WorldWideScience

Sample records for volcanic passive margins

  1. Volcanic passive margins: another way to break up continents.

    Science.gov (United States)

    Geoffroy, L; Burov, E B; Werner, P

    2015-10-07

    Two major types of passive margins are recognized, i.e. volcanic and non-volcanic, without proposing distinctive mechanisms for their formation. Volcanic passive margins are associated with the extrusion and intrusion of large volumes of magma, predominantly mafic, and represent distinctive features of Larges Igneous Provinces, in which regional fissural volcanism predates localized syn-magmatic break-up of the lithosphere. In contrast with non-volcanic margins, continentward-dipping detachment faults accommodate crustal necking at both conjugate volcanic margins. These faults root on a two-layer deformed ductile crust that appears to be partly of igneous nature. This lower crust is exhumed up to the bottom of the syn-extension extrusives at the outer parts of the margin. Our numerical modelling suggests that strengthening of deep continental crust during early magmatic stages provokes a divergent flow of the ductile lithosphere away from a central continental block, which becomes thinner with time due to the flow-induced mechanical erosion acting at its base. Crustal-scale faults dipping continentward are rooted over this flowing material, thus isolating micro-continents within the future oceanic domain. Pure-shear type deformation affects the bulk lithosphere at VPMs until continental breakup, and the geometry of the margin is closely related to the dynamics of an active and melting mantle.

  2. Seaward dipping reflectors along the SW continental margin of India: Evidence for volcanic passive margin

    Indian Academy of Sciences (India)

    K K Ajay; A K Chaubey; K S Krishna; D Gopala Rao; D Sar

    2010-12-01

    Multi-channel seismic reflection profiles across the southwest continental margin of India (SWCMI) show presence of westerly dipping seismic reflectors beneath sedimentary strata along the western flank of the Laccadive Ridge –northernmost part of the Chagos –Laccadive Ridge system. Velocity structure, seismic character, 2D gravity model and geographic locations of the dipping reflectors suggest that these reflectors are volcanic in origin, which are interpreted as Seaward Dipping Reflectors (SDRs). The SDRs; 15 to 27 km wide overlain by ∼1 km thick sediment; are observed at three locations and characterized by stack of laterally continuous, divergent and off-lapping reflectors. Occurrence of SDRs along western flank of the Laccadive Ridge adjacent to oceanic crust of the Arabian Basin and 2D crustal model deduced from free-air gravity anomaly suggest that they are genetically related to incipient volcanism during separation of Madagascar from India. We suggest that (i)SWCMI is a volcanic passive margin developed during India –Madagascar breakup in the Late Cretaceous, and (ii)continent –ocean transition lies at western margin of the Laccadive Ridge, west of feather edge of the SDRs. Occurrence of SDRs on western flank of the Laccadive Ridge and inferred zone of transition from continent to ocean further suggest continental nature of crust of the Laccadive Ridge.

  3. Seaward dipping reflectors along the SW continental margin of India: Evidence for volcanic passive margin

    Digital Repository Service at National Institute of Oceanography (India)

    Ajay, K.K.; Chaubey, A.K.; Krishna, K.S.; Rao, D.G.; Sar, D.

    of the Chagos-Laccadive Ridge system. Velocity structure, seismic character, 2D gravity model and geographic locations of the dipping reflectors suggest that these reflectors are volcanic in origin, which are interpreted as Seaward Dipping Reflectors (SDRs...

  4. From northern Gondwana passive margin to arc dismantling: a geochemical discrimination of Ordovician volcanisms (Sardinia, Italy)

    Science.gov (United States)

    Gaggero, L.; Oggiano, G.; Buzzi, L.; Funedda, A.

    2009-04-01

    In Sardinia, one of the southernmost remain of the European Variscan belt, a crustal section through northern Gondwanan paleodomains is largely preserved. It bears significant evidence of igneous activity, recently detailed in field relationships and radiometric dating (Oggiano et al., submitted). A Cambro - Ordovician (491.7 ± 3.5 Ma ÷ 479.9 ± 2.1 Ma, LA-ICP-MS U-Pb zircon age) bimodal volcanic suite occurs with continuity in external and inner Variscan nappes of Sardinia below the so-called Sardic unconformity. The igneous suite represents an intraplate volcanic activity developed through subsequent episodes: i) an intermediate explosive and effusive volcanism, i.e. pyroclastic fall deposits and lava flows, embedded into epicontinental clastic sediments, culminating in silicic ignimbrite eruptions, and ii) mafic effusives. Geochemical data document a transitional, within-plate signature, e.g. the average Th/Ta (4.5) and La/Nb (2.7) overlap the upper continental crust values. The volcanites are characterized by slight fractionation of LREEs, nearly flat HREE abundance. The negative Eu anomaly increases towards evolved compositions. Some prominent HREE depletion (GdCN/YbCN = 13.8), and the high Nb/Y suggest a garnet-bearing source. The high 87Sr radiogenic content (87Sr/86Sr 490 Ma = 0.71169) and the epsilon Nd 490 Ma value of -6.54 for one dacite sample, imply a time integrated LREE-enriched source with a high Rb/Sr, such as a metasedimentary source. The stratigraphy of the succession and the geochemical composition of igneous members suggest a volcanic passive margin along the northern Gondwana at the early Ordovician. The bimodal Mid-Ordovician arc volcanism (465.4 ± 1.4 Ma, U-Pb zircon age; Oggiano et al., submitted) is developed in the external nappes (e.g. in Sarrabus and Sarcidano) and in the foreland occurs as clasts at the base of the Hirnantian succession (Leone et al. 1991). The Mid Ordovician sub-alkalic volcanic suite has reliable stratigraphic and

  5. Quaternary fault-controlled volcanic vents and crustal thinning: new insights from the magma-rich Tyrrhenian passive margin (Italy)

    Science.gov (United States)

    Cardello, Giovanni Luca; Conti, Alessia; Consorti, Lorenzo; Do Couto, Damien

    2017-04-01

    The discover of monogenic Quaternary volcanic vents, that were recently mapped along major fault zones both inland and offshore the Tyrrhenian magma-rich passive margin, poses questions about: timing and role they had into Plio-Pleistocene crustal thinning with relevant consequences for the hazard assessment of an area inhabited by some 0.5 million people. The present-day margin is stretched over 100 km between the Volsci Range (VR) and the Pontian escarpment, being defined by moderate shallow seismicity (Mw≤4.6), relative high geothermal gradient and ongoing hydrothermal activity. Although major central volcanoes (e.g., Colli Albani), occurring at major fault intersections are well studied, smaller volcanic fields were so far unconstrained. Both field survey in the VR and offshore high-resolution geophysical data, allow us to: 1) better define the anatomy of the poorly known VR volcanic field; 2) furnish new insights on the regional Quaternary dynamics; 3) propose modes and reason of magma emplacement. The VR is composed of about 40 punctual and linear monogenic and mostly phreatomagmatic vents occurring at the edges of the Apennine carbonate fold-and-thrust belt and within the VR backbone. Volcanites are characterized by zeolitized to incoherent tuffs and surge deposits locally covered by lavas and slope deposits. Most explosive units host carbonate-rich lithics with different degrees of rounding and decarbonation, which frequently belong to Albian-Cenomanian aquifers. By comparing cross-section with lithic analyses we demonstrate that fragmentation, transport, progressive disintegration and decarbonation occur at multiple depths, depending on the fold-and-thrust belt setting. Thus, along the same vent zone, juvenile lithic composition proves repeated fragmentation within pressured-aquifers, testifying for fissural activity with implications for local seismic and volcanic assessment. Pyroclastic deposits occur as well in the Pontina and Fondi coastal plains at

  6. IODP workshop: developing scientific drilling proposals for the Argentina Passive Volcanic Continental Margin (APVCM) - basin evolution, deep biosphere, hydrates, sediment dynamics and ocean evolution

    Science.gov (United States)

    Flood, Roger D.; Violante, Roberto A.; Gorgas, Thomas; Schwarz, Ernesto; Grützner, Jens; Uenzelmann-Neben, Gabriele; Hernández-Molina, F. Javier; Biddle, Jennifer; St-Onge, Guillaume; Workshop Participants, Apvcm

    2017-05-01

    The Argentine margin contains important sedimentological, paleontological and chemical records of regional and local tectonic evolution, sea level, climate evolution and ocean circulation since the opening of the South Atlantic in the Late Jurassic-Early Cretaceous as well as the present-day results of post-depositional chemical and biological alteration. Despite its important location, which underlies the exchange of southern- and northern-sourced water masses, the Argentine margin has not been investigated in detail using scientific drilling techniques, perhaps because the margin has the reputation of being erosional. However, a number of papers published since 2009 have reported new high-resolution and/or multichannel seismic surveys, often combined with multi-beam bathymetric data, which show the common occurrence of layered sediments and prominent sediment drifts on the Argentine and adjacent Uruguayan margins. There has also been significant progress in studying the climatic records in surficial and near-surface sediments recovered in sediment cores from the Argentine margin. Encouraged by these recent results, our 3.5-day IODP (International Ocean Discovery Program) workshop in Buenos Aires (8-11 September 2015) focused on opportunities for scientific drilling on the Atlantic margin of Argentina, which lies beneath a key portion of the global ocean conveyor belt of thermohaline circulation. Significant opportunities exist to study the tectonic evolution, paleoceanography and stratigraphy, sedimentology, and biosphere and geochemistry of this margin.

  7. Passive target tracking using marginalized particle filter

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A marginalized particle filtering(MPF)approach is proposed for target tracking under the background of passive measurement.Essentially,the MPF is a combination of particle filtering technique and Kalman filter.By making full use of marginalization,the distributions of the tractable linear part of the total state variables are updated analytically using Kalman filter,and only the lower-dimensional nonlinear state variable needs to be dealt with using particle filter.Simulation studies are performed on an illustrative example,and the results show that the MPF method leads to a significant reduction of the tracking errors when compared with the direct particle implementation.Real data test results also validate the effectiveness of the presented method.

  8. PRE-RIFT COMPRESSIONAL STRUCTURES AS A CONTROL ON PASSIVE MARGIN FORMATION

    DEFF Research Database (Denmark)

    Schiffer, Christian; Petersen, Kenni Dinesen

    underlain by high-velocity and density bodies (“Lower Crustal Bodies”, LCBs). A widely accepted theory of the origin of LCBs is that they were emplaced by magmatic underplating at volcanic margins. At the same time mantle serpentinization is thought to create geophysically similar structures at non...... and shows that such structures can ‘survive’ subsequent rifting and continental break up. Our model is a simple alternative that explains observations at passive margins and rift zones by accounting for the observation that most passive margins are sub-parallel to earlier shortening and extension events...

  9. Formation of the volcanic rifted margin off Argentina/Uruguay, South Atlantic

    Science.gov (United States)

    Franke, D.; Reichert, C.; Ladage, S.; Schnabel, M.; Schreckenberger, B.; Neben, S.; Hinz, K.

    2009-04-01

    The Federal Institute for Geosciences and Natural Resources (BGR), Germany has investigated the passive continental margins offshore Argentina and Uruguay since the early 90ies. Numerous marine geophysical surveys have meanwhile established a databasis of more than 25.000 km of regional multi-channel reflection seismic lines, accompanied with magnetic and gravity profiles. These data document that the Early Cretaceous South Atlantic continental break-up and initial sea-floor spreading were accompanied by large-scale, transient volcanism emplacing voluminous extrusives, manifested in the seismic data by huge wedges of seaward dipping reflectors (SDRs). These deeply buried and 60-120 km wide SDRs were emplaced episodically as suggested by at least three superimposed SDRS units. Distinct along-margin variations in the architecture, volume, and width of the SDRs wedges correlate with large scale margin segmentation. We identify at least four domains bounded by the Falkland Fracture Zone/Falkland Transfer, the Colorado Transfer, the Ventana Transfer and the Salado Transfer. The individual transfer zones may have acted as barriers for propagating rifts during the SDR emplacement phase, selectively directing rift segments in left stepping patterns along the western South Atlantic margin. The rift segments are offset systematically in a left stepping pattern along the western South Atlantic margin. Albeit we found extensive variations in the architecture, style and extent of the seaward dipping reflector sequences a general trend is that the largest volumes are emplaced close to the proposed transfer zones and the width of the SDRs wedges decreases northward within the individual margin segments. The different volcano-tectonic architectures of the margin segments and the distribution of the extruded magmas indicates that the emplacement of the volcanic material was controlled by the tectonic setting and the pre-rift lithosphere configuration within individual margin

  10. Comparative riftology: insights from crustal structure into the evolution of continental rifts and passive continental margins

    Science.gov (United States)

    Kley, Jonas; Stein, Carol; Stein, Seth; Keller, Randy; Wysession, Michael; Frederiksen, Andrew

    2017-04-01

    Continental rifts evolve to seafloor spreading and are preserved in passive margins, or fail and remain as fossil features in continents. Rifts at different stages give insight into these different evolutionary paths. Of particular interest is how volcanic passive margins evolve. These features are characterized by sequences of volcanic rocks yielding magnetic anomalies landward of and sometimes larger than the oldest spreading anomalies. Seaward-dipping reflectors (SDR) occur in stretched continental crust landward of the oldest oceanic crust and are underplated by high-velocity lower crustal bodies. How and when these features form remains unclear. Insights are given by the Midcontinent Rift (MCR), formed by 1.1 Ga rifting of Amazonia from Laurentia, that failed once seafloor spreading was established elsewhere. MCR volcanics are much thicker than other continental flood basalts, due to deposition in a narrow rift rather than a broad region, giving a rift's geometry but a LIP's magma volume. The MCR provides a snapshot of the deposition of a thick highly magnetized volcanic section during rifting. Surface exposures and seismic-reflection data in and near Lake Superior show a rift basin filled by inward-dipping flood basalt layers. Had the rift evolved to seafloor spreading, the basin would have split into two sets of volcanics with opposite-facing SDRs, each with a strong magnetic anomaly. Because the rift formed as a series of alternating half-grabens, structural asymmetries between conjugate margins can naturally occur. Hence the MCR shows that many features form prior to breakup. Because the MCR was massively inverted by regional compression long after it failed and was uplifted, its structure is better known than failed rifts that incurred lesser degrees of inversion. It provides an end member for the evolution of actively extending rifts, characterized by upwelling mantle and negative gravity anomalies, in contrast to failed and inverted rifts without

  11. Passive margins getting squeezed in the mantle convection vice

    Science.gov (United States)

    Husson, Laurent; Yamato, Philippe; Becker, Thorsten; Pedoja, Kevin

    2013-04-01

    Quaternary coastal geomorphology reveals that passive margins underwent wholesale uplift at least during the glacial cycle. In addition, these not-so-passive margins often exhibit long term exhumation and tectonic inversion, which suggest that compression and tectonic shortening could be the mechanism that triggers their overall uplift. We speculate that the compression in the lithosphere gradually increased during the Cenozoic. The many mountain belts at active margins that accompany this event readily witness this increase. Less clear is how that compression increase affects passive margins. In order to address this issue, we design minimalist 2D viscous models to quantify the impact of plate collision on the stress regime. In these models, a sluggish plate is disposed on a less viscous mantle. It is driven by a "mantle conveyor belt" alternatively excited by lateral shear stresses that represent a downwelling on one side, an upwelling on the other side, or both simultaneously. The lateral edges of the plate are either free or fixed, respectively representing the cases of free convergence and collision. In practice, it dramatically changes the upper boundary condition for mantle circulation and subsequently, for the stress field. The flow pattern transiently evolves almost between two end-members, starting from a situation close to a Couette flow to a pattern that looks like a Poiseuille flow with an almost null velocity at the surface (though in the models, the horizontal velocity at the surface is not strictly null, as the lithosphere deforms). In the second case, the lithosphere is highly stressed horizontally and deforms. For an equivalent bulk driving force, compression increases drastically at passive margins if upwellings are active because they push plates towards the collision. Conversely, if only downwellings are activated, compression occurs on one half of the plate and extension on the other half, because only the downwelling is pulling the plate

  12. Crustal thinning and tectonic geomorphology: redefining the passive margin

    Science.gov (United States)

    Redfield, T.; Osmundsen, P. T.

    2012-04-01

    We describe Scandinavia's passive margin in terms of a hyper-extended distal margin, a variably tapered proximal margin that includes the outer onshore areas, and an upwarped, unstretched, continent-sloping hinterland that terminates against the "undeformed" cratonic interior. Two benchmark locations, defined as the taper break (TB) and the Hinterland Break in Slope (HBSL), occur at the inner boundary of the distal margin and at the transition from the continent-sloping hinterland and craton, respectively. The elevation of the seaward-facing escarpment is directly scaled to the distance between the taper break and the Hinterland Break in Slope. Scaling relationships between the taper of the crystalline crust in the direction of the distal margin and the length/dip of the hinterland backslope follow directly. The shape factors of major catchments are directly scaled to the taper of the proximal margin and drainage azimuths are parallel to the mean transport lineation recorded from a distinct population of range-bounding normal faults. Topographic expressions of the footwalls and offsets in apatite fission-track age-patterns indicate that fault movement controlled topography, locally and regionally inboard of sharp crustal tapers long after the main phase of crustal thinning. We extend our definition of the passive margin to other post-breakup margins. One particularly fine example is SE Brasil. New data (Zalan et al., 2011) suggest the direct correlation of SE Brasil's Taper Break with its escarpment elevation in a manner consistent with our Scandinavian and global observations. The Taper Hypothesis appears to hold across old and young, glaciated, and unglaciated margins. Following the stretching, thinning, and exhumation phase, an "accommodation phase" is warranted. During accommodation, the initially elevated escarpments can be eroded to very low base levels and subsequently undergo inboard rejuvenation by footwall uplift, in response to tensile stresses

  13. The Fina Nagu volcanic complex: Unusual submarine arc volcanism in the rapidly deforming southern Mariana margin

    Science.gov (United States)

    Brounce, Maryjo; Kelley, Katherine A.; Stern, Robert; Martinez, Fernando; Cottrell, Elizabeth

    2016-10-01

    In the Mariana convergent margin, large arc volcanoes disappear south of Guam even though the Pacific plate continues to subduct and instead, small cones scatter on the seafloor. These small cones could form either due to decompression melting accompanying back-arc extension or flux melting, as expected for arc volcanoes, or as a result of both processes. Here, we report the major, trace, and volatile element compositions, as well as the oxidation state of Fe, in recently dredged, fresh pillow lavas from the Fina Nagu volcanic chain, an unusual alignment of small, closely spaced submarine calderas and cones southwest of Guam. We show that Fina Nagu magmas are the consequence of mantle melting due to infiltrating aqueous fluids and sediment melts sourced from the subducting Pacific plate into a depleted mantle wedge, similar in extent of melting to accepted models for arc melts. Fina Nagu magmas are not as oxidized as magmas elsewhere along the Mariana arc, suggesting that the subduction component responsible for producing arc magmas is either different or not present in the zone of melt generation for Fina Nagu, and that amphibole or serpentine mineral destabilization reactions are key in producing oxidized arc magmas. Individual Fina Nagu volcanic structures are smaller in volume than Mariana arc volcanoes, although the estimated cumulative volume of the volcanic chain is similar to nearby submarine arc volcanoes. We conclude that melt generation under the Fina Nagu chain occurs by similar mechanisms as under Mariana arc volcanoes, but that complex lithospheric deformation in the region distributes the melts among several small edifices that get younger to the northeast.

  14. What can we learn from lithosphere-scale models of passive margins?

    Science.gov (United States)

    Scheck-Wenderoth, Magdalena; Maystrenko, Yuriy; Hirsch, Katja K.

    2010-05-01

    To understand the present day structure and the mechanisms of subsidence at passive margins we assess first-order heterogeneities in the sediments, crust and upper mantle. Thus, we explore how far a good knowledge of the sedimentary and upper crustal configuration can provide constraints for the deeper parts of the system and how far the preserved record of deposits holds the key to unravel margin history. The present-day geometry and distribution of physical properties within the upper and middle crust is integrated into data-based, 3D structural models, which, in turn, provide the base for the analysis of the deep crust and the lithospheric mantle. Different configurations of the deep lithosphere can be tested against two independent observables: gravity and temperature, using isostatic, 3D gravity and 3D thermal modelling. Results from the 55 mio year old Norwegian passive volcanic margin indicate that there, the oceanic lithospheric mantle is less dense than the continental lithospheric mantle (Maystrenko and Scheck-Wenderoth, 2009), that this is mainly due to thermal effects (Scheck-Wenderoth and Maystrenko, 2008) and that the transition between continental and oceanic lithosphere thickness is sharp (Maystrenko and Scheck-Wenderoth, 2009). Furthermore, the thickness of the young oceanic lithosphere in the North Atlantic is smaller than predicted by plate cooling models but consistent with seismologically derived estimates. We also find that the oceanic lithosphere-asthenosphere boundary strongly influences the shallow thermal field of the margin and that surface heat flow increases from the continent to the ocean. In contrast, at the South Atlantic margin offshore South Africa, a thicker and older (~130 mio years) oceanic lithosphere is present. Based on previous studies of the crustal configuration (Hirsch et al., 2009), first lithosphere configurations have been tested. There the transition between continent and ocean appears equilibrated and surface heat

  15. Stress fields of the overriding plate at convergent margins and beneath active volcanic arcs.

    Science.gov (United States)

    Apperson, K D

    1991-11-01

    Tectonic stress fields in the overriding plate at convergent plate margins are complex and vary on local to regional scales. Volcanic arcs are a common element of overriding plates. Stress fields in the volcanic arc region are related to deformation generated by subduction and to magma generation and ascent processes. Analysis of moment tensors of shallow and intermediate depth earthquakes in volcanic arcs indicates that the seismic strain field in the arc region of many convergent margins is subhorizontal extension oriented nearly perpendicular to the arc. A process capable of generating such a globally consistent strain field is induced asthenospheric corner flow below the arc region.

  16. Geological features and geophysical signatures of continental margins of India

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.

    and classification of continental margins are in general dependent on style of continental splitting, rifting, subsidence and their proximity to the tectonic plate boundaries, at times the margins undergo for modifications by sediment deposition and volcanic... by Deccan-Reunion hotspot volcanism and Bengal Fan sedimentation respectively. Volcanism has dominated on the western continental margin of India, thereby the margin had been turned into a volcanic passive continental margin, while eastern continental...

  17. The lithosphere of the Appalachian orogen and Atlantic passive margin

    Science.gov (United States)

    Fischer, K. M.; MacDougall, J. G.; Hawman, R. B.; Parker, E. H.; Wagner, L. S.

    2012-12-01

    The lithosphere of the Appalachian orogen and Atlantic passive margin has recorded repeated episodes of continental collision and break-up. Improved resolution of crust and mantle structure in this region holds promise for better understanding of orogenesis, rifting and passive margin development. At a broad scale, tomographic models manifest a decrease in lithospheric thickness from the central U.S. craton into the Appalachian orogen. Migration of Sp scattered waves indicates that a significant drop in shear-wave velocity typically occurs at depths of 80-120 km in the eastern U.S., and where these phases fall within the transition from high velocity lid to lower velocity mantle obtained from tomography, they are interpretable as the seismological lithosphere-asthenosphere boundary. Beneath the Appalachians and coastal plain, Sp-derived lithospheric thicknesses are larger than those found in the tectonically active western U.S. where values range from 40-90 km. The vertical shear velocity gradients required to produce the observed Sp phases are sharp (drops of 4-10% over governed solely by temperature, but they may be explained by small amounts of partial melt or enhanced volatile content in the asthenosphere. While an asthenospheric low velocity zone appears to be ubiquitous beneath the continent, minimum velocities (and likely viscosities) within the eastern U.S. asthenosphere are not as low as those in the western U.S. At smaller scales, Sp imaging hints at lithospheric thickness variations that are correlated with tectonic features (e.g. orogenic boundaries, failed rifts) but resolution will be vastly improved with analysis of data from USArray Transportable and Flexible Arrays. The goal of the Southeastern Suture of the Appalachian Margin Experiment (SESAME) is to better understand lithospheric structures produced by accretion and rifting processes, with a particular focus on the Laurentia-Gondwana suture proposed in southern Georgia, adjacent regions of

  18. Two types of alkaline volcanics in the southwestern Iberian margin: The causes of their diversity

    Science.gov (United States)

    Chernysheva, E. A.; Matveenkov, V. V.; Medvedev, A. Ya.

    2012-09-01

    The diverse geodynamic conditions of the parental magma's melting are responsible for the compositional diversity of the alkaline volcanics near the southwestern margin of Iberia. The petrological-geochemical data show that the volcanics of the Gorringe Bank originated within the continental plate. The parental melilitite melts depleted in silica and anomalously enriched with trace elements could have been generated only in deep settings with a low degree of metasomatically enriched mantle matter melting. The volcanic melilitite-nephelinite-phonolite series is widespread in alkaline provinces of the Eurasian, African, and other continental plates. The Ampere, Josephine, and other seamounts and islands of the region are largely composed of volcanic rocks belonging to the picrobasalt-hawaiite-mugearite association. Their parental magmas were generated within the oceanic plate at shallower depths under a higher degree of moderately enriched oceanic lithospheric mantle melting. Both series of volcanics were formed under the influence of mantle plumes.

  19. Comparison of turbidite facies associations in modern passive-margin Mississippi fan with ancient active-margin fans

    Science.gov (United States)

    Shanmugam, G.; Moiola, R. J.; McPherson, J. G.; O'Connell, S.

    1988-07-01

    Our comparison of the modern passive-margin Mississippi fan (DSDP Leg 96) with ancient active-margin fans (e.g. Eocene Hecho Group, Spain) reveals major differences in turbidite facies associations (Mutti and Ricci Lucchi scheme) and in seismic characteristics in the lower fan area. The lower (outer) Mississippi fan is composed of channel (Facies B and F) and non-channel facies (C? and D), whereas ancient fans are characterized by non-channelized, thickening-upward, depositional lobe facies (C and D). An absence of depositional lobes in the lower Mississippi fan is also suggested by a lack of convex-upward (mounded) seismic reflections with bidirectional downlap. Continuous seismic reflections of the lower Mississippi fan may represent "sheet sands", but not those of true depositional lobes with mounded character. Extensive channelization in modern passive-margin fans appears to be a product of the lateral shifting of a major sinuous distributary system, developed as a consequence of low gradients and the transport of sediment with a relatively low sand/mud ratio. In contrast, channels in active-margin fans are short and of low sinuosity as a result of high gradients and the transport of sediment with a relatively high sand/mud ratio. The turbidite facies association scheme, which was developed exclusively from ancient active-margin fans, should be applied to mature passive-margin fans with qualifications because of the differences in spatial distribution of turbidite facies and their associations.

  20. The importance of structural softening for the evolution and architecture of passive margins

    Science.gov (United States)

    Duretz, T.; Petri, B.; Mohn, G.; Schmalholz, S. M.; Schenker, F. L.; Müntener, O.

    2016-12-01

    Lithospheric extension can generate passive margins that bound oceans worldwide. Detailed geological and geophysical studies in present and fossil passive margins have highlighted the complexity of their architecture and their multi-stage deformation history. Previous modeling studies have shown the significant impact of coarse mechanical layering of the lithosphere (2 to 4 layer crust and mantle) on passive margin formation. We built upon these studies and design high-resolution (~100–300 m) thermo-mechanical numerical models that incorporate finer mechanical layering (kilometer scale) mimicking tectonically inherited heterogeneities. During lithospheric extension a variety of extensional structures arises naturally due to (1) structural softening caused by necking of mechanically strong layers and (2) the establishment of a network of weak layers across the deforming multi-layered lithosphere. We argue that structural softening in a multi-layered lithosphere is the main cause for the observed multi-stage evolution and architecture of magma-poor passive margins.

  1. Cenozoic Volcanism and Intraplate Subduction at the Northern Margin of the Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    邓万明

    1991-01-01

    Developed in the Mt.Kunlun orogenic belt at the northern margin of the Tibetan Plateau is an active Cenozoic volcanic zone which is more than 1000km in length and some ten to hundred kilometers in width.It extends east-westwards and is roughly parallet to the strike of Mt.Kunlun.The Cenozoic volcanic rocks are divided into the northern(N-)and southern(S-)subzones.Eruptions of volcanic lavas in the S-subzone are related to an initial rift zone within the north Qiangtang terrane,but the volcanic rocks in the N-subzone are relatively close to the contact zone between the Mt.Kunlun and the Tarim terrane.The space-time distribution,petrological and geochemical features can be explained by a model of southward intraplate subduction of the Tarim terrane.

  2. Remote monitoring of volcanic gases using passive Fourier transform spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Love, S.P.; Goff, F.; Counce, D.; Schmidt, S.C. [Los Alamos National Lab., NM (United States); Siebe, C.; Delgado, H. [Univ. Nactional Autonoma de Mexico, Coyoacan (Mexico)

    1999-06-01

    Volcanic gases provide important insights on the internal workings of volcanoes and changes in their composition and total flux can warn of impending changes in a volcano`s eruptive state. In addition, volcanoes are important contributors to the earth`s atmosphere, and understanding this volcanic contribution is crucial for unraveling the effect of anthropogenic gases on the global climate. Studies of volcanic gases have long relied upon direct in situ sampling, which requires volcanologists to work on-site within a volcanic crater. In recent years, spectroscopic techniques have increasingly been employed to obtain information on volcanic gases from greater distances and thus at reduced risk. These techniques have included UV correlation spectroscopy (Cospec) for SO{sub 2} monitoring, the most widely-used technique, and infrared spectroscopy in a variety of configurations, both open- and closed-path. Francis et al. have demonstrated good results using the sun as the IR source. This solar occultation technique is quite useful, but puts rather strong restrictions on the location of instrument and is thus best suited to more accessible volcanoes. In order to maximize the flexibility and range of FTIR measurements at volcanoes, work over the last few years has emphasized techniques which utilize the strong radiance contrast between the volcanic gas plume and the sky. The authors have successfully employed these techniques at several volcanoes, including the White Island and Ruapehu volcanoes in New Zealand, the Kilauea volcano on Hawaii, and Mt. Etna in Italy. But Popocatepetl (5452 m), the recently re-awakened volcano 70 km southeast of downtown Mexico City, has provided perhaps the best examples to date of the usefulness of these techniques.

  3. The Role of Magmatic and Volcanic Loads in Generating Seaward Dipping Reflector Structures on Volcanic Rifted Margins

    Science.gov (United States)

    Tian, X.; Buck, W. R.

    2016-12-01

    The largest volcanic constructs on Earth are the seismically imaged seaward dipping reflector (SDR) units found offshore of many rifted continental margins, including a large portion that border the Atlantic Ocean. There is considerable controversy over whether their formation requires large offset (i.e. 10s of km) normal faults or not. Although there is some evidence for faulting in association with SDRs, we here show that a wide range of SDRs structures can be produced solely by volcanic loading. To do this we first derive a simple analytic description of a particular type of volcanic construct. We assume that the increase in density when fluid magma in a dike solidifies provides load at the rift center onto the end of a lithospheric plate. Extrusives are assumed to form flat-topped layers that fill in the flexural depression produced by the load of the solidified dike. The thin-plate flexure approximation is used to calculate the deflections due to the vertical load. This simple model produces structures similar to the observed SDRs. Expressions for the maximum thickness of the volcanic pile and the dip of an individual SDR are derived in terms of the flexure parameter and material densities. Asymmetry of SDR units seen across some conjugate margins can be explained with this model if periodic offsets, or jumps of the center of magmatism are included. In addition, we developed a numerical model of lithospheric extension, magma intrusion and volcanism with a temperature dependent elasto-viscous and brittle-plastic rheology. Results of these 2D cross-sectional models with fixed thermal structure confirm the qualitative predictions of the analytic model without the simplified uniform plate assumption. Preliminary results suggest that the rapid subsidence of SDRs, inferred for some rifted margins, can occur if magma is supplied only to the brittle upper layer and the hot weak lower crust is thinned by stretching. This numerical approach may also allow us to test

  4. The influence of tectonic and volcanic processes on the morphology of the Iberian continental margins; Influencia de los procesos tectonicos y volcanicos en la morfologia de los margenes continentales ibericos

    Energy Technology Data Exchange (ETDEWEB)

    Maestro, A.; Bohoyo, F.; Lopez-Martinez, J.; Acosta, J.; Gomez-Ballesteros, M.; Llaave, E.; Munoz, A.; Terrinha, P. G.; Dominguez, M.; Fernandez-Saez, F.

    2015-07-01

    The Iberian continental margins are mainly passive margins. Nevertheless, the northern sector of the margin was active during some stages of its geological evolution. The southern sector is considered as a transformed margin, which defines the boundary between the Iberian and African plates. This margin was also an active margin in the past. The different types, origins and intensities of the endogenic processes that have affected he Iberian continental margins have led to the development of various tectonic and volcanic morphologies. The North Atlantic rifting allowed the development of large marginal platforms in the Cantabrian and Galician margins the North-Atlantic Ocean spreading. The reactivation of Variscan faults during the Mesozoic and Cenozoic controlled the strike of some of the largest canyons in the Iberian margins. The Gulf of Cadiz margin is characterized by the development of morphologies related to salt tectonic, fluid seepage, thrust fronts and strike-slip fault lineaments hundreds of kilometres long. The Alboran basin and the Betic margin show morphologies connected with the Miocene rift phase, which generated volcanic edifices and various structural reliefs, and with the subsequent compressive phase, when folds and strike-slip, reverse faults, diapirs and mud volcanoes were developed. Finally, the Catalan-Valencian margin and the Balearic promontory are characterized by the presence of horst and graben structures related to the development of the Valencia trough during the Paleogene. The morphological features of endogenic origin have largely controlled the location and extent of the sedimentary processes and morphological products along the Iberian margins. (Author)

  5. Volcanic eruption source parameters from active and passive microwave sensors

    Science.gov (United States)

    Montopoli, Mario; Marzano, Frank S.; Cimini, Domenico; Mereu, Luigi

    2016-04-01

    It is well known, in the volcanology community, that precise information of the source parameters characterising an eruption are of predominant interest for the initialization of the Volcanic Transport and Dispersion Models (VTDM). Source parameters of main interest would be the top altitude of the volcanic plume, the flux of the mass ejected at the emission source, which is strictly related to the cloud top altitude, the distribution of volcanic mass concentration along the vertical column as well as the duration of the eruption and the erupted volume. Usually, the combination of a-posteriori field and numerical studies allow constraining the eruption source parameters for a given volcanic event thus making possible the forecast of ash dispersion and deposition from future volcanic eruptions. So far, remote sensors working at visible and infrared channels (cameras and radiometers) have been mainly used to detect, track and provide estimates of the concentration content and the prevailing size of the particles propagating within the ash clouds up to several thousand of kilometres far from the source as well as track back, a-posteriori, the accuracy of the VATDM outputs thus testing the initial choice made for the source parameters. Acoustic wave (infrasound) and microwave fixed scan radar (voldorad) were also used to infer source parameters. In this work we want to put our attention on the role of sensors operating at microwave wavelengths as complementary tools for the real time estimations of source parameters. Microwaves can benefit of the operability during night and day and a relatively negligible sensitivity to the presence of clouds (non precipitating weather clouds) at the cost of a limited coverage and larger spatial resolution when compared with infrared sensors. Thanks to the aforementioned advantages, the products from microwaves sensors are expected to be sensible mostly to the whole path traversed along the tephra cloud making microwaves particularly

  6. Permian-Triassic Magmatism Along the Southern Gondwana Margin: Correlating Proximal and Distal Volcanic Deposits

    Science.gov (United States)

    McKay, M. P.; Weislogel, A. L.; Fildani, A.

    2014-12-01

    Active margins are dominated by erosion, structural deformation, tectonic dissection, and igneous intrusions. These destructive processes lead to an incomplete record of past magmatism in active margins. Volcanic airfall tuffs that are transported and deposited in distal sedimentary basins may be more likely to be preserved in the rock record. Tuffs, however, may be affected by atmospheric fractionation during transport, postdepositional weathering, and diagenesis during burial, potentially altering ash texture, mineralogy, and geochemistry. We use outcrop observations, stratigraphic relationships, whole rock geochemistry, U-Pb zircon geochronology, and zircon rare-earth element geochemistry from Permian-Triassic strata of South Africa and South America to correlate distal volcanic ashes to proximal volcanic deposits and plutonic suites within southern Gondwana. U-Pb zircon signals of the tuffs are treated as "detrital"; the distinct zircon signals were then used to correlate distal airfall ashes to potential magmatic sources. This suggests that airfall fractionation of zircon populations is not a significant concern in tuff geochronology. Additionally, zircon inheritance may be a useful tool in matching far-traveled ashes with parental magmatic suites. Although previous studies have shown that the geochemistry of volcanic tuff deposits varies with distance from the volcanic vent, we employ whole rock and zircon REE compositions to differentiate distinct magmatic periods using distal ashes that were deposited >750 km from the volcanic source. The results of this study support a geochronologic interpretation that the Karoo strata of S. Africa are >10 Ma younger than previously thought based on biostratigraphy. Since the Karoo basin is heavily studied as a record of the end-Permian extinction and paleoclimate change, our results have major implication for this key time in Earth History.

  7. Geochemical discrimination of siliciclastic sediments from active and passive margin settings

    Science.gov (United States)

    Verma, Surendra P.; Armstrong-Altrin, John S.

    2016-03-01

    Discrimination of active and passive margins is important from both academic and economic aspects. This can only be successfully achieved, however, if there are major compositional differences among sediments derived from different continental margins. A worldwide database of active and passive margin settings was established from published major and trace element geochemical data of Neogene to Quaternary siliciclastic sediments. These data were used to evaluate the performance of existing discrimination diagrams, which were shown to work unsatisfactorily with success values of mostly between 0% and 30%. Because these diagrams were not based on a statistically coherent methodology, we proposed two new discriminant functions from linear discriminant analysis of multinormally distributed isometric log-transformed ratios of major and combined major and trace elements. These new diagrams showed very high percent success values of about 87%-97% and 84%-86% for the active and passive margins, respectively, for the original database. Excellent performance of the multidimensional diagrams and related discriminant functions was confirmed from 11 test studies involving Quaternary to Holocene siliciclastic sediments from known tectonic margins. The expected result of an active or passive margin was obtained, with most samples plotting correctly in the respective field.

  8. Comparison of submarine gully morphologies in passive and active margin settings

    Science.gov (United States)

    Jackson, C.; Shumaker, L.; Johnstone, S.; Graham, S. A.

    2015-12-01

    Passive and active tectonic margins have inherently different hypsometry, due to local patterns of deformation and subsequent impacts on the style of sedimentation. One way we can analyze and compare the two settings is through observation of submarine gullies, which are small channel features that form along the continental slope as it descends to the ocean floor. By documenting the geometries of gullies that have formed on passive margins and gullies that have formed on active margins, we attempt to distinguish differences in gully morphologies in these two settings. We manually mapped over 600 gullies and interfluves from shaded relief and contour maps generated from bathymetric data across the globe, including the coast of California, the Beaufort Sea, and the Black Sea. We extrapolated and plotted elevation profiles of the gullies along their downslope distance, and compared a range of gully properties, such as length, spacing, and slope, to look at the correlations among those elements of gullies and their tectonic setting. We find that gullies forming on active margins show the greatest variability in their slopes, exhibiting both the steepest and the shallowest slopes of the dataset. The slopes of the passive margin gullies fall within the range of the active margin gully slopes, but interestingly, we note patterns in the ranges of gully steepness at different localities. These results differ from our our anticipation that active margin gullies are steeper than passive margin gullies, but suggest that gullies in all settings display a variety of morphologies. Additional mapping of active margin gullies will better determine if there are morphological differences between the two settings.

  9. Active transcurrent fault system along the north African passive margin

    Science.gov (United States)

    Ben-Avraham, Zvi; Nur, Amos; Giuseppe, Cello

    1987-09-01

    Along the southern boundary of the eastern Mediterranean extends a WNW-trending narrow zone, about 1000 km long, of possible transcurrent faulting. It terminates on both sides at areas of crustal extension, the Tyrrhenian Sea on the west-northwest and the Gulf of Suez on the east-southeast. From the southern Tyrrhenian Sea the fault zone runs through the Strait of Sicily rift zone, the Ionian Sea, the base of the continental margin of eastern Lybia and western Egypt, into the land area through the apex of the Nile Delta and eventually into the Gulf of Suez. Studies of the fault pattern in the Strait of Sicily indicate that the rifting processes there are associated with a major dextral shear zone. Right-lateral movement is also consistent with the deformation along the southeastern extension of the fault zone: i.e., the sense of offset of a series of bathymetric depressions located along the base of the continental margin of eastern Lybia and western Egypt which we interpret as pull-apart basins formed by transcurrent faulting. Crustal structure may play an important role in controlling the location of the fault zone. On both ends, adjacent to the zones of crustal extension in the Tyrrhenian Sea and the Gulf of Suez, the fault is located within a continental crust, in the Strait of Sicily and in northern Egypt. In between, in the Ionian Sea and at the base of the continental margin of eastern Lybia and western Egypt, it is located in between provinces of continental crust on the south and oceanic crust on the north.

  10. Origin of the Blue Ridge escarpment along the passive margin of Eastern North America

    Science.gov (United States)

    Spotila, J.A.; Bank, G.C.; Reiners, P.W.; Naeser, C.W.; Naeser, N.D.; Henika, B.S.

    2004-01-01

    The Blue Ridge escarpment is a rugged landform situated within the ancient Appalachian orogen. While similar in some respects to the great escarpments along other passive margins, which have evolved by erosion following rifting, its youthful topographic expression has inspired proposals of Cenozoic tectonic rejuvenation in eastern North America. To better understand the post-orogenic and post-rift geomorphic evolution of passive margins, we have examined the origin of this landform using low-temperature thermochronometry and manipulation of topographic indices. Apatite (U-Th)/He and fission-track analyses along transects across the escarpment reveal a younging trend towards the coast. This pattern is consistent with other great escarpments and fits with an interpretation of having evolved by prolonged erosion, without the requirement of tectonic rejuvenation. Measured ages are also comparable specifically to those measured along other great escarpments that are as much as 100 Myr younger. This suggests that erosional mechanisms that maintain rugged escarpments in the early post-rift stages may remain active on ancient passive margins for prolonged periods. The precise erosional evolution of the escarpment is less clear, however, and several end-member models can explain the data. Our preferred model, which fits with all data, involves a significant degree of erosional escarpment retreat in the Cenozoic. Although this suggests that early onset of topographic stability is not required of passive margin evolution, more data are required to better constrain the details of the escarpment's development. ?? 2003 Blackwell Publishing Ltd.

  11. Elastic thickness estimates at north east passive margin of North America and its implications

    Indian Academy of Sciences (India)

    R T Ratheesh Kumar; Tanmay K Maji; Suresh Ch Kandpal; D Sengupta; Rajesh R Nair

    2011-06-01

    Global estimates of the elastic thickness (Te) of the structure of passive continental margins show wide and varying results owing to the use of different methodologies. Earlier estimates of the elastic thickness of the North Atlantic passive continental margins that used flexural modelling yielded a Te value of ∼20–100 km. Here, we compare these estimates with the Te value obtained using orthonormalized Hermite multitaper recovered isostatic coherence functions. We discuss how Te is correlated with heat flow distribution and depth of necking. The E–W segment in the southern study region comprising Nova Scotia and the Southern Grand Banks show low Te values, while the zones comprising the NE–SW zones, viz., Western Greenland, Labrador, Orphan Basin and the Northern Grand Bank show comparatively high Te values. As expected, Te broadly reflects the depth of the 200–400°C isotherm below the weak surface sediment layer at the time of loading, and at the margins most of the loading occurred during rifting. We infer that these low Te measurements indicate Te frozen into the lithosphere. This could be due to the passive nature of the margin when the loads were emplaced during the continental break-up process at high temperature gradients.

  12. An Early Cretaceous volcanic arc/marginal basin transition zone, Peninsula hardy, southernmost Chile

    Science.gov (United States)

    Miller, Christopher A.; Barton, Michael; Hanson, Richard E.; Fleming, Thomas H.

    1994-10-01

    The Hardy Formation represents a latest Jurassic-Early Cretaceous volcanic arc that was located along the Pacific margin of southern South America. It was separated from the continent by a marginal basin floored by portions of an ophiolite sequence (the Rocas Verdes ophiolites). The transition between the arc and marginal basin occurs on Peninsula Hardy, southernmost Chile, where there is a lateral facies transition from arc deposits of the Hardy Formation into proximal marginal basin fill of the Yahgan Formation. Interfingering of arc and marginal basin sequences demonstrates that subduction-related arc magmatism was concurrent with marginal basin formation. The lateral facies transition is reflected in the geochemistry of volcanic rocks from the Hardy and Yahgan formations. Basalts, andesites and dacites of the arc sequence follow a calc-alkaline differentiation trend whereas basalts from the marginal basin follow a tholeiitic differentiation trend. Estimates of temperature and oxygen fugacity for crystallization of the arc andesites are similar to values reported for other calc-alkaline andesites. It is suggested that water activity influenced the early or late crystallization of Ti-magnetite and this controlled the style of differentiation of the magmas erupted on Peninsula Hardy. Magmas with high water contents evolved along the calc-alkaline differentiation trend whereas those with low water contents evolved along the tholeiitic differentiation trend. Some rhyolites are differentiated from the calc-alkaline andesites and dacites, but most appear to be the products of crustal anatexis on the basis of trace-element evidence. The arc basalts and some marginal basin basalts show relative enrichment in LILE, relative depletion in HFSE, and enrichment in LREE. Other marginal basin basalts are LREE depleted and show small relative depletions in HFSE. Basalts with both calc-alkaline and tholeiitic affinities can also be recognized in the Rocas Verdes ophiolites

  13. Thermal history and evolution of the South Atlantic passive continental margin in northern Namibia

    Science.gov (United States)

    Menges, Daniel; Karl, Markus; Glasmacher, Ulrich Anton

    2013-04-01

    From Permo-Carboniferous to Mid Jurassic northern Namibia was affected by deep erosion of the Damara Orogen, Permo-Triassic collisional processes along the southern margin of Gondwana and eastern margin of Africa (Coward and Daly 1984, Daly et al. 1991), and the deposition of the Nama Group sediments and the Karoo megasequence. The lithostratigraphic units consist of Proterozoic and Cambrian metamorphosed rocks with ages of 534 (7) Ma to 481 (25) Ma (Miller 1983, Haack 1983), as well as Mesozoic sedimentary and igneous rocks. The Early Jurassic Karoo flood basalt lavas erupted rapidly at 183 (1) Ma (Duncan et al. 1997). The Early Cretaceous Paraná-Etendeka flood basalts (132 (1) Ma) and mafic dike swarms mark the rift stage of the opening of the South Atlantic (Renne et al. 1992, Milner et al. 1995, Stewart et al. 1996, Turner et al. 1996). The "passive" continental margin in northern Namibia is a perfect location to quantify exhumation and uplift rates, model the long-term landscape evolution and provide information on the influence of mantle processes on a longer time scale. The poster will provide first information on the long-term landscape evolution and thermochronological data. References Coward, M. P. and Daly, M. C., 1984. Crustal lineaments and shear zones in Africa: Their relationships to plate movements, Precambrian Research 24: 27-45. Duncan, R., Hooper, P., Rehacek, J., March, J. and Duncan, A. (1997). The timing and duration of the Karoo igneous event, southern Gondwana, Journal of Geophysical Research 102: 18127-18138. Haack, U., 1983. Reconstruction of the cooling history of the Damara Orogen by correlation of radiometric ages with geography and altitude, in H. Martin and F. W. Eder (eds), Intracontinental fold belts, Springer Verlag, Berlin, pp. 837-884. Miller, R. M., 1983. Evolution of the Damara Orogen, Vol. 11, Geological Society, South Africa Spec. Pub.. Milner, S. C., le Roex, A. P. and O'Connor, J. M., 1995. Age of Mesozoic igneous rocks in

  14. A two-dimensional model of the passive coastal margin deep sedimentary carbon and methane cycles

    OpenAIRE

    2012-01-01

    We present a new geologic-time and basin-spatial scale model of the continental margin methane cycle. The model, SpongeBOB, is used to simulate evolution of the carbon cycle in a passive sedimentary continental margin in response to changing oceanographic and geologic forcing over a time scale of 200 million years. The geochemistry of the sediment column is altered by the addition of vertical high-permeability channels intended to mimic the effects of heterogeneity in the real sediment column...

  15. Multi-decadal satellite measurements of passive and eruptive volcanic SO2 emissions

    Science.gov (United States)

    Carn, Simon; Yang, Kai; Krotkov, Nickolay; Prata, Fred; Telling, Jennifer

    2015-04-01

    Periodic injections of sulfur gas species (SO2, H2S) into the stratosphere by volcanic eruptions are among the most important, and yet unpredictable, drivers of natural climate variability. However, passive (lower tropospheric) volcanic degassing is the major component of total volcanic emissions to the atmosphere on a time-averaged basis, but is poorly constrained, impacting estimates of global emissions of other volcanic gases (e.g., CO2). Stratospheric volcanic emissions are very well quantified by satellite remote sensing techniques, and we report ongoing efforts to catalog all significant volcanic SO2 emissions into the stratosphere and troposphere since 1978 using measurements from the ultraviolet (UV) Total Ozone Mapping Spectrometer (TOMS; 1978-2005), Ozone Monitoring Instrument (OMI; 2004 - present) and Ozone Mapping and Profiler Suite (OMPS; 2012 - present) instruments, supplemented by infrared (IR) data from HIRS, MODIS and AIRS. The database, intended for use as a volcanic forcing dataset in climate models, currently includes over 600 eruptions releasing a total of ~100 Tg SO2, with a mean eruption discharge of ~0.2 Tg SO2. Sensitivity to SO2 emissions from smaller eruptions greatly increased following the launch of OMI in 2004, but uncertainties remain on the volcanic flux of other sulfur species other than SO2 (H2S, OCS) due to difficulty of measurement. Although the post-Pinatubo 1991 era is often classified as volcanically quiescent, many smaller eruptions (Volcanic Explosivity Index [VEI] 3-4) since 2000 have injected significant amounts of SO2 into the upper troposphere - lower stratosphere (UTLS), peaking in 2008-2011. We also show how even smaller (VEI 2) tropical eruptions can impact the UTLS and sustain above-background stratospheric aerosol optical depth, thus playing a role in climate forcing on short timescales. To better quantify tropospheric volcanic degassing, we use ~10 years of operational SO2 measurements by OMI to identify the

  16. A tool for computing time-dependent permeability reduction of fractured volcanic conduit margins.

    Science.gov (United States)

    Farquharson, Jamie; Wadsworth, Fabian; Heap, Michael; Baud, Patrick

    2016-04-01

    Laterally-oriented fractures within volcanic conduit margins are thought to play an important role in tempering eruption explosivity by allowing magmatic volatiles to outgas. The permeability of a fractured conduit margin - the equivalent permeability - can be modelled as the sum of permeability contributions of the edifice host rock and the fracture(s) within it. We present here a flexible MATLAB® tool which computes the time-dependent equivalent permeability of a volcanic conduit margin containing ash-filled fractures. The tool is designed so that the end-user can define a wide range of input parameters to yield equivalent permeability estimates for their application. The time-dependence of the equivalent permeability is incorporated by considering permeability decrease as a function of porosity loss in the ash-filled fractures due to viscous sintering (after Russell and Quane, 2005), which is in turn dependent on the depth and temperature of each fracture and the crystal-content of the magma (all user-defined variables). The initial viscosity of the granular material filling the fracture is dependent on the water content (Hess and Dingwell, 1996), which is computed assuming equilibrium depth-dependent water content (Liu et al., 2005). Crystallinity is subsequently accounted for by employing the particle-suspension rheological model of Mueller et al. (2010). The user then defines the number of fractures, their widths, and their depths, and the lengthscale of interest (e.g. the length of the conduit). Using these data, the combined influence of transient fractures on the equivalent permeability of the conduit margin is then calculated by adapting a parallel-plate flow model (developed by Baud et al., 2012 for porous sandstones), for host rock permeabilities from 10-11 to 10-22 m2. The calculated values of porosity and equivalent permeability with time for each host rock permeability is then output in text and worksheet file formats. We introduce two dimensionless

  17. Magma-poor and magma-rich segments along the hyperextended, pre-Caledonian passive margin of Baltica

    Science.gov (United States)

    Andersen, Torgeir B.; Alsaif, Manar; Corfu, Fernando; Jakob, Johannes; Planke, Sverre; Tegner, Christian

    2015-04-01

    The Scandinavian Caledonides constitute a more than 1850 km long 'Himalayan-type' orogen, formed by collision between Baltica-Avalonia and Laurentia. Subduction-related magmatism in the Iapetus ended at ~430 Ma and continental convergence continued for ~30 Myr until ~400 Ma. The collision produced a thick orogenic wedge comprising the stacked remnants of the rifted to hyperextended passive Baltican margin (Andersen et al. 2012), as well as suspect, composite and outboard terranes, which were successively emplaced as large-scale nappe complexes onto Baltica during the Scandian collision (see Corfu et al. 2014 for a recent review). Large parts (~800 km) of the mountain-belt in central Scandinavia, particularly in the Särv and Seve Nappes and their counterparts in Troms, are characterised by spectacular dyke complexes emplaced into continental sediments (e.g. Svenningsen 2001, Hollocher et al. 2007). These constitute a magma-rich segment formed along the margin of Baltica or within hyperextended continental slivers outboard of Baltica. The intensity of the pre-Caledonian magmatism is comparable to that of the present NE-Atlantic and other volcanic passive margins. The volumes and available U-Pb ages of 610-597 Ma (Baird et al. 2014 and refs therein) suggest that the magmatism was short lived, intense and therefore compatible with a large igneous province (LIP). By analogy with present-day margins this LIP may have been associated with continental break-up and onset of sea-floor spreading. The remnants of the passive margin both north and south of the magma-rich segment have different architectures, and are almost devoid of rift/drift related magmatic rocks. Instead, these magma-poor segments are dominated by heterogeneous sediment-filled basins characterised by the abundant presence of solitary bodies of variably altered mantle peridotites, also commonly present as detrital serpentinites. These basins are interpreted to have formed by hyperextension. We suggest that

  18. Provenance, volcanic record, and tectonic setting of the Paleozoic Ventania Fold Belt and the Claromecó Foreland Basin: Implications on sedimentation and volcanism along the southwestern Gondwana margin

    Science.gov (United States)

    Alessandretti, Luciano; Philipp, Ruy Paulo; Chemale, Farid; Brückmann, Matheus Philipe; Zvirtes, Gustavo; Matté, Vinícius; Ramos, Victor A.

    2013-11-01

    This study focuses on the provenance, volcanic record, and tectonic setting of the Paleozoic Ventania System, a geologic province which comprises the Cambro-Devonian Ventania Fold Belt and the adjoining Permo-Carboniferous Claromecó Foreland Basin, located inboard the deformation front. The Ventania Fold Belt is formed of the Curamalal and Ventana groups, which are composed mainly of mature quartzites that were unconformably deposited on igneous and metamorphic basement. The Pillahuincó Group is exposed as part of the Claromecó Basin and it has lithological and structural features totally distinct from the lowermost groups. This group is composed of immature arkoses and subarkoses with intercalated tuff horizons, unconformably overlaying the quartzites and associated with glacial-marine deposits of the lower Late Carboniferous to Early Permian section. The petrography, as well as major and trace elements (including rare earth elements) support that the Ventania quartzites were derived from cratonic sources and deposited in a passive margin environment. For the Pillahuincó Group, we suggest a transition between rocks derived from and deposited in a passive margin environment to those with geochemical and petrographical signatures indicative of an active continental margin provenance. LA-MC-ICP-MS analysis performed on euhedral and prismatic zircon grains of the tuffs revealed an age of 284 ± 15 Ma. The geochemical fingerprints and geochronological data of the tuffs found in the Claromecó Basin support the presence of an active and widespread Lower Permian pyroclastic activity in southwestern Gondwana, which is interpreted as part of the Choiyoi Volcanic Province in Argentina and Chile.

  19. Investigating the value of passive microwave observations for monitoring volcanic eruption source parameters

    Science.gov (United States)

    Montopoli, Mario; Cimini, Domenico; Marzano, Frank

    2016-04-01

    the dispersal fine-ash cloud, but tend to saturate near the source due to the strong optical extinction of ash cloud top layers. Conversely, observations at microwave (MW) channels from LEO satellites have demonstrated to carry additional information near the volcano source due to the relative lower opacity. This feature makes satellite MW complementary to IR radiometry for estimating source parameters close to the volcano emission, at the cost of coarser spatial resolution. The presentation shows the value of passive MW observations for the detection and quantitative retrieval of volcanic emission source parameters through the investigation of notable case studies, such as the eruptions of Grímsvötn (Iceland, May 2011) and Calbuco (Cile, April 2015), observed by the Special Sensor Microwave Imager/Sounder and the Advanced Technology Microwave Sounder.

  20. Influence of margin segmentation and anomalous volcanism upon the break-up of the Hatton Bank rifted margin, west of the UK

    Science.gov (United States)

    Elliott, G. M.; Parson, L. M.

    2007-12-01

    The Hatton Bank margin, flanking the Iceland Basin is a widely cited example of a volcanic rifted margin. Prior to this study insights into the break-up history of the margin have been limited to profiles in the north and south, yet whilst valuable, the along margin tectono-magmatic variability has not been revealed. Over 5660 line km of high quality reflection seismic profiles with supplementary multibeam bathymetry were collected to support the UK's claim to Hatton region under the United Nations Convention on Law of the Sea (UNCLOS). Integration of this new data with existing profiles, allowed the margin to be divided into three segments, each of which are flanked by oceanic crust with a smooth upper surface and internal dipping reflectors. The southernmost segment is characterised by a series of inner and outer seaward dipping reflector (SDR) packages, which are separated by an outer high feature. The outer SDR are truncated by Endymion Spur, a chain of steep sided, late stage volcanic cones linked with necks. The central sector has no inner SDR package and is characterised by the presence of a highly intruded continental block, the Hatton Bank Block (HBB). The northern sector is adjacent to Lousy Bank, with a wider region of SDR recognised than to the south and a high amount of volcanic cones imaged. The variations in the distribution of the SDR's along the margin, the presence of the HBB and Endymion Spur all suggest that the break-up process was not uniform alongstrike. The division of the margin into three sectors reveals that structural segmentation played an important role in producing the variations along the margin. Break- up initiated in the south and progressed north producing the SDR packages witnessed, when the HBB was encountered the focus of break-up moved seaward of the block. The northern sector was closer to the Iceland Hotspot and hence a greater amount of volcanism is encountered. The smooth oceanic basement also indicates a high thermal flux

  1. Morphotectonic evolution of passive margins undergoing active surface processes: large-scale experiments using numerical models.

    Science.gov (United States)

    Beucher, Romain; Huismans, Ritske S.

    2016-04-01

    Extension of the continental lithosphere can lead to the formation of a wide range of rifted margins styles with contrasting tectonic and geomorphological characteristics. It is now understood that many of these characteristics depend on the manner extension is distributed depending on (among others factors) rheology, structural inheritance, thermal structure and surface processes. The relative importance and the possible interactions of these controlling factors is still largely unknown. Here we investigate the feedbacks between tectonics and the transfers of material at the surface resulting from erosion, transport, and sedimentation. We use large-scale (1200 x 600 km) and high-resolution (~1km) numerical experiments coupling a 2D upper-mantle-scale thermo-mechanical model with a plan-form 2D surface processes model (SPM). We test the sensitivity of the coupled models to varying crust-lithosphere rheology and erosional efficiency ranging from no-erosion to very efficient erosion. We discuss how fast, when and how the topography of the continents evolves and how it can be compared to actual passive margins escarpment morphologies. We show that although tectonics is the main factor controlling the rift geometry, transfers of masses at the surface affect the timing of faulting and the initiation of sea-floor spreading. We discuss how such models may help to understand the evolution of high-elevated passive margins around the world.

  2. Geochemical and tectonic relationships in the east Indonesian arc-continent collision region: Implications for the subduction of the Australian passive margin

    Science.gov (United States)

    van Bergen, M. J.; Vroon, P. Z.; Hoogewerff, J. A.

    1993-07-01

    Van Bergen, M.J., Vroon, P.Z. and Hoogewerff, J.A., 1993. Geochemical and tectonic relationships in the east Indonesian arc-continent collision region: implications for the subduction of the Australian passive margin. In: M.J.R. Wortel, U. Hansen and R. Sabadini (Editors), Relationships between Mantle Processes and Geological Processes at or near The Earth's Surface. Tectonophysics, 223: 97-116. Variations in the isotopic signatures of volcanics along the East Sunda Banda Arc reflect changes in the nature and amount of sedimentary material supplied by the northeast Indian Ocean floor and the adjacent Australian passive continental margin, which form the two major domains of the Indian Ocean plate that approach the arc system. A compilation of isotopic data for 200-500-km-long arc sectors shows that the trend in magmatic signatures follows distinct subduction/collision stages reached by the corresponding oceanic and continental-margin sections entering the trench system. Maximum amounts of magma source contamination are inferred for volcanics near an extinct sector north of Timor, where the Australian continent started to collide with the arc first. Pb-Nd isotopic source mixing models point to contamination by sediments with variations in composition, similar to observed along-arc changes in sediments entering the trench. The results indicate an increasing contribution of subducted continental material in the direction of the collision region. Mass-balance calculations, considering the magmatic output and minimum input of subducted continental material required to generate the composition of the volcanic arc in the collision region, are difficult to reconcile with subduction of ocean-floor sediments alone. Thicknesses of sediments presently covering oceanic crust near the margin are close to calculated thicknesses of the sediments fluxed into the trench and magmatically returned to the arc crust, but cannot account for the additional volumes of material accreted on

  3. Passive margin asymmetry and its polarity in the presence of a craton

    Science.gov (United States)

    Andres-Martinez, Miguel; Perez-Gussinye, Marta; Neto-Araujo, Mario; Morgan, Jason

    2016-04-01

    When continental lithosphere is extended to break-up it forms two conjugate passive margins. In many instances these margins are asymmetric: while one is wide and extensively faulted, the conjugate thins more abruptly and exhibits little faulting. Recent observational studies have suggested that this asymmetry results from the formation of an oceanward-younging sequential normal fault array on the future wide margin. Numerical models have shown that fault sequentiality arises as a result of asymmetric uplift of the hot mantle towards the hanging wall of the active fault, which weakens this area and promotes the formation of a new oceanward fault. In numerical models the polarity of the asymmetry is random. It results from spontaneous preferential localization of strain in a given fault, a process reinforced by strain weakening effects. Slight changes in the experiments initial grid result in an opposite polarity of the asymmetry. However, along a long stretch of the South Atlantic margins, from the Camamu-Gabon to the North Santos-South Kwanza conjugates, the polarity is not random and is very well correlated with the distance of the rift to nearby cratons. Here, we use numerical experiments to show that the presence of a thick cratonic root inhibits asthenospheric flow from underneath the craton towards the adjacent fold belt, while flow from underneath the fold belt towards the craton is favoured. This enhances and promotes sequential faulting towards the craton and results in a wide faulted margin located in the fold belt and a narrow conjugate margin in the craton side, thereby determining the polarity of the asymmetry, as observed in nature.

  4. Characteristics and features of the submarine landslides in passive and active margin southwestern offshore Taiwan

    Science.gov (United States)

    Yeh, Y. C.

    2016-12-01

    In the past decade, numerous multi-channel seismic surveys as well as near seafloor high resolution geophysical investigations were conducted in order to explore and estimate the reserves of gas hydrate southwestern offshore Taiwan. The previous object was focused on searching substitute energy (i.e. gas hydrate) rather than geo-hazards. However, it is suggested that most of the gas hydrate is generally distributed at slope area southwestern offshore Taiwan, which indicates the slope may be failed when steady state was disturbed by some factors, such as sea level or climate change. In addition, once gas hydrate was dissociated, this may induce submarine landslide that further cause devastated tsunami. Thus, it is of great urgency to investigate potential landslide area, particularly, the hydrate-rich continental slope (active and passive margins) in adjacent to populous city like Kaohsiung. In this study, we collected several high resolution multi-channel seismic data with ten seconds shooting rate and 3.125 meters group interval streamer by using R/V ORI and R/V ORV. The seismic data were processed in conventional data processing strategy: bad trace clean, geometry settings, band-pass filter, de-convolution, surface-related multiple rejection, radon filter, stacking,kirchhoff migration and time to depth conversion. Combine the results obtained from the MCS data and subbottom profiles, two major results could be raised in the active margin as followed: (1) Most of the surface creeping and landslide was occurred shallower than 500 meters in water depth, which should be related to the inter-bedded fluid activities. (2) The landslide distribution is lagly affected by the presence of diaper, suggesting the subsequent mud diapirism may destruct slope stability; (3) The submarine landslide deeper than 800 meters in water depth distributes in the thrust fold area, that is probably referred to active thrusting. In the passive margin, large volume mass transportation

  5. Imaging the Namibian Passive Margin with Crustal-Scale Reflection Seismics

    Science.gov (United States)

    Ryberg, T.; Haberland, C. A.; Bauer, K.; Weber, M. H.

    2012-12-01

    Passive continental margins offer the unique opportunity to study the processes involved in continental extension and break up and the role of hot-spot related magmatism. In 2011 we conducted combined on- and offshore seismic experiments specifically designed to characterize the Southern African passive margin at the Walvis Ridge in Namibia. A coast-parallel crustal model for P- and S-waves was derived by traveltime tomography of refracted waves. These model show a characteristic high-velocity body in the lower crust at the location where the Walvis Ridge hits the African continent. This body is most likely associated with magmatic processes of the continental break-up and the formation of the Atlantic Ocean. To study this region in more detail, we conducted a crustal-scale reflection seismic project in 2012, focussing on the high-velocity body. The reflection seismic imaging processing included the application of novel line-drawing migration techniques. A high-resolution reflection seismic image of the lower crustal high-velocity body could be derived. We present the result and discuss the possible interpretation of the data.

  6. Petroleum exploration of shallow marine deposit Carboniferous volcanic tuff reservoir in the western margin of Junggar Basin

    Institute of Scientific and Technical Information of China (English)

    Wang Jianyong; Wang Xuezhong; Ma Liqun

    2013-01-01

    In 2011,petroleum exploration of shallow marine deposits Carboniferous and volcanic tuff reservoir re-alized breakthroughs at Chepaizi slope in the western margin of Junggar Basin. Pai 61 well ,with 855.7 ~949.6 m section,in the conventional test oil obtained 6 t/d industrial oil flow. The surface viscosity is 390 mPa· s (50℃). The marine deposit of Carboniferous are deep oil source rocks and high-quality reservoir. Magma volcanic activity provides the basis for volcanic reservoir development and distribution. The weathering crust and secondary cracks developed volcanic tuff by strong rock weathering and dissolution of organic acids which has become top quality reservoir. Deep Permian oil-gas migrated and accumulated to high parts along Hong-Che fault belt and stratigraphic unconformity stripping. Permian and Triassic volcanic rocks or dense mudstone sedimentary cover as a regional seal for the late Carboniferous oil-gas to save critically. The seismic pre-stack time migration processing technologies for the problem of poor inner structures of Carboniferous were developed. Response of volcanic rock seismic and logging are obvious. The application imaging logging and nuclear magnetic technology achieved the qualitative identification and quantification of fracture description.

  7. Volcanic margin formation and Mesozoic rift propagators in the Cuvier Abyssal Plain off Western Australia

    Science.gov (United States)

    Mihut, Dona; Müller, R. Dietmar

    1998-11-01

    The western margin of Australia is characterized by synrift and postrift magmatism which is not well understood. A joint interpretation of magnetic anomaly, satellite gravity anomaly and seismic data from the Cuvier Abyssal Plain and margin shows that the breakup between India and Australia started circa 136 Ma (M14) and was followed by two rift propagation events which transferred portions of the Indian Plate to the Australian Plate. Post breakup magmatism continued with the emplacement of the Wallaby and Zenith plateaus (˜17-18 km thick at their centers) along a transform margin. Two narrow magmatic edifices adjacent to the Wallaby Plateau (Sonne and Sonja ridges) represent an extinct ridge and a pseudofault, respectively. They formed by excess volcanism, probably by lateral migration of buoyant melt along upside-down crustal drainage channels from the melt source underneath the Wallaby Plateau. In a mantle plume scenario a small plume (˜400 km diameter) located underneath the rift could have locally uplifted the Bernier Platform and Exmouth Sub-basin in the Early Cretaceous and left a track consistent with the azimuth of the Wallaby and Zenith plateaus. In this case, ridge-plume interaction would have caused two consecutive ridge propagation events towards the plume while the ridge moved away from the hotspot. The abrupt end of the hotspot track west of the Zenith Plateau would be a consequence of the accelerating south-eastward motion of the spreading ridge relative to the mantle after 120 Ma, leaving the mantle plume underneath the Indian Plate. An alternative nonmantle-plume scenario is based on the observation that between breakup and chron M0 (˜120 Ma) the ocean crust in the southern Cuvier Abyssal Plain was formed while the spreading ridge abutted Indian continental crust. Small-scale convection may have been initiated during rifting in the Early Cretaceous and maintained until the Wallaby-Zenith ridge-transform intersection passed by the eastern edge

  8. The Lamu Basin deepwater fold-and-thrust belt: An example of a margin-scale, gravity-driven thrust belt along the continental passive margin of East Africa

    Science.gov (United States)

    Cruciani, Francesco; Barchi, Massimiliano R.

    2016-03-01

    In recent decades, advances in seismic processing and acquisition of new data sets have revealed the presence of many deepwater fold-and-thrust belts (DW-FTBs), often developing along continental passive margins. These kinds of tectonic features have been intensively studied, due to their substantial interest. This work presents a regional-scale study of the poorly explored Lamu Basin DW-FTB, a margin-scale, gravity-driven system extending for more than 450 km along the continental passive margin of Kenya and southern Somalia (East Africa). A 2-D seismic data set was analyzed, consisting of both recently acquired high-quality data and old reprocessed seismic profiles, for the first detailed structural and stratigraphic interpretation of this DW-FTB. The system originated over an Early to mid-Cretaceous shale detachment due to a mainly gravity-spreading mechanism. Analysis of synkinematic strata indicates that the DW-FTB was active from the Late Cretaceous to the Early Miocene, but almost all of the deformation occurred before the Late Paleocene. The fold-and-thrust system displays a marked N-S variation in width, the northern portion being more than 150 km wide and the southern portion only a few dozen kilometers wide; this along-strike variation is thought to be related to the complex tectonosedimentary evolution of the continental margin at the Somalia-Kenya boundary, also reflected in the present-day bathymetry. Locally, a series of volcanic edifices stopped the basinward propagation of the DW-FTB. A landward change in the dominant structural style, from asymmetric imbricate thrust sheets to pseudo-symmetric detachment folds, is generally observed, related to the landward thickening of the detached shales.

  9. Sr isotope geochemistry of megacrysts from continental rift and converging plate margin alkaline volcanism in South Italy

    Science.gov (United States)

    Vollmer, R.; Johnston, Kate; Ghiara, M. R.; Lirer, L.; Munno, Rosalba

    1981-12-01

    Mineral phases of two-clinopyroxene alkaline lavas from continental rift and plate margin volcanism in South Italy have been analyzed for their Sr isotopic composition and concentration. Sr isotope disequilibria are observed between megacrysts and groundmass in all seven analysed Campanian potassic lavas, but not in a lava from Stromboli, a volcano in the Eolian arc. Variations in 87Sr/ 86Sr ratios for different phases in the lavas are likely to reflect primary Sr isotope variations in the primitive lavas (rather than crustal contamination effects). It is suggested that the observed mineral disequilibria point to the intimate association of a range of primary magmas and small-scale source heterogeneities for the Campanian volcanism. The lack of mineral disequilibria for Stromboli suggests that here source heterogeneities are absent or else exist on a very much larger scale. It is therefore unlikely that there is any genetic connection between these two types of alkaline volcanism in South Italy.

  10. Cambrian-lower Middle Ordovician passive carbonate margin, southern Appalachians: Chapter 14

    Science.gov (United States)

    Read, J. Fred; Repetski, John E.

    2012-01-01

    The southern Appalachian part of the Cambrian–Ordovician passive margin succession of the great American carbonate bank extends from the Lower Cambrian to the lower Middle Ordovician, is as much as 3.5 km (2.2 mi) thick, and has long-term subsidence rates exceeding 5 cm (2 in.)/k.y. Subsiding depocenters separated by arches controlled sediment thickness. The succession consists of five supersequences, each of which contains several third-order sequences, and numerous meter-scale parasequences. Siliciclastic-prone supersequence 1 (Lower Cambrian Chilhowee Group fluvial rift clastics grading up into shelf siliciclastics) underlies the passive margin carbonates. Supersequence 2 consists of the Lower Cambrian Shady Dolomite–Rome-Waynesboro Formations. This is a shallowing-upward ramp succession of thinly bedded to nodular lime mudstones up into carbonate mud-mound facies, overlain by lowstand quartzose carbonates, and then a rimmed shelf succession capped by highly cyclic regressive carbonates and red beds (Rome-Waynesboro Formations). Foreslope facies include megabreccias, grainstone, and thin-bedded carbonate turbidites and deep-water rhythmites. Supersequence 3 rests on a major unconformity and consists of a Middle Cambrian differentiated rimmed shelf carbonate with highly cyclic facies (Elbrook Formation) extending in from the rim and passing via an oolitic ramp into a large structurally controlled intrashelf basin (Conasauga Shale). Filling of the intrashelf basin caused widespread deposition of thin quartz sandstones at the base of supersequence 4, overlain by widespread cyclic carbonates (Upper Cambrian lower Knox Group Copper Ridge Dolomite in the south; Conococheague Formation in the north). Supersequence 5 (Lower Ordovician upper Knox in the south; Lower to Middle Ordovician Beekmantown Group in the north) has a basal quartz sandstone-prone unit, overlain by cyclic ramp carbonates, that grade downdip into thrombolite grainstone and then storm

  11. From rifting to passive margin: the examples of the Red Sea, Central Atlantic and Alpine Tethys

    Science.gov (United States)

    Favre, P.; Stampfli, G. M.

