WorldWideScience

Sample records for volcanic ash-influenced forest

  1. Susceptibility of volcanic ash-influenced soil in northern Idaho to mechanical compaction

    Science.gov (United States)

    Deborah S. Page-Dumroese

    1993-01-01

    Timber harvesting and mechanical site preparation can reduce site productivity if they excessively disturb or compact the soil. Volcanic ash-influenced soils with low undisturbed bulk densities and rock content are particularly susceptible. This study evaluates the effects of harvesting and site preparation on changes in the bulk density of ash-influenced forest soils...

  2. Elephant distribution around a volcanic shield dominated by a mosaic of forest and savanna (Marsabit, Kenya)

    NARCIS (Netherlands)

    Ngene, S.M.; Skidmore, A.K.; Gils, H.; Douglas-Hamilton, I.; Omondi, P.

    2009-01-01

    We investigated the factors that influenced the distribution of the African elephant around a volcanic shield dominated by a mosaic of forest and savanna in northern Kenya. Data on elephant distribution were acquired from four female and five bull elephants, collared with satellite-linked geographic

  3. Effects of nitrogen sources and glucose on the consumption of ethylene and methane by temperate volcanic forest surface soils

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    There is limited knowledge with regard to the consumption of ethylene (C2H4) and methane (CH4) in volcanic forest soils containing low microbial carbon-to-organic carbon ratio, and to the responses of both consumptions to nitrogen and carbon additions. Temperate volcanic forest surface soils under three forest stands (e.g. Pinus sylvestris L., Cryptomeria japonica and Quercus serrata) were used to compare CH4 and C2H4 consumption by forest soils, and to study the effects of nitrogen sources and glucose on both consumptions. There was a good parallel between CH4 and C2H4 consumption by forest soils, but mineralization reduced CH4 consumption rather than C2H4 consumption in forest soils, particularly in a Pinus forest soil. The stimulatory effect of glucose addition on both CH4 and C2H4 consumption by forest soils was increased by increasing the pre-incubation period after glucose addition, and a largest stimulation occurred in the Pinus forest soil. The addition of KNO3-N at the rate of 100 (g·g-1 significantly reduced the consumptions of both C2H4 and CH4 by forest soils (P≤0.05). In the presence of urea plus dicyandiamide, the consumption rates of C2H4 and CH4 by forest soils were higher than those in the KNO3-N and urea-N treated soils at the same N rate (P≤0.05), but were similar to those of the control. Hence, under experimental conditions, there was a strong inhibitory effect of NO3- rather than NH4+ addition on the CH4 and C2H4 consumption in these forest soils. When amount of the added NO3-N increased up to more than 2―3 times the soil initial NO3-N concentrations, both C2H4 and CH4 consumption rates were reduced to 10%―20% of the rates in soils without nitrate addition. By comparing the three forest stands, it was shown that there was a smallest effective concentration of the added nitrate that could inhibit C2H4 and CH4 consumption in the Pinus forest soil, which indicated that C2H4 and CH4 consumption of the soil was more sensitive to NO3?-N

  4. Dissolved Organic Matter as a Mechanism for Carbon Stabilization at Depth in Wet Tropical Forest Volcanic Soils

    Science.gov (United States)

    Marin-Spiotta, E.; Kramer, M. G.; Chadwick, O. A.

    2007-12-01

    Dissolved organic matter (DOM) plays an important role in many biological and chemical processes in soils. Our understanding of the types of plant and microbially-derived organic matter that accumulate in soils and the mechanisms responsible for their transformation and stabilization is still limited. In particular, we know very little about how microbial activity and water movement contribute to the production of DOM and the formation of stable C in soils. In well-drained soils under wet climates, DOM is potentially a primary pathway for the transport of C from the surface litter layers and the zones of highest microbial activity to deeper horizons in the soil profile where the potential for long-term storage increases. The mechanisms for long-term stabilization of organic C in deep mineral horizons include an accumulation of chemically recalcitrant C, strong sorption of soluble and otherwise labile C to mineral and/or metals making them inaccessible to decomposers, and microenvironmental conditions (low pH, low O2) which result in incomplete decomposition and persistence of labile C. Although most work to date has focused on the role of dissolved organic C and N (DOC and DON) in the C and N cycles of temperate forests, DOM fluxes may be even more important in forests in the wet tropics, where high rainfall and high primary productivity could lead to greater DOM production. In order to address the role of DOC in the transport and stabilization of C in mineral horizons, we are studying DOC production, transformation, and loss pathways in volcanic soils dominated by highly reactive, non-crystalline minerals (allophane). We are quantifying flux and solute concentrations (C, N, cations, anions) in rainwater, throughfall, and in soil water. We have installed tension and zero tension lysimeters throughout sequentially deeper organic and mineral horizons in an intermediate aged soil (ca. 350k years) under wet (ca. 3000 mm mean annual rainfall) native tropical forest

  5. A Middle Pennsylvanian (Bolsovian) peat-forming forest preserved in situ in volcanic ash of the Whetstone Horizon in the Radnice Basin, Czech Republic

    DEFF Research Database (Denmark)

    Opluštil, Stanislav; Pšenicka, Josef; Libertín, Milan;

    2009-01-01

    The precursory mire of the Middle Pennsylvanian (Bolsovian) Lower Radnice Coal was buried in situ by volcanic ash, preserving the taxonomic composition, spatial distribution, vertical strati¿cation, and synecology of this peat-forming ecosystem in extraordinary detail. Plant fossil remains...... the same tuff bed in the adjacent, former opencast Ovcín Mine, it appears that species richness in the forest was comparable to some of the less diverse Westphalian peat-forming swamps in the U.S.A. The Lower Radnice mire vegetation was compositionally homogeneous, but had a heterogeneous distribution...... with patchiness occurring at a very ¿ne scale. The preserved plant assemblage most resembles mires dominated by medullosan pteridosperms and Paralycopodites described from upper Westphalian coal balls in the U.S.A., which were characterised by high diversity in all storeys and involved plants centred in high...

  6. Fire and ice: volcanic and glacial impacts on the phylogeography of the New Zealand forest fern Asplenium hookerianum.

    Science.gov (United States)

    Shepherd, Lara D; Perrie, Leon R; Brownsey, Patrick J

    2007-11-01

    In the Southern Hemisphere there has been little phylogeographical investigation of forest refugia sites during the last glacial. Hooker's spleenwort, Asplenium hookerianum, is a fern that is found throughout New Zealand. It is strongly associated with forest and is a proxy for the survival of woody vegetation during the last glacial maximum. DNA sequence data from the chloroplast trnL-trnF locus were obtained from 242 samples, including c. 10 individuals from each of 21 focal populations. Most populations contained multiple, and in many cases unique, haplotypes, including those neighbouring formerly glaciated areas, while the predominant inference from nested clade analysis was restricted gene flow with isolation by distance. These results suggest that A. hookerianum survived the last glacial maximum in widespread populations of sufficient size to retain the observed phylogeography, and therefore that the sheltering woody vegetation must have been similarly abundant. This is consistent with palynological interpretations for the survival in New Zealand of thermophilous forest species at considerably smaller distances from the ice sheets than recorded for the Northern Hemisphere. Eastern and central North Island populations of A. hookerianum were characterized by a different subset of haplotypes to populations from the remainder of the country. A similar east-west phylogeographical pattern has been detected in a diverse array of taxa, and has previously been attributed to recurrent vulcanism in the central North Island.

  7. Catastrophic volcanism

    Science.gov (United States)

    Lipman, Peter W.

    1988-01-01

    Since primitive times, catastrophes due to volcanic activity have been vivid in the mind of man, who knew that his activities in many parts of the world were threatened by lava flows, mudflows, and ash falls. Within the present century, increasingly complex interactions between volcanism and the environment, on scales not previously experienced historically, have been detected or suspected from geologic observations. These include enormous hot pyroclastic flows associated with collapse at source calderas and fed by eruption columns that reached the stratosphere, relations between huge flood basalt eruptions at hotspots and the rifting of continents, devastating laterally-directed volcanic blasts and pyroclastic surges, great volcanic-generated tsunamis, climate modification from volcanic release of ash and sulfur aerosols into the upper atmosphere, modification of ocean circulation by volcanic constructs and attendent climatic implications, global pulsations in intensity of volcanic activity, and perhaps triggering of some intense terrestrial volcanism by planetary impacts. Complex feedback between volcanic activity and additional seemingly unrelated terrestrial processes likely remains unrecognized. Only recently has it become possible to begin to evaluate the degree to which such large-scale volcanic processes may have been important in triggering or modulating the tempo of faunal extinctions and other evolutionary events. In this overview, such processes are examined from the viewpoint of a field volcanologist, rather than as a previous participant in controversies concerning the interrelations between extinctions, impacts, and volcanism.

  8. Influence of African Dust and Volcanic Ash on the Chemical Composition of Cloud/Rain Water Collected in a Tropical Montane Cloud Forest in Puerto Rico

    Science.gov (United States)

    Reyes-Rodríguez, G. J.; Gioda, A.; Mayol-Bracero, O. L.; Collett, J.

    2007-12-01

    Some organic compounds present in aerosols are surface active and their presence in cloud condensation nuclei can affect the surface tension of cloud droplets. The nature of these surface active compounds in clouds and rainwater is not well understood and there is very little information about their content in remote tropical environments. Therefore, our study focuses on the chemical characterization of the organic component of cloud and rainwater samples collected in a tropical montane cloud forest on the island of Puerto Rico. Samples were collected during periods of varying air mass origin, including periods of influence by African dust and by volcanic ash. Cloud samples were collected using a compact version of the single-stage Caltech Active Strand Cloudwater Collector. Rain samples were collected using a passive collector. The organic fraction of collected samples was characterized using a total organic carbon and total nitrogen analyzer (TOC/TN) and nuclear magnetic resonance (1H-NMR) spectroscopy. Elemental and organic carbon (EC, OC) were determined for suspended particles contained in collected cloud and rainwater samples. These particles were also analyzed using scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) to determine their elemental compositions. Preliminary results indicate that average concentrations of cloud water TOC ranged from 0.9 to 1.2 mg/L. Lower concentrations were observed in rainwater, 0.3 to 0.7 mg/L. TN concentrations were higher than TOC in cloud water samples when air masses came from the African continent. The suspended aerosol particles had a content of 2.0 µg of OC per mL of cloud water, but EC was not detected. Suspended particle analysis by SEM-EDS showed Si, Al, and Fe, which have crustal origin, as the predominant species. The 1H-NMR spectra showed alcohols in large quantities, suggesting the presence of biogenic material or polyols when air masses arrived from the African continent. A more complete set

  9. An investigation of vegetation and other Earth resource/feature parameters using LANDSAT and other remote sensing data. 1: LANDSAT. 2: Remote sensing of volcanic emissions. [New England forest and emissions from Mt. St. Helens and Central American volcanoes

    Science.gov (United States)

    Birnie, R. W.; Stoiber, R. E. (Principal Investigator)

    1981-01-01

    A fanning technique based on a simplistic physical model provided a classification algorithm for mixture landscapes. Results of applications to LANDSAT inventory of 1.5 million acres of forest land in Northern Maine are presented. Signatures for potential deer year habitat in New Hampshire were developed. Volcanic activity was monitored in Nicaragua, El Salvador, and Guatemala along with the Mt. St. Helens eruption. Emphasis in the monitoring was placed on the remote sensing of SO2 concentrations in the plumes of the volcanoes.

  10. Volcanic gas

    Science.gov (United States)

    McGee, Kenneth A.; Gerlach, Terrance M.

    1995-01-01

    In Roman mythology, Vulcan, the god of fire, was said to have made tools and weapons for the other gods in his workshop at Olympus. Throughout history, volcanoes have frequently been identified with Vulcan and other mythological figures. Scientists now know that the “smoke" from volcanoes, once attributed by poets to be from Vulcan’s forge, is actually volcanic gas naturally released from both active and many inactive volcanoes. The molten rock, or magma, that lies beneath volcanoes and fuels eruptions, contains abundant gases that are released to the surface before, during, and after eruptions. These gases range from relatively benign low-temperature steam to thick hot clouds of choking sulfurous fume jetting from the earth. Water vapor is typically the most abundant volcanic gas, followed by carbon dioxide and sulfur dioxide. Other volcanic gases are hydrogen sulfide, hydrochloric acid, hydrogen, carbon monoxide, hydrofluoric acid, and other trace gases and volatile metals. The concentrations of these gas species can vary considerably from one volcano to the next.

  11. Volcanic Catastrophes

    Science.gov (United States)

    Eichelberger, J. C.

    2003-12-01

    The big news from 20th century geophysics may not be plate tectonics but rather the surprise return of catastrophism, following its apparent 19th century defeat to uniformitarianism. Divine miracles and plagues had yielded to the logic of integrating observations of everyday change over time. Yet the brilliant interpretation of the Cretaceous-Tertiary Boundary iridium anomaly introduced an empirically based catastrophism. Undoubtedly, decades of contemplating our own nuclear self-destruction played a role in this. Concepts of nuclear winter, volcanic winter, and meteor impact winter are closely allied. And once the veil of threat of all-out nuclear exchange began to lift, we could begin to imagine slower routes to destruction as "global change". As a way to end our world, fire is a good one. Three-dimensional magma chambers do not have as severe a magnitude limitation as essentially two-dimensional faults. Thus, while we have experienced earthquakes that are as big as they get, we have not experienced volcanic eruptions nearly as great as those preserved in the geologic record. The range extends to events almost three orders of magnitude greater than any eruptions of the 20th century. Such a calamity now would at the very least bring society to a temporary halt globally, and cause death and destruction on a continental scale. At maximum, there is the possibility of hindering photosynthesis and threatening life more generally. It has even been speculated that the relative genetic homogeneity of humankind derives from an evolutionary "bottleneck" from near-extinction in a volcanic cataclysm. This is somewhat more palatable to contemplate than a return to a form of Original Sin, in which we arrived at homogeneity by a sort of "ethnic cleansing". Lacking a written record of truly great eruptions, our sense of human impact must necessarily be aided by archeological and anthropological investigations. For example, there is much to be learned about the influence of

  12. Volcanic hazard management in dispersed volcanism areas

    Science.gov (United States)

    Marrero, Jose Manuel; Garcia, Alicia; Ortiz, Ramon

    2014-05-01

    Traditional volcanic hazard methodologies were developed mainly to deal with the big stratovolcanoes. In such type of volcanoes, the hazard map is an important tool for decision-makers not only during a volcanic crisis but also for territorial planning. According to the past and recent eruptions of a volcano, all possible volcanic hazards are modelled and included in the hazard map. Combining the hazard map with the Event Tree the impact area can be zoned and defining the likely eruptive scenarios that will be used during a real volcanic crisis. But in areas of disperse volcanism is very complex to apply the same volcanic hazard methodologies. The event tree do not take into account unknown vents, because the spatial concepts included in it are only related with the distance reached by volcanic hazards. The volcanic hazard simulation is also difficult because the vent scatter modifies the results. The volcanic susceptibility try to solve this problem, calculating the most likely areas to have an eruption, but the differences between low and large values obtained are often very small. In these conditions the traditional hazard map effectiveness could be questioned, making necessary a change in the concept of hazard map. Instead to delimit the potential impact areas, the hazard map should show the expected behaviour of the volcanic activity and how the differences in the landscape and internal geo-structures could condition such behaviour. This approach has been carried out in La Palma (Canary Islands), combining the concept of long-term hazard map with the short-term volcanic scenario to show the expected volcanic activity behaviour. The objective is the decision-makers understand how a volcanic crisis could be and what kind of mitigation measurement and strategy could be used.

  13. Volcanic hazard assessment in monogenetic volcanic fields

    OpenAIRE

    Bartolini, Stefania

    2014-01-01

    [eng] One of the most important tasks of modern volcanology, which represents a significant socio-economic implication, is to conduct hazard assessment in active volcanic systems. These volcanological studies are aimed at hazard that allows to constructing hazard maps and simulating different eruptive scenarios, and are mainly addressed to contribute to territorial planning, definition of emergency plans or managing volcanic crisis. The impact of a natural event, as a volcanic eruption, can s...

  14. A combined polarizing microscope, XRD, SEM, and specific gravity study of the petrified woods of volcanic origin from the Çamlıdere-Çeltikçi-Güdül fossil forest, in Ankara, Turkey

    Science.gov (United States)

    Hatipoğlu, Murat; Türk, Necdet

    2009-03-01

    The fossil forest in the Çamlıdere-Çeltikçi-Güdül region of the province of Ankara in Turkey has a large number of petrified coniferous and oak tree remains. Petrification occurred in volcanic ashes and tuffs with permineralization, and Fe, Mg, Ca and Ni ions played important roles in the substitution of Si for C. However, the petrified wood samples are heterogeneous in colouration, weight, toughness, and durability, despite being obtained from the same source. Those features are very important for end-users because petrified woods, if cut and polished, are used widely as both decorative indoor tiles and gemstone objects, but heterogeneous materials suffer large wastage while they are being worked and used. Chemical analyses, specific gravity measurements, polarizing microscope studies, X-ray diffraction patterns, and scanning electron image evaluations were performed to classify and identify the homogenous material of the petrified woods relating to its physical and mineralogical characteristics. The different characteristics of the petrified wood samples are due to their varying inner structures, which depend on the replacement silica-building phases and their ratios, and silica particle sizes. Thin sections and XRD patterns revealed that petrified woods in the region were silicified by replacement with both chalcedonic quartz components, including chalcedony (length-fast quartz), moganite and orthorhombic-silica (length-slow quartz), and opalline quartz components including opal-CT and opal-C (length-slow quartz). The scanning electron microscope images were shown that the internal structures of the petrified woods consist of mostly submicron-sized (100-800 nm), and partially nano-sized (60-120 nm) silica-building particles. So, the petrified wood samples can be firstly classified into five main-groups based on their colourations and specific gravity values, then, into three sub-groups based on the principal chalcedonic and opalline quartz silica

  15. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.

    2009-08-22

    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean integrates volcanic radiative cooling and responds over a wide range of time scales. The associated processes, especially ocean heat uptake, play a key role in ongoing climate change. However, they are not well constrained by observations, and attempts to simulate them in current climate models used for climate predictions yield a range of uncertainty. Volcanic impacts on the ocean provide an independent means of assessing these processes. This study focuses on quantification of the seasonal to multidecadal time scale response of the ocean to explosive volcanism. It employs the coupled climate model CM2.1, developed recently at the National Oceanic and Atmospheric Administration\\'s Geophysical Fluid Dynamics Laboratory, to simulate the response to the 1991 Pinatubo and the 1815 Tambora eruptions, which were the largest in the 20th and 19th centuries, respectively. The simulated climate perturbations compare well with available observations for the Pinatubo period. The stronger Tambora forcing produces responses with higher signal-to-noise ratio. Volcanic cooling tends to strengthen the Atlantic meridional overturning circulation. Sea ice extent appears to be sensitive to volcanic forcing, especially during the warm season. Because of the extremely long relaxation time of ocean subsurface temperature and sea level, the perturbations caused by the Tambora eruption could have lasted well into the 20th century.

  16. Volcanic Rocks and Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanoes have contributed significantly to the formation of the surface of our planet. Volcanism produced the crust we live on and most of the air we breathe. The...

  17. Volcanic hazards to airports

    Science.gov (United States)

    Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.

    2009-01-01

    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies

  18. Precambrian Lunar Volcanic Protolife

    Directory of Open Access Journals (Sweden)

    Jack Green

    2009-06-01

    Full Text Available Five representative terrestrial analogs of lunar craters are detailed relevant to Precambrian fumarolic activity. Fumarolic fluids contain the ingredients for protolife. Energy sources to derive formaldehyde, amino acids and related compounds could be by flow charging, charge separation and volcanic shock. With no photodecomposition in shadow, most fumarolic fluids at 40 K would persist over geologically long time periods. Relatively abundant tungsten would permit creation of critical enzymes, Fischer-Tropsch reactions could form polycyclic aromatic hydrocarbons and soluble volcanic polyphosphates would enable assembly of nucleic acids. Fumarolic stimuli factors are described. Orbital and lander sensors specific to protolife exploration including combined Raman/laser-induced breakdown spectrocsopy are evaluated.

  19. Lung problems and volcanic smog

    Science.gov (United States)

    ... releases gases into the atmosphere. Volcanic smog can irritate the lungs and make existing lung problems worse. ... deep into the lungs. Breathing in volcanic smog irritates the lungs and mucus membranes. It can affect ...

  20. Volcanism and Oil & Gas In Northeast China

    Institute of Scientific and Technical Information of China (English)

    Shan Xuanlong

    2000-01-01

    Based on study on the relation with volcanic rock and oil & gas in Songliao Basin and Liaohe Basin in northeast China, author proposes that material from deep by volcanism enrichs the resources in basins, that heat by volcanism promotes organic matter transforming to oil and gas, that volcanic reservoir is fracture, vesicular, solution pore, intercrystal pore.Lava facies and pyroclastic facies are favourable reservoir. Mesozoic volcanic reservoir is majority of intermediate, acid rock,but Cenozoic volcanic reservoir is majority of basalt. Types of oil and gas pool relating to volcanic rock include volcanic fracture pool, volcanic unconformity pool, volcanic rock - screened pool, volcanic darpe structural pool.

  1. Modeling volcanic ash dispersal

    CERN Document Server

    CERN. Geneva

    2010-01-01

    The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard...

  2. Exploring Hawaiian Volcanism

    Science.gov (United States)

    Poland, Michael P.; Okubo, Paul G.; Hon, Ken

    2013-02-01

    In 1912 the Hawaiian Volcano Observatory (HVO) was established by Massachusetts Institute of Technology professor Thomas A. Jaggar Jr. on the island of Hawaii. Driven by the devastation he observed while investigating the volcanic disasters of 1902 at Montagne Pelée in the Caribbean, Jaggar conducted a worldwide search and decided that Hawai`i provided an excellent natural laboratory for systematic study of earthquake and volcano processes toward better understanding of seismic and volcanic hazards. In the 100 years since HVO's founding, surveillance and investigation of Hawaiian volcanoes have spurred advances in volcano and seismic monitoring techniques, extended scientists' understanding of eruptive activity and processes, and contributed to development of global theories about hot spots and mantle plumes.

  3. Exploring Hawaiian volcanism

    Science.gov (United States)

    Poland, Michael P.; Okubo, Paul G.; Hon, Ken

    2013-01-01

    In 1912 the Hawaiian Volcano Observatory (HVO) was established by Massachusetts Institute of Technology professor Thomas A. Jaggar Jr. on the island of Hawaii. Driven by the devastation he observed while investigating the volcanic disasters of 1902 at Montagne Pelée in the Caribbean, Jaggar conducted a worldwide search and decided that Hawai‘i provided an excellent natural laboratory for systematic study of earthquake and volcano processes toward better understanding of seismic and volcanic hazards. In the 100 years since HVO’s founding, surveillance and investigation of Hawaiian volcanoes have spurred advances in volcano and seismic monitoring techniques, extended scientists’ understanding of eruptive activity and processes, and contributed to development of global theories about hot spots and mantle plumes.

  4. Subdiffusion of volcanic earthquakes

    CERN Document Server

    Abe, Sumiyoshi

    2016-01-01

    A comparative study is performed on volcanic seismicities at Mt.Eyjafjallajokull in Iceland and Mt. Etna in Sicily, Italy, from the viewpoint of science of complex systems, and the discovery of remarkable similarities between them regarding their exotic spatio-temporal properties is reported. In both of the volcanic seismicities as point processes, the jump probability distributions of earthquakes are found to obey the exponential law, whereas the waiting-time distributions follow the power law. In particular, a careful analysis is made about the finite size effects on the waiting-time distributions, and accordingly, the previously reported results for Mt. Etna [S. Abe and N. Suzuki, EPL 110, 59001 (2015)] are reinterpreted. It is shown that spreads of the volcanic earthquakes are subdiffusive at both of the volcanoes. The aging phenomenon is observed in the "event-time-averaged" mean-squared displacements of the hypocenters. A comment is also made on presence/absence of long term memories in the context of t...

  5. Lichen Persistence and Recovery in Response to Varied Volcanic Disturbances

    Science.gov (United States)

    Nelson, P.; Wheeler, T. B.

    2015-12-01

    Volcanic eruptions produce many ecological disturbances that structure vegetation. While lichens are sensitive to disturbances, little is known about their responses to volcanic disturbances, except for colonization of lava. We examined lichen community responses through time to different disturbances produced by the May 1, 2008 eruption of Volcan Chaiten in south-central Chile. Pre-eruption vegetation near the volcano was old-growth Valdivian temperate rainforest dominated by closed-canopy Nothofagus sp... In 2012, we installed thirteen 1-acre plots across volcanic disturbance zones on which a time-constrained search was done for all macrolichen species, each of which was assigned an approximate log10 categorical abundance. We also installed a 0.2 m2 quadrat on two representative trees per plot for repeat photography of lichen cover. We remeasured at least one plot per disturbance zone in 2014 and re-photographed tree quadrats in 2013 and 2014. We then analyzed species composition and abundance differences among disturbance zones. In 2012, the blast (pyroclastic density flow), scorch (standing scorched forest at the edge of the blast) and deep tephra (>10 cm) zones had the lowest lichen species richness (5-13 species), followed by reference (unimpacted) and shallow (lichen species since 2012 while the light tephra and reference were essentially unchanged. Gravel rain, gravel rain + pumice and flooded forest plots all had about the same number of species in 2014 as 2012. Lichen colonization and growth in tree quadrats varied widely, from very little colonization in the blast to prolific colonization in the gravel rain + pumice zone. Lichen's varied responses to different volcanic disturbances were attributable to varying degrees of mortality and subsequent availability of substrate, quantity of light and removal of competitors. While sensitive to disturbance, lichens are apparently resilient to and can quickly recolonize after a variety of large, violent volcanic

  6. Automatic classification of seismo-volcanic signatures

    Science.gov (United States)

    Malfante, Marielle; Dalla Mura, Mauro; Mars, Jérôme; Macedo, Orlando; Inza, Adolfo; Métaxian, Jean-Philippe

    2017-04-01

    The prediction of volcanic eruptions and the evaluation of their associated risks is still a timely and open issue. For this purpose, several types of signals are recorded in the proximity of volcanoes and then analysed by experts. Typically, seismic signals that are considered as precursor or indicator of an active volcanic phase are detected and manually classified. In this work, we propose an architecture for automatic classification of seismo-volcanic waves. The system we propose is based on supervised machine learning. Specifically, a prediction model is built from a large dataset of labelled examples by the means of a learning algorithm (Support Vector Machine or Random Forest). Four main steps are involved: (i) preprocess the signals, (ii) from each signal, extract features that are useful for the classes discrimination, (iii) use an automatic learning algorithm to train a prediction model and (iv) classify (i.e., assign a semantic label) newly recorded and unlabelled examples. Our main contribution lies in the definition of the feature space used to represent the signals (i.e., in the choice of the features to extract from the data). Feature vectors describe the data in a space of lower dimension with respect to the original one. Ideally, signals are separable in the feature space depending on their classes. For this work, we consider a large set of features (79) gathered from an extensive state of the art in both acoustic and seismic fields. An analysis of this feature set shows that for the application of interest, 11 features are sufficient to discriminate the data. The architecture is tested on 4725 seismic events recorded between June 2006 and September 2011 at Ubinas, the most active volcano of Peru. Six main classes of signals are considered: volcanic tremors (TR), long period (LP), volcano-tectonic (VT), explosion (EXP), hybrids (HIB) and tornillo (TOR). Our model reaches above 90% of accuracy, thereby validating the proposed architecture and the

  7. Volcanism on Mars. Chapter 41

    Science.gov (United States)

    Zimbelman, J. R.; Garry, W. B.; Bleacher, J. E.; Crown, D. A.

    2015-01-01

    Spacecraft exploration has revealed abundant evidence that Mars possesses some of the most dramatic volcanic landforms found anywhere within the solar system. How did a planet half the size of Earth produce volcanoes like Olympus Mons, which is several times the size of the largest volcanoes on Earth? This question is an example of the kinds of issues currently being investigated as part of the space-age scientific endeavor called "comparative planetology." This chapter summarizes the basic information currently known about volcanism on Mars. The volcanoes on Mars appear to be broadly similar in overall morphology (although, often quite different in scale) to volcanic features on Earth, which suggests that Martian eruptive processes are not significantly different from the volcanic styles and processes on Earth. Martian volcanoes are found on terrains of different age, and Martian volcanic rocks are estimated to comprise more than 50% of the Martian surface. This is in contrast to volcanism on smaller bodies such as Earth's Moon, where volcanic activity was mainly confined to the first half of lunar history (see "Volcanism on the Moon"). Comparative planetology supports the concept that volcanism is the primary mechanism for a planetary body to get rid of its internal heat; smaller bodies tend to lose their internal heat more rapidly than larger bodies (although, Jupiter's moon Io appears to contradict this trend; Io's intense volcanic activity is powered by unique gravitational tidal forces within the Jovian system; see "Volcanism on Io"), so that volcanic activity on Mars would be expected to differ considerably from that found on Earth and the Moon.

  8. Volcanic Ash Nephelometer Probe Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced dropsondes that could effectively be guided through atmospheric regions of interest such as volcanic plumes may enable unprecedented observations of...

  9. Volcanic Eruptions and Climate

    Science.gov (United States)

    Robock, A.

    2012-12-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of these aerosol clouds produce responses in the climate system. Observations and numerical models of the climate system show that volcanic eruptions produce global cooling and were the dominant natural cause of climate change for the past millennium, on timescales from annual to century. Major tropical eruptions produce winter warming of Northern Hemisphere continents for one or two years, while high latitude eruptions in the Northern Hemisphere weaken the Asian and African summer monsoon. The Toba supereruption 74,000 years ago caused very large climate changes, affecting human evolution. However, the effects did not last long enough to produce widespread glaciation. An episode of four large decadally-spaced eruptions at the end of the 13th century C.E. started the Little Ice Age. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade had a small effect on global temperature trends. The June 13, 2011 Nabro eruption in Eritrea produced the largest stratospheric aerosol cloud since Pinatubo, and the most of the sulfur entered the stratosphere not by direct injection, but by slow lofting in the Asian summer monsoon circulation. Volcanic eruptions warn us that while stratospheric geoengineering could cool the surface, reducing ice melt and sea level rise, producing pretty sunsets, and increasing the CO2 sink, it could also reduce summer monsoon precipitation, destroy ozone, allowing more harmful UV at the surface, produce rapid warming when stopped, make the sky white, reduce solar power, perturb the ecology with more diffuse radiation, damage airplanes flying in the stratosphere, degrade astronomical observations, affect remote sensing, and affect

  10. System of Volcanic activity

    Directory of Open Access Journals (Sweden)

    P. HÉDERVARI

    1972-06-01

    Full Text Available A comparison is made among the systems of B. G.
    Escher (3, of R. W. van Bemmelen (1 and that of the author (4. In this
    connection, on the basis of Esclier's classification, the terms of "constructiv
    e " and "destructive" eruptions are introduced into the author's system and
    at the same time Escher's concept on the possible relation between the depth
    of magma-chamber and the measure of the gas-pressure is discussed briefly.
    Three complementary remarks to the first paper (4 011 the subject of system
    of volcanic activity are added.

  11. Volcan Reventador's Unusual Umbrella

    Science.gov (United States)

    Chakraborty, P.; Gioia, G.; Kieffer, S. W.

    2005-12-01

    In the past two decades, field observations of the deposits of volcanoes have been supplemented by systemmatic, and sometimes, opportunistic photographic documentation. Two photographs of the umbrella of the December 3, 2002 eruption of Volcan Reventador, Ecuador, reveal a prominently scalloped umbrella that is unlike any umbrella previously documented on a volcanic column. The material in the umbrella was being swept off a descending pyroclastic flow, and was, therefore, a co-ignimbrite cloud. We propose that the scallops are the result of a turbulent Rayleigh-Taylor (RT) instability with no precedents in volcanology. We ascribe the rare loss of buoyancy that drives this instability to the fact that the Reventador column fed on a cool co-ignimbrite cloud. On the basis of the observed wavelength of the scallops, we estimate a value for the eddy viscosity of the umbrella of 4000 ~m2/s. This value is consistent with a previously obtained lower bound (200 ~m2/s, K. Wohletz, priv. comm., 2005). We do not know the fate of the material in the umbrella subsequent to the photos. The analysis suggests that the umbrella was negatively buoyant. Field work on the co-ignimbrite deposits might reveal whether or not the material reimpacted, and if so, where and whether or not this material was involved in the hazardous flows that affected the main oil pipeline across Ecuador.

  12. Uranium series, volcanic rocks

    Science.gov (United States)

    Vazquez, Jorge A.

    2014-01-01

    Application of U-series dating to volcanic rocks provides unique and valuable information about the absolute timing of crystallization and differentiation of magmas prior to eruption. The 238U–230Th and 230Th-226Ra methods are the most commonly employed for dating the crystallization of mafic to silicic magmas that erupt at volcanoes. Dates derived from the U–Th and Ra–Th methods reflect crystallization because diffusion of these elements at magmatic temperatures is sluggish (Cherniak 2010) and diffusive re-equilibration is insignificant over the timescales (less than or equal to 10^5 years) typically associated with pre-eruptive storage of nearly all magma compositions (Cooper and Reid 2008). Other dating methods based on elements that diffuse rapidly at magmatic temperatures, such as the 40Ar/39Ar and (U–Th)/He methods, yield dates for the cooling of magma at the time of eruption. Disequilibrium of some short-lived daughters of the uranium series such as 210Po may be fractionated by saturation of a volatile phase and can be employed to date magmatic gas loss that is synchronous with volcanic eruption (e.g., Rubin et al. 1994).

  13. Volcanic Eruptions and Climate

    Science.gov (United States)

    LeGrande, Allegra N.; Anchukaitis, Kevin J.

    2015-01-01

    Volcanic eruptions represent some of the most climatically important and societally disruptive short-term events in human history. Large eruptions inject ash, dust, sulfurous gases (e.g. SO2, H2S), halogens (e.g. Hcl and Hbr), and water vapor into the Earth's atmosphere. Sulfurous emissions principally interact with the climate by converting into sulfate aerosols that reduce incoming solar radiation, warming the stratosphere and altering ozone creation, reducing global mean surface temperature, and suppressing the hydrological cycle. In this issue, we focus on the history, processes, and consequences of these large eruptions that inject enough material into the stratosphere to significantly affect the climate system. In terms of the changes wrought on the energy balance of the Earth System, these transient events can temporarily have a radiative forcing magnitude larger than the range of solar, greenhouse gas, and land use variability over the last millennium. In simulations as well as modern and paleoclimate observations, volcanic eruptions cause large inter-annual to decadal-scale changes in climate. Active debates persist concerning their role in longer-term (multi-decadal to centennial) modification of the Earth System, however.

  14. Friction in volcanic environments

    Science.gov (United States)

    Kendrick, Jackie E.; Lavallée, Yan

    2016-04-01

    Volcanic landscapes are amongst the most dynamic on Earth and, as such, are particularly susceptible to failure and frictional processes. In rocks, damage accumulation is frequently accompanied by the release of seismic energy, which has been shown to accelerate in the approach to failure on both a field and laboratory scale. The point at which failure occurs is highly dependent upon strain-rate, which also dictates the slip-zone properties that pertain beyond failure, in scenarios such as sector collapse and pyroclastic flows as well as the ascent of viscous magma. High-velocity rotary shear (HVR) experiments have provided new opportunities to overcome the grand challenge of understanding faulting processes during volcanic phenomena. Work on granular ash material demonstrates that at ambient temperatures, ash gouge behaves according to Byerlee's rule at low slip velocities, but is slip-weakening, becoming increasingly lubricating as slip ensues. In absence of ash along a slip plane, rock-rock friction induces cataclasis and heating which, if sufficient, may induce melting (producing pseudotachylyte) and importantly, vesiculation. The viscosity of the melt, so generated, controls the subsequent lubrication or resistance to slip along the fault plane thanks to non-Newtonian suspension rheology. The shear-thinning behaviour and viscoelasticity of frictional melts yield a tendency for extremely unstable slip, and occurrence of frictional melt fragmentation. This velocity-dependence acts as an important feedback mechanism on the slip plane, in addition to the bulk composition, mineralogy and glass content of the magma, that all influence frictional behaviour. During sector collapse events and in pyroclastic density currents it is the frictional properties of the rocks and ash that, in-part, control the run-out distance and associated risk. In addition, friction plays an important role in the eruption of viscous magmas: In the conduit, the rheology of magma is integral

  15. Volcanic studies at Katmai

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The Continental Scientific Drilling Program (CSDP) is a national effort supported by the Department of Energy, the US Geological Survey, and the National Science Foundation. One of the projects proposed for the CSDP consists of drilling a series of holes in Katmai National Park in Alaska to give a third dimension to the model of the 1912 eruption of Novarupta, and to investigate the processes of explosive volcanism and hydrothermal transport of metals (Eichelberger et al., 1988). The proposal for research drilling at Katmai states that ``the size, youth, elevated temperature, and simplicity of the Novarupta vent make it a truly unique scientific target.`` The National Park Service (NPS), which has jurisdiction, is sympathetic to aims of the study. However, NPS wishes to know whether Katmai is indeed uniquely suited to the research, and has asked the Interagency Coordinating Group to support an independent assessment of this claim. NPS suggested the National Academy of Sciences as an appropriate organization to conduct the assessment. In response, the National Research Council -- the working arm of the Academy -- established, under the aegis of its US Geodynamics Committee, a panel whose specific charge states: ``The proposed investigation at Katmai has been extensively reviewed for scientific merit by the three sponsoring and participating agencies. Thus, the scientific merit of the proposed drilling at Katmai is not at issue. The panel will review the proposal for scientific drilling at Katmai and prepare a short report addressing the specific question of the degree to which it is essential that the drilling be conducted at Katmai as opposed to volcanic areas elsewhere in the world.``

  16. Quaternary basaltic volcanism in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina

    The extensive Quaternary volcanism in the Payenia volcanic province, Mendoza, Argentina, is investigated in this study by major and trace element analyses, Sr, Nd, Hf and Pb-isotopic analyses and Zr-Hf isotope dilution data on samples from almost the entire province. The samples are mainly...... in basalts from all the studied volcanic fields in Payenia is signs of lower crustal contamination indicating assimilation of, in some cases, large amounts of trace element depleted, mafic, plagioclase-bearing rocks. The northern Payenia is dominated by backarc basalts erupted between late Pliocene to late...

  17. Io. [theories concerning volcanic activity

    Science.gov (United States)

    Johnson, T. V.; Soderblom, L. A.

    1983-01-01

    A report on the continuing investigation of Io is presented. Gravitational resonance is discussed as the cause of Io's volcanism, and the volcanic activity is explained in terms of sulfur chemistry. Theories concerning the reasons for the two main types of volcanic eruptions on Io are advanced and correlated with geographical features of the satellite. The sulfur and silicate models of the calderas are presented, citing the strengths and weaknesses of each. Problems of the gravitational resonance theory of Io's heat source are then described. Finally, observations of Io planned for the Galileo mission are summarized.

  18. Geology of Newberry National Volcanic Monument, Oregon, USA

    Science.gov (United States)

    Donnelly-Nolan, J. M.; Jensen, R. A.; Robinson, J. E.

    2014-12-01

    Volcanic geology is the dominant theme at Newberry National Volcanic Monument in central Oregon. Established almost 25 years ago, the NNVM (like the Mt. St. Helens National Volcanic Monument) is managed by the U.S. Forest Service. The monument encompasses some 90 square miles in Deschutes National Forest of the 1200-sq-mi Newberry Volcano, including the 4x5 mi scenic central caldera and the volcano's youngest lava flow, the 1300-yr-old Big Obsidian Flow. The seismically-monitored Newberry Volcano is considered by the USGS to be a very high threat volcano, with the potential to impact adjacent populations in Bend, Sunriver, and LaPine and damage infrastructure including highways, railroads, and power lines. Unspectacular from a distance, the broad shield shape of Newberry Volcano hides the abundance and youthfulness of volcanic activity. Included in NNVM are 7-ka basalt to andesite lavas of the Northwest Rift Zone (NWRZ) that erupted from spatter and cinder cones over a N-S distance of 20 miles and temporarily blocked the flow of the adjacent Deschutes River. These well-exposed lavas are post-Mazama in age, having erupted after a blanket of ash and pumice was deposited on the volcano when Mt. Mazama erupted at 7.7 ka to form Crater Lake. Images from lidar data obtained in 2011 clearly display the post-Mazama lavas, which not only are unmantled by the tephra, but also lack the thick forest that has grown in the tephra further obscuring many of the youthful volcanic features across this massive rear-arc Cascades volcano. NNVM features interpretive trails at the Big Obsidian Flow in the caldera and at Lava Cast Forest and Lava Butte flow along the NWRZ. Also within the monument are two of the premier drivable viewpoints in Oregon, on Lava Butte and at the 7984-ft top of Paulina Peak on the rim of the caldera. On a clear day, views from Paulina Peak encompass much of the High Cascades, extending from Mt. Shasta in California to Mt. Adams in Washington.

  19. Volcanic eruptions observed with infrasound

    Science.gov (United States)

    Johnson, Jeffrey B.; Aster, Richard C.; Kyle, Philip R.

    2004-07-01

    Infrasonic airwaves produced by active volcanoes provide valuable insight into the eruption dynamics. Because the infrasonic pressure field may be directly associated with the flux rate of gas released at a volcanic vent, infrasound also enhances the efficacy of volcanic hazard monitoring and continuous studies of conduit processes. Here we present new results from Erebus, Fuego, and Villarrica volcanoes highlighting uses of infrasound for constraining quantitative eruption parameters, such as eruption duration, source mechanism, and explosive gas flux.

  20. Los volcanes y los hombres

    OpenAIRE

    García, Carmen

    2007-01-01

    Desde las entrañas de la tierra, los volcanes han creado la atmósfera, el agua de los océanos, y esculpido los relieves del planeta: son, pues, los zahoríes de la vida. Existen volcanes que los hombres explotan o cultivan, y otros sobre los cuales se han construido observatorios en los que se llevan a cabo avanzadas investigaciones científicas.

  1. Volcanic hazards and aviation safety

    Science.gov (United States)

    Casadevall, Thomas J.; Thompson, Theodore B.; Ewert, John W.; ,

    1996-01-01

    An aeronautical chart was developed to determine the relative proximity of volcanoes or ash clouds to the airports and flight corridors that may be affected by volcanic debris. The map aims to inform and increase awareness about the close spatial relationship between volcanoes and aviation operations. It shows the locations of the active volcanoes together with selected aeronautical navigation aids and great-circle routes. The map mitigates the threat that volcanic hazards pose to aircraft and improves aviation safety.

  2. Volcanic Zone, New Zealand

    Directory of Open Access Journals (Sweden)

    Graham J. Weir

    2001-01-01

    Full Text Available A conceptual model of the Taupo Volcanic Zone (TVZ is developed, to a depth of 25 km, formed from three constant density layers. The upper layer is formed from eruption products. A constant rate of eruption is assumed, which eventually implies a constant rate of extension, and a constant rate of volumetric creation in the middle and bottom layers. Tectonic extension creates volume which can accomodate magmatic intrusions. Spreading models assume this volume is distributed throughout the whole region, perhaps in vertical dykes, whereas rifting models assume the upper crust is thinned and the volume created lies under this upper crust. Bounds on the heat flow from such magmatic intrusions are calculated. Heat flow calculations are performed and some examples are provided which match the present total heat output from the TVZ of about 4200 MW, but these either have extension rates greater than the low values of about 8 ± 4 mm/a being reported from GPS measurements, or else consider extension rates in the TVZ to have varied over time.

  3. Forest hydrology

    Science.gov (United States)

    Ge Sun; Devendra Amatya; Steve McNulty

    2016-01-01

    Forest hydrology studies the distribution, storage, movement, and quality of water and the hydrological processes in forest-dominated ecosystems. Forest hydrological science is regarded as the foundation of modern integrated water¬shed management. This chapter provides an overview of the history of forest hydrology and basic principles of this unique branch of...

  4. Forest Management

    Science.gov (United States)

    S. Hummel; K. L. O' Hara

    2008-01-01

    Global variation in forests and in human cultures means that a single method for managing forests is not possible. However, forest management everywhere shares some common principles because it is rooted in physical and biological sciences like chemistry and genetics. Ecological forest management is an approach that combines an understanding of universal processes with...

  5. Forest rights

    DEFF Research Database (Denmark)

    Balooni, Kulbhushan; Lund, Jens Friis

    2014-01-01

    One of the proposed strategies for implementation of reducing emissions from deforestation and forest degradation plus (REDD+) is to incentivize conservation of forests managed by communities under decentralized forest management. Yet, we argue that this is a challenging road to REDD+ because......+ transactions costs. Third, beyond the “conservation islands” represented by forests under decentralized management, processes of deforestation and forest degradation continue. Given these challenges, we argue that REDD+ efforts through decentralized forestry should be redirected from incentivizing further...

  6. Forest rights

    DEFF Research Database (Denmark)

    Balooni, Kulbhushan; Lund, Jens Friis

    2014-01-01

    One of the proposed strategies for implementation of reducing emissions from deforestation and forest degradation plus (REDD+) is to incentivize conservation of forests managed by communities under decentralized forest management. Yet, we argue that this is a challenging road to REDD+ because......+ transactions costs. Third, beyond the “conservation islands” represented by forests under decentralized management, processes of deforestation and forest degradation continue. Given these challenges, we argue that REDD+ efforts through decentralized forestry should be redirected from incentivizing further...

  7. Simulate the volcanic radiation features in medium wave infrared channels

    Science.gov (United States)

    Gong, Cailan; Jiang, Shan; Liu, Fengyi; Hu, Yong

    2015-10-01

    There are different scales and intensities of the volcanic eruption in the world every year. Existing medium wave infrared (MWI) remote sensing channels are often at atmospheric window in 3-5μm, lack of water vapor and carbon dioxide(CO2) absorption channels data, such as 2.2μm, 2.7μm and so on, however the 2.7μm absorption bands can be used as volcanoes, forest fires and other hot target identification. In order to obtain the high-temperature targets (HTT)radiation features, such as volcanic eruptions and forest fires in the water vapor absorption channels, Firstly, the HTT should be identified from the existing bands based on the temperature differences between the objects and the surrounding environment. Then, the HTT radiation features were simulated, and the correlation between the radiations of different bands were established with statistical analysis method. The HTT reorganization from remote sensing data, radiation characteristics simulation in different atmospheric models were described, then the bands transformed models were set up. The volcanic HTT radiation characteristics were simulated in wavelength 2.7μm and 4.433-4.498μm (band 24 of MODIS) based on the known bands of 3.55 -3.93μm (band 3 of FengYun-3 Visible and Infrared Scanning Radiometer (VIRR)). The simulated results were tested by the volcanic HTT radiation characteristics with 4.433-4.498μm by known bands of MODIS image and the simulated 4.433-4.498μm image. The causes of errors generated were analyzed. The study methods were useful to the new remote sensor bands imaging characteristics simulation analysis.

  8. Quaternary basaltic volcanism in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina

    primitive basalts and trachybasalts but also more evolved samples from the retroarc region and the larger volcanoes Payún Matrú and Payún Liso are presented. The samples cover a broad range of compositions from intraplate lavas similar to ocean island basalts to arc andesites. A common feature found...... Pleistocene times. These basalts mark the end of a period of shallow subduction of the Nazca slab beneath the Payenia province and volcanism in the Nevado volcanic field apparently followed the downwarping slab in a north-northwest direction ending in the Northern Segment. The northern Payenia basalts...... the literature. The Nevado basalts have been modelled by 4-10 % melting of a primitive mantle added 1-5 % upper continental crust. In the southern Payenia province, intraplate basalts dominate. The samples from the Payún Matrú and Río Colorado volcanic fields are apparently unaffected by the subducting slab...

  9. Atmospheric chemistry in volcanic plumes.

    Science.gov (United States)

    von Glasow, Roland

    2010-04-13

    Recent field observations have shown that the atmospheric plumes of quiescently degassing volcanoes are chemically very active, pointing to the role of chemical cycles involving halogen species and heterogeneous reactions on aerosol particles that have previously been unexplored for this type of volcanic plumes. Key features of these measurements can be reproduced by numerical models such as the one employed in this study. The model shows sustained high levels of reactive bromine in the plume, leading to extensive ozone destruction, that, depending on plume dispersal, can be maintained for several days. The very high concentrations of sulfur dioxide in the volcanic plume reduces the lifetime of the OH radical drastically, so that it is virtually absent in the volcanic plume. This would imply an increased lifetime of methane in volcanic plumes, unless reactive chlorine chemistry in the plume is strong enough to offset the lack of OH chemistry. A further effect of bromine chemistry in addition to ozone destruction shown by the model studies presented here, is the oxidation of mercury. This relates to mercury that has been coemitted with bromine from the volcano but also to background atmospheric mercury. The rapid oxidation of mercury implies a drastically reduced atmospheric lifetime of mercury so that the contribution of volcanic mercury to the atmospheric background might be less than previously thought. However, the implications, especially health and environmental effects due to deposition, might be substantial and warrant further studies, especially field measurements to test this hypothesis.

