to assess the monitoring and research value of FTIR measurements at this volcano. Despite representing emissions of residual volatiles from lava that has undergone prior degassing, the plumes contained detectable amounts of CO2, CO, SO2, HCl, HF and SiF4. Various processes, including subsurface cooling, condensation of water in the atmospheric plume, oxidation, dissolution in water, and reactions with wall rocks at plume vents affect the abundance of these gases. Low concentrations of volcanic CO2 measured against a high ambient background are not well constrained by FTIR spectroscopy. Although there appear to be some differences between these gases and Pu`u `O`o source gases, ratios of HCl/SO2, HF/SO2 and CO/SO2 determined by FTIR measurements of these two small plumes compare reasonably well with earlier published analyses of ERZ vent samples. The measurements yielded emission rate estimates of 4, 11 and 4 t d-1

  14. Structure of the central Terror Rift, western Ross Sea, Antarctica

    Science.gov (United States)

    Hall, Jerome; Wilson, Terry; Henrys, Stuart

    2007-01-01

    The Terror Rift is a zone of post-middle Miocene faulting and volcanism along the western margin of the West Antarctic Rift System. A new seismic data set from NSF geophysical cruise NBP04-01, integrated with the previous dataset to provide higher spatial resolution, has been interpreted in this study in order to improve understanding of the architecture and history of the Terror Rift. The Terror Rift contains two components, a structurally-controlled rollover anticlinal arch intruded by younger volcanic bodies and an associated synclinal basin. Offsets and trend changes in fault patterns have been identified, coincident with shifts in the location of depocenters that define rift sub-basins, indicating that the Terror Rift is segmented by transverse structures. Multiple phases of faulting all post-date 17 Ma, including faults cutting the seafloor surface, indicating Neogene rifting and possible modern activity.

  15. The eruptive history and magmatic evolution of Aluto volcano: new insights into silicic peralkaline volcanism in the Ethiopian rift

    Science.gov (United States)

    Hutchison, William; Pyle, David M.; Mather, Tamsin A.; Yirgu, Gezahegn; Biggs, Juliet; Cohen, Benjamin E.; Barfod, Dan N.; Lewi, Elias

    2016-12-01

    The silicic peralkaline volcanoes of the East African Rift are some of the least studied volcanoes on Earth. Here we bring together new constraints from fieldwork, remote sensing, geochronology and geochemistry to present the first detailed account of the eruptive history of Aluto, a restless silicic volcano located in a densely populated section of the Main Ethiopian Rift. Prior to the growth of the Aluto volcanic complex (before 500 ka) the region was characterized by a significant period of fault development and mafic fissure eruptions. The earliest volcanism at Aluto built up a trachytic complex over 8 km in diameter. Aluto then underwent large-volume ignimbrite eruptions at 316 ± 19 ka and 306 ± 12 ka developing a 42 km2 collapse structure. After a hiatus of 250 ka, a phase of post-caldera volcanism initiated at 55 ± 19 ka and the most recent eruption of Aluto has a radiocarbon age of 0.40 ± 0.05 cal. ka BP. During this post-caldera phase highly-evolved peralkaline rhyolite lavas, ignimbrites and pumice fall deposits have erupted from vents across the complex. Geochemical modelling is consistent with rhyolite genesis from protracted fractionation (> 80%) of basalt that is compositionally similar to rift-related basalts found east of the complex. Based on the style and volume of recent eruptions we suggest that silicic eruptions occur at an average rate of 1 per 1000 years, and that future eruptions of Aluto will involve explosive emplacement of localised pumice cones and effusive obsidian coulees of volumes in the range 1-100 × 106 m3.

  16. Lower Pliensbachian caldera volcanism in high-obliquity rift systems in the western North Patagonian Massif, Argentina

    Science.gov (United States)

    Benedini, Leonardo; Gregori, Daniel; Strazzere, Leonardo; Falco, Juan I.; Dristas, Jorge A.

    2014-12-01

    In the Cerro Carro Quebrado and Cerro Catri Cura area, located at the border between the Neuquén Basin and the North Patagonian Massif, the Garamilla Formation is composed of four volcanic stages: 1) andesitic lava-flows related to the beginning of the volcanic system; 2) basal massive lithic breccias that represent the caldera collapse; 3) voluminous, coarse-crystal rich massive lava-like ignimbrites related to multiple, steady eruptions that represent the principal infill of the system; and, finally 4) domes, dykes, lava flows, and lava domes of rhyolitic composition indicative of a post-collapse stage. The analysis of the regional and local structures, as well as, the architectures of the volcanic facies, indicates the existence of a highly oblique rift, with its principal extensional strain in an NNE-SSW direction (˜N10°). The analyzed rocks are mainly high-potassium dacites and rhyolites with trace and RE elements contents of an intraplate signature. The age of these rocks (189 ± 0.76 Ma) agree well with other volcanic sequences of the western North Patagonian Massif, as well as, the Neuquén Basin, indicating that Pliensbachian magmatism was widespread in both regions. The age is also coincident with phase 1 of volcanism of the eastern North Patagonia Massif (188-178 Ma) represented by ignimbrites, domes, and pyroclastic rocks of the Marifil Complex, related to intraplate magmatism.

  17. Seismic anisotropy and mantle dynamics beneath the Malawi Rift Zone, East Africa

    Science.gov (United States)

    Reed, Cory A.; Liu, Kelly H.; Yu, Youqiang; Gao, Stephen S.

    2017-07-01

    SKS, SKKS, and PKS splitting parameters measured at 34 seismic stations that we deployed in the vicinity of the Cenozoic Malawi Rift Zone (MRZ) of the East African Rift System demonstrate systematic spatial variations with an average splitting time of 1.0 ± 0.3 s. The overall NE-SW fast orientations are consistent with absolute plate motion (APM) models of the African Plate constructed under the assumption of no-net rotation of the global lithosphere and are inconsistent with predicted APM directions from models employing a fixed hot spot reference frame. They also depart considerably from the trend of most of the major tectonic features. These observations, together with the results of anisotropy depth estimation using the spatial coherency of the splitting parameters, suggest a mostly asthenospheric origin of the observed azimuthal anisotropy. The single-layered anisotropy observed at 30 and two-layered anisotropy observed at 4 of the 34 stations can be explained by APM-related simple shear within the rheologically transitional layer between the lithosphere and asthenosphere, as well as by the horizontal deflection of asthenospheric flow along the southern and western edges of a continental block with relatively thick lithosphere revealed by previous seismic tomography and receiver function investigations. This first regional-scale shear wave splitting investigation of the MRZ suggests the absence of rifting-related active mantle upwelling or small-scale mantle convection and supports a passive-rifting process for the MRZ.

  18. Evaluation of the ongoing rifting and subduction processes in the geochemistry of magmas from the western part of the Mexican Volcanic Belt

    Science.gov (United States)

    Verma, Surendra P.; Pandarinath, Kailasa; Rivera-Gómez, M. Abdelaly

    2016-03-01

    A compilation of new and published geochemical data for 1512 samples of volcanic rocks from the western part of the Mexican Volcanic Belt was first subdivided according to the age group (136 samples of Miocene and 1376 samples of Pliocene-Holocene). Rocks of the younger group were then subdivided as Rift (1014 samples from the triple-rift system) and No Rift (362 samples outside of the triple-rift system) or Near Trench (937 samples) and Far Trench (439 samples) magmas. These subdivisions were considered separately as basic, intermediate, and acid magmatic rocks. The application of the conventional and multidimensional techniques confirmed the great tectonic and geochemical complexity of this region. The presence of oceanic-type basalts suggested to result from a mantle plume was not confirmed from the tectonomagmatic multidimensional diagrams. The Miocene rocks, which are present at the surface far from the Middle-America Trench, showed a likely continental rift setting in most diagrams for basic rocks and a continental arc setting for intermediate rocks. These differences can be explained in terms of the petrogenetic origin of the magmas. Unlike the current thinking, the triple-rift system seems to have influenced the chemistry of Pliocene-Holocene basic rocks, which indicated a continental rift setting. The Pliocene-Holocene intermediate and acid rocks, however, did not show such an influence. The Pliocene-Holocene basic rocks indicated a continental rift setting, irrespective of the Near Trench and Far Trench subdivision because numerous Near Trench rocks also lie in the triple-rift and graben systems. However, the intermediate rocks having a crustal component in their genesis indicated a continental arc (Near Trench) or a transitional arc to within-plate setting (Far Trench). The acid rocks having a crustal component also suggested a continental arc (Near Trench) or a transitional setting (Far Trench). The application of the tectonomagmatic multidimensional

  19. Buried Rift Zones and Seamounts in Hawaii: Implications for Volcano Tectonics

    Science.gov (United States)

    Park, J.; Morgan, J. K.; Zelt, C. A.; Okubo, P. G.

    2005-12-01

    As volcanoes grow, they deform due to their own weight and ongoing magmatic intrusions. For example, Kilauea's south flank is moving seaward ~10 cm/yr, apparently pushed by dike injection along rift zones and/or gravitational spreading. Offshore, Kilauea's south flank has developed a broad bench, attributed to overthrusting at the toe of the mobile flank. Mauna Loa's southeastern flank is much less mobile today, and exhibits no offshore bench. The great variability in present-day surface motions and deformation of these two volcanoes is not well explained by the distribution of surface structures, which might influence the driving and resisting forces acting on the flanks. Using first-arrival seismic tomography of a unique onshore-offshore airgun dataset, we have developed a 3-D P-wave velocity model of the southeastern part of the Island of Hawaii. This model provides an unprecedented view into both the submarine and subaerial portions of Kilauea, Mauna Loa, and Loihi volcanoes, helping to resolve some outstanding puzzles. The preferred velocity model shows that the known summits and rift zones of Kilauea, Mauna Loa and Loihi volcanoes are underlain by high velocity anomalies (6.5-7.0 km/s), indicating the presence of intrusive magma cumulates and dike complexes. In addition, we observe an anomalously high velocity feature (7.0-7.5 km/s) within the southeastern flank of Mauna Loa that extends ~40 km south of the volcano's summit. Our model also shows anomalously high velocity materials (6.3-6.8 km/s) in the oceanic crust beneath Kilauea's outer bench. Based on the geometry of their high velocities, we propose that these features represent previously unrecognized intrusive complexes that have influenced the evolution of the two volcanoes. The high velocity feature within Mauna Loa's southeastern flank appears to represent a buried rift zone, either of ancient Mauna Loa, or an older volcano perhaps related to the Ninole Hills. Curiously, at shallow depths (5-9 km

  20. The mesoproterozoic midcontinent rift system, Lake Superior region, USA

    Science.gov (United States)

    Ojakangas, R.W.; Morey, G.B.; Green, J.C.

    2001-01-01

    Exposures in the Lake Superior region, and associated geophysical evidence, show that a 2000 km-long rift system developed within the North American craton ??? 1109-1087 Ma, the age span of the most of the volcanic rocks. This system is characterized by immense volumes of mafic igneous rocks, mostly subaerial plateau basalts, generated in two major pulses largely by a hot mantle plume. A new ocean basin was nearly formed before rifting ceased, perhaps due to the remote effect of the Grenville continental collision to the east. Broad sagging/subsidence, combined with a system of axial half-grabens separated along the length of the rift by accommodation zones, provided conditions for the accumulation of as much as 20 km of volcanic rocks and as much as 10 km of post-rift clastic sediments, both along the rift axis and in basins flanking a central, post-volcanic horst. Pre-rift mature, quartzose sandstones imply little or no uplift prior to the onset of rift volcanism. Early post-rift red-bed sediments consist almost entirely of intrabasinally derived volcanic sediment deposited in alluvial fan to fluvial settings; the exception is one gray to black carbon-bearing lacustrine(?) unit. This early sedimentation phase was followed by broad crustal sagging and deposition of progressively more mature red-bed, fluvial sediments with an extra-basinal provenance. ?? 2001 Elsevier Science B.V. All rights reserved.

  1. Gas-oil fluids in the formation of travertines in the Baikal rift zone

    Science.gov (United States)

    Tatarinov, A. A.; Yalovik, L. I.; Shumilova, T. G.; Kanakin, S. V.

    2016-07-01

    Active participation of gas-oil fluids in the processes of mineral formation and petrogenesis in travertines of the Arshan and Garga hot springs is substantiated. The parageneses of the products of pyrolytic decomposition and oxidation of the gas-oil components of hydrothermal fluids (amorphous bitumen, graphite-like CM, and graphite) with different genetic groups of minerals crystallized in a wide range of P-T conditions were established. Travertines of the Baikal rift zone were formed from multicomponent hydrous-gas-oil fluids by the following basic mechanisms of mineral formation: chemogenic, biogenic, cavitation, fluid pyrometamorphism, and pyrolysis.

  2. New determinations of 40Ar/39Ar isotopic ages and flow volumes for Cenozoic volcanism in the Terror Rift, Ross Sea, Antarctica

    Science.gov (United States)

    Rilling, S.; Mukasa, S.; Wilson, T.; Lawver, L.; Hall, C.

    2009-12-01

    This study provides new determinations of 40Ar/39Ar isotopic ages and flow volumes for submarine and subaerial Neogene volcanism developed within the Terror Rift, Ross Sea, Antarctica, the youngest segment of the West Antarctic Rift System. The study is based on the first dredged samples from seven seamounts north of Ross Island, as well as new data from Franklin and Beaufort Islands. The sampled foidite and basanitic lavas range in age from Quaternary (90 ± 66 ka) on a small seamount ˜10 km north of Franklin Island to 6.80 ± 0.05 Ma on Beaufort Island. These ages are consistent with ages of volcanism in both the Melbourne and Erebus Volcanic Provinces and significantly expand the documented area of Neogene magmatism in Victoria Land. There is no geographic progression of volcanism through time, but volcanism was voluminous in the Pliocene and particularly widespread during the Pleistocene. Two of the dredges sampled edifices comprised of less than 0.2 km3 of volcanic materials. The largest seamount in the study area has 58.8 km3 of volcanic material and represents growth over a period of several thousand years. Estimated minimum eruption rates range from 2 × 10-4 km3 y-1 to 2 × 10-3 km3 y-1, consistent with rates proposed for other rift systems and nearby Mt. Erebus. Recent estimates of extension magnitude for the Terror Rift correspond to minimal decompression of only 0.10 to 0.22 GPa and therefore limited melt output of a typical peridotite source.

  3. Trace element and Sr-Nd-Pb isotope geochemistry of Rungwe Volcanic Province, Tanzania: Implications for a superplume source for East Africa Rift magmatism

    Directory of Open Access Journals (Sweden)

    Paterno R Castillo

    2014-09-01

    Full Text Available The recently discovered high, plume-like 3He/4He ratios at Rungwe Volcanic Province (RVP in southern Tanzania, similar to those at the Main Ethiopian Rift in Ethiopia, strongly suggest that magmatism associated with continental rifting along the entire East African Rift System (EARS has a deep mantle contribution (Hilton et al., 2011. New trace element and Sr-Nd-Pb isotopic data for high 3He/4He lavas and tephras from RVP can be explained by binary mixing relationships involving Early Proterozoic (+/- Archaean lithospheric mantle, present beneath the southern EARS, and a volatile-rich carbonatitic plume with a limited range of compositions and best represented by recent Nyiragongo lavas from the Virunga Volcanic Province also in the Western Rift. Other lavas from the Western Rift and from the southern Kenya Rift can also be explained through mixing between the same endmember components. In contrast, lavas from the northern Kenya and Main Ethiopian rifts can be explained through variable mixing between the same mantle plume material and the Middle to Late Proterozoic lithospheric mantle, present beneath the northern EARS. Thus, we propose that the bulk of EARS magmatism is sourced from mixing among three endmember sources: Early Proterozoic (+/- Archaean lithospheric mantle, Middle to Late Proterozoic lithospheric mantle and a volatile-rich carbonatitic plume with a limited range of compositions. We propose further that the African Superplume, a large, seismically anomalous feature originating in the lower mantle beneath southern Africa, influences magmatism throughout eastern Africa with magmatism at RVP and Main Ethiopian Rift representing two different heads of a single mantle plume source. This is consistent with a single mantle plume origin of the coupled He-Ne isotopic signatures of mantle-derived xenoliths and/or lavas from all segments of the EARS (Halldorsson et al., 2014.

  4. Fault Growth and Propagation and its Effect on Surficial Processes within the Incipient Okavango Rift Zone, Northwest Botswana, Africa (Invited)

    Science.gov (United States)

    Atekwana, E. A.

    2010-12-01

    The Okavango Rift Zone (ORZ) is suggested to be a zone of incipient continental rifting occuring at the distal end of the southwestern branch of the East African Rift System (EARS), therefore providing a unique opportunity to investigate neotectonic processes during the early stages of rifting. We used geophysical (aeromagnetic, magnetotelluric), Shuttle Radar Tomography Mission, Digital Elevation Model (SRTM-DEM), and sedimentological data to characterize the growth and propagation of faults associated with continental extension in the ORZ, and to elucidate the interplay between neotectonics and surficial processes. The results suggest that: (1) fault growth occurs by along axis linkage of fault segments, (2) an immature border fault is developing through the process of “Fault Piracy” by fault-linkages between major fault systems, (3) significant discrepancies exits between the height of fault scarps and the throws across the faults compared to their lengths in the basement, (4) utilization of preexisting zones of weakness allowed the development of very long faults (> 25-100 km) at a very early stage of continental rifting, explaining the apparent paradox between the fault length versus throw for this young rift, (5) active faults are characterized by conductive anomalies resulting from fluids, whereas, inactive faults show no conductivity anomaly; and 6) sedimentlogical data reveal a major perturbation in lake sedimentation between 41 ka and 27 ka. The sedimentation perturbation is attributed to faulting associated with the rifting and may have resulted in the alteration of hydrology forming the modern day Okavango delta. We infer that this time period may represent the age of the latest rift reactivation and fault growth and propagation within the ORZ.

  5. Recent Rift Volcanism in the Northern Gulf of California and the Salton Through: Why a Preponderance of Evolved Magmas?

    Science.gov (United States)

    Martín, A.; Weber, B.; Schmitt, A. K.; Lonsdale, P.

    2008-12-01

    Quaternary volcanoes and shallow intrusions throughout the northern Gulf Extensional Province provide a unique opportunity to characterize active crustal accretion associated with extreme continental rifting. In the Lower Delfin basin and Isla San Luis volcanic rocks have compositional continuity from basaltic andesite (>54 % SiO2) to sub-alkaline rhyolite, whereas Roca Consag in the Wagner basin, and Cerro Prieto are homogeneous, low-K, lithoidal, microlithic dacites. Salton Buttes surface lavas and a seamount in the Upper Delfin basin are dominantly rhyolitic. Basaltic xenoliths, intrusive basaltic sills and altered subsurface rhyolites are known from the Salton Trough and Cerro Prieto. All Quaternary volcanic rocks in the region have depleted (relative to CHUR) Nd isotopic compositions with ɛNd of +8.5 and +6.3 in the Salton Buttes and marginally lower values (+6.5 to +4.1) for Roca Consag, Lower Delfin basin and Isla San Luis. Rhyolite from the Upper Delfin basin yielded ɛNd of +2.2. These values are consistent with overall depleted 87Sr/86/Sr ratios (0.70353-0.70382). Only rhyolites from Lower and Upper Delfin basin have higher 87Sr/86Sr (0.70492 -0.70661) compared to coexisting andesites, which implies hydrothermal alteration and/or minor contamination by continental crust and/or sediments. Volcanic rocks within individual basins thus represent variably differentiated and, to a smaller degree, contaminated, co- genetic suites, as indicated by negative Eu anomalies that reflect plagioclase fractionation in rhyolites. Ion microprobe ages of zircons from Roca Consag are heterogeneous. The youngest ages are ~120 ka and several pre-Quaternary xenocrysts were observed, but the data define a dominant peak at ~1 Ma. The isotope data suggest recent differentiation of dominantly mantle-derived young crust. The preponderance of intermediate to felsic volcanism in the northern Gulf of California suggests that only low- density magmas can reach shallow levels where they

  6. Stratigraphic and structural evolution of the Selenga Delta Accommodation Zone, Lake Baikal Rift, Siberia

    Science.gov (United States)

    Scholz, C.A.; Hutchinson, D.R.

    2000-01-01

    Seismic reflection profiles from the Lake Baikal Rift reveal extensive details about the sediment thickness, structural geometry and history of extensional deformation and syn-rift sedimentation in this classic continental rift. The Selenga River is the largest single source of terrigenous input into Lake Baikal, and its large delta sits astride the major accommodation zone between the Central and South basins of the lake. Incorporating one of the world's largest lacustrine deltas, this depositional system is a classic example of the influence of rift basin structural segmentation on a major continental drainage. More than 3700 km of deep basin-scale multi-channel seismic reflection (MCS) data were acquired during the 1989 Russian and the 1992 Russian–American field programs. The seismic data image most of the sedimentary section, including pre-rift basement in several localities. The MCS data reveal that the broad bathymetric saddle between these two major half-graben basins is underlain by a complex of severely deformed basement blocks, and is not simply a consequence of long-term deltaic deposition. Maximum sediment thickness is estimated to be more than 9 km in some areas around the Selenga Delta. Detailed stratigraphic analyses of the Selenga area MCS data suggest that modes of deposition have shifted markedly during the history of the delta. The present mode of gravity- and mass-flow sedimentation that dominates the northern and southern parts of the modern delta, as well as the pronounced bathymetric relief in the area, are relatively recent developments in the history of the Lake Baikal Rift. Several episodes of major delta progradation, each extending far across the modern rift, can be documented in the MCS data. The stratigraphic framework defined by these prograding deltaic sequences can be used to constrain the structural as well as depositional evolution of this part of the Baikal Rift. An age model has been established for this stratigraphy, by

  7. Evidence for voluminous bimodal pyroclastic volcanism during rifting of a Paleoproterozoic arc at Snow Lake, Manitoba

    National Research Council Canada - National Science Library

    Lafrance, Bruno; Rubingh, Kate E; Gibson, Harold L

    2017-01-01

    ...) assemblage of the Flin Flon belt. Stratigraphic correlation of volcanic strata of the MB sequence with strata of the thrust-bounded Chisel sequence indicates that distinctive, submarine, eruption-fed, pyroclastic flow deposits...

  8. Evidence for a deep crustal hot zone beneath the Diamante Caldera-Maipo volcanic complex, Southern Volcanic Zone

    Science.gov (United States)

    Drew, D.; Murray, T.; Sruoga, P.; Feineman, M. D.

    2010-12-01

    Subduction zones at convergent continental margins are dynamic environments that control the long-term evolution and interaction of the crust and residual mantle. The Southern Volcanic Zone (SVZ) of the Andes formed as a result of volcanic activity and uplift due to the eastern subduction of the Nazca Plate beneath the South American Plate. Maipo and neighboring volcanoes in the northern SVZ are unique in that the continental crust is exceptionally thick (~50 km), causing the mantle-derived magma to stall and interact with the crust at multiple levels prior to eruption. Maipo is an andesite/dacite stratovolcano that lies within the Diamante Caldera, which formed approximately 450 Ka during an explosive eruption that produced 350 km3 of rhyolitic ignimbrite. Following post-caldera reactivation Maipo has undergone a complex evolution, first erupting 86 Ka and experiencing seven eruptive events extending to historic times. The Maipo lavas represent a unique geochemical evolution resulting from fractional crystallization, crustal assimilation, and magma mixing in the lower and upper crust. By analyzing trace element compositions, major element compositions, and 87Sr/86Sr ratios in sixteen samples, we have begun to constrain the complex geochemical processes that formed this volcano and contribute to the differentiation of Andean continental crust. The major element analysis of the samples reflects the extent of differentiation resulting in dacite to andesite volcanic rock, and was used to distinguish between the seven eruptive events. The trace elements and Sr isotope ratios reflect the composition of the source rock, the extent of crustal assimilation, and the crystallization of minerals from the resulting mantle derived magma. The SiO2 weight percent (ranging from 54.3 to 68.5%) and 87Sr/86Sr ratios (0.7048 to 0.7057) show a linear correlation nearly identical to that reported by Hildreth and Moorbath (1988, CMP 98, 455-489) for nearby Cerro Marmolejo, suggesting a

  9. Geodynamic setting and geochemical signatures of Cambrian?Ordovician rift-related igneous rocks (Ossa-Morena Zone, SW Iberia)

    Science.gov (United States)

    Sánchez-García, T.; Bellido, F.; Quesada, C.

    2003-04-01

    An important rifting event, accompanied by massive igneous activity, is recorded in the Ossa-Morena Zone of the SW Iberian Massif (European Variscan Orogen). It likely culminated in the formation of a new oceanic basin (Rheic ocean?), remnants of which appear presently accreted at the southern margin of the Ossa-Morena Zone. Rifting propagated diachronously across the zone from the Early Cambrian to the Late Ordovician, but by Early Ordovician time, the existence of a significant tract of new ocean is evidenced by a breakup unconformity. Although early stages of rifting were not accompanied by mantle-derived igneous activity, a pronounced increase of the geothermal gradient is indicated by partial melting of metasedimentary protoliths in the upper and middle crust, and by coeval core-complex formation. Geochemistry of the main volume of igneous rocks, emplaced some million years later during more mature stages of rifting, suggests an origin in a variably enriched asthenospheric source, similar to that of many OIB, from which subsequent petrogenetic processes produced a wide range of compositions, from basalt to rhyolite. A tectonic model involving collision with, and subsequent overriding of, a MOR is proposed to account for the overall evolution, a present-day analogue for which lies in the overriding of the East Pacific Rise by North America and the rifting of Baja California.

  10. Deformation Sources in Kīlauea's Southwest Rift Zone Inferred from the Modeling of Geodetic and Seismic Data

    Science.gov (United States)

    Wauthier, C.; Roman, D. C.; Poland, M. P.; Miklius, A.; Fukushima, Y.; Hooper, A. J.; Cayol, V.

    2014-12-01

    For much of the first 20 years of Kīlauea's 1983-present ERZ (East Rift Zone) eruption, deformation was characterized by subsidence at the summit and along both rift zones. We speculate that subsidence of the rift zones was caused by deep rift opening and basal fault slip. A 3D Mixed-Boundary Element model including deep rift-zone opening (running from ~3 to 9 km depth beneath Kīlauea's East and Southwest Rift Zones) as well as slip on the décollement fault that underlies the volcano's south flank (at ~9 km depth) can indeed explain most of the deformation imaged by InSAR data from RADARSAT-1 and JERS-1 spanning two distinct background periods: 1993-1997 and 2000-2003, respectively. At the end of 2003, however, Kīlauea's summit began a 4-year-long period of inflation that culminated in an ERZ dike intrusion and small eruption during 17-19 June 2007—the "Father's Day" (FD) event. On the basis of deformation, seismicity, effusion rate, and lava chemistry and temperature, the FD event was interpreted as the result of forcible intrusion of magma driven by high pressure within the summit magma storage area, as opposed to a passive response to deep rift zone opening. This period of summit inflation is particularly interesting in 2006. According to daily GPS data, two distinct periods can be defined, spanning January to March 2006 and March to end of 2006. A major seismic swarm occurred during the first period while the south caldera area was inflating. The beginning of the second period corresponds to a switch from subsidence to inflation of the SWRZ (Southwest Rift Zone). The SWRZ had been subsiding since the last eruptive episode there in 1974, with the exception of a few dike injections in 1981-82. To investigate the magmatic processes which occurred during 2006 and their implications in terms of the magma plumbing system and local stress field, we integrate contemporary geodetic data from InSAR and GPS with seismic and geologic observations of the SWRZ.

  11. Mapping landslide processes in the North Tanganyika - Lake Kivu rift zones: towards a regional hazard assessment

    Science.gov (United States)

    Dewitte, Olivier; Monsieurs, Elise; Jacobs, Liesbet; Basimike, Joseph; Delvaux, Damien; Draida, Salah; Hamenyimana, Jean-Baptiste; Havenith, Hans-Balder; Kubwimana, Désiré; Maki Mateso, Jean-Claude; Michellier, Caroline; Nahimana, Louis; Ndayisenga, Aloys; Ngenzebuhoro, Pierre-Claver; Nkurunziza, Pascal; Nshokano, Jean-Robert; Sindayihebura, Bernard; Philippe, Trefois; Turimumahoro, Denis; Kervyn, François

    2015-04-01

    The mountainous environments of the North Tanganyika - Lake Kivu rift zones are part of the West branch of the East African Rift. In this area, natural triggering and environmental factors such as heavy rainfalls, earthquake occurrences and steep topographies favour the concentration of mass movement processes. In addition anthropogenic factors such as rapid land use changes and urban expansion increase the sensibility to slope instability. Until very recently few landslide data was available for the area. Now, through the initiation of several research projects and the setting-up of a methodology for data collection adapted to this data-poor environment, it becomes possible to draw a first regional picture of the landslide hazard. Landslides include a wide range of ground movements such as rock falls, deep failure of slopes and shallow debris flows. Landslides are possibly the most important geohazard in the region in terms of recurring impact on the populations, causing fatalities every year. Many landslides are observed each year in the whole region, and their occurrence is clearly linked to complex topographic, lithological and vegetation signatures coupled with heavy rainfall events, which is the main triggering factor. Here we present the current knowledge of the various slope processes present in these equatorial environments. A particular attention is given to urban areas such as Bukavu and Bujumbura where landslide threat is particularly acute. Results and research perspectives on landslide inventorying, monitoring, and susceptibility and hazard assessment are presented.

  12. Geochemistry and petrology of andesites from the north rift zone of Axial Seamount, Juan de Fuca Ridge

    Science.gov (United States)

    Smithka, I. N.; Perfit, M. R.; Clague, D. A.; Wanless, V. D.

    2014-12-01

    In 2013, the ROV Doc Ricketts onboard R/V Western Flyer explored ~4 km of an elongate pillow ridge up to ~300 m high along the eastern edge of the north rift zone of Axial Seamount. The steep-sided volcanic ridge is constructed of large pillow lavas up to 2-3 m in diameter and smaller elongated pillow tubes. Of the 27 samples collected during dive D526, all but one are andesites making it one of the largest confirmed high-silica exposures along a mid-ocean ridge (MOR). Based on radiocarbon ages of sediment on top of flows, the mounds are at least ~1390 years old. This minimum age is much younger than the 56 Ka age calculated based on distance from the rift axis, indicating eruption off-axis through older, colder crust and supporting the hypothesis and model calculations that extensive fractional crystallization (>85%) caused the high silica content. The andesitic lavas are primarily glassy, highly vesicular, crusty, and sparsely phyric with small (~1 mm) plagioclase crystals and olivine, clinopyroxene, and Fe-Ti oxide microphenocrysts. Microprobe analyses of glasses are similar to wax-core samples previously collected from this area but are more compositionally variable. Excluding one basalt (7.7 wt% MgO) sampled between mounds, the lavas are basaltic andesites and andesites (53-59 wt% SiO2) with <3 wt% MgO and 12.8-15.7 wt% FeO concentrations. Incompatible trace element abundances are ~4-6 times more enriched than in Axial Seamount T-MORB. Primitive mantle-normalized patterns are similar to those of high-silica lavas from other MORs (southern Juan de Fuca Ridge, 9N East Pacific Rise) with significant positive U anomalies, large negative Sr anomalies, small negative Eu anomalies, and slight positive Zr-Hf anomalies. The andesites are more enriched in light rare earth elements than basalts from Axial Seamount ((La/Yb)N 1.35-1.4 vs. 0.7-1.27) and N-MORB from the southern Juan de Fuca Ridge. The andesites also have high Cl (~0.3-0.6 wt%) and H2O (~1.60-1.71 wt

  13. Geology of the Elephanta Island fault zone, western Indian rifted margin, and its significance for understanding the Panvel flexure

    Science.gov (United States)

    Samant, Hrishikesh; Pundalik, Ashwin; D'souza, Joseph; Sheth, Hetu; Lobo, Keegan Carmo; D'souza, Kyle; Patel, Vanit

    2017-02-01

    The Panvel flexure is a 150-km long tectonic structure, comprising prominently seaward-dipping Deccan flood basalts, on the western Indian rifted margin. Given the active tectonic faulting beneath the Panvel flexure zone inferred from microseismicity, better structural understanding of the region is needed. The geology of Elephanta Island in the Mumbai harbour, famous for the ca. mid-6th century A.D. Hindu rock-cut caves in Deccan basalt (a UNESCO World Heritage site) is poorly known. We describe a previously unreported but well-exposed fault zone on Elephanta Island, consisting of two large faults dipping steeply east-southeast and producing easterly downthrows. Well-developed slickensides and structural measurements indicate oblique slip on both faults. The Elephanta Island fault zone may be the northern extension of the Alibag-Uran fault zone previously described. This and two other known regional faults (Nhava-Sheva and Belpada faults) indicate a progressively eastward step-faulted structure of the Panvel flexure, with the important result that the individual movements were not simply downdip but also oblique-slip and locally even rotational (as at Uran). An interesting problem is the normal faulting, block tectonics and rifting of this region of the crust for which seismological data indicate a normal thickness (up to 41.3 km). A model of asymmetric rifting by simple shear may explain this observation and the consistently landward dips of the rifted margin faults.

  14. Geology of the Elephanta Island fault zone, western Indian rifted margin, and its significance for understanding the Panvel flexure

    Indian Academy of Sciences (India)

    Hrishikesh Samant; Ashwin Pundalik; Joseph D’souza; Hetu Sheth; Keegan Carmo Lobo; Kyle D’souza; Vanit Patel

    2017-02-01

    The Panvel flexure is a 150-km long tectonic structure, comprising prominently seaward-dipping Deccan flood basalts, on the western Indian rifted margin. Given the active tectonic faulting beneath the Panvel flexure zone inferred from microseismicity, better structural understanding of the region is needed. The geology of Elephanta Island in the Mumbai harbour, famous for the ca. mid-6th century A.D. Hindu rock-cut caves in Deccan basalt (a UNESCO World Heritage site) is poorly known. We describe a previously unreported but well-exposed fault zone on Elephanta Island, consisting of two large faults dippingsteeply east–southeast and producing easterly downthrows. Well-developed slickensides and structural measurements indicate oblique slip on both faults. The Elephanta Island fault zone may be the northern extension of the Alibag–Uran fault zone previously described. This and two other known regional faults (Nhava–Sheva and Belpada faults) indicate a progressively eastward step-faulted structure of the Panvel flexure, with the important result that the individual movements were not simply downdip but also oblique-slip and locally even rotational (as at Uran). An interesting problem is the normal faulting, block tectonics and rifting of this region of the crust for which seismological data indicate a normal thickness (up to 41.3 km). A model of asymmetric rifting by simple shear may explain this observation and the consistently landward dips of the rifted margin faults.

  15. MORPHOSTRUCTURE OF THE KODAR-UDOKAN SECTION OF THE BAIKAL RIFT ZONE

    Directory of Open Access Journals (Sweden)

    Andrey A. Lukashov

    2014-01-01

    Full Text Available The morphostructure of the region is a natural result of active geodynamics in the eastern Stanovoe Upland. Extreme seismic conditions become apparent in rare devastating earthquakes (up to 10-11 in the Mercally scale, as well as in frequent slight ones. Seismic events affect topography and produce seismic deformations of different scale and morphology. Areal disturbances (like the New Namarakit Lake in the South-Muya Mountains origin and, more often, local deformations (like destructions of the Kodar ridge rocky saddles or clamms [gorges] opening are evident. Using morphotectonic analysis methods the morphostructural scheme of the Kodar-Udocan section of the Baikal rift zone (perhaps pull-apart basin is done. In our model piedmont and mountain territories are divided in five level groups of blocks. Neotectonic movements’ amplitude is estimated at 5000 m.

  16. THE VELOCITY STRUCTURE OF THE UPPER MANTLE AND REGIONAL DEEP THERMODYNAMICS OF THE BAIKAL RIFT ZONE

    Directory of Open Access Journals (Sweden)

    Alexander V. Pospeev

    2015-10-01

    Full Text Available The article is aimed at discussion of geological and geophysical aspects of the ‘asthenospheric’ interpretation of the ‘anomalous’ mantle layer that is revealed in the Baikal rift zone by deep seismic sounding (DSS methods. Based on the analysis of the geoelectrical model, estimations of rheological properties, regional geothermal and deep petrological data, it is concluded that the ‘anomalous’ mantle phenomenon should be interpreted within the framework of solid-phase models. It is shown that the actual minimum depth to the top of the asthenosphere is about 60–70 km in the region under study, and temperatures at the surface of the Earth’s mantle varies from 600 to 900 °С. It is most probable that velocities are reduced in the ‘anomalous’ mantle layer due to the presence of hightemperature spinel-pyroxene facies of the mantle rocks.

  17. Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas Basin sea-floor rift

    Science.gov (United States)

    Sherman, L.S.; Blum, J.D.; Nordstrom, D.K.; McCleskey, R.B.; Barkay, T.; Vetriani, C.

    2009-01-01

    To characterize mercury (Hg) isotopes and isotopic fractionation in hydrothermal systems we analyzed fluid and precipitate samples from hot springs in the Yellowstone Plateau volcanic field and vent chimney samples from the Guaymas Basin sea-floor rift. These samples provide an initial indication of the variability in Hg isotopic composition among marine and continental hydrothermal systems that are controlled predominantly by mantle-derived magmas. Fluid samples from Ojo Caliente hot spring in Yellowstone range in δ202Hg from - 1.02‰ to 0.58‰ (± 0.11‰, 2SD) and solid precipitate samples from Guaymas Basin range in δ202Hg from - 0.37‰ to - 0.01‰ (± 0.14‰, 2SD). Fluid samples from Ojo Caliente display mass-dependent fractionation (MDF) of Hg from the vent (δ202Hg = 0.10‰ ± 0.11‰, 2SD) to the end of the outflow channel (&delta202Hg = 0.58‰ ± 0.11‰, 2SD) in conjunction with a decrease in Hg concentration from 46.6pg/g to 20.0pg/g. Although a small amount of Hg is lost from the fluids due to co-precipitation with siliceous sinter, we infer that the majority of the observed MDF and Hg loss from waters in Ojo Caliente is due to volatilization of Hg0(aq) to Hg0(g) and the preferential loss of Hg with a lower δ202Hg value to the atmosphere. A small amount of mass-independent fractionation (MIF) was observed in all samples from Ojo Caliente (Δ199Hg = 0.13‰ ±1 0.06‰, 2SD) but no significant MIF was measured in the sea-floor rift samples from Guaymas Basin. This study demonstrates that several different hydrothermal processes fractionate Hg isotopes and that Hg isotopes may be used to better understand these processes.

  18. IDENTIFICATION OF EARTHQUAKE AFTERSHOCK AND SWARM SEQUENCES IN THE BAIKAL RIFT ZONE

    Directory of Open Access Journals (Sweden)

    N. A. Radziminovich

    2015-09-01

    Full Text Available The catalog of earthquakes (КR³6.6 which occurred in the Baikal rift zone (BRZ was declastered, and the results are presented in the article. Aftershocks of seismic events (КR³12.5 were determined by the software developed by V.B. Smirnov (Lomonosov Moscow State University with application of the algorithm co-authored by G.M. Molchan and O.E. Dmitrieva. To ensure proper control of the software application, aftershocks were also selected manually. The results of declustering show that aftershocks of the earthquakes (КR³12.5 account for about 25 per cent of all seismic events in the regional catalog. Aftershocks accompanied 90 per cent of all the earthquakes considered as main shocks. Besides, earthquake swarms, including events with КR³11, were identified. The results of this study show that, in the BRZ, the swarms and strong events with aftershocks are not spatially separated, and this conclusion differs from the views of the previous studies that reviewed data from a shorter observation period. Moreover, it is noted that the swarms may consist of several main shocks accompanied by aftershocks. The data accumulated over the last fifty years of instrumental observations support the conclusion made earlier that the swarms in BRZ occur mainly in the north-eastward direction from Lake Baikal and also confirm the trend of a small number of aftershocks accompanying earthquakes in the south-western part of the Baikal rift zone.

  19. Volcanic hazards of the Idaho National Engineering Laboratory and adjacent areas

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, W.R. [WRH Associates, Salt Lake City, UT (United States); Smith, R.P. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1994-12-01

    Potential volcanic hazards are assessed, and hazard zone maps are developed for the Idaho National Engineering Laboratory (INEL) and adjacent areas. The basis of the hazards assessment and mapping is the past volcanic history of the INEL region, and the apparent similarity of INEL volcanism with equivalent, well-studied phenomena in other regions of active volcanism, particularly Hawaii and Iceland. The most significant hazards to INEL facilities are associated with basaltic volcanism, chiefly lava flows, which move slowly and mainly threaten property by inundation or burning. Related hazards are volcanic gases and tephra, and ground disturbance associated with the ascent of magma under the volcanic zones. Several volcanic zones are identified in the INEL area. These zones contain most of the volcanic vents and fissures of the region and are inferred to be the most probable sites of future INEL volcanism. Volcanic-recurrence estimates are given for each of the volcanic zones based on geochronology of the lavas, together with the results of field and petrographic investigations concerning the cogenetic relationships of INEL volcanic deposits and associated magma intrusion. Annual probabilities of basaltic volcanism within the INEL volcanic zones range from 6.2 {times} 10{sup {minus}5} per year (average 16,000-year interval between eruptions) for the axial volcanic zone near the southern INEL boundary and the Arco volcanic-rift zone near the western INEL boundary, to 1 {times} 10{sup {minus}5} per year (average 100,000-year interval between eruptions) for the Howe-East Butte volcanic rift zone, a geologically old and poorly defined feature of the central portion of INEL. Three volcanic hazard zone maps are developed for the INEL area: lava flow hazard zones, a tephra (volcanic ash) and gas hazard zone, and a ground-deformation hazard zone. The maps are useful in land-use planning, site selection, and safety analysis.

  20. Reactivation of a segmented hyper-extended rift system: the example of the Pamplona transfer zone in the western Pyrenees

    Science.gov (United States)

    Lescoutre, Rodolphe; Schaeffer, Frédéric; Masini, Emmanuel; Manatschal, Gianreto

    2016-04-01

    Numerous studies have revealed the importance of rift-inheritance on the formation of orogens but little consideration was given to rift segmentation and the role of transfer zones on the architecture of mountain chains. Indeed, structural mapping of passive margins pointed out the occurrence of a strong variability in the rift architecture along the margin when crossing through peculiar features that represent transfer zones. These transfer zones are generally oriented in the extension direction and relay the deformation between rift segments. The aim of this study is twofold: 1) characterize and define the Pamplona fault system as well as the structures and architecture of the basins bounding this major paleo-transfer fault located in the Western Pyrenees, and 2) understand its role during the subsequent Pyrenean convergence. The influence of the Pamplona fault system on the structuration of the Mauléon basin to the northeast and the Basque-Cantabrian basin to the southwest is substantial as expressed by their large offset and the occurrence of exhumed deep crustal and mantle rocks flooring the two basins. On the one hand, field work in the Labourd Massif and the western termination of the Mauléon basin enabled to describe faults and their relations to sedimentary sequences. This work also allowed describing the formation and reactivation of faults according to their orientation and their activity with respect to key markers (pre-Trias and post-Cenomanian). A strong relationship between rift architecture (proximal to distal domains) and structural inheritance is suggested. On the other hand, preliminary results from fieldwork, literature compilation and new tomographic imaging enable to determine the role and the history of the Pamplona fault system during Late Cretaceous compression. A significant work of this starting PhD project will be to determine the rift structures that have been reactivated and to assess their influence on the final architecture of the

  1. The role of inherited crustal structures and magmatism in the development of rift segments: Insights from the Kivu basin, western branch of the East African Rift

    Science.gov (United States)

    Smets, Benoît; Delvaux, Damien; Ross, Kelly Ann; Poppe, Sam; Kervyn, Matthieu; d'Oreye, Nicolas; Kervyn, François

    2016-06-01

    The study of rift basin's morphology can provide good insights into geological features influencing the development of rift valleys and the distribution of volcanism. The Kivu rift segment represents the central section of the western branch of the East African Rift and displays morphological characteristics contrasting with other rift segments. Differences and contradictions between several structural maps of the Kivu rift make it difficult to interpret the local geodynamic setting. In the present work, we use topographic and bathymetric data to map active fault networks and study the geomorphology of the Kivu basin. This relief-based fault lineament mapping appears as a good complement for field mapping or mapping using seismic reflection profiles. Results suggest that rifting reactivated NE-SW oriented structures probably related to the Precambrian basement, creating transfer zones and influencing the location and distribution of volcanism. Both volcanic provinces, north and south of the Kivu basin, extend into Lake Kivu and are connected to each other with a series of eruptive vents along the western rift escarpment. The complex morphology of this rift basin, characterized by a double synthetic half-graben structure, might result from the combined action of normal faulting, magmatic underplating, volcanism and erosion processes.

  2. A shifting rift—Geophysical insights into the evolution of Rio Grande rift margins and the Embudo transfer zone near Taos, New Mexico

    Science.gov (United States)

    Grauch, V.J.S.; Bauer, Paul W.; Drenth, Benjamin J.; Kelson, Keith I.

    2017-01-01

    We present a detailed example of how a subbasin develops adjacent to a transfer zone in the Rio Grande rift. The Embudo transfer zone in the Rio Grande rift is considered one of the classic examples and has been used as the inspiration for several theoretical models. Despite this attention, the history of its development into a major rift structure is poorly known along its northern extent near Taos, New Mexico. Geologic evidence for all but its young rift history is concealed under Quaternary cover. We focus on understanding the pre-Quaternary evidence that is in the subsurface by integrating diverse pieces of geologic and geophysical information. As a result, we present a substantively new understanding of the tectonic configuration and evolution of the northern extent of the Embudo fault and its adjacent subbasin.We integrate geophysical, borehole, and geologic information to interpret the subsurface configuration of the rift margins formed by the Embudo and Sangre de Cristo faults and the geometry of the subbasin within the Taos embayment. Key features interpreted include (1) an imperfect D-shaped subbasin that slopes to the east and southeast, with the deepest point ∼2 km below the valley floor located northwest of Taos at ∼36° 26′N latitude and 105° 37′W longitude; (2) a concealed Embudo fault system that extends as much as 7 km wider than is mapped at the surface, wherein fault strands disrupt or truncate flows of Pliocene Servilleta Basalt and step down into the subbasin with a minimum of 1.8 km of vertical displacement; and (3) a similar, wider than expected (5–7 km) zone of stepped, west-down normal faults associated with the Sangre de Cristo range front fault.From the geophysical interpretations and subsurface models, we infer relations between faulting and flows of Pliocene Servilleta Basalt and older, buried basaltic rocks that, combined with geologic mapping, suggest a revised rift history involving shifts in the locus of fault activity as

  3. The Salton Seismic Imaging Project (SSIP): Active Rift Processes in the Brawley Seismic Zone

    Science.gov (United States)

    Han, L.; Hole, J. A.; Stock, J. M.; Fuis, G. S.; Rymer, M. J.; Driscoll, N. W.; Kent, G.; Harding, A. J.; Gonzalez-Fernandez, A.; Lazaro-Mancilla, O.

    2011-12-01

    The Salton Seismic Imaging Project (SSIP), funded by NSF and USGS, acquired seismic data in and across the Salton Trough in southern California and northern Mexico in March 2011. The project addresses both rifting processes at the northern end of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. Seven lines of onshore refraction and low-fold reflection data were acquired in the Coachella, Imperial, and Mexicali Valleys, two lines and a grid of airgun and OBS data were acquired in the Salton Sea, and onshore-offshore data were recorded. Almost 2800 land seismometers and 50 OBS's were used in almost 5000 deployments at almost 4300 sites, in spacing as dense as 100 m. These instruments received seismic signals from 126 explosive shots up to 1400 kg and over 2300 airgun shots. In the central Salton Trough, North American lithosphere appears to have been rifted completely apart. Based primarily on a 1979 seismic refraction project, the 20-22 km thick crust is apparently composed entirely of new crust added by magmatism from below and sedimentation from above. Active rifting of this new crust is manifested by shallow (geothermal energy production. This presentation is focused on an onshore-offshore line of densely sampled refraction and low-fold reflection data that crosses the Brawley Seismic Zone and Salton Buttes in the direction of plate motion. At the time of abstract submission, data analysis was very preliminary, consisting of first-arrival tomography of the onshore half of the line for upper crustal seismic velocity. Crystalline basement (>5 km/s), comprised of late-Pliocene to Quaternary sediment metamorphosed by the high heat flow, occurs at ~2 km depth beneath the Salton Buttes and geothermal field and ~4 km depth south of the BSZ. Preliminary result suggests that the velocity of basement is lower in the BSZ than to the south, which may result from fracturing. Basement velocity appears to be

  4. Using high-precision 40Ar/39Ar geochronology to understand volcanic hazards within the Rio Grande rift and along the Jemez lineament, New Mexico

    Science.gov (United States)

    Zimmerer, M. J.; McIntosh, W. C.; Heizler, M. T.; Lafferty, J.

    2014-12-01

    High-precision Ar/Ar ages were generated for late Quaternary volcanic fields in the Rio Grande rift and along the Jemez Lineament, New Mexico, to assess the time-space patterns of volcanism and begin quantifying volcanic hazards for the region. The published chronology of most late Quaternary volcanic centers in the region is not sufficiently precise, accurate, or complete for a comprehensive volcanic hazard assessment. Ar/Ar ages generated as part of this study were determined using the high-sensitivity, multi-collector ARGUS VI mass spectrometer, which provides about an order of magnitude more precise isotopic measurements compared to older generation, single-detector mass spectrometers. Ar/Ar ages suggest an apparent increase in eruption frequency during the late Quaternary within the Raton-Clayton volcanic field, northeastern NM. Only four volcanoes erupted between 426±8 and 97±3 ka. Contrastingly, four volcanoes erupted between 55±2 and 32±5 ka. This last eruptive phase displays a west to east migration of volcanism, has repose periods of 0 to 17 ka, and an average recurrence rate of 1 eruption per 5750 ka. The Zuni-Bandera volcanic field, west-central NM, is composed of the ~100 late Quaternary basaltic vents. Preliminary results suggest that most of the Chain of Craters, the largest and oldest part of the Zuni-Bandera field, erupted between ~100 and 250 ka. Volcanism then migrated to the east, where published ages indicate at least seven eruptions between 50 and 3 ka. Both volcanic fields display a west to east migration of volcanism during the last ~500 ka, although the pattern is more pronounced in the Zuni-Bandera field. A reassessment of low-precision published ages for other late Quaternary volcanic fields in region indicates that most fields display a similar west to east migration of volcanism during the last ~500 ka. One possible mechanism to explain the observed patterns of volcanism is the westward migration of the North American plate relative

  5. Landform development in a zone of active Gedi Fault, Eastern Kachchh rift basin, India

    Science.gov (United States)

    Kothyari, Girish Ch.; Rastogi, B. K.; Morthekai, P.; Dumka, Rakesh K.

    2016-02-01

    An earthquake of 2006 Mw 5.7 occurred along east-west trending Gedi Fault (GF) to the north of the Kachchh rift basin in western India which had the epicenter in the Wagad upland, which is approximately 60 km northeast of the 2001 Mw 7.7 earthquake site (or epicenter). Development of an active fault scarp, shifting of a river channel, offsetting of streams and uplift of the ground indicate that the terrain is undergoing active deformation. Based on detailed field investigations, three major faults that control uplifts have been identified in the GF zone. These uplifts were developed in a step-over zone of the GF, and formed due to compressive force generated by left-lateral motion within the segmented blocks. In the present research, a terrace sequence along the north flowing Karaswali river in a tectonically active GF zone has been investigated. Reconstructions based on geomorphology and terrace stratigraphy supported by optical chronology suggest that the fluvial aggradation in the Wagad area was initiated during the strengthening (at ~ 8 ka) and declining (~ 4 ka) of the Indian Summer Monsoon (ISM). The presence of younger valley fill sediments which are dated ~ 1 ka is ascribed to a short lived phase of renewed strengthening of ISM before present day aridity. Based on terrace morphology two major phases of enhanced uplift have been estimated. The older uplift event dated to 8 ka is represented by the Tertiary bedrock surfaces which accommodated the onset of valley-fill aggradation. The younger event of enhanced uplift dated to 4 ka was responsible for the incision of the older valley fill sediments and the Tertiary bedrock. These ages suggest that the average rate of uplift ranges from 0.3 to 1.1 mm/yr during the last 9 ka implying active nature of the area.

  6. Coulomb Stress Change and Seismic Hazard of Rift Zones in Southern Tibet after the 2015 Mw7.8 Nepal Earthquake and Its Mw7.3 Aftershock

    Science.gov (United States)

    Dai, Z.; Zha, X.; Lu, Z.

    2015-12-01

    In southern Tibet (30~34N, 80~95E), many north-trending rifts, such as Yadong-Gulu and Lunggar rifts, are characterized by internally drained graben or half-graben basins bounded by active normal faults. Some developed rifts have become a portion of important transportation lines in Tibet, China. Since 1976, eighty-seven >Mw5.0 earthquakes have happened in the rift regions, and fifty-five events have normal faulting focal mechanisms according to the GCMT catalog. These rifts and normal faults are associated with both the EW-trending extension of the southern Tibet and the convergence between Indian and Tibet. The 2015 Mw7.8 Nepal great earthquake and its Mw7.3 aftershock occurred at the main Himalayan Thrust zone and caused tremendous damages in Kathmandu region. Those earthquakes will lead to significant viscoelastic deformation and stress changes in the southern Tibet in the future. To evaluate the seismic hazard in the active rift regions in southern Tibet, we modeled the slip distribution of the 2015 Nepal great earthquakes using the InSAR displacement field from the ALOS-2 satellite SAR data, and calculated the Coulomb failure stress (CFS) on these active normal faults in the rift zones. Because the estimated CFS depends on the geometrical parameters of receiver faults, it is necessary to get the accurate fault parameters in the rift zones. Some historical earthquakes have been studied using the field data, teleseismic data and InSAR observations, but results are in not agreement with each other. In this study, we revaluated the geometrical parameters of seismogenic faults occurred in the rift zones using some high-quality coseismic InSAR observations and teleseismic body-wave data. Finally, we will evaluate the seismic hazard in the rift zones according to the value of the estimated CFS and aftershock distribution.

  7. Imaging the Roots of Geothermal Systems: 3-D Inversion of Magnetotelluric Array Data in the Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Bertrand, E. A.; Caldwell, G.; Bannister, S. C.; Hill, G.; Bennie, S.

    2013-12-01

    The Taupo Volcanic Zone (TVZ), located in the central North Island of New Zealand, is a rifted arc that contains more than 20 liquid-dominated high-temperature geothermal systems, which together discharge ~4.2 GW of heat at the surface. The shallow (upper ~500 m) extent of these geothermal systems is marked by low-resistivity, mapped by tens-of-thousands of DC resistivity measurements collected throughout the 1970's and 80's. Conceptual models of heat transport through the brittle crust of the TVZ link these low-resistivity anomalies to the tops of vertically ascending plumes of convecting hydrothermal fluid. Recently, data from a 40-site array of broadband seismometers with ~4 km station spacing, and an array of 270 broadband magnetotelluric (MT) measurements with ~2 km station spacing, have been collected in the south-eastern part of the TVZ in an experiment to image the deep structure (or roots) of the geothermal systems in this region. Unlike DC resistivity, these MT measurements are capable of resolving the resistivity structure of the Earth to depths of 10 km or more. 2-D and 3-D models of subsets of these MT data have been used to provide the first-ever images of quasi-vertical low-resistivity zones (at depths of 3-7 km) that connect with the near-surface geothermal fields. These low-resistivity zones are interpreted to represent convection plumes of high-temperature fluids ascending within fractures, which supply heat to the overlying geothermal fields. At the Rotokawa, Ngatamariki and Ohaaki geothermal fields, these plumes extend to a broad layer of low-resistivity, inferred to represent a magmatic, basal heat source located below the seismogenic zone (at ~7-8 km depth) that drives convection in the brittle crust above. Little is known about the mechanisms that transfer heat into the hydrothermal regime. However, at Rotokawa, new 3-D resistivity models image a vertical low-resistivity zone that lies directly beneath the geothermal field. The top of this

  8. The post-Mazama northwest rift zone eruption at Newberry Volcano, Oregon

    Science.gov (United States)

    McKay, Daniele; Donnelly-Nolan, Julie M.; Madin, Ian P.; Champion, Duane E.; O'Connor, Jim; Dorsey, Rebecca; Madin, Ian P.

    2009-01-01

    The northwest rift zone (NWRZ) eruption took place at Newberry Volcano ~7000 years ago after the volcano was mantled by tephra from the catastrophic eruption that destroyed Mount Mazama and produced the Crater Lake caldera. The NWRZ eruption produced multiple lava flows from a variety of vents including cinder cones, spatter vents, and fissures, possibly in more than one episode. Eruptive behaviors ranged from energetic Strombolian, which produced significant tephra plumes, to low-energy Hawaiian-style. This paper summarizes and in part reinterprets what is known about the eruption and presents information from new and ongoing studies. Total distance spanned by the eruption is 32 km north-south. The northernmost flow of the NWRZ blocked the Deschutes River upstream from the city of Bend, Oregon, and changed the course of the river. Renewed mafic activity in the region, particularly eruptions such as the NWRZ with tephra plumes and multiple lava flows from many vents, would have significant impacts for the residents of Bend and other central Oregon communities.

  9. Microstructural evolution and seismic anisotropy of upper mantle rocks in rift zones. Geologica Ultraiectina (300)

    NARCIS (Netherlands)

    Palasse, L.N.

    2008-01-01

    This thesis investigates field-scale fragments of subcontinental upper mantle rocks from the ancient Mesozoic North Pyrenean rift and Plio-Pleistocene xenoliths from the active Baja California rift, in order to constrain the deformation history of the uppermost mantle. The main focus of the study is

  10. Microstructural evolution and seismic anisotropy of upper mantle rocks in rift zones. Geologica Ultraiectina (300)

    NARCIS (Netherlands)

    Palasse, L.N.

    2008-01-01

    This thesis investigates field-scale fragments of subcontinental upper mantle rocks from the ancient Mesozoic North Pyrenean rift and Plio-Pleistocene xenoliths from the active Baja California rift, in order to constrain the deformation history of the uppermost mantle. The main focus of the study is

  11. Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland.

    Science.gov (United States)

    Sigmundsson, Freysteinn; Hooper, Andrew; Hreinsdóttir, Sigrún; Vogfjörd, Kristín S; Ófeigsson, Benedikt G; Heimisson, Elías Rafn; Dumont, Stéphanie; Parks, Michelle; Spaans, Karsten; Gudmundsson, Gunnar B; Drouin, Vincent; Árnadóttir, Thóra; Jónsdóttir, Kristín; Gudmundsson, Magnús T; Högnadóttir, Thórdís; Fridriksdóttir, Hildur María; Hensch, Martin; Einarsson, Páll; Magnússon, Eyjólfur; Samsonov, Sergey; Brandsdóttir, Bryndís; White, Robert S; Ágústsdóttir, Thorbjörg; Greenfield, Tim; Green, Robert G; Hjartardóttir, Ásta Rut; Pedersen, Rikke; Bennett, Richard A; Geirsson, Halldór; La Femina, Peter C; Björnsson, Helgi; Pálsson, Finnur; Sturkell, Erik; Bean, Christopher J; Möllhoff, Martin; Braiden, Aoife K; Eibl, Eva P S

    2015-01-08

    Crust at many divergent plate boundaries forms primarily by the injection of vertical sheet-like dykes, some tens of kilometres long. Previous models of rifting events indicate either lateral dyke growth away from a feeding source, with propagation rates decreasing as the dyke lengthens, or magma flowing vertically into dykes from an underlying source, with the role of topography on the evolution of lateral dykes not clear. Here we show how a recent segmented dyke intrusion in the Bárðarbunga volcanic system grew laterally for more than 45 kilometres at a variable rate, with topography influencing the direction of propagation. Barriers at the ends of each segment were overcome by the build-up of pressure in the dyke end; then a new segment formed and dyke lengthening temporarily peaked. The dyke evolution, which occurred primarily over 14 days, was revealed by propagating seismicity, ground deformation mapped by Global Positioning System (GPS), interferometric analysis of satellite radar images (InSAR), and graben formation. The strike of the dyke segments varies from an initially radial direction away from the Bárðarbunga caldera, towards alignment with that expected from regional stress at the distal end. A model minimizing the combined strain and gravitational potential energy explains the propagation path. Dyke opening and seismicity focused at the most distal segment at any given time, and were simultaneous with magma source deflation and slow collapse at the Bárðarbunga caldera, accompanied by a series of magnitude M > 5 earthquakes. Dyke growth was slowed down by an effusive fissure eruption near the end of the dyke. Lateral dyke growth with segment barrier breaking by pressure build-up in the dyke distal end explains how focused upwelling of magma under central volcanoes is effectively redistributed over long distances to create new upper crust at divergent plate boundaries.

  12. Is Kīlauea's East Rift Zone eruption running out of gas?

    Science.gov (United States)

    Sutton, A. J.; Elias, T.; Orr, T. R.; Patrick, M. R.; Poland, M. P.; Thornber, C. R.

    2015-12-01

    Gases exsolving from magma are a key force that drives eruptive activity, and emissions from Kīlauea's East Rift Zone (ERZ) dominated the volcano's gas release from the beginning of the long-running and voluminous Pu'u 'Ō'ō eruption in 1983, through February 2008. In the months prior to the March 2008 onset of eruptive activity within Halema'uma'u Crater, however, SO2 degassing at the summit climbed substantially, and summit gas release has remained elevated since. These unprecedented emissions associated with the new summit eruption effectively began robbing gas from magma destined for Kīlauea's ERZ. As a result, ERZ SO2discharge, which had averaged 1,700 +-380 t/d for the previous 15 years, declined sharply and steadily beginning in September, 2008, and reached a new steady low of 380 +- 100 t/d by early 2011. This level persisted through mid-2015. In the years since the late 2008 downturn in ERZ SO2 emissions, there has been an overall slowdown in ERZ eruptive activity. Elevated emissions and effusive activity occurred briefly during the 2011 Kamoamoa fissure eruption and two other outbreaks at Pu'u 'Ō'ō , but otherwise ERZ eruptive activity had waned by 2010, when effusion rates were measured at about half of the long-term rate. Also, the sulfur preserved in ERZ olivine melt-inclusions, which provides a record of pre-eruptive SO2degassing, has steadily declined along with equilibration temperatures of host olivine phenocrysts, since 2008. We suggest that the drop in gas content of magma reaching the ERZ, owing to summit pre-eruptive degassing, has contributed significantly to the downturn in ERZ activity. While SO2 emissions from the ERZ have dropped to sustained levels lower than anything seen in the past 20 years, summit emissions have remained some of the highest recorded since regular measurements began at Kīlauea in 1979. Overall, average total SO2 discharge from Kīlauea in 2014, summit and ERZ, is still about 50% higher than for the 15 years prior

  13. Two- and three-dimensional gravity modeling along western continental margin and intraplate Narmada-Tapti rifts: Its relevance to Deccan flood basalt volcanism

    Indian Academy of Sciences (India)

    Somdev Bhattacharji; Rajesh Sharma; Nilanjan Chatterjee

    2004-12-01

    magma chambers along the western continental margin and the intraplate Narmada-Tapti rifts at estimated depths between 6 and 8 km from the surface (consistent with geological, petrological and geochemical models) appear to be the major reservoirs for Deccan flood basalt volcanism at approximately 65 Ma.

  14. Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, N.E.; Flexser, S.

    1984-12-01

    Recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. The areas studied were: (1) Salton Trough, (2) The Geysers-Clear Lake, (3) Long Valley caldera, (4) Coso volcanic field, and (5) Medicine Lake volcano, all located in California and all selected on the basis of recent volcanic activity and published indications of crustal melt zones. 23 figs.

  15. Seismotectonics of the transitional region from the Baikal Rift Zone to orogenic rise of the Stanovoi range

    Science.gov (United States)

    Ovsyuchenko, A. N.; Trofimenko, S. V.; Marakhanov, A. V.; Karasev, P. S.; Rogozhin, E. A.

    2010-01-01

    This paper is based on the data obtained during the field study of active faults carried out in 2005-2006 in the Chita and Amur oblast and South Yakutia in connection with detailed seismic demarcation of the projected East Siberia-Pacific Ocean pipeline route. The comprehensive geomorphic and geophysical fieldwork was focused on paleoseismogeology and accompanied by trenching in the zones of reactivated faults. These works allowed us to specify the available information on the present-day structure, seismotectonic regime, and potential seismic hazard of the conjugation of the Baikal Rift Zone and the arched-block rise of the Stanovoi Ridge.