    1992-12-01

    Evolution of the Red Sea/Gulf of Suez and the Central Atlantic rift systems shows that an initial, transtensive rifting phase, affecting a broad area around the future zone of crustal separation, was followed by a pre-oceanic rifting phase during which extensional strain was concentrated on the axial rift zone. This caused lateral graben systems to become inactive and they evolved into rift-rim basins. The transtensive phase of diffuse crustal extension is recognized in many intra-continental rifts. If controlling stress systems relax, these rifts abort and develop into palaeorifts. If controlling stress systems persist, transtensive rift systems can enter the pre-oceanic rifting stage, during which the rift zone narrows and becomes asymmetric as a consequence of simple-shear deformation at shallow crustal levels and pure shear deformation at lower crustal and mantle-lithospheric levels. Preceding crustal separation, extensional denudation of the lithospheric mantle is possible. Progressive lithospheric attenuation entails updoming of the asthenosphere and thermal doming of the rift shoulders. Their uplift provides a major clastic source for the rift basins and the lateral rift-rim basins. Their stratigraphic record provides a sensitive tool for dating the rift shoulder uplift. Asymmetric rifting leads to the formation of asymmetric continental margins, corresponding in a simple-shear model to an upper plate and a conjugate lower plate margin, as seen in the Central Atlantic passive margins of the United States and Morocco. This rifting model can be successfully applied to the analysis of the Alpine Tethys palaeo-margins (such as Rif and the Western Alps).

  12. Links among Slope Morphology, Canyon Types and Tectonics on Passive and Active Margins in the Northernmost South China Sea

    Institute of Scientific and Technical Information of China (English)

    Ho-Shing Yu; Emmy T Y Chang

    2009-01-01

    We examine slope profile types and variations in slope gradient and slope relief with depth for both passive and active margins in the northern most South China Sea.The passive South China margin is characterized by an exponential slope profile,mainly assodated with clustered slope-confined canyons.The active Taiwan margin shows a linear-like shape with great variations along the lower slope.Fewer eanyom occur on the Taiwau margin,and hence the influence of canyon incision on slope morphology is relatively less significant.Quantitative analyses of slope curvature,slope gradleut and square root of relief variance are useful statistical parameters to explain characteristics and variability of morphology of the slope of the South China margin,but not for the Kaoping slope on the Talwan side.On the active Taiwan margin,tectonic activities are dominant over sediment deposition and surface erosion,producing a slope profile quite different from those of passive margins of the Middle Atlantic,KwaZulu-Natal,South Africa where failure on slope and accompanying canyon incision are the dominant processes shaping the slope morphology.

  13. Permian plate margin volcanism and tuffs in adjacent basins of west Gondwana: Age constraints and common characteristics

    Science.gov (United States)

    López-Gamundí, Oscar

    2006-12-01

    Increasing evidence of Permian volcanic activity along the South American portion of the Gondwana proto-Pacific margin has directed attention to its potential presence in the stratigraphic record of adjacent basins. In recent years, tuffaceous horizons have been identified in late Early Permian-through Middle Permian (280-260 Ma) sections of the Paraná Basin (Brazil, Paraguay, and Uruguay). Farther south and closer to the magmatic tract developed along the continental margin, in the San Rafael and Sauce Grande basins of Argentina, tuffs are present in the Early to Middle Permian section. This tuff-rich interval can be correlated with the appearance of widespread tuffs in the Karoo Basin. Although magmatic activity along the proto-Pacific plate margin was continuous during the Late Paleozoic, Choiyoi silicic volcanism along the Andean Cordillera and its equivalent in Patagonia peaked between the late Early Permian and Middle Permian, when extensive rhyolitic ignimbrites and consanguineous airborne tuffaceous material erupted in the northern Patagonian region. The San Rafael orogenic phase (SROP) interrupted sedimentation along the southwestern segment of the Gondwana margin (i.e., Frontal Cordillera, San Rafael Basin), induced cratonward thrusting (i.e., Ventana and Cape foldbelts), and triggered accelerated subsidence in the adjacent basins (Sauce Grande and Karoo) located inboard of the deformation front. This accelerated subsidence favored the preservation of tuffaceous horizons in the syntectonic successions. The age constraints and similarities in composition between the volcanics along the continental margin and the tuffaceous horizons in the San Rafael, Sauce Grande, Paraná, and Karoo basins strongly suggest a genetic linkage between the two episodes. Radiometric ages from tuffs in the San Rafael, Paraná, and Karoo basins indicate an intensely tuffaceous interval between 280 and 260 Ma.

  14. Crustal architecture and deep structure of the Namibian passive continental margin around Walvis Ridge from wide-angle seismic data

    Science.gov (United States)

    Behrmann, Jan H.; Planert, Lars; Jokat, Wilfried; Ryberg, Trond; Bialas, Jörg; Jegen, Marion

    2013-04-01

    The opening of the South Atlantic ocean basin was accompanied by voluminous magmatism on the conjugate continental margins of Africa and South America, including the formation of the Parana and Entendeka large igneous provinces (LIP), the build-up of up to 100 km wide volcanic wedges characterized by seaward dipping reflector sequences (SDR), as well as the formation of paired hotspot tracks on the rifted African and South American plates, the Walvis Ridge and the Rio Grande Rise. The area is considered as type example for hotspot or plume-related continental break-up. However, SDR, and LIP-related features on land are concentrated south of the hotspot tracks. The segmentation of the margins offers a prime opportunity to study the magmatic signal in space and time, and investigate the interrelation with rift-related deformation. A globally significant question we address here is whether magmatism drives continental break-up, or whether even rifting accompanied by abundant magmatism is in response to crustal and lithospheric stretching governed by large-scale plate kinematics. In 2010/11, an amphibious set of wide-angle seismic data was acquired around the landfall of Walvis Ridge at the Namibian passive continental margin. The experiments were designed to provide crustal velocity information and to investigate the structure of the upper mantle. In particular, we aimed at identifying deep fault zones and variations in Moho depth, constrain the velocity signature of SDR sequences, as well as the extent of magmatic addition to the lower crust near the continent-ocean transition. Sediment cover down to the igneous basement was additionally constrained by reflection seismic data. Here, we present tomographic analysis of the seismic data of one long NNW oriented profile parallel to the continental margin across Walvis Ridge, and a second amphibious profile from the Angola Basin across Walvis Ridge and into the continental interior, crossing the area of the Etendeka

  15. Major types of deep-water reservoirs from the Eastern Brazilian rift and passive margin basis

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, Carlos H.L. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Exploracao e Producao

    1999-07-01

    Turbidites and associated deep-water facies comprise the most important petroleum reservoirs in Brazil. They contain in place volumes of 57.2 billion bbl of oil, and 27.5 trillion cubic feet of gas, and total reserves of 12.5 billion bbl of oil, and 8.3 trillion cubic feet of gas. Brazilian petroleum-bearing turbidites occur in Carboniferous/Permian, glaciomarine pre-rift (interior cratonic) successions, Neocomian to Aptian, lacustrine rift successions and Upper Albian to Lower Miocene, marine passive margin successions. Most of the petroleum accumulations are distributed along the eastern Brazilian margin, which tectonic and sedimentary evolution is linked to the Neocomian breakup of Gondwana and the subsequent opening of the South Atlantic Ocean. Turbidites comprise 553 production zones from 171 oil and/or gas fields, mostly concentrated in the Campos, Reconcavo, Sergipe/Alagoas, and Espirito Santo basins. This paper presents an overview of the sedimentary facies, high-resolution stratigraphy, sand body geometry, and reservoir heterogeneities of the major types of Brazilian deep-water reservoirs, which include gravel/sand-rich, turbidite channel complexes, though-confined, gravel/sand-rich turbidite lobes, gravel/sand-rich turbidite and debrite aprons, deposits of sand-rich, lacustrine density underflows, deposits of sand/mud-rich debris flows, and deposits of sandy bottom currents. (author)

  16. Age of Tertiary volcanic rocks on the West Greenland continental margin

    DEFF Research Database (Denmark)

    Larsen, Lotte M.; Pedersen, Asger K.; Tegner, Christian

    2016-01-01

    Radiometric ages for undated parts of the volcanic succession and intrusions in West Greenland were obtained by the 40Ar–39Ar incremental heating method. Acceptable crystallization ages were obtained for 27 samples. Combined with published results the new data provide a volcanic stratigraphy corr...

  17. The reactivation of the SW Iberian passive margin: a brief review

    Science.gov (United States)

    Duarte, Joao; Rosas, Filipe; Terrinha, Pedro; Schellart, Wouter; Almeida, Pedro; Gutscher, Marc-André; Riel, Nicolas; Ribeiro, António

    2016-04-01

    On the morning of the 1st of November of 1755 a major earthquake struck offshore the Southwest Iberian margin. This was the strongest earthquake ever felt in Western Europe. The shake, fire and tsunami devastated Lisbon, was felt as far as Finland and had a profound impact on the thinkers of that time, in particular on the Enlightenment philosophers such as Voltaire, Rousseau and Kant. The Great Lisbon Earthquake is considered by many as the event that marks the birth of modern geosciences; and made of this region one of the most well studied areas in the world. After the 1755 earthquake, Kant and others authors wrote several treaties dealing with the causes and dynamics of earthquakes and tsunamis and were close to identify some key elements of what we now call plate tectonics. More than two hundred years later, in the year of 1969, the region was struck by another major earthquake. This was precisely during the period in which the theory of plate tectonics was being built. Geoscientists like Fukao (1973), Purdy (1975) and Mackenzie (1977) immediately focused their attention in the area. They suggested that these events were related with "transient" subduction of Africa below Iberia, along the East-West Azores-Gibraltar plate boundary. Several years later, Ribeiro (1989) suggested that instead of Africa being subducted below Iberia, it was the West Iberian passive margin that was being reactivated, a process that may, in time, lead to the formation of a new subduction zone. In the turning of the millennium, a subducting slab was imaged bellow the Gibraltar Straits, a remanent of the Western Mediterranean arc system that according to Gutscher et al. (2002) was related with ongoing subduction. Recently, it was proposed that a causal link between the Gibraltar subduction system and the reactivation of the SW Iberian margin might exist. In addition, the large-scale Africa-Eurasia convergence is inducing compressive stresses along the West Iberian margin. The margin

  18. Role of Variscan tectonics inheritance in the Jurassic rifting of the passive margin of Adria: insights from the Canavese Zone (Western Southern Alps, Italy)

    Science.gov (United States)

    De Caroli, Sara; Succo, Andrea; Centelli, Arianna; Barbero, Edoardo; Borghi, Alessandro; Balestro, Gianni; Festa, Andrea

    2017-04-01

    The formation of rifted continental margins by extension of continental lithosphere leading to seafloor spreading is a complex component of the plate tectonic cycle. Geological mapping, supported by multidisciplinary analyses of rifted continental margins may thus provide significant information to better understand and model the related processes, and explain the geometry of those margins as observed by means of seismic imaging. We present here our new findings on the Canavese Zone (Italian Western Alps), which is inferred to represent the remnant of the Jurassic syn-rift stretching, thinning and dismemberment of the distal passive margin of Adria, occurred during the opening of the Northern Alpine Tethys. Through multiscale and multidisciplinary, field- and laboratory-based structural, stratigraphic and petrographic studies (from geological map scale to mesoscale and microscope scale), we document that the tectonic dismemberment of the rifted continental margin of Adria did not simply result from the syn-rift Jurassic extension, but was strongly favored by the inheritance of older (Variscan and post-Variscan) tectonic stages, which controlled earlier lithospheric weakness. Our findings show the existence of two different tectonic units of the pre-Variscan basement, which were deformed, juxtaposed and exhumed already during the Variscan orogeny as constraint by (i) intrusion of early Permian granitoids, (ii) emplacement of volcanic rocks and (iii) unconformable overlie of Permian deposits on those metamorphic units. The syn-extensional (syn-rift) Jurassic faults, which affect the Mesozoic sedimentary succession, show only limited vertical displacement that was ineffective in producing and justifying the crustal thinning observed in pre-Variscan basement units. Finally, Late Cretaceous-Early Paleocene and Late Cenozoic strike-slip faulting (i.e. Alpine and Insubric tectonic stages) reactivated previously formed faults, leading to the formation of a complex tectonic

  19. Fluid transport processes in the passive margins of the Eastern Mediterranean

    Science.gov (United States)

    Bertoni, Claudia; Foschi, Martino; Cartwright, Joe; Levell, Bruce

    2015-04-01

    We analyse and produce a synoptic model of the different styles of fluid transport occurring in the various passive margin settings in the Eastern Mediterranean. The common tectonic-stratigraphic setting is dominated, from the Mesozoic, by the interaction of the Tethyan platforms with Cenozoic to recent, mainly clastic, deposits interacting with the ubiquitous thick late Miocene (Messinian) evaporitic sediments. This created different specific modes of fluid-lithology coupling behaviours, and generated an extraordinary suite of seismically resolvable fluid flow phenomena, including mud volcanoes, pockmarks, dissolution/collapse structures, chimneys and pipes. We integrate this evidence with the analysis of the regional pressure/temperature gradient, and with published hydrocarbon generation models, to propose a regional synthesis of all fluid transport processes in a specific basinal context. We place the fluid flow evidence observed in the Eastern Mediterranean in the framework of the three main fluid flow settings, which are typically defined in sedimentary basins, in terms of depth: 1) A thermobaric fluid regime, where fluid transport is limited and convection can be the dominant transport mechanism, 2) A thermogenic regime, where fluids supplied by hydrocarbon generation can migrate by hydraulic fracturing and advection (along open faults/conduits), by matrix flow and in the longer term, by diffusion processes, 3) A shallow compactional regime, where the fluids are generated by sediment dewatering and shallow diagenesis, and the main transport mechanism is characterised by vertical fluid flow, either through advection and hydrofracturing along faults, or matrix flow. In the Eastern Mediterranean passive margins, this depth-related subdivision needs to be modified in order to accommodate the influence of the laterally and vertically extensive evaporitic series, which acts as a regional aquitard/aquiclude to water or a seal to hydrocarbon flow. The presence of

  20. Stratigraphic landscape analysis, thermochronology and the episodic development of elevated, passive continental margins

    Directory of Open Access Journals (Sweden)

    Green, Paul F.

    2013-12-01

    Full Text Available The continental margin of West Greenland is similar in many respects to other elevated, passive continental margins (EPCMs around the world. These margins are characterised by extensive regions of low relief at elevations of 1–2 kilometres above sea level sloping gently inland, with a much steeper, oceanward decline, often termed a 'Great Escarpment', terminating at a coastal plain. Recent studies, based on integration of geological, geomorphological and thermochronological evidence, have shown that the high topography of West Greenland was formed by differential uplift and dissection of an Oligo-Miocene peneplain since the late Miocene, many millions of years after continental break-up between Greenland and North America. In contrast, many studies of other EPCMs have proposed a different style of development in which the high plateaux and the steep, oceanward decline are regarded as a direct result of rifting and continental separation. Some studies assume that the elevated regions have remained high since break-up, with the high topography continuously renewed by isostasy. Others identify the elevated plains as remnants of pre-rift landscapes. Key to understanding the development of the West Greenland margin is a new approach to the study of landforms, stratigraphic landscape analysis, in which the low-relief, high-elevation plateaux at EPCMs are interpreted as uplifted peneplains: low-relief surfaces of large extent, cutting across bedrock of different age and resistance, and originally graded to sea level. Identification of different generations of peneplain (re-exposed and epigene from regional mapping, combined with geological constraints and thermochronology, allows definition of the evolution leading to the formation of the modern-day topography. This approach is founded particularly on results from the South Swedish Dome, which document former sea levels as base levels for the formation of peneplains. These results support the view

  1. A two-dimensional model of the passive coastal margin deep sedimentary carbon and methane cycles

    Directory of Open Access Journals (Sweden)

    D. E. Archer

    2012-03-01

    Full Text Available We present a new geologic-time and basin-spatial scale model of the continental margin methane cycle. The model, SpongeBOB, is used to simulate evolution of the carbon cycle in a passive sedimentary continental margin in response to changing oceanographic and geologic forcing over a time scale of 140 million years. The model is somewhat less sensitive to temperature than our previous results with a one-dimensional model, but is more sensitive to reasonable changes in POC than it is to reasonable changes in temperature. This behavior could lead to higher inventories of hydrate during hothouse climate conditions, rather than lower as generally assumed, due to the enrichment of the sediments in organic carbon. The hydrate inventory in the model is extremely sensitive to the ability of methane bubbles to rise within the sediment column, and how far gas-phase methane can get through the sediment column before it redissolves when it reaches undersaturated conditions. Hydrate formation is also sensitive to deep respiration of migrating petroleum in the model. The geochemistry of the sediment column is altered by the addition of vertical high-permeability chimneys intended to mimic the effects of heterogeneity in the real sediment column due to faults and chimneys, and produces results consistent with measured pore-water tracers SO42− and 129I. Pore water DIC concentrations are consistent with chemical weathering at depth within the sediment column. The carbon isotopic composition of the DIC is consistent with a methane production efficiency from POC of 50%, which is somewhat lower than redox balance with the H/C of organic matter in the model. Other phenomena which we simulated had only small impact on the hydrate inventory, including thermogenic methane, dissolved organic carbon, and sediment transport characteristics.

  2. A two-dimensional model of the passive coastal margin deep sedimentary carbon and methane cycles

    Directory of Open Access Journals (Sweden)

    D. E. Archer

    2012-08-01

    Full Text Available We present a new geologic-time and basin-spatial scale model of the continental margin methane cycle. The model, SpongeBOB, is used to simulate evolution of the carbon cycle in a passive sedimentary continental margin in response to changing oceanographic and geologic forcing over a time scale of 200 million years. The geochemistry of the sediment column is altered by the addition of vertical high-permeability channels intended to mimic the effects of heterogeneity in the real sediment column due to faults, and produces results consistent with measured pore-water tracers SO42− and 129I. Pore water dissolved inorganic carbon (DIC concentrations are consistent with chemical weathering (CaCO3 formation from igneous rocks at depth within the sediment column. The carbon isotopic composition of the DIC is consistent with a methane production efficiency from particulate organic carbon (POC of 50%, which is somewhat lower than redox balance with the H / C of organic matter in the model. The hydrate inventory in the model is somewhat less sensitive to temperature than our previous results with a one-dimensional model, quite sensitive to reasonable changes in POC, and extremely sensitive to the ability of methane bubbles to rise within the sediment column, and how far gas-phase methane can get through the sediment column before it redissolves when it reaches undersaturated conditions. Hydrate formation is also sensitive to deep respiration of migrating petroleum. Other phenomena which we simulated had only a small impact on the hydrate inventory, including thermogenic methane production and production/decomposition of dissolved organic carbon.

  3. The Mesoproterozoic to early Neoproterozoic passive margin Lajeado Group and Apiaí Gabbro, Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    G.A.C. Campanha

    2016-07-01

    Full Text Available The Lajeado Group in the Ribeira Belt, southeastern Brazil, corresponds to an open-sea carbonate platform, comprised of seven overlapping siliciclastic and carbonatic formations, intruded in its upper portion by the Apiaí Gabbro. These rocks have a Neoproterozoic tectonometamorphic overprint related to arc magmatism and the Brasiliano collisional orogeny. Geochronological constraints are given by new U-Pb SHRIMP and LA-ICP-MS data for Lajeado Group detrital zircons and for magmatic zircons from the Apiaí Gabbro. The youngest detrital zircons in the Lajeado Group are 1400–1200 Ma, and constrain its maximum age of deposition to be <1200 Ma, whereas the 877 ± 8 Ma age for magmatic zircons in the Apiaí Gabbro give the minimum age. Detritus source areas are mainly Paleoproterozoic (2200–1800 Ma with some Archean and Mesoproterozoic contribution (1500–1200 Ma, with distal or tectonic stable cratonic character. The Lajeado Group should be a Stenian–Tonian carbonate platform passive margin of a continent at this time, namely the Columbia/Nuna or the Rodinia. The Apiaí Gabbro displays similar age to other intrusive basic rocks in the Lajeado and Itaiacoca groups and represents tholeiitic MORB-like magmatism that we relate to the initial break-up of a Mesoproterozoic continent and the formation of the Brasiliano oceans.

  4. Dating fluid flow in developing passive margins using low-temperature thermochronology

    Science.gov (United States)

    Gleadow, A. J.; Seiler, C.; Kohn, B. P.

    2012-12-01

    Despite the importance of fluid flow for mass flux and remobilisation in the Earth's crust, the age of past fluid flow events is often difficult to determine, particularly in the low-temperature environment of the shallow crust. This is partly because mineral phases precipitated by low-temperature fluids are either lacking or not very easy to date. Low-temperature thermochronometers such as apatite fission track (AFT) and (U-Th)/He (AHe) systems are, in theory, ideally suited to investigate the temperature interval of hydrothermal fluids near the Earth's surface and could be used to date fluid flow in the shallow crust. In passive margins, however, rift-related faulting, exhumation and post-breakup erosion often result in a much stronger regional cooling signal that relates to tectonic events rather than fluid flow. Moreover, the response of low-temperature thermochronometers to transient and potentially short-lived thermal events associated with hydrothermal fluids has not been studied systematically and is poorly known. In this study, we report AFT and AHe results from two young, regionally important faults that were active at different stages of passive margin evolution in the Gulf of California rift system. In the first case, we investigate the thermal history of the Libertad fault in central Baja California, which represents the breakaway fault for Late Miocene to recent rifting. Regional background AFT and AHe ages range between ~60-35Ma, they predate rifting and are likely associated with steady erosional unroofing of the basement. In contrast, a closely spaced 3D grid of samples from the Libertad escarpment records a distinct Late Miocene thermal event at ~9-8Ma that can be traced several kilometres along the base and a few hundred metres up the escarpment face. In the second case, we collected a 2D grid of samples orthogonal to the Ballenas transform, a transform fault located ~3-5km offshore the coast of central Baja California that is part of the current

  5. Passive acoustic records of two vigorous bubble-plume methane seeps on the Oregon continental margin

    Science.gov (United States)

    Dziak, R. P.; Matsumoto, H.; Merle, S. G.; Embley, R. W.; Baumberger, T.; Hammond, S. R.

    2016-12-01

    We present preliminary analysis of the acoustic records of two bubble-plume methane seeps recorded by an autonomous hydrophone deployed during the E/V Nautilus expedition (NA072) in June 2016. The goal of the NA072 expedition was to use the Simrad 302 as a survey tool to map bubble plumes at a regional scale along the Oregon and northern California margins, followed by in situ investigation of bubble-plume sites using the ROV Hercules. The exploration carried out during NA072 resulted in the discovery of hundreds of new individual methane seep sites in water depths ranging from 125 to 1725 m depth. A Greenridge Acousonde 3B™ hydrophone was deployed via ROV within two vigorous bubble-plume sites. Despite persistent ship and ROV propeller noise, the acoustic signature of the bubble-plume can be seen in the hydrophone record as a broadband (0.5 - 4.5 kHz) series of short duration ( 0.2-0.5 msec) pulses that occur in clusters of dozens of pulses lasting 2-3 secs. Previous studies of the passive acoustics of seep bubble-plumes indicate sound is generated during bubble formation, where detachment of the gas bubble from the end of a tube or conduit causes the bubble to oscillate, producing sound. The peak frequency f (the zeroth oscillatory mode) and the bubble equivalent spherical radius r for a given pressure P are: f = (2πr)-1 [(3γP/ρ)]1/2 where γ is the ratio of gas specific heat at constant pressure to constant volume and ρ is the water density (Leifer and Tang, 2006). Thus the frequency of a bubble's oscillation is proportional to the bubble's volume, and therefore it may be possible to use our acoustic data to obtain an estimate of the volume of methane being released at these seafloor plume sites.

  6. Accretion of a rifted passive margin: The Late Paleozoic Rhenohercynian fold and thrust belt (Middle European Variscides)

    Science.gov (United States)

    Oncken, O.; von Winterfeld, C.; Dittmar, U.

    1999-02-01

    In the western Rhenish Massif, the Rhenohercynian fold and thrust belt of the Middle European Varsicides exposes a telescoped complete Devonian to Early Carboniferous passive margin. This permits the analysis of geometry and kinematic processes of passive margin accretion to an erogenic wedge. During Variscan collision (330-300 Ma), the sedimentary cover of the passive margin was shortened by some 50% or 180 km. Crustal scale balancing and restoration reveals a wide, symmetric rift with a central graben. A marginal plateau separated this failed Lower Devonian rift from an Emsian-Middle Devonian oceanic basin in the south, remnants of which are preserved in the southernmost imbricates and the Giessen-Harz nappes. The seismically well-imaged Aachen-Midi detachment (Faille du Midi) acted as the basal decollement of this thin- to thick-skinned orogenic wedge. It shows a ramp and flat geometry from the blind tip down to middle crustal levels. Owing to its position below the base of the basin fill, the thick synrift sequence and structure controlled structural evolution during contraction by localizing thrust branch lines and by inversion of rift structures, synthetic to the subduction direction, with formation of basement footwall shortcuts. Moreover, the three-dimensional detachment geometry shows large-scale oblique ramp-flat features which control the architecture of the belt and the distribution of metamorphic grade. Rocks and fabrics from the detachment show that the latter was located at the transition into the ductile field at the fossil 300°-400°C isotherm. In the restored section, the detachment trajectory displays a saucershaped geometry rising to the surface at the rear and at the front. This suggests that the basal detachment propagated into the passive margin by ductile failure during lithospheric flexure under the load of an advancing upper plate. The regional pattern of synkinematic metamorphic grade shows varying modes of margin accretion: basal

  7. A study on the geochemical characteristics of Upper Permian continental marginal arc volcanic rocks in the northern segment of South Lancangjiang Belt

    Institute of Scientific and Technical Information of China (English)

    SHEN Shangyue; FENG Qinglai; WEI Qirong; ZHANG Zhibin; ZHANG Hu

    2006-01-01

    Geochemical characteristics of the Upper Permian ( P2 ) continental marginal arc volcanic rocks are described, which have been found recently around the areas of Xiaodingxi and Zangli on the eastern side of the Yunxian-Lincang granite, in terms of rock assemblage, petrochemistry, REE, trace elements, Pb isotopes, geotectonic environment and so on. The volcanic rock assemblage is dominated by basalt-andesite-dacite, with minor trachyte andecite-trachyte; the volcanic rock series is predominated by the calc-alkaline series, with minor tholleiite series and alkaline series rocks; the volcanic rocks are characterized by high Al2O3 and low TiO2 , with K2O contents showing extremely strong polarity; the REE distribution patterns are characterized by LREE enrichment and right-inclined type; trace elements and large cation elements are highly enriched, Ti and Cr are depleted, and P and Nb are partially depleted; the Pb composition is of the Gondwana type; the petrochemical points mostly fall within the field of island-arc volcanic rocks, in consistency with the projection of data points of continental marginal volcanic rocks in the southern segment of the South Lancangjiang Belt and the North Lancangjiang Belt. This continental marginal arc volcanic rock belt, together with the ocean-ridge and ocean-island volcanic rocks and ophiolites in the Changning-Menglian Belt, constitute the ocean-ridge volcanic rock, ophiolite-arc rock-magmatic rock belts which are distributed in pairs, indicating that the Lancangjiang oceanic crust subducted eastwards. This result is of great importance in constraining the evolution of the paleo-Tethys in the Lancangjiang Belt.

  8. Transcurrent reactivation of Australia's western passive margin: An example of intraplate deformation from the central Indo-Australian plate

    Science.gov (United States)

    Hengesh, J. V.; Whitney, B. B.

    2016-05-01

    Australia's northwestern passive margin intersects the eastern termination of the Java trench segment of the Sunda arc subduction zone and the western termination of Timor trough along the Banda arc tectonic collision zone. Differential relative motion between the Sunda arc subduction zone and the Banda arc collision zone has reactivated the former rifted margin of northwestern Australia evidenced by Pliocene to Quaternary age deformation along a 1400 km long offshore fault system. The fault system has higher rates of seismicity than the adjacent nonextended crustal terranes, has produced the largest historical earthquake in Australia (1941 ML 7.3 Meeberrie event), and is dominated by focal mechanism solutions consistent with dextral motion along northeast trending fault planes. The faults crosscut late Miocene unconformities that are eroded across middle Miocene inversion structures suggesting multiple phases of Neogene and younger fault reactivation. Onset of deformation is consistent with the timing of the collision of the Scott Plateau part of the passive continental margin with the former Banda trench between 3.0 Ma and present. The range of estimated maximum horizontal slip rates across the zone is ~1.4 to 2.6 mm yr-1, at the threshold of geodetically detectable motion, yet significant with respect to an intraplate tectonic setting. The folding and faulting along this part of the continental margin provides an example of intraplate deformation resulting from kinematic transitions along a distant plate boundary and demonstrates the presence of a youthful evolving intraplate fault system within the Indo-Australian plate.

  9. Thermochronological data from northern Mozambique - an example for the cooling history of an orogen-passive margin system.

    Science.gov (United States)

    Emmel, Benjamin; Kumar, Rajeev; Daszinnies, Matthias; Ueda, Kosuke; Jacobs, Joachim; Matola, Rogerio

    2010-05-01

    On a global scale, most passive margins are located within crustal segments which were stressed by compressive tectonics and crustal thickening in their previous geological past. These margin types can be referred as "orogen - passive continental margin systems". There older orogenic structural anisotropies were reactivated during the later passive margin formation. Even so, inherited structures seem to have a dominant control on continental break-up kinematics, the coherence between orogen related structures and the post-orogenic thermo-tectonic evolution during continental break-up is insufficiently studied and documented. Here, we focus on the metamorphic basement of northern Mozambique which represents the remnant of a deeply eroded orogen [Viola et al., 2008]. Today, its mid-crustal roots are exposed to surface conditions displaying metamorphic basement rocks with well defined structural anisotropies like ductile high strain zones or major shear zones (e.g., the Lurio Belt). We present a conceptual model to describe the post Pan-African (Mozambique. The cooling history is derived from combined low-temperature thermochronological data comprising of titanite (T), zircon (Z) and apatite (A) fission track (FT) data with ages spanning from ca. 580 to 220 Ma (TFT), 390 to 170 Ma (ZFT) and 330 to 60 Ma (AFT). All thermochronometers were used to model inverse cooling paths for basement rocks. After fast post orogenic cooling (>15 °CMyr-1) the basement was mainly affected by extensional tectonics and relatively slow cooling of max 4.5 to 2 °CMyr-1. Basement rock cooling was the response to rifting between northern Mozambique and fragments of East Gondwana guiding the opening of the Rovuma and Mozambique sedimentary basins. Thereby, totally different margin and basin types evolved. The Rovuma margin represents a transpressional margin were Jurassic tectonic denudation along the margin was localised in a narrow zone (~30 km). In contrast, the Jurassic

  10. The unzipping of Africa and South America; New insights from the Etendeka and younger volcanic events along the Angola/Namibia margin.

    Science.gov (United States)

    Jerram, D. A.

    2015-12-01

    The volcanic margin along Angola is relatively poorly constrained. This study uses new petrographic, geochronological and geochemical observations on a new sample set collected along the margin to help understand the various types and relative timings of volcanic events along the margin. This new study has identified 3 main volcanic events that occur at ~100Ma (Sumbe event 1), 90-92Ma (Serra de Neve (SDN)-Elefantes event 2) and 80-81Ma (Namibe event 3), with the oldest event in the north of the margin and younging southwards. This is contrasting with the main Etendeka pulse in Namibia at around 130 Ma. There is a marked variety of igneous rocks along the margin with a grouping of evolved alkaline rocks in the central SDN-Elefantes section, basic submarine volcanics in the north, and basanite eruptions in the southern section. There is some overlap with geochemical types along the margin. The Sumbe event contains predominantly submarine volcanics and shallow Intrusions. SDN-Elefantes rocks have a mixed type but with a distinctive feldspar rich evolved alkali suite of rocks (nepheline syenites and variations around this composition) which occur as lava flows and shallow intrusions as well as making up the core of the SDN complex. The SDN complex itself is analogous in size to the main volcanic centres in Namibia (such as Messum, Brandberg etc.) and suggests that large volcanic feeding centres are still active along the margin as young as 90ma. These in turn will form large volcano-topographic features. In the south the Ponta Negra and Canico sites mainly contain basanites in the form of lava flows, invasive flows and shallow intrusions. At Canico one intrusive plug was sampled with a similar composition to the evolved SDN-Elefantes suite. In all three events it is clear that the volcanic systems have interacted with the sedimentary systems, in some cases dynamically, in others with regional implications for volcano-tectonic uplift. Specific thanks is given for

  11. A new view into the Cascadia subduction zone and volcanic arc: Implications for earthquake hazards along the Washington margin

    Science.gov (United States)

    Parsons, T.; Trehu, A.M.; Luetgert, J.H.; Miller, K.; Kilbride, F.; Wells, R.E.; Fisher, M.A.; Flueh, E.; ten Brink, U.S.; Christensen, N.I.

    1998-01-01

    In light of suggestions that the Cascadia subduction margin may pose a significant seismic hazard for the highly populated Pacific Northwest region of the United States, the U.S. Geological Survey (USGS), the Research Center for Marine Geosciences (GEOMAR), and university collaborators collected and interpreted a 530-km-long wide-angle onshore-offshore seismic transect across the subduction zone and volcanic arc to study the major structures that contribute to seismogenic deformation. We observed (1) an increase in the dip of the Juan de Fuca slab from 2??-7?? to 12?? where it encounters a 20-km-thick block of the Siletz terrane or other accreted oceanic crust, (2) a distinct transition from Siletz crust into Cascade arc crust that coincides with the Mount St. Helens seismic zone, supporting the idea that the mafic Siletz block focuses seismic deformation at its edges, and (3) a crustal root (35-45 km deep) beneath the Cascade Range, with thinner crust (30-35 km) east of the volcanic arc beneath the Columbia Plateau flood basalt province. From the measured crustal structure and subduction geometry, we identify two zones that may concentrate future seismic activity: (1) a broad (because of the shallow dip), possibly locked part of the interplate contact that extends from ???25 km depth beneath the coastline to perhaps as far west as the deformation front ???120 km offshore and (2) a crustal zone at the eastern boundary between the Siletz terrane and the Cascade Range.

  12. Treatment of Passive Component Reliability in Risk-Informed Safety Margin Characterization FY 2010 Report

    Energy Technology Data Exchange (ETDEWEB)

    Robert W Youngblood

    2010-09-01

    The Risk-Informed Safety Margin Characterization (RISMC) pathway is a set of activities defined under the U.S. Department of Energy (DOE) Light Water Reactor Sustainability Program. The overarching objective of RISMC is to support plant life-extension decision-making by providing a state-of-knowledge characterization of safety margins in key systems, structures, and components (SSCs). A technical challenge at the core of this effort is to establish the conceptual and technical feasibility of analyzing safety margin in a risk-informed way, which, unlike conventionally defined deterministic margin analysis, is founded on probabilistic characterizations of SSC performance.

  13. Geochemical and isotopic characteristics of volcanic rocks from the northern East China Sea shelf margin and the Okinawa Trough

    Institute of Scientific and Technical Information of China (English)

    ZENG Zhigang; YU Shaoxiong; WANG Xiaoyuan; FU Yongtao; YIN Xuebo; ZHANG Guoliang; WANG Xiaomei; CHEN Shuai

    2010-01-01

    Volcanic rocks both from the northern East China Sea (NECS) shelf margin and the northern Okinawa Trough are subalkaline less aluminous,and lower in High Field Strength Elements (HFSE).These rocks are higher in Large Ion Lithophile Elements (LILE),thorium and uranium contents,positive lead anomalies,negative Nb-Ta anomalies,and enrichment in Light Rare Earth Elements (LREE).Basalts from the NECS shelf margin are akin to Indian Ocean Mid-Ocean Ridge Basalt (MORB),and rhyolites from the northern Okinawa Trough have the highest 207Pb/204Pb and 208Pb/204Pb ratios.The NECS shelf margin basalts have lower 87Sr/86Sr ratios,εNd and σ18O than the northern Okinawa Trough silicic rocks.According to 40K-40Ar isotopic ages of basalts from the NECS shelf margin,rifting of the Okinawa Trough may have been active since at least 3.65-3.86 Ma.The origin of the NECS shelf margin basalt can be explained by the interaction of melt derived from Indian Ocean MORB-like mantle with enriched subcontinental lithosphere.The basalts from both sides of the Okinawa Trough may have a similar origin during the initial rifting of the Okinawa Trough,and the formation of basaltic magmas closely relates to the thinning of continental crust.The source of the formation of the northern Okinawa Trough silicic rocks was different from that of the middle Okinawa Trough,which could have been generated by the interaction of basaltic melt with an enriched crustal component.From the Ryukyu island arc to East China,the Cenozoic basalts have apparently increasing trends of MgO contents and ratios of LREE to Heavy Rare Earth Elements (HREE),suggesting that the trace element variabilities of basalts may have been influenced by the subduction of the Philippine Sea plate,and that the effects of subduction of the Philippine Sea plate on the chemical composition of basaltic melts have had a decreasing effect from the Ryukyu island arc to East China.

  14. The Neotethyan Sanandaj-Sirjan zone of Iran as an archetype for passive margin-arc transitions

    Science.gov (United States)

    Hassanzadeh, Jamshid; Wernicke, Brian P.

    2016-03-01

    The Sanandaj-Sirjan zone of Iran is a northwest trending orogenic belt immediately north of the Zagros suture, which represents the former position of the Neotethys Ocean. The zone contains the most extensive, best preserved record of key events in the formation and evolution of the Neotethys, from its birth in Late Paleozoic time through its demise during the mid-Tertiary collision of Arabia with Eurasia. The record includes rifting of continental fragments off of the northern margin of Gondwanaland, formation of facing passive continental margins, initiation of subduction along the northern margin, and progressive development of a continental magmatic arc. The latter two of these events are critical phases of the Wilson Cycle that, elsewhere in the world, are poorly preserved in the geologic record because of superimposed events. Our new synthesis reaffirms the similarity between this zone and various terranes to the north in Central Iran. Late Paleozoic rifting, preserved as A-type granites and accelerated subsidence, was followed by a phase of pronounced subsidence and shallow marine sedimentation in Permian through Triassic time, marking the formation and evolution of passive margins on both sides of the suture. Subduction and arc magmatism began in latest Triassic/Early Jurassic time, culminating at ~170 Ma. The extinction of arc magmatism in this zone, and its shift northeastward to form the subparallel Urumieh-Dokhtar arc, occurred diachronously along strike, in Late Cretaceous or Paleogene time. Post-Cretaceous uplift transformed the zone from a primarily marine borderland into a marine archipelago that persisted until mid-Tertiary time.

  15. Geochemical characteristics of Bikou volcanic group and Sr-Nd-Pb isotopic composition: Evidence for breakup event in the north margin of Yangtze plate, Jining era

    Institute of Scientific and Technical Information of China (English)

    LI; YongFei; LAI; ShaoCong; QIN; JiangFeng; LIU; Xin; WANG; Juan

    2007-01-01

    The geodynamic setting of the Bikou volcanic group is a critical question to trace the Precambrain tectonic framework and evolution for the Yangtze plate. This study has suggested that the Bikou volcanic group is composed of several residual oceanic crust units: MORB (mid-ocean ridge basalt), Alk-OIB (alkaline ocean island basalt) and Th-OIB (tholeiitic ocean island basalt) as well as subduction-related volcanic rocks. According to field observation, those distinct rocks occurred collectively in form of tectonic contact, implying that the Bikou volcanic group was an ophiolitic mélange. Coupled with geochronological data, a perished oceanic basin at the northern margin of the Yangtze block during Neoproterozoic was tested by this ophiolitic mélange. Meanwhile, the isogeochemical data suggest that the ocean occurred in the Southern Hemisphere identical to Indian, South Atlantic and South Pacific oceans in terms of their Dupal anomalies, and the original source of the rocks could be probably mixing by EMⅠand EMⅡ component caused by dehydration melting of subducting oceanic crust during subduction process. On the basis of geochemical characteristics of the studied rocks, the Bikou volcanic group could imply that a partial breakup event occurred in the northern margin of Yangtze plate during the Neoproterozoic era.

  16. The Eastern Sardinian Margin (Tyrrhenian Sea, Western Mediterranean) : a key area to study the rifting and post-breakup evolution of a back-arc passive continental margin

    Science.gov (United States)

    Gaullier, Virginie; Chanier, Frank; Vendeville, Bruno; Maillard, Agnès; Thinon, Isabelle; Graveleau, Fabien; Lofi, Johanna; Sage, Françoise

    2016-04-01

    The Eastern Sardinian passive continental margin formed during the opening of the Tyrrhenian Sea, which is a back-arc basin created by continental rifting and oceanic spreading related to the eastward migrating Apennine subduction system (middle Miocene to Pliocene). Up to now, rifting in this key area was considered to be pro parte coeval with the Messinian Salinity Crisis (MSC, 5.96-5.32 Ma). We use the MSC seismic markers and the deformation of viscous salt and its brittle overburden as proxies to better delineate the timing of rifting and post-rift reactivation, and especially to quantify vertical and horizontal movements. On this young, highly-segmented margin, the Messinian Erosion Surface and the Upper and Mobile Units are systematically associated, respectively, to basement highs and deeper basins, showing that a rifted deep-sea domain already existed by Messinian times, therefore a major pre-MSC rifting episode occurred across the entire domain. Data show that there are no signs of Messinian syn-rift sediments, hence no evidence for rifting after Late Tortonian times. Moreover, because salt tectonics creates fan-shaped geometries in sediments, syn-rift deposits have to be carefully re-examined to distinguish the effects of crustal tectonics (rifting) and salt tectonics. We also precise that rifting is clearly diachronous from the upper margin (East-Sardinia Basin) to the lower margin (Cornaglia Terrace) with two unconformities, attributed respectively to the necking and to the lithospheric breakup unconformities. The onshore part of the upper margin has been recently investigated in order to characterize the large crustal faults affecting the Mesozoic series (geometry, kinematics and chronology) and to decipher the role of the structural inheritance and of the early rifting. Seaward, we also try to constrain the architecture and timing of the continent-ocean transition, between the hyper-extended continental crust and the first oceanic crust. Widespread

  17. Pangea break-up: from passive to active margin in the Colombian Caribbean Realm

    Science.gov (United States)

    Gómez, Cristhian; Kammer, Andreas

    2017-04-01

    The break-up of Western Pangea has lead to a back-arc type tectonic setting along the periphery of Gondwana, with the generation of syn-rift basins filled with sedimentary and volcanic sequences during the Middle to Late Triassic. The Indios and Corual formations in the Santa Marta massif of Northern Andes were deposited in this setting. In this contribution we elaborate a stratigraphic model for both the Indios and Corual formations, based on the description and classification of sedimentary facies and their architecture and a provenance analysis. Furthermore, geotectonic environments for volcanic and volcanoclastic rock of both units are postulated. The Indios Formation is a shallow-marine syn-rift basin fill and contains gravity flows deposits. This unit is divided into three segments; the lower and upper segments are related to fan-deltas, while the middle segment is associated to offshore deposits with lobe incursions of submarine fans. Volcanoclastic and volcanic rocks of the Indios and Corual formations are bimodal in composition and are associated to alkaline basalts. Volcanogenic deposits comprise debris, pyroclastic and lava flows of both effusive and explosive eruptions. These units record multiple phases of rifting and reveal together a first stage in the break-up of Pangea during Middle and Late Triassic in North Colombia.

  18. Characterization of the Hydrothermal System of the Tinguiririca Volcanic Complex, Central Chile, using Structural Geology and Passive Seismic Tomography

    Science.gov (United States)

    Pavez Orrego, Claudia; Tapia, Felipe; Comte, Diana; Gutierrez, Francisco; Lira, Elías; Charrier, Reynaldo; Benavente, Oscar

    2016-04-01

    A structural characterization of the hydrothermal-volcanic field associated with the Tinguiririca Volcanic Complex had been performed by combining passive seismic tomography and structural geology. This complex corresponds to a 20 km long succession of N25°E oriented of eruptive centers, currently showing several thermal manifestations distributed throughout the area. The structural behavior of this zone is controlled by the El Fierro - El Diablo fault system, corresponding to a high angle reverse faults of Oligocene - Miocene age. In this area, a temporary seismic network with 16 short-period stations was setup from January to April of 2010, in the context of the MSc thesis of Lira- Energía Andina (2010), covering an area of 200 km2 that corresponds with the hydrothermal field of Tinguiririca Volcanic Complex (TVC), Central Chile, Southern Central Andes. Using P- and S- wave arrival times, a 3D seismic velocity tomography was performed. High Vp/Vs ratios are interpreted as zones with high hot fluid content and high fracturing. Meanwhile, low Vp/Vs anomalies could represent the magmatic reservoir and the conduit network associated to the fluid mobility. Based on structural information and thermal manifestations, these anomalies have been interpreted. In order to visualize the relation between local geology and the velocity model, the volume associated with the magma reservoir and the fluid circulation network has been delimited using an iso-value contour of Vp/Vs equal to 1.70. The most prominent observed feature in the obtained model is a large "V" shaped low - velocity anomaly extending along the entire study region and having the same vergency and orientation as the existing high-angle inverse faults, which corroborates that El Fierro - El Diablo fault system represents the local control for fluid mobility. This geometry coincides with surface hydrothermal manifestations and with available geochemical information of the area, which allowed us to generate a

  19. Crustal structure of the SW Iberian passive margin: The westernmost remnant of the Ligurian Tethys?

    Science.gov (United States)

    Ramos, A.; Fernández, O.; Torne, M.; Sánchez de la Muela, A.; Muñoz, J. A.; Terrinha, P.; Manatschal, G.; Salas, M. C.

    2017-05-01

    At present, the SW Iberian margin is located along the convergent Iberia-Nubia plate boundary. In Mesozoic times, the margin was located at the triple junction of the Ligurian Tethys, Central Atlantic and Northern Atlantic. The characterization of its crustal structure has allowed us to propose a configuration for this triple junction and to determine the role that this transform margin played within the plate kinematic system. In this paper we present an integrated study based on the interpretation of a 2D regional multichannel seismic survey consisting of 58 profiles, tied with onshore geology and exploratory wells, and on gravimetric modeling performed over four NW-SE trending profiles. Integrated interpretation of MCS data combined with 2D gravity modeling reveals a complex pattern in the southward crustal thinning of SW Iberia and supports the possible presence of oceanic crust under the Gulf of Cadiz. The tapering of Iberian crust is characterized by steps with rapid changes in the thickness of the crust, and thinning to Bank. Margin inversion and the pre-existing extensional crustal structure are responsible for the areal distribution and amplitude of the prominent positive gravity anomaly observed in the Gulf of Cadiz.

  20. Seismicity pattern: an indicator of source region of volcanism at convergent plate margins

    Science.gov (United States)

    Špičák, Aleš; Hanuš, Václav; Vaněk, Jiří

    2004-04-01

    The results of detailed investigation into the geometry of distribution of earthquakes around and below the volcanoes Korovin, Cleveland, Makushin, Yake-Dake, Oshima, Lewotobi, Fuego, Sangay, Nisyros and Montagne Pelée at convergent plate margins are presented. The ISC hypocentral determinations for the period 1964-1999, based on data of global seismic network and relocated by Engdahl, van der Hilst and Buland, have been used. The aim of this study has been to contribute to the solution of the problem of location of source regions of primary magma for calc-alkaline volcanoes spatially and genetically related to the process of subduction. Several specific features of seismicity pattern were revealed in this context. (i) A clear occurrence of the intermediate-depth aseismic gap (IDAG) in the Wadati-Benioff zone (WBZ) below all investigated active volcanoes. We interpret this part of the subducted slab, which does not contain any teleseismically recorded earthquake with magnitude greater than 4.0, as a partially melted domain of oceanic lithosphere and as a possible source of primary magma for calc-alkaline volcanoes. (ii) A set of earthquakes in the shape of a seismically active column (SAC) seems to exists in the continental wedge below volcanoes Korovin, Makushin and Sangay. The seismically active columns probably reach from the Earth surface down to the aseismic gap in the Wadati-Benioff zone. This points to the possibility that the upper mantle overlying the subducted slab does not contain large melted domains, displays an intense fracturing and is not likely to represent the site of magma generation. (iii) In the continental wedge below the volcanoes Cleveland, Fuego, Nisyros, Yake-Dake, Oshima and Lewotobi, shallow seismicity occurs down to the depth of 50 km. The domain without any earthquakes between the shallow seismically active column and the aseismic gap in the Wadati-Benioff zone in the depth range of 50-100 km does not exclude the melting of the mantle

  1. Permian volcanisms in eastern and southeastern margins of the Jiamusi Massif, northeastern China: zircon U-Pb chronology, geochemistry and its tectonic implications

    Institute of Scientific and Technical Information of China (English)

    MENG En; XU WenLiang; YANG DeBin; PEI FuPing; Yu Yang; Zhang XingZhou

    2008-01-01

    LA-ICP-MS zircon U-Pb dating and geochemical data for the Late Paleozoic volcanic rocks from eastern and southeastern margins of the Jiamusi Massif are presented to understand the regional tectonic evolution. Zircons from eight representative volcanic rocks are euhedral-subhedral in shape and dis-play striped absorption and fine-scale oscillatory growth zoning as well as high Th/U ratios (0.33-2.37), implying a magmatic origin. The dating results show that the Late Paleozoic volcanic rocks in the study area can be divided into two stages, I.e., the Early Permian (a weighted mean 206pb/238U age of 288 Ma) and the Middle Permian volcanisms (a weighted mean 206Pb/238U age of 268 Ma). The former is com-posed mainly of basalt, basaltic-andesite, andesite and minor dacite. They are characterized by low SiO2 contents, high Mg# (0.40-0.59), enrichment in Na (Na2O/K2O = 1.26-4.25) and light rare earth elements (LREEs), relative depletion in heavy rare earth elements (HREEs) and high field strength ele-ments (HFSEs), indicating that an active continental margin setting could exist in the eastern margin of the Jiamusi Massif in the Early Permian. The latter consists mainly of rhyolite and minor dacite with high SiO2 (77.23%-77.52%), low MgO (0.11%-0.14%), enrichment in K2O (Na2O/K2O ratios <0.80) and Rb, Th, U and depletion in Eu, Sr, P and Ti, implying a crust-derived origin. Therefore, it is proposed that the Middle Permian volcanic rocks could have formed under the collision of the Jiamusi and the Khanka Massifs.

  2. Thermochronological history of an orogen-passive margin system: An example from northern Mozambique

    Science.gov (United States)

    Emmel, B.; Kumar, R.; Ueda, K.; Jacobs, J.; Daszinnies, M. C.; Thomas, R. J.; Matola, R.

    2011-04-01

    In this paper, we present a conceptual model to describe the post-Pan-African (Mozambique. The cooling history is derived from combined low-temperature thermochronological dating methods comprising titanite, zircon and apatite fission track data. After Pan-African orogenesis (˜620-530 Ma) the Precambrian basement was subject to extensional tectonics and a relatively slow Lower Ordovician to Recent cooling with rates of ˜2.2°C to 0.1°C Myr-1. Basement rock cooling was mainly a response to Late Paleozoic to Mesozoic rifting between northern Mozambique and East Gondwana during the opening of the Rovuma and Mozambique sedimentary basins. Meanwhile, different dynamic margin and basin types evolved along the eastern and southern continental margins of NE Mozambique. During the Late Carboniferous-Triassic an intracontinental rift opened between NE Mozambique and East Antarctica, and the fastest denudation was focused along the present southern continental margin. Since the Middle Jurassic, tectonic denudation along the Rovuma margin was localized in a narrow zone, some 30 km wide, associated with erosion along strike-slip faults. In contrast, the Jurassic-Cretaceous opening and ocean crust formation in the Mozambique Basin were accompanied with an unusually uniform Late Cretaceous cooling pattern over a large area (˜150,000 km2) of the basin hinterland. This pattern can be explained by isostatic and erosional response to magmatic underplating or differential stretching, whereby the old Pan-African lithospheric structure appears to have important controls on later events.

  3. A convergent continent marginal volcanism source of ash beds near the Permian-Triassic boundary, South China: Constraints from trace elements and Hf-isotopes

    Science.gov (United States)

    Wang, X.; Zhao, L.; Chen, Z. Q.; Ma, D.; Yan, P.; Guo, F.; Wang, F.; Wan, Q.; Han, X.

    2015-12-01

    convergence. Integration of Hf-isotope and trace-element compositions of magmatic zircons suggests that the PTB volcanisms have taken place along the convergent continent margin in or near southwestern South China as a result of the closure of the Palaeo-Tethys Ocean at that time.

  4. Long-term landscape evolution of the South Atlantic passive continental margin along the Kaoko- and Damara Belts, NW-Namibia

    Science.gov (United States)

    Menges, Daniel; Glasmacher, Ulrich Anton; Hackspacher, Peter; Schneider, Gabriele; Salomon, Eric

    2015-04-01

    same AFT-age range within error, between 103.5±4.9 and 108.0±5.6 Ma. The oldest ages are revealed from metamorphic rocks of the Damara Group as well as sandstones and glacial deposits of the Permo-Carboniferous Karoo series. References 1. Goscombe, B. D., Gray, D. R., 2008. Structure and strain variation at mid-crustal levels in a transpressional orogen: A review of Kaoko Belt structure and the character of west Gondwana amalgamation and dispersal. Gondwana Res. 13, 45-85. 2. Clemson, J., Cartwright, J., Booth, J., 1997. Structural segmentation and the influence of basement structure on the Namibian passive margin. J. Geol. Soc. London 154, 477-482. 3. Miller, R.M., 1983. Evolution of the Damara Orogen, Vol. 11, Geol. Soc., South Africa Spec. Pub.. 4. Coward, M.P., Daly, M.C., 1984. Crustal lineaments and shear zones in Africa: Their relationships to plate movements, Precambrian Research 24: 27-45. 5. Stollhofen, H., 1999. Karoo Synrift-Sedimentation und ihre tektonische Kontrolle am entstehenden Kontinentalrand Namibias, Z.dt.geol.Ges. 149: 519-632. 6. Duncan, R., Hooper, P., Rehacek, J., March, J., Duncan, A., 1997. The timing and duration of the Karoo igneous event, southern Gondwana, J. Geophy. Res. 102: 18127-18138. 7. Renne, P.R., Glen, J.M., Milner, S.C., Duncan, A.R., 1996. Age of Etendeka flood volcanism and associated intrusions in southwestern Africa, Geology 24 (7): 659- 662. 8. Watkins, R.T., McDougall, I., le Roex, A. P., 1994. K-Ar ages of the Brandberg and Okenenya igneous complexes, north-western Namibia, Geol. Rund. 83: 348-356. 9. Ward, J.D., 1988. Geology of the Tsondab Sandstone Formation, Journal of Sedimentary Geology 55: 143-162. 10. Senut, B., Pickford, M., 1995. Fossil eggs and Cenozoic continental biostratigraphy of Namibia, Pal. Afr.,32: 33-37. 11. Gilchrist, A.R., Kooi, H., Beaumont, C.,1994. Post Gondwana geomorphic evolution of southwestern Africa: Implications for the controls on landscape development from observations and numerical

  5. Tectonostratigraphic evolution of Cenozoic marginal basin and continental margin successions in the Bone Mountains, Southwest Sulawesi, Indonesia

    Science.gov (United States)

    van Leeuwen, Theo M.; Susanto, Eko S.; Maryanto, Sigit; Hadiwisastra, Sapri; Sudijono; Muhardjo; Prihardjo

    2010-06-01

    The Bone Mountains, located in Southwest Sulawesi along the SE margin of Sundaland, are composed of Oligocene to possibly lower Miocene marginal basin successions (Bone Group) that are juxtaposed against continental margin assemblages of Eocene-Miocene age (Salokalupang Group). Three distinct units make up the latter: (i) Middle-Upper Eocene volcaniclastic sediments with volcanic and limestone intercalations in the upper part (Matajang Formation), reflecting a period of arc volcanism and carbonate development along the Sundaland margin; (ii) a well-bedded series of Oligocene calc-arenites (Karopa Formation), deposited in a passive margin environment following cessation of volcanic activity, and (iii) a series of Lower-Middle Miocene sedimentary rocks, in part turbiditic, which interfinger in the upper part with volcaniclastic and volcanic rocks of potassic affinity (Baco Formation), formed in an extensional regime without subduction. The Bone Group consists of MORB-like volcanics, showing weak to moderate subduction signatures (Kalamiseng Formation), and a series of interbedded hemipelagic mudstones and volcanics (Deko Formation). The Deko volcanics are in part subduction-related and in part formed from melting of a basaltic precursor in the overriding crust. We postulate that the Bone Group rocks formed in a transtensional marginal basin bordered by a transform passive margin to the west (Sundaland) and by a newly initiated westerly-dipping subduction zone on its eastern side. Around 14-13 Ma an extensional tectonic event began in SW Sulawesi, characterized by widespread block-faulting and the onset of potassic volcanism. It reached its peak about 1 Ma year later with the juxtaposition of the Bone Group against the Salokalupang Group along a major strike-slip fault (Walanae Fault Zone). The latter group was sliced up in variously-sized fragments, tilted and locally folded. Potassic volcanism continued up to the end of the Pliocene, and locally into the Quaternary.

  6. Thermal history from both sides of the South Atlantic passive margin - A comparison: Argentinean pampa vs. South African escarpement.

    Science.gov (United States)

    Kollenz, Sebastian; Glasmacher, Ulrich A.

    2014-05-01

    The eastern Argentina South Atlantic passive continental margin is distinguished by a very flat topography. Out of the so called Pampean flat two mountain ranges are arising. These mountain ranges, the Sierras Australes and the Sierras Septentrionales, are located in the State of Buenos Aires south of the capital Buenos Aires. In existing literature the Sierras Australes are correlated with the South African cape fold belt (Torsvik 2009; Lopez Gamundi & Rossello 1998). Existing thermochronological data shows different post-breakup cooling histories for both areas and different AFT-ages. Published thermochronological ages (e.g. Raab et al. 2002, 2005, Gallagher et al et al. 1998)from the south African escarpement vary around 150 and 100 Ma (Gallagher et al. 1998). Only some spots in the eastern part of South Africa towards the pacific margin show older ages of 250 Ma and older than 350 Ma (Gallagher et al. 1998). New thermochronological data (AHe, AFT and ZHe) from the Sierras Australes indicate a different cooling history by revealing a range of varying ages due to younger tectonic activity. By comparing the data sets from both areas it is getting clear that the post-rift evolution of both continents is differing very strong. Gallagher, K., Brown, R. and Johnson, C. 1998. Fission track analysis and its application to geological problems. Annual review of Earth and Planetary Science, 26, 519-572. Lopez Gamundi, O.R., Rossello, E.A. (1998): Basin fill evolution and paleotectonic patterns along the Samfrau geosyncline: the Sauce Grande basin-Ventana foldbelt (Argentina) and Karoo basin-Cape foldbelt (South Africa) revisited. Geol Rundsch 86 :819-834. Raab, M.J., Brown, R.W., Gallagher, K., Carter, A. and Webber, K. 2002. late Cretaceous reactivation of major crustal shear zones in northern Namibia: constraints from apatite fission track analysis. Tectonophysics. 349, 75-92. Raab, M.J., Brown, R.W., Gallagher, K., Webber, K. and Gleadow, A.J.W. 2005. denudational and

  7. Neotectonic regime on the passive continental margin of the northern South China Sea

    Science.gov (United States)

    Lüdmann, Thomas; Wong, How Kin

    1999-09-01

    Between 1989 and 1994, more than 6600 km of reflection seismic profiles were obtained in the South China Sea off Hong Kong with the German research vessel Sonne during cruises SO-50B, SO-72A and SO-95. A seismo-stratigraphic interpretation of this data set leads to a new age assignment of the unconformity T 0 which we place within the Pleistocene. Both Neogene unconformities T 1 and T 0 are generated by uplift of the Dongsha Rise and truncation of their overlying strata. This uplift is caused by intrusion of magma into the upper crust. Our seismic profiles show plutons which have penetrated the sedimentary cover, whereby their original stratification in the contact zone is eliminated. These magmato-tectonic events may be correlated to the two main collision phases between Taiwan and the continental margin of East China 5-3 and 3-0 ma ago. The collisional events subsequent to the NNW to WNW drift of Taiwan transformed the compression into strike-slip movements along the continental margin of Southeastern China. The accompanying stress regime is transtensional, with subsidence of the cooling oceanic crust since the cessation of rifting and its consumption beneath the Manila Trench providing the extensional stress. The strike-slip movements remobilized many of the rift and drift faults providing pathways for magma ascent. The tectonic framework of the northern South China Sea is characterized by Miocene faults trending NE-SW. These faults are scarce but are distributed throughout the study area. Pliocene faults striking ENE-WSW to NE-SW are concentrated west of the Dongsha Islands and are mostly strike-slip in character. Recent faults are generally oriented NE-SW subparallel to the synrift faults. They result in part from local uplifts where they are normal in character, but strike-slip motion also occurs. Most of the faults involve the basement and represent reactivated zones of weakness of the rift and drift phases.

  8. The LATEA metacraton (Central Hoggar, Tuareg shield, Algeria): behaviour of an old passive margin during the Pan-African orogeny

    Science.gov (United States)

    Liégeois, Jean Paul; Latouche, Louis; Boughrara, Mustapha; Navez, Jacques; Guiraud, Michel

    2003-10-01

    Historically, the Tuareg shield is divided into three parts bordered by mega-shear zones with the centre, the Central Polycyclic Hoggar, characterized by Archaean and Palaeoproterozoic lithologies. Nearly 10 years ago, the Tuareg shield was shown to be composed of 23 displaced terranes [Geology 22 (1994) 641] whose relationships were deciphered in Aı̈r to the SE [Precambr. Res. 67 (1994) 59]. The Polycyclic Central Hoggar terranes were characterized by the presence of well preserved Archaean/Palaeoproterozoic and Neoproterozoic lithologies. We show here that the terranes from Central Hoggar (Laouni, Azrou-n-Fad, Tefedest, Egéré-Aleksod) belonged to a single old passive margin, to which we gave the acronym name LATEA, which behaved as a craton during the Mesoproterozoic and the Early-Middle Neoproterozoic but was partly destabilized and dissected during the Late Neoproterozoic as a consequence of its involvement as a passive margin in the Pan-African orogen. An early Pan-African phase consisted of thrust sheets including garnet-bearing lithologies (eclogite, amphibolite, gneiss) that can be mapped and correlated in three LATEA terranes. In the Tin Begane area, P- T- t paths have been established from >15 kbar--790 °C (eclogite) to 4 kbar--500 °C (greenschist retrogression) through 12 kbar--830 °C (garnet amphibolite) and 8 kbar--700 °C (garnet gneiss), corresponding to the retrograde path of a Franciscan-type loop. Sm-Nd geochronology on minerals and laser ablation ICP-MS on garnet show the mobility of REE, particularly LREE, during the retrograde greenschist facies that affects, although slightly, some of these rocks. The amphibolite-facies metamorphism has been dated at 685 ± 19 Ma and the greenschist facies at 522 ± 27 Ma. During the thrust phase, the Archaean-Palaeoproterozoic basement was only locally affected by the Pan-African tectonics. LATEA behaved as a craton. Other juvenile terranes were also thrust early onto LATEA: the Iskel island arc at

  9. Petrogenesis of the Neoproterozoic bimodal volcanic rocks along the western margin of the Yangtze Block: New constraints from Hf isotopes and Fe/Mn ratios

    Institute of Scientific and Technical Information of China (English)

    LI Xianhua; QI Changshi; LIU Ying; LIANG Xirong; TU Xianglin; XIE Liewen; YANG Yueheng

    2005-01-01

    High-precision major element and Hf isotope data are reported for the Neoproterozoic Suxiong volcanic rocks along the western margin of the Yangtze Block. These volcanic rocks have variable εHf(T) values and Fe/Mn ratios. The relatively primitive basalts have high Fe/Mn ratios and high Hf-Nd isotopic compositions, indicating that they were generated by partial melting of garnet clinopyroxene in mantle plume at high pressure. Thus, the Suxiong basalts are genetically related to the proposed Neoproterozoic superplume. On the contrary, a few differentiated basalts have low Fe/Mn ratios and low Hf-Nd isotopic compositions. They are likely to experience assimilation-fractional crystallization process. The Suxiong rhyolites have consistent Hf and Nd model ages of 1.3-1.4 Ga. They are likely generated by shallow dehydration melting of pre-existing young arc igneous rocks associated with the basaltic underplating/intrusion in a continental rift.

  10. A Late Cambrian Carbon Isotope Excursion Recorded in Passive Margin Dolostones of the Central Appalachian Basin, USA.

    Science.gov (United States)

    Mackey, J. E.; Stewart, B. W.

    2016-12-01

    A Late Cambrian global positive carbon isotope excursion, known as the SPICE event [1,2] is linked to possible widespread ocean anoxia and enhanced carbon burial [3,4]. We report data from the central Appalachian Conasauga Group from the upper portion of the Middle Cambrian Maryville limestone, through the Late Cambrian Nolichucky shale and Maynardville limestone members. A geochemical, macro-, and micro-scale analyses of core material from southeastern Ohio was carried out to further constrain the timing of oceanic anoxia and trace element geochemistry relative to sediment fluxes occurring at the transition of the Middle to Late Cambrian. The section represents condensed, passive margin shale deposition and carbonate ramp development on the continental shelf of Laurentia. Carbonate sediments (primarily diagenetic dolomite) record a positive δ13C (relative to V-PDB) excursion starting in the upper Nolichucky shale member, reaching its peak (+4.0) in the overlying Maynardville limestone. At this location, there is an offset between the onlap Nolichucky shale deposition and start of the C isotope excursion; this was reported as well in a carbonate section further south of this location [2], on the other side of an extensional feature (Rome Trough) that formed a deep marine basin during Cambrian time. The condensed shale package and relatively low TOC content in our samples is likely due to the combination of a shallow, upslope basin location and isostatic influence on passive margin sedimentation. However, within the Rome Trough, the Nolichucky shale is rich in organic carbon and a recent target of hydrocarbon exploration. The data suggest a possible link between deposition of this shale and the global SPICE event. The robustness of the Late Cambrian δ13C excursion in diagenetically altered sediments and association with hydrocarbon bearing units indicates its utility as a stratigraphic indicator and as a target for exploration. Ongoing geochemical work will focus

  11. The Terror Bank (Scotia Sea, Antarctica): a remnant part of the stretched Antarctic passive margin of the Drake Passage opening

    Science.gov (United States)

    Suriñach, E.

    2009-04-01

    During January-February 2008, in the frame of the IPY, two geophysical profiles 500 km long were recorded in the Drake Passage along spreading corridors between transform faults in the southern flank of West Scotia Ridge. The profiles cross the oldest oceanic crust, the Terror Bank and the oceanic Protector Basin. The survey carried out on board the R/V Hespérides includes swath bathymetry, ultra-high resolution seismics, multichannel seismic reflection, gravity and magnetic data. Our aim was to unravel the enigma of the missing conjugate passive antarctic margin. Both profiles provide evidence of the continental nature of the Terror Bank, which is an NNE-SSW elongated high, at 2000 m depth, surrounded by the Scotia and Protector abyssal plains exceeding 3000 m depth. The Terror Bank is limited by asymmetrical slopes with NW smooth and SE sharp margins. The sedimentary record shows many erosive (channels, moats, scours, etc) and depositional (drifts with superimposed sedimentary waves) features related to the water mass circulation. Minima values of the Bouguer anomaly point to the thinned continental nature of the Terror Bank. Several half grabens bounded by north-westwards dipping faults and with sedimentary wedges, exceeding 1 km thickness, thickening south-eastwards, suggest that the initial stage of rifting was followed by an oceanic spreading axis located north-westwards. Moreover, linear sea-floor magnetic anomalies indicate that oldest chrons are placed to the west, pointing to an eastward propagation of the oceanic spreading since the initial stages of the Scotia Arc development. The new data allow us to constrain the tectonic evolution of the Oligocene initial opening stages of the Drake Passage oceanic gateway and its paleoceanographic evolution. This research was supported by the Spanish Ministerio de Educación y Ciencia projects: POL2006-13836-C03-01 and CGL2004-05646.

  12. Structural development of the Australian Otway passive margin; the kinematics and interaction of syn-sedimentary faults

    Science.gov (United States)

    Tanner, D. C.; Ziesch, J.; Krawczyk, C. M.

    2016-12-01

    The onshore Otway passive margin basin is characterized by a large number of normal faults. All the faults were active during sedimentation, but to varying degrees, between ca. 120 and 50 Ma, before they died out. Using a detailed interpretation of a 3-D reflection seismic cube (32.3 km x 14.35 km x 4100 ms TWT), we interpreted the kinematics of the faults within the 2.2 km thick syn-rift Late Cretaceous to Recent sediments. From analysis of fault juxtaposition and fault tip-line propagation maps, as well as analysis of thickness maps we determine the amount of syn-sedimentary movement and the kinematics of each fault. We observe two very different behaviours of the faults' tip line propagation as well as internal isolines of fault slip: while all fault strike lengths decrease stratigraphically upwards as the faults retreated (relay zones between faults even maintain their width, without breaking apart). The isolines and tip lines either propagated in a symmetrical or strongly asymmetrical manner (but always in a dextral sense), which we interpret as oblique dextral propagation of the faults. This is in agreement with cylindricity and curvature of the fault surfaces that suggest the fault possess distinct elongated asperities with the same sense of obliquity, with respect to the fault dip azimuth. The distribution of the oblique dextral and dip-slip faults suggests strain partitioning took place on a kilometre scale.

  13. Sediment accumulation history in the Mozambique passive margin basin and kinematics of the South African Plateau uplift during Meso-Cenozoic time

    Science.gov (United States)

    Said, Aymen; Moder, Christoph; Clark, Stuart; Skogseid, Jakob

    2013-04-01

    The kinematic history of the South African (Kalahari) Plateau uplift during Meso-Cenozoic time is not well understood. Quantifying the terrigeneous sediment budget in its surrounding passive margin basins using a source to sink approach helps to figure out the evolution of this continental relief. In this study, we use data from 43 wells drilled in the Mozambique passive margin basin to estimate the volume of sediments preserved for each time interval, and corrected for in situ production and for remaining porosity. Results show two periods of high accumulation rates. The first is recorded during Mid-Late Cretaceous and is well described in similar studies in the Namibia and South Africa margins, which supports a major uplift of the whole Kalahari Plateau in the Mid-Late Cretaceous. The second high accumulation rate is recorded during the Miocene and is consistent with a relief reorganization driven by uplift during that period at least in the Eastern rim of the Kalahari Plateau feeding the Mozambique passive margin basin.

  14. Long-term subsidence, cooling, and exhumation history along the South Atlantic passive continental margin in NW-Namibia

    Science.gov (United States)

    Menges, Daniel; Glasmacher, Ulrich Anton; Salomon, Eric; Hackspacher, Peter Christian; Schneider, Gabi

    2016-04-01

    In northwest Namibia the Kaoko Belt is one of the most important Precambrian crustal segments that have stored the subsidence, cooling, and exhumation history of Namibia since the Neoproterozoic. ZFT-ages are processed to give new insights on this early evolution. Paleozoic to Mesozoic sedimentary rocks of the Karoo Supergroup and the Lower Cretaceous volcanic rocks of the Etendeka sequence overlay the Proterozoic metamorphic and intrusive rocks (1). New apatite fission-track (AFT) ages range from 390.9 (17.9) Ma to 80.8 (6.0) Ma. Along the coast apatites of Proterozoic rock samples reveal the youngest ages. Further inland the ages increase significantly. In addition, rapid change of AFT-ages occurs on both sides of major thrust and shear zones. Using the oldest thermochronological data the revealed t-T paths indicate a long era of exhumation, starting at the end of the Pan-African Orogeny in the Neoproterozoic and continuing into the Permo-Carboniferous. The subsequent sedimentation of the Karoo Supergroup initiates a new era of subsidence until the end of Triassic (2). The subsequent period of denudation ends abruptly with the rapid deposition of the Etendeka basalts in the Early Cretaceous (3). The maximum thickness of the Etendeka volcanic suite has been estimated, using the apatite fission-track data, to about 3.2 (1.2) km. With the ongoing opening of the South Atlantic and the formation of the continental margin the Kaoko Belt went through a rapid cooling event starting ~ 130 Ma and ending ~ 80 Ma, at a mean rate of 0.034 km/Ma for the western, and 0.018 km/Ma for the northern and eastern Kaoko Belt. This cooling event was accompanied by a reactivation of major fault zones, like the Purros Mylonite Zone (4). Thereafter, stable conditions were established, with denudation rates generally lower than 0.010 km/Ma, until the Neogene, where a second cooling event led to increased exhumation rates around 0.042 km/Ma. The total amount of denudation in the last 130 Ma

  15. Long-term subsidence, cooling, and exhumation history along the South Atlantic passive continental margin in NW-Namibia

    Science.gov (United States)

    Menges, Daniel; Glasmacher, Ulrich Anton; Salomon, Eric; Hackspacher, Peter Christian; Schneider, Gabi

    2017-04-01

    In northwestern Namibia the Kaoko Belt is one of the most important Precambrian crustal segments that have stored the subsidence, cooling, and exhumation history of Namibia since the Neoproterozoic. ZFT-ages, with ages between 292.7 (46.0) and 436.8 (45.9) Ma, are giving new insights on this early evolution. Paleozoic to Mesozoic sedimentary rocks of the Karoo Supergroup and the Lower Cretaceous volcanic rocks of the Etendeka sequence overlay the Proterozoic metamorphic and intrusive rocks (1). New apatite fission-track (AFT) ages range from 390.9 (17.9) Ma to 80.8 (6.0) Ma. Along the coast apatites of Proterozoic rock samples reveal the youngest ages. Further inland the ages increase significantly. In addition, rapid change of AFT-ages occurs on both sides of major thrust and shear zones. Using the oldest thermochronological data the revealed t-T paths indicate a long era of exhumation, starting at the end of the Pan-African Orogeny in the Neoproterozoic and continuing into the Permo-Carboniferous. The subsequent sedimentation of the Karoo Supergroup initiates a new era of subsidence until the end of Triassic (2).The subsequent period of denudation ends abruptly with the rapid deposition of the Etendeka basalts in the Early Cretaceous (3). The maximum thickness of the Etendeka volcanic suite has been estimated, using the apatite fission-track data, to about 3.2 (1.2) km. With the ongoing opening of the South Atlantic and the formation of the continental margin the Kaoko Belt went through a rapid cooling event starting 130 Ma and ending 80 Ma, at a mean rate of 0.034 km/Ma for the western, and 0.018 km/Ma for the northern and eastern Kaoko Belt. This cooling event was accompanied by a reactivation of major fault zones, like the Purros Mylonite Zone (4). Thereafter, stable conditions were established, with denudation rates generally lower than 0.010 km/Ma, until the Neogene, where a second cooling event led to increased exhumation rates around 0.042 km/Ma. The total

  16. Tectonic role of margin-parallel and margin-transverse faults during oblique subduction in the Southern Volcanic Zone of the Andes: Insights from Boundary Element Modeling

    Science.gov (United States)

    Stanton-Yonge, A.; Griffith, W. A.; Cembrano, J.; St. Julien, R.; Iturrieta, P.