  10. Climatic impact of volcanic eruptions

    Science.gov (United States)

    Rampino, Michael R.

    1991-01-01

    Studies have attempted to 'isolate' the volcanic signal in noisy temperature data. This assumes that it is possible to isolate a distinct volcanic signal in a record that may have a combination of forcings (ENSO, solar variability, random fluctuations, volcanism) that all interact. The key to discovering the greatest effects of volcanoes on short-term climate may be to concentrate on temperatures in regions where the effects of aerosol clouds may be amplified by perturbed atmospheric circulation patterns. This is especially true in subpolar and midlatitude areas affected by changes in the position of the polar front. Such climatic perturbation can be detected in proxy evidence such as decrease in tree-ring widths and frost rings, changes in the treeline, weather anomalies, severity of sea-ice in polar and subpolar regions, and poor grain yields and crop failures. In low latitudes, sudden temperature drops were correlated with the passage overhead of the volcanic dust cloud (Stothers, 1984). For some eruptions, such as Tambora, 1815, these kinds of proxy and anectdotal information were summarized in great detail in a number of papers and books (e.g., Post, 1978; Stothers, 1984; Stommel and Stommel, 1986; C. R. Harrington, in press). These studies lead to the general conclusion that regional effects on climate, sometimes quite severe, may be the major impact of large historical volcanic aerosol clouds.

  11. Aurorae and Volcanic Eruptions

    Science.gov (United States)

    2001-06-01

    Thermal-IR Observations of Jupiter and Io with ISAAC at the VLT Summary Impressive thermal-infrared images have been obtained of the giant planet Jupiter during tests of a new detector in the ISAAC instrument on the ESO Very Large Telescope (VLT) at the Paranal Observatory (Chile). . They show in particular the full extent of the northern auroral ring and part of the southern aurora. A volcanic eruption was also imaged on Io , the very active inner Jovian moon. Although these observations are of an experimental nature, they demonstrate a great potential for regular monitoring of the Jovian magnetosphere by ground-based telescopes together with space-based facilities. They also provide the added benefit of direct comparison with the terrestrial magnetosphere. PR Photo 21a/01 : ISAAC image of Jupiter (L-band: 3.5-4.0 µm) . PR Photo 21b/01 : ISAAC image of Jupiter (Narrow-band 4.07 µm) . PR Photo 21c/01 : ISAAC image of Jupiter (Narrow-band 3.28 µm) . PR Photo 21d/01 : ISAAC image of Jupiter (Narrow-band 3.21 µm) . PR Photo 21e/01 : ISAAC image of the Jovian aurorae (false-colour). PR Photo 21f/01 : ISAAC image of volcanic activity on Io . Addendum : The Jovian aurorae and polar haze. Aladdin Meets Jupiter Thermal-infrared images of Jupiter and its volcanic moon Io have been obtained during a series of system tests with the new Aladdin detector in the Infrared Spectrometer And Array Camera (ISAAC) , in combination with an upgrade of the ESO-developed detector control electronics IRACE. This state-of-the-art instrument is attached to the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory. The observations were made on November 14, 2000, through various filters that isolate selected wavebands in the thermal-infrared spectral region [1]. They include a broad-band L-filter (wavelength interval 3.5 - 4.0 µm) as well as several narrow-band filters (3.21, 3.28 and 4.07 µm). The filters allow to record the light from different components of the Jovian atmosphere

  12. Forests of the tropical eastern Andean flank during the middle Pleistocene

    NARCIS (Netherlands)

    Cárdenas, M.L.; Gosling, W.D.; Pennington, R.T.; Poole, I.; Sherlock, S.C.; Mothes, P.

    2014-01-01

    Inter-bedded volcanic and organic sediments from Erazo (Ecuador) indicate the presence of four different forest assemblages on the eastern Andean flank during the middle Pleistocene. Radiometric dates (40Ar-39Ar) obtained from the volcanic ash indicate that deposition occurred between 620,000 and 19

  13. Geopulsation, Volcanism and Astronomical Periods

    Institute of Scientific and Technical Information of China (English)

    Yang Xuexiang; Chen Dianyou; Yang Xiaoying; Yang Shuchen

    2000-01-01

    Volcanism is mainly controlled by the intermittent release of energy in the earth. As far as the differential rotation of the earth's inner core is concerned, the Galactic Year may change the gravitational constant G, the solar radiative quantity and the moving speed of the solar system and affect the exchange of angular momentum between core and mantle as well as the energy exchange between crust and mantle. As a result, this leads to eruptions of superplumes and magma, and controls the energy flow from core - mantle boundary (CMB) to crust. When the earth' s speed decreases, it will release a huge amount of energy. They are the reason of the correspondence of the volcanic cycles one by one with the astronomical periods one by one. According to the astronomical periods, volcanic eruptions may possibly be predicted in the future.

  14. Volcanic eruptions and solar activity

    Science.gov (United States)

    Stothers, Richard B.

    1989-01-01

    The historical record of large volcanic eruptions from 1500 to 1980 is subjected to detailed time series analysis. In two weak but probably statistically significant periodicities of about 11 and 80 yr, the frequency of volcanic eruptions increases (decreases) slightly around the times of solar minimum (maximum). Time series analysis of the volcanogenic acidities in a deep ice core from Greenland reveals several very long periods ranging from about 80 to about 350 yr which are similar to the very slow solar cycles previously detected in auroral and C-14 records. Solar flares may cause changes in atmospheric circulation patterns that abruptly alter the earth's spin. The resulting jolt probably triggers small earthquakes which affect volcanism.

  15. Geochemical study for volcanic surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Panichi, C.; La Ruffa, G. [Consiglio Nazionale delle Ricerche, International Institute for Geothermal Research Ghezzano, PI (Italy)

    2000-07-01

    For years, geologists have been striving to reconstruct volcanic eruptions from the analysis of pyroclastic deposits and lava flows on the surface of the earth and in the oceans. This effort has produced valuable information on volcanic petrology and magma generation, separation, mixing, crystallisation, and interaction with water in phreatomagmatic and submarine eruptions. The volcanological process are tied to the dynamics of the earth's crust and lithosphere. The mantle, subducted oceanic crust, and continental crust contain different rock types and are sources of different magmas. Magmas consist primarily of completely or partially molten silicates containing volatile materials either dissolved in the melt or as bubbles of gas. The silicate and volatile portions affect the physical properties of magma and, therefore, the nature of a volcanic eruption.

  16. Models of volcanic eruption hazards

    Energy Technology Data Exchange (ETDEWEB)

    Wohletz, K.H.

    1992-01-01

    Volcanic eruptions pose an ever present but poorly constrained hazard to life and property for geothermal installations in volcanic areas. Because eruptions occur sporadically and may limit field access, quantitative and systematic field studies of eruptions are difficult to complete. Circumventing this difficulty, laboratory models and numerical simulations are pivotal in building our understanding of eruptions. For example, the results of fuel-coolant interaction experiments show that magma-water interaction controls many eruption styles. Applying these results, increasing numbers of field studies now document and interpret the role of external water eruptions. Similarly, numerical simulations solve the fundamental physics of high-speed fluid flow and give quantitative predictions that elucidate the complexities of pyroclastic flows and surges. A primary goal of these models is to guide geologists in searching for critical field relationships and making their interpretations. Coupled with field work, modeling is beginning to allow more quantitative and predictive volcanic hazard assessments.

  17. Field-trip guide to mafic volcanism of the Cascade Range in Central Oregon—A volcanic, tectonic, hydrologic, and geomorphic journey

    Science.gov (United States)

    Deligne, Natalia I.; Mckay, Daniele; Conrey, Richard M.; Grant, Gordon E.; Johnson, Emily R.; O'Connor, Jim; Sweeney, Kristin

    2017-08-16

    The Cascade Range in central Oregon has been shaped by tectonics, volcanism, and hydrology, as well as geomorphic forces that include glaciations. As a result of the rich interplay between these forces, mafic volcanism here can have surprising manifestations, which include relatively large tephra footprints and extensive lava flows, as well as water shortages, transportation and agricultural disruption, and forest fires. Although the focus of this multidisciplinary field trip will be on mafic volcanism, we will also look at the hydrology, geomorphology, and ecology of the area, and we will examine how these elements both influence and are influenced by mafic volcanism. We will see mafic volcanic rocks at the Sand Mountain volcanic field and in the Santiam Pass area, at McKenzie Pass, and in the southern Bend region. In addition, this field trip will occur during a total solar eclipse, the first one visible in the United States in more than 25 years (and the first seen in the conterminous United States in more than 37 years).The Cascade Range is the result of subduction of the Juan de Fuca plate underneath the North American plate. This north-south-trending volcanic mountain range is immediately downwind of the Pacific Ocean, a huge source of moisture. As moisture is blown eastward from the Pacific on prevailing winds, it encounters the Cascade Range in Oregon, and the resulting orographic lift and corresponding rain shadow is one of the strongest precipitation gradients in the conterminous United States. We will see how the products of the volcanoes in the central Oregon Cascades have had a profound influence on groundwater flow and, thus, on the distribution of Pacific moisture. We will also see the influence that mafic volcanism has had on landscape evolution, vegetation development, and general hydrology.

  18. Recurrence models of volcanic events: Applications to volcanic risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.M. [Los Alamos National Lab., Las Vegas, NV (United States); Picard, R.; Valentine, G. [Los Alamos National Lab., NM (United States); Perry, F.V. [New Mexico Univ., Albuquerque, NM (United States)

    1992-03-01

    An assessment of the risk of future volcanism has been conducted for isolation of high-level radioactive waste at the potential Yucca Mountain site in southern Nevada. Risk used in this context refers to a combined assessment of the probability and consequences of future volcanic activity. Past studies established bounds on the probability of magmatic disruption of a repository. These bounds were revised as additional data were gathered from site characterization studies. The probability of direct intersection of a potential repository located in an eight km{sup 2} area of Yucca Mountain by ascending basalt magma was bounded by the range of 10{sup {minus}8} to 10{sup {minus}10} yr{sup {minus}1 2}. The consequences of magmatic disruption of a repository were estimated in previous studies to be limited. The exact releases from such an event are dependent on the strike of an intruding basalt dike relative to the repository geometry, the timing of the basaltic event relative to the age of the radioactive waste and the mechanisms of release and dispersal of the waste radionuclides in the accessible environment. The combined low probability of repository disruption and the limited releases associated with this event established the basis for the judgement that the risk of future volcanism was relatively low. It was reasoned that that risk of future volcanism was not likely to result in disqualification of the potential Yucca Mountain site.

  19. Forest Histories & Forest Futures

    OpenAIRE

    Whitlock, Cathy

    2009-01-01

    The climate changes projected for the future will have significant consequences for forest ecosystems and our ability to manage them. It is reasonable to ask: Are there historical precedents that help us understand what might happen in the future or are historical perspectives becoming irrelevant? What synergisms and feedbacks might be expected between rapidly changing climate and land–use in different settings, especially at the wildland–urban interface? What lessons from the past might help...

  20. Controls on volcanism at intraplate basaltic volcanic fields

    Science.gov (United States)

    van den Hove, Jackson C.; Van Otterloo, Jozua; Betts, Peter G.; Ailleres, Laurent; Cas, Ray A. F.

    2017-02-01

    A broad range of controlling mechanisms is described for intraplate basaltic volcanic fields (IBVFs) in the literature. These correspond with those relating to shallow tectonic processes and to deep mantle plumes. Accurate measurement of the physical parameters of intraplate volcanism is fundamental to gain an understanding of the controlling factors that influence the scale and location of a specific IBVF. Detailed volume and geochronology data are required for this; however, these are not available for many IBVFs. In this study the primary controls on magma genesis and transportation are established for the Pliocene-Recent Newer Volcanics Province (NVP) of south-eastern Australia as a case-study for one of such IBVF. The NVP is a large and spatio-temporally complex IBVF that has been described as either being related to a deep mantle plume, or upper mantle and crustal processes. We use innovative high resolution aeromagnetic and 3D modelling analysis, constrained by well-log data, to calculate its dimensions, volume and long-term eruptive flux. Our estimates suggest volcanic deposits cover an area of 23,100 ± 530 km2 and have a preserved dense rock equivalent of erupted volcanics of least 680 km3, and may have been as large as 900 km3. The long-term mean eruptive flux of the NVP is estimated between 0.15 and 0.20 km3/ka, which is relatively high compared with other IBVFs. Our comparison with other IBVFs shows eruptive fluxes vary up to two orders of magnitude within individual fields. Most examples where a range of eruptive flux is available for an IBVF show a correlation between eruptive flux and the rate of local tectonic processes, suggesting tectonic control. Limited age dating of the NVP has been used to suggest there were pulses in its eruptive flux, which are not resolvable using current data. These changes in eruptive flux are not directly relatable to the rate of any interpreted tectonic driver such as edge-driven convection. However, the NVP and other

  1. Forest Resources

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Forest biomass is an abundant biomass feedstock that complements the conventional forest use of wood for paper and wood materials. It may be utilized for bioenergy production, such as heat and electricity, as well as for biofuels and a variety of bioproducts, such as industrial chemicals, textiles, and other renewable materials. The resources within the 2016 Billion-Ton Report include primary forest resources, which are taken directly from timberland-only forests, removed from the land, and taken to the roadside.

  2. A quantitative model for volcanic hazard assessment

    OpenAIRE

    W. Marzocchi; Sandri, L.; Furlan, C

    2006-01-01

    Volcanic hazard assessment is a basic ingredient for risk-based decision-making in land-use planning and emergency management. Volcanic hazard is defined as the probability of any particular area being affected by a destructive volcanic event within a given period of time (Fournier d’Albe 1979). The probabilistic nature of such an important issue derives from the fact that volcanic activity is a complex process, characterized by several and usually unknown degrees o...

  3. Volcanic forcing in decadal forecasts

    Science.gov (United States)

    Ménégoz, Martin; Doblas-Reyes, Francisco; Guemas, Virginie; Asif, Muhammad; Prodhomme, chloe

    2016-04-01

    Volcanic eruptions can significantly impact the climate system, by injecting large amounts of particles into the stratosphere. By reflecting backward the solar radiation, these particles cool the troposphere, and by absorbing the longwave radiation, they warm the stratosphere. As a consequence of this radiative forcing, the global mean surface temperature can decrease by several tenths of degrees. However, large eruptions are also associated to a complex dynamical response of the climate system that is particularly tricky do understand regarding the low number of available observations. Observations seem to show an increase of the positive phases of the Northern Atlantic Oscillation (NAO) the two winters following large eruptions, associated to positive temperature anomalies over the Eurasian continent. The summers following large eruptions are generally particularly cold, especially over the continents of the Northern Hemisphere. Overall, it is really challenging to forecast the climate response to large eruptions, as it is both modulated by, and superimposed to the climate background conditions, largely driven themselves by internal variability at seasonal to decadal scales. This work describes the additional skill of a forecast system used for seasonal and decadal predictions when it includes observed volcanic forcing over the last decades. An idealized volcanic forcing that could be used for real-time forecasts is also evaluated. This work consists in a base for forecasts that will be performed in the context of the next large volcanic eruption.

  4. Experimental generation of volcanic lightning

    Science.gov (United States)

    Cimarelli, Corrado; Alatorre-Ibargüengoitia, Miguel; Kueppers, Ulrich; Scheu, Bettina; Dingwell, Donald B.

    2014-05-01

    Ash-rich volcanic plumes that are responsible for injecting large quantities of aerosols into the atmosphere are often associated with intense electrical activity. Direct measurement of the electric potential at the crater, where the electric activity in the volcanic plume is first observed, is severely impeded, limiting progress in its investigation. We have achieved volcanic lightning in the laboratory during rapid decompression experiments of gas-particle mixtures under controlled conditions. Upon decompression (from ~100 bar argon pressure to atmospheric pressure), loose particles are vertically accelerated and ejected through a nozzle of 2.8 cm diameter into a large tank filled with air at atmospheric conditions. Because of their impulsive character, our experiments most closely represent the conditions encountered in the gas-thrust region of the plume, when ash is first ejected from the crater. We used sieved natural ash with different grain sizes from Popocatépetl (Mexico), Eyjafjallajökull (Iceland), and Soufrière Hills (Montserrat) volcanoes, as well as micrometric glass beads to constrain the influence of material properties on lightning. We monitored the dynamics of the particle-laden jets with a high-speed camera and the pressure and electric potential at the nozzle using a pressure transducer and two copper ring antennas connected to a high-impedance data acquisition system, respectively. We find that lightning is controlled by the dynamics of the particle-laden jet and by the abundance of fine particles. Two main conditions are required to generate lightning: 1) self-electrification of the particles and 2) clustering of the particles driven by the jet fluid dynamics. The relative movement of clusters of charged particles within the plume generates the gradient in electrical potential, which is necessary for lightning. In this manner it is the gas-particle dynamics together with the evolving particle-density distribution within different regions of

  5. A Volcanic Hydrogen Habitable Zone

    Science.gov (United States)

    Ramirez, Ramses M.; Kaltenegger, Lisa

    2017-03-01

    The classical habitable zone (HZ) is the circular region around a star in which liquid water could exist on the surface of a rocky planet. The outer edge of the traditional N2–CO2–H2O HZ extends out to nearly ∼1.7 au in our solar system, beyond which condensation and scattering by CO2 outstrips its greenhouse capacity. Here, we show that volcanic outgassing of atmospheric H2 can extend the outer edge of the HZ to ∼2.4 au in our solar system. This wider volcanic-hydrogen HZ (N2–CO2–H2O–H2) can be sustained as long as volcanic H2 output offsets its escape from the top of the atmosphere. We use a single-column radiative-convective climate model to compute the HZ limits of this volcanic hydrogen HZ for hydrogen concentrations between 1% and 50%, assuming diffusion-limited atmospheric escape. At a hydrogen concentration of 50%, the effective stellar flux required to support the outer edge decreases by ∼35%–60% for M–A stars. The corresponding orbital distances increase by ∼30%–60%. The inner edge of this HZ only moves out ∼0.1%–4% relative to the classical HZ because H2 warming is reduced in dense H2O atmospheres. The atmospheric scale heights of such volcanic H2 atmospheres near the outer edge of the HZ also increase, facilitating remote detection of atmospheric signatures.

  6. How Volcanism Controls Climate Change

    Science.gov (United States)

    Ward, P. L.

    2013-12-01

    Large explosive volcanoes eject megatons of sulfur dioxide into the lower stratosphere where it spreads around the world within months and is oxidized slowly to form a sulfuric-acid aerosol with particle sizes that grow large enough to reflect and scatter solar radiation, cooling Earth ~0.5C for up to 3 years. Explosive eruptions also deplete total column ozone ~6% causing up to 3C winter warming at mid-latitudes over continents. Global cooling predominates. Extrusive, basaltic volcanoes deplete ozone ~6% but do not eject much sulfur dioxide into the lower stratosphere, causing net global warming. Anthropogenic chlorofluorocarbons (CFCs) deplete ozone ~3% for up to a century while each volcanic eruption, even small ones, depletes ozone twice as much but for less than a decade through eruption of halogens and ensuing photochemical processes. The 2010 eruption of Eyjafjallajökull, the 2011 eruption of Grímsvötn, plus anthropogenic CFCs depleted ozone over Toronto Canada 14% in 2012, causing an unusually warm winter and drought. Total column ozone determines how much solar ultraviolet energy with wavelengths between 290 and 340 nanometers reaches Earth where it is absorbed most efficiently by the ocean. A 25% depletion of ozone increases the amount of this radiation reaching Earth by 1 W m-2 for overhead sun and 0.25 W m-2 for a solar zenith angle of 70 degrees. The tropopause is the boundary between the troposphere heated from below by a sun-warmed Earth and the stratosphere heated from above by the Sun through photodissociation primarily of oxygen and ozone. The mean annual height of the tropopause increased ~160 m between 1980 and 2004 at the same time that northern mid-latitude total column ozone was depleted by ~4%, the lower stratosphere cooled ~2C, the upper troposphere warmed ~0.1C, and mean surface temperatures in the northern hemisphere rose ~0.5C. Regional total ozone columns are observed to increase as rapidly as 20% within 5 hours with an associated 5

  7. Source mechanisms of volcanic tsunamis.

    Science.gov (United States)

    Paris, Raphaël

    2015-10-28

    Volcanic tsunamis are generated by a variety of mechanisms, including volcano-tectonic earthquakes, slope instabilities, pyroclastic flows, underwater explosions, shock waves and caldera collapse. In this review, we focus on the lessons that can be learnt from past events and address the influence of parameters such as volume flux of mass flows, explosion energy or duration of caldera collapse on tsunami generation. The diversity of waves in terms of amplitude, period, form, dispersion, etc. poses difficulties for integration and harmonization of sources to be used for numerical models and probabilistic tsunami hazard maps. In many cases, monitoring and warning of volcanic tsunamis remain challenging (further technical and scientific developments being necessary) and must be coupled with policies of population preparedness. © 2015 The Author(s).

  8. Anomalous diffusion of volcanic earthquakes

    CERN Document Server

    Abe, Sumiyoshi

    2015-01-01

    Volcanic seismicity at Mt. Etna is studied. It is found that the associated stochastic process exhibits a subdiffusive phenomenon. The jump probability distribution well obeys an exponential law, whereas the waiting-time distribution follows a power law in a wide range. Although these results would seem to suggest that the phenomenon could be described by temporally-fractional kinetic theory based on the viewpoint of continuous-time random walks, the exponent of the power-law waiting-time distribution actually lies outside of the range allowed in the theory. In addition, there exists the aging phenomenon in the event-time averaged mean squared displacement, in contrast to the picture of fractional Brownian motion. Comments are also made on possible relevances of random walks on fractals as well as nonlinear kinetics. Thus, problems of volcanic seismicity are highly challenging for science of complex systems.

  9. Volcanic mercury in Pinus canariensis

    Science.gov (United States)

    Rodríguez Martín, José Antonio; Nanos, Nikos; Miranda, José Carlos; Carbonell, Gregoria; Gil, Luis

    2013-08-01

    Mercury (Hg) is a toxic element that is emitted to the atmosphere by both human activities and natural processes. Volcanic emissions are considered a natural source of mercury in the environment. In some cases, tree ring records taken close to volcanoes and their relation to volcanic activity over time are contradictory. In 1949, the Hoyo Negro volcano (La Palma-Canary Islands) produced significant pyroclastic flows that damaged the nearby stand of Pinus canariensis. Recently, 60 years after the eruption, we assessed mercury concentrations in the stem of a pine which survived volcano formation, located at a distance of 50 m from the crater. We show that Hg content in a wound caused by pyroclastic impacts (22.3 μg kg-1) is an order of magnitude higher than the Hg concentrations measured in the xylem before and after the eruption (2.3 μg kg-1). Thus, mercury emissions originating from the eruption remained only as a mark—in pyroclastic wounds—and can be considered a sporadic and very high mercury input that did not affect the overall Hg input in the xylem. In addition, mercury contents recorded in the phloem (9.5 μg kg-1) and bark (6.0 μg kg-1) suggest that mercury shifts towards non-living tissues of the pine, an aspect that can be related to detoxification in volcanism-adapted species.

  10. Submarine volcanoes along the Aegean volcanic arc

    Science.gov (United States)

    Nomikou, Paraskevi; Papanikolaou, Dimitrios; Alexandri, Matina; Sakellariou, Dimitris; Rousakis, Grigoris

    2013-06-01

    The Aegean volcanic arc has been investigated along its offshore areas and several submarine volcanic outcrops have been discovered in the last 25 years of research. The basic data including swath bathymetric maps, air-gun profiles, underwater photos and samples analysis have been presented along the four main volcanic groups of the arc. The description concerns: (i) Paphsanias submarine volcano in the Methana group, (ii) three volcanic domes to the east of Antimilos Volcano and hydrothermal activity in southeast Milos in the Milos group, (iii) three volcanic domes east of Christiana and a chain of about twenty volcanic domes and craters in the Kolumbo zone northeast of Santorini in the Santorini group and (iv) several volcanic domes and a volcanic caldera together with very deep slopes of several volcanic islands in the Nisyros group. The tectonic structure of the volcanic centers is described and related to the geometry of the arc and the neotectonic graben structures that usually host them. The NE-SW direction is dominant in the Santorini and Nisyros volcanic groups, located at the eastern part of the arc, where strike-slip is also present, whereas NW-SE direction dominates in Milos and Methana at the western part, where co-existence of E-W disrupting normal faults is observed. The volcanic relief reaches 1100-1200 m in most cases. This is produced from the outcrops of the volcanic centers emerging usually at 400-600 m depth and ending either below sea level or at high altitudes of 600-700 m on the islands. Hydrothermal activity at relatively high temperatures observed in Kolumbo is remarkable whereas low temperature phenomena have been detected in the Santorini caldera around Kameni islands and in the area southeast of Milos. In Methana and Nisyros, hydrothermal activity seems to be limited in the coastal areas without other offshore manifestations.

  11. Temperature responses of carbon monoxide and hydrogen uptake by vegetated and unvegetated volcanic cinders

    OpenAIRE

    2012-01-01

    Ecosystem succession on a large deposit of volcanic cinders emplaced on Kilauea Volcano in 1959 has resulted in a mosaic of closed-canopy forested patches and contiguous unvegetated patches. Unvegetated and unshaded surface cinders (Bare) experience substantial diurnal temperature oscillations ranging from moderate (16 °C) to extreme (55 °C) conditions. The surface material of adjacent vegetated patches (Canopy) experiences much smaller fluctuations (14–25 °C) due to shading. To determine whe...

  12. Texas' forests, 2008

    Science.gov (United States)

    James W. Bentley; Consuelo Brandeis; Jason A. Cooper; Christopher M. Oswalt; Sonja N. Oswalt; KaDonna Randolph

    2014-01-01

    This bulletin describes forest resources of the State of Texas at the time of the 2008 forest inventory. This bulletin addresses forest area, volume, growth, removals, mortality, forest health, timber product output, and the economy of the forest sector.

  13. Forest resources of the Gila National Forest

    Science.gov (United States)

    John D. Shaw

    2008-01-01

    The Interior West Forest Inventory and Analysis (IWFIA) program of the USDA Forest Service, Rocky Mountain Research Station, as part of its national Forest Inventory and Analysis (FIA) duties, conducted forest resource inventories of the Southwestern Region (Region 3) National Forests. This report presents highlights of the Gila National Forest 1994 inventory including...

  14. Forest resources of the Prescott National Forest

    Science.gov (United States)

    Paul Rogers

    2003-01-01

    The Interior West Forest Inventory and Analysis (IWFIA) program of the USDA Forest Service, Rocky Mountain Research Station, as part of its national Forest Inventory and Analysis (FIA) duties, conducted forest resource inventories of the Southwestern Region (Region 3) National Forests. This report presents highlights of the Prescott National Forest 1996...

  15. Catastrophic volcanic collapse: relation to hydrothermal processes.

    Science.gov (United States)

    López, D L; Williams, S N

    1993-06-18

    Catastrophic volcanic collapse, without precursory magmatic activity, is characteristic of many volcanic disasters. The extent and locations of hydrothermal discharges at Nevado del Ruiz volcano, Colombia, suggest that at many volcanoes collapse may result from the interactions between hydrothermal fluids and the volcanic edifice. Rock dissolution and hydrothermal mineral alteration, combined with physical triggers such as earth-quakes, can produce volcanic collapse. Hot spring water compositions, residence times, and flow paths through faults were used to model potential collapse at Ruiz. Caldera dimensions, deposits, and alteration mineral volumes are consistent with parameters observed at other volcanoes.

  16. Nephelometric Dropsonde for Volcanic Ash Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced dropsondes that could effectively be guided through atmospheric regions of interest such as volcanic plumes could enable unprecedented observations of...

  17. Thermal vesiculation during volcanic eruptions

    Science.gov (United States)

    Lavallée, Yan; Dingwell, Donald B.; Johnson, Jeffrey B.; Cimarelli, Corrado; Hornby, Adrian J.; Kendrick, Jackie E.; von Aulock, Felix W.; Kennedy, Ben M.; Andrews, Benjamin J.; Wadsworth, Fabian B.; Rhodes, Emma; Chigna, Gustavo

    2015-12-01

    Terrestrial volcanic eruptions are the consequence of magmas ascending to the surface of the Earth. This ascent is driven by buoyancy forces, which are enhanced by bubble nucleation and growth (vesiculation) that reduce the density of magma. The development of vesicularity also greatly reduces the ‘strength’ of magma, a material parameter controlling fragmentation and thus the explosive potential of the liquid rock. The development of vesicularity in magmas has until now been viewed (both thermodynamically and kinetically) in terms of the pressure dependence of the solubility of water in the magma, and its role in driving gas saturation, exsolution and expansion during decompression. In contrast, the possible effects of the well documented negative temperature dependence of solubility of water in magma has largely been ignored. Recently, petrological constraints have demonstrated that considerable heating of magma may indeed be a common result of the latent heat of crystallization as well as viscous and frictional heating in areas of strain localization. Here we present field and experimental observations of magma vesiculation and fragmentation resulting from heating (rather than decompression). Textural analysis of volcanic ash from Santiaguito volcano in Guatemala reveals the presence of chemically heterogeneous filaments hosting micrometre-scale vesicles. The textures mirror those developed by disequilibrium melting induced via rapid heating during fault friction experiments, demonstrating that friction can generate sufficient heat to induce melting and vesiculation of hydrated silicic magma. Consideration of the experimentally determined temperature and pressure dependence of water solubility in magma reveals that, for many ascent paths, exsolution may be more efficiently achieved by heating than by decompression. We conclude that the thermal path experienced by magma during ascent strongly controls degassing, vesiculation, magma strength and the effusive

  18. Water in volcanic glass: From volcanic degassing to secondary hydration

    Science.gov (United States)

    Seligman, Angela N.; Bindeman, Ilya N.; Watkins, James M.; Ross, Abigail M.

    2016-10-01

    Volcanic glass is deposited with trace amounts (0.1-0.6 wt.%) of undegassed magmatic water dissolved in the glass. After deposition, meteoric water penetrates into the glass structure mostly as molecular H2O. Due to the lower δD (‰) values of non-tropical meteoric waters and the ∼30‰ offset between volcanic glass and environmental water during hydration, secondary water imparts lighter hydrogen isotopic values during secondary hydration up to a saturation concentration of 3-4 wt.% H2O. We analyzed compositionally and globally diverse volcanic glass from 0 to 10 ka for their δD and H2Ot across different climatic zones, and thus different δD of precipitation, on a thermal conversion elemental analyzer (TCEA) furnace attached to a mass spectrometer. We find that tephrachronologically coeval rhyolite glass is hydrated faster than basaltic glass, and in the majority of glasses an increase in age and total water content leads to a decrease in δD (‰), while a few equatorial glasses have little change in δD (‰). We compute a magmatic water correction based on our non-hydrated glasses, and calculate an average 103lnαglass-water for our hydrated felsic glasses of -33‰, which is similar to the 103lnαglass-water determined by Friedman et al. (1993a) of -34‰. We also determine a smaller average 103lnαglass-water for all our mafic glasses of -23‰. We compare the δD values of water extracted from our glasses to local meteoric waters following the inclusion of a -33‰ 103lnαglass-water. We find that, following a correction for residual magmatic water based on an average δD and wt.% H2Ot of recently erupted ashes from our study, the δD value of water extracted from hydrated volcanic glass is, on average, within 4‰ of local meteoric water. To better understand the difference in hydration rates of mafic and felsic glasses, we imaged 6 tephra clasts ranging in age and chemical composition with BSE (by FEI SEM) down to a submicron resolution. Mafic tephra

  19. Geochemical Characteristics and Metallogenesis of Volcanic Rocks as Exemplified by Volcanic Rocks in Ertix,Xinjiang

    Institute of Scientific and Technical Information of China (English)

    刘铁庚; 叶霖

    1997-01-01

    Volcanic rocks in Ertix,Xinjiang,occurring in the collision zone between the Siberia Plate and the Junggar Plate,are distributed along the Eritix River Valley in northern Xinjiang.The volcanic rocks were dated at Late Paleozoic and can be divided into the spilite-keratophyre series and the basalt-andesite series.The spilite-keratophyre series volcanic rocks occur in the Altay orogenic belt at the southwest margin of the Siberia Plate.In addition to sodic volcanic rocks.There are also associated potassic-sodic volcanic rocks and potassic volcanic rocks.The potassic-sodic volcanic rocks occur at the bottom of the eruption cycle and control the distribution of Pb and Zn deposits.The potassic volcanic rocks occur at the top of the eruption cycle and are associated with Au and Cu mineralizations.The sodic volcanic rocks occur in the middle stage of eruption cycle and control the occurrence of Cu(Zn) deposits.The basalt-andesite series volcanic rocks distributed in the North Junggar orogenic belt at the north margin of the Junggar-Kazakstan Plate belong to the potassic sodic volcain rocks.The volcanic rocks distributed along the Ulungur fault are relatively rich in sodium and poor in potassium and are predominated by Cu mineralization and associated with Au mineralization.Those volcanic rocks distributed along the Ertix fault are relatively rich in K and poor in Na,with Au mineralization being dominant.

  20. Retrieval of SO2 from thermal infrared satellite measurements: correction procedures for the effects of volcanic ash

    Directory of Open Access Journals (Sweden)

    A. J. Prata

    2009-02-01

    Full Text Available The simultaneous presence of SO2 and ash in a volcanic plume can lead to a significant error in the SO2 columnar abundance retrieval when multispectral Thermal InfraRed (TIR data are used. The ash particles within the plume with effective radii (from 1 to 10 μm reduce the Top Of Atmosphere (TOA radiance in the entire TIR spectral range, including the channels used for SO2 retrieval. The net effect is a significant SO2 overestimation. In this work the interference of ash is discussed and two correction procedures for satellite SO2 volcanic plume retrieval in the TIR spectral range are developed to achieve an higher computation speed and a better accuracy. The ash correction can be applied when the sensor spectral range includes the 7.3 and/or 8.7 μm SO2 absorption bands, and the split window bands centered around 11 and 12 μm required for ash retrieval. This allows the possibility of a simultaneous estimation of both volcanic SO2 and ash in the same data set. The proposed ash correction procedures have been applied to the Moderate Resolution Imaging Spectroradiometer (MODIS and the Spin Enhanced Visible and Infrared Imager (SEVIRI measurements. Data collected during the 24 November 2006 Mt. Etna eruption have been used to illustrate the technique. The SO2 and ash estimations are carried out by using a least squares fit method and the Brightness Temperature Difference (BTD procedures, respectively. The simulated TOA radiance Look-Up Table (LUT needed for the SO2 columnar abundance and the ash retrievals have been computed using the MODTRAN 4 Radiative Transfer Model. The results show the importance of the ash correction on SO2 retrieval at 8.7 μm – the SO2 columnar abundance corrected by the ash influence is less than one half of the values retrieved without the correction. The ash correction on SO2 retrieval at 7.3 μm is much less important and only significant for low SO2 columnar abundances. Results also show that the simplified and

  1. Cenozoic volcanic rocks of Saudi Arabia

    Science.gov (United States)

    Coleman, R.G.; Gregory, R.T.; Brown, G.F.

    2016-01-01

    The Cenozoic volcanic rocks of Saudi Arabia cover about 90,000 km2, one of the largest areas of alkali olivine basalt in the world. These volcanic rocks are in 13 separate fields near the eastern coast of the Red Sea and in the western Arabian Peninsula highlands from Syria southward to the Yemen Arab Republic.

  2. Relationship between earthquake and volcanic eruption inferred from historical records

    Institute of Scientific and Technical Information of China (English)

    陈洪洲; 高峰; 吴雪娟; 孟宪森

    2004-01-01

    A large number of seismic records are discovered for the first time in the historical materials about Wudalianchi volcanic group eruption in 1720~1721, which provides us with abundant volcanic earthquake information. Based on the written records, the relationship between earthquake and volcanic eruption is discussed in the paper. Furthermore it is pointed that earthquake swarm is an important indication of volcanic eruption. Therefore, monitoring volcanic earthquakes is of great significance for forecasting volcanic eruption.

  3. Lakshmi Planum: A distinctive highland volcanic province

    Science.gov (United States)

    Roberts, Kari M.; Head, James W.

    Lakshmi Planum, a broad smooth plain located in western Ishtar Terra and containing two large oval depressions (Colette and Sacajawea), has been interpreted as a highland plain of volcanic origin. Lakshmi is situated 3 to 5 km above the mean planetary radius and is surrounded on all sides by bands of mountains interpreted to be of compressional tectonic origin. Four primary characteristics distinguish Lakshmi from other volcanic regions known on the planet, such as Beta Regio: (1) high altitude, (2) plateau-like nature, (3) the presence of very large, low volcanic constructs with distinctive central calderas, and (4) its compressional tectonic surroundings. Building on the previous work of Pronin, the objective is to establish the detailed nature of the volcanic deposits on Lakshmi, interpret eruption styles and conditions, sketch out an eruption history, and determine the relationship between volcanism and the tectonic environment of the region.

  4. FS National Forest Dataset (US Forest Service Proclaimed Forests)

    Data.gov (United States)

    US Forest Service, Department of Agriculture — A map service on the www depicting the boundaries encompassing the National Forest System (NFS) lands within the original proclaimed National Forests, along with...

  5. Unique pioneer microbial communities exposed to volcanic sulfur dioxide

    Science.gov (United States)

    Fujimura, Reiko; Kim, Seok-Won; Sato, Yoshinori; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Ohta, Hiroyuki

    2016-01-01

    Newly exposed volcanic substrates contain negligible amounts of organic materials. Heterotrophic organisms in newly formed ecosystems require bioavailable carbon and nitrogen that are provided from CO2 and N2 fixation by pioneer microbes. However, the knowledge of initial ecosystem developmental mechanisms, especially the association between microbial succession and environmental change, is still limited. This study reports the unique process of microbial succession in fresh basaltic ash, which was affected by long-term exposure to volcanic sulfur dioxide (SO2). Here we compared the microbial ecosystems among deposits affected by SO2 exposure at different levels. The results of metagenomic analysis suggested the importance of autotrophic iron-oxidizing bacteria, particularly those involved in CO2 and N2 fixation, in the heavily SO2 affected site. Changes in the chemical properties of the deposits after the decline of the SO2 impact led to an apparent decrease in the iron-oxidizer abundance and a possible shift in the microbial community structure. Furthermore, the community structure of the deposits that had experienced lower SO2 gas levels showed higher similarity with that of the control forest soil. Our results implied that the effect of SO2 exposure exerted a selective pressure on the pioneer community structure by changing the surrounding environment of the microbes.

  6. Colonisation of freshly deposited volcanic tephra by soil fungi

    Science.gov (United States)

    Tarasenko, Inga; Opfergelt, Sophie; Stenuit, Benoît; Daily, Hélène; Bonneville, Steeve; Müller, Dirk; Delmelle, Pierre

    2016-04-01

    In active volcanic regions, soils are repeatedly exposed to eruption products, notably tephra emissions. Deposition of volcanic tephra on soil may modify water and gas exchanges between the soil surface and the atmosphere. Through chemical weathering, the silicate glass and mineral components of freshly deposited tephra act as a source of bioavailable potassium and phosphorus. In addition, opportunist fungi may be able to enhance access to these elements via physical and biochemical processes. Altogether, tephra deposition has the potential to affect biological activity and hence, nutrient cycling in the buried soil. Here we present the preliminary results of an ongoing investigation aimed at shedding light on the interaction of soil fungi with freshly deposited tephra. The study site (elevation - 1755 m a.s.l.) is a coniferous forest on the northeastern slope of Etna volcano, Sicily, which received about 20 cm of tephra in November 2013. Soil and tephra samples were collected in September 2014 and October 2015. A variety of biological, chemical and mineralogical analyses were carried out to determine fungal biomass, fungi species and tephra weathering stage. Colonisation of the fresh tephra by fungi is evidenced by the high fungal biomass measured in this material. DNA analyses further indicate that these fungi originate from the soil beneath the tephra layer. While chemical weathering of the tephra material has started, there is no clear indication that fungi colonisation is enhancing this process. We will continue to monitor fungi-tephra interaction on Etna during the next few years.

  7. Boreal forests

    Energy Technology Data Exchange (ETDEWEB)

    Essen, P.A.; Ericson, L. [Univ. of Umeaa, Dept. of Ecological Botany, Umeaa (Sweden); Ehnstroem, B. [Swedish Univ., of Agricultural Sciences, Swedish Threatened Species Unit, Uppsala (Sweden); Sjoeberg, K. [Swedish Univ. of Agricultural Sciences, Dept. of Animal Ecology, Umeaa (Sweden)

    1997-10-01

    We review patterns and processes important for biodiversity in the Fennoscandian boreal forest, describe man`s past and present impact and outline a strategy for conservation. Natural disturbances, particularly forest fire and gap formation, create much of the structural and functional diversity in forest ecosystems. Several boreal plants and animals are adapted to fire regimes. In contrast, many organisms (epiphytic lichens, fungi, invertebrates) require stable conditions with long continuity in canopy cover. The highly mechanized and efficient Fennoscandian forest industry has developed during the last century. The result is that most natural forest has been lost and that several hundreds of species, mainly cryptograms and invertebrates, are threatened. The forestry is now in a transition from exploitation to sustainable production and has recently incorporated some measures to protect the environment. Programmes for maintaining biodiversity in the boreal forest should include at least three parts. First, the system of forest reserves must be significantly improved through protection of large representative ecosystems and key biotopes that host threatened species. Second, we must restore ecosystem properties that have been lost or altered. Natural disturbance regimes must be allowed to operate or be imitated, for example by artificial fire management. Stand-level management should particularly increase the amount of coarse woody debris, the number of old deciduous trees and large, old conifers, by using partial cutting. Third, natural variation should also be mimicked at the landscape level, for example, by reducing fragmentation and increasing links between landscape elements. Long-term experiments are required to evaluate the success of different management methods in maintaining biodiversity in the boreal forest. (au) 260 refs.

  8. Geomorphological Approach for Regional Zoning In The Merapi Volcanic Area

    Directory of Open Access Journals (Sweden)

    Langgeng Wahyu Santosa

    2013-07-01

    Full Text Available Geomorphologial approach can be used as the basic for identifying and analyzing the natural resources potentials, especially in volcanic landscape. Based on its geomorphology, Merapi volcanic landscape can be divided into 5 morphological units, i.e.: volcanic cone, volcanic slope, volcanic foot, volcanic foot plain, and fluvio-volcanic plain. Each of these morphological units has specific characteristic and natural resources potential. Based on the condition of geomorphology, the regional zoning can be compiled to support the land use planning and to maintain the conservation of environmental function in the Merapi Volcanic area.

  9. Volcanism and associated hazards: the Andean perspective

    Science.gov (United States)

    Tilling, R. I.

    2009-12-01

    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant improvements in reducing volcano risk in the Andean region. But much remains to be done.

  10. Volcanism and associated hazards: The Andean perspective

    Science.gov (United States)

    Tilling, R.I.

    2009-01-01

    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant improvements in reducing volcano risk in the Andean region. But much remains to be done.

  11. US Forest Service National Forest System Roads

    Data.gov (United States)

    US Forest Service, Department of Agriculture — A map service on the www depicting existing National Forest System Roads (NFSR) that are under the jurisdiction of the U.S. Forest Service. Each feature represents a...

  12. Volcanic caves of East Africa - an overview

    Directory of Open Access Journals (Sweden)

    Jim W. Simons

    1998-01-01

    Full Text Available Numerous Tertiary to recent volcanoes are located in East Africa. Thus, much of the region is made up volcanic rock, which hosts the largest and greatest variety of East Africas caves. Exploration of volcanic caves has preoccupied members of Cave Exploration Group of East Africa (CEGEA for the past 30 years. The various publications edited by CEGEA are in this respect a treasure troves of speleological information. In the present paper an overview on the most important volcanic caves and areas are shortly reported.

  13. Toward Forecasting Volcanic Eruptions using Seismic Noise

    CERN Document Server

    Brenguier, Florent; Campillo, Michel; Ferrazzini, Valerie; Duputel, Zacharie; Coutant, Olivier; Nercessian, Alexandre

    2007-01-01

    During inter-eruption periods, magma pressurization yields subtle changes of the elastic properties of volcanic edifices. We use the reproducibility properties of the ambient seismic noise recorded on the Piton de la Fournaise volcano to measure relative seismic velocity variations of less than 0.1 % with a temporal resolution of one day. Our results show that five studied volcanic eruptions were preceded by clearly detectable seismic velocity decreases within the zone of magma injection. These precursors reflect the edifice dilatation induced by magma pressurization and can be useful indicators to improve the forecasting of volcanic eruptions.

  14. Volcanic Plume Measurements with UAV (Invited)

    Science.gov (United States)

    Shinohara, H.; Kaneko, T.; Ohminato, T.

    2013-12-01

    Volatiles in magmas are the driving force of volcanic eruptions and quantification of volcanic gas flux and composition is important for the volcano monitoring. Recently we developed a portable gas sensor system (Multi-GAS) to quantify the volcanic gas composition by measuring volcanic plumes and obtained volcanic gas compositions of actively degassing volcanoes. As the Multi-GAS measures variation of volcanic gas component concentrations in the pumped air (volcanic plume), we need to bring the apparatus into the volcanic plume. Commonly the observer brings the apparatus to the summit crater by himself but such measurements are not possible under conditions of high risk of volcanic eruption or difficulty to approach the summit due to topography etc. In order to overcome these difficulties, volcanic plume measurements were performed by using manned and unmanned aerial vehicles. The volcanic plume measurements by manned aerial vehicles, however, are also not possible under high risk of eruption. The strict regulation against the modification of the aircraft, such as installing sampling pipes, also causes difficulty due to the high cost. Application of the UAVs for the volcanic plume measurements has a big advantage to avoid these problems. The Multi-GAS consists of IR-CO2 and H2O gas analyzer, SO2-H2O chemical sensors and H2 semiconductor sensor and the total weight ranges 3-6 kg including batteries. The necessary conditions of the UAV for the volcanic plumes measurements with the Multi-GAS are the payloads larger than 3 kg, maximum altitude larger than the plume height and installation of the sampling pipe without contamination of the exhaust gases, as the exhaust gases contain high concentrations of H2, SO2 and CO2. Up to now, three different types of UAVs were applied for the measurements; Kite-plane (Sky Remote) at Miyakejima operated by JMA, Unmanned airplane (Air Photo Service) at Shinomoedake, Kirishima volcano, and Unmanned helicopter (Yamaha) at Sakurajima

  15. Volcanic Ash Advisory Database, 1983-2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanic ash is a significant hazard to aviation and can also affect global climate patterns. To ensure safe navigation and monitor possible climatic impact, the...

  16. Palaeoclimate: Volcanism caused ancient global warming

    Science.gov (United States)

    Meissner, Katrin J.; Bralower, Timothy J.

    2017-08-01

    A study confirms that volcanism set off one of Earth's fastest global-warming events. But the release of greenhouse gases was slow enough for negative feedbacks to mitigate impacts such as ocean acidification. See Letter p.573

  17. Volcanics in the Gulf Coast [volcanicg

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The volcanic provinces are modified after Plate 2, Principal structural features, Gulf of Mexico Basin (compiled by T.E. Ewing and R.F. Lopez) in Volume J, The...

  18. Volcanic rock properties control sector collapse events

    Science.gov (United States)

    Hughes, Amy; Kendrick, Jackie; Lavallée, Yan; Hornby, Adrian; Di Toro, Giulio

    2017-04-01

    Volcanoes constructed by superimposed layers of varying volcanic materials are inherently unstable structures. The heterogeneity of weak and strong layers consisting of ash, tephra and lavas, each with varying coherencies, porosities, crystallinities, glass content and ultimately, strength, can promote volcanic flank and sector collapses. These volcanoes often exist in areas with complex regional tectonics adding to instability caused by heterogeneity, flank overburden, magma movement and emplacement in addition to hydrothermal alteration and anomalous geothermal gradients. Recent studies conducted on the faulting properties of volcanic rocks at variable slip rates show the rate-weakening dependence of the friction coefficients (up to 90% reduction)[1], caused by a wide range of factors such as the generation of gouge and frictional melt lubrication [2]. Experimental data from experiments conducted on volcanic products suggests that frictional melt occurs at slip rates similar to those of plug flow in volcanic conduits [1] and the bases of mass material movements such as debris avalanches from volcanic flanks [3]. In volcanic rock, the generation of frictional heat may prompt the remobilisation of interstitial glass below melting temperatures due to passing of the glass transition temperature at ˜650-750 ˚C [4]. In addition, the crushing of pores in high porosity samples can lead to increased comminution and strain localisation along slip surfaces. Here we present the results of friction tests on both high density, glass rich samples from Santaguito (Guatemala) and synthetic glass samples with varying porosities (0-25%) to better understand frictional properties underlying volcanic collapse events. 1. Kendrick, J.E., et al., Extreme frictional processes in the volcanic conduit of Mount St. Helens (USA) during the 2004-2008 eruption. J. Structural Geology, 2012. 2. Di Toro, G., et al., Fault lubrication during earthquakes. Nature, 2011. 471(7339): p. 494-498. 3

  19. Volcanism and associated hazards: the Andean perspective

    Directory of Open Access Journals (Sweden)

    R. I. Tilling

    2009-12-01

    Full Text Available Andean volcanism occurs within the Andean Volcanic Arc (AVA, which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions" recognized worldwide that have occurred from the Ordovician to the Pleistocene.