  16. Cambrian rift-related magmatism in the Ossa-Morena Zone (Iberian Massif): Geochemical and geophysical evidence of Gondwana break-up

    Science.gov (United States)

    Sarrionandia, F.; Carracedo Sánchez, M.; Eguiluz, L.; Ábalos, B.; Rodríguez, J.; Pin, C.; Gil Ibarguchi, J. I.

    2012-10-01

    Volcanic rocks of Cambrian age from Zafra (Ossa-Morena Zone, Iberian Massif) are the result of rift processes that affected Cadomian arc units accreted to the NW edge of Gondwana during the Neoproterozoic-Early Cambrian transition. Tephrite to rhyolite volcanics define an alkaline transitional association (Coombs type). Basic-ultrabasic rocks exhibit typical alkaline REE-patterns, strongly enriched in LREE with respect to HREE. Two parental magmas are identified, one with a mantle signature, lack of Nb negative anomaly and εNd500Ma + 3.8 to + 4.2; another with crustal contribution, minor Nb negative anomaly and εNd500Ma + 0.8 to + 1.8. Intermediate-acid rocks show variable REE fractionation and share geochemical characteristics of both basic-ultrabasic groups with restricted εNd500Ma + 2.2 to 3.1 and general absence of Nb negative anomaly. Basic-ultrabasic melts resulted from different amounts of partial melting of a homogeneous source and segregation at the garnet-spinel transition zone. We argue that the "Hales transition" recently recognized in reflection seismic experiments of SW Iberia might image such a source region. Mantle-derived magmas ponded at the base of the crust and weakly interacted with crustal rocks/melts, whilst intermediate-acid rocks were generated by plagioclase ± clinopyroxene ± amphibole fractionation. Melt ascent took place through fractures, with limited crustal interaction. Based upon the new geochemical results and complementary cartographic and geophysical data, a model is presented for the Cambrian break-up of North Gondwana due to magma ascent from the mantle.

  17. Two-step magma flooding of the upper crust during rifting: The Early Paleozoic of the Ossa Morena Zone (SW Iberia)

    Science.gov (United States)

    Sánchez-García, T.; Quesada, C.; Bellido, F.; Dunning, G. R.; González del Tánago, J.

    2008-12-01

    The Ossa Morena Zone of SW Iberia represents a continental arc accreted to the Iberian Autochthon during the Late Proterozoic-Early Cambrian Cadomian orogeny. A subsequent Cambrian-Ordovician rifting event is recorded in this zone, which was accompanied by intrusion/eruption of large volumes of igneous rocks. Exposed crustal segments show both volcanic and shallow plutonic rocks that according to their relationship with coeval sedimentary successions can be assigned to one of two periods of magma emplacement: i) an Early Igneous Event, exclusively comprised of acid peraluminous rocks associated with migmatite formation during development of core-complex structures in mid-upper crust environments; and ii) a Main Igneous Event, which produced predominantly basaltic and acid (rhyolite) rocks and minor amounts of intermediate (trachyte) rocks. Tholeiites and alkaline rocks predominate in this suite but minor calcalkaline peraluminous compositions are also present. Besides, a volumetrically unimportant but petrologically significant group of Mg-rich rocks also occurs within the Main Igneous Event. These latter rocks are interpreted to reflect high partial melting rates of a protolith similar to the primitive mantle. All the outlined characteristics provide evidence for large heterogeneity within the rift-related association that may be due to several causes, such as the involvement of various magma sources (asthenospheric, lithospheric, crustal) and/or involvement of various petrogenetic processes in their generation and evolution. Radiometric (U-Pb zircon) dating yielded c. 530 ± 5 Ma ages for the Early Igneous Event and a longer duration, 517-502 ± 2 Ma, for the Main Igneous Event. The large volume of magma emplaced into upper crustal environments, along with the presence of abundant dikes, suggest that magma ascent benefited from coeval extensional tectonism. It is suggested that they represent the igneous expression of rifting in connection with a severe thermal

  18. Puhimau thermal area: a window into the upper east rift zone of Kilauea Volcano, Hawaii?

    Science.gov (United States)

    McGee, K.A.; Sutton, A.J.; Elias, T.; Doukas, M.P.; Gerlach, T.M.

    2006-01-01

    We report the results of two soil CO2 efflux surveys by the closed chamber circulation method at the Puhimau thermal area in the upper East Rift Zone (ERZ) of Kilauea volcano, Hawaii. The surveys were undertaken in 1996 and 1998 to constrain how much CO2 might be reaching the ERZ after degassing beneath the summit caldera and whether the Puhimau thermal area might be a significant contributor to the overall CO2 budget of Kilauea. The area was revisited in 2001 to determine the effects of surface disturbance on efflux values by the collar emplacement technique utilized in the earlier surveys. Utilizing a cutoff value of 50 g m−2 d−1 for the surrounding forest background efflux, the CO2 emission rates for the anomaly at Puhimau thermal area were 27 t d−1 in 1996 and 17 t d−1 in 1998. Water vapor was removed before analysis in all cases in order to obtain CO2 values on a dry air basis and mitigate the effect of water vapor dilution on the measurements. It is clear that Puhimau thermal area is not a significant contributor to Kilauea's CO2 output and that most of Kilauea's CO2 (8500 t d−1) is degassed at the summit, leaving only magma with its remaining stored volatiles, such as SO2, for injection down the ERZ. Because of the low CO2 emission rate and the presence of a shallow water table in the upper ERZ that effectively scrubs SO2 and other acid gases, Puhimau thermal area currently does not appear to be generally well suited for observing temporal changes in degassing at Kilauea.

  19. Numerical reconstruction of Late-Cenosoic evolution of normal-fault scarps in Baikal Rift Zone

    Science.gov (United States)

    Byzov, Leonid; San'kov, Vladimir

    2014-05-01

    Numerical landscape development modeling has recently become a popular tool in geo-logic and geomorphic investigations. We employed this technique to reconstruct Late-Cenosoic evolution of Baikal Rift Zone mountains. The objects of research were Barguzin Range and Svyatoy Nos Upland. These structures are formed under conditions of crustal extension and bounded by active normal faults. In our experiments we used instruments, engineered by Greg Tucker (University of Colo-rado) - CHILD (Channel-Hillslope Integrated Landscape Development) and 'Bedrock Fault Scarp'. First program allowed constructing the complex landscape model considering tectonic uplift, fluvial and hillslope processes; second program is used for more accurate simulating of triangular facet evolution. In general, our experiments consisted in testing of tectonic parameters, and climatic char-acteristic, erosion and diffusion properties, hydraulic geometry were practically constant except for some special runs. Numerous experiments, with various scenarios of development, showed that Barguzin range and Svyatoy Nos Upland has many common features. These structures characterized by internal differentiation, which appear in height and shape of slopes. At the same time, individual segments of these objects are very similar - this conclusion refers to most developing parts, with pronounced facets and V-shaped valleys. Accordingly modelling, these landscapes are in a steady state and are undergoing a uplift with rate 0,4 mm/yr since Early Pliocene (this solution accords with AFT-dating). Lower segments of Barguzin Range and Svyatoy Nos Upland also have some general fea-tures, but the reasons of such similarity probably are different. In particular, southern segment of Svyatoy Nos Upland, which characterized by relative high slope with very weak incision, may be formed as result very rapid fault movement or catastrophic landslide. On the other hand, a lower segment of Barguzin Range (Ulun segment, for example

  20. Timing of volcanism and initiation of rifting in Omo-Turkana Depression, Southwestern Ethiopia: Evidence from Paleomagnetism

    Science.gov (United States)

    Erbello, A.; Kidane, T.; Brown, F.

    2013-12-01

    Abstract This Paleomagnetic study was carried out on thin widely spread lava flows of Gombe Group basalts from the lower Omo Valley in southwestern Ethiopia. The objective of the study is to integrate paleomagnetic results with previous geochronological data to know timing of volcanism and to infer the time for which the present architecture of the basin was attained. 80 oriented core samples were taken from nine sites in two field trips. Rock magnetic, petrology and paleomagnetic studies were done in the laboratory of Earth Sciences at Addis Ababa University. Pilot specimens were subjected to alternating field (AF) and thermal (TH) demagnetization and acquisition experiments. The Natural Remanent Magnetization (NRM) direction comprises two vector components in most samples. The first component of magnetization was easily erased at 5 to 25mT AF demagnetization and 120°C to 250°C TH demagnetization. A step wise increasing application of magnetic field to selected specimens revealed a saturation magnetization at about 300°C. The magnetization curve results from the acquisition experiment together with TH demagnetization of the same specimens and AF demagnetization results indicates that titanomagnetite is the dominant magnetic carrier. About 50% of magnetization is removed between Temperature ranges of 2500C and 4300C suggesting pseudo single domains as a primary carrier of magnetic remanence. From a total of nine sites, six sites show reversed polarity and two sites show normal polarity. One site has been removed because of samples from that site may have been affected by lightning. The normal and reversed polarities are 1800 apart thus they are antipodal to one another. The overall mean direction for 6 sites of reversed polarity is (DS=186.1, IS=-1.9,KS=38.8, α95=10.9) where as the two sites with normal polarity yield (DS=348.4, IS=4.6, K=378.9, α95=12.9).By using the available upper age control of Moiti tuff (3.98Ma) and Naibar tuff (4.02 Ma) which have never

  1. Crustal Structure Across the Okavango Rift Zone, Botswana: Initial Results From the PRIDE-SEISORZ Active-Source Seismic Profile

    Science.gov (United States)

    Canales, J. P.; Moffat, L.; Lizarralde, D.; Laletsang, K.; Harder, S. H.; Kaip, G.; Modisi, M.

    2015-12-01

    The PRIDE project aims to understand the processes of continental rift initiation and evolution by analyzing along-axis trends in the southern portion of the East Africa Rift System, from Botswana through Zambia and Malawi. The SEISORZ active-source seismic component of PRIDE focused on the Okavango Rift Zone (ORZ) in northwestern Botswana, with the main goal of imaging the crustal structure across the ORZ. This will allow us to estimate total crustal extension, determine the pattern and amount of thinning, assess the possible presence of melt within the rift zone, and assess the contrasts in crustal blocks across the rift, which closely follows the trend of a fold belt. In November 2014 we conducted a crustal-scale, 450-km-long seismic refraction/wide-angle reflection profile consisting of 19 sources (shots in 30-m-deep boreholes) spaced ~25 km apart from each other, and 900 receivers (IRIS/PASSCAL "Texan" dataloggers and 4.5Hz geophones) with ~500 m spacing. From NW to SE, the profile crosses several tectonic domains: the Congo craton, the Damara metamorphic belt and the Ghanzi-Chobe fold belt where the axis of the ORZ is located, and continues into the Kalahari craton. The record sections display clear crustal refraction (Pg) and wide-angle Moho reflection (PmP) phases for all 17 of the good-quality shots, and a mantle refraction arrival (Pn), with the Pg-PmP-Pn triplication appearing at 175 km offset. There are distinct changes in the traveltime and amplitude of these phases along the transect, and on either side of the axis, that seem to correlate with sharp transitions across tectonic terrains. Initial modeling suggests: (1) the presence of a sedimentary half-graben structure at the rift axis beneath the Okavango delta, bounded to the SE by the Kunyere-Thamalakane fault system; (2) faster crustal Vp in the domains to the NW of the ORZ; and (3) thicker crust (45-50 km) at both ends of the profile within the Congo and Kalahari craton domains than at the ORZ and

  2. Fault growth and propagation during incipient continental rifting: Insights from a combined aeromagnetic and Shuttle Radar Topography Mission digital elevation model investigation of the Okavango Rift Zone, northwest Botswana

    Science.gov (United States)

    Kinabo, B. D.; Hogan, J. P.; Atekwana, E. A.; Abdelsalam, M. G.; Modisi, M. P.

    2008-06-01

    Digital Elevation Models (DEM) extracted from the Shuttle Radar Topography Mission (SRTM) data and high-resolution aeromagnetic data are used to characterize the growth and propagation of faults associated with the early stages of continental extension in the Okavango Rift Zone (ORZ), northwest Botswana. Significant differences in the height of fault scarps and the throws across the faults in the basement indicate extended fault histories accompanied by sediment accumulation within the rift graben. Faults in the center of the rift either lack topographic expressions or are interpreted to have become inactive, or have large throws and small scarp heights indicating waning activity. Faults on the outer margins of the rift exhibit either (1) large throws or significant scarp heights and are considered older and active or (2) throws and scarp heights that are in closer agreement and are considered young and active. Fault linkages between major fault systems through a process of "fault piracy" have combined to establish an immature border fault for the ORZ. Thus, in addition to growing in length (by along-axis linkage of segments), the rift is also growing in width (by transferring motion to younger faults along the outer margins while abandoning older faults in the middle). Finally, utilization of preexisting zones of weakness allowed the development of very long faults (>100 km) at a very early stage of continental rifting, explaining the apparent paradox between the fault length versus throw for this young rift. This study clearly demonstrates that the integration of the SRTM DEM and aeromagnetic data provides a 3-D view of the faults and fault systems, providing new insight into fault growth and propagation during the nascent stages of continental rifting.

  3. Numerical modeling of fracture zone subduction and related volcanism in Southern Mexico

    Science.gov (United States)

    Constantin Manea, Vlad; Gerya, Taras; Manea, Marina

    2010-05-01

    Oceanic fracture zones are recognized as areas where parts of the oceanic lithosphere can be partially serpentinized. Therefore, when subducting, these fracture zones have the potential to carry significant amounts of fluids which are released at certain depths, depending on the slab dynamics. In the case of Southern Mexico, the Cocos plate hosts a large oceanic fracture zone named Tehuantepec FZ, currently subducting. Onshore a large stratovolcano, called El Chichon, intersects the prolongation of Tehuantepec FZ where the slab depth beneath is more than 200 km, an unusual depth for a subduction related volcanic arc. In this study we investigate numerically the influence of a serpentinized fracture zone rheology on the depth where hydrous instabilities (cold-plumes) are formed. Our preliminary results show that the subduction of serpentinized oceanic lithosphere plays an important depth control for the hydrous cold-plume formation, which is probable responsible for the unusual volcanism location in Southern Mexico.

  4. Structural interpretation of El Hierro (Canary Islands) rifts system from gravity inversion modelling

    Science.gov (United States)

    Sainz-Maza, S.; Montesinos, F. G.; Martí, J.; Arnoso, J.; Calvo, M.; Borreguero, A.

    2017-08-01

    Recent volcanism in El Hierro Island is mostly concentrated along three elongated and narrow zones which converge at the center of the island. These zones with extensive volcanism have been identified as rift zones. The presence of similar structures is common in many volcanic oceanic islands, so understanding their origin, dynamics and structure is important to conduct hazard assessment in such environments. There is still not consensus on the origin of the El Hierro rift zones, having been associated with mantle uplift or interpreted as resulting from gravitational spreading and flank instability. To further understand the internal structure and origin of the El Hierro rift systems, starting from the previous gravity studies, we developed a new 3D gravity inversion model for its shallower layers, gathering a detailed picture of this part of the island, which has permitted a new interpretation about these rifts. Previous models already identified a main central magma accumulation zone and several shallower high density bodies. The new model allows a better resolution of the pathways that connect both levels and the surface. Our results do not point to any correspondence between the upper parts of these pathways and the rift identified at the surface. Non-clear evidence of progression toward deeper parts into the volcanic system is shown, so we interpret them as very shallow structures, probably originated by local extensional stresses derived from gravitational loading and flank instability, which are used to facilitate the lateral transport of magma when it arrives close to the surface.

  5. Diverse mantle and crustal components in lavas of the NW Cerros del Rio volcanic field, Rio Grande Rift, New Mexico

    Science.gov (United States)

    Duncker, K. E.; Wolff, J. A.; Harmon, R. S.; Leat, P. T.; Dickin, A. P.; Thompson, R. N.

    1991-09-01

    Products of Pliocene (2 4 Ma) mafic to intermediate volcanism in the northwestern Cerros del Rio, a dominantly mafic volcanic field in the Española Basin of the Rio Grande Rift (RGR), range from 49% to 63% SiO2 and exhibit diversity in silica saturation, trace-element patterns, and isotopic compositions. Tholeiites, which are largely confined to west of the Rio Grande, have trace-element abundances that resemble those of oceanic basalts, but with mild depletions in Nb and Ta, and high 87Sr/86Sr, low 143Nd/144Nd, and high δ18O compared to typical OIB. They are regarded as asthenospherically-derived magmas contaminated with continental crust. Alkali basalts and hawaiites erupted from vents east of the Rio Grande are geochemically distinct, having generally higher overall incompatible-element abundances, but with pronounced depletions in K, Rb, Nb and Ta with respect to Th and LREE. Spatially-associated benmoreites, mugearites and latites (collectively termed “evolved” lavas) have similar trace-element characteristics to the mafic mildly-alkaline compositions, but are typically not as depleted in K. Hawaiites and evolved lavas exhibit a good negative correlation of 143Nd/144Nd with SiO2, due to interaction with lower continental crust. The most silicic “evolved” lavas carry the highest proportions of crustal material, and consequently have higher K/Th than the related hawaiites. Several (mostly mafic) lavas contain abundant crustally-derived resorbed quartz xenocrysts in O-isotope disequilibrium with the host magma. The δ18O values of xenocrystic quartz range over 4‰, indicating a variety of quartz-bearing crustal contaminants beneath the Española Basin. The hawaiites, with their unusual combination of trace-element enrichments and depletions, cannot be generated by any process of fractionation or crustal contamination superposed on a common mantle source type (oceanic or arc-source). It is a regional mantle source type, inasmuch as it was also present

  6. Effects of deglaciation on the petrology and eruptive history of the Western Volcanic Zone, Iceland

    Science.gov (United States)

    Eason, Deborah E.; Sinton, John M.; Grönvold, Karl; Kurz, Mark D.

    2015-06-01

    New observations and geochemical analyses of volcanic features in the 170-km-long Western Volcanic Zone (WVZ) of Iceland constrain spatial and temporal variations in volcanic production and composition associated with the last major deglaciation. Subglacial eruptions represent a significant portion of the late Quaternary volcanic budget in Iceland. Individual features can have volumes up to ˜48 km3 and appear to be monogenetic. Subaqueous to subaerial transition zones provide minimum estimates of ice sheet thickness at the time of eruption, although water-magma interactions and fluctuating lake levels during eruption can lead to complex lithological sequences. New major and trace element data for 36 glacial and postglacial eruptive units, combined with observations of lava surface quality, passage zone heights, and 3He exposure ages of some glacial units, indicate a maximum in volcanic production in the WVZ during the last major ice retreat. Anomalously high volcanic production rates continue into the early postglacial period and coincide with significant incompatible element depletions and slightly higher CaO and SiO2 and lower FeO content at a given MgO. Subglacial units with strong incompatible element depletions also have lava surfaces that lack evidence of subsequent glaciation. These units likely formed after the onset of deglaciation, when rapidly melting ice sheets increased decompression rates in the underlying mantle, leading to anomalously high melting rates in the depleted upper mantle. This process also can explain the eruption of extremely depleted picritic lavas during the early postglacial period. These new observations indicate that the increased volcanic activity associated with glacial unloading peaked earlier than previously thought, before Iceland was completely ice free.

  7. Sr and Nd isotopic characteristics of 1.77-1.58 Ga rift-related granites and volcanics of the Goias tin province, Central Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, Marcio M.; Botelho, Nilson F. [Brasilia Univ., DF (Brazil). Inst. de Geociencias]. E-mail: marcio@unb.br

    2001-06-01

    Supracrustal rocks of the Arai Group, together with coeval A-type granites represent a ca. 1.77-1.58 Ga old continental rift in Brazil. Two granite families are identified: the older (1.77 Ga) group forms small undeformed plutons, and the younger granites (ca. 1.58 Ga) constitute larger, deformed plutons. Sr-Nd isotopic data for these rocks indicate that the magmatism is mostly produced of re-melting of Paleoproterozoic sialic crust. Initial Sr ratios for both granite families are ca 0.276 and 0.720. Most TDM model ages are between 2.58 and 1.80 Ga. {epsilon}{sub Nd} (T) values are between +3.6 and -11.9. Arai volcanics are bimodal, with basalts and dacites/rhyolites interlayered with continental sediments. The felsic volcanics show Nd isotopic characteristics which are very similar to the granites, and are also interpreted as reworking of Paleoproterozoic crust. Detrital sediments of the Arai Group revealed T{sub DM} model ages between 2.4 and 2.16 Ga., indicating that they are the product of erosion of Paleoproterozoic crust. The data indicate that the Arai rift system was established on crust that had just become stable after the Paleoproterozoic orogeny. (author)

  8. Selected time-lapse movies of the east rift zone eruption of KĪlauea Volcano, 2004–2008

    Science.gov (United States)

    Orr, Tim R.

    2011-01-01

    Since 2004, the U.S. Geological Survey's Hawaiian Volcano Observatory has used mass-market digital time-lapse cameras and network-enabled Webcams for visual monitoring and research. The 26 time-lapse movies in this report were selected from the vast collection of images acquired by these camera systems during 2004–2008. Chosen for their content and broad aesthetic appeal, these image sequences document a variety of flow-field and vent processes from Kīlauea's east rift zone eruption, which began in 1983 and is still (as of 2011) ongoing.

  9. Morphotectonics of the Tunka rift and its bordering mountains in the Baikal rift system, Russia

    Science.gov (United States)

    Shchetnikov, Alexander

    2016-11-01

    The Tunka section of the Baikal rift system presents a uniform alternation of the following neostructural forms: tilted horsts and asymmetrical block uplifts on the northern flank; the central system of the rift valleys; and the arched uplift of the southern flank. This is a standard set of morphostructural elements for the Baikal rift system. The main morphological feature of the Tunka rift is the strong inclination of its floor, ranging from 900 m to 200 km in general elevation above Lake Baikal. Such traits of recent geodynamics as volcanism, thermal activity, and seismicity are also different from other parts of the rift zone. All of these features of the Tunka rift are related to the deep structure of the rift zone. The peculiarities of the neotectonic structure of the Tunka rift, which are clearly expressed morphologically as is typical of the Baikal rift system, as well as its unique features are in accordance with deep geodynamic processes of the region. On the other hand, the development of the rift basin structures of the southwestern area near Baikal is complicated by inversion deformations. Local uplifts followed by deformations of the basin sedimentary cover and inverted morphostructures expressed in relief are fixed against the background of the general subsidence of blocks of the pre-Cenozoic basement grabens. The Tunka rift has repeatedly experienced inversion deformations throughout its history. The last wave of such deformations involved the southwestern region near Baikal in the second half of the late Pleistocene. During the Quaternary, the positive component prevailed in the whole range of vertical movements of the inter-rift and interbasin blocks; since the late Neogene, these structures have experienced a slow but steady uplift, accompanied by their extension at the expense of the bordering basins. The remote influence of the India-Asia collision on the formation of the southwestern section of the Baikal rift system is very significant and

  10. Geochemical characteristics of island-arc volcanic rocks in the Nan-Nam Pat-Phetchabun zone, northern Thailand

    Institute of Scientific and Technical Information of China (English)

    SHEN Shangyue; FENG Qinglai; YANG Wenqiang; ZHANG Zhibin; Chongpom Chonglakmani

    2010-01-01

    Late Permian-Early Triassic (P2-T1) volcanic rocks distributed on the eastern side of ocean-ridge and oceanic-island basalts in the Nan-Uttaradit zone were analyzed from aspects of petrographic characteristics, rock assemblage, REE, trace elements, geotectonic setting, etc., indicating that those volcanic rocks possess the characteristic features of island-arc volcanic rocks. The volcanic rock assemblage is basalt-basaltic andesite-andesite. The volcanic rocks are sub-alkaline, dominated by calc-alkaline series, with tholeiite series coming next. The chemical composition of the volcanic rocks is characterized by low TiO2 and K2O and high Al2O3 and Na2O. Their REE patterns are of the flat, weak LREE-enrichment right-inclined type. The trace elements are characterized by the enrichment of large cation elements such as K, Rb and Ba, common enrichment of U and Th, and depletion of Nb, Ta, Zr and Hf. The petrochemical plot falls within the field of volcanic rocks, in consistency with the plot of island-arc volcanic rocks in the Jinsha River zone of China. This island-arc volcanic zone, together with the ocean-ridge/oceanic island type volcanic rocks in the Nan-Uttaradit zone, constitutes the ocean-ridge volcanic rock-island-arc magmatic rock zones which are distributed in pairs, indicating that the oceanic crust of the Nan-Uttaradit zone once was of eastward subduction. This work is of great significance in exploring the evolution of paleo-Tethys in the Nan-Uttaradit zone.

  11. Root zone of a continental rift: the Neoproterozoic Kebnekaise Intrusive Complex, northern Swedish Caledonides

    DEFF Research Database (Denmark)

    Kirsch, Moritz; Svenningsen, Olaf

    2016-01-01

    Mafic magmatic rocks formed between ca. 615 and 560 Ma along the Neoproterozoic margins of Baltica and Laurentia are classically attributed to continental rifting heralding the opening of the Iapetus Ocean. We report new data for the Kebnekaise Intrusive Complex (KIC) exposed in the Seve Nappes i...

  12. Dike intrusions during rifting episodes obey scaling relationships similar to earthquakes

    Science.gov (United States)

    L., Passarelli; E., Rivalta; A., Shuler

    2014-01-01

    As continental rifts evolve towards mid-ocean ridges, strain is accommodated by repeated episodes of faulting and magmatism. Discrete rifting episodes have been observed along two subaerial divergent plate boundaries, the Krafla segment of the Northern Volcanic Rift Zone in Iceland and the Manda-Hararo segment of the Red Sea Rift in Ethiopia. In both cases, the initial and largest dike intrusion was followed by a series of smaller intrusions. By performing a statistical analysis of these rifting episodes, we demonstrate that dike intrusions obey scaling relationships similar to earthquakes. We find that the dimensions of dike intrusions obey a power law analogous to the Gutenberg-Richter relation, and the long-term release of geodetic moment is governed by a relationship consistent with the Omori law. Due to the effects of magma supply, the timing of secondary dike intrusions differs from that of the aftershocks. This work provides evidence of self-similarity in the rifting process. PMID:24469260

  13. Miocene rifting in the Los Angeles basin: Evidence from the Puente Hills half-graben, volcanic rocks, and P-wave tomography

    Science.gov (United States)

    Bjorklund, Tom; Burke, Kevin; Zhou, Hua-Wei; Yeats, Robert S.

    2002-05-01

    Formation of the Puente Hills half-graben in the northeastern Los Angeles basin and eruption of the Glendora and El Modeno Volcanics (16 14 Ma) help to define the timing of extension in the basin. Normal faulting on the proto-Whittier fault ca. 14 Ma established the Puente Hills half-graben, in which sedimentary strata accumulated between ca. 14 and 10 Ma and into which diabase sills intruded. North-South contraction began to invert the Puente Hills half-graben ca. 7 Ma, leading to formation of the Puente Hills anticline and the Whittier fault. Our high-resolution three-dimensional P-wave velocity model shows two anomalous higher velocity (6.63 km/s) bodies at depths between 9 and 18 km, which we attribute to dioritic plutons named here for Whittier Narrows and El Modeno. The stocklike Whittier Narrows pluton could have been a source for the Glendora Volcanics and the diabase sills in the Puente Hills half-graben. The sill-shaped El Modeno pluton was a likely source for the El Modeno Volcanics. The northwesterly alignment of the plutons may mark the location of the northeastern Los Angeles basin rift boundary, which is associated with the clockwise rotation of the western Transverse Ranges. Three active faults, the Elysian Park blind thrust, the Puente Hills blind thrust, and the Whittier fault, converge on the Whittier Narrows pluton, which may have played a role in their location and segmentation.

  14. The NE Rift of Tenerife: towards a model on the origin and evolution of ocean island rifts; La dorsal NE de Tenerife: hacia un modelo del origen y evolucion de los rifts de islas oceanicas

    Energy Technology Data Exchange (ETDEWEB)

    Carracedo, J. C.; Guillou, H.; Rodriguez Badiola, E.; Perez-Torrado, F. J.; Rodriguez Gonzalez, A.; Peris, R.; Troll, V.; Wiesmaier, S.; Delcamp, A.; Fernandez-Turiel, J. L.

    2009-07-01

    , plume-related fractures acting throughout the entire growth of the islands. Basaltic volcanism forms the bulk of the islands and rift zones. However, collapses of the flanks of the rifts disrupt their established fissural feeding system, frequently favouring magma accumulation and residence at shallow emplacements, leading to differentiation of magmas, and intermediate to felsic nested eruptions. Rifts and their collapse may therefore act as an important factor in providing petrological variability to oceanic volcanoes. Conversely, the possibility exists that the presence of important felsic volcanism may indicate lateral collapses in oceanic shields and ridge-like volcanoes, even if they are concealed by post-collapse volcanism or partially mass-wasted by erosion. (Author) 76 refs.

  15. Characteristics of Fault Zones in Volcanic Rocks Near Yucca Flat, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Donald Sweetkind; Ronald M. Drake II

    2007-11-27

    During 2005 and 2006, the USGS conducted geological studies of fault zones at surface outcrops at the Nevada Test Site. The objectives of these studies were to characterize fault geometry, identify the presence of fault splays, and understand the width and internal architecture of fault zones. Geologic investigations were conducted at surface exposures in upland areas adjacent to Yucca Flat, a basin in the northeastern part of the Nevada Test Site; these data serve as control points for the interpretation of the subsurface data collected at Yucca Flat by other USGS scientists. Fault zones in volcanic rocks near Yucca Flat differ in character and width as a result of differences in the degree of welding and alteration of the protolith, and amount of fault offset. Fault-related damage zones tend to scale with fault offset; damage zones associated with large-offset faults (>100 m) are many tens of meters wide, whereas damage zones associated with smaller-offset faults are generally a only a meter or two wide. Zeolitically-altered tuff develops moderate-sized damage zones whereas vitric nonwelded, bedded and airfall tuff have very minor damage zones, often consisting of the fault zone itself as a deformation band, with minor fault effect to the surrounding rock mass. These differences in fault geometry and fault zone architecture in surface analog sites can serve as a guide toward interpretation of high-resolution subsurface geophysical results from Yucca Flat.

  16. Characteristics of Fault Zones in Volcanic Rocks Near Yucca Flat, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Donald Sweetkind; Ronald M. Drake II

    2007-11-27

    During 2005 and 2006, the USGS conducted geological studies of fault zones at surface outcrops at the Nevada Test Site. The objectives of these studies were to characterize fault geometry, identify the presence of fault splays, and understand the width and internal architecture of fault zones. Geologic investigations were conducted at surface exposures in upland areas adjacent to Yucca Flat, a basin in the northeastern part of the Nevada Test Site; these data serve as control points for the interpretation of the subsurface data collected at Yucca Flat by other USGS scientists. Fault zones in volcanic rocks near Yucca Flat differ in character and width as a result of differences in the degree of welding and alteration of the protolith, and amount of fault offset. Fault-related damage zones tend to scale with fault offset; damage zones associated with large-offset faults (>100 m) are many tens of meters wide, whereas damage zones associated with smaller-offset faults are generally a only a meter or two wide. Zeolitically-altered tuff develops moderate-sized damage zones whereas vitric nonwelded, bedded and airfall tuff have very minor damage zones, often consisting of the fault zone itself as a deformation band, with minor fault effect to the surrounding rock mass. These differences in fault geometry and fault zone architecture in surface analog sites can serve as a guide toward interpretation of high-resolution subsurface geophysical results from Yucca Flat.

  17. Characteristics of Fault Zones in Volcanic Rocks Near Yucca Flat, Nevada Test Site, Nevada

    Science.gov (United States)

    Sweetkind, Donald S.; Drake II, Ronald M.

    2007-01-01

    During 2005 and 2006, the USGS conducted geological studies of fault zones at surface outcrops at the Nevada Test Site. The objectives of these studies were to characterize fault geometry, identify the presence of fault splays, and understand the width and internal architecture of fault zones. Geologic investigations were conducted at surface exposures in upland areas adjacent to Yucca Flat, a basin in the northeastern part of the Nevada Test Site; these data serve as control points for the interpretation of the subsurface data collected at Yucca Flat by other USGS scientists. Fault zones in volcanic rocks near Yucca Flat differ in character and width as a result of differences in the degree of welding and alteration of the protolith, and amount of fault offset. Fault-related damage zones tend to scale with fault offset; damage zones associated with large-offset faults (>100 m) are many tens of meters wide, whereas damage zones associated with smaller-offset faults are generally a only a meter or two wide. Zeolitically-altered tuff develops moderate-sized damage zones whereas vitric nonwelded, bedded and airfall tuff have very minor damage zones, often consisting of the fault zone itself as a deformation band, with minor fault effect to the surrounding rock mass. These differences in fault geometry and fault zone architecture in surface analog sites can serve as a guide toward interpretation of high-resolution subsurface geophysical results from Yucca Flat.

  18. Volcanic rocks and processes of the Mid-Atlantic Ridge rift valley near 36 ° 49′ N

    Science.gov (United States)

    Hekinian, R.; Moore, J.G.; Bryan, W.B.

    1976-01-01

    Eighty samples of submarine basaltic lava were sampled from an 8 km segment of the floor and walls of the inner rift valley of the Mid-Atlantic Ridge during the French American Mid-Ocean Undersea Study (project Famous). The samples were collected from outcrops and talus slopes by the three submersibles: Alvin, Archimede, and Cyana at water depths of about 2600 meters.

  19. [Rift Valley fever: sporadic infection of French military personnel outside currently recognized epidemic zones].

    Science.gov (United States)

    Durand, J P; Richecoeur, L; Peyrefitte, C; Boutin, J P; Davoust, B; Zeller, H; Bouloy, M; Tolou, H

    2002-01-01

    For three years the arbovirus surveillance unit of the Tropical Medicine Institute of the French Army Medical Corps (French acronym IMTSSA) in Marseille, France has been investigating causes of benign non-malarial febrile syndromes in French military personnel serving outside mainland France. The methodology used in N'Djamena consisted of sending frozen specimens collected concomitant with viremia, to Marseille for culture. During the rainy season of 2001, specimens were collected from a total of 50 febrile soldiers. Cultures allowed isolation and identification of two strains of Rift Valley virus. The risk of contamination exists not only in the field but also in mainland hospital departments treating infected patients. Routine serological diagnosis for Rift Valley fever must be DISCUSSED for all patients in the field or returning from Africa.

  20. Geochemical characteristics of the oceanic island- type volcanic rocks in the Chiang Mai zone, northern Thailand

    Institute of Scientific and Technical Information of China (English)

    SHEN Shangyue; FENG Qinglai; ZHANG Zhibin; CHONGPAN Chonglakmani

    2009-01-01

    The oceanic island volcanic rocks in the Chiang Mai zone, northern Thailand, are usually covered by Lower Carboniferous and Upper Permian shallow-water carbonate rocks, with the Hawaii rocks and potash trachybasalt being the main rock types. The alkaline series is dominant with sub-alkaline series occurring in few cases. The geochemical characteristics are described as follows: the major chemical compositions are characterized by high TiO2, high P2O5 and medium K2O; the rare-earth elements are characterized by right-inclined strong LREE-enrichment patterns; the trace element patterns are of the upward-bulging K-Ti enrichment type; multi-component plots falling within the fields of oceanic island basalts and alkali basalts, belonging to the oceanic island-type volcanic rocks, which are similar to the equivalents in Deqin and Gengma (the Changning-Menglian zone) of Yunnan Province, China.

  1. Mastritherium (Artiodactyla, Anthracotheriidae) from Wadi Sabya, southwestern Saudi Arabia; an earliest Miocene age for continental rift-valley volcanic deposits of the Red Sea margin

    Science.gov (United States)

    Madden, Gary T.; Schmidt, Dwight Lyman; Whitmore, Frank C.

    1983-01-01

    A lower jaw fragment with its last molar (M/3) from the Baid formation in Wadi Sabya, southwestern Saudi Arabia, represents the first recorded occurrence in the Arabian Peninsula of an anthracotheriid artiodactyl (hippo-like, even-toed ungulate). This fossil is identified as a primitive species of Masritherium, a North and East African genus restricted, previously to the later early Miocene. This identification indicates that the age of the Baid formation, long problematical, is early Miocene and, moreover, shows that the age of the fossil site is earliest Miocene (from 25 to 21Ma). The Wadi Sabya anthracothere is the first species of fossil mammal recorded from western Saudi Arabia, and more important, it indicates an early Miocene age for the volcanic deposits of a continental rift-valley that preceded the initial sea-floor spreading of the Red Sea.

  2. Geochemistry and petrology of the most recent deposits from Cotopaxi volcano, Northern Volcanic Zone, Ecuador.

    OpenAIRE

    2011-01-01

    Cotopaxi volcano is located in the Northern Volcanic Zone of the South American Andes. Pyroclastic deposits and lava flows from Cotopaxi comprise basaltic andesites, andesites and rhyolites that have erupted since 13 200 years BP. Nine rhyolite eruptions were produced in at least five separate events, punctuated by intermittent andesite eruptions. High La/Yb (>5) and 230Th excesses in the andesites are consistent with equilibration of magma with garnet-bearing lower crust or mantle, and numer...

  3. Pucarilla-Cerro Tipillas volcanic complex: the oldest recognized caldera in the southeastern portion of central volcanic zone of Central Andes?

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, Silvina; Petrinovic, Ivan [CONICET -IBIGEO. Museo de Cs. Naturales, Universidad de Salta, Mendoza 2 (4400), Salta (Argentina)], E-mail: guzmansilvina@gmail.com

    2008-10-01

    We recognize the most eastern and oldest collapse caldera structure in the southern portion of the Central Volcanic Zone of the Andes. A description of Middle-Upper Miocene successions related to explosive- effusive events is presented. The location of this centre close to Cerro Galn Caldera attests a recurrence in the volcanism between 12 and 2 Ma in this portion of the Altiplano - Puna Plateau.

  4. Geochronology and geochemistry of the Early Jurassic Yeba Formation volcanic rocks in southern Tibet: Initiation of back-arc rifting and crustal accretion in the southern Lhasa Terrane

    Science.gov (United States)

    Wei, Youqing; Zhao, Zhidan; Niu, Yaoling; Zhu, Di-Cheng; Liu, Dong; Wang, Qing; Hou, Zengqian; Mo, Xuanxue; Wei, Jiuchuan

    2017-05-01

    Understanding the geological history of the Lhasa Terrane prior to the India-Asia collision ( 55 ± 10 Ma) is essential for improved models of syn-collisional and post-collisional processes in the southern Lhasa Terrane. The Miocene ( 18-10 Ma) adakitic magmatism with economically significant porphyry-type mineralization has been interpreted as resulting from partial melting of the Jurassic juvenile crust, but how this juvenile crust was accreted remains poorly known. For this reason, we carried out a detailed study on the volcanic rocks of the Yeba Formation (YF) with the results offering insights into the ways in which the juvenile crust may be accreted in the southern Lhasa Terrane in the Jurassic. The YF volcanic rocks are compositionally bimodal, comprising basalt/basaltic andesite and dacite/rhyolite dated at 183-174 Ma. All these rocks have an arc-like signature with enriched large ion lithophile elements (LILEs; e.g., Rb, Ba and U) and light rare earth elements (LREEs) and depleted high field strength elements (HFSEs; e.g., Nb, Ta, Ti). They also have depleted whole-rock Sr-Nd and zircon Hf isotopic compositions, pointing to significant mantle isotopic contributions. Modeling results of trace elements and isotopes are most consistent with the basalts being derived from a mantle source metasomatized by varying enrichment of subduction components. The silicic volcanic rocks show the characteristics of transitional I-S type granites, and are best interpreted as resulting from re-melting of a mixed source of juvenile amphibole-rich lower crust with reworked crustal materials resembling metagraywackes. Importantly, our results indicate northward Neo-Tethyan seafloor subduction beneath the Lhasa Terrane with the YF volcanism being caused by the initiation of back-arc rifting. The back-arc setting is a likely site for juvenile crustal accretion in the southern Lhasa Terrane.

  5. Magma transport and olivine crystallization depths in Kīlauea’s East Rift Zone inferred from experimentally rehomogenized melt inclusions

    Science.gov (United States)

    Tuohy, Robin M; Wallace, Paul J.; Loewen, Matthew W; Swanson, Don; Kent, Adam J R

    2016-01-01

    Concentrations of H2O and CO2 in olivine-hosted melt inclusions can be used to estimate crystallization depths for the olivine host. However, the original dissolved CO2concentration of melt inclusions at the time of trapping can be difficult to measure directly because in many cases substantial CO2 is transferred to shrinkage bubbles that form during post-entrapment cooling and crystallization. To investigate this problem, we heated olivine from the 1959 Kīlauea Iki and 1960 Kapoho (Hawai‘i) eruptions in a 1-atm furnace to temperatures above the melt inclusion trapping temperature to redissolve the CO2 in shrinkage bubbles. The measured CO2 concentrations of the experimentally rehomogenized inclusions (⩽590 ppm for Kīlauea Iki [n=10]; ⩽880 ppm for Kapoho, with one inclusion at 1863 ppm [n=38]) overlap with values for naturally quenched inclusions from the same samples, but experimentally rehomogenized inclusions have higher within-sample median CO2 values than naturally quenched inclusions, indicating at least partial dissolution of CO2 from the vapor bubble during heating. Comparison of our data with predictions from modeling of vapor bubble formation and published Raman data on the density of CO2 in the vapor bubbles suggests that 55-85% of the dissolved CO2 in the melt inclusions at the time of trapping was lost to post-entrapment shrinkage bubbles. Our results combined with the Raman data demonstrate that olivine from the early part of the Kīlauea Iki eruption crystallized at olivine in the 1-3 km depth range. These depths are consistent with the interpretation that the Kīlauea Iki magma was supplied from Kīlauea’s summit magma reservoir (∼2-5 km depth). In contrast, olivine from Kapoho, which was the rift zone extension of the Kīlauea Iki eruption, crystallized over a much wider range of depths (∼1-16 km). The wider depth range requires magma transport during the Kapoho eruption from deep beneath the summit region and/or from deep

  6. The Chaîne des Puys and Limagne Fault World Heritage project: a global partnership for raising the profile of monogenetic volcanism and rifting

    Science.gov (United States)

    Olive-Garcia, C.

    2013-12-01

    The present Chaîne des Puys and Limagne Fault World Heritage project represents a global partnership for raising the profile of monogenetic volcanism and rifting. From the 19th Century the Chaîne des Puys and Limagne Fault have been at the centre of discussion about the nature of volcanoes, and the origin of rifts. Part of this interest was due to the action of landowners and government agents such as Montlosier and Desmarest (who first realised that the chain were volcanoes), and national leaders such as Napoleon I, who was instrumental in the visit of Humphrey Davey and Michael Farady in 1805. The chain features largely in Scrope's 'Considerations on v olcanoes' 1825, and of Bonney's 'Volcanoes their structure and significance' of 1899. The fault escarpment is discussed at length by Lyell in Principles of Geology (1830), although they did not recognise it yet as a rift. The area has seen the development of a modern scientific-government-private partnership in geoscience research and education that has developed in parallel with the growth of a earth science centre of excellence, now the Laboratoire Magmas et Volcans. In addition, local owners and users have taken an important part in the development of this partnership to help create a sustainable management of the area. Partnerships have been developed with other sites around the world to share best practice, especially in managing inhabited natural sites. For over 30 years the area has been part of the evolving Auvergne Region Natural Volcano Park, for five years the central Puy de Dôme is a 'Grande site de France', equivalent to a national monument. Educational attractions grew up first as private - scientific partnerships (e.g. Lemptégy, Volvic, Maison de la Pierre) and then with greater public input like Vulcania and the Puy de Dome. The channelling of visitors has been accomplished by improved access by bus, and a new cog-railway up the Puy de Dôme. I present an overview of the UNESCO project, and show

  7. A preliminary description of the Gan-Hang failed rift, southeastern china

    Science.gov (United States)

    Goodell, P. C.; Gilder, S.; Fang, X.

    1991-10-01

    The Gan-Hang failed rift, as defined by present-day topography, extends at least 450 km in length and 50 km in width. It is a northeast-southwest trending series of features spanning from Hangzhou Bay in Zhejiang province into Jiangxi province through Fuzhou City. Southwest of Fuzhou, the rift splits into two portions: one continuing along the southwestern trend, and the other diverging westward. The total extent of the rift cannot be defined at this time. The rift is superimposed upon a major suture zone of Caledonian or early Mesozoic age. The suture represents the fusing of the South China (Huanan) and Yangtze cratons. Perhaps in Late Triassic, but for sure by Late-Middle Jurassic time, the rifting was initiated and followed this older suture, in part. This time corresponds roughly to the middle stage of the Yanshanian orogeny and to the subduction of the postulated Pacific- Kula ridge southeast of the continental margin. The total thickness of the sediments and volcanics filling the rift valley reaches more than 10,000 m. Peak intensity of extension was between Late-Middle Jurassic and Middle to Late Cretaceous. Sedimentation within the rift was not continuous and is marked with periodic unconformities. Sediments within the rift include red beds, sandstones, siltstones, mudstones, conglomerates, breccias, tuffs, and ignimbrites. Vertebrate fossils and dinosaur eggs are also found. Contemporaneous volcanics within and flanking the rift include basalts, rhyolites, granites, gabbros, dacites, and andesites. Silicic volcanics are mostly attributed to caldera systems. Early basalts are tholeiitic and later change to alkaline-olivine basalt. Bimodal volcanism is recognized. Peak intensity of volcanism ranges between 135 and 75 Ma. In Early Cenozoic time, the area was a topographic low. Paleocene- Eocene sediments and evaporites are the last rocks to be deposited in the rift. Today the rift is delineated by major, high-angle faults (the Pingxiang-Guangfeng deep fault

  8. Gold-silver mining districts, alteration zones, and paleolandforms in the Miocene Bodie Hills Volcanic Field, California and Nevada

    Science.gov (United States)

    Vikre, Peter G.; John, David A.; du Bray, Edward A.; Fleck, Robert J.

    2015-09-25

    The Bodie Hills is a ~40 by ~30 kilometer volcanic field that straddles the California-Nevada state boundary between Mono Lake and the East Walker River. Three precious metal mining districts and nine alteration zones are delineated in Tertiary-Quaternary volcanic and Mesozoic granitic and metamorphic rocks that comprise the volcanic field. Cumulative production from the mining districts, Bodie, Aurora, and Masonic, is 3.4 million ounces of gold and 28 million ounces of silver. Small amounts of mercury were produced from the Potato Peak, Paramount-Bald Peak, and Cinnabar Canyon-US 395 alteration zones; a native sulfur resource in the Cinnabar Canyon-US 395 alteration zone has been identified by drilling. There are no known mineral resources in the other six alteration zones, Red Wash-East Walker River, East Brawley Peak, Sawtooth Ridge, Aurora Canyon, Four Corners, and Spring Peak. The mining districts and alteration zones formed between 13.4 and 8.1 Ma in predominantly ~15–9 Ma volcanic rocks of the Bodie Hills volcanic field. Ages of hydrothermal minerals in the districts and zones are the same as, or somewhat younger than, the ages of volcanic host rocks.

  9. Elements redistribution between organic and mineral parts of microbial mats: SR-XRF research (Baikal Rift Zone)

    Energy Technology Data Exchange (ETDEWEB)

    Lazareva, E.V. [Institute of Geology and Mineralogy SB RAS, pr. Ac. Koptug, 3, 630090 Novosibirsk (Russian Federation)], E-mail: lazareva@uiggm.nsc.ru; Bryanskaya, A.V. [Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk (Russian Federation); Zhmodik, S.M.; Kolmogorov, Y.P. [Institute of Geology and Mineralogy SB RAS, pr. Ac. Koptug, 3, 630090 Novosibirsk (Russian Federation); Pestunova, O.P. [Boreskov Institute of Catalysis SB RAS, Novosibirsk 630090 (Russian Federation); Barkhutova, D.D. [Institute of General and Experimental Biology SB RAS, Ulan-Ude (Russian Federation); Zolotarev, K.V.; Shaporenko, A.D. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation)

    2009-05-11

    In article minerals formation and elements accumulation in microbial mats of some hot springs of the Barguzin basin (Baikal Rift Zone) is discussed. The content of a wide spectrum of elements in microbial mats is studied by means of the method SR-XRF. Regularity of elements accumulation by community depending on geochemical features of hot spring's waters are discussed. These elements are distributed in different ways between organic and mineral substance of the microbial mats. The distribution of K, Mn, Ni, Cu, Zn, Fe is regular, Ca, Rb, Sr are almost totally related with the mats mineral part, while Ga, Ge and Br are accumulated in mats organic substance. Germanium element is concentrated in considerable amounts in the cyanobacterial communities, that develop in sulphideless springs with a higher radon concentration.

  10. Field guide to summit area and upper east rift zone, Kilauea Volcano, Hawaii

    Science.gov (United States)

    1974-01-01

    The field trip is divided into two sections: (1) Crater Rim Road; and (2) Chain of Craters Road. Most bibliographic references are omitted from the text, but a selected list of references to recent Hawaiian volcanic activity and to special studies is included.

  11. Rapid uplift in Laguna del Maule volcanic field of the Andean Southern Volcanic zone (Chile) 2007-2012

    Science.gov (United States)

    Feigl, Kurt L.; Le Mével, Hélène; Tabrez Ali, S.; Córdova, Loreto; Andersen, Nathan L.; DeMets, Charles; Singer, Bradley S.

    2014-02-01

    The Laguna del Maule (LdM) volcanic field in Chile is an exceptional example of postglacial rhyolitic volcanism in the Southern Volcanic Zone of the Andes. By interferometric analysis of synthetic aperture radar (SAR) images acquired between 2007 and 2012, we measure exceptionally rapid deformation. The maximum vertical velocity exceeds 280 mm yr-1. Although the rate of deformation was negligible from 2003 January to 2004 February, it accelerated some time before 2007 January. Statistical testing rejects, with 95 per cent confidence, four hypotheses of artefacts caused by tropospheric gradients, ionospheric effects, orbital errors or topographic relief, respectively. The high rate of deformation is confirmed by daily estimates of position during several months in 2012, as measured by analysis of signals transmitted by the Global Positioning System (GPS) and received on the ground at three stations around the reservoir forming the LdM. The fastest-moving GPS station (MAU2) has a velocity vector of [-180 ± 4, 46 ± 2, 280 ± 4] mm yr-1 for the northward, eastward and upward components, respectively, with respect to the stable interior of the South America Plate. The observed deformation cannot be explained by changes in the gravitational load caused by variations in the water level in the reservoir. For the most recent observation time interval, spanning 44 d in early 2012, the model that best fits the InSAR observations involves an inflating sill at a depth of 5.2 ± 0.3 km, with length 9.0 ± 0.3 km, width 5.3 ± 0.4 km, dip 20 ± 3° from horizontal and strike 14 ± 5° clockwise from north, assuming a rectangular dislocation in a half-space with uniform elastic properties. During this time interval, the estimated rate of tensile opening is 1.1 ± 0.04 m yr-1, such that the rate of volume increase in the modelled sill is 51 ± 5 million m3 yr-1 or 1.6 ± 0.2 m3 s-1. From 2004 January to 2012 April the total increase in volume was at least 0.15 km3 over the 5.2-yr

  12. Tectonic focusing of voluminous basaltic eruptions in magma-deficient backarc rifts

    Science.gov (United States)

    Anderson, Melissa O.; Hannington, Mark D.; Haase, Karsten; Schwarz-Schampera, Ulrich; Augustin, Nico; McConachy, Timothy F.; Allen, Katie

    2016-04-01

    The Coriolis Troughs of the New Hebrides subduction zone are among the youngest backarc rifts in the world. They reach depths of >3 km, despite their small size (Pacific, occur on the youngest lava flows. Comparison with similar axial volcanoes on the mid-ocean ridges suggests that the 46 ×106 m3 of sheet flows in the caldera could have been erupted in ridge. This study shows that the upper plate stresses can result in dramatic variability in magma supply and hydrothermal activity at the earliest stages of arc rifting and could explain the wide range of melt compositions, volcanic styles and mineral deposit types found in nascent backarc rifts.

  13. The influence of Ryukyu subduction on magma genesis in the Northern Taiwan Volcanic Zone and Middle Okinawa Trough - Evidence from boron isotopes

    Science.gov (United States)

    Pi, Ju-Lien; You, Chen-Feng; Wang, Kuo-Lung

    2016-09-01

    Boron (B) is an excellent geochemical tracer for investigating crustal recycling processes at convergent margins, due to its high fluid mobility under high P-T conditions, distinct elemental abundances and isotopic compositions in the mantle wedge and subducting slabs. The Northern Taiwan Volcanic Zone (NTVZ), wherein the nature of magma genesis has long been a topic of debate, is located at the rear side of the Okinawa Trough (OT), an atypical back-arc rift in the Ryukyu subduction system. In this study, B and B isotopes (δ11B) were measured in 19 volcanic rocks collected from the NTVZ and the middle Okinawa Trough (MOT) to assess the influence of the Ryukyu subduction system on magma genesis. The B concentrations in the MOT and NTVZ volcanic rocks are 5.8 to 13.6 mg/L and 2.2 to 48.6 mg/L, respectively. The large B abundances variation in the NTVZ was caused mainly by variable degrees of partial melting. The Nb/B and δ11B in the MOT have small ranges of 0.5 to 0.6 and - 2.7‰ to 0.2‰, respectively, whereas they range widely from 0.4 to 2.5 and from - 8.6‰ to 2.4‰, respectively in the NTVZ. These Nb/B values suggest that the magma contains a smaller subduction component than that normally observed in arcs, although this component is still more substantial than in a typical back-arc setting. The δ11B results indicate insignificant influence of the subducting Philippine Sea Plate at 2.6 Ma, but it becomes more substantial later in the NTVZ. The mixing proportions of sediment derived fluids in onshore volcanoes in the NTVZ imply a rather heterogeneous mantle wedge near the plate boundary, most likely due to either a heterogeneous source of slab derived fluids or more complicated mantle flow. A substantial B flux from the subducting slab in the incipient back-arc rifting in the MOT and NTVZ may reflect characteristics of a cold, steep and fast subducting slab, which may be capable of carrying volatiles efficiently into greater depth in subduction zones. The

  14. North America's Midcontinent Rift: when Rift MET Lip

    Science.gov (United States)

    Stein, C. A.; Stein, S. A.; Kley, J.; Keller, G. R., Jr.; Bollmann, T. A.; Wolin, E.; Zhang, H.; Frederiksen, A. W.; Ola, K.; Wysession, M. E.; Wiens, D.; Alequabi, G.; Waite, G. P.; Blavascunas, E.; Engelmann, C. A.; Flesch, L. M.; Rooney, T. O.; Moucha, R.; Brown, E.

    2015-12-01

    Rifts are segmented linear depressions, filled with sedimentary and igneous rocks, that form by extension and often evolve into plate boundaries. Flood basalts, a class of Large Igneous Provinces (LIPs), are broad regions of extensive volcanism due to sublithospheric processes. Typical rifts are not filled with flood basalts, and typical flood basalts are not associated with significant crustal extension and faulting. North America's Midcontinent Rift (MCR) is an unusual combination. Its 3000-km length formed as part of the 1.1 Ga rifting of Amazonia (Precambrian NE South America) from Laurentia (Precambrian North America) and became inactive once seafloor spreading was established, but contains an enormous volume of igneous rocks. MCR volcanics are significantly thicker than other flood basalts, due to deposition in a narrow rift rather than a broad region, giving a rift geometry but a LIP's magma volume. Structural modeling of seismic reflection data shows an initial rift phase where flood basalts filled a fault-controlled extending basin, and a postrift phase where volcanics and sediments were deposited in a thermally subsiding basin without associated faulting. The crust thinned during rifting and rethickened during the postrift phase and later compression, yielding the present thicker crust. The coincidence of a rift and LIP yielded the world's largest deposit of native copper. This combination arose when a new rift associated with continental breakup interacted with a mantle plume or anomalously hot or fertile upper mantle. Integration of diverse data types and models will give insight into questions including how the magma source was related to the rifting, how their interaction operated over a long period of rapid plate motion, why the lithospheric mantle below the MCR differs only slightly from its surroundings, how and why extension, volcanism, and compression varied along the rift arms, and how successful seafloor spreading ended the rift phase. Papers

  15. Rift Valley fever in a zone potentially occupied by Aedes vexans in Senegal: dynamics and risk mapping

    Directory of Open Access Journals (Sweden)

    Cécile Vignolles

    2009-05-01

    Full Text Available This paper presents an analysis of the interaction between the various variables associated with Rift Valley fever (RVF such as the mosquito vector, available hosts and rainfall distribution. To that end, the varying zones potentially occupied by mosquitoes (ZPOM, rainfall events and pond dynamics, and the associated exposure of hosts to the RVF virus by Aedes vexans, were analyzed in the Barkedji area of the Ferlo, Senegal, during the 2003 rainy season. Ponds were identified by remote sensing using a high-resolution SPOT-5 satellite image. Additional data on ponds and rainfall events from the Tropical Rainfall Measuring Mission were combined with in-situ entomological and limnimetric measurements, and the localization of vulnerable ruminant hosts (data derived from QuickBird satellite. Since “Ae. vexans productive events” are dependent on the timing of rainfall for their embryogenesis (six days without rain are necessary to trigger hatching, the dynamic spatio-temporal distribution of Ae. vexans density was based on the total rainfall amount and pond dynamics. Detailed ZPOM mapping was obtained on a daily basis and combined with aggressiveness temporal profiles. Risks zones, i.e. zones where hazards and vulnerability are combined, are expressed by the percentages of parks where animals are potentially exposed to mosquito bites. This new approach, simply relying upon rainfall distribution evaluated from space, is meant to contribute to the implementation of a new, operational early warning system for RVF based on environmental risks linked to climatic and environmental conditions.

  16. L-Band Polarimetric SAR Signatures of Lava Flows in the Northern Volcanic Zone, Iceland

    DEFF Research Database (Denmark)

    Dierking, Wolfgang; Haack, Henning

    1998-01-01

    of polarimetric L-band radar signatures observed over different lava flows located in the Northern Volcanic Zone in Iceland. Intensity images with a high spatial resolution are well suited for geological interpretation, both in the discrimination of lava flows from the surrounding terrain and in the recognition......Studies of radar scattering signatures typical for lava surfaces are needed in order to interprete SAR images of volcanic terrain on the Earth and on other planets, and to establish a physical basis for the choice of optimal radar configurations for geological mapping. The authors focus on a study...... of different morphologic types within a flow. The largest contrasts are observed at cross-polarization. The phase difference between the VV- and HH-channels may provide information about a vegetation cover on the lava. The radar signal scattered from the flows is dominated by surface scattering contributions...

  17. Studying monogenetic volcanoes with Terrestrial Laser Scanner: Case study at Croscat volcano (Garrotxa Volcanic Zone, Spain)

    Science.gov (United States)

    Geyer Traver, A.; Garcia-Selles, D.; Peddrazzi, D.; Barde-Cabusson, S.; Marti, J.; Muñoz, J.

    2013-12-01

    Monogenetic basaltic zones are common in many volcanic environments and may develop under very different geodynamic conditions. Despite existing clear similarities between the eruptive activity of different monogenetic volcanic fields, important distinctions may arise when investigating in detail the individual eruptive sequences. Interpretation of the deposits and consequently, the reconstruction and characterization of these eruptive sequences is crucial to evaluate the potential hazard in case of active areas. In diverse occasions, erosional processes (natural and/or anthropogenic) may partly destroy these relatively small-sized volcanic edifices exposing their internal parts. Furthermore, despite human activity in volcanic areas is sometimes unimportant due to the remote location of the monogenetic cones, there are places where this form of erosion is significant, e.g. Croscat volcano (Catalan Volcanic Field, Spain). In any case, when studying monogenetic volcanism, it is usual to find outcrops where the internal structure of the edifices is, for one or other reason, well exposed. However, the access to these outcrops may be extremely difficult or even impossible. During the last years, it has been demonstrated that the study of outcrops with problematic or completely restricted access can be carried out by means of digital representations of the outcrop surface. Digital outcrops make possible the study of those areas with natural access limitations or safety issues and may facilitate visualization of the features of interest over the entire outcrop, as long as the digital outcrop can be analysed while navigated in real- time, with optional displays for perspective, scale distortions, and attribute filtering. In particular, Terrestrial Laser Scanning (TSL) instruments using Light Detection And Ranging technology (LIDAR) are capable of capturing topographic details and achieve modelling accuracy within a few centimetres. The data obtained enables the creation of

  18. Sr and Nd isotopic characteristics of 1.77-1.58 Ga rift-related granites and volcanics of the Goiás tin province, central Brazil

    Directory of Open Access Journals (Sweden)

    MÁRCIO M. PIMENTEL

    2001-06-01

    Full Text Available Supracrustal rocks of the Araí Group, together with coeval A-type granites represent a ca. 1.77-1.58 Ga old continental rift in Brazil. Two granite families are identified: the older (1.77 Ga group forms small undeformed plutons, and the younger granites (ca. 1.58 Ga constitute larger, deformed plutons. Sr-Nd isotopic data for these rocks indicate that the magmatism is mostly product of re-melting of Paleoproterozoic sialic crust. Initial Sr ratios for both granite families are ca 0.726 and 0.720. Most TDM model ages are between 2.58 and 1.80 Ga. epsilonND(T values are between +3.6 and -11.9. Araí volcanics are bimodal, with basalts and dacites/rhyolites interlayered with continental sediments. The felsic volcanics show Nd isotopic characteristics which are very similar to the granites, and are also interpreted as reworking of Paleoproterozoic crust. Detrital sediments of the Araí Group revealed T DM model ages between 2.4 and 2.16 Ga, indicating that they are the product of erosion of Paleoproterozoic crust. The data indicate that the Araí rift system was established on crust that had just become stable after the Paleoproterozoic orogeny.As rochas supracrustais do Grupo Araí, e os granitos tipo-A associados, representam um rift continental paleo-mesoproterozóico. Duas famílias de granitos são identificadas: a mais antiga (ca. 1,77 Ga forma pequenos plutons circulares enquanto a mais jovem (ca. 1,58 Ga, constitui corpos maiores e deformados. Dados isotópicos Sr-Nd indicam que o magmatismo félsico é predominantemente o produto de re-fusão de crosta de idade paleoproterozóica. Razões 87Sr/86Sr iniciais das duas famílias são ca. 0,726 e 0,720. A maioria das idades modelo T DM caem no intervalo entre 2,58 e 1,80 Ga e os valores de épsilonND(T se distribuem entre +3.6 e -11.9. Rochas vulcânicas do Grupo Araí são bimodais, com basaltos e dacitos/riolitos intercalados em sedimentos continentais. As vulcânicas félsicas mostram

  19. European Cenozoic rift system

    Science.gov (United States)

    Ziegler, Peter A.

    1992-07-01

    The European Cenozoic rift system extends from the coast of the North Sea to the Mediterranean over a distance of some 1100 km; it finds its southern prolongation in the Valencia Trough and a Plio-Pleistocene volcanic chain crossing the Atlas ranges. Development of this mega-rift was paralleled by orogenic activity in the Alps and Pyrenees. Major rift domes, accompanied by subsidence reversal of their axial grabens, developed 20-40 Ma after beginning of rifting. Uplift of the Rhenish Shield is related to progressive thermal lithospheric thinning; the Vosges-Black Forest and the Massif Central domes are probably underlain by asthenoliths emplaced at the crust/mantle boundary. Evolution of this rift system, is thought to be governed by the interaction of the Eurasian and African plates and by early phases of a plate-boundary reorganization that may lead to the break-up of the present continent assembly.

  20. Fault zone architecture within Miocene–Pliocene syn-rift sediments, Northwestern Red Sea, Egypt

    Indian Academy of Sciences (India)

    Khairy S Zaky

    2017-04-01

    The present study focusses on field description of small normal fault zones in Upper Miocene–Pliocene sedimentary rocks on the northwestern side of the Red Sea, Egypt. The trend of these fault zones is mainly NW–SE. Paleostress analysis of 17 fault planes and slickenlines indicate that the tension direction is NE–SW. The minimum (σ3) and intermediate (σ2) paleostress axes are generally sub-horizontal and the maximum paleostress axis (σ1) is sub-vertical. The fault zones are composed of damage zones and fault core. The damage zone is characterized by subsidiary faults and fractures that are asymmetrically developed on the hanging wall and footwall of the main fault. The width of the damage zone varies for each fault depending on the lithology, amount of displacement and irregularity of the fault trace. The average ratio between the hanging wall and the footwall damage zones width is about 3:1. The fault core consists of fault gouge and breccia. It is generally concentrated in a narrow zone of ∼0.5 to ∼8 cm width. The overall pattern of the fault core indicates that the width increases with increasing displacement. The faults with displacement <1 m have fault cores ranging from 0.5 to 4.0 cm, while the faults with displacements of >2 m have fault cores ranging from 4.0 to 8.0 cm. The fault zones are associated with sliver fault blocks, clay smear, segmented faults and fault lenses’ structural features. These features are mechanically related to the growth and linkage of the fault arrays. The structural features may represent a neotectonic and indicate that the architecture of the fault zones is developed as several tectonic phases.