    2016-09-01

    Obliquely convergent subduction margins develop trench-parallel faults shaping the regional architecture of orogenic belts and partitioning intraplate deformation. However, transverse faults also are common along most orogenic belts and have been largely neglected in slip partitioning analysis. Here we constrain the sense of slip and slip rates of differently oriented faults to assess whether and how transverse faults accommodate plate-margin slip arising from oblique subduction. We implement a forward 3-D boundary element method model of subduction at the Chilean margin evaluating the elastic response of intra-arc faults during different stages of the Andean subduction seismic cycle (SSC). Our model results show that the margin-parallel, NNE striking Liquiñe-Ofqui Fault System accommodates dextral-reverse slip during the interseismic period of the SSC, with oblique slip rates ranging between 1 and 7 mm/yr. NW striking faults exhibit sinistral-reverse slip during the interseismic phase of the SSC, displaying a maximum oblique slip of 1.4 mm/yr. ENE striking faults display dextral strike slip, with a slip rate of 0.85 mm/yr. During the SSC coseismic phase, all modeled faults switch their kinematics: NE striking fault become sinistral, whereas NW striking faults are normal dextral. Because coseismic tensile stress changes on NW faults reach 0.6 MPa at 10-15 km depth, it is likely that they can serve as transient magma pathways during this phase of the SSC. Our model challenges the existing paradigm wherein only margin-parallel faults account for slip partitioning: transverse faults are also capable of accommodating a significant amount of plate-boundary slip arising from oblique convergence.

  17. Submarine allochthonous salt sheets: Gravity-driven deformation of North African Cretaceous passive margin in Tunisia - Bled Dogra case study and nearby salt structures

    Science.gov (United States)

    Masrouhi, Amara; Bellier, Olivier; Ben Youssef, Mohamed; Koyi, Hemin

    2014-09-01

    We used structural, stratigraphic and sedimentologic data, together with a comparison of nearby structures and a Bouguer gravity map, to evaluate the evolution of the Bled Dogra salt structure (northern Tunisia) during the Cretaceous. Triassic salt sheets are recognized in the northwestern region of the Tunisian Atlas. These salt sheets are the result of Cretaceous thick and/or thin-skinned extension along the south Tethyan margin. The Bled Dogra salt structure is one of these submarine allochthonous salt sheets, which was emplaced during the Early Cretaceous. The geologic framework, during this period, produces conditions for a predominantly gravity-driven deformation: extension has produced space for the salt to rise; vigorous differential sedimentation created differential loading that resulted in the emplacement and extrusion of a large volume of Triassic salt and formation of large submarine salt sheets. Geologic field data suggest an interlayered Triassic salt sheet within Albian sequences. Salt was extruded at the sea floor during the Early-Middle Albian and was initially buried by Middle-Late Albian strata. The Coniacian corresponds to a second transgressive cover onto the salt sheet after the gliding of the first salt cover (Late Albian-Turonian). In addition, this northwest Tunisian area exposes evidences for salt flow and abundant slump features at the base of a northward facing submarine slope, which was probably dominant from the Early Cretaceous to Santonian. Two gravity deformation processes are recognized: gravity gliding and gravity spreading. Acting concurrently, these two processes appear indistinguishable in this geologic context. Like the present-day salt-involved passive margins - such as the northern Gulf of Mexico, the Atlantic margin of Morocco, the Brazilian Santos basin, the Angola margin, Cadiz in western Iberia, and the Red Sea - the North African Cretaceous passive margin in Tunisia provides evidences that deformation in a passive-margin

  18. Can rifting evolution and passive margins architecture be driven by relative rheological heterogeneities? Insight from analogue modelling focused on South Atlantic margins.

    Science.gov (United States)

    Cappelletti, Alessio; Nestola, Yago; Tsikalas, Filippos; Salvi, Francesca; Argnani, Andrea; Cavozzi, Crisitan; Meda, Marco

    2016-04-01

    Crustal transect joined with lithospherical-scale analogue experiments are used to unreveal the evolution of the Central Segment of the South Atlantic margin. Specifically we analized the Santos and Campos basins along the Brazilian margin, where crustal inhomogeneities affects both rifting evolution and structural architecture of the conjugate margins. The results show that heterogeneities located within the lower crust can have a remarkable impact on the along-margin segmentation promoting focused and deeper basins related to a relatively "weak" rheology, and articulated basins with horsts and grabens in response to a relative "strong" rheology on the equivalent parts of the conjugate pairs. At the early-stage of rift evolution the deformation is concentrated at the proximal margin. At this stage, if a weak lower crust rheology heterogeneity exists, a main deep listric half-graben fault and associated thick and wedge shaped syn-rift basin sequences are developed; on the contrary, a strong lower crust rheology produce a more planar, rotated, domino-type faulted basins with thinner sequences directly controlled by the individual fault-blocks. At the late-stage rift evolution, once the effects of the initial crustal rheology inhomogeneities are reduced due to the lithosperic thinning process, the outer margin records a late syn-rift sequence which shows comparable thicknesses for both cases of lower crust rheologies. This tectono-stratigraphic evolution of the rifting process gives rise to along-margin alterations in symmetry versus asymmetry of the width and structural architecture. The presented models show that the tectono-stratigraphic evolution of rifting process can produces along margin switching of width and structural architecture. The change in architecture is due to the relative rheological contrast with respect to the surrounding in the lower crust. This produces a different, "relative", behavior for the lower crust if next to "weak" or to "strong

  19. Crustal and uppermost mantle structure of the eastern margin of the Yilgarn Craton (Australia) from passive seismic data

    Science.gov (United States)

    Sippl, Christian; Tkalčić, Hrvoje; Kennett, Brian; Spaggiari, Catherine; Gessner, Klaus

    2016-04-01

    The Yilgarn Craton in Western Australia is one of the largest units of Archean lithosphere on earth. Along its southern and southeastern margin, it is bounded by the Albany-Fraser Orogen (AFO), a Paleo- to Mesoproterozoic extensioal-accretionary orogen. In this contribution, we investigate the crustal and upper mantle structure of the AFO and adjacent regions using passive seismic data collected during the recent ALFREX experiment. Since the entire region has not been significantly reactivated since the Mesoproterozoic, the old signature of craton edge modification should have been well preserved until today. From November 2013 until January 2016, we operated a temporary passive seismic network consisting of 70 stations in the eastern Albany-Fraser Orogen. The array had an average station spacing of about 40 km and was designed to fill the gap between recently acquired active seismic profiles. We present results from the analysis of P receiver functions and ambient noise tomography using the ALFREX data. Receiver functions were used to derive a Moho depth map via H-K stacking, for direct imaging (common conversion point stacking) as well as joint inversion with surface wave dispersion data to derive 1D S-velocity profiles beneath the stations. The obtained receiver functions show a marked change of character from west to east across the array. Whereas they feature clear and sharp Moho phases for stations on the Yilgarn Craton, significantly more crustal complexity and fainter Moho phases are seen throughout the AFO. Crustal thickness increases from 36-39 km for the Yilgarn Craton to values between 42 and 48 km across the AFO, decreasing to around 40 km in the east. Ambient noise cross-correlations were used to derive maps of phase and group velocities of Rayleigh waves at periods between 1 and 30 seconds. A three-dimensional model of S wavespeeds throughout the area was then computed by pixelwise inversion of dispersion curves. Obtained S wavespeeds are generally

  20. Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins

    Science.gov (United States)

    Sibuet, Myriam; Olu, Karine

    1998-01-01

    To date, several cold-seep areas which fuel chemosynthesis-based benthic communities have been explored, mainly by deployment of manned submersibles. They are located in the Atlantic and in the Eastern and Western Pacific oceans and in the Mediterranean Sea, in depths ranging between 400 and 6000 m in different geological contexts in passive and active margins. Our study is based on a review of the existent literature on 24 deep cold seeps. The geographic distribution of seeps, the variations of origin and composition of fluids, and rates of fluid flow are presented as they are important factors which explain the spatial heterogeneity and the biomass of biological communities. Methane-rich fluid of thermogenic and/or biogenic origin is the principal source of energy for high-productive communities; however, production of sulphide by sulphate reduction in the sediment also has a major role. The dominant seep species are large bivalves belonging to the families Vesicomyidae or Mytilidae. Other symbiont-containing species occur belonging to Solemyidae, Thyasiridae, Lucinidae bivalves, Pogonophora worms, Cladorhizidae and Hymedesmiidae sponges. Most of the symbiont-containing cold-seep species are new to science. Different symbiont-containing species rely on sulphide or methane oxidation, or both, via chemoautotrophic endosymbiotic bacteria. A total of 211 species, from which 64 are symbiont-containing species, have been inventoried. Patterns in biodiversity and biogeography are proposed. A large majority of the species are endemic to a seep area and the symbiont-containing species are mainly endemic to the cold-seep ecosystem. A comparison of species found in other deep chemosynthesis-based ecosystems, hydrothermal vents, whale carcass and shipwreck reduced habitats, reveals from the existing data, that only 13 species, of which five are symbiont-containing species occur, at both seeps and hydrothermal vents. The species richness of cold-seep communities decreases

  1. Hydrothermal Mineralization on the Mesoproterozoic Passive Continental Margins of China:A Case Study of the Langshan-Zha'ertaishan Belt, Inner Mongolia, China

    Institute of Scientific and Technical Information of China (English)

    PENG Runmin; ZHAI Yusheng

    2004-01-01

    Most ore-forming characteristics of the Langshan-Zha'ertaishan hydrothermal exhalation belt, which consists of the Dongshengmiao, Huogeqi, Tanyaokou and Jiashengpan large-superlarge Zn-Pb-Cu-Fe sulfide deposits, are most similar to those of Mesoproterozoic SEDEX-type provinces of the world. The characteristics include: (1) All deposits of this type in the belt occur in third-order fault-basins in the Langshan-Zha'ertaishan aulacogen along the northern margin of the North China Platform; (2) these deposits with all their orebodies hosted in the Mesoproterozoic impure dolomite-marble and carbonaceous phyllite (or schists) have an apparent stratabound nature; ores display laminated and banded structures,showing clear depositional features; (3) there is some evidence of syn-sedimentary faulting, which to a certain extent accounts for the temporal and spatial distribution and the size of the orebodies in all deposits and the formation of intrabed conglomerates and breccias; (4) they show lateral and vertical zonation of sulfides; (5) The Cu/(Pb+Zn+Cu) ratio of the large and thick Pb+Zn+Cu orebodies gradually decreases from bottom to top; and (6) barite is interbedded with pyrites and sometimes with sphalerite. However, some characteristics such as the Co/Ni radio of the pyrites, the volcanism, for example, of the Langshan-Zha'ertaishan metallogenic belt, are different from those of the typical SEDEX deposits of the world. The meta-basic volcanic rock in Huogeqi, the sodic bimodal volcanic rocks in the Dongshengmiao and potassic bimodal-volcanic rocks with blastoporphyritic and blasto-glomeroporphyritic texture as well as blasto-amygdaloidal structure in the Tanyaokou deposits have been discovered in the only ore-bearing second formation of the Langshan Group in the past 10 years. The metallogeny of some deposits hosted in the Langshan Group is closely related to syn-sedimentary volcanism based on the following facts: most of the lead isotopes in sphalerite, galena

  2. Geochemistry of the Caledonian Basic Volcanic Rocks at the South Margin of the Qinling Orogenc Belt,and Its Tectonic Implications

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The geochemistry of the basic volcanic rocks at the south margin of the Qinling orogenic belt(SMQOB) suggests that they were formed in an intraplate tectonic setting.The REE distribution patterns show these rocks are strongly enriched in LREE with high ∑REE, and their trace elements geochemistry is similar to that of contimental flood basalt.All the above evidence suggests that the Caledonian basic volcanic rocks in the SMQOB were tholeiitic basalts formed in an intraplate spreading-initial rift tectonic setting.The characteristics of regional geology and geochemistry indicate that there was an intraplate spreading-rift tectonic setting between the South Qingling block and the Yangtze block in the Caledonian epoch.The dynamic spreading in this district began in the Early Caledonian and then the intraplate spreadinginitial rifts were formed in the Late Caledonian.As a result of spreading of the Tethys and geodynamic processes in deep mantle ,the Mianlue-Huashan oceanic basin was formed between the Qinling block and the Yangtze block in Devonian,and the Qinling microplate was separated from the northern part of the Yangtze plate.

  3. Two- and three-dimensional gravity modeling along western continental margin and intraplate Narmada-Tapti rifts: Its relevance to Deccan flood basalt volcanism

    Indian Academy of Sciences (India)

    Somdev Bhattacharji; Rajesh Sharma; Nilanjan Chatterjee

    2004-12-01

    magma chambers along the western continental margin and the intraplate Narmada-Tapti rifts at estimated depths between 6 and 8 km from the surface (consistent with geological, petrological and geochemical models) appear to be the major reservoirs for Deccan flood basalt volcanism at approximately 65 Ma.

  4. CALCAREOUS NANNOFOSSIL BIOSTRATIGRAPHY OF THE S’ADDE LIMESTONE (MT. ALBO, OROSEI GULF: INSIGHTS INTO THE MIDDLE-LATE JURASSIC EASTERN SARDINIA PASSIVE MARGIN EVOLUTION

    Directory of Open Access Journals (Sweden)

    CRISTINA EMANUELA CASELLATO

    2012-11-01

    Full Text Available Calcareous nannofossil biostratigraphy has been performed on tree sections cropping out in Eastern Sardinia (Orosei Gulf, Mt. Albo. Calcareous nannofossils are rare to few and poorly to moderately preserved. Nevertheless thirteen bioevents have been recognized (S’Adde valley section and a Late Bathonian-Early Tithonian age is derived for the S’Adde Limestone (Lms.. The inferred age constraints, integrated with data from the literature, allow the revision of the S’Adde Lms. chronostratigraphy, and the formalization of the S’Adde Limestone (Dieni & Massari 1985 as a lithostratigraphic unit. Qualitative evaluations of carbonate production/sedimentation rates for the north Mt. Albo area are proposed: the Late Bathonian-Callovian and Oxfordian were times of pronounced reduction of carbonate production/exportation, in agreement with the European passive margin evolution, also affected by starvation fenomena and condensations. A Middle-Late Jurassic basin-and-swell setting related to regional tensional tectonic activity is reconstructed for the north Mt. Albo area. The comparison of new and literature data allows framing the local and Eastern Sardinia passive margin evolution in the broader geodynamic and paleogeographic context of the southern European margin

  5. The petroleum potential of the passive continental margin of South-Western Africa : a basin modelling study

    OpenAIRE

    Schmidt, Sabine

    2004-01-01

    The Petroleum Potential of the Continental Margin of South-Western Africa - A Basin Modelling Study The hydrocarbon potential of the continental margin of south-western Africa was assessed with means of a 2D basin modelling study of the hydrocarbon generation, migration and accumulation of the Kudu gas field. The basin model is based on well and seismic data from offshore Namibia and constrained by geochemical data on source rocks, natural gas samples and hydrocarbons desorbed from near-surfa...

  6. Volcanism and sedimentation along the western margin of the Rio Grande rift between caldera-forming eruptions of the Jemez Mountains volcanic field, north-central New Mexico, USA

    Science.gov (United States)

    Jacobs, Elaine P.; WoldeGabriel, Giday; Kelley, Shari A.; Broxton, David; Ridley, John

    2016-11-01

    The Cerro Toledo Formation (CTF), a series of intracaldera rhyolitic dome complexes and their associated extracaldera tephras and epiclastic sedimentary deposits, records the dynamic interplay between volcanic, tectonic, and geomorphic processes that were occurring along the western margin of the Rio Grande rift between major caldera-forming eruptions of the Bandelier Tuff 1.65-1.26 Ma. The Alamo Canyon and Pueblo Canyon Members differ significantly despite deposition within a few kilometers of each other on the Pajarito Plateau. These differences highlight spatial distinctions in vent sources, eruptive styles, and depositional environments along the eastern side of the Jemez Mountains volcanic field during this ca. 400,000 year interval. Intercalated pyroclastic fall deposits and sandstones of the Pueblo Canyon Member reflect deposition with a basin. Thick Alamo Canyon Member deposits of block-and-ash-flow tuff and pyroclastic fall deposits fill a paleovalley carved into coarse grained sedimentary units reflecting deposition along the mountain front. Chemistry and ages of glass from fall deposits together with clast lithologies of sedimentary units, allow correlation of outcrops, subsurface units, and sources. Dates on pyroclastic fall deposits from Alamo Canyon record deep incision into the underlying Otowi Member in the southern part of the Pajarito Plateau within 100 k.y. of the Toledo caldera-forming eruption. Reconstruction of the CTF surface shows that this period of rapid incision was followed by aggradation where sediments largely filled pre-existing paleocanyons. Complex sequences within the upper portion of the Otowi Member in outcrop and in the subsurface record changes in the style of eruptive activity during the waning stages of the Toledo caldera-forming eruption.

  7. Two crustal flowing channels and volcanic magma migration underneath the SE margin of the Tibetan Plateau as revealed by surface wave tomography

    Science.gov (United States)

    Wu, Tengfei; Zhang, Shuangxi; Li, Mengkui; Qin, Weibing; Zhang, Chaoyu

    2016-12-01

    The SE margin of the Tibetan Plateau is an important area to develop a better understanding of the plateau uplift and the Indian-Eurasian continental collision dynamics. Previous studies have reported widespread low-velocity anomalies beneath this region, particularly in the Tengchong volcanic field (TCVF). However, the spatial distribution and dynamic processes of these low-velocity anomalies are not well constrained. In this study, a 3-D S-wave velocity structure model of the crust and upper mantle (10-120 km) in the region is constructed by the inversion of surface wave dispersion data. A two-step inversion procedure is adopted to generate the S-wave velocity structure images. The measured phase velocities and inverted S-wave velocities jointly show a large-scale low-velocity anomaly distributed in the crust, consistent with the view that the region is the passageway of the eastward migration of Tibetan Plateau material. Two crustal flowing channels are clearly observed at depths of ∼20 km and ∼30 km, which connect and rotate clockwise around the Eastern Himalaya Syntaxis. Beneath the TCVF, there are two prominent low-velocity anomaly zones at depths of ∼15-25 km and ∼50-80 km, which indicate the existence of magma chambers. One of the crustal flowing channels is connected with the magma chamber of the TCVF, and the other has a short branch north of Kunming toward the Mile-Shizong fault at a depth of 20 km. Based on the distribution of the S-wave velocities under the TCVF, a dynamic model of the Tengchong volcano magma system is proposed to explain the migration patterns of the volcanic material.

  8. Source to sink study of non-cylindrical rifted passive margins: the case of the Gulf of Guinea

    Science.gov (United States)

    Chardon, Dominique; Rouby, Delphine; Robin, Cécile; Calves, Gérome; Grimaud, Jean-louis; Guillocheau, François; Beauvais, Anicet; Braun, Jean

    2013-04-01

    The aim of our project is to analyze quantitatively the post-rift evolution of a transform margin in order to determine how the spatially complex rifting processes that produced a tridimensional stretching of the lithosphere might impact the post rift evolution of the margin and the associated sedimentary systems. More specifically, we investigate its impact on vertical motion (uplift/subsidence), sediment transfer (erosion/accumulation) and stratigraphic architecture of sedimentary basins. We also intend to characterize the stratigraphic signature of independent geodynamic processes potentially affecting the margin during the post rift phase such as mantle dynamic, change in climate and erosion processes (chemical vs mechanical erosion). In this framework, the Atlantic margin from the Senegal to the Niger Delta is an ideal case study for which we compiled a unique dataset constraining over the Cenozoic: (i) the paleodrainage evolution and the denudation history for the whole area contributing to the sedimentary basins, and (ii) the accumulation history of the latter. From the reconstruction of the 3D geometry of paleo-alteration land surfaces, we show a complete reorganization of the drainage between 45 and 25 Myr. It resulted from the capture by the Niger of a formerly endoreic drainage isolated from the margin by a marginal bulge, as well as, by the incision and downwarp of this bulge by coastal drainage such as the Volta River. This relief had therefore a major impact on the export of sediment to the basins during the Cenozoic and both geomorphologic study and numerical modeling of the 3D flexure of this margin suggest it might be inherited from the rifting phase. Also, we compiled 13 geological sections along the margin to evaluate the accumulation histories of 3 domains: the Senegal basin, the Niger Delta and the Northern Margin of the Gulf of Guinea. All basins showed an acceleration in accumulation rates between 45 and 25 Myr. The 3D numerical modeling of

  9. High-temperature metamorphism during extreme thinning of the continental crust: a reappraisal of the north Pyrenean paleo-passive margin

    Directory of Open Access Journals (Sweden)

    C. Clerc

    2015-02-01

    Full Text Available An increasing number of field examples in mountain belts show that the formation of passive margins during extreme continent thinning may occur under conditions of high to very high thermal gradient beneath a thin cover of syn-rift sediments. Orogenic belts resulting from the tectonic inversion of distal margins and regions of exhumed continental mantle may exhibit high-temperature, low-pressure (HT-LP metamorphism and coeval syn-extensional, ductile deformation. Recent studies have shown that the northern flank of the Pyrenean belt, especially the North Pyrenean Zone, is one of the best examples of such inverted hot, passive margin. In this study, we provide a map of HT-LP metamorphism based on a dataset of more than one hundred peak-temperature estimates obtained using Raman spectroscopy of the carbonaceous material (RSCM. This dataset is completed by previous PT estimates based on mineral assemblages, and new Ar–Ar (amphibole, micas and U–Pb (titanite ages from metamorphic and magmatic rocks of the North Pyrenean Zone. The implications on the geological evolution of the Cretaceous Pyrenean paleomargins are discussed. Ages range mainly from 110 to 90 Ma and no westward or eastward propagation of the metamorphism and magmatism can be clearly identified. In contrast, the new data reveal a progressive propagation of the thermal anomaly from the base to the surface of the continental crust. Focusing on the key-localities of the Mauléon Basin, Arguenos-Moncaup, Lherz, Boucheville and the Bas-Agly, we analyse the thermal conditions prevailing during the Cretaceous crustal thinning. The results are synthetized into a series of three regional thematic maps, and into two detailed maps of the Arguenos-Moncaup and Lherz areas. The results indicate a first-order control of the thermal gradient by the intensity of crustal thinning. The highest grades of metamorphism are intimately associated with the areas where subcontinental mantle rocks have been

  10. Regional seismic stratigraphy and controls on the Quaternary evolution of the Cape Hatteras region of the Atlantic passive margin, USA

    Science.gov (United States)

    Mallinson, D.J.; Culver, S.J.; Riggs, S.R.; Thieler, E.R.; Foster, D.; Wehmiller, J.; Farrell, K.M.; Pierson, J.

    2010-01-01

    Seismic and core data, combined with amino acid racemization and strontium-isotope age data, enable the definition of the Quaternary stratigraphic framework and recognition of geologic controls on the development of the modern coastal system of North Carolina, U.S.A. Seven regionally continuous high amplitude reflections are defined which bound six seismic stratigraphic units consisting of multiple regionally discontinuous depositional sequences and parasequence sets, and enable an understanding of the evolution of this margin. Data reveal the progressive eastward progradation and aggradation of the Quaternary shelf. The early Pleistocene inner shelf occurs at a depth of ca. 20-40 m beneath the western part of the modern estuarine system (Pamlico Sound). A mid- to outer shelf lowstand terrace (also early Pleistocene) with shelf sand ridge deposits comprising parasequence sets within a transgressive systems tract, occurs at a deeper level (ca. 45-70 m) beneath the modern barrier island system (the Outer Banks) and northern Pamlico Sound. Seismic and foraminiferal paleoenvironmental data from cores indicate the occurrence of lowstand strandplain shoreline deposits on the early to middle Pleistocene shelf. Middle to late Pleistocene deposits occur above a prominent unconformity and marine flooding surface that truncates underlying units, and contain numerous filled fluvial valleys that are incised into the early and middle Pleistocene deposits. The stratigraphic framework suggests margin progradation and aggradation modified by an increase in the magnitude of sea-level fluctuations during the middle to late Pleistocene, expressed as falling stage, lowstand, transgressive and highstand systems tracts. Thick stratigraphic sequences occur within the middle Pleistocene section, suggesting the occurrence of high capacity fluvial point sources debouching into the area from the west and north. Furthermore, the antecedent topography plays a significant role in the evolution

  11. Nature and evolution of Neoproterozoic ocean-continent transition: Evidence from the passive margin of the West African craton in NE Mali

    Science.gov (United States)

    Renaud, Caby

    2014-03-01

    The Timétrine massif exposed west of the Pan-African suture zone in northeastern Mali belongs to the passive margin of the West African craton facing to the east intra-oceanic arc assemblages and 730 Ma old pre-collisional calc-alkaline plutons. The Timétrine lithologic succession includes from the base to the top Mesoproterozoic cratonic to passive margin formations overlain by deep-sea Fe-Mg schists. Submarine metabasalts and two ultramafic massifs of serpentinized mantle peridotites are inserted as olistoliths towards the top whereas turbidites of continental origin represent the younger unit. Field and petrological data have revealed a distinct metasedimentary sequence attached to the serpentinized peridotites. It essentially consists of impure carbonates, Fe jaspers and polymictic breccias containing altered blocks of mantle peridotites, most rocks being enriched in detrital chromite. This association is interpreted as reworked chemical and detrital sediments derived from the alteration of mafic-ultramafic rocks. It is argued that mantle exhumation above sea floor took place during the Neoproterozoic rifting and crustal thinning period under possible tropical conditions, as suggested by the large volume of silicified serpentinites. In spite of greenschist facies metamorphic overprint characterized by widespread Fe-rich blue amphiboles that are not diagnostic of high-pressure conditions, it is possible to reconstruct a former ocean-continent transition similar to that evidenced for the Mesozoic period, followed by the deposition of syn-to post rift terrigeneous turbidites roughly coeval with ocean spreading some time before 800 Ma. It is concluded that the serpentinite massifs were tectonically emplaced first in an extensional setting, then incorporated within deep-sea sediments as olistoliths and finally transported westward during late Neoproterozoic collisional tectonics onto the West African craton.

  12. Electrical conductivity images across the Namibian passive margin: Implications for tectonic processes along the Kaoko Belt, the western Kongo Craton and the Walvis Ridge

    Science.gov (United States)

    Weckmann, Ute; Meqbel, Naser; Kapinos, Gerhard; Jegen-Kulcsar, Marion; Ritter, Oliver

    2014-05-01

    The Special Priority Programme SAMPLE of the German Science Foundation DFG is focussed on investigating processes related to the breakup of supercontinent Gondwana and the post breakup evolution of the passive continental margins of Africa and South America. Within this framework an amphibian magnetotelluric (MT) experiment was conducted at the Southern African passive continental margin, starting at the Walvis Ridge in the Atlantic Ocean and crossing onshore the entire Kaoko Belt and the western boundary of the Kongo Craton in Northern Namibia. High-quality MT data at 167 onshore and xx offshore sites show a strong variability within short distances and indicate complex subsurface structures in parts of the Kaoko Belt and along some of the major thrust and fault zones. To identify the main conductivity features and resolve their properties in more spatial detail we started our modelling procedure with 2D inversion for a sub-set of the data where the 3D effects are less dominant along the amphibian profile. However, to account for 3D effects in the MT data and to assess robustness of conductivity anomalies revealed in the 2D model we used the entire data set for the 3D inversion using ModEM. 2D and 3D inversion models show zones of high electrical conductivity that correlate with surface expressions of prominent faults such as the Purros Mylonite Zone and the Three Palm Mylonite Zone of the Kaoko Belt. Outcropping Etendeka flood basalts in the Western Kaoko Zones are imaged by 10-15km deep reaching zones of high resistivity. Additionally, the inversion models reveal a spatial correlation of resistive zones with the cratonic Northern Platform; however, the geologically defined onset of the Kongo Craton appears as an area of high conductivity. Compared with other craton boundaries in Southern Africa this is very untypical.

  13. Meso-/Cenozoic long-term landscape evolution at the southern Moroccan passive continental margin, Tarfaya Basin, recorded by low-temperature thermochronology

    Science.gov (United States)

    Sehrt, Manuel; Glasmacher, Ulrich A.; Stockli, Daniel F.; Jabour, Haddou; Kluth, Oliver

    2017-10-01

    This paper presents the first regional study of low-temperature thermochronology to be undertaken in the Tarfaya Basin at the southern Moroccan passive continental margin. The basin is characterised by vast subsidence since Mid-Triassic times, whereby up to 12 km of Meso- to Cenozoic sedimentary rocks accumulated. The study focused on the post-rift vertical movements along a typical ;passive; margin and besides dealt with the timing and maximum temperature reached by potential source rocks of the basin. To unravel the t-T development, thermochronological analyses were performed on 50 outcrop and well samples from Meso-Cenozoic rocks. Thermochronological data reveal a continuous subsidence phase in the offshore basin from Mid-Triassic to recent times. In contrast, apatite (U-Th-Sm)/He and apatite fission-track data as well as thermal modelling point to an inversion of the northeastern onshore basin starting in the Palaeogene at 65-55 Ma. The rock uplift and exhumation period resulted in the erosion of a 1.0-1.4 km thick Cretaceous-Palaeogene sedimentary pile contemporaneously with peak Atlas surface uplift in the Cenozoic. The exhumation stage could be an explanation for the increasing periodic influx of detrital material into the offshore and southern onshore Tarfaya Basin since Palaeocene. Detrital apatite fission-track ages from 92 (± 16) to 237 (± 35) Ma of the Upper Cretaceous-Neogene succession indicate no heating above 60 °C confirming immature to early mature Cenomanian to Campanian and Eocene source rocks in the onshore Tarfaya Basin.

  14. A marginal level of dystrophin partially ameliorates hindlimb muscle passive mechanical properties in dystrophin-null mice.

    Science.gov (United States)

    Hakim, Chady H; Duan, Dongsheng

    2012-12-01

    The goal of this study was to determine whether a minimal level of dystrophin expression improves the passive mechanical properties of skeletal muscle in the murine Duchenne muscular dystrophy model. We compared the elastic and viscous properties of the extensor digitorum longus muscle (EDL) in mdx3cv and mdx4cv mice at 6, 14, and 20 months of age. Both strains are on the C57Bl/6 background, and both lose the full-length dystrophin protein. Interestingly, mdx3cv mice express a near full-length dystrophin at ≈ 5% of the normal level. We found that the stress-strain profile and the stress relaxation rate of the EDL in mdx3cv mice were partially preserved in all age groups compared with age-matched mdx4cv mice. Our results suggest that a low level of dystrophin expression may treat muscle stiffness in Duchenne muscular dystrophy. Copyright © 2012 Wiley Periodicals, Inc.

  15. Measurement of Rayleigh wave Z/H ratio and joint inversion for a high-resolution S wave velocity model beneath the Gulf of Mexico passive margin

    Science.gov (United States)

    Miao, W.; Li, G.; Niu, F.

    2016-12-01

    Knowledge on the 3D sediment structure beneath the Gulf of Mexico passive margin is not only important to explore the oil and gas resources in the area, but also essential to decipher the deep crust and mantle structure beneath the margin with teleseismic data. In this study, we conduct a joint inversion of Rayleigh wave ellipticity and phase velocity at 6-40 s to construct a 3-D S wave velocity model in a rectangular area of 100°-87° west and 28°-37° north. We use ambient noise data from a total of 215 stations of the Transportable Array deployed under the Earthscope project. Rayleigh wave ellipticity, or Rayleigh wave Z/H (vertical to horizontal) amplitude ratio is mostly sensitive to shallow sediment structure, while the dispersion data are expected to have reasonably good resolution to uppermost mantle depths. The Z/H ratios measured from stations inside the Gulf Coastal Plain are distinctly lower in comparison with those measured from the inland stations. We also measured the phase velocity dispersion from the same ambient noise dataset. Our preliminary 3-D model is featured by strong low-velocity anomalies at shallow depth, which are spatially well correlated with Gulf Cost, East Texas, and the Lower Mississippi basins. We will discuss other features of the 3-D models once the model is finalized.

  16. Permeability Reduction in Passively Degassing Seawater-dominated Volcanic-hydrothermal systems: Processes and Perils on Raoul Island, Kermadecs (NZ)

    Science.gov (United States)

    Christenson, B. W.; Reyes, A. G.

    2014-12-01

    The 2006 eruption from Raoul Island occurred apparently in response to local tectonic swarm activity, but without any precursory indication of volcanic unrest within the hydrothermal system on the island. The eruption released some 200 T of SO2, implicating the involvement of a deep magmatic vapor input into the system during/prior to the event. In the absence of any recognized juvenile material in the eruption products, previous explanations for this eruptive event focused on this vapor being a driving force for the eruption. In 2004, at least 80 T/d of CO2 was escaping from the hydrothermal system, but mainly through areas that did not correspond to the 2006 eruption vents. The lack of a pre-eruptive hydrothermal system response related to the seismic event in 2006 can be explained by the presence of a hydrothermal mineralogic seal in the vent area of the volcano. Evidence for the existence of such a seal was found in eruption deposits in the form of massive fracture fillings of aragonite, calcite and anhydrite. Fluid inclusion homogenization temperatures in these phases range from ca. 140 °C to 220 °C which, for pure water indicate boiling point depths of between 40 and 230 m assuming a cold hydrostatic pressure constraint. Elevated pressures behind this seal are consistent with the occurrence of CO2 clathrates in some inclusion fluids, indicating CO2 concentrations approaching 1 molal in the parent fluids. Reactive transport modeling of magmatic volatile inputs into what is effectively a seawater-dominated hydrothermal system provide valuable insights into seal formation. Carbonate mineral phases ultimately come to saturation along this flow path, but we suggest that focused deposition of the observed massive carbonate seal is facilitated by near-surface boiling of these CO2-enriched altered seawaters, leading to large degrees of supersaturation which are required for the formation of aragonite. As the seal grew and permeability declined, pore pressures

  17. The role of Variscan to pre-Jurassic active extension in controlling the architecture of the rifted passive margin of Adria: the example of the Canavese Zone (Western Southern Alps, Italy)

    Science.gov (United States)

    Succo, Andrea; De Caroli, Sara; Centelli, Arianna; Barbero, Edoardo; Balestro, Gianni; Festa, Andrea

    2016-04-01

    The Canavese Zone, in the Italian Western Southern Alps, represents the remnant of the Jurassic syn-rift stretching, thinning and dismemberment of the distal passive margin of Adria during the opening of the Penninic Ocean (i.e., Northern Alpine Tethys). Our findings, based on detailed geological mapping, structural analysis and stratigraphic and petrographic observations, document however that the inferred hyper-extensional dismemberment of this distal part of the passive margin of Adria, up to seafloor spreading, was favored by the inherited Variscan geometry and crustal architecture of the rifted margin, and by the subsequent Alpine-related strike-slip deformation. The new field data document, in fact, that the limited vertical displacement of syn-extensional (syn-rift) Jurassic faults was ineffective in producing and justifying the crustal thinning observed in the Canavese Zone. The deformation and thinning of the continental basement of Adria are constrained to the late Variscan time by the unconformable overlying of Late Permian deposits. Late Cretaceous-Early Paleocene and Late Cenozoic strike-slip faulting (i.e., Alpine and Insubric tectonic stages) reactivated previously formed faults, leading to the formation of a complex tectonic jigsaw which only partially coincides with the direct product of the Jurassic syn-rift dismemberment of the distal part of the passive margin of Adria. Our new findings document that this dismemberment of the rifted continental margin of Adria did not simply result from the syn-rift Jurassic extension, but was strongly favored by the inheritance of older (Variscan and post-Variscan) tectonic stages, which controlled earlier lithospheric weakness. The formation of rifted continental margins by extension of continental lithosphere leading to seafloor spreading is a complex and still poorly understood component of the plate tectonic cycle. Geological mapping of rifted continental margins may thus provide significant information to

  18. Long-term landscape evolution of the South Atlantic "passive" continental margin in Eastern Argentina using apatite fission-track thermochronology

    Science.gov (United States)

    Pfister, Sabrina; Kollenz, Sebastian; Glasmacher, Ulrich A.

    2015-04-01

    To understand the evolution of the "passive" continental margin in Argentina low temperature thermochronology is an appropriate method, which might lead to new insights in this area. The Tandilia System, also called Sierras Septentrionales, is located south of the Río de la Plato Craton in eastern Argentina in the state of Buenos Aires. North of the hills the Salado basin is located whereas the Claromecó basin is situated south of the mountain range. In contrary to most basins along the South American "passive" continental margin, the Tandilia-System and the neighbouring basins trend perpendicular to the coast line. The topography is fairly flat with altitudes up to 350 m. The igneous-metamorphic basement is pre-Proterozoic in age and build up of mainly granitic-tonalitic gneisses, migmatites, amphibolites, some ultramafic rocks and granitoid plutons. It is overlain by a series of Neoproterozoic to early Paleozoic sedimentary rocks (Cingolani 2011), like siliciclastic rocks, dolostones, shales and limestones (Demoulin 2005). The aim of the study is to quantify the long-term landscape evolution of the "passive" continental margin in eastern Argentina in terms of thermal, exhumation and tectonic evolution. For that purpose, samples were taken from the basement of the Sierra Septentrionales and analyzed with the apatite fission-track method. Further 2-D thermokinematic modeling was conducted with the computer code HeFTy (Ketcham 2005; Ketcham 2007; Ketcham et al. 2009). Because there are different hypotheses in literature regarding the geological evolution of this area two different models were generated, one after Demoulin et al. (2005) and another after Zalba et al.(2007). All samples were taken from the Neoproterozoic igneous-metamorphic basement. Apatite fission-track ages range from 101.6 (9.4) to 228.9 (22.3) Ma, and, therefore, are younger than their formation age, indicating all samples have been thermally reset. Six samples accomplished enough confined

  19. Diatreme-forming volcanism in a deep-water faulted basin margin: Lower Cretaceous outcrops from the Basque-Cantabrian Basin, western Pyrenees

    Science.gov (United States)

    Agirrezabala, L. M.; Sarrionandia, F.; Carracedo-Sánchez, M.

    2017-05-01

    Deep-water diatremes and related eruption products are rare and they have been mainly interpreted from seismic-based data. We present lithofacies and geochemistry analysis of two Lower Cretaceous (Albian) deep-water diatremes and associated extra-diatreme volcaniclastic deposits at a well-exposed outcrop of the northern margin of the Basque-Cantabrian Basin (north Iberia). The studied diatremes are located along a N-S trending Albian fault and present sub-circular to elongate sections, inward-dipping steep walls and smooth to very irregular contacts with the host rocks. They are filled by un-bedded mixed breccias constituted by juvenile and lithic (sedimentary, igneous and metamorphic) clasts. Their textural and structural characteristics indicate that they represent lower diatreme and root zones of the volcanic system. Mapping, geochemical and petrologic data from diatreme-fills support their genetic relationship with the extra-diatreme volcaniclastic beds, which would be generated by the eruption of an incipiently vesicular trachytic magma. Studied diatremes result from multiple explosions that lasted over an estimated period of 65 k.y. during the Late Albian (H. varicosum ammonite Zone, pro parte), and reached up to a maximum subsurface depth of ca. 370 m, whereas extra-diatreme volcaniclastic beds were formed by eruption-fed gravity-driven flows on the deep-water (200-500 m) paleoseabed. Petrological features suggest that these diatremes and related extra-diatreme deposits resulted mainly from phreatomagmatic explosions. In addition, organic geochemistry data indicate that the thermal effect of the trachytic melts on the sedimentary host caused the conversion of the abundant organic matter to methane and CO2 gases, which could also contribute significantly to the overpressure necessary for the explosive fragmentation of the magma and the host rocks. Considering the inferred confining pressures (ca. 8-11 MPa) and the possible participation of unvesiculated (or

  20. Early Permian arc-related volcanism and sedimentation at the western margin of Gondwana:Insight from the Choiyoi Group lower section

    Institute of Scientific and Technical Information of China (English)

    Leonardo Strazzere; Daniel A. Gregori; Leonardo Benedini

    2016-01-01

    Permian sedimentary and basic to intermediate volcanic rocks assigned to the Conglomerado del Río Blanco and Portezuelo del Cenizo Formation, lower part of the Choiyoi Group, crop out between the Cordon del Plata, Cordillera Frontal and Precordillera of Mendoza Province, Argentina. The sedimentary rocks are represented by six lithofacies grouped in three facies associations. They were deposited by mantled and gravitational flows modified by high-energy fluvial currents that evolved to low-energy fluvial and lacustrine environments. They constitute the Conglomerado del Río Blanco, which cover unconformably marine Carboniferous sequences. Five volcanic and volcaniclastic facies make up the beginning of volcanic activity. The first volcanic event in the Portezuelo del Cenizo is basaltic to andesitic lava-flows emplaced in the flanks of volcanoes. Lava collapse produced thick block and ash flows. Interbedding in the intermediate volcanic rocks, there are dacites of different geochemical signature, which indicate that the development of acidic volcanism was coetaneous with the first volcanic activity. The geochemistry of these rocks induces to consider that the Choiyoi Group Lower section belongs to a magmatic arc on continental crust. The age of this section is assigned to the lower Permian (277 ? 3.0 Ma, Kungurian age).

  1. Mat-related sedimentary structures in Neoproterozoic peritidal passive margin deposits of the West African Craton (Anti-Atlas, Morocco)

    Science.gov (United States)

    Bouougri, E.; Porada, H.

    2002-11-01

    Proterozoic inliers in the central Anti-Atlas mountains expose predominantly siliciclastic sedimentary successions deposited in peritidal zones along the Neoproterozoic continental margin of the West African Craton (WAC). The low-grade metamorphic and modestly deformed sediments contain a wealth of sedimentary structures related to the former presence and activities of microbial mats and respective physicobiological processes. The well-preserved structures include wrinkle structures, erosion marks, microbial sand chips, spindle-shaped and subcircular microbial shrinkage cracks, and possibly gas domes and cabbage-head structures. Thin sections exhibit mat fragments and dispersed grains of hematite/limonite after pyrite in fine-grained quartzitic storm deposits. Post-storm layers frequently consist of matrix-supported sand-sized to silt-sized grains and are overlain by argillaceous veneers including isolated silt-sized grains and black carbonaceous laminae. The muddy veneers are considered to represent compacted stacks of microbial mats (biolaminites), which colonized and biostabilized storm and post-storm layers, and thus prevented them from eroding. In the absence of grazing and burrowing organisms and at suitable depositional and hydrodynamic conditions, it may be expected that Proterozoic microbial mats extensively grew from the supratidal to the intertidal zones and occasionally, e.g. behind protective barriers, in the subtidal zone and beyond. Mat-related structures, however, need specific conditions for their formation and preservation: Wrinkle structures, erosion marks, and microbial sand chips require tractional currents and soon deposition and burial, respectively. Such conditions are preferably met in intertidal and supratidal zones. Spindle-shaped and subcircular cracks require mat shrinkage due to either desiccation or "syneresis". Crack propagation implies progressive shrinkage, while superposition of crack generations indicates repeated alternation

  2. Relating modes of extension to the spatial and temporal distribution of major sediment unconformities at passive margins

    Science.gov (United States)

    Andrés-Martínez, Miguel; Pérez-Gussinyé, Marta; Armitage, John; Morgan, Jason P.

    2017-04-01

    unconformities under variable kinetic scenarios, from regional to faulted-block scales. We find that unconformities are generally associated to a change in the locus of extension. In models with intermediate-strength crust, sequential faulting takes place, so that only one fault is active at a time and occur in the hanging wall of the previous fault, resulting in asymmetric conjugate margins. In this case a major unconformity separates syn- and post-kinematic sediments. Both syn- and post-kinematic sediments young oceanwards and the unconformity dates the time in which extension abandons the area in favour of new faults forming oceanwards. Models with weaker crusts display extension along a wide region, with overprinting of different faulting phases. Eventually, deformation localizes in a narrow region due to cooling, and crustal break-up occurs. In this case, a first set of unconformities separates different phases of faulting inside the syn-kinematic sediments, and later unconformities separate syn-kinematic and post-kinematic sediments, dating the time at which extension localizes. We also find that unconformities date the crustal break-up only when they develop in the vicinity of the break-up locus. This stresses on that terms such as syn- and post-rift sediments and break-up unconformity should be handled carefully when seismic interpretation is done, and also provides support for unconformities as rifting story-tellers.

  3. Sensitivity analysis of a variability in rock thermal conductivity concerning implications on the thermal evolution of the Brazilian South Atlantic passive continental margin

    Science.gov (United States)

    Stippich, Christian; Krob, Florian; Glasmacher, Ulrich Anton; Hackspacher, Peter Christian

    2017-04-01

    The aim of the research is to quantify the long-term evolution of the western South Atlantic passive continental margin (SAPCM) in SE-Brazil. Excellent onshore outcrop conditions and extensive pre-rift to post-rift archives between São Paulo and Laguna allow a high precision quantification of exhumation, and rock uplift rates, influencing physical parameters, long-term acting forces, and process-response systems. The research integrates published (Karl et al., 2013) and partly published thermochronological data from Brazil, and test lately published new concepts on causes of long-term landscape and lithospheric evolution in southern Brazil. Six distinct lithospheric blocks (Laguna, Florianópolis, Curitiba, Ilha Comprida, Peruibe and Santos), which are separated by fracture zones (Karl et al., 2013) are characterized by individual thermochronological age spectra. Furthermore, the thermal evolution derived by numerical modeling indicates variable post-rift exhumation histories of these blocks. In this context, we will provide information on the causes for the complex exhumation history of the Florianópolis, and adjacent blocks. Following up on our latest publication (Braun et al., 2016) regarding the effect of variability in rock thermal conductivity on exhumation rate estimates we performed a sensitivity analysis to quantify the effect of a differentiated lithospheric crust on the thermal evolution of the Florianópolis block versus exhumation rates estimated from modelling a lithospheric uniform crustal block. The long-term landscape evolution models with process rates were computed with the software code PECUBE (Braun, 2003; Braun et al., 2012). Testing model solutions obtained for a multidimensional parameter space against the real thermochronological and geomorphological data set, the most likely combinations of parameters, values, and rates can be constrained. References Braun, J., 2003. Pecube: A new finite element code to solve the 3D heat transport

  4. Genesis of the Doğankuzu and Mortaş Bauxite deposits, Taurides, Turkey: separation of Al, Fe, and Mn and implications for passive margin metallogeny

    Science.gov (United States)

    Öztürk, Hüseyin; Hein, James R.; Hanilçi, Nurullah

    2002-01-01

    The Taurides region of Turkey is host to a number of important bauxite, Al-rich laterite, and Mn deposits. The most important bauxite deposits, Doğankuzu and Mortaş, are karst-related, unconformity-type deposits in Upper Cretaceous limestone. The bottom contact of the bauxite ore is undulatory, and bauxite fills depressions and sinkholes in the footwall limestone, whereas its top surface is concordant with the hanging-wall limestone. The thickness of the bauxite varies from 1 to 40 m and consists of böhmite, hematite, pyrite, marcasite, anatase, diaspore, gypsum, kaolinite, and smectite. The strata-bound, sulfide- and sulfate-bearing, low-grade lower part of the bauxite ore bed contains pyrite pseudomorphs after hematite and is deep red in outcrop owing to supergene oxidation. The lower part of the bauxite body contains local intercalations of calcareous conglomerate that formed in fault-controlled depressions and sinkholes. Bauxite ore is overlain by fine-grained Fe sulfide-bearing and calcareous claystone and argillaceous limestone, which are in turn overlain by massive, compact limestone of Santonian age. That 50-m-thick limestone is in turn overlain by well-bedded bioclastic limestone of Campanian or Maastrichtian age, rich with rudist fossils. Fracture fillings in the bauxite orebody are up to 1 m thick and consist of bluish-gray-green pyrite and marcasite (20%) with böhmite, diaspore, and anatase. These sulfide veins crosscut and offset the strata-bound sulfide zones. Sulfur for the sulfides was derived from the bacterial reduction of seawater sulfate, and Fe was derived from alteration of oxides in the bauxite. Iron sulfides do not occur within either the immediately underlying or overlying limestone. The platform limestone and shale that host the bauxite deposits formed at a passive margin of the Tethys Ocean. Extensive vegetation developed on land as the result of a humid climate, thereby creating thick and acidic soils and enhancing the transport of

  5. New (U-Th)/He titanite data from a complex orogen-passive margin system: A case study from northern Mozambique

    Science.gov (United States)

    Bauer, Friederike U.; Jacobs, Joachim; Emmel, Benjamin U.; van Soest, Matthijs C.

    2016-08-01

    New titanite (U-Th)/He (He) data on basement rocks from NE Mozambique are presented. The objective was to test the applicability of titanite He thermochronology in an orogen-passive margin setting and to better constrain the exhumation history across the Lurio Belt, a major structural discontinuity in Mozambique. Therefore, samples from existing geochronological and thermochronological studies were dated using titanite He thermochronology. Resulting titanite He data (from abraded crystals) provide average cooling ages from 178 ± 15 to 383 ± 23 Ma. The data fit well into the age pattern obtained from previous thermochronological studies in NE Mozambique, revealing differential exhumation across the Lurio Belt. The basement to the north experienced earlier cooling than that to the south, while overall youngest titanite He ages are from the Lurio Belt, indicating reactivation linked to the post-collisional extension and break-up of Gondwana. Thermal history modelling revealed two possibilities, able to account for the different cooling histories of NE Mozambique since initial Gondwana break-up in Permian times: One involves a transient sedimentary overburden that buried and (re)heated the southern basement, with subsequent basin inversion at ˜250 Ma in response to rift shoulder uplift. The second model implies delayed cooling of the southern basement, possibly due to delamination of the crustal root shortly after Gondwana formation. The formerly upwelling asthenosphere and the subsequently formed sag basin might have caused a prolonged thermal effect. Titanite He ages and thermal histories point to rift shoulder uplift of the southern part and increased thermal activity within the reactivated Lurio Belt, signifying first rifting activities as precursor of Gondwana break-up.

  6. Patterns and Dynamics of Rifting on Passive Continental Margin from Shelf to Slope of the Northern South China Sea:Evidence from 3D Analogue Modeling

    Institute of Scientific and Technical Information of China (English)

    Sun Zhen; Zhou Di; Wu Shimin; Zhong Zhihong; Myra Keep; Jiang Jianqun; Fan Hao

    2009-01-01

    Affected by thermal perturbation due to mantle uprising,the rheological structure of the lithosphere could be modified,which could lead to different rifting patterns from shelf to slope in a passive continental margin.From the observed deformation style on the northern South China Sea and analogue modeling experiments,we find that the rift zone located on the shelf is characterized by half grabens or simple grabens controlled mainly by long faults with large vertical offset,supposed to be formed with normal lithasphere extension.On the slope,where the lithosphere is very hot due to mantle upwelling and heating,composite grabens composed of symmetric grabens developed.The boundary and inner faults are all short with small vertical offset.Between the zones with very hot and normal lithosphere,composite half grnbens composed of half grabens or asymmetric grabens formed,whose boundary faults are long with large vertical offset,while the inner faults are relatively short.Along with the thickness decrease of the brittle upper crust due to high temperature,the deformation becomes more sensitive to the shape of a pre-existing weakness zone and shows orientation variation along strike.When there was a bend in the pre-existing weakness zone,and the basal plate was pulled by a clockwise rotating stress,the strongest deformation always occurs along the middle segment and at the transition area from the middle to the eastern segments,which contributes to a hotter lithosphere in the middle segment,where the Baiyun (白云) sag formed.

  7. Spectrally Enhanced Cloud Objects—A generalized framework for automated detection of volcanic ash and dust clouds using passive satellite measurements: 1. Multispectral analysis

    Science.gov (United States)

    Pavolonis, Michael J.; Sieglaff, Justin; Cintineo, John

    2015-08-01

    While satellites are a proven resource for detecting and tracking volcanic ash and dust clouds, existing algorithms for automatically detecting volcanic ash and dust either exhibit poor overall skill or can only be applied to a limited number of sensors and/or geographic regions. As such, existing techniques are not optimized for use in real-time applications like volcanic eruption alerting and data assimilation. In an effort to significantly improve upon existing capabilities, the Spectrally Enhanced Cloud Objects (SECO) algorithm was developed. The SECO algorithm utilizes a combination of radiative transfer theory, a statistical model, and image processing techniques to identify volcanic ash and dust clouds in satellite imagery with a very low false alarm rate. This fully automated technique is globally applicable (day and night) and can be adapted to a wide range of low earth orbit and geostationary satellite sensors or even combinations of satellite sensors. The SECO algorithm consists of four primary components: conversion of satellite measurements into robust spectral metrics, application of a Bayesian method to estimate the probability that a given satellite pixel contains volcanic ash and/or dust, construction of cloud objects, and the selection of cloud objects deemed to have the physical attributes consistent with volcanic ash and/or dust clouds. The first two components of the SECO algorithm are described in this paper, while the final two components are described in a companion paper.

  8. Petrogenesis of Volcanic Rocks in the Khabr-Marvast Tectonized Ophiolite: Evidence for Subduction Processes in the South-Western Margin of Central Iranian Microcontinent

    Institute of Scientific and Technical Information of China (English)

    Azam SOLTANMOHAMMADI; Mohammad RAHGOSHAY; Morteza KHALATBARI-JAFARI

    2009-01-01

    The Late Cretaceous Khabr-Marvast tectonized ophiolite is located in the middle part of the Nain-Baft ophiolite belt, at the south-western edge of the central Iranian microcontinent. Although all the volcanic rocks in the study area indicate subduction-related magmatism (e.g. high LILE (large ion lithophile elements)/ HFSE (high field strenght elements) ratios and negative anomalies in Nb and Ta), geological and geochemical data clearly distinguish two distinct groups of volcanic rocks in the tectonized association: (1) group 1 is comprised of hyaloclustic breccias, basaltic pillow iavas, and andesite sheet flows. These rocks represent the Nain-Baft oceanic crust; and (2) group 2 is alkaline iavas from the top section of the ophiolite suite. These lavas show shoshonite affinity, but do not support the propensity of ophiolite.

  9. Seismic and structural characterization of the fluid bypass system using 3D and partial stack seismic from passive margin: inside the plumbing system.

    Science.gov (United States)

    Iacopini, David; Maestrelli, Daniele; Jihad, Ali; Bond, Clare; Bonini, Marco

    2017-04-01

    In recent years enormous attention has been paid to the understanding of the process and mechanism controlling the gas seepage and more generally the fluid expulsion affecting the earth system from onshore to offshore environment. This is because of their demonstrated impact to our environment, climate change and during subsea drilling operation. Several example from active and paleo system has been so far characterized and proposed using subsurface exploration, geophysical and geochemical monitoring technology approaches with the aims to explore what trigger and drive the overpressure necessary maintain the fluid/gas/material expulsion and what are the structure that act as a gateway for gaseous fluid and unconsolidated rock. In this contribution we explore a series of fluid escape structure (ranging from seepage pipes to large blowout pipes structure of km length) using 3D and partial stack seismic data from two distinctive passive margin from the north sea (Loyal field, West Shetland) and the Equatorial Brazil (Ceara' Basin). We will focuses on the characterization of the plumbing system internal architecture and, for selected example, exploring the AVO response (using partial stack) of the internal fluid/unconsolidated rock. The detailed seismic mapping and seismic attributes analysis of the conduit system helped us to recover some detail from the signal response of the chimney internal structures. We observed: (1) small to medium seeps and pipes following structural or sedimentary discontinuities (2) large pipes (probably incipient mud volcanoes) and blowup structures propagating upward irrespective of pre-existing fault by hydraulic fracturing and assisted by the buoyancy of a fluidised and mobilised mud-hydrocarbon mixture. The reflector termination observed inside the main conduits, the distribution of stacked bright reflectors and the AVO analysis suggests an evolution of mechanisms (involving mixture of gas, fluid and probably mud) during pipe birth and

  10. Mastritherium (Artiodactyla, Anthracotheriidae) from Wadi Sabya, southwestern Saudi Arabia; an earliest Miocene age for continental rift-valley volcanic deposits of the Red Sea margin

    Science.gov (United States)

    Madden, Gary T.; Schmidt, Dwight Lyman; Whitmore, Frank C.

    1983-01-01

    A lower jaw fragment with its last molar (M/3) from the Baid formation in Wadi Sabya, southwestern Saudi Arabia, represents the first recorded occurrence in the Arabian Peninsula of an anthracotheriid artiodactyl (hippo-like, even-toed ungulate). This fossil is identified as a primitive species of Masritherium, a North and East African genus restricted, previously to the later early Miocene. This identification indicates that the age of the Baid formation, long problematical, is early Miocene and, moreover, shows that the age of the fossil site is earliest Miocene (from 25 to 21Ma). The Wadi Sabya anthracothere is the first species of fossil mammal recorded from western Saudi Arabia, and more important, it indicates an early Miocene age for the volcanic deposits of a continental rift-valley that preceded the initial sea-floor spreading of the Red Sea.

  11. Catastrophic volcanism

    Science.gov (United States)

    Lipman, Peter W.

    1988-01-01

    Since primitive times, catastrophes due to volcanic activity have been vivid in the mind of man, who knew that his activities in many parts of the world were threatened by lava flows, mudflows, and ash falls. Within the present century, increasingly complex interactions between volcanism and the environment, on scales not previously experienced historically, have been detected or suspected from geologic observations. These include enormous hot pyroclastic flows associated with collapse at source calderas and fed by eruption columns that reached the stratosphere, relations between huge flood basalt eruptions at hotspots and the rifting of continents, devastating laterally-directed volcanic blasts and pyroclastic surges, great volcanic-generated tsunamis, climate modification from volcanic release of ash and sulfur aerosols into the upper atmosphere, modification of ocean circulation by volcanic constructs and attendent climatic implications, global pulsations in intensity of volcanic activity, and perhaps triggering of some intense terrestrial volcanism by planetary impacts. Complex feedback between volcanic activity and additional seemingly unrelated terrestrial processes likely remains unrecognized. Only recently has it become possible to begin to evaluate the degree to which such large-scale volcanic processes may have been important in triggering or modulating the tempo of faunal extinctions and other evolutionary events. In this overview, such processes are examined from the viewpoint of a field volcanologist, rather than as a previous participant in controversies concerning the interrelations between extinctions, impacts, and volcanism.

  12. New geochemical and geochronological data of early Cambrian of (SW Iberia): Calc-alkaline magmatism in the transition from active to passive continental margin in North Gondwana

    OpenAIRE

    Sanchez-Garcia, Teresa; Pereira, M. Francisco; Bellido, Felix; Chichorro, Martim; Silva, J. Brandao; Valverde-Vaquero, Pablo; Pin, Christian; Solá, Rita

    2011-01-01

    The Ossa-Morena Zone (SW Iberia) displays a well-preserved record of the history of the northern Gondwana margin in Late Ediacaran-Early Cambrian times. This period of time is marked by the late-stage evolution of the Cadomian magmatic arc and related back-arc basins (c. 590-545 Ma), and the onset of rifting and widespread magmatism (c. 530-500 Ma) that led to the opening of the Rheic Ocean. Here we present new geochemical and geochronological data on some Cambrian granitoids of Ossa-Morena ...

  13. The Choiyoi volcanic province at 34°S-36°S (San Rafael, Mendoza, Argentina): Implications for the Late Palaeozoic evolution of the southwestern margin of Gondwana

    Science.gov (United States)

    Kleiman, Laura E.; Japas, María S.

    2009-08-01

    The Choiyoi rhyolitic province of Chile and Argentina (23°S-42°S) was emplaced at the SW margin of Gondwana during the Permian. The San Rafael Massif (Mendoza, Argentina, 34°-36°S), is a key area to analyse the relative timing of Choyoi magmatism and related deformation as it bears one of the most complete and well exposed succession. Stratigraphic, structural and magmatic studies indicate that major changes of geodynamic conditions occurred during the Permian since arc-related sequences syntectonic with transpression (lower Choiyoi) were followed by transitional to intraplate, postorogenic suites coeval with transtension (upper Choiyoi). During the Early Permian, a major event of N-NNW dextral transpressional motions deformed the Carboniferous foreland basin in the San Rafael Massif. This event is attributed to the first episode of the San Rafael orogeny and can be related to oblique subduction (Az. 30°) of the Palaeo-Pacific plate. Ca. 280 Ma the inception of voluminous calc-alkaline volcanism (lower Choiyoi) syntectonic with WNW sinistral transpression of the second episode of the San Rafael orogeny, is associated with an eastward migration of the magmatic arc at this latitude. To the southeast of San Rafael, magmatism and transpression continued to migrate inland suggesting that a progressively younger, WNW, sinistral, thick skinned deformation belt broadens into the foreland and can be traced from San Rafael to Sierra de la Ventana, linking the San Rafael orogeny with the Gondwanide orogeny of the Cape Fold Belt in South Africa. This distribution of magmatism and deformation is interpreted as being the consequence of a progressive shallowing of the Palaeo-Pacific plate starting to the north of San Rafael, and culminating with a flat-slab region south of 36°S. Ca. 265 Ma the onset of predominantly felsic volcanism (upper Choiyoi) in San Rafael occurred in a Post-San Rafael extensional setting. Kinematic indicators and strain fabric analyses of San Rafael

  14. Long-term evolution of the western South Atlantic passive continental margin in a key area of SE Brazil revealed by thermokinematic numerical modeling using the software code Pecube

    Science.gov (United States)

    Stippich, Christian; Krob, Florian; Glasmacher, Ulrich A.; Hackspacher, Peter C.

    2016-04-01

    The aim of the research is to quantify the long-term evolution of the western South Atlantic passive continental margin (SAPCM) in SE-Brazil. Excellent onshore outcrop conditions and extensive pre-rift to post-rift archives between São Paulo and Laguna allow a high precision quantification of exhumation, and rock uplift rates, influencing physical parameters, long-term acting forces, and process-response systems. Research will integrate published1 and partly published thermochronological data from Brazil, and test lately published new concepts on causes of long-term landscape and lithospheric evolution in southern Brazil. Six distinct lithospheric blocks (Laguna, Florianópolis, Curitiba, Ilha Comprida, Peruibe and Santos), which are separated by fracture zones1 are characterized by individual thermochronological age spectra. Furthermore, the thermal evolution derived by numerical modeling indicates variable post-rift exhumation histories of these blocks. In this context, we will provide information on the causes for the complex exhumation history of the Florianópolis, and adjacent blocks. The climate-continental margin-mantle coupled process-response system is caused by the interaction between endogenous and exogenous forces, which are related to the mantle-process driven rift - drift - passive continental margin evolution of the South Atlantic, and the climate change since the Early/Late Cretaceous climate maximum. Special emphasis will be given to the influence of long-living transform faults such as the Florianopolis Fracture Zone (FFZ) on the long-term topography evolution of the SAPCM's. A long-term landscape evolution model with process rates will be achieved by thermo-kinematic 3-D modeling (software code PECUBE2,3 and FastScape4). Testing model solutions obtained for a multidimensional parameter space against the real thermochronological and geomorphological data set, the most likely combinations of parameter rates, and values can be constrained. The

  15. Evolution of the South Atlantic passive continental margin and lithosphere dynamic movement in Southern Brazil derived from zircon and apatite (U-Th-Sm)/He and fission-track data

    Science.gov (United States)

    Krob, Florian; Stippich, Christian; Glasmacher, Ulrich A.; Hackspacher, Peter C.

    2016-04-01

    Passive continental margins are important geoarchives related to mantle dynamics, the breakup of continents, lithospheric dynamics, and other processes. The main concern yields the quantifying long-term lithospheric evolution of the continental margin between São Paulo and Laguna in southeastern Brazil since the Neoproterozoic. We put special emphasis on the reactivation of old fracture zones running into the continent and their constrains on the landscape evolution. In this contribution, we represent already consisting thermochronological data attained by fission-track and (U-Th-Sm)/He analysis on apatites and zircons. The zircon fission-track ages range between 108.4 (15.0) and 539.9 (68.4) Ma, the zircon (U-Th-Sm)/He ages between 72.9 (5.8) and 427.6 (1.8) Ma whereas the apatite fission-track ages range between 40.0 (5.3) and 134.7 (8.0) Ma, and the apatite (U-Th-Sm)/He ages between 32.1 (1.52) and 92.0 (1.86) Ma. These thermochronological ages from metamorphic, sedimentary and intrusive rocks show six distinct blocks (Laguna, Florianópolis, Curitiba, Ilha Comprida, Peruibe and Santos) with different evolution cut by old fracture zones. Furthermore, models of time-temperature evolution illustrate the differences in Pre- to post-rift exhumation histories of these blocks. The presented data will provide an insight into the complex exhumation history of the continental margin based on the existing literature data on the evolution of the Paraná basin in Brazil and the latest thermochronological data. We used the geological model of the Paraná basin supersequences (Rio Ivaí, Paraná, Gondwana I-III and Bauru) to remodel the subsidence and exhumation history of our consisting thermochronological sample data. First indications include a fast exhumation during the early Paleozoic, a slow shallow (northern blocks) to fast and deep (Laguna block) subduction from middle Paleozoic to Mesozoic time and a extremely fast exhumation during the opening of the South Atlantic

  16. The East Greenland rifted volcanic margin

    Directory of Open Access Journals (Sweden)

    C. Kent Brooks

    2011-12-01

    Full Text Available The Palaeogene North Atlantic Igneous Province is among the largest igneous provinces in the world and this review of the East Greenland sector includes large amounts of information amassed since previous reviews around 1990.The main area of igneous rocks extends from Kangerlussuaq (c. 67°N to Scoresby Sund (c. 70°N, where basalts extend over c. 65 000 km2, with a second area from Hold with Hope (c. 73°N to Shannon (c. 75°N. In addition, the Ocean Drilling Project penetrated basalt at five sites off South-East Greenland. Up to 7 km thickness of basaltic lavas have been stratigraphically and chemically described and their ages determined. A wide spectrum of intrusions are clustered around Kangerlussuaq, Kialeeq (c. 66°N and Mesters Vig (c. 72°N. Layered gabbros are numerous (e.g. the Skaergaard and Kap Edvard Holm intrusions, as are under- and oversaturated syenites, besides small amounts of nephelinite-derived products, such as the Gardiner complex (c. 69°N with carbonatites and silicate rocks rich in melilite, perovskite etc. Felsic extrusive rocks are sparse. A single, sanidine-bearing tuff found over an extensive area of the North Atlantic is thought to be sourced from the Gardiner complex.The province is famous for its coast-parallel dyke swarm, analogous to the sheeted dyke swarm of ophiolites, its associated coastal flexure, and many other dyke swarms, commonly related to central intrusive complexes as in Iceland. The dyke swarms provide time markers, tracers of magmatic evolution and evidence of extensional events. A set of dykes with harzburgite nodules gives unique insight into the Archaean subcontinental lithosphere.Radiometric dating indicates extrusion of huge volumes of basalt over a short time interval, but the overall life of the province was prolonged, beginning with basaltic magmas at c. 60 Ma and continuing to the quartz porphyry stock at Malmbjerg (c. 72°N at c. 26 Ma. Indeed, activity was renewed in the Miocene with the emplacement of small volumes of basalts of the Vindtoppen Formation to the south of Scoresby Sund.Although the basalts were extruded close to sea level, this part of East Greenland is a plateau raised to c. 2 km, but the timing of uplift is controversial. Superimposed on the plateau is a major dome at Kangerlussuaq.East Greenland presents a rich interplay between magmatic and tectonic events reflecting the birth of the North Atlantic Ocean. It was active over a much longer period (36 Ma than other parts of the province (5 Ma in the Hebrides, Northern Ireland and the Faroe Islands and contains a wider range of products, including carbonatites, and felsic rocks tend to be granitic rather than syenitic. As expected, there are many similarities with Iceland, the present-day expression of activity in the province. Differences are readily explained by higher production rates and the thicker lithospheric lid during the early stages of development in East Greenland. The igneous and related activity clearly results from plate-tectonic factors, but the relationship is not understood in detail. In particular, the nature of the underlying mantle processes, primarily the presence or absence of a plume, is still not resolved.

  17. Geochemical Characteristics and Metallogenesis of Volcanic Rocks as Exemplified by Volcanic Rocks in Ertix,Xinjiang

    Institute of Scientific and Technical Information of China (English)

    刘铁庚; 叶霖

    1997-01-01

    Volcanic rocks in Ertix,Xinjiang,occurring in the collision zone between the Siberia Plate and the Junggar Plate,are distributed along the Eritix River Valley in northern Xinjiang.The volcanic rocks were dated at Late Paleozoic and can be divided into the spilite-keratophyre series and the basalt-andesite series.The spilite-keratophyre series volcanic rocks occur in the Altay orogenic belt at the southwest margin of the Siberia Plate.In addition to sodic volcanic rocks.There are also associated potassic-sodic volcanic rocks and potassic volcanic rocks.The potassic-sodic volcanic rocks occur at the bottom of the eruption cycle and control the distribution of Pb and Zn deposits.The potassic volcanic rocks occur at the top of the eruption cycle and are associated with Au and Cu mineralizations.The sodic volcanic rocks occur in the middle stage of eruption cycle and control the occurrence of Cu(Zn) deposits.The basalt-andesite series volcanic rocks distributed in the North Junggar orogenic belt at the north margin of the Junggar-Kazakstan Plate belong to the potassic sodic volcain rocks.The volcanic rocks distributed along the Ulungur fault are relatively rich in sodium and poor in potassium and are predominated by Cu mineralization and associated with Au mineralization.Those volcanic rocks distributed along the Ertix fault are relatively rich in K and poor in Na,with Au mineralization being dominant.

  18. Deep Structure and Evolution of the Northeastern Gulf of Aden Margin From Wide-Angle Seismic and Thermomechanical Modeling

    Science.gov (United States)

    Watremez, L.; Leroy, S.; Rouzo, S.; D'Acremont, E.; Burov, E. B.

    2009-12-01

    The Encens survey wide-angle and gravity data (Leroy et al., Feb. March 2006) allow us to determine the deep structure of the northeastern Gulf of Aden non-volcanic passive margin. The Gulf of Aden is a young oceanic basin. Its accretion began at least 17.6 Ma ago. Its current geometry shows 1st and 2nd order segmentation. Our study focus on the second order Ashawq-Salalah segment. We studied six wide-angle seismic (WAS) and gravity profiles (three along and three across the margin). Modeling of the WAS and gravity data gives insights on the first and second orders structures : (1) Continental thinning is abrupt (15-20 km thinning along 50-100 km distance). It is accommodated by four tilted blocks. (2) The OCT is narrow (15 km wide). Its geometry is determined by the velocity models: oceanic-type upper-crust (4.5 km/s) and continental-type lower-crust (> 6.5 km/s). (3) The thickness of the oceanic crust decreases from West (10 km) to East (5.5 km). This pattern is probably linked to a variation of magma supply along the paleo-slow-spreading ridge axis. (4) A 5 km thick intermediate velocity body (7.6 to 7.8 km/s) is present at the crust-mantle interface below the margin. It is interpreted as post-rift underplated, or partly intruded, mafic material. This interpretation is consistent with the presence of a volcano evidenced by heat flow measurement and multichannel seismic reflection (Encens surveys). The studied segment is mainly characterized by abrupt continental thinning and narrow OCT. Moreover, this non-volcanic passive margin is affected by post-rift volcanism evidenced by the mafic body. We then suggest that the evolution of non-volcanic passive margins may be influenced by post-rift thermal anomalies. We will compare these above results with thermomechanical models in order to constrain the margin evolution and factors leading to the Gulf of Aden formation. Modeling is processed using Para(o)voz/Flamar code. This allows us to experiment the influence of

  19. Tectonic Evolution of Mozambique Ridge in East African continental margin

    Science.gov (United States)

    Tang, Yong

    2017-04-01

    Tectonic Evolution of Mozambique Ridge in East African continental margin Yong Tang He Li ES.Mahanjane Second Institute of Oceanography,SOA,Hangzhou The East Africa passive continental margin is a depression area, with widely distributed sedimentary wedges from southern Mozambique to northern Somali (>6500km in length, and about 6km in thickness). It was resulted from the separation of East Gondwana, and was developed by three stages: (1) rifting in Early-Middle Jurassic; (2) spreading from Late Jurassic to Early Cretaceous; (3) drifting since the Cretaceous period. Tectonic evolution of the Mozambique continental margin is distinguished by two main settings separated by a fossil transform, the Davie Fracture Zone; (i) rifting and transform setting in the northern margin related to opening of the Somali and Rovuma basins, and (ii) rifting and volcanism setting during the opening of the Mozambique basin in the southern margin. 2D reflection seismic investigation of the crustal structure in the Zambezi Delta Depression, provided key piece of evidence for two rifting phases between Africa and Antarctica. The magma-rich Rift I phase evolved from rift-rift-rift style with remarkable emplacement of dyke swarms (between 182 and 170 Ma). Related onshore outcrops are extensively studied, the Karoo volcanics in Mozambique, Zimbabwe and South Africa, all part of the Karoo "triple-junction". These igneous bodies flow and thicken eastwards and are now covered by up to 5 km of Cretaceous and Tertiary sediments and recorded by seismic and oil exploration wells. Geophysical and geological data recorded during oceanographic cruises provide very controversial results regarding the nature of the Mozambique Ridge. Two conflicting opinions remains open, since the early expeditions to the Indian Ocean, postulating that its character is either magmatic (oceanic) or continental origin. We have carried out an China-Mozambique Joint Cruise(CMJC) on southern Mozambique Basin on 1st June to

  20. Role of volcanics in formation of new crust during hyperextension of the Death Valley region

    Science.gov (United States)

    Norton, I. O.