    The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru. The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (<0.05 km3 in 1985 of Nevado del Ruiz (Colombia killed about 25 000 people – the worst volcanic disaster in the Andean region as well as the second worst in the world in the 20th century. The Ruiz tragedy has been attributed largely to ineffective communications of hazards information and indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent

  20. About the Mechanism of Volcanic Eruptions

    CERN Document Server

    Nechayev, Andrei

    2012-01-01

    A new approach to the volcanic eruption theory is proposed. It is based on a simple physical mechanism of the imbalance in the system "magma-crust-fluid". This mechanism helps to explain from unified positions the different types of volcanic eruptions. A criterion of imbalance and magma eruption is derived. Stratovolcano and caldera formation is analyzed. High explosive eruptions of the silicic magma is discussed

  1. Episodic Volcanism and Geochemistry in Western Nicaragua

    Science.gov (United States)

    Saginor, I.; Carr, M. J.; Gazel, E.; Swisher, C.; Turrin, B.

    2007-12-01

    The active volcanic arc in western Nicaragua is separated from the Miocene arc by a temporal gap in the volcanic record, during which little volcanic material was erupted. Previous work suggested that this gap lasted from 7 to 1.6 Ma, during which volcanic production in Nicaragua was limited or nonexistent. Because the precise timing and duration of this gap has been poorly constrained, recent fieldwork has focused on locating samples that may have erupted close to or even during this apparent hiatus in activity. Recent 40Ar/39Ar dates reveal pulses of low- level episodic volcanism at 7 Ma and 1 Ma between the active and Miocene arcs with current volcanism beginning ~350 ka. In addition, sampling from an inactive area between Coseguina and San Cristobal yielded two distinct groupings of ages; one of Tamarindo age (13 Ma) and the other around 3.5 Ma-the only samples of that age collected on-strike with the active arc. This raises the possibility the bases of the other active volcanoes contain lavas that are older than expected, but have been covered by subsequent eruptions. The Miocene arc differs from the active arc in Central America in several ways, with the latter having higher Ba/La and U/Th values due to increased slab input and changes in subducted sediment composition. Analysis of sample C-51 and others taken from the same area may shed light on the timing of this shift from high to low Ba/La and U/Th values. More importantly, it may help explain why the arc experienced such a dramatic downturn in volcanic production during this time. We also report 25 new major and trace element analyses that shed some light on the origins of these minor episodes of Nicaraguan volcanism. These samples are currently awaiting Sr and Nd isotopic analyses.

  2. Volcanic loading: The dust veil index

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, H.H. [Univ. of East Anglia, Norwich (United Kingdom). Climatic Research Unit

    1985-09-01

    Dust ejected into the high atmosphere during explosive volcanic eruptions has been considered as a possible cause for climatic change. Dust veils created by volcanic eruptions can reduce the amount of light reaching the Earth`s surface and can cause reductions in surface temperatures. These climatic effects can be seen for several years following some eruptions and the magnitude and duration of the effects depend largely on the density or amount of tephra (i.e. dust) ejected, the latitude of injection, and atmospheric circulation patterns. Lamb (1970) formulated the Dust Veil Index (DVI) in an attempt to quantify the impact on the Earth`s energy balance of changes in atmospheric composition due to explosive volcanic eruptions. The DVI is a numerical index that quantifies the impact on the Earth`s energy balance of changes in atmospheric composition due to explosive volcanic eruptions. The DVI is a numerical index that quantifies the impact of a particular volcanic eruptions release of dust and aerosols over the years following the event. The DVI for any volcanic eruptions are available and have been used in estimating Lamb`s dust veil indices.

  3. Forest Imaging

    Science.gov (United States)

    1992-01-01

    NASA's Technology Applications Center, with other government and academic agencies, provided technology for improved resources management to the Cibola National Forest. Landsat satellite images enabled vegetation over a large area to be classified for purposes of timber analysis, wildlife habitat, range measurement and development of general vegetation maps.

  4. Forest insurance

    Science.gov (United States)

    Ellis T. Williams

    1949-01-01

    Standing timber is one of the few important kinds of property that are not generally covered by insurance. Studies made by the Forest Service and other agencies have indicated that the risks involved in the insurance of timber are not unduly great, provided they can be properly distributed. Such studies, however, have thus far failed to induce any notable development...

  5. Forest ownership dynamics of southern forests

    Science.gov (United States)

    Brett J. Butler; David N. Wear

    2013-01-01

    Key FindingsPrivate landowners hold 86 percent of the forest area in the South; two-thirds of this area is owned by families or individuals.Fifty-nine percent of family forest owners own between 1 and 9 acres of forest land, but 60 percent of family-owned forests are in holdings of 100 acres or more.Two-...

  6. Seasonally dependent iron limitation of nitrogen fixation in tropical forests of karst landscapes

    Science.gov (United States)

    Winbourne, J. B.; Brewer, S.; Houlton, B. Z.

    2015-12-01

    Limestone tropical forests in karst topography are one of the most poorly studied ecosystems on Earth, and has been substantially cleared by human activities throughout much of Central America. This ecosystem is noted for its high level of plant productivity, biomass, endemism and biological diversity compared to nearby neighboring tropical forests on volcanic rock substrates (Brewer et al. 2002). A question remains as to how limestone tropical forests are able to maintain the high nutrient demands of plant photosynthesis and tree biomass growth. Here, we demonstrate that rates of nitrogen (N) fixation are higher in limestone versus volcanic soil substrates, with direct evidence for the emergence of seasonally dependent iron limitation of N fixation in limestone tropical forest. N fixation rates showed a three-fold increase in response to iron additions, especially during the wet season when N demands of the forest trees are highest. In contrast, adjacent forests growing on the more classical acidic volcanic soils showed no response to iron or other nutrient additions. Biologically available pools of iron were exceedingly low in the limestone forest site, consistent with the complexation of iron under high pH conditions. Biological acquisition of iron, as measured by the concentration of iron chelating compounds (i.e. siderophores), provided additional evidence for iron limitation of microbial processes in limestone tropical forests, where concentrations were six times higher than those at the volcanic site. Our results suggest that the functioning of limestone tropical forest is strongly regulated by interactions between iron, soil pH, and N cycling.

  7. Venus volcanism - Classification of volcanic features and structures, associations, and global distribution from Magellan data

    Science.gov (United States)

    Head, James W.; Crumpler, L. S.; Aubele, Jayne C.; Guest, John E.; Saunders, R. S.

    1992-01-01

    A classification and documentation of the range of morphologic features and structures of volcanic origin on Venus, their size distribution, and their global distribution and associations are presented based on a preliminary analysis of Magellan data. Some of the major questions about volcanism on Venus are addressed.

  8. Volcanic Supersites as cross-disciplinary laboratories

    Science.gov (United States)

    Provenzale, Antonello; Beierkuhnlein, Carl; Giamberini, Mariasilvia; Pennisi, Maddalena; Puglisi, Giuseppe

    2017-04-01

    Volcanic Supersites, defined in the frame of the GEO-GSNL Initiative, are usually considered mainly for their geohazard and geological characteristics. However, volcanoes are extremely challenging areas from many other points of view, including environmental and climatic properties, ecosystems, hydrology, soil properties and biogeochemical cycling. Possibly, volcanoes are closer to early Earth conditions than most other types of environment. During FP7, EC effectively fostered the implementation of the European volcano Supersites (Mt. Etna, Campi Flegrei/Vesuvius and Iceland) through the MED-SUV and FUTUREVOLC projects. Currently, the large H2020 project ECOPOTENTIAL (2015-2019, 47 partners, http://www.ecopotential-project.eu/) contributes to GEO/GEOSS and to the GEO ECO Initiative, and it is devoted to making best use of remote sensing and in situ data to improve future ecosystem benefits, focusing on a network of Protected Areas of international relevance. In ECOPOTENTIAL, remote sensing and in situ data are collected, processed and used for a better understanding of the ecosystem dynamics, analysing and modelling the effects of global changes on ecosystem functions and services, over an array of different ecosystem types, including mountain, marine, coastal, arid and semi-arid ecosystems, and also areas of volcanic origin such as the Canary and La Reunion Islands. Here, we propose to extend the network of the ECOPOTENTIAL project to include active Volcanic Supersites, such as Mount Etna and other volcanic Protected Areas, and we discuss how they can be included in the framework of the ECOPOTENTIAL workflow. A coordinated and cross-disciplinary set of studies at these sites should include geological, biological, ecological, biogeochemical, climatic and biogeographical aspects, as well as their relationship with the antropogenic impact on the environment, and aim at the global analysis of the volcanic Earth Critical Zone - namely, the upper layer of the Earth

  9. Volcanic Alert System (VAS) developed during the (2011-2013) El Hierro (Canary Islands) volcanic process

    Science.gov (United States)

    Ortiz, Ramon; Berrocoso, Manuel; Marrero, Jose Manuel; Fernandez-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Garcia, Alicia

    2014-05-01

    In volcanic areas with long repose periods (as El Hierro), recently installed monitoring networks offer no instrumental record of past eruptions nor experience in handling a volcanic crisis. Both conditions, uncertainty and inexperience, contribute to make the communication of hazard more difficult. In fact, in the initial phases of the unrest at El Hierro, the perception of volcanic risk was somewhat distorted, as even relatively low volcanic hazards caused a high political impact. The need of a Volcanic Alert System became then evident. In general, the Volcanic Alert System is comprised of the monitoring network, the software tools for the analysis of the observables, the management of the Volcanic Activity Level, and the assessment of the threat. The Volcanic Alert System presented here places special emphasis on phenomena associated to moderate eruptions, as well as on volcano-tectonic earthquakes and landslides, which in some cases, as in El Hierro, may be more destructive than an eruption itself. As part of the Volcanic Alert System, we introduce here the Volcanic Activity Level which continuously applies a routine analysis of monitoring data (particularly seismic and deformation data) to detect data trend changes or monitoring network failures. The data trend changes are quantified according to the Failure Forecast Method (FFM). When data changes and/or malfunctions are detected, by an automated watchdog, warnings are automatically issued to the Monitoring Scientific Team. Changes in the data patterns are then translated by the Monitoring Scientific Team into a simple Volcanic Activity Level, that is easy to use and understand by the scientists and technicians in charge for the technical management of the unrest. The main feature of the Volcanic Activity Level is its objectivity, as it does not depend on expert opinions, which are left to the Scientific Committee, and its capabilities for early detection of precursors. As a consequence of the El Hierro

  10. Cluster Forests

    CERN Document Server

    Yan, Donghui; Jordan, Michael I

    2011-01-01

    Inspired by Random Forests (RF) in the context of classification, we propose a new clustering ensemble method---Cluster Forests (CF). Geometrically, CF randomly probes a high-dimensional data cloud to obtain "good local clusterings" and then aggregates via spectral clustering to obtain cluster assignments for the whole dataset. The search for good local clusterings is guided by a cluster quality measure $\\kappa$. CF progressively improves each local clustering in a fashion that resembles the tree growth in RF. Empirical studies on several real-world datasets under two different performance metrics show that CF compares favorably to its competitors. Theoretical analysis shows that the $\\kappa$ criterion is shown to grow each local clustering in a desirable way---it is "noise-resistant." A closed-form expression is obtained for the mis-clustering rate of spectral clustering under a perturbation model, which yields new insights into some aspects of spectral clustering.

  11. Role of volcanism in climate and evolution

    Energy Technology Data Exchange (ETDEWEB)

    Axelrod, D.I.

    1981-01-01

    Several major episodes of Tertiary explosive volcanism coincided with sharply lowered temperature as inferred from oxygen-isotope composition of foraminiferal tests in deep-sea cores. At these times, fossil floras in the western interior recorded significant changes. Reductions in taxa that required warmth occurred early in the Paleogene. Later, taxa that demand ample summer rain were reduced during a progressive change reflecting growth of the subtropic high. Other ecosystem changes that appear to have responded to volcanically induced climatic modifications include tachytely in Equidae (12 to 10 m.y. B.P.), rapid evolution of grasses (7 to 5 m.y. B.P.), evolution of marine mammals, and plankton flucuations. Although Lake Cretaceous extinctions commenced as epeiric seas retreated, the pulses of sharply lowered temperature induced by explosive volcanism, together with widespread falls of volcanic ash, may have led to extinction of dinosaurs, ammonites, cycadeoids, and other Cretaceous taxa. earlier, as Pangaea was assembled, Permian extinctions resulted not only from the elimination of oceans, epeiric seas, and shorelines, and the spread of more-continental climates, bu also from the climatic effects of major pulses of global volcanism and Gondwana glaciation.

  12. Volcanic activity: a review for health professionals.

    Science.gov (United States)

    Newhall, C G; Fruchter, J S

    1986-03-01

    Volcanoes erupt magma (molten rock containing variable amounts of solid crystals, dissolved volatiles, and gas bubbles) along with pulverized pre-existing rock (ripped from the walls of the vent and conduit). The resulting volcanic rocks vary in their physical and chemical characteristics, e.g., degree of fragmentation, sizes and shapes of fragments, minerals present, ratio of crystals to glass, and major and trace elements composition. Variability in the properties of magma, and in the relative roles of magmatic volatiles and groundwater in driving an eruption, determine to a great extent the type of an eruption; variability in the type of an eruption in turn influences the physical characteristics and distribution of the eruption products. The principal volcanic hazards are: ash and larger fragments that rain down from an explosion cloud (airfall tephra and ballistic fragments); flows of hot ash, blocks, and gases down the slopes of a volcano (pyroclastic flows); "mudflows" (debris flows); lava flows; and concentrations of volcanic gases in topographic depressions. Progress in volcanology is bringing improved long- and short-range forecasts of volcanic activity, and thus more options for mitigation of hazards. Collaboration between health professionals and volcanologists helps to mitigate health hazards of volcanic activity.

  13. Forests and Forest Cover - MDC_NaturalForestCommunity

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — A point feature class of NFCs - Natural Forest Communities. Natural Forest Community shall mean all stands of trees (including their associated understory) which...

  14. Forests and Forest Cover - Ozark National Forest Service Compartments (polygon)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Ozark - St. Francis National Forests stand inventory data for vegetation, maintained in polygon format. Compartment is defined as a division of forest for purposes...

  15. National volcanic ash operations plan for aviation

    Science.gov (United States)

    ,; ,

    2007-01-01

    The National Aviation Weather Program Strategic Plan (1997) and the National Aviation Weather Initiatives (1999) both identified volcanic ash as a high-priority informational need to aviation services. The risk to aviation from airborne volcanic ash is known and includes degraded engine performance (including flameout), loss of visibility, failure of critical navigational and operational instruments, and, in the worse case, loss of life. The immediate costs for aircraft encountering a dense plume are potentially major—damages up to $80 million have occurred to a single aircraft. Aircraft encountering less dense volcanic ash clouds can incur longer-term costs due to increased maintenance of engines and external surfaces. The overall goal, as stated in the Initiatives, is to eliminate encounters with ash that could degrade the in-flight safety of aircrews and passengers and cause damage to the aircraft. This goal can be accomplished by improving the ability to detect, track, and forecast hazardous ash clouds and to provide adequate warnings to the aviation community on the present and future location of the cloud. To reach this goal, the National Aviation Weather Program established three objectives: (1) prevention of accidental encounters with hazardous clouds; (2) reduction of air traffic delays, diversions, or evasive actions when hazardous clouds are present; and (3) the development of a single, worldwide standard for exchange of information on airborne hazardous materials. To that end, over the last several years, based on numerous documents (including an OFCMsponsored comprehensive study on aviation training and an update of Aviation Weather Programs/Projects), user forums, and two International Conferences on Volcanic Ash and Aviation Safety (1992 and 2004), the Working Group for Volcanic Ash (WG/VA), under the OFCM-sponsored Committee for Aviation Services and Research, developed the National Volcanic Ash Operations Plan for Aviation and Support of the

  16. Ozone depletion following future volcanic eruptions

    Science.gov (United States)

    Eric Klobas, J.; Wilmouth, David M.; Weisenstein, Debra K.; Anderson, James G.; Salawitch, Ross J.

    2017-07-01

    While explosive volcanic eruptions cause ozone loss in the current atmosphere due to an enhancement in the availability of reactive chlorine following the stratospheric injection of sulfur, future eruptions are expected to increase total column ozone as halogen loading approaches preindustrial levels. The timing of this shift in the impact of major volcanic eruptions on the thickness of the ozone layer is poorly known. Modeling four possible climate futures, we show that scenarios with the smallest increase in greenhouse gas concentrations lead to the greatest risk to ozone from heterogeneous chemical processing following future eruptions. We also show that the presence in the stratosphere of bromine from natural, very short-lived biogenic compounds is critically important for determining whether future eruptions will lead to ozone depletion. If volcanic eruptions inject hydrogen halides into the stratosphere, an effect not considered in current ozone assessments, potentially profound reductions in column ozone would result.

  17. Marine mesocosm bacterial colonisation of volcanic ash

    Science.gov (United States)

    Witt, Verena; Cimarelli, Corrado; Ayris, Paul; Kueppers, Ulrich; Erpenbeck, Dirk; Dingwell, Donald; Woerheide, Gert

    2015-04-01

    Volcanic eruptions regularly eject large quantities of ash particles into the atmosphere, which can be deposited via fallout into oceanic environments. Such fallout has the potential to alter pH, light and nutrient availability at local scales. Shallow-water coral reef ecosystems - "rainforests of the sea" - are highly sensitive to disturbances, such as ocean acidification, sedimentation and eutrophication. Therefore, wind-delivered volcanic ash may lead to burial and mortality of such reefs. Coral reef ecosystem resilience may depend on pioneer bacterial colonisation of the ash layer, supporting subsequent establishment of the micro- and ultimately the macro-community. However, which bacteria are involved in pioneer colonisation remain unknown. We hypothesize that physico-chemical properties (i.e., morphology, mineralogy) of the ash may dictate bacterial colonisation. The effect of substrate properties on bacterial colonisation was tested by exposing five substrates: i) quartz sand ii) crystalline ash (Sakurajima, Japan) iii) volcanic glass iv) carbonate reef sand and v) calcite sand of similar grain size, in controlled marine coral reef aquaria under low light conditions for six months. Bacterial communities were screened every month by Automated Ribosomal Intergenic Spacer Analysis of the 16S-23S rRNA Internal Transcribed Spacer region. Multivariate statistics revealed discrete groupings of bacterial communities on substrates of volcanic origin (ash and glass) and reef origin (three sands). Analysis of Similarity supported significantly different communities associated with all substrates (p=0.0001), only quartz did not differ from both carbonate and calcite sands. The ash substrate exhibited the most diverse bacterial community with the most substrate-specific bacterial operational taxonomic units. Our findings suggest that bacterial diversity and community composition during colonisation of volcanic ash in a coral reef-like environment is controlled by the

  18. Tropical Volcanic Soils From Flores Island, Indonesia

    Directory of Open Access Journals (Sweden)

    Hikmatullah

    2010-01-01

    Full Text Available Soils that are developed intropical region with volcanic parent materials have many unique properties, and high potential for agricultural use.The purpose of this study is to characterize the soils developed on volcanic materials from Flores Island, Indonesia,and to examine if the soils meet the requirements for andic soil properties. Selected five soils profiles developed fromandesitic volcanic materials from Flores Island were studied to determine their properties. They were compared intheir physical, chemical and mineralogical characteristics according to their parent material, and climatic characteristicdifferent. The soils were developed under humid tropical climate with ustic to udic soil moisture regimes withdifferent annual rainfall. The soils developed from volcanic ash parent materials in Flores Island showed differentproperties compared to the soils derived from volcanic tuff, even though they were developed from the sameintermediary volcanic materials. The silica contents, clay mineralogy and sand fractions, were shown as the differences.The different in climatic conditions developed similar properties such as deep solum, dark color, medium texture, andvery friable soil consistency. The soils have high organic materials, slightly acid to acid, low to medium cationexchange capacity (CEC. The soils in western region have higher clay content and showing more developed than ofthe eastern region. All the profiles meet the requirements for andic soil properties, and classified as Andisols order.The composition of sand mineral was dominated by hornblende, augite, and hypersthenes with high weatherablemineral reserves, while the clay fraction was dominated by disordered kaolinite, and hydrated halloysite. The soilswere classified into subgroup as Thaptic Hapludands, Typic Hapludands, and Dystric Haplustands

  19. Ages of plains volcanism on Mars

    Science.gov (United States)

    Hauber, Ernst; Jagert, Felix; Broz, Petr

    2010-05-01

    Plain-style volcanism [1] is widespread in the Tharsis and Elysium volcanic provinces on Mars, [2,3]. Detailed images and topographic data reveal the morphology and topography of clusters of low shields and associated lava flows. The landforms of plains volcanism on Mars have all well-known terrestrial analogues in basaltic volcanic regions, such as Hawaii, Iceland, and in particular the Snake River Plains [4]. The very gentle flank slopes (Ga - 2.9 Ga). Our results indicate that Late Amazonian volcanism is more widespread in Tharsis than previously recognized. Based on our results it appears possible that Mars is volcanologically not dead yet. Ongoing work investigates the volumes of erupted products and implications for the outgassing history and atmospheric evolution of Mars. [1] Greeley R. (1982) JGR 87, 2705-2712. [2] Plescia J. (1981) Icarus, 45, 586-601. [3] Hodges C.A. and Moore H.J. (1994) Atlas of volcanic features on Mars: USGS Prof. Paper 1534, 194 p. [4] Hauber E. et al. (2009) J. Volcanol. Geotherm. Res. 185, 69-95. [5] Wilson L. et al. (2009) J. Volcanol. Geotherm. Res. 185, 28-46. [6] Vaucher, J. et al. (2009) Icarus 204, 418-442. [7] Baratoux D. et al. (2009) J. Volcanol. Geotherm. Res. 185, 47-68. [8] Bleacher J.E. et al. (2009) J. Volcanol. Geotherm. Res. 185, 96-102. [9] Ivanov B.A. (2001) Space Sci. Rev. 96, 87-104. [10] Hartmann W.H. and Neukum G. (2001) Space Sci. Rev. 96, 165-194 [11] Kneissl T. et al. (2010) LPS XVI, submitted. [12] Michael, G.G. and Neukum G. (2010) Earth Planet. Sci. Lett., in press. . [13] Malin M.C. et al. (2007) JGR 112, E05S04, doi: 10.1029/2006JE002808.

  20. Forest ecosystem services of Changbai Mountain in China

    Institute of Scientific and Technical Information of China (English)

    SHAO; Guofan(邵国凡); LI; Jing(李静); WU; Gang(吴钢); XIAO; Han(肖寒); ZHAO; Jingzhu(赵景柱)

    2002-01-01

    The forest ecosystem of the Changbai Mountain is the most typical upland temperate forest ecosystem in eastern Asia. It is also of the most primitive vegetation type that came into being through the natural succession of soil and vegetation following volcanic eruption. The forest ecosystem has great importance for maintaining the structures and functions of the watershed ecosystems of the Songhua River, the Yalu River and the Tumen River. We combined physical assessment method(PAM) with the value assessment method(VAM) to evaluate the forest ecosystem services of the northern slope of the Changbai Mountain, including eco-tourism, forest by-products, timber, soil and water conservation, air purification, and the recycling of nutritive elements. We also assessed the integrated forest ecosystem service and analyzed its dynamics. The service value provided by the Changbai Mountain forest ecosystem amounts up to RMB 3.38×1012 yuan, of which, water conservation is 66%, water conservation and air purification together make up 80%, while the timber value is only 7%. Therefore, developing the ecosystem services besides timber is the best way to exert the integrated value of the forest ecosystem services of Changbai Mountain.

  1. Forest fruit production is higher on Sumatra than on Borneo.

    Directory of Open Access Journals (Sweden)

    Serge A Wich

    Full Text Available BACKGROUND: Various studies have shown that the population densities of a number of forest vertebrates, such as orangutans, are higher on Sumatra than Borneo, and that several species exhibit smaller body sizes on Borneo than Sumatra and mainland Southeast Asia. It has been suggested that differences in forest fruit productivity between the islands can explain these patterns. Here we present a large-scale comparison of forest fruit production between the islands to test this hypothesis. METHODOLOGY/PRINCIPAL FINDINGS: Data on fruit production were collated from Sumatran and Bornean sites. At six sites we assessed fruit production in three forest types: riverine, peat swamp and dryland forests. We compared fruit production using time-series models during different periods of overall fruit production and in different tree size classes. We examined overall island differences and differences specifically for fruiting period and tree size class. The results of these analyses indicate that overall the Sumatran forests are more productive than those on Borneo. This difference remains when each of the three forest types (dryland, riverine, and peat are examined separately. The difference also holds over most tree sizes and fruiting periods. CONCLUSIONS/SIGNIFICANCE: Our results provide strong support for the hypothesis that forest fruit productivity is higher on Sumatra than Borneo. This difference is most likely the result of the overall younger and more volcanic soils on Sumatra than Borneo. These results contribute to our understanding of the determinants of faunal density and the evolution of body size on both islands.

  2. Tenure and forest income

    DEFF Research Database (Denmark)

    Jagger, Pamela; Luckert, Martin K.; Duchelle, Amy E.

    2014-01-01

    We explore the relationship between tenure and forest income in 271 villages throughout the tropics. We find that state-owned forests generate more forest income than private and community-owned forests both per household and per hectare. We explore whether forest income varies according...... to the extent of rule enforcement, and congruence (i.e., overlap of user rights between owners and users). We find negative associations between enforcement and smallholder forest income for state-owned and community forests, and positive associations for privately owned forests. Where user rights are limited...... to formal owners we find negative associations for state-owned forests. Overlapping user rights are positively associated with forest income for community forests. Our findings suggest that policy reforms emphasizing enforcement and reducing overlapping claims to forest resources should consider possible...

  3. Constraining the onset of flood volcanism in Isle of Skye Lava Field, British Paleogene Volcanic Province

    Science.gov (United States)

    Angkasa, Syahreza; Jerram, Dougal. A.; Svensen, Henrik; Millet, John M.; Taylor, Ross; Planke, Sverre

    2016-04-01

    In order to constrain eruption styles at the onset of flood volcanism, field observations were undertaken on basal sections of the Isle of Skye Lava Field, British Paleogene Volcanic Province. This study investigates three specific sections; Camus Ban, Neist Point and Soay Sound which sample a large area about 1500 km2 and can be used to help explain the variability in palaeo-environments at the onset of flood volcanism. Petrological analysis is coupled with petrophysical lab data and photogrammetry data to create detailed facies models for the different styles of initiating flood basalt volcanism. Photogrammetry is used to create Ortho-rectified 3D models which, along with photomontage images, allow detailed geological observations to be mapped spatially. Petrographic analyses are combined with petrophysical lab data to identify key textural variation, mineral compositions and physical properties of the volcanic rocks emplaced during the initial eruptions. Volcanism initiated with effusive eruptions in either subaerial or subaqueous environments resulting in tuff/hyaloclastite materials or lava flow facies lying directly on the older Mesozoic strata. Volcanic facies indicative of lava-water interactions vary significantly in thickness between different sections suggesting a strong accommodation space control on the style of volcanism. Camus Ban shows hyaloclastite deposits with a thickness of 25m, whereas the Soay Sound area has tuffaceous sediments of under 0.1m in thickness. Subaerial lavas overly these variable deposits in all studied areas. The flood basalt eruptions took place in mixed wet and dry environments with some significant locally developed water bodies (e.g. Camus Ban). More explosive eruptions were promoted in some cases by interaction of lavas with these water bodies and possibly by local interaction with water - saturated sediments. We record key examples of how palaeotopography imparts a primary control on the style of volcanism during the

  4. Volcanic Pipe of the Namuaiv Mountain

    Directory of Open Access Journals (Sweden)

    Vladimir K. Karzhavin

    2011-12-01

    Full Text Available This research was aimed at reconstructing thermodynamic conditions required for the studied mineral assemblages to be created and exist in nature. The results of the investigations confirm to the recent ideas about an important, even leading, role of temperature, pressure and dioxide carbon in diamond formation in volcanic pipers. The results of this theoretical research allows assuming that one of the reasons for the absence of diamonds in the Namuaiv Mountain volcanic pipe may lie in the increased content of water and oxidizing environmental conditions of their formation

  5. Volcanic Eruptions and Climate: Outstanding Research Issues

    Science.gov (United States)

    Robock, Alan

    2016-04-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of this aerosol cloud produce responses in the climate system. Based on observations after major eruptions of the past and experiments with numerical models of the climate system, we understand much about their climatic impact, but there are also a number of unanswered questions. Volcanic eruptions produce global cooling, and are an important natural cause of interannual, interdecadal, and even centennial-scale climate change. One of the most interesting volcanic effects is the "winter warming" of Northern Hemisphere continents following major tropical eruptions. During the winter in the Northern Hemisphere following every large tropical eruption of the past century, surface air temperatures over North America, Europe, and East Asia were warmer than normal, while they were colder over Greenland and the Middle East. This pattern and the coincident atmospheric circulation correspond to the positive phase of the Arctic Oscillation. While this response is observed after recent major eruptions, most state-of-the-art climate models have trouble simulating winter warming. Why? High latitude eruptions in the Northern Hemisphere, while also producing global cooling, do not have the same impact on atmospheric dynamics. Both tropical and high latitude eruptions can weaken the Indian and African summer monsoon, and the effects can be seen in past records of flow in the Nile and Niger Rivers. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade have had a small effect on global temperature trends. Some important outstanding research questions include: How much seasonal, annual, and decadal predictability is possible following a large volcanic eruption? Do

  6. Tellurium in active volcanic environments: Preliminary results

    Science.gov (United States)

    Milazzo, Silvia; Calabrese, Sergio; D'Alessandro, Walter; Brusca, Lorenzo; Bellomo, Sergio; Parello, Francesco

    2014-05-01

    Tellurium is a toxic metalloid and, according to the Goldschmidt classification, a chalcophile element. In the last years its commercial importance has considerably increased because of its wide use in solar cells, thermoelectric and electronic devices of the last generation. Despite such large use, scientific knowledge about volcanogenic tellurium is very poor. Few previous authors report result of tellurium concentrations in volcanic plume, among with other trace metals. They recognize this element as volatile, concluding that volcanic gases and sulfur deposits are usually enriched with tellurium. Here, we present some results on tellurium concentrations in volcanic emissions (plume, fumaroles, ash leachates) and in environmental matrices (soils and plants) affected by volcanic emissions and/or deposition. Samples were collected at Etna and Vulcano (Italy), Turrialba (Costa Rica), Miyakejima, Aso, Asama (Japan), Mutnovsky (Kamchatka) at the crater rims by using common filtration techniques for aerosols (polytetrafluoroethylene filters). Filters were both eluted with Millipore water and acid microwave digested, and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Volcanic ashes emitted during explosive events on Etna and Copahue (Argentina) were analyzed for tellurium bulk composition and after leaching experiments to evaluate the soluble fraction of tellurium. Soils and leaves of vegetation were also sampled close to active volcanic vents (Etna, Vulcano, Nisyros, Nyiragongo, Turrialba, Gorely and Masaya) and investigated for tellurium contents. Preliminary results showed very high enrichments of tellurium in volcanic emissions comparing with other volatile elements like mercury, arsenic, thallium and bismuth. This suggests a primary transport in the volatile phase, probably in gaseous form (as also suggested by recent studies) and/or as soluble salts (halides and/or sulfates) adsorbed on the surface of particulate particles and ashes. First

  7. Emplacement Scenarios for Volcanic Domes on Venus

    Science.gov (United States)

    Glaze, Lori S.; Baloga, Steve M.; Stofan, Ellen R.

    2012-01-01

    One key to understanding the history of resurfacing on Venus is better constraints on the emplacement timescales for the range of volcanic features visible on the surface. A figure shows a Magellan radar image and topography for a putative lava dome on Venus. 175 such domes have been identified with diameters ranging from 19 - 94 km, and estimated thicknesses as great as 4 km. These domes are thought to be volcanic in origin and to have formed by the flow of viscous fluid (i.e., lava) on the surface.

  8. Volcanic air pollution hazards in Hawaii

    Science.gov (United States)

    Elias, Tamar; Sutton, A. Jeff

    2017-04-20

    Noxious sulfur dioxide gas and other air pollutants emitted from Kīlauea Volcano on the Island of Hawai‘i react with oxygen, atmospheric moisture, and sunlight to produce volcanic smog (vog) and acid rain. Vog can negatively affect human health and agriculture, and acid rain can contaminate household water supplies by leaching metals from building and plumbing materials in rooftop rainwater-catchment systems. U.S. Geological Survey scientists, along with health professionals and local government officials are working together to better understand volcanic air pollution and to enhance public awareness of this hazard.

  9. Percent Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — Forests provide economic and ecological value. High percentages of forest cover (FORPCT) generally indicate healthier ecosystems and cleaner surface water. More...

  10. Percent Forest Cover (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Forests provide economic and ecological value. High percentages of forest cover (FORPCTFuture) generally indicate healthier ecosystems and cleaner surface water....

  11. Geomagnetic imprint of the Persani volcanism

    Science.gov (United States)

    Besutiu, Lucian; Seghedi, Ioan; Zlagnean, Luminita; Atanasiu, Ligia; Popa, Razvan-Gabriel; Pomeran, Mihai; Visan, Madalina

    2016-04-01

    The Persani small volume volcanism is located in the SE corner of the Transylvanian Depression, at the north-western edge of the intra-mountainous Brasov basin. It represents the south-easternmost segment of the Neogene-Quaternary volcanic chain of the East Carpathians. The alkaline basalt monogenetic volcanic field is partly coeval with the high-K calc-alkaline magmatism south of Harghita Mountains (1-1.6 Ma). Its eruptions post-dated the calc-alkaline volcanism in the Harghita Mountains (5.3-1.6 Ma), but pre-dated the high-K calc-alkaline emissions of Ciomadul volcano (1.0-0.03 Ma). The major volcanic forms have been mapped in previous geological surveys. Still, due to the small size of the volcanoes and large extent of tephra deposits and recent sediments, the location of some vents or other volcanic structures has been incompletely revealed. To overcome this problem, the area was subject to several near-surface geophysical investigations, including paleomagnetic research. However, due to their large-scale features, the previous geophysical surveys proved to be an inappropriate approach to the volcanological issues. Therefore, during the summers of 2014 and 2015, based on the high magnetic contrast between the volcanic rocks and the hosting sedimentary formations, a detailed ground geomagnetic survey has been designed and conducted, within central Persani volcanism area, in order to outline the presence of volcanic structures hidden beneath the overlying deposits. Additionally, information on the rock magnetic properties was also targeted by sampling and analysing several outcrops in the area. Based on the acquired data, a detailed total intensity scalar geomagnetic anomaly map was constructed by using the recent IGRF12 model. The revealed pattern of the geomagnetic field proved to be fully consistent with the direction of magnetisation previously determined on rock samples. In order to enhance the signal/noise ratio, the results were further processed by

  12. US Forest Service Healthy Forest Restoration Act

    Data.gov (United States)

    US Forest Service, Department of Agriculture — A map service on the www depicting areas designated within National Forest System Lands, in 37 States, that are eligible for insect and disease treatments under...

  13. US Forest Service National Forest System Trails

    Data.gov (United States)

    US Forest Service, Department of Agriculture — A map service on the world wide web that depicts National Forest Service trails that have been approved for publication. This service is used internally and...

  14. US Forest Service Administrative Forest Boundaries

    Data.gov (United States)

    US Forest Service, Department of Agriculture — A map service on the www depicting all the National Forest System lands administered by an unit. These areas encompasse private lands, other governmental agency...

  15. One Hundred Years of Land Use Change in an Iconic Young Volcanic Landscape

    Science.gov (United States)

    Safran, E. B.; Batdorff, K.; Cross, J.; Krome, T.; Hamilton, D.; Bernstein, A. W.

    2013-12-01

    In young basaltic terrain, land use patterns are constrained by soil-forming processes and the ability to retain water in near-surface substrate. Rapid population growth over the last two centuries and a relatively lengthy tradition of land cover mapping makes Mt. Fuji a prime location for investigating how such constraints play out quantitatively. Though often considered the iconic stratovolcano, Mt. Fuji has erupted primarily basalt, in both explosive and effusive eruptions. We digitized historical land use maps to document land use patterns in 1898 and 1990 and related these to topographic and geologic controls. The dominant land use transformations include a 75% reduction (by area) in grasslands, a 100% increase in coniferous forest, and a >250% increase in mixed broadleaf/coniferous forest. Though much less extensive in absolute terms, the area devoted to mulberry plantation declined by 75%, while the area devoted to tea plantations increased by 150%. Forest areas have mean slopes of 15-20 degrees, while agricultural areas (e.g., rice paddy, tea plantations, mulberry plantations) occur on slopes of <10 degrees. In 1898, 40-60% of bamboo forests, mulberry plantations, tea plantations, and rice paddies were grown on sediment deposits - e.g., terraces, lahar deposits, alluvium deposits. By 1990, 80% of the remaining mulberry plantations occurred on young volcanic deposits and 70% of tea plantations occurred on old volcanic deposits, while 65% of rice paddies still occurred on sediment deposits. This reflects a shifting hierarchy of priorities and a differentiation of cultivation strategies where sedimentary deposits, the most suitable for cultivation, are sparse.

  16. European mixed forests

    DEFF Research Database (Denmark)

    Bravo-Oviedo, Andres; Pretzsch, Hans; Ammer, Christian;

    2014-01-01

    Aim of study: We aim at (i) developing a reference definition of mixed forests in order to harmonize comparative research in mixed forests and (ii) review the research perspectives in mixed forests. Area of study: The definition is developed in Europe but can be tested worldwide. Material...... and Methods: Review of existent definitions of mixed forests based and literature review encompassing dynamics, management and economic valuation of mixed forests. Main results: A mixed forest is defined as a forest unit, excluding linear formations, where at least two tree species coexist at any...... density in mixed forests, (iii) conversion of monocultures to mixed-species forest and (iv) economic valuation of ecosystem services provided by mixed forests. Research highlights: The definition is considered a high-level one which encompasses previous attempts to define mixed forests. Current fields...

  17. Payenia volcanic province, southern Mendoza, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina; Holm, Paul Martin; Llambias, Eduardo Jorge

    2013-01-01

    The Pleistocene to Holocene Payenia volcanic province is a backarc region of 60,000 km2 in Mendoza, Argentina, which is dominated by transitional to alkaline basalts and trachybasalts. We present major and trace element compositions of 139 rocks from this area of which the majority are basaltic...

  18. Monogenetic volcanism: personal views and discussion

    Science.gov (United States)

    Németh, K.; Kereszturi, G.

    2015-11-01

    Monogenetic volcanism produces small-volume volcanoes with a wide range of eruptive styles, lithological features and geomorphic architectures. They are classified as spatter cones, scoria (or cinder) cones, tuff rings, maars (maar-diatremes) and tuff cones based on the magma/water ratio, dominant eruption styles and their typical surface morphotypes. The common interplay between internal, such as the physical-chemical characteristics of magma, and external parameters, such as groundwater flow, substrate characteristics or topography, plays an important role in creating small-volume volcanoes with diverse architectures, which can give the impression of complexity and of similarities to large-volume polygenetic volcanoes. In spite of this volcanic facies complexity, we defend the term "monogenetic volcano" and highlight the term's value, especially to express volcano morphotypes. This study defines a monogenetic volcano, a volcanic edifice with a small cumulative volume (typically ≤1 km3) that has been built up by one continuous, or many discontinuous, small eruptions fed from one or multiple magma batches. This definition provides a reasonable explanation of the recently recognized chemical diversities of this type of volcanism.

  19. Is volcanic phenomena of fractal nature?

    Science.gov (United States)

    Quevedo, R.; Lopez, D. A. L.; Alparone, S.; Hernandez Perez, P. A.; Sagiya, T.; Barrancos, J.; Rodriguez-Santana, A. A.; Ramos, A.; Calvari, S.; Perez, N. M.

    2016-12-01

    A particular resonance waveform pattern has been detected beneath different physical volcano manifestations from recent 2011-2012 period of volcanic unrest at El Hierro Island, Canary Islands, and also from other worldwide volcanoes with different volcanic typology. This mentioned pattern appears to be a fractal time dependent waveform repeated in different time scales (periods of time). This time dependent feature suggests this resonance as a new approach to volcano phenomena for predicting such interesting matters as earthquakes, gas emission, deformation etc. as this fractal signal has been discovered hidden in a wide typical volcanic parameters measurements. It is known that the resonance phenomenon occurring in nature usually denote a structure, symmetry or a subjacent law (Fermi et al., 1952; and later -about enhanced cross-sections symmetry in protons collisions), which, in this particular case, may be indicative of some physical interactions showing a sequence not completely chaotic but cyclic provided with symmetries. The resonance and fractal model mentioned allowed the authors to make predictions in cycles from a few weeks to months. In this work an equation for this waveform has been described and also correlations with volcanic parameters and fractal behavior demonstration have been performed, including also some suggestive possible explanations of this signal origin.

  20. Organic Entrainment and Preservation in Volcanic Glasses

    Science.gov (United States)

    Wilhelm, Mary Beth; Ojha, Lujendra; Brunner, Anna E.; Dufek, Josef D.; Wray, James Joseph

    2014-01-01

    Unaltered pyroclastic deposits have previously been deemed to have "low" potential for the formation, concentration and preservation of organic material on the Martian surface. Yet volcanic glasses that have solidified very quickly after an eruption may be good candidates for containment and preservation of refractory organic material that existed in a biologic system pre-eruption due to their impermeability and ability to attenuate UV radiation. Analysis using NanoSIMS of volcanic glass could then be performed to both deduce carbon isotope ratios that indicate biologic origin and confirm entrainment during eruption. Terrestrial contamination is one of the biggest barriers to definitive Martian organic identification in soil and rock samples. While there is a greater potential to concentrate organics in sedimentary strata, volcanic glasses may better encapsulate and preserve organics over long time scales, and are widespread on Mars. If volcanic glass from many sites on Earth could be shown to contain biologically derived organics from the original environment, there could be significant implications for the search for biomarkers in ancient Martian environments.

  1. Monitoring and forecasting Etna volcanic plumes

    Directory of Open Access Journals (Sweden)

    S. Scollo

    2009-09-01

    Full Text Available In this paper we describe the results of a project ongoing at the Istituto Nazionale di Geofisica e Vulcanologia (INGV. The objective is to develop and implement a system for monitoring and forecasting volcanic plumes of Etna. Monitoring is based at present by multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager on board the Meteosat Second Generation geosynchronous satellite, visual and thermal cameras, and three radar disdrometers able to detect ash dispersal and fallout. Forecasting is performed by using automatic procedures for: i downloading weather forecast data from meteorological mesoscale models; ii running models of tephra dispersal, iii plotting hazard maps of volcanic ash dispersal and deposition for certain scenarios and, iv publishing the results on a web-site dedicated to the Italian Civil Protection. Simulations are based on eruptive scenarios obtained by analysing field data collected after the end of recent Etna eruptions. Forecasting is, hence, supported by plume observations carried out by the monitoring system. The system was tested on some explosive events occurred during 2006 and 2007 successfully. The potentiality use of monitoring and forecasting Etna volcanic plumes, in a way to prevent threats to aviation from volcanic ash, is finally discussed.

  2. Impact of Volcanic Activity on AMC Channel Operations

    Science.gov (United States)

    2014-06-13

    IMPACT OF VOLCANIC ACTIVITY ON AMC CHANNEL OPERATIONS GRADUATE RESEARCH PROJECT Matthew D... VOLCANIC ACTIVITY ON AMC CHANNEL OPERATIONS GRADUATE RESEARCH PROJECT Presented to the Faculty Department of Operational Sciences...AFIT-ENS-GRP-14-J-11 IMPACT OF VOLCANIC ACTIVITY ON AMC CHANNEL OPERATIONS Matthew D. Meshanko, BS, MA Major, USAF

  3. Implications of volcanic erratics in Quaternary deposits of North Greenland

    DEFF Research Database (Denmark)

    Funder, Svend Visby; Larsen, Ole

    1982-01-01

    Erratic boulders, petrographically similar to the volcanics exposed around Kap Washington, are found on islands and along the coast much further to the east. Isotopic measurements on two such boulders show that these volcanic rocks are of the same age as the Kap Washington volcanics. The regional...

  4. Influence of Private Forest Land to Farmers Welfare in Yogyakarta Special Province

    Directory of Open Access Journals (Sweden)

    Su Ritohardoyo

    2004-01-01

    The research shows that in general people forest land use has been sucessfully implemented in the province. It is important to note that a more successfull implementation of people forest land use is found in the private rather than government initiated forest. In the less accessible areas people forest land use activities are much more successfull than in the accessible ones. Social forestry land use in the volcanic slope physiography is much better than that in either undulating or karst areas. Among important factors affecting the success of people forest land use are land ownership, education level, technology, land accessibility and percentage of plant growth. It is also confirmed that accessibility is the most important factor affecting the success of an people forest land use. The research also reveals that people forest land use has been very important in improving the farmers welfare. A composite indicator shows that the welfare of farmers is much improved after the adoption of people forest land use, with the highest achievement is obtained by farmers in the volcanic slopes.

  5. Halogen Chemistry in Volcanic Plumes (Invited)

    Science.gov (United States)

    Roberts, Tjarda

    2017-04-01

    Volcanoes release vast amounts of gases and particles in the atmosphere. Volcanic halogens (HF, HCl, HBr, HI) are co-emitted alongside SO2, and observations show rapid formation of BrO and OClO in the plume as it disperses into the troposphere. The development of 1D and Box models (e.g. PlumeChem) that simulate volcanic plume halogen chemistry aims to characterise how volcanic reactive halogens form and quantify their atmospheric impacts. Following recent advances, these models can broadly reproduce the observed downwind BrO/SO2 ratios using "bromine-explosion" chemistry schemes, provided they use a "high-temperature initialisation" to inject radicals (OH, Cl, Br and possibly NOx) which "kick-start" the low-temperature chemistry cycles that convert HBr into reactive bromine (initially as Br2). The modelled rise in BrO/SO2 and subsequent plateau/decline as the plume disperses downwind reflects cycling between reactive bromine, particularly Br-BrO, and BrO-HOBr-BrONO2. BrCl is produced when aerosol becomes HBr-depleted. Recent model simulations suggest this mechanism for reactive chlorine formation can broadly account for OClO/SO2 reported at Mt Etna. Predicted impacts of volcanic reactive halogen chemistry include the formation of HNO3 from NOx and depletion of ozone. This concurs with HNO3 widely reported in volcanic plumes (although the source of NOx remains under question), as well as observations of ozone depletion reported in plumes from several volcanoes (Mt Redoubt, Mt Etna, Eyjafjallajokull). The plume chemistry can transform mercury into more easily deposited and potentially toxic forms, for which observations are limited. Recent incorporation of volcanic halogen chemistry in a 3D regional model of degassing from Ambrym (Vanuatu) also predicts how halogen chemistry causes depletion of OH to lengthen the SO2 lifetime, and highlights the potential for halogen transport from the troposphere to the stratosphere. However, the model parameter-space is vast and

  6. Do fungi have a role as soil stabilizers and remediators after forest fire?

    Science.gov (United States)

    Andrew W. Claridge; James M. Trappe; Karen Hansen

    2009-01-01

    The functional roles of fungi in recovery of forest ecosystems after fire remain poorly documented. We observed macrofungi soon after fire at two widely separated sites, one in the Pacific Northwest United States and the other in southeastern mainland Australia. The range of species onsite was compared against macrofungi reported after the volcanic eruption at Mount St...

  7. Lunar Pyroclastic Eruptions: Basin Volcanism's Dying Gasps

    Science.gov (United States)

    Kramer, G. Y.; Nahm, A.; McGovern, P. J.; Kring, D. A.

    2011-12-01

    The relationship between mare volcanism and impact basins has long been recognized, although the degree of influence basin formation has on volcanism remains a point of contention. For example, did melting of magma sources result from thermal energy imparted by a basin-forming event? Did basin impacts initiate mantle overturn of the unstable LMO cumulate pile, causing dense ilmenite to sink and drag radioactive KREEPy material to provide the thermal energy to initiate melting of the mare sources? Did the dramatically altered stress states provide pathways ideally suited for magma ascent? The chemistry of sampled lunar volcanic glasses indicates that they experienced very little fractional crystallization during their ascent to the surface - they have pristine melt compositions. Volatile abundances, including recent measurements of OH [1,2] suggest that the mantle source of at least the OH-analyzed glasses have a water abundance of ~700 ppm - comparable to that of Earth's upper mantle. More recently, [3] showed that the abundance of OH and other volatiles measured in these glasses is positively correlated with trace element abundances, which is expected since water is incompatible in a magma. Volatile enrichment in a deep mantle source would lower the melting temperature and provide the thrust for magma ascent through 500 km of mantle and crust [4]. We are exploring the idea that such basin-related lunar pyroclastic volcanism may represent the last phase of basaltic volcanism in a given region. Remote sensing studies have shown volcanic glasses are fairly common, and often found along the perimeter of mare-filled basins [5]. Recent modeling of the stresses related to the basin-forming process [6,7] show that basin margins provide the ideal conduit for low-volume lunar pyroclastic volcanism (compared with the high output of mare volcanism). Schrödinger's basin floor is largely composed of a compositionally uniform impact breccia. The exceptions are two distinct and

  8. Holocene explosive volcanism of the Jan Mayen (island) volcanic province, North-Atlantic

    Science.gov (United States)

    Gjerløw, Eirik; Haflidason, H.; Pedersen, R. B.