  1. Fault zone architecture within Miocene-Pliocene syn-rift sediments, Northwestern Red Sea, Egypt

    Science.gov (United States)

    Zaky, Khairy S.

    2017-04-01

    The present study focusses on field description of small normal fault zones in Upper Miocene-Pliocene sedimentary rocks on the northwestern side of the Red Sea, Egypt. The trend of these fault zones is mainly NW-SE. Paleostress analysis of 17 fault planes and slickenlines indicate that the tension direction is NE-SW. The minimum ( σ3) and intermediate ( σ2) paleostress axes are generally sub-horizontal and the maximum paleostress axis ( σ1) is sub-vertical. The fault zones are composed of damage zones and fault core. The damage zone is characterized by subsidiary faults and fractures that are asymmetrically developed on the hanging wall and footwall of the main fault. The width of the damage zone varies for each fault depending on the lithology, amount of displacement and irregularity of the fault trace. The average ratio between the hanging wall and the footwall damage zones width is about 3:1. The fault core consists of fault gouge and breccia. It is generally concentrated in a narrow zone of ˜0.5 to ˜8 cm width. The overall pattern of the fault core indicates that the width increases with increasing displacement. The faults with displacement 2 m have fault cores ranging from 4.0 to 8.0 cm. The fault zones are associated with sliver fault blocks, clay smear, segmented faults and fault lenses' structural features. These features are mechanically related to the growth and linkage of the fault arrays. The structural features may represent a neotectonic and indicate that the architecture of the fault zones is developed as several tectonic phases.

  2. Reassessment of petrogenesis of Carboniferous–Early Permian rift-related volcanic rocks in the Chinese Tianshan and its neighboring areas

    Directory of Open Access Journals (Sweden)

    Linqi Xia

    2012-07-01

    Full Text Available The Carboniferous−Early Permian rift-related volcanic successions, covering large areas in the Chinese Tianshan and its adjacent areas, make up a newly recognized important Phanerozoic large igneous province in the world, which can be further divided into two sub-provinces: Tianshan and Tarim. The regional unconformity of Lower Carboniferous upon basement or pre-Carboniferous rocks, the ages (360–351 Ma of the youngest ophiolite and the peak of subduction metamorphism of high pressure–low temperature metamorphic belt and the occurrence of Ni-Cu-bearing mafic-ultramafic intrusion with age of ∼352 Ma and A-type granite with age of ∼358 Ma reveal that the final closure of the Paleo-Asian Ocean might take place in the Early Mississippian. Our summation shows that at least four criteria, being normally used to identify ancient asthenosphere upwelling (or mantle plumes, are met for this large igneous province: (1 surface uplift prior to magmatism; (2 being associated with continental rifting and breakup events; (3 chemical characteristics of asthenosphere (or plume derived basalts; (4 close links to large-scale mineralization and the uncontaminated basalts, being analogous to those of many “ore-bearing” large igneous provinces, display Sr-Nd isotopic variations between plume and EM1 geochemical signatures. These suggest that a Carboniferous asthenosphere upwelling and an Early Permian plume played the central role in the generation of the Tianshan–Tarim (central Asia large igneous province.

  3. Geothermal resources of rifts: A comparison of the rio grande rift and the salton trough

    Science.gov (United States)

    Swanberg, Chandler A.

    1983-05-01

    The Rio Grande Rift and the Salton Trough are the best developed rift systems in the United States and both share many features common to rifts in general, including geothermal resources. These two rifts have different tectonic and magmatic histories, however, and these differences are reflected in the nature of their geothermal resources. The Salton Trough is a well developed and successful rift. It is the landward extension of the Gulf of California spreading center, which has separated Baja, California, from the remainder of Mexico. Quaternary silicic magmatization has occurred and several of the geothermal resources are associated with recent rhyolitic intrusions. Such resources tend to be high temperature (> 200°C). Greenschist facies metamorphism has been observed in several of the geothermal wells. Localized upper crustal melting is a distinct possibility and there is increasing speculation that very high temperature (> 300°C) geothermal fluids may underlie a large portion of the central trough at depths in excess of 4 km. Low temperature geothermal resources associated with shallow hydrothermal convection are less common and tend to be located on the flanks of the trough or in the Coachella Valley to the north of the zone of active rifting. In contrast, the Rio Grande Rift is less well developed. Recent volcanism consists primarily of mantle-derived basalts, which have not had sufficient residence time within the crust to generate significant crustal melting. The geothermal resources within the Rio Grande Rift do not correlate well with these young basalts. Rather, the quantity of geothermal resources are low temperature (geothermal exploration targets.

  4. A kinematic model for the Plio-Quaternary evolution of the Tyrrhenian Apenninic system: implications for rifting processes and volcanism

    Science.gov (United States)

    Turco, E.; Zuppetta, A.

    1998-06-01

    During the frontal accretion due to the Late Miocene-Quaternary thrusting, the interior of the Apenninic chain underwent large-scale extension which produced the opening of the Tyrrhenian Oceanic Basin, a back-arc basin in respect to the late Cenozoic Apenninic chain, and the onset of the Quaternary volcanic activity in the Campanian Plain and more generally in the Tyrrhenian area. To outline the space/time distribution and the geotectonic setting of the Tyrrhenian volcanics we approached the problem from a kinematic point of view. A synthesis of the available geological and geophysical data leads us to suggest that the progressive migration of the Apenninic Arcs is responsible for the extension phenomena which took place during the last 5 Ma. At first, the extension resulted from the kinematic interaction between the Northern Apenninic Arc and the Southern Apenninic Arc during the Late Pliocene. Then, from the Early Pleistocene the extension was controlled by the SE migration of the Southern arc only, and therefore it can be regarded as part of the general Southern Tyrrhenian extension phenomenon. Due to the intense thinning, the isotherms migrated upward very rapidly within the Toscana, Latium and Campania lithosphere where the melting point was reached, giving rise to the onset of volcanic activity at the end of the Early Pleistocene.

  5. Influence of margin segmentation and anomalous volcanism upon the break-up of the Hatton Bank rifted margin, west of the UK

    Science.gov (United States)

    Elliott, G. M.; Parson, L. M.

    2007-12-01

    The Hatton Bank margin, flanking the Iceland Basin is a widely cited example of a volcanic rifted margin. Prior to this study insights into the break-up history of the margin have been limited to profiles in the north and south, yet whilst valuable, the along margin tectono-magmatic variability has not been revealed. Over 5660 line km of high quality reflection seismic profiles with supplementary multibeam bathymetry were collected to support the UK's claim to Hatton region under the United Nations Convention on Law of the Sea (UNCLOS). Integration of this new data with existing profiles, allowed the margin to be divided into three segments, each of which are flanked by oceanic crust with a smooth upper surface and internal dipping reflectors. The southernmost segment is characterised by a series of inner and outer seaward dipping reflector (SDR) packages, which are separated by an outer high feature. The outer SDR are truncated by Endymion Spur, a chain of steep sided, late stage volcanic cones linked with necks. The central sector has no inner SDR package and is characterised by the presence of a highly intruded continental block, the Hatton Bank Block (HBB). The northern sector is adjacent to Lousy Bank, with a wider region of SDR recognised than to the south and a high amount of volcanic cones imaged. The variations in the distribution of the SDR's along the margin, the presence of the HBB and Endymion Spur all suggest that the break-up process was not uniform alongstrike. The division of the margin into three sectors reveals that structural segmentation played an important role in producing the variations along the margin. Break- up initiated in the south and progressed north producing the SDR packages witnessed, when the HBB was encountered the focus of break-up moved seaward of the block. The northern sector was closer to the Iceland Hotspot and hence a greater amount of volcanism is encountered. The smooth oceanic basement also indicates a high thermal flux

  6. Investigation of Icelandic rift zones reveals systematic changes in hydrothermal outflow in concert with seismic and magmatic events: Implications for investigation of Mid-Ocean Ridge hydrothermal systems

    Science.gov (United States)

    Curewitz, D.; Karson, J. A.

    2010-12-01

    Co-registration of several generations of geological data was carried out for hydrothermal fields along active rift zones of the Iceland plate boundary zone. Significant short- and long-term changes in vent locations, flow rates and styles, and fluid characteristics over short periods take place in concert with recorded earthquakes, dike intrusions, and fissure eruptions. Higher resolution, more detailed analysis of the Icelandic hydrothermal sites will inform investigation of similar data from mid-ocean ridge hydrothermal systems along the RIDGE 2000 focus sites. Initial results from the Hengill and Krafla geothermal areas covering a time-span of nearly 40 years at ~10 year intervals reveal limited changes in the surface expression of fault populations, with the exception of local fault and fracture systems. The location and population density of individual vents and groups of vents underwent significant changes over the same time period, with either vents shifting location, or new vents opening and old vents closing. Registration of changes in vent fluid temperatures, vent field ground temperatures, fluid flow rates, and vent eruptive styles reveal changes in hydrothermal flow systematics in concert with the observed changes in vent location and vent population density. Significant local seismic and volcanological events (earthquakes, earthquake swarms, dike intrusions, eruptions, inflation/deflation) that are potential triggers for the observed changes take place in intervening years between production of successive maps. Changes in modeled stress intensities and local fracture/fault density and geometry associated with these tectono-magmatic events correspond well to inferred locations of increased or decreased shallow permeability thought to control hydrothermal outflow behavior. Recent seismic events are strongly linked to well-mapped changes in fracture/fault population and hydrothermal flow behavior in the Hveragerdi region, near Hengill, and provide higher

  7. Automated, reproducible delineation of zones at risk from inundation by large volcanic debris flows

    Science.gov (United States)

    Schilling, Steve P.; Iverson, Richard M.

    1997-01-01

    Large debris flows can pose hazards to people and property downstream from volcanoes. We have developed a rapid, reproducible, objective, and inexpensive method to delineate distal debris-flow hazard zones. Our method employs the results of scaling and statistical analyses of the geometry of volcanic debris flows (lahars) to predict inundated valley cross-sectional areas (A) and planimetric areas (B) as functions of lahar volume. We use a range of specified lahar volumes to evaluate A and B. In a Geographic Information System (GIS) we employ the resulting range of predicted A and B to delineate gradations in inundation hazard, which is highest near the volcano and along valley thalwegs and diminishes as distances from the volcano and elevations above valley floors increase. Comparison of our computer-generated hazard maps with those constructed using traditional, field-based methods indicates that our method can provide an accurate means of delineating lahar hazard zones.

  8. Early Cambrian granitoids of North Gondwana margin in the transition from a convergent setting to intra-continental rifting (Ossa-Morena Zone, SW Iberia)

    Science.gov (United States)

    Sánchez-García, T.; Pereira, M. F.; Bellido, F.; Chichorro, M.; Silva, J. B.; Valverde-Vaquero, P.; Pin, Ch.; Solá, A. R.

    2014-07-01

    Two distinct Cambrian magmatic pulses are recognized in the Ossa-Morena Zone (SW Iberia): an early rift-(ER) and a main rift-related event. This Cambrian magmatism is related to intra-continental rifting of North Gondwana that is thought to have culminated in the opening of the Rheic Ocean in Lower Ordovician times. New data of whole-rock geochemistry (19 samples), Sm-Nd-Sr isotopes (4 samples) and ID-TIMS U-Pb zircon geochronology (1 sample) of the Early Cambrian ER plutonic rocks of the Ossa-Morena Zone are presented in this contribution. The ER granitoids (Barreiros, Barquete, Calera, Salvatierra de los Barros and Tablada granitoid Massifs) are mostly peraluminous granites. The Sm-Nd isotopic data show moderate negative ɛNdt values ranging from -3.5 to +0.1 and TDM ages greatly in excess of emplacement ages. Most ER granitoids are crustal melts. However, a subset of samples shows a transitional anorogenic alkaline tendency, together with more primitive isotopic signatures, documenting the participation of lower crust or mantle-derived sources and suggesting a local transient advanced stage of rifting. The Barreiros granitoid is intrusive into the Ediacaran basement of the Ossa-Morena Zone (Série Negra succession) and has yielded a crystallization age of 524.7 ± 0.8 Ma consistent with other ages of ER magmatic pulse. This age: (1) constrains the age of the metamorphism developed in the Ediacaran back-arc basins before the intrusion of granites and (2) defines the time of the transition from the Ediacaran convergent setting to the Lower Cambrian intra-continental rifting in North Gondwana.

  9. Spatial distribution of cones and satellite-detected lineaments in the Pali Aike Volcanic Field (southernmost Patagonia): insights into the tectonic setting of a Neogene rift system

    Science.gov (United States)

    Mazzarini, Francesco; D'Orazio, Massimo

    2003-07-01

    The relationships between the distribution and morphometric features of eruptive structures (scoria and spatter cones, maar, tuff rings) and the fracture network were investigated in the Pliocene-Quaternary Pali Aike Volcanic Field (southernmost Patagonia, Argentina-Chile). The alkali basaltic/basanitic magmas which erupted in this area have nearly primary magma compositions and often bear mantle xenoliths; hence magma ascent from deep-seated reservoirs was probably very fast, with no significant stagnation at crustal levels. Field surveys and satellite image analysis led to the identification of up to 467 eruptive structures and four main NW-SE, NE-SW, E-W and N-S fracture systems. The spatial distribution of eruptive cones and fractures was investigated through the computation of power-law exponents ( Df) for self-similar clustering. The self-similarity of cones and fractures was defined between lower and upper cut-offs which were in turn related to the thickness of the fractured mechanical layer. The fractal character of cones and fracture distribution (clustering) in the Pali Aike Volcanic Field area was thus correlated with crustal thickness. The self-similarity of fractures was used to establish the relative chronology of the detected fracture systems. The self-similar clustering exponent is highest in the E-W and NW-SE fracture systems ( Df=1.78 and 1.77, respectively), and lowest in the N-S system ( Df=1.65). The self-similar clustering of eruptive structures is well defined ( Df=1.45). The intense volcano-tectonic activity in the Pali Aike area marks a major Pliocene-Quaternary phase in the development of the Magellan Neogene Rift System.

  10. Pb isotope geochemistry of lead, zinc, gold and silver deposit clustered region, Liaodong rift zone,northeastern China

    Institute of Scientific and Technical Information of China (English)

    CHEN; Jiangfeng; YU; Gang; XUE; Chunji; QIAN; Hui; HE; Jian

    2005-01-01

    33 Pb isotopic analyses were reported for sulfide and hydrothermal carbonate minerals and marble of the Xiquegou lead-zinc, the Zhenzigou zinc-lead and the Gaojiapuzi silver deposits from the Qingchengzi ore field and the Beiwagou zinc-lead deposit in the west, Proterozoic Liaodong rift zone. Pb isotopic ratios of the marble from the Qingchengzi ore field range from 18.24 to 30.63 for 206Pb/204Pb, 15.59 to 17.05 for 207Pb/204Pb and 37.43 to 38.63 for 208Pb/204Pb. The marble gives a Pb-Pb isochron age of 1822±92 Ma, which is interpreted as the age of the metamorphism of the marble. Ore Pb, including Pb of sulfide and hydrothermal carbonate minerals, from the Qingchengzi ore field shows limited variation with 206Pb/204Pb=17.66-17.96, 207Pb/204Pb=15.60-15.74 and 208Pb/204Pb=37.94-38.60. In contrast, ore Pb from the Beiwagou deposit gives different Pb isotopic ratios with 206Pb/204Pb=15.68-15.81, 207Pb/204Pb= 15.34-15.45 and 208Pb/204Pb=35.30-35.68. Pb of all deposits from the Liaodong rift zone is derived from the upper crust. Ore Pb of the Qingchengzi deposits is derived from a young upper crust. The model Th/U ratios of 4.40 to 4.74 for ore Pb are significantly different from that of 1.7 to 4.4 given by the marble of the Qingchengzi ore field, suggesting that marble is not the source of the ore Pb. Ore Pb of the Beiwagou deposit is extracted from its source and the deposit is formed at the Paleoproterozoic era. Different Pb isotopic ratios of the Qingchengzi ore field and the Beiwagou deposit are due to different ages of the deposits and suggest that the two types of deposits are derived from different sources and are possibly formed by different ore-forming processes.

  11. Recent eruptive episodes of the Rungwe volcanic field (Tanzania) recorded in lacustrine sediments of the Northern malawi rift

    Science.gov (United States)

    Williams, T. M.; Henney, P. J.; Owen, R. B.

    1993-07-01

    Discrete ash horizons in Holocene sediments from northern Lake Malawi provide evidence of six eruptive episodes within the nearby Rungwe Volcanic Field between c.9000-360 BP. Rare earth element (REE) analyses show the ash layers to be strongly enriched in La, Ce, Pr, Nd, Sm, Tb, Dy, Er, Tm, Yb and Lu, with low Eu/Eu∗ and high La N/Sm N values, relative to the surrounding muds. Mixing calculations suggest possible affinities between the Rungwe ash emissions and silicic volcanics from other important Quaternary centres (e.g. Naivasha) with respect to HREE geochemistry. The LREE spectra are less comparable and may indicate a less fractionated ash assemblage for Rungwe Field. In the absence of clear in situ evidence regarding the timing and frequency of Holocene eruptions at Rungwe, the Lake Malawi sediments may prove a valuable reconstructive tool. However, the direction and extent of ash dispersal is strongly controlled by wind/climatic factors and the retention of a complete record at any single location is unlikely.

  12. Volcanic-plutonic parity and the differentiation of the continental crust.

    Science.gov (United States)

    Keller, C Brenhin; Schoene, Blair; Barboni, Melanie; Samperton, Kyle M; Husson, Jon M

    2015-07-16

    The continental crust is central to the biological and geological history of Earth. However, crustal heterogeneity has prevented a thorough geochemical comparison of its primary igneous building blocks-volcanic and plutonic rocks-and the processes by which they differentiate to felsic compositions. Our analysis of a comprehensive global data set of volcanic and plutonic whole-rock geochemistry shows that differentiation trends from primitive basaltic to felsic compositions for volcanic versus plutonic samples are generally indistinguishable in subduction-zone settings, but are divergent in continental rifts. Offsets in major- and trace-element differentiation patterns in rift settings suggest higher water content in plutonic magmas and reduced eruptibility of hydrous silicate magmas relative to dry rift volcanics. In both tectonic settings, our results indicate that fractional crystallization, rather than crustal melting, is predominantly responsible for the production of intermediate and felsic magmas, emphasizing the role of mafic cumulates as a residue of crustal differentiation.

  13. Contribution of the FUTUREVOLC project to the study of segmented lateral dyke growth in the 2014 rifting event at Bárðarbunga volcanic system, Iceland

    Science.gov (United States)

    Sigmundsson, Freysteinn; Hooper, Andrew; Hreinsdóttir, Sigrún; Vogfjörd, Kristín S.; Ófeigsson, Benedikt; Rafn Heimisson, Elías; Dumont, Stéphanie; Parks, Michelle; Spaans, Karsten; Guðmundsson, Gunnar B.; Drouin, Vincent; Árnadóttir, Thóra; Jónsdóttir, Kristín; Gudmundsson, Magnús T.; Samsonov, Sergey; Brandsdóttir, Bryndís; White, Robert S.; Ágústsdóttir, Thorbjörg; Björnsson, Helgi; Bean, Christopher J.

    2015-04-01

    The FUTUREVOLC project (a 26-partner project funded by FP7 Environment Programme of the European Commission, addressing topic "Long-term monitoring experiment in geologically active regions of Europe prone to natural hazards: the Supersite concept) set aims to (i) establish an innovative volcano monitoring system and strategy, (ii) develop new methods for near real-time integration of multi-parametric datasets, (iii) apply a seamless transdisciplinary approach to further scientific understanding of magmatic processes, and (iv) to improve delivery, quality and timeliness of transdisciplinary information from monitoring scientists to civil protection. The project duration is 1 October 2012 - 31 March 2016. Unrest and volcanic activity since August 2014 at one of the focus areas of the project in Iceland, at the Bárðarbunga volcanic system, near the middle of the project duration, has offered unique opportunities for this project. On 16 August 2014 an intense seismic swarm started in Bárðarbunga, the beginning of a major volcano-tectonic rifting event forming over 45 km long dyke extending from the caldera to Holuhraun lava field outside the northern margin of Vatnajökull. A large basaltic, effusive fissure eruption began in Holuhraun on 31 August which had by January formed a lava field with a volume in excess of one cubic kilometre. We document how the FUTUREVOLC project has contributed to the study and response to the subsurface dyke formation, through increased seismic and geodetic coverage and joint interpreation of the data. The dyke intrusion in the Bárðarbunga volcanic system, grew laterally for over 45 km at a variable rate, with an influence of topography on the direction of propagation. Barriers at the ends of each segment were overcome by the build-up of pressure in the dyke end; then a new segment formed and dyke lengthening temporarily peaked. The dyke evolution, which occurred over 14 days, was revealed by propagating seismicity, ground

  14. Volcanism and sedimentation along the western margin of the Rio Grande rift between caldera-forming eruptions of the Jemez Mountains volcanic field, north-central New Mexico, USA

    Science.gov (United States)

    Jacobs, Elaine P.; WoldeGabriel, Giday; Kelley, Shari A.; Broxton, David; Ridley, John

    2016-11-01

    The Cerro Toledo Formation (CTF), a series of intracaldera rhyolitic dome complexes and their associated extracaldera tephras and epiclastic sedimentary deposits, records the dynamic interplay between volcanic, tectonic, and geomorphic processes that were occurring along the western margin of the Rio Grande rift between major caldera-forming eruptions of the Bandelier Tuff 1.65-1.26 Ma. The Alamo Canyon and Pueblo Canyon Members differ significantly despite deposition within a few kilometers of each other on the Pajarito Plateau. These differences highlight spatial distinctions in vent sources, eruptive styles, and depositional environments along the eastern side of the Jemez Mountains volcanic field during this ca. 400,000 year interval. Intercalated pyroclastic fall deposits and sandstones of the Pueblo Canyon Member reflect deposition with a basin. Thick Alamo Canyon Member deposits of block-and-ash-flow tuff and pyroclastic fall deposits fill a paleovalley carved into coarse grained sedimentary units reflecting deposition along the mountain front. Chemistry and ages of glass from fall deposits together with clast lithologies of sedimentary units, allow correlation of outcrops, subsurface units, and sources. Dates on pyroclastic fall deposits from Alamo Canyon record deep incision into the underlying Otowi Member in the southern part of the Pajarito Plateau within 100 k.y. of the Toledo caldera-forming eruption. Reconstruction of the CTF surface shows that this period of rapid incision was followed by aggradation where sediments largely filled pre-existing paleocanyons. Complex sequences within the upper portion of the Otowi Member in outcrop and in the subsurface record changes in the style of eruptive activity during the waning stages of the Toledo caldera-forming eruption.

  15. Subglacial volcanic activity above a lateral dyke path during the 2014-2015 Bárdarbunga-Holuhraun rifting episode, Iceland

    Science.gov (United States)

    Reynolds, Hannah I.; Gudmundsson, Magnús T.; Högnadóttir, Thórdís; Magnússon, Eyjólfur; Pálsson, Finnur

    2017-06-01

    The rifting episode associated with the Bárdarbunga-Holuhraun eruption in 2014-2015 included the first observations of major dyke propagation under ice. Three shallow ice depressions (ice cauldrons) with volumes ranging from 1 to 18 million m3 formed in Dyngjujökull glacier above the 48-km-long lateral path of the magma, at 4, 7 and 12 km from the northern glacier edge. Aircraft-based radar altimetry profiling was used to map the evolution of the cauldrons and construct a time series of the heat transfer rates. Out of the three scenarios explored: (1) onset or increase of hydrothermal activity, (2) convection within vertical fissures filled with water overlying intruded magma and (3) subglacial eruptions, the last option emerges as the only plausible mechanism to explain the rapid heat transfer observed in a location far from known geothermal areas. The thermal signals at two of the cauldrons are consistent with effusive subglacial eruptions. The formation of the northernmost cauldron was more rapid, indicating faster heat transfer rates. Radio-echo sounding data indicate that in contrast to the other two cauldrons, an intrusion of eruptive products occurred into the glacier, reaching 50-60 m above bedrock with the increased magma-ice contact explaining the more rapid heat transfer. We propose that the 2-m widening associated with graben formation increased the groundwater storage capacity of the bedrock, creating space for the meltwater to be stored, explaining the absence of meltwater pulses draining from Dyngjujökull.

  16. Pre-eruption deformation and seismic anomalies in 2012 in Tolbachik volcanic zone, Kamchatka

    Science.gov (United States)

    Kugaenko, Yulia; Saltykov, Vadim; Titkov, Nikolay

    2014-05-01

    Tolbachik volcanic zone (active volcano Plosky Tolbachik, dormant volcano Ostry Tolbachik and Tolbachik zone of cinder cones) is situated in the south part of Klyuchevskaya group of volcanoes in Kamchatka. All historical fissure eruptions of Tolbachik volcanic zone (1740, 1941, 1975-76 and 2012-13) were connected with one or another activity of Plosky Tolbachik volcano. In 1941 the fissure vent was occurred during the completion of 1939-41 terminal eruption of Plosky Tolbachik. In 1975 the Large Tolbachik Fissure Eruption (LTFE) was forestalled by Plosky Tolbachik terminal activity of the Hawaiian type and then was accompanied by the catastrophic collapse in the crater of Plosky Tolbachik. What events took place in the vicinity of Plosky Tolbachik in 2012 before the 2012-13 fissure eruption? In contrast of the 1975-76 LTFE the eruption 2012-13 was not preceded by intensive seismic preparation. Nowadays Klyuchevskaya group of volcanoes is under monitoring by 12 seismic stations, so we can investigate seismicity in details on the lower energy level then forty years ago. We analyzed seismicity of Plosky Tolbachik using regional catalogue 1999-2012. Anomalies of low-energy (M≥1.5) seismicity parameters (increase of seismicity rate and seismic energy) were discovered. This is evidence of seismic activization covered the whole Plosky Tolbachik volcano. The significance of this anomaly was estimated by distribution function of emitted seismic energy. Statistically significant transition of seismicity from background level to high and extremely high levels was revealed. It corresponds to multiple growth of earthquake number and seismic energy in 2012, July-November (five months before the eruption). The seismicity transition from background level to high level was happen in August 2012. During last three weeks before fissure eruption seismicity of analyzed seismoactive volume was on extremely high level. Earthquakes from fissure site directly appeared only on November 27

  17. Volcanism and outgassing of stagnant-lid planets: Implications for the habitable zone

    Science.gov (United States)

    Noack, L.; Rivoldini, A.; Van Hoolst, T.

    2017-08-01

    Rocky exoplanets are typically classified as potentially habitable planets, if liquid water exists at the surface. The latter depends on several factors like the abundance of water but also on the amount of available solar energy and greenhouse gases in the atmosphere for a sufficiently long time for life to evolve. The range of distances to the star, where surface water might exist, is called the habitable zone. Here we study the effect of the planet interior of stagnant-lid planets on the formation of a secondary atmosphere through outgassing that would be needed to preserve surface water. We find that volcanic activity and associated outgassing in one-plate planets is strongly reduced after the magma ocean outgassing phase for Earth-like mantle compositions, if their mass and/or core-mass fraction exceeds a critical value. As a consequence, the effective outer boundary of the habitable zone is then closer to the host star than suggested by the classical habitable zone definition, setting an important restriction to the possible surface habitability of massive rocky exoplanets, assuming that they did not keep a substantial amount of their primary atmosphere and that they are not in the plate tectonics regime.

  18. Structure of the Pliocene Camp dels Ninots maar-diatreme (Catalan Volcanic Zone, NE Spain)

    Science.gov (United States)

    Oms, O.; Bolós, X.; Barde-Cabusson, S.; Martí, J.; Casas, A.; Lovera, R.; Himi, M.; Gómez de Soler, B.; Campeny Vall-Llosera, G.; Pedrazzi, D.; Agustí, J.

    2015-11-01

    Maar volcanoes expose shallower or deeper levels of their internal structure as a function of the degree of erosion. In El Camp dels Ninots maar-diatreme (Catalan Volcanic Zone, Spain), the tephra ring has been largely eroded, and the remaining volcanic deposits infilling the diatreme are hidden under a lacustrine sedimentary infill of the crater. The volcano shows hardly any exposure, so its study needs the application of direct (e.g., boreholes) and indirect (shallow geophysics) subsurface exploration techniques. Additionally, this maar-diatreme was built astride two different substrates (i.e., mixed setting) as a result of its location in a normal fault separating Neogene sediments from Paleozoic granites. In order to characterize the internal structure and post-eruption stratigraphy of the maar-diatreme, we did geological studies (mapping, continuous core logging, and description of the tephra ring outcrops) and near-surface geophysics, including nine transects of electric resistivity tomography and a gravity survey. Results show that the deeper part of the diatreme is excavated into granites and is relatively steep and symmetrical. The uppermost diatreme is asymmetrical because of mechanical contrast between granites and Pliocene sands. The maar crater contained a lake permanently isolated from the surrounding relief and was deep enough to host anoxic bottom waters while its margins had shallower waters. These lake conditions preserved the remarkable Pliocene fossil record found in the lacustrine sediments.

  19. Lu-Hf garnet geochronology applied to plate boundary zones: Insights from the (U)HP terrane exhumed within the Woodlark Rift

    Science.gov (United States)

    Zirakparvar, N. A.; Baldwin, S. L.; Vervoort, J. D.

    2011-09-01

    High-pressure and ultra high-pressure (U)HP metamorphic rocks occur in many of the world's major orogenic belts, suggesting that subduction of continental lithosphere is a geologically important process. Despite the widespread occurrence of these rocks, relatively little is known about the timescales associated with (U)HP metamorphism. This is because most (U)HP terranes are tectonically overprinted and juxtaposed against rocks with a different history. An exception to this are the Late Miocene (U)HP metamorphic rocks found in active metamorphic core complexes (MCC) in the Woodlark Rift of southeastern Papua New Guinea. This region provides a rare opportunity to study the garnet Lu-Hf isotopic record of (U)HP metamorphism in a terrane that is not tectonically overprinted. In order to constrain the timing of garnet growth relative to the history of (U)HP metamorphism and the evolution of the Woodlark Rift, Lu-Hf ages were determined, in conjunction with measurements of Lu and major element zoning, for garnets from three metamorphic rocks. Garnets from the three samples yielded different ages that, instead of recording the spatial and temporal evolution associated with a single metamorphic event, provide information on the timing of three separate plate boundary events. The youngest Lu-Hf age determined was 7.1 ± 0.7 Ma for garnets in a Late Miocene coesite eclogite. The age is interpreted to record the time when a garnet-bearing partial melt of the mantle crystallized within subducted continental lithosphere at (U)HP conditions. The young Lu-Hf age from the coesite eclogite is in contrast to a 68 ± 3.6 Ma Lu-Hf age obtained on large (1-2 cm) garnet porphyroblasts, from within the Pleistocene amphibolite facies shear zone carapace bounding exposures of (U)HP rocks in the D'Entrecasteaux Islands. This older age records the growth of garnet in response to continental subduction and ophiolite obduction in the region north and east of Australia during late Mesozoic

  20. Rift brittle deformation of SE-Brazilian continental margin: Kinematic analysis of onshore structures relative to the transfer and accommodation zones of southern Campos Basin

    Science.gov (United States)

    Savastano, Vítor Lamy Mesiano; Schmitt, Renata da Silva; Araújo, Mário Neto Cavalcanti de; Inocêncio, Leonardo Campos

    2017-01-01

    High-resolution drone-supported mapping and traditional field work were used to refine the hierarchy and kinematics of rift-related faults in the basement rocks and Early Cretaceous mafic dikes onshore of the Campos Basin, SE-Brazil. Two sets of structures were identified. The most significant fault set is NE-SW oriented with predominantly normal displacement. At mesoscale, this fault set is arranged in a rhombic pattern, interpreted here as a breached relay ramp system. The rhombic pattern is a penetrative fabric from the thin-section to regional scale. The second-order set of structures is an E-W/ESE-WNW system of normal faults with sinistral component. These E-W structures are oriented parallel with regional intrabasinal transfer zones associated with the earliest stages of Campos Basin's rift system. The crosscutting relationship between the two fault sets and tholeiitic dikes implies that the NE-SW fault set is the older feature, but remained active until the final stages of rifting in this region as the second-order fault set is older than the tholeiitic dikes. Paleostresses estimated from fault slip inversion method indicated that extension was originally NW-SE, with formation of the E-W transfer, followed by ESE-WNW oblique opening associated with a relay ramp system and related accommodation zones.

  1. Mantle enrichment by volatiles as the Nazca plate subducts beneath the Payenia backarc of the Sourthern Volcanic Zone, Argentina

    DEFF Research Database (Denmark)

    Brandt, Frederik Ejvang

    , minerals, fluid and melt inclusions from the Payenia backarc province of the Andean Southern Volcanic Zone. Major emphasis has been on olivine hosted melt inclusions. The study gives evidence for the role of fluids in the metasomatism of the backarc mantle, and outlines the trend of the variation...

  2. Softening of sub-continental lithosphere prior rifting: Evidence from clinopyroxene chemistry in peridotite xenoliths from Natash volcanic province, SE Egypt

    Science.gov (United States)

    Abu El-Rus, M. A.; Chazot, G.; Vannucci, R.; Gahlan, H. A.; Boghdady, G. Y.; Paquette, J.-L.

    2016-11-01

    Major and trace element compositions were determined for well-preserved diopside relics in highly altered mantle xenoliths from Natash volcanic province, south Eastern Desert of Egypt, to unravel the major magmatic processes that occurred within the lithospheric mantle long time before the Red Sea rift. The diopside shows a limited compositional range as for mg# (0.89-0.92), Al2O3 (3.52-5.60 wt%), andTiO2 (0.15-0.35 wt%), whereas it is characterised by a larger variability as for Na2O (0.23-1.83 wt%) and, in particular the trace elements. The latter identify two main diopside types: 1) CPX-I has low abundances of incompatible elements, spoon-like REE patterns, small negative anomalies in Ti and Zr and a positive anomaly in Sr; and 2) CPX-II has high abundances in incompatible elements, REE patterns with steady enrichment from HREE to LREE patterns and marked negative anomalies in Ti and Zr. The range of REE patterns in the mantle section can be explained by 7-22% batch melting of the primitive mantle followed by varying degrees of trace element chromatographic exchange. CPX-I underwent only small-scale reactive porous flow metasomatism at the percolation front, whereas CPX-II resulted from large-scale rock-melt interaction close to the melt source. Trace element abundances of CPX-II suggest equilibration with carbonatite-like melts that bear close similarities with the carbonatites that enriched the lithosphere in the southern part of the Arabian plate. The similarity of the P-T gradients recorded by the Natash and southern part of Arabian lithospheres, as well as their re-fertilisation by similar, carbonatite-like agents, is consistent with the presence of a mantle plume at the base of the lithosphere after accretion of the Arabian-Nubian Shield in Late Precambrian. The plume material was fossilized due to secular cooling and became part of the lithospheric mantle before the eruption of the Natash volcanic in Late Cretaceous.

  3. Geodetic Constraints From The Volcanic Arc Of The Andaman - Nicobar Subduction Zone

    Science.gov (United States)

    Earnest, A.; Krishnan, R.; Mayandi, S.; Sringeri, S. T.; Jade, S.

    2012-12-01

    We report first ever GPS derived surface deformation rates in the Barren and Narcondum volcanic islands east of Andaman-Nicobar archipelago which lies in the Bay of Bengal, a zone that generates frequent earthquakes, and coincides with the eastern plate boundary of India. The tectonics of this region is predominantly driven by the subduction of the Indian plate under the Burma plate. Andaman sea region hosts few volcanoes which lies on the inner arc extending between Sumatra and Myanmar with the sub-aerial expressions at Barren and Narcondum Islands. Barren Island, about 135 km ENE of Port Blair, is presently active with frequent eruptive histories whereas Narcondum is believed to be dormant. We initiated precise geodetic campaign mode measurements at Barren Island between 2007 to 2012 and one year (2011-2012) continuous measurements at Narcondum island. Preliminary results from this study forms a unique data set, being the first geodetic estimate from the volcanic arc of this subducting margin. Our analysis indicates horizontal convergence of the Barren benchmark to south-westward (SW) direction towards the Andaman accretionary fore-arc wedge where as the Narcondum benchmark recorded northeast (NE) motion. West of the Andaman fore-arc there is NE oriented subduction of the Indian plate which is moving at the rate of ~5 cm/yr. Convergence rates for the Indian plate from the Nuvel 1A model also show oblique convergence towards N23°E at 5.4 cm/yr. GPS derived inter seismic motion of Andaman islands prior to 2004 Sumatra earthquake is ~4.5 cm/yr NE. The marginal sea basin east of Barren Island at the Andaman spreading ridge has a NNW orienting opening of the sea-floor at 3.6 cm/yr. However the recent post seismic measurements of Andaman islands indicate rotation of displacement vectors from SW to NNE during 2005 to 2012. In this tectonic backdrop, the estimated rate of displacement of the volcanic islands probably represents a composite signal of tectonic as well as

  4. Bimodal volcanism in a tectonic transfer zone: Evidence for tectonically controlled magmatism in the southern Central Andes, NW Argentina

    Science.gov (United States)

    Petrinovic, I. A.; Riller, U.; Brod, J. A.; Alvarado, G.; Arnosio, M.

    2006-04-01

    This field-based and analytical laboratory study focuses on the genetic relationship between bimodal volcanic centres and fault types of an important tectonic transfer zone in the southern Central Andes, the NW-SE striking Calama-Olacapato-Toro (COT) volcanic belt. More specifically, tectono-magmatic relationships are examined for the 0.55 Ma Tocomar, the 0.78 Ma San Jerónimo and the 0.45 Ma Negro de Chorrillos volcanic centres in the Tocomar area (66°30 W-24°15 S). Structures of the COT volcanic belt, notably NW-SE striking strike-slip faults and NE-SW trending normal faults, accommodated differential shortening between major N-S striking thrust faults on the Puna Plateau. We present evidence that bimodal volcanism was contemporaneous with activity of these fault types in the COT volcanic belt, whereby eruption and composition of the volcanic rocks in the Tocomar and San Jerónimo-Negro de Chorrillos areas appear to have been controlled by the kinematics of individual faults. More specifically, rhyolitic centres such as the Tocomar are associated with normal faults, whereas shoshonitic-andesitic monogenetic volcanoes, e.g., the San Jerónimo and Negro de Chorrillos centres, formed at strike-slip dominated faults. Thus, the eruption of higher viscous rhyolite magmas appears to have been facilitated in tectonic settings characterized by horizontal dilation whereas ascent and effusive volcanic activity of less viscous and hot basaltic andesites to shoshonites were controlled by subvertical strike-slip faults. While the Tocomar rhyolites are interpreted to be derived from an anatectic crustal source, geochemical characteristics of the San Jerónimo and Negro de Chorrillos shoshonitic andesites are in agreement with a deeper source. This suggests that the composition of erupted volcanic rocks as well as their spatial distribution in the Tocomar area is controlled by the activity of specific fault types. Such volcano-tectonic relationships are also evident from older

  5. Origin and accumulation mechanisms of petroleum in the Carboniferous volcanic rocks of the Kebai Fault zone, Western Junggar Basin, China

    Science.gov (United States)

    Chen, Zhonghong; Zha, Ming; Liu, Keyu; Zhang, Yueqian; Yang, Disheng; Tang, Yong; Wu, Kongyou; Chen, Yong

    2016-09-01

    The Kebai Fault zone of the West Junggar Basin in northwestern China is a unique region to gain insights on the formation of large-scale petroleum reservoirs in volcanic rocks of the western Central Asian Orogenic Belt. Carboniferous volcanic rocks are widespread in the Kebai Fault zone and consist of basalt, basaltic andesite, andesite, tuff, volcanic breccia, sandy conglomerate and metamorphic rocks. The volcanic oil reservoirs are characterized by multiple sources and multi-stage charge and filling history, characteristic of a complex petroleum system. Geochemical analysis of the reservoir oil, hydrocarbon inclusions and source rocks associated with these volcanic rocks was conducted to better constrain the oil source, the petroleum filling history, and the dominant mechanisms controlling the petroleum accumulation. Reservoir oil geochemistry indicates that the oil contained in the Carboniferous volcanic rocks of the Kebai Fault zone is a mixture. The oil is primarily derived from the source rock of the Permian Fengcheng Formation (P1f), and secondarily from the Permian Lower Wuerhe Formation (P2w). Compared with the P2w source rock, P1f exhibits lower values of C19 TT/C23 TT, C19+20TT/ΣTT, Ts/(Ts + Tm) and ααα-20R sterane C27/C28 ratios but higher values of TT C23/C21, HHI, gammacerane/αβ C30 hopane, hopane (20S) C34/C33, C29ββ/(ββ + αα), and C29 20S/(20S + 20R) ratios. Three major stages of oil charge occurred in the Carboniferous, in the Middle Triassic, Late Triassic to Early Jurassic, and in the Middle Jurassic to Late Jurassic periods, respectively. Most of the oil charged during the first stage was lost, while moderately and highly mature oils were generated and accumulated during the second and third stages. Oil migration and accumulation in the large-scale stratigraphic reservoir was primarily controlled by the top Carboniferous unconformity with better porosity and high oil enrichment developed near the unconformity. Secondary dissolution

  6. Tectonic inheritance in the development of the Kivu - north Tanganyika rift segment of the East African Rift System: role of pre-existing structures of Precambrian to early Palaeozoic origin.

    Science.gov (United States)

    Delvaux, Damien; Fiama Bondo, Silvanos; Ganza Bamulezi, Gloire

    2017-04-01

    The present architecture of the junction between the Kivu rift basin and the north Tanganyika rift basin is that of a typical accommodation zone trough the Ruzizi depression. However, this structure appeared only late in the development of the Western branch of the East African Rift System and is the result of a strong control by pre-existing structures of Precambrian to early Palaeozoic origin. In the frame of a seismic hazard assessment of the Kivu rift region, we (Delvaux et al., 2016) constructed homogeneous geological, structural and neotectonic maps cross the five countries of this region, mapped the pre-rift, early rift and Late Quaternary faults and compiled the existing knowledge on thermal springs (assumed to be diagnostic of current tectonic activity along faults). We also produced also a new catalogue of historical and instrumental seismicity and defined the seismotectonic characteristics (stress field, depth of faulting) using published focal mechanism data. Rifting in this region started at about 11 Ma by initial doming and extensive fissural basaltic volcanism along normal faults sub-parallel to the axis of the future rift valley, as a consequence of the divergence between the Nubia and the Victoria plate. In a later stage, starting around 8-7 Ma, extension localized along a series of major border faults individualizing the subsiding tectonic basins from the uplifting rift shoulders, while lava evolved towards alkali basaltic composition until 2.6 Ma. During this stage, initial Kivu rift valley was extending linearly in a SSW direction, much further than its the actual termination at Bukavu, into the Mwenga-Kamituga graben, up to Namoya. The SW extremity of this graben was linked via a long oblique transfer zone to the central part of Lake Tanganyika, itself reactivating an older ductile-brittle shear zone. In the late Quaternary-early Holocene, volcanism migrated towards the center of the basin, with the development of the Virunga volcanic massif

  7. Catastrophic volcanism

    Science.gov (United States)

    Lipman, Peter W.

    1988-01-01

    Since primitive times, catastrophes due to volcanic activity have been vivid in the mind of man, who knew that his activities in many parts of the world were threatened by lava flows, mudflows, and ash falls. Within the present century, increasingly complex interactions between volcanism and the environment, on scales not previously experienced historically, have been detected or suspected from geologic observations. These include enormous hot pyroclastic flows associated with collapse at source calderas and fed by eruption columns that reached the stratosphere, relations between huge flood basalt eruptions at hotspots and the rifting of continents, devastating laterally-directed volcanic blasts and pyroclastic surges, great volcanic-generated tsunamis, climate modification from volcanic release of ash and sulfur aerosols into the upper atmosphere, modification of ocean circulation by volcanic constructs and attendent climatic implications, global pulsations in intensity of volcanic activity, and perhaps triggering of some intense terrestrial volcanism by planetary impacts. Complex feedback between volcanic activity and additional seemingly unrelated terrestrial processes likely remains unrecognized. Only recently has it become possible to begin to evaluate the degree to which such large-scale volcanic processes may have been important in triggering or modulating the tempo of faunal extinctions and other evolutionary events. In this overview, such processes are examined from the viewpoint of a field volcanologist, rather than as a previous participant in controversies concerning the interrelations between extinctions, impacts, and volcanism.

  8. A multidisciplinary approach to quantify the permeability of the Whakaari/White Island volcanic hydrothermal system (Taupo Volcanic Zone, New Zealand)

    Science.gov (United States)

    Heap, Michael J.; Kennedy, Ben M.; Farquharson, Jamie I.; Ashworth, James; Mayer, Klaus; Letham-Brake, Mark; Reuschlé, Thierry; Gilg, H. Albert; Scheu, Bettina; Lavallée, Yan; Siratovich, Paul; Cole, Jim; Jolly, Arthur D.; Baud, Patrick; Dingwell, Donald B.

    2017-02-01

    Our multidisciplinary study aims to better understand the permeability of active volcanic hydrothermal systems, a vital prerequisite for modelling and understanding their behaviour and evolution. Whakaari/White Island volcano (an active stratovolcano at the north-eastern end of the Taupo Volcanic Zone of New Zealand) hosts a highly reactive hydrothermal system and represents an ideal natural laboratory to undertake such a study. We first gained an appreciation of the different lithologies at Whakaari and (where possible) their lateral and vertical extent through reconnaissance by land, sea, and air. The main crater, filled with tephra deposits, is shielded by a volcanic amphitheatre comprising interbedded lavas, lava breccias, and tuffs. We deployed field techniques to measure the permeability and density/porosity of (1) > 100 hand-sized sample blocks and (2) layered unlithified deposits in eight purpose-dug trenches. Our field measurements were then groundtruthed using traditional laboratory techniques on almost 150 samples. Our measurements highlight that the porosity of the materials at Whakaari varies from ∼ 0.01 to ∼ 0.7 and permeability varies by eight orders of magnitude (from ∼ 10-19 to ∼ 10-11 m2). The wide range in physical and hydraulic properties is the result of the numerous lithologies and their varied microstructures and alteration intensities, as exposed by a combination of macroscopic and microscopic (scanning electron microscopy) observations, quantitative mineralogical studies (X-ray powder diffraction), and mercury porosimetry. An understanding of the spatial distribution of lithology and alteration style/intensity is therefore important to decipher fluid flow within the Whakaari volcanic hydrothermal system. We align our field observations and porosity/permeability measurements to construct a schematic cross section of Whakaari that highlights the salient findings of our study. Taken together, the alteration typical of a volcanic

  9. Rifting, landsliding and magmatic variability in the Canary Islands

    Science.gov (United States)

    Carracedo, J. C.; Troll, V. R.; Guillou, H.; Badiola, E. R.; Pérez-Torrado, F. J.; Wiesmaier, S.; Delcamp, A.; Gonzalez, A. R.

    2009-04-01

    Rifts, probably the most influential structures in the geology of the Canary Islands, may also be responsible for the development of central felsic volcanoes, which are consistently nested in the collapse basins of the massive lateral collapses found in the Canaries. Three main types of post-collapse volcanism have been observed, particularly in the western Canaries: 1. Collapses followed by relatively scant, non-differentiated volcanism inside the collapse depression (El Golfo, El Hierro; La Orotava and Güímar, Tenerife), 2. those with important, although short-lasting (tens of thousands of years), post-collapse activity including felsic (phonolitic, trachytic) central volcanism (Bejenado, La Palma; Vallehermoso, La Gomera), and 3. those with very important, long-lasting (>100 kyr) post-collapse activity, evolving from primitive to felsic magmatism, eventually resulting in very high stratovolcanoes (Teide, Tenerife). Three consecutive sector collapses (Micheque, Güímar and La Orotava) mass-wasted the flanks of in the NE rift of Tenerife after intense and concentrated eruptive activity, particularly from about 1.10 Ma to 0.96 Ma, with periods of growth up to 15-25 m/kyr. Volcanic activity completely filled the Micheque collapse, evolving from basaltic to differentiated trachytic eruptions. Conversely, nested volcanism was less abundant in the Güímar and La Orotava collapses. This requires two fundamentally different scenarios which may be a function of active versus passive flank collapse trigger mechanisms: 1. The collapse occurs as a result of one of these short but intense intrusive-eruptive periods and probably triggered by concurring extensional stresses at the rifts (rift push), or 2. the giant landslide is derived only from gravitational instability. In the first scenario, the collapse of the flank of the rift may disrupt an established fissural feeding system that rapidly fills the collapse basin. Due to its disruption and the progressive new

  10. Tectonic lineaments in the cenozoic volcanics of southern Guatemala: Evidence for a broad continental plate boundary zone

    Science.gov (United States)

    Baltuck, M.; Dixon, T. H.

    1984-01-01

    The northern Caribbean plate boundary has been undergoing left lateral strike slip motion since middle Tertiary time. The western part of the boundary occurs in a complex tectonic zone in the continental crust of Guatemala and southernmost Mexico, along the Chixoy-Polochic, Motogua and possibly Jocotan-Chamelecon faults. Prominent lineaments visible in radar imagery in the Neogene volcanic belt of southern Guatemala and western El Salvador were mapped and interpreted to suggest southwest extensions of this already broad plate boundary zone. Because these extensions can be traced beneath Quaternary volcanic cover, it is thought that this newly mapped fault zone is active and is accommodating some of the strain related to motion between the North American and Caribbean plates. Onshore exposures of the Motoqua-Polochic fault systems are characterized by abundant, tectonically emplaced ultramafic rocks. A similar mode of emplacement for these off shore ultramafics, is suggested.

  11. Possible Non-volcanic Tremor Discovered in the Reelfoot Fault Zone, Northern Tennessee

    Science.gov (United States)

    Langston, C. A.; Williams, R. A.; Magnani, M.; Rieger, D. M.

    2007-12-01

    A swarm of ~80 microearthquakes was fortuitously detected in 20, 14 second-duration long-offset vibroseis shotgathers collected for a seismic reflection experiment near Mooring, TN, directly over the Reelfoot fault zone on the afternoon of 16 November 2006. These natural events show up in the shotgathers as near-vertically incident P waves with a dominant frequency of 10-15 Hz. The reflection line was 715m in length consisting of 144 channels with a sensor spacing of 5m, 8Hz vertical geophones, and recording using a Geometrics 24bit Geode seismograph. Small variations in event moveout across the linear array indicate that the seismicity was not confined to the same hypocenter and probably occurred at depths of approximately 10 km. The largest events in the series are estimated to have local magnitudes of ~-1 if at 10 km distance from the array. This is about 2.5 magnitude units lower than the threshold for local events detected and located by the CERI cooperative network in the area. The seismicity rate was ~1000 events per hour based on the total time duration of the shotgathers. The expected number of earthquakes of ML greater than or equal to -1 for the entire central United States is only 1 per hour. This detection of microseismic swarms in the Reelfoot fault zone indicates active physical processes that may be similar to non-volcanic tremor seen in the Cascadia and San Andreas fault zones and merits long-term monitoring to understand its source.

  12. Orthorhombic fault fracture patterns and non-plane strain in a synthetic transfer zone during rifting: Lennard shelf, Canning basin, Western Australia

    Science.gov (United States)

    Miller, John McL.; Nelson, E. P.; Hitzman, M.; Muccilli, P.; Hall, W. D. M.

    2007-06-01

    A complex series of faults occur within transfer zones normal to the WNW-trending rifted northern margin of the Canning basin (Western Australia). These zones controlled basinal fluid flow and the formation of some carbonate-hosted Mississippi Valley-type Zn-Pb deposits along the basin margin during Devonian to Carboniferous rifting. The study area has a regional fault geometry similar to a synthetic overlapping transfer zone. Surface and underground mapping in this transfer zone, combined with 3D modelling, indicate the faults and related extension fractures have an orthorhombic geometry. The orthorhombic fault-fracture mesh developed in response to three-dimensional non-plane strain in which the intermediate finite extension magnitude was non-zero. Pre-mineralisation marine calcite fill in the fault-fracture mesh indicates that it formed early in the deformation history. Later deformation that overprints the Zn-Pb mineralisation and fault-fracture mesh, was associated with a different maximum extension direction and this modified and reactivated the faults with both dip-slip and oblique-slip movement and tilting of earlier structures. The orthorhombic geometry is not observed at a regional scale (>10 × 10 km), indicating probable scale-dependant behaviour. This study indicates that this transfer zone developed either by (1) strain partitioning with synchronous strike-slip structures and adjacent zones of non-plane extension, or (2) by a component of non-plane extension sub-parallel to the basin margin followed by subsequent transtensional overprint of the system (preferred model). Synthetic overlapping transfer zones are inferred to be key regions where orthorhombic fault geometries may develop.

  13. Mantle Flow Across the Baikal Rift Constrained With Integrated Seismic Measurements

    Science.gov (United States)

    Lebedev, S.; Meier, T.; van der Hilst, R. D.

    2005-12-01

    The Baikal Rift is located at the boundary of the stable Siberian Craton and deforming central Mongolia. The origin of the late Cenozoic rifting and volcanism are debated, as is the mantle flow beneath the rift zone. Here we combine new evidence from azimuthally-anisotropic upper-mantle tomography and from a radially-anisotropic inversion of interstation surface-wave dispersion curves with previously published shear-wave-splitting measurements of azimuthal anisotropy across the rift (Gao et al. 1994). While our tomographic model maps isotropic and anisotropic shear-velocity heterogeneity globally, the inversion of interstation phase-velocity measurements produces a single, radially-anisotropic, shear-velocity profile that averages from the rift to 500 km SE of it. The precision and the broad band (8-340 s) of the Rayleigh and Love wave curves ensures high accuracy of the profile. Tomography and shear-wave splitting both give a NW-SE fast direction (perpendicular to the rift) in the vicinity of the rift, changing towards W-E a few hundred kilometers from it. Previously, this has been interpreted as evidence for mantle flow similar to that beneath mid-ocean ridges, with deeper vertical flow directly beneath the rift also proposed. Our radially anisotropic profile, however, shows that while strong anisotropy with SH waves faster than SV waves is present in the thin lithosphere and upper asthenosphere beneath and SE of the rift, no anisotropy is required below 110 km. The tomographic model shows thick cratonic lithosphere north of the rift. These observations suggest that instead of a flow diverging from the rift axis in NW and SE directions, the most likely pattern is the asthenospheric flow in SE direction from beneath the Siberian lithosphere and across the rift. Possible driving forces of the flow are large-scale lithospheric deformation in East Asia and the draining of asthenosphere at W-Pacific subduction zones; a plume beneath the Siberian craton also cannot be

  14. Fleeing to Fault Zones: Incorporating Syrian Refugees into Earthquake Risk Analysis along the East Anatolian and Dead Sea Rift Fault Zones

    Science.gov (United States)

    Wilson, B.; Paradise, T. R.

    2016-12-01

    The influx of millions of Syrian refugees into Turkey has rapidly changed the population distribution along the Dead Sea Rift and East Anatolian Fault zones. In contrast to other countries in the Middle East where refugees are accommodated in camp environments, the majority of displaced individuals in Turkey are integrated into cities, towns, and villages—placing stress on urban settings and increasing potential exposure to strong shaking. Yet, displaced populations are not traditionally captured in data sources used in earthquake risk analysis or loss estimations. Accordingly, we present a district-level analysis assessing the spatial overlap of earthquake hazards and refugee locations in southeastern Turkey to determine how migration patterns are altering seismic risk in the region. Using migration estimates from the U.S. Humanitarian Information Unit, we create three district-level population scenarios that combine official population statistics, refugee camp populations, and low, median, and high bounds for integrated refugee populations. We perform probabilistic seismic hazard analysis alongside these population scenarios to map spatial variations in seismic risk between 2011 and late 2015. Our results show a significant relative southward increase of seismic risk for this period due to refugee migration. Additionally, we calculate earthquake fatalities for simulated earthquakes using a semi-empirical loss estimation technique to determine degree of under-estimation resulting from forgoing migration data in loss modeling. We find that including refugee populations increased casualties by 11-12% using median population estimates, and upwards of 20% using high population estimates. These results communicate the ongoing importance of placing environmental hazards in their appropriate regional and temporal context which unites physical, political, cultural, and socio-economic landscapes. Keywords: Earthquakes, Hazards, Loss-Estimation, Syrian Crisis, Migration

  15. CENOZOIC VOLCANISM AND GEOTHERMAL RESOURCES IN NORTHEAST CHINA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper is concentrated on Cenozoic volcanism and geothermal resources in Northeast China. There are a lot of Cenozoic volcanoes, a large area of volcanic rocks, a large number of active faults and rich geothermal resources in Northeast China. The time and space characteristics of Cenozoic volcanism and the space distribution characters of hot springs and high geothermal flux regions in Northeast China are described and discussed on the basis of geological, geothermal, drilling and volcanological data. It is revealed that the hot springs and high geothermal flux regions are re lated to the Cenozoic volcanism, rifting and faulting in Northeast China. It is especially emphasized that the hot springs and high geothermal anomaly areas are controlled by active deep faults. It is proposed that the Cenozoic volcanism re gions, rift basins, active fault belts, activated plate suture zones and large earthquake occurrence points are the best areas for prospecting geothermal resources. The geothermal resources in younger volcanic zones are richer than those in older volcanic belts. The hot springs and active or activated faults might be a very good clue for looking for geothermal resources.

  16. Venus: Geology of Beta Regio rift system

    Science.gov (United States)

    Nikishin, A. M.; Borozdin, V. K.; Bobina, N. N.

    1992-01-01

    Beta Regio is characterized by the existence of rift structures. We compiled new geologic maps of Beta Regio according to Magellan data. There are many large uplifted tesserae on beta upland. These tesserae are partly buried by younger volcanic cover. We can conclude, using these observations, that Beta upland formed mainly due to lithospheric tectonic uplifting and was only partly constructed by volcanism. Theia Mons is the center of the Beta rift system. Many rift belts are distributed radially to Theia Mons. Typical widths of rifts are 40-160 km. Rift valleys are structurally represented by crustal grabens or half-grabens. There are symmetrical and asymmetrical rifts. Many rifts have shoulder uplifts up to 0.5-1 km high and 40-60 km wide. Preliminary analysis for rift valley structural cross sections lead to the conclusion that rifts originated due to 5-10 percent crustal extension. Many rifts traverse Beta upland and spread to the surrounding lowlands. We can assume because of these data that Beta rift system has an active-passive origin. It formed due to regional tectonic lithospheric extension. Rifting was accelerated by upper-mantle hot spot origination under the center of passive extension (under the Beta Regio).

  17. Transition from a localized to wide deformation along Eastern branch of Central East African Rift: Insights from 3D numerical models

    Science.gov (United States)

    Leroy, S. D.; Koptev, A.; Burov, E. B.; Calais, E.; Gerya, T.

    2015-12-01

    The Central East African Rift (CEAR) bifurcates in two branches (eastern, magma-rich and western, magma-poor) surrounding strong Tanzanian craton. Intensive magmatism and continental flood basalts are largely present in many of the eastern rift segments, but other segments, first of all the western branch, exhibit very small volcanic activity. The Eastern rift is characterized by southward progression of the onset of volcanism, the extensional features and topographic expression of the rift vary significantly north-southward: in northern Kenya the deformation is very wide (some 150-250 km in E-W direction), to the south the rift narrows to 60-70 km, yet further to the south the deformation widens again in the so-called Tanzania divergence zone. Widening of the Eastern branch within its southern part is associated with the impingement of the southward-propagating rift on the strong Masai block situated to east of the Tanzanian craton. To understand the mechanisms behind this complex deformation distribution, we implemented a 3Dl ultra-high resolution visco-plastic thermo-mechanical numerical model accounting for thermo-rheological structure of the lithosphere and hence captures essential features of the CEAR. The preferred model has a plume seeded slightly to the northeast of the craton center, consistent with seismic tomography, and produces surface strain distribution that is in good agreement with observed variation of deformation zone width along eastern side of Tanzanian craton: localized above bulk of mantle material deflected by cratonic keel narrow high strain zone (Kenia Rift) is replaced by wide distributed deformations within areas situated to north (northern Kenya, Turkana Rift) and to south (Tanzania divergence, Masai block) of it. These results demonstrate significant differences in the impact of the rheological profile on rifting style in case of dominant active rifting compared to dominant passive rifting. Narrow rifting, conventionally attributed to

  18. Phanerozoic Rifting Phases And Mineral Deposits

    Science.gov (United States)

    Hassaan, Mahmoud

    2016-04-01

    In North Africa occur Mediterranean and Red Sea metallogenic provinces. In each province distribute 47 iron- manganese- barite and lead-zinc deposits with tectonic-structural control. The author presents in this paper aspects of position of these deposits in the two provinces with Phanerozoic rifting . The Mediterranean Province belongs to two epochs, Hercynian and Alpine. The Hercynian Epoch manganese deposits in only Moroccoa- Algeria belong to Paleozoic tectonic zones and Proterozoic volcanics. The Alpine Epoch iron-manganese deposits are of post-orogenic exhalative-sedimentary origin. Manganese deposits in southern Morocco occur in Kabil-Rief quartz-chalcedony veins controlled by faults in andesitic sheets and in bedded pelitic tuffs, strata-form lenses and ore veins, in Precambrian schist and in Triassic and Cretaceous dolomites. Disseminated manganese with quartz and barite and effusive hydrothermal veins are hosted in Paleocene volcanics. Manganese deposits in Algeria are limited and unrecorded in Tunisia. Strata-form iron deposits in Atlas Heights are widespread in sub-rift zone among Jurassic sediments inter-bedding volcanic rocks. In Algeria, Group Beni-Saf iron deposits are localized along the Mediterranean coast in terrigenous and carbonate rocks of Jurassic, Cretaceous and Eocene age within faults and bedding planes. In Morocco strata-form hydrothermal lead-zinc deposits occur in contact zone of Tertiary andesite inter-bedding Cambrian shale, Lias dolomites and Eocene andesite. In both Algeria and Tunisia metasomatic Pb-Zn veins occur in Campanian - Maastrichtian carbonates, Triassic breccia, Jurassic limestone, Paleocene sandstones and limestone and Neogene conglomerates and sandstones. The Red Sea metallogenic province belongs to the Late Tertiary-Miocene times. In Wadi Araba hydrothermal iron-manganese deposits occur in Cretaceous sediments within 320°and 310 NW faults related to Tertiary basalt. Um-Bogma iron-manganese deposits are closely

  19. Mantle transition zone, stagnant slab and intraplate volcanism in Northeast Asia

    Science.gov (United States)

    Chen, Chuanxu; Zhao, Dapeng; Tian, You; Wu, Shiguo; Hasegawa, Akira; Lei, Jianshe; Park, Jung-Ho; Kang, Ik-Bum

    2017-04-01

    3-D P- and S-wave velocity structures of the mantle down to a depth of 800 km beneath NE Asia are investigated using ∼981 000 high-quality arrival-time data of local earthquakes and teleseismic events recorded at 2388 stations of permanent and portable seismic networks deployed in NE China, Japan and South Korea. Our results do not support the existence of a gap (or a hole) in the stagnant slab under the Changbai volcano, which was proposed by a previous study of teleseismic tomography. In this work we conducted joint inversions of both local-earthquake arrival times and teleseismic relative traveltime residuals, leading to a robust tomography of the upper mantle and the mantle transition zone (MTZ) beneath NE Asia. Our joint inversion results reveal clearly the subducting Pacific slab beneath the Japan Islands and the Japan Sea, as well as the stagnant slab in the MTZ beneath the Korean Peninsula and NE China. A big mantle wedge (BMW) has formed in the upper mantle and the upper part of the MTZ above the stagnant slab. Localized low-velocity anomalies are revealed clearly in the crust and the BMW directly beneath the active Changbai and Ulleung volcanoes, indicating that the intraplate volcanism is caused by hot and wet upwelling in the BMW associated with corner flows in the BMW and deep slab dehydration as well.