    2011-12-01

    Death Valley (DV) is a pull-apart basin formed in the last 3 million years by extensional dextral strike slip linked to eastward propagation of the Pacific - North America plate boundary. From 15-18 Ma until 6 Ma, DV was part of the Basin and Range extensional province, with large-magnitude generally east-west extension. Several structural features in the region have been proposed as pinning points for restoration of this extension, allowing for quantitative palinspastic reconstructions. These reconstructions show over 100 km of motion between some pinning points. Depending on how initial geometries are restored, these offsets can imply over 200% extension. In a continental margin setting, this amount of extension would produce thin crust (assuming the horizontal extension factor equals the inverse of the crust thinning factor) and ultimately the mantle would probably be exhumed, like in the Iberia-Newfoundland rift. In the Death Valley region, however, the crust is still about 30 km thick. With 200% extension, original crustal thickness would have been nearly 90 km (defining %extension as {original-present}/original%, thickness or length). In this presentation I suggest that original crustal thickness was a more reasonable 40-45 km. 200% extension of this crust would have reduced crustal thickness to 15 km. Based on the observation of voluminous syn-extensional volcanics, both extrusive and intrusive, in the DV region, I also suggest that the difference in crustal thickness was made up of new volcanic material that has become a part of the crust during extension. The same hypothesis can be applied to the Basin and Range province, where syn-extensional volcanics make up nearly 50% of the exposed pre-Quaternary outcrop. These volcanics could have increased crustal thickness to the observed 30km, in spite of the large amount of extension in the province. Applying the same hypothesis to passive margins, where the presence or absence of syn-extensional volcanics is the

  1. Iberian Atlantic Margins Group investigates deep structure of ocean margins

    Science.gov (United States)

    The Iberian Atlantic Margins Group; Banda, Enric; Torne, Montserrat

    With recent seismic reflection data in hand, investigators for the Iberian Atlantic Margins project are preparing images of the deep continental and oceanic margins of Iberia. In 1993, the IAM group collected near vertical incidence seismic reflection data over a total distance of 3500 km along the North and Western Iberian Margins, Gorringe Bank Region and Gulf of Cadiz (Figure 1). When combined with data on the conjugate margin off Canada, details of the Iberian margin's deep structure should aid in distinguishing rift models and improve understanding of the processes governing the formation of margins.The North Iberian passive continental margin was formed during a Permian to Triassic phase of extension and matured during the early Cretaceous by rotation of the Iberian Peninsula with respect to Eurasia. From the late Cretaceous to the early Oligocene period, Iberia rotated in a counterclockwise direction around an axis located west of Lisbon. The plate boundary between Iberia and Eurasia, which lies along the Pyrenees, follows the north Spanish marginal trough, trends obliquely in the direction of the fossil Bay of Biscay triple junction, and continues along the Azores-Biscay Rise [Sibuet et al., 1994]. Following the NE-SW convergence of Iberia and Eurasia, the reactivation of the North Iberian continental margin resulted in the formation of a marginal trough and accretionary prism [Boillot et al., 1971].

  2. Composition, structure, origin, and evolution of off-axis linear volcanic structures of the Brazil Basin, South Atlantic

    Science.gov (United States)

    Skolotnev, S. G.; Peive, A. A.

    2017-01-01

    The paper considers the conditions and mechanisms of the formation of linear volcanic structures in the Brazil Basin, South Atlantic. Among these objects, those related to the ascent of deep mantle plumes predominate. It is shown that the ascent of melts from plume sources leads to the formation of (a) hot spot tracks in the form of linear volcanic ridges and (b) active hot lines in the form of submarine mountain chains with trends differing from those of hot spot tracks and with a more variable character of the age distribution of volcanic rocks. Fault tectonics affects the character of plume activity. In addition, plume material from a hot spot area is dragged by a moving plate as a flow or a sublithospheric lens, which leads to the long-term existence of particular independent segments of linear structures and sometimes to late volcanism reactivation within their limits. Decompression melting of the asthenospheric mantle in zones where thin lithosphere undergoes tension causes the formation of passive hot lines. The main mantle source for the considered volcanic rocks was a mixture of DMM and HIMU mantle components, with the latter abruptly dominating. In marginal oceanic regions, the EM1 component is also present (the EM2 component is found more rarely) within fragments of tectonically delaminated continental mantle that was trapped by the oceanic mantle during the breakup of Gondwana.

  3. Petrography and chemical evidence for multi-stage emplacement of western Buem volcanic rocks in the Dahomeyide orogenic belt, southeastern Ghana, West Africa

    Science.gov (United States)

    Nude, Prosper M.; Kwayisi, Daniel; Taki, Naa A.; Kutu, Jacob M.; Anani, Chris Y.; Banoeng-Yakubo, Bruce; Asiedu, Daniel K.

    2015-12-01

    The volcanic rocks of the Buem Structural Unit in the Dahomeyide orogenic belt of southeastern Ghana, constitute a unique assemblage among the monocyclic sedimentary formations of this structural unit. Representative volcanic rock samples were collected from the Asukawkaw, Bowiri-Odumase and Nkonya areas which form a roughly north-south trend. The volcanic rocks comprise spherulitic, amygdaloidal, vesicular, phyric and aphyric varieties. Whole rock geochemistry shows that these volcanic rocks exhibit both alkaline and subalkaline characteristics. The alkaline varieties are relatively enriched in REE and incompatible trace element concentrations, similar to OIB; the subalkaline varieties show E-MORB and N-MORB REE and incompatible element characteristics. The rocks have low La/Nb (<1), low K/Nb (<450) and high Nb/U (averagely 47.3) values, suggesting no significant effect of crustal contamination. The key characteristics of these volcanic rocks are the distinct petrography and geochemistry, shown from the three separate localities, which may suggest source fractionation at different depths or modes of emplacement. The association of volcanic rocks of OIB, E-MORB and N-MORB affinities, with no significant crustal contamination, may suggest mantle derived magma that may have been related to rifting event and eventual emplacement at the eastern passive margin of the West African Craton.

  4. Volcanic gas

    Science.gov (United States)

    McGee, Kenneth A.; Gerlach, Terrance M.

    1995-01-01

    In Roman mythology, Vulcan, the god of fire, was said to have made tools and weapons for the other gods in his workshop at Olympus. Throughout history, volcanoes have frequently been identified with Vulcan and other mythological figures. Scientists now know that the “smoke" from volcanoes, once attributed by poets to be from Vulcan’s forge, is actually volcanic gas naturally released from both active and many inactive volcanoes. The molten rock, or magma, that lies beneath volcanoes and fuels eruptions, contains abundant gases that are released to the surface before, during, and after eruptions. These gases range from relatively benign low-temperature steam to thick hot clouds of choking sulfurous fume jetting from the earth. Water vapor is typically the most abundant volcanic gas, followed by carbon dioxide and sulfur dioxide. Other volcanic gases are hydrogen sulfide, hydrochloric acid, hydrogen, carbon monoxide, hydrofluoric acid, and other trace gases and volatile metals. The concentrations of these gas species can vary considerably from one volcano to the next.

  5. Post-orogenic evolution of the Sierras Septentrionales and the Sierras Australes and links to the evolution of the eastern Argentina South Atlantic passive continental margin constrained by low temperature thermochronometry and 2D thermokinematic modeling

    Science.gov (United States)

    Kollenz, Sebastian; Glasmacher, Ulrich Anton; Rossello, Eduardo A.

    2013-04-01

    The eastern Argentina South Atlantic passive continental margin is distinguished by a very flat topography. Out of the so called Pampean flat two mountain ranges are arising. These mountain ranges, the Sierras Australes and the Sierras Septentrionales, are located in the State of Buenos Aires south of the capital Buenos Aires. North of the Sierras Septentrionales the Salado basin is located. The Sierras Septentrionales and the Sierras Australes are also divided by a smaller intracratonic basin. Further in the South the Colorado basin is located. The Sierras Australes is a variscian fold belt originated by strong phases of metamorphosis, but till now it is unclear by how many tectonic phases the area was influenced (Tomezzoli & Vilas, 1999). It consists of Proterozoic to Paleozoic rocks. The Sierras Septentrionales consists mainly of Precambrian crystalline rocks. The Precambrian sequences are overlain by younger Sediments (Cingolani, 2010). The aim is to understand the long-term landscape evolution of the area by quantifiying erosion- and exhumation-rates and by dating ancient rock-uplift-events. Another goal is to find out how the opening of the south atlantic took effect on this region. To fulfill this goal, thermochronological techniques, such as fission-track dating and (U-Th-Sm)/He dating has been applied to samples from the region. Because there was no low-temperature thermochronology done in this area, both techniques were applied on apatites and zircons. Furthermore, numerical modeling of the cooling history has provided the data base for the quantification of the exhumation rates. The first data-set shows clusters of different ages which can be linked to tectonic activities during late Paleozoic times. Also the thermokinematic modeling is leading to new insights of the evolution of both mountain ranges. References: Renata Nela Tomezzoli and Juan Francisco Vilas (1999): Palaeomagnetic constraints on the age of deformation of the Sierras Australes thrust and

  6. Is the Gop rift oceanic? A reevaluation of the Seychelles-India conjugate margins

    Science.gov (United States)

    Guan, Huixin; Werner, Philippe; Geoffroy, Laurent

    2016-04-01

    Recent studies reevaluated the timing and evolution of the breakup process between the Seychelles continental ridge and India, and the relationship between this evolution and mantle melting associated with the Deccan Igneous Province1,2,3. Those studies, mainly based on gravity and seismic refraction surveys, point that the oceanic domain located between the Seychelles and the Laxmi Ridge (here designed as the Carlsberg Basin) is the youngest oceanic domain between India and the Seychelles. To the East of the Laxmi Ridge, the aborted Gop Rift is considered as an older highly magmatic extensional continental system with magmatism, breakup and oceanic spreading being coeval with or even predating the emplacement of the major pulse of the Deccan trapps. This interpretation on the oceanic nature of the Gop Rift conflicts with other extensive surveys based on magnetic and seismic reflection data4 which suggest that the Gop Rift is an extended syn-magmatic continental domain. In our work based (a) on the existing data, (b) on new deep-seismic reflection surveys (already published by Misra5) down to the Moho and underlying mantle and (c) on new concepts on the geometry of volcanic passive margins, we propose a distinct interpretation of the Seychelles-India system. As proposed by former authors6,7, the Indian margin suffered some continental stretching and thinning before the onset of the Deccan traps during the Mesozoic. Thus continental crust thickness cannot be used easily as a proxy of syn-magmatic stretching-thinning processes or even to infer the presence or not of oceanic-type crust based, solely, on crustal thickness. However, some remarkable features appear on some of the deep penetration seismic lines we studied. We illustrate that the whole Seychelles/India system, before the opening of the present-day "Carlsberg Basin" may simply be regarded as a pair of sub-symmetric conjugate volcanic passive margins (VPMs) with inner and outer SDR wedges dipping towards the

  7. Volcanic Catastrophes

    Science.gov (United States)

    Eichelberger, J. C.

    2003-12-01

    The big news from 20th century geophysics may not be plate tectonics but rather the surprise return of catastrophism, following its apparent 19th century defeat to uniformitarianism. Divine miracles and plagues had yielded to the logic of integrating observations of everyday change over time. Yet the brilliant interpretation of the Cretaceous-Tertiary Boundary iridium anomaly introduced an empirically based catastrophism. Undoubtedly, decades of contemplating our own nuclear self-destruction played a role in this. Concepts of nuclear winter, volcanic winter, and meteor impact winter are closely allied. And once the veil of threat of all-out nuclear exchange began to lift, we could begin to imagine slower routes to destruction as "global change". As a way to end our world, fire is a good one. Three-dimensional magma chambers do not have as severe a magnitude limitation as essentially two-dimensional faults. Thus, while we have experienced earthquakes that are as big as they get, we have not experienced volcanic eruptions nearly as great as those preserved in the geologic record. The range extends to events almost three orders of magnitude greater than any eruptions of the 20th century. Such a calamity now would at the very least bring society to a temporary halt globally, and cause death and destruction on a continental scale. At maximum, there is the possibility of hindering photosynthesis and threatening life more generally. It has even been speculated that the relative genetic homogeneity of humankind derives from an evolutionary "bottleneck" from near-extinction in a volcanic cataclysm. This is somewhat more palatable to contemplate than a return to a form of Original Sin, in which we arrived at homogeneity by a sort of "ethnic cleansing". Lacking a written record of truly great eruptions, our sense of human impact must necessarily be aided by archeological and anthropological investigations. For example, there is much to be learned about the influence of

  8. Nature, Source and Composition of Volcanic Ash in Surficial Sediments Around the Zhongsha Islands

    Institute of Scientific and Technical Information of China (English)

    YAN Quanshu; SHI Xuefa; WANG Xinyu

    2008-01-01

    Volcanic detrital sediments are a unique indicator for reconstructing the petrogenetie evolution of submarine volcanic terrains. Volcanic ash in surficial sediments around the Zhongsha Islands includes three kinds of volcanogenic detritus, i.e., brown volcanic glass, colorless volcanic glass and volcanic scoria. The major element characteristics show that bimodal volcanic activity may have taken place in the northern margin of the South China Sea, with brown volcanic glass and colorless volcanic glass repre-senting the maric end-member and felsie end-member, respectively. Fractional crystallization is the main process for magma evolu-tion. The nature of the volcanic activity implies that the origin of volcanic activity was related to extensional tectonic settings, which is corresponding to an extensional geodynamie setting in the Xisha Trench, and supports the notion, which is based on geophysical data and petrology, that there may exist a mantle plume around the Hainan Island.

  9. Evolution of Mesozoic Volcanic Basins and Red Basins in the Gan-Hang Tectonic-Volcanic Metallogenic Belt

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper mainly proposes six major regional geological events in the active continental-margin mantle uplift zone and discusses the oscillation nature of the evolution of Mesozoic volcanic basins and red basins, origin of erosion in the late stage of red basins and mechanism of volcanism.

  10. Basement faults and volcanic rock distributions in the Ordos Basin

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Volcanic rocks in the Ordos Basin are of mainly two types: one in the basin and the other along the margin of the basin. Besides those along the margin, the marginal volcanic rocks also include the volcanic rocks in the Yinshanian orogenic belt north of the basin. Based on the latest collection of gravitational and aeromagnetic data, here we interpret basement faults in the Ordos Basin and its peripheral region, compare the faults derived from aeromagnetic data with those from seismic data, and identify the geological ages of the fault development. Two aeromagnetic anomaly zones exist in the NE-trending faults of the southern basin, and they are in the volcanic basement formed in pre-Paleozoic. These NE-trending faults are the channel of volcanic material upwelling in the early age (Archean-Neoproterozoic), where igneous rocks and sedimentary rocks stack successively on both sides of the continental nucleus. In the Cambrian, the basin interior is relatively stable, but in the Late Paleozoic and Mesozoic, the basin margin underwent a number of volcanic activities, accompanied by the formation of nearly north-south and east-west basement faults in the basin periphery and resulting in accumulation of great amount of volcanic materials. Volcanic tuff from the basin periphery is discovered in the central basin and volcanic materials are exposed in the margins of the basin. According to the source-reservoir-cap rock configuration, the basin peripheral igneous traps formed in the Indosinian-Early Yanshanian and Late Hercynian are favorable exploration objectives, and the volcanic rocks in the central basin are the future target of exploration.

  11. Interpretation of free-air gravity anomaly data for determining the crustal structure across the continental margins and aseismic ridges: Some examples from Indian continental margins and deep-sea basins

    Digital Repository Service at National Institute of Oceanography (India)

    Ramana, M.V.

    of Alaska and Japan trench, east of the Japanese Islands. Gravity anomalies across continental margins Continental margins are at or near to the transition zone between continental and oceanic crusts. Passive margins are commonly in isostatic.... Generalized bathymetry map of the Indian continental margins After Mishra et al., (2004) The western and eastern margins of India are classified under passive/Atlantic type continental margins, and the structural architecture is similar to any...

  12. Post-rift volcanic structures of the Pernambuco Plateau, northeastern Brazil

    Science.gov (United States)

    Buarque, Bruno V.; Barbosa, José A.; Magalhães, José R. G.; Cruz Oliveira, Jefferson T.; Filho, Osvaldo J. Correia

    2016-10-01

    The Pernambuco marginal basin is located on the eastern continental margin of northeastern Brazil, covers an area of 20,800 km2, and represents one of the most prominent frontiers for deep water oil and gas exploration off the Brazilian coast. The onshore region of this basin was highly affected by extrusive and intrusive magmatism during the Upper Albian, and the relation of that event with the volcanic structures observed in the offshore sector has not been thoroughly characterized to date. This study aims to characterize the major extrusive and intrusive volcanic structures of the offshore portion of this basin, which is dominated by the Pernambuco Plateau, and its stratigraphic relations. A set of 143 2D multichannel seismic sections that cover the Pernambuco Plateau region are used to interpret the major tectono-stratigraphic sequences and describe the distribution of volcanoes, sills, vent complexes and related volcaniclastic sequences. The interpretations are supported by aeromagnetic and gravimetric geophysical surveys. Volcanoes are classified into two groups that differ in terms of their morphology: shield-like structures and cone-shaped volcanic structures. Sill intrusions are mainly identified beneath the volcanic structures and are characterized by high-amplitude reflectors with short extensions and abrupt terminations. Volcaniclastic sequences are found adjacent to the volcanoes and are characterized by high-amplitude, disrupted reflections with local chaotic configurations. Vent complexes are classified on the basis of their morphologies as either eye-shaped or crater-shaped. The volcanic features identified within the available seismic dataset are concentrated in two main areas: in the centre of the plateau and near its northeastern border. These two regions are host basement outer highs and are surrounded by hyper-extended continental crust, which forms the plateau itself. The extrusive and intrusive features described in the offshore region were

  13. Volcanism and associated hazards: the Andean perspective

    Science.gov (United States)

    Tilling, R. I.

    2009-12-01

    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant improvements in reducing volcano risk in the Andean region. But much remains to be done.

  14. Volcanism and associated hazards: The Andean perspective

    Science.gov (United States)

    Tilling, R.I.

    2009-01-01

    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant improvements in reducing volcano risk in the Andean region. But much remains to be done.

  15. Volcanic hazard management in dispersed volcanism areas

    Science.gov (United States)

    Marrero, Jose Manuel; Garcia, Alicia; Ortiz, Ramon

    2014-05-01

    Traditional volcanic hazard methodologies were developed mainly to deal with the big stratovolcanoes. In such type of volcanoes, the hazard map is an important tool for decision-makers not only during a volcanic crisis but also for territorial planning. According to the past and recent eruptions of a volcano, all possible volcanic hazards are modelled and included in the hazard map. Combining the hazard map with the Event Tree the impact area can be zoned and defining the likely eruptive scenarios that will be used during a real volcanic crisis. But in areas of disperse volcanism is very complex to apply the same volcanic hazard methodologies. The event tree do not take into account unknown vents, because the spatial concepts included in it are only related with the distance reached by volcanic hazards. The volcanic hazard simulation is also difficult because the vent scatter modifies the results. The volcanic susceptibility try to solve this problem, calculating the most likely areas to have an eruption, but the differences between low and large values obtained are often very small. In these conditions the traditional hazard map effectiveness could be questioned, making necessary a change in the concept of hazard map. Instead to delimit the potential impact areas, the hazard map should show the expected behaviour of the volcanic activity and how the differences in the landscape and internal geo-structures could condition such behaviour. This approach has been carried out in La Palma (Canary Islands), combining the concept of long-term hazard map with the short-term volcanic scenario to show the expected volcanic activity behaviour. The objective is the decision-makers understand how a volcanic crisis could be and what kind of mitigation measurement and strategy could be used.

  16. Structural style and tectonic evolution of the easternmost Gulf of Aden conjugate margins (Socotra - Southern Oman)

    Science.gov (United States)

    Nonn, Chloe; Leroy, Sylvie; Castilla, Raymi; de Clarens, Philippe; Lescanne, Marc

    2016-04-01

    Observations from distal rifted margins in present day magma-poor rifted margins led to the discovery of hyperextended crust and exhumed sub-continental mantle. This finding allowed to better figure out how thinning process are accommodate by tectonic structures, forming various crustal domains, as the deformation localized towards the future area of breakup. However, some of the current challenges are about clarifying how factors as oblique kinematic, pre-existing structures and volcanism can control the 3D geometry and crustal architecture of the passive margins? A key to better understand the rifting evolution in its entirety is to study conjugate margins. The gulf of Aden is a young oceanic basin (with a global trend about N75°E) oblique to the divergence (about 30°N), separating Arabia from Somalia of less than 800 km. Thanks to its immerged margins and its thin post-rift sediment cover, the gulf of Aden basin is a natural laboratory to investigate conjugate margins and strain localisation throughout the rift history. In this contribution, we focus our interest on offshore Socotra Island (Yemen) and its conjugate in Southeastern Oman. This area extends from Socotra-Hadbeen (SHFZ) and the eastern Gulf of Aden fault zones (EGAFZ). In the easternmost part of the gulf of Aden, we provide new insights into crustal deformation and emplacement of the new oceanic crust thanks to bathymetric, magnetic, gravimetric data and single-, multi-channel, high speed seismic reflection data collected during Encens-Sheba (2000), Encens (2006) and the more recent Marges-Aden (2012) cruises respectively. The results obtained after compilation of these data, previous geological (field works) and geophysical (receiver functions, Pn-tomography, magnetic anomalies, heat flow) studies on the focused area, allowed us to provide new structural mapping and stratigraphic correlation between onshore and offshore parts of Socotra and Oman margins. We precisely defined and map crustal

  17. Passive education

    OpenAIRE

    Bojesen, Emile

    2016-01-01

    This paper does not present an advocacy of a passive education as opposed to an active education nor does it propose that passive education is in any way ‘better’ or more important than active education. Through readings of Maurice Blanchot, Jacques Derrida and B.S. Johnson, and gentle critiques of Jacques Rancière and John Dewey, passive education is instead described and outlined as an education which occurs whether we attempt it or not. As such, the object of critique for this essay are fo...

  18. [Passive gymnastics].

    Science.gov (United States)

    D'Orazi, L

    1990-01-01

    There is at the moment a continuous proliferation of gymnasium centres, among which the so-called "Centres of passive or activated gymnastic" have recently assumed a particular importance. The Swedish Doctor Zander, in the XIX century, was a promoter of this kind of gymnastics, utilizing instruments invented by him. These instruments were able to perform fundamental movements without needing the active participation of the person involved. Today's machinery for passive gymnastics no longer have the therapy or rehabilitation as their main purpose, but their present first purpose is more aesthetic than scientific. The ancient and modern machinery for passive gymnastics, is sometimes an imitation of the action of a massager.

  19. Passive Euthanasia

    National Research Council Canada - National Science Library

    E. Garrard; S. Wilkinson

    2005-01-01

    The idea of passive euthanasia has recently been attacked in a particularly clear and explicit way by an "Ethics Task Force" established by the European Association of Palliative Care (EAPC) in February 2001...

  20. Volcanic hazard assessment in monogenetic volcanic fields

    OpenAIRE

    Bartolini, Stefania

    2014-01-01

    [eng] One of the most important tasks of modern volcanology, which represents a significant socio-economic implication, is to conduct hazard assessment in active volcanic systems. These volcanological studies are aimed at hazard that allows to constructing hazard maps and simulating different eruptive scenarios, and are mainly addressed to contribute to territorial planning, definition of emergency plans or managing volcanic crisis. The impact of a natural event, as a volcanic eruption, can s...

  1. Passive euthanasia

    Science.gov (United States)

    Garrard, E; Wilkinson, S

    2005-01-01

    The idea of passive euthanasia has recently been attacked in a particularly clear and explicit way by an "Ethics Task Force" established by the European Association of Palliative Care (EAPC) in February 2001. It claims that the expression "passive euthanasia" is a contradiction in terms and hence that there can be no such thing. This paper critically assesses the main arguments for the Task Force's view. Three arguments are considered. Firstly, an argument based on the (supposed) wrongness of euthanasia and the (supposed) permissibility of what is often called passive euthanasia. Secondly, the claim that passive euthanasia (so-called) cannot really be euthanasia because it does not cause death. And finally, a consequence based argument which appeals to the (alleged) bad consequences of accepting the category of passive euthanasia. We conclude that although healthcare professionals' nervousness about the concept of passive euthanasia is understandable, there is really no reason to abandon the category provided that it is properly and narrowly understand and provided that "euthanasia reasons" for withdrawing or withholding life-prolonging treatment are carefully distinguished from other reasons. PMID:15681666

  2. 准噶尔盆地西北缘下二叠统油气储层中火山物质蚀变及控制因素%Alteration of volcanics and its controlling factors in the Lower Permian reservoirs at northwestern margin of Junggar Basin

    Institute of Scientific and Technical Information of China (English)

    朱世发; 朱筱敏; 吴冬; 刘英辉; 李盼盼; 姜淑贤; 刘学超

    2014-01-01

    通过岩心分析、显微镜下观察(常规、铸体薄片和扫描电镜)、岩石地球化学分析测试等技术手段,以准噶尔盆地西北缘下二叠统油气储层为实例,研究了火山岩、火山碎屑岩和火山岩屑质砂砾岩中的火山玻璃、火山碎屑、长石以及辉石、角闪石等火山物质的低温-埋藏蚀变作用。镜下观察发现,在含火山物质油气储层中,常见对储集空间具有重要影响的自生矿物主要有绿泥石、沸石(包括方沸石、片沸石和浊沸石)、方解石、钠长石和自生的石英。结合共生关系、元素组成和元素迁移,分析了自生矿物的微观特征和成因,建立了火山物质蚀变的成岩演化序列,可以概括为:①火山玻璃水化-蒙脱石化-沸石化及各种沸石的转化---钠长石化;②铁镁矿物影响的绿泥石化;③长石蚀变向绿泥石和方解石转化,后期发生钠长石化。在研究区,火山物质的蚀变和自生矿物的析出与中-基性的母岩物质组成密切相关,并受地层温度、压力、孔隙水的化学性质控制。研究火山物质蚀变的产物、蚀变过程及控制因素,能够明确含火山物质的油气储层质量差异机理,为优质储层预测提供科学的依据。%Based on observations of available cores ,thin-sections and SEM and analysis of rock geochemistry ,we studied low-temperature-burial metamorphism ( alteration ) of volcanics in the Lower Permian at northwestern margin of Junggar Basin .These volcanics include volcanic glass , volcanic clasts , feldspar , and mafic minerals such as pyroxene and horn-blende,etc.,which originate from lavas,pyroclastic rocks,and volcaniclastic sandstones or conglomerates .In oil/gas reservoirs containing volcanics ,the authigenic minerals that are common but important to pore spaces include chlorite ,ze-olites(like analcime,heulandite,and laumontite),calcite,albite,and authigenic quartz.Based on

  3. Margin requirements, margin loans, and margin rates: practice and principles

    OpenAIRE

    Peter Fortune

    2000-01-01

    The Board of Governors of the Federal Reserve System establishes initial margin requirements under Regulations T, U, and X. Recent margin loan increases, both in aggregate value and relative to market capitalization, have rekindled the debate about using margin requirements as an instrument to affect the prices of common stocks. Proponents of a more active margin requirement policy see the regulations as instruments for affecting the level and volatility of stock prices by influencing investo...

  4. 准噶尔盆地西北缘下二叠统火山岩岩性、岩相及其与储层的关系%Early Permian Volcanic Lithology, Lithofacies and Their Relations to Reservoir in Northwestern Margin of the Junggar Basin

    Institute of Scientific and Technical Information of China (English)

    鲜本忠; 牛花朋; 朱筱敏; 董国栋; 朱世发; 安思奇

    2013-01-01

    Early Permian volcanic rocks in northwestern margin of the Junggar Basin have different rock types and lithofacies. In this paper, data from core, thin sections and element chemistry were used to study volcanic lithology and their relations to reservoir quality. The Jiamuhe Formation is characterized by lava and volcanoclastic rocks, which are mainly basaltic andesites, andesites and quartz andesites. The lithology of volcanic rocks in the Fengcheng Formation are different in different areas. Lava including basaltic andesitoid and tephrite was the main type in Kebai area, while welded pyroclastic rock and volcaniclastic lava of rhyolite, pollenite and andesitoid are the main types in Wuxia area. The high-quality reservoir developed in eruptive breccias and lava such as andesite in the Jiamuhe Formation and in the Fengcheng Formation of the Kebai area, and in welded pyroclastic rock and breccias lava with stone bubbles in the Fengcheng Formation of the Wuxia area. Besides, same volcanic rock would have different reservoir quality because of different volcanic environments. In the studied area, although diagenesis was diverse in different parts, high-quality volcanic rock reservoir developed mainly in the upper effusive sub-facies, air fall, and pyroclastic subfacies in explosive facies. Effusive and explosive facies were common in the Jiamuhe Formation, while effusive facies and pyroclastic flow subfacies in explosive facies were the main facies in Fengcheng Formation of Kebai area and of Wuxia area, respectively. Therefore, distinct explorative targets should be chosen in different layers in different areas. Lithofacies was another important controlling factor for volcanic reservoir besides fracturing in fault zones and leaching under the regional unconformable surface.%  与石炭系相比,准噶尔盆地西北缘下二叠统火山岩岩性、岩相类型丰富,研究程度低。本文利用岩心、薄片及元素地球化学资料,开展了火山岩

  5. Volcanism and associated hazards: the Andean perspective

    Directory of Open Access Journals (Sweden)

    R. I. Tilling

    2009-12-01

    Full Text Available Andean volcanism occurs within the Andean Volcanic Arc (AVA, which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions" recognized worldwide that have occurred from the Ordovician to the Pleistocene.

    The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru. The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (<0.05 km3 in 1985 of Nevado del Ruiz (Colombia killed about 25 000 people – the worst volcanic disaster in the Andean region as well as the second worst in the world in the 20th century. The Ruiz tragedy has been attributed largely to ineffective communications of hazards information and indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent

  6. Multidisciplinary scientific program of investigation of the structure and evolution of the Demerara marginal plateau

    Science.gov (United States)

    Loncke, Lies; Basile, Christophe; Roest, Walter; Graindorge, David; Mercier de Lépinay, Marion; Klinghelhoefer, Frauke; Heuret, Arnauld; Pattier, France; Tallobre, Cedric; Lebrun, Jean-Frédéric; Poetisi, Ewald; Loubrieu, Benoît; Iguanes, Dradem, Margats Scientific Parties, Plus

    2017-04-01

    Mercier de Lépinay et al. published in 2016 an updated inventory of transform passive margins in the world. This inventory shows that those margins represent 30% of continental passive margins and a cumulative length of 16% of non-convergent margins. It also highlights the fact that many submarine plateaus prolong transform continental margins, systematically at the junction of oceanic domains of different ages. In the world, we identified twenty of those continental submarine plateaus (Falklands, Voring, Demerara, Tasman, etc). Those marginal plateaus systematically experiment two phases of deformation: a first extensional phase and a second transform phase that allows the individualization of those submarine reliefs appearing on bathymetry as seaward continental-like salients. The understanding of the origin, nature, evolution of those marginal plateaus has many scientific and economic issues. The Demerara marginal plateau located off French Guiana and Surinam belongs to this category of submarine provinces. The French part of this plateau has been the locus of a first investigation in 2003 in the framework of the GUYAPLAC cruise dedicated to support French submissions about extension of the limit of the continental shelf beyond 200 nautical miles. This cruise was the starting point of a scientific program dedicated to geological investigations of the Demerara plateau that was sustained by different cruises and collaborations (1) IGUANES (2013) that completed the mapping of this plateau including off Surinam, allowed to better understand the segmentation of the Northern edge of this plateau, and to evidence the combined importance of contourite and mass-wasting processes in the recent sedimentary evolution of this domain, (2) Collaboration with TOTAL (Mercier de Lépinay's PhD thesis) that allowed to better qualify the two main phases of structural evolution of the plateau respectively during Jurassic times for its Western border, Cretaceous times for its

  7. Current perspectives on energy and mass fluxes in volcanic arcs

    Science.gov (United States)

    Leeman, William; Davidson, Jon; Fischer, Tobias; Grunder, Anita; Reagan, Mark; Streck, Martin

    Volcanoes of the Pacific Ring of Fire and other convergent margins worldwide are familiar manifestations of nature's energy, account for about 25% of global volcanic outputs, dominate volcanic gas emissions to the atmosphere, and pose significant physical threats to a large human population. Yet the processes behind this prolific activity remain poorly understood.An international “State of the Arc” (SOTA) conference was held in August on the slopes of Mt. Hood, Oregon, to address current views on the energy and mass fluxes in volcanic arcs. This meeting brought together some 90 leading experts and students of subduction zones and their related magmatism.

  8. Lithology and temperature: How key mantle variables control rift volcanism

    Science.gov (United States)

    Shorttle, O.; Hoggard, M.; Matthews, S.; Maclennan, J.

    2015-12-01

    Continental rifting is often associated with extensive magmatic activity, emplacing millions of cubic kilometres of basalt and triggering environmental change. The lasting geological record of this volcanic catastrophism are the large igneous provinces found at the margins of many continents and abrupt extinctions in the fossil record, most strikingly that found at the Permo-Triassic boundary. Rather than being considered purely a passive plate tectonic phenomenon, these episodes are frequently explained by the involvement of mantle plumes, upwellings of mantle rock made buoyant by their high temperatures. However, there has been debate over the relative role of the mantle's temperature and composition in generating the large volumes of magma involved in rift and intra-plate volcanism, and even when the mantle is inferred to be hot, this has been variously attributed to mantle plumes or continental insulation effects. To help resolve these uncertainties we have combined geochemical, geophysical and modelling results in a two stage approach: Firstly, we have investigated how mantle composition and temperature contribute to melting beneath Iceland, the present day manifestation of the mantle plume implicated in the 54Ma break up of the North Atlantic. By considering both the igneous crustal production on Iceland and the chemistry of its basalts we have been able to place stringent constraints on the viable temperature and lithology of the Icelandic mantle. Although a >100°C excess temperature is required to generate Iceland's thick igneous crust, geochemistry also indicates that pyroxenite comprises 10% of its source. Therefore, the dynamics of rifting on Iceland are modulated both by thermal and compositional mantle anomalies. Secondly, we have performed a global assessment of the mantle's post break-up thermal history to determine the amplitude and longevity of continental insulation in driving excess volcanism. Using seismically constrained igneous crustal

  9. Ductile deformation, boudinage and low angle normal faults. An overview of the structural variability at present-day rifted margins

    Science.gov (United States)

    Clerc, Camille; Jolivet, Laurent; Ringenbach, Jean-Claude; Ballard, Jean-François

    2016-04-01

    High quality industrial seismic profiles acquired along most of the world's passive margins present stunningly increased resolution that leads to unravel an unexpected variety of structures. An important benefit of the increased resolution of recent seismic profiles is that they provide an unprecedented access to the processes occurring in the middle and lower continental crust. We present a series of so far unreleased profiles that allow the identification of various rift-related geological processes such as crustal boudinage, ductile shear and low angle detachment faulting. The lower crust in passive margins appears much more intensely deformed than usually represented. At the foot of both magma-rich and magma-poor margins, we observe clear indications of ductile deformation of the deep continental crust along large-scale shallow dipping shear zones. These shear zones generally show a top-to-the-continent sense of shear consistent with the activity of overlying continentward dipping normal faults observed in the upper crust. This pattern is responsible for a migration of the deformation and associated sedimentation and/or volcanic activity toward the ocean. In some cases, low angle shear zones define an anastomosed pattern that delineates boudin-like structures. The interboudins areas seem to localize the maximum of deformation. The lower crust is intensely boudinaged and the geometry of those boudins seems to control the position and dip of upper crustal normal faults. We present some of the most striking examples (Uruguay, West Africa, Barents sea…) and discuss their implications for the time-temperature-subsidence history of the margins.

  10. 华北板块北缘东段二叠纪的构造属性:来自火山岩锆石U-Pb年代学与地球化学的制约%Permian tectonic evolution of the eastern section of the northern margin of the North China Plate: Constraints from zircon U-Pb geochronology and geochemistry of the volcanic rocks

    Institute of Scientific and Technical Information of China (English)

    曹花花; 许文良; 裴福萍; 郭鹏远; 王枫

    2012-01-01

    -eastern parts of Jilin Province, with the aim of constraining the tectonic nature of the eastern section of the northern margin of the North China Plate in Late Paleozoic. Zircons from the volcanic rocks in the Daheshen and Guanmenzuizi formations are euhedral-subhedral in shape and display fine-scale oscillatory zoning and striped absorption ( basaltic andesite) as well as high Th/U ratios (0. 31 ~ 1. 56) , implying their magmatic origin. LA-ICP-MS zircon U-Pb age data indicate that the dacite and rhyolites from the Daheshen Formation in Huadian County formed in the Early Permian (279 ± 3 Ma ~ 293 ±2Ma) , whereas the basaltic andesite and basalt from the Guanmenzuizi Formation in the Hunchun and Tumen areas formed in the Early Permian (275 ±7Ma) and Late Permian (250 ±5Ma) , respectively. The volcanic rocks from the Daheshen Formation have SiO2 = 64. 9% -75. 4% , Mg#=0. 21 ~0. 57, belonging chemically to medium- to high-K calc-alkaline series, and display an enrichment in LREEs and LILEs and depletion in HFSEs (such as Nb, Ta, and Ti) and P, similar chemically to those from an active continental margin setting. Their initial Hf isotopic ratios and Hf two-stage model ages range from +0. 9 to + 10. 37 and from 785Ma to 1240Ma, respectively, suggesting that their primary magmas could be mainly derived from partial melting of the Meso-Neoproterozoic accretted lower crust. The Early Permian basaltic andesites from the Guanmenzuizi Formation in Hunchun area, belonging chemically to medium-K calc-alkaline series, are poor in SiO2 (53. 4% ~ 53. 7% ) and HFSEs, rich in A12O3 (16. 4% ~ 16. 8% ) and LILEs, and display low REE abundances and flat REE pattern, similar to those from an island arc setting. The primary magma of the basaltic andesites could be mainly derived from partial melting of the depleted mantle wedge metasomatized by the subducted slab-derived fluid. The Late Permian basalts from the Guanmenzuizi Formation in Tumen area have SiO2 = 48. 7% ~ 49. 6% , Mg# = 0. 64 ~ 0

  11. Carbonate sedimentation in an extensional active margin: Cretaceous history of the Haymana region, Pontides

    Science.gov (United States)

    Okay, Aral I.; Altiner, Demir

    2016-10-01

    The Haymana region in Central Anatolia is located in the southern part of the Pontides close to the İzmir-Ankara suture. During the Cretaceous, the region formed part of the south-facing active margin of the Eurasia. The area preserves a nearly complete record of the Cretaceous system. Shallow marine carbonates of earliest Cretaceous age are overlain by a 700-m-thick Cretaceous sequence, dominated by deep marine limestones. Three unconformity-bounded pelagic carbonate sequences of Berriasian, Albian-Cenomanian and Turonian-Santonian ages are recognized: Each depositional sequence is preceded by a period of tilting and submarine erosion during the Berriasian, early Albian and late Cenomanian, which corresponds to phases of local extension in the active continental margin. Carbonate breccias mark the base of the sequences and each carbonate sequence steps down on older units. The deep marine carbonate deposition ended in the late Santonian followed by tilting, erosion and folding during the Campanian. Deposition of thick siliciclastic turbidites started in the late Campanian and continued into the Tertiary. Unlike most forearc basins, the Haymana region was a site of deep marine carbonate deposition until the Campanian. This was because the Pontide arc was extensional and the volcanic detritus was trapped in the intra-arc basins and did not reach the forearc or the trench. The extensional nature of the arc is also shown by the opening of the Black Sea as a backarc basin in the Turonian-Santonian. The carbonate sedimentation in an active margin is characterized by synsedimentary vertical displacements, which results in submarine erosion, carbonate breccias and in the lateral discontinuity of the sequences, and differs from blanket like carbonate deposition in the passive margins.

  12. Alkali Basalts From the Galatia Volcanic Complex, NW Central Anatolia, Turkey

    OpenAIRE

    Tankut, Ayla; GÜLEÇ, Nilgün

    2014-01-01

    Alkali basalts occur as small lava flows associated with the andesitic lava flows and pyroclastics of Early to Middle Miocene age which are the main constituents of the Galatia volcanic complex. The northern margin of the complex is bordered by the North Anatolian Fault wher eas the southern margin is surrounded by a continental sedimentary sequence which interfingers with the volcanics. New K-Ar age determinations of the basalts reveal that alkali basalts erupted at two differ ent periods ...

  13. Geophysical imaging of buried volcanic structures within a continental back-arc basin

    DEFF Research Database (Denmark)

    Stratford, Wanda Rose; Stern, T.A.

    2008-01-01

    Hidden beneath the ~2 km thick low-velocity volcaniclastics on the western margin of the Central Volcanic Region, North Island, New Zealand, are two structures that represent the early history of volcanic activity in a continental back-arc. These ~20×20 km structures, at Tokoroa and Mangakino, fo...

  14. Asymptotic Stability of Interconnected Passive Non-Linear Systems

    Science.gov (United States)

    Isidori, A.; Joshi, S. M.; Kelkar, A. G.

    1999-01-01

    This paper addresses the problem of stabilization of a class of internally passive non-linear time-invariant dynamic systems. A class of non-linear marginally strictly passive (MSP) systems is defined, which is less restrictive than input-strictly passive systems. It is shown that the interconnection of a non-linear passive system and a non-linear MSP system is globally asymptotically stable. The result generalizes and weakens the conditions of the passivity theorem, which requires one of the systems to be input-strictly passive. In the case of linear time-invariant systems, it is shown that the MSP property is equivalent to the marginally strictly positive real (MSPR) property, which is much simpler to check.

  15. VOLCANIC TSUNAMI GENERATING SOURCE MECHANISMS IN THE EASTERN CARIBBEAN REGION

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2004-01-01

    Full Text Available Earthquakes, volcanic eruptions, volcanic island flank failures and underwater slides have generated numerous destructive tsunamis in the Caribbean region. Convergent, compressional and collisional tectonic activity caused primarily from the eastward movement of the Caribbean Plate in relation to the North American, Atlantic and South American Plates, is responsible for zones of subduction in the region, the formation of island arcs and the evolution of particular volcanic centers on the overlying plate. The inter-plate tectonic interaction and deformation along these marginal boundaries result in moderate seismic and volcanic events that can generate tsunamis by a number of different mechanisms. The active geo-dynamic processes have created the Lesser Antilles, an arc of small islands with volcanoes characterized by both effusive and explosive activity. Eruption mechanisms of these Caribbean volcanoes are complex and often anomalous. Collapses of lava domes often precede major eruptions, which may vary in intensity from Strombolian to Plinian. Locally catastrophic, short-period tsunami-like waves can be generated directly by lateral, direct or channelized volcanic blast episodes, or in combination with collateral air pressure perturbations, nuéss ardentes, pyroclastic flows, lahars, or cascading debris avalanches. Submarine volcanic caldera collapses can also generate locally destructive tsunami waves. Volcanoes in the Eastern Caribbean Region have unstable flanks. Destructive local tsunamis may be generated from aerial and submarine volcanic edifice mass edifice flank failures, which may be triggered by volcanic episodes, lava dome collapses, or simply by gravitational instabilities. The present report evaluates volcanic mechanisms, resulting flank failure processes and their potential for tsunami generation. More specifically, the report evaluates recent volcanic eruption mechanisms of the Soufriere Hills volcano on Montserrat, of Mt. Pel

  16. Zircon U-Pb age and Hf isotopic systematics of Late Paleozoic volcanic from the western margin of east Junggar and tectonic implication%东准噶尔西缘晚古生代火山岩的锆石U-Pb年龄和Hf同位素特征及构造意义

    Institute of Scientific and Technical Information of China (English)

    史基安; 唐相路; 张顺存; 张宏福; 肖燕

    2012-01-01

    Two sections,namely Baijiangou and Zhangpenggo,in the western margin of east Junggar, where expose a large number of Paleozoic volcanic rocks, are the favorable areas to study the tectonic evolution of the east Junggar. LA-MC-ICP-MS zircon U-Pb dating and Hf isotopic systematics study of igneous rocks( basalt,basaltic andesite,rhyolite and keratophyre with minor tuff and syenite-porphyry) , using geochrony technology, suggests that they were formed during Early Devonian to Late Carboniferous (400 ~ 307 Ma). Basalts and basaltic andesites are more likely output as dikes, and they display age-range from 435 Ma to 300 Ma and show positive em(t) values(+0. 7 ~ +15.4) , which suggests that the east Junggar terrane is controled by juvenile crust and that the Precambrian crystalline rocks must be very limited, if there is any. The Zhangpenggou rhyolite and keratophyre, zircon U-Pb ages of 332 Ma and 336 Ma respectively, were formed in a volcanic arc environment or a environment which was mixed with part of island arc. The Baijiangou syenite-porphyries with positive sa((t) values in Late Carboniferous( 307 Ma and 315 Ma) indicate a vertical accretion of crustal materials. The Baijiangou rhyolites which show positive sH[(t) values and zircon U-Pb ages of 315 Ma and 323 Ma suggests a lateral accretion of crustal materials. Therefore, the east Junggar is mainly accretionary prism undering extensional settings of post-collisional period, and it's considered today to be a Paleozoic Mariana-type intra-oceanic island arc.%白碱沟和帐篷沟剖面位于东准噶尔西缘,出露有大量古生代火山岩,是研究东准噶尔古生代火山岩及构造演化的有利区域.本文利用LA-MC-ICP-MS锆石U-Pb定年法和Hf同位素系统对该区中的玄武岩、玄武质安山岩、流纹岩、角斑岩以及少量的凝灰岩和正长斑岩进行了地质年代学研究,认为它们形成于早泥盆世至晚石炭世之间(400~307 Ma).玄武岩和玄武质安山岩

  17. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.

    2009-08-22

    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean integrates volcanic radiative cooling and responds over a wide range of time scales. The associated processes, especially ocean heat uptake, play a key role in ongoing climate change. However, they are not well constrained by observations, and attempts to simulate them in current climate models used for climate predictions yield a range of uncertainty. Volcanic impacts on the ocean provide an independent means of assessing these processes. This study focuses on quantification of the seasonal to multidecadal time scale response of the ocean to explosive volcanism. It employs the coupled climate model CM2.1, developed recently at the National Oceanic and Atmospheric Administration\\'s Geophysical Fluid Dynamics Laboratory, to simulate the response to the 1991 Pinatubo and the 1815 Tambora eruptions, which were the largest in the 20th and 19th centuries, respectively. The simulated climate perturbations compare well with available observations for the Pinatubo period. The stronger Tambora forcing produces responses with higher signal-to-noise ratio. Volcanic cooling tends to strengthen the Atlantic meridional overturning circulation. Sea ice extent appears to be sensitive to volcanic forcing, especially during the warm season. Because of the extremely long relaxation time of ocean subsurface temperature and sea level, the perturbations caused by the Tambora eruption could have lasted well into the 20th century.

  18. Immunizations: Active vs. Passive

    Science.gov (United States)

    ... Prevention > Immunizations > Immunizations: Active vs. Passive Safety & Prevention Listen Español Text Size Email Print Share Immunizations: Active vs. Passive Page Content Article Body Pediatricians can ...

  19. Volcanic Rocks and Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanoes have contributed significantly to the formation of the surface of our planet. Volcanism produced the crust we live on and most of the air we breathe. The...

  20. A Decade of Volcanic Observations from Aura and the A-Train

    Science.gov (United States)

    Carn, Simon A.; Krotkov, Nickolay Anatoly; Yang, Kai; Krueger, Arlin J.; Hughes, Eric J.; Wang, Jun; Flower, Verity; Telling, Jennifer

    2014-01-01

    Aura observations have made many seminal contributions to volcanology. Prior to the Aura launch, satellite observations of volcanic degassing (e.g., from TOMS) were mostly restricted to large eruptions. However, the vast majority of volcanic gases are released during quiescent 'passive' degassing between eruptions. The improved sensitivity of Aura OMI permitted the first daily, space-borne measurements of passive volcanic SO2 degassing, providing improved constraints on the source locations and magnitude of global SO2 emissions for input to atmospheric chemistry and climate models. As a result of this unique sensitivity to volcanic activity, OMI data were also the first satellite SO2 measurements to be routinely used for volcano monitoring at several volcano observatories worldwide. Furthermore, the Aura OMI SO2 data also offer unprecedented sensitivity to volcanic clouds in the UTLS, elucidating the transport, fate and lifetime of volcanic SO2 and providing critical input to aviation hazard mitigation efforts. Another major advance has been the improved vertical resolution of volcanic clouds made possible by synergy between Aura and other A-Train instruments (e.g., AIRS, CALIPSO, CloudSat), advanced UV SO2 altitude retrievals, and inverse trajectory modeling of detailed SO2 cloud maps. This altitude information is crucial for climate models and aviation hazards. We will review some of the highlights of a decade of Aura observations of volcanic activity and look ahead to the future of volcanic observations from space.

  1. A Laurentian margin back-arc: the Ordovician Wedowee-Emuckfaw-Dahlonega basin

    Science.gov (United States)

    Barineau, Clinton I.; Tull, James F.; Holm-Denoma, Christopher S.

    2015-01-01

    Independent researchers working in the Talladega belt, Ashland-Wedowee-Emuckfaw belt, and Opelika Complex of Alabama, as well as the Dahlonega gold belt and western Inner Piedmont of Alabama, Georgia, and the Carolinas, have mapped stratigraphic sequences unique to each region. Although historically considered distinct terranes of disparate origin, a synthesis of data suggests that each includes lithologic units that formed in an Ordovician back-arc basin (Wedowee-Emuckfaw-Dahlonega basin—WEDB). Rocks in these terranes include varying proportions of metamorphosed mafic and bimodal volcanic rock suites interlayered with deep-water metasedimentary rock sequences. Metavolcanic rocks yield ages that are Early–Middle Ordovician (480–460 Ma) and interlayered metasedimentary units are populated with both Grenville and Early–Middle Ordovician detrital zircons. Metamafic rocks display geochemical trends ranging from mid-oceanic-ridge basalt to arc affinity, similar to modern back-arc basalts. The collective data set limits formation of the WEDB to a suprasubduction system built on and adjacent to upper Neoproterozoic–lower Paleozoic rocks of the passive Laurentian margin at the trailing edge of Iapetus, specifically in a continental margin back-arc setting. Overwhelmingly, the geologic history of the southern Appalachians, including rocks of the WEDB described here, indicates that the Ordovician Taconic orogeny in the southern Appalachians developed in an accretionary orogenic setting instead of the traditional collisional orogenic setting attributed to subduction of the Laurentian margin beneath an exotic or peri-Laurentian arc. Well-studied Cenozoic accretionary orogens provide excellent analogs for Taconic orogenesis, and an accretionary orogenic model for the southern Appalachian Taconic orogeny can account for aspects of Ordovician tectonics not easily explained through collisional orogenesis.

  2. Geophysical constraints on geodynamical processes at convergent margins

    DEFF Research Database (Denmark)

    Artemieva, Irina; Thybo, Hans; Shulgin, Alexey

    2016-01-01

    Convergent margins, being the boundaries between colliding lithospheric plates, form the most disastrous areas in the world due to intensive, strong seismicity and volcanism. We review global geophysical data in order to illustrate the effects of the plate tectonic processes at convergent margins...... on the crustal and upper mantle structure, seismicity, and geometry of subducting slab. We present global maps of free-air and Bouguer gravity anomalies, heat flow, seismicity, seismic Vs anomalies in the upper mantle, and plate convergence rate, as well as 20 profiles across different convergent margins....... A global analysis of these data for three types of convergent margins, formed by ocean-ocean, ocean-continent, and continent-continent collisions, allows us to recognize the following patterns. (1) Plate convergence rate depends on the type of convergent margins and it is significantly larger when...

  3. Passive solar technology

    Energy Technology Data Exchange (ETDEWEB)

    Watson, D

    1981-04-01

    The present status of passive solar technology is summarized, including passive solar heating, cooling and daylighting. The key roles of the passive solar system designer and of innovation in the building industry are described. After definitions of passive design and a summary of passive design principles are given, performance and costs of passive solar technology are discussed. Passive energy design concepts or methods are then considered in the context of the overall process by which building decisions are made to achieve the integration of new techniques into conventional design. (LEW).

  4. Volcanic hazards to airports

    Science.gov (United States)

    Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.

    2009-01-01

    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies

  5. South Atlantic continental margins of Africa: a comparison of the tectonic vs climate interplay on the evolution of equatorial west Africa and SW Africa margins

    CERN Document Server

    Seranne, M; Seranne, Michel; Anka, Zahie

    2005-01-01

    The comparative review of 2 representative segments of Africa continental margin: the equatorial western Africa and the SW Africa margins, helps in analysing the main controlling factors on their development. Early Cretaceous active rifting S of the Walvis Ridge resulted in the formation of the SW Africa volcanic margin. The non-volcanic rifting N of the Walvis ridge, led to the formation of the equatorial western Africa margin, with thick and extensive, synrift basins. Regressive erosion of SW Africa prominent shoulder uplift accounts for high clastic sedimentation rate in Late Cretaceous - Eocene, while dominant carbonate production on equatorial western Africa shelf suggests little erosion of a low hinterland. The early Oligocene climate change had contrasted response in both margins. Emplacement of the Congo deep-sea fan reflects increased erosion in equatorial Africa, under the influence of wet climate, whereas establishment of an arid climate over SW Africa induced a drastic decrease of denudation, and ...

  6. Evolution of passive continental margins and initiation of subduction zones

    NARCIS (Netherlands)

    Cloetingh, S.A.P.L.

    1982-01-01

    The initiation of subduction is a key element in plate tectonic schemes for the evolution of the Earth's lithosphere. Nevertheless, up to present, the underlying mechanism has not been very well understood (e.g. Dickinson and Seely, 1979; Hager, 1980; Kanamori, 1980). The insight into the

  7. Evolution of passive continental margins and initiation of subduction zones

    NARCIS (Netherlands)

    Cloetingh, Sierd

    1982-01-01

    The initiation of subduction is a key element in plate tectonic schemes for the evolution of the Earth's lithosphere. Nevertheless, up to present, the underlying mechanism has not been very well understood (e.g. Dickinson and Seely, 1979; Hager, 1980; Kanamori, 1980). The insight into the initiation

  8. Evolution of passive continental margins and initiation of subduction zones

    NARCIS (Netherlands)

    Cloetingh, S.A.P.L.

    1982-01-01

    The initiation of subduction is a key element in plate tectonic schemes for the evolution of the Earth's lithosphere. Nevertheless, up to present, the underlying mechanism has not been very well understood (e.g. Dickinson and Seely, 1979; Hager, 1980; Kanamori, 1980). The insight into the initiation

  9. Mantle updrafts and mechanisms of oceanic volcanism

    Science.gov (United States)

    Anderson, Don L.; Natland, James H.

    2014-10-01

    Convection in an isolated planet is characterized by narrow downwellings and broad updrafts-consequences of Archimedes' principle, the cooling required by the second law of thermodynamics, and the effect of compression on material properties. A mature cooling planet with a conductive low-viscosity core develops a thick insulating surface boundary layer with a thermal maximum, a subadiabatic interior, and a cooling highly conductive but thin boundary layer above the core. Parts of the surface layer sink into the interior, displacing older, colder material, which is entrained by spreading ridges. Magma characteristics of intraplate volcanoes are derived from within the upper boundary layer. Upper mantle features revealed by seismic tomography and that are apparently related to surface volcanoes are intrinsically broad and are not due to unresolved narrow jets. Their morphology, aspect ratio, inferred ascent rate, and temperature show that they are passively responding to downward fluxes, as appropriate for a cooling planet that is losing more heat through its surface than is being provided from its core or from radioactive heating. Response to doward flux is the inverse of the heat-pipe/mantle-plume mode of planetary cooling. Shear-driven melt extraction from the surface boundary layer explains volcanic provinces such as Yellowstone, Hawaii, and Samoa. Passive upwellings from deeper in the upper mantle feed ridges and near-ridge hotspots, and others interact with the sheared and metasomatized surface layer. Normal plate tectonic processes are responsible both for plate boundary and intraplate swells and volcanism.

  10. Marginalization of the Youth

    DEFF Research Database (Denmark)

    Jensen, Niels Rosendal

    2009-01-01

    The article is based on a key note speach in Bielefeld on the subject "welfare state and marginalized youth", focusing upon the high ambition of expanding schooling in Denmark from 9 to 12 years. The unintended effect may be a new kind of marginalization.......The article is based on a key note speach in Bielefeld on the subject "welfare state and marginalized youth", focusing upon the high ambition of expanding schooling in Denmark from 9 to 12 years. The unintended effect may be a new kind of marginalization....

  11. Neotectonics in the northern equatorial Brazilian margin

    Science.gov (United States)

    Rossetti, Dilce F.; Souza, Lena S. B.; Prado, Renato; Elis, Vagner R.

    2012-08-01

    An increasing volume of publications has addressed the role of tectonics in inland areas of northern Brazil during the Neogene and Quaternary, despite its location in a passive margin. Hence, northern South America plate in this time interval might have not been as passive as usually regarded. This proposal needs further support, particularly including field data. In this work, we applied an integrated approach to reveal tectonic structures in Miocene and late Quaternary strata in a coastal area of the Amazonas lowland. The investigation, undertaken in Marajó Island, mouth of the Amazonas River, consisted of shallow sub-surface geophysical data including vertical electric sounding and ground penetrating radar. These methods were combined with morphostructural analysis and sedimentological/stratigraphic data from shallow cores and a few outcrops. The results revealed two stratigraphic units, a lower one with Miocene age, and an upper one of Late Pleistocene-Holocene age. An abundance of faults and folds were recorded in the Miocene deposits and, to a minor extent, in overlying Late Pleistocene-Holocene strata. In addition to characterize these structures, we discuss their origin, considering three potential mechanisms: Andean tectonics, gravity tectonics related to sediment loading in the Amazon Fan, and rifting at the continental margin. Amongst these hypotheses, the most likely is that the faults and folds recorded in Marajó Island reflect tectonics associated with the history of continental rifting that gave rise to the South Atlantic Ocean. This study supports sediment deposition influenced by transpression and transtension associated with strike-slip divergence along the northern Equatorial Brazilian margin in the Miocene and Late Pleistocene-Holocene. This work records tectonic evidence only for the uppermost few ten of meters of this sedimentary succession. However, available geological data indicate a thickness of up to 6 km, which is remarkably thick for

  12. Submarine Volcanic Morphology of Santorini Caldera, Greece

    Science.gov (United States)

    Nomikou, P.; Croff Bell, K.; Carey, S.; Bejelou, K.; Parks, M.; Antoniou, V.

    2012-04-01

    Santorini volcanic group form the central part of the modern Aegean volcanic arc, developed within the Hellenic arc and trench system, because of the ongoing subduction of the African plate beneath the European margin throughout Cenozoic. It comprises three distinct volcanic structures occurring along a NE-SW direction: Christianna form the southwestern part of the group, Santorini occupies the middle part and Koloumbo volcanic rift zone extends towards the northeastern part. The geology of the Santorini volcano has been described by a large number of researchers with petrological as well as geochronological data. The offshore area of the Santorini volcanic field has only recently been investigated with emphasis mainly inside the Santorini caldera and the submarine volcano of Kolumbo. In September 2011, cruise NA-014 on the E/V Nautilus carried out new surveys on the submarine volcanism of the study area, investigating the seafloor morphology with high-definition video imaging. Submarine hydrothermal vents were found on the seafloor of the northern basin of the Santorini caldera with no evidence of high temperature fluid discharges or massive sulphide formations, but only low temperature seeps characterized by meter-high mounds of bacteria-rich sediment. This vent field is located in line with the normal fault system of the Kolumbo rift, and also near the margin of a shallow intrusion that occurs within the sediments of the North Basin. Push cores have been collected and they will provide insights for their geochemical characteristics and their relationship to the active vents of the Kolumbo underwater volcano. Similar vent mounds occur in the South Basin, at shallow depths around the islets of Nea and Palaia Kameni. ROV exploration at the northern slopes of Nea Kameni revealed a fascinating underwater landscape of lava flows, lava spines and fractured lava blocks that have been formed as a result of 1707-1711 and 1925-1928 AD eruptions. A hummocky topography at

  13. Precambrian Lunar Volcanic Protolife

    Directory of Open Access Journals (Sweden)

    Jack Green

    2009-06-01

    Full Text Available Five representative terrestrial analogs of lunar craters are detailed relevant to Precambrian fumarolic activity. Fumarolic fluids contain the ingredients for protolife. Energy sources to derive formaldehyde, amino acids and related compounds could be by flow charging, charge separation and volcanic shock. With no photodecomposition in shadow, most fumarolic fluids at 40 K would persist over geologically long time periods. Relatively abundant tungsten would permit creation of critical enzymes, Fischer-Tropsch reactions could form polycyclic aromatic hydrocarbons and soluble volcanic polyphosphates would enable assembly of nucleic acids. Fumarolic stimuli factors are described. Orbital and lander sensors specific to protolife exploration including combined Raman/laser-induced breakdown spectrocsopy are evaluated.

  14. Lung problems and volcanic smog

    Science.gov (United States)

    ... releases gases into the atmosphere. Volcanic smog can irritate the lungs and make existing lung problems worse. ... deep into the lungs. Breathing in volcanic smog irritates the lungs and mucus membranes. It can affect ...

  15. Abrupt plate accelerations shape rifted continental margins

    Science.gov (United States)

    Brune, Sascha; Williams, Simon E.; Butterworth, Nathaniel P.; Müller, R. Dietmar

    2016-08-01

    Rifted margins are formed by persistent stretching of continental lithosphere until breakup is achieved. It is well known that strain-rate-dependent processes control rift evolution, yet quantified extension histories of Earth’s major passive margins have become available only recently. Here we investigate rift kinematics globally by applying a new geotectonic analysis technique to revised global plate reconstructions. We find that rifted margins feature an initial, slow rift phase (less than ten millimetres per year, full rate) and that an abrupt increase of plate divergence introduces a fast rift phase. Plate acceleration takes place before continental rupture and considerable margin area is created during each phase. We reproduce the rapid transition from slow to fast extension using analytical and numerical modelling with constant force boundary conditions. The extension models suggest that the two-phase velocity behaviour is caused by a rift-intrinsic strength-velocity feedback, which can be robustly inferred for diverse lithosphere configurations and rheologies. Our results explain differences between proximal and distal margin areas and demonstrate that abrupt plate acceleration during continental rifting is controlled by the nonlinear decay of the resistive rift strength force. This mechanism provides an explanation for several previously unexplained rapid absolute plate motion changes, offering new insights into the balance of plate driving forces through time.

  16. Abrupt plate accelerations shape rifted continental margins.

    Science.gov (United States)

    Brune, Sascha; Williams, Simon E; Butterworth, Nathaniel P; Müller, R Dietmar

    2016-08-11

    Rifted margins are formed by persistent stretching of continental lithosphere until breakup is achieved. It is well known that strain-rate-dependent processes control rift evolution, yet quantified extension histories of Earth's major passive margins have become available only recently. Here we investigate rift kinematics globally by applying a new geotectonic analysis technique to revised global plate reconstructions. We find that rifted margins feature an initial, slow rift phase (less than ten millimetres per year, full rate) and that an abrupt increase of plate divergence introduces a fast rift phase. Plate acceleration takes place before continental rupture and considerable margin area is created during each phase. We reproduce the rapid transition from slow to fast extension using analytical and numerical modelling with constant force boundary conditions. The extension models suggest that the two-phase velocity behaviour is caused by a rift-intrinsic strength--velocity feedback, which can be robustly inferred for diverse lithosphere configurations and rheologies. Our results explain differences between proximal and distal margin areas and demonstrate that abrupt plate acceleration during continental rifting is controlled by the nonlinear decay of the resistive rift strength force. This mechanism provides an explanation for several previously unexplained rapid absolute plate motion changes, offering new insights into the balance of plate driving forces through time.

  17. Volcanism and Oil & Gas In Northeast China

    Institute of Scientific and Technical Information of China (English)

    Shan Xuanlong

    2000-01-01

    Based on study on the relation with volcanic rock and oil & gas in Songliao Basin and Liaohe Basin in northeast China, author proposes that material from deep by volcanism enrichs the resources in basins, that heat by volcanism promotes organic matter transforming to oil and gas, that volcanic reservoir is fracture, vesicular, solution pore, intercrystal pore.Lava facies and pyroclastic facies are favourable reservoir. Mesozoic volcanic reservoir is majority of intermediate, acid rock,but Cenozoic volcanic reservoir is majority of basalt. Types of oil and gas pool relating to volcanic rock include volcanic fracture pool, volcanic unconformity pool, volcanic rock - screened pool, volcanic darpe structural pool.

  18. Practical Marginalized Multilevel Models.

    Science.gov (United States)

    Griswold, Michael E; Swihart, Bruce J; Caffo, Brian S; Zeger, Scott L

    2013-01-01

    Clustered data analysis is characterized by the need to describe both systematic variation in a mean model and cluster-dependent random variation in an association model. Marginalized multilevel models embrace the robustness and interpretations of a marginal mean model, while retaining the likelihood inference capabilities and flexible dependence structures of a conditional association model. Although there has been increasing recognition of the attractiveness of marginalized multilevel models, there has been a gap in their practical application arising from a lack of readily available estimation procedures. We extend the marginalized multilevel model to allow for nonlinear functions in both the mean and association aspects. We then formulate marginal models through conditional specifications to facilitate estimation with mixed model computational solutions already in place. We illustrate the MMM and approximate MMM approaches on a cerebrovascular deficiency crossover trial using SAS and an epidemiological study on race and visual impairment using R. Datasets, SAS and R code are included as supplemental materials.

  19. Modeling volcanic ash dispersal

    CERN Document Server

    CERN. Geneva

    2010-01-01

    The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard...

  20. Vertical tectonics at an active continental margin

    Science.gov (United States)

    Houlié, N.; Stern, T. A.

    2017-01-01

    Direct observations of vertical movements of the earth's surface are now possible with space-based GPS networks, and have applications to resources, hazards and tectonics. Here we present data on vertical movements of the Earth's surface in New Zealand, computed from the processing of GPS data collected between 2000 and 2015 by 189 permanent GPS stations. We map the geographical variation in vertical rates and show how these variations are explicable within a tectonic framework of subduction, volcanic activity and slow slip earthquakes. Subsidence of >3 mm/yr is observed along southeastern North Island and is interpreted to be due to the locked segment of the Hikurangi subduction zone. Uplift of 1-3 mm/yr further north along the margin of the eastern North Island is interpreted as being due to the plate interface being unlocked and underplating of sediment on the subduction thrust. The Volcanic Plateau of the central North Island is being uplifted at about 1 mm/yr, which can be explained by basaltic melts being injected in the active mantle-wedge at a rate of ∼6 mm/yr. Within the Central Volcanic Region there is a 250 km2 area that subsided between 2005 and 2012 at a rate of up to 14 mm/yr. Time series from the stations located within and near the zone of subsidence show a strong link between subsidence, adjacent uplift and local earthquake swarms.

  1. Lunar Pyroclastic Eruptions: Basin Volcanism's Dying Gasps

    Science.gov (United States)

    Kramer, G. Y.; Nahm, A.; McGovern, P. J.; Kring, D. A.

    2011-12-01

    The relationship between mare volcanism and impact basins has long been recognized, although the degree of influence basin formation has on volcanism remains a point of contention. For example, did melting of magma sources result from thermal energy imparted by a basin-forming event? Did basin impacts initiate mantle overturn of the unstable LMO cumulate pile, causing dense ilmenite to sink and drag radioactive KREEPy material to provide the thermal energy to initiate melting of the mare sources? Did the dramatically altered stress states provide pathways ideally suited for magma ascent? The chemistry of sampled lunar volcanic glasses indicates that they experienced very little fractional crystallization during their ascent to the surface - they have pristine melt compositions. Volatile abundances, including recent measurements of OH [1,2] suggest that the mantle source of at least the OH-analyzed glasses have a water abundance of ~700 ppm - comparable to that of Earth's upper mantle. More recently, [3] showed that the abundance of OH and other volatiles measured in these glasses is positively correlated with trace element abundances, which is expected since water is incompatible in a magma. Volatile enrichment in a deep mantle source would lower the melting temperature and provide the thrust for magma ascent through 500 km of mantle and crust [4]. We are exploring the idea that such basin-related lunar pyroclastic volcanism may represent the last phase of basaltic volcanism in a given region. Remote sensing studies have shown volcanic glasses are fairly common, and often found along the perimeter of mare-filled basins [5]. Recent modeling of the stresses related to the basin-forming process [6,7] show that basin margins provide the ideal conduit for low-volume lunar pyroclastic volcanism (compared with the high output of mare volcanism). Schrödinger's basin floor is largely composed of a compositionally uniform impact breccia. The exceptions are two distinct and

  2. Ocean margins workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-12-31

    The Department of Energy (DOE) is announcing the refocusing of its marine research program to emphasize the study of ocean margins and their role in modulating, controlling, and driving Global Change phenomena. This is a proposal to conduct a workshop that will establish priorities and an implementation plan for a new research initiative by the Department of Energy on the ocean margins. The workshop will be attended by about 70 scientists who specialize in ocean margin research. The workshop will be held in the Norfolk, Virginia area in late June 1990.

  3. "We call ourselves marginalized"

    DEFF Research Database (Denmark)

    Jørgensen, Nanna Jordt

    2014-01-01

    In recent decades, indigenous knowledge has been added to the environmental education agenda in an attempt to address the marginalization of non-western perspectives. While these efforts are necessary, the debate is often framed in terms of a discourse of victimization that overlooks the agency o...... argue that researchers not only need to pay attention to how certain voices are marginalized in Environmental Education research and practice, but also to how learners as agents respond to, use and negotiate the marginalization of their perspectives....

  4. Large Igneous Province Volcanism, Ocean Anoxia and Marine Mass Extinction

    DEFF Research Database (Denmark)

    Ruhl, Micha; Bjerrum, Christian J.; Canfield, Donald

    2013-01-01

    -Triassic (~252 Ma) boundaries, which coincide with Central Atlantic Magmatic Province (CAMP) and Siberian Trap volcanism, respectively. The Triassic-Jurassic mass extinction is often contributed to carbon release driven ocean acidification while the Permian-Triassic mass extinction is suggested to be related...... to widespread ocean anoxia. We compare Permian-Triassic and Triassic-Jurassic ocean redox change along continental margins in different geographic regions (Permian-Triassic: Greenland, Svalbard, Iran; Triassic-Jurassic: UK, Austria) and discuss its role in marine mass extinction. Speciation of iron [(FeHR/ Fe...... extinctions however shows 2 phases of euxinia along continental margins, with an initial short peak at the onset of volcanism followed by a shift to ferruginous conditions, possibly due to a strongly diminished ocean sulphate reservoir because of massive initial pyrite burial. D34Spyrite suggests...

  5. The pre-Caledonian margin of Baltica

    Science.gov (United States)

    Andersen, Torgeir B.; Jørgen Kjøll, Hans; Jakob, Johannes; Corfu, Fernando; Tegner, Christian

    2017-04-01

    It is well-documented that the pre-Caledonian margin of Baltica constituted a several hundred-km wide and more than 2000 km long passive margin. Its vestiges occur at low- to intermediate structural levels in the mountain belt, and are variably overprinted by the early- to end-Caledonian orogenic deformation and extension. Attempts to reconstruct the Caledonian margin of Baltica must be based on detailed maps integrated with studies of the rock-complexes that originally constituted the passive margin. The proximal parts of pre-Caledonian margin of Baltica are dominated by continental rift basins with coarse to fine-grained sediments deposited in the late Proterozoic through the Ediacaran and into the Lower Palaeozoic. The youngest dated clastic zircons probably record magmatism associated with initial contraction near or in the distal margin. The 'margin nappes' also comprise Baltican basement slivers and coarse to fine-grained sedimentary units as well as deep-marine basin deposits. A major change in the architecture of the passive margin units takes place across a transvers zone, which is sub-parallel to the present-day Gudbrandsdalen of South Norway. The transition is roughly parallel to the major basement lineament of the Sveconorwegian orogenic front in south Norway. The most important change across this transverse lineament is that the NE segment is magma-rich, characterized by abundant basaltic magmatism. The SW segment is magma-poor, and characterised by numerous (>100) solitary meta-peridotites, mostly meta-dunites and meta-harzburgites as well as a number of detrital serpentinites and soapstones. These are interpreted as fragments of exhumed mantle and their erosion products, respectively. The meta-peridotites emplaced structurally, and covered by dominantly deep-basin sediments, but also by coarser sedimentary breccias and conglomerates, as part of the rifted margin development. This mixed unit (mélange) was locally intruded by Late Cambrian to Early

  6. Indian Ocean margins

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.

    The most important biogeochemical transformations and boundary exchanges in the Indian Ocean seem to occur in the northern region, where the processes originating at the land-ocean boundary extend far beyond the continental margins. Exchanges across...

  7. Learning unbelievable marginal probabilities

    CERN Document Server

    Pitkow, Xaq; Miller, Ken D

    2011-01-01

    Loopy belief propagation performs approximate inference on graphical models with loops. One might hope to compensate for the approximation by adjusting model parameters. Learning algorithms for this purpose have been explored previously, and the claim has been made that every set of locally consistent marginals can arise from belief propagation run on a graphical model. On the contrary, here we show that many probability distributions have marginals that cannot be reached by belief propagation using any set of model parameters or any learning algorithm. We call such marginals `unbelievable.' This problem occurs whenever the Hessian of the Bethe free energy is not positive-definite at the target marginals. All learning algorithms for belief propagation necessarily fail in these cases, producing beliefs or sets of beliefs that may even be worse than the pre-learning approximation. We then show that averaging inaccurate beliefs, each obtained from belief propagation using model parameters perturbed about some le...

  8. Exploring Hawaiian Volcanism

    Science.gov (United States)

    Poland, Michael P.; Okubo, Paul G.; Hon, Ken

    2013-02-01

    In 1912 the Hawaiian Volcano Observatory (HVO) was established by Massachusetts Institute of Technology professor Thomas A. Jaggar Jr. on the island of Hawaii. Driven by the devastation he observed while investigating the volcanic disasters of 1902 at Montagne Pelée in the Caribbean, Jaggar conducted a worldwide search and decided that Hawai`i provided an excellent natural laboratory for systematic study of earthquake and volcano processes toward better understanding of seismic and volcanic hazards. In the 100 years since HVO's founding, surveillance and investigation of Hawaiian volcanoes have spurred advances in volcano and seismic monitoring techniques, extended scientists' understanding of eruptive activity and processes, and contributed to development of global theories about hot spots and mantle plumes.