    2016-07-01

    The volcanic island Jan Mayen, located in the Norwegian-Greenland Sea, hosts the active stratovolcano of Beerenberg, the northernmost active subaerial volcano in the world. At least five eruptions are known from the island following its discovery in the 17th century, but its eruptive history prior to this is basically unknown. In this paper two sediment cores retrieved close to Jan Mayen have been studied in detail to shed light on the Holocene history of explosive volcanism from the Jan Mayen volcanic province. Horizons with elevated tephra concentrations were identified and tephra from these was analysed to determine major element chemistry of the tephra. The tephra chemistry was used to provide a link between the two cores and the land based tephra records from Jan Mayen Island. We managed to link two well-developed tephra peaks in the cores by their geochemical composition and age to Jan Mayen. One of these peaks represents the 1732 AD eruption of Eggøya while the other peak represents a previously undescribed eruption dated to around 10.3 ka BP. Two less prominent tephra peaks, one in each core, dated to approximately 2.3 and 3.0 ka BP, also have a distinct geochemical character linking them to Jan Mayen volcanism. However, the most prominent tephra layer in the cores located close to Jan Mayen and numerous other cores along the Jan Mayen ridge is the 12.1 ka BP Vedde Ash originating from the Iceland volcanic province. We find that the Holocene volcanism on Jan Mayen is much less explosive than volcanism in Iceland, and propose that either low amounts of explosive volcanic activity from the summit region of Beerenberg or small to absent glacier cover on Beerenberg is responsible for this.

  9. Synthetic aperture radar (SAR-based mapping of volcanic flows: Manam Island, Papua New Guinea

    Directory of Open Access Journals (Sweden)

    J. K. Weissel

    2004-01-01

    Full Text Available We present new radar-based techniques for efficient identification of surface changes generated by lava and pyroclastic flows, and apply these to the 1996 eruption of Manam Volcano, Papua New Guinea. Polarimetric L- and P-band airborne synthetic aperture radar (SAR data, along with a C-band DEM, were acquired over the volcano on 17 November 1996 during a major eruption sequence. The L-band data are analyzed for dominant scattering mechanisms on a per pixel basis using radar target decomposition techniques. A classification method is presented, and when applied to the L-band polarimetry, it readily distinguishes bare surfaces from forest cover over Manam volcano. In particular, the classification scheme identifies a post-1992 lava flow in NE Valley of Manam Island as a mainly bare surface and the underlying 1992 flow units as mainly vegetated surfaces. The Smithsonian's Global Volcanism Network reports allow us to speculate whether the bare surface is a flow dating from October or November in the early part of the late-1996 eruption sequence. This work shows that fully polarimetric SAR is sensitive to scattering mechanism changes caused by volcanic resurfacing processes such as lava and pyroclastic flows. By extension, this technique should also prove useful in mapping debris flows, ash deposits and volcanic landslides associated with major eruptions.

  10. Volcanic lake systematics II. Chemical constraints

    Science.gov (United States)

    Varekamp, J.C.; Pasternack, G.B.; Rowe, G.L.

    2000-01-01

    A database of 373 lake water analyses from the published literature was compiled and used to explore the geochemical systematics of volcanic lakes. Binary correlations and principal component analysis indicate strong internal coherence among most chemical parameters. Compositional variations are influenced by the flux of magmatic volatiles and/or deep hydrothermal fluids. The chemistry of the fluid entering a lake may be dominated by a high-temperature volcanic gas component or by a lower-temperature fluid that has interacted extensively with volcanic rocks. Precipitation of minerals like gypsum and silica can strongly affect the concentrations of Ca and Si in some lakes. A much less concentrated geothermal input fluid provides the mineralized components of some more dilute lakes. Temporal variations in dilution and evaporation rates ultimately control absolute concentrations of dissolved constituents, but not conservative element ratios. Most volcanic lake waters, and presumably their deep hydrothermal fluid inputs, classify as immature acid fluids that have not equilibrated with common secondary silicates such as clays or zeolites. Many such fluids may have equilibrated with secondary minerals earlier in their history but were re-acidified by mixing with fresh volcanic fluids. We use the concept of 'degree of neutralization' as a new parameter to characterize these acid fluids. This leads to a classification of gas-dominated versus rock-dominated lake waters. A further classification is based on a cluster analysis and a hydrothermal speedometer concept which uses the degree of silica equilibration of a fluid during cooling and dilution to evaluate the rate of fluid equilibration in volcano-hydrothermal systems.

  11. International Database of Volcanic Ash Impacts

    Science.gov (United States)

    Wallace, K.; Cameron, C.; Wilson, T. M.; Jenkins, S.; Brown, S.; Leonard, G.; Deligne, N.; Stewart, C.

    2015-12-01

    Volcanic ash creates extensive impacts to people and property, yet we lack a global ash impacts catalog to organize, distribute, and archive this important information. Critical impact information is often stored in ephemeral news articles or other isolated resources, which cannot be queried or located easily. A global ash impacts database would improve 1) warning messages, 2) public and lifeline emergency preparation, and 3) eruption response and recovery. Ashfall can have varying consequences, such as disabling critical lifeline infrastructure (e.g. electrical generation and transmission, water supplies, telecommunications, aircraft and airports) or merely creating limited and expensive inconvenience to local communities. Impacts to the aviation sector can be a far-reaching global issue. The international volcanic ash impacts community formed a committee to develop a database to catalog the impacts of volcanic ash. We identify three user populations for this database: 1) research teams, who would use the database to assist in systematic collection, recording, and storage of ash impact data, and to prioritize impact assessment trips and lab experiments 2) volcanic risk assessment scientists who rely on impact data for assessments (especially vulnerability/fragility assessments); a complete dataset would have utility for global, regional, national and local scale risk assessments, and 3) citizen science volcanic hazard reporting. Publication of an international ash impacts database will encourage standardization and development of best practices for collecting and reporting impact information. Data entered will be highly categorized, searchable, and open source. Systematic cataloging of impact data will allow users to query the data and extract valuable information to aid in the development of improved emergency preparedness, response and recovery measures.

  12. The Online GVP/USGS Weekly Volcanic Activity Report: Providing Timely Information About Worldwide Volcanism

    Science.gov (United States)

    Mayberry, G. C.; Guffanti, M. C.; Luhr, J. F.; Venzke, E. A.; Wunderman, R. L.

    2001-12-01

    The awesome power and intricate inner workings of volcanoes have made them a popular subject with scientists and the general public alike. About 1500 known volcanoes have been active on Earth during the Holocene, approximately 50 of which erupt per year. With so much activity occurring around the world, often in remote locations, it can be difficult to find up-to-date information about current volcanism from a reliable source. To satisfy the desire for timely volcano-related information the Smithsonian Institution and US Geological Survey combined their strengths to create the Weekly Volcanic Activity Report. The Smithsonian's Global Volcanism Program (GVP) has developed a network of correspondents while reporting worldwide volcanism for over 30 years in their monthly Bulletin of the Global Volcanism Network. The US Geological Survey's Volcano Hazards Program studies and monitors volcanoes in the United States and responds (upon invitation) to selected volcanic crises in other countries. The Weekly Volcanic Activity Report is one of the most popular sites on both organization's websites. The core of the Weekly Volcanic Activity Report is the brief summaries of current volcanic activity around the world. In addition to discussing various types of volcanism, the summaries also describe precursory activity (e.g. volcanic seismicity, deformation, and gas emissions), secondary activity (e.g. debris flows, mass wasting, and rockfalls), volcanic ash hazards to aviation, and preventative measures. The summaries are supplemented by links to definitions of technical terms found in the USGS photoglossary of volcano terms, links to information sources, and background information about reported volcanoes. The site also includes maps that highlight the location of reported volcanoes, an archive of weekly reports sorted by volcano and date, and links to commonly used acronyms. Since the Weekly Volcanic Activity Report's inception in November 2000, activity has been reported at

  13. Restoring forests

    DEFF Research Database (Denmark)

    Jacobs, Douglass F.; Oliet, Juan A.; Aronson, James

    2015-01-01

    of land requiring restoration implies the need for spatial prioritization of restoration efforts according to cost-benefit analyses that include ecological risks. To design resistant and resilient ecosystems that can adapt to emerging circumstances, an adaptive management approach is needed. Global change......, in particular, imparts a high degree of uncertainty about the future ecological and societal conditions of forest ecosystems to be restored, as well as their desired goods and services. We must also reconsider the suite of species incorporated into restoration with the aim of moving toward more stress resistant...... and competitive combinations in the longer term. Non-native species may serve an important role under some circumstances, e.g., to facilitate reintroduction of native species. Propagation and field establishment techniques must promote survival through seedling stress resistance and site preparation. An improved...

  14. Forest Health Detectives

    Science.gov (United States)

    Bal, Tara L.

    2014-01-01

    "Forest health" is an important concept often not covered in tree, forest, insect, or fungal ecology and biology. With minimal, inexpensive equipment, students can investigate and conduct their own forest health survey to assess the percentage of trees with natural or artificial wounds or stress. Insects and diseases in the forest are…

  15. Forest Health Detectives

    Science.gov (United States)

    Bal, Tara L.

    2014-01-01

    "Forest health" is an important concept often not covered in tree, forest, insect, or fungal ecology and biology. With minimal, inexpensive equipment, students can investigate and conduct their own forest health survey to assess the percentage of trees with natural or artificial wounds or stress. Insects and diseases in the forest are…

  16. Iowa's forest resources, 1974.

    Science.gov (United States)

    John S. Jr. Spencer; Pamela J. Jakes

    1980-01-01

    The second inventory of Iowa's forest resources shows big declines in commercial forest area and in growing-stock and sawtimber volumes between 1954 and 1974. Presented are text and statistics on forest area and timber volume, growth, mortality, ownership, stocking, future timber supply, timber use, forest management opportunities, and nontimber resources.

  17. Using Spatial Density to Characterize Volcanic Fields on Mars

    Science.gov (United States)

    Richardson, J. A.; Bleacher, J. E.; Connor, C. B.; Connor, L. J.

    2012-01-01

    We introduce a new tool to planetary geology for quantifying the spatial arrangement of vent fields and volcanic provinces using non parametric kernel density estimation. Unlike parametricmethods where spatial density, and thus the spatial arrangement of volcanic vents, is simplified to fit a standard statistical distribution, non parametric methods offer more objective and data driven techniques to characterize volcanic vent fields. This method is applied to Syria Planum volcanic vent catalog data as well as catalog data for a vent field south of Pavonis Mons. The spatial densities are compared to terrestrial volcanic fields.

  18. Geomorphic change along a gravel bed river affected by volcanic eruption: Rio Blanco - Volcan Chaiten (South Chile)

    Science.gov (United States)

    Picco, Lorenzo; Ravazzolo, Diego; Ulloa, Hector; Iroumé, Andres; Aristide Lenzi, Mario

    2014-05-01

    Gravel bed rivers are environments shaped by the balance of flow, sediment regimes, large wood (LW) and vegetation. Geomorphic changes are response to fluctuations and changes of runoff and sediment supply involving mutual interactions among these factors. Typically, many natural disasters (i.e. debris flows, floods and forest fires) can affect the river basin dynamics. Explosive volcanic eruptions present, instead, the potential of exerting severe impacts as, for example, filling river valleys or changing river network patterns thanks to massive deposition of tephra and volcanic sediment all over the main channel and over the basin. These consistent impacts can strongly affect both hydrology and sediment transport dynamics, all over the river system, producing huge geomorphic changes. During the last years there has been a consistent increase in the survey technologies that permit to monitor geomorphic changes and to estimate sediment budgets through repeat topographic surveys. The calculation of differences between subsequent DEMs (difference of DEMs, DoD) is a commonly applied method to analyze and quantify these dynamics. Typically the higher uncertainty values are registered in areas with higher topographic variability and lower point density. This research was conducted along a ~ 2.2 km-long sub-reach of the Blanco River (Southern Chile), a fourth-order stream that presents a mainly rainfall regime with winter peak flows. The May 2008 Chaitén volcanic eruption strongly affected the entire Rio Blanco basin. The entire valley was highly exposed to the pyroclastic and fluvial flows, which affected directly a consistent area of evergreen forests. Extreme runoff from the upper Blanco catchment aggraded the channel and deposited up to several meters of tephra, alluvium, and LW along the entire river system. Aims of this contribution are to define and quantify the short term evolution of the Blanco River after the big eruption event and a subsequent consistent

  19. Submarine Volcanic Morphology of Santorini Caldera, Greece

    Science.gov (United States)

    Nomikou, P.; Croff Bell, K.; Carey, S.; Bejelou, K.; Parks, M.; Antoniou, V.

    2012-04-01

    Santorini volcanic group form the central part of the modern Aegean volcanic arc, developed within the Hellenic arc and trench system, because of the ongoing subduction of the African plate beneath the European margin throughout Cenozoic. It comprises three distinct volcanic structures occurring along a NE-SW direction: Christianna form the southwestern part of the group, Santorini occupies the middle part and Koloumbo volcanic rift zone extends towards the northeastern part. The geology of the Santorini volcano has been described by a large number of researchers with petrological as well as geochronological data. The offshore area of the Santorini volcanic field has only recently been investigated with emphasis mainly inside the Santorini caldera and the submarine volcano of Kolumbo. In September 2011, cruise NA-014 on the E/V Nautilus carried out new surveys on the submarine volcanism of the study area, investigating the seafloor morphology with high-definition video imaging. Submarine hydrothermal vents were found on the seafloor of the northern basin of the Santorini caldera with no evidence of high temperature fluid discharges or massive sulphide formations, but only low temperature seeps characterized by meter-high mounds of bacteria-rich sediment. This vent field is located in line with the normal fault system of the Kolumbo rift, and also near the margin of a shallow intrusion that occurs within the sediments of the North Basin. Push cores have been collected and they will provide insights for their geochemical characteristics and their relationship to the active vents of the Kolumbo underwater volcano. Similar vent mounds occur in the South Basin, at shallow depths around the islets of Nea and Palaia Kameni. ROV exploration at the northern slopes of Nea Kameni revealed a fascinating underwater landscape of lava flows, lava spines and fractured lava blocks that have been formed as a result of 1707-1711 and 1925-1928 AD eruptions. A hummocky topography at

  20. Insight of the fusion behavior of volcanic ash: Implications for Volcanic ash Hazards to Aircraft Safety

    Science.gov (United States)

    Song, Wenjia; Hess, Kai-Uwe; Küppers, Ulrich; Scheu, Bettina; Cimarelli, Corrado; Lavallée, Yan; Sohyun, Park; Gattermann, Ulf; Müller, Dirk; Dingwell, Donald Bruce

    2014-05-01

    The interaction of volcanic ash with jet turbines during via ingestion of ash into engines operating at supra-volcanic temperatures is widely recognized as a potentially fatal hazard for jet aircraft. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The fusibility of volcanic ash is believed to impact strongly its deposition in the hotter parts of jet engines. Despite this, explicit investigation of ash sintering using standardized techniques is in its infancy. Volcanic ash may vary widely in its physical state and chemical composition between and even within explosive volcanic eruptions. Thus a comparative study of the fusibility of ash which involves a standard recognized techniques would be highly desirable. In this work, nine samples of fine ash, deposited from co-pyroclastic offrom nine different volcanoes which cover a broad range of chemical composition, were investigated. Eight of them were collected from 2001-2009 eruptions. Because of the currently elevated level of eruptive activity and its potential hazards to aircraft safety and the remaining one sample was collected from a 12,121 ± 114 yr B.P. eruption. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the fusion phenomena as well as determine the volcanic ash melting behavior by defining four characteristic temperatures (shrinkage temperature, deformation temperature, hemispherical temperature, and flow temperature) by means of heating microscope instrument and different thermal analysis methods. Here, we find that there are similar sticking ability and flow behavior of

  1. Forest Grammar(Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    张松懋

    1994-01-01

    Forest grammar,a new type of high-dimensional grammar,is proposed in this paper,of which both the left and the right parts of every production are concatenations of tree structures.A classification of forest grammar is studied,especially,a subclass of the forest grammar,i.e.the context-sensitive forest grammar,and one of its subclasses is defined,called the weak precedence forest grammar.

  2. Kansas forests 2005

    Science.gov (United States)

    W. Keith Moser; Mark H. Hansen; Robert L. Atchison; Gary J. Brand; Brett J. Butler; Susan J. Crocker; Dacia M. Meneguzzo; Mark D. Nelson; Charles H. Perry; William H. IV Reading; Barry T. Wilson; Christopher W. Woodall

    2008-01-01

    The first completed annual inventory of Kansas forests reports 2.1 million acres of forest land, roughly 4 percent of the total land area in the State. Softwood forests account for nearly 5 percent of the total timberland area. Oak/hickory forest types make up 56 percent of the total hardwood forest land area. Elm/ash/cottonwood accounts for more than 30 percent of the...

  3. Kansas' Forests 2010

    Science.gov (United States)

    W. Keith Moser; Mark H. Hansen; Robert L. Atchison; Brett J. Butler; Susan J. Crocker; Grant Domke; Cassandra M. Kurtz; Andrew Lister; Patrick D. Miles; Mark D. Nelson; Ronald J. Piva; Christopher W. Woodall

    2013-01-01

    The second completed annual inventory of Kansas' forests reports 2.4 million acres of forest land, roughly 5 percent of the total land area in the State. Softwood forests account for 4.4 percent of the total timberland area. Oak/hickory forest types make up 55 percent of the total hardwood forest land area. Elm/ash/cottonwood accounts for more than 32 percent of...

  4. Electrical charging of ash in Icelandic volcanic plumes

    CERN Document Server

    Aplin, Karen L; Nicoll, Keri A

    2014-01-01

    The existence of volcanic lightning and alteration of the atmospheric potential gradient in the vicinity of near-vent volcanic plumes provides strong evidence for the charging of volcanic ash. More subtle electrical effects are also visible in balloon soundings of distal volcanic plumes. Near the vent, some proposed charging mechanisms are fractoemission, triboelectrification, and the so-called "dirty thunderstorm" mechanism, which is where ash and convective clouds interact electrically to enhance charging. Distant from the vent, a self-charging mechanism, probably triboelectrification, has been suggested to explain the sustained low levels of charge observed on a distal plume. Recent research by Houghton et al. (2013) linked the self-charging of volcanic ash to the properties of the particle size distribution, observing that a highly polydisperse ash distribution would charge more effectively than a monodisperse one. Natural radioactivity in some volcanic ash could also contribute to self-charging of volcan...

  5. Afro-alpine forest cover change on Mt. Guna (Ethiopia)

    Science.gov (United States)

    Birhanu, Adugnaw; Frankl, Amaury; Jacob, Miro; Lanckriet, Sil; Hendrickx, Hanne; Nyssen, Jan

    2016-04-01

    High mountain forests, such as the afro-alpine Erica arborea L. forests in Ethiopia, are very important for the livelihood of local communities, in relation to their impacts on the water balance of mountain ecosystems and surrounding agricultural areas. On volcanoes, the dominance of volcanic tuffs on the slopes, as well as that of gelifracts near the top further enhances infiltration, making it recharge areas. Earlier forest cover change studies in the Ethiopian highlands mainly deal with the lower vegetation belts. In this study, 3.37 km² on the western slopes of Mount Guna (one of the dozens of Miocene shield volcanoes that exist on top of the Ethiopian plateau) was mapped. The slope has an elevation between 3200 at its base and 4113 m a.s.l. at the peak. The present forest cover was recorded from high-resolution georeferenced satellite imagery from Google Maps and field data (2015), while historical forest cover was studied from georeferenced aerial photographs of 1982. In addition, key informant interviews were conducted to identify the trend of forest cover change and management practices. Whereas burning of the Erica forest for sake of land clearance (a typical practice on all Ethiopian mountains until the 1980s) most strikingly took place for three consecutive days in 1975, large-scale deforestation resulting from agricultural expansion and livestock pressure continued thereafter. However, between 2000 and 2014, due to active involvement of local and governmental institutions there was a slight regeneration of the vegetation and the Erica forest. Protection and regeneration of the forest was particularly efficient after it was given into custody of an orthodox church established in 1999 at the lower side of the forest. Overall, the study revealed that human and livestock pressures are the strongest drivers of deforestation. Furthermore, the study indicated that integrating the actions of local and governmental institutions is key for the protection of the

  6. Biofuel Combustion Fly Ash Influence on the Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Aurelijus Daugėla

    2016-02-01

    Full Text Available Cement as the binding agent in the production of concrete can be replaced with active mineral admixtures. Biofuel combustion fly ash is one of such admixtures. Materials used for the study: Portland cement CEM I 42.5 R, sand of 0/4 fraction, gravel of 4/16 fraction, biofuel fly ash, superplasticizer, water. Six compositions of concrete were designed by replacing 0%, 5%, 10%, 15% 20%, and 25% of cement with biofuel fly ash. The article analyses the effect of biofuel fly ash content on the properties of concrete. The tests revealed that the increase of biofuel fly ash content up to 20% increases concrete density and compressive strength after 7 and 28 days of curing and decreases water absorption, with corrected water content by using plasticizing admixture. It was found that concrete where 20% of cement is replaced by biofuel ash has higher frost resistance.

  7. Forest dynamics.

    Science.gov (United States)

    Frelich, Lee

    2016-01-01

    Forest dynamics encompass changes in stand structure, species composition, and species interactions with disturbance and environment over a range of spatial and temporal scales. For convenience, spatial scale is defined as individual tree, neighborhood, stand, and landscape. Whether a given canopy-leveling disturbance will initiate a sequence of development in structure with little change in composition or initiate an episode of succession depends on a match or mismatch, respectively, with traits of the dominant tree species that allow the species to survive disturbance. When these match, certain species-disturbance type combinations lock in a pattern of stand and landscape dynamics that can persist for several generations of trees; thus, dominant tree species regulate, as well as respond to, disturbance. A complex interaction among tree species, neighborhood effects, disturbance type and severity, landform, and soils determines how stands of differing composition form and the mosaic of stands that compose the landscape. Neighborhood effects (e.g., serotinous seed rain, sprouting, shading, leaf-litter chemistry, and leaf-litter physical properties) operate at small spatial extents of the individual tree and its neighbors but play a central role in forest dynamics by contributing to patch formation at stand scales and dynamics of the entire landscape. Dominance by tree species with neutral to negative neighborhood effects leads to unstable landscape dynamics in disturbance-prone regions, wherein most stands are undergoing succession; stability can only occur under very low-severity disturbance regimes. Dominance by species with positive effects leads to stable landscape dynamics wherein only a small proportion of stands undergo succession at any one time. Positive neighborhood effects are common in temperate and boreal zones, whereas negative effects are more common in tropical climates. Landscapes with positive dynamics have alternate categories of dynamics

  8. Quaternary volcanism in the Acambay graben, Mexican Volcanic Belt: Re-evaluation for potential volcanic danger in central Mexico

    Science.gov (United States)

    Aguirre-Diaz, G. J.; Pedrazzi, D.; Lacan, P.; Roldan-Quintana, J.; Ortuňo, M.; Zuniga, R. R.; Laurence, A.

    2015-12-01

    The Mexican Volcanic Belt (MVB) is best known for the major active stratovolcanoes, such as Popocatépetl, Citlaltépetl and Colima. The most common stratovolcanoes in this province are modest-size cones with heights of 800 to 1000 m. Examples are Tequila, Sangangüey, Las Navajas, Culiacán, La Joya, El Zamorano, Temascalcingo and Altamirano; these last two were formed within the Acambay Graben in central MVB. The Acambay graben (20 x 70 km) is 100 km to the NW of Mexico City, with E-W trending seismically active normal faults; in particular the Acambay-Tixmadejé fault related to a mB =7 earthquake in 1912. Within the graben there are many volcanic structures, including calderas, domes, cinder cones and stratovolcanoes; Temascalcingo and Altamirano are the largest, with about 800 and 900 m heights, respectively. Temascalcingo is mostly composed of dacitic lavas and block and ash flow deposits. Includes a 3 x 2.5 km summit caldera and a magmatic sector collapse event with the associated debris avalanche deposit. 14C ages of 37-12 ka correspond to the volcano's latest phases that produced pyroclastic deposits. A major plinian eruption formed the San Mateo Pumice with an age of <20 Ka. Altamirano volcano is poorly studied; it is andesitic-dacitic, composed of lavas, pyroclastic flow deposits, and pumice fallouts. Morphologically is better preserved than Temascalcingo, and it should be younger. 14C ages of 4.0-2.5 ka were performed in charcoal within pyroclastic flow deposits that apparently were erupted from Altamirano. An undated 3 m thick pumice fallout on the flanks of Altamirano volcano could be also Holocene. It represents a major explosive event. The relatively young ages found in volcanic deposits within the Acambay graben raise the volcanic danger level in this area, originally thought as an inactive volcanic zone. The two major volcanoes, Temascalcingo and Altamirano, should be considered as dormant volcanoes that could restart activity at any time. We

  9. Noise-induced variability of volcanic extrusions

    Science.gov (United States)

    Alexandrov, D. V.; Bashkirtseva, I. A.; Ryashko, L. B.

    2016-11-01

    Motivated by important physical applications, we study a non-linear dynamics of volcanic extrusions on the basis of a simple pressure-mass flow model. We demonstrate that the deterministic phase portrait represents either the bulbous-type curves or closed paths stretched to their left depending on the initial conditions. The period of phase trajectories therewith increases when the pressure drop between the conduit top and bottom compensates the lava column pressure in it. Stochastic forcing changes the system dynamics drastically. We show that a repetitive scenario of volcanic behaviour with intermittency of stochastic oscillations of different extrusion amplitudes and frequencies appears in the presence of noises. As this takes place, the mean values of interspike intervals characterizing the system periodicity have a tendency to grow with increasing the noise intensity. The probability distribution functions confirming this dynamic behaviour are constructed.

  10. Triggering of volcanic eruptions by large earthquakes

    Science.gov (United States)

    Nishimura, Takeshi

    2017-08-01

    When a large earthquake occurs near an active volcano, there is often concern that volcanic eruptions may be triggered by the earthquake. In this study, recently accumulated, reliable data were analyzed to quantitatively evaluate the probability of the occurrence of new eruptions of volcanoes located near the epicenters of large earthquakes. For volcanoes located within 200 km of large earthquakes of magnitude 7.5 or greater, the eruption occurrence probability increases by approximately 50% for 5 years after the earthquake origin time. However, no significant increase in the occurrence probability of new eruptions was observed at distant volcanoes or for smaller earthquakes. The present results strongly suggest that new eruptions are likely triggered by static stress changes and/or strong ground motions caused by nearby large earthquakes. This is not similar to the previously presented evidence that volcanic earthquakes at distant volcanoes are remotely triggered by surface waves generated by large earthquakes.

  11. Obsidian hydration dating of volcanic events

    Science.gov (United States)

    Friedman, I.; Obradovich, J.

    1981-01-01

    Obsidian hydration dating of volcanic events had been compared with ages of the same events determined by the 14C and KAr methods at several localities. The localities, ranging in age from 1200 to over 1 million yr, include Newberry Craters, Oregon; Coso Hot Springs, California; Salton Sea, California; Yellowstone National Park, Wyoming; and Mineral Range, Utah. In most cases the agreement is quite good. A number of factors including volcanic glass composition and exposuretemperature history must be known in order to relate hydration thickness to age. The effect of composition can be determined from chemical analysis or the refractive index of the glass. Exposure-temperature history requires a number of considerations enumerated in this paper. ?? 1981.

  12. Learning to recognize volcanic non-eruptions

    Science.gov (United States)

    Poland, Michael P.

    2010-01-01

    An important goal of volcanology is to answer the questions of when, where, and how a volcano will erupt—in other words, eruption prediction. Generally, eruption predictions are based on insights from monitoring data combined with the history of the volcano. An outstanding example is the A.D. 1980–1986 lava dome growth at Mount St. Helens, Washington (United States). Recognition of a consistent pattern of precursors revealed by geophysical, geological, and geochemical monitoring enabled successful predictions of more than 12 dome-building episodes (Swanson et al., 1983). At volcanic systems that are more complex or poorly understood, probabilistic forecasts can be useful (e.g., Newhall and Hoblitt, 2002; Marzocchi and Woo, 2009). In such cases, the probabilities of different types of volcanic events are quantified, using historical accounts and geological studies of a volcano's past activity, supplemented by information from similar volcanoes elsewhere, combined with contemporary monitoring information.

  13. Volcanic ash impacts on critical infrastructure

    Science.gov (United States)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water

  14. The Zuni-Bandera Volcanic Field, NM: An Analog for Exploring Planetary Volcanic Terrains

    Science.gov (United States)

    Bleacher, J. E.; Garry, W. B.; Zimbelman, J. R.; Crumpler, L. S.; Aubele, J. C.

    2010-12-01

    The Zuni-Bandera volcanic field, near Grants, New Mexico, is comprised of volcanic deposits from several basaltic eruptions during the last million years. This vent field exhibits a diverse group of coalesced lava flows and displays well-preserved volcanic features including a’a and pahoehoe flows, collapsed lava tubes, cinder cones and low shields. The McCartys flow is a 48-km long inflated basalt flow and is the youngest in the field at around 3000 years old. Over the last three years we have used the Zuni-Bandera volcanic field, and the McCartys flow in particular, as a terrestrial analog for exploring planetary volcanic fields, and understanding the role of lava sheet inflation in flow field development. We have conducted three different styles of analog tests, 1) basic field science focused on understanding lava sheet inflation, 2) mission operations tests related to EVA design and real-time modification of traverse plans, and 3) science enabling technology tests. The Zuni-Bandera field is an ideal location for each style of analog test because it provides easy access to a diverse set of volcanic features with variable quality of preservation. However, many limitations must also be considered in order to maximize lessons learned. The McCartys flow displays well-preserved inflation plateaus that rise up to 15 m above the surrounding field. The preservation state enables textures and morphologies indicative of this process to be characterized. However, the pristine nature of the flow does not compare well with the much older and heavily modified inflated flows of Mars and the Moon. Older flows west of McCartys add value to this aspect of analog work because of their degraded surfaces, development of soil horizons, loose float, and limited exposure of outcrops, similar to what might be observed on the Moon or Mars. EVA design tests and science enabling technology tests at the Zuni-Bandera field provide the opportunity to document and interpret the relationships

  15. Volcanic alert system (VAS) developed during the 2011-2014 El Hierro (Canary Islands) volcanic process

    Science.gov (United States)

    García, Alicia; Berrocoso, Manuel; Marrero, José M.; Fernández-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Ortiz, Ramón

    2014-06-01

    The 2011 volcanic unrest at El Hierro Island illustrated the need for a Volcanic Alert System (VAS) specifically designed for the management of volcanic crises developing after long repose periods. The VAS comprises the monitoring network, the software tools for analysis of the monitoring parameters, the Volcanic Activity Level (VAL) management, and the assessment of hazard. The VAS presented here focuses on phenomena related to moderate eruptions, and on potentially destructive volcano-tectonic earthquakes and landslides. We introduce a set of new data analysis tools, aimed to detect data trend changes, as well as spurious signals related to instrumental failure. When data-trend changes and/or malfunctions are detected, a watchdog is triggered, issuing a watch-out warning (WOW) to the Monitoring Scientific Team (MST). The changes in data patterns are then translated by the MST into a VAL that is easy to use and understand by scientists, technicians, and decision-makers. Although the VAS was designed specifically for the unrest episodes at El Hierro, the methodologies may prove useful at other volcanic systems.

  16. Minerogenesis of volcanic caves of Kenya.

    Directory of Open Access Journals (Sweden)

    Rossi Antonio

    2003-01-01

    Full Text Available Kenya is one of the few countries in which karst cavities are scarce with respect to volcanic ones, which are widespread throughout the whole country. The great variability in lava composition allowed the evolution of very different cavities, some of which are amongst the largest lava tubes of the world. As normal for such a kind of cave, the hosted speleothems and cave minerals are scarce but important from the minerogenetic point of view. Anyway up to present no specific mineralogical research have been carried out therein. During the 8th International Symposium on Volcanospeleology, held in Nairobi in February 1998, some of the most important volcanic caves of Kenya have been visited and their speleothems and/or chemical deposits sampled: most of them were related to thick guano deposits once present inside these cavities. Speleothems mainly consisted of opal or gypsum, while the deposits related to guano often resulted in a mixture of sulphates and phosphates. The analyses confirmed the great variability in the minerogenetic mechanisms active inside the volcanic caves, which consequently allow the evolution of several different minerals even if the total amount of chemical deposit is scarce. Among the observed minerals kogarkoite, phillipsite and hydroxyapophyllite, must be cited because they are new cave minerals not only for the lava tubes of Kenya, but also for the world cave environment. The achieved results are compared with the available random data from previous literature in order to allow an updated overview on the secondary cave minerals of Kenya.

  17. Amazonian volcanism inside Valles Marineris on Mars

    Science.gov (United States)

    Brož, Petr; Hauber, Ernst; Wray, James J.; Michael, Gregory

    2017-09-01

    The giant trough system of Valles Marineris is one of the most spectacular landforms on Mars, yet its origin is still unclear. Although often referred to as a rift, it also shows some characteristics that are indicative of collapse processes. For decades, one of the major open questions was whether volcanism was active inside the Valles Marineris. Here we present evidence for a volcanic field on the floor of the deepest trough of Valles Marineris, Coprates Chasma. More than 130 individual edifices resemble scoria and tuff cones, and are associated with units that are interpreted as lava flows. Crater counts indicate that the volcanic field was emplaced sometime between ∼0.4 Ga and ∼0.2 Ga. The spatial distribution of the cones displays a control by trough-parallel subsurface structures, suggesting magma ascent in feeder dikes along trough-bounding normal faults. Spectral data reveal an opaline-silica-rich unit associated with at least one of the cones, indicative of hydrothermal processes. Our results point to magma-water interaction, an environment of astrobiological interest, perhaps associated with late-stage activity in the evolution of Valles Marineris, and suggest that the floor of Coprates Chasma is promising target for the in situ exploration of Mars.

  18. A cryptoendolithic community in volcanic glass.

    Science.gov (United States)

    Herrera, Aude; Cockell, Charles S; Self, Stephen; Blaxter, Mark; Reitner, Joachim; Thorsteinsson, Thorsteinn; Arp, Gernot; Dröse, Wolfgang; Tindle, Andrew G

    2009-05-01

    Fluorescent in situ hybridization (FISH) and 16S rDNA analysis were used to characterize the endolithic colonization of silica-rich rhyolitic glass (obsidian) in a barren terrestrial volcanic environment in Iceland. The rocks were inhabited by a diverse eubacterial assemblage. In the interior of the rock, we identified cyanobacterial and algal 16S (plastid) sequences and visualized phototrophs by FISH, which demonstrates that molecular methods can be used to characterize phototrophs at the limits of photosynthetically active radiation (PAR). Temperatures on the surface of the dark rocks can exceed 40 degrees C but are below freezing for much of the winter. The rocks effectively shield the organisms within from ultraviolet radiation. Although PAR sufficient for photosynthesis cannot penetrate more than approximately 250 mum into the solid rock, the phototrophs inhabit cavities; and we hypothesize that by weathering the rock they may contribute to the formation of cavities in a feedback process, which allows them to acquire sufficient PAR at greater depths. These observations show how pioneer phototrophs can colonize the interior of volcanic glasses and rocks, despite the opaque nature of these materials. The data show that protected microhabitats in volcanic rocky environments would have been available for phototrophs on early Earth.

  19. Venus volcanism: initial analysis from magellan data.

    Science.gov (United States)

    Head, J W; Campbell, D B; Elachi, C; Guest, J E; McKenzie, D P; Saunders, R S; Schaber, G G; Schubert, G

    1991-04-12

    Magellan images confirm that volcanism is widespread and has been fimdamentally important in the formation and evolution of the crust of Venus. High-resolution imaging data reveal evidence for intrusion (dike formation and cryptodomes) and extrusion (a wide range of lava flows). Also observed are thousands of small shield volcanoes, larger edifices up to several hundred kilometers in diameter, massive outpourings of lavas, and local pyroclastic deposits. Although most features are consistent with basaltic compositions, a number of large pancake-like domes are morphologically similar to rhyolite-dacite domes on Earth. Flows and sinuous channels with lengths of many hundreds of kilometers suggest that extremely high effusion rates or very fluid magmas (perhaps komatiites) may be present. Volcanism is evident in various tectonic settings (coronae, linear extensional and compressional zones, mountain belts, upland rises, highland plateaus, and tesserae). Volcanic resurfacing rates appear to be low (less than 2 Km(3)/yr) but the significance of dike formation and intrusions, and the mode of crustal formation and loss remain to be established.

  20. Venus volcanism: Initial analysis from Magellan data

    Science.gov (United States)

    Head, J.W.; Campbell, D.B.; Elachi, C.; Guest, J.E.; Mckenzie, D.P.; Saunders, R.S.; Schaber, G.G.; Schubert, G.

    1991-01-01

    Magellan images confirm that volcanism is widespread and has been fundamentally important in the formation and evolution of the crust of Venus. High-resolution imaging data reveal evidence for intrusion (dike formation and cryptodomes) and extrusion (a wide range of lava flows). Also observed are thousands of small shield volcanoes, larger edifices up to several hundred kilometers in diameter, massive outpourings of lavas, and local pyroclastic deposits. Although most features are consistent with basaltic compositions, a number of large pancake-like domes are morphologically similar to rhyolite-dacite domes on Earth. Flows and sinuous channels with lengths of many hundreds of kilometers suggest that extremely high effusion rates or very fluid magmas (perhaps komatiites) may be present. Volcanism is evident in various tectonic settings (coronae, linear extensional and compressional zones, mountain belts, upland rises, highland plateaus, and tesserae). Volcanic resurfacing rates appear to be low (less than 2 km3/yr) but the significance of dike formation and intrusions, and the mode of crustal formation and loss remain to be established.

  1. Ecology of cultivable yeasts in pristine forests in northern Patagonia (Argentina) influenced by different environmental factors.

    Science.gov (United States)

    Mestre, María Cecilia; Fontenla, Sonia; Rosa, Carlos A

    2014-06-01

    Environmental factors influencing the occurrence and community structure of soil yeasts in forests are not well studied. There are few studies dedicated to Southern Hemisphere soil yeasts populations and even fewer focused on temperate forests influenced by volcanic activity. The present work aimed to study the ecology of soil yeast communities from pristine forests influenced by different environmental factors (precipitation, physicochemical properties of soil, tree species, soil region, and season). The survey was performed in 4 northern Patagonian forests: 2 dominated by Nothofagus pumilio and 2 by Nothofagus antarctica. Yeast communities were described with ecological indices and species accumulation curves, and their association with environmental characteristics was assessed using multivariate analysis. Each forest site showed a particular arrangement of species as a result of environmental characteristics, such as dominant plant species, nutrient availability, and climatic characteristics. Cryptococcus podzolicus was most frequently isolated in nutrient-rich soils, Trichosporon porosum dominated cold mountain forests with low nutrient and water availability in soil, and capsulated yeasts such as Cryptococcus phenolicus dominated forest sites with low precipitation. The present work suggests that environmental factors affecting yeast communities may not be the current soil characteristics but the result of complex interactions of factors including natural disturbances like volcanic activity.

  2. Update of the volcanic risk map of Colima volcano, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Nuñez Cornu, F. J.; Marquez-Azua, B.

    2010-12-01

    The Colima volcano, located in western Mexico (19° 30.696 N, 103° 37.026 W) began its current eruptive process in February 10, 1999. This event was the basis for the development of two volcanic hazard maps: one for ballistics (rock fall) lahars, and another one for ash fall. During the period of 2003 to 2008 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-Plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano thanks to the low population density and low socio-economic activities at the time The current volcanic activity has triggered ballistic projections, pyroclastic and ash flows, and lahars, all have exceeded the maps limits established in 1999. Vulnerable elements within these areas have gradually changed due to the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano. On the slopes of the northwest side, new blue agave Tequilana weber and avocado orchard crops have emerged along with important production of greenhouse tomato, alfalfa and fruit (citrus) crops that will eventually be processed and dried for exportation to the United States and Europe. Also, in addition to the above, large expanses of corn and sugar cane have been planted on the slopes of the volcano since the nineteenth century. The increased agricultural activity has had a direct impact in the reduction of the available forest land area. Coinciding with this increased activity, the 0.8% growth population during the period of 2000 - 2005, - due to the construction of the Guadalajara-Colima highway-, also increased this impact. The growth in vulnerability changed the level of risk with respect to the one identified in the year 1999 (Suarez, 2000), thus motivating us to perform an update to the risk map at 1:25,000 using vector models of the INEGI, SPOT images of different dates, and fieldwork done in order

  3. Ancient Mudflows in the Tuxtla Volcanic Field, Veracruz, Mexico

    Science.gov (United States)

    Espindola, J.; Zamora-Camacho, A.; Godinez, M.

    2011-12-01

    The Tuxtla Volcanic Field (TVF) is a basaltic volcanic enclave in eastern Mexico at the margin of the Gulf of Mexico. Due to the high rates of precipitation floods and mudflows are common. Resulting from a systematic study of geologic hazard in the TVF we found several mudflow deposits that impacted pre-Columbian settlements. Sections of the deposits were observed in detail and sampled for granulometric studies. The deposits contained materials suitable for dating: ceramic shards and some of them charcoal fragments. Shards from the interior of the deposit were collected and placed in black bags to prevent the action of light and to be analyzed by thermoluminiscense (TL), the charcoal samples were dated using standard radiocarbon methods (C-14). The sites were dubbed La Mojarra (18°37.711', 95°18.860'), Revolución (18° 35.848', 95°11.412'), Pisatal (18°36.618', 95°10.634'), and Toro Prieto (18°38.229, 95°12.037'). These places were named after the nearby villages the first two, lake Pisatal the third and Toro Prieto creek the fourth. All the deposits occur close to the margins of riverbeds or lakes. Samples of these sites yielded ages of 1176±100 (TL), 1385±70 (C-14), 1157±105 (TL), 2050+245-235 (C-14), respectively. These locations have undergone recurrent floods in the last decades, showing that these phenomena impact the same areas over centuries. The dates mentioned are important because, no vestiges of human settlements had been reported in the area, which in the past was covered by a dense forest. The settlements must have been very small and depended of such cities as nearby Matacapan an important city with strong ties to Teotihuacán in central Mexico. The ages agree with the findings of archeologic studies in Matacapan, which indicate that the population became increasingly ruralized since the late classic period (≈ 600-800 AD).

  4. US Forest Service Forest Health Protection Insect and Disease Survey

    Data.gov (United States)

    US Forest Service, Department of Agriculture — This data is a compilation of forest insect, disease and abiotic damage mapped by aerial detection surveys on forested areas in the United States. US Forest Service,...

  5. Crustal and tectonic controls on large-explosive volcanic eruptions

    Science.gov (United States)

    Sheldrake, Tom; Caricchi, Luca

    2017-04-01

    Quantifying the frequency-Magnitude (f-M) relationship for volcanic eruptions is important to estimate volcanic hazard. Furthermore, understanding how this relationship varies between different groups of volcanoes can provide insights into the processes that control the size and rate of volcanic events. Using a Bayesian framework, which allows us to conceptualise the volcanic record as a series of individual and unique time series, associated by a common group behaviour, we identify variations in the size and rate of volcanism in different volcanic arcs. These variations in behaviour are linked to key parameters that include the motion of subduction, rate of subduction, age of the slab and thickness of the crust. The effects of these parameters on volcanism are interpreted in terms of variations in mantle productivity and the thermal efficiency of magma transfer in arc crustal systems. Understanding the link between subduction architecture, heat content of magmatic systems, and volcanic activity will serve to improve our capacity to quantify volcanic hazard in regions with limited geological and historical records of volcanic activity.

  6. Neogene volcanism in Gutai Mts. (Eastern Carpathains: a review

    Directory of Open Access Journals (Sweden)

    Marinel Kovacs

    2003-04-01

    Full Text Available Two types of volcanism developed in Gutâi Mts. (inner volcanic chain of Eastern Carpathians: a felsic, extensional/“back-arc” type and an intermediate, arc type. The felsic volcanism of explosive origin, consisting of caldera-related rhyolitic ignimbrites and resedimented volcaniclastics, had taken place during Early-Middle Badenian and Early Sarmatian. The intermediate volcanism, consisting of extrusive (effusive and explosive and intrusive activity, had developed during Sarmatian and Pannonian (13.4-7.0 Ma. It is represented by typical calc-alkaline series, from basalts to rhyolites. Lava flows of basaltic andesites and andesites are predominant, often emplaced in subaqueous environment. Extrusive domes, mainly composed of dacites, are associated to the andesitic volcanic structures. The intermediate volcanism, consisting of extrusive (effusive and explosive and intrusive activity, had developed during Sarmatian and Pannonian (13.4-7.0 Ma. It is represented by typical calc-alkaline series, from basalts to rhyolites. Lava flows of basaltic andesites and andesites are predominant, often emplaced in subaqueous environment. Extrusive domes, mainly composed of dacites, are associated to the andesitic volcanic structures. The geochemical study on the volcanic rocks shows the calc-alkaline character of both felsic and intermediate volcanism and typical subduction zones geochemical signatures for the intermediate one. The felsic volcanism shows affinities with subduction-related rocks as well. The main petrogenetic process in Gutâi Mts. was crustal assimilation, strongly constrained by trace element and isotope geochemistry.

  7. Global volcanic emissions: budgets, plume chemistry and impacts

    Science.gov (United States)

    Mather, T. A.

    2012-12-01

    Over the past few decades our understanding of global volcanic degassing budgets, plume chemistry and the impacts of volcanic emissions on our atmosphere and environment has been revolutionized. Global volcanic emissions budgets are needed if we are to make effective use of regional and global atmospheric models in order to understand the consequences of volcanic degassing on global environmental evolution. Traditionally volcanic SO2 budgets have been the best constrained but recent efforts have seen improvements in the quantification of the budgets of other environmentally important chemical species such as CO2, the halogens (including Br and I) and trace metals (including measurements relevant to trace metal atmospheric lifetimes and bioavailability). Recent measurements of reactive trace gas species in volcanic plumes have offered intriguing hints at the chemistry occurring in the hot environment at volcanic vents and during electrical discharges in ash-rich volcanic plumes. These reactive trace species have important consequences for gas plume chemistry and impacts, for example, in terms of the global fixed nitrogen budget, volcanically induced ozone destruction and particle fluxes to the atmosphere. Volcanically initiated atmospheric chemistry was likely to have been particularly important before biological (and latterly anthropogenic) processes started to dominate many geochemical cycles, with important consequences in terms of the evolution of the nitrogen cycle and the role of particles in modulating the Earth's climate. There are still many challenges and open questions to be addressed in this fascinating area of science.

  8. Forest resources of Mississippi’s national forests, 2006

    Science.gov (United States)

    Sonja N. Oswalt

    2011-01-01

    This bulletin describes forest resource characteristics of Mississippi’s national forests, with emphasis on DeSoto National Forest, following the 2006 survey completed by the U.S. Department of Agriculture Forest Service, Forest Inventory and Analysis program. Mississippi’s national forests comprise > 1 million acres of forest land, or about 7 percent of all forest...

  9. The influence of volcanic eruptions on growth of central European trees in NE Germany during the last Millennium

    Science.gov (United States)

    Pieper, H.; Heinrich, I.; Heussner, K. U.; Helle, G.

    2011-12-01

    Large volcanic eruptions have strong impacts on the global climate, lowering the global temperature and increasing the diffuse light fraction for one to several years after the eruptions. It has been argued that due to scattering by volcanic sulfur aerosol the more diffuse light fraction can be used more efficiently by forests. However, other observations suggest a growth decrease because of the cooler conditions following large eruption. Trees growing to the north of the temperate zone are mainly temperature-limited and therefore a reduction in ring width after large volcanic eruptions seems inevitable. Since tree growth in the temperate zone is less limited by temperature than by other climate parameters such as precipitation, it was hypothesized that tree growth may not suffer from lower temperatures so much but profit from increased diffuse light and reduced water stress. Therefore, a database of long tree-ring chronologies originating from several sites in NE-Germany was used to test whether tree growth suffered or profited from the globally changed conditions after large eruptions. The growth relationships were tested against 49 individual large volcanic eruptions from the last 1000 years. High-resolution ice core records of sulfate measurements calibrated against atmospheric observations after modern eruptions identified the timing and magnitude of the eruptions since 1000 CE. A more negative influence on tree growth was detected in two tree-ring width chronologies of oak and pine (Quercus robur L. and Pinus sylvestris L.) originating from three different sites (Greifswald, Eberswalde and Saxony) in eastern Germany for up to four years after large eruptions. Overall, the long tree-ring chronologies covering more or less the last millennium indicated a more negative relationship to volcanic eruptions. In comparison, the chronologies of Q. robur reveal a more negative response after large eruptions than those of P. sylvestris. Only in Greifswald both tree

  10. Basaltic ignimbrites in monogenetic volcanism: the example of La Garrotxa volcanic field

    Science.gov (United States)

    Martí, J.; Planagumà, L. l.; Geyer, A.; Aguirre-Díaz, G.; Pedrazzi, D.; Bolós, X.