  20. Mantle transition zone, stagnant slab and intraplate volcanism in Northeast Asia

    Science.gov (United States)

    Chen, Chuanxu; Zhao, Dapeng; Tian, You; Wu, Shiguo; Hasegawa, Akira; Lei, Jianshe; Park, Jung-Ho; Kang, Ik-Bum

    2017-01-01

    Three-dimensional P and S wave velocity structures of the mantle down to a depth of 800 km beneath NE Asia are investigated using ˜981,000 high-quality arrival-time data of local earthquakes and teleseismic events recorded at 2388 stations of permanent and portable seismic networks deployed in NE China, Japan and South Korea. Our results do not support the existence of a gap (or a hole) in the stagnant slab under the Changbai volcano, which was proposed by a previous study of teleseismic tomography. In this work we conducted joint inversions of both local-earthquake arrival times and teleseismic relative travel-time residuals, leading to a robust tomography of the upper mantle and the mantle transition zone (MTZ) beneath NE Asia. Our joint inversion results reveal clearly the subducting Pacific slab beneath the Japan Islands and the Japan Sea, as well as the stagnant slab in the MTZ beneath the Korean Peninsula and NE China. A big mantle wedge (BMW) has formed in the upper mantle and the upper part of the MTZ above the stagnant slab. Localized low-velocity anomalies are revealed clearly in the crust and the BMW directly beneath the active Changbai and Ulleung volcanoes, indicating that the intraplate volcanism is caused by hot and wet upwelling in the BMW associated with corner flows in the BMW and deep slab dehydration as well.

  1. PRE-RIFT COMPRESSIONAL STRUCTURES AS A CONTROL ON PASSIVE MARGIN FORMATION

    DEFF Research Database (Denmark)

    Schiffer, Christian; Petersen, Kenni Dinesen

    underlain by high-velocity and density bodies (“Lower Crustal Bodies”, LCBs). A widely accepted theory of the origin of LCBs is that they were emplaced by magmatic underplating at volcanic margins. At the same time mantle serpentinization is thought to create geophysically similar structures at non...... and shows that such structures can ‘survive’ subsequent rifting and continental break up. Our model is a simple alternative that explains observations at passive margins and rift zones by accounting for the observation that most passive margins are sub-parallel to earlier shortening and extension events...

  2. Shallow-source aeromagnetic anomalies observed over the West Antarctic Ice Sheet compared with coincident bed topography from radar ice sounding - New evidence for glacial "removal" of subglacially erupted late Cenozoic rift-related volcanic edifices

    Science.gov (United States)

    Behrendt, John C.; Blankenship, D.D.; Morse, D.L.; Bell, R.E.

    2004-01-01

    Aeromagnetic and radar ice sounding results from the 1991-1997 Central West Antarctica (CWA) aerogeophysical survey over part of the West Antarctic Ice Sheet (WAIS) and subglacial area of the volcanically active West Antarctic rift system have enabled detailed examination of specific anomaly sources. These anomalies, previously interpreted as caused by late Cenozoic subglacial volcanic centers, are compared to newly available glacial bed-elevation data from the radar ice sounding compilation of the entire area of the aeromagnetic survey to test this hypothesis in detail. We examined about 1000 shallow-source magnetic anomalies for bedrock topographic expression. Using very conservative criteria, we found over 400 specific anomalies which correlate with bed topography directly beneath each anomaly. We interpret these anomalies as indicative of the relative abundance of volcanic anomalies having shallow magnetic sources. Of course, deeper source magnetic anomalies are present, but these have longer wavelengths, lower gradients and mostly lower amplitudes from those caused by the highly magnetic late Cenozoic volcanic centers. The great bulk of these >400 (40-1200-nT) anomaly sources at the base of the ice have low bed relief (60-600 m, with about 80%10 million years ago. Eighteen of the anomalies examined, about half concentrated in the area of the WAIS divide, have high-topographic expression (as great as 400 m above sea level) and high bed relief (up to 1500 m). All of these high-topography anomaly sources at the base of the ice would isostatically rebound to elevations above sea level were the ice removed. We interpret these 18 anomaly sources as evidence of subaerial eruption of volcanoes whose topography was protected from erosion by competent volcanic flows similar to prominent volcanic peaks that are exposed above the surface of the WAIS. Further, we infer these volcanoes as possibly erupted at a time when the WAIS was absent. In contrast, at the other extreme

  3. Shallow-source aeromagnetic anomalies observed over the West Antarctic Ice Sheet compared with coincident bed topography from radar ice sounding—new evidence for glacial "removal" of subglacially erupted late Cenozoic rift-related volcanic edifices

    Science.gov (United States)

    Behrendt, John C.; Blankenship, Donald D.; Morse, David L.; Bell, Robin E.

    2004-07-01

    Aeromagnetic and radar ice sounding results from the 1991-1997 Central West Antarctica (CWA) aerogeophysical survey over part of the West Antarctic Ice Sheet (WAIS) and subglacial area of the volcanically active West Antarctic rift system have enabled detailed examination of specific anomaly sources. These anomalies, previously interpreted as caused by late Cenozoic subglacial volcanic centers, are compared to newly available glacial bed-elevation data from the radar ice sounding compilation of the entire area of the aeromagnetic survey to test this hypothesis in detail. We examined about 1000 shallow-source magnetic anomalies for bedrock topographic expression. Using very conservative criteria, we found over 400 specific anomalies which correlate with bed topography directly beneath each anomaly. We interpret these anomalies as indicative of the relative abundance of volcanic anomalies having shallow magnetic sources. Of course, deeper source magnetic anomalies are present, but these have longer wavelengths, lower gradients and mostly lower amplitudes from those caused by the highly magnetic late Cenozoic volcanic centers. The great bulk of these >400 (40-1200-nT) anomaly sources at the base of the ice have low bed relief (60-600 m, with about 80%WAIS >10 million years ago. Eighteen of the anomalies examined, about half concentrated in the area of the WAIS divide, have high-topographic expression (as great as 400 m above sea level) and high bed relief (up to 1500 m). All of these high-topography anomaly sources at the base of the ice would isostatically rebound to elevations above sea level were the ice removed. We interpret these 18 anomaly sources as evidence of subaerial eruption of volcanoes whose topography was protected from erosion by competent volcanic flows similar to prominent volcanic peaks that are exposed above the surface of the WAIS. Further, we infer these volcanoes as possibly erupted at a time when the WAIS was absent. In contrast, at the other

  4. Rifting processes in the centre of Siberia revealed by BEST (Baikal Explosion Seismic Transects)

    Science.gov (United States)

    Nielsen, C. A.; Thybo, H.; Jensen, M. M.; Ross, A.; Suvorov, V. D.; Emanov, A.; Seleznev, V.; Tatkov, G.; Perchuc, E.; Gazcynski, E.

    2003-12-01

    The Baikal Rift Zone is located in Siberia at the centre of the world's largest continental area. It offers a unique opportunity for studying the processes of intra-cratonic rifting. The BEST project (Baikal Explosion Seismic Transects) comprises two deep seismic profiles at the southern end of Lake Baikal. The field project was carried out in October 2002 after a pilot project in September 2001. The aim of the project is to determine the crustal and upper mantle seismic velocity structure. The two profiles are: (1) a 360 km long, NS-trending profile across the rift zone from the Mongolian border to Cheremhovo, and (2) a 360 km long EW-trending profile along-strike of the rift zone at the northern shore of the lake into the Tunka depression to the Mongolian border. 180 Texan one-component seismographs were deployed along each profile. The primary seismic sources were 13 explosions in boreholes, each with a 500 to 3000 kg charge. Supplementary sources were airgun shots in the lake (one 100 l airgun on profile 1, one 30 l airgun on profile 2) and the supervibrator located at Babushkin near the cross point between the two profiles at the shore of the lake. We present the preliminary modelling results of the BEST data from tomographic inversion of first arrival times and 2D ray tracing modelling of the seismic velocity structure of the crust and uppermost mantle. The models show: (1) A pronounced sedimentary graben structure to depths of at least 10 km; (2) No significant crustal thinning below the rift zone; (3) Strong seismic reflectivity underneath the rift zone, indicative of pronounced magmatic intrusion into the lower crust, despite the non-volcanic appearance of much of the rift zone; (4) No sign of significant reduction of the seismic Pn wave velocity; and (5) No clear indication of continuation of the cratonic crust underneath the rift zone in disagreement with a recently published model of the rifting process. Instead the model is in agreement with a model in

  5. The Teisseyre-Tornquist Zone - early Palaeozoic strike-slip plate boundary or Ediacaran rifted margin of Baltica?

    Science.gov (United States)

    Mazur, Stanislaw; Krzywiec, Piotr; Malinowski, Michal; Lewandowski, Marek; Buffenmeyer, Vinton; Green, Christopher

    2016-04-01

    The Teisseyre-Tornquist Zone (TTZ) is the longest European tectonic and geophysical lineament extending from the Baltic Sea in the northwest to the Black Sea in the southeast. This tectonic feature defines a transition between the thick crust of the East European Craton (EEC) and the thinner crust of the Palaeozoic Platform to the southwest. Being a profound zone of crustal and lithospheric thickness perturbation, the TTZ has usually been considered a Caledonian tectonic suture formed due to the closure of the Tornquist Ocean. The suture was hypothesised to originate from the collision between Baltica and Avalonia or large-scale strike-slip displacement along strike of the Caledonian Orogen. However, some minority views postulated the continuation of Baltica crystalline basement farther to the southwest up to the Elbe Lineament and the margin of the Variscan Belt. We studied the ION Geophysical PolandSPAN survey that consists of 10 regional, seismic depth profiles covering the SW margin of the EEC and the TTZ in Poland. Since the PolandSPAN profiles image to ~30 km depth their interpretation was integrated with the potential fields data and earlier results of refraction sounding to better image the deep structure of the TTZ. Our data show that the NW and central sections of the TTZ correspond, at the Moho level, to a relatively narrow crustal keel and a significant Moho step at the transition from the EEC to the Palaeozoic Platform. However, top of basement above the TTZ is smooth and moderately sloping towards the southwest. In the central part of the TTZ, top of Precambrian is covered by undisturbed lower Palaeozoic sediments. In contrast, the lower Palaeozoic sediments are involved in a latest Silurian, thin-skinned fold-and-thrust belt along the NW section of the TTZ, where the sharply defined Caledonian Deformation Front adjoins a rigid basement buttress above the TTZ. Finally, the crustal keel is mostly missing from the SE section of the TTZ. Instead, this

  6. The Importance of Magmatic Fluids in Continental Rifting in East Africa

    Science.gov (United States)

    Muirhead, J.; Kattenhorn, S. A.; Ebinger, C. J.; Lee, H.; Fischer, T. P.; Roecker, S. W.; Kianji, G.

    2015-12-01

    The breakup of strong continental lithosphere requires more than far-field tectonic forces. Growing evidence for early-stage cratonic rift zones points to the importance of heat, magma and volatile transfer in driving lithospheric strength reduction. The relative contributions of these processes are fundamental to our understanding of continental rifting. We present a synthesis of results from geological, geochemical and geophysical studies in one of the most seismically and volcanically active sectors of the East African Rift (Kenya-Tanzania border) to investigate the role of fluids during early-stage rifting (integrated with subsurface imaging and fault kinematic data derived from the 38-station CRAFTI broadband seismic array. Teleseismic and abundant local earthquakes enable assessment of the state-of-stress and b-values as a function of depth. High Vp/Vs ratios and tomographic imaging suggest the presence of fluids in the crust, with high pore fluid pressures driving failure at lower tectonic stress. Together, these cross-disciplinary data provide compelling evidence that early-stage rifting in East Africa is assisted by fluids exsolved from deep magma bodies, some of which are imaged in the lower crust. We assert that the flux of deep magmatic fluids during rift initiation plays a key role in weakening lithosphere and localizing strain. High surface gas fluxes, fault-fed hydrothermal springs and persistent seismicity highlight the East African Rift as the ideal natural laboratory for investigating fluid-driven faulting processes in extensional tectonic environments.

  7. Seismic hazard assessment of the Kivu rift segment based on a new seismotectonic zonation model (western branch, East African Rift system)

    Science.gov (United States)

    Delvaux, Damien; Mulumba, Jean-Luc; Sebagenzi, Mwene Ntabwoba Stanislas; Bondo, Silvanos Fiama; Kervyn, François; Havenith, Hans-Balder

    2017-10-01

    In the frame of the Belgian GeoRisCA multi-risk assessment project focusing on the Kivu and northern Tanganyika rift region in Central Africa, a new probabilistic seismic hazard assessment has been performed for the Kivu rift segment in the central part of the western branch of the East African rift system. As the geological and tectonic setting of this region is incompletely known, especially the part lying in the Democratic Republic of the Congo, we compiled homogeneous cross-border tectonic and neotectonic maps. The seismic risk assessment is based on a new earthquake catalogue based on the ISC reviewed earthquake catalogue and supplemented by other local catalogues and new macroseismic epicenter data spanning 126 years, with 1068 events. The magnitudes have been homogenized to Mw and aftershocks removed. The final catalogue used for the seismic hazard assessment spans 60 years, from 1955 to 2015, with 359 events and a magnitude of completeness of 4.4. The seismotectonic zonation into 7 seismic source areas was done on the basis of the regional geological structure, neotectonic fault systems, basin architecture and distribution of thermal springs and earthquake epicenters. The Gutenberg-Richter seismic hazard parameters were determined by the least square linear fit and the maximum likelihood method. Seismic hazard maps have been computed using existing attenuation laws with the Crisis 2012 software. We obtained higher PGA values (475 years return period) for the Kivu rift region than the previous estimates. They also vary laterally in function of the tectonic setting, with the lowest value in the volcanically active Virunga - Rutshuru zone, highest in the currently non-volcanic parts of Lake Kivu, Rusizi valley and North Tanganyika rift zone, and intermediate in the regions flanking the axial rift zone.

  8. Archaeology in the Kilauea East Rift Zone: Part 2, A preliminary sample survey, Kapoho, Kamaili and Kilauea geothermal subzones, Puna District, Hawaii island

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, M.T.K.; Burtchard, G.C. [International Archaeological Research Inst., Inc., Honolulu, HI (United States)

    1995-05-01

    This report describes a preliminary sample inventory and offers an initial evaluation of settlement and land-use patterns for the Geothermal Resources Subzones (GRS) area, located in Puna District on the island of Hawaii. The report is the second of a two part project dealing with archaeology of the Puna GRS area -- or more generally, the Kilauea East Rift Zone. In the first phase of the project, a long-term land-use model and inventory research design was developed for the GRS area and Puna District generally. That report is available under separate cover as Archaeology in the Kilauea East Rift Zone, Part I: Land-Use Model and Research Design. The present report gives results of a limited cultural resource survey built on research design recommendations. It offers a preliminary evaluation of modeled land-use expectations and offers recommendations for continuing research into Puna`s rich cultural heritage. The present survey was conducted under the auspices of the United States Department of Energy, and subcontracted to International Archaeological Research Institute, Inc. (IARII) by Martin Marietta Energy Systems, Inc. The purpose of the archaeological work is to contribute toward the preparation of an environmental impact statement by identifying cultural materials which could be impacted through completion of the proposed Hawaii Geothermal Project.

  9. Geochemical variability of hydrothermal emissions between three Pacific volcanic arc systems: Alaskan-Aleutian and Cascadian, North America and Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Blackstock, J. M.; Horton, T. W.; Gravley, D. M.; Deering, C. D.

    2013-12-01

    Knowledge of the source, transport, and fate of hydrothermal fluids in the upper crust informs our understanding and interpretation of ore-forming processes, volcanogenic hazards, geothermal resources, and volatile cycling. Co-variation between fluid inclusion CO2/CH4 and N2/Ar ratios is an established tracer of magmatic, meteoric, and crustal fluid end-members. Yet, this tracer has had limited application to macroscopic fluid reservoirs accessible via geothermal wells and hydrothermal features (e.g. pools). In this study, we compared the covariance CO2/CH4 and N2/Ar ratios of gases collected throughout the Taupo Volcanic Zone, New Zealand (TVZ), the Alaska-Aleutian Volcanic Arc, USA (AAVA), and the Cascadian Volcanic Arc, USA (CVA) with corresponding δ13C and 3He/4He values. Our findings show that there is good agreement between these proxies for different end-member contributions at coarse scales. However, some samples classified as meteoric water according to the CO2/CH4 and N2/Ar ratios also show more positive δ13C values (~ -7.0 per mil) and relatively higher 3He/4He ratios indicative of magmatic input from primarily mantle sources. This unexpected result may be related to magmatic fluids, CO2 in particular, mixing with predominantly meteoric derived waters. The potential to identify magmatic CO2 in groundwater samples overlying geothermal systems in differing volcanic arc settings using simple and cost-effective gas ratios is a promising step forward in the search for ';surface blind' but developable geothermal systems and volcanic monitoring. 3He/4He anomalies also support this inference and underscore the potential decoupling of thermal anomalies and magmatic-derived fluids in the Earth's crust. The general agreement between the co-variation of CO2/CH4 and N2/Ar ratios with other isotope and geochemical proxies for magmatic, meteoric, and crustal end-members is encouraging to employ expanded use of these ratios for both the exploration and monitoring of

  10. Ecological characteristics and management of geothermal systems of the Taupo Volcanic Zone, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Boothroyd, Ian K.G. [Golder Associates Ltd., P.O. Box 33849, Takapuna, and School of Geography, Geology and Environmental Science, University of Auckland, Private Bag 92019, Auckland (New Zealand)

    2009-03-15

    New Zealand has an array of geothermal systems with distinctive ecological features, with many occurring in the Taupo Volcanic Zone in the Central North Island. Associated with these geothermal features are characteristic geophysical and geochemical components, and distinctive terrestrial and aquatic ecosystems with many attributes that are common across a range of the biotic groups. Zonation amongst vegetation communities is closely related to soil temperature and these associations generally occur in a predictable sequence along the soil temperature gradient. Similarly, clear distinctions in aquatic flora and fauna occur longitudinally downstream from the source of thermal springs and vertically on geyser mounds. The characteristic vegetation communities associated with geothermal fields and the invertebrate and algal communities found in geothermally influenced springs and streams are described, in particular the features of the Wairakei geothermal field. At this field four plant associations are recognized (non-vegetated soilfield, prostrate kanuka shrubland, prostrate kanuka scrub, mixed fernland), but all the major aquatic macroinvertebrate groups are represented and commonly found in natural freshwaters throughout New Zealand. The current management of geothermal ecosystems is reviewed with particular reference to the Waikato region of New Zealand. Management of geothermal resources in New Zealand aims to balance development with the protection of highly valued surface features via a series of regional policies, rules and regulations. Geothermal habitats, ecological gradients, and at-risk geothermal plants are included in the definition of geothermal systems for management purposes. With the recognition of the unique ecological diversity and function of geothermal ecosystems, knowledge and understanding of their ecological characteristics will be critical to the ability to utilize and sustain geothermal resources into the future. (author)

  11. Energy transport processes in a brittle ductile intrusive model of the Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Weir, Graham J.

    1998-08-01

    The implications of the findings of recent GPS and micro-seismic studies in the Taupo Volcanic Zone (TVZ), New Zealand, on models of processes transporting mass, heat and chemicals are discussed. It is argued that in addition to the well established process of groundwater convection extracting heat and chemicals by interacting with magmatic intrusives under the TVZ, that two other processes may be important. Firstly, the existence of a ductile layer with very low permeability between about 8 to 15 km depth will produce a region of `enhanced conduction' in which very high conductive fluxes of energy arise from a temperature distribution which varies exponentially with depth. Secondly, water may transport up through the ductile layer, as a result of extensional processes in the ductile region. If extension is occurring at about 8 mm/yr, then geothermal heat transfer in the TVZ of about 4200 MW is made up from about 1200 MW from the cooling of intrusives in the brittle region in the upper 8 km; of about an additional 1900 MW of conducted heat entering the brittle region from the ductile region; and about an additional 1100 MW from water transport through the ductile region. Provided this water flow has a chloride concentration similar to that emitted from nearby volcanoes, then the total chloride transport from the TVZ is about 3.5 kg/s, as suggested by average enthalpy to chloride ratios in the TVZ of about 1.2 MJ/g. The present high heat and mass transport processes in the TVZ are assumed to result from the passive filling of volume created from extensional processes under the TVZ, plus conductive and/or convective heating processes below 15 km depth.

  12. The role of Variscan to pre-Jurassic active extension in controlling the architecture of the rifted passive margin of Adria: the example of the Canavese Zone (Western Southern Alps, Italy)

    Science.gov (United States)

    Succo, Andrea; De Caroli, Sara; Centelli, Arianna; Barbero, Edoardo; Balestro, Gianni; Festa, Andrea

    2016-04-01

    The Canavese Zone, in the Italian Western Southern Alps, represents the remnant of the Jurassic syn-rift stretching, thinning and dismemberment of the distal passive margin of Adria during the opening of the Penninic Ocean (i.e., Northern Alpine Tethys). Our findings, based on detailed geological mapping, structural analysis and stratigraphic and petrographic observations, document however that the inferred hyper-extensional dismemberment of this distal part of the passive margin of Adria, up to seafloor spreading, was favored by the inherited Variscan geometry and crustal architecture of the rifted margin, and by the subsequent Alpine-related strike-slip deformation. The new field data document, in fact, that the limited vertical displacement of syn-extensional (syn-rift) Jurassic faults was ineffective in producing and justifying the crustal thinning observed in the Canavese Zone. The deformation and thinning of the continental basement of Adria are constrained to the late Variscan time by the unconformable overlying of Late Permian deposits. Late Cretaceous-Early Paleocene and Late Cenozoic strike-slip faulting (i.e., Alpine and Insubric tectonic stages) reactivated previously formed faults, leading to the formation of a complex tectonic jigsaw which only partially coincides with the direct product of the Jurassic syn-rift dismemberment of the distal part of the passive margin of Adria. Our new findings document that this dismemberment of the rifted continental margin of Adria did not simply result from the syn-rift Jurassic extension, but was strongly favored by the inheritance of older (Variscan and post-Variscan) tectonic stages, which controlled earlier lithospheric weakness. The formation of rifted continental margins by extension of continental lithosphere leading to seafloor spreading is a complex and still poorly understood component of the plate tectonic cycle. Geological mapping of rifted continental margins may thus provide significant information to

  13. Rio Grande Rift: History of Tectonic Opening and Magmatism

    Science.gov (United States)

    van Wijk, J.; Axen, G. J.; Koning, D.

    2016-12-01

    We describe the mid-Miocene to present opening history of the Rio Grande rift from tectonic subsidence patterns, published Quaternary fault activity, and spatial, temporal and geochemical distributions of volcanism. Rift opening was quite fast until 8 Ma, with tectonic subsidence rates comparable to those of the pre-rupture phase of rifted continent margins, but post-8 Ma rates are slower in all studied localities. Integration of age control reveals that a rift-margin unconformity formed between 8.5 and 3.5 Ma, its exact duration varying depending on location. This partly coincides with uplift of the Ogallala formation in the western Great Plains. The widespread extent of the unconformity suggest that the unconformity records a region-wide dynamic uplift event, possibly resulting from mantle upwelling below the region. This is supported by geoid analyses. The unconformity postdates a change in relative plate motion between the North American and Pacific plates, which may account for the post-8 Ma decrease in subsidence rates. Distribution of Quaternary fault activity is concentrated on the border faults in the northern basins where the rift is in a juvenile stage, but distributed on intra-basin faults further south in the rift where the crust is thinned more. Our analyses show that volcanism in the Rio Grande rift has been of mainly basaltic composition since the Miocene; volcanism during early rifting ranged from basalt to rhyolite. Volcanism has not been evenly distributed in the rift, but concentrated in three large volcanic fields that were located outside of the main rift prior to rift opening, and along the Jemez Lineament which crosses the Rio Grande rift, with sporadic volcanic activity elsewhere. The southern portion of the rift has experienced less volcanic activity than the northern rift, perhaps because it is underlain by fast seismic wave velocity upper mantle that may be linked to colder or compositionally different (Farallon plate subduction related

  14. A new view into the Cascadia subduction zone and volcanic arc: Implications for earthquake hazards along the Washington margin

    Science.gov (United States)

    Parsons, T.; Trehu, A.M.; Luetgert, J.H.; Miller, K.; Kilbride, F.; Wells, R.E.; Fisher, M.A.; Flueh, E.; ten Brink, U.S.; Christensen, N.I.

    1998-01-01

    In light of suggestions that the Cascadia subduction margin may pose a significant seismic hazard for the highly populated Pacific Northwest region of the United States, the U.S. Geological Survey (USGS), the Research Center for Marine Geosciences (GEOMAR), and university collaborators collected and interpreted a 530-km-long wide-angle onshore-offshore seismic transect across the subduction zone and volcanic arc to study the major structures that contribute to seismogenic deformation. We observed (1) an increase in the dip of the Juan de Fuca slab from 2??-7?? to 12?? where it encounters a 20-km-thick block of the Siletz terrane or other accreted oceanic crust, (2) a distinct transition from Siletz crust into Cascade arc crust that coincides with the Mount St. Helens seismic zone, supporting the idea that the mafic Siletz block focuses seismic deformation at its edges, and (3) a crustal root (35-45 km deep) beneath the Cascade Range, with thinner crust (30-35 km) east of the volcanic arc beneath the Columbia Plateau flood basalt province. From the measured crustal structure and subduction geometry, we identify two zones that may concentrate future seismic activity: (1) a broad (because of the shallow dip), possibly locked part of the interplate contact that extends from ???25 km depth beneath the coastline to perhaps as far west as the deformation front ???120 km offshore and (2) a crustal zone at the eastern boundary between the Siletz terrane and the Cascade Range.

  15. The use of digital outcrops to study monogenetic volcanoes: Case study at Croscat volcano (Garrotxa Volcanic Zone, Spain)

    Science.gov (United States)

    Geyer, Adelina; García-Sellés, David; Pedrazzi, Dario; Barde-Cabusson, Stéphanie; Martí, Joan; Muñoz, Josep Anton

    2014-05-01

    During the last years, it has been demonstrated that the study of outcrops with difficult or completely restricted access can be carried out by means of digital representations of the outcrop surface. Furthermore, the study of digital outcrops may facilitate visualization of the features of interest over the entire outcrop, as long as the digital outcrop can be analysed while navigating in real-time, with optional displays for perspective, scale distortions, and attribute filtering. In particular, Terrestrial Laser Scanning (TSL) instruments using Light Detection And Ranging technology (LIDAR) are capable of capturing topographic details and achieve modelling accuracy within a few centimetres. The data obtained permits the creation of detailed 3-D terrain models of larger coverage and accuracy than conventional methods and with almost complete safety of the operators. Here we show digital outcrops may be useful to perform the description of the internal structure of exposed volcanic edifices. A further advantageous application is the estimate of erosion rates and patterns that may be helpful in terms of hazard assessment or preservation of volcanic landscapes. We use as an example of application the Croscat volcano, a monogenetic edifice of the La Garrotxa volcanic field (Spain), which quarrying jobs have exposed the internal part of the volcano leading to a perfect view of its interior but making difficult the access to the upper parts. The Croscat volcano is additionally one of the most emblematic symbols of the La Garrotxa Volcanic Zone Natural Park being its preservation a main target of the park administration.

  16. Seismic hazard of the Kivu rift (western branch, East African Rift system): new neotectonic map and seismotectonic zonation model

    Science.gov (United States)

    Delvaux, Damien; Mulumba, Jean-Luc; Sebagenzi Mwene Ntabwoba, Stanislas; Fiama Bondo, Silvanos; Kervyn, François; Havenith, Hans-Balder

    2017-04-01

    setting, with the lowest value in the volcanically active Virunga - Rutshuru zone, highest in the currently non-volcanic parts of Lake Kivu, Rusizi valley and North Tanganyika rift zone, and intermediate in the regions flanking the axial rift zone. Those are to be considered as preliminary values, as there are a number of important uncertainties such as the heterogeneity and relatively short duration of the instrumental seismic catalogue used (60 years), the absence of locally derived attenuation laws and thus the choice of the attenuation laws used, and the seismic zonation scheme. Delvaux, D. et al., 2016. Journal of African Earth Sciences, doi: 10.1016/j.jafrearsci.2016.10.004.

  17. Multispectral Thermal Infrared Mapping of Sulfur Dioxide Plumes: A Case Study from the East Rift Zone of Kilauea Volcano, Hawaii

    Science.gov (United States)

    Realmuto, V. J.; Sutton, A. J.; Elias, T.

    1996-01-01

    The synoptic perspective and rapid mode of data acquisition provided by remote sensing are well-suited for the study of volcanic SO2 plumes. In this paper we describe a plume-mapping procedure that is based on image data acquired with NASA's airborne Thermal Infrared Multispectral Scanner (TIMS).

  18. The 1170 and 1202 CE Dead Sea Rift earthquakes and long-term magnitude distribution of the Dead Sea Fault zone

    Science.gov (United States)

    Hough, S.E.; Avni, R.

    2009-01-01

    In combination with the historical record, paleoseismic investigations have provided a record of large earthquakes in the Dead Sea Rift that extends back over 1500 years. Analysis of macroseismic effects can help refine magnitude estimates for large historical events. In this study we consider the detailed intensity distributions for two large events, in 1170 CE and 1202 CE, as determined from careful reinterpretation of available historical accounts, using the 1927 Jericho earthquake as a guide in their interpretation. In the absence of an intensity attenuation relationship for the Dead Sea region, we use the 1927 Jericho earthquake to develop a preliminary relationship based on a modification of the relationships developed in other regions. Using this relation, we estimate M7.6 for the 1202 earthquake and M6.6 for the 1170 earthquake. The uncertainties for both estimates are large and difficult to quantify with precision. The large uncertainties illustrate the critical need to develop a regional intensity attenuation relation. We further consider the distribution of magnitudes in the historic record and show that it is consistent with a b-value distribution with a b-value of 1. Considering the entire Dead Sea Rift zone, we show that the seismic moment release rate over the past 1500 years is sufficient, within the uncertainties of the data, to account for the plate tectonic strain rate along the plate boundary. The results reveal that an earthquake of M7.8 is expected within the zone on average every 1000 years. ?? 2011 Science From Israel/LPPLtd.

  19. Mantle enrichment by volatiles as the Nazca plate subducts beneath the Payenia backarc of the Southern Volcanic Zone, Argentina

    DEFF Research Database (Denmark)

    Brandt, Frederik Ejvang

    , minerals, fluid and melt inclusions from the Payenia backarc province of the Andean Southern Volcanic Zone. Major emphasis has been on olivine hosted melt inclusions. The study gives evidence for the role of fluids in the metasomatism of the backarc mantle, and outlines the trend of the variation...... of the metasomatism in Payenia, which is also characterized by a variation in oxidation state and other geochemical parameters of the melt inclusions, and is moreover related to mantle lithological variations. The mantle metasomatism by melts of subducted crust and fluid-borne enrichment is quantitatively modelled...

  20. Argon systematics of neutron irradiated submarine basalt glasses from the deep south rift zone of Loihi seamount and the {sup 40}Ar/{sup 36}Ar ratio of the Hawaiian plume source

    Energy Technology Data Exchange (ETDEWEB)

    Trieloff, M.; Falter, M. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Jessberger, E.K. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)]|[Muenster Univ. (Germany). Inst. fuer Planetologie

    1998-12-31

    Submarine basalt glasses from Loihi seamount dredged at the southern rift zone between 3 and 5 km depth were studied. These glasses contain neon with the highest {sup 20}Ne/{sup 22}Ne ratios measured so far in submarine volcanics and constrain a well defined correlation line in a Ne-3-isotope plot (Valbracht et al., 1997). Within this study that focussed on argon isotopes an increased resolution regarding temperature and crushing steps was used: High {sup 40}Ar/{sup 36}Ar ratios at intermediate temperatures and in several crushing steps were measured which are related to argon from vesicle populations containing the most pristine mantle signature. This argon is highly improbable to be related to olivine phenocrysts and a possible contamination by MORB type noble gases. Our best constraint on the argon isotopic composition of the Loihi glasses is {sup 40}Ar/{sup 36}Ar=6590{+-}840, providing a lower limit of >5750 for the Hawaiian lower mantle source, further attesting its partially degassed nature concerning primordial noble gases. The argon distribution in the investigated Loihi glasses shows characteristic features very similar to MORB glasses. The isotopic composition of vesicle argon released by crushing covers the complete range between the atmospheric and the mantle endmember. In low vesicularity glasses mantle argon shows a nearly perfect correlation with the glass dissolved, neutron induced argon isotopes in the course of stepheating, while in glasses of higher vesicularity mantle argon partitioned into the vesicles. This is independently confirmed by the comparison of the argon yield by crushing and heating. On the other hand, the stepheating release pattern of the atmospheric component does hardly correlate with glass dissolved argon, independent on vesicularity. A significant fraction of the atmospheric contaminant is related to vesicles and pyroxene microlites, and is moreover associated with microdefects or, alternatively, is inhomogeneously distributed

  1. Pressure and temperature evolution of upper mantle under the Rio Grande Rift

    Science.gov (United States)

    Kil, Y.; Wendlandt, R. F.

    2004-11-01

    Spinel peridotite xenoliths associated with the Rio Grande Rift axis (Potrillo and Elephant Butte volcanic fields) and the western rift shoulder (Adam’s Diggings) have been investigated to correlate pre-eruptive pressure and temperature conditions with xenolith deformation textures and rift location. Temperatures of xenolith equilibration at the rift shoulder are 100 250°C cooler for a given pressure than the temperatures at the rift axis. Undeformed xenoliths (protogranular texture) are derived from higher temperature and higher pressure conditions than deformed xenoliths (porphyroclastic and equigranular textures) in the rift axis. Exsolution lamellae in pyroxenes, small decreases in Al contents of orthopyroxenes from core to rim, and small differences in porphyroclastic orthopyroxene compositions versus neoblastic orthopyroxene compositions indicate high temperatures followed by cooling and a larger cooling interval in deformed rocks than in undeformed rocks. These features, along with thermal histories based on calcium zoning in olivine rims, indicate that the upper mantle under Adam’s Diggings and Elephant Butte has undergone cooling from an initial high temperature state followed by a late heating event, and the upper mantle under Potrillo has undergone cooling, reheating, and late heating events.

  2. Cenozoic Volcanism and Intraplate Subduction at the Northern Margin of the Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    邓万明

    1991-01-01

    Developed in the Mt.Kunlun orogenic belt at the northern margin of the Tibetan Plateau is an active Cenozoic volcanic zone which is more than 1000km in length and some ten to hundred kilometers in width.It extends east-westwards and is roughly parallet to the strike of Mt.Kunlun.The Cenozoic volcanic rocks are divided into the northern(N-)and southern(S-)subzones.Eruptions of volcanic lavas in the S-subzone are related to an initial rift zone within the north Qiangtang terrane,but the volcanic rocks in the N-subzone are relatively close to the contact zone between the Mt.Kunlun and the Tarim terrane.The space-time distribution,petrological and geochemical features can be explained by a model of southward intraplate subduction of the Tarim terrane.

  3. Architecture of the intracontinental Jaibaras Rift, Brazil, based on geophysical data

    Science.gov (United States)

    Pedrosa, Nilo C.; Vidotti, Roberta M.; Fuck, Reinhardt A.; Castelo Branco, R. M. G.; Almeida, Afonso R. de; Silva, Nilton C. Vieira; Braga, Luiz R. C.

    2017-03-01

    Qualitative and quantitative integration and interpretation of magnetic, gravity and magnetotelluric data help to determine the internal architecture of the Jaibaras rift, and allow assessing the evolution of the Jaibaras Rift within the Precambrian crystalline basement of Borborema Province, NE Brazil. This was achieved by 2D joint modeling of magnetic and gravity data in five sections across the main axis of the Jaibaras Rift. Surface data, rock density measurements, depth constraints from 2D Euler deconvolution and geophysical information from previous work in the area were integrated to constrain the modeling. The magnetic and gravity profiles of the Jaibaras Rift indicate estimated source bodies at depths up to 2.5 km, showing complex configuration for the structural framework, with a set of asymmetric grabens and horsts. The 2D magnetotelluric inversion shows that the Jaibaras Rift is marked by low resistivity values, and maximum thickness of the sedimentary package up to approximately 3 km. Shallow dipping conductive material may represent either a suture zone between the Ceará Central and Médio Coreaú domains or a set of fractures due to horizontal σ1 stress in the Ceará Central Domain. The Jaibaras Rift displays a very complex internal structure, with discontinuous sequences of grabens and horsts, and a significant volume of surface and subsurface volcanic rocks. The sedimentary packages with volcanic rift sequences have variable thicknesses, from 1 to 3 km. These rock units are controlled by normal faults that developed from older discontinuities, such as the Transbrasiliano lineament.

  4. Style of Plate Spreading Derived from the 2008-2014 Velocity Field Across the Northern Volcanic Zone of Iceland

    Science.gov (United States)

    Drouin, V.; Sigmundsson, F.; Hreinsdottir, S.; Ofeigsson, B.; Sturkell, E.; Einarsson, P.

    2015-12-01

    The Northern Volcanic Zone (NVZ) of Iceland is a subaerial part of the divergent boundary between the North-American and Eurasian Plates. At this latitude, the full spreading between the plates is accommodated by the NVZ. We derived the plate boundary velocity field from GPS campaign and continuous measurements between 2008 and 2014, a time period free of any magma intrusion. Average velocities were estimated in the ITRF08 reference frame. The overall extension is consistent with 18 mm/yr in the 104°N direction spreading, in accordance with the MORVEL2010 plate motion model. We find that a 40km-wide band along the plate boundary accommodates about 75% of the full plate velocities. Within this zone, the average strain rate is approximately 0.35 μstrain/yr. The deformation field and the strain rate are, however, much affected by other sources of deformations in the NVZ. These include magmatic sources at the most active volcanic centers, glacial rebound near the ice-caps and geothermal power-plant water extraction. Magmatic sources include a shallow magma chamber deflation under Askja caldera, as well as under Þeistareykir and eventual deep magma inflation north of Krafla volcano. Vatnajökull ice cap melting causes large uplift and outward displacements in the southern part of the NVZ. The two geothermal power-plants near Krafla are inducing local deflations. Our GPS velocities show a 35° change in the direction of the plate boundary axis north of Askja volcano that we infer to be linked to the geometric arrangement of volcanic systems within the NVZ.We use a simple arctangent model to describe the plate spreading to provide constraints on the location and the locking depth of the spreading axis. For that purpose we divided the area in short overlapping segments having the same amount of GPS points along the plate spreading direction and inverted for the location of the center of the spreading axis and locking depth. With this simple model we can account for most

  5. Rifts in spreading wax layers

    CERN Document Server

    Ragnarsson, R; Santangelo, C D; Bodenschatz, E; Ragnarsson, Rolf; Ford, J Lewis; Santangelo, Christian D; Bodenschatz, Eberhard

    1995-01-01

    We report experimental results on the rift formation between two freezing wax plates. The plates were pulled apart with constant velocity, while floating on the melt, in a way akin to the tectonic plates of the earth's crust. At slow spreading rates, a rift, initially perpendicular to the spreading direction, was found to be stable, while above a critical spreading rate a "spiky" rift with fracture zones almost parallel to the spreading direction developed. At yet higher spreading rates a second transition from the spiky rift to a zig-zag pattern occurred. In this regime the rift can be characterized by a single angle which was found to be dependent on the spreading rate. We show that the oblique spreading angles agree with a simple geometrical model. The coarsening of the zig-zag pattern over time and the three-dimensional structure of the solidified crust are also discussed.

  6. A Cambrian Arc Built on the Neoproterozoic Rifted Margin of Gondwana

    Science.gov (United States)

    Musgrave, R. J.

    2009-12-01

    Cambrian convergence along the northeastern side of the Curnamona Craton, the Gondwana margin in southeastern Australia, resulted in the development of the Delamerian Orogen. A Neoproterozoic rifted margin, marked by the alkalic Mount Arrowsmith Volcanics, forms the substrate on which is built a NE-facing Cambrian arc, complete with a clearly delineated inner imbricate accretionary prism (the Wonnaminta Zone) and outer thin-skinned wedge (the Kayrunnera Zone). Arc volcanism, represented by the calc-alkaline Mount Wright Volcanics, exhibits mixed arc-rift geochemistry. Interpretation and modelling of magnetic data reveals a chain of volcanic edifices of the Mount Wright Arc, now below 3 to 7 km of Devonian sandstones in the Bancannia Trough. Remarkably, a simple rotation around an Euler pole reconstructs the Wonnaminta Zone against the craton, and aligns structural elements on the two sides of the trough. Arc volcanism evidently occupied a rift in marginal continental crust, and the geometry, geochemistry and geophysical properties of the Mount Wright Arc are closely analogous to the Taupo Zone of New Zealand. Rifting of the arc divided Delamerian structures, indicating that at least part of the Delamerian deformation developed in a subduction accretion setting, rather than in some terminal collision. Below the Wonnaminta Zone a 3 to 5 km thick body can be traced as a large magnetic source along the length of the zone. Overridden by the thrust stack of the accretionary prism, this body is mostly planar and dips towards the east, although it is deformed into a broad antiform in the central part of the zone. Physical properties suggest that this body may be a thick rift-volcanic pile equivalent to the Mount Arrowsmith Volcanics. In the southern part of the belt a re-entrant in the Wonnaminta Zone faces a large magnetic anomaly sourced in the basement of the Kayrunnera Zone. The geometry of the re-entrant, and the development of Silurian and Devonian basins over the

  7. Geomorphology of the central Red Sea Rift: Determining spreading processes

    Science.gov (United States)

    Augustin, Nico; van der Zwan, Froukje M.; Devey, Colin W.; Ligi, Marco; Kwasnitschka, Tom; Feldens, Peter; Bantan, Rashad A.; Basaham, Ali S.

    2016-12-01

    Continental rifting and ocean basin formation is occurring today in the Red Sea, providing a possible modern analogue for the creation of mid-ocean ridges. Yet many of the seafloor features observed along the axis of the Red Sea appear anomalous compared to ancient and modern examples of mid-ocean ridges in other parts of the world, making it unclear, until recently, whether the Red Sea is truly analogous. Recent work suggests that the main morphological differences between the Red Sea Rift (RSR) and other mid-ocean ridges are due to the presence and movement of giant, submarine salt flows, which blanket large portions of the rift valley and thereby the oceanic crust. Using ship-based, high-resolution multibeam bathymetry of the central RSR between 16.5°N and 23°N we focus here on the RSR volcanic terrains not covered by salt and sediments and compare their morphologies to those observed along slow and ultra-slow spreading ridges elsewhere. Regional variations in style and intensity of volcanism can be related to variations in volcanic activity and mantle heat flow. The Red Sea oceanic seafloor shows typical features of mature (ultra)slow-spreading mid-ocean ridges, such as 2nd order discontinuities (overlapping spreading centres) and magma focussing in the segment centres (forming spreading-perpendicular volcanic ridges of thick oceanic crust). The occurrence of melt-salt interaction at locations where salt glaciers blanket the neovolcanic zone, and the absence of large detachment faults are unique features of the central RSR. These features can be related to the young character of the Red Sea and may be applicable to all young oceanic rifts, associated with plumes and/or evaporites. Thus, the RSR falls in line with (ultra)slow-spreading mid-ocean ridges globally, which makes the Red Sea a unique but highly important type example for initiation of slow rifting and seafloor spreading and one of the most interesting targets for future ocean research.

  8. Modelling of sea floor spreading initiation and rifted continental margin formation

    Science.gov (United States)

    Tymms, V. J.; Isimm Team

    2003-04-01

    Recent observations of depth dependent (heterogeneous) stretching where upper crustal extension is much less than that of the lower crust and lithospheric mantle at both non-volcanic and volcanic margins plus the discovery of broad domains of exhumed continental mantle at non-volcanic rifted margins are not predicted by existing quantitative models of rifted margin formation which are usually based on intra-continental rift models subjected to very large stretching factors. New conceptual and quantitative models of rifted margin formation are required. Observations and continuum mechanics suggest that the dominant process responsible for rifted continental margin formation is sea-floor spreading of the young ocean ridge, rather than pre-breakup intra-continental rifting. Simple fluid flow models of ocean ridge processes using analytical iso-viscous corner-flow demonstrate that the divergent motion of the upwelling mantle beneath the ocean ridge, when viewed in the reference frame of the young continental margin, shows oceanward flow of the lower continental crust and lithospheric mantle of the young rifted margin giving rise to depth dependent stretching as observed. Single-phase fluid-models have been developed to model the initiation of sea-floor spreading and the thermal, stretching and thinning evolution of the young rifted continental margin. Finite element fluid-flow modelling incorporating the evolving temperature dependent viscosity field on the fluid flow also show depth dependent stretching of the young continental margin. Two-phase flow models of ocean ridges incorporating the transport of both solid matrix and melt fluid (Spiegelman &Reynolds 1999) predict the divergent motion of the asthenosphere and lithosphere matrix, and the focusing of basaltic melt into the narrow axial zone spreading centre at ocean ridges. We are adapting two-phase flow models for application to the initiation of sea-floor spreading and rifted continental margin formation. i

  9. Characteristics and interactions between non-volcanic tremor and related slow earthquakes in the Nankai subduction zone, southwest Japan

    Science.gov (United States)

    Obara, Kazushige

    2011-10-01

    Non-volcanic tremor and related slow earthquakes in subduction zones are one of the most significant and exciting geophysical discoveries of the 21st century. In Japan, some types of slow earthquakes associated with subduction of the Philippine Sea Plate have been detected by dense seismic and geodetic observation networks equipped with continuous data-recording systems. At the deepest part of the transition between the Nankai megathrust seismogenic zone and the deep stable sliding zone, short-term slow slip events (SSE) occur on the plate interface with durations of days, accompanied by tremor and deep very-low-frequency (VLF) earthquakes resulting from interplate shear stick-slip motions. Along-strike source regions of tremor are divided into segments where these three coupling phenomena (tremor, short-term SSEs, and deep VLF earthquakes) occur at regular recurrence intervals, with durations of 2-6 months. On the updip side of the tremor zone, long-term SSEs with durations of years occur at intervals of 5-10 yrs and trigger tremor at the downdip part of the source region of long-term slip. Near the Nankai trough, shallow VLF earthquakes occur in the accretionary prism. At the eastern edge of the subducting Philippine Sea Plate, short-term SSEs recur every 6 yrs, associated with active earthquake swarms. Some of these slow earthquakes have been detected in other subduction zones; however, the properties of each constituent member of slow earthquakes are different in each subduction zone. Slow earthquakes represent transient shear slip around the seismogenic portion of major interplate megathrust faults; therefore, monitoring the relationship between slow earthquakes and interplate megathrust earthquakes is important for intermediate- and long-term predictions of the next major earthquake.

  10. GPS-derived coupling estimates for the Central America subduction zone and volcanic arc faults: El Salvador, Honduras and Nicaragua

    Science.gov (United States)

    Correa-Mora, F.; DeMets, C.; Alvarado, D.; Turner, H. L.; Mattioli, G.; Hernandez, D.; Pullinger, C.; Rodriguez, M.; Tenorio, C.

    2009-12-01

    We invert GPS velocities from 32 sites in El Salvador, Honduras and Nicaragua to estimate the rate of long-term forearc motion and distributions of interseismic coupling across the Middle America subduction zone offshore from these countries and faults in the Salvadoran and Nicaraguan volcanic arcs. A 3-D finite element model is used to approximate the geometries of the subduction interface and strike-slip faults in the volcanic arc and determine the elastic response to coupling across these faults. The GPS velocities are best fit by a model in which the forearc moves 14-16 mmyr-1 and has coupling of 85-100 per cent across faults in the volcanic arc, in agreement with the high level of historic and recent earthquake activity in the volcanic arc. Our velocity inversion indicates that coupling across the potentially seismogenic areas of the subduction interface is remarkably weak, averaging no more than 3 per cent of the plate convergence rate and with only two poorly resolved patches where coupling might be higher along the 550-km-long segment we modelled. Our geodetic evidence for weak subduction coupling disagrees with a seismically derived coupling estimate of 60 +/- 10 per cent from a published analysis of earthquake damage back to 1690, but agrees with three other seismologic studies that infer weak subduction coupling from 20th century earthquakes. Most large historical earthquakes offshore from El Salvador and western Nicaragua may therefore have been intraslab normal faulting events similar to the Mw 7.3 1982 and Mw 7.7 2001 earthquakes offshore from El Salvador. Alternatively, the degree of coupling might vary with time. The evidence for weak coupling indirectly supports a recently published hypothesis that much of the Middle American forearc is escaping to the west or northwest away from the Cocos Ridge collision zone in Costa Rica. Such a hypothesis is particularly attractive for El Salvador, where there is little or no convergence obliquity to drive the

  11. The sub-volcanic system of El Hierro, Canary Islands

    Science.gov (United States)

    Galindo, I.; Becerril, L.; Gudmundsson, A.

    2012-04-01

    The main volcanotectonic structures of El Hierro are three rift zones, trending northeast, west, and south. Most of the eruptions in El Hierro within these zones are basaltic fissure eruptions fed by subvertical dykes. The dykes appear as close to collinear or slightly offset segments, their surface expressions being clusters of cinder cones and eruptive vents. Three large landslides, referred to as El Golfo, El Julan, and Las Playas, have eroded the areas between rift axes and provide exposures that make it possible to provide a three-dimensional view of the uppermost part of the sub-volcanic system. Here we report the results of a structural study of the sub-volcanic system as obtained through the analysis of dykes and eruptive vents. The data obtained from surface outcrops have been combined with data from subsurface water galleries. More than 600 eruptive vents and 625 dykes have been studied in detail to characterise the subvolcanic system of the island. Using cinder-cone and other eruptive-vent alignments it has been possible to infer 115 eruptive fissures with lengths that range from 40 m to 2200 m. NE-SW trending volcanic fissures and dykes are common on the entire island and predominate in the northeast rift zone. The main strike of the dykes and fissures in the south and west rift zones are approximately NNW-SSE and E-W, respectively. However, in the west rift zone, eruptive fissures display a fan distribution with directions that range from N43°E to N124°E. Volcanic fissures within the El Golfo landslide valley trend parallel to the head scarp, except those that are close to the head of the valley, many of which are perpendicular to the scarp. Dykes show a radial distribution in the head scarp of the El Golfo landslide. Three feeder-dykes directly connected with their lava flows have been identified in El Hierro. Feeder dykes are difficult to observe in the field but provide important information when their lengths and thicknesses can be measured

  12. Subduction zone mantle enrichment by fluids and Zr-Hf-depleted crustal melts as indicated by backarc basalts of the Southern Volcanic Zone, Argentina

    Science.gov (United States)

    Holm, Paul M.; Søager, Nina; Alfastsen, Mads; Bertotto, Gustavo W.

    2016-10-01

    We aim to identify the components metasomatizing the mantle above the subducting Nazca plate under part of the Andean Southern Volcanic Zone (SVZ). We present new major and ICP-MS trace element and Sr, Nd and high-precision Pb isotope analyses of primitive olivine-phyric alkali basalts from the Northern Segment Volcanic Field, part of the Payenia province in the backarc of the Transitional SVZ. One new 40Ar-39Ar age determination confirms the Late Pleistocene age of this most northerly part of the province. All analysed rocks have typical subduction zone type incompatible element enrichment, and the rocks of the Northern Segment, together with the neighbouring Nevado Volcanic Field, have isotopic compositions intermediate between adjacent Transitional SVZ arc rocks and southern Payenia OIB-type basaltic rocks. Modelling the Ba-Th-Sm variation we demonstrate that fluids as well as 1-2% melts of upper continental crust (UCC) enriched their mantle sources, and La-Nb-Sm variations additionally indicate that the pre-metasomatic sources ranged from strongly depleted to undepleted mantle. Low Eu/Eu* and Sr/Nd also show evidence for a UCC component in the source. The contribution of Chile Trench sediments to the magmas seems insignificant. The Zr/Sm and Hf/Sm ratios are relatively low in many of the Northern Segment rocks, ranging down to 17 and 0.45, respectively, which, together with relatively high Th/U, is argued to indicate that the metasomatizing crustal melts were derived by partial melting of subducted UCC that had residual zircon, in contrast to the UCC melts added to Transitional SVZ arc magmas. Mixing between depleted and undepleted mantle, enriched by UCC and fluids, is suggested by Sr, Nd and Pb isotopes of the Northern Segment and Nevado magmas. The metasomatized undepleted mantle south of the Northern Segment is suggested to be part of upwelling OIB-type mantle, whereas the pre-metasomatically depleted mantle also can be found as a component in some arc

  13. Integrating remote sensing, field studies and CO2 surveys to unravel structural controls on fluid pathways at a young rift volcano

    Science.gov (United States)

    Hutchison, W.; Mather, T. A.; Pyle, D. M.; Biggs, J.; Yirgu, G.

    2014-12-01

    In volcanically and seismically active rift systems, pre-existing faults can play a significant role in the development of a volcanic complex, ultimately providing high permeability pathways that magma, hydrothermal fluids and gas can ascend to the surface. The Main Ethiopian Rift (MER) provides an ideal natural laboratory to investigate how pre-existing structures influence active volcanic processes because it hosts a number of young volcanic complexes within an active extensional tectonic setting. In this presentation we bring together observations from new high spatial resolution airborne imagery, field campaigns and CO2 degassing surveys to examine how magma, hydrothermal fluid and gas pathways are coupled to the major structural features on Aluto, a typical young silicic volcanic complex of the MER. Digital mapping of the volcanic complex using new LiDAR DEMs (2-m pixel) reveal that a significant number of lava flow vents and explosion craters on Aluto may be linked to a structural control by either rift-aligned faults that dissect the complex or a volcanic ring fracture. Mapping of surface hydrothermal alteration with aerial photos (geothermal fluid upwellings and confirms their links to the main structures. Results of volcanic CO2 degassing surveys also confirm elevated fluxes (>>100 g m-2 d-1) along major faulting and volcanic structures. There are, however, significant variations in CO2 flux along the fault zones, which can be linked to differences in near surface permeability caused by changes in topography and surface lithology. Overall these different observations of how lava, hydrothermal fluids and gas reach the surface are complementary and provide a strong case for the overarching structural controls on volcanic fluid pathways at present and throughout the evolution of the complex.

  14. Seismic evidence for a crustal magma reservoir beneath the upper east rift zoneof Kilauea volcano, Hawaii

    Science.gov (United States)

    Lin, Guoqing; Amelung, Falk; Lavallee, Yan; Okubo, Paul G.

    2014-01-01

    An anomalous body with low Vp (compressional wave velocity), low Vs (shear wave velocity), and high Vp/Vs anomalies is observed at 8–11 km depth beneath the upper east rift zone of Kilauea volcano in Hawaii by simultaneous inversion of seismic velocity structure and earthquake locations. We interpret this body to be a crustal magma reservoir beneath the volcanic pile, similar to those widely recognized beneath mid-ocean ridge volcanoes. Combined seismic velocity and petrophysical models suggest the presence of 10% melt in a cumulate magma mush. This reservoir could have supplied the magma that intruded into the deep section of the east rift zone and caused its rapid expansion following the 1975 M7.2 Kalapana earthquake.

  15. Two-stage rifting of Zealandia-Australia-Antarctica: Evidence from 40Ar/39Ar thermochronometry of the Sisters shear zone, Stewart Island, New Zealand

    Science.gov (United States)

    Kula, Joseph; Tulloch, Andy; Spell, Terry L.; Wells, Michael L.

    2007-05-01

    The Sisters shear zone is a newly discovered Late Cretaceous detachment fault system exposed for 40 km along the southeast coast of Stewart Island, southernmost New Zealand. Footwall rocks consist of variably deformed ca. 310 and 105 Ma granites that range from undeformed to protomylonite, mylonite, and ultramylonite. The hanging wall includes non-marine conglomerate and brittley deformed granite. K-feldspar thermochronometry of the footwall indicates moderately rapid cooling (20 30 C°/m.y.) due to tectonic denudation over the interval ca. 89 82 Ma. Return to slow cooling at 82 Ma coincides with the age of the oldest seafloor adjacent to the Campbell Plateau and reflects the mechanical transition from continental extension to lithospheric rupture and formation of the Pacific-Antarctic Ridge. Our findings support a two-stage rift model for continental breakup of this part of the Gondwana margin. Stage one (ca. 101 88 Ma) is the northward propagation of continental extension and the Tasman Ridge as recorded in mylonite dredged from the Ross Sea and the Paparoa core complex. Stage two (ca. 89 82 Ma) is extension between the Campbell Plateau and West Antarctica leading to formation of the Pacific-Antarctic Ridge.

  16. Young volcanoes in the Chilean Southern Volcanic Zone: A statistical approach to eruption prediction based on time series

    Science.gov (United States)

    Dzierma, Y.; Wehrmann, H.

    2010-03-01

    Forecasting volcanic activity has long been an aim of applied volcanology with regard to mitigating consequences of volcanic eruptions. Effective disaster management requires both information on expected physical eruption behaviour such as types and magnitudes of eruptions as typical for the individual volcano, usually reconstructed from deposits of past eruptions, and the likelihood that a new eruption will occur within a given time. Here we apply a statistical procedure to provide a probability estimate for future eruptions based on eruption time series, and discuss the limitations of this approach. The statistical investigation encompasses a series of young volcanoes of the Chilean Southern Volcanic Zone. Most of the volcanoes considered have been active in historical times, in addition to several volcanoes with a longer eruption record from Late-Pleistocene to Holocene. Furthermore, eruption rates of neighbouring volcanoes are compared with the aim to reveal possible regional relations, potentially resulting from local to medium-scale tectonic dynamics. One special focus is directed to the two currently most active volcanoes of South America, Llaima and Villarrica, whose eruption records comprise about 50 historical eruptions over the past centuries. These two front volcanoes are considered together with Lanín Volcano, situated in the back-arc of Villarrica, for which the analysis is based on eight eruptions in the past 10 ka. For Llaima and Villarrica, affirmed tests for independence of the repose times between successive eruptions permit to assume Poisson processes; which is hampered for Lanín because of the more limited availability of documented eruptions. The assumption of stationarity reaches varying degrees of confidence depending on the time interval considered, ameliorating towards the more recent and hence probably more complete eruption record. With these pre-requisites of the time series, several distribution functions are fit and the goodness of

  17. Ambient Noise Surface Wave Tomography of the volcanic systems of eastern Iceland

    Science.gov (United States)

    Green, R. G.; Priestley, K. F.; White, R. S.

    2015-12-01

    The Vatnajökull region of central-east Iceland lies above the head of the Iceland mantle plume where the crust is thickest due to enhanced melt supply. As a result the region contains a high density of volcanic rift systems, with six large subglacial central volcanoes. Due to the ice cover, the geological structure of the area and the location of past eruptions are poorly known. Imaging of the crustal velocity heterogeneities beneath the ice sheet aims to reveal much in terms of the structure of these volcanic plumbing systems. Mapping of significant velocity changes through time may also be indicative of movement of melt around the central volcanoes; one of which (Bárðarbunga) experienced a major rifting event in August 2014 (Sigmundsson et al. Nature 2015, Green et al. Nature Geosci. 2015). We present results from tomographic imaging of the volcanic systems in the region, using continuous data from a local broadband seismic network in central-east Iceland which provides excellent ray path coverage of the volcanic systems. This is supplemented by data from the HOTSPOT and ICEMELT experiments and the permanent monitoring stations of the Icelandic Meteorological Office. We process the continuous data following Benson et al. 2007 and automatic frequency-time analysis (FTAN) routines are used to extract more than 9000 dispersion measurements. We then generate Rayleigh wave group velocity maps which we present here. We find low velocity regions beneath the Vatnajökull icecap which are bounded by the surface expression of the volcanic rift systems. The lower velocities also extend north-west to the volcanic system under the Hofsjökull ice cap, and northwards towards Askja and the volcanic systems of the northern volcanic zone. We also produce locations and focal mechanisms of earthquakes caused by magmatic and hydrothermal activity to correlate structure with the activity of the volcanic systems.

  18. Characterisation of Cements From Dominantly Volcanic Raw Materials of the Carpathian Bend Zone

    Directory of Open Access Journals (Sweden)

    Halmagy Timea

    2016-12-01

    Full Text Available This paper presents the results of laboratory investigations regarding the production of cements from local raw materials, such as limestone from Varghis, gypsum from Nucsoara, basaltic scoria from Racosul de Jos, volcanic tuff from Racosul de Sus, diatomite from Filia, and red mud from Oradea. The raw mixtures, based on modified Bogue calculations, contain limestone, gypsum, and one or two of the above-mentioned materials. The cements resulted from clinker grinding in a laboratory gas furnace at 1260-1300 °C, with one hour at the peak temperatures, and were characterised for Blaine specific surface area, specific density, and mineral phases. Physico-mechanical properties, such as water content for normal consistency, setting time, soundness, and compressive strength were also determined. Results show that these cements contain belite, ferrite, calcium sulphoaluminate, anhydrite, and some minor compounds.

  19. Magmatic cycles pace tectonic and morphological expression of rifting (Afar depression, Ethiopia)

    Science.gov (United States)

    Medynski, S.; Pik, R.; Burnard, P.; Dumont, S.; Grandin, R.; Williams, A.; Blard, P.-H.; Schimmelpfennig, I.; Vye-Brown, C.; France, L.; Ayalew, D.; Benedetti, L.; Yirgu, G.

    2016-07-01

    The existence of narrow axial volcanic zones of mid-oceanic ridges testifies of the underlying concentration of both melt distribution and tectonic strain. As a result of repeated diking and faulting, axial volcanic zones therefore represent a spectacular topographic expression of plate divergence. However, the submarine location of oceanic ridges makes it difficult to constrain the interplay between tectonic and magmatic processes in time and space. In this study, we use the Dabbahu-Manda Hararo (DMH) magmatic rift segment (Afar, Ethiopia) to provide quantitative constraints on the response of tectonic processes to variations in magma supply at divergent plate boundaries. The DMH magmatic rift segment is considered an analogue of an oceanic ridge, exhibiting a fault pattern, extension rate and topographic relief comparable to intermediate- to slow-spreading ridges. Here, we focus on the northern and central parts of DMH rift, where we present quantitative slip rates for the past 40 kyr for major and minor normal fault scarps in the vicinity of a recent (September 2005) dike intrusion. The data obtained show that the axial valley topography has been created by enhanced slip rates that occurred during periods of limited volcanism, suggestive of reduced magmatic activity, probably in association with changes in strain distribution in the crust. Our results indicate that the development of the axial valley topography has been regulated by the lifetimes of the magma reservoirs and their spatial distribution along the segment, and thus to the magmatic cycles of replenishment/differentiation (<100 kyr). Our findings are also consistent with magma-induced deformation in magma-rich rift segments. The record of two tectonic events of metric vertical amplitude on the fault that accommodated the most part of surface displacement during the 2005 dike intrusion suggests that the latter type of intrusion occurs roughly every 10 kyr in the northern part of the DMH segment.

  20. Rifted Continental Margins: The Case for Depth-Dependent Extension

    Science.gov (United States)

    Huismans, Ritske S.; Beaumont, Christopher

    2016-04-01

    Even though many basic properties of non-volcanic rifted margins are predicted by uniform extension of the lithosphere, uniform extension fails to explain other important characteristics. Particularly significant discrepancies are observed at: 1) the Iberia-Newfoundland conjugate margins (Type I), where large tracts of continental mantle lithosphere are exposed at the seafloor, and at; 2) ultra-wide central South Atlantic margins (Type II) where continental crust spans wide regions below which it appears that lower crust and mantle lithosphere were removed. Neither corresponds to uniform extension in which crust and mantle thin by the same factor. Instead, either the crust or mantle lithosphere has been preferentially removed during extension. We show that the Type I and II styles are respectively reproduced by dynamical numerical lithospheric stretching models (Models I-A/C and II-A/C) that undergo depth-dependent extension. In this notation A and C imply underplating of the rift zone during rifting by asthenosphere and lower cratonic lithosphere, respectively. We also present results for models with a weak upper crust and strong lower crust, Models III-A/C, to show that lower crust can also be removed from beneath the rift zone by horizontal advection with the mantle lithosphere. From the model results we infer that these Types I, II, and III margin styles are controlled by the strength of the mid/lower crust, which determines the amount of decoupling between upper and lower lithosphere during extension and the excision of crust or mantle. We also predict the styles of sedimentary basins that form on these margins as a test of the concepts presented

  1. Physics-based and statistical earthquake forecasting in a continental rift zone: the case study of Corinth Gulf (Greece)

    Science.gov (United States)

    Segou, Margarita

    2016-01-01

    I perform a retrospective forecast experiment in the most rapid extensive continental rift worldwide, the western Corinth Gulf (wCG, Greece), aiming to predict shallow seismicity (depth ETAS) statistics, four physics-based (CRS) models, combining static stress change estimations and the rate-and-state laboratory law and one hybrid model. For the latter models, I incorporate the stress changes imparted from 31 earthquakes with magnitude M ≥ 4.5 at the extended area of wCG. Special attention is given on the 3-D representation of active faults, acting as potential receiver planes for the estimation of static stress changes. I use reference seismicity between 1990 and 1995, corresponding to the learning phase of physics-based models, and I evaluate the forecasts for six months following the 1995 M = 6.4 Aigio earthquake using log-likelihood performance metrics. For the ETAS realizations, I use seismic events with magnitude M ≥ 2.5 within daily update intervals to enhance their predictive power. For assessing the role of background seismicity, I implement a stochastic reconstruction (aka declustering) aiming to answer whether M > 4.5 earthquakes correspond to spontaneous events and identify, if possible, different triggering characteristics between aftershock sequences and swarm-type seismicity periods. I find that: (1) ETAS models outperform CRS models in most time intervals achieving very low rejection ratio RN = 6 per cent, when I test their efficiency to forecast the total number of events inside the study area, (2) the best rejection ratio for CRS models reaches RN = 17 per cent, when I use varying target depths and receiver plane geometry, (3) 75 per cent of the 1995 Aigio aftershocks that occurred within the first month can be explained by static stress changes, (4) highly variable performance on behalf of both statistical and physical models is suggested by large confidence intervals of information gain per earthquake and (5) generic ETAS models can

  2. Subsurface images of the Eastern Rift, Africa, from the joint inversion of body waves, surface waves and gravity: investigating the role of fluids in early-stage continental rifting

    Science.gov (United States)

    Roecker, S.; Ebinger, C.; Tiberi, C.; Mulibo, G.; Ferdinand-Wambura, R.; Mtelela, K.; Kianji, G.; Muzuka, A.; Gautier, S.; Albaric, J.; Peyrat, S.