  9. Exploring Hawaiian volcanism

    Science.gov (United States)

    Poland, Michael P.; Okubo, Paul G.; Hon, Ken

    2013-01-01

    In 1912 the Hawaiian Volcano Observatory (HVO) was established by Massachusetts Institute of Technology professor Thomas A. Jaggar Jr. on the island of Hawaii. Driven by the devastation he observed while investigating the volcanic disasters of 1902 at Montagne Pelée in the Caribbean, Jaggar conducted a worldwide search and decided that Hawai‘i provided an excellent natural laboratory for systematic study of earthquake and volcano processes toward better understanding of seismic and volcanic hazards. In the 100 years since HVO’s founding, surveillance and investigation of Hawaiian volcanoes have spurred advances in volcano and seismic monitoring techniques, extended scientists’ understanding of eruptive activity and processes, and contributed to development of global theories about hot spots and mantle plumes.

  10. Basic and ultrabasic volcanic rocks from the Argyll Group (Dalradian) of NE Scotland

    OpenAIRE

    2005-01-01

    The Dalradian Supergroup of the Scottish Highlands is a largely metasedimentary succession of Neoproterozoic to Early Cambrian age, metamorphosed during the Caledonian Orogeny. The rocks were deposited on the Laurentian margin during and following the break-up of Rodinia. This rift setting is evidenced, in the upper half of the succession, by the presence of several volcanic sequences. A significant development of these volcanic rocks occurs in the NE Grampian Highlands. There, the Blackwater...

  11. Subdiffusion of volcanic earthquakes

    CERN Document Server

    Abe, Sumiyoshi

    2016-01-01

    A comparative study is performed on volcanic seismicities at Mt.Eyjafjallajokull in Iceland and Mt. Etna in Sicily, Italy, from the viewpoint of science of complex systems, and the discovery of remarkable similarities between them regarding their exotic spatio-temporal properties is reported. In both of the volcanic seismicities as point processes, the jump probability distributions of earthquakes are found to obey the exponential law, whereas the waiting-time distributions follow the power law. In particular, a careful analysis is made about the finite size effects on the waiting-time distributions, and accordingly, the previously reported results for Mt. Etna [S. Abe and N. Suzuki, EPL 110, 59001 (2015)] are reinterpreted. It is shown that spreads of the volcanic earthquakes are subdiffusive at both of the volcanoes. The aging phenomenon is observed in the "event-time-averaged" mean-squared displacements of the hypocenters. A comment is also made on presence/absence of long term memories in the context of t...

  12. Tectonic Evolution of the Northern Continental Margin of North China Platform in Middle Proterozoic

    Institute of Scientific and Technical Information of China (English)

    Xu Zhongyuan; Liu Zhenghong

    2000-01-01

    An orogenic belt developed in late middle Proterozoic in the northern margin of North China Plate extends from Inner Mongolia to Western Liaoning Province and Eastern Jilin Province. It is over 2000km long. The orogenic belt was formed by collision between North China Platform and Siberia Platform during the Rodinian Super- Continent period. From sedimentary formation, magmatic activity and crustal tectonic deformation, it is suggested that along the tectonic belt the paleocontinental margin experienced four stages of tectonic evolution in middle Proterozoic, they are: continental margin rift,passive continental margin, active continental margin and collisional orogenic stages.

  13. Volcanic Event Layers-A Marker Bed of Correlation of Coal Measures

    Institute of Scientific and Technical Information of China (English)

    贾炳文; 周安朝; 马美玲; 贾晓云

    2001-01-01

    Upper Carboniferous-Lower Permian volcanic event deposits from two cross sections in Nanpiao, Liaoning Province, and the Daqing Mountains, Inner Mongolia, were examined by systematic rock and mineral identification, differential thermal analysis, X-ray diffraction, scanning electron microscopy and trace element and rare earth element quantitative analysis. According to the results, twelve sequences of volcanic event deposits have been distinguished from bottom to top, including 34?9 volcanic event layers. As these layers each have their own distinctive petrological, mineralogical and geochemical characteristics and were derived from the same source, they provide new evidence for further ascertaining the distribution characteristics of volcanic event deposits on the northern margin of the North China plate and carrying out the stratigraphic correlation using volcanic event layers as marker beds.

  14. Geochemical Characteristics of Danfeng Meta-Volcanic Rocks in Shangzhou Area,Shaanxi Province

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    The Danfeng meta-volcanics in the Shangzhou area, Shaanxi Province are characterized by oceanic island arc volcanic geochemistry. They are a suite of low-K tholeiitic series and calc-alkaline series meta-volcanic rocks derived from different sources respectively.These meta-volcanics have high Th/Ta ratios and low contents of Ni,Ta,Ti,Y and Yb, suggesting that they were influenced by the subduction zone components.Many lines of evidence show that the Danfeng meta-volcanics were produced in an oceanic island are setting of the supra-subduction zone at the southern margin of the North China Block during the Early Paleozoic.

  15. Volcanism on Mars. Chapter 41

    Science.gov (United States)

    Zimbelman, J. R.; Garry, W. B.; Bleacher, J. E.; Crown, D. A.

    2015-01-01

    Spacecraft exploration has revealed abundant evidence that Mars possesses some of the most dramatic volcanic landforms found anywhere within the solar system. How did a planet half the size of Earth produce volcanoes like Olympus Mons, which is several times the size of the largest volcanoes on Earth? This question is an example of the kinds of issues currently being investigated as part of the space-age scientific endeavor called "comparative planetology." This chapter summarizes the basic information currently known about volcanism on Mars. The volcanoes on Mars appear to be broadly similar in overall morphology (although, often quite different in scale) to volcanic features on Earth, which suggests that Martian eruptive processes are not significantly different from the volcanic styles and processes on Earth. Martian volcanoes are found on terrains of different age, and Martian volcanic rocks are estimated to comprise more than 50% of the Martian surface. This is in contrast to volcanism on smaller bodies such as Earth's Moon, where volcanic activity was mainly confined to the first half of lunar history (see "Volcanism on the Moon"). Comparative planetology supports the concept that volcanism is the primary mechanism for a planetary body to get rid of its internal heat; smaller bodies tend to lose their internal heat more rapidly than larger bodies (although, Jupiter's moon Io appears to contradict this trend; Io's intense volcanic activity is powered by unique gravitational tidal forces within the Jovian system; see "Volcanism on Io"), so that volcanic activity on Mars would be expected to differ considerably from that found on Earth and the Moon.

  16. Large magnitude silicic volcanism in north Afar: the Nabro Volcanic Range and Ma'alalta volcano

    Science.gov (United States)

    Wiart, Pierre; Oppenheimer, Clive

    2005-02-01

    Much of the volcanological work carried out in north Afar (Ethiopia and Eritrea) has focused on the nature of Quaternary basaltic volcanic ranges, which have been interpreted by some as incipient oceanic ridges. However, we show here that comparable volumes of silicic magmas have been erupted in the region. In particular, the virtually undocumented Nabro Volcanic Range, which runs NNE for more than 100 km from the margin of the Danakil Depression to the Red Sea coast, has a subaerial volume of the order of 550 km3, comparable to the volume of the much better known Erta’Ale axial volcanic range. Nabro volcano itself forms part of an enigmatic double caldera structure with a neighbouring volcano, Mallahle. The twin caldera may have formed simultaneously with the eruption of between 20 and 100 km3 of ignimbrite, which is readily identified in Landsat Thematic Mapper imagery. This may have been the largest explosive eruption in north Afar, and is certain to have deposited a regionally distributed tephra layer which could in the future be located in distal sections as a stratigraphic marker. An integrated analysis of optical and synthetic aperture radar imagery, digital topographic data, field observations and limited geochemical measurements, permits here descriptions and first order inferences about the structure, stratigraphy and compositions of several major volcanoes of the Afar Triangle, and a reappraisal of their regional significance.

  17. Discovery of double-peaking potassic volcanic rocks in Langshan Group of the Tanyaokou hydrothermal-sedimentary deposit, Inner Mongolia, and its indicating significance

    Institute of Scientific and Technical Information of China (English)

    PENG; Runmin; ZHAI; Yusheng; WANG; Zhigang; HAN; Xuefeng

    2005-01-01

    Dongshengmiao and Huogeqi districts and the host stratigraphic sequence of LG, can further prove that the Mesoproterozoic aulacogen of passive continental margin of Langshan-Zhaertaishan area had been unevenly expanded. This provides some information and new approaches for the study on tectonic-hydrothermal events in Langshan-Zhaertaishan aulacogen and their evolutionary process, hydrothermal dynamical source, the relationship between the volcanic activities and the ore-forming process, the regional ore-forming regularity as well as for the correlation with the similar deposits abroad.

  18. Volcanic Ash Nephelometer Probe Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced dropsondes that could effectively be guided through atmospheric regions of interest such as volcanic plumes may enable unprecedented observations of...

  19. Passive solar homes

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.

    1981-01-01

    After a brief description of the basic principles of passive solar heating, the use of thermal mass in a passive house is discussed, including the Trombe wall, water wall, roof ponds, and the attached greenhouse. Direct gain through skylights and clerestories is also discussed. The selection of a lot and the orientation of the house on the lot are covered. The example of a passive house outside Santa Fe, New Mexico is cited for its performance. (LEW)

  20. Evolution of high Arctic ocean basins and continental margins

    Energy Technology Data Exchange (ETDEWEB)

    Engen, Oeyvind

    2005-08-01

    Taking advantage of the much increased detail offered by new data, the dissertation attempts to answer some of the remaining questions about the ocean basins and continental margins flanking the Eurasia-North America plate boundary. Its four constituent papers result from integrated geophysical analysis of gravity and magnetic anomalies, bathymetry, seismic reflection and refraction profiles, earthquake locations and focal mechanisms, and onshore and offshore geological data. The overall objectives are to: 1) Elucidate aspects of the structure, composition and evolution of the Eurasia Basin and Norwegian-Greenland Sea and their passive continental margins. 2) Relate the findings to fundamental Earth processes, specifically associated with lithospheric break-up and seafloor spreading. Summary of Papers: The present-day global seismograph network is capable of detecting earthquakes with nearly uniform magnitude threshold throughout the Eurasia Basin region. Given that the location of each earthquake is constrained by at least 12 recording stations, global earthquake catalogues confidently show that 1) earthquakes along the oceanic part of the plate boundary occur in swarms; 2) plate boundary stress decreases eastwards, in accordance with decreasing spreading rates; and 3) deformation takes place in a narrow zone in the oceanic domain but is abruptly defocused at the transition to the Laptev Sea continental rift system. When integrated with bathymetry and potential field data, the earthquake distribution indicates four distinct plate boundary provinces. The Spitsbergen Transform System is a series of oblique ridges and transform faults where the seismicity becomes increasingly diffuse to the north. The western Gakkel Ridge (west of 60{sup E}) has clustered and focused seismicity, accentuated topography and highamplitude magnetic anomalies, whereas the eastern Gakkel Ridge has smoother topographic relief, lower magnetic amplitudes, and slightly more focused seismicity

  1. Continental margin sedimentation: from sediment transport to sequence stratigraphy

    Science.gov (United States)

    Nittrouer, Charles A.; Austin, James A.; Field, Michael E.; Kravitz, Joseph H.; Syvitski, James P.M.; Wiberg, Patricia L.; Nittrouer, Charles A.; Austin, James A.; Field, Michael E.; Kravitz, Joseph H.; Syvitski, James P. M.; Wiberg, Patricia L.

    2007-01-01

    This volume on continental margin sedimentation brings together an expert editorial and contributor team to create a state-of-the-art resource. Taking a global perspective, the book spans a range of timescales and content, ranging from how oceans transport particles, to how thick rock sequences are formed on continental margins. - Summarizes and integrates our understanding of sedimentary processes and strata associated with fluvial dispersal systems on continental shelves and slopes - Explores timescales ranging from particle transport at one extreme, to deep burial at the other - Insights are presented for margins in general, and with focus on a tectonically active margin (northern California) and a passive margin (New Jersey), enabling detailed examination of the intricate relationships between a wide suite of sedimentary processes and their preserved stratigraphy - Includes observational studies which document the processes and strata found on particular margins, in addition to numerical models and laboratory experimentation, which provide a quantitative basis for extrapolation in time and space of insights about continental-margin sedimentation - Provides a research resource for scientists studying modern and ancient margins, and an educational text for advanced students in sedimentology and stratigraphy

  2. Power margin improvement for OFDMA-PON using hierarchical modulation.

    Science.gov (United States)

    Cao, Pan; Hu, Xiaofeng; Zhuang, Zhiming; Zhang, Liang; Chang, Qingjiang; Yang, Qi; Hu, Rong; Su, Yikai

    2013-04-08

    We propose and experimentally demonstrate a hierarchical modulation scheme to improve power margin for orthogonal frequency division multiple access-passive optical networks (OFDMA-PONs). In a PON system, under the same launched optical power, optical network units (ONUs) have different power margins due to unequal distribution fiber lengths. The power margin of the PON system is determined by the ONU with the lowest power margin. In our proposed scheme, ONUs with long and short distribution fibers are grouped together, and downstream signals for the paired ONUs are mapped onto the same OFDM subcarriers using hierarchical modulation. In a pair of ONUs, part of the power margin of the ONU with short distribution fiber is re-allocated to the ONU with long distribution fiber. Therefore, the power margin of the ONU with the longest distribution fiber can be increased, leading to the power margin improvement of the PON system. Experimental results show that the hierarchical modulation scheme improves the power margin by 2.7 dB for an OFDMA-PON system, which can be used to support more users or extend transmission distance.

  3. Volcanic Eruptions and Climate

    Science.gov (United States)

    Robock, A.

    2012-12-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of these aerosol clouds produce responses in the climate system. Observations and numerical models of the climate system show that volcanic eruptions produce global cooling and were the dominant natural cause of climate change for the past millennium, on timescales from annual to century. Major tropical eruptions produce winter warming of Northern Hemisphere continents for one or two years, while high latitude eruptions in the Northern Hemisphere weaken the Asian and African summer monsoon. The Toba supereruption 74,000 years ago caused very large climate changes, affecting human evolution. However, the effects did not last long enough to produce widespread glaciation. An episode of four large decadally-spaced eruptions at the end of the 13th century C.E. started the Little Ice Age. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade had a small effect on global temperature trends. The June 13, 2011 Nabro eruption in Eritrea produced the largest stratospheric aerosol cloud since Pinatubo, and the most of the sulfur entered the stratosphere not by direct injection, but by slow lofting in the Asian summer monsoon circulation. Volcanic eruptions warn us that while stratospheric geoengineering could cool the surface, reducing ice melt and sea level rise, producing pretty sunsets, and increasing the CO2 sink, it could also reduce summer monsoon precipitation, destroy ozone, allowing more harmful UV at the surface, produce rapid warming when stopped, make the sky white, reduce solar power, perturb the ecology with more diffuse radiation, damage airplanes flying in the stratosphere, degrade astronomical observations, affect remote sensing, and affect

  4. System of Volcanic activity

    Directory of Open Access Journals (Sweden)

    P. HÉDERVARI

    1972-06-01

    Full Text Available A comparison is made among the systems of B. G.
    Escher (3, of R. W. van Bemmelen (1 and that of the author (4. In this
    connection, on the basis of Esclier's classification, the terms of "constructiv
    e " and "destructive" eruptions are introduced into the author's system and
    at the same time Escher's concept on the possible relation between the depth
    of magma-chamber and the measure of the gas-pressure is discussed briefly.
    Three complementary remarks to the first paper (4 011 the subject of system
    of volcanic activity are added.

  5. Detection and Classification of Volcanic Earthquakes/Tremors in Central Anatolian Volcanic Province

    Science.gov (United States)

    Kahraman, Metin; Arda Özacar, A.; Bülent Tank, S.; Uslular, Göksu; Kuşcu, Gonca; Türkelli, Niyazi

    2017-04-01

    Central Anatolia has been characterized by active volcanism since 10 Ma which created the so called Central Anatolia Volcanic Province (CAVP) where a series of volcanoes are located along the NE-SW trend. The petrological investigations reveal that the magma source in the CAVP has both subduction and asthenospheric signature possibly due to tearing of ongoing northward subduction of African plate along Aegean and Cyprus arcs. Recently, a temporary seismic array was deployed within the scope of Continental Dynamics: Central Anatolian Tectonics (CD-CAT) project and provided a unique opportunity to study the deep seismic signature of the CAVP. Passive seismic imaging efforts and magnetotellurics (MT) observations revealed low velocity and high conductivity zones supporting the presence of localized partial melt bodies beneath the CAVP at varying depths, especially around Mt. Hasan which exhibits both geological and archeological evidences for its eruption around 7500 B.C. In Central Anatolia, local seismicity detected by the CD-CAT array coincides well with the active faults zones. However, active or potentially active volcanoes within CAVP are characterized by the lack of seismic activity. In this study, seismic data recorded by permanent stations of Regional Earthquake-Tsunami Monitoring Center were combined with temporary seismic data collected by the CD-CAT array to improve sampling density across the CAVP. Later, the continuous seismic waveforms of randomly selected time intervals were manually analyzed to identify initially undetected seismic sources which have signal characters matching to volcanic earthquakes/tremors. For candidate events, frequency spectrums are constructed to classify the sources according to their physical mechanisms. Preliminary results support the presence of both volcano-tectonic (VT) and low-period (LT) events within the CAVP. In the next stage, the spectral and polarization analyses techniques will be utilized to the entire seismic

  6. A decade of global volcanic SO2 emissions measured from space

    Science.gov (United States)

    Carn, S. A.; Fioletov, V. E.; McLinden, C. A.; Li, C.; Krotkov, N. A.

    2017-03-01

    The global flux of sulfur dioxide (SO2) emitted by passive volcanic degassing is a key parameter that constrains the fluxes of other volcanic gases (including carbon dioxide, CO2) and toxic trace metals (e.g., mercury). It is also a required input for atmospheric chemistry and climate models, since it impacts the tropospheric burden of sulfate aerosol, a major climate-forcing species. Despite its significance, an inventory of passive volcanic degassing is very difficult to produce, due largely to the patchy spatial and temporal coverage of ground-based SO2 measurements. We report here the first volcanic SO2 emissions inventory derived from global, coincident satellite measurements, made by the Ozone Monitoring Instrument (OMI) on NASA’s Aura satellite in 2005-2015. The OMI measurements permit estimation of SO2 emissions from over 90 volcanoes, including new constraints on fluxes from Indonesia, Papua New Guinea, the Aleutian Islands, the Kuril Islands and Kamchatka. On average over the past decade, the volcanic SO2 sources consistently detected from space have discharged a total of ~63 kt/day SO2 during passive degassing, or ~23 ± 2 Tg/yr. We find that ~30% of the sources show significant decadal trends in SO2 emissions, with positive trends observed at multiple volcanoes in some regions including Vanuatu, southern Japan, Peru and Chile.

  7. The Seismicity of Two Hyperextended Margins

    Science.gov (United States)

    Redfield, Tim; Terje Osmundsen, Per

    2013-04-01

    , loads generated by escarpment erosion, offshore sedimentary deposition, and post-glacial rebound have been periodically superimposed throughout the Neogene. Their vertical stress patterns are mutually-reinforcing during deglaciation. However, compared to the post-glacial dome the pattern of maximum uplift/unloading generated by escarpment erosion will be longer, more linear, and located atop the emergent proximal margin. The pattern of offshore maximum deposition/loading will be similar. This may help explain the asymmetric expenditure of Fennoscandia's annual seismic energy budget. It may also help explain the obvious Conundrum: if stress generated by erosion and deposition is sufficiently great, fault reactivation and consequent seismicity can occur at any hyperextended passive margin sector regardless of its glacial history. Onshore Scandinavia, episodic footwall uplift and escarpment rejuvenation may have been driven by just such a mechanism throughout much of the later Cretaceous and Cenozoic. SE Brasil offers a glimpse of how Norway's hyperextended margin might manifest itself seismically in the absence of post-glacial rebound. Compilations suggest two seismic belts may exist. One, offshore, follows the thinned crust of the ultra-deep, hyperextended Campos and Santos basins. Onshore, earthquakes occur more commonly in the elevated highlands of the escarpments, and track especially the long, linear ranges such as the Serra de Mantiquiera and Serra do Espinhaço. Seismicity is more rare in the coastal lowlands, and largely absent in the Brasilian hinterland. Although never glaciated since the time of hyperextension and characterized by significantly fewer earthquakes in toto, SE Brasil's pattern of seismicity closely mimics Scandinavia. Commencing after perhaps just a few tens of millions of years of 'sag' basin infill, accommodation phase fault reactivation and footwall uplift at passive margins is the inexorable product of hyperextension. CITATIONS Redfield, T

  8. Reconstructing Rodinia by Fitting Neoproterozoic Continental Margins

    Science.gov (United States)

    Stewart, John H.

    2009-01-01

    extensional in origin, supports recognition of the Neoproterozoic fragmentation pattern of Rodinia and outlines the major continental masses that, prior to the breakup, formed the supercontinent. Using this pattern, Rodinia can be assembled by fitting the pieces together. Evidence for Neoproterozoic margins is fragmentary. The most apparent margins are marked by miogeoclinal deposits (passive-margin deposits). The margins can also be outlined by the distribution of continental-margin magmatic-arc rocks, by juvenile ocean-floor rocks, or by the presence of continent-ward extending aulacogens. Most of the continental margins described here are Neoproterozoic, and some had an older history suggesting that they were major, long-lived lithospheric flaws. In particular, the western margin of North America appears to have existed for at least 1,470 Ma and to have been reactivated many times in the Neoproterozoic and Phanerozoic. The inheritance of trends from the Mesoproterozoic by the Neoproterozoic is particularly evident along the eastern United States, where a similarity of Mesoproterozoic (Grenville) and Neoproterozoic trends, as well as Paleozoic or Mesozoic trends, is evident. The model of Rodinia presented here is based on both geologic and paleomagnetic information. Geologic evidence is based on the distribution and shape of Neoproterozoic continents and on assembling these continents so as to match the shape, history, and scale of adjoining margins. The proposed model places the Laurasian continents?Baltica, Greenland, and Laurentia?west of the South American continents (Amazonia, Rio de La Plata, and Sa? Francisco). This assembly is indicated by conjugate pairs of Grenville-age rocks on the east side of Laurentia and on the west side of South America. In the model, predominantly late Neoproterozoic magmatic-arc rocks follow the trend of the Grenville rocks. The boundary between South America and Africa is interpreted as the site of a Wilson cycle

  9. Masculinity at the margins

    DEFF Research Database (Denmark)

    Jensen, Sune Qvotrup

    2010-01-01

    This article analyses how young marginalized ethnic minority men in Denmark react to the othering they are subject to in the media as well as in the social arenas of every day life. The article is based on theoretically informed ethnographic fieldwork among such young men as well as interviews an...

  10. From Borders to Margins

    DEFF Research Database (Denmark)

    Parker, Noel

    2009-01-01

    upon Deleuze's philosophy to set out an ontology in which the continual reformulation of entities in play in ‘post-international' society can be grasped.  This entails a strategic shift from speaking about the ‘borders' between sovereign states to referring instead to the ‘margins' between a plethora...

  11. Marginally Deformed Starobinsky Gravity

    DEFF Research Database (Denmark)

    Codello, A.; Joergensen, J.; Sannino, Francesco

    2015-01-01

    We show that quantum-induced marginal deformations of the Starobinsky gravitational action of the form $R^{2(1 -\\alpha)}$, with $R$ the Ricci scalar and $\\alpha$ a positive parameter, smaller than one half, can account for the recent experimental observations by BICEP2 of primordial tensor modes....

  12. "We call ourselves marginalized"

    DEFF Research Database (Denmark)

    Jørgensen, Nanna Jordt

    2014-01-01

    In recent decades, indigenous knowledge has been added to the environmental education agenda in an attempt to address the marginalization of non-western perspectives. While these efforts are necessary, the debate is often framed in terms of a discourse of victimization that overlooks the agency o...

  13. Volcan Reventador's Unusual Umbrella

    Science.gov (United States)

    Chakraborty, P.; Gioia, G.; Kieffer, S. W.

    2005-12-01

    In the past two decades, field observations of the deposits of volcanoes have been supplemented by systemmatic, and sometimes, opportunistic photographic documentation. Two photographs of the umbrella of the December 3, 2002 eruption of Volcan Reventador, Ecuador, reveal a prominently scalloped umbrella that is unlike any umbrella previously documented on a volcanic column. The material in the umbrella was being swept off a descending pyroclastic flow, and was, therefore, a co-ignimbrite cloud. We propose that the scallops are the result of a turbulent Rayleigh-Taylor (RT) instability with no precedents in volcanology. We ascribe the rare loss of buoyancy that drives this instability to the fact that the Reventador column fed on a cool co-ignimbrite cloud. On the basis of the observed wavelength of the scallops, we estimate a value for the eddy viscosity of the umbrella of 4000 ~m2/s. This value is consistent with a previously obtained lower bound (200 ~m2/s, K. Wohletz, priv. comm., 2005). We do not know the fate of the material in the umbrella subsequent to the photos. The analysis suggests that the umbrella was negatively buoyant. Field work on the co-ignimbrite deposits might reveal whether or not the material reimpacted, and if so, where and whether or not this material was involved in the hazardous flows that affected the main oil pipeline across Ecuador.

  14. Uranium series, volcanic rocks

    Science.gov (United States)

    Vazquez, Jorge A.

    2014-01-01

    Application of U-series dating to volcanic rocks provides unique and valuable information about the absolute timing of crystallization and differentiation of magmas prior to eruption. The 238U–230Th and 230Th-226Ra methods are the most commonly employed for dating the crystallization of mafic to silicic magmas that erupt at volcanoes. Dates derived from the U–Th and Ra–Th methods reflect crystallization because diffusion of these elements at magmatic temperatures is sluggish (Cherniak 2010) and diffusive re-equilibration is insignificant over the timescales (less than or equal to 10^5 years) typically associated with pre-eruptive storage of nearly all magma compositions (Cooper and Reid 2008). Other dating methods based on elements that diffuse rapidly at magmatic temperatures, such as the 40Ar/39Ar and (U–Th)/He methods, yield dates for the cooling of magma at the time of eruption. Disequilibrium of some short-lived daughters of the uranium series such as 210Po may be fractionated by saturation of a volatile phase and can be employed to date magmatic gas loss that is synchronous with volcanic eruption (e.g., Rubin et al. 1994).

  15. Volcanic Eruptions and Climate

    Science.gov (United States)

    LeGrande, Allegra N.; Anchukaitis, Kevin J.

    2015-01-01

    Volcanic eruptions represent some of the most climatically important and societally disruptive short-term events in human history. Large eruptions inject ash, dust, sulfurous gases (e.g. SO2, H2S), halogens (e.g. Hcl and Hbr), and water vapor into the Earth's atmosphere. Sulfurous emissions principally interact with the climate by converting into sulfate aerosols that reduce incoming solar radiation, warming the stratosphere and altering ozone creation, reducing global mean surface temperature, and suppressing the hydrological cycle. In this issue, we focus on the history, processes, and consequences of these large eruptions that inject enough material into the stratosphere to significantly affect the climate system. In terms of the changes wrought on the energy balance of the Earth System, these transient events can temporarily have a radiative forcing magnitude larger than the range of solar, greenhouse gas, and land use variability over the last millennium. In simulations as well as modern and paleoclimate observations, volcanic eruptions cause large inter-annual to decadal-scale changes in climate. Active debates persist concerning their role in longer-term (multi-decadal to centennial) modification of the Earth System, however.

  16. Evolution of the Mariana Convergent Plate Margin System

    Science.gov (United States)

    Fryer, Patricia

    1996-02-01

    The Mariana convergent plate margin system of the western Pacific provides opportunities for studying the tectonic and geochemical processes of intraoceanic plate subduction without the added complexities of continental geology. The system's relative geologic simplicity and the well-exposed sections of lithosphere in each of its tectonic provinces permit in situ examination of processes critical to understanding subduction tectonics. Its general history provides analogs to ancient convergent margin terranes exposed on land and helps to explain the chemical mass balance in convergent plate margins. The Mariana convergent margin's long history of sequential formation of volcanic arcs and extensional back arc basins has created a series of volcanic arcs at the eastern edge of the Philippine Sea plate. The trenchward edge of the overriding plate has a relatively sparse sediment cover. Rocks outcropping on the trench's inner slope are typical of the early formed suprasubduction zone's lithosphere and have been subjected to various processes related to its tectonic history. Pervasive forearc faulting has exposed crust and upper mantle lithosphere. Many large serpentinized peridotite seamounts are within 100 km of the trench axis. From these we can learn the history of regional metamorphism and observe and sample active venting of slab fluids. Ocean drilling recovered suprasubduction zone lava sequences erupted since the Eocene that suggest that the forearc region remains volcanologically dynamic. Seismic studies and seafloor mapping show evidence of deformation throughout forearc evolution. Large portions of uplifted southern forearc are exposed at the larger islands. Active volcanoes at the base of the eastern boundary fault of the Mariana Trough vary in size and composition along strike and record regional differences in source composition. Their locations along strike of the arc are controlled in part by cross-arc structures that also facilitate formation of submarine

  17. Nature and composition of interbedded marine basaltic pumice in the ~52–50 Ma Vastan lignite sequence, western India: Implication for Early Eocene MORB volcanism offshore Arabian Sea

    Indian Academy of Sciences (India)

    Sarajit Sensarma; Hukam Singh; R S Rana; Debajyoti Paul; Ashok Sahni

    2017-03-01

    The recognition of pyroclasts preserved in sedimentary environments far from its source is uncommon. We here describe occurrences of several centimetres-thick discontinuous basaltic pumice lenses occurring within the Early Eocene Vastan lignite mine sedimentary sequence, western India at two different levels –one at ~5 m and the other at 10 m above a biostratigraphically constrained 52 Ma old marker level postdating the Deccan Volcanism. These sections have received global attention as they record mammalian and plant radiations. We infer the repetitive occurrence of pumice have been sourced from a ~52–50Ma MORB related to sea-floor spreading in the western Arabian Sea, most plausibly along the Carlsberg Ridge. Pyroclasts have skeletal plagioclase with horsetail morphologies ± pyroxene ± Fe–Ti oxide euhedral crystals, and typically comprise of circular polymodal (radii ≤10 to ≥30 μm), non-coalescing microvesicles (>40–60%). The pumice have undergone considerable syngenetic alteration during oceanic transport and post-burial digenesis, and are a composite mixture of Fe–Mn-rich clay and hydrated alteredbasaltic glass (palagonite). The Fe–Mn-rich clay is extremely low in SiO₂, Al₂ O₂, TiO₂ , MgO, alkalies and REE, but very high in Fe₂O₃, MnO, P, Ba, Sr contents, and palagonitization involved significant loss of SiO₂, Al₂O₃, MgO and variable gain in Fe₂O₃, TiO₂, Ni, V, Zr, Zn and REE. Bubble initiationto growth in the ascending basaltic magma (liquidus ~1200–1250◦C) may have occured in ~3 hr. Shortdistance transport, non-connected vesicles, deposition in inner shelf to more confined lagoonal condition in the Early Eocene and quick burial helped preservation of the pumice in Vastan. Early Eocene Arabian Sea volcanism thus might have been an additional source to marginal sediments along the passive margin of western India.

  18. Passive evaporative cooling

    NARCIS (Netherlands)

    Tzoulis, A.

    2011-01-01

    This "designers' manual" is made during the TIDO-course AR0531 Smart & Bioclimatic Design. Passive techniques for cooling are a great way to cope with the energy problem of the present day. This manual introduces passive cooling by evaporation. These methods have been used for many years in traditi

  19. Passive solar construction handbook

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E.; Evans, D.; Gardstein, C.

    1981-08-01

    Many of the basic elements of passive solar design are reviewed. The unique design constraints presented in passive homes are introduced and many of the salient issues influencing design decisions are described briefly. Passive solar construction is described for each passive system type: direct gain, thermal storage wall, attached sunspace, thermal storage roof, and convective loop. For each system type, important design and construction issues are discussed and case studies illustrating designed and built examples of the system type are presented. Construction details are given and construction and thermal performance information is given for the materials used in collector components, storage components, and control components. Included are glazing materials, framing systems, caulking and sealants, concrete masonry, concrete, brick, shading, reflectors, and insulators. The Load Collector Ratio method for estimating passive system performance is appended, and other analysis methods are briefly summarized. (LEW)

  20. Friction in volcanic environments

    Science.gov (United States)

    Kendrick, Jackie E.; Lavallée, Yan

    2016-04-01

    Volcanic landscapes are amongst the most dynamic on Earth and, as such, are particularly susceptible to failure and frictional processes. In rocks, damage accumulation is frequently accompanied by the release of seismic energy, which has been shown to accelerate in the approach to failure on both a field and laboratory scale. The point at which failure occurs is highly dependent upon strain-rate, which also dictates the slip-zone properties that pertain beyond failure, in scenarios such as sector collapse and pyroclastic flows as well as the ascent of viscous magma. High-velocity rotary shear (HVR) experiments have provided new opportunities to overcome the grand challenge of understanding faulting processes during volcanic phenomena. Work on granular ash material demonstrates that at ambient temperatures, ash gouge behaves according to Byerlee's rule at low slip velocities, but is slip-weakening, becoming increasingly lubricating as slip ensues. In absence of ash along a slip plane, rock-rock friction induces cataclasis and heating which, if sufficient, may induce melting (producing pseudotachylyte) and importantly, vesiculation. The viscosity of the melt, so generated, controls the subsequent lubrication or resistance to slip along the fault plane thanks to non-Newtonian suspension rheology. The shear-thinning behaviour and viscoelasticity of frictional melts yield a tendency for extremely unstable slip, and occurrence of frictional melt fragmentation. This velocity-dependence acts as an important feedback mechanism on the slip plane, in addition to the bulk composition, mineralogy and glass content of the magma, that all influence frictional behaviour. During sector collapse events and in pyroclastic density currents it is the frictional properties of the rocks and ash that, in-part, control the run-out distance and associated risk. In addition, friction plays an important role in the eruption of viscous magmas: In the conduit, the rheology of magma is integral

  1. Interaction between climate, volcanism, and isostatic rebound in Southeast Alaska during the last deglaciation

    Science.gov (United States)

    Praetorius, Summer; Mix, Alan; Jensen, Britta; Froese, Duane; Milne, Glenn; Wolhowe, Matthew; Addison, Jason; Prahl, Fredrick

    2016-10-01

    Observations of enhanced volcanic frequency during the last deglaciation have led to the hypothesis that ice unloading in glaciated volcanic terrains can promote volcanism through decompression melting in the shallow mantle or a reduction in crustal magma storage time. However, a direct link between regional climate change, isostatic adjustment, and the initiation of volcanism remains to be demonstrated due to the difficulty of obtaining high-resolution well-dated records that capture short-term climate and volcanic variability traced to a particular source region. Here we present an exceptionally resolved record of 19 tephra layers paired with foraminiferal oxygen isotopes and alkenone paleotemperatures from marine sediment cores along the Southeast Alaska margin spanning the last deglacial transition. Major element compositions of the tephras indicate a predominant source from the nearby Mt. Edgecumbe Volcanic Field (MEVF). We constrain the timing of this regional eruptive sequence to 14.6-13.1 ka. The sudden increase in volcanic activity from the MEVF coincides with the onset of Bølling-Allerød interstadial warmth, the disappearance of ice-rafted detritus, and rapid vertical land motion associated with modeled regional isostatic rebound in response to glacier retreat. These data support the hypothesis that regional deglaciation can rapidly trigger volcanic activity. Rapid sea surface temperature fluctuations and an increase in local salinity (i.e., δ18Osw) variability are associated with the interval of intense volcanic activity, consistent with a two-way interaction between climate and volcanism in which rapid volcanic response to ice unloading may in turn enhance short-term melting of the glaciers, plausibly via albedo effects on glacier ablation zones.

  2. Chapter 34: Geology and petroleum potential of the rifted margins of the Canada Basin

    Science.gov (United States)

    Houseknecht, D.W.; Bird, K.J.

    2011-01-01

    Three sides of the Canada Basin are bordered by high-standing, conjugate rift shoulders of the Chukchi Borderland, Alaska and Canada. The Alaska and Canada margins are mantled with thick, growth-faulted sediment prisms, and the Chukchi Borderland contains only a thin veneer of sediment. The rift-margin strata of Alaska and Canada reflect the tectonics and sediment dispersal systems of adjacent continental regions whereas the Chukchi Borderland was tectonically isolated from these sediment dispersal systems. Along the eastern Alaska-southern Canada margin, termed herein the 'Canning-Mackenzie deformed margin', the rifted margin is deformed by ongoing Brooks Range tectonism. Additional contractional structures occur in a gravity fold belt that may be present along the entire Alaska and Canada margins of the Canada Basin. Source-rock data inboard of the rift shoulders and regional palaeogeographic reconstructions suggest three potential source-rock intervals: Lower Cretaceous (Hauterivian-Albian), Upper Cretaceous (mostly Turonian) and Lower Palaeogene. Burial history modelling indicates favourable timing for generation from all three intervals beneath the Alaska and Canada passive margins, and an active petroleum system has been documented in the Canning-Mackenzie deformed margin. Assessment of undiscovered petroleum resources indicates the greatest potential in the Canning-Mackenzie deformed margin and significant potential in the Canada and Alaska passive margins. ?? 2011 The Geological Society of London.

  3. Magmatic evolution in the N-Gondwana margin related to the opening of the Rheic Ocean—evidence from the Upper Parautochthon of the Galicia-Trás-os-Montes Zone and from the Central Iberian Zone (NW Iberian Massif)

    Science.gov (United States)

    Dias da Silva, Ícaro; Díez Fernández, Rubén; Díez-Montes, Alejandro; González Clavijo, Emilio; Foster, David A.

    2016-06-01

    LA-MC-ICP-MS U-Pb zircon ages and whole-rock geochemical data obtained from volcanic rocks erupted in the northern margin of Gondwana provide new insights on the polyphase magmatic evolution of the NW Iberian domain during the establishment of passive margin conditions in Lower Paleozoic times. The U-Pb data show crystallization ages of ca. 455 Ma for two calc-alkaline rhyolites sampled in the Upper Parautochthon of the eastern Galicia—Trás-os-Montes Zone (GTMZ) and for an intraplate basalt intruded into Middle Ordovician slates of the autochthonous series of the Central Iberian Zone (CIZ). Together with previous data, the ages obtained reveal a periodic magmatic activity across the northern Gondwana margin during the Lower Paleozoic, which is comparable to that observed in NE Iberia and in other massifs of the Mediterranean realm. Both geochronological and geochemical data reinforce paleontological and stratigraphic evidences for paleogeographic proximity between these domains and contribute to the recognition of extensional-related magmatism along the northern margin of Central Gondwana associated with the opening of the Rheic Ocean.

  4. Masculinity at the margins

    DEFF Research Database (Denmark)

    Jensen, Sune Qvotrup

    2010-01-01

    of critique although in a masculinist way. These reactions to othering represent a challenge to researchers interested in intersectionality and gender, because gender is reproduced as a hierarchical form of social differentiation at the same time as racism is both reproduced and resisted.......This article analyses how young marginalized ethnic minority men in Denmark react to the othering they are subject to in the media as well as in the social arenas of every day life. The article is based on theoretically informed ethnographic fieldwork among such young men as well as interviews...... and other types of material. Taking the concepts of othering, intersectionality and marginality as point of departure the article analyses how these young men experience othering and how they react to it. One type of reaction, described as stylization, relies on accentuating the latently positive symbolic...

  5. Actively stressed marginal networks

    CERN Document Server

    Sheinman, M; MacKintosh, F C

    2012-01-01

    We study the effects of motor-generated stresses in disordered three dimensional fiber networks using a combination of a mean-field, effective medium theory, scaling analysis and a computational model. We find that motor activity controls the elasticity in an anomalous fashion close to the point of marginal stability by coupling to critical network fluctuations. We also show that motor stresses can stabilize initially floppy networks, extending the range of critical behavior to a broad regime of network connectivities below the marginal point. Away from this regime, or at high stress, motors give rise to a linear increase in stiffness with stress. Finally, we demonstrate that our results are captured by a simple, constitutive scaling relation highlighting the important role of non-affine strain fluctuations as a susceptibility to motor stress.

  6. Actively stressed marginal networks.

    Science.gov (United States)

    Sheinman, M; Broedersz, C P; MacKintosh, F C

    2012-12-07

    We study the effects of motor-generated stresses in disordered three-dimensional fiber networks using a combination of a mean-field theory, scaling analysis, and a computational model. We find that motor activity controls the elasticity in an anomalous fashion close to the point of marginal stability by coupling to critical network fluctuations. We also show that motor stresses can stabilize initially floppy networks, extending the range of critical behavior to a broad regime of network connectivities below the marginal point. Away from this regime, or at high stress, motors give rise to a linear increase in stiffness with stress. Finally, we demonstrate that our results are captured by a simple, constitutive scaling relation highlighting the important role of nonaffine strain fluctuations as a susceptibility to motor stress.

  7. Volcanic studies at Katmai

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The Continental Scientific Drilling Program (CSDP) is a national effort supported by the Department of Energy, the US Geological Survey, and the National Science Foundation. One of the projects proposed for the CSDP consists of drilling a series of holes in Katmai National Park in Alaska to give a third dimension to the model of the 1912 eruption of Novarupta, and to investigate the processes of explosive volcanism and hydrothermal transport of metals (Eichelberger et al., 1988). The proposal for research drilling at Katmai states that ``the size, youth, elevated temperature, and simplicity of the Novarupta vent make it a truly unique scientific target.`` The National Park Service (NPS), which has jurisdiction, is sympathetic to aims of the study. However, NPS wishes to know whether Katmai is indeed uniquely suited to the research, and has asked the Interagency Coordinating Group to support an independent assessment of this claim. NPS suggested the National Academy of Sciences as an appropriate organization to conduct the assessment. In response, the National Research Council -- the working arm of the Academy -- established, under the aegis of its US Geodynamics Committee, a panel whose specific charge states: ``The proposed investigation at Katmai has been extensively reviewed for scientific merit by the three sponsoring and participating agencies. Thus, the scientific merit of the proposed drilling at Katmai is not at issue. The panel will review the proposal for scientific drilling at Katmai and prepare a short report addressing the specific question of the degree to which it is essential that the drilling be conducted at Katmai as opposed to volcanic areas elsewhere in the world.``

  8. Quaternary basaltic volcanism in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina

    The extensive Quaternary volcanism in the Payenia volcanic province, Mendoza, Argentina, is investigated in this study by major and trace element analyses, Sr, Nd, Hf and Pb-isotopic analyses and Zr-Hf isotope dilution data on samples from almost the entire province. The samples are mainly...... in basalts from all the studied volcanic fields in Payenia is signs of lower crustal contamination indicating assimilation of, in some cases, large amounts of trace element depleted, mafic, plagioclase-bearing rocks. The northern Payenia is dominated by backarc basalts erupted between late Pliocene to late...

  9. The Role of Authigenic Volcanic Ash in Marine Sediment

    Science.gov (United States)

    Scudder, R.; McKinley, C. C.; Thomas, D. J.; Murray, R. W.

    2016-12-01

    Marine sediments are a fundamental archive of the history of weathering and erosion, biological productivity, volcanic activity, patterns of deep-water formation and circulation, and a multitude of other earth, ocean, and atmosphere processes. In particular, the record and consequences of volcanic eruptions have long fascinated humanity. Volcanic ash layers are often visually stunning, and can have thicknesses of 10s of cm or more. While the ash layer records are of great importance by themselves, we are missing a key piece of information-that of the very fined grained size fractions. Dispersed ash is the very fine grained-component that has either been mixed into the bulk sediment by bioturbation, or is deposited from subaqueous eruptions, erosion of terrestrial deposits, general input during time periods of elevated global volcanism, or other mechanisms, plays an important role in the marine sediment. The presence of dispersed ash in the marine record has previously been relatively over-looked as it is difficult to identify petrographically due to its commonly extremely fine grain size and/or alteration to authigenic clay. The dispersed ash, either altered or unaltered, is extremely difficult to differentiate from detrital/terrigenous/authigenic clay, as they are all "aluminosilicates". Here we apply a combined geochemical, isotopic, and statistical technique that enables us to resolve volcanic from detrital terrigenous inputs at DSDP/ODP/IODP sites from both the Brazil Margin and the Northwest Pacific Oceans. Incorporating the combined geochemical/statistical techniques with radiogenic isotope records allows us to address paleoceanographic questions in addition to studies of the effect of sediment fluxes on carbon cycling, the relationship between volcanic ash and biological productivity of the open ocean and nutrient availability for subseafloor microbial life.

  10. South Atlantic Margin Processes and Links with Onshore Evolution: Overview of the German Priority Program SAMPLE (Invited)

    Science.gov (United States)

    Trumbull, R. B.

    2013-12-01

    Since 2009 the SAMPLE program (www.spp-sample.de) provides a platform for research into the causes and effects of continental breakup and the evolution of passive margins. SAMPLE encompasses 28 projects from 13 German institutions and many international partnerships. The 6-year program will run through 2015. At the core of the program are observational studies that are interlinked by modelling projects examining the interplay of deep mantle dynamics, lithospheric stress fields, pre-rift fabric and melt-weaking on localizing rifting. Geophysics teams collect and integrate existing data from wide-angle seismic profiles, reprocessed multichannel seismics, as well as gravity, magnetics and heat-flow studies to construct self-consistent lithospheric-scale 3-D models along the conjugate margins. Key interests are variations in margin architecture, distribution of magmatic features and the evolution of sedimentary basins (subsidence and thermal histories). An exciting new contribution of SAMPLE geophysics is a linked set of seismic, seismologic and magnetotelluric experiments along the Walvis Ridge, including onshore NW Namibia and the Tristan da Cunha hotspot. In the deep mantle, we examine evidence from global seismic tomography for dramatic low seismic-velocity regions near the core-mantle boundary beneath southern Africa and their implications for dynamics in the deep Earth and the thermo-chemical nature of plumes. Petrologic studies focus on near-primary mantle melts represented by Mg-rich mafic dikes. Projects address the origin of magmas and crust-mantle interaction, and the environmental impact of mega-scale volcanism during breakup. Thermobarometry results from the African margin reveal a N-to-S decrease in mantle potential temperatures from 1520°C (N) to 1380° (S), which supports a thermal plume origin for excessive melt production in the north. Thermochronology data from both conjugate margins reveal complex and puzzling patterns in the denudation history

  11. Contemporaneous trachyandesitic and calc-alkaline volcanism of the Huerto Andesite, San Juan Volcanic Field, Colorado, USA

    Science.gov (United States)

    Parat, F.; Dungan, M.A.; Lipman, P.W.

    2005-01-01

    Locally, voluminous andesitic volcanism both preceded and followed large eruptions of silicic ash-flow tuff from many calderas in the San Juan volcanic field. The most voluminous post-collapse lava suite of the central San Juan caldera cluster is the 28 Ma Huerto Andesite, a diverse assemblage erupted from at least 5-6 volcanic centres that were active around the southern margins of the La Garita caldera shortly after eruption of the Fish Canyon Tuff. These andesitic centres are inferred, in part, to represent eruptions of magma that ponded and differentiated within the crust below the La Garita caldera, thereby providing the thermal energy necessary for rejuvenation and remobilization of the Fish Canyon magma body. The multiple Huerto eruptive centres produced two magmatic series that differ in phenocryst mineralogy (hydrous vs anhydrous assemblages), whole-rock major and trace element chemistry and isotopic compositions. Hornblende-bearing lavas from three volcanic centres located close to the southeastern margin of the La Garita caldera (Eagle Mountain - Fourmile Creek, West Fork of the San Juan River, Table Mountain) define a high-K calc-alkaline series (57-65 wt % SiO2) that is oxidized, hydrous and sulphur rich. Trachyandesitic lavas from widely separated centres at Baldy Mountain-Red Lake (western margin), Sugarloaf Mountain (southern margin) and Ribbon Mesa (20 km east of the La Garita caldera) are mutually indistinguishable (55-61 wt % SiO2); they are characterized by higher and more variable concentrations of alkalis and many incompatible trace elements (e.g. Zr, Nb, heavy rare earth elements), and they contain anhydrous phenocryst assemblages (including olivine). These mildly alkaline magmas were less water rich and oxidized than the hornblende-bearing calc-alkaline suite. The same distinctions characterize the voluminous precaldera andesitic lavas of the Conejos Formation, indicating that these contrasting suites are long-term manifestations of San Juan

  12. Glass shards, pumice fragments and volcanic aerosol particles - diagenesis a recorder of volcanic activity?

    Science.gov (United States)

    Obenholzner, J. H.; Schroettner, H.; Poelt, P.; Delgado, H.

    2003-04-01

    Detailed SEM/EDS studies of Triassic (Southern Alps, A, I, Sl) and Miocene (Mixteca Alta, Mexico) tuffs revealed that volcanic glass shards can be replaced by zeolites (analcite), chlorites and smectites preserving the shape of primary shards (1). The Triassic pyroclastic deposits have been incorporated in the pre-Alpine burial diagenesis, the Miocene pyroclastic deposits are bentonites. The volcanologist is impressed by the circumstances that million years old pyroclast relict textures can be sized. Shape parameters obtained by image analysis can be compared with much younger pyroclastic deposits (2). Both deposits have not been effected by shearing. The alteration of pumice fragments of Triassic age is not a simple replacement process. Intergrowth of different illites and chlorites and probably vesicle filling by SiO2 and subsequent overgrowth make a reconstruction sometimes difficult. These processes are accompanied by the formation of REE-, Y- and Zr-bearing minerals as well as with the alteration of zircons. Studies of recently erupted ash from Popocatepetl volcano reveal the presence of a variety of µm-sized contact-metamorphosed clasts being a part of the volcanic ash (3). Such clasts should be present in many older pyroclastic deposits, especially where volcanoes had been situated on massive sedimentary units providing contact metamorphism in the realm of a magma chamber or during magma ascent. Volcanic aerosol particles collected in 1997 from the passively degassing plume of Popocatepetl volcano revealed in FESEM/EDS analysis (H. Schroettner and P. Poelt) a wide spectrum of fluffy, spherical and coagulated spherical particles (µm-sized). Under pre-vacuum conditions they remained stable for ca. 3 years (3). In nature the fate of these particles in the atmosphere is unknown. Are there relicts in marine, lacustrine sediments and ice cores, which could be used as proxies of volcanic activity? (1) Obenholzner &Heiken,1999. Ann.Naturhist.Mus.Wien, 100 A, 13

  13. Results of a Demonstration Assessment of Passive System Reliability Utilizing the Reliability Method for Passive Systems (RMPS)

    Energy Technology Data Exchange (ETDEWEB)

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia; Grelle, Austin

    2015-04-26

    Advanced small modular reactor designs include many advantageous design features such as passively driven safety systems that are arguably more reliable and cost effective relative to conventional active systems. Despite their attractiveness, a reliability assessment of passive systems can be difficult using conventional reliability methods due to the nature of passive systems. Simple deviations in boundary conditions can induce functional failures in a passive system, and intermediate or unexpected operating modes can also occur. As part of an ongoing project, Argonne National Laboratory is investigating various methodologies to address passive system reliability. The Reliability Method for Passive Systems (RMPS), a systematic approach for examining reliability, is one technique chosen for this analysis. This methodology is combined with the Risk-Informed Safety Margin Characterization (RISMC) approach to assess the reliability of a passive system and the impact of its associated uncertainties. For this demonstration problem, an integrated plant model of an advanced small modular pool-type sodium fast reactor with a passive reactor cavity cooling system is subjected to a station blackout using RELAP5-3D. This paper discusses important aspects of the reliability assessment, including deployment of the methodology, the uncertainty identification and quantification process, and identification of key risk metrics.

  14. Io. [theories concerning volcanic activity

    Science.gov (United States)

    Johnson, T. V.; Soderblom, L. A.

    1983-01-01

    A report on the continuing investigation of Io is presented. Gravitational resonance is discussed as the cause of Io's volcanism, and the volcanic activity is explained in terms of sulfur chemistry. Theories concerning the reasons for the two main types of volcanic eruptions on Io are advanced and correlated with geographical features of the satellite. The sulfur and silicate models of the calderas are presented, citing the strengths and weaknesses of each. Problems of the gravitational resonance theory of Io's heat source are then described. Finally, observations of Io planned for the Galileo mission are summarized.

  15. Synthesis and tectonic interpretation of the westernmost Paleozoic Variscan orogen in southern Mexico: From rifted Rheic margin to active Pacific margin

    Science.gov (United States)

    Keppie, J. Duncan; Dostal, Jaroslav; Murphy, J. Brendan; Nance, R. Damian

    2008-12-01

    Paleozoic rocks in southern Mexico occur in two terranes, Oaxaquia (Oaxacan Complex) and Mixteca (Acatlán Complex) that appear to record: (1) Ordovician rifting on the southern margin of the Rheic Ocean, (2) passive drifting with Amazonia during the Silurian, (3) Devonian-Permian subduction beneath southern Mexico producing an arc complex that was partially removed by subduction erosion, subjected to HP metamorphism and Mississippian extrusion into the upper plate, followed by reestablishment of a Permian arc. In the Oaxaquia terrane, the 920-1300 Ma basement is unconformably overlain by a ˜ 200 m uppermost Cambrian-lowest Ordovician shelf sequence containing Gondwanan fauna (Tiñu Formation), unconformably overlain by 650 m of shallow marine-continental Carboniferous sedimentary rocks containing a Midcontinent (USA) fauna. In the Mixteca terrane, the low-grade Paleozoic sequence is composed of: (a) a ?Cambrian-Ordovician clastic sequence intruded by ca. 480-440 Ma bimodal, rift-related igneous rocks; and (b) a latest Devonian-Permian shallow marine sequence (> 906 m) consisting of metapsammites, metapelites and tholeiitic mafic volcanic rocks. High pressure (HP) metamorphic rocks in the Mixteca terrane consists of: (i) a Cambro-Ordovician rift-shelf intruded by bimodal rift-related intrusions that are similar to the low-grade rocks; (ii) periarc ultramafic rocks, and (iii) arc and MORB rocks. The Ordovician granitoids contain concordant inherited zircons that range in age from ca. 900 to 1300 Ma, indicating a source in the Oaxacan Complex. Concordant ages of detrital zircons in both the low- and high-grade Cambro-Ordovician metasedimentary rocks indicate a provenance in local Ordovician plutons and/or ca. 1 Ga Oaxacan basement, and distal northwestern Gondwana sources with a unique source in the 900-750 Ma Goiás magmatic arc within the Brasiliano orogen. These data combined with the rift-related nature of the Cambro-Ordovician rocks are most consistent with an

  16. Hood River Passive House

    Energy Technology Data Exchange (ETDEWEB)

    Hales, D.

    2013-03-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project.

  17. Techniques for active passivation

    Energy Technology Data Exchange (ETDEWEB)

    Roscioli, Joseph R.; Herndon, Scott C.; Nelson, Jr., David D.

    2016-12-20

    In one embodiment, active (continuous or intermittent) passivation may be employed to prevent interaction of sticky molecules with interfaces inside of an instrument (e.g., an infrared absorption spectrometer) and thereby improve response time. A passivation species may be continuously or intermittently applied to an inlet of the instrument while a sample gas stream is being applied. The passivation species may have a highly polar functional group that strongly binds to either water or polar groups of the interfaces, and once bound presents a non-polar group to the gas phase in order to prevent further binding of polar molecules. The instrument may be actively used to detect the sticky molecules while the passivation species is being applied.

  18. Techniques for active passivation

    Science.gov (United States)

    Roscioli, Joseph R.; Herndon, Scott C.; Nelson, Jr., David D.

    2016-12-20

    In one embodiment, active (continuous or intermittent) passivation may be employed to prevent interaction of sticky molecules with interfaces inside of an instrument (e.g., an infrared absorption spectrometer) and thereby improve response time. A passivation species may be continuously or intermittently applied to an inlet of the instrument while a sample gas stream is being applied. The passivation species may have a highly polar functional group that strongly binds to either water or polar groups of the interfaces, and once bound presents a non-polar group to the gas phase in order to prevent further binding of polar molecules. The instrument may be actively used to detect the sticky molecules while the passivation species is being applied.

  19. Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): part 2--morphological and mineralogical features.

    Science.gov (United States)

    Calabrese, S; D'Alessandro, W

    2015-01-01

    Volcanic emissions were studied at Mount Etna (Italy) by using moss-bags technique. Mosses were exposed around the volcano at different distances from the active vents to evaluate the impact of volcanic emissions in the atmosphere. Morphology and mineralogy of volcanic particulate intercepted by mosses were investigated using scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS). Particles emitted during passive degassing activity from the two active vents, Bocca Nuova and North East Crater (BNC and NEC), were identified as silicates, sulfates and halide compounds. In addition to volcanic particles, we found evidences also of geogenic, anthropogenic and marine spray input. The study has shown the robustness of this active biomonitoring technique to collect particles, very useful in active volcanic areas characterized by continuous degassing and often not easily accessible to apply conventional sampling techniques.

  20. Petrogenesis of volcanic rocks that host the world-class Agsbnd Pb Navidad District, North Patagonian Massif: Comparison with the Jurassic Chon Aike Volcanic Province of Patagonia, Argentina

    Science.gov (United States)

    Bouhier, Verónica E.; Franchini, Marta B.; Caffe, Pablo J.; Maydagán, Laura; Rapela, Carlos W.; Paolini, Marcelo

    2017-05-01

    mantle and crust. 206Pb/204Pb isotopic ratios of Jurassic volcanic rocks of the Chon Aike Volcanic Province and sulfides of associated epithermal deposits increase with time from the volcanic event V1 (188-178 Ma) to volcanic events V2 (172-162 Ma) and V3 (157-153 Ma), reflecting variations in the radiogenic Pb source as volcanism was migrating towards the Proto Pacific margin of Gondwana.

  1. Volcanic eruptions observed with infrasound

    Science.gov (United States)

    Johnson, Jeffrey B.; Aster, Richard C.; Kyle, Philip R.

    2004-07-01

    Infrasonic airwaves produced by active volcanoes provide valuable insight into the eruption dynamics. Because the infrasonic pressure field may be directly associated with the flux rate of gas released at a volcanic vent, infrasound also enhances the efficacy of volcanic hazard monitoring and continuous studies of conduit processes. Here we present new results from Erebus, Fuego, and Villarrica volcanoes highlighting uses of infrasound for constraining quantitative eruption parameters, such as eruption duration, source mechanism, and explosive gas flux.

  2. Los volcanes y los hombres

    OpenAIRE

    García, Carmen

    2007-01-01

    Desde las entrañas de la tierra, los volcanes han creado la atmósfera, el agua de los océanos, y esculpido los relieves del planeta: son, pues, los zahoríes de la vida. Existen volcanes que los hombres explotan o cultivan, y otros sobre los cuales se han construido observatorios en los que se llevan a cabo avanzadas investigaciones científicas.

  3. Volcanic hazards and aviation safety

    Science.gov (United States)

    Casadevall, Thomas J.; Thompson, Theodore B.; Ewert, John W.; ,

    1996-01-01

    An aeronautical chart was developed to determine the relative proximity of volcanoes or ash clouds to the airports and flight corridors that may be affected by volcanic debris. The map aims to inform and increase awareness about the close spatial relationship between volcanoes and aviation operations. It shows the locations of the active volcanoes together with selected aeronautical navigation aids and great-circle routes. The map mitigates the threat that volcanic hazards pose to aircraft and improves aviation safety.

  4. Evolution of Devonian carbonate-shelf margin, Nevada

    Science.gov (United States)

    Morrow, J.R.; Sandberg, C.A.

    2008-01-01

    The north-trending, 550-km-long Nevada segment of the Devonian carbonate-shelf margin, which fringed western North America, evidences the complex interaction of paleotectonics, eustasy, biotic changes, and bolide impact-related influences. Margin reconstruction is complicated by mid-Paleozoic to Paleogene compressional tectonics and younger extensional and strike-slip faulting. Reports published during the past three decades identify 12 important events that influenced development of shelf-margin settings; in chronological order, these are: (1) Early Devonian inheritance of Silurian stable shelf inargin, (2) formation of Early to early Middle 'Devonian shelf-margin basins, (3) propradation of later Middle Devonian shelf margin, (4) late Middle Devonian Taghanic ondap and continuing long-term Frasnian transgression, (5) initiation of latest Middle Devonian to early Frasnian proto-Antler orogenic forebulge, (6) mid-Frasnian Alamo Impact, (7) accelerated development of proto-Antler forebulge and backbulge Pilot basin, (8) global late Frasnian sentichatovae sea-level rise, (9) end-Frasnian sea-level fluctuations and ensuing mass extinction, (10) long-term Famennian regression and continept-wide erosion, (11) late Famennian emergence: of Ahtler orogenic highlands, and (12) end-Devonian eustatic sea-level fall. Although of considerable value for understanding facies relationships and geometries, existing standard carbonate platform-margin models developed for passive settings else-where do not adequately describe the diverse depositional and, structural settings along the Nevada Devonian platform margin. Recent structural and geochemical studies suggest that the Early to Middle Devonian-shelf-margin basins may have been fault-bound and controlled by inherited Precambrian structure. Subsequently, the migrating latest Middle to Late Devonian Antler orogenic forebulge exerted a dominant control on shelf-margin position, morphology, and sedimentation. ??Geological Society of

  5. Volcanic Zone, New Zealand

    Directory of Open Access Journals (Sweden)

    Graham J. Weir

    2001-01-01

    Full Text Available A conceptual model of the Taupo Volcanic Zone (TVZ is developed, to a depth of 25 km, formed from three constant density layers. The upper layer is formed from eruption products. A constant rate of eruption is assumed, which eventually implies a constant rate of extension, and a constant rate of volumetric creation in the middle and bottom layers. Tectonic extension creates volume which can accomodate magmatic intrusions. Spreading models assume this volume is distributed throughout the whole region, perhaps in vertical dykes, whereas rifting models assume the upper crust is thinned and the volume created lies under this upper crust. Bounds on the heat flow from such magmatic intrusions are calculated. Heat flow calculations are performed and some examples are provided which match the present total heat output from the TVZ of about 4200 MW, but these either have extension rates greater than the low values of about 8 ± 4 mm/a being reported from GPS measurements, or else consider extension rates in the TVZ to have varied over time.

  6. Paleomagnetic Results of Permo-Carboniferous Volcanic-sedimentary Strata in Mid-eastern Inner Mongolia, China: Implications for Tectonic Evolution of the Eastern CAOB

    Science.gov (United States)

    Zhang, D.; Huang, B.; Zhao, J.; Bai, Q.; Zhang, Y.; Zhou, T.

    2015-12-01

    There has been hotly debating over the closure time of the eastern Paleo-Asian Ocean and the tectonic evolution of the eastern CAOB (Central Asian Orogenic Belt) for decades. To better puzzle out this controversy, we carried out a detailed paleomagnetic study on the Permo-Carboniferous volcanic-sedimentary strata in mid-eastern Inner Mongolia, northeast of China. More than 820 samples were collected from 81 sites and titanium-poor magnetite and hematite are proved as the principal magnetic carriers. (1)In Kingan Block, 9 sites of volcanic rocks from Dashizhai Formation (P1) were calculated to get a mean magnetic direction Dg/Ig = 285.5°/77.4°, kg = 68.2, α95 = 6.8° before and Ds/Is = 206.5°/48.2°, ks = 100.8, α95 = 5.5°, N = 9 after bedding correction, which suggests a paleolatitude of 34.5°±5°N. Both the positive fold test and reversal test suggest a pre-folding magnetization and thus may indicate a primary remanence. (2)Three volcanic sections of Baoligaomiao Formation (C3-P1) from Uliastai Passive Margin were sampled and a mean magnetic direction derived from 16 sites is Dg/Ig = 30.1°/31.8°, kg = 16.3, α95 = 9.8° before and Ds/Is = 65.6°/58.1°, ks = 39.8, α95 = 6.1°, N = 16 after bedding correction. The corresponding paleomagnetic pole Plat. /Plong = 43.1° N/186.7°E, A95=8° suggests a paleolatitude of 38.7°±6.3°N. A primary remanence is confirmed by positive fold test. (3) In the northern margin of NCB (North China Block), a ChRM is successfully isolated from 6 sites of basaltic rocks in Elitu Formation (P2) as Dg/Ig = 351.1°/67.2°, kg = 2.1, α95 = 71.8° before and Ds/Is = 351.1°/29.1°, ks = 32.7, α95 = 71.8°, N = 16 after bedding correction, and thus yielded a paleomagnetic pole as Plat. /Plong = 63.1° N/313.5°E, A95=9.5°, which suggests a paleolatitude of 17.2°±7.2°N. A positive fold test and reversal test indicate that the remanence should be primary. The paleomagetic pole of Kingan Block and Uliastai Passive Margin are

  7. Landscape evolution within a retreating volcanic arc, Costa Rica, Central America

    Science.gov (United States)

    Marshall, Jeffrey S.; Idleman, Bruce D.; Gardner, Thomas W.; Fisher, Donald M.

    2003-05-01

    Subduction of hotspot-thickened seafloor profoundly affects convergent margin tectonics, strongly affecting upper plate structure, volcanism, and landscape evolution. In southern Central America, low-angle subduction of the Cocos Ridge and seamount domain largely controls landscape evolution in the volcanic arc. Field mapping, stratigraphic correlation, and 40Ar/39Ar geochronology for late Cenozoic volcanic rocks of central Costa Rica provide new insights into the geomorphic response of volcanic arc landscapes to changes in subduction parameters (slab thickness, roughness, dip). Late Neogene volcanism was focused primarily along the now-extinct Cordillera de Aguacate. Quaternary migration of the magmatic front shifted volcanism northeastward to the Caribbean slope, creating a new topographic divide and forming the Valle Central basin. Stream capture across the paleo Aguacate divide led to drainage reversal toward the Pacific slope and deep incision of reorganized fluvial networks. Pleistocene caldera activity generated silicic ash flows that buried the Valle Central and descended the Tárcoles gorge to the Orotina debris fan at the coast. Growth of the modern Cordillera Central accentuated relief along the new divide, establishing the Valle Central as a Pacific slope drainage basin. Arc migration, relocation of the Pacific-Caribbean drainage divide, and formation of the Valle Central basin resulted from slab shallowing as irregular, hotspot-thickened crust entered the subduction zone. The geomorphic evolution of volcanic arc landscapes is thus highly sensitive to changes in subducting plate character.

  8. Spatial Compilation of Holocene Volcanic Vents in the Western Conterminous United States

    Science.gov (United States)

    Ramsey, D. W.; Siebert, L.

    2015-12-01

    A spatial compilation of all known Holocene volcanic vents in the western conterminous United States has been assembled. This compilation records volcanic vent location (latitude/longitude coordinates), vent type (cinder cone, dome, etc.), geologic map unit description, rock type, age, numeric age and reference (if dated), geographic feature name, mapping source, and, where available, spatial database source. Primary data sources include: USGS geologic maps, USGS Data Series, the Smithsonian Global Volcanism Program (GVP) catalog, and published journal articles. A total of 726 volcanic vents have been identified from 45 volcanoes or volcanic fields spanning ten states. These vents are found along the length of the Cascade arc in the Pacific Northwest, widely around the Basin and Range province, and at the southern margin of the Colorado Plateau into New Mexico. The U.S. Geological Survey (USGS) National Volcano Early Warning System (NVEWS) identifies 28 volcanoes and volcanic centers in the western conterminous U.S. that pose moderate, high, or very high threats to surrounding communities based on their recent eruptive histories and their proximity to vulnerable people, property, and infrastructure. This compilation enhances the understanding of volcano hazards that could threaten people and property by providing the context of where Holocene eruptions have occurred and where future eruptions may occur. Locations in this compilation can be spatially compared to located earthquakes, used as generation points for numerical hazard models or hazard zonation buffering, and analyzed for recent trends in regional volcanism and localized eruptive activity.

  9. Volcanic ash as an iron-fertilizer in ocean surface water

    Science.gov (United States)

    Olgun, N.; Duggen, S.; Croot, P.; Dietze, H.; Schacht, U.; Oskarsson, N.; Siebe, C.; Auer, A.

    2007-12-01

    Surface ocean fertilisation with iron may affect the marine primary productivity, C-cycles and eventually climate development. Volcanic ash has the potential to release iron on contact with seawater and to stimulate phytoplankton growth (1,2) but the relative importance of volcanism at destructive plate margins (subduction zones, SZ) and intraplate volcanic settings (ocean islands at hot spots) remains unknown. Here we present new results from geochemical experiments with natural seawater and numerous volcanic ash samples from SZ volcanoes in the Pacific Ring of Fire (Alaska, Japan, Kamchatka, Northern and Central America and Papua New Guinea) and hot spot volcanoes (on Iceland and Hawaii). The release of iron as a function of time was determined in situ in seawater by means of Cathodic Stripping Voltammetry. Our experiments show that: A) volcanic ash from both SZ and hot spot volcanic areas mobilise significant amounts of iron, B) with the highest mobilisation rates within the first 10-20 minutes and C) indicate that volcanic ash from hot spot volcanoes mobilise less iron than volcanic ash from SZ. We propose that the higher iron-mobilisation potential of SZ volcanic ash results from higher HCl/HF ratios in SZ volcanic gases that seem to be involved in the formation of Fe-bearing soluble salt coatings (condensed gases and adsorbed aerosols) on ash particles (1,2,3). Higher HCl/HF ratios in SZ volcanic gases thus appear to be linked to the recycling of seawater through subduction of oceanic lithosphere at destructive plate margins. Together, taking into account differences in ash-fluxes from SZ and hot spot volcanoes into the oceans, our study suggests that SZ volcanic ash plays a more important role for the global surface ocean iron budget than ash from volcanoes in hot spot areas. 1 Frogner, Gislason, Oskarsson (2001). Geology, 29, 487-490. 2 Duggen, Croot, Schacht, Hofmann (2007) Geoph. Res. Letters 34, 5. 3 Oskarsson (1980), J. Volc. and Geoth. Res. 8, 251-266.

  10. The Late Cretaceous-Paleogene active margin of Northeastern Asia: Geodynamic setting of terrigenous sedimentary basins in the Central Koryak terrane

    Science.gov (United States)

    Chekhovich, V. D.; Palandzhyan, S. A.; Sukhov, A. N.; Egorkin, A. V.; Ben'yamovsky, V. N.

    2008-01-01

    The northeastern segment of the Late Cretaceous suprasubduction Okhotsk-Chukotka volcanic belt is not an analogue of Andean-type continental margin. During its formation, the belt was separated from the Paleopacific by a complexly built assembly that comprised the Central Koryak continental block and the Essoveem volcanic arc at its margin. Various types of independent terrigenous sedimentary basins were formed in the Late Cretaceous and Early Paleogene at the subsided portion of the microcontinent and its slope. The Uchkhichkhil-type basin was characterized by deposition of polymictic clastic sediments produced during erosion of the volcanic arc and pyroclastic material derived from active volcanic centers of this arc that extended along the microcontinent margin that faced the Okhotsk-Chukotka volcanic belt. The deposition of quartz-feldspathic flyschoid sequences as products of scouring of sialic basement of the continental block was inherent to the Ukelayat type of sedimentation. The closure of the minor oceanic basin that separated the Asian margin from microcontinent in the late Campanian resulted in the cessation of subduction-related activity of the Okhotsk-Chukotka volcanic belt and the Essoveem arc and initiated the formation of the Late Cretaceous accretionary margin of Asia. The deep structure of the central Koryak Highland deduced from the results of seismic surveying with the earthquake converted-wave method has corroborated the geotectonic interpretation.

  11. Mesozoic evolution of northeast African shelf margin, Libya and Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Aadland, R.K.; Schamel, S.

    1989-03-01

    The present tectonic features of the northeast African shelf margin between the Nile delta and the Gulf of Sirte are products of (1) precursory late Paleozoic basement arches, (2) early Mesozoic rifting and plate separation, and (3) Late Cretaceous structural inversion. The 250 km-wide and highly differentiated Mesozoic passive margin in the Western Desert region of Egypt is developed above a broad northwest-trending Late Carboniferous basement arch. In northeastern Libya, in contrast, the passive margin is restricted to just the northernmost Cyrenaica platform, where subsidence was extremely rapid in the Jurassic and Early Cretaceous. The boundary between the Western Desert basin and the Cyrenaica platform is controlled by the western flank of the basement arch. In the middle Cretaceous (100-90 Ma), subsidence accelerated over large areas of the Western desert, further enhancing a pattern of east-west-trending subbasins. This phase of rapid subsidence was abruptly ended about 80 Ma by the onset of structural inversion that uplifted the northern Cyrenaica shelf margin and further differentiated the Western Desert subbasin along a northeasterly trend.

  12. Passive House Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Strom, I.; Joosten, L.; Boonstra, C. [DHV Sustainability Consultants, Eindhoiven (Netherlands)

    2006-05-15

    PEP stands for 'Promotion of European Passive Houses' and is a consortium of European partners, supported by the European Commission, Directorate General for Energy and Transport. In this working paper an overview is given of Passive House solutions. An inventory has been made of Passive House solutions for new build residences applied in each country. Based on this, the most common basic solutions have been identified and described in further detail, including the extent to which solutions are applied in common and best practice and expected barriers for the implementation in each country. An inventory per country is included in the appendix. The analysis of Passive House solutions in partner countries shows high priority with regard to the performance of the thermal envelope, such as high insulation of walls, roofs, floors and windows/ doors, thermal bridge-free construction and air tightness. Due to the required air tightness, special attention must be paid to indoor air quality through proper ventilation. Finally, efficient ((semi-)solar) heating systems for combined space and DHW heating still require a significant amount of attention in most partner countries. Other basic Passive House solutions show a smaller discrepancy with common practice and fewer barriers have been encountered in partner countries. In the next section, the general barriers in partner countries have been inventoried. For each type of barrier a suggested approach has been given. Most frequently encountered barriers in partner countries are: limited know-how; limited contractor skills; and acceptation of Passive Houses in the market. Based on the suggested approaches to overcoming barriers, this means that a great deal of attention must be paid to providing practical information and solutions to building professionals, providing practical training to installers and contractors and communication about the Passive House concept to the market.