    2017-05-01

    Ignimbrites are pyroclastic density current deposits common in explosive volcanism involving intermediate and silicic magmas and in less abundance in eruptions of basaltic central and shield volcanoes. However, they are not widely described in association with monogenetic volcanism, where typical products include lava flows, scoria and lapilli fall deposits, as well as various kinds of pyroclastic density current deposits and explosion breccias. In La Garrotxa basaltic monogenetic volcanic field, part of the Neogene-Quaternary European rift system located in the northeast of the Iberian Peninsula, we have identified a particular group of pyroclastic density current deposits that show similar textural characteristics to silicic ignimbrites, indicating an overlap in transport and depositional processes. These deposits can be clearly distinguished from other pyroclastic density current deposits generated during phreatomagmatic phases that typically correspond to thinly laminated units with planar-to-cross-bedded stratification. The monogenetic ignimbrite deposits correspond to a few meters to several tens of meters thick units rich in lithic- and lapilli scoria fragments, with an abundant ash matrix, and internally massive structure, emplaced along valleys and gullies, with run-out distances up to 6 km and individual volumes ranging from 106 to 1.5 × 107 m3. The presence of flattened scoria and columnar jointing in some of these deposits suggests relatively high emplacement temperatures, coinciding with available paleomagnetic data that suggests an emplacement temperature around 450-500 °C. In this work, we describe the main characteristics of these pyroclastic deposits that were generated by a number of phreatomagmatic episodes. Comparison with similar deposits from silicic eruptions and previous examples of ignimbrites associated with basaltic volcanism allows us to classify them as `basaltic ignimbrites'. The recognition in monogenetic volcanism of such

  11. Forest resources of the Santa Fe National Forest

    Science.gov (United States)

    Dana Lambert

    2004-01-01

    The Interior West Forest Inventory and Analysis (IWFIA) program of the USDA Forest Service, Rocky Mountain Research Station, as part of its national Forest Inventory and Analysis (FIA) duties, conducted forest resource inventories of the Southwestern Region (Region 3) National Forests. This report presents highlights of the Santa Fe National Forest 1998...

  12. Cluster Analysis of vents in monogenetic volcanic fields, Lunar Crater Volcanic Field (Nevada)

    Science.gov (United States)

    Tadini, A.; Cortes, J. A.; Valentine, G. A.; Johnson, P. J.; Tibaldi, A.; Bonali, F. L.

    2012-12-01

    Monogenetic volcanic fields pose a serious risk to human activities and settlements due to their high occurrence around the world and because of the type of eruptive activity that they exhibit. The need of adequate tools to better undertake volcanic hazard assessment for volcanic fields, especially from a spatial point of view, is of key importance at the time of mitigate such hazard. Among these tools, a better understanding of the spatial distribution of cones and vents and any structural/tectonical relationship are essential to understand the plumbing system of the field and thus help to predict the likelihood location of future eruptions. In this study we have developed a spatial methodology, which is the combination of various methodologies developed for volcanic textures and other clustering goals [1,2], to study the clustering of volcanic vents and their relation with structural features from satellite images. The methodology first involves the statistical identification and removal of spatial outliers using a predictive elliptical area [2] and the generation of randomly distributed points in the same predictive area. A comparison of the Near Neighbor Distance (NND) between the generated data and the data measured in a volcanic field is used to determine whether the vents are clustered or not. If the vents are clustered, a combination of hierarchical clustering and K-means [3] is then used to identify the clusters and their related vents. Results are then further constrained with the study of lineaments and other structural features that can be affected and related with the clusters. The methodology was tested in the Lunar Crater Volcanic Field, Nevada (USA) and successfully has helped to identify tectonically controlled lineaments from those that are resultant of geomorphological processes such the drainage control imposed by the cone clusters. Theoretical approaches has been developed before to constrain the plumbing of a volcanic field [4], however these

  13. The Yucca Mountain probabilistic volcanic hazard analysis project

    Energy Technology Data Exchange (ETDEWEB)

    Coppersmith, K.J.; Perman, R.C.; Youngs, R.R. [Geomatrix Consultants, Inc., San Francisco, CA (United States)] [and others

    1996-12-01

    The Probabilistic Volcanic Hazard Analysis (PVHA) project, sponsored by the U.S. Department of Energy (DOE), was conducted to assess the probability of a future volcanic event disrupting the potential repository at Yucca Mountain. The PVHA project is one of the first major expert judgment studies that DOE has authorized for technical assessments related to the Yucca Mountain project. The judgments of members of a ten-person expert panel were elicited to ensure that a wide range of approaches were considered for the hazard analysis. The results of the individual elicitations were then combined to develop an integrated assessment of the volcanic hazard that reflects the diversity of alternative scientific interpretations. This assessment, which focused on the volcanic hazard at the site, expressed as the probability of disruption of the potential repository, will provide input to an assessment of volcanic risk, which expresses the probability of radionuclide release due to volcanic disruption.

  14. Assessing volcanic hazard at Yucca Mountain using expert judgment

    Energy Technology Data Exchange (ETDEWEB)

    Coppersmith, K.J.; Perman, R.C. [Geomatrix Consultants, Inc., San Francisco, CA (United States); Nesbit, J. [Department of Energy, Las Vegas, NV (United States)] [and others

    1995-12-01

    A study to assess the probability of a future volcanic event disrupting the potential repository at Yucca Mountain, termed the Probabilistic Volcanic Hazard Analysis (PVHA) project, is being sponsored by the U.S. Department of Energy (DOE). This assessment, which is focused on the volcanic hazard at the site, expressed as the probability of disruption of the potential repository, will eventually provide input to an assessment of volcanic risk, which expresses the probability of radionuclide release due to volcanic disruption. To ensure that a wide range of approaches are considered in the hazard analysis, judgments of members of an expert panel will be elicited. The results of the individual elicitations will be combined to develop an integrated assessment of the volcanic hazard that reflects the diversity of scientific interpretations. This paper outlines the hazard model components and the procedures for eliciting expert judgments.

  15. Volcanic geology of Admiralty Bay, King George Island, Antarctica

    Institute of Scientific and Technical Information of China (English)

    邢光福; 王德滋; 金庆民; 沈渭洲; 陶奎元

    2002-01-01

    At Admiralty Bay of central King George Island, Keller Peninsula, Ullman Spur and Point Hennequin are main Tertiary volcanic terranes. Field investigation and isotopic datings indicate that, there occurred three periods of eruptions ( three volcanic cycles) and accompanying N-toward migration of the volcanic center on Keller Peninsula. After the second period of eruptions, the crater collapsed and a caldera was formed, then later eruptions were limited at the northern end of the peninsula and finally migrated to Ullman Spur. Thus Keller Peninsula is a revived caldera, and its volcanism migrated toward E with time. Point Hennequin volcanism happened more or less simultaneously with the above two areas, but has no clear relation in chemical evolution with them, frequently it belongs to another independent volcanic center.

  16. Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars.

    Science.gov (United States)

    Michalski, Joseph R; Bleacher, Jacob E

    2013-10-03

    Several irregularly shaped craters located within Arabia Terra, Mars, represent a new type of highland volcanic construct and together constitute a previously unrecognized Martian igneous province. Similar to terrestrial supervolcanoes, these low-relief paterae possess a range of geomorphic features related to structural collapse, effusive volcanism and explosive eruptions. Extruded lavas contributed to the formation of enigmatic highland ridged plains in Arabia Terra. Outgassed sulphur and erupted fine-grained pyroclastics from these calderas probably fed the formation of altered, layered sedimentary rocks and fretted terrain found throughout the equatorial region. The discovery of a new type of volcanic construct in the Arabia volcanic province fundamentally changes the picture of ancient volcanism and climate evolution on Mars. Other eroded topographic basins in the ancient Martian highlands that have been dismissed as degraded impact craters should be reconsidered as possible volcanic constructs formed in an early phase of widespread, disseminated magmatism on Mars.

  17. Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska

    Science.gov (United States)

    Sassen, Kenneth; Zhu, Jiang; Webley, Peter W.; Dean, K.; Cobb, Patrick

    2007-01-01

    During mid January to early February 2006, a series of explosive eruptions occurred at the Augustine volcanic island off the southern coast of Alaska. By early February a plume of volcanic ash was transported northward into the interior of Alaska. Satellite imagery and Puff volcanic ash transport model predictions confirm that the aerosol plume passed over a polarization lidar (0.694 mm wavelength) site at the Arctic Facility for Atmospheric Remote Sensing at the University of Alaska Fairbanks. For the first time, lidar linear depolarization ratios of 0.10 – 0.15 were measured in a fresh tropospheric volcanic plume, demonstrating that the nonspherical glass and mineral particles typical of volcanic eruptions generate strong laser depolarization. Thus, polarization lidars can identify the volcanic ash plumes that pose a threat to jet air traffic from the ground, aircraft, or potentially from Earth orbit.

  18. Forest Stand Age

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Source data for forest stand age were obtained from the USDA Forest Inventory and Analysis (FIA) DataMart and were projected for future scenarios based on selected...

  19. Policy: Palatable forest conservation

    Science.gov (United States)

    Tacconi, Luca

    2011-06-01

    Current policies to reduce emissions from forest loss could mean that rising demand for food is not met. A new approach to forest conservation that reduces emissions while meeting demand for agricultural products may be feasible, but more expensive.

  20. National Forest Boundaries

    Data.gov (United States)

    Minnesota Department of Natural Resources — This theme shows the USFS national forest boundaries in the state. This data was acquired from the GIS coordinators at both the Chippewa National Forest and the...

  1. Forest Grammar (Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    张松懋

    1994-01-01

    The syntactic parsing algorithm of weak precedence forest grammar has been introduced and the correctness and unambiguity of this algorithm have been proved. An example is given to the syntactic parsing procedure of weak precedence forest grammar.

  2. The α-β phase transition in volcanic cristobalite.

    OpenAIRE

    Damby, D. E.; Llewellin, E.W.; Horwell, C. J.; Williamson, B.J.; Najorka, J; Cressey, G.; Carpenter, M.A.

    2014-01-01

    Cristobalite is a common mineral in volcanic ash produced from dome-forming eruptions. Assessment of the respiratory hazard posed by volcanic ash requires understanding the nature of the cristobalite it contains. Volcanic cristobalite contains coupled substitutions of Al3+ and Na+ for Si4+; similar co-substitutions in synthetic cristobalite are known to modify the crystal structure, affecting the stability of the α and β forms and the observed transition between them. Here, for the first time...

  3. Distinguishing volcanic lithology using Self-Organizing Map

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Self-Organizing Map is an unsupervised learning algorithm. It has the ability of self-organization,self-learning and side associative thinking. Based on the principle it can identified the complex volcanic lithology. According to the logging data of the volcanic rock samples, the SOM will be trained, The SOM training results were analyzed in order to choose optimally parameters of the network. Through identifying the logging data of volcanic formations, the result shows that the map can achieve good application effects.

  4. VOLCANIC TSUNAMI GENERATING SOURCE MECHANISMS IN THE EASTERN CARIBBEAN REGION

    OpenAIRE

    2004-01-01

    Earthquakes, volcanic eruptions, volcanic island flank failures and underwater slides have generated numerous destructive tsunamis in the Caribbean region. Convergent, compressional and collisional tectonic activity caused primarily from the eastward movement of the Caribbean Plate in relation to the North American, Atlantic and South American Plates, is responsible for zones of subduction in the region, the formation of island arcs and the evolution of particular volcanic centers on the over...

  5. Forests and water cycle

    Directory of Open Access Journals (Sweden)

    Iovino F

    2009-06-01

    Full Text Available Based on a comprehensive literature analysis, a review on factors that control water cycle and water use in Mediterranean forest ecosystems is presented, including environmental variables and silvicultural treatments. This important issue is considered in the perspective of sustainable forest management of Mediterranean forests, with special regard to crucial environmental hazards such as forest fires and desertification risks related to climate change.

  6. Forest Microclimate Characteristics Review

    Science.gov (United States)

    2014-09-01

    designated by other authorized documents. DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR . ERDC/CERL SR-14-8 iii Contents...understory density, height from forest floor 33 Raynor 1971 Wind and Temperature Structure in a Coniferous Forest and a Contiguous Field New...radiation, turbulence, wind speed 35 Spies 1994 Dynamics and Patterns of a Managed Coniferous Forest Landscape in Oregon Oregon forest interior

  7. Dipterocarpaceae: forest fires and forest recovery

    NARCIS (Netherlands)

    Priadjati, A.

    2002-01-01

    One of the serious problems Indonesia is facing today is deforestation. Forests have been playing a very important role in Indonesia as the main natural resources for the economic growth of the country. Large areas of tropical forests, worldwide considered to be among the richest in p

  8. Melting Behavior of Volcanic Ash relevant to Aviation Ash Hazard

    Science.gov (United States)

    Song, W.; Hess, K.; Lavallee, Y.; Cimarelli, C.; Dingwell, D. B.

    2013-12-01

    Volcanic ash is one of the major hazards caused by volcanic eruptions. In particular, the threat to aviation from airborne volcanic ash has been widely recognized and documented. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in-flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The primary cause of engine thrust loss is that the glass in volcanic ash particles is generated at temperatures far lower than the temperatures in the combustion chamber of a jet engine ( i.e. > 1600 oC) and when the molten volcanic ash particles leave this hottest section of the engine, the resolidified molten volcanic ash particles will be accumulated on the turbine nozzle guide vanes, which reduced the effective flow of air through the engine ultimately causing failure. Thus, it is essential to investigate the melting process and subsequent deposition behavior of volcanic ash under gas turbine conditions. Although few research studies that investigated the deposition behavior of volcanic ash at the high temperature are to be found in public domain, to the best our knowledge, no work addresses the formation of molten volcanic ash. In this work, volcanic ash produced by Santiaguito volcano in Guatemala in November 8, 2012 was selected for study because of their recent activity and potential hazard to aircraft safety. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the sintering and fusion phenomena as well as determine the volcanic ash melting behavior by using characteristic temperatures by means of hot stage microscope (HSM), different thermal analysis (DTA) and Thermal Gravimetric Analysis (TGA) to

  9. Distribution and characteristics of volcanic reservoirs in China

    Institute of Scientific and Technical Information of China (English)

    HUANG Yulong; WANG Pujun; CHEN Shuming

    2009-01-01

    About forty productive oil/gas fields hosted in volcanic reservoirs have been found since 1957 in fourteen basins of China. They can be simply subdivided into two groups, the east and the west. Reservoir volcanic rocks of the east group are predominantly composed of Late Jurassic to Early Cretaceous rhyolite and Tertiary basalt, preferred being considered as rift type volcanics developed in the circum-Pacific tectonic regime. Those of the west are Permo-Carboniferous intermediate/basic volcanic rocks, being island-arc type ones developed in paleo-Asian Ocean tectonic regime.

  10. The volcanic and tectonic history of Enceladus

    Science.gov (United States)

    Kargel, J.S.; Pozio, S.

    1996-01-01

    Enceladus has a protracted history of impact cratering, cryo-volcanism, and extensional, compressional, and probable strike-slip faulting. It is unique in having some of the outer Solar System's least and most heavily cratered surfaces. Enceladus' cratering record, tectonic features, and relief elements have been analyzed more comprehensively than done previously. Like few other icy satellites, Enceladus seems to have experienced major lateral lithospheric motions; it may be the only icy satellite with global features indicating probable lithospheric convergence and folding. Ridged plains, 500 km across, consist of a central labyrinthine ridge complex atop a broad dome surrounded by smooth plains and peripheral sinuous ridge belts. The ridged plains have few if any signs of extension, almost no craters, and an average age of just 107 to 108 years. Ridge belts have local relief ranging from 500 to 2000 m and tend to occur near the bottoms of broad regional troughs between swells. Our reanalysis of Peter Thomas' (Dermott, S. F., and P. C. Thomas, 1994, The determination of the mass and mean density of Enceladus from its observed shape, Icarus, 109, 241-257) limb profiles indicates that high peaks, probably ridge belts, also occur in unmapped areas. Sinuous ridges appear foldlike and are similar to terrestrial fold belts such as the Appalachians. If they are indeed folds, it may require that the ridged plains are mechanically (perhaps volcanically) layered. Regional topography suggests that folding may have occurred along zones of convective downwelling. The cratered plains, in contrast to the ridged plains, are heavily cratered and exhibit extensional structures but no obvious signs of compression. Cratered plains contain a possible strike-slip fault (Isbanir Fossa), along which two pairs of fractures seem to have 15 km of right-lateral offset. The oldest cratered plains might date from shortly after the formation of the saturnian system or the impact disruption and

  11. Exceptional Volumes of Rejuvenated Volcanism in Samoa

    Science.gov (United States)

    Konter, J. G.; Jackson, M.; Storm, L.

    2010-12-01

    The internal structure of within-plate volcanoes is typically compared to the stages of volcanic evolution in Hawaii. In Samoa, these stages show some differences with the Hawaiian model, in terms of the duration, volume and geochemical composition of the stages. Particularly, the rejuvenated stage of volcanism in Samoa is significantly more voluminous, with increasing geographic coverage with age, completely repaving the island of Savai’i. This unusual outpouring of rejuvenated lavas has previously been proposed to be related to the tectonic setting, near the northern terminus of the Tonga Trench. Therefore, Samoan volcanism might be caused by lithospheric fracturing, a mantle plume, or potentially a combination of the two. We collected new samples from a deeply eroded canyon on Savai’i to determine a time evolution of the transition from shield to eventual rejuvenated lavas. The canyon exposes several hundred meters of lavas, and we collected samples about 200m vertically down into the canyon. These samples are dominantly olivine basalts, and their Pb isotope compositions fall within the compositional field of young rejuvenated lavas on Savai’i and Upolu. This canyon section, therefore, represents a minimum thickness for the rejuvenated lavas of 200m. Assuming eruption of rejuvenated lavas only occurred subaerially, with a universal thickness of 200m, the new data suggest more than one percent of the volume of Savai’i consists of rejuvenated lavas. This is an order of magnitude greater than the largest relative volumes in Hawaii (Kauai), and implies a different cause for rejuvenated volcanism in Samoa. Another feature that suggests different processes may be important is the transition between the shield and rejuvenated stage. Although Samoan volcanoes do not seem to erupt exactly the same rock types as characteristic Hawaiian post-shield stage lavas, there is a definite shift to more evolved compositions (including trachytes) during the later stages of

  12. Forests of Kansas, 2013

    Science.gov (United States)

    D.M. Meneguzzo; B.J. Butler

    2014-01-01

    This resource update provides an overview of forest resource attributes for Kansas based on annual inventories conducted by the Forest Inventory and Analysis (FIA) program of the Northern Research Station (NRS) of the U.S. Forest Service. The estimates presented in this update are based on field data collected in 2009-2013 with comparisons made to data collected from...

  13. Kansas' Forest Resources, 2007

    Science.gov (United States)

    W.K. Moser; M.H. Hansen; R.L. Atchison

    2008-01-01

    This publication provides an overview of forest resource attributes for Kansas based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 4 of this report....

  14. Forests of Kansas, 2014

    Science.gov (United States)

    D.M. Meneguzzo; S.J. Crocker

    2015-01-01

    This resource update provides an overview of forest resource attributes for Kansas based on annual inventories conducted by the Forest Inventory and Analysis (FIA) program of the Northern Research Station (NRS) of the U.S. Forest Service. The estimates presented in this update are based on field data collected in 2010-2014 with comparisons made to data collected from...

  15. Kansas' forest resources, 2012

    Science.gov (United States)

    W.K. Moser; P.D. Miles; R.A. Atchison

    2013-01-01

    This publication provides an overview of forest resource attributes for Kansas based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 4 of this report....

  16. Kansas' forest resources, 2010

    Science.gov (United States)

    W.K. Moser; C.H. Barnett; C.M. Kurtz; R.A. Atchison

    2011-01-01

    This publication provides an overview of forest resource attributes for Kansas based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 4 of this report....

  17. Kansas' forest resources, 2009

    Science.gov (United States)

    W.K. Moser; M.H. Hansen; C.H. Barnett; R.A. Atchison

    2010-01-01

    This publication provides an overview of forest resource attributes for Kansas based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 4 of this report....

  18. Kansas' forest resources, 2011

    Science.gov (United States)

    W.K. Moser; D.E. Haugen; R.A. Atchison

    2012-01-01

    This publication provides an overview of forest resource attributes for Kansas based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 4 of this report....

  19. Forests of Iowa, 2015

    Science.gov (United States)

    Mark D. Nelson; Matt Brewer; Dacia M. Meneguzzo; Kathryne. Clark

    2016-01-01

    This resource update provides an overview of forest resources in Iowa based on inventories conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Northern Research Station in cooperation with the Iowa Department of Natural Resources. Estimates are based on field data collected using the FIA annualized sample design and are updated...

  20. Massachusetts' Forest Resources, 2006

    Science.gov (United States)

    Brett J. Butler; Charles Burnham; I. Ted Goodnight; Barbara O' Connell; Bryan Tirrell

    2008-01-01

    Table 1 and Figures 2 and 3 have been revised by the authors and these revisions were incorporated into the publication on May 27, 2008. This publication provides an overview of forest resource attributes for Massachusetts based on an annual inventory conducted by the Forest Inventory and Analysis program at the Northern Research Station of the U.S. Forest Service....

  1. Connecticut's Forest Resources, 2006

    Science.gov (United States)

    Brett J. Butler; I. Ted Goodnight; Helene F. Hochholzer; Barbara O' Connell; Bryan Tirrell

    2008-01-01

    Table 1 and Figures 2 and 3 have been revised by the authors and these revisions were incorporated into the publication on May 27, 2008. This publication provides an overview of forest resource attributes for Connecticut based on an annual inventory conducted by the Forest Inventory and Analysis program at the Northern Research Station of the U.S. Forest Service. These...

  2. South Carolina's forests, 1993

    Science.gov (United States)

    Roger C. Conner

    1998-01-01

    This resource bulletin describes the principal findings of the seventh inventory of South Carolina’s forest re-sources. Data on the extent, condition, and classification of forest land and associated timber volumes, growth, removals, and mortality are described and interpreted. Whereas data on nontimber commodities associated with forests were also collected,...

  3. European mixed forests

    DEFF Research Database (Denmark)

    Bravo-Oviedo, Andres; Pretzsch, Hans; Ammer, Christian

    2014-01-01

    Aim of study: We aim at (i) developing a reference definition of mixed forests in order to harmonize comparative research in mixed forests and (ii) review the research perspectives in mixed forests. Area of study: The definition is developed in Europe but can be tested worldwide. Material and Met...

  4. Forest-fire models

    Science.gov (United States)

    Haiganoush Preisler; Alan Ager

    2013-01-01

    For applied mathematicians forest fire models refer mainly to a non-linear dynamic system often used to simulate spread of fire. For forest managers forest fire models may pertain to any of the three phases of fire management: prefire planning (fire risk models), fire suppression (fire behavior models), and postfire evaluation (fire effects and economic models). In...

  5. Automatic landslides detection on Stromboli volcanic Island

    Science.gov (United States)

    Silengo, Maria Cristina; Delle Donne, Dario; Ulivieri, Giacomo; Cigolini, Corrado; Ripepe, Maurizio

    2016-04-01

    Landslides occurring in active volcanic islands play a key role in triggering tsunami and other related risks. Therefore, it becomes vital for a correct and prompt risk assessment to monitor landslides activity and to have an automatic system for a robust early-warning. We then developed a system based on a multi-frequency analysis of seismic signals for automatic landslides detection occurring at Stromboli volcano. We used a network of 4 seismic 3 components stations located along the unstable flank of the Sciara del Fuoco. Our method is able to recognize and separate the different sources of seismic signals related to volcanic and tectonic activity (e.g. tremor, explosions, earthquake) from landslides. This is done using a multi-frequency analysis combined with a waveform patter recognition. We applied the method to one year of seismic activity of Stromboli volcano centered during the last 2007 effusive eruption. This eruption was characterized by a pre-eruptive landslide activity reflecting the slow deformation of the volcano edifice. The algorithm is at the moment running off-line but has proved to be robust and efficient in picking automatically landslide. The method provides also real-time statistics on the landslide occurrence, which could be used as a proxy for the volcano deformation during the pre-eruptive phases. This method is very promising since the number of false detections is quite small (landslide increases. The final aim will be to apply this method on-line and for a real-time automatic detection as an improving tool for early warnings of tsunami-genic landslide activity. We suggest that a similar approach could be also applied to other unstable non-volcanic also slopes.

  6. Volcanic hazard assessment at Deception Island

    Science.gov (United States)

    Bartolini, S.; Sobradelo, R.; Geyer, A.; Martí, J.

    2012-04-01

    Deception Island is the most active volcano of the South Shetland Islands (Antarctica) with more than twenty eruptions recognised over the past two centuries. The island was formed on the expansion axis of the Central Bransfield Strait and its evolution consists of constructive and destructive phases. A first a shield phase was followed by the construction of a central edifice and formation of the caldera with a final monogenetic volcanism along the caldera rim. The post-caldera magma composition varies from andesitic-basaltic to dacitic. The activity is characterised by monogenetic eruptions of low volume and short duration. The eruptions show a variable degree of explosivity, strombolian or phreatomagmatic, with a VEI 2 to 4, which have generated a wide variety of pyroclastic deposits and lavas. It is remarkable how many phases of phreatic explosive eruptions are associated to the emission of large ballistic blocks. Tephra record preserved in the glacier ice of Livingston Island or in marine sediments show the explosive power of the phreatomagmatic phases and the wide dispersal of its finest products in a great variety of directions of the prevailing winds. Also it is important to highlight the presence of different lahar deposits associated with some of these eruptions. In this contribution we present the guidelines to conduct a short-term and long-term volcanic hazard assessment at Deception Island. We apply probabilistic methods to estimate the susceptibility, statistical techniques to determine the eruption recurrence and eruptive scenario, and reproduce the effects of historical eruptions too. Volcanic hazard maps and scenarios are obtained using a Voris-based model tool (Felpeto et al., 2007) in a free Geographical Information System (GIS), a Quantum GIS.

  7. Structural significance of the south Tyrrhenian volcanism

    Science.gov (United States)

    Gaudiosi, G.; Musacchio, G.; Ventura, G.; de Astis, G.

    2003-04-01

    The southern part of the Tyrrhenian Sea represents a transition from ocenic- (the Tyrrhenian Sea) to continental-domain (the Calabrian Arc) and is affected by active calkalkaline to potassic volcanism (the Eolian Islands). Active extensional tectonics, coupled with the general upwelling of northern Sicily and Calabria continental crust, coexists with active subduction of the Ionian Plate beneath the Calabrian Arc. This has been interpreted as the result of the detachment of the slab beneath the Calbrian Arc. Present-day tectonics is characterized by NE-SW normal faults and NNW- SSE dextral oblique-slip faults. The normal faults form the major peri- Tyrrhenian basins. Refraction and high resolution onshore-offshore wide-angle-reflection profiles, as well as potential field modeling, provide a 3D image of the Moho. Short wave-length undulations characterize the Moho beneath the Aeolian Arch. The major upraise is about 6 km, beneath the Aeolian active volcanic area, and affects all the crustal boundaries. Another sharp crustal thinning is observed beneath the gulf of Patti at the south-eastern edge of the Tyrrhenian basin. We suggest that the graben-like structure, occurring along the Salina-Lipari-Vulcano islands and oriented at high angles to the trench, is lithospheric and can be followed down to Moho depths. NNW-SSE dextral oblique-slip faults, like the Tindari Letojanni fault system, control the Salina-Lipari-Vulcano portion of the Aeolian volcanism and connect the oceanic crust of the Marsili Basin to the Malta Escarpment, through the Etna volcano. Across this lineament seismicity changes from mostly shallow to the west, to deep intra- slab to the east.

  8. Volcanism/tectonics working group summary

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, L.A. [Nuclear Regulatory Commission, Washington, DC (United States); Young, S.R. [Center for Nuclear Waste Regulatory Analyses, San Antonio, TX (United States)

    1995-09-01

    This article is a summary of the proceedings of a group discussion which took place at the Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste in San Antonio, Texas on July 22-25, 1991. The working group concentrated on the subject of the impacts of earthquakes, fault rupture, and volcanic eruption on the underground repository disposal of high-level radioactive wastes. The tectonics and seismic history of the Yucca Mountain site in Nevada is discussed and geologic analogs to that site are described.

  9. Volcanic hazards on the Island of Hawaii

    Science.gov (United States)

    Mullineaux, Donal Ray; Peterson, Donald W.

    1974-01-01

    Volcanic hazards on the Island of Hawaii have been determined to be chiefly products of eruptions: lava flows, falling fragments, gases, and particle-and-gas clouds. Falling fragments and particle-and-gas clouds can be substantial hazards to life, but they are relatively rare. Lava flows are the chief hazard to property; they are frequent and cover broad areas. Rupture, subsidence, earthquakes, and sea waves (tsunamis) caused by eruptions are minor hazards; those same events caused by large-scale crustal movements, however, are major hazards to both life and property. Volcanic hazards are greatest on Mauna Loa and Kilauea, and the risk is highest along the rift zones of those volcanoes. The hazards are progressively less severe on Hualalai, Mauna Kea, and Kohala volcanoes. Some risk from earthquakes extends across the entire island, and the risk from tsunamis is high all along the coast. The island has been divided into geographic zones of different relative risk for each volcanic hazard, and for all those hazards combined. Each zone is assigned a relative risk for that area as a whole; the degree of risk varies within the zones, however, and in some of them the risk decreases gradationally across the entire zone. Moreover, the risk in one zone may be locally as great or greater than that at some points in the zone of next higher overall risk. Nevertheless, the zones can be highly useful for land-use planning. Planning decisions to which the report is particularly applicable include the selection of kinds of structures and kinds of land use that are appropriate for the severity and types of hazards present. For example, construction of buildings that can resist a lava flow is generally not feasible, but it is both feasible and desirable to build structures that can resist falling rock fragments, earthquakes, and tsunamis in areas where risk from those hazards is relatively high. The report can also be used to select sites where overall risk is relatively low, to

  10. Ice nucleating properties of volcanic ash particles from the Eyjafjallajökull volcanic eruption

    Science.gov (United States)

    Kulkarni, G.; Zelenyuk, A.; Beranek, J.

    2011-12-01

    The volcanic ash from the volcanic emissions can significantly contribute to the natural source of aerosols in the atmosphere. In the vicinity and downwind of eruption site, the transported ash might have a stronger impact on the aviation industry, regional air quality, and climate. Despite the environmental significance of ash, our understanding of ash particles reacting with other volcanic plume constituents is rudimentary. In particular, the complex interactions between the water vapor and ash particles under different meteorological conditions that lead to cloud hydrometeors are poorly understood. To improve our understanding, we focus on investigating the ice formation properties of ash particles collected from the recent volcanic eruption. It was observed that the ash particles are less efficient ice nuclei compared to the natural dust particles in the deposition nucleation regime, but have similar efficiencies in the condensation freezing mode. The ice nucleated ash particles are separated from the interstitial particles, and further evaporated to understand the elemental composition, size, shape and morphology of the ice residue using the single particle mass spectrometer. The elemental composition reveals that majority of the elements are also present in the natural dust particles, but subtle differences are observed. This suggests that particle properties play an important role in the ice nucleation process.

  11. Experiments on the formation of volcanic cones (In connection with East Indian volcanic islands)

    NARCIS (Netherlands)

    Kuenen, Ph.H.

    1933-01-01

    Several investigators have tackled the problem of the main causes that produce the slopes of volcanic cones, especially with a view to explaining the characteristic concave profiles of strato-volcanoes *). A satisfactory result has not been arrived at, however. This became evident to the present aut

  12. Forest resources of the Forest resources of the Apache-Sitgreaves National Forest

    Science.gov (United States)

    Paul Rogers

    2008-01-01

    The Interior West Forest Inventory and Analysis (IWFIA) program of the USDA Forest Service, Rocky Mountain Research Station, as part of its national Forest Inventory and Analysis (FIA) duties, conducted forest resource inventories of the Southwestern Region (Region 3) National Forests. This report presents highlights of the Apache-Sitgreaves National Forest...

  13. Forests and Forest Cover - DCNR - State Forest Lands 2015

    Data.gov (United States)

    NSGIC Education | GIS Inventory — The state forest boundry coverage is being updated frequently. It is derived from survey descriptions and will be, and has been in certain areas, adjusted to GPS...

  14. Laboratory simulations of volcanic ash charging and conditions for volcanic lightning on Venus

    Science.gov (United States)

    Airey, Martin; Warriner-Bacon, Elliot; Aplin, Karen

    2017-04-01

    Lightning may be important in the emergence of life on Earth and elsewhere, as significant chemical reactions occur in the superheated region around the lightning channel. This, combined with the availability of phosphates in volcanic clouds, suggests that volcanic lightning could have been the catalyst for the formation of biological compounds on the early Earth [1]. In addition to meteorological lightning, volcanic activity also generates electrical discharges within charged ash plumes, which can be a significant contributor to atmospheric electricity on geologically active planets. The physical properties of other planetary atmospheres, such as that of Venus, have an effect on the processes that lead to the generation of volcanic lightning. Volcanism is known to have occurred on Venus in the past, and recent observations made by ESA's Venus Express satellite have provided evidence for currently active volcanism [2-4], and lightning discharges [e.g. 5]. Venusian lightning could potentially be volcanic in origin, since no meteorological mechanisms are known to separate charge effectively in its clouds [6]. The hunt for further evidence for lightning at Venus is ongoing, for example by means of the Lightning and Airglow Camera (LAC) [7] on Akatsuki, the current JAXA mission at Venus. Our laboratory experiments simulate ash generation and measure electrical charging of the ash under typical atmospheric conditions on Earth and Venus. The study uses a 1 litre chamber, which, when pressurised and heated, can simulate the high-pressure, high-temperature, carbon dioxide-dominated atmosphere of Venus at 10 km altitude ( 5 MPa, 650 K). A key finding of previous work [8] is that ash plume-forming eruptions are more likely to occur at higher altitudes such as these on Venus. The chamber contains temperature/pressure monitoring and logging equipment, a rock collision apparatus (based on [9]) to generate the charged rock fragments, and charge measurement electrodes connected

  15. The forest Gribskov, Denmark

    DEFF Research Database (Denmark)

    Overballe-Petersen, Mette V; Raulund-Rasmussen, Karsten; Buttenschøn, Rita M.

    2014-01-01

    Knowledge of forest history is crucial for understanding the processes, structures, functions and current status of forest ecosystems. An enhanced understanding of the long history of disturbance factors affecting forest development and thereby the present state of the forest is particularly...... valuable when working with forest management, conservation and restoration. Integrating the legacies of past disturbances-natural as well as anthropogenic-into conservation and management strategies is likely to favour natural values and ecosystem services. A case-study in Gribskov, Denmark, using...

  16. VOLCANIC TSUNAMI GENERATING SOURCE MECHANISMS IN THE EASTERN CARIBBEAN REGION

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2004-01-01

    Full Text Available Earthquakes, volcanic eruptions, volcanic island flank failures and underwater slides have generated numerous destructive tsunamis in the Caribbean region. Convergent, compressional and collisional tectonic activity caused primarily from the eastward movement of the Caribbean Plate in relation to the North American, Atlantic and South American Plates, is responsible for zones of subduction in the region, the formation of island arcs and the evolution of particular volcanic centers on the overlying plate. The inter-plate tectonic interaction and deformation along these marginal boundaries result in moderate seismic and volcanic events that can generate tsunamis by a number of different mechanisms. The active geo-dynamic processes have created the Lesser Antilles, an arc of small islands with volcanoes characterized by both effusive and explosive activity. Eruption mechanisms of these Caribbean volcanoes are complex and often anomalous. Collapses of lava domes often precede major eruptions, which may vary in intensity from Strombolian to Plinian. Locally catastrophic, short-period tsunami-like waves can be generated directly by lateral, direct or channelized volcanic blast episodes, or in combination with collateral air pressure perturbations, nuéss ardentes, pyroclastic flows, lahars, or cascading debris avalanches. Submarine volcanic caldera collapses can also generate locally destructive tsunami waves. Volcanoes in the Eastern Caribbean Region have unstable flanks. Destructive local tsunamis may be generated from aerial and submarine volcanic edifice mass edifice flank failures, which may be triggered by volcanic episodes, lava dome collapses, or simply by gravitational instabilities. The present report evaluates volcanic mechanisms, resulting flank failure processes and their potential for tsunami generation. More specifically, the report evaluates recent volcanic eruption mechanisms of the Soufriere Hills volcano on Montserrat, of Mt. Pel

  17. Actinobacterial Diversity in Volcanic Caves and Associated Geomicrobiological Interactions.

    Science.gov (United States)

    Riquelme, Cristina; Marshall Hathaway, Jennifer J; Enes Dapkevicius, Maria de L N; Miller, Ana Z; Kooser, Ara; Northup, Diana E; Jurado, Valme; Fernandez, Octavio; Saiz-Jimenez, Cesareo; Cheeptham, Naowarat

    2015-01-01

    Volcanic caves are filled with colorful microbial mats on the walls and ceilings. These volcanic caves are found worldwide, and studies are finding vast bacteria diversity within these caves. One group of bacteria that can be abundant in volcanic caves, as well as other caves, is Actinobacteria. As Actinobacteria are valued for their ability to produce a variety of secondary metabolites, rare and novel Actinobacteria are being sought in underexplored environments. The abundance of novel Actinobacteria in volcanic caves makes this environment an excellent location to study these bacteria. Scanning electron microscopy (SEM) from several volcanic caves worldwide revealed diversity in the morphologies present. Spores, coccoid, and filamentous cells, many with hair-like or knobby extensions, were some of the microbial structures observed within the microbial mat samples. In addition, the SEM study pointed out that these features figure prominently in both constructive and destructive mineral processes. To further investigate this diversity, we conducted both Sanger sequencing and 454 pyrosequencing of the Actinobacteria in volcanic caves from four locations, two islands in the Azores, Portugal, and Hawai'i and New Mexico, USA. This comparison represents one of the largest sequencing efforts of Actinobacteria in volcanic caves to date. The diversity was shown to be dominated by Actinomycetales, but also included several newly described orders, such as Euzebyales, and Gaiellales. Sixty-two percent of the clones from the four locations shared less than 97% similarity to known sequences, and nearly 71% of the clones were singletons, supporting the commonly held belief that volcanic caves are an untapped resource for novel and rare Actinobacteria. The amplicon libraries depicted a wider view of the microbial diversity in Azorean volcanic caves revealing three additional orders, Rubrobacterales, Solirubrobacterales, and Coriobacteriales. Studies of microbial ecology in

  18. Nano-volcanic Eruption of Silver

    Science.gov (United States)

    Lin, Shih-kang; Nagao, Shijo; Yokoi, Emi; Oh, Chulmin; Zhang, Hao; Liu, Yu-chen; Lin, Shih-guei; Suganuma, Katsuaki

    2016-01-01

    Silver (Ag) is one of the seven metals of antiquity and an important engineering material in the electronic, medical, and chemical industries because of its unique noble and catalytic properties. Ag thin films are extensively used in modern electronics primarily because of their oxidation-resistance. Here we report a novel phenomenon of Ag nano-volcanic eruption that is caused by interactions between Ag and oxygen (O). It involves grain boundary liquation, the ejection of transient Ag-O fluids through grain boundaries, and the decomposition of Ag-O fluids into O2 gas and suspended Ag and Ag2O clusters. Subsequent coating with re-deposited Ag-O and the de-alloying of O yield a conformal amorphous Ag coating. Patterned Ag hillock arrays and direct Ag-to-Ag bonding can be formed by the homogenous crystallization of amorphous coatings. The Ag “nano-volcanic eruption” mechanism is elaborated, shedding light on a new mechanism of hillock formation and new applications of amorphous Ag coatings. PMID:27703220

  19. Supercomputer modeling of volcanic eruption dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kieffer, S.W. [Arizona State Univ., Tempe, AZ (United States); Valentine, G.A. [Los Alamos National Lab., NM (United States); Woo, Mahn-Ling [Arizona State Univ., Tempe, AZ (United States)

    1995-06-01

    Our specific goals are to: (1) provide a set of models based on well-defined assumptions about initial and boundary conditions to constrain interpretations of observations of active volcanic eruptions--including movies of flow front velocities, satellite observations of temperature in plumes vs. time, and still photographs of the dimensions of erupting plumes and flows on Earth and other planets; (2) to examine the influence of subsurface conditions on exit plane conditions and plume characteristics, and to compare the models of subsurface fluid flow with seismic constraints where possible; (3) to relate equations-of-state for magma-gas mixtures to flow dynamics; (4) to examine, in some detail, the interaction of the flowing fluid with the conduit walls and ground topography through boundary layer theory so that field observations of erosion and deposition can be related to fluid processes; and (5) to test the applicability of existing two-phase flow codes for problems related to the generation of volcanic long-period seismic signals; (6) to extend our understanding and simulation capability to problems associated with emplacement of fragmental ejecta from large meteorite impacts.

  20. Mantle updrafts and mechanisms of oceanic volcanism

    Science.gov (United States)

    Anderson, Don L.; Natland, James H.

    2014-10-01

    Convection in an isolated planet is characterized by narrow downwellings and broad updrafts-consequences of Archimedes' principle, the cooling required by the second law of thermodynamics, and the effect of compression on material properties. A mature cooling planet with a conductive low-viscosity core develops a thick insulating surface boundary layer with a thermal maximum, a subadiabatic interior, and a cooling highly conductive but thin boundary layer above the core. Parts of the surface layer sink into the interior, displacing older, colder material, which is entrained by spreading ridges. Magma characteristics of intraplate volcanoes are derived from within the upper boundary layer. Upper mantle features revealed by seismic tomography and that are apparently related to surface volcanoes are intrinsically broad and are not due to unresolved narrow jets. Their morphology, aspect ratio, inferred ascent rate, and temperature show that they are passively responding to downward fluxes, as appropriate for a cooling planet that is losing more heat through its surface than is being provided from its core or from radioactive heating. Response to doward flux is the inverse of the heat-pipe/mantle-plume mode of planetary cooling. Shear-driven melt extraction from the surface boundary layer explains volcanic provinces such as Yellowstone, Hawaii, and Samoa. Passive upwellings from deeper in the upper mantle feed ridges and near-ridge hotspots, and others interact with the sheared and metasomatized surface layer. Normal plate tectonic processes are responsible both for plate boundary and intraplate swells and volcanism.

  1. Nano-volcanic Eruption of Silver

    Science.gov (United States)

    Lin, Shih-Kang; Nagao, Shijo; Yokoi, Emi; Oh, Chulmin; Zhang, Hao; Liu, Yu-Chen; Lin, Shih-Guei; Suganuma, Katsuaki

    2016-10-01

    Silver (Ag) is one of the seven metals of antiquity and an important engineering material in the electronic, medical, and chemical industries because of its unique noble and catalytic properties. Ag thin films are extensively used in modern electronics primarily because of their oxidation-resistance. Here we report a novel phenomenon of Ag nano-volcanic eruption that is caused by interactions between Ag and oxygen (O). It involves grain boundary liquation, the ejection of transient Ag-O fluids through grain boundaries, and the decomposition of Ag-O fluids into O2 gas and suspended Ag and Ag2O clusters. Subsequent coating with re-deposited Ag-O and the de-alloying of O yield a conformal amorphous Ag coating. Patterned Ag hillock arrays and direct Ag-to-Ag bonding can be formed by the homogenous crystallization of amorphous coatings. The Ag “nano-volcanic eruption” mechanism is elaborated, shedding light on a new mechanism of hillock formation and new applications of amorphous Ag coatings.

  2. Explosive mafic volcanism on Earth and Mars

    Science.gov (United States)

    Gregg, Tracy K. P.; Williams, Stanley N.

    1993-01-01

    Deposits within Amazonia Planitia, Mars, have been interpreted as ignimbrite plains on the basis of their erosional characteristics. The western flank of Hecates Tholus appears to be mantled by an airfall deposit, which was produced through magma-water interactions or exsolution of magmatic volatiles. Morphologic studies, along with numerical and analytical modeling of Martian plinian columns and pyroclastic flows, suggest that shield materials of Tyrrhena and Hadriaca paterae are composed of welded pyroclastic flows. Terrestrial pyroclastic flows, ignimbrites, and airfall deposits are typically associated with silicic volcanism. Because it is unlikely that large volumes of silicic lavas have been produced on Mars, we seek terrestrial analogs of explosives, mafic volcanism. Plinian basaltic airfall deposits have been well-documented at Masaya, Nicaragua, and basaltic ignimbrite and surge deposits also have been recognized there. Ambrym and Yasour, both in Vanuatu, are mafic stratovolcanioes with large central calderas, and are composed of interbedded basaltic pyrocalstic deposits and lava flows. Zavaritzki, a mafic stratovolcano in the Kurile Islands, may have also produced pyroclastic deposits, although the exact nature of these deposits in unknown. Masaya, Ambrym and Yasour are known to be located above tensional zones. Hadriaca and Tyrrhena Paterae may also be located above zones of tension, resulting from the formation and evolution of Hellas basin, and, thus, may be directly analogous to these terrestrial mafic, explosive volcanoes.

  3. Human-Forest Relationships

    DEFF Research Database (Denmark)

    Ritter, Eva; Dauksta, D.

    2012-01-01

    The relationship between human beings and forests has been important for the development of society. It is based on various productive, ecological, social and cultural functions of forests. The cultural functions, including the spiritual and symbolic role of forests, are often not addressed...... problems. To achieve a deeper understanding of the dependency of society on forests, it is necessary to recognise the role of forests in our consciousness of being human. Giving a historical overview about the cultural bonds between people and forests, the first part of the paper puts focus on non-productive...... with the same attention as the other functions. The aim of this paper is to put a stronger emphasis on the fact that the acknowledgement of cultural bonds is needed in the discussion of sustainable development. Forest should not only be considered as a technical means to solve environmental and economic...

  4. The empty forest revisited.

    Science.gov (United States)

    Wilkie, David S; Bennett, Elizabeth L; Peres, Carlos A; Cunningham, Andrew A

    2011-03-01

    Tropical forests are among the most species-rich ecosystems on the planet. Some authors argue that predictions of a tropical forest extinction crisis based on analyses of deforestation rates are overly pessimistic since they do not take account of future agricultural abandonment as a result of rural-urban migration and subsequent secondary regrowth. Even if such regrowth occurs, it is crucial to consider threats to species that are not directly correlated with area of forest cover. Hunting is an insidious but significant driver of tropical forest defaunation, risking cascading changes in forest plant and animal composition. Ineffective legislation and enforcement along with a failure of decision makers to address the threats of hunting is fanning the fire of a tropical forest extinction crisis. If tropical forest ecosystems are to survive, the threat of unsustainable hunting must be adequately addressed now.