    2017-08-01

    The Eastern Rift System (ERS) of northern Tanzania and southern Kenya, where a cratonic lithosphere is in the early stages of rifting, offers an ideal venue for investigating the roles of magma and other fluids in such an environment. To illuminate these roles, we jointly invert arrival times of locally recorded P and S body waves, phase delays of ambient noise generated Rayleigh waves and Bouguer anomalies from gravity observations to generate a 3-D image of P and S wave speeds in the upper 25 km of the crust. While joint inversion of gravity and arrival times requires a relationship between density and wave speeds, the improvement in resolution obtained by the combination of these disparate data sets serves to further constrain models, and reduce uncertainties. The most significant features in the 3-D model are (1) P and S wave speeds that are 10-15 per cent lower beneath the rift zone than in the surrounding regions, (2) a relatively high wave speed tabular feature located along the western edge of the Natron and Manyara rifts, and (3) low (˜1.71) values of Vp/Vs throughout the upper crust, with the lowest ratios along the boundaries of the rift zones. The low P and S wave speeds at mid-crustal levels beneath the rift valley are an expected consequence of active volcanism, and the tabular, high-wave speed feature is interpreted to be an uplifted footwall at the western edge of the rift. Given the high levels of CO2 outgassing observed at the surface along border fault zones, and the sensitivity of Vp/Vs to pore-fluid compressibility, we infer that the low Vp/Vs values in and around the rift zone are caused by the volcanic plumbing in the upper crust being suffused by a gaseous CO2 froth on top of a deeper, crystalline mush. The repository for molten rock is likely located in the lower crust and upper mantle, where the Vp/Vs ratios are significantly higher.

  3. Plate kinematics of the Afro-Arabian Rift System with emphasis on the Afar Depression, Ethiopia

    Science.gov (United States)

    Bottenberg, Helen Carrie

    This work utilizes the Four-Dimensional Plates (4DPlates) software, and Differential Interferometric Synthetic Aperture Radar (DInSAR) to examine plate-scale, regional-scale and local-scale kinematics of the Afro-Arabian Rift System with emphasis on the Afar Depression in Ethiopia. First, the 4DPlates is used to restore the Red Sea, the Gulf of Aden, the Afar Depression and the Main Ethiopian Rift to development of a new model that adopts two poles of rotation for Arabia. Second, the 4DPlates is used to model regional-scale and local-scale kinematics within the Afar Depression. Most plate reconstruction models of the Afro-Arabian Rift System relies on considering the Afar Depression as a typical rift-rift-rift triple junction where the Arabian, Somali and Nubian (African) plates are separating by the Red Sea, the Gulf of Aden and the Main Ethiopian Rift suggesting the presence of "sharp and rigid" plate boundaries. However, at the regional-scale the Afar kinematics are more complex due to stepping of the Red Sea propagator and the Gulf of Aden propagator onto Afar as well as the presence of the Danakil, Ali Sabieh and East Central Block "micro-plates". This study incorporates the motion of these micro-plates into the regional-scale model and defined the plate boundary between the Arabian and the African plates within Afar as likely a diffused zone of extensional strain within the East Central Block. Third, DInSAR technology is used to create ascending and descending differential interferograms from the Envisat Advanced Synthetic Aperture Radar (ASAR) C-Band data for the East Central Block to image active crustal deformation related to extensional tectonics and volcanism. Results of the DInSAR study indicate no strong strain localization but rather a diffused pattern of deformation across the entire East Central Block.

  4. Diagnosis of time of increased probability of volcanic earthquakes at Mt. Vesuvius zone

    CERN Document Server

    Rotwain, I; Kuznetsov, I V; Panza, G F; Peresan, A

    2003-01-01

    The possibility of intermediate-term earthquake prediction at Mt. Vesuvius by means of the algorithm CN is explored. CN was originally designed to identify the Times of Increased Probability (TIPs) for the occurrence of strong tectonic earthquakes, with magnitude M >= M sub 0 , within a region a priori delimited. Here the algorithm CN is applied, for the first time, to the analysis of volcanic seismicity. The earthquakes recorded at Mt. Vesuvius, during the period from February 1972 to October 2002, are considered and the magnitude threshold M sub 0 , selecting the events to be predicted, is varied within the range: 3.0 - 3.3. Satisfactory prediction results are obtained, by retrospective analysis, when a time scaling is introduced. In particular, when the length of the time windows is reduced by a factor 2.5 - 3, with respect to the standard version of CN algorithm, more than 90% of the events with M >= M sub 0 occur within the TIP intervals, with TIPs occupying about 30% of the total time considered. The co...

  5. The development of the East African Rift system in north-central Kenya

    Science.gov (United States)

    Hackman, B. D.; Charsley, T. J.; Key, R. M.; Wilkinson, A. F.

    1990-11-01

    Between 1980 and 1986 geological surveying to produce maps on a scale of 1:250,000 was completed over an area of over 100,000 km 2 in north-central Kenya, bounded by the Equator, the Ethiopian border and longitudes 36° and 38 °E. The Gregory Rift, much of which has the structure of an asymmetric half-graben, is the most prominent component of the Cenozoic multiple rift system which extends up to 200 km to the east and for about 100 km to the west, forming the Kenya dome. On the eastern shoulder and fringes two en echelon arrays of late Tertiary to Quaternary multicentre shields can be recognized: to the south is the Aberdares-Mount Kenya-Nyambeni Range chain and, to the north the clusters of Mount Kulal, Asie, Huri Hills and Marsabit, with plateau lavas and fissure vents south of Marsabit in the Laisamis area. The Gregory Rift terminates at the southern end of Lake Turkana. Further north the rift system splays: the arcuate Kinu Sogo fault zone forms an offset link with the central Ethiopian Rift system. In the rifts of north-central Kenya volcanism, sedimentation and extensional tectonics commenced and have been continuous since the late Oligocene. Throughout this period the Elgeyo Fault acted as a major bounding fault. A comparative study of the northern and eastern fringes of the Kenya dome with the axial graben reinforces the impression of regional E-W asymmetry. Deviations from the essential N-trend of the Gregory Rift reflect structural weaknesses in the underlying Proterozoic basement, the Mozambique Orogenic Belt: thus south of Lake Baringo the swing to the southeast parallels the axes of the ca. 620 Ma phase folds. Secondary faults associated with this flexure have created a "shark tooth" array, an expression of en echelon offsets of the eastern margin of the Gregory Rift in a transtensional stress regime: hinge zones where major faults intersect on the eastern shoulder feature intense box faulting and ramp structures which have counterparts in the rift

  6. 3.30 Ga high-silica intraplate volcanic-plutonic system of the Gavião Block, São Francisco Craton, Brazil: Evidence of an intracontinental rift following the creation of insulating continental crust

    Science.gov (United States)

    Zincone, Stefano A.; Oliveira, Elson P.; Laurent, Oscar; Zhang, Hong; Zhai, Mingguo

    2016-12-01

    High-silica rhyolites having U-Pb zircon ages of 3303 ± 11 Ma occur along the eastern border of the Gavião Block (Brazil) associated with the Contendas-Mirante and Mundo Novo supracrustal belts. Unlike many Archean greenstone sequences, they are not interlayered with mafic to intermediate units. Instead, they belong to an inter-related plutonic-volcanic system, together with granitic massifs having similar zircon crystallization ages of ca. 3293 ± 3 Ma and 3328 ± 3 Ma and plotting along the same geochemical trends as the rhyolites. The rhyolites show well-preserved primary volcanic features such as magma flow textures and euhedral phenocrysts. High emplacement temperatures are indicated by petrographic evidence (β-quartz phenocrysts), zircon saturation temperatures (915-820 °C) and geochemical data, especially high SiO2 (74-79 wt.%) together with elevated Fe2O3(T) ( 3 wt.%), MgO (0.5-1.5 wt.%) and low Al2O3 (extraction and eruption of highly silicic residual liquid formed by crystallization of granitic magma in a relatively shallow (< 10 km) reservoir, now represented by the granite massifs. The granite magma was formed by melting or differentiation of material similar to the diorite gneiss that occurs regionally. The 3.30 Ga volcanic-plutonic systems formed after a period of crustal growth and stabilization of a thick continental lithosphere, represented by massive 3.40-3.33 Ga TTG and medium to high-K calk-alkaline magmatism in the Gavião Block. The 3.30 Ga-old rhyolites and granites would therefore have formed in an intracontinental tectonic setting after the formation and stabilization of new continental crust, and accordingly would represent the first stages of rifting and continental break-up. Intraplate magmatism and intracrustal differentiation processes took place on Earth at 3.3 Ga and produced magmas that were distinct from Archean TTGs, questioning the reliability (or at least the uniqueness) of "intraplate models" to explain the origin of the

  7. Non-volcanic tremor in Cascadia: Segmented along strike, anti-correlated with earthquakes, and offset from the locked zone

    Science.gov (United States)

    Boyarko, D. C.; Brudzinski, M. R.; Allen, R. M.; Porritt, R. W.

    2009-12-01

    Episodic tremor and slip (ETS), the spatial and temporal correlation of slow slip events monitored by GPS observations and non-volcanic tremor (NVT) monitored by seismic signals, is a recently discovered type of deformation thought to occur immediately down-dip from the seismogenic zone along several subduction margins. Owing to the wealth of geodetic and seismic observatories in Washington and Vancouver Island, ETS in northern Cascadia has been the subject of numerous studies over the last half-decade, while the rest of the margin has received considerably less attention. We will present a comprehensive review of tremor activity along the southern Cascadia margin between 2005 and 2007 using both semi-automated and fully-automated source location routines. We will also utilize the fully-automated routine to expand the scope to include the entire Cascadia margin and episodes after 2007, including the great 2008 ETS episode which spans nearly the entire length of the margin. The along-strike length of activity of an individual episode varies between 30 to 900 km, evolving in a very complex manner with periods of steady and halting migration and frequent along-strike jumps (30-600 km). The initiation and termination points of laterally-continuous tremor activity appear to be repeatable features between NVT episodes which support the hypothesis of segmentation within the ETS zone. The distribution of tremor epicenters occur within a narrow band confined by the surface projections of the 30 and 40 km contours of the subducting plate interface. We find the tremor zone is spatially offset by as much as 50 km down-dip from the thermally- and geodetically-defined transition zone, which may decrease the efficiency of stress transmission and slip propagation during either transient or seismogenic deformation episodes. Intriguingly, NVT activity is spatially anti-correlated with local seismicity, suggesting the two processes occur mutually exclusive of one another. We propose

  8. An Early Cretaceous volcanic arc/marginal basin transition zone, Peninsula hardy, southernmost Chile

    Science.gov (United States)

    Miller, Christopher A.; Barton, Michael; Hanson, Richard E.; Fleming, Thomas H.

    1994-10-01

    The Hardy Formation represents a latest Jurassic-Early Cretaceous volcanic arc that was located along the Pacific margin of southern South America. It was separated from the continent by a marginal basin floored by portions of an ophiolite sequence (the Rocas Verdes ophiolites). The transition between the arc and marginal basin occurs on Peninsula Hardy, southernmost Chile, where there is a lateral facies transition from arc deposits of the Hardy Formation into proximal marginal basin fill of the Yahgan Formation. Interfingering of arc and marginal basin sequences demonstrates that subduction-related arc magmatism was concurrent with marginal basin formation. The lateral facies transition is reflected in the geochemistry of volcanic rocks from the Hardy and Yahgan formations. Basalts, andesites and dacites of the arc sequence follow a calc-alkaline differentiation trend whereas basalts from the marginal basin follow a tholeiitic differentiation trend. Estimates of temperature and oxygen fugacity for crystallization of the arc andesites are similar to values reported for other calc-alkaline andesites. It is suggested that water activity influenced the early or late crystallization of Ti-magnetite and this controlled the style of differentiation of the magmas erupted on Peninsula Hardy. Magmas with high water contents evolved along the calc-alkaline differentiation trend whereas those with low water contents evolved along the tholeiitic differentiation trend. Some rhyolites are differentiated from the calc-alkaline andesites and dacites, but most appear to be the products of crustal anatexis on the basis of trace-element evidence. The arc basalts and some marginal basin basalts show relative enrichment in LILE, relative depletion in HFSE, and enrichment in LREE. Other marginal basin basalts are LREE depleted and show small relative depletions in HFSE. Basalts with both calc-alkaline and tholeiitic affinities can also be recognized in the Rocas Verdes ophiolites

  9. The petrology, geochronology and geochemistry of Hauhungatahi volcano, S.W. Taupo Volcanic Zone

    Science.gov (United States)

    Cameron, Errol; Gamble, John; Price, Richard; Smith, Ian; McIntosh, William; Gardner, Mairi

    2010-02-01

    Hauhungatahi volcano is an eroded andesitic edifice 10 km west of Ruapehu volcano constructed on an upfaulted block of Mesozoic marine sediments. Hauhungatahi andesites are distinctively clinopyroxene-phyric with high ratios of clinopyroxene:plagioclase. This contrasts with the plagioclase-phyric dominated assemblages in the stratovolcanoes such as Ruapehu and Tongariro. Hauhungatahi andesites show high MgO (> 8.0% wt), Sr (> 400 ppm), Ni (> 100 ppm) and Cr (> 400 ppm) and low Si, Rb, Ba and Zr relative to andesites from Ruapehu volcano, with fractionated LREE (Ce/Sm) n ~ 2 and flat HREE (Dy/Yb) n ~ 1. Sr-isotope ratios are lower at equivalent Nd isotope ratios than Ruapehu andesites of the (oldest) Te Herenga Formation. 40Ar/ 39Ar step-heating experiments of groundmass concentrates of 4 samples have yielded ages between 881 ± 83 ka and 961 ± 59 ka, with a weighted mean age of 933 ± 46 ka, indicating that Hauhungatahi is significantly older than Ruapehu Volcano where volcanism commenced ~ 250-300 ka. Hauhungatahi is therefore similar in age to the older andesitic edifices that are marginal to the TVZ (eg Titiraupenga, Pureora and Rolles Peak). We suggest that these high-Mg andesites hold clues to the early conditioning of the lithosphere beneath TVZ, prior to the establishment of the large andesite stratovolcanoes that presently dominate the skyline at the southern end of TVZ. The relatively low abundance of plagioclase in the phenocryst assemblages hints at high P H 2O and possible involvement of amphibole in the source.

  10. Recent crustal foundering in the Northern Volcanic Zone of the Andean arc: Petrological insights from the roots of a modern subduction zone

    Science.gov (United States)

    Bloch, Elias; Ibañez-Mejia, Mauricio; Murray, Kendra; Vervoort, Jeffrey; Müntener, Othmar

    2017-10-01

    Periodic loss of the lower lithosphere into the convecting mantle due to gravitational instability is postulated to be a major mechanism for lithosphere recycling in orogenic zones, but unequivocal petrologic evidence of this process is elusive. The Granatifera Tuff, located in the Mercaderes-Rio Mayo area of the southern Colombian Andes, contains a wide variety of crustal and mantle xenoliths. Here we focus on the thermobarometry and Lu-Hf isotope systematics of crustal garnet clinopyroxenite xenoliths, the results of which offer the first evidence of recent, and likely active, crustal foundering in the Northern Volcanic Zone of the Andean arc. We find that most of these xenoliths equilibrated between 60-80 km depths, ∼7-27 km below the seismically determined Moho in this region, and that at least one crustal garnet clinopyroxenite re-equilibrated at depths exceeding 95 km. A second garnet clinopyroxenite equilibrated at ∼150 km depths, and is either foundered lithospheric material or the product of reaction between peridotite and a mobile component (either silicic melt or fluids) at >4 GPa. All of the investigated garnet clinopyroxenites are negatively buoyant relative to the upper mantle asthenosphere. The presence of minor amounts of secondary amphibole and orthopyroxene, coupled with the lack of major-element retrograde zonation in primary phases within these xenoliths, indicates that these rocks were rapidly transported to, and briefly resided at, shallow depths before eruption. Lu-Hf ages from two garnet clinopyroxenites and one garnet-clinopyroxene hornblendite are material, which the Mercaderes xenoliths document, without catastrophic removal of the crustal root.

  11. Mapping of zones potentially occupied by Aedes vexans and Culex poicilipes mosquitoes, the main vectors of Rift Valley fever in Senegal

    Directory of Open Access Journals (Sweden)

    Yves M. Tourre

    2008-11-01

    Full Text Available A necessary condition for Rift Valley fever (RVF emergence is the presence of Aedes (Aedimorphus vexans and Culex (Culex poicilipes mosquitoes carrying the arbovirus and responsible for the infection. This paper presents a detailed mapping in the Sahelian region of Senegal of zones potentially occupied by these mosquitoes (ZPOMs whose population density is directly linked to ecozones in the vicinity of small ponds. The vectors habitats and breeding sites have been characterized through an integrated approach combining remote sensing technology, geographical information systems, geographical positioning systems and field observations for proper geo-referencing. From five SPOT-5 images (~10 m spatial resolution with appropriate channels, a meridional composite transect of 290 x 60 km was first constructed at the height of the summer monsoon. Subsequent ZPOMs covered major ecozones from north to south with different hydrological environments and different patterns pond distributions. It was found that an overall area of 12,817 ha ± 10% (about 0.8% of the transect is occupied by ponds with an average ZPOM 17 times larger than this (212,813 ha ± 10% or about 14% of the transect. By comparing the very humid year of 2003 with 2006 which had just below normal rainfall, the ZPOMs inter-annual variability was analyzed in a sandy-clayey ecozone with an important hydrofossil riverbed within the Ferlo region of Senegal. Very probably contributing to an increased abundance of vectors by the end of August 2003, it was shown that the aggregate pond area was already about 22 times larger than in August 2006, corresponding to an approximately five times larger total ZPOM. The results show the importance of pin-pointing small ponds (sizes down to 0.1 ha and their geographical distribution in order to assess animal exposure to the RVF vectors.

  12. Effects of crustal thickness on magmatic differentiation in subduction zone volcanism: A global study

    Science.gov (United States)

    Farner, Michael J.; Lee, Cin-Ty A.

    2017-07-01

    The majority of arc magmas are highly evolved due to differentiation within the lithosphere or crust. Some studies have suggested a relationship between crustal thickness and magmatic differentiation, but the exact nature of this relationship is unclear. Here, we examine the interplay of crustal thickness and magmatic differentiation using a global geochemical dataset compiled from active volcanic arcs and elevation as a proxy for crustal thickness. With increasing crustal thickness, average arc magma compositions become more silicic (andesitic) and enriched in incompatible elements, indicating that on average, arc magmas in thick crust are more evolved, which can be easily explained by the longer transit and cooling times of magmas traversing thick arc lithosphere and crust. As crustal thickness increases, arc magmas show higher degrees of iron depletion at a given MgO content, indicating that arc magmas saturate earlier in magnetite when traversing thick crust. This suggests that differentiation within thick crust occurs under more oxidizing conditions and that the origin of oxidation is due to intracrustal processes (contamination or recharge) or the role of thick crust in modulating melting degree in the mantle wedge. We also show that although arc magmas are on average more silicic in thick crust, the most silicic magmas (>70 wt.% SiO2) are paradoxically found in thin crust settings, where average compositions are low in silica (basaltic). We suggest that extreme residual magmas, such as those exceeding 70 wt.% SiO2, are preferentially extracted from shallow crustal magma bodies than from deep-seated magma bodies, the latter more commonly found in regions of thick crust. We suggest that this may be because the convective lifespan of crustal magma bodies is limited by conductive cooling through the overlying crustal lid and that magma bodies in thick crust cool more slowly than in thin crust. When the crust is thin, cooling is rapid, preventing residual magmas

  13. Deep structure of the northern Rio Grande rift beneath the San Luis basin (Colorado) from a seismic reflection survey: implications for rift evolution

    Science.gov (United States)

    Tandon, Kush; Brown, Larry; Hearn, Thomas

    1999-02-01

    A seismic reflection survey by Chevron across the San Luis basin (northern Rio Grande rift) and San Juan volcanic field of southern Colorado is reprocessed with extended correlation to search for basement structure. The trace of the main bounding fault of the basin, a high-angle normal fault against the Sangre de Cristo Range, can be correlated to a wide zone of dipping reflection fabric and soles out at lower crustal depths (26-28 km). The deeper reflection fabric represent either broad extensional strain or pre-existing structure, such as a Laramide thrust system. The Sangre de Cristo bounding fault in San Luis basin does not sole out at mid-crustal depths but continues into the lower crust with a shallower dip. The basin architecture in the northern Rio Grande rift (San Luis basin) provides little if any evidence that the Sangre de Cristo bounding fault should flatten in a shallow listric fashion. This fault geometry is quite similar to the high-angle bounding fault in the Espanola basin but contrasts with less deeply-rooted faults in the Albuquerque basin in the central Rio Grande rift. Deeper soling out of the Sangre de Cristo bounding fault could be due to less extension in the northern Rio Grande rift and/or greater strength of the lithosphere compared to the central Rio Grande rift. Unequivocal Moho reflections beneath the San Luis basin cannot be identified, probably due to limited signal penetration or a gradational nature of the Moho. The majority of rift-related movement observed on the Sangre de Cristo bounding fault is post-Eocene. Either the western margin of the basin is marked by a tight monocline or a low-angle normal fault.

  14. Mapping Precambrian Basement Fabric with Magnetic Data in the Karonga Basin Area and its Control on the Development of the Malawi Rift.

    Science.gov (United States)

    Johnson, T.; Abdelsalam, M. G.; Atekwana, E. A.; Chindandali, P. R. N.; Clappe, B.; Laó-Dávila, D. A.; Dawson, S.; Hull, C. D.; Nyalugwe, V.; Salima, J.

    2015-12-01

    The Malawi Rift forms the southern termination of the western branch of the East African Rift System. It is suggested that it propagates from the Rungwe Volcanic Province in the north for ~700 km into Mozambique in the south. The northern portion of the Malawi Rift is dominated by the Mesoproterozoic basement rocks of the Ubendian-Usagaran belts to the north and west and the Irumide Belt in the south. The Mugese shear zone (MSZ) forms the boundary between the Ubendian-Usagaran and Irumide Belts. We used magnetic data to determine the relationship between the geology of the nascent Malawi Rift and the strong magnetic fabric observed in the Mugese shear zone from aeromagnetic maps. We integrated the aeromagnetic data with ground magnetic data acquired along two W-E transects using a cesium vapor magnetometer at a nominal station spacing of 500 m. We also acquired kinematic data (strike and dip) on exposed basement geology and Karoo sediments. Both transects extend from the uplifted basement areas cutting across the MSZ into the rift floor sediments. Our results show that the MSZ is characterized by a prominent WNW-ESE magnetic anomaly that is parallel to the basement fabric north of the town of Karonga but changes orientation to NNW-SSE south of Karonga. This shear zone is composed of gneisses in amphibolite to granulite facies that are steeply dipping (50-80°) to the west. The strong magnetization and magnetic lineation of the MSZ results from alternating light and dark colored gneissic bands. This magnetization is strongest in unweathered basement rocks and lowest in weathered basement rocks and Karoo sediments. The orientation of the strong magnetic fabric of the Mugese shear zone may play an important role on the accommodation of strain within the rift basin. Detailed mapping of the magnetic fabric can improve our understanding of the formation of faults in the nascent Malawi Rift.

  15. 3D features of delayed thermal convection in fault zones: consequences for deep fluid processes in the Tiberias Basin, Jordan Rift Valley

    Science.gov (United States)

    Magri, Fabien; Möller, Sebastian; Inbar, Nimrod; Siebert, Christian; Möller, Peter; Rosenthal, Eliyahu; Kühn, Michael

    2015-04-01

    It has been shown that thermal convection in faults can also occur for subcritical Rayleigh conditions. This type of convection develops after a certain period and is referred to as "delayed convection" (Murphy, 1979). The delay in the onset is due to the heat exchange between the damage zone and the surrounding units that adds a thermal buffer along the fault walls. Few numerical studies investigated delayed thermal convection in fractured zones, despite it has the potential to transport energy and minerals over large spatial scales (Tournier, 2000). Here 3D numerical simulations of thermally driven flow in faults are presented in order to investigate the impact of delayed convection on deep fluid processes at basin-scale. The Tiberias Basin (TB), in the Jordan Rift Valley, serves as study area. The TB is characterized by upsurge of deep-seated hot waters along the faulted shores of Lake Tiberias and high temperature gradient that can locally reach 46 °C/km, as in the Lower Yarmouk Gorge (LYG). 3D simulations show that buoyant flow ascend in permeable faults which hydraulic conductivity is estimated to vary between 30 m/yr and 140 m/yr. Delayed convection starts respectively at 46 and 200 kyrs and generate temperature anomalies in agreement with observations. It turned out that delayed convective cells are transient. Cellular patterns that initially develop in permeable units surrounding the faults can trigger convection also within the fault plane. The combination of these two convective modes lead to helicoidal-like flow patterns. This complex flow can explain the location of springs along different fault traces of the TB. Besides being of importance for understanding the hydrogeological processes of the TB (Magri et al., 2015), the presented simulations provide a scenario illustrating fault-induced 3D cells that could develop in any geothermal system. References Magri, F., Inbar, N., Siebert, C., Rosenthal, E., Guttman, J., Möller, P., 2015. Transient

  16. A study of cathodoluminescence and trace element compositional zoning in natural quartz from volcanic rocks: mapping titanium content in quartz.

    Science.gov (United States)

    Leeman, William P; MacRae, Colin M; Wilson, Nick C; Torpy, Aaron; Lee, Cin-Ty A; Student, James J; Thomas, Jay B; Vicenzi, Edward P

    2012-12-01

    This article concerns application of cathodoluminescence (CL) spectroscopy to volcanic quartz and its utility in assessing variation in trace quantities of Ti within individual crystals. CL spectroscopy provides useful details of intragrain compositional variability and structure but generally limited quantitative information on element abundances. Microbeam analysis can provide such information but is time-consuming and costly, particularly if large numbers of analyses are required. To maximize advantages of both approaches, natural and synthetic quartz crystals were studied using high-resolution hyperspectral CL imaging (1.2-5.0 eV range) combined with analysis via laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Spectral intensities can be deconvolved into three principal contributions (1.93, 2.19, and 2.72 eV), for which intensity of the latter peak was found to correlate directly with Ti concentration. Quantitative maps of Ti variation can be produced by calibration of the CL spectral data against relatively few analytical points. Such maps provide useful information concerning intragrain zoning or heterogeneity of Ti contents with the sensitivity of LA-ICPMS analysis and spatial resolution of electron microprobe analysis.

  17. Melt extraction in mush zones: The case of crystal-rich enclaves at the Sabatini Volcanic District (central Italy)

    Science.gov (United States)

    Masotta, M.; Mollo, S.; Gaeta, M.; Freda, C.

    2016-04-01

    A peculiar feature of the Sabatini Volcanic District (SVD, central Italy) is the occurrence of crystal-poor pumices and crystal-rich enclaves within the same eruptive host-deposit. The stratigraphic sequence of pumices and enclaves indicates the tapping of a stratified magma chamber, where a crystal-poor phonolitic magma lay on top of a more primitive crystal-rich magma. The crystal-rich enclaves are genetically related to the pumices and record the evolution of a solidification front, in which a more differentiated melt was produced, extracted and eventually erupted. We collected and analyzed crystal-rich enclaves from one of the largest phonolitic eruptions at the SVD and used their petrological and geochemical features to reconstruct magma differentiation and crystal-melt separation in the solidification front. On this basis, three groups of enclaves have been identified: porphyritic enclaves, holocrystalline enclaves and sanidinites. The mineralogical variability faithfully reproduces the spatial and temporal evolution expected of a solidification front, from early-to-intermediate crystallization conditions (porphyritic and holocrystalline type) to the late stage of solidification (sanidinites), in which the percolation of a more differentiated melt through the crystal mush triggered the instability of the solidification front. Results from numerical models indicate that gravitational instability is the most efficient mechanism to explain melt extraction in mush zones of medium-sized (~ 10 km3), short-lived (~ 104 years) magma chambers.

  18. The Role of Rift Obliquity in Formation of the Gulf of California

    Science.gov (United States)

    Bennett, Scott Edmund Kelsey

    The Gulf of California illustrates how highly oblique rift geometries, where transform faults are kinematically linked to large-offset normal faults in adjacent pull-apart basins, enhance the ability of continental lithosphere to rupture and, ultimately, hasten the formation of new oceanic basins. The Gulf of California rift has accommodated oblique divergence of the Pacific and North America tectonic plates in northwestern Mexico since Miocene time. Due to its infancy, the rifted margins of the Gulf of California preserve a rare onshore record of early continental break-up processes from which to investigate the role of rift obliquity in strain localization. Using new high-precision paleomagnetic vectors from tectonically stable sites in north-central Baja California, I compile a paleomagnetic transect of Miocene ignimbrites across northern Baja California and Sonora that reveals the timing and distribution of dextral shear associated with inception of this oblique rift. I integrate detailed geologic mapping, basin analysis, and geochronology of pre-rift and syn-rift volcanic units to determine the timing of fault activity on Isla Tiburon, a proximal onshore exposure of the rifted North America margin, adjacent to the axis of the Gulf of California. The onset of strike-slip faulting on Isla Tiburon, ca. 8 - 7 Ma, was synchronous with the onset of transform faulting along a significant length of the nascent plate boundary within the rift. This tectonic transition coincides with a clockwise azimuthal shift in Pacific-North America relative motion that increased rift obliquity. I constrain the earliest marine conditions on southwest Isla Tiburon to ca. 6.4 - 6.0 Ma, coincident with a regional latest Miocene marine incursion in the northern proto-Gulf of California. This event likely flooded a narrow, incipient topographic depression along a ˜650 km-long portion of the latest Miocene plate boundary and corresponds in time and space with formation of a newly

  19. Petrogenesis of the Miocene volcanism along the İzmir-Balıkesir Transfer Zone in western Anatolia, Turkey: Implications for origin and evolution of potassic volcanism in post-collisional areas

    Science.gov (United States)

    Ersoy, Yalçın E.; Helvacı, Cahit; Uysal, İbrahim; Karaoğlu, Özgür; Palmer, Martin R.; Dindi, Fulya

    2012-10-01

    The Miocene volcanic rocks along the İzmir-Balıkesir Transfer Zone along the western margin of the Menderes Core Complex (MCC) in western Anatolian Volcanic Province (WAVP), where strike-slip deformation is dominant, comprise: (Group 1) early-middle Miocene high-K to shoshonitic rocks with high-Mg# and relatively low SiO2, (Group 2) middle Miocene phonolitic rocks with low-Mg# and intermediate SiO2, (Group 3) early-middle Miocene medium- to high-K series from andesites to rhyolites, (Group 4) middle Miocene rhyolites with distinct trace element compositions; and (Group 5) late Miocene high-MgO basalts, K-trachybasalts and (Group 6) late Miocene high-MgO basaltic andesites. The geochemical features of these rocks are comparable with the other Oligocene to Miocene volcanic rocks, but differ from the Eocene volcanic rocks in WAVP. The geochemical features of the most primitive early-middle Miocene Group 1 rocks indicate that they were derived from an anomalously metasomatized lithospheric mantle. The mineralogical and geochemical properties of garnet-amphibole peridotite from the Ulten Zone (UZP), Eastern Alps, which is thought to represent a fossil metasomatic mantle wedge contaminated by continental subduction, is similar to the model mantle composition previously proposed for the genesis of the mafic rocks. Together with the presence of Eocene to early Miocene continental subduction beneath the Aegean-west Anatolia region, this strongly suggests that continental subduction was an important factor in the genesis of the high-MgO shoshonitic to ultrapotassic volcanism in this post-collisional area. The origin of the Group 3 andesitic to rhyolitic rocks includes; (1) lower crustal melting, (2) mixing between lower crustally-derived and mantle-derived melts, and (3) FC-AFC processes. The late Miocene Group 5 and 6 rocks, however, derived from a more depleted mantle source, indicating that the mantle became depleted over time. The rhyolites of Group 4 are most probably

  20. Two-Dimensional Numerical Modeling of Intracontinental Extension: A Case Study Of the Baikal Rift Formation

    DEFF Research Database (Denmark)

    Yang, H.; Chemia, Zurab; Artemieva, Irina

    and geophysical studies, the geodynamic origin and evolution of the BRZ is still debated. We applytwo-dimensional finite difference code to model the lithosphere-scale de-formation in several locations across the strike of the Baikal Rift zone. The model se-tup takes an advantage of regional geophysical models...... to determinethe set of parameters that may define regional li-thosphere evolution towards the present lithosphere structure, which we further con-trol by gravity data, regional volcanism, and the age of the BRZ formation. We dem-onstrate the roleof pre-existing faults on the BRZ evolution and on formation of "off...

  1. Kinematics of the Ethiopian Rift and Absolute motion of Africa and Somalia Plates

    Science.gov (United States)

    Muluneh, A. A.; Cuffaro, M.; Doglioni, C.

    2013-12-01

    The Ethiopian Rift (ER), in the northern part of East African Rift System (EARS), forms a boundary zone accommodating differential motion between Africa and Somalia Plates. Its orientation was influenced by the inherited Pan-African collisional system and related lithospheric fabric. We present the kinematics of ER derived from compilation of geodetic velocities, focal mechanism inversions, structural data analysis, and construction of geological profiles. GPS velocity field shows a systematic eastward magnitude increase in NE direction in the central ER. In the same region, incremental extensional strain axes recorded by earthquake focal mechanism and fault slip inversion show ≈N1000E orientation. This deviation between GPS velocity trajectories and orientation of incremental extensional strain is developed due to left lateral transtensional deformation. This interpretation is consistent with the en-échelon pattern of tensional and transtensional faults, the distribution of the volcanic centers, and the asymmetry of the rift itself. Small amount of vertical axis blocks rotation, sinistral strike slip faults and dyke intrusions in the rift accommodate the transtensional deformation. We analyzed the kinematics of ER relative to Deep and Shallow Hot Spot Reference Frames (HSRF). Comparison between the two reference frames shows different kinematics in ER and also Africa and Somalia plate motion both in magnitude and direction. Plate spreading direction in shallow HSRF (i.e. the source of the plumes locates in the asthenosphere) and the trend of ER deviate by about 27°. Shearing and extension across the plate boundary zone contribute both to the style of deformation and overall kinematics in the rift. We conclude that the observed long wavelength kinematics and tectonics are consequences of faster SW ward motion of Africa than Somalia in the shallow HSRF. This reference frame seems more consistent with the geophysical and geological constraints in the Rift. The

  2. Cenozoic volcanic rocks in the Belog Co area, Qiangtang, northern Tibet, China: Petrochemical evidence for partial melting of the mantle-crust transition zone

    Institute of Scientific and Technical Information of China (English)

    LAI Shaocong; QIN Jiangfeng; LI Yongfeng; LIU Xin

    2007-01-01

    Neogene volcanic rocks in the Belog Co area, Qiangtang, northern Tibet, are represented by a typical intermediate-basic and intermediate alkaline rock association, with latite-trachyte as the main rock type. The results of chemical analysis are: SiO2=52%-62%, Al2O3>15%, Na2O/K2O>1 and MgO<3.30%. In addition, the volcanic rocks are LREE-enriched with LREE/HREE=10-13, (La/Yb)N=15-19, and show a weak negative Eu anomaly with δEu=0.71-0.89. The close relationship between Mg# and SiO2 and the co-variation of the magmatophile elements and ultra-magmatophile elements such as La/Sm-La and Cr-Tb indicate that this association of volcanic rocks is the product of comagmatic fractional crystallization. The rock association type and lower Sm/Yb values (Sm/Yb=3.23-3.97) imply that this association of volcanic rocks should have originated from partial melting of spinel lherzolite in the lithospheric mantle. On the other hand, the weak negative Eu anomaly and relative depletion in Nb, Ta and Ti reflect the features of terrigenous magma. So the Neogene Belog Co alkaline volcanic rocks should be the result of partial melting of the special crust-mantle transition zone on the Qinghai-Tibet Plateau.

  3. Age and duration of intra-oceanic arc volcanism built on a suprasubduction zone type oceanic crust in southern Neotethys, SE Anatolia

    Directory of Open Access Journals (Sweden)

    Fatih Karaoğlan

    2013-07-01

    Full Text Available The southeastern Anatolia comprises numbers of tectono-magmatic/stratigraphic units such as the metamorphic massifs, the ophiolites, the volcanic arc units and the granitoid rocks. All of them play important role for the late Cretaceous evolution of the southern Neotethys. The spatial and temporal relations of these units suggest the progressive development of coeval magmatism and thrusting during the late Cretaceous northward subduction/accretion. Our new U-Pb zircon data from the rhyolitic rocks of the wide-spread volcanic arc unit show ages of (83.1 ± 2.2–(74.6 ± 4.4 Ma. Comparison of the ophiolites, the volcanic arc units and the granitoids suggest following late Cretaceous geological evolution. The ophiolites formed in a suprasubduction zone (SSZ setting as a result of northward intra-oceanic subduction. A wide-spread island-arc tholeiitic volcanic unit developed on the top of the SSZ-type crust during 83–75 Ma. Related to regional plate convergence, northward under-thrusting of SSZ-type ophiolites and volcanic arc units was initiated beneath the Tauride platform (Malatya-Keban and followed by the intrusion of I-type calc-alkaline volcanic arc granitoids during 84–82 Ma. New U-Pb ages from the arc-related volcanic-sedimentary unit and granitoids indicate that under-thrusting of ophiolites together with the arc-related units beneath the Malatya-Keban platform took place soon after the initiation of the volcanic arc on the top of the SSZ-type crust. Then the arc-related volcanic-sedimentary unit continued its development and lasted at ∼75 Ma until the deposition of the late Campanian–Maastrichtian shallow marine limestone. The subduction trench eventually collided with the Bitlis-Pütürge massif giving rise to HP-LT metamorphism of the Bitlis massif. Although the development of the volcanic arc units and the granitoids were coeval at the initial stage of the subduction/accretion both tectono-magmatic units were

  4. The geochemistry of lithium-bearing geothermal water, Taupo Volcanic Zone, and shallow fluid processes in a very active silicic volcanic arc

    Science.gov (United States)

    Dean, A. S.; Hoskin, P. W.; Rudnick, R. L.; Liu, X.; Boseley, C.

    2011-12-01

    The Li abundances and isotopic systematics of Taupo Volcanic Zone (TVZ) geothermal fluids preserves a record of processes occurring within shallow portions of geothermal reservoirs as well as deeper portions of the arc crust. Understanding Li cycling and isotopic fractionation in TVZ geothermal systems contributes to a more refined understanding of physicochemical processes affecting New Zealand's geothermal resources. A comprehensive dataset of 73 samples was compiled, with samples collected from geothermal surface features (springs, spouters, geysers, etc.) and electric-power industry production wells, collectively representing18 geothermal fields across the breadth and width the TVZ. No comparable dataset of fluid analyses exists. Ion chromatography, AAS, and quadrupole ICP-MS analyses were done for Li, Cl-, SiO2, SO42- K, Na, Ca, Mg, B, Sr and Pb concentrations. Lithium abundance in geothermal fluids from the TVZ have a dataset-wide average of 5.9 mg/L and range 4 μg/L to 29 mg/L. The Li abundance and Li/Cl ratios for geothermal water and steam condensates vary systematically as a result of boiling, mixing, and water/rock reaction. Lithium abundance and Li/Cl ratios are, therefore, indicators of shallow (above 2.5 km) and locally variable reservoir processes. δ7Li analysis of 63 samples was performed at the University of Maryland, College Park. Data quality was controlled by measurement of L-SVEC as a calibration standard and by multiple analysis of selected samples. The average δ7Li value for TVZ geothermal fluids is -0.8%. Most δ7Li values for geothermal water fall within a small range of about -3% to+2% indicating similar processes are causing similar isotopic fractionation throughout the region. Considered together, Li aundances and δ7Li values, in combination with numerical models, indicate possible evolution pathways and water/rock reactions in TVZ geothermal systems. Models based on rocks and surface water analysis indicate that Li cycles and

  5. Neogene seismites and seismic volcanic rocks in the Linqu area, Shandong Province, E China

    Directory of Open Access Journals (Sweden)

    Tian H.S.

    2014-07-01

    Full Text Available The Yishu Fault Zone runs through the centre of Shandong Province (E China; it is a deep-seated large fault system that still is active. Two volcanic faulted basins (the Shanwang and Linqu Basins in the Linqu area, west of the fault zone, are exposed to rifting, which process is accompanied by a series of tectonic and volcanic earthquakes with a magnitude of 5-8. Lacustrine sediments in the basins were affected by these earthquakes so that seismites with a variety of soft-sediment deformation structures originated. The seismites form part of the Shanwang Formation of the Linqu Group. Semi-consolidated fluvial conglomerates became deformed in a brittle way; these seismites are present at the base of the Yaoshan Formation. Intense earthquakes triggered by volcanic activity left their traces in the form of seismic volcanic rocks associated with liquefied-sand veins in the basalt/sand intercalations at the base of the Yaoshan Formation. These palaeo-earthquake records are dated around 14-10 Ma; they are responses to the intense tectonic extension and the basin rifting in this area and even the activity of the Yishu Fault Zone in the Himalayan tectonic cycle.

  6. Mapping Weak, Altered Zones and Perched Water With Aerogeophysical Measurements at Mount Adams, Washington: Implications for Volcanic Instability

    Science.gov (United States)

    Finn, C. A.; Deszcz-Pan, M.; Anderson, E. D.; Horton, R.

    2006-12-01

    Hydrothermally altered rocks, particularly if water saturated, can weaken stratovolcanoes. This increases the potential for catastrophic sector collapses that can lead to destructive debris flows. Evaluating the hazards associated with such alteration is difficult, because alteration has been mapped on few active volcanoes and the distribution and intensity of subsurface alteration and location of perched water tables are largely unknown on any active volcano. At Mount Adams, some Holocene debris flows contain abundant hydrothermal minerals derived from collapse of an altered edifice. Intense hydrothermal alteration can significantly reduce the resistivity (from hundreds to tens ohm-m) and magnetization of volcanic rocks. These changes can be identified with helicopter electromagnetic and magnetic measurements and visualized in 3D. 100 m is the greatest depth that the lowest frequency electromagnetic data could penetrate into the low resistivity, altered zones; outside the altered zones, the depth of penetration was up to 300 m. Total-field magnetic data can detect magnetization variations to several thousand meters depth. Electromagnetic and magnetic data, combined with geological mapping and rock property measurements, indicate the presence of appreciable thicknesses of hydrothermally altered rock in the central core of Mount Adams north of the summit. We identify steep cliffs at the western edge of this zone as the likely source for future large debris flows. Water, and perhaps melted ice, is needed as a lubricant to transform debris avalanches into lahars. Therefore, knowing the distribution of both is important for hazard assessments. Over the low resistivity summit, the electromagnetic data detected ice with a thickness of 0 to about 80 m and an estimated volume of up to 0.1 km3. Over resistive ridges ice thicknesses could not be determined. The electromagnetic data also identified perched water tables in the brecciated core of the upper 300 m of the volcano

  7. Combining hydrologic and groundwater modelling to characterize a regional aquifer system within a rift setting (Gidabo River Basin, Main Ethiopian Rift)

    Science.gov (United States)

    Birk, Steffen; Mechal, Abraham; Wagner, Thomas; Dietzel, Martin; Leis, Albrecht; Winkler, Gerfried; Mogessie, Aberra

    2016-04-01

    The development of groundwater resources within the Ethiopian Rift is complicated by the strong physiographic contrasts between the rift floor and the highland and by the manifold hydrogeological setting composed of volcanic rocks of different type and age that are intersected by numerous faults. Hydrogeochemical and isotope data from various regions within the Ethiopian Rift suggest that the aquifers within the semi-arid rift floor receive a significant contribution of groundwater flow from the humid highland. For example, the major ion composition of groundwater samples from Gidabo River Basin (3302 km²) in the southern part of the Main Ethiopian Rift reveals a mixing trend from the highland toward the rift floor; moreover, the stable isotopes of water, deuterium and O-18, of the rift-floor samples indicate a component recharged in the highland. This work aims to assess if the hydrological and hydrogeological data available for Gidabo River Basin is consistent with these findings and to characterize the regional aquifer system within the rift setting. For this purpose, a two-step approach is employed: First, the semi-distributed hydrological model SWAT is used to obtain an estimate of the spatial and temporal distribution of groundwater recharge within the watershed; second, the numerical groundwater flow model MODFLOW is employed to infer aquifer properties and groundwater flow components. The hydrological model was calibrated and validated using discharge data from three stream gauging stations within the watershed (Mechal et al., Journal of Hydrology: Regional Studies, 2015, doi:10.1016/j.ejrh.2015.09.001). The resulting recharge distribution exhibits a strong decrease from the highland, where the mean annual recharge amounts to several hundred millimetres, to the rift floor, where annual recharge largely is around 100 mm and below. Using this recharge distribution as input, a two-dimensional steady-state groundwater flow model was calibrated to hydraulic

  8. Polarization analysis of non-volcanic tremor at Guerrero subduction zone (Mexico)

    Science.gov (United States)

    Palo, M.; Capuano, P.

    2012-04-01

    Since its first observation occurred about ten years ago in Japan, non-volcanis tremor (NVT) has been observed in many areas worldwide. NVT is generally associated with fluid movements in the lithosphere and, together with the slow-slip events, are considered a key factor to understand the stress state and stress transfer in tectonic frameworks, especially in subduction zones. Here, we analyze the polarization properties of the NVTs recorded at Guerrero subduction segment of the Cocos plate (Mexico). The Guerrero subduction segment represents a very important case study for its seismic gap. Indeed, there is an absence of large earthquakes in this part of the subducting plate for the last hundred years, and this segment is expected to be able to originate an earthquake of magnitude 8. NVT at Guerrero is a long-duration, low-amplitude, nonimpulsive seismic radiation with most energy concentrated in the frequency range 1-8 Hz. These events have been located at a depth of 20-50 km mainly in correspondence of the tip of the mantle wedge [Payero et al., 2008; Kostoglodov et al., 2010]. Data-set is composed of one year (2006) long continuous seismic recordings of five three-component broad-band stations belonging to the seismic network installed during MASE experiment (available on IRIS website). We apply the Kanasewich algorithm to the continuous seismic recordings. This algorithm performs the diagonalization of the covariance matrix constructed using the three ground motion components and provides three parameters describing the polarization properties: the azimuth and dip angles constrain the direction of oscillation in a Cartesian reference frame, whereas the rectilinearity indicates if the oscillation is circular, elliptical or linear. We find that the NVT events can be detected looking at the time pattern of the polarization parameters. In detail, during NVT the dispersion of all the parameters decreases, the dip angle focuses on high values (indicating shallow

  9. Groundwater dynamics in the complex aquifer system of Gidabo River Basin, southern Main Ethiopian Rift: Evidences from hydrochemistry and isotope hydrology

    Science.gov (United States)

    Degu, Abraham; Birk, Steffen; Dietzel, Martin; Winkler, Gerfried; Moggessie, Aberra

    2014-05-01

    Located in the tectonically active Main Ethiopian Rift system, the Gidabo River Basin in Ethiopia has a complex hydrogeological setting. The strong physiographic variation from highland to rift floor, variability in volcanic structures and disruption of lithologies by cross-cutting faults contribute for their complex nature of hydrogeology in the area. Until now, the groundwater dynamics and the impact of the tectonic setting on groundwater flow in this region are not well understood, though the local population heavily depends on groundwater as the major water supply. A combined approach based on hydrochemical and isotopic data was applied to investigate the regional flow dynamics of the groundwater and the impact of tectonic setting. Groundwater evolves from slightly mineralized Ca-Mg-HCO3 on the highland to highly mineralized Na-HCO3 dominating type in the deep rift floor aquifers. δ18O and δD composition of groundwater show a general progressive enrichment from the highland to the rift floor, except in thermal and deep rift floor aquifers. Relatively the thermal and deep rift floor aquifers are depleted and show similar signature to the groundwaters of highland, indicating groundwater inflow from the highland. Correspondingly, rising HCO3 and increasingly enriched signatures of δ 13C points to hydrochemical evolution of DIC and diffuse influx of mantle CO2 into the groundwater system. Thermal springs gushing out along some of the fault zones, specifically in the vicinity of Dilla town, display clear influence of mantle CO2 and are an indication of the role of the faults acting as a conduit for deep circulating thermal water to the surface. By considering the known geological structures of the rift, hydrochemical and isotopic data we propose a conceptual groundwater flow model by characterizing flow paths to the main rift axis. The connection between groundwater flow and the impact of faults make this model applicable to other active rift systems with similar

  10. Prolonged post-rift magmatism on highly extended crust of divergent continental margins (Baiyun Sag, South China Sea)

    Science.gov (United States)

    Zhao, Fang; Alves, Tiago M.; Wu, Shiguo; Li, Wei; Huuse, Mads; Mi, Lijun; Sun, Qiliang; Ma, Benjun

    2016-07-01

    Three-dimensional (3D) seismic, borehole and geochemical data reveal a prolonged phase of post-rift magmatism on highly extended crust of the Baiyun Sag, South China Sea. Two volcanic complexes are identified and described in the context of continental rifting and diachronous continental breakup of the South China Sea. Biostratigraphic data from exploration wells BY7-1 and BY2, complemented by K-Ar datings from core samples, confirm that magmatic activity in the Baiyun Sag occurred in two main stages: (1) a first episode at the base of the Miocene (23.8 Ma); and (2) a second episode occurring at the end of the Early Miocene (17.6 Ma). The relative location of volcanic complexes in the Baiyun Sag, and their stratigraphic position, reveals prolonged magmatism inboard of the ocean-continent transition zone during continental breakup. We suggest that magmatism in the Baiyun Sag reflects progressive continental breakup in the South China Sea, with the last volcanic episode marking the end of a breakup sequence representing the early post-rift tectonic events associated with the continental breakup process. Seismic and borehole data from this breakup sequence records diachronous magma emplacement and complex changes in depositional environments during continental breakup.

  11. Mylonitic volcanics near Puging, Upper Siang district, Arunachal Pradesh: Evidence of oblique-slip thrusting

    Indian Academy of Sciences (India)

    T K Goswami; P Bhattacharyya; D Bezbaruah

    2016-08-01

    The Abor volcanics of the continental flood basalt affinity are extensively exposed in different parts of the Siang valley. These are associated with Yinkiong Group of rocks of Paleocene–Eocene age and represent syn-sedimentary volcanism in a rift setting. Subsequent folding and thrusting of the Siyom and Rikor sequences above the Yinkiong Group of rocks represent changes from syn-to-post collisionalbrittle-ductile tectonic episodes. Mylonitic Abor volcanics in the thrust contacts are studied at several locations in the north and south of Puging in the Siang valley. Both the Abor volcanics and associated Rikor and Yinkiong Group of rocks preserve meso to micro-scale fabric asymmetries indicating that the thrust contacts are shear zones of brittle-ductile nature containing mylonitic textures of high shear strain.Two distinct hitherto unrecognised shear zones in the north and south of Puging are named as North Puging Shear Zone (NPSZ) and South Puging Shear Zone (SPSZ). The kinematic indicators along the thrust contact indicate oblique slip thrusting of the Rikor and Siyom thrust sheets above the Yinkiong Group of rocks. This paper provides field evidence proving that the compression due the Burmese plate made oblique slip thrusting and zones of mylonitised volcanics possible and associated metasediments were formed. The kinematic indicators in the NPSZ and SPSZ respectively indicate top-to-SSE and top-to-NNW sense of shears.

  12. Peripheral structures of the Rio Grande Rift in the Sangre de Cristo Mountains, around the Colorado-New Mexico border

    Science.gov (United States)

    Fridrich, C. J.; Workman, J. B.

    2009-12-01

    Recently active faults of the Rio Grande rift near the Colorado-New Mexico border are almost entirely limited to the San Luis basin. In contrast, the early (≈26 to ≈10 Ma) structure of the rift in this area is significantly broader. A wide zone of abandoned, peripheral extensional structures is exposed on the eastern flank of the San Luis basin—in the west half of the Sangre de Cristo Mountains, known in this area as the southern Culebra and northern Taos Ranges. New detailed mapping shows that the eastern limit of the zone of early peripheral extension is marked by an aligned series of north-trending grabens, including the Devil’s Park, Valle Vidal, and Moreno Valley basins. Master faults of these intermontaine basins are partly localized along, and evidently reactivated moderate- to high-angle Laramide (≈70 to ≈40 Ma) reverse faults of the Sangre de Cristo Mountains. Between these grabens and the San Luis basin lies a structural zone that varies in style from block faulting, in the north, to more closely spaced tilted-domino-style faulting in the Latir volcanic field, to the south. Additional early rift structures include several long northwest-striking faults, the largest of which are interpreted to have accommodated significant right-lateral strike-slip, based on abrupt southwestward increase in the magnitude of extension across them. These faults evidently transferred strain from the axial part of the rift into the zone of early peripheral extension, and accommodated lateral changes in structural style. Throughout the area of early peripheral extension, there is a correlation between the magnitude of local volcanism and the degree of extension; however, it is unclear if extension drove volcanism—via mantle upwelling, or if extension was maximized where the crust was weakest, owing to the presence of magma and hot rock at shallow depths.

  13. Probing the age and temperature of rifting in Afar

    Science.gov (United States)

    Armitage, John; Goes, Saskia; Ferguson, David; Hammond, James; Calais, Eric

    2014-05-01

    Rifting along the southern part of the Red Sea margin in NE Africa (leading to formation of Afar) has been closely associated with magmatic activity since the initiation of extension at around ~ 25Ma. Numerous active volcanoes are currently found along rift zones here and magma intrusion into the crust has potentially accommodated significant amounts of extension. This extensive present-day volcanism has been linked to elevated mantle temperature, perhaps due to a thermal plume, or as a consequence of passive flow in the mantle beneath the extending lithosphere. Geochemical evidence for basaltic lavas erupted in Afar have been used to suggest that mantle temperatures are in the range 1370 to 1490°C, and that the region is currently experiencing late stage rifting. Analysis of changes in shear wave seismic velocities and relative travel time tomography suggests mantle temperatures are within a similar range, yet the region has greater similarities to a young spreading centre. The range in potential temperature estimates is however very large, with different implications for the volcanic history of the region and hence timing of break-up. Rather than focusing a single observable, we use a relatively straight forward model of extension and decompression melting to predict the seismic-velocity and attenuation structure of the asthenosphere and lithosphere, synthetic receiver functions as a result of this seismic structure, crustal thickness as a result of decompression and finally the melt composition. From this combined study we find that melt composition and seismic structure are dependent on both temperature and time. If mantle potential temperature is 1350°C then both the seismic structure and melt composition can be matched if the duration of extension is more than 30 Myr. However this is longer than the estimated duration of extension from plate reconstructions, and given the low rate of extension in Afar, this cold model only generates up to 5 km of igneous

  14. Mihi Breccia: A stack of lacustrine sediments and subaqueous pyroclastic flows within the Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Downs, Drew

    2016-01-01

    The Taupo Volcanic Zone (TVZ), New Zealand, encompasses a wide variety of arc-related strata, although most of its small-volume (non-caldera-forming) eruptions are poorly-exposed and extensively hydrothermally altered. The Mihi Breccia is a stratigraphic sequence consisting of interbedded rhyolitic pyroclastic flows and lacustrine sediments with eruption ages of 281 ± 18 to at least 239 ± 6 ka (uncertainties at 2σ). In contrast to other small-volume rhyolitic eruptions within the TVZ, Mihi Breccia is relatively well-exposed within the Paeroa fault block, and contains minimal hydrothermal alteration. Pyroclastic flow characteristics and textures including: 1) breadcrusted juvenile clasts, 2) lack of welding, 3) abundant ash-rich matrix, 4) lack of fiamme and eutaxitic textures, 5) lack of thermal oxidation colors, 6) lack of cooling joints, 7) exclusive lacustrine sediment lithic clasts, and 8) interbedding with lacustrine sediments, all indicating that Mihi Breccia strata originated in a paleo-lake system. This ephemeral paleo-lake system is inferred to have lasted for > 50 kyr (based on Mihi Breccia age constraints), and referred to as Huka Lake. Mihi Breccia pyroclastic flow juvenile clast geochemistry and petrography correspond with similar-aged (264 ± 8, 263 ± 10, and 247 ± 4 ka) intra-caldera rhyolite domes filling the Reporoa caldera (source of the 281 ± 81 Kaingaroa Formation ignimbrite). These exposed intra-caldera rhyolite domes (as well as geophysically inferred subsurface domes) are proposed to be source vents for the Mihi Breccia pyroclastic flows. Soft-sediment deformation associated with Mihi Breccia strata indicate either seismic shock, rapid sediment loading during pyroclastic flow emplacement, or both. Thus, the Mihi Breccia reflects a prolonged series of subaqueous rhyolite dome building and associated pyroclastic flows, accompanied by seismic activity, emplaced into a large paleo-lake system within the TVZ.

  15. Mihi Breccia: A stack of lacustrine sediments and subaqueous pyroclastic flows within the Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Downs, Drew T.

    2016-11-01

    The Taupo Volcanic Zone (TVZ), New Zealand, encompasses a wide variety of arc-related strata, although most of its small-volume (non-caldera-forming) eruptions are poorly-exposed and extensively hydrothermally altered. The Mihi Breccia is a stratigraphic sequence consisting of interbedded rhyolitic pyroclastic flows and lacustrine sediments with eruption ages of 281 ± 18 to at least 239 ± 6 ka (uncertainties at 2σ). In contrast to other small-volume rhyolitic eruptions within the TVZ, Mihi Breccia is relatively well-exposed within the Paeroa fault block, and contains minimal hydrothermal alteration. Pyroclastic flow characteristics and textures include: 1) prismatically jointed juvenile clasts, 2) lack of welding, 3) abundant ash-rich matrix, 4) lack of fiamme and eutaxitic textures, 5) lack of thermal oxidation colors, 6) lack of cooling joints, 7) exclusive lacustrine sediment lithic clasts, and 8) interbedding with lacustrine sediments, all indicating that Mihi Breccia strata originated in a paleo-lake system. This ephemeral paleo-lake system is inferred to have lasted for > 50 kyr (based on Mihi Breccia age constraints), and referred to as Huka Lake. Mihi Breccia pyroclastic flow juvenile clast geochemistry and petrography correspond with similar-aged (264 ± 8, 263 ± 10, and 247 ± 4 ka) intra-caldera rhyolite domes filling the Reporoa caldera (source of the 281 ka Kaingaroa Formation ignimbrite). These exposed intra-caldera rhyolite domes (as well as geophysically inferred subsurface domes) are proposed to be source vents for the Mihi Breccia pyroclastic flows. Soft-sediment deformation associated with Mihi Breccia strata indicates either seismic shock, rapid sediment loading during pyroclastic flow emplacement, or both. Thus, the Mihi Breccia reflects a prolonged series of subaqueous rhyolite dome building and associated pyroclastic flows, accompanied by seismic activity, emplaced into a large paleo-lake system within the TVZ.

  16. Surface heat flow and CO2 emissions within the Ohaaki hydrothermal field, Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Rissmann, C.; Christenson, B.; Werner, C.; Leybourne, M.; Cole, J.; Gravley, D.

    2012-01-01

    Carbon dioxide emissions and heat flow have been determined from the Ohaaki hydrothermal field, Taupo Volcanic Zone (TVZ), New Zealand following 20a of production (116MW e). Soil CO2 degassing was quantified with 2663 CO2 flux measurements using the accumulation chamber method, and 2563 soil temperatures were measured and converted to equivalent heat flow (Wm -2) using published soil temperature heat flow functions. Both CO2 flux and heat flow were analysed statistically and then modelled using 500 sequential Gaussian simulations. Forty subsoil CO 2 gas samples were also analysed for stable C isotopes. Following 20a of production, current CO2 emissions equated to 111??6.7T/d. Observed heat flow was 70??6.4MW, compared with a pre-production value of 122MW. This 52MW reduction in surface heat flow is due to production-induced drying up of all alkali-Cl outflows (61.5MW) and steam-heated pools (8.6MW) within the Ohaaki West thermal area (OHW). The drying up of all alkali-Cl outflows at Ohaaki means that the soil zone is now the major natural pathway of heat release from the high-temperature reservoir. On the other hand, a net gain in thermal ground heat flow of 18MW (from 25MW to 43.3??5MW) at OHW is associated with permeability increases resulting from surface unit fracturing by production-induced ground subsidence. The Ohaaki East (OHE) thermal area showed no change in distribution of shallow and deep soil temperature contours despite 20a of production, with an observed heat flow of 26.7??3MW and a CO 2 emission rate of 39??3T/d. The negligible change in the thermal status of the OHE thermal area is attributed to the low permeability of the reservoir beneath this area, which has limited production (mass extraction) and sheltered the area from the pressure decline within the main reservoir. Chemistry suggests that although alkali-Cl outflows once contributed significantly to the natural surface heat flow (~50%) they contributed little (99% of the original CO 2

  17. Volcanic hazards on the Island of Hawaii

    Science.gov (United States)

    Mullineaux, Donal Ray; Peterson, Donald W.

    1974-01-01

    Volcanic hazards on the Island of Hawaii have been determined to be chiefly products of eruptions: lava flows, falling fragments, gases, and particle-and-gas clouds. Falling fragments and particle-and-gas clouds can be substantial hazards to life, but they are relatively rare. Lava flows are the chief hazard to property; they are frequent and cover broad areas. Rupture, subsidence, earthquakes, and sea waves (tsunamis) caused by eruptions are minor hazards; those same events caused by large-scale crustal movements, however, are major hazards to both life and property. Volcanic hazards are greatest on Mauna Loa and Kilauea, and the risk is highest along the rift zones of those volcanoes. The hazards are progressively less severe on Hualalai, Mauna Kea, and Kohala volcanoes. Some risk from earthquakes extends across the entire island, and the risk from tsunamis is high all along the coast. The island has been divided into geographic zones of different relative risk for each volcanic hazard, and for all those hazards combined. Each zone is assigned a relative risk for that area as a whole; the degree of risk varies within the zones, however, and in some of them the risk decreases gradationally across the entire zone. Moreover, the risk in one zone may be locally as great or greater than that at some points in the zone of next higher overall risk. Nevertheless, the zones can be highly useful for land-use planning. Planning decisions to which the report is particularly applicable include the selection of kinds of structures and kinds of land use that are appropriate for the severity and types of hazards present. For example, construction of buildings that can resist a lava flow is generally not feasible, but it is both feasible and desirable to build structures that can resist falling rock fragments, earthquakes, and tsunamis in areas where risk from those hazards is relatively high. The report can also be used to select sites where overall risk is relatively low, to

  18. Neotectonic development of the El Salvador Fault Zone and implications for deformation in the Central America Volcanic Arc: Insights from 4-D analog modeling experiments

    Science.gov (United States)

    Alonso-Henar, Jorge; Schreurs, Guido; Martinez-Díaz, José Jesús; Álvarez-Gómez, José Antonio; Villamor, Pilar

    2015-01-01

    The El Salvador Fault Zone (ESFZ) is an active, approximately 150 km long and 20 km wide, segmented, dextral strike-slip fault zone within the Central American Volcanic Arc striking N100°E. Although several studies have investigated the surface expression of the ESFZ, little is known about its structure at depth and its kinematic evolution. Structural field data and mapping suggest a phase of extension, at some stage during the evolution of the ESFZ. This phase would explain dip-slip movements on structures that are currently associated with the active, dominantly strike slip and that do not fit with the current tectonic regime. Field observations suggest trenchward migration of the arc. Such an extension and trenchward migration of the volcanic arc could be related to slab rollback of the Cocos plate beneath the Chortis Block during the Miocene/Pliocene. We carried out 4-D analog model experiments to test whether an early phase of extension is required to form the present-day fault pattern in the ESFZ. Our experiments suggest that a two-phase tectonic evolution best explains the ESFZ: an early pure extensional phase linked to a segmented volcanic arc is necessary to form the main structures. This extensional phase is followed by a strike-slip dominated regime, which results in intersegment areas with local transtension and segments with almost pure strike-slip motion. The results of our experiments combined with field data along the Central American Volcanic Arc indicate that the slab rollback intensity beneath the Chortis Block is greater in Nicaragua and decreases westward to Guatemala.