  13. Precursory volcanic CO2 signals from space

    Science.gov (United States)

    Schwandner, Florian M.; Carn, Simon A.; Kataoka, Fumie; Kuze, Akihiko; Shiomi, Kei; Goto, Naoki

    2016-04-01

    Identification of earliest signals heralding volcanic unrest benefits from the unambiguous detection of precursors that reflect deviation of magmatic systems from metastable background activity. Ascent and emplacement of new basaltic magma at depth may precede eruptions by weeks to months. Transient localized carbon dioxide (CO2) emissions stemming from exsolution from depressurized magma are expected, and have been observed weeks to months ahead of magmatic surface activity. Detecting such CO2 precursors by continuous ground-based monitoring operations is unfortunately not a widely implemented method yet, save a handful of volcanoes. Detecting CO2 emissions from space offers obvious advantages - however it is technologically challenging, not the least due to the increasing atmospheric burden of CO2, against which a surface emission signal is hard to discern. In a multi-year project, we have investigated the feasibility of space-borne detection of pre-eruptive volcanic CO2 passive degassing signals using observations from the Greenhouse Gas Observing SATellite (GOSAT). Since 2010, we have observed over 40 active volcanoes from space using GOSAT's special target mode. Over 72% of targets experienced at least one eruption over that time period, demonstrating the potential utility of space-borne CO2 observations in non-imaging target-mode (point source monitoring mode). While many eruption precursors don't produce large enough CO2 signals to exceed space-borne detection thresholds of current satellite sensors, some of our observations have nevertheless already shown significant positive anomalies preceding eruptions at basaltic volcanoes. In 2014, NASA launched its first satellite dedicated to atmospheric CO2 observation, the Orbiting Carbon Observatory (OCO-2). Its observation strategy differs from the single-shot GOSAT instrument. At the expense of GOSAT's fast time series capability (3-day repeat cycle, vs. 16 for OCO-2), its 8-footprint continuous swath can slice

  14. Modification of premare impact craters by volcanism and tectonism

    Science.gov (United States)

    Brennan, W. J.

    1975-01-01

    Many lunar craters greater than 10 km in diameter exhibit a variety of morphological characteristics which are not produced by meteorite impact or meteorite erosion. Most such craters are located in or near the margins of the maria. Although some could have resulted from processes such as cauldron resurgence, caldera formation, or ring dike emplacement, most have formed by modification of impact craters by endogenic processes including erosion by flowing lava, fissure volcanism, plutonism, and uplift of crater floors along ring fractures of impact origin.

  15. Marginally Stable Nuclear Burning

    Science.gov (United States)

    Strohmayer, Tod E.; Altamirano, D.

    2012-01-01

    Thermonuclear X-ray bursts result from unstable nuclear burning of the material accreted on neutron stars in some low mass X-ray binaries (LMXBs). Theory predicts that close to the boundary of stability oscillatory burning can occur. This marginally stable regime has so far been identified in only a small number of sources. We present Rossi X-ray Timing Explorer (RXTE) observations of the bursting, high-inclination LMXB 4U 1323-619 that reveal for the first time in this source the signature of marginally stable burning. The source was observed during two successive RXTE orbits for approximately 5 ksec beginning at 10:14:01 UTC on March 28, 2011. Significant mHz quasi-periodic oscillations (QPO) at a frequency of 8.1 mHz are detected for approximately 1600 s from the beginning of the observation until the occurrence of a thermonuclear X-ray burst at 10:42:22 UTC. The mHz oscillations are not detected following the X-ray burst. The average fractional rms amplitude of the mHz QPOs is 6.4% (3 - 20 keV), and the amplitude increases to about 8% below 10 keV.This phenomenology is strikingly similar to that seen in the LMXB 4U 1636-53. Indeed, the frequency of the mHz QPOs in 4U 1323-619 prior to the X-ray burst is very similar to the transition frequency between mHz QPO and bursts found in 4U 1636-53 by Altamirano et al. (2008). These results strongly suggest that the observed QPOs in 4U 1323-619 are, like those in 4U 1636-53, due to marginally stable nuclear burning. We also explore the dependence of the energy spectrum on the oscillation phase, and we place the present observations within the context of the spectral evolution of the accretion-powered flux from the source.

  16. Measure Guideline: Passive Vents

    Energy Technology Data Exchange (ETDEWEB)

    Berger, David [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Neri, Robin [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-02-05

    This document addresses the use of passive vents as a source of outdoor air in multifamily buildings. The challenges associated with implementing passive vents and the factors affecting performance are outlined. A comprehensive design methodology and quantified performance metrics are provided. Two hypothetical design examples are provided to illustrate the process. This document is intended to be useful to designers, decision-makers, and contractors implementing passive ventilation strategies. It is also intended to be a resource for those responsible for setting high-performance building program requirements, especially pertaining to ventilation and outdoor air. To ensure good indoor air quality, a dedicated source of outdoor air is an integral part of high-performance buildings. Presently, there is a lack of guidance pertaining to the design and installation of passive vents, resulting in poor system performance. This report details the criteria necessary for designing, constructing, and testing passive vent systems to enable them to provide consistent and reliable levels of ventilation air from outdoors.

  17. Evolution of Geochemical Variations Along the Central American Volcanic Front

    Science.gov (United States)

    Saginor, I. S.; Gazel, E.; Condie, C.; Carr, M. J.

    2014-12-01

    New geochemical analyses of volcanic rocks in El Salvador add to existing data from Nicaragua and Costa Rica to create a comprehensive set of geochemical data for Central American volcanics. These data coupled with previously published 40Ar/39Ar ages covering the past 30 Ma shows that Costa Rica and Nicaragua had similar U/Th and Ba/La values until 10 Ma when the region developed the distinctive along arc variations that made this margin famous. U/Th values increased in Nicaragua since the Miocene, while remaining unchanged along the rest of the volcanic front. This coincides temporally with the Carbonate Crash, which caused a transition in Cocos plate sediments from low-U carbonates to high-U, organic rich hemipelagic muds. Increases in uranium are not observed in Costa Rica because its lower slab dip produces a more diffuse zone of partial melting and because of the contribution from Galapagos-derived tracks dilutes this signal. Ba/La has been used as a geochemical proxy for contributions from the subducting slab, however our analyses indicate that the Ba concentrations do not vary significantly along strike either in the subducting sediment or the volcanic front. Along-arc variation is controlled by changes in La, an indicator of the degree of partial melting or source enrichment. Trace element models of five segments of the volcanic front suggest that a subducting sediment component is more important to magmas produced in El Salvador and Nicaragua than in Costa Rica, where the geochemistry is controlled by recent (<10 Ma) recycling of Galapagos tracks.

  18. Scientific Drilling in a Central Italian Volcanic District

    Directory of Open Access Journals (Sweden)

    Paola Montone

    2007-09-01

    Full Text Available The Colli Albani Volcanic District, located 15 km SE of Rome (Fig. 1, is part of the Roman Magmatic Province, a belt of potassic to ultra-potassic volcanic districts that developed along the Tyrrhenian Sea margin since Middle Pleistocene time (Conticelli and Peccerillo, 1992; Marra et al., 2004; Giordano et al., 2006 and references therein. Eruption centers are aligned along NW-SE oriented majorextensional structures guiding the dislocation of Meso-Cenozoic siliceous-carbonate sedimentary successions at the rear of the Apennine belt. Volcanic districts developed in structural sectors with most favorable conditions for magma uprise. In particular, the Colli Albani volcanism is located in a N-S shear zone where it intersects the extensional NW- and NE-trending fault systems. In the last decade, geochronological measurements allowed for reconstructions of the eruptive history and led to the classification as "dormant" volcano. The volcanic history may be roughly subdivided into three main phases marked by different eruptive mechanisms andmagma volumes. The early Tuscolano-Artemisio Phase (ca. 561–351 ky, the most explosive and voluminous one, is characterized by five large pyroclastic flow-forming eruptions. After a ~40-ky-long dormancy, a lesser energetic phase of activity took place (Faete Phase; ca. 308–250 ky, which started with peripheral effusive eruptions coupled with subordinate hydromagmatic activity. A new ~50-ky-long dormancypreceded the start of the late hydromagmatic phase (ca. 200–36 ky, which was dominated by pyroclastic-surge eruptions, with formation of several monogenetic or multiple maars and/or tuff rings.

  19. Gaussian quantum marginal problem

    CERN Document Server

    Eisert, J; Sanders, B C; Tyc, T

    2007-01-01

    The quantum marginal problem asks what local spectra are consistent with a given state of a composite quantum system. This setting, also referred to as the question of the compatibility of local spectra, has several applications in quantum information theory. Here, we introduce the analogue of this statement for Gaussian states for any number of modes, and solve it in generality, for pure and mixed states, both concerning necessary and sufficient conditions. Formally, our result can be viewed as an analogue of the Sing-Thompson Theorem (respectively Horn's Lemma), characterizing the relationship between main diagonal elements and singular values of a complex matrix: We find necessary and sufficient conditions for vectors (d1, ..., dn) and (c1, ..., cn) to be the symplectic eigenvalues and symplectic main diagonal elements of a strictly positive real matrix, respectively. More physically speaking, this result determines what local temperatures or entropies are consistent with a pure or mixed Gaussian state of ...

  20. Quaternary basaltic volcanism in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina

    primitive basalts and trachybasalts but also more evolved samples from the retroarc region and the larger volcanoes Payún Matrú and Payún Liso are presented. The samples cover a broad range of compositions from intraplate lavas similar to ocean island basalts to arc andesites. A common feature found...... Pleistocene times. These basalts mark the end of a period of shallow subduction of the Nazca slab beneath the Payenia province and volcanism in the Nevado volcanic field apparently followed the downwarping slab in a north-northwest direction ending in the Northern Segment. The northern Payenia basalts...... the literature. The Nevado basalts have been modelled by 4-10 % melting of a primitive mantle added 1-5 % upper continental crust. In the southern Payenia province, intraplate basalts dominate. The samples from the Payún Matrú and Río Colorado volcanic fields are apparently unaffected by the subducting slab...

  1. High resolution seismic reflection profiles of Holocene volcanic and tectonic features, Mono Lake, California

    Science.gov (United States)

    Jayko, A. S.; Hart, P. E.; Bursik, M. I.; McClain, J. S.; Moore, J. C.; Boyle, M.; Childs, J. R.; Novick, M.; Hill, D. P.; Mangan, M.; Roeske, S.

    2009-12-01

    The Inyo-Mono Craters of Long Valley and Mono Basin, California are the youngest eruptive vents of the Great Basin, USA and the second youngest in California. They are one of two seismically active volcanic centers with geothermal power production in the Walker Lane, western Great Basin, the other being the Coso Volcanic Field to the south. High resolution seismic reflection data collected from the northern tip of the Mono Craters eruptive centers in Mono Lake delinates two structural zones proximal to the active volcanic centers in Mono Lake. A growth structure drapped by ~30 m or more of bedded sediment shows increasing deformation and offset of clastic deposits on the northwest margin of the basin. Coherent thin-bedded stratigraphic sections with strong reflectors to 30-100m depth are preserved on the western and northern margins of the basin. The southern and southeastern areas of the lake are generally seismically opaque, due to extensive ash and tephra deposits as well as widespread methane. Thin pockets of well-bedded, poorly consolidated sediment of probable Holocene and last glacial age are present within intrabasin depressions providing some local age constraints on surfaces adjacent to volcanic vents and volcanically modified features.

  2. Atmospheric chemistry in volcanic plumes.

    Science.gov (United States)

    von Glasow, Roland

    2010-04-13

    Recent field observations have shown that the atmospheric plumes of quiescently degassing volcanoes are chemically very active, pointing to the role of chemical cycles involving halogen species and heterogeneous reactions on aerosol particles that have previously been unexplored for this type of volcanic plumes. Key features of these measurements can be reproduced by numerical models such as the one employed in this study. The model shows sustained high levels of reactive bromine in the plume, leading to extensive ozone destruction, that, depending on plume dispersal, can be maintained for several days. The very high concentrations of sulfur dioxide in the volcanic plume reduces the lifetime of the OH radical drastically, so that it is virtually absent in the volcanic plume. This would imply an increased lifetime of methane in volcanic plumes, unless reactive chlorine chemistry in the plume is strong enough to offset the lack of OH chemistry. A further effect of bromine chemistry in addition to ozone destruction shown by the model studies presented here, is the oxidation of mercury. This relates to mercury that has been coemitted with bromine from the volcano but also to background atmospheric mercury. The rapid oxidation of mercury implies a drastically reduced atmospheric lifetime of mercury so that the contribution of volcanic mercury to the atmospheric background might be less than previously thought. However, the implications, especially health and environmental effects due to deposition, might be substantial and warrant further studies, especially field measurements to test this hypothesis.

  3. Climatic impact of volcanic eruptions

    Science.gov (United States)

    Rampino, Michael R.

    1991-01-01

    Studies have attempted to 'isolate' the volcanic signal in noisy temperature data. This assumes that it is possible to isolate a distinct volcanic signal in a record that may have a combination of forcings (ENSO, solar variability, random fluctuations, volcanism) that all interact. The key to discovering the greatest effects of volcanoes on short-term climate may be to concentrate on temperatures in regions where the effects of aerosol clouds may be amplified by perturbed atmospheric circulation patterns. This is especially true in subpolar and midlatitude areas affected by changes in the position of the polar front. Such climatic perturbation can be detected in proxy evidence such as decrease in tree-ring widths and frost rings, changes in the treeline, weather anomalies, severity of sea-ice in polar and subpolar regions, and poor grain yields and crop failures. In low latitudes, sudden temperature drops were correlated with the passage overhead of the volcanic dust cloud (Stothers, 1984). For some eruptions, such as Tambora, 1815, these kinds of proxy and anectdotal information were summarized in great detail in a number of papers and books (e.g., Post, 1978; Stothers, 1984; Stommel and Stommel, 1986; C. R. Harrington, in press). These studies lead to the general conclusion that regional effects on climate, sometimes quite severe, may be the major impact of large historical volcanic aerosol clouds.

  4. Geology, geochronology, and paleogeography of the southern Sonoma volcanic field and adjacent areas, northern San Francisco Bay region, California

    Science.gov (United States)

    Wagner, D.L.; Saucedo, G.J.; Clahan, K.B.; Fleck, R.J.; Langenheim, V.E.; McLaughlin, R.J.; Sarna-Wojcicki, A. M.; Allen, J.R.; Deino, A.L.

    2011-01-01

    Recent geologic mapping in the northern San Francisco Bay region (California, USA) supported by radiometric dating and tephrochronologic correlations, provides insights into the framework geology, stratigraphy, tectonic evolution, and geologic history of this part of the San Andreas transform plate boundary. There are 25 new and existing radiometric dates that define three temporally distinct volcanic packages along the north margin of San Pablo Bay, i.e., the Burdell Mountain Volcanics (11.1 Ma), the Tolay Volcanics (ca. 10-8 Ma), and the Sonoma Volcanics (ca. 8-2.5 Ma). The Burdell Mountain and the Tolay Volcanics are allochthonous, having been displaced from the Quien Sabe Volcanics and the Berkeley Hills Volcanics, respectively. Two samples from a core of the Tolay Volcanics taken from the Murphy #1 well in the Petaluma oilfield yielded ages of 8.99 ?? 0.06 and 9.13 ?? 0.06 Ma, demonstrating that volcanic rocks exposed along Tolay Creek near Sears Point previously thought to be a separate unit, the Donnell Ranch volcanics, are part of the Tolay Volcanics. Other new dates reported herein show that volcanic rocks in the Meacham Hill area and extending southwest to the Burdell Mountain fault are also part of the Tolay Volcanics. In the Sonoma volcanic field, strongly bimodal volcanic sequences are intercalated with sediments. In the Mayacmas Mountains a belt of eruptive centers youngs to the north. The youngest of these volcanic centers at Sugarloaf Ridge, which lithologically, chemically, and temporally matches the Napa Valley eruptive center, was apparently displaced 30 km to the northwest by movement along the Carneros and West Napa faults. The older parts of the Sonoma Volcanics have been displaced at least 28 km along the RodgersCreek fault since ca. 7 Ma. The Petaluma Formation also youngs to the north along the Rodgers Creek-Hayward fault and the Bennett Valley fault. The Petaluma basin formed as part of the Contra Costa basin in the Late Miocene and was

  5. Volcanic aerosols: Chemistry, evolution, and effects

    Science.gov (United States)

    Turco, Richard

    1991-01-01

    Stratospheric aerosols have been the subject of scientific speculation since the 1880s, when the powerful eruption of Krakatoa attracted worldwide attention to the upper atmosphere through spectacular optical displays. The presence of a permanent tenuous dust layer in the lower stratosphere was postulated in the 1920s following studies of the twilight glow. Junge collected the first samples of these 'dust' particles and demonstrated that they were actually composed of sulfates, most likely concentrated sulfuric acid (Junge and Manson, 1961; Junge, 1963). Subsequent research has been spurred by the realization that stratospheric particles can influence the surface climate of earth through their effects on atmospheric radiation. Such aerosols can also influence, through chemical and physical effects, the trace composition of the atmosphere, ozone concentrations, and atmospheric electrical properties. The properties of stratospheric aerosols (both the background particles and those enhanced by volcanic eruptions) were measured in situ by balloon ascents and high altitude aircraft sorties. The aerosols were also observed remotely from the ground and from satellites using both active (lidar) and passive (solar occultation) techniques (remote sensing instruments were carried on aircraft and balloon platforms as well). In connection with the experimental work, models were developed to test theories of particle formation and evolution, to guide measurement strategies, to provide a means of connecting laboratory and field data, and to apply the knowledge gained to answer practical questions about global changes in climate, depletion of the ozone layer, and related environmental problems.

  6. Polyphase Rifting and Breakup of the Central Mozambique Margin

    Science.gov (United States)

    Senkans, Andrew; Leroy, Sylvie; d'Acremont, Elia; Castilla, Raymi

    2017-04-01

    The breakup of the Gondwana supercontinent resulted in the formation of the Central Mozambique passive margin as Africa and Antarctica were separated during the mid-Jurassic period. The identification of magnetic anomalies in the Mozambique Basin and Riiser Larsen Sea means that post-oceanisation plate kinematics are well-constrained. Unresolved questions remain, however, regarding the initial fit, continental breakup process, and the first relative movements of Africa and Antarctica. This study uses high quality multi-channel seismic reflection profiles in an effort to identify the major crustal domains in the Angoche and Beira regions of the Central Mozambique margin. This work is part of the integrated pluri-disciplinary PAMELA project*. Our results show that the Central Mozambique passive margin is characterised by intense but localised magmatic activity, evidenced by the existence of seaward dipping reflectors (SDR) in the Angoche region, as well as magmatic sills and volcanoclastic material which mark the Beira High. The Angoche region is defined by a faulted upper-continental crust, with the possible exhumation of lower crustal material forming an extended ocean-continent transition (OCT). The profiles studied across the Beira high reveal an offshore continental fragment, which is overlain by a pre-rift sedimentary unit likely to belong to the Karoo Group. Faulting of the crust and overlying sedimentary unit reveals that the Beira High has recorded several phases of deformation. The combination of our seismic interpretation with existing geophysical and geological results have allowed us to propose a breakup model which supports the idea that the Central Mozambique margin was affected by polyphase rifting. The analysis of both along-dip and along-strike profiles shows that the Beira High initially experienced extension in a direction approximately parallel to the Mozambique coastline onshore of the Beira High. Our results suggest that the Beira High results

  7. Late Miocene to recent plate tectonic history of the southern Central America convergent margin

    Science.gov (United States)

    Morell, Kristin D.

    2015-10-01

    New plate reconstructions constrain the tectonic evolution of the subducting Cocos and Nazca plates across the southern Central American subduction zone from late Miocene to recent. Because of the strong relationships between lower and upper (Caribbean) plate dynamics along this margin, these constraints have wide-ranging implications for the timing and growth of upper plate deformation and volcanism in southern Central America. The reconstructions outline three important events in the Neogene history of this margin: (1) the coeval development of the Panama Triple Junction with the initiation of oblique subduction of the Nazca plate at ˜8.5 Ma; (2) the initiation of seamount and rough crust subduction beginning at ˜3-4 Ma; and (3) Cocos Ridge subduction from ˜2 to 3 Ma. A comparison of these events with independent geologic, geomorphic, volcanic, and stratigraphic data sets reveals that the timing, rates, and origin of subducting crust directly impacted the Neogene growth of upper plate deformation and volcanism in southern Central America. These analyses constrain the timing, geometry, and causes of a number of significant tectonic and volcanic processes, including rapid Plio-Quaternary arc-fore arc contraction due to Cocos Ridge subduction, the detachment of the Panama microplate at ˜1-3 Ma, and the late Miocene cessation of mantle-wedge-derived volcanism across ˜300 km of the subduction zone.

  8. Magnetic anomalies of offshore Krishna-Godavari Basin, eastern continental margin of India

    Indian Academy of Sciences (India)

    K V Swamy; I V Radhakrishna Murthy; K S Krishna; K S R Murthy; A S Subrahmanyam; M M Malleswara Rao

    2009-08-01

    The marine magnetic data acquired from offshore Krishna–Godavari (K–G) basin, eastern continental margin of India (ECMI), brought out a prominent NE–SW trending feature, which could be explained by a buried structural high formed by volcanic activity. The magnetic anomaly feature is also associated with a distinct negative gravity anomaly similar to the one associated with 85°E Ridge. The gravity low could be attributed to a flexure at the Moho boundary, which could in turn be filled with the volcanic material. Inversion of the magnetic and gravity anomalies was also carried out to establish the similarity of anomalies of the two geological features (structural high on the margin and the 85°E Ridge) and their interpretations. In both cases, the magnetic anomalies were caused dominantly by the magnetization contrast between the volcanic material and the surrounding oceanic crust, whereas the low gravity anomalies are by the flexures of the order of 3–4 km at Moho boundary beneath them. The analysis suggests that both structural high present in offshore Krishna–Godavari basin and the 85°E Ridge have been emplaced on relatively older oceanic crust by a common volcanic process, but at discrete times, and that several of the gravity lows in the Bay of Bengal can be attributed to flexures on the Moho, each created due to the load of volcanic material.

  9. Method of passivating semiconductor surfaces

    Science.gov (United States)

    Wanlass, Mark W.

    1990-01-01

    A method of passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  10. Aurorae and Volcanic Eruptions

    Science.gov (United States)

    2001-06-01

    Thermal-IR Observations of Jupiter and Io with ISAAC at the VLT Summary Impressive thermal-infrared images have been obtained of the giant planet Jupiter during tests of a new detector in the ISAAC instrument on the ESO Very Large Telescope (VLT) at the Paranal Observatory (Chile). . They show in particular the full extent of the northern auroral ring and part of the southern aurora. A volcanic eruption was also imaged on Io , the very active inner Jovian moon. Although these observations are of an experimental nature, they demonstrate a great potential for regular monitoring of the Jovian magnetosphere by ground-based telescopes together with space-based facilities. They also provide the added benefit of direct comparison with the terrestrial magnetosphere. PR Photo 21a/01 : ISAAC image of Jupiter (L-band: 3.5-4.0 µm) . PR Photo 21b/01 : ISAAC image of Jupiter (Narrow-band 4.07 µm) . PR Photo 21c/01 : ISAAC image of Jupiter (Narrow-band 3.28 µm) . PR Photo 21d/01 : ISAAC image of Jupiter (Narrow-band 3.21 µm) . PR Photo 21e/01 : ISAAC image of the Jovian aurorae (false-colour). PR Photo 21f/01 : ISAAC image of volcanic activity on Io . Addendum : The Jovian aurorae and polar haze. Aladdin Meets Jupiter Thermal-infrared images of Jupiter and its volcanic moon Io have been obtained during a series of system tests with the new Aladdin detector in the Infrared Spectrometer And Array Camera (ISAAC) , in combination with an upgrade of the ESO-developed detector control electronics IRACE. This state-of-the-art instrument is attached to the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory. The observations were made on November 14, 2000, through various filters that isolate selected wavebands in the thermal-infrared spectral region [1]. They include a broad-band L-filter (wavelength interval 3.5 - 4.0 µm) as well as several narrow-band filters (3.21, 3.28 and 4.07 µm). The filters allow to record the light from different components of the Jovian atmosphere

  11. Geopulsation, Volcanism and Astronomical Periods

    Institute of Scientific and Technical Information of China (English)

    Yang Xuexiang; Chen Dianyou; Yang Xiaoying; Yang Shuchen

    2000-01-01

    Volcanism is mainly controlled by the intermittent release of energy in the earth. As far as the differential rotation of the earth's inner core is concerned, the Galactic Year may change the gravitational constant G, the solar radiative quantity and the moving speed of the solar system and affect the exchange of angular momentum between core and mantle as well as the energy exchange between crust and mantle. As a result, this leads to eruptions of superplumes and magma, and controls the energy flow from core - mantle boundary (CMB) to crust. When the earth' s speed decreases, it will release a huge amount of energy. They are the reason of the correspondence of the volcanic cycles one by one with the astronomical periods one by one. According to the astronomical periods, volcanic eruptions may possibly be predicted in the future.

  12. Volcanic eruptions and solar activity

    Science.gov (United States)

    Stothers, Richard B.

    1989-01-01

    The historical record of large volcanic eruptions from 1500 to 1980 is subjected to detailed time series analysis. In two weak but probably statistically significant periodicities of about 11 and 80 yr, the frequency of volcanic eruptions increases (decreases) slightly around the times of solar minimum (maximum). Time series analysis of the volcanogenic acidities in a deep ice core from Greenland reveals several very long periods ranging from about 80 to about 350 yr which are similar to the very slow solar cycles previously detected in auroral and C-14 records. Solar flares may cause changes in atmospheric circulation patterns that abruptly alter the earth's spin. The resulting jolt probably triggers small earthquakes which affect volcanism.

  13. Geochemical study for volcanic surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Panichi, C.; La Ruffa, G. [Consiglio Nazionale delle Ricerche, International Institute for Geothermal Research Ghezzano, PI (Italy)

    2000-07-01

    For years, geologists have been striving to reconstruct volcanic eruptions from the analysis of pyroclastic deposits and lava flows on the surface of the earth and in the oceans. This effort has produced valuable information on volcanic petrology and magma generation, separation, mixing, crystallisation, and interaction with water in phreatomagmatic and submarine eruptions. The volcanological process are tied to the dynamics of the earth's crust and lithosphere. The mantle, subducted oceanic crust, and continental crust contain different rock types and are sources of different magmas. Magmas consist primarily of completely or partially molten silicates containing volatile materials either dissolved in the melt or as bubbles of gas. The silicate and volatile portions affect the physical properties of magma and, therefore, the nature of a volcanic eruption.

  14. Models of volcanic eruption hazards

    Energy Technology Data Exchange (ETDEWEB)

    Wohletz, K.H.

    1992-01-01

    Volcanic eruptions pose an ever present but poorly constrained hazard to life and property for geothermal installations in volcanic areas. Because eruptions occur sporadically and may limit field access, quantitative and systematic field studies of eruptions are difficult to complete. Circumventing this difficulty, laboratory models and numerical simulations are pivotal in building our understanding of eruptions. For example, the results of fuel-coolant interaction experiments show that magma-water interaction controls many eruption styles. Applying these results, increasing numbers of field studies now document and interpret the role of external water eruptions. Similarly, numerical simulations solve the fundamental physics of high-speed fluid flow and give quantitative predictions that elucidate the complexities of pyroclastic flows and surges. A primary goal of these models is to guide geologists in searching for critical field relationships and making their interpretations. Coupled with field work, modeling is beginning to allow more quantitative and predictive volcanic hazard assessments.

  15. Passive houses in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Halse, Andreas

    2008-12-15

    The paper analyzes the introduction of passive houses in the Norwegian house market. Passive houses are houses with extremely low levels of energy consumption for heating, and have not yet been built in Norway, but have started to enter the market in Germany and some other countries. The construction sector is analyzed as a sectoral innovation system. The different elements of the innovation system are studied. This includes government agencies, producers, consumers, finance and education. The analysis shows that passive and low-energy houses are on the verge of market breakthrough. This can partly be explained by economic calculations, and partly by processes of learning and change in the institutional set-up of the sector. The construction sector is a sector characterized by low innovative intensity and little interaction between different agents. Those working to promote passive houses have to some extent managed to cope with these challenges. This has happened by breaking away from the traditional focus of Norwegian energy efficiency policies on technology and the economically rational agents, by instead focusing on knowledge and institutional change at the level of the producers. (Author)

  16. Passivity and complementarity

    NARCIS (Netherlands)

    Camlibel, M. K.; Iannelli, L.; Vasca, F.

    2014-01-01

    This paper studies the interaction between the notions of passivity of systems theory and complementarity of mathematical programming in the context of complementarity systems. These systems consist of a dynamical system (given in the form of state space representation) and complementarity relations

  17. Hood River Passive House

    Energy Technology Data Exchange (ETDEWEB)

    Hales, D.

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  18. Hood River Passive House

    Energy Technology Data Exchange (ETDEWEB)

    Hales, David [BA-PIRC, Spokane, WA (United States)

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  19. Passive hand prostheses.

    Science.gov (United States)

    Soltanian, Hooman; de Bese, Genevieve; Beasley, Robert W

    2003-02-01

    For many mangled hands, appropriately designed passive prostheses now available, alone or in conjunction with surgical reconstruction, can offer the best available improvement, provided they are of high quality and backed by prompt and reliable after-delivery services. Invariably, there is improvement in physical capability along with restoration of good social presentation.

  20. Hood River Passive House

    Energy Technology Data Exchange (ETDEWEB)

    Hales, David [BA-PIRC, Spokane, WA (United States)

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  1. Mapping the topography and cone morphology of the Dalinor volcanic swarm in Inner Mongolia with remote sensing and DEM data

    Science.gov (United States)

    Gong, Liwen; Li, Ni; Fan, Qicheng; Zhao, Yongwei; Zhang, Liuyi; Zhang, Chuanjie

    2016-09-01

    The Dalinor volcanic swarm, located south of Xilinhot, Inner Mongolia of China, was a result of multistage eruptions that occurred since the Neogene period. This swarm is mainly composed of volcanic cones and lava tablelands. The objective of this study is to map the topography and morphology of this volcanic swarm. It is based on a variety of data collected from various sources, such as the digital elevation model (DEM), Landsat images, and a 1:50,000 topographic map, in addition to various software platforms, including ArcGIS, Envi4.8, Global Mapper, and Google Earth for data processing and interpretation. The results show that the overall topography of the volcanic swarm is a platform with a central swell having great undulation, sizable gradient variations, a rough surface, and small terrain relief. According to the undulating characteristics of the line profile, the volcanic swarm can be divided into four stairs with heights of 1,280 m, 1,360 m, 1,440 m, and 1,500 m. The analysis of the swath profile characterizes the two clusters of volcanoes with different height ranges and evolution. The lava tablelands and volcanic cones are distributed in nearly EW-trending belts, where tableland coverage was delineated with superposed layers of gradients and degrees of relief. According to the morphology, the volcanic cones were classified into four types: conical, composite, dome, and shield. The formation causes and classification basis for each type of volcanic cone were analyzed and their parameters were extracted. The H/D ratios of all types of volcanic cones were then statistically determined and projected to create a map of volcanic density distribution. Based on the relationship between distribution and time sequence of the formation of different volcanic cones, it can be inferred that the volcanic eruptions migrated from the margins to the center of the lava plateau. The central area was formed through superposition of multi-stage eruptive materials. In addition

  2. Recurrence models of volcanic events: Applications to volcanic risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.M. [Los Alamos National Lab., Las Vegas, NV (United States); Picard, R.; Valentine, G. [Los Alamos National Lab., NM (United States); Perry, F.V. [New Mexico Univ., Albuquerque, NM (United States)

    1992-03-01

    An assessment of the risk of future volcanism has been conducted for isolation of high-level radioactive waste at the potential Yucca Mountain site in southern Nevada. Risk used in this context refers to a combined assessment of the probability and consequences of future volcanic activity. Past studies established bounds on the probability of magmatic disruption of a repository. These bounds were revised as additional data were gathered from site characterization studies. The probability of direct intersection of a potential repository located in an eight km{sup 2} area of Yucca Mountain by ascending basalt magma was bounded by the range of 10{sup {minus}8} to 10{sup {minus}10} yr{sup {minus}1 2}. The consequences of magmatic disruption of a repository were estimated in previous studies to be limited. The exact releases from such an event are dependent on the strike of an intruding basalt dike relative to the repository geometry, the timing of the basaltic event relative to the age of the radioactive waste and the mechanisms of release and dispersal of the waste radionuclides in the accessible environment. The combined low probability of repository disruption and the limited releases associated with this event established the basis for the judgement that the risk of future volcanism was relatively low. It was reasoned that that risk of future volcanism was not likely to result in disqualification of the potential Yucca Mountain site.

  3. Controls on volcanism at intraplate basaltic volcanic fields

    Science.gov (United States)

    van den Hove, Jackson C.; Van Otterloo, Jozua; Betts, Peter G.; Ailleres, Laurent; Cas, Ray A. F.

    2017-02-01

    A broad range of controlling mechanisms is described for intraplate basaltic volcanic fields (IBVFs) in the literature. These correspond with those relating to shallow tectonic processes and to deep mantle plumes. Accurate measurement of the physical parameters of intraplate volcanism is fundamental to gain an understanding of the controlling factors that influence the scale and location of a specific IBVF. Detailed volume and geochronology data are required for this; however, these are not available for many IBVFs. In this study the primary controls on magma genesis and transportation are established for the Pliocene-Recent Newer Volcanics Province (NVP) of south-eastern Australia as a case-study for one of such IBVF. The NVP is a large and spatio-temporally complex IBVF that has been described as either being related to a deep mantle plume, or upper mantle and crustal processes. We use innovative high resolution aeromagnetic and 3D modelling analysis, constrained by well-log data, to calculate its dimensions, volume and long-term eruptive flux. Our estimates suggest volcanic deposits cover an area of 23,100 ± 530 km2 and have a preserved dense rock equivalent of erupted volcanics of least 680 km3, and may have been as large as 900 km3. The long-term mean eruptive flux of the NVP is estimated between 0.15 and 0.20 km3/ka, which is relatively high compared with other IBVFs. Our comparison with other IBVFs shows eruptive fluxes vary up to two orders of magnitude within individual fields. Most examples where a range of eruptive flux is available for an IBVF show a correlation between eruptive flux and the rate of local tectonic processes, suggesting tectonic control. Limited age dating of the NVP has been used to suggest there were pulses in its eruptive flux, which are not resolvable using current data. These changes in eruptive flux are not directly relatable to the rate of any interpreted tectonic driver such as edge-driven convection. However, the NVP and other

  4. Workers' marginal costs of commuting

    DEFF Research Database (Denmark)

    van Ommeren, Jos; Fosgerau, Mogens

    2009-01-01

    This paper applies a dynamic search model to estimate workers' marginal costs of commuting, including monetary and time costs. Using data on workers' job search activity as well as moving behaviour, for the Netherlands, we provide evidence that, on average, workers' marginal costs of one hour...

  5. A New Passive in Kaqchikel

    Directory of Open Access Journals (Sweden)

    George Aaron Broadwell

    2002-01-01

    Full Text Available This paper contrasts two passives in Kaqchikel, a Mayan language spoken in Guatemala. The first passive, which we label the ‘standard passive’ is already well-attested in the literature. However, the second passive, which we label the ‘ki-passive’, has not been previously described. A verb in the ki-passive shows active morphology, with ergative agreement for a third person plural subject, as would be appropriate for a verb with an impersonal ‘they’ subject. In Kaqchikel, however, we argue that this verb form has evolved into a new passive. The paper compares the properties of the standard passive and the ki-passive, and argues that while they involve the same change of grammatical relations, the two passives differ in the discourse functions they assign to the agent and patient.

  6. Volcanic ash at Santiaguito dome complex, Guatemala

    Science.gov (United States)

    Hornby, Adrian; Kendrick, Jackie; Lavallée, Yan; Cimarelli, Corrado; von Aulock, Felix; Rhodes, Emma; Kennedy, Ben; Wadsworth, Fabian

    2015-04-01

    Dome-building volcanoes often suffer episodic explosions. Examination of eruptive activity at Santiaguito dome complex (Guatemala) reveals that gas-and-ash explosions are concordant with rapid inflation/ deflation cycles of the active dome. During these explosions strain is accommodated along marginal faults, where tensional fracture mechanisms and friction dominate, complicating the model of ash generation by bubble rupture in magma. Here, we describe textural features, morphology and petrology of ash collected before, during and after a dome collapse event at Santiaguito dome complex on the 28th November 2012. We use QEM-scan (on more than 35000 grains), laser diffraction granulometry and optical and scanning microscopy to characterise the samples. The ash samples show a bimodal size distribution and a range of textures, crystal content and morphologies. The ash particles are angular to sub-angular and are relatively dense, so do not appear to comprise of pore walls. Instead the ash is generally blocky (>70%), similar to the products of shear magma failure. The ash samples show minor variation before, during and after dome collapse, specifically having a smaller grain size and a higher fraction of phenocrysts fragments before collapse. Textural analysis shows vestiges of chemically heterogeneous glass (melt) filaments originating from the crystals and crosscut by fragmentation during volcanic ash formation. High-velocity friction can induce melting of dome lavas, producing similar disequilibrium melting textures. This work shows the importance of deformation mechanisms in ash generation at lava domes and during Vulcanian activity.

  7. A quantitative model for volcanic hazard assessment

    OpenAIRE

    W. Marzocchi; Sandri, L.; Furlan, C

    2006-01-01

    Volcanic hazard assessment is a basic ingredient for risk-based decision-making in land-use planning and emergency management. Volcanic hazard is defined as the probability of any particular area being affected by a destructive volcanic event within a given period of time (Fournier d’Albe 1979). The probabilistic nature of such an important issue derives from the fact that volcanic activity is a complex process, characterized by several and usually unknown degrees o...

  8. Robust Stabilization of a Class of passive Nonlinear Systems

    Science.gov (United States)

    Joshi, Suresh M.; Kelkar, Atul G.

    1996-01-01

    The problem of feedback stabilization is considered for a class of nonlinear, finite dimensional, time invariant passive systems that are affine in control. Using extensions of the Kalman-Yakubovch lemma, it is shown that such systems can be stabilized by a class of finite demensional, linear, time-invariant controllers which are strictly positive real in the weak or marginal sense. The stability holds regardless of model uncertainties, and is therefore, robust.

  9. Characterization of fine volcanic ash from explosive eruption from Sakurajima volcano, South Japan

    Science.gov (United States)

    Nanayama, F.; Furukawa, R.; Ishizuka, Y.; Yamamoto, T.; Geshi, N.; Oishi, M.

    2013-12-01

    distributions of volcanic ash from Sakurajima volcano have basically characteristics of unimodal and gaussian. Mode of distributions are 150 - 200 micron at 5 km and 70-80 micron at 20 km respectively from the Showa crater. Mode and deviation of the grain size distribution are function of distance from the source. Fine volcanic ash less than 1 micron in diameter is few and exists in every samples. Component of volcanic ash samples are dark-colored dense glass shard (ca. 50%), light-colored dense glass shard (10%), variously colored and vesiculated glass shard (10%), free crystal (20%), lithic fragment (10%), and altered fragment (less than 5%) which are mostly having similar ratio in every location suggesting single source process of the eruption. We also found fine volcanic ash samples less than 10 micron are frequently aggregated. The present study includes the result of "Research and Development of Margin Assessment Methodology of Decay Heat Removal Function against External Hazards" entrusted to Japan Atomic Energy Agency by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).

  10. Volcanic forcing in decadal forecasts

    Science.gov (United States)

    Ménégoz, Martin; Doblas-Reyes, Francisco; Guemas, Virginie; Asif, Muhammad; Prodhomme, chloe

    2016-04-01

    Volcanic eruptions can significantly impact the climate system, by injecting large amounts of particles into the stratosphere. By reflecting backward the solar radiation, these particles cool the troposphere, and by absorbing the longwave radiation, they warm the stratosphere. As a consequence of this radiative forcing, the global mean surface temperature can decrease by several tenths of degrees. However, large eruptions are also associated to a complex dynamical response of the climate system that is particularly tricky do understand regarding the low number of available observations. Observations seem to show an increase of the positive phases of the Northern Atlantic Oscillation (NAO) the two winters following large eruptions, associated to positive temperature anomalies over the Eurasian continent. The summers following large eruptions are generally particularly cold, especially over the continents of the Northern Hemisphere. Overall, it is really challenging to forecast the climate response to large eruptions, as it is both modulated by, and superimposed to the climate background conditions, largely driven themselves by internal variability at seasonal to decadal scales. This work describes the additional skill of a forecast system used for seasonal and decadal predictions when it includes observed volcanic forcing over the last decades. An idealized volcanic forcing that could be used for real-time forecasts is also evaluated. This work consists in a base for forecasts that will be performed in the context of the next large volcanic eruption.

  11. Experimental generation of volcanic lightning

    Science.gov (United States)

    Cimarelli, Corrado; Alatorre-Ibargüengoitia, Miguel; Kueppers, Ulrich; Scheu, Bettina; Dingwell, Donald B.

    2014-05-01

    Ash-rich volcanic plumes that are responsible for injecting large quantities of aerosols into the atmosphere are often associated with intense electrical activity. Direct measurement of the electric potential at the crater, where the electric activity in the volcanic plume is first observed, is severely impeded, limiting progress in its investigation. We have achieved volcanic lightning in the laboratory during rapid decompression experiments of gas-particle mixtures under controlled conditions. Upon decompression (from ~100 bar argon pressure to atmospheric pressure), loose particles are vertically accelerated and ejected through a nozzle of 2.8 cm diameter into a large tank filled with air at atmospheric conditions. Because of their impulsive character, our experiments most closely represent the conditions encountered in the gas-thrust region of the plume, when ash is first ejected from the crater. We used sieved natural ash with different grain sizes from Popocatépetl (Mexico), Eyjafjallajökull (Iceland), and Soufrière Hills (Montserrat) volcanoes, as well as micrometric glass beads to constrain the influence of material properties on lightning. We monitored the dynamics of the particle-laden jets with a high-speed camera and the pressure and electric potential at the nozzle using a pressure transducer and two copper ring antennas connected to a high-impedance data acquisition system, respectively. We find that lightning is controlled by the dynamics of the particle-laden jet and by the abundance of fine particles. Two main conditions are required to generate lightning: 1) self-electrification of the particles and 2) clustering of the particles driven by the jet fluid dynamics. The relative movement of clusters of charged particles within the plume generates the gradient in electrical potential, which is necessary for lightning. In this manner it is the gas-particle dynamics together with the evolving particle-density distribution within different regions of

  12. A Volcanic Hydrogen Habitable Zone

    Science.gov (United States)

    Ramirez, Ramses M.; Kaltenegger, Lisa

    2017-03-01

    The classical habitable zone (HZ) is the circular region around a star in which liquid water could exist on the surface of a rocky planet. The outer edge of the traditional N2–CO2–H2O HZ extends out to nearly ∼1.7 au in our solar system, beyond which condensation and scattering by CO2 outstrips its greenhouse capacity. Here, we show that volcanic outgassing of atmospheric H2 can extend the outer edge of the HZ to ∼2.4 au in our solar system. This wider volcanic-hydrogen HZ (N2–CO2–H2O–H2) can be sustained as long as volcanic H2 output offsets its escape from the top of the atmosphere. We use a single-column radiative-convective climate model to compute the HZ limits of this volcanic hydrogen HZ for hydrogen concentrations between 1% and 50%, assuming diffusion-limited atmospheric escape. At a hydrogen concentration of 50%, the effective stellar flux required to support the outer edge decreases by ∼35%–60% for M–A stars. The corresponding orbital distances increase by ∼30%–60%. The inner edge of this HZ only moves out ∼0.1%–4% relative to the classical HZ because H2 warming is reduced in dense H2O atmospheres. The atmospheric scale heights of such volcanic H2 atmospheres near the outer edge of the HZ also increase, facilitating remote detection of atmospheric signatures.

  13. The magmatic budget of Atlantic type rifted margins: is it related to inheritance?

    Science.gov (United States)

    Manatschal, Gianreto; Tugend, Julia; Picazo, Suzanne; Müntener, Othmar

    2016-04-01

    In the past, Atlantic type rifted margins were either classified as volcanic or non-volcanic. An increasing number of high quality reflection and refraction seismic surveys and drill hole data show a divergent style of margin architecture and an evolution in which the quantity and distribution of syn-rift magmatism is variable, independently of the amount of extension. Overgeneralized classifications and models assuming simple relations between magmatic and extensional systems are thus inappropriate to describe the formation of rifted margins. More recent studies show that the magmatic evolution of rifted margins is complex and cannot be characterized based on the volume of observed magma alone. On the one hand, so-called "non-volcanic" margins are not necessarily amagmatic, as shown by the results of ODP drilling along the Iberia-Newfoundland rifted margins. On the other hand, magma-rich margins, such as the Norwegian, NW Australian or the Namibia rifted margins show evidence for hyper-extension prior to breakup. These observations suggest that the magmatic budget does not only depend on extension rates but also on the composition and temperature of the decompressing mantle. Moreover, the fact that the magmatic budget may change very abruptly along strike and across the margin is difficult to reconcile with the occurrence of plumes or other deep-seated large-scale mantle phenomena only. These overall observations result in questions on how magmatic and tectonic processes are interacting during rifting and lithospheric breakup and on how far inheritance may control the magmatic budget during rifting. In our presentation we will review results from the South and North Atlantic and the Alpine Tethys domain and will discuss the structural and magmatic evolution of so-called magma-rich and magma-poor rifted margins. In particular, we will try to define when, where and how much magma forms during rifting and lithospheric breakup. The key questions that we aim to address

  14. Passive broadband acoustic thermometry

    Science.gov (United States)

    Anosov, A. A.; Belyaev, R. V.; Klin'shov, V. V.; Mansfel'd, A. D.; Subochev, P. V.

    2016-04-01

    The 1D internal (core) temperature profiles for the model object (plasticine) and the human hand are reconstructed using the passive acoustothermometric broadband probing data. Thermal acoustic radiation is detected by a broadband (0.8-3.5 MHz) acoustic radiometer. The temperature distribution is reconstructed using a priori information corresponding to the experimental conditions. The temperature distribution for the heated model object is assumed to be monotonic. For the hand, we assume that the temperature distribution satisfies the heat-conduction equation taking into account the blood flow. The average error of reconstruction determined for plasticine from the results of independent temperature measurements is 0.6 K for a measuring time of 25 s. The reconstructed value of the core temperature of the hand (36°C) generally corresponds to physiological data. The obtained results make it possible to use passive broadband acoustic probing for measuring the core temperatures in medical procedures associated with heating of human organism tissues.

  15. Active and passive euthanasia.

    Science.gov (United States)

    Rachels, J

    1975-01-09

    The traditional distinction between active and passive euthanasia requires critical analysis. The conventional doctrine is that there is such an important moral difference between the two that, although the latter is sometimes permissible, the former is always forbidden. This doctrine may be challenged for several reasons. First of all, active euthanasia is in many cases more humane than passive euthanasia, Secondly, the conventional doctrine leads to decisions concerning life and death on irrelevant grounds. Thirdly, the doctrine rests on a distinction between killing and letting die that itself has no moral importance. Fourthly, the most common arguments in favor of the doctrine are invalid. I therefore suggest that the American Medical Association policy statement that endorses this doctrine is unsound.

  16. The effect of volcanic eruptions on the hydrological cycle

    Science.gov (United States)

    Iles, Carley; Hegerl, Gabriele

    2015-04-01

    Large explosive volcanic eruptions inject sulphur dioxide into the stratosphere where it is oxidised to sulphate aerosols which reflect sunlight. This causes a reduction in global temperature and precipitation lasting a few years. We investigate the robust features of this precipitation response, comparing climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) archive to three observational datasets, including one with ocean coverage. Global precipitation decreases significantly following eruptions in CMIP5 models, with the largest decrease in wet tropical regions. This also occurs in observational land data, and ocean data in the boreal cold season. In contrast, the dry tropical ocean regions show an increase in precipitation in CMIP5 models. Monsoon regions dry following eruptions in both models and observations, whilst in response to individual eruptions, the ITCZ shifts away from the hemisphere with the greater concentration of aerosols in CMIP5. The ocean response in CMIP5 is longer lasting than that over land, but observational results are too noisy to confirm this. We detect the influence of volcanism on precipitation in the boreal cold season, although the models underestimate the size of the response, whilst in the warm season the volcanic influence is marginally detectable. We then examine whether the influence of volcanoes can be seen in streamflow records for 50 major world rivers. Significant reductions in flow are found for the Amazon, Congo, Nile, Orange, Ob, Yenisey and Kolyma amongst others. When neighbouring rivers are combined into regions, informed by climate model predictions of the precipitation response to eruptions, decreases in streamflow can be detected in northern South American, central African and high-latitude Asian rivers and increases in southern South American and SW North American rivers. An improved understanding of how the hydrological cycle responds to volcanic eruptions is valuable in

  17. Reconstructing conjugate margins of the Canada-Amerasian basin: New tectonic constraints from deep seismic data and gravity profiles

    Science.gov (United States)

    Helwig, J.; Ady, B.; Kumar, N.; Granath, J. W.; Dinkelman, M. G.; Bird, D. E.; Emmet, P. A.

    2010-12-01

    Over the past 5 years, decreasing sea ice and increasing scientific and economic interest in the Arctic have prompted new geological and geophysical studies that advance knowledge of the northern continental margins of North America. We report here on ArcticSPAN™ 40-km deep, PSDM (Pre-Stack Depth Migrated) marine seismic reflection profiles and gravity data from the Beaufort Sea of Canada and the US Chukchi Sea that constrain the position of the continent-ocean boundary and the relict spreading center of the Canada Basin, displaying significant variations in the orientation, geometry and deep crustal structure of the passive margin facing the Arctic Ocean. In the Canadian Beaufort Sea three distinct segments of the margin correspond to contrasts of pre-rift foundations: 1. the rifted, rotated Arctic Alaska Terrane west of the Mackenzie Delta (Beaufort segment); 2. the transform-faulted Laurentian crust of the Tuktoyaktuk margin (Tuk segment); and, 3. the rifted Laurentian crust of the Banks Island segment. The thick late Mesozoic-Cenozoic clastic prism of the continental margin was centered in the Mackenzie delta area by Mesozoic rifting of the Canada Basin. The northerly Paleocene-Miocene sweep of Cordilleran deformation modified the passive margin, overprinting the offshore Mackenzie Delta. The interpreted tectonic architecture of the three segments of the Beaufort passive margin demonstrates their distinct roles in opening of the Canada Basin. Two conjugate rifted margin segments (Beaufort and Banks Island) and a linking transform fault margin (Tuk) formed during the separation of the Arctic Alaska Terrane from northwestern Laurentia, in accord with a Jurassic-Aptian rotational model of Canada Basin opening. But the orientation of the Tuk transform segment indicates that a single pole of rotation cannot describe the opening of the basin. Additional seismic profiles from investigations of the Chukchi Sea margin display passive margin structures and rift to pre

  18. Estimating Marginal Returns to Education

    Science.gov (United States)

    Carneiro, Pedro; Heckman, James J.; Vytlacil, Edward

    2011-01-01

    This paper estimates marginal returns to college for individuals induced to enroll in college by different marginal policy changes. The recent instrumental variables literature seeks to estimate this parameter, but in general it does so only under strong assumptions that are tested and found wanting. We show how to utilize economic theory and local instrumental variables estimators to estimate the effect of marginal policy changes. Our empirical analysis shows that returns are higher for individuals with values of unobservables that make them more likely to attend college. We contrast our estimates with IV estimates of the return to schooling. PMID:25110355

  19. Marginal Solutions for the Superstring

    CERN Document Server

    Erler, Theodore

    2007-01-01

    We construct a class of analytic solutions of WZW-type open superstring field theory describing marginal deformations of a reference D-brane background. The deformations we consider are generated by on-shell vertex operators with vanishing operator products. The superstring solution exhibits an intriguing duality with the corresponding marginal solution of the {\\it bosonic} string. In particular, the superstring problem is ``dual'' to the problem of re-expressing the bosonic marginal solution in pure gauge form. This represents the first nonsingular analytic solution of open superstring field theory.

  20. Field-trip guides to selected volcanoes and volcanic landscapes of the western United States

    Science.gov (United States)

    ,

    2017-06-23

    The North American Cordillera is home to a greater diversity of volcanic provinces than any comparably sized region in the world. The interplay between changing plate-margin interactions, tectonic complexity, intra-crustal magma differentiation, and mantle melting have resulted in a wealth of volcanic landscapes.  Field trips in this guide book collection (published as USGS Scientific Investigations Report 2017–5022) visit many of these landscapes, including (1) active subduction-related arc volcanoes in the Cascade Range; (2) flood basalts of the Columbia Plateau; (3) bimodal volcanism of the Snake River Plain-Yellowstone volcanic system; (4) some of the world’s largest known ignimbrites from southern Utah, central Colorado, and northern Nevada; (5) extension-related volcanism in the Rio Grande Rift and Basin and Range Province; and (6) the eastern Sierra Nevada featuring Long Valley Caldera and the iconic Bishop Tuff.  Some of the field trips focus on volcanic eruptive and emplacement processes, calling attention to the fact that the western United States provides opportunities to examine a wide range of volcanological phenomena at many scales.The 2017 Scientific Assembly of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) in Portland, Oregon, was the impetus to update field guides for many of the volcanoes in the Cascades Arc, as well as publish new guides for numerous volcanic provinces and features of the North American Cordillera. This collection of guidebooks summarizes decades of advances in understanding of magmatic and tectonic processes of volcanic western North America. These field guides are intended for future generations of scientists and the general public as introductions to these fascinating areas; the hope is that the general public will be enticed toward further exploration and that scientists will pursue further field-based research.

  1. How Volcanism Controls Climate Change

    Science.gov (United States)

    Ward, P. L.

    2013-12-01

    Large explosive volcanoes eject megatons of sulfur dioxide into the lower stratosphere where it spreads around the world within months and is oxidized slowly to form a sulfuric-acid aerosol with particle sizes that grow large enough to reflect and scatter solar radiation, cooling Earth ~0.5C for up to 3 years. Explosive eruptions also deplete total column ozone ~6% causing up to 3C winter warming at mid-latitudes over continents. Global cooling predominates. Extrusive, basaltic volcanoes deplete ozone ~6% but do not eject much sulfur dioxide into the lower stratosphere, causing net global warming. Anthropogenic chlorofluorocarbons (CFCs) deplete ozone ~3% for up to a century while each volcanic eruption, even small ones, depletes ozone twice as much but for less than a decade through eruption of halogens and ensuing photochemical processes. The 2010 eruption of Eyjafjallajökull, the 2011 eruption of Grímsvötn, plus anthropogenic CFCs depleted ozone over Toronto Canada 14% in 2012, causing an unusually warm winter and drought. Total column ozone determines how much solar ultraviolet energy with wavelengths between 290 and 340 nanometers reaches Earth where it is absorbed most efficiently by the ocean. A 25% depletion of ozone increases the amount of this radiation reaching Earth by 1 W m-2 for overhead sun and 0.25 W m-2 for a solar zenith angle of 70 degrees. The tropopause is the boundary between the troposphere heated from below by a sun-warmed Earth and the stratosphere heated from above by the Sun through photodissociation primarily of oxygen and ozone. The mean annual height of the tropopause increased ~160 m between 1980 and 2004 at the same time that northern mid-latitude total column ozone was depleted by ~4%, the lower stratosphere cooled ~2C, the upper troposphere warmed ~0.1C, and mean surface temperatures in the northern hemisphere rose ~0.5C. Regional total ozone columns are observed to increase as rapidly as 20% within 5 hours with an associated 5

  2. S-wave velocity structure inferred from receiver function inversion in Tengchong volcanic area

    Institute of Scientific and Technical Information of China (English)

    贺传松; 王椿镛; 吴建平

    2004-01-01

    Tengchong volcanic area is located near the impinging and underthrust margin of India and Eurasia plates. The volcanic activity is closely related to the tectonic environment. The deep structure characteristics are inferred from the receiver function inversion with the teleseismic records in the paper. The results show that the low velocity zone is influenced by the NE-trending Dayingjiang fault. The S-wave low velocity structure occurs obviously in the southern part of the fault, but unobviously in its northern part. There are low velocity zones in the shallow position, which coincides with the seismicity. It also demonstrates that the low velocity zone is directly related to the thermal activity in the volcanic area. Therefore, we consider that the volcano may be alive again.

  3. Dimensionality influence on passive scalar transport

    Energy Technology Data Exchange (ETDEWEB)

    Iovieno, M; Ducasse, L; Tordella, D, E-mail: michele.iovieno@polito.it [Dipartimento di Ingegneria Aeronautica e Spaziale, Politecnico di Torino (Italy)

    2011-12-22

    We numerically investigate the advection of a passive scalar through an interface placed inside a decaying shearless turbulent mixing layer. We consider the system in both two and three dimensions. The dimensionality produces a different time scaling of the diffusion, which is faster in the two-dimensional case. Two intermittent fronts are generated at the margins of the mixing layer. During the decay these fronts present a sort of propagation in both the direction of the scalar flow and the opposite direction. In two dimensions, the propagation of the fronts exhibits a significant asymmetry with respect to the initial position of the interface and is deeper for the front merged in the high energy side of the mixing. In three dimensions, the two fronts remain nearly symmetrically placed. Results concerning the scalar spectra exponents are also presented.

  4. Modelling of sea floor spreading initiation and rifted continental margin formation

    Science.gov (United States)

    Tymms, V. J.; Isimm Team

    2003-04-01

    Recent observations of depth dependent (heterogeneous) stretching where upper crustal extension is much less than that of the lower crust and lithospheric mantle at both non-volcanic and volcanic margins plus the discovery of broad domains of exhumed continental mantle at non-volcanic rifted margins are not predicted by existing quantitative models of rifted margin formation which are usually based on intra-continental rift models subjected to very large stretching factors. New conceptual and quantitative models of rifted margin formation are required. Observations and continuum mechanics suggest that the dominant process responsible for rifted continental margin formation is sea-floor spreading of the young ocean ridge, rather than pre-breakup intra-continental rifting. Simple fluid flow models of ocean ridge processes using analytical iso-viscous corner-flow demonstrate that the divergent motion of the upwelling mantle beneath the ocean ridge, when viewed in the reference frame of the young continental margin, shows oceanward flow of the lower continental crust and lithospheric mantle of the young rifted margin giving rise to depth dependent stretching as observed. Single-phase fluid-models have been developed to model the initiation of sea-floor spreading and the thermal, stretching and thinning evolution of the young rifted continental margin. Finite element fluid-flow modelling incorporating the evolving temperature dependent viscosity field on the fluid flow also show depth dependent stretching of the young continental margin. Two-phase flow models of ocean ridges incorporating the transport of both solid matrix and melt fluid (Spiegelman &Reynolds 1999) predict the divergent motion of the asthenosphere and lithosphere matrix, and the focusing of basaltic melt into the narrow axial zone spreading centre at ocean ridges. We are adapting two-phase flow models for application to the initiation of sea-floor spreading and rifted continental margin formation. i

  5. Source mechanisms of volcanic tsunamis.

    Science.gov (United States)

    Paris, Raphaël

    2015-10-28

    Volcanic tsunamis are generated by a variety of mechanisms, including volcano-tectonic earthquakes, slope instabilities, pyroclastic flows, underwater explosions, shock waves and caldera collapse. In this review, we focus on the lessons that can be learnt from past events and address the influence of parameters such as volume flux of mass flows, explosion energy or duration of caldera collapse on tsunami generation. The diversity of waves in terms of amplitude, period, form, dispersion, etc. poses difficulties for integration and harmonization of sources to be used for numerical models and probabilistic tsunami hazard maps. In many cases, monitoring and warning of volcanic tsunamis remain challenging (further technical and scientific developments being necessary) and must be coupled with policies of population preparedness. © 2015 The Author(s).

  6. Anomalous diffusion of volcanic earthquakes

    CERN Document Server

    Abe, Sumiyoshi

    2015-01-01

    Volcanic seismicity at Mt. Etna is studied. It is found that the associated stochastic process exhibits a subdiffusive phenomenon. The jump probability distribution well obeys an exponential law, whereas the waiting-time distribution follows a power law in a wide range. Although these results would seem to suggest that the phenomenon could be described by temporally-fractional kinetic theory based on the viewpoint of continuous-time random walks, the exponent of the power-law waiting-time distribution actually lies outside of the range allowed in the theory. In addition, there exists the aging phenomenon in the event-time averaged mean squared displacement, in contrast to the picture of fractional Brownian motion. Comments are also made on possible relevances of random walks on fractals as well as nonlinear kinetics. Thus, problems of volcanic seismicity are highly challenging for science of complex systems.

  7. Rifted Continental Margins: The Case for Depth-Dependent Extension

    Science.gov (United States)

    Huismans, Ritske S.; Beaumont, Christopher

    2016-04-01

    Even though many basic properties of non-volcanic rifted margins are predicted by uniform extension of the lithosphere, uniform extension fails to explain other important characteristics. Particularly significant discrepancies are observed at: 1) the Iberia-Newfoundland conjugate margins (Type I), where large tracts of continental mantle lithosphere are exposed at the seafloor, and at; 2) ultra-wide central South Atlantic margins (Type II) where continental crust spans wide regions below which it appears that lower crust and mantle lithosphere were removed. Neither corresponds to uniform extension in which crust and mantle thin by the same factor. Instead, either the crust or mantle lithosphere has been preferentially removed during extension. We show that the Type I and II styles are respectively reproduced by dynamical numerical lithospheric stretching models (Models I-A/C and II-A/C) that undergo depth-dependent extension. In this notation A and C imply underplating of the rift zone during rifting by asthenosphere and lower cratonic lithosphere, respectively. We also present results for models with a weak upper crust and strong lower crust, Models III-A/C, to show that lower crust can also be removed from beneath the rift zone by horizontal advection with the mantle lithosphere. From the model results we infer that these Types I, II, and III margin styles are controlled by the strength of the mid/lower crust, which determines the amount of decoupling between upper and lower lithosphere during extension and the excision of crust or mantle. We also predict the styles of sedimentary basins that form on these margins as a test of the concepts presented

  8. Reconstruction of the East Africa and Antarctica continental margins

    Science.gov (United States)

    Nguyen, Luan C.; Hall, Stuart A.; Bird, Dale E.; Ball, Philip J.

    2016-06-01

    The Early Jurassic separation of Antarctica from Africa plays an important role in our understanding of the dispersal of Gondwana and Pangea. Previous reconstruction models contain overlaps and gaps in the restored margins that reflect difficulties in accurately delineating the continent-ocean-boundary (COB) and determining the amount and distribution of extended continental crust. This study focuses on the evolution of the African margin adjacent to the Mozambique Basin and the conjugate Antarctic margin near the Riiser-Larsen Sea. Satellite-derived gravity data have been used to trace the orientations and landward limits of fracture zones. A 3-D gravity inversion has produced a crustal thickness model that reliably quantifies the extent and amount of stretched crust. Crustal thicknesses together with fracture zone terminations reveal COBs that are significantly closer to the African and Antarctic coasts than previously recognized. Correlation of fracture zone azimuths and identified COBs suggests Antarctica began drifting away from Africa at approximately 171 Ma in a roughly SSE direction. An areal-balancing method has been used to restore the crust to a uniform prerift thickness so as to perform a nonrigid reconstruction for both nonvolcanic and volcanic margins. Both margins reveal a trend of increasing extension from east to west. Our results suggest Africa underwent extension of 60-120 km, while Antarctic crust was stretched by 105-180 km. Various models tested to determine the direction of extension during rifting suggest that Antarctica moved away from Africa in a WNW-ESE direction during the period between 184 and 171 Ma prior to the onset of seafloor spreading.

  9. Holistic Approach Offers Potential to Quantify Mass Fluxes Across Continental Margins

    Science.gov (United States)

    Kuehl, Steven; Carter, Lionel; Gomez, Basil; Trustrum, Noel

    Most humans live on and utilize the continental margin, the surface of which changes continually in response to environmental perturbations such as weather, climate change, tectonism, earthquakes, volcanism, sea level, and human settlement and land use. Part of the margin is above sea level and the rest is submarine, but these land and seascape components are contiguous, and material transport from source to sink occurs as a seamless cascade. The margin responds to environmental perturbations by changing the nature and magnitude of a variety of important functions, including the distribution of soil formation and erosion; biogeochemical functioning (especially the storage and release of water, limiting nutrients and contaminants); and the form and behavior of geomorphic components from hill slopes and floodplains through the coastal zone to the continental rise. While some areas of the margin are eroding-for example, hill slopes-others accumulate sediment, such as tectonic basins and continental slope and rise. These areas record the history of surface changes. A major goal of the Earth science community is to provide quantitative explanations and predictions of the effects of environmental perturbations on surface changes and preserved sedimentary strata of continental margins. In past decades, margins have been investigated piecemeal by researchers who have tended to focus on a particular segment from one disciplinary perspective while eschewing the broader perspective of the margin as an interconnected whole. Recognizing this shortcoming, the U.S. National Science Foundation (NSF) has initiated the MARGINS Source-to-Sink (S2S) program, which, for the first time, will attempt to understand the functioning of entire margin systems through dedicated observational and community modeling studies. Following input from the Earth science community, the Waipaoa Sedimentary System (WSS) of the North Island, New Zealand, was chosen as one of the focus sites for possible

  10. Volcanic mercury in Pinus canariensis

    Science.gov (United States)

    Rodríguez Martín, José Antonio; Nanos, Nikos; Miranda, José Carlos; Carbonell, Gregoria; Gil, Luis

    2013-08-01

    Mercury (Hg) is a toxic element that is emitted to the atmosphere by both human activities and natural processes. Volcanic emissions are considered a natural source of mercury in the environment. In some cases, tree ring records taken close to volcanoes and their relation to volcanic activity over time are contradictory. In 1949, the Hoyo Negro volcano (La Palma-Canary Islands) produced significant pyroclastic flows that damaged the nearby stand of Pinus canariensis. Recently, 60 years after the eruption, we assessed mercury concentrations in the stem of a pine which survived volcano formation, located at a distance of 50 m from the crater. We show that Hg content in a wound caused by pyroclastic impacts (22.3 μg kg-1) is an order of magnitude higher than the Hg concentrations measured in the xylem before and after the eruption (2.3 μg kg-1). Thus, mercury emissions originating from the eruption remained only as a mark—in pyroclastic wounds—and can be considered a sporadic and very high mercury input that did not affect the overall Hg input in the xylem. In addition, mercury contents recorded in the phloem (9.5 μg kg-1) and bark (6.0 μg kg-1) suggest that mercury shifts towards non-living tissues of the pine, an aspect that can be related to detoxification in volcanism-adapted species.

  11. Formation of Australian continental margin highlands driven by plate-mantle interaction

    Science.gov (United States)

    Müller, R. Dietmar; Flament, Nicolas; Matthews, Kara J.; Williams, Simon E.; Gurnis, Michael

    2016-05-01

    Passive margin highlands occur on most continents on Earth and play a critical role in the cycle of weathering, erosion, and atmospheric circulation. Yet, in contrast to the well-developed understanding of collisional mountain belts, such as the Alps and Himalayas, the origin of less elevated (1-2 km) passive margin highlands is still unknown. The eastern Australian highlands are a prime example of these plateaus, but compared to others they have a well-documented episodic uplift history spanning 120 million years. We use a series of mantle convection models to show that the time-dependent interaction of plate motion with mantle downwellings and upwellings accounts for the broad pattern of margin uplift phases. Initial dynamic uplift of 400-600 m from 120-80 Ma was driven by the eastward motion of eastern Australia's margin away from the sinking eastern Gondwana slab, followed by tectonic quiescence to about 60 Ma in the south (Snowy Mountains). Renewed uplift of ∼700 m in the Snowy Mountains is propelled by the gradual motion of the margin over the edge of the large Pacific mantle upwelling. In contrast the northernmost portion of the highlands records continuous uplift from 120 Ma to present-day totalling about 800 m. The northern highlands experienced a continuous history of dynamic uplift, first due to the end of subduction to the east of Australia, then due to moving over a large passive mantle upwelling. In contrast, the southern highlands started interacting with the edge of the large Pacific mantle upwelling ∼ 40- 50 million years later, resulting in a two-phase uplift history. Our results are in agreement with published uplift models derived from river profiles and the Cretaceous sediment influx into the Ceduna sub-basin offshore southeast Australia, reflecting the fundamental link between dynamic uplift, fluvial erosion and depositional pulses in basins distal to passive margin highlands.

  12. Paleoproterozoic andesitic volcanism in the southern Amazonian craton (northern Brazil); lithofacies analysis and geodynamic setting

    Science.gov (United States)

    Roverato, Matteo; Juliani, Caetano; Capra, Lucia; Dias Fernandes, Carlos Marcelo

    2016-04-01

    Precambrian volcanism played an important role in geological evolution and formation of new crust. Most of the literature on Precambrian volcanic rocks describes settings belonging to subaqueous volcanic systems. This is likely because subaerial volcanic rocks in Proterozoic and Archean volcano-sedimentary succession are poorly preserved due to erosive/weathering processes. The late Paleoproterozoic Sobreiro Formation (SF) here described, seems to be one of the rare exceptions to the rule and deserves particular attention. SF represents the subaerial expression of an andesitic magmatism that, linked with the upper felsic Santa Rosa F., composes the Uatumã Group. Uatumã Group is an extensive magmatic event located in the Xingú region, southwestern of Pará state, Amazonian Craton (northern Brazil). The Sobreiro volcanism is thought to be related to an ocean-continent convergent margin. It is characterized by ~1880 Ma well-preserved calc-alkaline basaltic/andesitic to andesitic lava flows, pyroclastic rocks and associated reworked successions. The superb preservation of its rock-textures allowed us to describe in detail a large variety of volcaniclastic deposits. We divided them into primary and secondary, depending if they result from a direct volcanic activity (pyroclastic) or reworked processes. Our study reinforces the importance of ancient volcanic arcs and rocks contribution to the terrestrial volcaniclastic sedimentation and evolution of plate tectonics. The volcanic activity that produced pyroclastic rocks influenced the amount of detritus shed into sedimentary basins and played a major role in the control of sedimentary dispersal patterns. This study aims to provide, for the first time, an analysis of the physical volcanic processes for the subaerial SF, based in field observation, lithofacies analysis, thin section petrography and less geochemical data. The modern volcanological approach here used can serve as a model about the evolution of Precambrian

  13. Passive THz metamaterials

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Malureanu, Radu; Zalkovskij, Maksim

    2012-01-01

    In this work we present our activities in the fabrication and characterization of passive THz metamaterials. We use two fabrication processes to develop metamaterials either as free-standing metallic membranes or patterned metallic multi-layers on the substrates to achieve different functionalities....... Our interest lies in metamaterials for a broad spectrum of linear properties in operations with THz waves, such as linear and circular polarizers, absorbers and devices with enhanced transmittivity, single layer dichroic and chiral systems. All the three steps (modelling, fabrication...

  14. Passive THz metamaterials

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Malureanu, Radu; Zalkovskij, Maksim

    2012-01-01

    In this work we present our activities in the fabrication and characterization of passive THz metamaterials. We use two fabrication processes to develop metamaterials either as free-standing metallic membranes or patterned metallic multi-layers on the substrates to achieve different functionaliti....... Our interest lies in metamaterials for a broad spectrum of linear properties in operations with THz waves, such as linear and circular polarizers, absorbers and devices with enhanced transmittivity, single layer dichroic and chiral systems. All the three steps (modelling, fabrication...

  15. Passive Power Filters

    CERN Document Server

    Künzi, R

    2015-01-01

    Power converters require passive low-pass filters which are capable of reducing voltage ripples effectively. In contrast to signal filters, the components of power filters must carry large currents or withstand large voltages, respectively. In this paper, three different suitable filter struc tures for d.c./d.c. power converters with inductive load are introduced. The formulas needed to calculate the filter components are derived step by step and practical examples are given. The behaviour of the three discussed filters is compared by means of the examples. P ractical aspects for the realization of power filters are also discussed.

  16. Optimizing passive quantum clocks

    Science.gov (United States)

    Mullan, Michael; Knill, Emanuel

    2014-10-01

    We describe protocols for passive atomic clocks based on quantum interrogation of the atoms. Unlike previous techniques, our protocols are adaptive and take advantage of prior information about the clock's state. To reduce deviations from an ideal clock, each interrogation is optimized by means of a semidefinite program for atomic state preparation and measurement whose objective function depends on the prior information. Our knowledge of the clock's state is maintained according to a Bayesian model that accounts for noise and measurement results. We implement a full simulation of a running clock with power-law noise models and find significant improvements by applying our techniques.

  17. Paleogene volcanism in Central Afghanistan: Possible far-field effect of the India-Eurasia collision

    Science.gov (United States)

    Motuza, Gediminas; Šliaupa, Saulius

    2017-10-01

    A volcanic-sedimentary succession of Paleogene age is exposed in isolated patches at the southern margin of the Tajik block in the Ghor province of Central Afghanistan. The volcanic rocks range from basalts and andesites to dacites, including adakites. They are intercalated with sedimentary rocks deposited in shallow marine environments, dated biostratigraphically as Paleocene-Eocene. This age corresponds to the age of the Asyābēd andesites located in the western Ghor province estimated by the 40Ar/39Ar method as 54 Ma. The magmatism post-dates the Cimmerian collision between the Tajik block (including the Band-e-Bayan block) and the Farah Rod block located to the south. While the investigated volcanic rocks apparently bear geochemical signatures typical to an active continental margin environment, it is presumed that the magmatism was related to rifting processes most likely initiated by far-field tectonics caused by the terminal collision of the Indian plate with Eurasia (Najman et al., 2017). This event led to the dextral movement of the Farah Rod block, particularly along Hari Rod (Herat) fault system, resulting in the development of a transtensional regime in the proximal southern margin of the Tajik block and giving rise to a rift basin where marine sediments were interbedded with pillow lavas intruded by sheeted dyke series.