  5. Developing International Guidelines on Volcanic Hazard Assessments for Nuclear Facilities

    Science.gov (United States)

    Connor, Charles

    2014-05-01

    Worldwide, tremendous progress has been made in recent decades in forecasting volcanic events, such as episodes of volcanic unrest, eruptions, and the potential impacts of eruptions. Generally these forecasts are divided into two categories. Short-term forecasts are prepared in response to unrest at volcanoes, rely on geophysical monitoring and related observations, and have the goal of forecasting events on timescales of hours to weeks to provide time for evacuation of people, shutdown of facilities, and implementation of related safety measures. Long-term forecasts are prepared to better understand the potential impacts of volcanism in the future and to plan for potential volcanic activity. Long-term forecasts are particularly useful to better understand and communicate the potential consequences of volcanic events for populated areas around volcanoes and for siting critical infrastructure, such as nuclear facilities. Recent work by an international team, through the auspices of the International Atomic Energy Agency, has focused on developing guidelines for long-term volcanic hazard assessments. These guidelines have now been implemented for hazard assessment for nuclear facilities in nations including Indonesia, the Philippines, Armenia, Chile, and the United States. One any time scale, all volcanic hazard assessments rely on a geologically reasonable conceptual model of volcanism. Such conceptual models are usually built upon years or decades of geological studies of specific volcanic systems, analogous systems, and development of a process-level understanding of volcanic activity. Conceptual models are used to bound potential rates of volcanic activity, potential magnitudes of eruptions, and to understand temporal and spatial trends in volcanic activity. It is these conceptual models that provide essential justification for assumptions made in statistical model development and the application of numerical models to generate quantitative forecasts. It is a

  6. Volcanic hazards at Mount Rainier, Washington

    Science.gov (United States)

    Crandell, Dwight Raymond; Mullineaux, Donal Ray

    1967-01-01

    Mount Rainier is a large stratovolcano of andesitic rock in the Cascade Range of western Washington. Although the volcano as it now stands was almost completely formed before the last major glaciation, geologic formations record a variety of events that have occurred at the volcano in postglacial time. Repetition of some of these events today without warning would result in property damage and loss of life on a catastrophic scale. It is appropriate, therefore, to examine the extent, frequency, and apparent origin of these phenomena and to attempt to predict the effects on man of similar events in the future. The present report was prompted by a contrast that we noted during a study of surficial geologic deposits in Mount Rainier National Park, between the present tranquil landscape adjacent to the volcano and the violent events that shaped parts of that same landscape in the recent past. Natural catastrophes that have geologic causes - such as eruptions, landslides, earthquakes, and floods - all too often are disastrous primarily because man has not understood and made allowance for the geologic environment he occupies. Assessment of the potential hazards of a volcanic environment is especially difficult, for prediction of the time and kind of volcanic activity is still an imperfect art, even at active volcanoes whose behavior has been closely observed for many years. Qualified predictions, however, can be used to plan ways in which hazards to life and property can be minimized. The prediction of eruptions is handicapped because volcanism results from conditions far beneath the surface of the earth, where the causative factors cannot be seen and, for the most part, cannot be measured. Consequently, long-range predictions at Mount Rainier can be based only on the past behavior of the volcano, as revealed by study of the deposits that resulted from previous eruptions. Predictions of this sort, of course, cannot be specific as to time and locale of future events, and

  7. Abiogenic Organic Polymers in Products of Modern Volcanism

    Directory of Open Access Journals (Sweden)

    V. I. Silaev

    2016-09-01

    Full Text Available For the first time, the particles of organic polymers have been found in the products of modern volcanism in Kamchatka. They are probably of abiotic origin, which makes it possible to interpret the results of studies from the perspective of volcanic-atmospheric-oceanic hypothesis about the origin of life on the Earth by A. I. Oparin–J. Haldane.

  8. Recent seismicity detection increase in the Santorini volcanic island complex

    Science.gov (United States)

    Chouliaras, G.; Drakatos, G.; Makropoulos, K.; Melis, N. S.

    2012-04-01

    Santorini is the most active volcanic complex in the South Aegean Volcanic Arc. To improve the seismological network detectability of the seismicity in this region, the Institute of Geodynamics of the National Observatory of Athens (NOA) recently installed 4 portable seismological stations supplementary to the 3 permanent stations operating in the region. The addition of these stations has significantly improved the detectability and reporting of the local seismic activity in the NOA instrumental seismicity catalogue. In this study we analyze quantitatively the seismicity of the Santorini volcanic complex. The results indicate a recent significant reporting increase mainly for events of small magnitude and an increase in the seismicity rate by more than 100%. The mapping of the statistical significance of the rate change with the z-value method reveals that the rate increase exists primarily in the active fault zone perpendicular to the extensional tectonic stress regime that characterizes this region. The spatial distribution of the b-value around the volcanic complex indicates a low b-value distribution parallel to the extensional stress field, while the b-value cross section of the volcanic complex indicates relatively high b-values under the caldera and a significant b-value decrease with depth. These results are found to be in general agreement with the results from other volcanic regions and they encourage further investigations concerning the seismic and volcanic hazard and risk estimates for the Santorini volcanic complex using the NOA earthquake catalogue.

  9. Monitoring gas emissions can help forecast volcanic eruptions

    Science.gov (United States)

    Kern, Christoph; Maarten de Moor,; Bo Galle,

    2015-01-01

    As magma ascends in active volcanoes, dissolved volatiles partition from melt into a gas phase, rise, and are released into the atmosphere from volcanic vents. The major components of high-temperature volcanic gas are typically water vapor, carbon dioxide, and sulfur dioxide. 

  10. Improving communication during volcanic crises on small, vulnerable islands

    Science.gov (United States)

    McGuire, W. J.; Solana, M. C.; Kilburn, C. R. J.; Sanderson, D.

    2009-05-01

    Increased exposure to volcanic hazard, particularly at vulnerable small islands, is driving an urgent and growing need for improved communication between monitoring scientists, emergency managers and the media, in advance of and during volcanic crises. Information gathering exercises undertaken on volcanic islands (Guadeloupe, St. Vincent and Montserrat) in the Lesser Antilles (eastern Caribbean), which have recently experienced - or are currently experiencing - volcanic action, have provided the basis for the compilation and publication of a handbook on Communication During Volcanic Emergencies, aimed at the principal stakeholder groups. The findings of the on-island surveys point up the critical importance of (1) bringing together monitoring scientists, emergency managers, and representatives of the media, well in advance of a volcanic crisis, and (2), ensuring that procedures and protocols are in place that will allow, as far as possible, effective and seamless cooperation and coordination when and if a crisis situation develops. Communication During Volcanic Emergencies is designed to promote and encourage both of these priorities through providing the first source-book addressing working relationships and inter-linkages between the stakeholder groups, and providing examples of good and bad practice. While targeting the volcanic islands of the eastern Caribbean, the source-book and its content are largely generic, and the advice and guidelines contained therein have equal validity in respect of improving communication before and during crises at any volcano, and have application to the communication issue in respect of a range of other geophysical hazards.

  11. Geology and petrology of the Vulsinian volcanic area (Latium, Italy)

    NARCIS (Netherlands)

    Varekamp, J.C.

    1979-01-01

    The Vulsinian volcanic area is situated in Latium, west central Italy. This quarternary volcanic complex consists of a series of layered tuffs, lava flows, ignimbrites, and many small cinder and ash cones. A steep central edifice is lacking due to the relatively large amount of pyroclastic deposits.

  12. Volcanic gas composition, metal dispersion and deposition during explosive volcanic eruptions on the Moon

    Science.gov (United States)

    Renggli, C. J.; King, P. L.; Henley, R. W.; Norman, M. D.

    2017-06-01

    The transport of metals in volcanic gases on the Moon differs greatly from their transport on the Earth because metal speciation depends largely on gas composition, temperature, pressure and oxidation state. We present a new thermochemical model for the major and trace element composition of lunar volcanic gas during pyroclastic eruptions of picritic magmas calculated at 200-1500 °C and over 10-9-103 bar. Using published volatile component concentrations in picritic lunar glasses, we have calculated the speciation of major elements (H, O, C, Cl, S and F) in the coexisting volcanic gas as the eruption proceeds. The most abundant gases are CO, H2, H2S, COS and S2, with a transition from predominantly triatomic gases to diatomic gases with increasing temperatures and decreasing pressures. Hydrogen occurs as H2, H2S, H2S2, HCl, and HF, with H2 making up 0.5-0.8 mol fractions of the total H. Water (H2O) concentrations are at trace levels, which implies that H-species other than H2O need to be considered in lunar melts and estimates of the bulk lunar composition. The Cl and S contents of the gas control metal chloride gas species, and sulfide gas and precipitated solid species. We calculate the speciation of trace metals (Zn, Ga, Cu, Pb, Ni, Fe) in the gas phase, and also the pressure and temperature conditions at which solids form from the gas. During initial stages of the eruption, elemental gases are the dominant metal species. As the gas loses heat, chloride and sulfide species become more abundant. Our chemical speciation model is applied to a lunar pyroclastic eruption model with isentropic gas decompression. The relative abundances of the deposited metal-bearing solids with distance from the vent are predicted for slow cooling rates (<5 °C/s). Close to a volcanic vent we predict native metals are deposited, whereas metal sulfides dominate with increasing distance from the vent. Finally, the lunar gas speciation model is compared with the speciation of a H2O-, CO

  13. Detection and Classification of Volcanic Earthquakes/Tremors in Central Anatolian Volcanic Province

    Science.gov (United States)

    Kahraman, Metin; Arda Özacar, A.; Bülent Tank, S.; Uslular, Göksu; Kuşcu, Gonca; Türkelli, Niyazi

    2017-04-01

    Central Anatolia has been characterized by active volcanism since 10 Ma which created the so called Central Anatolia Volcanic Province (CAVP) where a series of volcanoes are located along the NE-SW trend. The petrological investigations reveal that the magma source in the CAVP has both subduction and asthenospheric signature possibly due to tearing of ongoing northward subduction of African plate along Aegean and Cyprus arcs. Recently, a temporary seismic array was deployed within the scope of Continental Dynamics: Central Anatolian Tectonics (CD-CAT) project and provided a unique opportunity to study the deep seismic signature of the CAVP. Passive seismic imaging efforts and magnetotellurics (MT) observations revealed low velocity and high conductivity zones supporting the presence of localized partial melt bodies beneath the CAVP at varying depths, especially around Mt. Hasan which exhibits both geological and archeological evidences for its eruption around 7500 B.C. In Central Anatolia, local seismicity detected by the CD-CAT array coincides well with the active faults zones. However, active or potentially active volcanoes within CAVP are characterized by the lack of seismic activity. In this study, seismic data recorded by permanent stations of Regional Earthquake-Tsunami Monitoring Center were combined with temporary seismic data collected by the CD-CAT array to improve sampling density across the CAVP. Later, the continuous seismic waveforms of randomly selected time intervals were manually analyzed to identify initially undetected seismic sources which have signal characters matching to volcanic earthquakes/tremors. For candidate events, frequency spectrums are constructed to classify the sources according to their physical mechanisms. Preliminary results support the presence of both volcano-tectonic (VT) and low-period (LT) events within the CAVP. In the next stage, the spectral and polarization analyses techniques will be utilized to the entire seismic

  14. Explosive Volcanic Activity at Extreme Depths: Evidence from the Charles Darwin Volcanic Field, Cape Verdes

    Science.gov (United States)

    Kwasnitschka, T.; Devey, C. W.; Hansteen, T. H.; Freundt, A.; Kutterolf, S.

    2013-12-01

    Volcanic eruptions on the deep sea floor have traditionally been assumed to be non-explosive as the high-pressure environment should greatly inhibit steam-driven explosions. Nevertheless, occasional evidence both from (generally slow-) spreading axes and intraplate seamounts has hinted at explosive activity at large water depths. Here we present evidence from a submarine field of volcanic cones and pit craters called Charles Darwin Volcanic Field located at about 3600 m depth on the lower southwestern slope of the Cape Verdean Island of Santo Antão. We examined two of these submarine volcanic edifices (Tambor and Kolá), each featuring a pit crater of 1 km diameter, using photogrammetric reconstructions derived from ROV-based imaging followed by 3D quantification using a novel remote sensing workflow, aided by sampling. The measured and calculated parameters of physical volcanology derived from the 3D model allow us, for the first time, to make quantitative statements about volcanic processes on the deep seafloor similar to those generated from land-based field observations. Tambor cone, which is 2500 m wide and 250 m high, consists of dense, probably monogenetic medium to coarse-grained volcaniclastic and pyroclastic rocks that are highly fragmented, probably as a result of thermal and viscous granulation upon contact with seawater during several consecutive cycles of activity. Tangential joints in the outcrops indicate subsidence of the crater floor after primary emplacement. Kolá crater, which is 1000 m wide and 160 m deep, appears to have been excavated in the surrounding seafloor and shows stepwise sagging features interpreted as ring fractures on the inner flanks. Lithologically, it is made up of a complicated succession of highly fragmented deposits, including spheroidal juvenile lapilli, likely formed by spray granulation. It resembles a maar-type deposit found on land. The eruption apparently entrained blocks of MORB-type gabbroic country rocks with

  15. Assessment of volcanic hazards, vulnerability, risk and uncertainty (Invited)

    Science.gov (United States)

    Sparks, R. S.

    2009-12-01

    A volcanic hazard is any phenomenon that threatens communities . These hazards include volcanic events like pyroclastic flows, explosions, ash fall and lavas, and secondary effects such as lahars and landslides. Volcanic hazards are described by the physical characteristics of the phenomena, by the assessment of the areas that they are likely to affect and by the magnitude-dependent return period of events. Volcanic hazard maps are generated by mapping past volcanic events and by modelling the hazardous processes. Both these methods have their strengths and limitations and a robust map should use both approaches in combination. Past records, studied through stratigraphy, the distribution of deposits and age dating, are typically incomplete and may be biased. Very significant volcanic hazards, such as surge clouds and volcanic blasts, are not well-preserved in the geological record for example. Models of volcanic processes are very useful to help identify hazardous areas that do not have any geological evidence. They are, however, limited by simplifications and incomplete understanding of the physics. Many practical volcanic hazards mapping tools are also very empirical. Hazards maps are typically abstracted into hazards zones maps, which are some times called threat or risk maps. Their aim is to identify areas at high levels of threat and the boundaries between zones may take account of other factors such as roads, escape routes during evacuation, infrastructure. These boundaries may change with time due to new knowledge on the hazards or changes in volcanic activity levels. Alternatively they may remain static but implications of the zones may change as volcanic activity changes. Zone maps are used for planning purposes and for management of volcanic crises. Volcanic hazards maps are depictions of the likelihood of future volcanic phenomena affecting places and people. Volcanic phenomena are naturally variable, often complex and not fully understood. There are

  16. Fusion characteristics of volcanic ash relevant to aviation hazards

    Science.gov (United States)

    Song, Wenjia; Hess, Kai-Uwe; Damby, David E.; Wadsworth, Fabian B.; Lavallée, Yan; Cimarelli, Corrado; Dingwell, Donald B.

    2014-04-01

    The fusion dynamics of volcanic ash strongly impacts deposition in hot parts of jet engines. In this study, we investigate the sintering behavior of volcanic ash using natural ash of intermediate composition, erupted in 2012 at Santiaguito Volcano, Guatemala. A material science procedure was followed in which we monitored the geometrical evolution of cylindrical-shaped volcanic ash compact upon heating from 50 to 1400°C in a heating microscope. Combined morphological, mineralogical, and rheological analyses helped define the evolution of volcanic ash during fusion and sintering and constrain their sticking potential as well as their ability to flow at characteristic temperatures. For the ash investigated, 1240°C marks the onset of adhesion and flowability. The much higher fusibility of ash compared to that of typical test sands demonstrates for the need of a more extensive fusion characterization of volcanic ash in order to mitigate the risk posed on jet engine operation.

  17. Radon levels in the volcanic region of La Garrotxa, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Baixeras, C. [Grup de Fisica de les Radiacions. Edifici Cc, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain)]. E-mail: carmen.baixeras@uab.es; Bach, J. [Unitat de Geodinamica Externa. Departament de Geologia. Edifici Cs, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Amgarou, K. [Grup de Fisica de les Radiacions. Edifici Cc, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Moreno, V. [Grup de Fisica de les Radiacions. Edifici Cc, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Font, Ll. [Grup de Fisica de les Radiacions. Edifici Cc, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain)

    2005-11-15

    A preliminary survey in the city of Olot, the main town of the volcanic region of La Garrotxa, showed that dwellings built on volcanic formations present higher indoor radon levels than dwellings on non-volcanic materials. The soil of the area is not especially rich in radium. However, some of the volcanic materials present very high permeability and therefore radon entering the houses might have travelled over long distances. In this paper we present indoor radon values measured in a larger survey carried out during April-July 2004. The influence of the volcanic materials found in the preliminary survey has been confirmed. The results obtained suggest the possibility that radon comes from the degassification of mantle through active faults. The values obtained in working places do not constitute a relevant radiological risk for workers.

  18. The Influence of Volcanic Aerosols on Planetary Habitability

    Science.gov (United States)

    Chen, Howard; Horton, Daniel Ethan

    2017-01-01

    On rocky planetary bodies such as Proxima Centuri b, the detection of sulphate aerosols may indicate volcanism and tectonic activity; ingredients hypothesized to be necessary for planetary habitability. However, due to the effect of atmospheric aerosols on a planet’s energy balance, coupled with eruption constituent and frequency uncertainties, the potential impact of volcanic activity on planetary habitability remains unresolved. Here, we employ multi-column climate models in conjunction with a parameter space approach to test the effect of volcanic aerosols on planetary climate with various climate sensitivities. Preliminary results indicate that volcanic activity could provide a means of extending the inner edge of the habitable zone (IHZ), depending on eruption constituents and frequency. Previous work using transit spectra simulations have demonstrated the possibility of detecting transient aerosols of volcanic origin. Our work investigates the range of habitability implications detection of such aerosols would imply.

  19. Estimating forest conversion rates with annual forest inventory data

    Science.gov (United States)

    Paul C. Van Deusen; Francis A. Roesch

    2009-01-01

    The rate of land-use conversion from forest to nonforest or natural forest to forest plantation is of interest for forest certification purposes and also as part of the process of assessing forest sustainability. Conversion rates can be estimated from remeasured inventory plots in general, but the emphasis here is on annual inventory data. A new estimator is proposed...

  20. Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism

    Science.gov (United States)

    van de Schootbrugge, B.; Quan, T. M.; Lindström, S.; Püttmann, W.; Heunisch, C.; Pross, J.; Fiebig, J.; Petschick, R.; Röhling, H.-G.; Richoz, S.; Rosenthal, Y.; Falkowski, P. G.

    2009-08-01

    One of the five largest mass extinctions of the past 600million years occurred at the boundary of the Triassic and Jurassic periods, 201.6million years ago. The loss of marine biodiversity at the time has been linked to extreme greenhouse warming, triggered by the release of carbon dioxide from flood basalt volcanism in the central Atlantic Ocean. In contrast, the biotic turnover in terrestrial ecosystems is not well understood, and cannot be readily reconciled with the effects of massive volcanism. Here we present pollen, spore and geochemical analyses across the Triassic/Jurassic boundary from three drill cores from Germany and Sweden. We show that gymnosperm forests in northwest Europe were transiently replaced by fern and fern-associated vegetation, a pioneer assemblage commonly found in disturbed ecosystems. The Triassic/Jurassic boundary is also marked by an enrichment of polycyclic aromatic hydrocarbons, which, in the absence of charcoal peaks, we interpret as an indication of incomplete combustion of organic matter by ascending flood basalt lava. We conclude that the terrestrial vegetation shift is so severe and wide ranging that it is unlikely to have been triggered by greenhouse warming alone. Instead, we suggest that the release of pollutants such as sulphur dioxide and toxic compounds such as the polycyclic aromatic hydrocarbons may have contributed to the extinction.

  1. Sulfur isotopic characteristics of volcanic products from the September 2014 Mount Ontake eruption, Japan

    National Research Council Canada - National Science Library

    Ikehata, Kei; Maruoka, Teruyuki

    2016-01-01

    .... Ontake eruption were investigated. The volcanic ash samples were found to be composed of altered volcanic fragments, alunite, anhydrite, biotite, cristobalite, gypsum, ilmenite, kaolin minerals, native sulfur, orthopyroxene...

  2. The Records of the Tectonic Evolution From the Volcanics in Qiangtang Basin, Tibet

    Institute of Scientific and Technical Information of China (English)

    He Zhonghua; Yang Deming; Li Cai; Pu Zhongyu

    2000-01-01

    The volcanism in Qiangtang Basin is very frequent due to the divergence and subduction of the various plates. The study indicates that these volcanics are formed in different tectonic settings: 1 )Hercynian volcanics are mainly basalts and are formed in the intraplate and intercontinental rift. 2 ) Indosinian volcanics markedly vary in the distribution and composition and reflect transitional MORB and island are environments respectively. 3) Yanshanian volcanics consist predominantly of basalts, andesites, dacites and rhyolites and are characterized by calc- alkaline volcanic suite, indicating island arc setting. 4)Himalayan volcanics are complicated and associated with intraplate orogency. The volcanism provides important tectonic information for recognizing the evolution of Qiangtang Basin.

  3. Volcanic sulfur dioxide index and volcanic explosivity index inferred from eruptive volume of volcanoes in Jeju Island, Korea: application to volcanic hazard mitigation

    Science.gov (United States)

    Ko, Bokyun; Yun, Sung-Hyo

    2016-04-01

    Jeju Island located in the southwestern part of Korea Peninsula is a volcanic island composed of lavaflows, pyroclasts, and around 450 monogenetic volcanoes. The volcanic activity of the island commenced with phreatomagmatic eruptions under subaqueous condition ca. 1.8-2.0 Ma and lasted until ca. 1,000 year BP. For evaluating volcanic activity of the most recently erupted volcanoes with reported age, volcanic explosivity index (VEI) and volcanic sulfur dioxide index (VSI) of three volcanoes (Ilchulbong tuff cone, Songaksan tuff ring, and Biyangdo scoria cone) are inferred from their eruptive volumes. The quantity of eruptive materials such as tuff, lavaflow, scoria, and so on, is calculated using a model developed in Auckland Volcanic Field which has similar volcanic setting to the island. The eruptive volumes of them are 11,911,534 m3, 24,987,557 m3, and 9,652,025 m3, which correspond to VEI of 3, 3, and 2, respectively. According to the correlation between VEI and VSI, the average quantity of SO2 emission during an eruption with VEI of 3 is 2-8 × 103 kiloton considering that the island was formed under intraplate tectonic setting. Jeju Island was regarded as an extinct volcano, however, several studies have recently reported some volcanic eruption ages within 10,000 year BP owing to the development in age dating technique. Thus, the island is a dormant volcano potentially implying high probability to erupt again in the future. The volcanoes might have explosive eruptions (vulcanian to plinian) with the possibility that SO2 emitted by the eruption reaches stratosphere causing climate change due to backscattering incoming solar radiation, increase in cloud reflectivity, etc. Consequently, recommencement of volcanic eruption in the island is able to result in serious volcanic hazard and this study provides fundamental and important data for volcanic hazard mitigation of East Asia as well as the island. ACKNOWLEDGMENTS: This research was supported by a grant [MPSS

  4. Basement faults and volcanic rock distributions in the Ordos Basin

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Volcanic rocks in the Ordos Basin are of mainly two types: one in the basin and the other along the margin of the basin. Besides those along the margin, the marginal volcanic rocks also include the volcanic rocks in the Yinshanian orogenic belt north of the basin. Based on the latest collection of gravitational and aeromagnetic data, here we interpret basement faults in the Ordos Basin and its peripheral region, compare the faults derived from aeromagnetic data with those from seismic data, and identify the geological ages of the fault development. Two aeromagnetic anomaly zones exist in the NE-trending faults of the southern basin, and they are in the volcanic basement formed in pre-Paleozoic. These NE-trending faults are the channel of volcanic material upwelling in the early age (Archean-Neoproterozoic), where igneous rocks and sedimentary rocks stack successively on both sides of the continental nucleus. In the Cambrian, the basin interior is relatively stable, but in the Late Paleozoic and Mesozoic, the basin margin underwent a number of volcanic activities, accompanied by the formation of nearly north-south and east-west basement faults in the basin periphery and resulting in accumulation of great amount of volcanic materials. Volcanic tuff from the basin periphery is discovered in the central basin and volcanic materials are exposed in the margins of the basin. According to the source-reservoir-cap rock configuration, the basin peripheral igneous traps formed in the Indosinian-Early Yanshanian and Late Hercynian are favorable exploration objectives, and the volcanic rocks in the central basin are the future target of exploration.

  5. Real Time Volcanic Cloud Products and Predictions for Aviation Alerts

    Science.gov (United States)

    Krotkov, Nickolay A.; Habib, Shahid; da Silva, Arlindo; Hughes, Eric; Yang, Kai; Brentzel, Kelvin; Seftor, Colin; Li, Jason Y.; Schneider, David; Guffanti, Marianne; Hoffman, Robert L.; Myers, Tim; Tamminen, Johanna; Hassinen, Seppo

    2014-01-01

    Volcanic eruptions can inject significant amounts of sulfur dioxide (SO2) and volcanic ash into the atmosphere, posing a substantial risk to aviation safety. Ingesting near-real time and Direct Readout satellite volcanic cloud data is vital for improving reliability of volcanic ash forecasts and mitigating the effects of volcanic eruptions on aviation and the economy. NASA volcanic products from the Ozone Monitoring Insrument (OMI) aboard the Aura satellite have been incorporated into Decision Support Systems of many operational agencies. With the Aura mission approaching its 10th anniversary, there is an urgent need to replace OMI data with those from the next generation operational NASA/NOAA Suomi National Polar Partnership (SNPP) satellite. The data provided from these instruments are being incorporated into forecasting models to provide quantitative ash forecasts for air traffic management. This study demonstrates the feasibility of the volcanic near-real time and Direct Readout data products from the new Ozone Monitoring and Profiling Suite (OMPS) ultraviolet sensor onboard SNPP for monitoring and forecasting volcanic clouds. The transition of NASA data production to our operational partners is outlined. Satellite observations are used to constrain volcanic cloud simulations and improve estimates of eruption parameters, resulting in more accurate forecasts. This is demonstrated for the 2012 eruption of Copahue. Volcanic eruptions are modeled using the Goddard Earth Observing System, Version 5 (GEOS-5) and the Goddard Chemistry Aerosol and Radiation Transport (GOCART) model. A hindcast of the disruptive eruption from Iceland's Eyjafjallajokull is used to estimate aviation re-routing costs using Metron Aviation's ATM Tools.

  6. Reconstructing Volcanic Forcing of Climate: Past, Present and Future

    Science.gov (United States)

    Toohey, M.; Timmreck, C.; Sigl, M.

    2015-12-01

    Radiative forcing resulting from major volcanic eruptions has been a dominant driver of climate variability during Earth's history. Including volcanic forcing in climate model simulations is therefore essential to recreate past climate variability, and provides the opportunity to test the ability of models to respond accurately to external forcing. Ice cores provide estimates of the volcanic sulfate loadings from past eruptions, from which radiative forcing can be reconstructed, with associated uncertainties. Using prior reconstructions, climate models have reproduced the gross features of global mean temperature variability reconstructed from climate proxies, although some significant differences between model results and reconstructions remain. There is much less confidence in the accuracy of the dynamical responses to volcanic forcing produced by climate models, and thus the regional aspects of post-volcanic climate anomalies are much more uncertain—a result which mirrors uncertainties in the dynamical responses to future climate change. Improvements in model's response to volcanic forcing may be possible through improving the accuracy of the forcing data. Recent advances on multiple fronts have motivated the development of a next-generation volcanic forcing timeseries for use in climate models, based on (1) improved dating and precision of ice core records, (2) better understanding of the atmospheric transport and microphysical evolution of volcanic aerosol, including its size distribution, and (3) improved representations of the spatiotemporal structure of volcanic radiative forcing. A new volcanic forcing data set, covering the past 2500 years, will be introduced and compared with prior reconstructions. Preliminary results of climate model simulations using the new forcing will also be shown, and current and future applications of the forcing set discussed.

  7. Magma storage under Iceland's Eastern Volcanic Zone

    Science.gov (United States)

    Maclennan, J.; Neave, D.; Hartley, M. E.; Edmonds, M.; Thordarson, T.; Morgan, D. J.

    2014-12-01

    The Eastern Volcanic Zone (EVZ) of Iceland is defined by a number of volcanic systems and large basaltic eruptions occur both through central volcanoes (e.g. Grímsvötn) and on associated fissure rows (e.g. Laki, Eldgjá). We have collected a large quantity of micro-analytical data from a number of EVZ eruptions, with the aim of identifying common processes that occur in the premonitory stages of significant volcanic events. Here, we focus on the AD 1783 Laki event, the early postglacial Saksunarvatn tephra and the sub-glacially erupted Skuggafjöll tindar and for each of these eruptions we have >100 olivine-hosted or plagioclase-hosted melt inclusion analyses for major, trace and volatile elements. These large datasets are vital for understanding the history of melt evolution in the plumbing system of basaltic volcanoes. Diverse trace element compositions in melt inclusions hosted in primitive macrocrysts (i.e. Fo>84, An>84) indicate that the mantle melts supplied to the plumbing system of EVZ eruptions are highly variable in composition. Concurrent mixing and crystallisation of these melts occurs in crustal magma bodies. The levels of the deepest of these magma bodies are not well constrained by EVZ petrology, with only a handful of high-CO2 melt inclusions from Laki providing evidence for magma supply from >5 kbar. In contrast, the volatile contents of melt inclusions in evolved macrocrysts, which are close to equilibrium with the carrier liquids, indicate that final depths of inclusion entrapment are 0.5-2 kbar. The major element composition of the matrix glasses shows that the final pressure of equilibration between the melt and its macrocryst phases also occurred at 0.5-2 kbar. The relationship between these pressures and seismic/geodetic estimates of chamber depths needs to be carefully evaluated. The melt inclusion and macrocryst compositional record indicates that injection of porphyritic, gas-rich primitive melt into evolved/enriched and degassed shallow

  8. Precursory volcanic CO2 signals from space

    Science.gov (United States)

    Schwandner, Florian M.; Carn, Simon A.; Kataoka, Fumie; Kuze, Akihiko; Shiomi, Kei; Goto, Naoki

    2016-04-01

    Identification of earliest signals heralding volcanic unrest benefits from the unambiguous detection of precursors that reflect deviation of magmatic systems from metastable background activity. Ascent and emplacement of new basaltic magma at depth may precede eruptions by weeks to months. Transient localized carbon dioxide (CO2) emissions stemming from exsolution from depressurized magma are expected, and have been observed weeks to months ahead of magmatic surface activity. Detecting such CO2 precursors by continuous ground-based monitoring operations is unfortunately not a widely implemented method yet, save a handful of volcanoes. Detecting CO2 emissions from space offers obvious advantages - however it is technologically challenging, not the least due to the increasing atmospheric burden of CO2, against which a surface emission signal is hard to discern. In a multi-year project, we have investigated the feasibility of space-borne detection of pre-eruptive volcanic CO2 passive degassing signals using observations from the Greenhouse Gas Observing SATellite (GOSAT). Since 2010, we have observed over 40 active volcanoes from space using GOSAT's special target mode. Over 72% of targets experienced at least one eruption over that time period, demonstrating the potential utility of space-borne CO2 observations in non-imaging target-mode (point source monitoring mode). While many eruption precursors don't produce large enough CO2 signals to exceed space-borne detection thresholds of current satellite sensors, some of our observations have nevertheless already shown significant positive anomalies preceding eruptions at basaltic volcanoes. In 2014, NASA launched its first satellite dedicated to atmospheric CO2 observation, the Orbiting Carbon Observatory (OCO-2). Its observation strategy differs from the single-shot GOSAT instrument. At the expense of GOSAT's fast time series capability (3-day repeat cycle, vs. 16 for OCO-2), its 8-footprint continuous swath can slice

  9. Numerical modelling of collapsing volcanic edifices

    Science.gov (United States)

    Costa, Ana; Marques, Fernando; Kaus, Boris

    2017-04-01

    The flanks of Oceanic Volcanic Edifice's (OVEs) can occasionally become unstable. If that occurs, they can deform in two different modes: either slowly along localization failure zones (slumps) or catastrophically as debris avalanches. Yet the physics of this process is incompletely understood, and the role of factors such as the OVE's strength (viscosity, cohesion, friction angle), dimensions, geometry, and existence of weak layers remain to be addressed. Here we perform numerical simulations to study the interplay between viscous and plastic deformation on the gravitational collapse of an OVE (diffuse deformation vs. localization of failure along discrete structures). We focus on the contribution of the edifice's strength parameters for the mode of deformation, as well as on the type of basement. Tests were performed for a large OVE (7.5 km high, 200 km long) and either purely viscous (overall volcano edifice viscosities between 1019-1023 Pa.s), or viscoplastic rheology (within a range of cohesion and friction angle values). Results show that (a) for a strong basement (no slip basal boundary condition), the deformation pattern suggests wide/diffuse "listric" deformation within the volcanic edifice, without the development of discrete plastic failure zones; (b) for a weak basement (free slip basal boundary condition), rapid collapse of the edifice through the propagation of plastic failure structures within the edifice occurs. Tests for a smaller OVE (4.5 km by 30 km) show that failure localization along large-scale listric structures occurs more readily for different combinations of cohesion and friction angles. In these tests, high cohesion values combined with small friction angles lead to focusing of deformation along a narrower band. Tests with a weak layer underlying part of the volcanic edifice base show deformation focused along discrete structures mainly dipping towards the distal sector of the volcano. These tests for a small OVE constitute a promising

  10. Evolution of Mesozoic Volcanic Basins and Red Basins in the Gan-Hang Tectonic-Volcanic Metallogenic Belt

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper mainly proposes six major regional geological events in the active continental-margin mantle uplift zone and discusses the oscillation nature of the evolution of Mesozoic volcanic basins and red basins, origin of erosion in the late stage of red basins and mechanism of volcanism.

  11. Kamchatkan Volcanic Eruption Response Team (KVERT), Russia: preventing the danger of volcanic eruptions to aviation.

    Science.gov (United States)

    Girina, O.; Neal, Ch.

    2012-04-01

    The Kamchatkan Volcanic Eruption Response Team (KVERT) has been a collaborative project of scientists from the Institute of Volcanology and Seismology, the Kamchatka Branch of Geophysical Surveys, and the Alaska Volcano Observatory (IVS, KB GS and AVO). The purpose of KVERT is to reduce the risk of costly, damaging, and possibly deadly encounters of aircraft with volcanic ash clouds. To reduce this risk, KVERT collects all possible volcanic information and issues eruption alerts to aviation and other emergency officials. KVERT was founded by Institute of Volcanic Geology and Geochemistry FED RAS in 1993 (in 2004, IVGG merged with the Institute of Volcanology to become IVS). KVERT analyzes volcano monitoring data (seismic, satellite, visual and video, and pilot reports), assigns the Aviation Color Code, and issues reports on eruptive activity and unrest at Kamchatkan (since 1993) and Northern Kurile (since 2003) volcanoes. KVERT receives seismic monitoring data from KB GS (the Laboratory for Seismic and Volcanic Activity). KB GS maintains telemetered seismic stations to investigate 11 of the most active volcanoes in Kamchatka. Data are received around the clock and analysts evaluate data each day for every monitored volcano. Satellite data are provided from several sources to KVERT. AVO conducts satellite analysis of the Kuriles, Kamchatka, and Alaska as part of it daily monitoring and sends the interpretation to KVERT staff. KVERT interprets MODIS and MTSAT images and processes AVHRR data to look for evidence of volcanic ash and thermal anomalies. KVERT obtains visual volcanic information from volcanologist's field trips, web-cameras that monitor Klyuchevskoy (established in 2000), Sheveluch (2002), Bezymianny (2003), Koryaksky (2009), Avachinsky (2009), Kizimen (2011), and Gorely (2011) volcanoes, and pilots. KVERT staff work closely with staff of AVO, AMC (Airport Meteorological Center) at Yelizovo Airport and the Tokyo Volcanic Ash Advisory Center (VAAC), the

  12. Forests of east Texas, 2013

    Science.gov (United States)

    K.J.W. Dooley; T.J. Brandeis

    2014-01-01

    This resource update provides an overview of forest resources in east Texas based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Southern Research Station in cooperation with the Texas A&M Forest Service. Forest resource estimates are based on field data collected using the FIA annualized sample design and...

  13. Illegal Forest Production and Trade

    OpenAIRE

    Contreras-Hermosilla, Arnoldo

    2002-01-01

    This paper looks at the evidence on the magnitude and impacts of forest illegal acts, examines the vulnerabilities of the forest sector, and proposes a strategy for combating forest crime. Forest crime prominently includes illegal logging but acts against the law also affect other sector operations such as forest products transport, industrial processing, and trade. Almost universally, cri...

  14. 78 FR 18307 - Forest Service

    Science.gov (United States)

    2013-03-26

    ... Forest Service Forest Resource Coordinating Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting; Correction. SUMMARY: The Forest Service published a document in the Federal Register of January 31, 2013, concering a notice of meeting for the Forest Resource Coordinating Committee. The document...

  15. 78 FR 13621 - Forest Service

    Science.gov (United States)

    2013-02-28

    ... Forest Service San Bernardino National Forest; California; Omya Sentinel and Butterfield Quarry Expansion Project AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an environmental impact.... Department of Agriculture, Forest Service, San Bernardino National Forest (SBNF); and A Mining and Land...

  16. Forest report 2016; Waldzustandsbericht 2016

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-07-01

    This forest condition report of Hesse (Germany) includes the following topics: forest condition survey for all tree species, forest in the in the Rhine-Main area, weather and climate, soil water balance and drought stress, insects and fungi, Forestry Environment Monitoring, infiltrated substances, main results of Forest soil survey in Hesse (BZE II), the substrate group red sandstone, heavy metal contamination of forests.

  17. Volcanism Studies: Final Report for the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

    1998-12-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is

  18. Volcanism Studies: Final Report for the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

    1998-12-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is

  19. Paleoarchean trace fossils in altered volcanic glass

    Science.gov (United States)

    Staudigel, Hubert; Furnes, Harald; DeWit, Maarten

    2015-01-01

    Microbial corrosion textures in volcanic glass from Cenozoic seafloor basalts and the corresponding titanite replacement microtextures in metamorphosed Paleoarchean pillow lavas have been interpreted as evidence for a deep biosphere dating back in time through the earliest periods of preserved life on earth. This interpretation has been recently challenged for Paleoarchean titanite replacement textures based on textural and geochronological data from pillow lavas in the Hooggenoeg Complex of the Barberton Greenstone Belt in South Africa. We use this controversy to explore the strengths and weaknesses of arguments made in support or rejection of the biogenicity interpretation of bioalteration trace fossils in Cenozoic basalt glasses and their putative equivalents in Paleoarchean greenstones. Our analysis suggests that biogenicity cannot be taken for granted for all titanite-based textures in metamorphosed basalt glass, but a cautious and critical evaluation of evidence suggests that biogenicity remains the most likely interpretation for previously described titanite microtextures in Paleoarchean pillow lavas. PMID:26038543

  20. Monitoring volcanic threats using ASTER satellite data

    Science.gov (United States)

    Duda, K.A.; Wessels, R.; Ramsey, M.; Dehn, J.

    2008-01-01

    This document summarizes ongoing activities associated with a research project funded by the National Aeronautics and Space Administration (NASA) focusing on volcanic change detection through the use of satellite imagery. This work includes systems development as well as improvements in data analysis methods. Participating organizations include the NASA Land Processes Distributed Active Archive Center (LP DAAC) at the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS), the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team, the Alaska Volcano Observatory (AVO) at the USGS Alaska Science Center, the Jet Propulsion Laboratory/California Institute of Technology (JPL/CalTech), the University of Pittsburgh, and the University of Alaska Fairbanks. ?? 2007 IEEE.

  1. Paleoarchean trace fossils in altered volcanic glass.

    Science.gov (United States)

    Staudigel, Hubert; Furnes, Harald; DeWit, Maarten

    2015-06-02

    Microbial corrosion textures in volcanic glass from Cenozoic seafloor basalts and the corresponding titanite replacement microtextures in metamorphosed Paleoarchean pillow lavas have been interpreted as evidence for a deep biosphere dating back in time through the earliest periods of preserved life on earth. This interpretation has been recently challenged for Paleoarchean titanite replacement textures based on textural and geochronological data from pillow lavas in the Hooggenoeg Complex of the Barberton Greenstone Belt in South Africa. We use this controversy to explore the strengths and weaknesses of arguments made in support or rejection of the biogenicity interpretation of bioalteration trace fossils in Cenozoic basalt glasses and their putative equivalents in Paleoarchean greenstones. Our analysis suggests that biogenicity cannot be taken for granted for all titanite-based textures in metamorphosed basalt glass, but a cautious and critical evaluation of evidence suggests that biogenicity remains the most likely interpretation for previously described titanite microtextures in Paleoarchean pillow lavas.

  2. Quiescent Diffusive and Fumarolic Volcanic Bromocarbon Emissions

    Science.gov (United States)

    Schwandner, F. M.; Giźe, A. P.; Seward, T. M.; Hall, P. A.; Dietrich, V. J.

    2002-12-01

    Future scenarios of declining atmospheric burdens of Ozone Depleting Substances (ODS) such as halocarbons after phase-out following international regulation (Montreal Protocol) vary strongly depending on what contribution from natural sources is taken into account. In addition, current and pre-industrial global atmospheric budgets of ODS are poorly balanced by known natural and anthropogenic sources of halocarbons (Butler, 2000). Brominated halocarbons have a high Ozone Depletion Potential, Br is at least 40x as efficient as Cl in polar stratospheric ozone destruction (Solomon et al., 1992). CH3Br is the dominant Br carrier to the stratosphere with sources being ca.: 32% anthropogenic, 39% natural, but ca. 29% unaccounted for (WMO, 1998). Natural sources have been reviewed recently (Gribble, 2000, Butler, 2000), including magmatic inorganic (Bureau, 2000) and volcanic organic sources (Rassmussen et al., 1980; Schwandner et al., 2002). CH3Br and other bromocarbons have been reported in non-eruptive volcanic gases previously (Jordan et al., 2000; Schwandner et al., 2000). Due to its capability to extremely rapidly hydrolyse (Gan et al., 1995), CH3Br should not be sampled by the caustic soda bottle technique as used by Jordan et al. (2000) whose samples also show signs of air contamination, but by cryogenic separation of steam with subsequent sorbent trapping, as used by Isidorov (1990), Wahrenberger (1996) and Schwandner et al. (2000, 2001). To contribute significantly to the natural Br budget, volcanic gases would have to at least contain 2 ppmv (dry gas) CH3Br, scaled to a global CO2 emission of 66 Tgy-1 (Stoiber, 1995) based on CO2 flux to halocarbon concentration correlations (e.g. CFC-11: R2=0.91, Schwandner et al., 2002). However, CH3Br is not the only volcanogenic bromocarbon. Analysis of diffusive flank and crater degassing on Vulcano island (Italy) showed a strong diffusive component of CH3Br and C2H5Br emissions in 60-100°C hot pristine unvegetated

  3. Laboratory study of volcanic ash electrification

    Science.gov (United States)

    Alois, Stefano; Merrison, Jonathan

    2016-04-01

    Electrostatic forces play an important role in the dynamics of volcanic plumes, for example in ash dispersion and aggregation phenomena. Field measurements of ash electrification are often technically challenging due to poor access and there lacks an accepted physical theory to describe the electrical charge exchange which occurs during particle contact. The goal of the study is to investigate single particle electrification under controlled conditions using advanced laboratory facilities. A novel technique is presented, based on the use of a laser based velocimeter. Here an electric field is applied and the field-induced drift velocity of (micron-sized) ash grains is measured as well as the particles fall velocity. This allows the simultaneous determination of a suspended grains size and electrical charge. The experiments are performed in a unique environmental wind tunnel facility under controlled low-pressure conditions. Preliminary results of particle electrification will be presented.

  4. Preliminary geochemical characterization of volcanic and geothermal fluids discharged from the Ecuadorian volcanic arc.

    OpenAIRE

    Inguaggiato, S.; Hidalgo, S.; Beate, B.; Bourquin, J.

    2009-01-01

    In Ecuador, magmatism results from the subduction of the Nazca Plate beneath the North Western part of South America (Pennington, 1981; Kellogg and Vega, 1995; Witt et al., 2006). North of 2.5°S, the Ecuadorian Quaternary volcanic arc is characterized by about 60 volcanoes distributed in three different parallel chains. Many of these volcanoes are potentially active or currently in activity and display associated geothermal fields. South of this latitude, no active arc is present in Ecuador. ...

  5. Professional conduct of scientists during volcanic crises

    Science.gov (United States)

    ,; Newhall, Chris; Aramaki, Shigeo; Barberi, Franco; Blong, Russell; Calvache, Marta; Cheminee, Jean-Louis; Punongbayan, Raymundo; Siebe, Claus; Simkin, Tom; Sparks, Stephen; Tjetjep, Wimpy

    1999-01-01

    Stress during volcanic crises is high, and any friction between scientists can distract seriously from both humanitarian and scientific effort. Friction can arise, for example, if team members do not share all of their data, if differences in scientific interpretation erupt into public controversy, or if one scientist begins work on a prime research topic while a colleague with longer-standing investment is still busy with public safety work. Some problems arise within existing scientific teams; others are brought on by visiting scientists. Friction can also arise between volcanologists and public officials. Two general measures may avert or reduce friction: (a) National volcanologic surveys and other scientific groups that advise civil authorities in times of volcanic crisis should prepare, in advance of crises, a written plan that details crisis team policies, procedures, leadership and other roles of team members, and other matters pertinent to crisis conduct. A copy of this plan should be given to all current and prospective team members. (b) Each participant in a crisis team should examine his or her own actions and contribution to the crisis effort. A personal checklist is provided to aid this examination. Questions fall generally in two categories: Are my presence and actions for the public good? Are my words and actions collegial, i.e., courteous, respectful, and fair? Numerous specific solutions to common crisis problems are also offered. Among these suggestions are: (a) choose scientific team leaders primarily for their leadership skills; (b) speak publicly with a single scientific voice, especially when forecasts, warnings, or scientific disagreements are involved; (c) if you are a would-be visitor, inquire from the primary scientific team whether your help would be welcomed, and, in general, proceed only if the reply is genuinely positive; (d) in publications, personnel evaluations, and funding, reward rather than discourage teamwork. Models are

  6. State of volcanic ash dispersion prediction

    Science.gov (United States)

    Eliasson, Jonas; Palsson, Thorgeir; Weber, Konradin

    2017-04-01

    The Eyjafjallajokull 2010 and Grimsvotn 2011 eruptions created great problems for commercial aviation in Western Europe and in the North Atlantic region. Comparison of satellite images of the visible and predicted ash clouds showed the VAAC prediction to be much larger than the actual ash clouds. No official explanation of this discrepancy exists apart from the definition of the ash cloud boundary. Papers on simulation of the Eyjafjallajökull ash cloud in peer reviewed journals, typically attempted to simulate the VAAC predictions rather than focusing on the satellite pictures. Sporadic measurements made in-situ showed much lower ash concentrations over Europe than the predicted values. Two of the weak points in ash cloud prediction have been studied in airborne measurements of volcanic ash by the Universities in Kyoto Japan, Iceland and Düsseldorf Germany of eruptions in Sakurajima, Japan. It turns out that gravitational deformation of the plume and a streak fallout process make estimated ash content of clouds larger than the actual, both features are not included in the simulation model. Tropospheric plumes tend to ride in stable inversions this causes gravitational flattening (pancaking) of the volcanic plume, while diffusion in the mixing layer is insignificant. New rules from ICAO, effective from November 2014, reiterate that jetliners should avoid visible ash, this makes information on visible ash important. A procedure developed by JMÁs Tokyo VAAC uses satellite images of visible ash to correct the prediction. This and the fact that meteorological data necessary to model gravitational dispersion and streak fallout do not exist in the international database available to the VAAĆs. This shows that close monitoring by airborne measurements and satellite and other photographic surveillance is necessary.

  7. Volcanic hazards at Atitlan volcano, Guatemala

    Science.gov (United States)

    Haapala, J.M.; Escobar Wolf, R.; Vallance, James W.; Rose, William I.; Griswold, J.P.; Schilling, S.P.; Ewert, J.W.; Mota, M.

    2006-01-01

    Atitlan Volcano is in the Guatemalan Highlands, along a west-northwest trending chain of volcanoes parallel to the mid-American trench. The volcano perches on the southern rim of the Atitlan caldera, which contains Lake Atitlan. Since the major caldera-forming eruption 85 thousand years ago (ka), three stratovolcanoes--San Pedro, Toliman, and Atitlan--have formed in and around the caldera. Atitlan is the youngest and most active of the three volcanoes. Atitlan Volcano is a composite volcano, with a steep-sided, symmetrical cone comprising alternating layers of lava flows, volcanic ash, cinders, blocks, and bombs. Eruptions of Atitlan began more than 10 ka [1] and, since the arrival of the Spanish in the mid-1400's, eruptions have occurred in six eruptive clusters (1469, 1505, 1579, 1663, 1717, 1826-1856). Owing to its distance from population centers and the limited written record from 200 to 500 years ago, only an incomplete sample of the volcano's behavior is documented prior to the 1800's. The geologic record provides a more complete sample of the volcano's behavior since the 19th century. Geologic and historical data suggest that the intensity and pattern of activity at Atitlan Volcano is similar to that of Fuego Volcano, 44 km to the east, where active eruptions have been observed throughout the historical period. Because of Atitlan's moderately explosive nature and frequency of eruptions, there is a need for local and regional hazard planning and mitigation efforts. Tourism has flourished in the area; economic pressure has pushed agricultural activity higher up the slopes of Atitlan and closer to the source of possible future volcanic activity. This report summarizes the hazards posed by Atitlan Volcano in the event of renewed activity but does not imply that an eruption is imminent. However, the recognition of potential activity will facilitate hazard and emergency preparedness.