  19. Recognition of hyper-extended rifted margin remnants in the internal zone of the Alpine belt: A tribute to Marco Beltrando

    Science.gov (United States)

    Mohn, Geoffroy; Manatschal, Gianreto

    2016-04-01

    Marco Beltrando was part of the young generation of Alpine geologists who challenged the interpretation of the Western Alps by combining a classical field approach and modern techniques (e.g. 40Ar/39Ar and (U-Th)/He thermochronology). His work provides the foundation to re-interpret some of the classical sections through the Alpine belt and may impact the way of thinking about the nature and structure of internal parts of collisional orogens. This contribution will present the main outcomes of the work of Marco Beltrando and their implications for the understanding of Alpine type orogens. Since his PhD, Marco Beltrando focused most of his work on the study of the internal parts of the Western Alps. He investigated in great details the complex, multiphase structural and metamorphic evolution of the Penninic units in the Western Alps. He concluded that these units went through several cycles of shortening and extension during the Alpine orogeny, with major implications for the Alps but also other orogenic belts. After his PhD, he focused his research on the pre-orogenic evolution of the Alpine belt. He first worked on the Petit St. Bernard area, where he identified relics of the former hyper-extended Tethyan rifted margin. Thanks to his work and his amazing knowledge of the Western Alps, he understood the potential importance of rift-inheritance in controlling the architecture and evolution of the Alpine belt. In parallel to the study of the orogenic evolution, he developed a new methodology to recognize rift-related lithostratigraphic units in highly deformed and metamorphosed parts of the Alps. His innovative work allowed a re-assessment of several areas in the Western Alps and demonstrates the importance of rift inheritance. Recently, he started a new research project on the evolution of the Southern Alps highlighting the importance of heating and cooling cycles resulting from complex successions of rifting events. In spite of his young age, Marco Beltrando was at

  20. Thermo-physical rock properties of greywacke basement rock and intrusive lavas from the Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Mielke, P.; Weinert, S.; Bignall, G.; Sass, I.

    2016-09-01

    Greywacke of the Waipapa and Torlesse (Composite) Terrane form the basement of the Taupo Volcanic Zone (TVZ), New Zealand. Together with inferred buried lavas, domes and igneous complexes they are likely to be the dominant rock type prevailing at depths > 4 km beneath the TVZ. A fundamental understanding of the rock properties of the deep formations is of utmost importance for the exploration of deep unconventional geothermal resources. An outcrop analogue study was conducted to improve the understanding of the thermo-physical rock properties of likely deep buried rock formations beneath the TVZ. A total of 145 core samples were taken at 10 locations inside and outside the TVZ and their grain and bulk density, porosity, matrix permeability, bulk thermal conductivity and specific heat capacity, and the compressional and shear wave velocities measured on oven-dry samples. Additional tests of the unconfined compressive strength were conducted for selected greywacke samples to quantify their mechanical rock strength. The obtained data indicates that the thermo-physical rock properties are mainly controlled by porosity, and minor by mineralogy, texture and grain size. Samples from Waipapa-type and Torlesse-type greywacke exhibit minor rheological differences, with Waipapa-type greywacke having lowest porosity (about 1% vs. 3%) and highest bulk thermal conductivity (2.5 W m- 1 K- 1 vs. 1.7 W m- 1 K- 1) and specific heat capacity (0.8 kJ kg- 1 K- 1 vs. 0.7 kJ kg- 1 K- 1). Matrix permeability is rock properties due to their wide range of porosity (rock properties were tested at laboratory conditions (ambient temperature and pressure), which do not reflect the in situ conditions at greater depth. With depth, thermal conductivity and acoustic wave velocity are likely to decrease caused by micro fractures resulting from thermal cracking of the rock, while specific heat capacity increases. The data presented in this paper are expected to improve the statistical confidence on

  1. Comparative riftology: insights from crustal structure into the evolution of continental rifts and passive continental margins

    Science.gov (United States)

    Kley, Jonas; Stein, Carol; Stein, Seth; Keller, Randy; Wysession, Michael; Frederiksen, Andrew

    2017-04-01

    Continental rifts evolve to seafloor spreading and are preserved in passive margins, or fail and remain as fossil features in continents. Rifts at different stages give insight into these different evolutionary paths. Of particular interest is how volcanic passive margins evolve. These features are characterized by sequences of volcanic rocks yielding magnetic anomalies landward of and sometimes larger than the oldest spreading anomalies. Seaward-dipping reflectors (SDR) occur in stretched continental crust landward of the oldest oceanic crust and are underplated by high-velocity lower crustal bodies. How and when these features form remains unclear. Insights are given by the Midcontinent Rift (MCR), formed by 1.1 Ga rifting of Amazonia from Laurentia, that failed once seafloor spreading was established elsewhere. MCR volcanics are much thicker than other continental flood basalts, due to deposition in a narrow rift rather than a broad region, giving a rift's geometry but a LIP's magma volume. The MCR provides a snapshot of the deposition of a thick highly magnetized volcanic section during rifting. Surface exposures and seismic-reflection data in and near Lake Superior show a rift basin filled by inward-dipping flood basalt layers. Had the rift evolved to seafloor spreading, the basin would have split into two sets of volcanics with opposite-facing SDRs, each with a strong magnetic anomaly. Because the rift formed as a series of alternating half-grabens, structural asymmetries between conjugate margins can naturally occur. Hence the MCR shows that many features form prior to breakup. Because the MCR was massively inverted by regional compression long after it failed and was uplifted, its structure is better known than failed rifts that incurred lesser degrees of inversion. It provides an end member for the evolution of actively extending rifts, characterized by upwelling mantle and negative gravity anomalies, in contrast to failed and inverted rifts without

  2. The East Greenland rifted volcanic margin

    Directory of Open Access Journals (Sweden)

    C. Kent Brooks

    2011-12-01

    Full Text Available The Palaeogene North Atlantic Igneous Province is among the largest igneous provinces in the world and this review of the East Greenland sector includes large amounts of information amassed since previous reviews around 1990.The main area of igneous rocks extends from Kangerlussuaq (c. 67°N to Scoresby Sund (c. 70°N, where basalts extend over c. 65 000 km2, with a second area from Hold with Hope (c. 73°N to Shannon (c. 75°N. In addition, the Ocean Drilling Project penetrated basalt at five sites off South-East Greenland. Up to 7 km thickness of basaltic lavas have been stratigraphically and chemically described and their ages determined. A wide spectrum of intrusions are clustered around Kangerlussuaq, Kialeeq (c. 66°N and Mesters Vig (c. 72°N. Layered gabbros are numerous (e.g. the Skaergaard and Kap Edvard Holm intrusions, as are under- and oversaturated syenites, besides small amounts of nephelinite-derived products, such as the Gardiner complex (c. 69°N with carbonatites and silicate rocks rich in melilite, perovskite etc. Felsic extrusive rocks are sparse. A single, sanidine-bearing tuff found over an extensive area of the North Atlantic is thought to be sourced from the Gardiner complex.The province is famous for its coast-parallel dyke swarm, analogous to the sheeted dyke swarm of ophiolites, its associated coastal flexure, and many other dyke swarms, commonly related to central intrusive complexes as in Iceland. The dyke swarms provide time markers, tracers of magmatic evolution and evidence of extensional events. A set of dykes with harzburgite nodules gives unique insight into the Archaean subcontinental lithosphere.Radiometric dating indicates extrusion of huge volumes of basalt over a short time interval, but the overall life of the province was prolonged, beginning with basaltic magmas at c. 60 Ma and continuing to the quartz porphyry stock at Malmbjerg (c. 72°N at c. 26 Ma. Indeed, activity was renewed in the Miocene with the emplacement of small volumes of basalts of the Vindtoppen Formation to the south of Scoresby Sund.Although the basalts were extruded close to sea level, this part of East Greenland is a plateau raised to c. 2 km, but the timing of uplift is controversial. Superimposed on the plateau is a major dome at Kangerlussuaq.East Greenland presents a rich interplay between magmatic and tectonic events reflecting the birth of the North Atlantic Ocean. It was active over a much longer period (36 Ma than other parts of the province (5 Ma in the Hebrides, Northern Ireland and the Faroe Islands and contains a wider range of products, including carbonatites, and felsic rocks tend to be granitic rather than syenitic. As expected, there are many similarities with Iceland, the present-day expression of activity in the province. Differences are readily explained by higher production rates and the thicker lithospheric lid during the early stages of development in East Greenland. The igneous and related activity clearly results from plate-tectonic factors, but the relationship is not understood in detail. In particular, the nature of the underlying mantle processes, primarily the presence or absence of a plume, is still not resolved.

  3. Geochemistry of the Ophiolite and Island-Arc Volcanic Rocks in the Mianxian-Lueyang Suture Zone,Southern Qinling and Their Tectonic Significance

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Ultrabasic rocks in the Mianxian-Lueyang ophiolitic melange zone include harzburgite and dunite which exhibit LREE depletion with remarkable positive Eu anomaly.The diabase dike swarm shows LREE enrichment but slightly negative Eu anomaly.Metamorphosed volcanic rocks can be divided into two groups in terms of their REE geochemistry and trace element ratios of Ti/V,Th/Ta,Th/Yb and Ta/Yb.One is ths MORB-type basalt with LREE depletion,representing the fragments of oceanic crust and implying an association of the MORB-type ophiolite and an ancient ocean basin between the Qinling and Yangtze plates during the Middle Paleozoic-Early Mesozoic era.The oter comprises the island-arc volcanic rocks including tholeiitic basalt and a large amount of calc-alkaline intermediate-acic volcanic rock,which could not be the component of the ancient oceanic crust but the result of magmatism at the continental margin.This indicates that the Mianxian-Lueyang limited ocean basin had undergone a whole process of development,evolution and vanishing from Devonian-Cretaceous to Permian.And the Qinling area had becone an independent lithospheric microplate,on the southern side of which there were exhibited the tectonic characteristics of active continental margins during the Late Paleozoic-Early Mesozoic.That is to say.the Qinling cannot be simply considered as a result of collision between the Yangtze and North China plates.

  4. Volume estimation of rift-related magmatic features using seismic interpretation and 3D inversion of gravity data on the Guinea Plateau, West Africa

    Science.gov (United States)

    Kardell, Dominik A.

    The two end-member concept of mantle plume-driven versus far field stress-driven continental rifting anticipates high volumes of magma emplaced close to the rift-initiating plume, whereas relatively low magmatic volumes are predicted at large distances from the plume where the rifting is thought to be driven by far field stresses. We test this concept at the Guinea Plateau, which represents the last area of separation between Africa and South America, by investigating for rift-related volumes of magmatism using borehole, 3D seismic, and gravity data to run structural 3D inversions in two different data areas. Despite our interpretation of igneous rocks spanning large areas of continental shelf covered by the available seismic surveys, the calculated volumes in the Guinea Plateau barely match the magmatic volumes of other magma-poor margins and thus endorse the aforementioned concept. While the volcanic units on the shelf seem to be characterized more dominantly by horizontally deposited extrusive volcanic flows distributed over larger areas, numerous paleo-seamounts pierce complexly deformed pre and syn-rift sedimentary units on the slope. As non-uniqueness is an omnipresent issue when using potential field data to model geologic features, our method faced some challenges in the areas exhibiting complicated geology. In this situation less rigid constraints were applied in the modeling process. The misfit issues were successfully addressed by filtering the frequency content of the gravity data according to the depth of the investigated geology. In this work, we classify and compare our volume estimates for rift-related magmatism between the Guinea Fracture Zone (FZ) and the Saint Paul's FZ while presenting the refinements applied to our modeling technique.

  5. Episodic kinematics in continental rifts modulated by changes in mantle melt fraction

    Science.gov (United States)

    Lamb, Simon; Moore, James D. P.; Smith, Euan; Stern, Tim

    2017-07-01

    Oceanic crust is created by the extraction of molten rock from underlying mantle at the seafloor ‘spreading centres’ found between diverging tectonic plates. Modelling studies have suggested that mantle melting can occur through decompression as the mantle flows upwards beneath spreading centres, but direct observation of this process is difficult beneath the oceans. Continental rifts, however—which are also associated with mantle melt production—are amenable to detailed measurements of their short-term kinematics using geodetic techniques. Here we show that such data can provide evidence for an upwelling mantle flow, as well as information on the dimensions and timescale of mantle melting. For North Island, New Zealand, around ten years of campaign and continuous GPS measurements in the continental rift system known as the Taupo volcanic zone reveal that it is extending at a rate of 6-15 millimetres per year. However, a roughly 70-kilometre-long segment of the rift axis is associated with strong horizontal contraction and rapid subsidence, and is flanked by regions of extension and uplift. These features fit a simple model that involves flexure of an elastic upper crust, which is pulled downwards or pushed upwards along the rift axis by a driving force located at a depth greater than 15 kilometres. We propose that flexure is caused by melt-induced episodic changes in the vertical flow forces that are generated by upwelling mantle beneath the rift axis, triggering a transient lower-crustal flow. A drop in the melt fraction owing to melt extraction raises the mantle flow viscosity and drives subsidence, whereas melt accumulation reduces viscosity and allows uplift—processes that are also likely to occur in oceanic spreading centres.

  6. Cleopatra Patera on Venus - Venera 15/16 evidence for a volcanic origin

    Science.gov (United States)

    Schaber, G. G.; Kozak, R. C.; Masursky, H.

    1987-01-01

    The nonconcentric nature, anomalous depth, and terraced morphology of the nested craters that compose Cleopatra Patera are more closely analogous to volcanic craters (calderas) than multiring impact structures. Associated deposits northeast and downslope of the Patera first recognized on Venera 15/16 radar images are interpreted as volcanic plains related to, and perhaps cogenetic with, Cleopatra. The plains lavas probably originated as effusions from a radial rift zone or ring fissures. Rim deposits surrounding Cleopatra are asymmetric along the structural fabric of the region, also indicating fissure-type eruptions. Finally, a volcanic origin not only is easily reconciled with the tectonic setting of the Patera, it is almost required by the correlation between the Patera and regional structural trend.

  7. SHRIMP U-Pb dating of recurrent Cryogenian and Late Cambrian-Early Ordovician alkalic magmatism in central Idaho: Implications for Rodinian rift tectonics

    Science.gov (United States)

    Lund, K.; Aleinikoff, J.N.; Evans, K.V.; duBray, E.A.; deWitt, E.H.; Unruh, D.M.

    2010-01-01

    Composite alkalic plutonic suites and tuffaceous diamictite, although discontinuously exposed across central Idaho in roof pendants and inliers within the Idaho batholith and Challis volcanic-plutonic complex, define the >200-km-long northwest-aligned Big Creek-Beaverhead belt. Sensitive highresolution ion microprobe (SHRIMP) U-Pb zircon dates on these igneous rocks provide direct evidence for the orientation and location of the Neoproterozoic-Paleozoic western Laurentian rift margin in the northern U.S. Cordillera. Dating delimits two discrete magmatic pulses at ca. 665-650 Ma and 500-485 Ma at the western and eastern ends, respectively, of this belt. Together with the nearby 685 Ma volcanic rocks of the Edwardsburg Formation, there is a 200 Ma history of recurrent extensional magmatic pulses along the belt. A similar history of recurrent uplift is reflected in the stratigraphic record of the associated miogeoclinal and cratonal platform basins, suggesting that the Big Creek-Beaverhead belt originated as a border fault during continental rift events. The magmatic belt is paired with the recurrently emergent Lemhi Arch and narrow miogeoclinal facies belts and it lies inboard of a northwest-striking narrow zone of thinned continental crust. These features define a northeast-extending upper-plate extensional system between southeast Washington and southeast Idaho that formed a segment of the Neoproterozoic-Paleozoic miogeocline. This segment was flanked on the north by the St. Mary-Moyie transform zone (south of a narrow southern Canadian upper-plate margin) and on the south by the Snake River transfer zone (north of a broad Great Basin lower-plate margin). These are the central segments of a zigzagshaped Cordilleran rift system of alternating northwest-striking extensional zones offset by northeast-striking transfers and transforms. The data substantiate polyphase rift and continental separation events that included (1) pre-and syn-Windermere rifting, (2) Windermere

  8. Volatile (sulphur and chlorine), major, and trace element geochemistry of mafic to intermediate tephras from the Chilean Southern Volcanic Zone (33-43°S)

    Science.gov (United States)

    Wehrmann, Heidi; Hoernle, Kaj; Jacques, Guillaume; Garbe-Schönberg, Dieter; Schumann, Kai; Mahlke, Julia; Lara, Luis E.

    2014-10-01

    Here we present the first systematic investigation of volatile geochemistry along the Southern Volcanic Zone (SVZ) of Chile. Holocene olivine-hosted melt inclusions in the most mafic tephras sampled from 16 volcanoes along the volcanic front of the SVZ between 33°S and 43°S were analysed for pre-eruptive sulphur, chlorine, and major element contents. These results are combined with trace element compositions of the host whole rocks. The highest fractionation-corrected gas contents occur in the least-degassed melt inclusions from small monogenetic cones of Los Hornitos, Cabeza de Vaca, and Apagado from both the transitional and the southern-central SVZ, reaching ~3,000 μg/g S and 1,400 μg/g Cl, while the lowest abundances of ~1,100 μg/g S and ~600 μg/g Cl were found in the central SVZ at Volcán Lonquimay, Volcán Llaima, and Volcán Villarrica. Chlorine co-varies with trace element indicators for the degree of melting and/or source enrichment, such that the lowest Cl contents are found in high-degree melts from the most depleted mantle sources. The size of the volcanic edifices correlates inversely with Cl abundances in the melt. This could reflect more extensive degassing during ascent through the complex magma plumbing systems beneath the stratovolcanoes or greater dilution during larger degrees of melting of more depleted sources, or a combination of these factors. Compared to other subduction zones, the SVZ melt inclusions exhibit Cl and S abundances in the same range as most of those from the Central American and those from the Marianas arcs.

  9. Volcanic hazard management in dispersed volcanism areas

    Science.gov (United States)

    Marrero, Jose Manuel; Garcia, Alicia; Ortiz, Ramon

    2014-05-01

    Traditional volcanic hazard methodologies were developed mainly to deal with the big stratovolcanoes. In such type of volcanoes, the hazard map is an important tool for decision-makers not only during a volcanic crisis but also for territorial planning. According to the past and recent eruptions of a volcano, all possible volcanic hazards are modelled and included in the hazard map. Combining the hazard map with the Event Tree the impact area can be zoned and defining the likely eruptive scenarios that will be used during a real volcanic crisis. But in areas of disperse volcanism is very complex to apply the same volcanic hazard methodologies. The event tree do not take into account unknown vents, because the spatial concepts included in it are only related with the distance reached by volcanic hazards. The volcanic hazard simulation is also difficult because the vent scatter modifies the results. The volcanic susceptibility try to solve this problem, calculating the most likely areas to have an eruption, but the differences between low and large values obtained are often very small. In these conditions the traditional hazard map effectiveness could be questioned, making necessary a change in the concept of hazard map. Instead to delimit the potential impact areas, the hazard map should show the expected behaviour of the volcanic activity and how the differences in the landscape and internal geo-structures could condition such behaviour. This approach has been carried out in La Palma (Canary Islands), combining the concept of long-term hazard map with the short-term volcanic scenario to show the expected volcanic activity behaviour. The objective is the decision-makers understand how a volcanic crisis could be and what kind of mitigation measurement and strategy could be used.

  10. Chronology and origin of Au-Cu deposits related to Paleozoic intracontinental rifting in West Tianshan Mountains, NW China

    Institute of Scientific and Technical Information of China (English)

    李华芹; 陈富文

    2002-01-01

    Located between the Tarim platform and Junggar massif, the West Tianshan intracontinental rift abuts against the China-Kazakhstan boundary in the west part, borders on the Yilianhabierga late Paleozoic relic ocean basin and the South Tianshan late Paleozoic ocean basin respectively in the northeast separated by the Aibi Lake fault and in the southeast by the fault along the southern margin of the Yili massif. During the development and after the close of the West Tianshan intracontinental rifting in the Carboniferous-Permian period, a series of nonferrous and precious metal mineralizations occurred with the Au-Cu deposits being the most important. Isotopic chronologic study of representative deposits of different types shows that gold-copper mineralization in the West Tianshan intracontinental rift zone mainly happened during the middle-late Hercynian Period, among which the Axi volcanic hydrothermal type gold deposit was formed during the Carboniferous with a fluid inclusion Rb-Sr isochron age of (339 ± 28) Ma; the Qiabukanzhuota quartzolite type gold deposit has a Rb-Sr isochron age of (312 ± 46) Ma; the Tawuerbieke porphyry type gold deposit has a Rb-Sr isochron age of (295 ± 16) Ma; the Jingbulak magmatic liquation Cu-Ni deposit and the Musizaote porphyry type Cu deposit have the forming ages of 300 Ma ± and 250 Ma ±, respectively. Analyses of crustal evolution and metallogenetic geological backgrounds of Au-Cu mineralizations in the studied area shows a close correlation with the rifting.

  11. Modification of the Continental Crust by Subduction Zone Magmatism and Vice-Versa: Across-Strike Geochemical Variations of Silicic Lavas from Individual Eruptive Centers in the Andean Central Volcanic Zone

    Directory of Open Access Journals (Sweden)

    Gary S. Michelfelder

    2013-11-01

    Full Text Available To better understand the origin of across-strike K2O enrichments in silicic volcanic rocks from the Andean Central Volcanic Zone, we compare geochemical data for Quaternary volcanic rocks erupted from three well-characterized composite volcanoes situated along a southeast striking transect between 21° and 22° S latitude (Aucanquilcha, Ollagüe, and Uturuncu. At a given SiO2 content, lavas erupted with increasing distance from the arc front display systematically higher K2O, Rb, Th, Y, REE and HFSE contents; Rb/Sr ratios; and Sr isotopic ratios. In contrast, the lavas display systematically lower Al2O3, Na2O, Sr, and Ba contents; Ba/La, Ba/Zr, K/Rb, and Sr/Y ratios; Nd isotopic ratios; and more negative Eu anomalies toward the east. We suggest that silicic magmas along the arc front reflect melting of relatively young, mafic composition amphibolitic source rocks and that the mid- to deep-crust becomes increasingly older with a more felsic bulk composition in which residual mineralogies are progressively more feldspar-rich toward the east. Collectively, these data suggest the continental crust becomes strongly hybridized beneath frontal arc localities due to protracted intrusion of primary, mantle-derived basaltic magmas with a diminishing effect behind the arc front because of smaller degrees of mantle partial melting and primary melt generation.

  12. Use of precipitation and groundwater isotopes to interpret regional hydrology on a tropical volcanic island: Kilauea volcano area, Hawaii

    Science.gov (United States)

    Scholl, M.A.; Ingebritsen, S.E.; Janik, C.J.; Kauahikaua, J.P.

    1996-01-01

    Isotope tracer methods were used to determine flow paths, recharge areas, and relative age for groundwater in the Kilauea volcano area of the Island of Hawaii. A network of up to 66 precipitation collectors was emplaced in the study area and sampled twice yearly for a 3-year period. Stable isotopes in rainfall show three distinct isotopic gradients with elevation, which are correlated with trade wind, rain shadow, and high- elevation climatological patterns. Temporal variations in precipitation isotopes are controlled more by the frequency of storms than by seasonal temperature fluctuations. Results from this study suggest that (1) sampling network design must take into account areal variations in rainfall patterns on islands and in continental coastal areas and (2) isotope/elevation gradients on other tropical islands may be predictable on the basis of similar climatology. Groundwater was sampled yearly in coastal springs, wells, and a few high-elevation springs. Areal contrasts in groundwater stable isotopes and tritium indicate that the volcanic rift zones compartmentalize the regional groundwater system, isolating the groundwater south of Kilauea's summit and rift zones. Part of the Southwest Rift gone appears to act as a conduit for water from higher elevation, but there is no evidence for downrift flow in the springs and shallow wells sampled in the lower East Rift Zone.

  13. Geochemistry and spatial distribution of late-Paleozoic mafic volcanic rocks in the surrounding areas of the Gonghe Basin: Implications for Majixueshan triple-junction and east Paleotethyan archipelagic ocean

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The late-Paleozoic mafic volcanic rocks occurring in the surrounding areas of the Gonghe basin are distributed in the A'nyêmaqên ophiolite zone, Zongwulong tectonic zone and Kuhai-Saishitang volcanic zone. The mafic volcanics in the A'nyêmaqên zone formed an ancient ridge-centered hotspot around the Majixueshan OIB, the Kuhai-Saishitang mafic rocks consist of E-MORB and continental rift basalts and the Zongwulong volcanic rocks are enriched N-MORB. The regionally low Nb/U and Ce/Pb ratios reflect the influence of the OIB material on the mafic magma source. From geochemistry, spatial distribution and tectonic relationship of the mafic rocks, an ancient triple-junction centered at the Majixueshan can be inferred. The existence of the Kuhai-Saishitang aulacogen may have provided a tectonic channel for the Majixueshan OIB materials metasomatizing the magma source for the Zongwulong rocks. The formation of the triple-junction and the rifting of the Zongwulong zone have separated the orogens and massifs in the region.

  14. Origin of the ca. 90 Ma magnesia-rich volcanic rocks in SE Nyima, central Tibet: Products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone

    Science.gov (United States)

    Wang, Qing; Zhu, Di-Cheng; Zhao, Zhi-Dan; Liu, Sheng-Ao; Chung, Sun-Lin; Li, Shi-Min; Liu, Dong; Dai, Jin-Gen; Wang, Li-Quan; Mo, Xuan-Xue

    2014-06-01

    Bulk-rock major and trace element, Sr-Nd-Hf isotope, zircon U-Pb age, and zircon Hf isotopic data of the Late Cretaceous Zhuogapu volcanic rocks in the northern Lhasa subterrane provide a new insight into tectonic processes following the collision of the terrane with the Qiangtang zone. SHRIMP zircon U-Pb dating reveals that the Zhuogapu volcanic rocks crystallized at ca. 91 Ma, postdating the development of a regional angular unconformity between the Upper Cretaceous and the underlying strata in the Lhasa-Qiangtang collision zone. Compared to the Andean arc-type andesites and dacites, the Zhuogapu volcanic rocks are characterized by higher MgO of 2.78-5.86 wt.% and Mg# of 54-64 for andesites and MgO of 2.30-2.61 wt.% and Mg# of 55-58 for dacites. Eight andesite samples have whole-rock (87Sr/86Sr)i of 0.7054-0.7065, εNd(t) of - 3.2 to - 1.7, and εHf(t) of + 3.8-+ 6.4, similar to those of the three dacite samples with (87Sr/86Sr)i = 0.7056-0.7060, εNd(t) of - 2.7 to - 2.2, and εHf(t) of + 5.6-+ 7.0. Thirteen analyses from a dacite sample give positive zircon εHf(t) of + 5.6 to + 8.7. These signatures indicate that the Zhuogapu Mg-rich andesites were most likely derived from partial melting of a delaminated mafic lower crust (including the lowermost crust straddling the northern and central Lhasa subterranes) that led to the generation of the Zhuogapu primary melts with adakitic signatures and small negative εNd(t). Such melts subsequently experienced interaction of melt-asthenospheric mantle peridotite followed by the modification of highly fractionated magmas in shallow crustal magma chamber. Hornblende-controlled fractionation results in the change of geochemical composition from Mg-rich andesitic to Mg-rich dacitic magmas. Field observations, together with geochronological and geochemical data, indicate that the Zhuogapu Mg-rich volcanic rocks and coeval magmatism in the northern Lhasa subterrane may be the result of thickened lithospheric delamination

  15. Seismicity of the rocky mountains and Rio Grande Rift from the EarthScope Transportable Array and CREST temporary seismic networks, 2008-2010

    Science.gov (United States)

    Nakai, J. S.; Sheehan, A. F.; Bilek, S. L.

    2017-03-01

    We developed a catalog of small magnitude (ML -0.1 to 4.7) seismicity across Colorado and New Mexico from the EarthScope USArray Transportable Array and CREST (Colorado Rocky Mountains Experiment and Seismic Transects) seismic networks from 2008 to 2010 to characterize active deformation in the Rio Grande Rift. We recorded over 900 earthquakes in the Rio Grande Rift region, not including induced earthquakes and mine blasts, and find that the rift is actively deforming both broadly and in distinct regions. Seismic events that are likely induced, mostly in the Raton Basin, make up 66% of the catalog (1837 earthquakes). Neogene faults in the northern rift in north central Colorado are seismically active in the North Park Basin and northwestern Colorado. The central rift from the San Luis Basin (southern Colorado) to south of the Socorro Magma Body is the most seismically active rift region, and seismicity delineates the deformation in the Colorado Plateau transition zone, which is spatially correlated with volcanic vents, dikes, and faults within the western Jemez Lineament. The eastern Jemez Lineament is nearly aseismic and surrounded by a halo of seismicity culminating in boundaries defined by recent moderate (Mw 3.9 and Mw 3.3) earthquakes. The southern rift is characterized by diffuse seismicity in Texas and Mexico. This study provides an updated seismic catalog built with uniformity in seismometer coverage and low epicentral uncertainties ( 2 km) that allows for regional evaluation of seismicity. During this time period, clusters of seismicity and moderate magnitude earthquakes characterize deformation in a low-strain rate extensional environment.

  16. Eruption time series statistically examined: Probabilities of future eruptions at Villarrica and Llaima Volcanoes, Southern Volcanic Zone, Chile

    Science.gov (United States)

    Dzierma, Yvonne; Wehrmann, Heidi

    2010-06-01

    Probabilistic forecasting of volcanic eruptions is a central issue of applied volcanology with regard to mitigating consequences of volcanic hazards. Recent years have seen great advances in the techniques of statistical analysis of volcanic eruption time series, which constitutes an essential component of a multi-discipline volcanic hazard assessment. Here, two of the currently most active volcanoes of South America, Villarrica and Llaima, are subjected to an established statistical procedure, with the aim to provide predictions for the likelihood of future eruptions within a given time interval. In the eruptive history of both Villarrica and Llaima Volcanoes, time independence of eruptions provides consistency with Poissonian behaviour. A moving-average test, helping to assess whether the distribution of repose times between eruptions changes in response to the time interval considered, validates stationarity for at least the younger eruption record. For the earlier time period, stationarity is not entirely confirmed, which may artificially result from incompleteness of the eruption record, but can also reveal fluctuations in the eruptive regime. To take both possibilities into account, several different distribution functions are fit to the eruption time series, and the fits are evaluated for their quality and compared. The exponential, Weibull and log-logistic distributions are shown to fit the repose times sufficiently well. The probability of future eruptions within defined time periods is therefore estimated from all three distribution functions, as well as from a mixture of exponential distribution (MOED) for the different eruption regimes and from a Bayesian approach. Both the MOED and Bayesian estimates intrinsically predict lower eruption probabilities than the exponential distribution function, while the Weibull distributions have increasing hazard rates, hence giving the highest eruption probability forecasts. This study provides one of the first

  17. An updated global earthquake catalogue for stable continental regions: Reassessing the correlation with ancient rifts

    Science.gov (United States)

    Schulte, S.M.; Mooney, W.D.

    2005-01-01

    We present an updated global earthquake catalogue for stable continental regions (SCRs; i.e. intraplate earthquakes) that is available on the Internet. Our database contains information on location, magnitude, seismic moment and focal mechanisms for over 1300 M (moment magnitude) ??? 4.5 historic and instrumentally recorded crustal events. Using this updated earthquake database in combination with a recently published global catalogue of rifts, we assess the correlation of intraplate seismicity with ancient rifts on a global scale. Each tectonic event is put into one of five categories based on location: (i) interior rifts/taphrogens, (ii) rifted continental margins, (iii) non-rifted crust, (iv) possible interior rifts and (v) possible rifted margins. We find that approximately 27 per cent of all events are classified as interior rifts (i), 25 per cent are rifted continental margins (ii), 36 per cent are within non-rifted crust (iii) and 12 per cent (iv and v) remain uncertain. Thus, over half (52 per cent) of all events are associated with rifted crust, although within the continental interiors (i.e. away from continental margins), non-rifted crust has experienced more earthquakes than interior rifts. No major change in distribution is found if only large (M ??? 6.0) earthquakes are considered. The largest events (M ??? 7.0) however, have occurred predominantly within rifts (50 per cent) and continental margins (43 per cent). Intraplate seismicity is not distributed evenly. Instead several zones of concentrated seismicity seem to exist. This is especially true for interior rifts/taphrogens, where a total of only 12 regions are responsible for 74 per cent of all events and as much as 98 per cent of all seismic moment released in that category. Of the four rifts/taphrogens that have experienced the largest earthquakes, seismicity within the Kutch rift, India, and the East China rift system, may be controlled by diffuse plate boundary deformation more than by the

  18. Status of volcanic hazard studies for the Nevada Nuclear Waste Storage Investigations. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.M.; Wohletz, K.H.; Vaniman, D.T.; Gladney, E.; Bower, N.

    1986-01-01

    Volcanic hazard investigations during FY 1984 focused on five topics: the emplacement mechanism of shallow basalt intrusions, geochemical trends through time for volcanic fields of the Death Valley-Pancake Range volcanic zone, the possibility of bimodal basalt-rhyolite volcanism, the age and process of enrichment for incompatible elements in young basalts of the Nevada Test Site (NTS) region, and the possibility of hydrovolcanic activity. The stress regime of Yucca Mountain may favor formation of shallow basalt intrusions. However, combined field and drill-hole studies suggest shallow basalt intrusions are rare in the geologic record of the southern Great Basin. The geochemical patterns of basaltic volcanism through time in the NTS region provide no evidence for evolution toward a large-volume volcanic field or increases in future rates of volcanism. Existing data are consistent with a declining volcanic system comparable to the late stages of the southern Death Valley volcanic field. The hazards of bimodal volcanism in this area are judged to be low. The source of a 6-Myr pumice discovered in alluvial deposits of Crater Flat has not been found. Geochemical studies show that the enrichment of trace elements in the younger rift basalts must be related to an enrichment of their mantle source rocks. This geochemical enrichment event, which may have been metasomatic alteration, predates the basalts of the silicic episode and is, therefore, not a young event. Studies of crater dimensions of hydrovolcanic landforms indicate that the worst case scenario (exhumation of a repository at Yucca Mountain by hydrovolcanic explosions) is unlikely. Theoretical models of melt-water vapor explosions, particularly the thermal detonation model, suggest hydrovolcanic explosion are possible at Yucca Mountain. 80 refs., 21 figs., 5 tabs.

  19. The Southern Part of the Southern Volcanic Zone (SSVZ; 42-46S) of the Andes: History of Medium and Large Explosive Holocene Eruptions

    Science.gov (United States)

    Stern, C. R.; Naranjo, J. A.

    2008-12-01

    Chaitén volcano is one of 13 large volcanic centers, and numerous small cones, comprising the southern part of the Andean Southern Volcanic Zone (SVZ), that results from the subduction of the Nazca plate (at 7.8 cm/yr) between the landward extension of the Chiloé FZ at 42S and the Chile Rise - Trench triple junction at 46S. Chaitén is a rhyolite dome inside a 3 km diameter caldera located 15 km west of the larger Michinmahuida stratovolcano. Other stratovolcanoes in the SSVZ include Yate, Hornopirén, Corcovado, Yanteles, Melimoyu, Mentolat, Cay and Macá. Hudson volcano, the southernmost in the Southern SVZ, is a large 10 km caldera, while Huequi and Hualaihué - Cordón Cabrera are a group of small aligned cinder cones possibly related to a larger eroded volcanic complex. Prior to the May 2008 eruption of Chaitén, the only well documented historic eruptions in this segment of the Andean arc were the explosive eruption of Hudson in August 1991 (Naranjo et al. 1993), and two eruptions of Michinmahuida in 1742 and 1834-35. Tephra deposits provide evidence of 11 prehistoric explosive Holocene eruptions of the southernmost SSVZ Hudson volcano, including two large eruptions near Boletin No 44, SERNAGEOMIN, 50 p. Naranjo and Stern 1998, Bull Volcanology 59: 291-306. Naranjo and Stern 2004, Revista Geologica de Chile 31: 225-240. Stern et al. 2002, Anales del Intituto de la Patagonia 30: 167-174.

  20. Submarine Volcanic Morphology of Santorini Caldera, Greece

    Science.gov (United States)

    Nomikou, P.; Croff Bell, K.; Carey, S.; Bejelou, K.; Parks, M.; Antoniou, V.

    2012-04-01

    Santorini volcanic group form the central part of the modern Aegean volcanic arc, developed within the Hellenic arc and trench system, because of the ongoing subduction of the African plate beneath the European margin throughout Cenozoic. It comprises three distinct volcanic structures occurring along a NE-SW direction: Christianna form the southwestern part of the group, Santorini occupies the middle part and Koloumbo volcanic rift zone extends towards the northeastern part. The geology of the Santorini volcano has been described by a large number of researchers with petrological as well as geochronological data. The offshore area of the Santorini volcanic field has only recently been investigated with emphasis mainly inside the Santorini caldera and the submarine volcano of Kolumbo. In September 2011, cruise NA-014 on the E/V Nautilus carried out new surveys on the submarine volcanism of the study area, investigating the seafloor morphology with high-definition video imaging. Submarine hydrothermal vents were found on the seafloor of the northern basin of the Santorini caldera with no evidence of high temperature fluid discharges or massive sulphide formations, but only low temperature seeps characterized by meter-high mounds of bacteria-rich sediment. This vent field is located in line with the normal fault system of the Kolumbo rift, and also near the margin of a shallow intrusion that occurs within the sediments of the North Basin. Push cores have been collected and they will provide insights for their geochemical characteristics and their relationship to the active vents of the Kolumbo underwater volcano. Similar vent mounds occur in the South Basin, at shallow depths around the islets of Nea and Palaia Kameni. ROV exploration at the northern slopes of Nea Kameni revealed a fascinating underwater landscape of lava flows, lava spines and fractured lava blocks that have been formed as a result of 1707-1711 and 1925-1928 AD eruptions. A hummocky topography at

  1. Temporal and spatial constraints on the evolution of a Rio Grande rift sub-basin, Guadalupe Mountain area, northern New Mexico

    Science.gov (United States)

    Thompson, R. A.; Turner, K. J.; Cosca, M. A.; Drenth, B.; Hudson, M. R.; Lee, J.

    2013-12-01

    The Taos Plateau volcanic field (TPVF) in the southern San Luis Valley of northern New Mexico is the most voluminous of the predominantly basaltic Neogene (6-1 Ma) volcanic fields of the Rio Grande rift. Volcanic deposits of the TPVF are intercalated with alluvial deposits of the Santa Fe Group and compose the N-S-trending San Luis Basin, the largest basin of the northern rift (13,500 km2 in area). Pliocene volcanic rocks of the Guadalupe Mountain area of northern New Mexico are underlain by the southern end of one of the larger sub-basins of the San Luis Valley, the Sunshine sub-basin (~ 450 km2 in area) juxtaposed against the down-to-west frontal fault of the Precambrian-cored Sangre de Cristo Range. The sub-basin plunges northward and extends to near the Colorado-New Mexico border. The western margin (~15 km west of the Sangre de Cristo fault) is constrained by outcrops of Oligocene to Miocene volcanic rocks of the Latir volcanic field, interpreted here as a broad pre-Pliocene intra-rift platform underlying much of the northern TPVF. The southern sub-basin border is derived, in part, from modeling of gravity and aeromagnetic data and is interpreted as a subsurface extension of this intra-rift platform that extends southeastward to nearly the Sangre de Cristo range front. Broadly coincident with this subsurface basement high is the northwest-trending, curvilinear terminus of the down-to-northeast Red River fault zone. South of the gravity high, basin-fill alluvium and ~3.84 Ma Servilleta basalt lava flows thicken along a poorly exposed, down-to-south, basin-bounding fault of the northern Taos graben, the largest of the San Luis Valley sub-basins. The uppermost, western sub-basin fill is exposed along steep canyon walls near the confluence of the Rio Grande and the Red River. Unconformity-bound, lava flow packages are intercalated with paleo Red River fan alluvium and define six eruptive sequences in the Guadalupe Mountain area: (1) Guadalupe Mtn. lavas (dacite ~5

  2. Structural pattern at the northwestern sector of the Tepic-Zacoalco rift and tectonic implications for the Jalisco block, western Mexico

    Science.gov (United States)

    Urrutia-Fucugauchi, Jaime; González-Morán, Tomás

    2006-10-01

    Analysis of the aeromagnetic anomalies over the northwestern sector of the Tepic-Zacoalco rift documents a NE-SW pattern of lineaments that are perpendicular to the inferred NW-SE boundary between the Jalisco block and the Sierra Madre Occidental. The boundary lies within the central sector of the Tepic-Zacoalco rift immediately north of the Ceboruco and Tepetiltic stratovolcanoes and extends up to the San Juan stratovolcano, where it intersects the NE-SW magnetic anomaly lineament that runs toward the Pacific coast (which intersects two volcanic centers). This N35°E lineament separates the central rift zone of low amplitude mainly negative anomalies (except those positive anomalies over the stratovolcanoes) from the zone to the north and west characterized by high amplitude positive long wavelength anomalies. The NE-SW lineament is parallel to the western sector of the Ameca graben and the offshore Bahia de Banderas graben and to the structural features of the Punta Mita peninsula at the Pacific coast, and thus seems to form part of a regional NE-SW pattern oblique to the proposed westward or northwestward motion of the Jalisco block. The orientation of this regional structural pattern at the northern end of the Tepic-Zacoalco rift seems consistent with proposed dominant SW-directed extension along the rift during the Pliocene and Quaternary, rather than with NW-SE lateral strike-slip faulting. The orthogonal pattern that characterizes the northernmost boundary of the Tepic-Zacoalco rift is oblique to the pattern observed in the Grande de Santiago river (which conforms the northern limit of the rift) and for the central-eastern sectors of the Ameca graben (south of the rift). This spatial arrangement of major lineaments and structural elements points to a complex tectonic history for the region that includes the rifting of the Gulf of California and margin deformation due to plate convergence and kinematic re-organization events, and which may have resulted in

  3. Linking deep earth to surface processes in the Woodlark Rift of Papua New Guinea; a framework for understanding (U)HP exhumation globally

    Science.gov (United States)

    Baldwin, S.; Fitzgerald, P. G.; Bermudez, M. A.; Webb, L. E.; Moucha, R.; Miller, S. R.; Catalano, J. P.; Zirakparvar, N. A.

    2012-12-01

    During the Cenozoic the leading edge of the AUS plate was subducted northwards beneath the forearc of oceanic island arc(s), during its north-northeast passage over a complexly structured mantle. Sediments and basalts were metamorphosed under (U)HP conditions to form blueschists and eclogites, and lower-grade metamorphic rocks that are now exposed throughout New Guinea, primarily south of, and structurally beneath, obducted ophiolites. In the Woodlark Rift the youngest (2-8 Ma) (U)HP rocks on Earth were exhumed from mantle depths (>90 km) at plate tectonic rates (1-4 cm yr-1) west of the active Woodlark Basin seafloor spreading center rift tip. How these (U)HP rocks were exhumed is the focus of an ongoing collaborative multidisciplinary project which aims to understand linkages between deep earth, plate tectonic, and surface processes in the Woodlark Rift. Since the Late Miocene, a regionally extensive subduction complex was exhumed on the southern-rifted margin of the Woodlark Basin (Pocklington Rise), and in the lower plates of the D'Entrecasteaux, Misima, and Dayman dome metamorphic core complexes. Late Miocene-to-Pliocene metamorphism of sediments and basalts preceded diachronous exhumation from east to west, in the same direction as rift propagation. In contrast the northern-rifted margin (Woodlark Rise) comprises mid-Miocene to Pliocene volcanic flows and pyroclastic material ranging in composition from basalt to rhyolite, with capping limestone. The age of volcanic rocks on the northern-rifted margin also youngs from east to west. Pliocene to active syn-rift volcanism on the Woodlark Rise and in the D'Entrecasteaux Islands is synchronous with (U)HP exhumation, and results from decompression melting of a relict mantle wedge. As lithospheric extension proceeds, volcanic compositions evolve from subduction zone geochemical signatures (i.e., negative HFSE anomalies) toward E-MORB. Preliminary mantle convection models investigate large-scale background mantle

  4. Spatial probability distribution of future volcanic eruptions at El Hierro Island (Canary Islands, Spain)

    Science.gov (United States)

    Becerril, Laura; Cappello, Annalisa; Galindo, Inés; Neri, Marco; Del Negro, Ciro

    2013-05-01

    The 2011 submarine eruption that took place in the proximity of El Hierro Island (Canary Islands, Spain) has raised the need to identify the most likely future emission zones even on volcanoes characterized by low frequency activity. Here, we propose a probabilistic method to build the susceptibility map of El Hierro, i.e. the spatial distribution of vent opening for future eruptions, based on the probabilistic analysis of volcano-structural data of the Island collected through new fieldwork measurements, bathymetric information, as well as analysis of geological maps, orthophotos and aerial photographs. These data have been divided into different datasets and converted into separate and weighted probability density functions, which were included in a non-homogeneous Poisson process to produce the volcanic susceptibility map. The most likely area to host new eruptions in El Hierro is in the south-western part of the West rift. High probability locations are also found in the Northeast and South rifts, and along the submarine parts of the rifts. This map represents the first effort to deal with the volcanic hazard at El Hierro and can be a support tool for decision makers in land planning, emergency measures and civil defense actions.

  5. Magma-derived CO2 emissions in the Tengchong volcanic field, SE Tibet: Implications for deep carbon cycle at intra-continent subduction zone

    Science.gov (United States)

    Zhang, Maoliang; Guo, Zhengfu; Sano, Yuji; Zhang, Lihong; Sun, Yutao; Cheng, Zhihui; Yang, Tsanyao Frank

    2016-09-01

    Active volcanoes at oceanic subduction zone have long been regard as important pathways for deep carbon degassed from Earth's interior, whereas those at continental subduction zone remain poorly constrained. Large-scale active volcanoes, together with significant modern hydrothermal activities, are widely distributed in the Tengchong volcanic field (TVF) on convergent boundary between the Indian and Eurasian plates. They provide an important opportunity for studying deep carbon cycle at the ongoing intra-continent subduction zone. Soil microseepage survey based on accumulation chamber method reveals an average soil CO2 flux of ca. 280 g m-2 d-1 in wet season for the Rehai geothermal park (RGP). Combined with average soil CO2 flux in dry season (ca. 875 g m-2 d-1), total soil CO2 output of the RGP and adjacent region (ca. 3 km2) would be about 6.30 × 105 t a-1. Additionally, we conclude that total flux of outgassing CO2 from the TVF would range in (4.48-7.05) × 106 t a-1, if CO2 fluxes from hot springs and soil in literature are taken into account. Both hot spring and soil gases from the TVF exhibit enrichment in CO2 (>85%) and remarkable contribution from mantle components, as indicated by their elevated 3He/4He ratios (1.85-5.30 RA) and δ13C-CO2 values (-9.00‰ to -2.07‰). He-C isotope coupling model suggests involvement of recycled organic metasediments and limestones from subducted Indian continental lithosphere in formation of the enriched mantle wedge (EMW), which has been recognized as source region of the TVF parental magmas. Contamination by crustal limestone is the first-order control on variations in He-CO2 systematics of volatiles released by the EMW-derived melts. Depleted mantle and recycled crustal materials from subducted Indian continental lithosphere contribute about 45-85% of the total carbon inventory, while the rest carbon (about 15-55%) is accounted by limestones in continental crust. As indicated by origin and evolution of the TVF

  6. Rayleigh-wave imaging of upper-mantle shear velocities beneath the Malawi Rift; Preliminary results from the SEGMeNT experiment

    Science.gov (United States)

    Accardo, N. J.; Gaherty, J. B.; Shillington, D. J.; Nyblade, A.; Ebinger, C. J.; Mbogoni, G. J.; Chindandali, P. R. N.; Mulibo, G. D.; Ferdinand-Wambura, R.; Kamihanda, G.

    2015-12-01

    The Malawi Rift (MR) is an immature rift located at the southern tip of the Western branch of the East African Rift System (EARS). Pronounced border faults and tectonic segmentation are seen within the upper crust. Surface volcanism in the region is limited to the Rungwe volcanic province located north of Lake Malawi (Nyasa). However, the distribution of extension and magma at depth in the crust and mantle lithosphere is unknown. As the Western Rift of the EARS is largely magma-poor except for discrete volcanic provinces, the MR presents the ideal location to elucidate the role of magmatism in early-stage rifting and the manifestation of segmentation at depth. This study investigates the shear velocity of the crust and mantle lithosphere beneath the MR to constrain the thermal structure, the amount of total crustal and lithospheric thinning, and the presence and distribution of magmatism beneath the rift. Utilizing 55 stations from the SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) passive-source seismic experiment operating in Malawi and Tanzania, we employed a multi-channel cross-correlation algorithm to obtain inter-station phase and amplitude information from Rayleigh wave observations between 20 and 80 s period. We retrieve estimates of phase velocity between 9-20 s period from ambient noise cross-correlograms in the frequency domain via Aki's formula. We invert phase velocity measurements to obtain estimates of shear velocity (Vs) between 50-200 km depth. Preliminary results reveal a striking low-velocity zone (LVZ) beneath the Rungwe volcanic province with Vs ~4.2-4.3 km/s in the uppermost mantle. Low velocities extend along the entire strike of Lake Malawi and to the west where a faster velocity lid (~4.5 km/s) is imaged. These preliminary results will be extended by incorporating broadband data from seven "lake"-bottom seismometers (LBS) to be retrieved from Lake Malawi in October of this year. The crust and mantle modeling will be

  7. Deccan volcanism, the KT mass extinction and dinosaurs

    Indian Academy of Sciences (India)

    G Keller; A Sahni; S Bajpai

    2009-11-01

    Recent advances in Deccan volcanic studies indicate three volcanic phases with the phase-1 at 67.5 Ma followed by a 2 m.y. period of quiescence. Phase-2 marks the main Deccan volcanic eruptions in Chron 29r near the end of the Maastrichtian and accounts for ∼80% of the entire 3500 m thick Deccan lava pile. At least four of the world’s longest lava flows spanning 1000 km across India and out into the Gulf of Bengal mark phase-2. The final phase-3 was smaller, coincided with the early Danian Chron 29n and also witnessed several of the longest lava flows. The KT boundary and mass extinction was first discovered based on planktic foraminifera from shallow marine intertrappean sediments exposed in Rajahmundry quarries between the longest lava flows of the main volcanic phase-2 and smaller phase-3. At this locality early Danian (zone P1a) planktic foraminiferal assemblages directly overlie the top of phase-2 eruptions and indicate that the masse extinction coincided with the end of this volcanic phase. Planktic foraminiferal assemblages also mark the KT boundary in intertrappean sediments at Jhilmili, Chhindwara, where freshwater to estuarine conditions prevailed during the early Danian and indicate the presence of a marine seaway across India at KT time. Dinosaur bones, nesting sites with complete eggs and abundant eggshells are known from central India surrounding the hypothesized seaway through the Narmada-Tapti rift zone. A Maastrichtian age is generally assigned to these dinosaur remains. Age control may now be improved based on marine microfossils from sequences deposited in the seaway and correlating these strata to nearby terrestrial sequences with dinosaur remains.

  8. Deccan volcanism, the KT mass extinction and dinosaurs

    Indian Academy of Sciences (India)

    G Keller; A Sahni; S Bajpai

    2010-03-01

    Recent advances in Deccan volcanic studies indicate three volcanic phases with the phase-1 at 67.5 Ma followed by a 2 m.y. period of quiescence. Phase-2 marks the main Deccan volcanic eruptions in Chron 29r near the end of the Maastrichtian and accounts for ∼80% of the entire 3500 m thick Deccan lava pile. At least four of the world’s longest lava flows spanning 1000 km across India and out into the Gulf of Bengal mark phase-2. The final phase-3 was smaller, coincided with the early Danian Chron 29n and also witnessed several of the longest lava flows. The KT boundary and mass extinction was first discovered based on planktic foraminifera from shallow marine intertrappean sediments exposed in Rajahmundry quarries between the longest lava flows of the main volcanic phase-2 and smaller phase-3. At this locality early Danian (zone P1a) planktic foraminiferal assemblages directly overlie the top of phase-2 eruptions and indicate that the masse extinction coincided with the end of this volcanic phase. Planktic foraminiferal assemblages also mark the KT boundary in intertrappean sediments at Jhilmili, Chhindwara, where freshwater to estuarine conditions prevailed during the early Danian and indicate the presence of a marine seaway across India at KT time. Dinosaur bones, nesting sites with complete eggs and abundant eggshells are known from central India surrounding the hypothesized seaway through the Narmada-Tapti rift zone. A Maastrichtian age is generally assigned to these dinosaur remains. Age control may now be improved based on marine microfossils from sequences deposited in the seaway and correlating these strata to nearby terrestrial sequences with dinosaur remains.

  9. Geochronological and geochemical constraints on the petrogenesis of late Cretaceous volcanic rock series from the eastern Sakarya zone, NE Anatolia-Turkey

    Science.gov (United States)

    Aydin, Faruk; Oǧuz, Simge; Şen, Cüneyt; Uysal, İbrahim; Başer, Rasim

    2016-04-01

    New SHRIMP zircon U-Pb ages and whole-rock geochemical data as well as Sr-Nd-Pb and δ18O isotopes of late Cretaceous volcanic rock series from the Giresun and Artvin areas (NE Anatolia, Turkey) in the northern part of the eastern Sakarya zone (ESZ) provide important evidence for northward subduction of the Neo-Tethyan oceanic lithosphere along the southern border of the ESZ. In particular, tectonic setting and petrogenesis of these subduction-related volcanites play a critical role in determining the nature of the lower continental crust and mantle dynamics during late Mesozoic orogenic processes in this region. The late Cretaceous time in the ESZ is represented by intensive volcanic activities that occurred in two different periods, which generally consist of alternation of mafic-intermediate (basaltic to andesitic) and felsic rock series (dacitic to rhyolitic) within each period. Although there is no geochronological data for the lower mafic-intermediate rock series of the first volcanic period, U-Pb zircon dating from the first cycle of felsic rocks yielded ages ranging from 88.6±1.8 to 85.0±1.3 Ma (i.e. Coniacian-Early Santonian). The first volcanic period in the region is generally overlain by reddish biomicrite-rich sedimentary rocks of Santonian-Early Campanian. U-Pb zircon dating for the second cycle of mafic-intermediate and felsic rocks yielded ages varying from 84.9±1.7 to 80.8±1.5Ma (i.e. Early to Middle Campanian). The studied volcanic rocks have mostly transitional geochemical character changing from tholeiitic to calc-alkaline with typical arc signatures. N-MORB-normalised multi-element and chondrite-normalised rare earth element (REE) patterns show that all rocks are enriched in LILEs (e.g. Rb, Ba, Th) and LREEs (e.g. La, Ce) but depleted in Nb and Ti. In particular, the felsic samples are characterised by distinct negative Eu anomalies. The samples are characterized by a wide range of Sr-Nd-Pb isotopic compositions (initial ɛNd values from -7

  10. From rifting to passive margin: the examples of the Red Sea, Central Atlantic and Alpine Tethys

    Science.gov (United States)

    Favre, P.; Stampfli, G. M.

    1992-12-01

    Evolution of the Red Sea/Gulf of Suez and the Central Atlantic rift systems shows that an initial, transtensive rifting phase, affecting a broad area around the future zone of crustal separation, was followed by a pre-oceanic rifting phase during which extensional strain was concentrated on the axial rift zone. This caused lateral graben systems to become inactive and they evolved into rift-rim basins. The transtensive phase of diffuse crustal extension is recognized in many intra-continental rifts. If controlling stress systems relax, these rifts abort and develop into palaeorifts. If controlling stress systems persist, transtensive rift systems can enter the pre-oceanic rifting stage, during which the rift zone narrows and becomes asymmetric as a consequence of simple-shear deformation at shallow crustal levels and pure shear deformation at lower crustal and mantle-lithospheric levels. Preceding crustal separation, extensional denudation of the lithospheric mantle is possible. Progressive lithospheric attenuation entails updoming of the asthenosphere and thermal doming of the rift shoulders. Their uplift provides a major clastic source for the rift basins and the lateral rift-rim basins. Their stratigraphic record provides a sensitive tool for dating the rift shoulder uplift. Asymmetric rifting leads to the formation of asymmetric continental margins, corresponding in a simple-shear model to an upper plate and a conjugate lower plate margin, as seen in the Central Atlantic passive margins of the United States and Morocco. This rifting model can be successfully applied to the analysis of the Alpine Tethys palaeo-margins (such as Rif and the Western Alps).

  11. Phosphorus zoning as a recorder of crystal growth kinetics: application to second-generation olivine in mantle xenoliths from the Cima Volcanic Field

    Science.gov (United States)

    Baziotis, I.; Asimow, P. D.; Ntaflos, T.; Boyce, J. W.; McCubbin, F. M.; Koroneos, A.; Perugini, D.; Flude, S.; Storey, M.; Liu, Y. S.; Klemme, S.; Berndt, J.

    2017-07-01

    Composite mantle xenoliths from the Cima Volcanic Field (CA, USA) contain glassy veins that cross-cut lithologic layering and preserve evidence of lithospheric melt infiltration events. Compositions and textures of minerals and glasses from these veins have the potential to place constraints on the rates and extents of reaction during infiltration. We studied glass-bearing regions of two previously undescribed composite xenoliths, including optical petrography and chemical analysis for major and trace elements by electron probe microanalysis and laser-ablation inductively coupled plasma mass spectrometry. The petrogenetic history of each vein involves melt intrusion, cooling accompanied by both wall-rock reaction and crystallization, quench of melt to a glass, and possibly later modifications. Exotic secondary olivine crystals in the veins display concentric phosphorus (P)-rich zoning, P-rich glass inclusions, and zoning of rapidly diffusing elements (e.g., Li) that we interpret as records of rapid disequilibrium events and cooling rates on the order of 10 °C/h. Nevertheless, thermodynamic modeling of the diversity of glass compositions recorded in one of the samples demonstrates extensive reaction with Mg-rich olivine from the matrix before final quench. Our results serve as a case study of methods for interpreting the rates and processes of lithospheric melt-rock reactions in many continental and oceanic environments.

  12. Statistical eruption forecast for the Chilean Southern Volcanic Zone: typical probabilities of volcanic eruptions as baseline for possibly enhanced activity following the large 2010 Concepción earthquake

    Directory of Open Access Journals (Sweden)

    Y. Dzierma

    2010-10-01

    Full Text Available A probabilistic eruption forecast is provided for ten volcanoes of the Chilean Southern Volcanic Zone (SVZ. Since 70% of the Chilean population lives in this area, the estimation of future eruption likelihood is an important part of hazard assessment. After investigating the completeness and stationarity of the historical eruption time series, the exponential, Weibull, and log-logistic distribution functions are fit to the repose time distributions for the individual volcanoes and the models are evaluated. This procedure has been implemented in two different ways to methodologically compare details in the fitting process. With regard to the probability of at least one VEI ≥ 2 eruption in the next decade, Llaima, Villarrica and Nevados de Chillán are most likely to erupt, while Osorno shows the lowest eruption probability among the volcanoes analysed. In addition to giving a compilation of the statistical eruption forecasts along the historically most active volcanoes of the SVZ, this paper aims to give "typical" eruption probabilities, which may in the future permit to distinguish possibly enhanced activity in the aftermath of the large 2010 Concepción earthquake.

  13. Pore Fluid Evolution Influenced by Volcanic Activities and Related Diagenetic Processes in a Rift Basin: Evidence from the Paleogene Medium-Deep Reservoirs of Huanghekou Sag, Bohai Bay Basin, China

    Directory of Open Access Journals (Sweden)

    Zhongheng Sun

    2017-01-01

    Full Text Available Volcanic activities exert a significant influence on pore fluid property and related diagenetic processes that substantially controlled reservoirs quality. Analysis of Paleogene medium-deep sandstones on the Huanghekou Sag provides insight into relating the diagenetic processes to pore fluid property evolution influenced by volcanic activities. Three distinct types of pore fluids were identified on the basis of an integrated and systematic analysis including core and thin section observation, XRD, SEM, CL, and trace element. Alkaline aqueous medium environment occurred in E2s1+2 where volcanic activities have insignificant influence on pore fluids, evidenced by typical alkaline diagenetic events such as K-feldspar albitization, quartz dissolution, feldspar dissolution, and carbonate cementation. During the deposition of E3d3, influx of terrestrial freshwater and alteration of ferromagnesian-rich pore water result in the formation of mixing aqueous medium environment through volcanic eruption dormancy causing zeolite dissolution, clay mineral transformation, and K-feldspar albitization. Ferromagnesian-rich aqueous medium environment developed resulting from the intensive hydrolysis of the unstable ferromagnesian minerals formed due to intense volcanic activities during E3d1+2 and corresponding predominant diagenetic processes were characterized by the precipitation and dissolution of low-silica zeolites. Therefore, the differential properties of pore fluids caused various diagenetic processes controlling reservoir quality.

  14. Haemoragisk Rift Valley Fever

    DEFF Research Database (Denmark)

    Fabiansen, Christian; Thybo, Søren

    2007-01-01

    A case of fatal hemorrhagic Rift Valley fever during an epidemic in Kenya's North Eastern Province in January 2007 is described.......A case of fatal hemorrhagic Rift Valley fever during an epidemic in Kenya's North Eastern Province in January 2007 is described....

  15. Rift Valley Fever Virus

    Science.gov (United States)

    Rift Valley fever virus (RVFV) is a mosquito-transmitted virus or arbovirus that is endemic in sub-Saharan Africa. In the last decade, Rift Valley fever (RVF) outbreaks have resulted in loss of human and animal life, as well as had significant economic impact. The disease in livestock is primarily a...

  16. Hydrothermal Petroleum in Active Continental Rift: Lake Chapala, Western Mexico, Initial Results.

    Science.gov (United States)

    Zarate-del Valle, P. F.; Simoneit, B. R.; Ramirez-Sanchez, H. U.

    2003-12-01

    Lake Chapala in western Mexico is located partially in the Citala Rift, which belongs to the well-known neotectonic Jalisco continental triple junction. The region is characterized by active volcanism (Ceboruco, Volcan de Fuego), tectonic (1995 earthquake, M=8, 40-50 mm to SW) and hydrothermal (San Juan Cosala & Villa Corona spas and La Calera sinter deposit) activities. Hydrothermal petroleum has been described in active continental rift (East African Rift) and marine spreading zones (Guaymas Basin, Gulf of California). In 1868 the Mexican local press reported that manifestations of bitumen were appearing in front of the Columba Cap on the mid south shore of Lake Chapala. This bitumen is linked to the lake bottom and when the water level decreases sufficiently it is possible to access these tar bodies as islands. Because of these manifestations the Mexican oil company (PEMEX) drilled an exploration well (2,348m) at Tizapan El Alto without success. Hydrothermal activity is evident in the tar island zone as three in-shore thermal springs (26.8 m depth, 48.5° C, pH 7.8 and oriented N-S). The preliminary analyses by GC-MS of the tar from these islands indicate hydrothermal petroleum derived from lake sedimentary organic matter, generated at low temperatures (150° -200° C). The tars contain no n-alkanes, no PAH or other aromatics, but a major UCM of branched and cyclic hydrocarbons and mature biomarkers derived from lacustrine biota. The biomarkers consist of mainly 17α (H),21β (H)-hopanes ranging from C27 to C34 (no C28), gammacerane, tricyclic terpanes (C20-C26), carotane and its cracking products, and drimanes (C14-C16). The biomarker composition indicates an organic matter source from bacteria and algae, typical of lacustrine ecosystems. 14C dating of samples from two tar islands yielded ages exceeding 40 kyrs, i.e., old carbon from hydrothermal/tectonic remobilization of bitumen from deeper horizons to the surface. The occurrence of hydrothermal petroleum in

  17. Mixing and mingling in the evolution of andesite dacite magmas; evidence from co-magmatic plutonic enclaves, Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Cole, J. W.; Gamble, J. A.; Burt, R. M.; Carroll, L. D.; Shelley, D.