  18. Submarine volcanoes along the Aegean volcanic arc

    Science.gov (United States)

    Nomikou, Paraskevi; Papanikolaou, Dimitrios; Alexandri, Matina; Sakellariou, Dimitris; Rousakis, Grigoris

    2013-06-01

    The Aegean volcanic arc has been investigated along its offshore areas and several submarine volcanic outcrops have been discovered in the last 25 years of research. The basic data including swath bathymetric maps, air-gun profiles, underwater photos and samples analysis have been presented along the four main volcanic groups of the arc. The description concerns: (i) Paphsanias submarine volcano in the Methana group, (ii) three volcanic domes to the east of Antimilos Volcano and hydrothermal activity in southeast Milos in the Milos group, (iii) three volcanic domes east of Christiana and a chain of about twenty volcanic domes and craters in the Kolumbo zone northeast of Santorini in the Santorini group and (iv) several volcanic domes and a volcanic caldera together with very deep slopes of several volcanic islands in the Nisyros group. The tectonic structure of the volcanic centers is described and related to the geometry of the arc and the neotectonic graben structures that usually host them. The NE-SW direction is dominant in the Santorini and Nisyros volcanic groups, located at the eastern part of the arc, where strike-slip is also present, whereas NW-SE direction dominates in Milos and Methana at the western part, where co-existence of E-W disrupting normal faults is observed. The volcanic relief reaches 1100-1200 m in most cases. This is produced from the outcrops of the volcanic centers emerging usually at 400-600 m depth and ending either below sea level or at high altitudes of 600-700 m on the islands. Hydrothermal activity at relatively high temperatures observed in Kolumbo is remarkable whereas low temperature phenomena have been detected in the Santorini caldera around Kameni islands and in the area southeast of Milos. In Methana and Nisyros, hydrothermal activity seems to be limited in the coastal areas without other offshore manifestations.

  19. Monitoring Persistent Volcanic Emissions from Sulphur Springs, Saint Lucia: A Community Approach to Disaster Risk Reduction

    Science.gov (United States)

    Joseph, E. P.; Beckles, D. M.; Cox, L.; Jackson, V. B.; Alexander, D.

    2014-12-01

    Volcanic and geothermal emissions are known natural sources of volatiles to the atmosphere. Volcanogenic air pollutants known to cause the most serious impact are carbon dioxide (CO2), sulphur dioxide (SO2), hydrogen chloride (HCl) and hydrogen fluoride (HF). Some studies into the potential for volcanic emissions to produce chronic diseases in humans indicate that areas of major concern include respiratory problems, particularly silicosis (Allen et al. 2000; Baxter et al. 1999; Buist et al. 1986), psychological stress (Shore et al. 1986), and chemical impacts of gas or ash (Giammanco et al. 1998). Sulphur Springs Park in Saint Lucia has a very high recreational value with >200,000 visitors annually, while the nearby town of Soufrière has >8,400 residents. Residents and visitors have raised concerns about the volcanic emissions and its health effects. As part of the volcanic surveillance programme undertaken by the UWI, Seismic Research Centre (SRC) in Saint Lucia, a new monitoring network has been established for quantifying the ambient SO2 in air, to which staff and visitors at the volcanic park are exposed to. The implementation and continued operation of this network has involved the training of local personnel in the active field sampling and analytical techniques required for the assessment of ambient SO2 concentrations, using a low cost monitor as well as commercial passive samplers. This approach recognizes that environmental hazards are a usual part of life and productive livelihoods, and to minimize post-disaster response and recovery it is beneficial to promote preparedness and mitigation, which is best achieved at the local level with community involvement. It is also intended that the volcanic emissions monitoring network could be used as a method to establish and maintain community-based initiatives that would also be helpful when volcanic threat manifests.

  20. [Sinaloa: the geography of marginalization].

    Science.gov (United States)

    Aguayo Hernandez, J R

    1993-01-01

    Sinaloa's State Population Program for 1993-98 contains the objective of promoting integration of demographic criteria into the planning process. The action program calls for establishing indicators of economic and social inequality so that conditions of poverty and margination can be identified. To further these goals, the State Population Council used data from the National Population Council project on regional inequality and municipal margination in Mexico to analyze margination at the state level. Nine indicators of educational status, housing conditions, spatial distribution, and income provide information that allows the definition of municipios and regions that should receive priority in economic and social development programs. The index of municipal margination (IMM) is a statistical summary of the nine indicators, which are based on information in the 1990 census. As of March 1990, 9.9% of Sinaloa's population over age 15 was illiterate and 37.4% had incomplete primary education. 91.0% had electricity, but 18.7% lacked indoor toilet facilities and 19.4% had no piped water. 23.7% of houses had dirt floors. 60% of households were crowded, defined as having more than two persons per bedroom. 43.5% of the state population lived in localities with fewer than 5000 inhabitants, where service delivery is difficult and costly. 55.6% of the economically active population was judged to earn less than the amount needed to satisfy essential needs. All except one municipio bordering the Pacific ocean had low or very low indicators of margination, while all those in the sierra had a medium or high degree of margination. Sinaloa's statewide IMM was eighteenth among Mexico's 32 federal entities, with Chiapas showing the highest degree of margination and the Federal District the lowest.

  1. Numerical modeling of volcanic arc development

    Science.gov (United States)

    Gerya, T.; Gorczyk, W.; Nikolaeva, K.

    2007-05-01

    We have created a new coupled geochemical-petrological-thermomechanical numerical model of subduction associated with volcanic arc development. The model includes spontaneous slab bending, subducted crust dehydration, aqueous fluid transport, mantle wedge melting and melt extraction resulting in crustal growth. Two major volcanic arc settings are modeled so far: active continental margins, and intraoceanic subduction. In case of Pacific-type continental margin two fundamentally different regimes of melt productivity are observed in numerical experiments which are in line with natural observations: (1) During continuous convergence with coupled plates highest amounts of melts are formed immediately after the initiation of subduction and then decrease rapidly with time due to the steepening of the slab inclination angle precluding formation of partially molten mantle wedge plumes; (2) During subduction associated with slab delamination and trench retreat resulting in the formation of a pronounced back arc basin with a spreading center in the middle melt production increases with time due to shallowing/stabilization of slab inclination associated with upward asthenospheric mantle flow toward the extension region facilitating propagation of hydrous partially molten plumes from the slab. In case of spontaneous nucleation of retreating oceanic subduction two scenarios of tecono-magmatic evolution are distinguished: (1) decay and, ultimately, the cessation of subduction and related magmatic activity, (2) increase in subduction rate (to up to ~12 cm/yr) and stabilization of subduction and magmatic arc growth. In the first case the duration of subduction correlates positively with the intensity of melt extraction: the period of continued subduction increases from 15,4 Myrs to 47,6 Myrs with the increase of melt extraction threshold from 1% to 9%. In scenario (1) the magmatic arc crust includes large amounts of rocks formed by melting of subducted crust atop the thermally

  2. Fly ash carbon passivation

    Science.gov (United States)

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  3. Passive damping technology demonstration

    Science.gov (United States)

    Holman, Robert E.; Spencer, Susan M.; Austin, Eric M.; Johnson, Conor D.

    1995-05-01

    A Hughes Space Company study was undertaken to (1) acquire the analytical capability to design effective passive damping treatments and to predict the damped dynamic performance with reasonable accuracy; (2) demonstrate reasonable test and analysis agreement for both baseline and damped baseline hardware; and (3) achieve a 75% reduction in peak transmissibility and 50% reduction in rms random vibration response. Hughes Space Company teamed with CSA Engineering to learn how to apply passive damping technology to their products successfully in a cost-effective manner. Existing hardware was selected for the demonstration because (1) previous designs were lightly damped and had difficulty in vibration test; (2) multiple damping concepts could be investigated; (3) the finite element model, hardware, and test fixture would be available; and (4) damping devices could be easily implemented. Bracket, strut, and sandwich panel damping treatments that met the performance goals were developed by analysis. The baseline, baseline with damped bracket, and baseline with damped strut designs were built and tested. The test results were in reasonable agreement with the analytical predictions and demonstrated that the desired reduction in dynamic response could be achieved. Having successfully demonstrated this approach, it can now be used with confidence for future designs as a means for reducing weight and enhancing reliability.

  4. Widespread methane leakage from the sea floor on the northern US Atlantic margin

    Science.gov (United States)

    Skarke, Adam; Ruppel, Carolyn; Kodis, Mali'o; Brothers, Daniel S.; Lobecker, Elizabeth A.

    2014-01-01

    Methane emissions from the sea floor affect methane inputs into the atmosphere, ocean acidification and de-oxygenation, the distribution of chemosynthetic communities and energy resources. Global methane flux from seabed cold seeps has only been estimated for continental shelves, at 8 to 65 Tg CH4 yr−1, yet other parts of marine continental margins are also emitting methane. The US Atlantic margin has not been considered an area of widespread seepage, with only three methane seeps recognized seaward of the shelf break. However, massive upper-slope seepage related to gas hydrate degradation has been predicted for the southern part of this margin, even though this process has previously only been recognized in the Arctic. Here we use multibeam water-column backscatter data that cover 94,000 km2 of sea floor to identify about 570 gas plumes at water depths between 50 and 1,700 m between Cape Hatteras and Georges Bank on the northern US Atlantic passive margin. About 440 seeps originate at water depths that bracket the updip limit for methane hydrate stability. Contemporary upper-slope seepage there may be triggered by ongoing warming of intermediate waters, but authigenic carbonates observed imply that emissions have continued for more than 1,000 years at some seeps. Extrapolating the upper-slope seep density on this margin to the global passive margin system, we suggest that tens of thousands of seeps could be discoverable.

  5. Passive-solar construction handbook

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E.; Evans, D.; Gardstein, C.

    1981-02-01

    Many of the basic elements of passive solar design are reviewed. Passive solar construction is covered according to system type, each system type discussion including a general discussion of the important design and construction issues which apply to the particular system and case studies illustrating designed and built examples of the system type. The three basic types of passive solar systems discussed are direct gain, thermal storage wall, and attached sunspace. Thermal performance and construction information is presented for typical materials used in passive solar collector components, storage components, and control components. Appended are an overview of analysis methods and a technique for estimating performance. (LEW)

  6. Maximum margin Bayesian network classifiers.

    Science.gov (United States)

    Pernkopf, Franz; Wohlmayr, Michael; Tschiatschek, Sebastian

    2012-03-01

    We present a maximum margin parameter learning algorithm for Bayesian network classifiers using a conjugate gradient (CG) method for optimization. In contrast to previous approaches, we maintain the normalization constraints on the parameters of the Bayesian network during optimization, i.e., the probabilistic interpretation of the model is not lost. This enables us to handle missing features in discriminatively optimized Bayesian networks. In experiments, we compare the classification performance of maximum margin parameter learning to conditional likelihood and maximum likelihood learning approaches. Discriminative parameter learning significantly outperforms generative maximum likelihood estimation for naive Bayes and tree augmented naive Bayes structures on all considered data sets. Furthermore, maximizing the margin dominates the conditional likelihood approach in terms of classification performance in most cases. We provide results for a recently proposed maximum margin optimization approach based on convex relaxation. While the classification results are highly similar, our CG-based optimization is computationally up to orders of magnitude faster. Margin-optimized Bayesian network classifiers achieve classification performance comparable to support vector machines (SVMs) using fewer parameters. Moreover, we show that unanticipated missing feature values during classification can be easily processed by discriminatively optimized Bayesian network classifiers, a case where discriminative classifiers usually require mechanisms to complete unknown feature values in the data first.

  7. Satellite Derived Volcanic Ash Product Inter-Comparison in Support to SCOPE-Nowcasting

    Science.gov (United States)

    Siddans, Richard; Thomas, Gareth; Pavolonis, Mike; Bojinski, Stephan

    2016-04-01

    In support of aeronautical meteorological services, WMO organized a satellite-based volcanic ash retrieval algorithm inter-comparison activity, to improve the consistency of quantitative volcanic ash products from satellites, under the Sustained, Coordinated Processing of Environmental Satellite Data for Nowcasting (SCOPEe Nowcasting) initiative (http:/ jwww.wmo.int/pagesjprogjsatjscopee nowcasting_en.php). The aims of the intercomparison were as follows: 1. Select cases (Sarychev Peak 2009, Eyjafyallajökull 2010, Grimsvötn 2011, Puyehue-Cordón Caulle 2011, Kirishimayama 2011, Kelut 2014), and quantify the differences between satellite-derived volcanic ash cloud properties derived from different techniques and sensors; 2. Establish a basic validation protocol for satellite-derived volcanic ash cloud properties; 3. Document the strengths and weaknesses of different remote sensing approaches as a function of satellite sensor; 4. Standardize the units and quality flags associated with volcanic cloud geophysical parameters; 5. Provide recommendations to Volcanic Ash Advisory Centers (VAACs) and other users on how to best to utilize quantitative satellite products in operations; 6. Create a "road map" for future volcanic ash related scientific developments and inter-comparison/validation activities that can also be applied to SO2 clouds and emergent volcanic clouds. Volcanic ash satellite remote sensing experts from operational and research organizations were encouraged to participate in the inter-comparison activity, to establish the plans for the inter-comparison and to submit data sets. RAL was contracted by EUMETSAT to perform a systematic inter-comparison of all submitted datasets and results were reported at the WMO International Volcanic Ash Inter-comparison Meeting to held on 29 June - 2 July 2015 in Madison, WI, USA (http:/ /cimss.ssec.wisc.edujmeetings/vol_ash14). 26 different data sets were submitted, from a range of passive imagers and spectrometers and

  8. A Proposed Community Network For Monitoring Volcanic Emissions In Saint Lucia, Lesser Antilles

    Science.gov (United States)

    Joseph, E. P.; Beckles, D. M.; Robertson, R. E.; Latchman, J. L.; Edwards, S.

    2013-12-01

    impact of volcanic emissions on health have been almost exclusively focused on acute responses, or the effects of one-off eruptions (Horwell and Baxter, 2006). However, little attention has been paid to any long-term impacts on human health in the population centers around volcanoes as a result of exposure to passive emissions from active geothermal systems. The role of volcano tourism is also recognized as an important contributor to the economy of volcanic islands in the Lesser Antilles. However, if it is to be promoted as a sustainable sector of the tourism industry tourists, tour guides, and vendors must be made aware of the potential health hazards facing them in volcanic environments.

  9. Status of volcanic hazard studies for the Nevada Nuclear Waste Storage Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.M.; Vaniman, D.T.; Carr, W.J.

    1983-03-01

    Volcanism studies of the Nevada Test Site (NTS) region are concerned with hazards of future volcanism with respect to underground disposal of high-level radioactive waste. The hazards of silicic volcanism are judged to be negligible; hazards of basaltic volcanism are judged through research approaches combining hazard appraisal and risk assessment. The NTS region is cut obliquely by a N-NE trending belt of volcanism. This belt developed about 8 Myr ago following cessation of silicic volcanism and contemporaneous with migration of basaltic activity toward the southwest margin of the Great Basin. Two types of fields are present in the belt: (1) large-volume, long-lived basalt and local rhyolite fields with numerous eruptive centers and (2) small-volume fields formed by scattered basaltic scoria cones. Late Cenozoic basalts of the NTS region belong to the second field type. Monogenetic basalt centers of this region were formed mostly by Strombolian eruptions; Surtseyean activity has been recognized at three centers. Geochemically, the basalts of the NTS region are classified as straddle A-type basalts of the alkalic suite. Petrological studies indicate a volumetric dominance of evolved hawaiite magmas. Trace- and rare-earth-element abundances of younger basalt (<4 Myr) of the NTS region and southern Death Valley area, California, indicate an enrichment in incompatible elements, with the exception of rubidium. The conditional probability of recurring basaltic volcanism and disruption of a repository by that event is bounded by the range of 10{sup -8} to 10{sup -10} as calculated for a 1-yr period. Potential disruptive and dispersal effects of magmatic penetration of a repository are controlled primarily by the geometry of basalt feeder systems, the mechanism of waste incorporation in magma, and Strombolian eruption processes.

  10. Cretaceous volcanic-intrusive magmatism in western Guangdong and its geological significance

    Institute of Scientific and Technical Information of China (English)

    GENG; Hongyan; XU; Xisheng; S.Y.O'Reilly; ZHAO; Ming; SUN; Tao

    2006-01-01

    Systematic zircon LA-ICPMS U-Pb dating reveals that Cretaceous volcanic-intrusive activities developed in western Guangdong. Representative volcanic rocks, i.e. Maanshan and Zhougongding rhyodacites, have zircon U-Pb isotopic ages of 100±1 Ma, and the intrusive ones including the Deqing monzonitic granite body and the Xinghua granodiorite body in the Shidong complex, as well as the Tiaocun granodiorite body in the Guangping complex yield ages of 99±2 Ma, ca.100 Ma, and 104±3 Ma respectively. The biotite-granites of the Shidong complex main body (461±35 Ma) and that of the Guangping complex (444±6 Ma) are Caledonian. In spite of the big time interval between Cretaceous volcanic-intrusive magmatisms and Caledonian intrusive ones, both of them are characterized by enrichment in Rb, Th, Ce, Zr, Hf, Sm, depletion in Ba, Nb, Ta, P, Ti, Eu, and weakly REE tetrad effect. Eu negative anomalies are: Cretaceous volcanic rocks (Eu/Eu*=0.74), Cretaceous intrusive rocks (Eu/Eu*=0.35-0.58), Caledonian biotite granites (Eu/Eu*=0.31-0.34). Studies of Sr-Nd isotope data show that all these igneous rocks have high initial 87Sr/86Sr ratios (0.7105-0.7518), and low εNd(t) values (-7.23--11.39) with their Nd two-stage model ages ranging from 1.6-2.0 Ga, which suggest that they all derived from the Proterozoic crustal basement of southeast China.The occurrence of Cretaceous volcanic-intrusive magmatisms in western Guangdong is related with the important lithospheric extension event in southeast China (including Nanling region) at ca. 100 Ma.The "volcanic line" defined by the large scale Mesozoic intermediate-acidic volcanic magmatisms in southeast China may further extend to the southwest margin of Nanling region.

  11. Depositional model of Permian Luodianian volcanic island and its impact on the distribution of fusulinid assemblage in southern Qinghai, Northwest China

    Institute of Scientific and Technical Information of China (English)

    NIU ZhiJun; XU AnWu; WANG JianXiong; DUAN QiFa; ZHAO XiaoMing; YAO HuaZhou

    2008-01-01

    Pan-riftizational tectonic activity reached climax at Luodianian (Permian) in the East Tethyan Domain,Qinghai-Tibet Plateau. Because of eruptive volcanics and influence of terrigenous materials, a complex volcanic-sedimentary landform formed on the sea floor in southern Qinghai. Four sedimentary facies types were recognized based on detailed field mapping. Spatially, platform facies volcanic-limestone type was located at the center belt approximately trending NWW, surrounded by shallow water slope facies tuff/tuffite type at the two flanks and deep water slope facies breccia/calcirudite at the most outside. The depression facies sandstone-mudstone type, which comprised mainly mudstone, deposited between volcanic islands (platform facies volcanic-limestone type). Based on the field mapping and stratigraphic section data, seven rift-related sedimentary facies were recognized and a depositional model for volcanic island was proposed. It is revealed that some volcanic island chain formed quickly and intermittently in the Qamdo Block during violent eruption, and small carbonate reef, shoal,platform occurred above or on edge of volcanic island, and some slope sedimentary facies surrounded volcano island chain during dormant period of volcanic activities. Three types of fusulinid assemblages were distinguished in the carbonate rocks, which deposited in varied positions of a palaeo-volcanic island: (1) Misellina- Schwagerina assemblage occurred above or on edge of volcanic island, (2) Parafusulina assemblage was located at restricted depression facies among volcanic islands or carbonate platform, and (3) the reworked Pseudofusulina-Schwagerina assemblage occurred at slope facies near margin of volcanic island, which originally deposited in the shallow-water carbonate platform, then collapsed along the volcanic island margin with fusulinid-bearing grain-supported carbonate conglomerate or calcirudite, and finally re-deposited on the deeper slope. The sedimentary sequence

  12. Depositional model of Permian Luodianian volcanic island and its impact on the distribution of fusulinid assemblage in southern Qinghai,Northwest China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Pan-riftizational tectonic activity reached climax at Luodianian (Permian) in the East Tethyan Domain, Qinghai-Tibet Plateau. Because of eruptive volcanics and influence of terrigenous materials, a complex volcanic-sedimentary landform formed on the sea floor in southern Qinghai. Four sedimentary facies types were recognized based on detailed field mapping. Spatially, platform facies volcanic-limestone type was located at the center belt approximately trending NWW, surrounded by shallow water slope facies tuff/tuffite type at the two flanks and deep water slope facies breccia/calcirudite at the most outside. The depression facies sandstone-mudstone type, which comprised mainly mudstone, de-posited between volcanic islands (platform facies volcanic-limestone type). Based on the field map-ping and stratigraphic section data, seven rift-related sedimentary facies were recognized and a depo-sitional model for volcanic island was proposed. It is revealed that some volcanic island chain formed quickly and intermittently in the Qamdo Block during violent eruption, and small carbonate reef, shoal, platform occurred above or on edge of volcanic island, and some slope sedimentary facies surrounded volcano island chain during dormant period of volcanic activities. Three types of fusulinid assemblages were distinguished in the carbonate rocks, which deposited in varied positions of a palaeo-volcanic island: (1) Misellina-Schwagerina assemblage occurred above or on edge of volcanic island, (2) Para-fusulina assemblage was located at restricted depression facies among volcanic islands or carbonate platform, and (3) the reworked Pseudofusulina-Schwagerina assemblage occurred at slope facies near margin of volcanic island, which originally deposited in the shallow-water carbonate platform, then collapsed along the volcanic island margin with fusulinid-bearing grain-supported carbonate con-glomerate or calcirudite, and finally re-deposited on the deeper slope. The sedimentary

  13. Deep structure of the Argentine margin inferred from 3D gravity and temperature modelling, Colorado Basin

    Science.gov (United States)

    Autin, J.; Scheck-Wenderoth, M.; Götze, H.-J.; Reichert, C.; Marchal, D.

    2016-04-01

    Following previous work on the Colorado Basin using a 3D crustal structural model, we now investigate the presence of lower crustal bodies at the base of the crust using 3D lithospheric gravity modelling and calculations of the conductive thermal field. Our first study highlighted two fault directions and depocentres associated with thinned crust (NW-SE in the West and NE-SW at the distal margin). Fault relative chronology argues for two periods of extension: (1) NW-SE faulting and thinning in the western Colorado Basin and (2) NE-SW faulting and thinning related to the continental breakup and formation of the NE-SW-striking volcanic margins of the Atlantic Ocean. In this study, the geometry of modelled high-density Lower Crustal Bodies (LCBs) enables the reproduction of the gravimetric field as well as of the temperature measured in wells down to 4500 m. The modelled LCBs correlate with geological observations: (1) NW-SE LCBs below the deepest depocentres in the West, (2) NE-SW LCBs below the distal margin faults and the seaward dipping reflectors. Thus the proposed poly-phased evolution of the margin could as well correspond to two emplacement phases of the LCBs. The calculated conductive thermal field fits the measured temperatures best if the thermal properties (thermal conductivity and radiogenic heat production) assigned to the LCBs correspond to either high-grade metamorphic rocks or to mafic magmatic intrusions. To explain the possible lithology of the LCBs, we propose that the two successive phases of extension are accompanied by magma supply, emplaced (1) in the thinnest crust below the older NW-SE depocentres, then (2) along the NE-SW continentward boundary of the distal margin and below the volcanic seaward dipping reflectors. The South African conjugate margin records only the second NE-SW event and we discuss hypotheses which could explain these differences between the conjugate margins.

  14. Volcanic gas impacts on vegetation at Turrialba Volcano, Costa Rica

    Science.gov (United States)

    Teasdale, R.; Jenkins, M.; Pushnik, J.; Houpis, J. L.; Brown, D. L.

    2010-12-01

    Turrialba volcano is an active composite stratovolcano that is located approximately 40 km east of San Jose, Costa Rica. Seismic activity and degassing have increased since 2005, and gas compositions reflect further increased activity since 2007 peaking in January 2010 with a phreatic eruption. Gas fumes dispersed by trade winds toward the west, northwest, and southwest flanks of Turrialba volcano have caused significant vegetation kill zones, in areas important to local agriculture, including dairy pastures and potato fields, wildlife and human populations. In addition to extensive vegetative degradation is the potential for soil and water contamination and soil erosion. Summit fumarole temperatures have been measured over 200 degrees C and gas emissions are dominated by SO2; gas and vapor plumes reach up to 2 km (fumaroles and gases are measured regularly by OVSICORI-UNA). A recent network of passive air sampling, monitoring of water temperatures of hydrothermal systems, and soil pH measurements coupled with measurement of the physiological status of surrounding plants using gas exchange and fluorescence measurements to: (1) identify physiological correlations between leaf-level gas exchange and chlorophyll fluorescence measurements of plants under long term stress induced by the volcanic gas emissions, and (2) use measurements in tandem with remotely sensed reflectance-derived fluorescence ratio indices to track natural photo inhibition caused by volcanic gas emissions, for use in monitoring plant stress and photosynthetic function. Results may prove helpful in developing potential land management strategies to maintain the biological health of the area.

  15. Catastrophic volcanic collapse: relation to hydrothermal processes.

    Science.gov (United States)

    López, D L; Williams, S N

    1993-06-18

    Catastrophic volcanic collapse, without precursory magmatic activity, is characteristic of many volcanic disasters. The extent and locations of hydrothermal discharges at Nevado del Ruiz volcano, Colombia, suggest that at many volcanoes collapse may result from the interactions between hydrothermal fluids and the volcanic edifice. Rock dissolution and hydrothermal mineral alteration, combined with physical triggers such as earth-quakes, can produce volcanic collapse. Hot spring water compositions, residence times, and flow paths through faults were used to model potential collapse at Ruiz. Caldera dimensions, deposits, and alteration mineral volumes are consistent with parameters observed at other volcanoes.

  16. Nephelometric Dropsonde for Volcanic Ash Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced dropsondes that could effectively be guided through atmospheric regions of interest such as volcanic plumes could enable unprecedented observations of...

  17. Thermal vesiculation during volcanic eruptions

    Science.gov (United States)

    Lavallée, Yan; Dingwell, Donald B.; Johnson, Jeffrey B.; Cimarelli, Corrado; Hornby, Adrian J.; Kendrick, Jackie E.; von Aulock, Felix W.; Kennedy, Ben M.; Andrews, Benjamin J.; Wadsworth, Fabian B.; Rhodes, Emma; Chigna, Gustavo

    2015-12-01

    Terrestrial volcanic eruptions are the consequence of magmas ascending to the surface of the Earth. This ascent is driven by buoyancy forces, which are enhanced by bubble nucleation and growth (vesiculation) that reduce the density of magma. The development of vesicularity also greatly reduces the ‘strength’ of magma, a material parameter controlling fragmentation and thus the explosive potential of the liquid rock. The development of vesicularity in magmas has until now been viewed (both thermodynamically and kinetically) in terms of the pressure dependence of the solubility of water in the magma, and its role in driving gas saturation, exsolution and expansion during decompression. In contrast, the possible effects of the well documented negative temperature dependence of solubility of water in magma has largely been ignored. Recently, petrological constraints have demonstrated that considerable heating of magma may indeed be a common result of the latent heat of crystallization as well as viscous and frictional heating in areas of strain localization. Here we present field and experimental observations of magma vesiculation and fragmentation resulting from heating (rather than decompression). Textural analysis of volcanic ash from Santiaguito volcano in Guatemala reveals the presence of chemically heterogeneous filaments hosting micrometre-scale vesicles. The textures mirror those developed by disequilibrium melting induced via rapid heating during fault friction experiments, demonstrating that friction can generate sufficient heat to induce melting and vesiculation of hydrated silicic magma. Consideration of the experimentally determined temperature and pressure dependence of water solubility in magma reveals that, for many ascent paths, exsolution may be more efficiently achieved by heating than by decompression. We conclude that the thermal path experienced by magma during ascent strongly controls degassing, vesiculation, magma strength and the effusive

  18. "Active" and "Passive" Lava Resurfacing Processes on Io: A Comparative Study of Loki Patera and Prometheus

    Science.gov (United States)

    Davies, A. G.; Matson, D. L.; Leone, G.; Wilson, L.; Keszthelyi, L. P.

    2004-01-01

    Studies of Galileo Near Infrared Mapping Spectrometer (NIMS) data and ground based data of volcanism at Prometheus and Loki Patera on Io reveal very different mechanisms of lava emplacement at these two volcanoes. Data analyses show that the periodic nature of Loki Patera s volcanism from 1990 to 2001 is strong evidence that Loki s resurfacing over this period resulted from the foundering of a crust on a lava lake. This process is designated passive , as there is no reliance on sub-surface processes: the foundering of the crust is inevitable. Prometheus, on the other hand, displays an episodicity in its activity which we designate active . Like Kilauea, a close analog, Prometheus s effusive volcanism is dominated by pulses of magma through the nearsurface plumbing system. Each system affords views of lava resurfacing processes through modelling.

  19. Water in volcanic glass: From volcanic degassing to secondary hydration

    Science.gov (United States)

    Seligman, Angela N.; Bindeman, Ilya N.; Watkins, James M.; Ross, Abigail M.

    2016-10-01

    Volcanic glass is deposited with trace amounts (0.1-0.6 wt.%) of undegassed magmatic water dissolved in the glass. After deposition, meteoric water penetrates into the glass structure mostly as molecular H2O. Due to the lower δD (‰) values of non-tropical meteoric waters and the ∼30‰ offset between volcanic glass and environmental water during hydration, secondary water imparts lighter hydrogen isotopic values during secondary hydration up to a saturation concentration of 3-4 wt.% H2O. We analyzed compositionally and globally diverse volcanic glass from 0 to 10 ka for their δD and H2Ot across different climatic zones, and thus different δD of precipitation, on a thermal conversion elemental analyzer (TCEA) furnace attached to a mass spectrometer. We find that tephrachronologically coeval rhyolite glass is hydrated faster than basaltic glass, and in the majority of glasses an increase in age and total water content leads to a decrease in δD (‰), while a few equatorial glasses have little change in δD (‰). We compute a magmatic water correction based on our non-hydrated glasses, and calculate an average 103lnαglass-water for our hydrated felsic glasses of -33‰, which is similar to the 103lnαglass-water determined by Friedman et al. (1993a) of -34‰. We also determine a smaller average 103lnαglass-water for all our mafic glasses of -23‰. We compare the δD values of water extracted from our glasses to local meteoric waters following the inclusion of a -33‰ 103lnαglass-water. We find that, following a correction for residual magmatic water based on an average δD and wt.% H2Ot of recently erupted ashes from our study, the δD value of water extracted from hydrated volcanic glass is, on average, within 4‰ of local meteoric water. To better understand the difference in hydration rates of mafic and felsic glasses, we imaged 6 tephra clasts ranging in age and chemical composition with BSE (by FEI SEM) down to a submicron resolution. Mafic tephra

  20. 准噶尔盆地西北缘二叠系火山岩储层裂缝发育特征及分布预测以金龙2井区佳木河组为例%Fracture Characterization and Prediction of Permian Volcanic Reservoir in Northwestern Margin of Junggar Basin:A Case from Jiamuhe Formation of Jinlong 2 Oil Field

    Institute of Scientific and Technical Information of China (English)

    何辉; 孔垂显; 蒋庆平; 邓西里; 肖芳伟; 李顺明

    2015-01-01

    准噶尔盆地西北缘金龙2井区二叠系佳木河组裂缝是该区火山岩储层油气主要的渗流通道。综合岩心、岩石薄片及成像测井等资料,识别出该区主要发育的裂缝类型为半充填或未充填高角度缝,其次为半充填低角度斜交缝与网状缝。成像测井解释裂缝方位近东西向,与岩心古地磁解释现今地应力最大主应力方向近似平行,有效性开启较好。火山岩储层裂缝发育主要受构造与岩性两种因素影响。距离断层越近,由于构造曲率增大,裂缝越发育,裂缝多沿断裂呈条带状分布。不同的火山岩类型,裂缝发育程度也不同。通过成像测井资料分析,认为研究区中酸性火山熔岩及火山碎屑熔岩裂缝较发育,并进一步定量计算出单井裂缝密度、裂缝倾角、裂缝孔隙度等,确定单井裂缝发育特征。结合叠前地震预测方法,即叠前方位各向异性法(AVAZ),优选衰减起始频率属性,预测了佳木河组火山岩储层裂缝分布特征。%The fractures of Jiamuhe Formation of Permian volcanic reservoir are the main flowing channels for the reservoir in Jinlong 2 oil field .Through core observation ,thin slice identification ,and image logging data , the fracture types are identified : Unfilled or half‐filled high‐angle fractures are mainly develop in the reservoir ,followed by half‐filled low‐angle oblique and netted fractures .The main orientations of fractures interpreted by image logging data are nearly EW , and parallel with the current maximum principal stress direction .The fracture development in the volcanic reservoir is mainly affected by two factors :the tectonic position and rock type .The closer it is to the fault ;the bigger the structure curvature is ,and the greater the fractures are developed .They distributed zonally along the fault .The types of volcanic rocks impact the degree of fracture development .Through the image

  1. Affluence of Data on Volcanism in The Gulf of Cadiz

    Directory of Open Access Journals (Sweden)

    E Wulff-Barreiro

    2009-04-01

    Full Text Available This paper reports the recent progress on mud volcanism data accumulation in the case of the Gulf of Cadiz area. The discovery of giant mud volcanoes, deep coral reefs, and gas hydrates in 1999, from the Guadalquivir Diapiric Ridge to the Larache Moroccan margin, launched a dynamic expansion of new projects (GeNesis, MoundForce, HERMES and international oceanographic campaigns (R/V Sonne, Marion-Dufresne. The present monitoring of this Ibero-Moroccan oceanic zone is in need of a comprehensive database available in one site to make online search possible from a single interface. The database would constitute a reference point for a focused full scope collection.

  2. European vehicle passive safety network

    NARCIS (Netherlands)

    Wismans, J.S.H.M.; Janssen, E.G.

    1999-01-01

    The general objective of the European Vehicle Passive Safety Network is to contribute to the reduction of the number of road traffic victims in Europe by passive safety measures. The aim of the road safety policy of the European Commission is to reduce the annual total of fatalities to 18000 in 2010

  3. Temperature initiated passive cooling system

    Science.gov (United States)

    Forsberg, Charles W.

    1994-01-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  4. Molybdate based passivation of zinc

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Bech-Nielsen, Gregers; Møller, Per

    1997-01-01

    developed to replace chromates in several passivation applica-tions. Depending on the environment in which the passivated parts are to be exposed, the protection that this alternative treatment provides range from less efficient to more efficient as compared to chromate. These aspects as well as issues...

  5. Monogenetic volcanic fields and their geoheritage values of western Saudi Arabia and their implication to holistic geoeducation projects locally and globally (Invited)

    Science.gov (United States)

    Nemeth, K.; Moufti, R.

    2013-12-01

    Monogeneitc volcanic fields are the most common manifestation of volcanism on Earth and other planets. They composed of small volume and short lived volcanoes each of them with a relatively simple eruption history. In spite of recent researches demonstrated complex, repeated and geochemically distinct eruption histories commonly associated with te formation of small-volume volcanoes, they are still considerred as volcanoes that are in human-scale and therefore ideal to use them as educational tools or part of volcanic geoheritage projects including geopark developments. In the western margin of the Kingdom of Saudi Arabia there are at least 9 intracontinental volcanic fields subparalell with the Red Sea Rift ranging from alkaline basaltic to basalt-trachyte bimodal dispersed volcanic systems. Among these volcanic fields the geoheritage value of three fields were recently evaluated and proposed that they are suitable for further development to establish the first volcanic geoparks in the Arabian Peninsula in the area of 1) Al Madinah (AMVF) 2) Kishb (KVF) and 3) Hutaymah Volcanic Fields (HVF). The AMVF offers a natural concept based on specific volcanic precinct ordering of its volcanic geoheritages from the most accessable and most common volcanism that is historically significant (eg. scoria and lava spatter cones with extensive lava fields) toward a more adventure geotourism style approach in remote, less common but more destructive type of volcanism (eg. trachytic explosion craters). In the contrary, the KVF is a perfect site where phreatomagmatic volcanism and their consequences were identified as a major driving force for further geopark developments. The HVF with its rich archaeological and cultural sites and superbly exposed variously eroded tuff rings and maars offer a good location to develop geoeducation programs to highlight short- and long-term climatic and hydrologic changes in an area a volcanic field evolved. The three Saudi projects also demonstrate

  6. Geochemical Signature of Mesozoic Volcanic and Granitic Rocks in Madina Regency Area, North Sumatra, Indonesia, and its Tectonic Implication

    Directory of Open Access Journals (Sweden)

    Iskandar Zulkarnain

    2014-06-01

    Full Text Available http://dx.doi.org/10.17014/ijog.vol4no2.20094Five samples consisting of two Permian-Triassic basalts, two Triassic-Jurassic granitic rocks, and a Miocene andesite were collected from the Madina Regency area in North Sumatra that is regionally situated on the West Sumatra Block. Previous authors have proposed three different scenarios for the geological setting of West Sumatra Permian Plutonic-Volcanic Belt, namely an island-arc, subduction related continental margin arc, and continental break-up. Petrographic analysis of the Mesozoic basaltic samples indicates that they are island-arcs in origin; however their trace element spider diagram patterns (Rock/MORB ratio also show the character of back-arc marginal basin, besides the island-arc. Furthermore, their REE spider diagram patterns (Rock/ Chondrite ratio clearly reveal that they were actually generated in a back-arc marginal basin tectonic setting. Meanwhile, the two Mesozoic granitic rocks and the Miocene andesite reflect the character of an active continental margin. Their spider diagram patterns show a significant enrichment on incompat- ible elements, usually derived from fluids of the subducted slab beneath the subduction zone. The high enrichment on Th makes their plots on Ta/Yb versus Th/Yb diagram are shifted to outside the active continental margin field. Although the volcanic-plutonic products represent different ages, their La/Ce ratio leads to a probability that they have been derived from the same magma sources. This study offers another different scenario for the geological setting of West Sumatra Permian Plutonic-Volcanic Belt, where the magmatic activities started in a back-arc marginal basin tectonic setting during the Permian-Triassic time and changed to an active continental margin during Triassic to Miocene. The data are collected through petrographic and chemical analyses for major, trace, and REE includ- ing literature studies.  

  7. Geochemical Signature of Mesozoic Volcanic and Granitic Rocks in Madina Regency Area, North Sumatra, Indonesia, and its Tectonic Implication

    Directory of Open Access Journals (Sweden)

    Iskandar Zulkarnain

    2014-06-01

    Full Text Available http://dx.doi.org/10.17014/ijog.vol4no2.20094Five samples consisting of two Permian-Triassic basalts, two Triassic-Jurassic granitic rocks, and a Miocene andesite were collected from the Madina Regency area in North Sumatra that is regionally situated on the West Sumatra Block. Previous authors have proposed three different scenarios for the geological setting of West Sumatra Permian Plutonic-Volcanic Belt, namely an island-arc, subduction related continental margin arc, and continental break-up. Petrographic analysis of the Mesozoic basaltic samples indicates that they are island-arcs in origin; however their trace element spider diagram patterns (Rock/MORB ratio also show the character of back-arc marginal basin, besides the island-arc. Furthermore, their REE spider diagram patterns (Rock/ Chondrite ratio clearly reveal that they were actually generated in a back-arc marginal basin tectonic setting. Meanwhile, the two Mesozoic granitic rocks and the Miocene andesite reflect the character of an active continental margin. Their spider diagram patterns show a significant enrichment on incompat- ible elements, usually derived from fluids of the subducted slab beneath the subduction zone. The high enrichment on Th makes their plots on Ta/Yb versus Th/Yb diagram are shifted to outside the active continental margin field. Although the volcanic-plutonic products represent different ages, their La/Ce ratio leads to a probability that they have been derived from the same magma sources. This study offers another different scenario for the geological setting of West Sumatra Permian Plutonic-Volcanic Belt, where the magmatic activities started in a back-arc marginal basin tectonic setting during the Permian-Triassic time and changed to an active continental margin during Triassic to Miocene. The data are collected through petrographic and chemical analyses for major, trace, and REE includ- ing literature studies.  

  8. Profit margins in Japanese retailing

    NARCIS (Netherlands)

    J.C.A. Potjes; A.R. Thurik (Roy)

    1993-01-01

    textabstractUsing a rich data source, we explain differences and developments in profit margins of medium-sized stores in Japan. We conclude that the protected environment enables the retailer to pass on all operating costs to the customers and to obtain a relatively high basic income. High service

  9. Profit margins in Japanese retailing

    NARCIS (Netherlands)

    J.C.A. Potjes; A.R. Thurik (Roy)

    1993-01-01

    textabstractUsing a rich data source, we explain differences and developments in profit margins of medium-sized stores in Japan. We conclude that the protected environment enables the retailer to pass on all operating costs to the customers and to obtain a relatively high basic income. High service

  10. Respiration in ocean margin sediments

    NARCIS (Netherlands)

    Andersson, J.H.

    2007-01-01

    The aim of this thesis was the study of respiration in ocean margin sediments and the assessments of tools needed for this purpose. The first study was on the biological pump and global respiration patterns in the deep ocean using an empirical model based on sediment oxygen consumption data. In this

  11. Respiration in ocean margin sediments

    NARCIS (Netherlands)

    Andersson, J.H.

    2007-01-01

    The aim of this thesis was the study of respiration in ocean margin sediments and the assessments of tools needed for this purpose. The first study was on the biological pump and global respiration patterns in the deep ocean using an empirical model based on sediment oxygen consumption data.

  12. Cenozoic volcanic rocks of Saudi Arabia

    Science.gov (United States)

    Coleman, R.G.; Gregory, R.T.; Brown, G.F.

    2016-01-01

    The Cenozoic volcanic rocks of Saudi Arabia cover about 90,000 km2, one of the largest areas of alkali olivine basalt in the world. These volcanic rocks are in 13 separate fields near the eastern coast of the Red Sea and in the western Arabian Peninsula highlands from Syria southward to the Yemen Arab Republic.

  13. Aeromagnetic legacy of early Paleozoic subduction along the Pacific margin of Gondwana

    Science.gov (United States)

    Finn, C.; Moore, D.; Damaske, D.; Mackey, T.

    1999-01-01

    Comparison of the aeromagnetic signatures and geology of southeastern Australia and northern Victoria Land, Antarctica, with similar data from ancient subduction zones in California and Japan, provides a framework for reinterpretation of the plate tectonic setting of the Pacific margin of early Paleozoic Gondwana. In our model, the plutons in the Glenelg (south-eastern Australia) and Wilson (northern Victoria Land) zones formed the roots of continental-margin magmatic arcs. Eastward shifting of arc magmatism resulted in the Stavely (south-eastern Australia) and Bowers (northern Victoria Land) volcanic eruptions onto oceanic forearc crust. The turbidites in the Stawell (southeastern Australia) and Robertson Bay (northern Victoria Land zones) shed from the Glenelg and Wilson zones, respectively, were deposited along the trench and onto the subducting oceanic plate. The margin was subsequently truncated by thrust faults and uplifted during the Delamerian and Ross orogenies, leading to the present-day aeromagnetic signatures.

  14. Relationship between earthquake and volcanic eruption inferred from historical records

    Institute of Scientific and Technical Information of China (English)

    陈洪洲; 高峰; 吴雪娟; 孟宪森

    2004-01-01

    A large number of seismic records are discovered for the first time in the historical materials about Wudalianchi volcanic group eruption in 1720~1721, which provides us with abundant volcanic earthquake information. Based on the written records, the relationship between earthquake and volcanic eruption is discussed in the paper. Furthermore it is pointed that earthquake swarm is an important indication of volcanic eruption. Therefore, monitoring volcanic earthquakes is of great significance for forecasting volcanic eruption.

  15. Late Cenozoic volcanism in the western Woodlark Basin area, SW Pacific: the sources of marine volcanic ash layers based on their elemental and Sr-Nd isotope compositions

    Science.gov (United States)

    Lackschewitz, K. S.; Mertz, D. F.; Devey, C. W.; Garbe-Schönberg, C.-D.

    2002-12-01

    Tephra fallout layers and volcaniclastic deposits, derived from volcanic sources around and on the Papuan Peninsula, form a substantial part of the Woodlark Basin marine sedimentary succession. Sampling by the Ocean Drilling Program Leg 180 in the western Woodlark Basin provides the opportunity to document the distribution of the volcanically-derived components as well as to evaluate their chronology, chemistry, and isotope compositions in order to gain information on the volcanic sources and original magmatic systems. Glass shards selected from 57 volcanogenic layers within the sampled Pliocene-Pleistocene sedimentary sequence show predominantly rhyolitic compositions, with subordinate basaltic andesites, basaltic trachy-andesites, andesites, trachy-andesites, dacites, and phonolites. It was possible to correlate only a few of the volcanogenic layers between sites using geochemical and age information apparently because of the formation of strongly compartmentalised sedimentary realms on this actively rifting margin. In many cases it was possible to correlate Leg 180 volcanic components with their eruption source areas based on chemical and isotope compositions. Likely sources for a considerable number of the volcanogenic deposits are Moresby and Dawson Strait volcanoes (D'Entrecasteaux Islands region) for high-K calc-alkaline glasses. The Dawson Strait volcanoes appear to represent the source for five peralkaline tephra layers. One basaltic andesitic volcaniclastic layer shows affinities to basaltic andesites from the Woodlark spreading tip and Cheshire Seamount. For other layers, a clear identification of the sources proved impossible, although their isotope and chemical signatures suggest similarities to south-west Pacific subduction volcanism, e.g. New Britain and Tonga-Kermadec island arcs. Volcanic islands in the Trobriand Arc (for example, Woodlark Island Amphlett Islands and/or Egum Atoll) are probable sources for several volcaniclastic layers with ages

  16. Lakshmi Planum: A distinctive highland volcanic province

    Science.gov (United States)

    Roberts, Kari M.; Head, James W.

    Lakshmi Planum, a broad smooth plain located in western Ishtar Terra and containing two large oval depressions (Colette and Sacajawea), has been interpreted as a highland plain of volcanic origin. Lakshmi is situated 3 to 5 km above the mean planetary radius and is surrounded on all sides by bands of mountains interpreted to be of compressional tectonic origin. Four primary characteristics distinguish Lakshmi from other volcanic regions known on the planet, such as Beta Regio: (1) high altitude, (2) plateau-like nature, (3) the presence of very large, low volcanic constructs with distinctive central calderas, and (4) its compressional tectonic surroundings. Building on the previous work of Pronin, the objective is to establish the detailed nature of the volcanic deposits on Lakshmi, interpret eruption styles and conditions, sketch out an eruption history, and determine the relationship between volcanism and the tectonic environment of the region.

  17. Geomorphology and Neogene tectonic evolution of the Palomares continental margin (Western Mediterranean)

    Science.gov (United States)

    Gómez de la Peña, Laura; Gràcia, Eulàlia; Muñoz, Araceli; Acosta, Juan; Gómez-Ballesteros, María; R. Ranero, César; Uchupi, Elazar

    2016-10-01

    The Palomares continental margin is located in the southeastern part of Spain. The margin main structure was formed during Miocene times, and it is currently part of the wide deformation zone characterizing the region between the Iberian and African plates, where no well-defined plate boundary occurs. The convergence between these two plates is here accommodated by several structures, including the left lateral strike-slip Palomares Fault. The region is characterized by sparse, low to moderate magnitude (Mw tectonic history of the margin we analyze new high-resolution multibeam bathymetry data and re-processed three multichannel seismic reflection profiles crossing the main structures. The analysis of seafloor morphology and associated subsurface structure provides new insights of the active tectonic features of the area. In contrast to other segments of the southeastern Iberian margin, the Palomares margin contains numerous large and comparatively closely spaced canyons with heads that reach near the coast. The margin relief is also characterized by the presence of three prominent igneous submarine ridges that include the Aguilas, Abubacer and Maimonides highs. Erosive processes evidenced by a number of scars, slope failures, gullies and canyon incisions shape the present-day relief of the Palomares margin. Seismic images reveal the deep structure distinguishing between Miocene structures related to the formation of the margin and currently active features, some of which may reactivate inherited structures. The structure of the margin started with an extensional phase accompanied by volcanic accretion during the Serravallian, followed by a compressional pulse that started during the Latemost Tortonian. Nowadays, tectonic activity offshore is subdued and limited to few, minor faults, in comparison with the activity recorded onshore. The deep Algero-Balearic Basin is affected by surficial processes, associated to halokinesis of Messinian evaporites.

  18. New Insights into SouthWest Africa Margin Evolution; Integrating Reconstructions and Restorations

    Science.gov (United States)

    Paton, Douglas; Markwick, Paul; Hodgson, Neil; Rowlands, Holly; Thompson, Phil

    2015-04-01

    Over the last few years there has been a significant increase in the quality and availability of passive margin scale transect derived from new geophysical techniques. Coupled with plate reconstructions this has unquestionably led to a paradigm shift in our understanding of the architecture of conjugate passive continental margins and the transition from continental to oceanic lithosphere. These sections, however, still commonly only consider architecture of the margin by placing conjugate sections together in their pre-break up position without considering realistic architecture of the margin at the time of deposition. In this study we use plate reconstructions to consider location of sections at a variety of time steps. We then apply stratigraphic and structural techniques to determine the geometry of the depositional sequence to predict the architecture and water depth of the margin at the time of deposition. Our study focuses on the south-eastern Atlantic and we use these techniques to understand key time intervals, including the geometry at the end of the rift phase, the emplacement of seaward dipping reflections, the Barremian sag phase and early Cretaceous deltaic sequences. This provides us with new insights into the Southern Atlantic basin evolution as well as providing better constraints for lithospheric processes and palaeogeographic reconstructions during these intervals that are fundamental to the hydrocarbon prospectivity of the region.

  19. Geomorphological Approach for Regional Zoning In The Merapi Volcanic Area

    Directory of Open Access Journals (Sweden)

    Langgeng Wahyu Santosa

    2013-07-01

    Full Text Available Geomorphologial approach can be used as the basic for identifying and analyzing the natural resources potentials, especially in volcanic landscape. Based on its geomorphology, Merapi volcanic landscape can be divided into 5 morphological units, i.e.: volcanic cone, volcanic slope, volcanic foot, volcanic foot plain, and fluvio-volcanic plain. Each of these morphological units has specific characteristic and natural resources potential. Based on the condition of geomorphology, the regional zoning can be compiled to support the land use planning and to maintain the conservation of environmental function in the Merapi Volcanic area.

  20. Lithospheric structure of the Western Iberian Atlantic Margin

    Science.gov (United States)

    Tunini, Lavinia; Vergés, Jaume; Fernandez, Manel; Jiménez-Munt, Ivone; Torne, Montserrat

    2017-04-01

    The Western Iberia Atlantic margin has been the object of multiple geophysical surveys in the last two decades, which highlight the crustal architecture of a hyperextended, magma-poor passive margin with a wide transition zone of exhumed mantle peridotites and anomalously small magma fractions. However, studies dealing with its lithospheric structure are lacking. We present a 2D model of the present-day lithospheric structure along a 530-km transect of the Western Iberian Margin, from the Southern Iberian Abyssal Plain to the Lusitanian Basin. The model combines seismic and geological data, mantle petrology, mineral physics and geophysical observables (gravity, geoid, topography, mantle seismic velocities and heat flow) within a self-consistent thermodynamic framework. Results show that the crustal thickness decreases gradually from 30 km below the Lusitanian Basin onshore to 11 km in the Abyssal Plain, 250 km further oceanwards, while the LAB rises from 140 km to 110 km, respectively. Furthermore, our results favour a 22% degree of serpentinization of the exhumed mantle which represents a 4.4% of water content. The study is supported by project ALPIMED (PIE-CSIC-201530E082)

  1. Passive Acoustic Vessel Localization

    Science.gov (United States)

    Suwal, Pasang Sherpa

    This thesis investigates the development of a low-cost passive acoustic system for localizing moving vessels to monitor areas where human activities such as fishing, snorkeling and poaching are restricted. The system uses several off-the-shelf sensors with unsynchronized clocks where the Time Difference of Arrival (TDOA) or time delay is extracted by cross-correlation of the signal between paired sensors. The cross-correlation function uses phase correlation or Phase Transform (PHAT) which whitens the cross-spectrum in order to de-emphasize dominant frequency components. Using the locations of pairs of sensors as foci, hyperbolic equations can be defined using the time delay between them. With three or more sensors, multiple hyperbolic functions can be calculated which intersect at a unique point: the boat's location. It is also found that increasing separation distances between sensors decreased the correlation between the signals. However larger separation distances have better localization capability than with small distances. Experimental results from the Columbia and Willamette Rivers are presented to demonstrate performance.

  2. Passive Vaporizing Heat Sink

    Science.gov (United States)

    Knowles, TImothy R.; Ashford, Victor A.; Carpenter, Michael G.; Bier, Thomas M.

    2011-01-01

    A passive vaporizing heat sink has been developed as a relatively lightweight, compact alternative to related prior heat sinks based, variously, on evaporation of sprayed liquids or on sublimation of solids. This heat sink is designed for short-term dissipation of a large amount of heat and was originally intended for use in regulating the temperature of spacecraft equipment during launch or re-entry. It could also be useful in a terrestrial setting in which there is a requirement for a lightweight, compact means of short-term cooling. This heat sink includes a hermetic package closed with a pressure-relief valve and containing an expendable and rechargeable coolant liquid (e.g., water) and a conductive carbon-fiber wick. The vapor of the liquid escapes when the temperature exceeds the boiling point corresponding to the vapor pressure determined by the setting of the pressure-relief valve. The great advantage of this heat sink over a melting-paraffin or similar phase-change heat sink of equal capacity is that by virtue of the =10x greater latent heat of vaporization, a coolant-liquid volume equal to =1/10 of the paraffin volume can suffice.

  3. Passive immitance limiters

    Directory of Open Access Journals (Sweden)

    Filinyuk N. A.

    2015-06-01

    Full Text Available The paper presents quadripole R, L, C immittance limiters, in which output immittance to the certain value depends on the input immittance. A classification of immittance limiters is given. Basic parameters are considered: low and high levels of output immittance limiters; low and high values of input immittance, corresponding to low and high levels of limitation, accordingly; range of possible values of output immittance; steepness of immittance limiters; time of wearing-out (or delay; high and low cutoff frequencies; central working frequency; frequency band; relative range of working frequencies; non-linearity coefficient. The authors have designed passive R-, L-, C-limiters with possibility of limitation from above and from below. The influence of the input parasitic immittances on the immittance transfer characteristic is evaluated. In most cases parasite immittance does not influence the considered devices, including R-limiters «from above» with the input quality factor of QR(Linp=0,1…0,2 and L-limiters «from above» with high-quality input circuits with QL(Rinp>2. The analysis also shows that high-qualitiy circuits with QN(RinpN>3 should be used in C-limiters with input parasitic immittances, while at parasitic immittance of the limiting element low-quality circuits with QN(RiN>0,2 should be selected.

  4. Wireless passive radio sensors

    Energy Technology Data Exchange (ETDEWEB)

    Reindl, L. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. fuer Elektrische Informationstechnik; Steindl, R.; Hausleitner, C. [Technische Univ., Vienna (Austria); Pohl, A. [Siemens AG, PSE PRO RCD, Vienna (Austria); School, G. [EPCOS AG, SAW RD SD, Muenchen (Germany)

    2001-07-01

    Surface acoustic wave devices can be turned into identification and sensor elements (SAW transponders) for measuring physical quantities such as temperature, pressure, torque, acceleration, humidity, etc. that do not need any power supply and may be accessed wirelessly. The complete wireless sensor system consists of such a SAW transponder and a local radar transceiver. An RF burst in the VHF/UHF region transmitted by the radar transceiver is received by the antenna of the SAW transponder. The passive transponder responses with an RF signal - like an radar echo - which can be received by the front-end of the local transceiver. Amplitude, frequency, phase and time of arrival of this RF response signal carry information about the SAW reflection and propagation mechanisms which in many cases can be directly attributed to the sensor effect for a certain measurand. Due to the high delay time of the SAW transponder in the order of some {mu}s, usually no intersymbol interferences due to environmental echoes occur. The present work reviews the operating principle of such sensor systems and their state-of-the-art performance by way of some examples which include the wireless measurement of temperature, pressure, torque, acceleration, magnetic field, and water content of soil. (orig.)

  5. Mesozoic rifting and basin inversion along the northern African Tethyan margin: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Guiraud, R. [Universite de Montpellier II (France). Laboratoire de Geophysique et Tectonique

    1998-12-31

    The northern African Tethyan margin registered three major rifting episodes from the latest Palaeozoic-earliest Mesozoic to the earliest Cenozoic. Break-up of Gondwana was initiated in the late Carboniferous. Along the northern African-Arabian plate margin rifting propagated westward from the northeastern Arabian margin to Morocco during the Permian and Triasssic, and was accompanied by Mid-Late triassi-earliest Liassic extensive alkaline flow basalts. Rifting continued during the Liassic, e.g. in the Moghrebian Atlas troughs. A second stage of rifting occurred in the Late Jurassic and continued into, or was rejuvenated during the Early Cretaceous. Along the east Mediterranean margin, some large E-W trending rifts formed often with associated volcanism, e.g. southern Sirt and Abu Gharadig. Most researchers believe the oceanization of the eastern Mediterranean basin occurred at this time. During the Mesozoic, therefore, the northern margin of the African-Arabian plate registered both rifting resulting in the oceanization of the Tethys and rifting resulting from the initiation of the closure of the Tethys. The intraplate domain exhibited echoes of the tectonic events affecting the margin. (author)

  6. Depth-dependent extension, two-stage breakup and depleted lithospheric counterflow at rifted margins

    Science.gov (United States)

    Huismans, Ritske S.; Beaumont, Christopher

    2014-05-01

    Uniform lithospheric extension predicts basic properties of non-volcanic rifted margins but fails to explain other important characteristics. Significant discrepancies are observed at 'type I' margins (such as the Iberia-Newfoundland conjugates), where large tracts of continental mantle lithosphere are exposed at the sea floor, and 'type II' margins (such as some ultrawide central South Atlantic margins), where thin continental crust spans wide regions below which continental lower crust and mantle lithosphere have apparently been removed. Neither corresponds to uniform extension. Instead, either crust or mantle lithosphere has been preferentially removed. Using dynamical models, we demonstrate that these margins are opposite end members: in type I, depth-dependent extension results in crustal-necking breakup before mantle-lithosphere breakup and in type II, the converse is true. These two-layer, two-stage breakup behaviours explain the discrepancies and have implications for the styles of the associated sedimentary basins. Laterally flowing lower-mantle lithosphere may underplate both type I and type II margins, thereby contributing to their anomalous characteristics.

  7. The Ventotene Volcanic Ridge: a newly explored complex in the central Tyrrhenian Sea (Italy)

    Science.gov (United States)

    Cuffaro, Marco; Martorelli, Eleonora; Bosman, Alessandro; Conti, Alessia; Bigi, Sabina; Muccini, Filippo; Cocchi, Luca; Ligi, Marco; Bortoluzzi, Giovanni; Scrocca, Davide; Canese, Simonepietro; Chiocci, Francesco L.; Conte, Aida M.; Doglioni, Carlo; Perinelli, Cristina

    2016-12-01

    New high-resolution geophysical data collected along the eastern margin of the Tyrrhenian back-arc basin, in the Pontine Islands area, reveal a ˜NW-SE elongated morphological high, the Ventotene Volcanic Ridge (VR), located on the northern edge of the Ventotene Basin. High-resolution multibeam bathymetry, combined with magnetic data, multi- and single-channel seismic profiles, and ROV dives, suggest that VR results from aggregation of a series of volcanic edifices. The summit of these volcanoes is flat and occurs at about 170 m water depth. Given their depths, we propose that flat morphologies were probably caused by surf erosion during Quaternary glacial sea level lowstands. Seismic stratigraphy together with magnetic data suggest that the volcanic activity in this area is older than 190-130 ka age and may be coeval with that of Ventotene Island (Middle Pleistocene). The submarine volcanoes, located 25 km north of Ventotene, are part of a ˜E-W regional volcanic alignment and extend the Pontine volcanism landward toward the Gaeta bay. Integration of structural data from multichannel seismic profiles in this sector of the eastern Tyrrhenian margin indicates that several normal and/or transtensional faults, striking WNW-ESE, NNW-SSE, and NE-SW, offset the basement and form alternating structural highs and depressions filled by thick, mostly undeformed, sedimentary units. Arc-related magmatism is widespread in the study area, where the VR is placed at the hangingwall of the west-directed Apennines subduction zone, which is undergoing tensional and transtensional tectonics. Bathymetric and topographic evidence shows that VR lies in between a major NE-SW trending escarpment east of Ponza and a NE-SW trending graben southwest of the Roccamonfina volcano, a NE-SW transfer zone that accommodate the extension along this segmented portion of the margin. This suggests that the interaction between NE-SW and NW-SE trending fault systems acts as a structural control on

  8. The Margins of Medieval Manuscripts

    Directory of Open Access Journals (Sweden)

    Nataša Kavčič

    2011-12-01

    Full Text Available Shortly after the mid-thirteenth century, various images began to fill the margins in both religious and secular texts. Many factors influenced the emergence of this type of manuscript decoration, but it has generally been attributed to the revived interest in nature and the Gothic inclination for humorous and anecdotic detail. After highlighting other possible reasons for the occurrence of marginal illumination, this paper introduces two manuscripts from the Archiepiscopal Archives in Ljubljana. The manuscripts show numerous facial drawings affixed to some of the letters. This article addresses how to interpret such drawings and stresses that they do not necessarily function as symbolic images or images with any specific didactic value. Quite the opposite, these drawings seem not to have any meaning and are oft en merely indications of an illuminator’s sense of humor. Because of their exaggerated facial expressions, these drawings could be perceived as the true predecessors of modern caricature.

  9. Volcanic spreading forcing and feedback in geothermal reservoir development, Amiata Volcano, Italia

    Science.gov (United States)

    Borgia, Andrea; Mazzoldi, Alberto; Brunori, Carlo Alberto; Allocca, Carmine; Delcroix, Carlo; Micheli, Luigi; Vercellino, Alberto; Grieco, Giovanni

    2014-09-01

    We made a stratigraphic, structural and morphologic study of the Amiata Volcano in Italy. We find that the edifice is dissected by intersecting grabens that accommodate the collapse of the higher sectors of the volcano. In turn, a number of compressive structures and diapirs exist around the margin of the volcano. These structures create an angular drainage pattern, with stream damming and captures, and a set of lakes within and around the volcano. We interpret these structures as the result of volcanic spreading of Amiata on its weak substratum, formed by the late Triassic evaporites (Burano Anhydrites) and the Middle-Jurassic to Early-Cretaceous clayey chaotic complexes (Ligurian Complex). Regional doming created a slope in the basement facilitating the outward flow and spreading of the ductile layers forced by the volcanic load. We model the dynamics of spreading with a scaled lubrication approximation of the Navier Stokes equations, and numerically study a set of solutions. In the model we include simple functions for volcanic deposition and surface erosion that change the topography over time. Scaling indicates that spreading at Amiata could still be active. The numerical solution shows that, as the central part of the edifice sinks into the weak basement, diapiric structures of the underlying formations form around the base of the volcano. Deposition of volcanic rocks within the volcano and surface erosion away from it both enhance spreading. In addition, a sloping basement may constitute a trigger for spreading and formation of trains of adjacent diapirs. As a feedback, the hot hydrothermal fluids decrease the shear strength of the anhydrites facilitating the spreading process. Finally, we observe that volcanic spreading has created ideal heat traps that constitute todays' exploited geothermal fields at Amiata. Normal faults generated by volcanic spreading, volcanic conduits, and direct contact between volcanic rocks (which host an extensive fresh

  10. Respiration in ocean margin sediments

    OpenAIRE

    Andersson, J.H.

    2007-01-01

    The aim of this thesis was the study of respiration in ocean margin sediments and the assessments of tools needed for this purpose. The first study was on the biological pump and global respiration patterns in the deep ocean using an empirical model based on sediment oxygen consumption data. In this thesis the depth dependence of respiration patterns was modelled using a compiled data set of sediment oxygen consumption rates. We showed that the depth relationship can best be described by a do...

  11. Late Miocene volcanism and intra-arc tectonics during the early development of the Trans-Mexican Volcanic Belt

    Science.gov (United States)

    Ferrari, Luca; Conticelli, Sandro; Vaggelli, Gloria; Petrone, Chiara M.; Manetti, Piero

    2000-03-01

    The early stage of the Trans-Mexican Volcanic Belt (hereafter TMVB) is marked by widespread, mafic to intermediate, volcanism emplaced between 11 and 7 Ma from the Pacific coast to the longitude of Mexico City, to the north of the modern volcanic arc. Petrological and geochronological data support the hypothesis that this volcanism made up a unique late Miocenic central Mexican comagmatic province. Mafic lavas at the mouth of the Gulf of California and along the northwestern sector of the TMVB made up the Nayarit district, which includes calc-alkaline to transitional varieties. The central sector of the TMVB is characterized by two basaltic districts: the Jalisco-Guanajuato and the Queretaro-Hidalgo, which are distinguished from the westernmost ones by their lower Nb/La and generally lower HFSE/LILE values, as well as by spider diagrams characterized by larger negative spikes at Th, Ta, Nb, and Ti. The surface occurrence of the late Miocene basalts appears to be controlled by pre-existing zones of crustal weakness that channeled the mafic magmas. Field observations suggest that these structures have been reactivated in a transtensional fashion induced by differential tectonic motion of crustal blocks to the south and to the north of the TMVB. Starting from ˜12 Ma the TMVB separates a northern tectonic domain, subject to the developing divergent Pacific-North America plate boundary, from a southern tectonic domain, characterized by oblique subduction of the Rivera and Cocos plates. Apparently, far field stresses related to these complex plate boundaries reactivated older suture zones, allowing rapid uprise of mantle-derived magmas. The subduction-related signature shown by Miocene mafic lavas of the Jalisco-Guanajuato district argues against the existence of mantle plumes beneath this sector of the North America plate. On the other hand, the occurrence in the western TMVB and in the Guadalajara region of a large volume of mafic magmas, which sometimes show

  12. Surface area and volume measurements of volcanic ash particles by SEM stereoscopic imaging

    Science.gov (United States)

    Ersoy, Orkun

    2010-05-01

    Surface area of volcanic ash particles is of great importance to research including plume dynamics, particle chemical and water reactions in the plume, modelling (i.e. plume shape, particle interactions , dispersion etc.), remote sensing of transport and SO2, HCl, H2O, CO2 levels, forecasting plume location, and transportation and deposition of ash particles. The implemented method presented in this study offer new insights for surface characterization of volcanic ash particles on macro-pore regions. Surface area and volumes of volcanic ash particles were measured using digital elevation models (DEM) reconstructed from stereoscopic images acquired from different angles by scanning electron microscope (SEM). The method was tested using glycidyl methacrylate (GMA) micro-spheres which exhibit low spherical imperfections. The differences between measured and geometrically calculated surface areas were introduced for both micro-spheres and volcanic ash particles in order to highlight the probable errors in modelling on volcanic ash behaviour. The specific surface areas of volcanic ash particles using this method are reduced by half (from mean values of 0.045 m2/g to 0.021 m2/g) for the size increment 63 μm to 125 μm. Ash particles mostly have higher specific surface area values than the geometric forms irrespective of particle size. The specific surface area trends of spheres and ash particles resemble for finer particles (63 μm). Approximation to sphere and ellipsoid have similar margin of error for coarser particles (125 μm) but both seem to be inadequate for representation of real ash surfaces.

  13. Young Volcanism on 20 Million Year Old Seafloor: The DISCOL Area, Nazca Plate.

    Science.gov (United States)

    Devey, C. W.; Boetius, A.; Kwasnitschka, T.; Augustin, N.; Yeo, I. A.; Greinert, J.

    2016-12-01

    Volcanism in the ocean basins is traditionally assumed to occur only at the plate margins (mid-ocean ridges, subduction zones, possibly also transform boundaries) and areas of intraplate hotspot activity related to thermal plumes in the mantle. As a result, abyssal areas away from hotspots are seldom explored systematically for signs of volcanism and are generally regarded as volcanically "dead". Here we present serendipitous results from the Peru Basin, a site of Mn-nodule accumulation which was targetted in 1989 for a large-scale disturbance experiment (the DISCOL experiment) to simulate the effects of seabed nodule mining. The area is truly intraplate - it is 700 km from the south American subduction zone or the Galapagos Islands and 2000 km from the East Pacific Rise. A return trip to DISCOL in 2015 to assess the extent of environmental recovery also included a remotely-operated underwater vehicle (ROV) dive on a small (300m high) seamount adjacent to the Mn-nodule field. ROV video records show the seamount is generally heavily sedimented but has a small (100x150m) pillow mound and an area of indurated calcareous sediments apparently cut by basaltic dykes near its summit. The summit is also cut by N-S and E-W-trending faults, some with up to 20m of throw, whose scarps expose thick sedimentary sequences. The virtual absence of sediment covering the pillows or dyke outcrops suggest that they are very recent - the thick sediment pile exposed on the fault scarps suggests that they were erupted on top of an old seamount. Regionally, acoustic data (bathymetry and backscatter from the ship-mounted multibeam system) shows several other seamounts in the region which may have experienced recent volcanic activity, although no sign of a linear volcanic chain is seen. Taken together, these observations suggest that, even at age 20Ma, the Nazca Plate is volcanically active.

  14. Early passive acquisition in Inuktitut.

    Science.gov (United States)

    Allen, S E; Crago, M B

    1996-02-01

    Passive structures are typically assumed to be one of the later acquired constructions in child language. English-speaking children have been shown to produce and comprehend their first simple passive structures productively by about age four and to master more complex structures by about age nine. Recent crosslinguistic data have shown that this pattern may not hold across languages of varying structures. This paper presents data from four Inuit children aged 2;0 to 3;6 that shows relatively early acquisition of both simple and complex forms of the passive. Within this age range children are productively producing truncated, full, action and experiential passives. Some possible reasons for this precociousness are explored including adult input and language structure.

  15. Peralkaline volcanism in a continental collisional setting: Mount Nemrut volcano, Eastern Anatolia

    Science.gov (United States)

    Çubukçu, H. E.; Ulusoy, I.; Aydar, E.; Sen, E.; Ersoy, O.; Gourgaud, A.

    2012-04-01

    Quaternary Mount Nemrut is an active volcano in the Eastern Anatolia which culminates at 2948 m and having an elliptic summit caldera with 8.5 x 7 km diameter. The volcano is situated on the east of the deformed and dissected remnant of the Muş-Van ramp basin located at the northern foot of the Bitlis-Zagros suture zone. The suture zone is the southern margin of the continental collision between Arabian and Anatolian plates. The continental collision along the Bitlis-Zagros suture zone commenced in the Middle Miocene following the closure of the southern segment of Neo-Tethys ocean and the subduction of northern margin of Arabian plate beneath Anatolian plate. Upon the collision and the uplift of the region, widespread volcanism, which exhibits varying eruption styles and geochemical characteristics, affected most of the Eastern Anatolia. The intracontinental convergence and N - S directed compressional - contractional tectonic regime remained till the end of Late Miocene. However, compressional - extensional regime became dominant in the Early-Late Pliocene. Following the slab break off, asthenosphere beneath the Arabian Foreland probably have migrated towards the slab window, which was opened during the detachment, and invaded the mantle wedge beneath East Anatolian Collision zone. Volcanism is still active in the region, represented by major Quaternary volcanic centers. The magmatic characteristics of Nemrut volcano is appealingly distinct compared to the other Quaternary volcanic centers in the region. The overall geochemical and mineralogical affinity of Nemrut volcanism exhibits strong similarities with the well-known sites of continental intra-plate extension. The volcano has distinguishing features of a typical silica oversaturated peralkaline (molecular ratio (Na + K / Al)>1) suite: (a) The volcanic products vary from transitional olivine basalt to peralkaline rhyolite (abundant comendite and scarce pantellerite) (b) Predominance by erupted volume of

  16. Volcano-tectonics of the Al Haruj Volcanic Province, Central Libya

    Science.gov (United States)

    Elshaafi, Abdelsalam; Gudmundsson, Agust

    2016-10-01

    The Al Haruj intra-continental Volcanic Province (AHVP), located at the south-western margin of the Sirt Basin, hosts the most extensive and recent volcanic activity in Libya - which is considered typical for plate interiors. From north to south the AHVP is divided into two subprovinces, namely Al Haruj al Aswad and Al Haruj al Abiyad. The total area of the AHVP is around 42,000 km2. Despite the great size of the AHVP, its volcano-tectonic evolution and activity have received very little attention and are poorly documented and understood. Here we present new field data, and analytical and numerical results, on the volcano-tectonics of the AHVP. The length/thickness ratio of 47 dykes and volcanic fissures were measured to estimate magmatic overpressure at the time of eruption. The average dyke (length/thickness) ratio of 421 indicates magmatic overpressures during the associate fissure eruptions of 8-19 MPa (depending on host-rock elastic properties). Spatial distributions of 432 monogenetic eruptions sites/points (lava shields, pyroclastic cones) in the AHVP reveal two main clusters, one in the south and another in the north. Aligned eruptive vents show the dominating strike of volcanic fissures/feeder-dykes as WNW-ESE to NW-SE, coinciding with the orientation of one of main fracture/fault zones. Numerical modelling and field observations suggest that some feeder-dykes may have used steeply dipping normal-fault zones as part of their paths to the surface.

  17. Volcanic caves of East Africa - an overview

    Directory of Open Access Journals (Sweden)

    Jim W. Simons

    1998-01-01

    Full Text Available Numerous Tertiary to recent volcanoes are located in East Africa. Thus, much of the region is made up volcanic rock, which hosts the largest and greatest variety of East Africas caves. Exploration of volcanic caves has preoccupied members of Cave Exploration Group of East Africa (CEGEA for the past 30 years. The various publications edited by CEGEA are in this respect a treasure troves of speleological information. In the present paper an overview on the most important volcanic caves and areas are shortly reported.

  18. Toward Forecasting Volcanic Eruptions using Seismic Noise

    CERN Document Server

    Brenguier, Florent; Campillo, Michel; Ferrazzini, Valerie; Duputel, Zacharie; Coutant, Olivier; Nercessian, Alexandre

    2007-01-01

    During inter-eruption periods, magma pressurization yields subtle changes of the elastic properties of volcanic edifices. We use the reproducibility properties of the ambient seismic noise recorded on the Piton de la Fournaise volcano to measure relative seismic velocity variations of less than 0.1 % with a temporal resolution of one day. Our results show that five studied volcanic eruptions were preceded by clearly detectable seismic velocity decreases within the zone of magma injection. These precursors reflect the edifice dilatation induced by magma pressurization and can be useful indicators to improve the forecasting of volcanic eruptions.