  8. Intracaldera volcanism and sedimentation - Creede Caldera, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, G.; Krier, D.; Snow, M.G. [and others

    1997-06-01

    Within the Creede caldera, Colorado, many of the answers to its postcaldera volcanic and sedimentary history lie within the sequence of tuffaceous elastic sedimentary rocks and tuffs known as the Creede Formation. The Creede Formation and its interbedded ash deposits were sampled by research coreholes Creede 1 and 2, drilled during the fall of 1991. In an earlier study of the Creede Formation, based on surface outcrops and shallow mining company coreholes, Heiken and Krier concluded that the process of caldera structural resurgence was rapid and that a caldera lake had developed in an annulus ({open_quotes}moat{close_quotes}) located between the resurgent dome and caldera wall. So far we have a picture of intracaldera activity consisting of intermittent hydrovolcanic eruptions within a caldera lake for the lower third of the Creede Formation, and both magmatic and hydrovolcanic ash eruptions throughout the top two-thirds. Most of the ash deposits interbedded with the moat sedimentary rocks are extremely fine-grained. Ash fallout into the moat lake and unconsolidated ash eroded from caldera walls and the slopes of the resurgent dome were deposited over stream delta distributaries within relatively shallow water in the northwestern moat, and in deeper waters of the northern moat, where the caldera was intersected by a graben. Interbedded with ash beds and tuffaceous siltstones are coarse-grained turbidites from adjacent steep slopes and travertine from fissure ridges adjacent to the moat. Sedimentation rates and provenance for elastic sediments are linked to the frequent volcanic activity in and near the caldera; nearly all of the Creede Formation sedimentary rocks are tuffaceous.

  9. Electrochemical sensor monitoring of volcanic gases

    Science.gov (United States)

    Roberts, Tjarda; Freshwater, Ray; Oppenheimer, Clive; Saffell, John; Jones, Rod; Griffiths, Paul; Braban, Christine; Mead, Iqbal

    2010-05-01

    Advances in instrumentation have fuelled a recent growth of interest in using portable sensor systems for environmental monitoring of pollution. Developments in wireless technology are enabling such systems to operate remotely and autonomously, generating a wealth of environmental data. We report here on the application of miniature Alphasense electrochemical sensors to the detection and characterisation of gases in volcanic plumes. A highly portable sensor system was developed to operate an array of 6 low cost electrochemical sensors to detect CO, H2, HCl, SO2, H2S and NO2 at 1 Hz. A miniature pump draws air over all sensors simultaneously (i.e. sensors arranged in parallel). The sensor output in these campaigns was logged on PDAs for real-time viewing, and later download (with a view to future data-streaming). The instrument was deployed at a number of volcanoes and was subject to extremely harsh conditions including highly acidic environments, low (Antarctic) temperatures, and transport over rough terrain. Analysis methods are demonstrated that consider calibration, cross-sensitivities of the sensors to multiple gases, differing sensor response times, temperature dependence, and background sensor drift with time. The analysis is applied to a range of plume field-measurements to extract gas concentrations ranging from 100's ppmv to sub-ppmv and to characterise the individual volcano emissions. Applications of similar sensor systems for real-time long-term monitoring of volcanic emissions (which may indicate and ultimately predict eruptive behavior), and UAV and balloon-borne plume sampling are now already being realised. This work focused on demonstrating the application of electrochemical sensors to monitoring of environmental pollution from volcanoes. Other applications for similar sensors include the near-source monitoring of industrial emissions, and of pollutant levels enhanced by traffic emissions in the urban environment.

  10. Volcanic glasses, their origins and alteration processes

    Science.gov (United States)

    Friedman, I.; Long, W.

    1984-01-01

    Natural glass can be formed by volcanic processes, lightning (fulgarites) burning coal, and by meteorite impact. By far the most common process is volcanic - basically the glass is rapidly chilled molten rock. All natural glasses are thermodynamically unstable and tend to alter chemically or to crystallize. The rate of these processes is determined by the chemical composition of the magma. The hot and fluid basaltic melts have a structure that allows for rapid crystal growth, and seldom forms glass selvages greater than a few centimeters thick, even when the melt is rapidly cooled by extrusion in the deep sea. In contrast the cooler and very viscous rhyolitic magmas can yield bodies of glass that are tens of meters thick. These highly polymerized magmas have a high silica content - often 71-77% SiO2. Their high viscosity inhibits diffusive crystal growth. Basalt glass in sea water forms an alteration zone called palagonite whose thickness increases linearly with time. The rate of diffusion of water into rhyolitic glass, which follows the relationship - thickness = k (time) 1 2, has been determined as a function of the glass composition and temperature. Increased SiO2 increases the rate, whereas increased CaO, MgO and H2O decrease the rate. The activation energy of water diffusion varies from about 19 to 22 kcal/mol. for the glasses studied. The diffusion of alkali out of rhyolite glass occurs simultaneously with water diffusion into the glass. The rate of devitrification of rhyolitic glass is a function of the glass viscosity, which in turn is a function of water content and temperature. Although all of the aforementioned processes tend to destroy natural glasses, the slow rates of these processes, particularly for rhyolitic glass, has allowed samples of glass to persist for 60 million years. ?? 1984.

  11. Gravimetric control of active volcanic processes

    Science.gov (United States)

    Saltogianni, Vasso; Stiros, Stathis

    2017-04-01

    Volcanic activity includes phases of magma chamber inflation and deflation, produced by movement of magma and/or hydrothermal processes. Such effects usually leave their imprint as deformation of the ground surfaces which can be recorded by GNSS and other methods, on one hand, and on the other hand they can be modeled as elastic deformation processes, with deformation produced by volcanic masses of finite dimensions such as spheres, ellipsoids and parallelograms. Such volumes are modeled on the basis of inversion (non-linear, numerical solution) of systems of equations relating the unknown dimensions and location of magma sources with observations, currently mostly GNSS and INSAR data. Inversion techniques depend on the misfit between model predictions and observations, but because systems of equations are highly non-linear, and because adopted models for the geometry of magma sources is simple, non-unique solutions can be derived, constrained by local extrema. Assessment of derived magma models can be provided by independent observations and models, such as micro-seismicity distribution and changes in geophysical parameters. In the simplest case magmatic intrusions can be modeled as spheres with diameters of at least a few tens of meters at a depth of a few kilometers; hence they are expected to have a gravimetric signature in permanent recording stations on the ground surface, while larger intrusions may also have an imprint in sensors in orbit around the earth or along precisely defined air paths. Identification of such gravimetric signals and separation of the "true" signal from the measurement and ambient noise requires fine forward modeling of the wider areas based on realistic simulation of the ambient gravimetric field, and then modeling of its possible distortion because of magmatic anomalies. Such results are useful to remove ambiguities in inverse modeling of ground deformation, and also to detect magmatic anomalies offshore.

  12. Detecting Volcanic Ash Plumes with GNSS Signals

    Science.gov (United States)

    Rainville, N.; Larson, K. M.; Palo, S. E.; Mattia, M.; Rossi, M.; Coltelli, M.; Roesler, C.; Fee, D.

    2016-12-01

    Global Navigation Satellite Systems (GNSS) receivers are commonly placed near volcanic sites to measure ground deformation. In addition to the carrier phase data used to measure ground position, these receivers also record Signal to Noise ratio (SNR) data. Larson (2013) showed that attenuations in SNR data strongly correlate with ash emissions at a series of eruptions of Redoubt Volcano. This finding has been confirmed at eruptions for Tongariro, Mt Etna, Mt Shindake, and Sakurajima. In each of these detections, very expensive geodetic quality GNSS receivers were used. If low-cost GNSS instruments could be used instead, a networked array could be deployed and optimized for plume detection and tomography. The outputs of this sensor array could then be used by both local volcanic observatories and Volcano Ash Advisory Centers. Here we will describe progress in developing such an array. The sensors we are working with are intended for navigation use, and thus lack the supporting power and communications equipment necessary for a networked system. Reliably providing those features is major challenge for the overall sensor design. We have built prototypes of our Volcano Ash Plume Receiver (VAPR), with solar panels, lithium-ion batteries and onboard data storage for preliminary testing. We will present results of our field tests of both receivers and antennas. A second critical need for our array is a reliable detection algorithm. We have tested our algorithm on data from recent eruptions and have incorporated the noise characteristics of the low-cost GNSS receiver. We have also developed a simulation capability so that the receivers can be deployed to optimize vent crossing GNSS signals.

  13. Microbiology of methanogenesis in thermal, volcanic environments.

    Science.gov (United States)

    Zeikus, J G; Ben-Bassat, A; Hegge, P W

    1980-07-01

    Microbial methanogenesis was examined in thermal waters, muds, and decomposing algal-bacterial mats associated with volcanic activity in Yellowstone National Park. Radioactive tracer studies with [(14)C]glucose, acetate, or carbonate and enrichment culture techniques demonstrated that methanogenesis occurred at temperatures near 70 degrees C but below 80 degrees C and correlated with hydrogen production from either geothermal processes or microbial fermentation. Three Methanobacterium thermoautotrophicum strains (YT1, YTA, and YTC) isolated from diverse volcanic habitats differed from the neotype sewage strain DeltaH in deoxyribonucleic acid guanosine-plus-cytosine content and immunological properties. Microbial methanogenesis was characterized in more detail at a 65 degrees C site in the Octopus Spring algal-bacterial mat ecosystem. Here methanogenesis was active, was associated with anaerobic microbial decomposition of biomass, occurred concomitantly with detectable microbial hydrogen formation, and displayed a temperature activity optimum near 65 degrees C. Enumeration studies estimated more than 10(9) chemoorganotrophic hydrolytic bacteria and 10(6) chemolithotrophic methanogenic bacteria per g (dry weight) of algal-bacterial mat. Enumeration, enrichment, and isolation studies revealed that the microbial population was predominantly rod shaped and asporogenous. A prevalent chemoorganotrophic organism in the mat that was isolated from an end dilution tube was a taxonomically undescribed gram-negative obligate anaerobe (strain HTB2), whereas a prevalent chemolithotrophic methanogen isolated from an end dilution tube was identified as M. thermoautotrophicum (strain YTB). Taxonomically recognizable obligate anaerobes that were isolated from glucose and xylose enrichment cultures included Thermoanaerobium brockii strain HTB and Clostridium thermohydrosulfuricum strain 39E. The nutritional properties, growth temperature optima, growth rates, and fermentation products

  14. Volcanic risk perception in the Vesuvius population

    Science.gov (United States)

    Barberi, F.; Davis, M. S.; Isaia, R.; Nave, R.; Ricci, T.

    2008-05-01

    A volcanic risk perception study of the population residing near Vesuvius was carried out between May and July, 2006. A total of 3600 questionnaires with 45 items were distributed to students, their parents and the general population. The largest number of surveys (2812) were distributed in the 18 towns of the Red Zone, the area nearest to the volcano that is exposed to pyroclastic flow hazards and whose 550,000 residents, according to the civil protection emergency plan (in operation since 1995), should be evacuated in case of an eruption crisis. The remaining 788 questionnaires were distributed in 3 additional towns and 3 neighborhoods of Naples, all within the Yellow Zone, which is an area exposed to pyroclastic fallout hazards. A total of 2655 surveys were returned, resulting in a response rate of 73.7%. Results indicated that people have a realistic view of the risk: they think that an eruption is likely, that it will have serious consequences for their towns and for themselves and their families and they are quite worried about the threat. However, several other social, economic, and security-related issues were listed as a problem more often than Vesuvius. The study also demonstrated a widespread lack of knowledge about the emergency plan, a lack of confidence in the plan's success and in public officials and low feelings of self-efficacy. People want to be more deeply involved in public discussions with scientists and civil protection officials on emergency planning and individual preparedness measures. It is clear from the results that a major education-information effort is still needed to improve the public's knowledge, confidence and self-efficacy, thereby improving their collective and individual capability to positively face a future volcanic emergency.

  15. Global volcanic earthquake swarm database and preliminary analysis of volcanic earthquake swarm duration

    Directory of Open Access Journals (Sweden)

    S. R. McNutt

    1996-06-01

    Full Text Available Global data from 1979 to 1989 pertaining to volcanic earthquake swarms have been compiled into a custom-designed relational database. The database is composed of three sections: 1 a section containing general information on volcanoes, 2 a section containing earthquake swarm data (such as dates of swarm occurrence and durations, and 3 a section containing eruption information. The most abundant and reliable parameter, duration of volcanic earthquake swarms, was chosen for preliminary analysis. The distribution of all swarm durations was found to have a geometric mean of 5.5 days. Precursory swarms were then separated from those not associated with eruptions. The geometric mean precursory swarm duration was 8 days whereas the geometric mean duration of swarms not associated with eruptive activity was 3.5 days. Two groups of precursory swarms are apparent when duration is compared with the eruption repose time. Swarms with durations shorter than 4 months showed no clear relationship with the eruption repose time. However, the second group, lasting longer than 4 months, showed a significant positive correlation with the log10 of the eruption repose period. The two groups suggest that different suites of physical processes are involved in the generation of volcanic earthquake swarms.

  16. Large magnitude silicic volcanism in north Afar: the Nabro Volcanic Range and Ma'alalta volcano

    Science.gov (United States)

    Wiart, Pierre; Oppenheimer, Clive

    2005-02-01

    Much of the volcanological work carried out in north Afar (Ethiopia and Eritrea) has focused on the nature of Quaternary basaltic volcanic ranges, which have been interpreted by some as incipient oceanic ridges. However, we show here that comparable volumes of silicic magmas have been erupted in the region. In particular, the virtually undocumented Nabro Volcanic Range, which runs NNE for more than 100 km from the margin of the Danakil Depression to the Red Sea coast, has a subaerial volume of the order of 550 km3, comparable to the volume of the much better known Erta’Ale axial volcanic range. Nabro volcano itself forms part of an enigmatic double caldera structure with a neighbouring volcano, Mallahle. The twin caldera may have formed simultaneously with the eruption of between 20 and 100 km3 of ignimbrite, which is readily identified in Landsat Thematic Mapper imagery. This may have been the largest explosive eruption in north Afar, and is certain to have deposited a regionally distributed tephra layer which could in the future be located in distal sections as a stratigraphic marker. An integrated analysis of optical and synthetic aperture radar imagery, digital topographic data, field observations and limited geochemical measurements, permits here descriptions and first order inferences about the structure, stratigraphy and compositions of several major volcanoes of the Afar Triangle, and a reappraisal of their regional significance.

  17. US Forest Service National Forest System Land Units

    Data.gov (United States)

    US Forest Service, Department of Agriculture — A map service on the www depicting National Forest Service land units. An NFS Land Unit is nationally significant classification of Federally owned forest, range,...

  18. From National Forest Inventory to National Forest GHG Inventories

    OpenAIRE

    de Jong, Ben; PANDEY Devendra; Achard, Frederic

    2010-01-01

    Chapter 3.3 presents two national case studies for forest inventories in tropical countries: the Indian and Mexican national forest inventories. These national forest inventories have been use to report GHG inventories to the UNFCC

  19. US Forest Service Original Proclaimed National Forests and National Grasslands

    Data.gov (United States)

    US Forest Service, Department of Agriculture — A map service on the www depicting the boundaries encompassing the National Forest System (NFS) lands within the original proclaimed National Forests, along with...

  20. Volcanic perturbations of the marine environment in South China preceding the latest Permian mass extinction and their biotic effects.

    Science.gov (United States)

    Shen, J; Algeo, T J; Zhou, L; Feng, Q; Yu, J; Ellwood, B

    2012-01-01

    The Dongpan section in southern Guangxi Province records the influence of local volcanic activity on marine sedimentation at intermediate water depths (~200-500 m) in the Nanpanjiang Basin (South China) during the late Permian crisis. We analyzed ~100 samples over a 12-m-thick interval, generating palynological, paleobiological, and geochemical datasets to investigate the nature and causes of environmental changes. The section records at least two major volcanic episodes that culminated in deposition of approximately 25- to 35-cm-thick ash layers (bentonites) and that had profound effects on conditions in both the Dongpan marine environment and adjacent land areas. Intensification of eruptive activity during each volcanic cycle resulted in a shift toward conifer forests, increased wildfire intensity, and elevated subaerial weathering fluxes. The resulting increase in nutrient fluxes stimulated marine productivity in the short term but led to a negative feedback on productivity in the longer term as the OMZ of the Nanpanjiang Basin expanded, putting both phytoplankton and zooplankton communities under severe stress. Radiolarians exhibit large declines in diversity and abundance well before the global mass extinction horizon, demonstrating the diachroneity of the marine biotic crisis. The latest Permian crisis, which was probably triggered by the Siberian Traps flood basalts, intensified the destructive effects of the earlier local eruptions on terrestrial and marine ecosystems of the South China craton.

  1. Analyzing forest health data

    Science.gov (United States)

    William D. Smith; Barbara L. Conkling

    2004-01-01

    This report focuses on the Forest Health Monitoring Program’s development and use of analytical procedures for monitoring changes in forest health and for expressing the corresponding statistical confidences. The program’s assessments of long-term status, changes, and trends in forest ecosystem health use the Santiago Declaration: “Criteria and Indicators for the...

  2. Kentucky's forests, 2004

    Science.gov (United States)

    Jeffery A. Turner; Christopher M. Oswalt; James L. Chamberlain; Roger C. Conner; Tony G. Johnson; Sonja N. Oswalt; KaDonna C. Randolph

    2008-01-01

    Forest land area in the Commonwealth of Kentucky amounted to 11.97 million acres, including 11.6 million acres of timberland. Over 110 different species, mostly hardwoods, account for an estimated 21.2 billion cubic feet of all live tree volume. Hardwood forest types occupy 85 percent of Kentucky’s timberland, and oak-hickory is the dominant forest-type group...

  3. Pennsylvania forests 2014

    Science.gov (United States)

    Thomas A. Albright; William H. McWilliams; Richard H. Widmann; Brett J. Butler; Susan J. Crocker; Cassandra M. Kurtz; Shawn Lehman; Tonya W. Lister; Patrick D. Miles; Randall S. Morin; Rachel Riemann; James E. Smith

    2017-01-01

    This report summarizes the third cycle of annualized inventory of Pennsylvania with field data collected from 2009 through 2014. Pennsylvania has 16.9 million acres of forest land dominated by sawtimber stands of oak/hickory and maple/beech/birch forest-type groups. Volumes continue to increase as the forests age with an average of 2,244 cubic feet per acre on...

  4. Nature, Source and Composition of Volcanic Ash in Surficial Sediments Around the Zhongsha Islands

    Institute of Scientific and Technical Information of China (English)

    YAN Quanshu; SHI Xuefa; WANG Xinyu

    2008-01-01

    Volcanic detrital sediments are a unique indicator for reconstructing the petrogenetie evolution of submarine volcanic terrains. Volcanic ash in surficial sediments around the Zhongsha Islands includes three kinds of volcanogenic detritus, i.e., brown volcanic glass, colorless volcanic glass and volcanic scoria. The major element characteristics show that bimodal volcanic activity may have taken place in the northern margin of the South China Sea, with brown volcanic glass and colorless volcanic glass repre-senting the maric end-member and felsie end-member, respectively. Fractional crystallization is the main process for magma evolu-tion. The nature of the volcanic activity implies that the origin of volcanic activity was related to extensional tectonic settings, which is corresponding to an extensional geodynamie setting in the Xisha Trench, and supports the notion, which is based on geophysical data and petrology, that there may exist a mantle plume around the Hainan Island.

  5. Forest structure in low diversity tropical forests: a study of Hawaiian wet and dry forests

    Science.gov (United States)

    R. Ostertag; F. Inman-Narahari; S. Cordell; C.P. Giardina; L. Sack

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai‘i Island. We compared the species...

  6. CENOZOIC VOLCANISM AND GEOTHERMAL RESOURCES IN NORTHEAST CHINA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper is concentrated on Cenozoic volcanism and geothermal resources in Northeast China. There are a lot of Cenozoic volcanoes, a large area of volcanic rocks, a large number of active faults and rich geothermal resources in Northeast China. The time and space characteristics of Cenozoic volcanism and the space distribution characters of hot springs and high geothermal flux regions in Northeast China are described and discussed on the basis of geological, geothermal, drilling and volcanological data. It is revealed that the hot springs and high geothermal flux regions are re lated to the Cenozoic volcanism, rifting and faulting in Northeast China. It is especially emphasized that the hot springs and high geothermal anomaly areas are controlled by active deep faults. It is proposed that the Cenozoic volcanism re gions, rift basins, active fault belts, activated plate suture zones and large earthquake occurrence points are the best areas for prospecting geothermal resources. The geothermal resources in younger volcanic zones are richer than those in older volcanic belts. The hot springs and active or activated faults might be a very good clue for looking for geothermal resources.

  7. Volcanic hazard studies for the Yucca Mountain project

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.; Harrington, C. [Los Alamos National Lab., NM (USA); Turrin, B.; Champion, D. [US Geological Survey (US); Wells, S.; Perry, F.; McFadden, L.; Renault, C. [New Mexico Univ., Albuquerque, NM (USA)

    1989-12-31

    Volcanic hazard studies are ongoing to evaluate the risk of future volcanism with respect to siting of a repository for disposal of high-level radioactive waste at the Yucca Mountain site. Seven Quaternary basaltic volcanic centers are located between 8 and 47 km from the outer boundary of the exploration block. The conditional probability of disruption of a repository by future basaltic volcanism is bounded by the range of 10-8 to 10-10 yr-1. These bounds are currently being reexamined based on new developments in the understanding of the evolution of small volume, basaltic volcanic centers including: Many of the volcanic centers exhibit brief periods of eruptive activity separated by longer periods of inactivity, The centers may be active for time spans exceeding 105 yrs, There is a decline in the volume of eruptions of the centers through time, and Small volume eruptions occurred at two of the Quaternary centers during latest Pleistocene or Holocene. The authors classify the basalt centers as polycyclic, and distinguish them from polygenetic volcanoes. Polycyclic volcanism is characterized by small volume, episodic eruptions of magma of uniform composition over time spans of 103 to 105 yrs. magma eruption rates are low and the time between eruptions exceeds the cooling time of the magma volumes.

  8. Volcanic hazard studies for the Yucca Mountain project

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.; Turrin, B.; Wells, S.; Perry, F.; McFadden, L.; Renault, C.E.; Champion, D.; Harrington, C.

    1989-05-01

    Volcanic hazard studies are ongoing to evaluate the risk of future volcanism with respect to siting of a repository for disposal of high-level radioactive waste at the Yucca Mountain site. Seven Quaternary basaltic volcanic centers are located a minimum distance of 12 km and a maximum distance of 47 km from the outer boundary of the exploration block. The conditional probability of disruption of a repository by future basaltic volcanism is bounded by the range of 10{sup {minus}8} to 10{sup {minus}10} yr{sup {minus}1}. These values are currently being reexamined based on new developments in the understanding of the evaluation of small volume, basaltic volcanic centers including: (1) Many, perhaps most, of the volcanic centers exhibit brief periods of eruptive activity separated by longer periods of inactivity. (2) The centers may be active for time spans exceeding 10{sup 5} yrs, (3) There is a decline in the volume of eruptions of the centers through time, and (4) Small volume eruptions occurred at two of the Quaternary centers during latest Pleistocene or Holocene time. We classify the basalt centers as polycyclic, and distinguish them from polygenetic volcanoes. Polycyclic volcanism is characterized by small volume, episodic eruptions of magma of uniform composition over time spans of 10{sup 3} to 10{sup 5} yrs. Magma eruption rates are low and the time between eruptions exceeds the cooling time of the magma volumes. 25 refs., 2 figs.

  9. The epidemiology of extreme hiking injuries in volcanic environments.

    Science.gov (United States)

    Heggie, Travis W; Heggie, Tracey M

    2012-01-01

    The objective of this review was to summarize the epidemiological literature for extreme hikers in volcanic environments and describe the incidence, nature and severity of injuries, the factors contributing to the injuries, and strategies for preventing injuries. Due to the relative newness of extreme hiking in volcanic environments, there are only a small handful of studies addressing the topic. Moreover, these studies are primarily focused on extreme hikers in Hawaii Volcanoes National Park. These studies found that the majority of extreme hikers in volcanic environments are inexperienced and unfamiliar with the potential hazards present in volcanic environments. The studies found that upper respiratory irritation resulting from exposure to volcanic gases and dehydration and scrapes, abrasions, lacerations, and thermal burns to the extremities were common injuries. The severity of the injuries ranged from simple on-site treat-and-release incidents to more severe incidents and even death. This review reveals a need for well-designed epidemiologic research from volcanic destinations outside of Hawaii that identify the nature and severity of injuries along with the factors contributing to injury incidents. There is also a demonstrated need for studies identifying preventive measures that reduce both the occurrence and severity of extreme hiking incidents in volcanic environments.

  10. Estimating the frequency of volcanic ash clouds over northern Europe

    Science.gov (United States)

    Watson, E. J.; Swindles, G. T.; Savov, I. P.; Lawson, I. T.; Connor, C. B.; Wilson, J. A.

    2017-02-01

    Fine ash produced during explosive volcanic eruptions can be dispersed over a vast area, where it poses a threat to aviation, human health and infrastructure. Here, we focus on northern Europe, which lies in the principal transport direction for volcanic ash from Iceland, one of the most active volcanic regions in the world. We interrogate existing and newly produced geological and written records of past ash fallout over northern Europe in the last 1000 years and estimate the mean return (repose) interval of a volcanic ash cloud over the region to be 44 ± 7 years. We compare tephra records from mainland northern Europe, Great Britain, Ireland and the Faroe Islands, with records of proximal Icelandic volcanism and suggest that an Icelandic eruption with a Volcanic Explosivity Index rating (VEI) ≥ 4 and a silicic magma composition presents the greatest risk of producing volcanic ash that can reach northern Europe. None of the ash clouds in the European record which have a known source eruption are linked to a source eruption with VEI < 4. Our results suggest that ash clouds are more common over northern Europe than previously proposed and indicate the continued threat of ash deposition across northern Europe from eruptions of both Icelandic and North American volcanoes.

  11. The Role of Volcanic Activity in Climate and Global Change

    KAUST Repository

    Stenchikov, Georgiy L.

    2015-09-23

    Explosive volcanic eruptions are magnificent events that in many ways affect the Earth\\'s natural processes and climate. They cause sporadic perturbations of the planet\\'s energy balance, activating complex climate feedbacks and providing unique opportunities to better quantify those processes. We know that explosive eruptions cause cooling in the atmosphere for a few years, but we have just recently realized that volcanic signals can be seen in the subsurface ocean for decades. The volcanic forcing of the previous two centuries offsets the ocean heat uptake and diminishes global warming by about 30%. The explosive volcanism of the twenty-first century is unlikely to either cause any significant climate signal or to delay the pace of global warming. The recent interest in dynamic, microphysical, chemical, and climate impacts of volcanic eruptions is also excited by the fact that these impacts provide a natural analogue for climate geoengineering schemes involving deliberate development of an artificial aerosol layer in the lower stratosphere to counteract global warming. In this chapter we aim to discuss these recently discovered volcanic effects and specifically pay attention to how we can learn about the hidden Earth-system mechanisms activated by explosive volcanic eruptions. To demonstrate these effects we use our own model results when possible along with available observations, as well as review closely related recent publications.

  12. Volcanic edifice weakening via decarbonation: A self-limiting process?

    Science.gov (United States)

    Mollo, Silvio; Heap, Michael J.; Iezzi, Gianluca; Hess, Kai-Uwe; Scarlato, Piergiorgio; Dingwell, Donald B.

    2012-08-01

    The inherent instability of volcanic edifices, and their resultant propensity for catastrophic collapse, is a constant source of volcanic risk. Structural instability of volcanic edifices may be amplified by the presence of carbonate rocks in the sub-volcanic strata, due to the debilitating response of carbonates to thermally-induced alteration. Nonetheless, decarbonation reactions (the primary weakening mechanism), may stall when the system becomes buffered by rising levels of a reaction product, carbon dioxide. Such thermodynamic stalling might be inferred to serve to circumvent the weakness of volcanic structures. However, the present study shows that, even when decarbonation is halted, rock physical properties continue to degrade due to thermal microcracking. Furthermore, as a result, the pathways for the escape of carbon dioxide are numerous within a volcanic edifice. Therefore, in the case of an edifice with a sub-volcanic sedimentary basement, the generation of carbon dioxide via decarbonation is unlikely to hinder its impact on instability, and thus potentially devastating flank collapse.

  13. Glass shards, pumice fragments and volcanic aerosol particles - diagenesis a recorder of volcanic activity?

    Science.gov (United States)

    Obenholzner, J. H.; Schroettner, H.; Poelt, P.; Delgado, H.

    2003-04-01

    Detailed SEM/EDS studies of Triassic (Southern Alps, A, I, Sl) and Miocene (Mixteca Alta, Mexico) tuffs revealed that volcanic glass shards can be replaced by zeolites (analcite), chlorites and smectites preserving the shape of primary shards (1). The Triassic pyroclastic deposits have been incorporated in the pre-Alpine burial diagenesis, the Miocene pyroclastic deposits are bentonites. The volcanologist is impressed by the circumstances that million years old pyroclast relict textures can be sized. Shape parameters obtained by image analysis can be compared with much younger pyroclastic deposits (2). Both deposits have not been effected by shearing. The alteration of pumice fragments of Triassic age is not a simple replacement process. Intergrowth of different illites and chlorites and probably vesicle filling by SiO2 and subsequent overgrowth make a reconstruction sometimes difficult. These processes are accompanied by the formation of REE-, Y- and Zr-bearing minerals as well as with the alteration of zircons. Studies of recently erupted ash from Popocatepetl volcano reveal the presence of a variety of µm-sized contact-metamorphosed clasts being a part of the volcanic ash (3). Such clasts should be present in many older pyroclastic deposits, especially where volcanoes had been situated on massive sedimentary units providing contact metamorphism in the realm of a magma chamber or during magma ascent. Volcanic aerosol particles collected in 1997 from the passively degassing plume of Popocatepetl volcano revealed in FESEM/EDS analysis (H. Schroettner and P. Poelt) a wide spectrum of fluffy, spherical and coagulated spherical particles (µm-sized). Under pre-vacuum conditions they remained stable for ca. 3 years (3). In nature the fate of these particles in the atmosphere is unknown. Are there relicts in marine, lacustrine sediments and ice cores, which could be used as proxies of volcanic activity? (1) Obenholzner &Heiken,1999. Ann.Naturhist.Mus.Wien, 100 A, 13

  14. Petrogenesis and geodynamic significance of silicic volcanism in the western Trans-Mexican Volcanic Belt

    Science.gov (United States)

    Petrone, C. M.; Ferrari, L.; Orozco, M. A.; Lopez Martinez, M.

    2012-04-01

    Silicic volcanism in the western Trans-Mexican Volcanic Belt (WTMVB) was defined a Pliocene ignimbrite flare-up associated with the rifting of the Jalisco block from mainland Mexico (Frey et al., 2007; GSAB). With the integration of new and published geochronologic, geochemical, and isotope data we revise this interpretation and propose a new petrogenetic model. The oldest silicic volcanism consists of large silicic domes and minor pyroclastic flows (~370 km3) emplaced to the north of Guadalajara above a thick succession of ~11 to 8.7 Ma basaltic lavas, which yielded Ar-Ar and obsidian FT ages of ~7.5 to 5 Ma. Shortly after (4.9 to 2.9 Ma) large amount of rhyolitic lavas and ash flow tuffs (~500 km3) were emplaced in a WNW-ESE trending belt from Guadalajara to Compostela. Rhyolitic domes and flows (~430 km3) were emplaced also in the Pleistocene mostly between Tequila and Guadalajara with the late Pleistocene La Primavera caldera (~35 km3) as the sole explosive volcanic episodes. As a whole, silicic volcanism occurred from Late Miocene to the Pleistocene, and was dominated by dome and lava flows. Most rhyolites have high LILE/HFSE values and negative spikes at Nb, P and Ti. They also show the same Ba/Nb and K/Rb values and slightly higher Rb/Sr ratios as the 11-8 Ma basalts. Rhyolite Sr isotope data (87Sr/86Sr init = 0.70371 - 070598) are only slightly more radiogenic than the 11-8 basalts (87Sr/86Sr init = 0.70349-0.70410), whereas Nd isotope ratios are indistinguishable from them. Sr and Nd isotope ratios of the rhyolites are also similar to the crust nearby, indicating that they can be compatible either with fractional crystallization (FC) of basalts or with crust assimilation/melting. However REE contents are too low to be the result of basalt FC. Isotope and REE data can be successfully modelled with an initial crustal melt which subsequently undergone fractional crystallization of feldspar and quartz. Late Miocene slab detachment and subsequent slab rollback

  15. The Influence of forest certification on forest product trade

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Forest certification is considered to be complementary to forest management policies and takes a significant effect on forest product trade. In recent decade, it has been followed with interest and approved by governments and for estry departments in the world. This paper analyzes the influence of forest cert ification on forest product trade in the world, including the interest in certif ication in exporting countries and importing countries, trade flow and business competition, and the demands for Certified Forest Products (CFPs) and also discu sses the influence of forest certification on forest product trade in China.

  16. Geothermal systems in volcanic arcs: Volcanic characteristics and surface manifestations as indicators of geothermal potential and favorability worldwide

    Science.gov (United States)

    Stelling, P.; Shevenell, L.; Hinz, N.; Coolbaugh, M.; Melosh, G.; Cumming, W.

    2016-09-01

    This paper brings a global perspective to volcanic arc geothermal assessments by evaluating trends and correlations of volcanic characteristic and surface manifestation data from world power production sites in subduction zone volcanic settings. The focus of the work was to evaluate volcanic centers individually and as a group in these arcs by correlating various geologic characteristics with known potential to host electricity grade geothermal systems at the volcanic centers. A database was developed that describes key geologic factors expected to be indicative of productive geothermal systems in a global training set, which includes all 74 subduction zone volcanic centers world-wide with current or proven power production capability. Importantly, this data set only contains data from subduction zone volcanoes and contains no negative cases, limiting the populations of any statistical groups. Regardless, this is the most robust geothermal benchmark training set for magmatic-heated systems to date that has been made public. The work reported here is part of a larger project that included data collection, evaluation, correlations and weightings, fairway and favorability modeling and mapping, prediction of blind systems, and uncertainty analysis to estimate errors associated with model predictions. This first paper describes volcano characteristics, compositions and eruption ages and trends along with surface manifestation observations and temperatures as they relate to known power producing systems. Our findings show a strong correlation between the presence and size of active flank fumarole areas and installed power production. Additionally, the majority of volcanic characteristics, including long-held anecdotal correlations related to magmatic composition or size, have limited to no correlation with power production potential. Notable exceptions are correlations between greater power yield from geothermal systems associated with older (Pleistocene) caldera systems

  17. Particle analysis of volcanic ash with Electron Microscopy

    Science.gov (United States)

    Lieke, K. I.; Kristensen, T. B.; Koch, C. B.; Korsholm, U. S.; Sørensen, J. H.; Bilde, M.

    2012-04-01

    Since the airspace closure over Europe due to the Eyjafjalla eruption in 2010, volcanic ash has come more in the focus of atmospheric science. The airspace closure accompanying the Grímsvötn eruption in 2011 clearly indicates that there is still a great need to increase the scientific understanding of the properties and impacts of volcanic ash particles. Determination of particle characteristics, preferably in near real time, serves as an important input to transport models in operational use for decision support and guidance of authorities. We collected particles before and after the Grímsvötn volcanic ash arrived at Copenhagen, Denmark, between 23 May and 31 May 2011, as well as at a number of other locations. The analysis of meteorological conditions shows that the particle collection performed before arrival of the volcanic ash may serve as a good reference sample. We have thus been able to identify significant differences in aerosol chemical composition during a volcanic ash event over Copenhagen. These results are compared to volcanic ash particles collected on Iceland. We provide unique data about single-particle structure, chemical composition, size and morphology of volcanic ash particles. Single-particle analysis by SEM, and mineralogical studies by XRD and TEM prove that the particles are composed of glass of a characteristic composition and small, nm sized minerals attached to the large (up to tens of µm) glass fragments. The derived information about volcanic ash particles can be used by transport models, resulting in improved information to the authorities in case of new volcanic ash events over Scandinavia or Europe.

  18. California's Vulnerability to Volcanic Hazards: What's at Risk?

    Science.gov (United States)

    Mangan, M.; Wood, N. J.; Dinitz, L.

    2015-12-01

    California is a leader in comprehensive planning for devastating earthquakes, landslides, floods, and tsunamis. Far less attention, however, has focused on the potentially devastating impact of volcanic eruptions, despite the fact that they occur in the State about as frequently as the largest earthquakes on the San Andreas Fault Zone. At least 10 eruptions have occurred in the past 1,000 years—most recently in northern California (Lassen Peak 1914 to 1917)—and future volcanic eruptions are inevitable. The likelihood of renewed volcanism in California is about one in a few hundred to one in a few thousand annually. Eight young volcanoes, ranked as Moderate to Very High Threat [1] are dispersed throughout the State. Partially molten rock (magma) resides beneath at least seven of these—Medicine Lake Volcano, Mount Shasta, Lassen Volcanic Center, Clear Lake Volcanic Field, Long Valley Volcanic Region, Coso Volcanic Field, and Salton Buttes— causing earthquakes, toxic gas emissions, hydrothermal activity, and (or) ground deformation. Understanding the hazards and identifying what is at risk are the first steps in building community resilience to volcanic disasters. This study, prepared in collaboration with the State of California Governor's Office of Emergency Management and the California Geological Survey, provides a broad perspective on the State's exposure to volcano hazards by integrating mapped volcano hazard zones with geospatial data on at-risk populations, infrastructure, and resources. The study reveals that ~ 16 million acres fall within California's volcano hazard zones, along with ~ 190 thousand permanent and 22 million transitory populations. Additionally, far-field disruption to key water delivery systems, agriculture, utilities, and air traffic is likely. Further site- and sector-specific analyses will lead to improved hazard mitigation efforts and more effective disaster response and recovery. [1] "Volcanic Threat and Monitoring Capabilities

  19. Forest report 2014; Waldzustandsbericht 2014

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    This forest report of Hesse (Germany) contains the following topics: weather and climate, forest protection, crown defoliation, infiltrated substances, environmental monitoring, insects and fungi, and water quality of forest streams.

  20. Iron controls over di-nitrogen fixation in karst tropical forest.

    Science.gov (United States)

    Winbourne, Joy B; Brewer, Steven W; Houlton, Benjamin Z

    2017-03-01

    Limestone tropical forests represent a meaningful fraction of the land area in Central America (25%) and Southeast Asia (40%). These ecosystems are marked by high biological diversity, CO2 uptake capacity, and high pH soils, the latter making them fundamentally different from the majority of lowland tropical forest areas in the Amazon and Congo basins. Here, we examine the role of bedrock geology in determining biological nitrogen fixation (BNF) rates in volcanic (low pH) vs. limestone (high pH) tropical forests located in the Maya Mountains of Belize. We experimentally test how BNF in the leaf-litter responds to nitrogen, phosphorus, molybdenum, and iron additions across different parent materials. We find evidence for iron limitation of BNF rates in limestone forests during the wet but not dry season (response ratio 3.2 ± 0.2; P = 0.03). In contrast, BNF in low pH volcanic forest soil was stimulated by the trace-metal molybdenum during the dry season. The parent-material induced patterns of limitation track changes in siderophore activity and iron bioavailability among parent materials. These findings point to a new role for iron in regulating BNF in karst tropical soils, consistent with observations for other high pH systems such as the open ocean and calcareous agricultural ecosystems.

  1. Natural emissions of methane from geothermal and volcanic sources in Europe

    Science.gov (United States)

    Etiope, G.; Fridriksson, T.; Italiano, F.; Winiwarter, W.; Theloke, J.

    2007-08-01

    It has recently been demonstrated that methane emission from lithosphere degassing is an important component of the natural greenhouse-gas atmospheric budget. Globally, the geological sources are mainly due to seepage from hydrocarbon-prone sedimentary basins, and subordinately from geothermal/volcanic fluxes. This work provides a first estimate of methane emission from the geothermal/volcanic component at European level. In Europe, 28 countries have geothermal systems and at least 10 countries host surface geothermal manifestations (hot springs, mofettes, gas vents). Even if direct methane flux measurements are available only for a few small areas in Italy, a fair number of data on CO 2, CH 4 and steam composition and flux from geothermal manifestations are today available for 6 countries (Czech Republic, Germany, Greece, Iceland, Italy, Spain). Following the emission factor and area-based approach, the available data have been analyzed and have led to an early and conservative estimate of methane emission into the atmosphere around 10,000 ton/yr (4000-16,000 ton/yr), basically from an area smaller than 4000 km 2, with a speculative upper limit in the order of 10 5 ton/yr. Only 4-18% of the conservative estimate (about 720 ton/yr) is due to 12 European volcanoes, where methane concentration in volcanic gases is generally in the order of a few tens of ppmv. Volcanoes are thus not a significant methane source. While the largest emission is due to geothermal areas, which may be situated next to volcanoes or independent. Here inorganic synthesis, thermometamorphism and thermal breakdown of organic matter are substantial. Methane flux can reach hundreds of ton/yr from small individual vents. Geothermal methane is mainly released in three countries located in the main high heat flow regions: Italy, Greece, and Iceland. Turkey is likely a fourth important contributor but the absolute lack of data prevents any emission estimate. Therefore, the actual European geothermal-volcanic

  2. Volcanic ash as fertiliser for the surface ocean

    Directory of Open Access Journals (Sweden)

    B. Langmann

    2010-01-01

    Full Text Available Iron is a key limiting micro-nutrient for marine primary productivity. It can be supplied to the ocean by atmospheric dust deposition. Volcanic ash deposition into the ocean represents another external and so far largely neglected source of iron. This study demonstrates strong evidence for natural fertilisation in the iron-limited oceanic area of the NE Pacific, induced by volcanic ash from the eruption of Kasatochi volcano in August 2008. Atmospheric and oceanic conditions were favourable to generate a massive phytoplankton bloom in the NE Pacific Ocean which for the first time establishes a causal connection between oceanic iron-fertilisation and volcanic ash supply.

  3. Collaborative studies target volcanic hazards in Central America

    Science.gov (United States)

    Bluth, Gregg J. S.; Rose, William I.

    Central America is the second-most consistently active volcanic zone on Earth, after Indonesia. Centuries of volcanic activity have produced a spectacular landscape of collapsed calderas, debris flows, and thick blankets of pyroclastic materials. Volcanic activity dominates the history, culture, and daily life of Central American countries.January 2002 marked the third consecutive year in which a diverse group of volcanologists and geophysicists conducted focused field studies in Central America. This type of multi-institutional collaboration reflects the growing involvement of a number of U.S. and non-U.S. universities, and of other organizations, in Guatemala and El Salvador (Table 1).

  4. Current perspectives on energy and mass fluxes in volcanic arcs

    Science.gov (United States)

    Leeman, William; Davidson, Jon; Fischer, Tobias; Grunder, Anita; Reagan, Mark; Streck, Martin

    Volcanoes of the Pacific Ring of Fire and other convergent margins worldwide are familiar manifestations of nature's energy, account for about 25% of global volcanic outputs, dominate volcanic gas emissions to the atmosphere, and pose significant physical threats to a large human population. Yet the processes behind this prolific activity remain poorly understood.An international “State of the Arc” (SOTA) conference was held in August on the slopes of Mt. Hood, Oregon, to address current views on the energy and mass fluxes in volcanic arcs. This meeting brought together some 90 leading experts and students of subduction zones and their related magmatism.

  5. Volcanic ash as fertiliser for the surface ocean

    Directory of Open Access Journals (Sweden)

    B. Langmann

    2010-04-01

    Full Text Available Iron is a key limiting micro-nutrient for marine primary productivity. It can be supplied to the ocean by atmospheric dust deposition. Volcanic ash deposition into the ocean represents another external and so far largely neglected source of iron. This study demonstrates strong evidence for natural fertilisation in the iron-limited oceanic area of the NE Pacific, induced by volcanic ash from the eruption of Kasatochi volcano in August 2008. Atmospheric and oceanic conditions were favourable to generate a massive phytoplankton bloom in the NE Pacific Ocean which for the first time strongly suggests a connection between oceanic iron-fertilisation and volcanic ash supply.

  6. Long term volcanic hazard analysis in the Canary Islands

    Science.gov (United States)

    Becerril, L.; Galindo, I.; Laín, L.; Llorente, M.; Mancebo, M. J.

    2009-04-01

    Historic volcanism in Spain is restricted to the Canary Islands, a volcanic archipelago formed by seven volcanic islands. Several historic eruptions have been registered in the last five hundred years. However, and despite the huge amount of citizens and tourist in the archipelago, only a few volcanic hazard studies have been carried out. These studies are mainly focused in the developing of hazard maps in Lanzarote and Tenerife islands, especially for land use planning. The main handicap for these studies in the Canary Islands is the lack of well reported historical eruptions, but also the lack of data such as geochronological, geochemical or structural. In recent years, the use of Geographical Information Systems (GIS) and the improvement in the volcanic processes modelling has provided an important tool for volcanic hazard assessment. Although this sophisticated programs are really useful they need to be fed by a huge amount of data that sometimes, such in the case of the Canary Islands, are not available. For this reason, the Spanish Geological Survey (IGME) is developing a complete geo-referenced database for long term volcanic analysis in the Canary Islands. The Canarian Volcanic Hazard Database (HADA) is based on a GIS helping to organize and manage volcanic information efficiently. HADA includes the following groups of information: (1) 1:25.000 scale geologic maps, (2) 1:25.000 topographic maps, (3) geochronologic data, (4) geochemical data, (5) structural information, (6) climatic data. Data must pass a quality control before they are included in the database. New data are easily integrated in the database. With the HADA database the IGME has started a systematic organization of the existing data. In the near future, the IGME will generate new information to be included in HADA, such as volcanological maps of the islands, structural information, geochronological data and other information to assess long term volcanic hazard analysis. HADA will permit

  7. Geologic Map of Lassen Volcanic National Park and Vicinity, California

    Science.gov (United States)

    Clynne, Michael A.; Muffler, L.J. Patrick

    2010-01-01

    The geologic map of Lassen Volcanic National Park (LVNP) and vicinity encompasses 1,905 km2 at the south end of the Cascade Range in Shasta, Lassen, Tehama, and Plumas Counties, northeastern California (fig. 1, sheet 3). The park includes 430 km2 of scenic volcanic features, glacially sculpted terrain, and the most spectacular array of thermal features in the Cascade Range. Interest in preserving the scenic wonders of the Lassen area as a national park arose in the early 1900s to protect it from commercial development and led to the establishment in 1907 of two small national monuments centered on Lassen Peak and Cinder Cone. The eruptions of Lassen Peak in 1914-15 were the first in the Cascade Range since widespread settling of the West in the late 1800s. Through the printed media, the eruptions aroused considerable public interest and inspired renewed efforts, which had languished since 1907, to establish a national park. In 1916, Lassen Volcanic National Park was established by combining the areas of the previously established national monuments and adjacent lands. The southernmost Cascade Range is bounded on the west by the Sacramento Valley and the Klamath Mountains, on the south by the Sierra Nevada, and on the east by the Basin and Range geologic provinces. Most of the map area is underlain by middle to late Pleistocene volcanic rocks; Holocene, early Pleistocene, and late Pliocene volcanic rocks (radiometric dating, photographs of geologic features, and links to related data or web sites. Data contained in the CD-ROM are also available on this Web site. The southernmost Cascade Range consists of a regional platform of basalt and basaltic andesite, with subordinate andesite and sparse dacite. Nested within these regional rocks are 'volcanic centers', defined as large, long-lived, composite, calc-alkaline edifices erupting the full range of compositions from basalt to rhyolite, but dominated by andesite and dacite. Volcanic centers are produced by the

  8. Early Forest Soils and Their Role in Devonian Global Change

    Science.gov (United States)

    Retallack

    1997-04-25

    A paleosol in the Middle Devonian Aztec Siltstone of Victoria Land, Antarctica, is the most ancient known soil of well-drained forest ecosystems. Clay enrichment and chemical weathering of subsurface horizons in this and other Devonian forested paleosols culminate a long-term increase initiated during the Silurian. From Silurian into Devonian time, red clayey calcareous paleosols show a greater volume of roots and a concomitant decline in the density of animal burrows. These trends parallel the decline in atmospheric carbon dioxide determined from isotopic records of pedogenic carbonate in these same paleosols. The drawdown of carbon dioxide began well before the Devonian appearance of coals, large logs, and diverse terrestrial plants and animals, and it did not correlate with temporal variation in volcanic or metamorphic activity. The early Paleozoic greenhouse may have been curbed by the evolution of rhizospheres with an increased ratio of primary to secondary production and by more effective silicate weathering during Silurian time.

  9. Simulated effects of changes in direct and diffuse radiation on canopy scale isoprene emissions from vegetation following volcanic eruptions

    Directory of Open Access Journals (Sweden)

    D. J. Wilton

    2011-11-01

    Full Text Available Volcanic eruptions can alter the quality of incoming solar irradiance reaching the Earth's surface thereby influencing the interactions between vegetation and the Earth system. Isoprene (C5H8 is a biogenic volatile organic compound emitted from leaves at a rate that is strongly dependent on the received flux of photosynthetically active radiation (PAR. We used a theoretical approach to investigate the potential for volcanic eruptions to change the isoprene flux from terrestrial forests using canopy-scale isoprene emission simulations that vary either the relative or absolute amount of diffuse (Idiff and direct (Idir PAR. According to our simulations for a northern hardwood deciduous forest, if the total amount of PAR during summer remains constant while the proportion of Idiff increases, canopy-scale isoprene emissions increase. This effect increases as leaf area index (LAI increases. Simulating a decrease in the total amount of PAR, and a corresponding increase in Idiff fraction, as measured during the 1992 Pinatubo eruption, changes daily total canopy-scale isoprene emissions from terrestrial vegetation in summertime by +2.8% and −1.4% for LAI of 6 and 2, respectively. These effects have not previously been realized or quantified. Better capturing the effects of volcanic eruptions (and other major perturbations to the atmospheric aerosol content on isoprene emissions from the terrestrial biosphere, and hence on the chemistry of the atmosphere, therefore may require inclusion of the effects of aerosols they produce on climate and the quality of PAR.