    2001-10-01

    The southeastern side of the Taupo Volcanic Zone, New Zealand is marked by a line of andesite/dacite/low-silica rhyolite complexes. Co-magmatic plutonic enclaves occur within the lavas of the four youngest complexes: White Island, Motuhora (Whale Island), Edgecumbe and Tauhara. The enclaves range from coarse-grained gabbros, diorites, granodiorites and a syenite to finer-grained dolerites and microdiorites. The more mafic types are generally porphyritic with large phenocrysts of plagioclase, usually with extensive sieve textures in the cores and corroded margins. Most of these enclaves, including the coarser-grained plutonic examples, contain glass and many are miarolitic. Diorites and microdiorites/dolerites predominate at White Island, Motuhora and Edgecumbe; many are porphyritic. Enclaves at Tauhara are more variable; those collected from Hipaua Dome include a range from microdiorites to quartz microdiorites and those from Rubbish Tip Dome include microdiorites, a granodiorite, and a syenite. Most enclaves show textural evidence for disequilibrium with multiple populations of plagioclase and pyroxene. They also show considerable textural variation, even within a thin section, with coarse-grained gabbros/diorites intimately mixed with finer-grained dolerites/microdiorites. Geochemically and isotopically, most enclaves have a similar composition with their host lavas, although some have lower silica contents. Enclaves at Motuhora and Tauhara are isotopically more variable, indicating multiple sources and a more complex petrogenesis. Most diorite/microdiorite enclaves are interpreted to represent parts of a crystal mush formed during fractionation of andesite/dacite magma, and entrained during later rise of magma to the surface. The granodiorite from Rubbish Tip Dome, Tauhara, probably represents part of a silicic magma chamber within the crust that fed the host low-silica rhyolite lava dome. Variability within the enclaves indicates the complexity likely to occur

  18. INTERNAL STRUCTURES OF FAULT ZONES IN THE PRIOLKHONIE AND EVOLUTION OF THE STATE OF STRESSES OF THE UPPER CRUST OF THE BAIKAL RIFT

    Directory of Open Access Journals (Sweden)

    Alexander V. Cheremnykh

    2015-09-01

    Full Text Available The Priolkhonie is a tectonic block located in the central part of the Baikalsky Ridge; it was shifted in the Cenozoic, yet remains above the water level of Lake Baikal. In view of its unique positioning and abundant rock outcropped sites, especially at shorelines, we conducted studies of internal structures of the main fault zones and reconstructed the states of stresses associated with formation of such zones.The studies were conducted along the profile which goes across the Priolkhonie, from the Primorsky Ridge near the Sarma River to the Tutai Bay in the Olkhonskie Vorota Strait (Fig. 1. Detailed cross-sections are constructed to characterize the internal structures of the fault zones striking of the NE-strike, that are located in highly outcropped sites at the shorelines of the Mukhor, Kurkut and other bays.The state of stresses in the fault zones and their vicinities are studied (Fig. 2, 3 by the structural paragenesis analysis of the second-rank ruptures and fracturing nearby the fault planes [Seminsky, Burzunova, 2007]. As possible, the obtained results are checked by the kinematic method which provides for reconstruction of the main axes of normal stresses [Parfenov, 1984].Most of the fault zones are complicated in structure (Fig. 4–7: the fault is typically represented by alternating areas, wherein tectonites of the main fault are developed, and areas of high fracturing at the periphery of the fault zone. With this approach, the fault zone’s boundaries are defined by quantitative indicators of tectonic fracturing, being abundantly manifested in the rocks.Our solutions give evidence that extension (Fig. 8 and shear fractures are abundant in the area under study, while fractures caused by compression are revealed quite rarely. The faults of the above mentioned morpho-genetic types have been revealed in the studied outcrops in the following ratio: 55 %, 27 %, 10 %, and 8 %. Our study gives grounds to conclude that the state of

  19. Crustal structure and rift tectonics across the Cauvery–Palar basin, Eastern Continental Margin of India based on seismic and potential field modelling

    Indian Academy of Sciences (India)

    D Twinkle; G Srinivasa Rao; M Radhakrishna; K S R Murthy

    2016-03-01

    The Cauvery–Palar basin is a major peri-cratonic rift basin located along the Eastern Continental Margin of India (ECMI) that had formed during the rift-drift events associated with the breakup of eastern Gondwanaland (mainly India–Sri Lanka–East Antarctica). In the present study, we carry out an integrated analysis of the potential field data across the basin to understand the crustal structure and the associated rift tectonics. The composite-magnetic anomaly map of the basin clearly shows the onshore-tooffshore structural continuity, and presence of several high-low trends related to either intrusive rocks or the faults. The Curie depth estimated from the spectral analysis of offshore magnetic anomaly data gave rise to 23 km in the offshore Cauvery–Palar basin. The 2D gravity and magnetic crustal models indicate several crustal blocks separated by major structures or faults, and the rift-related volcanic intrusiverocks that characterize the basin. The crustal models further reveal that the crust below southeast Indian shield margin is ∼36 km thick and thins down to as much as 13–16 km in the Ocean Continent Transition (OCT) region and increases to around 19–21 km towards deep oceanic areas of the basin. Thefaulted Moho geometry with maximum stretching in the Cauvery basin indicates shearing or low angle rifting at the time of breakup between India–Sri Lanka and the East Antarctica. However, the additional stretching observed in the Cauvery basin region could be ascribed to the subsequent rifting of Sri Lanka from India. The abnormal thinning of crust at the OCT is interpreted as the probable zone of emplaced Proto-Oceanic Crust (POC) rocks during the breakup. The derived crustal structure along with other geophysical data further reiterates sheared nature of the southern part of the ECMI.

  20. Magmatic cycles pace tectonic and morphological expression of rifting (Afar depression, Ethiopia)

    Science.gov (United States)

    Medynski, Sarah; Pik, Raphael; Burnard, Peter; Blard, Pierre-Henri

    2016-04-01

    Dyking and faulting at mid-oceanic ridges are concentrated in narrow axial volcanic zones due to focussing of both melt distribution and tectonic strain along the plate boundary. Due to the predominantly submarine location of oceanic ridges, the interplay between these processes remain poorly constrained in time and space. In this study, we use the Dabbahu-Manda Hararo (DMH) magmatic rift segment (MRS) (Afar, Ethiopia) to answers the long debated chicken-egg question about magmatic and tectonic processes in extensive context: which on comes first, and how those two processes interplay to finally form oceanic ridges? The DMH MRS is an oceanic ridge analogue and here we present quantitative slip rates on major and minor normal fault scarps for the past 40 kyr in the vicinity of a recent (September 2005) dike intrusion. Our data show that the long-term-vertical slip rates of faults that ruptured in 2005 are too low to explain the present rift topography and that the 2005 strain distribution is not the main stress accommodating mechanism in the DMH segment. Instead, we show that the axial valley topography is created by enhanced slip rates which occur only when the amount of magma available in magma reservoirs is limited, thus preventing dykes from reaching the surface. Our results suggest that development of the axial valley topography is regulated by the magma reservoir lifetime and, thus, to the magmatic cycles of replenishment/differentiation (< 100 ky). This implies that in the DMH rift system (with a magma supply typical of an intermediate spreading centre), significant topography of the axial rift valley is transient, and is expressed only when magma available in the reservoirs decreases. The absence of tilting on the rift margins over the last 200 kyr also suggests that amagmatic accommodation of extension is not required over this time period. Extension instead is accommodated by dykes injected laterally from multiple ephemeral reservoirs located along the DMH

  1. The 1996 Mw 6.6 Lijiang earthquake: Application of JERS-1 SAR interferometry on a typical normal-faulting event in the northwestern Yunnan rift zone, SW China

    Science.gov (United States)

    Ji, Lingyun; Wang, Qingliang; Xu, Jing; Feng, Jiangang

    2017-09-01

    The northwestern Yunnan rift zone in the Yunnan Province of China is a seismically active region located along the western boundary of the Sichuan-Yunnan Block on the eastern margin of the Qinghai-Tibetan Plateau. An earthquake with a magnitude of 6.6 (Mw) occurred in this region on February 3, 1996. The Lijiang earthquake was the largest normal-faulting event to occur along the western boundary of the Sichuan-Yunnan Block in the last 40 years. In this study, we used L-band JERS-1 (Japanese Earth Resources Satellite-1) SAR data sets from two descending orbits to detect surface deformation signals surrounding the epicentral region in order to estimate the source parameters through an inversion of the displacement fields. The results indicated that the earthquake can be explained by slip along two segments of the ∼N-S trending listric normal fault, named the Lijiang-Daju fault. Coseismic deformation patterns and slip distributions revealed that the earthquake consisted of two sub-events, which were also suggested by seismological results. Based on an analysis of the static Coulomb stress change, the second sub-event was likely triggered by the first sub-event. The central segment of the Lijiang-Daju fault, which has an eastward-convex geometry, did not rupture during the earthquake. This phenomenon was probably related to a geometrical discontinuity at the fault-bend area of the Lijiang-Daju fault.

  2. The Kenya rift axial gravity high: a re-interpretation

    Science.gov (United States)

    Swain, C. J.

    1992-03-01

    Since KRISP 85 did not provide overwhelming evidence for the massive intrusion that was originally suggested to explain the axial gravity high yet did provide a velocity section for the upper crust along the axis of the Kenya Rift, it is appropriate to use this section to control a re-interpretation of the gravity anomalies. A 2 {1}/{2} D inversion procedure has been used to model a number of isostatic anomaly profiles between Lake Baringo and Suswa. There are too many unknowns and gravity station coverage is too sparse for the results to be unique. Nevertheless, certain conclusions can be drawn. One of those is that some relatively dense material exists within the basement all along the Rift axis, since the axial isostatic anomalies are positive even though they occur where there are several thousand metres of Cenozoic volcanics of relatively low density (inferred from their seismic velocity of 3.7-5.1 km/s). The dense material is envisaged as a zone of dyke injection and assigned a density of 2.75-2.76 g/cm 3 (corresponding to its 6.05 km/s velocity) compared to a normal basement density of 2.70 g/cm 3. It is assumed to extend down to 22 km—the top of the 7.1 km/s layer. The KRISP 85 line passed just east of Menengai, where the basement velocity increases to about 6.6 km/s over a distance of about 20 km. On an east-west gravity profile through Menengai there is a gravity high corresponding to this velocity increase which has been modelled as a basic intrusion (density 2.93 g/cm 3) underlying the caldera.

  3. Kinematics of the South Atlantic rift

    Directory of Open Access Journals (Sweden)

    C. Heine

    2013-01-01

    Full Text Available The South Atlantic rift basin evolved as branch of a large Jurassic-Cretaceous intraplate rift zone between the African and South American plates during the final breakup of western Gondwana. While the relative motions between South America and Africa for post-breakup times are well resolved, many issues pertaining to the fit reconstruction and particular the relation between kinematics and lithosphere dynamics during pre-breakup remain unclear in currently published plate models. We have compiled and assimilated data from these intraplated rifts and constructed a revised plate kinematic model for the pre-breakup evolution of the South Atlantic. Based on structural restoration of the conjugate South Atlantic margins and intracontinental rift basins in Africa and South America, we achieve a tight fit reconstruction which eliminates the need for previously inferred large intracontinental shear zones, in particular in Patagonian South America. By quantitatively accounting for crustal deformation in the Central and West African rift zone, we have been able to indirectly construct the kinematic history of the pre-breakup evolution of the conjugate West African-Brazilian margins. Our model suggests a causal link between changes in extension direction and velocity during continental extension and the generation of marginal structures such as the enigmatic Pre-salt sag basin and the São Paulo High. We model an initial E–W directed extension between South America and Africa (fixed in present-day position at very low extensional velocities until Upper Hauterivian times (≈126 Ma when rift activity along in the equatorial Atlantic domain started to increase significantly. During this initial ≈17 Myr-long stretching episode the Pre-salt basin width on the conjugate Brazilian and West African margins is generated. An intermediate stage between 126.57 Ma and Base Aptian is characterised by strain localisation, rapid lithospheric weakening in the

  4. Rift architecture and sedimentology of the Phetchabun Intermontane Basin, central Thailand

    Science.gov (United States)

    Remus, David; Webster, Mark; Keawkan, Kanjana

    The Phetchabun Basin, located onshore in central Thailand is one of at least 30 Tertiary intermontane basins identified in Thailand. The basin is a composite of several north-south trending half and full graben, which formed through transtensional dextral shear along the Mae Ping fault zone. Several conjugate strike-slip faults cut the basin and may have acted as the mechanism for formation of the individual graben. The grabens vary in depth from 2500 to 1100 m with the deepest being in the south and progressively shallowing northwards. Seismic cross sections across the basin reveal typical rift structuring. Central graben horsts, hanging wall anticlines and rotated fault blocks predominate within the graben, while wrench style structures are evident along inferred transfer zones. Sedimentation commenced in the Oligocene with syn-rift fluvial deposits and associated rift volcanics. An Oligocene to Mid-Miocene sedimentary sequence (Wichian Buri Group) of fluvial and lacustrine deposits followed. Diorite and diabase intrusives reflect periods of igneous activity during the Early and Late Middle Miocene. After the Mid-Miocene tectonic episode, lacustrine conditions were re-established over much of the basin and predominantly fine-grained sediments were deposited (Chaliang Lab Formation). Plio-Pleistocene sediments comprising lithic sands and shales were deposited in an oxidizing alluvial environment. Waxy oils and dry gas have been recovered from thin bedded sandstone reservoirs and igneous sills. Initial tests at Wichian Buri-1 indicated flow rates up to 500 BOPD from thin sands, while Bo Rang-1 tested gas at rates up to 5.5 MMCFG/D from an altered sill.

  5. Augmented Reality Oculus Rift

    OpenAIRE

    Höll, Markus; Heran, Nikolaus; Lepetit, Vincent

    2016-01-01

    This paper covers the whole process of developing an Augmented Reality Stereoscopig Render Engine for the Oculus Rift. To capture the real world in form of a camera stream, two cameras with fish-eye lenses had to be installed on the Oculus Rift DK1 hardware. The idea was inspired by Steptoe \\cite{steptoe2014presence}. After the introduction, a theoretical part covers all the most neccessary elements to achieve an AR System for the Oculus Rift, following the implementation part where the code ...

  6. The Records of the Tectonic Evolution From the Volcanics in Qiangtang Basin, Tibet

    Institute of Scientific and Technical Information of China (English)

    He Zhonghua; Yang Deming; Li Cai; Pu Zhongyu

    2000-01-01

    The volcanism in Qiangtang Basin is very frequent due to the divergence and subduction of the various plates. The study indicates that these volcanics are formed in different tectonic settings: 1 )Hercynian volcanics are mainly basalts and are formed in the intraplate and intercontinental rift. 2 ) Indosinian volcanics markedly vary in the distribution and composition and reflect transitional MORB and island are environments respectively. 3) Yanshanian volcanics consist predominantly of basalts, andesites, dacites and rhyolites and are characterized by calc- alkaline volcanic suite, indicating island arc setting. 4)Himalayan volcanics are complicated and associated with intraplate orogency. The volcanism provides important tectonic information for recognizing the evolution of Qiangtang Basin.

  7. Kinematics of the South Atlantic rift

    CERN Document Server

    Heine, Christian; Müller, R Dietmar

    2013-01-01

    The South Atlantic rift basin evolved as branch of a large Jurassic-Cretaceous intraplate rift zone between the African and South American plates during the final breakup of western Gondwana. By quantitatively accounting for crustal deformation in the Central and West African rift zone, we indirectly construct the kinematic history of the pre-breakup evolution of the conjugate West African-Brazilian margins. Our model suggests a causal link between changes in extension direction and velocity during continental extension and the generation of marginal structures such as the enigmatic Pre-salt sag basin and the S\\~ao Paulo High. We model an initial E-W directed extension between South America and Africa (fixed in present-day position) at very low extensional velocities until Upper Hauterivian times ($\\approx$126 Ma) when rift activity along in the equatorial Atlantic domain started to increase significantly. During this initial $\\approx$17 Myr-long stretching episode the Pre-salt basin width on the conjugate Br...

  8. La dorsal NE de Tenerife: hacia un modelo del origen y evolución de los rifts de islas oceánicas

    Directory of Open Access Journals (Sweden)

    Delcamp, A.

    2009-06-01

    primordial, plume-related fractures acting throughout the entire growth of the islands. Basaltic volcanism forms the bulk of the islands and rift zones. However, collapses of the flanks of the rifts disrupt their established fissural feeding system, frequently favouring magma accumulation and residence at shallow emplacements, leading to differentiation of magmas, and intermediate to felsic nested eruptions. Rifts and their collapse may therefore act as an important factor in providing petrological variability to oceanic volcanoes. Conversely, the possibility exists that the presence of important felsic volcanism may indicate lateral collapses in oceanic shields and ridge-like volcanoes, even if they are concealed by post-collapse volcanism or partially mass-wasted by erosion.El Rift NE de Tenerife, conocido localmente como la Dorsal de La Esperanza, es un excelente ejem plo de un rift persistente y recurrente. Su estudio ha aportado evidencias significativas del origen y diná mica de este tipo de estructuras volcánicas. Los rifts son posiblemente las estructuras más relevantes en la geología de las islas volcánicas oceánicas: 1. Controlan, tal vez desde su inicio, la construcción de los edificios insulares; 2. Son elementos sustanciales en la configuración (forma y topografía de estas islas; 3. Dan origen a sus principales formas del relieve y el paisaje; 4. Al concentrar la actividad eruptiva, son asimismo estructuras cruciales en la distribución del riesgo volcánico; 5. Condicionan la distribución de recursos naturales básicos, como el agua subterránea. En las Canarias están muy bien representados tanto los rifts típicos de los estadios juveniles de desarrollo en escudo, como los más tardíos, correspondientes a las fases de rejuvenecimiento post-ero sivo. El Rift NE es un buen ejemplo de este último tipo de rifts. El Rift NE se ha desarrollado en tres etapas diferentes separadas por periodos más largos de quiescencia o actividad reducida. La primera

  9. Temperature and pH control on lipid composition of silica sinters from diverse hot springs in the Taupo Volcanic Zone, New Zealand.

    Science.gov (United States)

    Kaur, Gurpreet; Mountain, Bruce W; Stott, Matthew B; Hopmans, Ellen C; Pancost, Richard D

    2015-03-01

    Microbial adaptations to environmental extremes, including high temperature and low pH conditions typical of geothermal settings, are of interest in astrobiology and origin of life investigations. The lipid biomarkers preserved in silica deposits associated with six geothermal areas in the Taupo Volcanic Zone were investigated and variations in lipid composition as a function of temperature and pH were assessed. Lipid analyses reveal highly variable abundances and distributions, reflecting community composition as well as adaptations to extremes of pH and temperature. Biomarker profiles reveal three distinct microbial assemblages across the sites: the first in Champagne Pool and Loop Road, the second in Orakei Korako, Opaheke and Ngatamariki, and the third in Rotokawa. Similar lipid distributions are observed in sinters from physicochemically similar springs. Furthermore, correlation between lipid distributions and geothermal conditions is observed. The ratio of archaeol to bacterial diether abundance, bacterial diether average chain length, degree of GDGT cyclisation and C31 and C32 hopanoic acid indices typically increase with temperature. At lower pH, the ratio of archaeol to bacterial diethers, degree of GDGT cyclisation and C31 and C32 hopanoic acid indices are typically higher. No trends in fatty acid distributions with temperature or pH are evident, likely reflecting overprinting due to population influences.

  10. Depth to Curie temperature or bottom of the magnetic sources in the volcanic zone of la Réunion hot spot

    Science.gov (United States)

    Gailler, Lydie-Sarah; Lénat, Jean-François; Blakely, Richard J.

    2016-09-01

    We present an innovative study to generalize Curie Point Depth (CPD) determinations at the scale of oceanic volcanic islands, an approach which has previously focused largely on continental areas. In order to determine the validity of this technique in oceanic environments, we first tested the approach on sets of sea-floor-spreading anomalies. Assuming that magnetic anomalies are concentrated within the oceanic crust and uppermost mantle, the Curie depth should deepen as oceanic lithosphere increases in age and thickness away from spreading centers. The calculated depths to the magnetic bottom are in agreement with this general pattern. On the basis of this test, we then applied the method to La Réunion Island and surrounding oceanic lithosphere. The calculated extent of magnetic sources lies at depths between 10 and 30 km and exhibits a complex topography, presumably caused by a combination of various magmatic and tectonic lithospheric structures. These calculations indicate that magnetic sources extend well below the crust-mantle interface at this location. To the first order, the bottom of the magnetic surface shallows beneath Réunion and Mauritius Islands due to the thermal effect of the hot spot, and deepens away from La Réunion edifice. On the scale of the Mascarene Basin, several discontinuities in the CPD correlate well with major fracture zones.

  11. Crystal Zoning Constrains on the Processes and Time Scales Involved in Monogenetic Mafic Volcanism (Tenerife, Canary Islands)

    Science.gov (United States)

    Albert, H.; Costa Rodriguez, F.; Marti, J.

    2014-12-01

    Most of the historical eruptive activity in Tenerife has been relatively mafic and mildly-explosive monogenetic eruptions, and thus it seems that this activity is the most likely in the near future. Here we investigate the processes and time scales that lead to such eruptions with the aim to better interpret and plan for any possible unrest in the island. We focus on three historical eruptions: Siete Fuentes (December 31 1704-January 1705), Fasnia (January 5-January 13 1705) and Arafo (February 2-February 26 1705) issued from a 10 km long basaltic fissure eruption oriented N45E and covering an area of 10.4 km2. The erupted volume increases by 5-fold from the first to the last eruption. All magmas are tephritic, although the bulk-rock becomes more mafic with time due to accumulation of olivine with Cr-spinel inclusions, and clinopyroxene rather than to the appearance of a truly more primitive melt. Olivine core compositions of the three eruptions range between Fo79 and Fo87. Frequency histograms show three main populations: at Fo79-80, Fo80-82 and Fo84-87 displaying normal and reverse zoning. Thermodynamic calculations show that only cores with Fo80-82 are in equilibrium with the whole rock. Clinopyroxene phenocrysts can have large pools of matrix glass and show rims of different composition. Only the rims, with Mg#84-86, are in equilibrium with the whole-rock. Considering olivine cores and clinopyroxene rims in equilibrium we obtained a temperature range of 1150-1165°C, and MELTS calculations suggest pressures of 1 to 5 kbar. The variety of olivine core populations reflects mixing and mingling between three different magmas, and their proportions have changed with time from Siete Fuentes to Arafo. Most crystals have complex zoning profiles that record two events: (1) one of magma mixing/mingling at depth, (2) another of magma transport and ascent to the surface. Magma mixing at depth ranges from about 3 months to two years and is similar for the three eruptions

  12. Lithospheric thinning beneath rifted regions of Southern California.

    Science.gov (United States)

    Lekic, Vedran; French, Scott W; Fischer, Karen M

    2011-11-11

    The stretching and break-up of tectonic plates by rifting control the evolution of continents and oceans, but the processes by which lithosphere deforms and accommodates strain during rifting remain enigmatic. Using scattering of teleseismic shear waves beneath rifted zones and adjacent areas in Southern California, we resolve the lithosphere-asthenosphere boundary and lithospheric thickness variations to directly constrain this deformation. Substantial and laterally abrupt lithospheric thinning beneath rifted regions suggests efficient strain localization. In the Salton Trough, either the mantle lithosphere has experienced more thinning than the crust, or large volumes of new lithosphere have been created. Lack of a systematic offset between surface and deep lithospheric deformation rules out simple shear along throughgoing unidirectional shallow-dipping shear zones, but is consistent with symmetric extension of the lithosphere.

  13. Geodetic results in Afar: The rifting episode of November 1978 in the Asal-Ghoubbet rift

    Science.gov (United States)

    Kasser, M.; Lepine, J. C.; Ruegg, J. C.; Tarantula, A.

    1981-01-01

    A seismo-tectonic and volcanic crisis occurred in November 1978 in the Asal-Ghoubbet rift, first subaerial section of the accreting plate boundary between the African and Arabian plates (Allard et al., 1979; Abdallah et al., 1979; Le Dain et al., 1980). The activity was located in the center of a geodetic network set up in the winter 1972-1973 by the Institut Géographique National in collaboration with the Institut de Physique du Globe de Paris. Simultaneously, a precise levelling line of about 100 km was established across the area (I.G.N., 1973). The resurveying of both the geodetic network and the levelling line was carried out after the crisis, between November 1978 and March 1979. Extensions up to 2.4 m and vertical displacements up to 0.7 m were measured. Operating techniques and results of the resurveying are described in Kasser et al. (1979) and Ruegg et al. (1979). Figure 1 shows the horizontal displacements (relating to point B and to the direction BT) and figure 2 shows the vertical displacements relating to the two external points. Tarantola et al. (1979, 1980) have shown that these results can be geodynamically interpreted by a mechanism of sudden breaking and elastic rebound after an elastic stretching of the crust due to the relative drift of the plates. The breaking is triggered by magmatic fracturing of the crust, with dykes injection from a magmatic chamber which has fed the basaltic fissurai eruption. The horizontal and vertical displacements outside the broken zone of the Inner Floor are predicted by a numerical model based on this interpretation which fit very well the experimental data.

  14. Rifting, rotation, detachment faulting, and sedimentation: Miocene evolution of the southern California margin

    Energy Technology Data Exchange (ETDEWEB)

    Bachman, S.B.; Crouch, J.K. (Crouch, Bachman, and Associates, Inc., Santa Barbara, CA (USA))

    1990-05-01

    The evolution of the Los Angeles and adjacent offshore Santa Monica and San Pedro basins of southern California began during the earliest Miocene. The basins formed as the result of rifting and subsequent large scale rotation of segments within a preexisting Mesozoic-Paleogene forearc basin. Clockwise rotation (less than 90{degree}) of the outer two-thirds of this fore-arc basin during the early and middle Miocene moved these once north-trending forearc strata into an east-west trend (the modern Transverse Ranges). The eastern margin of the initial rift remains in its original location and is best documented from outcrop and subsurface data in the San Joaquin Hills. What was once the western margin of the rift has been rotated to a position north of the rift, along the southern Santa Monica Mountains. The early Miocene Vaqueros sandstones. which that are entirely shallow-marine and thousands of feet thick provide evidence for initial subsidence of the rift. Widening of the rift and separation of the Santa Monica Mountains and the San Joaquin Hills in the early and middle Miocene was accompanied by detachment faulting and volcanism along the rift margins. These detachment faults can be documented in the subsurface of the San Joaquin Hills and in outcrop in the Santa Monica Mountains. A unique aspect of this inner borderland rift is the rapid uplift, exposure, erosion, and then subsidence of high pressure/temperature metamorphic basement blocks (Catalina schist) within the rift itself. These basement rocks were buried 20 to 30 km beneath the ancestral fore arc prior to rifting. They were uplifted, perhaps due to thermal effects, during pervasive early and middle Miocene volcanism within the rift. Evidence of these dramatic events is provided by the distinctive San Onofre breccia deposit exposed along the margins of the rift.

  15. Rates of volcanic deposition, facies changes and movements in a dynamic basin: the Nuussuaq Basin, West Greenland, around the C27n-C26r transition

    DEFF Research Database (Denmark)

    Pedersen, A. K.; Larsen, L. M.; Riisager, P.

    2002-01-01

    the C27n-C26r transition (estimated duration less than 10 ka and here assumed to be 5 ka) as a c. 170 m thick zone within a succession of thin picritic lava flows. Multimodel photogrammetry combined with chemical and lithological analysis of the volcanic rocks has allowed detailed 3D analysis...... a record of synvolcanic differential movement of extensional fault blocks. The following parameters are estimated for the volcanism within the Nuussuaq Basin during the C27n-C26r transition: Production rate c. 0.042 km3 a−1, productivity c. 1.2 × 10−3 km3 a−1 km−1 (rift), volcanic aggradation c. 33 m ka−1...

  16. A multidisciplinary study on the crustal nature of volcanic conduits and magma reservoirs

    Science.gov (United States)

    Flinders, Ashton F.

    Volcanic settings vary widely not only in their eruptive style and products, but in the manner magma travels from deep sources to individual eruptive centers. Imaging these pathways, and their associated crustal reservoirs, provides unique and unprecedented views into these environments. Imaging techniques are varied with the strength of the technique often based on data availability. As such, we focus on two methods---gravity and seismic---in two different settings, each with its own unique volcanic environments, crustal structures, and associated data resources. The first, the Hawaiian Islands, are the most geologically studied hot-spot islands in the world, yet the only large-scale compilation of marine and land gravity data is more than 45 years old. We present a new chain-wide gravity compilation allowing us to locate current and former volcanic centers, major rift zones, a previously suggested volcano, and show that volcanoes along the chain are composed of a small proportion of intrusive material (sourced melt to the surface. We image two zones of reduced velocity, one of which correlates with a proposed extensive zone of mid-crustal partial melt which likely supplies evolved magmas to the surrounding volcanoes and vents, including Mounts St. Helens and Adams.

  17. The South Tibetan Tadpole Zone: Ongoing density sorting at the Moho beneath the Indus-Tsangpo suture zone (and beneath volcanic arcs?)

    Science.gov (United States)

    Kelemen, Peter; Hacker, Bradley

    2016-04-01

    at less than 700°C (e.g. Jackson 02). We build on earlier studies (LePichon et al 92, 97; Schulte-Pelkum et al 05; Monsalve et al 08) to develop the hypothesis that there is rapid growth of garnet at 80 km and 1000°C within subducting Indian crust, causing increased rock densities. Dense eclogites founder into the mantle, while relatively buoyant lithologies accumulate in thickening lower crust. Mantle return flow plus radioactive heating in thick, felsic crust maintains high temperature, facilitating formation of hybrid magmas and pyroxenites. The crustal volume grows at 760 cubic m/yr/m of strike length. Moho-depth earthquakes may be due to localized deformation and thermal runaway in weak layers and along the margins of dense, foundering diapirs (e.g., Larsen & Yuen 97; Braeck & Podladchikov 07; Kelemen & Hirth 07; Lister et al 08; Kufner et al 16). A similar process may take place at some convergent margins, where forearc crust is thrust beneath hot, magmatic arc crust, leading to extensive, Moho-depth density sorting and hybrid crust-mantle magmatism in Arc Tadpole Zones.

  18. Volatile content of Hawaiian magmas and volcanic vigor

    Science.gov (United States)

    Blaser, A. P.; Gonnermann, H. M.; Ferguson, D. J.; Plank, T. A.; Hauri, E. H.; Houghton, B. F.; Swanson, D. A.

    2014-12-01

    We test the hypothesis that magma supply to Kīlauea volcano, Hawai'i may be affected by magma volatile content. We find that volatile content and magma flow from deep source to Kīlauea's summit reservoirs are non-linearly related. For example, a 25-30% change in volatiles leads to a near two-fold increase in magma supply. Hawaiian volcanism provides an opportunity to develop and test hypotheses concerning dynamic and geochemical behavior of hot spot volcanism on different time scales. The Pu'u 'Ō'ō-Kupaianaha eruption (1983-present) is thought to be fed by essentially unfettered magma flow from the asthenosphere into a network of magma reservoirs at approximately 1-4 km below Kīlauea's summit, and from there into Kīlauea's east rift zone, where it erupts. Because Kīlauea's magma becomes saturated in CO2 at about 40 km depth, most CO2 is thought to escape buoyantly from the magma, before entering the east rift zone, and instead is emitted at the summit. Between 2003 and 2006 Kīlauea's summit inflated at unusually high rates and concurrently CO2emissions doubled. This may reflect a change in the balance between magma supply to the summit and outflow to the east rift zone. It remains unknown what caused this surge in magma supply or what controls magma supply to Hawaiian volcanoes in general. We have modeled two-phase magma flow, coupled with H2O-CO2 solubility, to investigate the effect of changes in volatile content on the flow of magma through Kīlauea's magmatic plumbing system. We assume an invariant magma transport capacity from source to vent over the time period of interest. Therefore, changes in magma flow rate are a consequence of changes in magma-static and dynamic pressure throughout Kīlauea's plumbing system. We use measured summit deformation and CO2 emissions as observational constraints, and find from a systematic parameter analysis that even modest increases in volatiles reduce magma-static pressures sufficiently to generate a 'surge' in

  19. The volcanic and tectonic history of Enceladus

    Science.gov (United States)

    Kargel, J.S.; Pozio, S.

    1996-01-01

    Enceladus has a protracted history of impact cratering, cryo-volcanism, and extensional, compressional, and probable strike-slip faulting. It is unique in having some of the outer Solar System's least and most heavily cratered surfaces. Enceladus' cratering record, tectonic features, and relief elements have been analyzed more comprehensively than done previously. Like few other icy satellites, Enceladus seems to have experienced major lateral lithospheric motions; it may be the only icy satellite with global features indicating probable lithospheric convergence and folding. Ridged plains, 500 km across, consist of a central labyrinthine ridge complex atop a broad dome surrounded by smooth plains and peripheral sinuous ridge belts. The ridged plains have few if any signs of extension, almost no craters, and an average age of just 107 to 108 years. Ridge belts have local relief ranging from 500 to 2000 m and tend to occur near the bottoms of broad regional troughs between swells. Our reanalysis of Peter Thomas' (Dermott, S. F., and P. C. Thomas, 1994, The determination of the mass and mean density of Enceladus from its observed shape, Icarus, 109, 241-257) limb profiles indicates that high peaks, probably ridge belts, also occur in unmapped areas. Sinuous ridges appear foldlike and are similar to terrestrial fold belts such as the Appalachians. If they are indeed folds, it may require that the ridged plains are mechanically (perhaps volcanically) layered. Regional topography suggests that folding may have occurred along zones of convective downwelling. The cratered plains, in contrast to the ridged plains, are heavily cratered and exhibit extensional structures but no obvious signs of compression. Cratered plains contain a possible strike-slip fault (Isbanir Fossa), along which two pairs of fractures seem to have 15 km of right-lateral offset. The oldest cratered plains might date from shortly after the formation of the saturnian system or the impact disruption and

  20. Tectonic characteristics and structural styles of a continental rifted basin: Revelation from deep seismic reflection profiles

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2016-09-01

    Full Text Available The Fushan Depression is a half-graben rifted sub-basin located in the southeast of the Beibuwan Basin, South China Sea. The Paleogene Liushagang sequence is the main hydrocarbon-bearing stratigraphic unit in the sub-basin. Using three-dimensional (3-D seismic data and logging data over the sub-basin, we analyzed structural styles and sedimentary characteristics of the Liushagang sequence. Five types of structural styles were defined: ancient horst, traditional slope, flexure slope-break, faulted slope-break and multiple-stage faults slope, and interpretations for positions, background and development formations of each structural style were discussed. Structural framework across the sub-basin reveals that the most remarkable tectonic setting is represented by the central transfer zone (CTZ which divides the sub-basin into two independent depressions, and two kinds of sequence architectures are summarized: (i the western multi-stage faults slope; (ii the eastern flexure slope break belt. Combined with regional stress field of the Fushan Depression, we got plane combinations of the faults, and finally built up plan distribution maps of structural system for main sequence. Also, we discussed the controlling factors mainly focused on subsidence history and background tectonic activities such as volcanic activity and earthquakes. The analysis of structural styles and tectonic evolution provides strong theoretical support for future prospecting in the Fushan sub-basin and other similar rifted basins of the Beibuwan Basin in South China Sea.

  1. Vestiges of an Iapetan rift basin in the New Jersey Highlands: Implfications for the Neoproterozoic Laurentian margin

    Science.gov (United States)

    Gates, A.E.; Volkert, R.A.

    2004-01-01

    Thin, discontinuous remnants of Neoproterozoic intracratonic rift-basin deposits of the Chestnut Hill Formation occur in the western New Jersey Highlands. These deposits form an important link between well-documented Iapetan rift-basins in both the northern and southern Appalachians. The close spatial relations of Chestnut Hill rocks to Paleozoic sedimentary rocks open the possibility that additional Iapetan rift-basins could be concealed beneath the rocks of the Valley and Ridge Province to the west indicating a much broader zone of rifting than has been previously proposed. The Chestnut Hill Formation is intermittently exposed along a 100 km-long band that extends northeast from Pennsylvania nearly to New York State. The lower part of the Chestnut Hill Formation is composed of interbedded lithic pebble- to boulder-conglomerate and feldspathic sandstone grading upward into interbedded phyllite, feldspathic and quartz sandstone, local paleosaprolite, quartz-pebble conglomerate, thin limestone lenses, volcanic, and volcaniclasic rocks, abundant bedded ironstone (hematite ore), and ultimately into diamictites that are interpreted as possible tilloids and containing rounded intra and extrabasinal clasts of the other lithologies. Extensive soft-sediment deformation, cross bedding, and clastic dikes are common in all but the lowest and upper facies. Banded hematite layers occur preferentially in fine-grained tuffs and tuffaceous sediments, but hematitization has affected most lithologies. Volcanic rocks consist of altered rhyolitic tuffs and lapilli tuffs that are interbedded with sediments. The Chestnut Hill Formation is interpreted to have been deposited in early alluvial, and later a complex of fluvial, lacustrine and deltaic environments. Provenance studies based upon petrographic and geochemical analysis of clastic rocks indicate that the sediments are predominantly immature and reflect derivation from local uplifted felsic basement sources in a rifted

  2. Metallogeny of the midcontinent rift system of North America

    Science.gov (United States)

    Nicholson, S.W.; Cannon, W.F.; Schulz, K.J.

    1992-01-01

    The 1.1 Ga Midcontinent rift system of North America is one of the world's major continental rifts and hosts a variety of mineral deposits. The rocks and mineral deposits of this 2000 km long rift are exposed only in the Lake Superior region. In the Lake Superior region, the rift cuts across Precambrian basement terranes ranging in age from ??? 1850 Ma to more than 3500 Ma. Where exposed, the rift consists of widespread tholeiitic basalt flows with local interlayered rhyolite and clastic sedimentary rocks. Beneath the center of Lake Superior the volcanic and sedimentary rocks are more than 30 km deep as shown by recent seismic reflection profiles. This region hosts two major classes of mineral deposits, magmatic and hydrothermal. All important mineral production in this region has come from hydrothermal deposits. Rift-related hydrothermal deposits include four main types: (1) native copper deposits in basalts and interflow sediments; (2) sediment-hosted copper sulfide and native copper; (3) copper sulfide veins and lodes hosted by rift-related volcanic and sedimentary rocks; and (4) polymetallic (five-element) veins in the surrounding Archean country rocks. The scarcity of sulfur within the rift rocks resulted in the formation of very large deposits of native metals. Where hydrothermal sulfides occur (i.e., shale-hosted copper sulfides), the source of sulfur was local sedimentary rocks. Magmatic deposits have locally supported exploration and minor production, but most are subeconomic presently. These deposits occur in intrusions exposed near the margins of the rift and include CuNiPGE and TiFe (V) in the Duluth Complex, U-REE-Nb in small carbonatites, and breccia pipes resulting from local hydrothermal activity around small felsic intrusions. Mineralization associated with some magmatic bodies resulted from the concentration of incompatible elements during fractional crystallization. Most of the sulfide deposits in intrusions, however, contain sulfur derived from

  3. Introduction to the structures and processes of subduction zones

    Science.gov (United States)

    Zheng, Yong-Fei; Zhao, Zi-Fu

    2017-09-01

    Subduction zones have been the focus of many studies since the advent of plate tectonics in 1960s. Workings within subduction zones beneath volcanic arcs have been of particular interest because they prime the source of arc magmas. The results from magmatic products have been used to decipher the structures and processes of subduction zones. In doing so, many progresses have been made on modern oceanic subduction zones, but less progresses on ancient oceanic subduction zones. On the other hand, continental subduction zones have been studied since findings of coesite in metamorphic rocks of supracrustal origin in 1980s. It turns out that high-pressure to ultrahigh-pressure metamorphic rocks in collisional orogens provide a direct target to investigate the tectonism of subduction zones, whereas oceanic and continental arc volcanic rocks in accretionary orogens provide an indirect target to investigate the geochemistry of subduction zones. Nevertheless, metamorphic dehydration and partial melting at high-pressure to ultrahigh-pressure conditions are tectonically applicable to subduction zone processes at forearc to subarc depths, and crustal metasomatism is the physicochemical mechanism for geochemical transfer from the slab to the mantle in subduction channels. Taken together, these provide us with an excellent opportunity to find how the metamorphic, metasomatic and magmatic products are a function of the structures and processes in both oceanic and continental subduction zones. Because of the change in the thermal structures of subduction zones, different styles of metamorphism, metasomatism and magmatism are produced at convergent plate margins. In addition, juvenile and ancient crustal rocks have often suffered reworking in episodes independent of either accretionary or collisional orogeny, leading to continental rifting metamorphism and thus rifting orogeny for mountain building in intracontinental settings. This brings complexity to distinguish the syn

  4. Beta Regio rift system on Venus: Geologic interpretation of Magellan images

    Science.gov (United States)

    Nikishin, A. M.; Bobina, N. N.; Borozdin, V. K.; Burba, G. A.

    1993-01-01

    Magellan SAR images and altimetric data were used to produce a new geologic map of the Northern part of Beta Regio within the frames of C1-30N279 mapsheet. It was part of our contributions into C1-formate geologic mapping efforts. The original map is at 1:8,000,000 scale. The rift structures are typical for Beta Regio on Venus. There are many large uplifted tessera areas on Beta upland. They occupy areas of higher topography. These tessera are partly burried by younger volcanic cover of plain material. These observations show that Beta upland was formed mainly due to lithospheric tectonical uplifting, and only partly was constructed by volcanic activity. A number of rift valleis traverse Beta upland and spread to the surrounding lowlands. The largest rift crosses Beta N to S. Typical width of rifts is 40 to 160 km. Rift valleis in this region are structurally represented by crustal grabens and half-grabens. There are symmetrical and asymmetrical rifts. A lot of them have shoulder uplifts with the relative high up to 0.5-1 km and width 40 to 60 km. Preliminary analysis of the largest rift valley structural cross-sections leads to the conclusion that it originated due to a 5-10 percent crustal extension. The prominent shield volcano - Theia Mons - is located at the center of Beta rift system. It could be considered as the surface manifestation of the upper mantle hot spot. Most of the rift belts are located radially to Theia Mons. The set of these data leads to conclusion that Beta rift system has an 'active-passive' origin. It was formed due to the regional tectonic lithospheric extension. Rifting was accelerated by the upper mantle hot spot located under the center of passive extension (under Beta Regio).

  5. Hierarchical segmentation of the Malawi Rift: The influence of inherited lithospheric heterogeneity and kinematics in the evolution of continental rifts

    Science.gov (United States)

    Laó-Dávila, Daniel A.; Al-Salmi, Haifa S.; Abdelsalam, Mohamed G.; Atekwana, Estella A.

    2015-12-01

    We used detailed analysis of Shuttle Radar Topography Mission-digital elevation model and observations from aeromagnetic data to examine the influence of inherited lithospheric heterogeneity and kinematics in the segmentation of largely amagmatic continental rifts. We focused on the Cenozoic Malawi Rift, which represents the southern extension of the Western Branch of the East African Rift System. This north trending rift traverses Precambrian and Paleozoic-Mesozoic structures of different orientations. We found that the rift can be hierarchically divided into first-order and second-order segments. In the first-order segmentation, we divided the rift into Northern, Central, and Southern sections. In its Northern Section, the rift follows Paleoproterozoic and Neoproterozoic terrains with structural grain that favored the localization of extension within well-developed border faults. The Central Section occurs within Mesoproterozoic-Neoproterozoic terrain with regional structures oblique to the rift extent. We propose that the lack of inherited lithospheric heterogeneity favoring extension localization resulted in the development of the rift in this section as a shallow graben with undeveloped border faults. In the Southern Section, Mesoproterozoic-Neoproterozoic rocks were reactivated and developed the border faults. In the second-order segmentation, only observed in the Northern Section, we divided the section into five segments that approximate four half-grabens/asymmetrical grabens with alternating polarities. The change of polarity coincides with flip-over full-grabens occurring within overlap zones associated with ~150 km long alternating border faults segments. The inherited lithospheric heterogeneity played the major role in facilitating the segmentation of the Malawi Rift during its opening resulting from extension.

  6. Using U-series and beryllium isotopes to reveal the occurrence and relative timing of crustal and mantle processes in the Southern Volcanic Zone of Chile

    Science.gov (United States)

    Cooper, L. B.; Reubi, O.; Dungan, M. A.; Bourdon, B.; Langmuir, C. H.; Turner, S. J.; Schaefer, J. M.

    2012-12-01

    Magmas erupted from subduction zone volcanoes represent the end products of multiple magmatic processes occurring in the asthenospheric mantle wedge and overlying lithosphere (i.e., fluid addition, melting, assimilation, and crystal fractionation). To resolve the contributions of diverse processes and components, and the relative timing of these events, we have determined U-series activities (U-Th-Ra-Pa) for 60 and 10Be compositions for 20 historic or very young lavas carefully chosen on the basis of major and trace element analyses of 625 samples from six volcanoes in the Andean Southern Volcanic Zone of Chile (37.6-41.1°S: Nevados de Chillán, Antuco, Llaima, Lonquimay, Villarrica, and Osorno). Our dataset demonstrates that each of these volcanoes reflects a unique combination and sequence of magmatic processes that are only revealed through analysis of multiple samples spanning the extent of intra-volcano and intra-eruption chemical variation. Sigmarsson et al. (1990; 2002) identified a regional trend using U-series and Be from mostly single samples, which they interpreted to represent along-strike variations in the flux of slab-derived fluids into the wedge [from 230Th-excess plus 226Ra-deficit plus low 10Be/9Be at Chillán towards progressively higher 238U- and Ra-excesses and 10Be/9Be at Villarrica and Osorno]. These data fall within the much broader array defined by our results, but we infer the operation of assimilation (e.g., Llaima; Reubi et al., 2011) and aging of subduction zone components of variable compositions and proportions in the mantle prior to partial melting as important factors in generating the highly individualized and complex U-series systematics observed at each of these six volcanoes. All of the volcanoes exhibit evidence of assimilation, with the exception of Lonquimay which has undergone mostly closed-system fractional crystallization. At Llaima and Chillán the assimilant is crustal. At Villarica, flux-related melts that dominate in

  7. SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Perry, F. V.; Crowe, G. A.; Valentine, G. A.; Bowker, L. M.

    1997-09-23

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The distribution of Pliocene and Quaternary basaltic volcanic centers is evaluated with respect to tectonic models for detachment, caldera, regional and local rifting, and the Walker Lane structural zone. Geophysical data are described for the YMR and are used as an aid to understand the distribution of past basaltic volcanic centers and possible future magmatic processes. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the

  8. SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Perry, F. V.; Crowe, G. A.; Valentine, G. A.; Bowker, L. M.

    1997-09-23

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The distribution of Pliocene and Quaternary basaltic volcanic centers is evaluated with respect to tectonic models for detachment, caldera, regional and local rifting, and the Walker Lane structural zone. Geophysical data are described for the YMR and are used as an aid to understand the distribution of past basaltic volcanic centers and possible future magmatic processes. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the

  9. New insights into continental rifting from a damage rheology modeling

    Science.gov (United States)

    Lyakhovsky, Vladimir; Segev, Amit; Weinberger, Ram; Schattner, Uri

    2010-05-01

    Previous studies have discussed how tectonic processes could produce relative tension to initiate and propagate rift zones and estimated the magnitude of the rift-driving forces. Both analytic and semi-analytic models as well as numerical simulations assume that the tectonic force required to initiate rifting is available. However, Buck (2004, 2006) estimated the minimum tectonic force to allow passive rifting and concluded that the available forces are probably not large enough for rifting of thick and strong lithosphere in the absence of basaltic magmatism (the "Tectonic Force" Paradox). The integral of the yielding stress needed for rifting over the thickness of the normal or thicker continental lithosphere are well above the available tectonic forces and tectonic rifting cannot happen (Buck, 2006). This conclusion is based on the assumption that the tectonic stress has to overcome simultaneously the yielding stress over the whole lithosphere thickness and ignore gradual weakening of the brittle rocks under long-term loading. In this study we demonstrate that the rifting process under moderate tectonic stretching is feasible due to gradual weakening and "long-term memory" of the heavily fractured brittle rocks, which makes it significantly weaker than the surrounding intact rock. This process provides a possible solution for the tectonic force paradox. We address these questions utilizing 3-D lithosphere-scale numerical simulations of the plate motion and faulting process base on the damage mechanics. The 3-D modeled volume consists of three main lithospheric layers: an upper layer of weak sediments, middle layer of crystalline crust and lower layer of the lithosphere mantle. Results of the modeling demonstrate gradual formation of the rift zone in the continental lithosphere with the flat layered structure. Successive formation of the rift system and associated seismicity pattern strongly depend not only on the applied tectonic force, but also on the healing

  10. Cambrian ensialic rift-related magmatism in the Ossa-Morena Zone (Évora Aracena metamorphic belt, SW Iberian Massif): Sm Nd isotopes and SHRIMP zircon U Th Pb geochronology

    Science.gov (United States)

    Chichorro, M.; Pereira, M. F.; Díaz-Azpiroz, M.; Williams, I. S.; Fernández, C.; Pin, C.; Silva, J. B.

    2008-12-01

    The Late Ediacaran (c. 560-550 Ma) Série Negra sediments of the Évora-Aracena metamorphic belt, Ossa-Morena Zone, SW Iberian Massif, preserve a record of the erosion of an Avalonian-Cadomian magmatic arc and subsequent related turbiditic sedimentation. Detrital zircon from the Série Negra is characterized by predominantly Ediacaran and Cryogenian ages, with few Paleoproterozoic and Archean cores, and a marked lack of Grenvillian ages. These features, when combined with the metasediments' enrichment in LREE (La/Yb = 14), negative Eu-anomalies, low 147Sm/ 144Nd values (0.121) and negative ɛNd 550 = - 5.5, indicate that the protolith Série Negra sediments were derived from a continental magmatic arc. A period of Late Cadomian (ca. 560-540 Ma) tectonism was followed by an extended episode of widespread bimodal magmatism related to Cambrian (ca. 540-500 Ma) rifting. This tectonic inversion is expressed in the geological record by a regional Early Cambrian unconformity. SHRIMP zircon U-Th-Pb ages from four felsic orthogneisses from the Évora Massif record Cambrian (527 ± 10 Ma, 522 ± 5 Ma, 517 ± 6 Ma and 505 ± 5 Ma) crystallization ages for their igneous protoliths. This confirms the existence of widespread Lower Paleozoic igneous activity in the Ossa-Morena Zone: (i) a Lower Cambrian (ca. 535-515 Ma) igneous-felsic dominated-sedimentary complex (with calc-alkaline signature and associated carbonate and siliciclastic deposition), and (ii) a Middle Cambrian-?Ordovician (ca. 515-490 Ma) igneous-bimodal-sedimentary complex (with calc-alkaline and tholeiitic signatures and associated dominant siliciclastic deposition, but also carbonate sediments). The Cambrian felsic magmatism was characterized by negative Eu-anomalies, (La/Lu) N = 0.8-11, 147Sm/ 144Nd = 0.1289-0.1447 and ɛNd 500 ranging from - 1.5 to - 0.8. A tendency towards peraluminous compositions suggests late fractionation, low degrees of partial melting, or the mixing of crustal and mantle

  11. Middle Tertiary continental rift and evolution of the Red Sea in southwestern Saudi Arabia

    Science.gov (United States)

    Schmidt, Dwight Lyman; Hadley, Donald G.; Brown, Glen F.

    1983-01-01

    Middle Tertiary rift volcanism in a continental-rift valley in the Arabian-Nubian Shield was the first surface expression of active mantle convection beneath an axis that was to become the Red Sea. Investigation of the coastal plain of southwestern Saudi Arabia suggests that the rift valley was filled with basaltic and felsic to rhyolitic volcanic rocks (Ad Darb and Damad formations), cherty tuffaceous siltstones (Baid formation), and subordinate Nubian-type quartz sandstone (Ayyanah sandstone) between about 30 and 20 Ma ago. These rocks are named herein the Jizan group. At the same time, alkali-olivine basalt was erupted on the stable Precambrian craton at locations 100 to 200 km east of the rift valley axis.

  12. Geochemical and geochronological constraints on the origin and evolution of rocks in the active Woodlark Rift of Papua New Guinea

    Science.gov (United States)

    Zirakparvar, Nasser Alexander

    fragments of an active margin'. This chapter uses a panoply of geochronological (U-Pb zircon) and geochemical (Lu-Hf and Sm-Nd isotopes, trace/REEs, and major elements) tools to investigate the origin the major lithostratigraphic units in the Woodlark Rift. Important findings in this chapter include the establishment of a tectonic link between sialic metamorphic rocks in the Woodlark Rift and the remnants of a Late Cretaceous aged bi-modal volcanic province along Australia's northern Queensland coast. This link is important because it identifies another rifted fragment of the former Australian continental margin in Gondwana, and demonstrates the complexity of recognizing the dispersed fragments of active margins. Another important finding of this chapter is that Quaternary aged high silica rhyolites erupted in the western Woodlark Rift have mantle isotopic and geochemical signatures, and are therefore not the extrusive equivalents of partially melted metamorphic rocks found in the lower plates of large metamorphic core complexes. This is important because it signifies that lithospheric rupture has already occurred, despite the fact that mid-ocean ridge basalts are not yet being erupted and there are still topographically prominent metamorphic core complexes in the region. This chapter is not yet published, but is being prepared for submission to Gondwana Research. The third chapter is entitled 'Zircon growth in rapidly evolving plate boundary zones: Evidence from the active Woodlark Rift of Papua New Guinea'. The original purpose of this chapter was simply to use U-Pb dating of zircons from felsic and intermediate gneisses in the Woodlark Rift to understand the history of rocks from (U)HP terranes that don't preserve the (U)HP metamorphic paragenesis. It was soon realized that the types of U-Pb zircon analyses typically performed on a SIMS instrument were going to be insufficient to fully understand the geochemical and geochronological records within zircons from these

  13. Graben formation during the Bárðarbunga rifting event in central Iceland

    KAUST Repository

    Ruch, Joel

    2015-04-01

    On the 16th of August 2014, an intense seismic swarm was detected at the Bárðarbunga caldera (central Iceland), which migrated to the east and then to the northeast during the following days. The swarm, highlighting magma propagation pathway from the caldera, migrated laterally during the following two weeks over 40 km. By the end of August, a volcanic eruption had started along a north-south oriented fissure located ~45 km from the caldera. Here we focus on the near-field deformation related to the dike emplacement in the shallow crust, which generated in few days an 8 km long by 0.8 km wide graben (depression) structure. The new graben extends from the northern edge of the Vatnajökull glacier and to the north to the eruptive fissure. We analyze the temporal evolution of the graben by integrating structural mapping using multiple acquisitions of TerraSAR-X amplitude radar images, InSAR and ground-truth data with GPS and structural measurements. Pixel-offset tracking of radar amplitude images shows clearly the graben subsidence, directly above the intrusion pathway, of up to 6 meters in the satellite line-of-sight direction. We installed a GPS profile of 15 points across the graben in October 2014 and measured its depth up to 8 meters, relative to the flanks of the graben. Field structural observations show graben collapse structures that typically accompany dike intrusions, with two tilted blocks dipping toward the graben axis, bordered by two normal faults. Extensive fractures at the center of the graben and at the graben edges show a cumulative extension of ~8 meters. The formation of the graben was also accompanied by strong seismic activity locally, constraining the time frame period of the main graben formation subsidence. Our results show a rare case of a graben formation captured from space and from ground observations. Such structures are the dominant features along rift zones, however, their formation remain poorly understood. The results also provide

  14. How inheritance, geochemical and geophysical properties of the lithospheric mantle influence rift development and subsequent collision

    Science.gov (United States)

    Picazo, Suzanne; Chenin, Pauline; Müntener, Othmar; Manatschal, Gianreto; Karner, Garry; Johnson, Christopher

    2017-04-01

    In magma-poor rifted margins, the rift structures, width of necking zones and overall geometry are controlled by the heterogeneities of geochemical and geophysical properties of the crust and mantle. In this presentation we focus on the mantle heterogeneities and their major implications on the closure of a hyper-extended rifted system. In our study, we review the clinopyroxene and spinel major element composition from the Liguria-Piemonte domain, the Pyrenean domain, the Dinarides and Hellenides ophiolites and the Iberia-Newfoundland rifted margins (Picazo et al, 2016). It would seem that during an extensional cycle i.e., from post-orogenic collapse to polyphase rifting to seafloor spreading, the mineral compositions of mantle peridotites are systematically modified. The initially heterogeneous subcontinental mantle cpx (inherited mantle type 1) equilibrated in the spinel peridotite field and is too enriched in Na2O and Al2O3 to be a residue of syn-rift melting. The heterogeneous inherited subcontinental mantle becomes progressively homogenized due to impregnation by MORB-type melts (refertilized mantle-type 2) during extensional thinning of the lithosphere. At this stage, cpx equilibrate with plagioclase and display lower Na2O and Al2O3 and high Cr2O3 contents. The system might evolve into breakup and oceanization (mantle type 3) i.e., self-sustained steady-state seafloor spreading. The different mantle-types are present in various reconstructed sections of magma-poor margins and display a systematic spatial distribution from mantle type 1 to 3 going oceanwards in Western and Central Europe. We estimated the density of the three identified mantle types using idealized modal peridotite compositions using the algorithm by Hacker et al, (2003). The density of the refertilized plagioclase peridotite is predicted to be lower than that of inherited subcontinental and depleted oceanic mantle. This has some interesting consequences on the reactivation of rifted margins

  15. the role of magmatism and segmentation in the structural evolution of the Afar Rift

    Science.gov (United States)

    Stab, Martin; Bellahsen, Nicolas; Pik, Raphaël; Quidelleur, Xavier; Ayalew, Dereje; Leroy, Sylvie

    2015-04-01

    A common issue at volcanic passive margins (VPM) is the lack of observation of the structures that accommodate stretching and thinning. Indeed, the most distal parts and the Ocean-Continent Transition is often masked by thick seaward-dipping reflectors (SDR) sequences. Some current challenges are then to know if the observed thinning fit the divergence (thinning vs dyking); and what is the rheological effect of magma supply that re-thickens the crust during extension? In the Central Afar magmatic rift (Ethiopia), the structures related to rifting since Oligocene are cropping out onshore and are well preserved. We present here a new structural model based on field data and lavas (U-Th/He and K/Ar) datings along a balanced cross-section of the Central Afar Western Margin. We mapped continent-ward normal fault array affecting highly tilted trapp series (29-30 Ma) unconformably overlain by tilted Oligo-Miocene (25-7 Ma) acid series. The main extensional and necking/thinning event took place during the end of this Miocene magmatic episode. The Pliocene flood basalt (Stratoid series) is erupted over an already thinned crust. The bulk extension for the Afar Western Margin is ß ~ 2.50. Our main findings are: - Oligo-Miocene deformation in Central Afar appears to be largely distributed through space and time ("magmatic wide rift"). It has been accommodated in a 200-300 km wide strip being a diffuse incipient plate boundary during the whole rifting history until the formation of present-day magmatic segments. There is a period of tectonic quiescence accompanied with few magma erupted at the surface between 25 Ma and 7 Ma. We suggest that tectonic and magmatic activity was focused at that time on the highly faulted Danakil block and Southern Red Sea, away from our study zone. - ß ~ 2.50 is higher than the thinning factor of ~1.30 observed in geophysical studies. We propose that the continental crust in Central Afar has been re-thickened during extension by the syn-rift

  16. Groundwater fluoride enrichment in an active rift setting: Central Kenya Rift case study

    Energy Technology Data Exchange (ETDEWEB)

    Olaka, Lydia A., E-mail: lydiaolaka@gmail.com [Department of Geology, University of Nairobi, P.O Box 30197, Nairobi (Kenya); Wilke, Franziska D.H. [Geoforschungs Zentrum, Telegrafenberg, 14473 Potsdam (Germany); Olago, Daniel O.; Odada, Eric O. [Department of Geology, University of Nairobi, P.O Box 30197, Nairobi (Kenya); Mulch, Andreas [Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt (Germany); Institut für Geowissenschaften, Goethe Universität Frankfurt, Altenhöferallee 1, 60438 Frankfurt (Germany); Musolff, Andreas [UFZ-Helmholtz-Centre for Environmental Research, Department of Hydrogeology, Permoserstr. 15, 04318 Leipzig (Germany)

    2016-03-01

    Groundwater is used extensively in the Central Kenya Rift for domestic and agricultural demands. In these active rift settings groundwater can exhibit high fluoride levels. In order to address water security and reduce human exposure to high fluoride in drinking water, knowledge of the source and geochemical processes of enrichment are required. A study was therefore carried out within the Naivasha catchment (Kenya) to understand the genesis, enrichment and seasonal variations of fluoride in the groundwater. Rocks, rain, surface and groundwater sources were sampled for hydrogeochemical and isotopic investigations, the data was statistically and geospatially analyzed. Water sources have variable fluoride concentrations between 0.02–75 mg/L. 73% exceed the health limit (1.5 mg/L) in both dry and wet seasons. F{sup −} concentrations in rivers are lower (0.2–9.2 mg/L) than groundwater (0.09 to 43.6 mg/L) while saline lake waters have the highest concentrations (0.27–75 mg/L). The higher values are confined to elevations below 2000 masl. Oxygen (δ{sup 18}O) and hydrogen (δD) isotopic values range from − 6.2 to + 5.8‰ and − 31.3 to + 33.3‰, respectively, they are also highly variable in the rift floor where they attain maximum values. Fluoride base levels in the precursor vitreous volcanic rocks are higher (between 3750–6000 ppm) in minerals such as cordierite and muscovite while secondary minerals like illite and kaolinite have lower remnant fluoride (< 1000 ppm). Thus, geochemical F{sup −} enrichment in regional groundwater is mainly due to a) rock alteration, i.e. through long residence times and natural discharge and/or enhanced leakages of deep seated geothermal water reservoirs, b) secondary concentration fortification of natural reservoirs through evaporation, through reduced recharge and/or enhanced abstraction and c) through additional enrichment of fluoride after volcanic emissions. The findings are useful to help improve water management

  17. Temporal and geochemical constraints on active volcanism in southeastern Papua New Guinea

    Science.gov (United States)

    Catalano, J. P.; Baldwin, S.; Fitzgerald, P. G.; Webb, L. E.; Hollocher, K.

    2010-12-01

    have negative Nb and positive Sr anomalies, but the LREE and incompatible elements are depleted with respect to the volcanics on SE Goodenough. While trace and REE geochemistry suggests that young volcanics are derived from a subduction zone source, lack of a well defined increase in P-wave velocities associated with a southward subducted slab [beneath the Papuan Peninsula], and lack of 10Be enrichment in samples collected from historic eruptive products on Mt. Lamington suggests that active subduction is not responsible for generation of young lavas. An alternative hypothesis is that the negative Nb anomaly in young Woodlark Rift lavas is an inherited component and modern volcanism in the D’Entrecasteaux Islands results from decompression melting of a previously ‘subduction modified mantle as the lithosphere is extended ahead of the westward propagating seafloor spreading rift tip.

  18. Late Miocene-Pleistocene evolution of a Rio Grande rift subbasin, Sunshine Valley-Costilla Plain, San Luis Basin, New Mexico and Colorado

    Science.gov (United States)

    Ruleman, C.A.; Thompson, R.A.; Shroba, R.R.; Anderson, M.; Drenth, B.J.; Rotzien, J.; Lyon, J.

    2013-01-01

    The Sunshine Valley–Costilla Plain, a structural subbasin of the greater San Luis Basin of the northern Rio Grande rift, is bounded to the north and south by the San Luis Hills and the Red River fault zone, respectively. Surficial mapping, neotectonic investigations, geochronology, and geophysics demonstrate that the structural, volcanic, and geomorphic evolution of the basin involves the intermingling of climatic cycles and spatially and temporally varying tectonic activity of the Rio Grande rift system. Tectonic activity has transferred between range-bounding and intrabasin faults creating relict landforms of higher tectonic-activity rates along the mountain-piedmont junction. Pliocene–Pleistocene average long-term slip rates along the southern Sangre de Cristo fault zone range between 0.1 and 0.2 mm/year with late Pleistocene slip rates approximately half (0.06 mm/year) of the longer Quaternary slip rate. During the late Pleistocene, climatic influences have been dominant over tectonic influences on mountain-front geomorphic processes. Geomorphic evidence suggests that this once-closed subbasin was integrated into the Rio Grande prior to the integration of the once-closed northern San Luis Basin, north of the San Luis Hills, Colorado; however, deep canyon incision, north of the Red River and south of the San Luis Hills, initiated relatively coeval to the integration of the northern San Luis Basin. Long-term projections of slip rates applied to a 1.6 km basin depth defined from geophysical modeling suggests that rifting initiated within this subbasin between 20 and 10 Ma. Geologic mapping and geophysical interpretations reveal a complex network of northwest-, northeast-, and north-south–trending faults. Northwest- and northeast-trending faults show dual polarity and are crosscut by north-south– trending faults. This structural model possibly provides an analog for how some intracontinental rift structures evolve through time.