  19. Relations between tectonics and sedimentation along the Eastern Sardinian margin (Western Tyrrhenian Sea) : from rifting to reactivation

    Science.gov (United States)

    Gaullier, Virginie; Chanier, Frank; Vendeville, Bruno; Lymer, Gaël; Maillard, Agnès; Thinon, Isabelle; Lofi, Johanna; Sage, Françoise; Giresse, Pierre; Bassetti, Maria-Angela

    2014-05-01

    The offshore-onshore project "METYSS-METYSAR" aims at better understand the Miocene-Pliocene relationships between crustal tectonics, salt tectonics, and sedimentation along the Eastern Sardinian margin, Western Tyrrhenian Sea. In this key-area, the Tyrrhenian back-arc basin underwent recent rifting (9-5 Ma), pro parte coeval with the Messinian Salinity Crisis (MSC, 5.96-5.33 Ma), sea-floor spreading starting during Pliocene times. Thereby, the Tyrrhenian basin and the Eastern Sardinian margin are excellent candidates for studying the mechanisms of extreme lithospheric stretching and thinning, the role of pre-existing structural fabric during and after rifting, and the reactivation of a passive margin and the associated deformation and sedimentation patterns during the MSC. We looked at the respective contributions of crustal and salt tectonics in quantifying vertical and horizontal movements, using especially the seismic markers of the MSC. Overall, we delineate the history of rifting and tectonic reactivation in the area. The distribution maps respectively of the Messinian Erosion Surface and of Messinian units (Upper Unit and Mobile Unit) show that a rifted basin already existed by Messinian time. This reveals a major pre-MSC rifting across the entire domain. Because salt tectonics can create fan-shaped geometries in sediments, syn-rift deposits have to be carefully re-examined in order to decipher the effects of crustal tectonics (rifting) and thin-skinned salt tectonics. Our data surprisingly show that there are no clues for Messinian syn-rift sediments along the East-Sardinia Basin and Cornaglia Terrace, hence no evidence for rifting after Late Tortonian times. Nevertheless, widespread deformation occurred during the Pliocene and can only be attributed to post-rift reactivation. This reactivation is characterized not only by normal faulting but also by contractional structures. Some Pliocene vertical movements caused localized gravity gliding of the mobile

  20. Volcanic Plume Measurements with UAV (Invited)

    Science.gov (United States)

    Shinohara, H.; Kaneko, T.; Ohminato, T.

    2013-12-01

    Volatiles in magmas are the driving force of volcanic eruptions and quantification of volcanic gas flux and composition is important for the volcano monitoring. Recently we developed a portable gas sensor system (Multi-GAS) to quantify the volcanic gas composition by measuring volcanic plumes and obtained volcanic gas compositions of actively degassing volcanoes. As the Multi-GAS measures variation of volcanic gas component concentrations in the pumped air (volcanic plume), we need to bring the apparatus into the volcanic plume. Commonly the observer brings the apparatus to the summit crater by himself but such measurements are not possible under conditions of high risk of volcanic eruption or difficulty to approach the summit due to topography etc. In order to overcome these difficulties, volcanic plume measurements were performed by using manned and unmanned aerial vehicles. The volcanic plume measurements by manned aerial vehicles, however, are also not possible under high risk of eruption. The strict regulation against the modification of the aircraft, such as installing sampling pipes, also causes difficulty due to the high cost. Application of the UAVs for the volcanic plume measurements has a big advantage to avoid these problems. The Multi-GAS consists of IR-CO2 and H2O gas analyzer, SO2-H2O chemical sensors and H2 semiconductor sensor and the total weight ranges 3-6 kg including batteries. The necessary conditions of the UAV for the volcanic plumes measurements with the Multi-GAS are the payloads larger than 3 kg, maximum altitude larger than the plume height and installation of the sampling pipe without contamination of the exhaust gases, as the exhaust gases contain high concentrations of H2, SO2 and CO2. Up to now, three different types of UAVs were applied for the measurements; Kite-plane (Sky Remote) at Miyakejima operated by JMA, Unmanned airplane (Air Photo Service) at Shinomoedake, Kirishima volcano, and Unmanned helicopter (Yamaha) at Sakurajima

  1. Volcano-sedimentary processes operating on a marginal continental arc: the Archean Raquette Lake Formation, Slave Province, Canada

    Science.gov (United States)

    Mueller, W. U.; Corcoran, P. L.

    2001-06-01

    The 200-m thick, volcano-sedimentary Raquette Lake Formation, located in the south-central Archean Slave Province, represents a remnant arc segment floored by continental crust. The formation overlies the gneissic Sleepy Dragon Complex unconformably, is laterally interstratified with subaqueous mafic basalts of the Cameron River volcanic belt, and is considered the proximal equivalent of the turbidite-dominated Burwash Formation. A continuum of events associated with volcanism and sedimentation, and controlled by extensional tectonics, is advocated. A complex stratigraphy with three volcanic and three sedimentary lithofacies constitute the volcano-sedimentary succession. The volcanic lithofacies include: (1) a mafic volcanic lithofacies composed of subaqueous pillow-pillow breccia, and subaerial massive to blocky flows, (2) a felsic volcanic lithofacies representing felsic flows that were deposited in a subaerial environment, and (3) a felsic volcanic sandstone lithofacies interpreted as shallow-water, wave- and storm-reworked pyroclastic debris derived from explosive eruptions. The sedimentary lithofacies are represented by: (1) a conglomerate-sandstone lithofacies consistent with unconfined debris flow, hyperconcentrated flood flow and talus scree deposits, as well as minor high-energy stream flow conglomerates that formed coalescing, steep-sloped, coarse-clastic fan deltas, (2) a sandstone lithofacies, interpreted as hyperconcentrated flood flow deposits that accumulated at the subaerial-subaqueous interface, and (3) a mudstone lithofacies consistent with suspension sedimentation in a small restricted lagoon-type setting. The Raquette Lake Formation is interpreted as a fringing continental arc that displays both high-energy clastic sedimentation and contemporaneous effusive and explosive mafic and felsic volcanism. Modern analogues that develop along active plate margins in which continental crust plays a significant role include Japan and the Baja California

  2. Off-axis magmatism along a subaerial back-arc rift: Observations from the Taupo Volcanic Zone, New Zealand.

    Science.gov (United States)

    Hamling, Ian J; Hreinsdóttir, Sigrun; Bannister, Stephen; Palmer, Neville

    2016-06-01

    Continental rifting and seafloor spreading play a fundamental role in the generation of new crust. However, the distribution of magma and its relationship with tectonics and volcanism remain poorly understood, particularly in back-arc settings. We show evidence for a large, long-lived, off-axis magmatic intrusion located on the margin of the Taupo Volcanic Zone, New Zealand. Geodetic data acquired since the 1950s show evidence for uplift outside of the region of active extension, consistent with the inflation of a magmatic body at a depth of ~9.5 km. Satellite radar interferometry and Global Positioning System data suggest that there was an increase in the inflation rate from 2003 to 2011, which correlates with intense earthquake activity in the region. Our results suggest that the continued growth of a large magmatic body may represent the birth of a new magma chamber on the margins of a back-arc rift system.

  3. Margin Requirements and Equity Option Returns

    DEFF Research Database (Denmark)

    Hitzemann, Steffen; Hofmann, Michael; Uhrig-Homburg, Marliese

    In equity option markets, traders face margin requirements both for the options themselves and for hedging-related positions in the underlying stock market. We show that these requirements carry a significant margin premium in the cross-section of equity option returns. The sign of the margin pre...

  4. The interplay between tectonics and volcanism: a key to unravel the nature of Andean geothermal systems

    Science.gov (United States)

    Cembrano, J. M.

    2013-05-01

    Field mapping combined with seismic data document the interplay between tectonics and volcanism in the Andes. In the Central Volcanic Zone (CVZ) of northern Chile (22-24°S), Pleistocene east-west shortening and a thick crust (50-70 km) are associated with major composite dacitic-andesitic volcanoes and a few monogenetic basaltic eruptive centers. CVZ stratovolcanoes are devoided of flank vents; clusters of minor eruptive centers are uncommon. Composite volcanoes and minor eruptive centers are coeval with a NS-striking system of reverse faults and fault-propagation folds. Although dextral strike-slip crustal seismicity is recorded between 18 and 21°S, evidence for long-term, margin-parallel strike-slip deformation is absent. In contrast, volcanoes of the Southern Volcanic Zone (SVZ), between 38 and 46°S are built on a much thinner crust (30-40 km) during intra-arc dextral transpression. Crustal seismicity shows dextral strike-slip focal mechanisms. There, a wide variety of volcanic forms and compositions coexist along the same volcanic arc. Volcanoes range from single monogenetic cones lying on master faults to major composite volcanoes organized into either NE- or NW-trending chains, oblique to the continental margin. Flank vents and elongated clusters of minor eruptive centers are common. Compositions range from primitive basalts at minor eruptive centers, to highly evolved magmas at mature stratovolcanoes. I hypothesize that the kinematics of fault-fracture networks under which magma is transported through the crust is one fundamental factor controlling the wide variety of volcanic forms, volcanic alignment patterns and rock compositions along a single volcanic arc. As a first approximation, a thicker crust favors magma differentiation processes whereas a thinner crust prevents it. Likewise, whereas bulk intra-arc compression (vertical σ3) enhances longer residence times of magmas in the CVZ, strike-slip deformation (horizontal σ3) in SVZ provides

  5. Microgravity Passive Phase Separator

    Science.gov (United States)

    Paragano, Matthew; Indoe, William; Darmetko, Jeffrey

    2012-01-01

    A new invention disclosure discusses a structure and process for separating gas from liquids in microgravity. The Microgravity Passive Phase Separator consists of two concentric, pleated, woven stainless- steel screens (25-micrometer nominal pore) with an axial inlet, and an annular outlet between both screens (see figure). Water enters at one end of the center screen at high velocity, eventually passing through the inner screen and out through the annular exit. As gas is introduced into the flow stream, the drag force exerted on the bubble pushes it downstream until flow stagnation or until it reaches an equilibrium point between the surface tension holding bubble to the screen and the drag force. Gas bubbles of a given size will form a front that is moved further down the length of the inner screen with increasing velocity. As more bubbles are added, the front location will remain fixed, but additional bubbles will move to the end of the unit, eventually coming to rest in the large cavity between the unit housing and the outer screen (storage area). Owing to the small size of the pores and the hydrophilic nature of the screen material, gas does not pass through the screen and is retained within the unit for emptying during ground processing. If debris is picked up on the screen, the area closest to the inlet will become clogged, so high-velocity flow will persist farther down the length of the center screen, pushing the bubble front further from the inlet of the inner screen. It is desired to keep the velocity high enough so that, for any bubble size, an area of clean screen exists between the bubbles and the debris. The primary benefits of this innovation are the lack of any need for additional power, strip gas, or location for venting the separated gas. As the unit contains no membrane, the transport fluid will not be lost due to evaporation in the process of gas separation. Separation is performed with relatively low pressure drop based on the large surface

  6. Passive Wake Vortex Control

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J M

    2001-10-18

    .'' This active concept works by placing shape memory alloy (SMA) control surfaces on the submarine's diving planes and periodically oscillating them. The modulated control vortices generated by these surfaces interact with the tip vortices on the diving planes, causing an instability to rapidly occur. Though several numerical simulations have been presented, experimental verification does not appear to be available in the open literature. The authors address this problem through a concept called passive wake vortex control (PWVC), which has been demonstrated to rapidly break apart a trailing vortex wake and render it incoherent. PWVC functions by introducing unequal strength, counter-rotating control vortices next to the tip vortices. The presence of these control vortices destabilizes the vortex wake and produces a rapidly growing wake instability.

  7. The Cambrian-Ordovician rocks of Sonora, Mexico, and southern Arizona, southwestern margin of North America (Laurentia): chapter 35

    Science.gov (United States)

    Page, William R.; Harris, Alta C.; Repetski, John E.; Derby, James R.; Fritz, R.D.; Longacre, S.A.; Morgan, W.A.; Sternbach, C.A.

    2013-01-01

    Cambrian and Ordovician shelf, platform, and basin rocks are present in Sonora, Mexico, and southern Arizona and were deposited on the southwestern continental margin of North America (Laurentia). Cambrian and Ordovician rocks in Sonora, Mexico, are mostly exposed in scattered outcrops in the northern half of the state. Their discontinuous nature results from extensive Quaternary and Tertiary surficial cover, from Tertiary and Mesozoic granitic batholiths in western Sonora, and from widespread Tertiary volcanic deposits in the Sierra Madre Occidental in eastern Sonora. Cambrian and Ordovician shelf rocks were deposited as part of the the southern miogeocline on the southwestern continental margin of North America.

  8. Adakites related to subduc- tion in the northern margin of Junggar arc for the Late Paleozoic: Products of slab melting

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Volcanic rocks with adakitic compositional signature have been recognized in the northern margin of ancient Junggar island arc for the Late Paleozoic. These adakites for the early Devonian from the Tuoranggekudouke Group (D1t) are characteristic of high Sr, Sr/Y and (La/Yb)N but low Y, Yb and HREE. Their compositional characteristics are much similar to those of the typical adakites in the world but distinct from those of the normal arc volcanic rocks from the same Group. We conclude that these adakitic volcanic rocks were produced by slab melting during the early period of Paleoasia-ocean lithosphere subduction. This infers that the Paleoasia Ocean in the north Junggar area began a new subduction process in the early Devonian.

  9. Biomass energy and marginal areas

    Energy Technology Data Exchange (ETDEWEB)

    Chassany, J.P.

    1984-01-01

    The aim of this study was to analyze the conditions and effects of a possible development of the biomass energy upgrading in uneconomical or not rentable areas. The physical, social and economical characteristics of these regions (in France) are described; then the different types of biomass are presented (agricultural wastes, energetic cultures, forest and land products and residues, food processing effluents, municipal wastes) as well as the various energy process (production of alcohol, methane, thermochemical processes, vegetable oils). The development and the feasability of these processes in marginal areas are finally analyzed taking into account the accessibility of the biomass and the technical and commercial impacts.

  10. Volcanic Ash Advisory Database, 1983-2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanic ash is a significant hazard to aviation and can also affect global climate patterns. To ensure safe navigation and monitor possible climatic impact, the...

  11. Palaeoclimate: Volcanism caused ancient global warming

    Science.gov (United States)

    Meissner, Katrin J.; Bralower, Timothy J.

    2017-08-01

    A study confirms that volcanism set off one of Earth's fastest global-warming events. But the release of greenhouse gases was slow enough for negative feedbacks to mitigate impacts such as ocean acidification. See Letter p.573

  12. Volcanics in the Gulf Coast [volcanicg

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The volcanic provinces are modified after Plate 2, Principal structural features, Gulf of Mexico Basin (compiled by T.E. Ewing and R.F. Lopez) in Volume J, The...

  13. Volcanic rock properties control sector collapse events

    Science.gov (United States)

    Hughes, Amy; Kendrick, Jackie; Lavallée, Yan; Hornby, Adrian; Di Toro, Giulio

    2017-04-01

    Volcanoes constructed by superimposed layers of varying volcanic materials are inherently unstable structures. The heterogeneity of weak and strong layers consisting of ash, tephra and lavas, each with varying coherencies, porosities, crystallinities, glass content and ultimately, strength, can promote volcanic flank and sector collapses. These volcanoes often exist in areas with complex regional tectonics adding to instability caused by heterogeneity, flank overburden, magma movement and emplacement in addition to hydrothermal alteration and anomalous geothermal gradients. Recent studies conducted on the faulting properties of volcanic rocks at variable slip rates show the rate-weakening dependence of the friction coefficients (up to 90% reduction)[1], caused by a wide range of factors such as the generation of gouge and frictional melt lubrication [2]. Experimental data from experiments conducted on volcanic products suggests that frictional melt occurs at slip rates similar to those of plug flow in volcanic conduits [1] and the bases of mass material movements such as debris avalanches from volcanic flanks [3]. In volcanic rock, the generation of frictional heat may prompt the remobilisation of interstitial glass below melting temperatures due to passing of the glass transition temperature at ˜650-750 ˚C [4]. In addition, the crushing of pores in high porosity samples can lead to increased comminution and strain localisation along slip surfaces. Here we present the results of friction tests on both high density, glass rich samples from Santaguito (Guatemala) and synthetic glass samples with varying porosities (0-25%) to better understand frictional properties underlying volcanic collapse events. 1. Kendrick, J.E., et al., Extreme frictional processes in the volcanic conduit of Mount St. Helens (USA) during the 2004-2008 eruption. J. Structural Geology, 2012. 2. Di Toro, G., et al., Fault lubrication during earthquakes. Nature, 2011. 471(7339): p. 494-498. 3

  14. MARGINS mini-lessons: A tour of the Mariana Subduction System (Invited)

    Science.gov (United States)

    Goodliffe, A. M.; Oakley, A.

    2009-12-01

    MARGINS mini-lessons provide an efficient way to quickly move cutting edge MARGINS research into the university classroom. Instructors who are not necessarily familiar with the MARGINS program can easily use mini-lessons in a variety of educational settings. The mini-lesson described herein is centered on bathymetric and multi-channel seismic data collected during a 2003 NSF-MARGINS funded marine geophysical survey in the Mariana Basin. Designed as an approximately sixty minute lecture segment, the lesson covers both the techniques used to collect marine geophysical data and a description of the geology of the system. All geological provinces are included, from the subducting Pacific Plate in the east to the remnant arc in the west. Representative seismic lines and bathymetric images are presented for each province, along with a description of key processes including deformation of the subducting plate, serpentinite mud volcanism, forearc faulting, potentially tsunamigenic landslides, arc volcanism, and backarc spreading. The Mariana subduction system mini-lesson requires a computer with an internet connection, powerpoint, Google Earth, and a web-browser. Questions are embedded in the powerpoint presentation that can be adapted to a specific interactive response system as needed. Optimally the lesson should be used in parallel with a GeoWall. A 3-dimensional ArcScene visualization of the Mariana system is available for download through the MARGINS mini-lessons web site. Such visualizations are particularly effective in helping students understand complex three-dimensional systems. If presented in a computer lab students will benefit from being able to explore the Mariana system using tools such as GeoMapApp.

  15. About the Mechanism of Volcanic Eruptions

    CERN Document Server

    Nechayev, Andrei

    2012-01-01

    A new approach to the volcanic eruption theory is proposed. It is based on a simple physical mechanism of the imbalance in the system "magma-crust-fluid". This mechanism helps to explain from unified positions the different types of volcanic eruptions. A criterion of imbalance and magma eruption is derived. Stratovolcano and caldera formation is analyzed. High explosive eruptions of the silicic magma is discussed

  16. Episodic Volcanism and Geochemistry in Western Nicaragua

    Science.gov (United States)

    Saginor, I.; Carr, M. J.; Gazel, E.; Swisher, C.; Turrin, B.

    2007-12-01

    The active volcanic arc in western Nicaragua is separated from the Miocene arc by a temporal gap in the volcanic record, during which little volcanic material was erupted. Previous work suggested that this gap lasted from 7 to 1.6 Ma, during which volcanic production in Nicaragua was limited or nonexistent. Because the precise timing and duration of this gap has been poorly constrained, recent fieldwork has focused on locating samples that may have erupted close to or even during this apparent hiatus in activity. Recent 40Ar/39Ar dates reveal pulses of low- level episodic volcanism at 7 Ma and 1 Ma between the active and Miocene arcs with current volcanism beginning ~350 ka. In addition, sampling from an inactive area between Coseguina and San Cristobal yielded two distinct groupings of ages; one of Tamarindo age (13 Ma) and the other around 3.5 Ma-the only samples of that age collected on-strike with the active arc. This raises the possibility the bases of the other active volcanoes contain lavas that are older than expected, but have been covered by subsequent eruptions. The Miocene arc differs from the active arc in Central America in several ways, with the latter having higher Ba/La and U/Th values due to increased slab input and changes in subducted sediment composition. Analysis of sample C-51 and others taken from the same area may shed light on the timing of this shift from high to low Ba/La and U/Th values. More importantly, it may help explain why the arc experienced such a dramatic downturn in volcanic production during this time. We also report 25 new major and trace element analyses that shed some light on the origins of these minor episodes of Nicaraguan volcanism. These samples are currently awaiting Sr and Nd isotopic analyses.

  17. Seismostratigraphy of the Ceará Plateau: clues to decipher the Cenozoic evolution of Brazilian Equatorial Margin

    Science.gov (United States)

    Jovane, Luigi; Figueiredo, Jorge; Alves, Daniel; Iacopini, David; Giorgioni, Martino; Vannucchi, Paola; de Moura, Denise; Bezerra, Francisco; Vital, Helenice; Rios, Isabella; Molina, Eder

    2016-10-01

    The Ceará Plateau offshore Fortaleza holds some particular characteristics when compared to the other seamounts of the Brazilian Equatorial Margin (BEM). Not only it is the largest and the closest to the continent, it is also located at the boundary between the continental and the oceanic crusts, while all the others seamounts along the BEM are located on oceanic crust. Seismic imaging of the Ceará Plateau shows a “disorganized” interior, probably of volcanic origin, overlain by a series of horizontal seismic reflectors that can be interpreted as pelagic/hemipelagic sediments. As large uncertainties exist about the age of the initial formation of this seamount, three scenarios must be considered. If the age of the volcanic edifice is Coniacian (1), then the overlying pelagic/hemipelagic sedimentary succession can include an almost continuous record of the last 90 Ma at the Equatorial Atlantic Ocean. In the case that the volcanic edifice is Eocene in age (2), the sedimentary sequence would still encompass the upper Paleogene and all the Neogene. There is also the possibility that the volcanic edifice was built during multiple magmatic events (3). In this case, it is likely that the sediments are interfingered with volcanic rocks at the edge of the structure. Although the age estimation (between Coniacian and Eocene) has an uncertainty of more than 40 Myr, the current interpretation is that it developed initially as a volcanic edifice, formed by a series of magmatic events that occurred between the Santonian and the Eocene. Since then, the topography has been leveled by pelagic/hemipelagic sedimentation. Whichever was the initial age, a continuous and constant sequence of sediments deposited onto the Ceará Plateau, at the same latitude, and thus under the same oceanographic conditions, for the last several tens of million years. This represents a unique opportunity to record a long-term history of the Atlantic Equatorial Margin.

  18. Timing and composition of continental volcanism at Harrat Hutaymah, western Saudi Arabia

    Science.gov (United States)

    Duncan, Robert A.; Kent, Adam J. R.; Thornber, Carl R.; Schlieder, Tyler D.; Al-Amri, Abdullah M.

    2016-03-01

    Harrat Hutaymah is an alkali basalt volcanic field in north-central Saudi Arabia, at the eastern margin of a large Neogene continental, intraplate magmatic province. Lava flow, tephra and spatter cone compositions in the field include alkali olivine basalts and basanites. These compositions contrast with the predominantly tholeiitic, fissure-fed basalts found along the eastern margin of the Red Sea. The Hutaymah lava flows were erupted through Proterozoic arc-associated plutonic and meta-sedimentary rocks of the Arabian shield, and commonly contain a range of sub-continental lithospheric xenoliths, although the lavas themselves show little indication of crustal contamination. Previous radiometric dating of this volcanic field (a single published K-Ar age; 1.8 Ma) is suspiciously old given the field measurement of normal magnetic polarity only (i.e. Brunhes interval, ≤ 780 Ka). We report new age determinations on 14 lava flows by the 40Ar-39Ar laser step heating method, all younger than ~ 850 Ka, to better constrain the time frame of volcanism, and major, trace and rare earth element compositions to describe the chemical variation of volcanic activity at Harrat Hutaymah. Crystal fractionation was dominated by olivine ± clinopyroxene at a range of upper mantle and crustal pressures. Rapid ascent and eruption of magma is indicated by the array of lower crustal and lithospheric xenoliths observed in lava flows and tephra. Modeling suggests 1-7% melting of an enriched asthenospheric mantle source occurred beneath Harrat Hutaymah under a relatively thick lithospheric cap (60-80 km).

  19. Timing and composition of continental volcanism at Harrat Hutaymah, western Saudi Arabia

    Science.gov (United States)

    Duncan, Robert A; Kent, Adam J R; Thornber, Carl; Schliedler, Tyler D; Al-Amri, Abdullah M

    2016-01-01

    Harrat Hutaymah is an alkali basalt volcanic field in north-central Saudi Arabia, at the eastern margin of a large Neogene continental, intraplate magmatic province. Lava flow, tephra and spatter cone compositions in the field include alkali olivine basalts and basanites. These compositions contrast with the predominantly tholeiitic, fissure-fed basalts found along the eastern margin of the Red Sea. The Hutaymah lava flows were erupted through Proterozoic arc-associated plutonic and meta-sedimentary rocks of the Arabian shield, and commonly contain a range of sub-continental lithospheric xenoliths, although the lavas themselves show little indication of crustal contamination. Previous radiometric dating of this volcanic field (a single published K–Ar age; 1.8 Ma) is suspiciously old given the field measurement of normal magnetic polarity only (i.e. Brunhes interval, ≤ 780 Ka). We report new age determinations on 14 lava flows by the 40Ar–39Ar laser step heating method, all younger than ~ 850 Ka, to better constrain the time frame of volcanism, and major, trace and rare earth element compositions to describe the chemical variation of volcanic activity at Harrat Hutaymah. Crystal fractionation was dominated by olivine ± clinopyroxene at a range of upper mantle and crustal pressures. Rapid ascent and eruption of magma is indicated by the array of lower crustal and lithospheric xenoliths observed in lava flows and tephra. Modeling suggests 1–7% melting of an enriched asthenospheric mantle source occurred beneath Harrat Hutaymah under a relatively thick lithospheric cap (60–80 km).

  20. Crustal thickness at the Tuxtla Volcanic Field (Veracruz, Mexico) from receiver functions

    Science.gov (United States)

    Zamora-Camacho, A.; Espindola, V. H.; Pacheco, J. F.; Espindola, J. M.; Godinez, M. L.

    2010-09-01

    The Tuxtla Volcanic Field (TVF) is a structure of basaltic rocks on the western margin of the Gulf of Mexico in the Mexican State of Veracruz. Located some 150 km from the easternmost tip of the Mexican Volcanic Belt, its tectonic relationship is still unclear. The volcanism, mostly alkaline, is younger than 7 Ma and has given origin to hundreds of cinder and scoria cones, maars and four large composite volcanoes, one of which, San Martín Tuxtla, erupted explosively in 1793. Due to its volcanological importance, it has been the subject of several geological studies, none of which focused on its crustal structure. Moreover, because the seismicity level in the area is relatively low, no broadband seismometers of Mexico's National Seismological Service are currently installed in the area. In this paper we present the results of the analyses of 24 teleseismic events occurring between 2004 and 2008 recorded in two broadband stations deployed around San Martín volcano. The aim of this study was to determine the depth to the Moho, any major intracrustal interface in the area, and a velocity model by means of receiver function analysis. The results show that the crustal thickness in the area varies between roughly 28 and 34 km. The receiver functions at one station suggest a second interface at a depth between 10 and 14 km. This interface is probably the contact between an upper sedimentary layer and the transitional crust found elsewhere in the margins of the Gulf of Mexico. The determination of the crustal thickness in the TVF is of importance to characterize the area and as a framework to pursue further studies of this volcanic field.

  1. Dynamics of the continental margins

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-01

    On 18--20 June 1990, over 70 oceanographers conducting research in the ocean margins of North America attended a workshop in Virginia Beach, Virginia. The purpose of the workshop was to provide the Department of Energy with recommendations for future research on the exchange of energy-related materials between the coastal and interior ocean and the relationship between the ocean margins and global change. The workshop was designed to optimize the interaction of scientists from specific research disciplines (biology, chemistry, physics and geology) as they developed hypotheses, research questions and topics and implementation plans. The participants were given few restraints on the research they proposed other than realistic time and monetary limits. The interdisciplinary structure of the meeting promoted lively discussion and creative research plans. The meeting was divided into four working groups based on lateral, vertical, air/sea and sediment/water processes. Working papers were prepared and distributed before the meeting. During the meeting the groups revised the papers and added recommendations that appear in this report, which was reviewed by an Executive Committee.

  2. Volcanic loading: The dust veil index

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, H.H. [Univ. of East Anglia, Norwich (United Kingdom). Climatic Research Unit

    1985-09-01

    Dust ejected into the high atmosphere during explosive volcanic eruptions has been considered as a possible cause for climatic change. Dust veils created by volcanic eruptions can reduce the amount of light reaching the Earth`s surface and can cause reductions in surface temperatures. These climatic effects can be seen for several years following some eruptions and the magnitude and duration of the effects depend largely on the density or amount of tephra (i.e. dust) ejected, the latitude of injection, and atmospheric circulation patterns. Lamb (1970) formulated the Dust Veil Index (DVI) in an attempt to quantify the impact on the Earth`s energy balance of changes in atmospheric composition due to explosive volcanic eruptions. The DVI is a numerical index that quantifies the impact on the Earth`s energy balance of changes in atmospheric composition due to explosive volcanic eruptions. The DVI is a numerical index that quantifies the impact of a particular volcanic eruptions release of dust and aerosols over the years following the event. The DVI for any volcanic eruptions are available and have been used in estimating Lamb`s dust veil indices.

  3. Formation Conditions and Distribution Regularities of Oil—gas Pools in Tertiary Volcanic Rocks in Western Huimin Depression,Shandong Province

    Institute of Scientific and Technical Information of China (English)

    刘泽容; 王永杰; 等

    1989-01-01

    The formation conditions and distribution regularities of oil-gas pools in volcanic rocks in western Huimin Depression have been studied in terms of geolgic,sesmic and well logging information,This paper discusses the types and lithofacies,development and distribution of Tertiary volcanic rocks in the area.The results demonstrate that volcanic activity occurred mainly during the period from the Sha-4 stage to the Guantao episode,i.e.,before the oil-generating period(before the end of the Guantao episode and the Minghuazhen episode).The activity did not destroy oil and gas formation and accumulation,but was favourable for the concentration of organic matter and its conversion to hydrocarbons;besides,volcanic rocks can serve as reservoir rocks and cap rocks,playing a role very similar to that of a syndepositional anticline,The volcanic rocks are distributed near the margins of the oil-generating depression;there are many secondary interstices in the rocks,which are connected with each other.These are the leading conditions for the formation of oil-generating period and their self-sealing or good combination with other cap rocks are important factors for forming volcanic rock-hosted oil and gas pools.The oil-gas pools associated with volcanic rocks in western Huimin are mainly distributed around the deep oil-generating depression,in the central up lift or the high structural levels on the margins of the depression.In particular,the sites where several faults cross are usually locatons where hith-yielding oil-gas pools in volcanic rocks are concentrated.

  4. Sedimentation and potential venting on the rifted continental margin of Dronning Maud Land

    Science.gov (United States)

    Huang, Xiaoxia; Jokat, Wilfried

    2016-12-01

    The relief of Dronning Maud Land (DML), formed by Middle and Late Mesozoic tectonic activity, had a strong spatial control on the early fluvial and subsequent glacial erosion and deposition. The sources, processes, and products of sedimentation along the DML margin and in the Lazarev Sea in front of the DML mountains have been barely studied. The onshore mountain belt parallel to the coast of the DML margin acts as a barrier to the transport of terrigenous sediments from the east Antarctic interior to the margin and into the Lazarev Sea. Only the Jutul-Penck Graben system allows a localized ice stream controlled transport of material from the interior of DML across its old mountain belt. Offshore, we attribute repeated large-scale debris flow deposits to instability of sediments deposited locally on the steep gradient of the DML margin by high sediment flux. Two types of canyons are defined based on their axial dimensions and originated from turbidity currents and slope failures during glacial/fluvial transport. For the first time, we report pipe-like seismic structures in this region and suggest that they occurred as consequences of volcanic processes. Sedimentary processes on the DML margin were studied using seismic reflection data and we restricted the seismic interpretation to the identification of major seismic sequences and their basal unconformities.

  5. Sedimentation and potential venting on the rifted continental margin of Dronning Maud Land

    Science.gov (United States)

    Huang, Xiaoxia; Jokat, Wilfried

    2016-11-01

    The relief of Dronning Maud Land (DML), formed by Middle and Late Mesozoic tectonic activity, had a strong spatial control on the early fluvial and subsequent glacial erosion and deposition. The sources, processes, and products of sedimentation along the DML margin and in the Lazarev Sea in front of the DML mountains have been barely studied. The onshore mountain belt parallel to the coast of the DML margin acts as a barrier to the transport of terrigenous sediments from the east Antarctic interior to the margin and into the Lazarev Sea. Only the Jutul-Penck Graben system allows a localized ice stream controlled transport of material from the interior of DML across its old mountain belt. Offshore, we attribute repeated large-scale debris flow deposits to instability of sediments deposited locally on the steep gradient of the DML margin by high sediment flux. Two types of canyons are defined based on their axial dimensions and originated from turbidity currents and slope failures during glacial/fluvial transport. For the first time, we report pipe-like seismic structures in this region and suggest that they occurred as consequences of volcanic processes. Sedimentary processes on the DML margin were studied using seismic reflection data and we restricted the seismic interpretation to the identification of major seismic sequences and their basal unconformities.

  6. Continuous measurements of volcanic gases from Popocatepetl volcano by thermal emission spectroscopy

    Science.gov (United States)

    Taquet, Noemie; Stremme, Wolfgang; Meza, Israel; Grutter, Michel

    2016-04-01

    Passive volcanic gas emissions have been poorly studied despite their impact on the atmospheric chemistry with important consequences on its geochemical cycles and climate change on regional and global scale. Therefore, long-term monitoring of volcanic gas plumes and their composition are of prime importance for climatic models and the estimation of the volcanic contribution to climate change. We present a new measurement and analysis strategy based on remote thermal emission spectroscopy which can provide continuous (day and night) information of the composition of the volcanic plume. In this study we show results from the Popocatepetl volcano in Mexico with measurements performed during the year 2015 from the Altzomoni Atmospheric Observatory (19.12N, -98.65W, 3,985 masl). This site, which forms part of the RUOA (www.ruoa.unam.mx) and NDACC (https://www2.acom.ucar.edu/irwg) networks, is located north of the crater of this active volcano at 12 km distance. Emission spectra were recorded with an FTIR spectrometer (OPAG22, Bruker) at 0.5 cm-1 spectral resolution and processed using the SFIT4 radiative transfer and profile retrieval code, based on the Optimal Estimation method (Rodgers, 1976; 1990; 2000). This newly improved methodology is intercompared to a former retrieval strategy using measurements from 2008 and recent results of the variability of the SiF4/SO2 composition ratio during 2015 is presented. A discussion of how the new measurements improve the understating of the impact of volcanic gas emissions on the atmosphere on global and regional scale is included.

  7. Local seismic hazard assessment in explosive volcanic settings by 3D numerical analyses

    Science.gov (United States)

    Razzano, Roberto; Pagliaroli, Alessandro; Moscatelli, Massimiliano; Gaudiosi, Iolanda; Avalle, Alessandra; Giallini, Silvia; Marcini, Marco; Polpetta, Federica; Simionato, Maurizio; Sirianni, Pietro; Sottili, Gianluca; Vignaroli, Gianluca; Bellanova, Jessica; Calamita, Giuseppe; Perrone, Angela; Piscitelli, Sabatino

    2017-04-01

    This work deals with the assessment of local seismic response in the explosive volcanic settings by reconstructing the subsoil model of the Stracciacappa maar (Sabatini Volcanic District, central Italy), whose pyroclastic succession records eruptive phases ended about 0.09 Ma ago. Heterogeneous characteristics of the Stracciacappa maar (stratification, structural setting, lithotypes, and thickness variation of depositional units) make it an ideal case history for understanding mechanisms and processes leading to modifications of amplitude-frequency-duration of seismic waves generated at earthquake sources and propagating through volcanic settings. New geological map and cross sections, constrained with recently acquired geotechnical and geophysical data, illustrate the complex geometric relationships among different depositional units forming the maar. A composite interfingering between internal lacustrine sediments and epiclastic debris, sourced from the rim, fills the crater floor; a 45 meters thick continuous coring borehole was drilled in the maar with sampling of undisturbed samples. Electrical Resistivity Tomography surveys and 2D passive seismic arrays were also carried out for constraining the geological model and the velocity profile of the S-waves, respectively. Single station noise measurements were collected in order to define natural amplification frequencies. Finally, the nonlinear cyclic soil behaviour was investigated through simple shear tests on the undisturbed samples. The collected dataset was used to define the subsoil model for 3D finite difference site response numerical analyses by using FLAC 3D software (ITASCA). Moreover, 1D and 2D numerical analyses were carried out for comparison purposes. Two different scenarios were selected as input motions: a moderate magnitude (volcanic event) and a high magnitude (tectonic event). Both earthquake scenarios revealed significant ground motion amplification (up to 15 in terms of spectral acceleration

  8. Initiation of subduction at Atlantic-type margins: Insights from laboratory experiments

    Science.gov (United States)

    Faccenna, Claudio; Giardini, Domenico; Davy, Philippe; Argentieri, Alessio

    1999-02-01

    We have performed scaled lithospheric experiments to simulate the behavior of a ocean-continent plate system subjected to compressional strain over a geological timescale. Experiments have been constructed using sand and silicone putty, representing the brittle upper crust and the ductile lower crust/upper mantle, respectively; the layers floated on glucose syrup simulating the asthenosphere. Compressional stress is achieved by displacing a piston at constant velocity perpendicular to the plate margin. We investigate the influence of four parameters: (1) the negative buoyancy of oceanic lithosphere, (2) the horizontal body forces between continent and ocean, and (3) the brittle and (4) the ductile strength of the passive margin. Two numbers express the importance of these parameters: the Argand number (Ar), representing the ratio between the body force of continent and its integrated strength, and the buoyancy number (F), representing the ratio between the buoyancy force of ocean and its ductile resistance. We obtain three scenarios. In experiments with Ar 3 and F 1 the continent collapses toward the ocean, producing back-arc extension and subduction, simulating the post-Alpine Neogene evolution of the Mediterranean area. In experiments with Ar 3 and F > 1 the passive margin slowly evolves toward trench nucleation with the formation of a viscous mantle instability. We conclude that the latter model can be applied to the evolution of Atlantic-type margins, where there is evidence of this ongoing process.

  9. Multiple episodes of hydrothermal activity and epithermal mineralization in the southwestern Nevada volcanic field and their relations to magmatic activity, volcanism and regional extension

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, S.I.; Noble, D.C.; Jackson, M.C. [Univ. of Nevada, Reno, NV (United States)] [and others

    1994-12-31

    Volcanic rocks of middle Miocene age and underlying pre-Mesozoic sedimentary rocks host widely distributed zones of hydrothermal alteration and epithermal precious metal, fluorite and mercury deposits within and peripheral to major volcanic and intrusive centers of the southwestern Nevada volcanic field (SWNVF) in southern Nevada, near the southwestern margin of the Great Basin of the western United States. Radiometric ages indicate that episodes of hydrothermal activity mainly coincided with and closely followed major magmatic pulses during the development of the field and together spanned more than 4.5 m.y. Rocks of the SWNVF consist largely of rhyolitic ash-flow sheets and intercalated silicic lava domes, flows and near-vent pyroclastic deposits erupted between 15.2 and 10 Ma from vent areas in the vicinity of the Timber Mountain calderas, and between about 9.5 and 7 Ma from the outlying Black Mountain and Stonewall Mountain centers. Three magmatic stages can be recognized: the main magmatic stage, Mountain magmatic stage (11.7 to 10.0 Ma), and the late magmatic stage (9.4 to 7.5 Ma).

  10. Back arc extension, tectonic inheritance, and volcanism in the Ligurian Sea, Western Mediterranean

    Science.gov (United States)

    Rollet, Nadège; Déverchère, Jacques; Beslier, Marie-Odile; Guennoc, Pol; Réhault, Jean-Pierre; Sosson, Marc; Truffert, Catherine

    2002-06-01

    The Ligurian basin, western Mediterranean Sea, has opened from late Oligocene to early Miocene times, behind the Apulian subduction zone and partly within the western Alpine belt. We analyze the deep structures of the basin and its conjugate margins in order to describe the tectonic styles of opening and to investigate the possible contributions of forces responsible for the basin formation, especially the pulling force induced by the retreating subduction hinge and the gravitational body force from the Alpine wedge. To undertake this analysis, we combine new multichannel seismic reflection data (Malis cruise, 1995) with other geophysical data (previous multichannel and monochannel seismic sections, magnetic anomalies) and constrain them by geological sampling from two recent cruises (dredges from Marco cruise, 1995, and submersible dives from Cylice cruise, 1997). From an analysis of basement morphology and seismic facies, we refine the extent of the different domains in the Ligurian Sea: (1) the continental thinned margins, with strong changes in width and structure along strike and on both sides of the ocean; (2) the transitional domain to the basin; and (3) a narrow, atypical oceanic domain. Margin structures are characterized by few tilted blocks along the narrow margins, where inherited structures seem to control synrift sedimentation and margin segmentation. On the NW Corsican margin, extension is distributed over more than 120 km, including offshore Alpine Corsica, and several oceanward faults sole on a relatively flat reflector. We interpret them as previous Alpine thrusts reactivated during rifting as normal faults soling on a normal ductile shear zone. Using correlations between magnetic data, seismic facies, and sampling, we propose a new map of the distribution of magmatism. The oceanic domain depicts narrow, isolated magnetic anomalies and is interpreted as tholeitic volcanics settled within an unroofed upper mantle, whereas calcalkaline volcanism

  11. Passive inhalation of cannabis smoke

    Energy Technology Data Exchange (ETDEWEB)

    Law, B.; Mason, P.A.; Moffat, A.C.; King, L.J.; Marks, V.

    1984-09-01

    Six volunteers each smoked simultaneously, in a small unventilated room (volume 27 950 liter), a cannabis cigarette containing 17.1 mg delta 9-tetrahydrocannabinol (THC). A further four subjects - passive inhalers - remained in the room during smoking and afterwards for a total of 3 h. Blood and urine samples were taken from all ten subjects and analyzed by radioimmunoassay for THC metabolites. The blood samples from the passive subjects taken up to 3 h after the start of exposure to cannabis smoke showed a complete absence of cannabinoids. In contrast, their urine samples taken up to 6 h after exposure showed significant concentrations of cannabinoid metabolites (less than or equal to 6.8 ng ml-1). These data, taken with the results of other workers, show passive inhalation of cannabis smoke to be possible. These results have important implications for forensic toxicologists who are frequently called upon to interpret cannabinoid levels in body fluids.

  12. Active Versus Passive Academic Networking

    DEFF Research Database (Denmark)

    Goel, Rajeev K.; Grimpe, Christoph

    2013-01-01

    This paper examines determinants of networking by academics. Using information from a unique large survey of German researchers, the key contribution focuses on the active versus passive networking distinction. Is active networking by researchers a substitute or a complement to passive networking......? Other contributions include examining the role of geographic factors in networking and whether research bottlenecks affect a researcher's propensity to network. Are the determinants of European conference participation by German researchers different from conferences in rest of the world? Results show...... that some types of passive academic networking are complementary to active networking, while others are substitute. Further, we find differences in factors promoting participation in European conferences versus conferences in rest of the world. Finally, publishing bottlenecks as a group generally do...

  13. The influence of rifting on escarpment migration on high elevation passive continental margins

    National Research Council Canada - National Science Library

    V. Sacek; J. Braun; P. van der Beek

    2012-01-01

    .... In this configuration, a drainage divide that persists through time appears landward of the initial escarpment in a position close to a secondary bulge that is created during the rifting event...

  14. Phosphorus-bearing Aerosol Particles From Volcanic Plumes

    Science.gov (United States)

    Obenholzner, J. H.; Schroettner, H.; Poelt, P.; Delgado, H.; Caltabiano, T.

    2003-12-01

    Particles rich in P or bulk geochemical data of volcanic aerosol particles showing high P contents are known from many volcanic plumes (Stanton, 1994; Obenholzner et al., 2003). FESEM/EDS analysis of individual particles obtained from the passively degassing plume of Popocatepetl volcano, Mx. (1997) and from the plume of Stromboli (May 2003) show P frequently. Even at the high resolution of the FESEM, euhedral apatite crystals could not be observed. At Popocatepetl (1997) spherical Ca-P-O particles are common. Fluffy, fractal or botryoidal particles also can contain EDS-detectable amounts of P. The EDS spectrum of such particles can comprise various elements. However most particles show P, S and Cl. P-S and P-S-metal species are known in chemistry but do they occur in volcanic plumes? Stoichiometric considerations had been made in the past suggesting the existence of P-S species in plumes (Stanton 1994), gas sampling and remote gas monitoring systems have not detected yet such molecules in plumes. The particle spectrum of the reawakened Popocateptel volcano might be related to accumulation of volatiles at the top of a magma chamber during the phase of dormancy. P-Fe rich, Ca-free aggregates are also known from the eruption of El Chichon 1982 (SEM/EDS by M. Sheridan, per. comm. 08-24-2003). Persistently active volcanoes (i.e. Stromboli) represent a different category according to continuous degassing and aerosol particle formation. A particle collector ( ca. 90 ml/min) accompanied a COSPEC helicopter flight at Stromboli (May 15, 2003) after one of the rare types of sub-plinian events on April 5 2003. P-bearing particles are very common. For instance, an Fe oxide grain (diam. = 2 æm) is partially covered by fluffy and euhedral P-bearing matter. The elements detected are P, Cl, Na, Mg, Al, Si, K, Ca, Ti and (Fe). The fluffy and the euhedral (rhombohedral?) matter show in SE-BSE-mix image almost identical grey colors. At Stromboli and Popocatepetl particles on which

  15. Occurrence of volcanic ash in the Quaternary alluvial deposits, lower Narmada basin, western India

    Indian Academy of Sciences (India)

    Rachna Raj

    2008-02-01

    This communication reports the occurrence of an ash layer intercalated within the late Quaternary alluvial succession of the Madhumati River, a tributary of the lower Narmada River. Petrographic, morphological and chemical details of glass shards and pumice fragments have formed the basis of this study. The ash has been correlated with the Youngest Toba Tuff. The finding of ash layer interbedded in Quaternary alluvial sequences of western Indian continental margin is significant, as ash being datable material, a near precise time-controlled stratigraphy can be interpreted for the Quaternary sediments of western India. The distant volcanic source of this ash requires a fresh re-assessment of ash volume and palaeoclimatic interpretations.

  16. Passivation of high temperature superconductors

    Science.gov (United States)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  17. Architectural Qualities in Passive Houses

    DEFF Research Database (Denmark)

    Brunsgaard, Camilla

    2012-01-01

    In recent years in Denmark there has been an increasing focus on implementing passive and active strategies in buildings to fulfil low energy demands like for example the Passive House Standard. From a technical rational perspective, plenty of pilot projects and commercial projects have shown...... that it is possible to build this type of houses, but the knowledge and discussion about the architectural quality in the buildings is hardly present. The question is if the strategies for optimising energy use and indoor environment collide with the architectural qualities of buildings. This paper brings forth...

  18. Molybdate based passivation of zinc

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Bech-Nielsen, Gregers; Møller, Per

    1997-01-01

    In order to reduce corrosion rates, zinc plated parts are usually chromated. Recently chromates have caused increasingly environmental concern, for both allergic effects among workers touching chro-mated parts and toxic effects on fish, plants and bacteria. A molybdate based alternative has been...... developed to replace chromates in several passivation applica-tions. Depending on the environment in which the passivated parts are to be exposed, the protection that this alternative treatment provides range from less efficient to more efficient as compared to chromate. These aspects as well as issues...

  19. The Danish Reportive Passive as a Non-Canonical Passive

    DEFF Research Database (Denmark)

    Ørsnes, Bjarne

    2013-01-01

    Danish passive utterance and cognitive verbs allow a construction where the subject of an infinitival complement is raised: Peter siges at være bortrejst (‘Peter is said to be out of town’). Contrary to English, these verbs are not ECM-verbs or subject-to-object raising verbs in the active...

  20. Passivity and passivity breakdown of zinc anode in alkaline medium

    Energy Technology Data Exchange (ETDEWEB)

    Abd El Rehim, S.S. [Ain Shams Univ., Cairo (Egypt). Dept. of Chemistry; Abd El Wahab, S.M. [Ain Shams Univ., Cairo (Egypt). Dept. of Chemistry; Fouad, E.E. [Ain Shams Univ., Cairo (Egypt). Dept. of Chemistry; Hassan, H.H. [Ain Shams Univ., Cairo (Egypt). Dept. of Chemistry

    1995-11-01

    The electrochemical behaviour of zinc in NaOH solutions has been investigated by using potentiodynamic technique and complemented by X-ray analysis. The E/i curves exhibit active, passive and transpassive regions prior to oxygen evolution. The active region displays two anodic peaks. The passivity is due to the formation of a compact Zn(OH){sub 2} film on the anode surface. The transpassive region is assigned to the electroformation of ZnO{sub 2}. The reverse sweep shows an activation anodic peak and one cathodic peak prior to hydrogen evolution. The influence of increasing additives of NaCl, NaBr and NaI on the anodic behaviour of zinc in NaOH solutions has been studied. The halides stimulate the active dissolution of zinc and tend to break down the passive film, leading to pitting corrosion. The aggressiveness of the halide anions towards the stability of the passive film decreases in the order: I{sup -} > Br{sup -} > Cl{sup -}. The susceptibility of zinc anode to pitting corrosion enhances with increasing the halide ion concentration but decreases with increasing both the alkali concentration and the sweep rate. (orig.)

  1. Pulmonary effects of passive smoking: the Indian experience

    Directory of Open Access Journals (Sweden)

    Gupta D

    2002-06-01

    Full Text Available Abstract There are only a few studies done on pulmonary effects of passive smoking from India, which are summarized in this paper. Several vernacular tobacco products are used in India, bidis (beedis being the commonest form of these. Bidis contain a higher concentration of nicotine and other tobacco alkaloids compared to the standard cigarettes (e.g., the sum of total nicotine and minor tobacco alkaloids was 37.5 mg in bidi compared to 14–16 mg in Indian or American cigarettes in one study. A large study performed on 9090 adolescent school children demonstrated environmental tobacco smoke (ETS exposure to be associated with an increased risk of asthma. The odds ratio for being asthmatic in ETS-exposed as compared to ETS-unexposed children was 1.78 (95% CI: 1.33–2.31. Nearly one third of the children in this study reported non-specific respiratory symptoms and the ETS exposure was found to be positively associated with the prevalence of each symptom. Passive smoking was also shown to increase morbidity and to worsen the control of asthma among adults. Another study demonstrated exposure to ETS was a significant trigger for acute exacerbation of asthma. Increased bronchial hyper-responsiveness was also demonstrated among the healthy nonsmoking adult women exposed to ETS. Passive smoking leads to subtle changes in airflow mechanics. In a study among 50 healthy nonsmoking women passively exposed to tobacco smoke and matched for age with 50 unexposed women, forced expiratory volume in first second (FEV1 and peak expiratory flow (PEF were marginally lower among the passive smokers (mean difference 0.13 L and 0.20 L-1, respectively, but maximal mid expiratory flow (FEF25–75%, airway resistance (Raw and specific conductance (sGaw were significantly impaired. An association between passive smoking and lung cancer has also been described. In a study conducted in association with the International Agency for Research on Cancer, the exposure to ETS

  2. Pulmonary effects of passive smoking: the Indian experience

    Directory of Open Access Journals (Sweden)

    Gupta D

    2003-01-01

    Full Text Available Abstract There are only a few studies done on pulmonary effects of passive smoking from India, which are summarized in this paper. Several vernacular tobacco products are used in India, bidis (beedis being the commonest form of these. Bidis contain a higher concentration of nicotine and other tobacco alkaloids compared to the standard cigarettes (e.g., the sum of total nicotine and minor tobacco alkaloids was 37.5 mg in bidi compared to 14–16 mg in Indian or American cigarettes in one study. A large study performed on 9090 adolescent school children demonstrated environmental tobacco smoke (ETS exposure to be associated with an increased risk of asthma. The odds ratio for being asthmatic in ETS-exposed as compared to ETS-unexposed children was 1.78 (95% CI: 1.33–2.31. Nearly one third of the children in this study reported non-specific respiratory symptoms and the ETS exposure was found to be positively associated with the prevalence of each symptom. Passive smoking was also shown to increase morbidity and to worsen the control of asthma among adults. Another study demonstrated exposure to ETS was a significant trigger for acute exacerbation of asthma. Increased bronchial hyper-responsiveness was also demonstrated among the healthy nonsmoking adult women exposed to ETS. Passive smoking leads to subtle changes in airflow mechanics. In a study among 50 healthy nonsmoking women passively exposed to tobacco smoke and matched for age with 50 unexposed women, forced expiratory volume in first second (FEV1 and peak expiratory flow (PEF were marginally lower among the passive smokers (mean difference 0.13 L and 0.20 L-1, respectively, but maximal mid expiratory flow (FEF25–75%, airway resistance (Raw and specific conductance (sGaw were significantly impaired. An association between passive smoking and lung cancer has also been described. In a study conducted in association with the International Agency for Research on Cancer, the exposure to ETS

  3. Nature and composition of interbedded marine basaltic pumice in the ˜52-50 Ma Vastan lignite sequence, western India: Implication for Early Eocene MORB volcanism offshore Arabian Sea

    Science.gov (United States)

    Sensarma, Sarajit; Singh, Hukam; Rana, R. S.; Paul, Debajyoti; Sahni, Ashok

    2017-03-01

    The recognition of pyroclasts preserved in sedimentary environments far from its source is uncommon. We here describe occurrences of several centimetres-thick discontinuous basaltic pumice lenses occurring within the Early Eocene Vastan lignite mine sedimentary sequence, western India at two different levels - one at ˜5 m and the other at 10 m above a biostratigraphically constrained 52 Ma old marker level postdating the Deccan Volcanism. These sections have received global attention as they record mammalian and plant radiations. We infer the repetitive occurrence of pumice have been sourced from a ˜52-50 Ma MORB related to sea-floor spreading in the western Arabian Sea, most plausibly along the Carlsberg Ridge. Pyroclasts have skeletal plagioclase with horsetail morphologies ± pyroxene ± Fe-Ti oxide euhedral crystals, and typically comprise of circular polymodal (radii ≤10 to ≥30 μm), non-coalescing microvesicles (>40-60%). The pumice have undergone considerable syngenetic alteration during oceanic transport and post-burial digenesis, and are a composite mixture of Fe-Mn-rich clay and hydrated altered basaltic glass (palagonite). The Fe-Mn-rich clay is extremely low in SiO 2, Al 2 O 3, TiO 2, MgO, alkalies and REE, but very high in Fe 2 O 3, MnO, P, Ba, Sr contents, and palagonitization involved significant loss of SiO 2, Al 2 O 3, MgO and variable gain in Fe 2 O 3, TiO 2, Ni, V, Zr, Zn and REE. Bubble initiation to growth in the ascending basaltic magma (liquidus ˜1200-1250 ∘C) may have occured in ˜3 hr. Short-distance transport, non-connected vesicles, deposition in inner shelf to more confined lagoonal condition in the Early Eocene and quick burial helped preservation of the pumice in Vastan. Early Eocene Arabian Sea volcanism thus might have been an additional source to marginal sediments along the passive margin of western India.

  4. Detailed Seismic Reflection Images of the Central American Volcanic Arc

    Science.gov (United States)

    McIntosh, K. D.; Fulthorpe, C. S.

    2005-12-01

    New high-resolution seismic reflection profiles across the Central American volcanic arc (CAVA) reveal an asymmetric deformation pattern with large-scale folding and uplift of basinal strata in the forearc contrasted by intrusive bodies, normal faults, and possible strikes-slip faults in the backarc. Since Miocene times the CAVA has migrated seaward, apparently impinging on the Sandino forearc basin and creating or modifying the low-lying Nicaragua depression, which contains the backarc and much of the arc. However the structural nature of the depression and its possible relationship to forearc sliver movement is poorly known. In November-December 2004 we recorded a large, high-resolution, seismic reflection dataset largely on the Pacific shelf (forearc) area of Central America, extending from NW Costa Rica to the SE edge of El Salvador's territorial waters. We seized an opportunity to study the nature of the CAVA by recording data into the Gulf of Fonseca, a large embayment at the intersection of Nicaragua, Honduras, and El Salvador. With 3 GI airguns and a 2100 m streamer we recorded data with typical penetration of 2-3 seconds in the Sandino basin and frequency content of ~10-250 Hz (at shallow levels). Penetration was limited over the arc summit with high velocity volcanic rocks encountered at depths as shallow as a few hundred meters. To the NE the edge of the Nicaragua depression occurs abruptly; our data show a well-developed sedimentary basin 1.5-3 km thick separated by numerous steeply-dipping faults. The broadband signal and good penetration of this dataset will help us determine the chronology of arc development in this position and the styles of deformation in the forearc, arc, and backarc areas. In turn, this will help us understand the regional tectonic and stratigraphic development of this margin due to the profound affects of the arc.

  5. Tracking small mountainous river derived terrestrial organic carbon across the active margin marine environment

    Science.gov (United States)

    Childress, L. B.; Blair, N. E.; Orpin, A. R.

    2015-12-01

    Active margins are particularly efficient in the burial of organic carbon due to the close proximity of highland sources to marine sediment sinks and high sediment transport rates. Compared with passive margins, active margins are dominated by small mountainous river systems, and play a unique role in marine and global carbon cycles. Small mountainous rivers drain only approximately 20% of land, but deliver approximately 40% of the fluvial sediment to the global ocean. Unlike large passive margin systems where riverine organic carbon is efficiently incinerated on continental shelves, small mountainous river dominated systems are highly effective in the burial and preservation of organic carbon due to the rapid and episodic delivery of organic carbon sourced from vegetation, soil, and rock. To investigate the erosion, transport, and burial of organic carbon in active margin small mountainous river systems we use the Waipaoa River, New Zealand. The Waipaoa River, and adjacent marine depositional environment, is a system of interest due to a large sediment yield (6800 tons km-2 yr-1) and extensive characterization. Previous studies have considered the biogeochemistry of the watershed and tracked the transport of terrestrially derived sediment and organics to the continental shelf and slope by biogeochemical proxies including stable carbon isotopes, lignin phenols, n-alkanes, and n-fatty acids. In this work we expand the spatial extent of investigation to include deep sea sediments of the Hikurangi Trough. Located in approximately 3000 m water depth 120 km from the mouth of the Waipaoa River, the Hikurangi Trough is the southern extension of the Tonga-Kermadec-Hikurangi subduction system. Piston core sediments collected by the National Institute of Water and Atmospheric Research (NIWA, NZ) in the Hikurangi Trough indicate the presence of terrestrially derived material (lignin phenols), and suggest a continuum of deposition, resuspension, and transport across the margin

  6. Venus volcanism - Classification of volcanic features and structures, associations, and global distribution from Magellan data

    Science.gov (United States)

    Head, James W.; Crumpler, L. S.; Aubele, Jayne C.; Guest, John E.; Saunders, R. S.

    1992-01-01

    A classification and documentation of the range of morphologic features and structures of volcanic origin on Venus, their size distribution, and their global distribution and associations are presented based on a preliminary analysis of Magellan data. Some of the major questions about volcanism on Venus are addressed.

  7. Internal architecture of the Tuxtla volcanic field, Veracruz, Mexico, inferred from gravity and magnetic data

    Science.gov (United States)

    Espindola, Juan Manuel; Lopez-Loera, Hector; Mena, Manuel; Zamora-Camacho, Araceli

    2016-09-01

    The Tuxtla Volcanic Field (TVF) is a basaltic volcanic field emerging from the plains of the western margin of the Gulf of Mexico in the Mexican State of Veracruz. Separated by hundreds of kilometers from the Trans-Mexican Volcanic Belt to the NW and the Chiapanecan Volcanic Arc to the SE, it stands detached not only in location but also in the composition of its rocks, which are predominantly alkaline. These characteristics make its origin somewhat puzzling. Furthermore, one of the large volcanoes of the field, San Martin Tuxtla, underwent an eruptive period in historical times (CE 1793). Such volcanic activity conveys particular importance to the study of the TVF from the perspective of volcanology and hazard assessment. Despite the above circumstances, few investigations about its internal structure have been reported. In this work, we present analyses of gravity and aeromagnetic data obtained from different sources. We present the complete Bouguer anomaly of the area and its separation into regional and residual components. The aeromagnetic data were processed to yield the reduction to the pole, the analytic signal, and the upward continuation to complete the interpretation of the gravity analyses. Three-dimensional density models of the regional and residual anomalies were obtained by inversion of the gravity signal adding the response of rectangular prisms at the nodes of a regular grid. We obtained a body with a somewhat flattened top at 16 km below sea level from the inversion of the regional. Three separate slender bodies with tops 6 km deep were obtained from the inversion of the residual. The gravity and magnetic anomalies, as well as the inferred source bodies that produce those geophysical anomalies, lie between the Sontecomapan and Catemaco faults, which are proposed as flower structures associated with an inferred deep-seated fault termed the Veracruz Fault. These fault systems along with magma intrusion at the lower crust are necessary features to

  8. Subglacial Calcites from Northern Victoria Land: archive of Antarctic volcanism in the Last Glacial Maximum

    Science.gov (United States)

    Frisia, Silvia; Weirich, Laura; Hellstrom, John; Borsato, Andrea; Golledge, Nicholas R.; Anesio, Alexandre M.; Bajo, Petra; Drysdale, Russell N.; Augustinus, Paul C.; Barbante, Carlo; Cooper, Alan

    2017-04-01

    Subglacial carbonates bear similarities to stalagmites in their fabrics and the potential to obtain precise chronologies using U-series methods. Their chemical properties also reflect those of their parent waters, which, in contrast to stalagmites, are those of subglacial meltwaters. In analogy to speleothems, stable Carbon isotope ratios and trace elements such as Uranium, Iron and Manganese provide the opportunity to investigate ancient extreme environments without the need to drill through thousands of metres of ice. Sedimentological, geochemical and microbial evidence preserved in LGM subglacial calcites from Northern Victoria Land, close to the East Antarctic Ice Sheet margin, allow us to infer that subglacial volcanism was active in the Trans Antarctic Mountain region and induced basal ice melting. We hypothesize that a meltwater reservoir was drained and injected into interconnected basal pore systems where microbial processes enhanced bedrock weathering and, thus, released micronutrients. Volcanic influence is supported by the presence of fluorine (F) and sulphur in sediment-laden calcite layers containing termophilic species. Notably, calcite δ13C points to dissolved inorganic carbon evolved from subglacial metabolic processes. Once transported to the sea, soluble iron likely contributed to fertilizing the Southern Ocean and CO2 drawdown. This is the first well-dated evidence for LGM volcanism in Antarctica, which complements the record of volcanic eruptions retrieved from Talos Dome ice core, and supports the hypothesis of large-scale volcanism as an important driver of climate change. We conclude that subglacial carbonates are equivalent to speleothems in their palaeoclimate potential and may become a most useful source of information of ecosystems and processes at peak glacials in high altitude/high latitude settings.

  9. The Late Cambrian Takaka Terrane, NW Nelson, New Zealand: Accretionary-prism development and arc collision followed by extension and fan-delta deposition at the SE margin of Gondwana

    Science.gov (United States)

    Pound, K. S.

    2013-12-01

    convergence, but is reinterpreted here as a ';true' fan-delta deposit, sedimentologically similar to deposits associated with extension. Textural and compositional data for the Lockett Conglomerate indicates rapid supply of new material (including quartzite, granite, gabbro, and amphibolitic metavolcanics). The Lockett Conglomerate is proposed here to record the initiation of extension, during which basement faults in the hinterland exposed previously buried source rocks. This new interpretation of the Lockett Conglomerate places that initiation of extension and subsequent passive margin sedimentation (Mt. Ellis and Mt. Arthur Groups) earlier (late Middle Cambrian) than previous work has suggested (Late Cambrian or Early Ordovician). These new interpretations provide input useful for correlations and interpretations of the complex mosaic that preserves a record of tectonic activity and processes at the Antarctic, Tasmanian and SE Australian portions of the Cambrian Gondwana margin.

  10. Volcanic Supersites as cross-disciplinary laboratories

    Science.gov (United States)

    Provenzale, Antonello; Beierkuhnlein, Carl; Giamberini, Mariasilvia; Pennisi, Maddalena; Puglisi, Giuseppe

    2017-04-01

    Volcanic Supersites, defined in the frame of the GEO-GSNL Initiative, are usually considered mainly for their geohazard and geological characteristics. However, volcanoes are extremely challenging areas from many other points of view, including environmental and climatic properties, ecosystems, hydrology, soil properties and biogeochemical cycling. Possibly, volcanoes are closer to early Earth conditions than most other types of environment. During FP7, EC effectively fostered the implementation of the European volcano Supersites (Mt. Etna, Campi Flegrei/Vesuvius and Iceland) through the MED-SUV and FUTUREVOLC projects. Currently, the large H2020 project ECOPOTENTIAL (2015-2019, 47 partners, http://www.ecopotential-project.eu/) contributes to GEO/GEOSS and to the GEO ECO Initiative, and it is devoted to making best use of remote sensing and in situ data to improve future ecosystem benefits, focusing on a network of Protected Areas of international relevance. In ECOPOTENTIAL, remote sensing and in situ data are collected, processed and used for a better understanding of the ecosystem dynamics, analysing and modelling the effects of global changes on ecosystem functions and services, over an array of different ecosystem types, including mountain, marine, coastal, arid and semi-arid ecosystems, and also areas of volcanic origin such as the Canary and La Reunion Islands. Here, we propose to extend the network of the ECOPOTENTIAL project to include active Volcanic Supersites, such as Mount Etna and other volcanic Protected Areas, and we discuss how they can be included in the framework of the ECOPOTENTIAL workflow. A coordinated and cross-disciplinary set of studies at these sites should include geological, biological, ecological, biogeochemical, climatic and biogeographical aspects, as well as their relationship with the antropogenic impact on the environment, and aim at the global analysis of the volcanic Earth Critical Zone - namely, the upper layer of the Earth

  11. Deciphering the Influence of Crustal Flexure and Shear Along the Margins of the Eastern Snake River Plain

    Science.gov (United States)

    Parker, S. D.

    2016-12-01

    The kinematic evolution of the eastern Snake River Plain (ESRP) remains highly contested. A lack of strike-slip faults bounding the ESRP serves as a primary assumption in many leading kinematic models. Recent GPS geodesy has highlighted possible shear zones along the ESRP yet regional strike-slip faults remain unidentified. Oblique movement within dense arrays of high-angle conjugate normal faults, paralleling the ESRP, occur within a discrete zone of 50 km on both margins of the ESRP. These features have long been attributed to progressive crustal flexure and subsidence within the ESRP, but are capable of accommodating the observed strain without necessitating large scale strike-slip faults. Deformation features within an extensive Neogene conglomerate provide field evidence for dextral shear in a transtensional system along the northern margin of the ESRP. Pressure-solution pits and cobble striations provide evidence for a horizontal ENE/WSW maximum principal stress orientation, consistent with the hypothesis of a dextral Centennial shear zone. Fold hinges, erosional surfaces and stratigraphic datums plunging perpendicular into the ESRP have been attributed to crustal flexure and subsidence of the ESRP. Similar Quaternary folds plunge obliquely into the ESRP along its margins where diminishing offset along active normal faults trends into linear volcanic features. In all cases, orientations and distributions of plunging fold structures display a correlation to the terminus of active Basin and Range faults and linear volcanic features of the ESRP. An alternative kinematic model, rooted in kinematic disparities between Basin and Range faults and parallelling volcanic features may explain the observed downwarping as well as provide a mechanism for the observed shear along the margins of the ESRP. By integrating field observations with seismic, geodetic and geomorphic observations this study attempts to decipher the signatures of crustal flexure and shear along the

  12. Demonstration/Validation of the Snap Sampler Passive Groundwater Sampling Device at the Former McClellan Air Force Base

    Science.gov (United States)

    2011-02-01

    Region 1, 1996), and 3) (where applicable) passive dif- fusion samplers such as the Regenerated Cellulose (RGC or dialysis membrane) sampler...Nielsen (2002), and the ASTM (2003). However, because low-flow sampling draws water most heavily from the most permeable part of the geological...freshwater. The overlying Valley Springs Formation consists of weathered ash from volcanic eruptions, forming low permeability clay with some sand and

  13. Great earthquakes along the Western United States continental margin: implications for hazards, stratigraphy and turbidite lithology

    Directory of Open Access Journals (Sweden)

    C. H. Nelson

    2012-11-01

    Full Text Available We summarize the importance of great earthquakes (Mw ≳ 8 for hazards, stratigraphy of basin floors, and turbidite lithology along the active tectonic continental margins of the Cascadia subduction zone and the northern San Andreas Transform Fault by utilizing studies of swath bathymetry visual core descriptions, grain size analysis, X-ray radiographs and physical properties. Recurrence times of Holocene turbidites as proxies for earthquakes on the Cascadia and northern California margins are analyzed using two methods: (1 radiometric dating (14C method, and (2 relative dating, using hemipelagic sediment thickness and sedimentation rates (H method. The H method provides (1 the best estimate of minimum recurrence times, which are the most important for seismic hazards risk analysis, and (2 the most complete dataset of recurrence times, which shows a normal distribution pattern for paleoseismic turbidite frequencies. We observe that, on these tectonically active continental margins, during the sea-level highstand of Holocene time, triggering of turbidity currents is controlled dominantly by earthquakes, and paleoseismic turbidites have an average recurrence time of ~550 yr in northern Cascadia Basin and ~200 yr along northern California margin. The minimum recurrence times for great earthquakes are approximately 300 yr for the Cascadia subduction zone and 130 yr for the northern San Andreas Fault, which indicates both fault systems are in (Cascadia or very close (San Andreas to the early window for another great earthquake.

    On active tectonic margins with great earthquakes, the volumes of mass transport deposits (MTDs are limited on basin floors along the margins. The maximum run-out distances of MTD sheets across abyssal-basin floors along active margins are an order of magnitude less (~100 km than on passive margins (~1000 km. The great earthquakes along the Cascadia and northern California margins

  14. Volcanic Alert System (VAS) developed during the (2011-2013) El Hierro (Canary Islands) volcanic process

    Science.gov (United States)

    Ortiz, Ramon; Berrocoso, Manuel; Marrero, Jose Manuel; Fernandez-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Garcia, Alicia

    2014-05-01

    In volcanic areas with long repose periods (as El Hierro), recently installed monitoring networks offer no instrumental record of past eruptions nor experience in handling a volcanic crisis. Both conditions, uncertainty and inexperience, contribute to make the communication of hazard more difficult. In fact, in the initial phases of the unrest at El Hierro, the perception of volcanic risk was somewhat distorted, as even relatively low volcanic hazards caused a high political impact. The need of a Volcanic Alert System became then evident. In general, the Volcanic Alert System is comprised of the monitoring network, the software tools for the analysis of the observables, the management of the Volcanic Activity Level, and the assessment of the threat. The Volcanic Alert System presented here places special emphasis on phenomena associated to moderate eruptions, as well as on volcano-tectonic earthquakes and landslides, which in some cases, as in El Hierro, may be more destructive than an eruption itself. As part of the Volcanic Alert System, we introduce here the Volcanic Activity Level which continuously applies a routine analysis of monitoring data (particularly seismic and deformation data) to detect data trend changes or monitoring network failures. The data trend changes are quantified according to the Failure Forecast Method (FFM). When data changes and/or malfunctions are detected, by an automated watchdog, warnings are automatically issued to the Monitoring Scientific Team. Changes in the data patterns are then translated by the Monitoring Scientific Team into a simple Volcanic Activity Level, that is easy to use and understand by the scientists and technicians in charge for the technical management of the unrest. The main feature of the Volcanic Activity Level is its objectivity, as it does not depend on expert opinions, which are left to the Scientific Committee, and its capabilities for early detection of precursors. As a consequence of the El Hierro

  15. Paleogeographic Study of the West Florida Panhandle Coast and Margin

    Science.gov (United States)

    Koch, J. L.; Donoghue, J. F.; Niedoroda, A. W.; Hatchett, L.; Clark, R. R.

    2001-12-01

    The dominant factors in the evolution of a passive margin shelf and coast are sea-level change and fluvial-marine sediment transport processes. On many U.S. coasts, beach nourishment sand has become an increasingly scarce and expensive resource. A regional sand search has recently been undertaken to identify offshore targets for beach nourishment sand along the western Florida Panhandle coast. A major task of the project has been the development of a conceptual model for finding potential nourishment sand. The modeling work has involved the collection of existing data, including published literature, sediment samples, sub-bottom seismic data, and paleogeographic analyses. Paleogeography was recognized as a potentially powerful tool for use in identifying shelf sand bodies, because they are products of sea-level change and shelf evolution. As part of the project, a more detailed study has been undertaken to acquire and assemble all available paleogeographic and paleoshoreline data for the western Florida shelf. These data include studies of the Quaternary paleogeography of the Panhandle coast, still-stand paleoshorelines, high-resolution bathymetry, global and eustatic sea-level curves, beach ridge systems, coastal river and inlet retreat paths, and barrier island evolution. The data have been compiled into a Geographic Information System (GIS) database from which maps of the shelf paleogeography can be created, representing selected periods in the Quaternary evolution of the West Florida Panhandle coast and margin.

  16. Ancient Mudflows in the Tuxtla Volcanic Field, Veracruz, Mexico

    Science.gov (United States)

    Espindola, J.; Zamora-Camacho, A.; Godinez, M.

    2011-12-01

    The Tuxtla Volcanic Field (TVF) is a basaltic volcanic enclave in eastern Mexico at the margin of the Gulf of Mexico. Due to the high rates of precipitation floods and mudflows are common. Resulting from a systematic study of geologic hazard in the TVF we found several mudflow deposits that impacted pre-Columbian settlements. Sections of the deposits were observed in detail and sampled for granulometric studies. The deposits contained materials suitable for dating: ceramic shards and some of them charcoal fragments. Shards from the interior of the deposit were collected and placed in black bags to prevent the action of light and to be analyzed by thermoluminiscense (TL), the charcoal samples were dated using standard radiocarbon methods (C-14). The sites were dubbed La Mojarra (18°37.711', 95°18.860'), Revolución (18° 35.848', 95°11.412'), Pisatal (18°36.618', 95°10.634'), and Toro Prieto (18°38.229, 95°12.037'). These places were named after the nearby villages the first two, lake Pisatal the third and Toro Prieto creek the fourth. All the deposits occur close to the margins of riverbeds or lakes. Samples of these sites yielded ages of 1176±100 (TL), 1385±70 (C-14), 1157±