  19. The Transition from Initial Rifting to Ultra-Slow Seafloor Spreading within Endeavor Deep

    Science.gov (United States)

    Pockalny, R. A.; Larson, R. L.; Popham, C. T.; Natland, J. H.

    2004-12-01

    Endeavor Deep is a NW-SE trending, 3 km-deep rift basin located along the divergent portion of the Nazca/Juan Fernandez plate boundary. The rift basin is the result of the propagation of the East Ridge toward the northwest with relative motion across the ridge defined by a rapidly rotating (5.5 degrees/myr) Euler Pole located ~100 km to the northwest. The close proximity of Endeavor Deep to this Euler Pole results in a rapidly varying velocity field along the length of the deep and represents a unique location to study the effect of varying divergence rates on initial crustal extension. Recently collected EM300 bathymetry, DSL120 sidescan, surface-towed magnetics and JASON II observations have documented 4 distinct stages of rifting along the 70 km length of Endeavor Deep. These stages include (from NW to SE): amagmatic rifting, distributed initial volcanism, centralized waxing volcanism, and crustal formation by ultra-slow seafloor spreading. Amagmatic extension, evolving to rifting, occurs at spreading rates less than 13 km/myr and is characterized by rapidly deepening rift depths from NW to SE with an overall increase in depth of about 2.5 km. Extension is accommodated over a width of about 10-15 km and some flexural uplift of the defining scarps is observed. Distributed initial volcanism occurs at spreading rates from 13-14 km/myr and is characterized by coalesced volcanic constructs (100-200 m-high, 1-2 km-wide) across the width of the rift floor. The depth of the rift basin becomes fairly constant, but the cross-sectional area of the deep continues to increase. Centralized waxing volcanism occurs at spreading rates from 14-17 km/myr and is characterized by pillow ridges and tectonic lineations along the central portion of the rift floor which are oriented parallel to the long axis of the rift basin (orthogonal to the direction of extension). The floor of the rift basin begins to shoal and the cross-sectional area of the deep decreases initially and then

  20. Near N-S paleo-extension in the western Deccan region, India: Does it link strike-slip tectonics with India-Seychelles rifting?

    Science.gov (United States)

    Misra, Achyuta Ayan; Bhattacharya, Gourab; Mukherjee, Soumyajit; Bose, Narayan

    2014-09-01

    This is the first detailed report and analyses of deformation from the W part of the Deccan large igneous province (DLIP), Maharashtra, India. This deformation, related to the India-Seychelles rifting during Late Cretaceous-Early Paleocene, was studied, and the paleostress tensors were deduced. Near N-S trending shear zones, lineaments, and faults were already reported without significant detail. An E-W extension was envisaged by the previous workers to explain the India-Seychelles rift at ~64 Ma. The direction of extension, however, does not match with their N-S brittle shear zones and also those faults (sub-vertical, ~NE-SW/~NW-SE, and few ~N-S) we report and emphasize in this work. Slickenside-bearing fault planes, brittle shear zones, and extension fractures in meso-scale enabled us to estimate the paleostress tensors (directions and relative magnitudes). The field study was complemented by remote sensing lineament analyses to map dykes and shear zones. Dykes emplaced along pre-existing ~N-S to ~NE-SW/~NW-SE shears/fractures. This information was used to derive regional paleostress trends. A ~NW-SE/NE-SW minimum compressive stress in the oldest Kalsubai Subgroup and a ~N-S direction for the younger Lonavala, Wai, and Salsette Subgroups were deciphered. Thus, a ~NW/NE to ~N-S extension is put forward that refutes the popular view of E-W India-Seychelles extension. Paleostress analyses indicate that this is an oblique rifted margin. Field criteria suggest only ~NE-SW and ~NW-SE, with some ~N-S strike-slip faults/brittle shear zones. We refer this deformation zone as the "Western Deccan Strike-slip Zone" (WDSZ). The observed deformation was matched with offshore tectonics deciphered mainly from faults interpreted on seismic profiles and from magnetic seafloor spreading anomalies. These geophysical findings too indicate oblique rifting in this part of the W Indian passive margin. We argue that the Seychelles microcontinent separated from India only after much of

  1. Continental Rifts and Resources

    Science.gov (United States)

    Stein, Holly J.

    2017-04-01

    Nearly all resource-forming systems involve upward mobility of fluids and melts. In fact, one of the most effective means of chemically transforming the earth's crust can be readily observed in the rift environment. Imposition of rifting is based on deeper stresses that play out in the crust. At its most fundamental level, rifting transfers heat and fluids to the crust. Heat delivered by fluids aids both in transport of metal and maturation of hydrocarbons. The oxidizing capacity of fluids on their arrival in the deep crust, whether derived from old slabs, depleted upper mantle and/or deeper, more primitive mantle, is a fundamental part of the resource-forming equation. Oxidizing fluids transport some metals and breakdown kerogen, the precursor for oil. Reducing fluids transport a different array of metals. The tendency is to study the resource, not the precursor or the non-economic footprint. In doing so, we lose the opportunity to discover the involvement and significance of initiating processes; for example, externally derived fluids may produce widespread alteration in host rocks, a process that commonly precedes resource deposition. It is these processes that are ultimately the transferable knowledge for successful mineral and hydrocarbon exploration. Further limiting our understanding of process is the tendency to study large, highly complex, and economically successful ore-forming or petroleum systems. In order to understand their construction, however, it is necessary to put equal time toward understanding non-economic systems. It is the non-economic systems that often clearly preserve key processes. The large resource-forming systems are almost always characterized by multiple episodes of hydrothermal overprints, making it difficult if not impossible to clearly discern individual events. Understanding what geologic and geochemical features blocked or arrested the pathway to economic success or, even worse, caused loss of a resource, are critical to

  2. Holocene phreatomagmatic eruptions alongside the densely populated northern shoreline of Lake Kivu, East African Rift: timing and hazard implications

    Science.gov (United States)

    Poppe, Sam; Smets, Benoît; Fontijn, Karen; Rukeza, Montfort Bagalwa; De Marie Fikiri Migabo, Antoine; Milungu, Albert Kyambikwa; Namogo, Didier Birimwiragi; Kervyn, François; Kervyn, Matthieu

    2016-11-01

    The Virunga Volcanic Province (VVP) represents the most active zone of volcanism in the western branch of the East African Rift System. While the VVP's two historically active volcanoes, Nyamulagira and Nyiragongo, have built scoria cones and lava flows in the adjacent lava fields, several small phreatomagmatic eruptive centers lie along Lake Kivu's northern shoreline, highlighting the potential for explosive magma-water interaction. Their presence in the densely urbanized Sake-Goma-Gisenyi area necessitates an assessment of their eruptive mechanisms and chronology. Some of these eruptive centers possess multiple vents, and depositional contacts suggest distinct eruptive phases within a single structure. Depositional facies range from polymict tuff breccia to tuff and loose lapilli, often impacted by blocks and volcanic bombs. Along with the presence of dilute pyroclastic density current (PDC) deposits, indicators of magma-water interaction include the presence of fine palagonitized ash, ash aggregates, cross-bedding, and ballistic impact sags. We estimate that at least 15 phreatomagmatic eruptions occurred in the Holocene, during which Lake Kivu rose to its current water level. Radiocarbon dates of five paleosols in the top of volcanic tuff deposits range between ˜2500 and ˜150 cal. year bp and suggest centennial- to millennial-scale recurrence of phreatomagmatic activity. A vast part of the currently urbanized zone on the northern shoreline of Lake Kivu was most likely impacted by products from phreatomagmatic activity, including PDC events, during the Late Holocene, highlighting the need to consider explosive magma-water interaction as a potential scenario in future risk assessments.

  3. GPS and InSAR observations of ground deformation in the northern Malawi (Nyasa) rift from the SEGMeNT project

    Science.gov (United States)

    Durkin, W. J., IV; Pritchard, M. E.; Elliott, J.; Zheng, W.; Saria, E.; Ntambila, D.; Chindandali, P. R. N.; Nooner, S. L.; Henderson, S. T.

    2016-12-01

    We describe new ground deformation observations from the SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) spanning the northern sector of the Malawi (Nyasa) rift, which is one of the few places in the world suitable for a comprehensive study of early rifting processes. We installed 12 continuous GPS sensors spanning 700 km across the rift including Tanzania, Malawi, and Zambia to measure the width and gradient within the actively deforming zone. Most of these stations have 3 or more years of data now, although a few have shorter time series because of station vandalism. Spanning a smaller area, but with higher spatial resolution, we have created a time series of ground deformation using 150 interferograms from the Japanese ALOS-1 satellite spanning June 2007 to December 2010. We also present interferograms from other satellites including ERS, Envisat, and Sentinel spanning shorter time intervals. The observations include the 2009-2010 Karonga earthquake sequence and associated postseismic deformation as seen by multiple independent satellite lines-of-sight, that we model using a fault geometry determined using relocated aftershocks recorded by a local seismic array. We have not found any ground deformation at the Rungwe volcanic province from InSAR within our detection threshold ( 2 cm/yr), but we have observed localized seasonal ground movements exceeding 8 cm that are associated with subsidence in the dry season and uplift at the beginning of the wet season.

  4. Precise Hypocenter Relocation of Microearthquakes in the Torfajökull Volcanic System, Iceland

    Science.gov (United States)

    Lippitsch, R.; White, R. S.; Soosalu, H.

    2003-12-01

    The Torfajökull volcanic system is one of about 30 active volcanoes comprising the neovolcanic zones of Iceland. It is located at the rift-transform junction between the Eastern Volcanic Zone and the South Iceland Seismic Zone. The central volcanic part of the system is the largest silicic centre in Iceland with a caldera of about 12 km diameter. It's high-temperature geothermal system is one of the most powerful in Iceland. Torfajökull is the source of persistent seismicity, where both high- and low-frequency earthquakes occur. To study the microseismicity of the volcanic area in detail a temporary array of 20 broad-band seismic stations was deployed between May and November 2002. These temporary stations were embedded in the permanent South Iceland Lowland (SIL) network, and data from nine adjacent SIL-stations were included in the study. A 'minimum one-dimensional velocity model' with station corrections was computed for earthquake relocation by inverting manually picked P- and S- wave arrival times from events occurring in the Torfajökull volcanic centre, beneath Myrdalsjökull glacier south of the temporary array, and in the South Iceland Seismic Zone in the west. High-frequency earthquakes from the Torfajökull volcanic centre were then relocated using the program NonLinLoc, which calculates a non-linear, probabilistic solution to the earthquake location problem. From several hundred earthquakes in the Torfajökull area, 122 were well locatable (gap < 180 degrees, more than 10 observations). Subsequently, we correlated the waveforms of this sub-dataset (around 2000 obseravtions) to define linked events, calculated the relative travel time difference between event pairs, and solved for the hypocentral separation between these events with HypoDD. The resulting high-resolution pattern shows a tighter clustering in epicenter and focal depth when compared to original locations. All earthquakes are located beneath the caldera with hypocenters between 1 and 6 km

  5. Peralkaline volcanism in a continental collisional setting: Mount Nemrut volcano, Eastern Anatolia

    Science.gov (United States)

    Çubukçu, H. E.; Ulusoy, I.; Aydar, E.; Sen, E.; Ersoy, O.; Gourgaud, A.

    2012-04-01

    Quaternary Mount Nemrut is an active volcano in the Eastern Anatolia which culminates at 2948 m and having an elliptic summit caldera with 8.5 x 7 km diameter. The volcano is situated on the east of the deformed and dissected remnant of the Muş-Van ramp basin located at the northern foot of the Bitlis-Zagros suture zone. The suture zone is the southern margin of the continental collision between Arabian and Anatolian plates. The continental collision along the Bitlis-Zagros suture zone commenced in the Middle Miocene following the closure of the southern segment of Neo-Tethys ocean and the subduction of northern margin of Arabian plate beneath Anatolian plate. Upon the collision and the uplift of the region, widespread volcanism, which exhibits varying eruption styles and geochemical characteristics, affected most of the Eastern Anatolia. The intracontinental convergence and N - S directed compressional - contractional tectonic regime remained till the end of Late Miocene. However, compressional - extensional regime became dominant in the Early-Late Pliocene. Following the slab break off, asthenosphere beneath the Arabian Foreland probably have migrated towards the slab window, which was opened during the detachment, and invaded the mantle wedge beneath East Anatolian Collision zone. Volcanism is still active in the region, represented by major Quaternary volcanic centers. The magmatic characteristics of Nemrut volcano is appealingly distinct compared to the other Quaternary volcanic centers in the region. The overall geochemical and mineralogical affinity of Nemrut volcanism exhibits strong similarities with the well-known sites of continental intra-plate extension. The volcano has distinguishing features of a typical silica oversaturated peralkaline (molecular ratio (Na + K / Al)>1) suite: (a) The volcanic products vary from transitional olivine basalt to peralkaline rhyolite (abundant comendite and scarce pantellerite) (b) Predominance by erupted volume of

  6. Structural inheritance versus magmatic weakening: What controls the style of deformation at rift segment boundaries in the Gulf of California, Mexico?

    Science.gov (United States)

    Seiler, Christian; Gleadow, Andrew; Kohn, Barry

    2013-04-01

    . The shape, location and orientation of the main faults were strongly influenced by pre-existing rheological heterogeneities. Major normal faults are parallel to either the Mesozoic metamorphic foliation or Cretaceous intrusive contacts, and developed where the foliation was at a high angle to the extension direction. In contrast, the oblique-slip faults of the BTZ formed parallel to the metamorphic foliation where formlines are at a small angle to the regional extension direction. Compared to the BTZ, deformation in other known accommodation zones of the Gulf of California rift occurred distributed across a much wider zone, and appropriate transfer faults are either lacking or minor. In these cases, however, the accommodation zones coincide with the locations of significant pre- and synrift volcanism, suggesting that thermal weakening associated with magmatic activity may have promoted the distribution of strain across a wider region instead of localising it into discrete transfer faults.

  7. Geophysical evidence of pre-sag rifting and post-rifting fault reactivation in the Parnaíba basin, Brazil

    Science.gov (United States)

    Lopes de Castro, David; Hilário Bezerra, Francisco; Adolfo Fuck, Reinhardt; Vidotti, Roberta Mary

    2016-04-01

    This study investigated the rifting mechanism that preceded the prolonged subsidence of the Paleozoic Parnaíba basin in Brazil and shed light on the tectonic evolution of this large cratonic basin in the South American platform. From the analysis of aeromagnetic, aerogravity, seismic reflection and borehole data, we concluded the following: (1) large pseudo-gravity and gravity lows mimic graben structures but are associated with linear supracrustal strips in the basement. (2) Seismic data indicate that 120-200 km wide and up to 300 km long rift zones occur in other parts of the basins. These rift zones mark the early stage of the 3.5 km thick sag basin. (3) The rifting phase occurred in the early Paleozoic and had a subsidence rate of 47 m Myr-1. (4) This rifting phase was followed by a long period of sag basin subsidence at a rate of 9.5 m Myr-1 between the Silurian and the late Cretaceous, during which rift faults propagated and influenced deposition. These data interpretations support the following succession of events: (1) after the Brasiliano orogeny (740-580 Ma), brittle reactivation of ductile basement shear zones led to normal and dextral oblique-slip faulting concentrated along the Transbrasiliano Lineament, a continental-scale shear zone that marks the boundary between basement crustal blocks. (2) The post-orogenic tectonic brittle reactivation of the ductile basement shear zones led to normal faulting associated with dextral oblique-slip crustal extension. In the west, pure-shear extension induced the formation of rift zones that crosscut metamorphic foliations and shear zones within the Parnaíba block. (3) The rift faults experienced multiple reactivation phases. (4) Similar processes may have occurred in coeval basins in the Laurentia and Central African blocks of Gondwana.

  8. The Dras arc Complex: lithofacies and reconstruction of a Late Cretaceous oceanic volcanic arc in the Indus Suture Zone, Ladakh Himalaya

    Science.gov (United States)

    Robertson, Alastair; Degnan, Paul

    1994-08-01

    The purpose of this paper is to give an integrated description and interpretation of mainly volcaniclastic sediments related to excellently exposed oceanic volcanic arc successions in the Ladakh Himalayas. The mainly Late Cretaceous (Aptian—Paleocene?) Dras arc Complex in the Indus Suture Zone (N. India) is reconstructed as an oceanic arc, passing southwards into a proximal to distal forearc apron. The arc complex comprises three structural units. From west to east these are the Suru unit, the Naktul unit and the Nindam Formation. The Suru unit and the Naktul unit are unconformably underlain by dissected Late Jurassic? oceanic crust and mantle. The Suru unit preserves the interior of the arc and is divided into Dras 1 and Dras 2 sub-units. The Dras 1 Sub-unit, of mid-Late Cretaceous age, was intruded by arc plutonics, deformed, then unconformably overlain by the poorly dated Dras 2 Sub-unit (Lower Tertiary). The Dras 1 Sub-unit comprises arc extrusives, volcaniclastic and tuffaceous sedimentary rocks, and mainly redeposited shallow-water limestones. The Dras 2 Sub-unit is dominated by coarse volcaniclastics and lava flows, passing up into rhythmically layered acidic extrusives, with interbedded turbiditic siltstones and siliceous pelagic limestones. Further east, the Naktul unit is mainly clastic, with large volumes of massive volcaniclastic talus, thick-bedded debris flows, volcaniclastic turbidites and reworked shallow-water carbonates. Pillowed extrusives and ribbon radiolarites are present, mainly low in the succession in some areas, while pelagic carbonates are abundant near the top. The Naktul unit is interpreted as a proximal forearc apron. The Nindam Formation in the east is dominated by deep-water volcaniclastic turbidites, tuffaceous sediments and pelagic carbonates, with subordinate debris flows and is interpreted as a distal deep-water forearc succession. Cyclical alternations of mainly volcaniclastics and pelagic carbonates in the Nindam Formation

  9. Diet composition of roe deer (Capreolus capreolus in the Natural Park of the Garrotxa volcanic zone (Catalonia, Spain

    Directory of Open Access Journals (Sweden)

    Bartolomé, J.

    2002-12-01

    Full Text Available The present work outlines the results of a study on the food consumed by roe deer carried out in the Natural Park of the Garrotxa Volcanic Zone, where 49 roe deer were reintroduced from 1995 to 1998. This is a protected area of about 12,000 ha, in which oak and beech forests predominate. Faecal analysis was chosen as the most appropriate method for sampling diet composition despite the scarcity of faecal samples encountered from 1998 to 2001 (n=30. A total of 7,500 epidermal fragments were identified from these samples. Results showed that ivy (Hedera helix and bramble (Rubus sp. formed the bulk of the diet (23% and 21%, respectively. Woody species also formed an important part, reaching 33% of total fragments. Herbs and grasses were only notable in the spring-summer period. Some major vegetation components such as beech (Fagus sylvatica were rarely consumed by deer.

    [fr]
    Voici le résultat d'une étude sur l'alimentation du chevreuil dans le Parc Naturel de la Zone Volcanique de la Garrotxa, où 49 individus furent introduits entre 1995 et 1998. Il s'agit d'un espace protégé de 12 000 ha environ, dominé par les forêts de chênes et de hêtres. Malgré le nombre très bas d'excréments rencontrés entre 1998 et 2001 (n=30, leur analyse nous a paru la meilleure méthode pour tester la composition de l'alimentation. À partir de ces échantillons, nous avons identifié 7 500 fragments d'épiderme. Les résultats nous montrent que le lierre (Hedera helix et la ronce (Rubus sp. sont l'alimentation principale (23 et 21% respectivement. Toutefois, les espèces ligneuses sont également à considérer, puisqu'elles forment 33% des fragments totaux. Les herbes et les graminées s'avèrent importantes au cours du printemps-été. Il est à noter que les principaux composants de la végétation tel le hêtre (Fagus sylvatica étaient très rarement consommés.
    [es]
    Se exponen los

  10. The roles of fractional crystallization, magma mixing, crystal mush remobilization and volatile-melt interactions in the genesis of a young basalt-peralkaline rhyolite suite, the greater Olkaria volcanic complex, Kenya Rift valley

    Science.gov (United States)

    Macdonald, R.; Belkin, H.E.; Fitton, J.G.; Rogers, N.W.; Nejbert, K.; Tindle, A.G.; Marshall, A.S.

    2008-01-01

    The Greater Olkaria Volcanic Complex is a young (???20 ka) multi-centred lava and dome field dominated by the eruption of peralkaline rhyolites. Basaltic and trachytic magmas have been erupted peripherally to the complex and also form, with mugearites and benmoreites, an extensive suite of magmatic inclusions in the rhyolites. The eruptive rocks commonly represent mixed magmas and the magmatic inclusions are themselves two-, three- or four-component mixes. All rock types may carry xenocrysts of alkali feldspar, and less commonly plagioclase, derived from magma mixing and by remobilization of crystal mushes and/or plutonic rocks. Xenoliths in the range gabbro-syenite are common in the lavas and magmatic inclusions, the more salic varieties sometimes containing silicic glass representing partial melts and ranging in composition from anorthite ?? corundum- to acmite-normative. The peralkaline varieties are broadly similar, in major element terms, to the eruptive peralkaline rhyolites. The basalt-trachyte suite formed by a combination of fractional crystallization, magma mixing and resorption of earlier-formed crystals. Matrix glass in metaluminous trachytes has a peralkaline rhyolitic composition, indicating that the eruptive rhyolites may have formed by fractional crystallization of trachyte. Anomalous trace element enrichments (e.g. ??? 2000 ppm Y in a benmoreite) and negative Ce anomalies may have resulted from various Na- and K-enriched fluids evolving from melts of intermediate composition and either being lost from the system or enriched in other parts of the reservoirs. A small group of nepheline-normative, usually peralkaline, magmatic inclusions was formed by fluid transfer between peralkaline rhyolitic and benmoreitic magmas. The plumbing system of the complex consists of several independent reservoirs and conduits, repeatedly recharged by batches of mafic magma, with ubiquitous magma mixing. ?? The Author 2008. Published by Oxford University Press. All

  11. Distribution and characteristics of volcanic reservoirs in China

    Institute of Scientific and Technical Information of China (English)

    HUANG Yulong; WANG Pujun; CHEN Shuming

    2009-01-01

    About forty productive oil/gas fields hosted in volcanic reservoirs have been found since 1957 in fourteen basins of China. They can be simply subdivided into two groups, the east and the west. Reservoir volcanic rocks of the east group are predominantly composed of Late Jurassic to Early Cretaceous rhyolite and Tertiary basalt, preferred being considered as rift type volcanics developed in the circum-Pacific tectonic regime. Those of the west are Permo-Carboniferous intermediate/basic volcanic rocks, being island-arc type ones developed in paleo-Asian Ocean tectonic regime.

  12. Lost in Iceland? Fracture Zone Complications Along the Mid-Atlantic Plate Boundary

    Science.gov (United States)

    Brandsdóttir, B.; Einarsson, P.; Detrick, R. S.; Mayer, L.; Calder, B.; Driscoll, N.; Richter, B.

    2003-12-01

    The mid-Atlantic plate boundary breaks up into a series of segments across Iceland. Two transform zones, the South Iceland Seismic Zone (SISZ) and the Tjörnes Fracture Zone (TFZ) separate the on land rift zones from the Reykjanes Ridge (RR), and the Kolbeinsey Ridge (KR), offshore N-Iceland. Both are markedly different from fracture zones elsewhere along the plate boundary. The 80 km E-W and 10--15 km N-S SISZ is made up of more than 20 N-S aligned, right-lateral, strike-slip faults whereas the TFZ consists of a broad zone of deformation, roughly 150 km E-W and 75 km N-S. The over-all left-lateral transform motion within the SISZ is accommodated by bookshelf faulting whereas the right-lateral transform motion within the TFZ is incorporated within two WNW-trending seismic zones, spaced ˜40 km apart, the Grímsey Seismic Zone (GSZ) and the Húsavík-Flatey fault (HFF). Recently collected EM300 and RESON8101 multibeam bathymetric data along with CHIRP subbottom data has unveiled some tectonic details within the TFZ. The GSZ runs along the offshore extension of the Northern Volcanic Rift Zone (NVRZ) and is made up of four left-stepping, en-echelon, NS-striking rift segments akin to those on land. Large GSZ earthquakes seem to be associated with lateral strike-slip faulting along ESE-striking fault planes. Fissure swarms transecting the offshore volcanic systems have also been subjected to right-lateral transformation along the spreading direction. As the Reykjanes Peninsula, the on land extension of the RR, the GSZ bears the characteristics of an oblique rift zone. The plate boundary segments connecting to the RR and KR are thus symmetrical with respect to the plate separation vector (105° ) and orientation of individual volcanic systems. The HFF has an overall strike of N65° W and can be traced continuously along its 75--80 km length, between the Theistareykir volcanic system within the NVRZ, across the central TFZ-graben, the Skjálfandi bay, and into the largest

  13. Propagation of rifting along the Arabia-Somalia Plate Boundary: Into Afar

    Science.gov (United States)

    Manighetti, I.; Tapponnier, P.; Gillot, P. Y.; Jacques, E.; Courtillot, V.; Armijo, R.; Ruegg, J. C.; King, G.

    1998-03-01

    It is generally accepted that the Aden ridge has propagated westward from ˜58°E to the western tip of the Gulf of Aden/Tadjoura, at the edge of Afar. Here, we use new tectonic and geochronological data to examine the geometry and kinematics of deformation related to the penetration of that ridge on dry land in the Republic of Djibouti. We show that it veers northward, forming a narrow zone of dense faulting along the northeastern edge of the Afar depression. The zone includes two volcanic rifts (Asal-Ghoubbet and Manda Inakir), connected to one another and to the submarine part of the ridge by transfer zones. Both rifts are composite, divided into two or three disconnected, parallel, NW-SE striking subrifts, all of which appear to have propagated northwestward. In Asal-Ghoubbet as in Manda Inakir, the subrifts appear to have formed in succession, through north directed jumps from subrifts more farther south. At present, the northernmost subrifts (Manda and Dirko Koma) of the Manda Inakir rift, form the current tip of the northward propagating Arabia-Somalia plate boundary in Afar. We account for most observations by a mechanical model similar to that previously inferred for the Gulf of Aden, in which propagation is governed by the intensity and direction of the minimum horizontal principal stress, σ3. We interpret the northward propagation on land, almost orthogonal to that in the gulf, to be related to necking of the Central Afar lithosphere where it is thinnest. Such necking may be a consequence of differential magmatic thickening, greater in the center of the Afar depression where the Ethiopian hot spot enhanced profuse basaltic effusion and underplating than along the edges of the depression. The model explains why the Aden ridge foregoes its WSW propagation direction, constant from ˜58°E to Asal-Ghoubbet. At a smaller scale, individual rifts and subrifts keep opening perpendicular to the Arabia-Somalia (or Danakil-Somalia) motion vector and propagate

  14. Petrological and Geochemical characterization of central Chihuahua basalts: a possible local sign of rifting activity

    Science.gov (United States)

    Espejel-Garcia, V. V.; Garcia-Rascon, M.; Villalobos-Aragon, A.; Morton-Bermea, O.

    2012-12-01

    The central part of the mexican state, Chihuahua, is the oriental border of the Sierra Madre Occidental (silicic large igneous province), which consist of series of ignimbrites divided into two volcanic groups of andesites and rhyolites. In the central region of Chihuahua, the volcanic rocks are now part of the Basin and Range, allowing the presence of mafic rocks in the lower areas. The study area is located approximately 200 km to the NW of Chihuahua city near to La Guajolota town, in the Namiquipa County. There are at least 5 outcrops of basalts to the west of the road, named Puerto de Lopez, Malpaises, El Tascate, Quebrada Honda, and Carrizalio, respectively. These outcrops have only been previously described by the Mexican Geologic Survey (SGM) as thin basaltic flows, with vesicles filled with quartz, and phenocrystals of labradorite, andesine, oligoclase and olivine. Petrologically, the basalts present different textures, from small phenocrysts of plagioclase in a very fine matrix to large, zoned and sometimes broken phenocrysts of plagioclase in a coarser matrix. All samples have olivine in an advanced state of alteration, iddingsite. The geochemical analyses report that these basaltic flows contain characteristics of rift basalts. The rocks have a normative olivine values from 5.78 to 27.26 and nepheline values from 0 to 2.34. In the TAS diagram the samples straddle the join between basalt and trachy-basalt, reflecting a high K2O content. The Mg# average is 0.297, a value that suggests that the basalts do not come from a primitive magma. The basalts have high values of Ba (945-1334 ppm), Cu (54-147 ppm), and Zn (123-615 ppm). The contents of Rb (23-57 ppm), Sr (659-810 ppm), Y (26-33 ppm), Zr (148-217 ppm) and Cr (79-98 ppm) are characteristics of rift basalts. Using discrimination diagrams, the basalts plot in the field of within plate, supporting the rifting origin. Outcrops of other basalts, at about 80 to 100 km to the east of the study area, Lomas El

  15. The May 29 2008 earthquake aftershock sequence within the South Iceland Seismic Zone: Fault locations and source parameters of aftershocks

    Science.gov (United States)

    Brandsdottir, B.; Parsons, M.; White, R. S.; Gudmundsson, O.; Drew, J.

    2010-12-01

    The mid-Atlantic plate boundary breaks up into a series of segments across Iceland. The South Iceland Seismic Zone (SISZ) is a complex transform zone where left-lateral E-W shear between the Reykjanes Peninsula Rift Zone and the Eastern Volcanic Zone is accommodated by bookshelf faulting along N-S lateral strike-slip faults. The SISZ is also a transient feature, migrating sideways in response to the southward propagation of the Eastern Volcanic Zone. Sequences of large earthquakes (M > 6) lasting from days to years and affecting most of the seismic zone have occurred repeatedly in historical time (last 1100 years), separated by intervals of relative quiescence lasting decades to more than a century. On May 29 2008, a Mw 6.1 earthquake struck the western part of the South Iceland Seismic Zone, followed within seconds by a slightly smaller event on a second fault ~5 km further west. Aftershocks, detected by a temporal array of 11 seismometers and three permanent Icelandic Meteorological Office stations were located using an automated Coalescence Microseismic Mapping technique. The epicenters delineate two major and several smaller N-S faults as well as an E-W zone of activity stretching further west into the Reykjanes Peninsula Rift Zone. Fault plane solutions show both right lateral and oblique strike slip mechanisms along the two major N-S faults. The aftershocks deepen from 3-5 km in the north to 8-9 km in the south, suggesting that the main faults dip southwards. The faulting is interpreted to be driven by the local stress due to transform motion between two parallel segments of the divergent plate boundary crossing Iceland.

  16. Rifts in the tectonic structure of East Antarctica

    Science.gov (United States)

    Golynsky, Dmitry; Golynsky, Alexander

    2010-05-01

    It was established that riftogenic and/or large linear tectonic structures in East Antarctica are distributed with a steady regularity with average distance between them about 650 km. All these structures (13) represent objects of undoubted scientific and practical interest and might be considered as immediate objects for conducting integrated geological and geophysical investigations. Analysis and generalization of the RADARSAT satellite system imagery and radio-echosounding survey data collected in the eastern part of Princess Elizabeth Land allow us to distinguish spatial boundaries of previously unknown continental rift system that was proposed to name Gaussberg (Golynsky & Golynsky, 2007). The rift is about 500 km long, and taking into consideration its western continuation in the form of short (fragmented) faults, may exceed 700 km. The elevation difference between depressions and horsts reaches 3 km. The rift structure consists of two sub-parallel depressions separated by segmented horst-like rises (escarpments). Deep depressions within the rift reach more than 800 m bsl near the West Ice Shelf and within the central graben occupied by the Phillipi Glacier. The width of the Gaussberg Rift system varies from 60 km in the south-western area to 150 km near the West Ice Shelf. The Gaussberg rift is considered as a part of the Lambert rift system, which has a complicated structure clearly recognized over both the continent and also its margin. The Gaussberg rift probably exploited a weak zone between the Proterozoic mobile belt and the Archaean Vestfold-Rauer cratonic block. Supposedly it initiated at the turn of Jurassic and Permian epoch or a little bit earlier as in case of the Lambert rift where the Permian graben formation with coal-bearing deposits predetermined the subsequent development of submeridional rift zone. The Gaussberg and also the Scott rift developed in the Queen Marie Land, may be considered as continuations of the Mahanadi Valley rift and

  17. Evolution of the central Rio Grande rift, New Mexico: New potassium-argon ages

    Science.gov (United States)

    Baldridge, W. S.; Damon, P. E.; Shafiqullah, M.; Bridwell, R. J.

    1980-12-01

    New K sbnd Ar age determinations on mid-Oligocene to Pleistocene volcanic and shallow intrusive rocks from the central Rio Grande rift permit a more detailed understanding of the tectonic and magmatic history of the rift. Initial extension in the region of the central rift may have begun prior to 27 m.y. ago. By 25 m.y. ago broad basins existed and were filling with volcaniclastic sediments derived mainly from volcanic centers in the San Juan and Questa areas. Continued tectonic activity narrowed these basins by 21-19 m.y. ago, indicated in the Santa Fe area by tilting and faulting that immediately postdate 20-m.y.-old latite. Uplift of the Sangre de Cristo, Sandia, and Nacimiento Mountains shed clastic debris of the Santa Fe Group into these basins. Early rift magmatism is characterized by an overlap of mid-Tertiary intermediate intrusive and extrusive activity, extending to 20 m.y. ago, with mafic and ultramafic volcanism, ranging from 25 to 19 m.y. Both volcanism and tectonic activity were minimal during the middle Miocene. About 13 m.y. ago renewed volcanic activity began. Tectonism commenced in the late Miocene, resulting in the present, narrow grabens. The term "Rio Grande rift" should be restricted to these grabens formed during post-mid-Miocene deformation. Widespread eruption of tholeiitic and alkali olivine basalts occurred 3-2 m.y. ago. The Rio Grande drainage system was integrated 4.5-3 m.y. ago, leading to the present erosional regime. These intervals of deformation and magmatism correspond generally with a similar sequence of events in the Basin and Range province south of the Colorado Plateau. This similarity indicates that the Rio Grande rift is not a unique structure in the southwestern U.S., and must be related to the larger context of the entire Basin and Range province.

  18. Active fault segments as potential earthquake sources: Inferences from integrated geophysical mapping of the Magadi fault system, southern Kenya Rift

    Science.gov (United States)

    Kuria, Z. N.; Woldai, T.; van der Meer, F. D.; Barongo, J. O.

    2010-06-01

    Southern Kenya Rift has been known as a region of high geodynamic activity expressed by recent volcanism, geothermal activity and high rate of seismicity. The active faults that host these activities have not been investigated to determine their subsurface geometry, faulting intensity and constituents (fluids, sediments) for proper characterization of tectonic rift extension. Two different models of extension direction (E-W to ESE-WNW and NW-SE) have been proposed. However, they were based on limited field data and lacked subsurface investigations. In this research, we delineated active fault zones from ASTER image draped on ASTER DEM, together with relocated earthquakes. Subsequently, we combined field geologic mapping, electrical resistivity, ground magnetic traverses and aeromagnetic data to investigate the subsurface character of the active faults. Our results from structural studies identified four fault sets of different age and deformational styles, namely: normal N-S; dextral NW-SE; strike slip ENE-WSW; and sinistral NE-SW. The previous studies did not recognize the existence of the sinistral oblique slip NE-SW trending faults which were created under an E-W extension to counterbalance the NW-SE faults. The E-W extension has also been confirmed from focal mechanism solutions of the swarm earthquakes, which are located where all the four fault sets intersect. Our findings therefore, bridge the existing gap in opinion on neo-tectonic extension of the rift suggested by the earlier authors. Our results from resistivity survey show that the southern faults are in filled with fluid (0.05 and 0.2 Ωm), whereas fault zones to the north contain high resistivity (55-75 Ωm) material. The ground magnetic survey results have revealed faulting activity within active fault zones that do not contain fluids. In addition, the 2D inversion of the four aero-magnetic profiles (209 km long) revealed: major vertical to sub vertical faults (dipping 75-85° east or west); an

  19. Geochemical and isotopic variability in lavas from the eastern Trans-Mexican Volcanic Belt: Slab detachment in a subduction zone with varying dip

    Science.gov (United States)

    Orozco-Esquivel, Teresa; Petrone, Chiara M.; Ferrari, Luca; Tagami, Takahiro; Manetti, Piero

    2007-01-01

    Strong compositional variations are observed in the late-Miocene to Quaternary volcanic rocks of the eastern Trans-Mexican Volcanic Belt. Geochemical and isotopic analyses of samples well constrained in age indicate an abrupt change in magma composition in the late-Miocene (˜ 7.5 Ma), when calc-alkaline, subduction-related magmatism was replaced by mafic, alkaline, OIB-like volcanism. Afterwards, volcanism migrated toward the trench and the erupted lavas showed increasing contributions of subduction components reflected in higher Th/Nb, La/Sm(n), Ba/Nb, and Ba/Th ratios. Lavas from volcanic fields located closer to the trench show clearer, although strongly variable, arc signatures as well as evidence of subducted sediment contributions. Farther from the trench, only lavas emplaced in late-Pliocene time appear to be slightly modified by subduction components, whereas the youngest Quaternary lavas can be regarded as intraplate lavas modified by crustal assimilation. The sudden change in magma composition in the late-Miocene is related to detachment of the subducting slab, which allowed the infiltration of enriched asthenospheric mantle into the mantle wedge. After detachment, the subducting plate started to increase its dip because of the loss of slab pull. This caused (1) the migration of the arc toward the trench, (2) convection of enriched asthenosphere into the mantle wedge, and (3) an increasing contribution of slab components to the melts, in a process that resulted in a highly heterogeneous source mantle. The variable contribution of subduction-related components to the magmas is controlled by the heterogeneous character of the source, the depth of the subducting plate, and the previous magmatic history of the areas.

  20. Sub-seafloor acoustic characterization of seamounts near the Ogasawara Fracture Zone in the western Pacific using chirp (3-7 kHz) subbottom profiles

    Science.gov (United States)

    Lee, T.-G.; Hein, J.R.; Lee, Kenneth; Moon, J.-W.; Ko, Y.-T.

    2005-01-01

    A detailed analysis of chirp (3-7 kHz) subbottom profiles and bathymetry was performed on data collected from seamounts near the Ogasawara Fracture Zone (OFZ) in the western Pacific. The OFZ, which is a 150 km wide rift zone showing 600 km of right-lateral movement in a NW-SE direction, is unique among the fracture zones of the Pacific in that it includes many old seamounts (e.g., Magellan Seamounts and seamounts on Dutton Ridge). Sub-seafloor acoustic echoes on the seamounts are classified into nine specific types based on the nature and continuity of the echoes, subbottom structure, and morphology of the seafloor: (1) distinct echoes (types I-1, I-2, I-3), (2) indistinct echoes (types II-1, II-2, II-3), and (3) hyperbolic echoes (types III-1, III-2, III-3). Type I-2 pelagic sediments, characterized by thin and intermittent coverage, were probably deposited in topographically sheltered areas when bottom currents were strong, whereas type I-1 pelagic sediments accumulated during continuous and widespread sedimentation. Development of seamount flank rift zones in the OFZ may have been influenced by preexisting structures in the transform fracture zone at the time of volcanism, whereas those on Ita Mai Tai seamount in the Pigafetta Basin originated solely by edifice-building processes. Flank rift zones that formed by dike intrusions and eruptions played an important role in mass wasting. Mass-wasting processes included block faulting or block slides around the summit margin, sliding/slumping, debris flows, and turbidites, which may have been triggered by faulting, volcanism, dike injection, and weathering during various stages in the evolution of the seamounts. ?? 2005 Elsevier Ltd. All rights reserved.

  1. Chlorine Stable Isotopes to reveal contribution of magmatic chlorine in subduction zones: the case of the Kamchatka-Kuril and the Lesser Antilles Volcanic Arcs

    Science.gov (United States)

    Agrinier, Pierre; Shilobreeva, Svetlana; Bardoux, Gerard; Michel, Agnes; Maximov, Alexandr; Kalatcheva, Elena; Ryabinin, Gennady; Bonifacie, Magali

    2015-04-01

    By using the stable isotopes of chlorine (δ 37Cl), we have shown that magmatic chlorine (δ 37Cl ≤ -0.6 ‰ [1]) is different from surface chlorine (δ 37Cl ≈ 0 ‰ [1]) in hydrothermal system of Soufrière and Montagne Pelé from the young arc volcanic system of Lesser Antilles. First measurements on condensed chlorides from volcanic gases (e.g. [2], [3]) did not permitted to get sensible δ 37Cl values on degassed chlorine likely because chlorine isotopes are fractionated during the HClgas - chloride equilibrium in the fumaroles or during sampling artifacts. Therefore we have developed an alternative strategy based on the analysis of chloride in thermal springs, streams, sout{f}lowing on the flanks of the volcanoes. Due to the highly hydrophilic behavior of Cl, we hypothesize that thermal springs incorporate chlorine without fractionation of chlorine isotopes and might reflect the chlorine isotopic composition degassed by magmas [1]. Indeed Thermal spring with low δ 37Cl chlorides (≤ -0.6 perthousand{}) are linked with magmatic volatiles characters (3He ratio at 5 Ra at and δ 13C CO2 quad ≈ -3 perthousand{}). To go further in the potentiality of using the Chlorine isotopes to reveal contribution of magmatic chlorine in volcanic systems, we have started the survey of thermal springs and wells waters in the Kamchatka-Kuril volcanic mature Arc (on sites Mutnovsky, Paratunka, Nalychevsky, Khodutkinsky, Paramushir Island, identified by Taran, 2009 [4] for concentrations of chloride). Preliminary results show δ 37Cl values ranging from 0.5 to -0.2 ‰ and generally higher chloride concentrations. The δ 37Cl values are higher than the value recorded for the young arc volcanic system of lesser Antilles. At present moment very few negative δ 37Cl have been measured in the Kamchatka-Kuril volcanic mature Arc. [1] Li et al., 2015 EPSL in press. [2] Sharp et al. 2010 GCA. [3] Rizzo et al., 2013, EPSL, 371, 134. [4] Taran, 2009, GCA, 73, 1067

  2. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers.

    Science.gov (United States)

    Rango, Tewodros; Vengosh, Avner; Dwyer, Gary; Bianchini, Gianluca

    2013-10-01

    This study investigates the mechanisms of arsenic (As) and other naturally occurring contaminants (F(-), U, V, B, and Mo) mobilization from Quaternary sedimentary aquifers of the Main Ethiopian Rift (MER) and their enrichment in the local groundwater. The study is based on systematic measurements of major and trace elements as well as stable oxygen and hydrogen isotopes in groundwater, coupled with geochemical and mineralogical analyses of the aquifer rocks. The Rift Valley aquifer is composed of rhyolitic volcanics and Quaternary lacustrine sediments. X-ray fluorescence (XRF) results revealed that MER rhyolites (ash, tuff, pumice and ignimbrite) and sediments contain on average 72 wt. % and 65 wt. % SiO2, respectively. Petrographic studies of the rhyolites indicate predominance of volcanic glass, sanidine, pyroxene, Fe-oxides and plagioclase. The As content in the lacustrine sediments (mean = 6.6 mg/kg) was higher than that of the rhyolites (mean: 2.5 mg/kg). The lacustrine aquifers of the Ziway-Shala basin in the northern part of MER were identified as high As risk zones, where mean As concentration in groundwater was 22.4 ± 33.5 (range of 0.60-190 μg/L) and 54% of samples had As above the WHO drinking water guideline value of 10 μg/L. Field As speciation measurements showed that most of the groundwater samples contain predominantly (~80%) arsenate-As(V) over arsenite-As(III) species. The As speciation together with field data of redox potential (mean Eh = +73 ± 65 mV) and dissolved-O2 (6.6 ± 2.2 mg/L) suggest that the aquifer is predominantly oxidative. Water-rock interactions, including the dissolution of volcanic glass produces groundwater with near-neutral to alkaline pH (range 6.9-8.9), predominance of Na-HCO3 ions, and high concentration of SiO2 (mean: 85.8 ± 11.3 mg/L). The groundwater data show high positive correlation of As with Na, HCO3, U, B, V, and Mo (R(2) > 0.5; p ~8, reflecting the pH-dependence of their mobilization. Based on the

  3. On the behavior of site effects in central Mexico (the Mexican volcanic belt - MVB), based on records of shallow earthquakes that occurred in the zone between 1998 and 2011

    Science.gov (United States)

    Clemente-Chavez, A.; Zúñiga, F. R.; Lermo, J.; Figueroa-Soto, A.; Valdés, C.; Montiel, M.; Chavez, O.; Arroyo, M.

    2014-06-01

    The Mexican volcanic belt (MVB) is a seismogenic zone that transects the central part of Mexico with an east-west orientation. The seismic risk and hazard of this seismogenic zone has not been studied in detail due to the scarcity of instrumental data as well as because seismicity in the continental regime of central Mexico is not too frequent. However, it is known that there are precedents of large earthquakes (Mw > 6.0) that have taken place in this zone. The valley of Mexico City (VM) is the sole zone, within the MVB, that has been studied in detail. Studies have mainly focused on the ground amplification during large events such as the 1985 subduction earthquake that occurred off coast of Michoacán. The purpose of this article is to analyze the behavior of site effects in the MVB zone based on records of shallow earthquakes (data not reported before) that occurred in the zone between 1998 and 2011. We present a general overview of site effects in the MVB, a classification of the stations in order to reduce the uncertainty in the data when obtaining attenuation parameters in future works, as well as some comparisons between the information presented here and that presented in previous studies. A regional evaluation of site effects and Fourier acceleration spectrum (FAS) shape was estimated based on 80 records of 22 shallow earthquakes within the MVB zone. Data of 25 stations were analyzed. Site effects were estimated by using the horizontal-to-vertical spectral ratio (HVSR) methodology. The results show that seismic waves are less amplified in the northeast sites of the MVB with respect to the rest of the zone and that it is possible to classify two groups of stations: (1) stations with negligible site amplification (NSA) and (2) stations with significant site amplification (SSA). Most of the sites in the first group showed small (<3) amplifications while the second group showed amplifications ranging from 4 to 6.5 at frequencies of about 0.35, 0.75, 15 and 23

  4. ETHIOPIAN RIFT AND ADJACENT HIGHLANDS

    African Journals Online (AJOL)

    of the kinetic temperature of the central Ethiopian rift lakes and adjacent highlands. ... component of the surface radiation balance from only one surface measurement derived from NOAA. TM and ... The basin studied is part of the Ethiopian Rift system bounded within the limits .... Topographic conditions, which determine ...

  5. The magmatic budget of Atlantic type rifted margins: is it related to inheritance?

    Science.gov (United States)

    Manatschal, Gianreto; Tugend, Julia; Picazo, Suzanne; Müntener, Othmar

    2016-04-01

    In the past, Atlantic type rifted margins were either classified as volcanic or non-volcanic. An increasing number of high quality reflection and refraction seismic surveys and drill hole data show a divergent style of margin architecture and an evolution in which the quantity and distribution of syn-rift magmatism is variable, independently of the amount of extension. Overgeneralized classifications and models assuming simple relations between magmatic and extensional systems are thus inappropriate to describe the formation of rifted margins. More recent studies show that the magmatic evolution of rifted margins is complex and cannot be characterized based on the volume of observed magma alone. On the one hand, so-called "non-volcanic" margins are not necessarily amagmatic, as shown by the results of ODP drilling along the Iberia-Newfoundland rifted margins. On the other hand, magma-rich margins, such as the Norwegian, NW Australian or the Namibia rifted margins show evidence for hyper-extension prior to breakup. These observations suggest that the magmatic budget does not only depend on extension rates but also on the composition and temperature of the decompressing mantle. Moreover, the fact that the magmatic budget may change very abruptly along strike and across the margin is difficult to reconcile with the occurrence of plumes or other deep-seated large-scale mantle phenomena only. These overall observations result in questions on how magmatic and tectonic processes are interacting during rifting and lithospheric breakup and on how far inheritance may control the magmatic budget during rifting. In our presentation we will review results from the South and North Atlantic and the Alpine Tethys domain and will discuss the structural and magmatic evolution of so-called magma-rich and magma-poor rifted margins. In particular, we will try to define when, where and how much magma forms during rifting and lithospheric breakup. The key questions that we aim to address

  6. Seismicity of the northern part of the Kenya Rift Valley

    Science.gov (United States)

    Pointing, A. J.; Maguire, P. K. H.; Khan, M. A.; Francis, D. J.; Swain, C. J.; Shah, E. R.; Griffiths, D. H.

    1985-07-01

    During the first eight months of 1981 earthquake data were recorded during a passive seismic experiment (KRISP 81) in northern Kenya. An eight station, small aperture, short period seismic array was located on the eastern margin of the Rift at 1.7°N, 37.3°E. Two single-point, three component stations were also located north and west of the array, forming a triangular network with approximately 150 km length sides. 2329 events were recorded during the 231 days of recording. A preliminary micro-earthquake seismicity map of the central and northern parts of the country has been produced, using a uniform half space velocity model derived from the analysis of apparent velocities, azimuths and P-S times of event arrivals at the small aperture array. Events located within the Rift show a marked north-south linearity extending from Lakes Bogoria and Baringo in the south, into the Sugata Valley to the north. Around the southern part of Lake Turkana the seismicity becomes more diffuse. However, there is little seismic activity associated with the broad zone of splay faulting that exists in northern Kenya. The seismicity observed along the axis of the Rift suggests a continuation to about 2.5°N of the tectonic style observed over the apex of the Kenya dome. A relatively quiet zone separates the activity within the Rift from a second, diffuse, north-south zone of seismicity approximately 150 km further to the east.

  7. Three-dimensional frictional plastic strain partitioning during oblique rifting

    Science.gov (United States)

    Duclaux, Guillaume; Huismans, Ritske S.; May, Dave

    2017-04-01

    Throughout the Wilson cycle the obliquity between lithospheric plate motion direction and nascent or existing plate boundaries prompts the development of intricate three-dimensional tectonic systems. Where oblique divergence dominates, as in the vast majority of continental rift and incipient oceanic domains, deformation is typically transtensional and large stretching in the brittle upper crust is primarily achieved by the accumulation of displacement on fault networks of various complexity. In continental rift depressions such faults are initially distributed over tens to hundreds of kilometer-wide regions, which can ultimately stretch and evolve into passive margins. Here, we use high-resolution 3D thermo-mechanical finite element models to investigate the relative timing and distribution of localised frictional plastic deformation in the upper crust during oblique rift development in a simplified layered lithosphere. We vary the orientation of a wide oblique heterogeneous weak zone (representing a pre-existing geologic feature like a past orogenic domain), and test the sensitivity of the shear zones orientation to a range of noise distribution. These models allow us to assess the importance of material heterogeneities for controlling the spatio-temporal shear zones distribution in the upper crust during oblique rifting, and to discuss the underlying controls governing oblique continental breakup.

  8. One hundred volatile years of volcanic gas studies at the Hawaiian Volcano Observatory: Chapter 7 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Sutton, A.J.; Elias, Tamar; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    The first volcanic gas studies in Hawai‘i, beginning in 1912, established that volatile emissions from Kīlauea Volcano contained mostly water vapor, in addition to carbon dioxide and sulfur dioxide. This straightforward discovery overturned a popular volatile theory of the day and, in the same action, helped affirm Thomas A. Jaggar, Jr.’s, vision of the Hawaiian Volcano Observatory (HVO) as a preeminent place to study volcanic processes. Decades later, the environmental movement produced a watershed of quantitative analytical tools that, after being tested at Kīlauea, became part of the regular monitoring effort at HVO. The resulting volatile emission and fumarole chemistry datasets are some of the most extensive on the planet. These data indicate that magma from the mantle enters the shallow magmatic system of Kīlauea sufficiently oversaturated in CO2 to produce turbulent flow. Passive degassing at Kīlauea’s summit that occurred from 1983 through 2007 yielded CO2-depleted, but SO2- and H2O-rich, rift eruptive gases. Beginning with the 2008 summit eruption, magma reaching the East Rift Zone eruption site became depleted of much of its volatile content at the summit eruptive vent before transport to Pu‘u ‘Ō‘ō. The volatile emissions of Hawaiian volcanoes are halogen-poor, relative to those of other basaltic systems. Information gained regarding intrinsic gas solubilities at Kīlauea and Mauna Loa, as well as the pressure-controlled nature of gas release, have provided useful tools for tracking eruptive activity. Regular CO2-emission-rate measurements at Kīlauea’s summit, together with surface-deformation and other data, detected an increase in deep magma supply more than a year before a corresponding surge in effusive activity. Correspondingly, HVO routinely uses SO2 emissions to study shallow eruptive processes and effusion rates. HVO gas studies and Kīlauea’s long-running East Rift Zone eruption also demonstrate that volatile emissions can

  9. Triassic rift-related sedimentary basins in northern Chile (24° 29°S)

    Science.gov (United States)

    Suarez, M.; Bell, C. M.

    1992-10-01

    Triassic rocks in northern Chile (latitude 24°-29°S) include marine and continental rift-related sedimentary deposits, associated with basaltic, andesitic, and silicic volcanic rocks. Five main successions include the deposits of two marine basins (Profeta and San Félix) separated by three continental basins (Cifuncho, La Ternera, and La Coipa). The marine strata include turbidites and debris flow deposits interpreted as coarse-grained fan-delta sediments. The continental sediments include lacustrine fan delta, open lake, braided river, alluvial fan, and sabkha deposits. The widespread fan-delta systems (both marine and lacustrine), together with abrupt lateral and vertical facies discontinuities and large-scale depositional cycles, are indicative of rift-controlled sedimentation. The associated magmatic activity indicates that this rifting was the product of subduction-related extension or strike-slip movement on the active plate margin. Triassic rifting was followed in Late Triassic to Early Jurassic times by widespread thermotectonic subsidence.

  10. On the behavior of site effects in Central Mexico (the Mexican Volcanic Belt – MVB, based on records of shallow earthquakes that occurred in the zone between 1998 and 2011

    Directory of Open Access Journals (Sweden)

    A. Clemente-Chavez

    2013-11-01

    Full Text Available The Mexican Volcanic Belt (MVB is a seismogenic zone that transects the central part of Mexico with an east–west orientation. The risk and hazard seismic of this seismogenic zone has not been studied at detail due to the scarcity of instrumental data as well as because seismicity in the continental regimen of Central Mexico is not too frequent, however, it is known that there are precedents of large earthquakes (Mw > 6.0 that have taken place in this zone. The Valley of Mexico City (VM is the sole zone, within the MVB, which has been studied in detail; mainly focusing on the ground amplification during large events such as the 1985 subduction earthquake that occurred in Michoacan. The purpose of this article is to analyze the behavior of site effects in the MVB zone based on records of shallow earthquakes (data not reported before that occurred in the zone between 1998 and 2011. We present a general overview of site effects on the MVB, a classification of the stations in order to reduce the uncertainty in the data to obtain attenuation parameters in future works, and some comparisons between the information presented here and that presented in previous studies. A regional evaluation of site effects and Fourier Acceleration Spectrum (FAS shape was estimated based on 80 records of 22 shallow earthquakes within the MVB zone. Data of 25 stations were analyzed. Site effects were estimated by using the Horizontal-to-Vertical Spectral Ratio (HVSR methodology. The results show that seismic waves are less amplified in the northeast sites of the MVB with respect to the rest of the zone and that it is possible to classify two groups of stations: (1 stations with Negligible Site Amplification (NSA and (2 stations with Significant Site Amplification (SSA. Most of the sites in the first group showed small ( These aspects help to advance the understanding about the amplification behavior and of the expected seismic risk on the Central Mexico due to large

  11. Listric growth faults in the Kenya Rift Valley

    Science.gov (United States)

    Jones, W. B.

    Many of the major faults in the Kenya Rift Valley are curved in section, were active over considerable periods and form sets which are related in space and time. They can, therefore, be regarded as systems of listric growth faults. The Elgeyo Fault marks the western limit of rift structures at this latitude and displaces the basement surface by up to about 6 km. The Kamasia Hills are a block rotated above this fault plane. Movement on the Elgeyo Fault has been grossly continuous since at least 16 Ma ago but deposition of volcanics and sediments has generally kept pace with the growth of the escarpment. The Kaparaina Arch is a rollover anticline on the downthrown side of the Saimo Fault on the eastern side of the Kamasia Hills. On the eastern side of the rift, the block between the Bogoria and Wasages-Marmanet Faults has shown continued rotation since about 15 Ma. The Pleistocene lavas on the rift floor here show rollover into the Bogoria Fault and have formed a facing near the top of the escarpment. Area balancing calculations suggest depths to décollement of 25 km for the Elgeyo Fault, 6 km for the Saimo Fault and 12 km for the Bogoria Fault. The most direct evidence for the listric nature of the faults is provided by microearthquakes near Lake Manyara which appear to lie on fault planes connected to surface escarpments.

  12. Lucky Strike seamount: Implications for the emplacement and rifting of segment-centered volcanoes at slow spreading mid-ocean ridges

    Science.gov (United States)

    Escartín, J.; Soule, S. A.; Cannat, M.; Fornari, D. J.; Düşünür, D.; Garcia, R.

    2014-11-01

    history of emplacement, tectonic evolution, and dismemberment of a central volcano within the rift valley of the slow spreading Mid-Atlantic Ridge at the Lucky Strike Segment is deduced using near-bottom sidescan sonar imagery and visual observations. Volcano emplacement is rapid (spreading may eventually split it. At Lucky Strike, this results in two modes of crustal construction. Eruptions and tectonic activity focus at a narrow graben that bisects the central volcano and contains the youngest lava flows, accumulating a thick layer of extrusives. Away from the volcano summit, deformation and volcanic emplacement is distributed throughout the rift valley floor, lacking a clear locus of accretion and deformation. Volcanic emplacement on the rift floor is characterized by axial volcanic ridges fed by dikes that propagate from the central axial magma chamber. The mode of rapid volcano construction and subsequent rifting observed at the Lucky Strike seamount is common at other central volcanoes along the global mid-ocean ridge system.

  13. A synthesis and review of geomorphic surfaces of the boundary zone Mt. Taylor to Lucero uplift area, West-Central New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Wells, S.G. [NEOTEC, Inc., Albuquerque, NM (United States)

    1989-01-01

    The Mt. Taylor volcanic field and Lucero uplift of west-central New Mexico occur in a transitional-boundary zone between the tectonically active Basin-and Range province (Rio Grande rift) and the less tectonically active Colorado plateau. The general geomorphology and Cenozoic erosional history has been discussed primarily in terms of a qualitative, descriptive context and without the knowledge of lithospheric processes. The first discussion of geomorphic surfaces suggested that the erosional surface underlying the Mt. Taylor volcanic rocks is correlative with the Ortiz surface of the Rio Grande rift. In 1978 a study supported this hypothesis with K-Ar dates on volcanic rocks within each physiographic province. The correlation of this surface was a first step In the regional analysis of the boundary zone; however, little work has been done to verify this correlation with numerical age dates and quantitatively reconstruct the surface for neotectonic purposes. Those geomorphic surfaces inset below and younger than the ``Ortiz`` surface have been studied. This report provides a summary of this data as well as unpublished data and a conceptual framework for future studies related to the LANL ISR project.

  14. The Manda—Inakir rift, republic of Djibouti: A comparison with the Asal rift and its geodynamic interpretation

    Science.gov (United States)

    Vellutini, P.

    1990-01-01

    Asal-Ghoubbet and Manda-Inakir, two axial zones, and the Mak'Arrassou N—S strike-slip zone, are located between the Afar Depression where significant crustal thinning is shown by geophysical data and the relatively thicker continental crust of the "Danakil horst". These three active structures were formed in response to the counterclockwise motion of the Danakil horst. The two modes of response (rift and strike-slip faults) are related to the orientation of the horst boundaries. The boundaries perpendicular to the opening direction lead to extensional zones and rifts (Asal and Manda-lnakir). The parallel boundaries give strike-slip faults (Mak'Arrassou). The two narrow subsided "axial structures" (rift in rift), located on the crustal discontinuity, seem to represent a stage where, after crustal thinning between 4 and 1 Ma (when the "stratoid series" was erupted), the breaking point was reached. These two axes, though not genuine oceanic crust (the older continental series are found under the Axial series), represent a proto-oceanic stage and foreshadow the future ridges. They also indicate the southwest border of the Arabian plate, including the "Danakil horst".

  15. Mesozoic rifting and basin inversion along the northern African Tethyan margin: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Guiraud, R. [Universite de Montpellier II (France). Laboratoire de Geophysique et Tectonique

    1998-12-31

    The northern African Tethyan margin registered three major rifting episodes from the latest Palaeozoic-earliest Mesozoic to the earliest Cenozoic. Break-up of Gondwana was initiated in the late Carboniferous. Along the northern African-Arabian plate margin rifting propagated westward from the northeastern Arabian margin to Morocco during the Permian and Triasssic, and was accompanied by Mid-Late triassi-earliest Liassic extensive alkaline flow basalts. Rifting continued during the Liassic, e.g. in the Moghrebian Atlas troughs. A second stage of rifting occurred in the Late Jurassic and continued into, or was rejuvenated during the Early Cretaceous. Along the east Mediterranean margin, some large E-W trending rifts formed often with associated volcanism, e.g. southern Sirt and Abu Gharadig. Most researchers believe the oceanization of the eastern Mediterranean basin occurred at this time. During the Mesozoic, therefore, the northern margin of the African-Arabian plate registered both rifting resulting in the oceanization of the Tethys and rifting resulting from the initiation of the closure of the Tethys. The intraplate domain exhibited echoes of the tectonic events affecting the margin. (author)

  16. Initial stages of oceanic spreading in the Bransfield Rift from magnetic and gravity data analysis

    Science.gov (United States)

    Catalán, Manuel; Galindo-Zaldivar, Jesús; Davila, José Martín; Martos, Yasmina M.; Maldonado, Andrés; Gambôa, Luiz; Schreider, Anatoly A.

    2013-02-01

    Bransfield Basin, a 500-km-long and 100-km-wide extensional structure with a well-marked NE-SW orientation, is considered a back-arc basin developed since the Pliocene and associated with subduction of the former Phoenix Plate below the South Shetland Islands Block. Extension also occurs in this area as a consequence of the end of the sinistral fault zone that deforms the South Scotia Ridge. On the basis of potential field data from marine cruises, we provide new magnetic and Bouguer gravity maps of the area at sea level. We have characterized the central magnetic anomaly by using Euler deconvolution method, spectral analysis and forward modeling obtaining a thin (1.5 km) and shallow (4 km b.s.l.) layer, and a low total magnetization (2.6 A/m). The forward modeling was constrained on basis of previous seismic refraction studies. Our models show two situations. The first presents a uniform density values along the entire crust in the basin. This would be compatible with rifting in a more advanced stage, or even an oceanic crust in its earliest stages, while the second would support the existence of a stretched, thinned and altered crust through the injection of volcanic material. In the light of these models, analysis of the new potential field maps presented in this work and information from previous studies we consider that the Central Bransfield Basin is in a rifting in its latest stages or presents an incipient oceanic crust formed by recent oceanic spreading.

  17. Geology of Newberry National Volcanic Monument, Oregon, USA

    Science.gov (United States)

    Donnelly-Nolan, J. M.; Jensen, R. A.; Robinson, J. E.

    2014-12-01

    Volcanic geology is the dominant theme at Newberry National Volcanic Monument in central Oregon. Established almost 25 years ago, the NNVM (like the Mt. St. Helens National Volcanic Monument) is managed by the U.S. Forest Service. The monument encompasses some 90 square miles in Deschutes National Forest of the 1200-sq-mi Newberry Volcano, including the 4x5 mi scenic central caldera and the volcano's youngest lava flow, the 1300-yr-old Big Obsidian Flow. The seismically-monitored Newberry Volcano is considered by the USGS to be a very high threat volcano, with the potential to impact adjacent populations in Bend, Sunriver, and LaPine and damage infrastructure including highways, railroads, and power lines. Unspectacular from a distance, the broad shield shape of Newberry Volcano hides the abundan