  10. Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis.

    Science.gov (United States)

    Gu, Lianhong; Baldocchi, Dennis D; Wofsy, Steve C; Munger, J William; Michalsky, Joseph J; Urbanski, Shawn P; Boden, Thomas A

    2003-03-28

    Volcanic aerosols from the 1991 Mount Pinatubo eruption greatly increased diffuse radiation worldwide for the following 2 years. We estimated that this increase in diffuse radiation alone enhanced noontime photosynthesis of a deciduous forest by 23% in 1992 and 8% in 1993 under cloudless conditions. This finding indicates that the aerosol-induced increase in diffuse radiation by the volcano enhanced the terrestrial carbon sink and contributed to the temporary decline in the growth rate of atmospheric carbon dioxide after the eruption.

  11. SURFACE AREA AND MICRO-ROUGHNESS OF VOLCANIC ASH PARTICLES: A case study, Acigol Volcanic Complex, Cappadocia, Central Turkiye

    Science.gov (United States)

    Ersoy, O.; Aydar, E.; Sen, E.; Atici, G.

    2009-04-01

    Every single ash particle may convey information about its own formation environment and conditions. Certain features on particles may give a hint about the fragmentation regime, the intensity of fragmentation and quantity of water that partakes in the fragmentation process, etc. On this account, this study majored in the analysis on finer pyroclastic material, namely volcanic ash particles. Here, we used volcanic ash particles from Quaternary Acigol Volcanic complex (West of Nevsehir, Cappadocia, Central Turkiye). Quaternary Acigol Volcanic complex lies between the towns of Nevsehir and Acigol. It consists of a shallow caldera, a thick pyroclastic apron, seven obsidian dome clusters, and scattered cinder cones and associated lavas (Druitt et al., 1995). The products of explosive volcanism of the region were distinguished as two main Quaternary tuffs by a recent study (Druitt et al., 1995). Samples are from ashfall beds in a sequence of intercalated pumice fall, ashfall, and ignimbrite beds. In this study in order to achieve surface properties of volcanic ash particles, surface areas and micro-roughness of ash particles were measured on digital elevation models (DEM) reconstructed from stereoscopic images acquired on Scanning Electron Microscope (SEM) at varying specimen tilt angles. Correlation between surface texture of volcanic ash particles and eruption characteristics was determined.

  12. Volcanic processes on early-forming asteroids.

    Science.gov (United States)

    Wilson, L.; Keil, K.

    2011-12-01

    A variety of meteorite groups represent samples of asteroids that formed while 26Al was still the dominant heat source in Solar System materials. These bodies differentiated to varying degrees beyond the temperature of FeNi-FeS melting, with sufficient silicate melting to allow metal core formation. The silicate melts segregated upward from the interiors to suffer various fates: intrusion at shallow levels, eruption onto the surface, or ejection into space in explosive eruptions in which the eruption speed exceeded the escape speed. These three styles of plutonic/volcanic activity were not mutually exclusive; their relative importance was a function of asteroid size and composition, with the major compositional factor being the total available volatile inventory. Much research has been concerned with whether silicate melts were extracted from the mantle during the period of mantle heating or while the mantle was cooling after reaching its peak temperature and degree of partial melting (a "magma ocean" stage). Traditionally, the relevant arguments have been based on the petrology and geochemistry of the meteorites sampling these bodies. Instead, we focus on the fluid dynamic aspects of eruption and intrusion processes and show how these impose additional limitations on various aspects of the igneous activity. For example, 40% melting of bodies the size of 4 Vesta (~250 km radius) and the Ureilite Parent Body (UPB, ~100 km radius) over the course of a 0.5 Ma heating period represent melt volume production rates of ~350 and 20 cubic meters per second, respectively, in each of what we demonstrate should have been ~4 volcanic provinces on each body. All differentiated asteroids must of necessity have had a surface layer ~10 km thick at sub-solidus temperatures controlled by conductive cooling. To erupt magma at the surface (or intrude magma at very shallow depth) through such a crust would have required the propagation of dikes within which the combination of dike width

  13. Forests Hold the Key

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An interview with Mr. Allen Tak Yuen Chan,Managing Director and CEO of Sino-Forest Corp. of Canada A lien Tak Yuen Chan,Managing Director and CEO of the Sino-Forest Corp.,is an acclaimed academic and a columnist.

  14. Resilience of Amazonian forests

    NARCIS (Netherlands)

    Monteiro Flores, B.

    2016-01-01

    The Amazon has recently been portrayed as a resilient forest system based on quick recovery of biomass after human disturbance. Yet with climate change, the frequency of droughts and wildfires may increase, implying that parts of this massive forest may shift into a savanna state. Although the Amazo

  15. Forest insurance number.

    Science.gov (United States)

    Thornton T. Munger; H.B. Shepard

    1934-01-01

    This inquiry, originally conceived as an effort to determine definitely whether the existing lack of adequate and practical forest fire insurance facilities is in truth unavoidable and, if possible, to suggest means whereby the condition might be remedied, finds no apparent reason why successful forest fire insurance should not be possible as far as the loss situation...

  16. Trading forest carbon

    Science.gov (United States)

    The nature of carbon in forests is discussed from the perspective of carbon trading. Carbon inventories, specifically in the area of land use and forestry are reviewed for the Pacific Northwest. Carbon turnover in forests is discussed as it relates to carbon sequestration. Scient...

  17. Forest, trees and agroforestry

    DEFF Research Database (Denmark)

    Rahman, Syed Ajijur; Foli, Samson; Al Pavel, Muha Abdullah;

    2015-01-01

    Scientific community is concerned to address contemporary issues of food production and conserve tropical forests that support the livelihoods of millions of people. A review of the literature on deforestation, forest utilization, and landscape management for ecosystem services was conducted to i...

  18. Forest regions of Montana

    Science.gov (United States)

    Stephen F. Arno

    1979-01-01

    In this paper, Montana is divided into eight geographic subdivisions called "forest regions," based on distributions of tree and undergrowth species and the relationship of these patterns to climate and topography. The regions serve as a geographic reference for describing patterns of forest vegetation across the State. Data on the distributions of plant...

  19. La propiedad forestal

    OpenAIRE

    Sánchez Boza, Roxana

    2014-01-01

    El objetivo de la presente investigación ha sido dirigido a definir en forma concreta y real al régimen de la propiedad forestal, de acuerdo con la ley, su reglamento y las diferentes disposiciones dictadas por la dirección General Forestal del Ministerio de Agricultura y Ganadería.

  20. Ghana's high forests

    NARCIS (Netherlands)

    Oduro, K.A.

    2016-01-01

    Deforestation and forest degradation in the tropics have been receiving both scientific and political attention in recent decades due to its impacts on the environment and on human livelihoods. In Ghana, the continuous decline of forest resources and the high demand for timber have raised stakeholde

  1. Why 'a forest conscienceness'?

    Science.gov (United States)

    M. Calver; H. Bigler-Cole; G. Bolton; J. Dargavel; A. Gaynor; P. Horwitz; J. Mills; G. Wardell-Johnson

    2005-01-01

    The phrase 'a forest conscienceness' was used in a major statement made by Charles Lane Poole, Western Australia's Conservator of Forests from 1916-1921, for the 1920 British Empire Forestry Conference. It is both relevant and contemporary at the beginning of the 21st century. We chose it as the conference theme to encourage engagement with both a...

  2. Autonomous Forest Fire Detection

    NARCIS (Netherlands)

    Breejen, E. den; Breuers, M.; Cremer, F.; Kemp, R.A.W.; Roos, M.; Schutte, K.; Vries, J.S. de

    1998-01-01

    Forest fire detection is a very important issue in the pre-suppression process. Timely detection allows the suppression units to reach the fire in its initial stages and this will reduce the suppression costs considerably. The autonomous forest fire detection principle is based on temporal contrast

  3. Modelling in forest management

    Science.gov (United States)

    Mark J. Twery

    2004-01-01

    Forest management has traditionally been considered management of trees for timber. It really includes vegetation management and land management and people management as multiple objectives. As such, forest management is intimately linked with other topics in this volume, most especially those chapters on ecological modelling and human dimensions. The key to...

  4. Volcanic geomorphology using TanDEM-X

    Science.gov (United States)

    Poland, Michael; Kubanek, Julia

    2016-04-01

    Topography is perhaps the most fundamental dataset for any volcano, yet is surprisingly difficult to collect, especially during the course of an eruption. For example, photogrammetry and lidar are time-intensive and often expensive, and they cannot be employed when the surface is obscured by clouds. Ground-based surveys can operate in poor weather but have poor spatial resolution and may expose personnel to hazardous conditions. Repeat passes of synthetic aperture radar (SAR) data provide excellent spatial resolution, but topography in areas of surface change (from vegetation swaying in the wind to physical changes in the landscape) between radar passes cannot be imaged. The German Space Agency's TanDEM-X satellite system, however, solves this issue by simultaneously acquiring SAR data of the surface using a pair of orbiting satellites, thereby removing temporal change as a complicating factor in SAR-based topographic mapping. TanDEM-X measurements have demonstrated exceptional value in mapping the topography of volcanic environments in as-yet limited applications. The data provide excellent resolution (down to ~3-m pixel size) and are useful for updating topographic data at volcanoes where surface change has occurred since the most recent topographic dataset was collected. Such data can be used for applications ranging from correcting radar interferograms for topography, to modeling flow pathways in support of hazards mitigation. The most valuable contributions, however, relate to calculating volume changes related to eruptive activity. For example, limited datasets have provided critical measurements of lava dome growth and collapse at volcanoes including Merapi (Indonesia), Colima (Mexico), and Soufriere Hills (Montserrat), and of basaltic lava flow emplacement at Tolbachik (Kamchatka), Etna (Italy), and Kīlauea (Hawai`i). With topographic data spanning an eruption, it is possible to calculate eruption rates - information that might not otherwise be available

  5. Towards a Comprehensive Catalog of Volcanic Seismicity

    Science.gov (United States)

    Thompson, G.

    2014-12-01

    Catalogs of earthquakes located using differential travel-time techniques are a core product of volcano observatories, and while vital, they represent an incomplete perspective of volcanic seismicity. Many (often most) earthquakes are too small to locate accurately, and are omitted from available catalogs. Low frequency events, tremor and signals related to rockfalls, pyroclastic flows and lahars are not systematically catalogued, and yet from a hazard management perspective are exceedingly important. Because STA/LTA detection schemes break down in the presence of high amplitude tremor, swarms or dome collapses, catalogs may suggest low seismicity when seismicity peaks. We propose to develop a workflow and underlying software toolbox that can be applied to near-real-time and offline waveform data to produce comprehensive catalogs of volcanic seismicity. Existing tools to detect and locate phaseless signals will be adapted to fit within this framework. For this proof of concept the toolbox will be developed in MATLAB, extending the existing GISMO toolbox (an object-oriented MATLAB toolbox for seismic data analysis). Existing database schemas such as the CSS 3.0 will need to be extended to describe this wider range of volcano-seismic signals. WOVOdat may already incorporate many of the additional tables needed. Thus our framework may act as an interface between volcano observatories (or campaign-style research projects) and WOVOdat. We aim to take the further step of reducing volcano-seismic catalogs to sets of continuous metrics that are useful for recognizing data trends, and for feeding alarm systems and forecasting techniques. Previous experience has shown that frequency index, peak frequency, mean frequency, mean event rate, median event rate, and cumulative magnitude (or energy) are potentially useful metrics to generate for all catalogs at a 1-minute sample rate (directly comparable with RSAM and similar metrics derived from continuous data). Our framework

  6. Environmental assessment proposal to designate Modoc volcanic scenic byway

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Modoc, Shasta-Trinity, and Klamath national forests (US Forest Service), Tule Lake National Wildlife Refuge (US Fish and Wildlife Service), and Lava Beds...

  7. Fertilization in northern forests

    DEFF Research Database (Denmark)

    Hedwall, Per Ola; Gong, Peichen; Ingerslev, Morten

    2014-01-01

    resources into food, health and industrial products and energy. Fertilization in Sweden and Finland is currently practiced by extensive fertilization regimens where nitrogen fertilizers are applied once, or up to three times, during a rotation period, mainly in mature forest. This type of fertilization......Forests of northern ecosystems respond slowly to management activities and the possibilities to increase the growth in a short-term perspective and meet swift increases in society's demand for biomass are small. An exception among the silvicultural measures is fertilization which can be applied...... in combination with present management systems and, almost instantly, enhances forest productivity. There may, however, be both economic and environmental constraints to large-scale applications of fertilizers in forest. Here we review the literature concerning biomass production of forests under different...

  8. Forests beyond income

    DEFF Research Database (Denmark)

    Walelign, Solomon Zena

    2013-01-01

    , depth and severity on the one hand, and the dependency of rural poor and non-poor households on forest and environmental resources on the other. The three variants of the FGT poverty index, with and without forest and environmental income, and the relative shares of each livelihood activities...... to the total income accounting of the poor and the non-poor were estimated. The results indicate that forest and environmental income was the second important livelihood activity to both poor and non-poor households next to crop production - contributing about 22.46 and 24.14 percent to the poor and non......-poor sample households respectively. With regard to the contribution of forest and environmental resources to rural poverty, dramatic increase in the incidence, depth and severity of poverty were observed when forest and environmental income was excluded from sample households' total income accounting...

  9. Laboratory Studies of Ice Nucleation on Volcanic Ash

    Science.gov (United States)

    Tolbert, M. A.; Schill, G. P.; Genareau, K. D.

    2014-12-01

    Ice nucleation on volcanic ash controls both ash aggregation and cloud glaciation, which affect human respiratory health, atmospheric transport, and global climate. We have performed laboratory studies of the depositional and immersion freezing efficiency of three distinct samples of volcanic ash using Raman Microscopy coupled to an environmental cell. Ash from the Fuego (Basaltic Ash, Guatemala), Soufriere Hills (Andesetic Ash, Montserrat), and Taupo (Rhyolitic Ash, New Zealand) volcanoes were chosen to represent different geographical locations and silica content. All ash samples were quantitatively analyzed for both percent crystallinity and mineralogy using X-ray diffraction. We find that all three samples of volcanic ash are excellent depositional ice nuclei, nucleating ice at ice saturation ratios of 1.05 ± 0.1. For immersion freezing, however, only the Taupo ash exhibited efficient heterogeneous ice nucleation activity. Similar to recent studies on mineral dust, we suggest that the mineralogy of volcanic ash may dictate its ice nucleation activity in the immersion mode.

  10. International Conference on Continental Volcanism-IAVCEI 2006

    Institute of Scientific and Technical Information of China (English)

    Yigang Xu; Martin A Menzies

    2006-01-01

    @@ The International Conference on Continental Volcanism, sponsored by the International Association of Volcanology and Chemistry of the Earth's Interior (IAVCEI), was held at White Swan Hotel, Guangzhou, China, May 14th to 18th, 2006.

  11. Volcanic Ash Detection Using Raman LIDAR: "VADER" Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Volcanic ash is a significant hazard to aircraft engine and electronics and has caused damage to unwary aircraft and disrupted air travel for thousands of travelers,...

  12. Volcanic ash melting under conditions relevant to ash turbine interactions.

    Science.gov (United States)

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B

    2016-03-02

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines.

  13. Seismic and volcanic risk studies - western Gulf of Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The objectives of this research are to evaluate geologic hazards to offshore petroleum development due to earthquake and volcanic activity in the lower Cook Inlet,...

  14. Volcanic Debris Flows in the Elysium Region of Mars

    Science.gov (United States)

    Christiansen, E. H.; Ryan, M. P.

    1985-01-01

    Photogeologic studies of the Elysium volcanic province appear to provide a specific example of the importance of volcanic-ice interaction to produce the channels of Hrad and Granicus Valles. In addition, these studies shows that the channels lie on the surface of a large sedimentary deposit which is interpreted as an accumulation of volcanic debris flows or lahars. In spite of some similarities with Martian outflow channels, this latter difference may distinguish the Elysium channels from other types of Martian channels. Geologic relations are described which demonstrate that the debris flows formed amidst other volcanic activity in the Elysium region thereby suggesting that the magmatism was important to the generation of the mobilizing liquid. The lahars resulted from the melting of ground ice and liquefaction of subsurface materials. The intersection of this fluid reservoir with the regional fracture system lead to the rapid expulsion of a muddy slurry down the steep western slope of the province.

  15. Solid State Multiwavelength LIDAR for Volcanic Ash Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. proposes to develop a compact, multiwavelength LIDAR with polarization analysis capability that will be able to identify volcanic ash clouds...

  16. Io's Diverse Styles of Volcanic Activity: Results from Galileo NIMS

    Science.gov (United States)

    Lopes, R. M. C.; Smythe, W. D.; Kamp, L. W.; Doute, S.; Carlson, R.; McEwen, A.; Geissler, P.

    2001-01-01

    Observations by Galileo's Near-Infrared Mapping Spectrometer were used to map the thermal structure of several of Io's hot spots, revealing different styles of volcanism Additional information is contained in the original extended abstract..

  17. Global Significant Volcanic Eruptions Database, 4360 BC to present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Significant Volcanic Eruptions Database is a global listing of over 600 eruptions from 4360 BC to the present. A significant eruption is classified as one that...

  18. The Fina Nagu volcanic complex: Unusual submarine arc volcanism in the rapidly deforming southern Mariana margin

    Science.gov (United States)

    Brounce, Maryjo; Kelley, Katherine A.; Stern, Robert; Martinez, Fernando; Cottrell, Elizabeth

    2016-10-01

    In the Mariana convergent margin, large arc volcanoes disappear south of Guam even though the Pacific plate continues to subduct and instead, small cones scatter on the seafloor. These small cones could form either due to decompression melting accompanying back-arc extension or flux melting, as expected for arc volcanoes, or as a result of both processes. Here, we report the major, trace, and volatile element compositions, as well as the oxidation state of Fe, in recently dredged, fresh pillow lavas from the Fina Nagu volcanic chain, an unusual alignment of small, closely spaced submarine calderas and cones southwest of Guam. We show that Fina Nagu magmas are the consequence of mantle melting due to infiltrating aqueous fluids and sediment melts sourced from the subducting Pacific plate into a depleted mantle wedge, similar in extent of melting to accepted models for arc melts. Fina Nagu magmas are not as oxidized as magmas elsewhere along the Mariana arc, suggesting that the subduction component responsible for producing arc magmas is either different or not present in the zone of melt generation for Fina Nagu, and that amphibole or serpentine mineral destabilization reactions are key in producing oxidized arc magmas. Individual Fina Nagu volcanic structures are smaller in volume than Mariana arc volcanoes, although the estimated cumulative volume of the volcanic chain is similar to nearby submarine arc volcanoes. We conclude that melt generation under the Fina Nagu chain occurs by similar mechanisms as under Mariana arc volcanoes, but that complex lithospheric deformation in the region distributes the melts among several small edifices that get younger to the northeast.

  19. Paleomagnetic data from the Trans-Mexican Volcanic Belt: implications for tectonics and volcanic stratigraphy

    Science.gov (United States)

    Alva-Valdivia, L. M.; Goguitchaichvili, A.; Ferrari, L.; Rosas-Elguera, J.; Urrutia-Fucugauchi, J.; Zamorano-Orozco, J. J.

    2000-07-01

    We report a paleomagnetic and rock-magnetic study of Miocene volcanic rocks from the Trans-Mexican Volcanic Belt. A total of 32 sites (238 oriented samples) were collected from three localities: Queretaro, Guadalajara and Los Altos de Jalisco basaltic plateaux, which span from 11 to 7.5 Ma. Several rock-magnetic experiments were carried out in order to identify the magnetic carriers and to obtain information about their paleomagnetic stability. Microscopic observation of polished sections shows that the main magnetic mineral is Ti-poor titanomagnetite associated with exsolved ilmenite. Continuous susceptibility measurements with temperature yield in most cases reasonably reversible curves with Curie points close to that of magnetite. Judging from the ratios of hysteresis parameters, it seems that all samples fall in the pseudo-single domain (PSD) grain size region, probably indicating a mixture of multidomain (MD) and a significant amount of single domain (SD) grains. Based on our paleomagnetic and available radiometric data, it seems that the volcanic units have been emplaced during a relatively short time span of 1 to 2 My at each locality. The mean paleomagnetic directions obtained from each locality differ significantly from that expected for the Middle Miocene. The mean paleomagnetic direction calculated from 28 sites discarding those of intermediate polarity is I= 32.46°, D= 341.2°, k= 7.2 and a95= 11.6°. Comparison with the expected direction indicates some 20° anticlockwise tectonic rotations for the studied area, in accordance with the proposed left-lateral transtensional tectonic regime already proposed for this period.

  20. Optimal likelihood-based matching of volcanic sources and deposits in the Auckland Volcanic Field

    Science.gov (United States)

    Kawabata, Emily; Bebbington, Mark S.; Cronin, Shane J.; Wang, Ting

    2016-09-01

    In monogenetic volcanic fields, where each eruption forms a new volcano, focusing and migration of activity over time is a very real possibility. In order for hazard estimates to reflect future, rather than past, behavior, it is vital to assemble as much reliable age data as possible on past eruptions. Multiple swamp/lake records have been extracted from the Auckland Volcanic Field, underlying the 1.4 million-population city of Auckland. We examine here the problem of matching these dated deposits to the volcanoes that produced them. The simplest issue is separation in time, which is handled by simulating prior volcano age sequences from direct dates where known, thinned via ordering constraints between the volcanoes. The subproblem of varying deposition thicknesses (which may be zero) at five locations of known distance and azimuth is quantified using a statistical attenuation model for the volcanic ash thickness. These elements are combined with other constraints, from widespread fingerprinted ash layers that separate eruptions and time-censoring of the records, into a likelihood that was optimized via linear programming. A second linear program was used to optimize over the Monte-Carlo simulated set of prior age profiles to determine the best overall match and consequent volcano age assignments. Considering all 20 matches, and the multiple factors of age, direction, and size/distance simultaneously, results in some non-intuitive assignments which would not be produced by single factor analyses. Compared with earlier work, the results provide better age control on a number of smaller centers such as Little Rangitoto, Otuataua, Taylors Hill, Wiri Mountain, Green Hill, Otara Hill, Hampton Park and Mt Cambria. Spatio-temporal hazard estimates are updated on the basis of the new ordering, which suggest that the scale of the 'flare-up' around 30 ka, while still highly significant, was less than previously thought.

  1. Geology of Volcan Las Navajas, a pleistocene trachyte/peralkaline rhyolite volcanic center in Nayarit, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hegre, J.A.; Nelson, S.A.

    1985-01-01

    Volcan Las Navajas, located in the northwestern portion of the Mexican Volcanic Belt has produced a sequence of volcanic rocks with compositions in marked contrast to the predominantly calc-alkaline volcanoes which predominate in this part of Mexico. The oldest exposed lavas consist of trachytes with 63% SiO/sub 2/, 6% FeO*, and 500 ppm Zr along with comenditic rhyolites with 68% SiO/sub 2/, 5% FeO*, 800 ppm Zr, and an agpaitic index of 1.0. These lavas were followed by the eruption of a comenditic ash-flow tuff and the formation of a caldera 2.7 km in diameter. This caldera was subsequently filled by eruptions of pantelleritic rhyolite obsidian lava flows with 72% SiO/sub 2/, 8% FeO*, 1100 ppm Zr, and an agpaitic index of 1.5 to 1.9. A second caldera was then formed which is offset to the south of the main eruptive vents for previous eruptions. This younger caldera has a diameter of about 4.8 km and its southern walls have been covered by calc-alkaline andesitic lavas erupted from nearby Sanganguey volcano. Volcanoclastic sediments in the floor of the younger caldera have been tilted and faulted in a manner suggestive of late stage resurgence. Subsequent eruptions within the caldera, however, have been restricted to calc-alkaline andesites. Tectonically, the area in which this volcano occurs appears to have been undergoing a crustal rifting event since the Pliocene. The occurrence of these peralkaline rocks lends further support to such a hypothesis.

  2. Volcanic hazard assessment at the Campi Flegrei caldera

    OpenAIRE

    Mastrolorenzo, G.; Pappalardo, L; C. Troise; S. Rossano; Panizza, A; G. De Natale

    2006-01-01

    Previous and new results from probabilistic approaches based on available volcanological data from real eruptions of Campi Flegrei, are assembled in a comprehensive assessment of volcanic hazards at the Campi Flegrei caldera, in order to compare the volcanic hazards related to the different types of events. Hazard maps based on a very wide set of numerical simulations, produced using field and laboratory data as input parameters relative to the whole range of fallout and pyrocl...

  3. Volcanic jet noise: infrasonic source processes and atmospheric propagation

    Science.gov (United States)

    Matoza, R. S.; Fee, D.; Ogden, D. E.

    2011-12-01

    Volcanic eruption columns are complex flows consisting of (possibly supersonic) injections of ash-gas mixtures into the atmosphere. A volcanic eruption column can be modeled as a lower momentum-driven jet (the gas-thrust region), which transitions with altitude into a thermally buoyant plume. Matoza et al. [2009] proposed that broadband infrasonic signals recorded during this type of volcanic activity represent a low-frequency form of jet noise. Jet noise is produced at higher acoustic frequencies by smaller-scale man-made jet flows (e.g., turbulent jet flow from jet engines and rockets). Jet noise generation processes could operate at larger spatial scales and produce infrasonic frequencies in the lower gas-thrust portion of the eruption column. Jet-noise-like infrasonic signals have been observed at ranges of tens to thousands of kilometers from sustained volcanic explosions at Mount St. Helens, WA; Tungurahua, Ecuador; Redoubt, AK; and Sarychev Peak, Kuril Islands. Over such distances, the atmosphere cannot be considered homogeneous. Long-range infrasound propagation takes place primarily in waveguides formed by vertical gradients in temperature and horizontal winds, and exhibits strong spatiotemporal variability. The timing and location of volcanic explosions can be estimated from remote infrasonic data and could be used with ash cloud dispersion forecasts for hazard mitigation. Source studies of infrasonic volcanic jet noise, coupled with infrasound propagation modeling, hold promise for being able to constrain more detailed eruption jet parameters with remote, ground-based geophysical data. Here we present recent work on the generation and propagation of volcanic jet noise. Matoza, R. S., D. Fee, M. A. Garcés, J. M. Seiner, P. A. Ramón, and M. A. H. Hedlin (2009), Infrasonic jet noise from volcanic eruptions, Geophys. Res. Lett., 36, L08303, doi:10.1029/2008GL036486.

  4. Recent seismicity detection increase in the Santorini volcanic island complex

    OpenAIRE

    G. Chouliaras; Drakatos, G.; Makropoulos, K.; Melis, N. S.

    2012-01-01

    Santorini is the most active volcanic complex in the South Aegean Volcanic Arc. To improve the seismological network detectability of the seismicity in this region, the Institute of Geodynamics of the National Observatory of Athens (NOA) recently installed 4 portable seismological stations supplementary to the 3 permanent stations operating in the region. The addition of these stations has significantly improved the detectability and reporting of the local seismic activity in the NOA instrume...

  5. Recent seismicity detection increase in the Santorini volcanic island complex

    Directory of Open Access Journals (Sweden)

    G. Chouliaras

    2012-04-01

    Full Text Available Santorini is the most active volcanic complex in the South Aegean Volcanic Arc. To improve the seismological network detectability of the seismicity in this region, the Institute of Geodynamics of the National Observatory of Athens (NOA recently installed 4 portable seismological stations supplementary to the 3 permanent stations operating in the region. The addition of these stations has significantly improved the detectability and reporting of the local seismic activity in the NOA instrumental seismicity catalogue.

    In this study we analyze quantitatively the seismicity of the Santorini volcanic complex. The results indicate a recent significant reporting increase mainly for events of small magnitude and an increase in the seismicity rate by more than 100%. The mapping of the statistical significance of the rate change with the z-value method reveals that the rate increase exists primarily in the active fault zone perpendicular to the extensional tectonic stress regime that characterizes this region.

    The spatial distribution of the b-value around the volcanic complex indicates a low b-value distribution parallel to the extensional stress field, while the b-value cross section of the volcanic complex indicates relatively high b-values under the caldera and a significant b-value decrease with depth.

    These results are found to be in general agreement with the results from other volcanic regions and they encourage further investigations concerning the seismic and volcanic hazard and risk estimates for the Santorini volcanic complex using the NOA earthquake catalogue.

  6. Burst conditions of explosive volcanic eruptions recorded on microbarographs

    Science.gov (United States)

    Morrissey, M.M.; Chouet, B.A.

    1997-01-01

    Explosive volcanic eruptions generate pressure disturbances in the atmosphere that propagate away either as acoustic or as shock waves, depending on the explosivity of the eruption. Both types of waves are recorded on microbarographs as 1- to 0.1-hertz N-shaped signals followed by a longer period coda. These waveforms can be used to estimate burst pressures end gas concentrations in explosive volcanic eruptions and provide estimates of eruption magnitudes.

  7. Visualising volcanic gas plumes with virtual globes

    Science.gov (United States)

    Wright, T. E.; Burton, M.; Pyle, D. M.; Caltabiano, T.

    2009-09-01

    The recent availability of small, cheap ultraviolet spectrometers has facilitated the rapid deployment of automated networks of scanning instruments at several volcanoes, measuring volcanic SO 2 gas flux at high frequency. These networks open up a range of other applications, including tomographic reconstruction of the gas distribution which is of potential use for both risk mitigation, particularly to air traffic, and environmental impact modelling. Here we present a methodology for visualising reconstructed plumes using virtual globes, such as Google Earth, which allows animations of the evolution of the gas plume to be displayed and easily shared on a common platform. We detail the process used to convert tomographically reconstructed cross-sections into animated gas plume models, describe how this process is automated and present results from the scanning network around Mt. Etna, Sicily. We achieved an average rate of one frame every 12 min, providing a good visual representation of the plume which can be examined from all angles. In creating these models, an approximation to turbulent diffusion in the atmosphere was required. To this end we derived the value of the turbulent diffusion coefficient for quiescent conditions near Etna to be around 200- 500m2s-1.

  8. Microscopic Evolution of Laboratory Volcanic Hybrid Earthquakes

    Science.gov (United States)

    Ghaffari, H. O.; Griffith, W. A.; Benson, P. M.

    2017-01-01

    Characterizing the interaction between fluids and microscopic defects is one of the long-standing challenges in understanding a broad range of cracking processes, in part because they are so difficult to study experimentally. We address this issue by reexamining records of emitted acoustic phonon events during rock mechanics experiments under wet and dry conditions. The frequency spectrum of these events provides direct information regarding the state of the system. Such events are typically subdivided into high frequency (HF) and low frequency (LF) events, whereas intermediate “Hybrid” events, have HF onsets followed by LF ringing. At a larger scale in volcanic terranes, hybrid events are used empirically to predict eruptions, but their ambiguous physical origin limits their diagnostic use. By studying acoustic phonon emissions from individual microcracking events we show that the onset of a secondary instability-related to the transition from HF to LF-occurs during the fast equilibration phase of the system, leading to sudden increase of fluid pressure in the process zone. As a result of this squeezing process, a secondary instability akin to the LF event occurs. This mechanism is consistent with observations of hybrid earthquakes.

  9. Volcanism, Earth Degassing and Replenished Lithosphere Mantle

    Science.gov (United States)

    Bailey, D. K.

    1980-07-01

    Volcanism that pierces plate interiors is characteristically rich in alkalis and volatiles, and its cause and persistence are essentially expressions of the Earth's outgassing. The general balance of mobile elements (such as H, C, F and Cl) rules out recycling of sea floor, hydrosphere, sediments or atmosphere: furthermore, it is not in accord with accepted planet degassing budgets. The typical eruptive mode of volatile-rich magmatism means that the observed regional chemical variations, and even differences between adjacent volcanoes, must largely reflect source heterogeneity. In a broader context, this magmatism is also at odds with a concept of continental crust underlain by strongly depleted (refractory) mantle. Repetition of activity along crustal zones of weakness shows that the lithosphere mantle (a) is structurally complex and (b) still holds continuing (or continual) rich reserves of mobile elements. Unbroken lithosphere muffles the evolutionary escape of volatiles from the deep mantle: any lesion that appears then offers easy escape channels, whereby volatiles are drained from a large mantle region and funnelled through the plate. Horizontal movement of thick continental lithosphere releases volatiles from deep sources, imparting some of the special chemical characteristics of the stable continental magmatism. Present evidence requires consideration of the continental lithosphere as a site of primordial heterogeneity that has been accentuated rather than diminished by geological processes.

  10. Venus - Stereoscopic Images of Volcanic Domes

    Science.gov (United States)

    1991-01-01

    This Magellan image depicts a stereoscopic pair of an area on Venus with small volcanic domes. Stereoscopic images of Venus offer exciting new possibilities for scientific analysis of Venusian landforms, such as the domes shown here, impact craters, graben -- long rifts bounded by faults -- and other geologic features. Stereopsis, or a three-dimensional view of this scene, may be obtained by viewing with a stereoscope. One may also cut this photograph into two parts and look at the left image with the left eye and the right image with the right eye; conjugate images (the same features) should be about 5 centimeters (2 inches) apart when viewing. This area is located at 38.4 degrees south latitude and 78.3 degrees east longitude. The incidence, or look, angle of the left image is 28.5 degrees and that of the right image is 15.6 degrees. Radar illumination for both images comes from the left. A small dome at left center is about 140 meters (464 feet) high and 6 kilometers (3.7 miles) wide. Other domes with smaller relief can be perceived in three dimensions. At the smaller incidence angle used to acquire the image on the right, radar brightness is more sensitive to small changes in topography. This enhances the visibility of many of the domes in this scene.

  11. Microscopic Evolution of Laboratory Volcanic Hybrid Earthquakes

    Science.gov (United States)

    Ghaffari, H. O.; Griffith, W. A.; Benson, P. M.

    2017-01-01

    Characterizing the interaction between fluids and microscopic defects is one of the long-standing challenges in understanding a broad range of cracking processes, in part because they are so difficult to study experimentally. We address this issue by reexamining records of emitted acoustic phonon events during rock mechanics experiments under wet and dry conditions. The frequency spectrum of these events provides direct information regarding the state of the system. Such events are typically subdivided into high frequency (HF) and low frequency (LF) events, whereas intermediate “Hybrid” events, have HF onsets followed by LF ringing. At a larger scale in volcanic terranes, hybrid events are used empirically to predict eruptions, but their ambiguous physical origin limits their diagnostic use. By studying acoustic phonon emissions from individual microcracking events we show that the onset of a secondary instability–related to the transition from HF to LF–occurs during the fast equilibration phase of the system, leading to sudden increase of fluid pressure in the process zone. As a result of this squeezing process, a secondary instability akin to the LF event occurs. This mechanism is consistent with observations of hybrid earthquakes. PMID:28074878

  12. Analytical models of volcanic ellipsoidal expansion sources

    Directory of Open Access Journals (Sweden)

    Antonella Amoruso

    2013-11-01

    Full Text Available Modeling non-double-couple earthquakes and surficial deformation in volcanic and geothermal areas usually involves expansion sources. Given an ensemble of ellipsoidal or tensile expansion sources and double-couple ones, it is straightforward to obtain the equivalent single moment tensor under the far-field approximation. On the contrary, the moment tensor interpretation is by no means unique or unambiguous. If the far-field approximation is unsatisfied, the single moment tensor representation is inappropriate. Here we focus on the volume change estimate in the case of single sources, in particular finite pressurized ellipsoidal sources, presenting the expressions for the computation of the volume change and surficial displacement in a closed analytical form. We discuss the implications of different domains of the moment-tensor eigenvalue ratios in terms of volume change computation. We also discuss how the volume change of each source can be obtained from the isotropic component of the total moment tensor, in few cases of coupled sources where the total volume change is null. The new expressions for the computation of the volume change and surficial displacement in case of finite pressurized ellipsoidal sources should make their use easier with respect to the already published formulations.

  13. Volcanic Eruption: Students Develop a Contingency Plan

    Science.gov (United States)

    Meisinger, Philipp; Wittlich, Christian

    2013-04-01

    Dangerous, loud, sensational, exciting - natural hazards have what it takes to get students attention around the globe. Arising interest is the first step to develop an intrinsic motivation to learn about the matter and endure the hardships that students might discover along the way of the unit. Natural hazards thereby establish a close-knit connection between physical and anthropological geography through analyzing the hazardous event and its consequences for the people living in the affected area. Following a general principle of didactics we start searching right on our doorsteps to offer students the possibility to gain knowledge on the familiar and later transfer it to the unknown example. Even in Southwest Germany - a region that is rather known for its wine than its volcanic activity - we can find a potentially hazardous region. The "Laacher See" volcano (a caldera lake) in northern Rhineland-Palatinate is according to Prof. H.U. Schminke a "potentially active volcano" . Its activity can be proven by seismic activities, or experienced when visiting the lake's southeastern shore, where carbondioxid and sulphur gases from the underlying magma chamber still bubble up. The Laacher See is part of a range of volcanoes (classified from 'potentially active' to 'no longer active') of the East Eifel Volcanic Field. Precariously the Laacher See is located closely to the densely populated agglomerations of Cologne (NE, distance: 45 km) and the former capital Bonn (NE: 35km), as well as Koblenz (E: 24km) and the Rhine river. Apart from that, the towns of Andernach (E: 8km ± 30 000 inhabitants) and Mayen (SW: 11km ±20 000 inhabitants) and many smaller towns and villages are nearby due to economic reasons. The number of people affected by a possible eruption easily exceeds two million people considering the range as prime measurement. The underlying danger, as projected in a simulation presented by Prof. Schminke, is a lava stream running down the Brohltal valley

  14. Magnesium isotope geochemistry in arc volcanism

    Science.gov (United States)

    Teng, Fang-Zhen; Hu, Yan; Chauvel, Catherine

    2016-06-01

    Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ26Mg of the Martinique Island lavas varies from -0.25 to -0.10, in contrast to the narrow range that characterizes the mantle (-0.25 ± 0.04, 2 SD). These high δ26Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid-mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration.

  15. Magnesium isotope geochemistry in arc volcanism.

    Science.gov (United States)

    Teng, Fang-Zhen; Hu, Yan; Chauvel, Catherine

    2016-06-28

    Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ(26)Mg of the Martinique Island lavas varies from -0.25 to -0.10, in contrast to the narrow range that characterizes the mantle (-0.25 ± 0.04, 2 SD). These high δ(26)Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid-mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration.

  16. Volcanic ash at Santiaguito dome complex, Guatemala

    Science.gov (United States)

    Hornby, Adrian; Kendrick, Jackie; Lavallée, Yan; Cimarelli, Corrado; von Aulock, Felix; Rhodes, Emma; Kennedy, Ben; Wadsworth, Fabian

    2015-04-01

    Dome-building volcanoes often suffer episodic explosions. Examination of eruptive activity at Santiaguito dome complex (Guatemala) reveals that gas-and-ash explosions are concordant with rapid inflation/ deflation cycles of the active dome. During these explosions strain is accommodated along marginal faults, where tensional fracture mechanisms and friction dominate, complicating the model of ash generation by bubble rupture in magma. Here, we describe textural features, morphology and petrology of ash collected before, during and after a dome collapse event at Santiaguito dome complex on the 28th November 2012. We use QEM-scan (on more than 35000 grains), laser diffraction granulometry and optical and scanning microscopy to characterise the samples. The ash samples show a bimodal size distribution and a range of textures, crystal content and morphologies. The ash particles are angular to sub-angular and are relatively dense, so do not appear to comprise of pore walls. Instead the ash is generally blocky (>70%), similar to the products of shear magma failure. The ash samples show minor variation before, during and after dome collapse, specifically having a smaller grain size and a higher fraction of phenocrysts fragments before collapse. Textural analysis shows vestiges of chemically heterogeneous glass (melt) filaments originating from the crystals and crosscut by fragmentation during volcanic ash formation. High-velocity friction can induce melting of dome lavas, producing similar disequilibrium melting textures. This work shows the importance of deformation mechanisms in ash generation at lava domes and during Vulcanian activity.

  17. Volcanic Rocks As Targets For Astrobiology Missions

    Science.gov (United States)

    Banerjee, N.

    2010-12-01

    Almost two decades of study highlight the importance of terrestrial subaqueous volcanic rocks as microbial habitats, particularly in glass produced by the quenching of basaltic lava upon contact with water. On Earth, microbes rapidly begin colonizing glassy surfaces along fractures and cracks exposed to water. Microbial colonization of basaltic glass leads to enhanced alteration through production of characteristic granular and/or tubular bioalteration textures. Infilling of formerly hollow alteration textures by minerals enable their preservation through geologic time. Basaltic rocks are a major component of the Martian crust and are widespread on other solar system bodies. A variety of lines of evidence strongly suggest the long-term existence of abundant liquid water on ancient Mars. Recent orbiter, lander and rover missions have found evidence for the presence of transient liquid water on Mars, perhaps persisting to the present day. Many other solar system bodies, notably Europa, Enceladus and other icy satellites, may contain (or have once hosted) subaqueous basaltic glasses. The record of terrestrial glass bioalteration has been interpreted to extend back ~3.5 billion years and is widespread in modern oceanic crust and its ancient metamorphic equivalents. The terrestrial record of glass bioalteration strongly suggests that glassy or formerly glassy basaltic rocks on extraterrestrial bodies that have interacted with liquid water are high-value targets for astrobiological exploration.

  18. Volcanic aerosols: Chemistry, evolution, and effects

    Science.gov (United States)

    Turco, Richard

    1991-01-01

    Stratospheric aerosols have been the subject of scientific speculation since the 1880s, when the powerful eruption of Krakatoa attracted worldwide attention to the upper atmosphere through spectacular optical displays. The presence of a permanent tenuous dust layer in the lower stratosphere was postulated in the 1920s following studies of the twilight glow. Junge collected the first samples of these 'dust' particles and demonstrated that they were actually composed of sulfates, most likely concentrated sulfuric acid (Junge and Manson, 1961; Junge, 1963). Subsequent research has been spurred by the realization that stratospheric particles can influence the surface climate of earth through their effects on atmospheric radiation. Such aerosols can also influence, through chemical and physical effects, the trace composition of the atmosphere, ozone concentrations, and atmospheric electrical properties. The properties of stratospheric aerosols (both the background particles and those enhanced by volcanic eruptions) were measured in situ by balloon ascents and high altitude aircraft sorties. The aerosols were also observed remotely from the ground and from satellites using both active (lidar) and passive (solar occultation) techniques (remote sensing instruments were carried on aircraft and balloon platforms as well). In connection with the experimental work, models were developed to test theories of particle formation and evolution, to guide measurement strategies, to provide a means of connecting laboratory and field data, and to apply the knowledge gained to answer practical questions about global changes in climate, depletion of the ozone layer, and related environmental problems.

  19. Geochemistry of the Lathrop Wells volcanic center

    Energy Technology Data Exchange (ETDEWEB)

    Perry, F.V.; Straub, K.T.

    1996-03-01

    Over 100 samples have been gathered from the Lathrop Wells volcanic center to assess different models of basalt petrogenesis and constrain the physical mechanisms of magma ascent in the Yucca Mountain region. Samples have been analyzed for major and trace-element chemistry, Nd, Sr and Ph isotopes, and mineral chemistry. All eruptive units contain olivine phenocrysts, but only the oldest eruptive units contain plagioclase phenocrysts. Compositions of minerals vary little between eruptive units. Geochemical data show that most of the eruptive units at Lathrop Wells defined by field criteria can be distinguished by major and trace-element chemistry. Normative compositions of basalts at Lathrop Wells correlate with stratigraphic position. The oldest basalts are primarily nepheline normative and the youngest basalts are exclusively hypersthene normative, indicating increasing silica saturation with time. Trace-element and major-element variations among eruptive units are statistically significant and support the conclusion that eruptive units at Lathrop Wells represent separate and independent magma batches. This conclusion indicates that magmas in the Yucca Mountain region ascend at preferred eruption sites rather than randomly.

  20. Google Mapplets for Earthquakes and Volcanic Activity

    Science.gov (United States)

    Haefner, S. A.; Venezky, D. Y.

    2007-12-01

    The USGS Earthquake and Volcano Hazards Programs monitor, assess, and issue warnings of natural hazards. Users can access our hazards information through our web pages, RSS feeds, and now through USGS Mapplets. Mapplets allow third party data layers to be added on top of Google Maps (http://maps.google.com - My Maps tab). Mapplets are created by parsing a GeoRSS feed, which involves searching through an XML file for location data and plotting the associated information on a map. The new Mapplets allow users to view both real-time earthquakes and current volcanic activity on the same map for the first time. In addition, the USGS Mapplets have been added to Google's extensive collection of Mapplets, allowing users to add the types of information they want to see on their own customized maps. The Earthquake Mapplet plots the past week of earthquakes around the world, showing the location, time and magnitude. The Volcano Mapplet displays the latest U.S. volcano updates, including the current level of both ground-based and aviation hazards. Join us to discuss how Mapplets are made and how they can be used to create your own customized map.

  1. Volcanism and Subduction: The Kamchatka Region

    Science.gov (United States)

    Eichelberger, John; Gordeev, Evgenii; Izbekov, Pavel; Kasahara, Minoru; Lees, Jonathan

    The Kamchatka Peninsula and contiguous North Pacific Rim is among the most active regions in the world. Kamchatka itself contains 29 active volcanoes, 4 now in a state of semi-continuous eruption, and I has experienced 14 magnitude 7 or greater earthquakes since accurate recording began in 1962. At its heart is the uniquely acute subduction cusp where the Kamchatka and Aleutian Arcs and Emperor Seamount Chain meet. Volcanism and Subduction covers coupled magmatism and tectonics in this spectacular region, where the torn North Pacific slab dives into hot mantle. Senior Russian and American authors grapple with the dynamics of the cusp with perspectives from the west and east of it, respectively, while careful tephrostratigraphy yields a remarkably precise record of behavior of storied volcanoes such as Kliuchevskoi and Shiveluch. Towards the south, Japanese researchers elucidate subduction earthquake processes with unprecedented geodetic resolution. Looking eastward, new insights on caldera formation, monitoring, and magma ascent are presented for the Aleutians. This is one of the first books of its kind printed in the English language. Students and scientists beginning research in the region will find in this book a useful context and introduction to the region's scientific leaders. Others who wish to apply lessons learned in the North Pacific to their areas of interest will find the volume a valuable reference.

  2. Felsic volcanism in a basic shield (El Hierro, Canary Islands). Implications in terms of volcanic hazards.

    Science.gov (United States)

    Pedrazzi, Dario; Becerril Carretero, Laura; Martí Molist, Joan; Meletlidis, Stavros; Galindo Jiménez, Inés

    2014-05-01

    El Hierro, the southwesternmost and smallest island of the Canary Archipelago, is a complex basaltic shield volcano characterized by mainly effusive volcanism with both Strombolian and Hawaiian activity. Explosive felsic volcanism is not a common feature of the archipelago and, so far, it has only been reported on the central islands of Tenerife and Gran Canaria, where it has been responsible for the formation of large central volcanic complexes. The presence of felsic rocks on the other islands of the archipelago and specifically on El Hierro is mostly restricted to subvolcanic intrusions and a few lava flows, generally associated with the oldest parts of the islands. We hereby report the presence of a trachytic pumice deposit on the island of El Hierro, referred to here as the Malpaso Member. A detailed stratigraphic, lithological, and sedimentological study was carried out on the deposits of this explosive episode of felsic composition, which is the only one found on the Canary Islands apart from those of Gran Canaria and Tenerife. Four different subunits were identified on the basis of their lithological and granulometrical characteristics. The products of the eruption correspond to a single eruptive event and cover an area of about 13 km2. This deposit originated from a base-surge-type explosive eruption with a subsequent radial emplacement of dilute PDC currents, was emplaced from the vent that would have been located in a similar position to the volcano of Tanganasoga. The low vesicularity of juvenile fragments and the morphological characteristics of the fine particles, as well as the high proportion of lithic fragments and the ash-rich nature of the deposit, suggest that magma/water interaction controlled the dynamics of the eruption. This study demonstrates that magmas from El Hierro could have the potential for producing an explosive eruption, in an environment in which the majority of the eruptions are basaltic and effusive in nature. Bearing in mind

  3. Forest inventory: role in accountability for sustainable forest management

    Science.gov (United States)

    Lloyd C. Irland

    2007-01-01

    Forest inventory can play several roles in accountability for sustainable forest management. A first dimension is accountability for national performance. The new field of Criteria and Indicators is an expression of this need. A more familiar role for the U.S. Department of Agriculture Forest Service Forest Inventory and Analysis (FIA) program is for assessment and...

  4. The forest resources of the Shawnee National Forest, 1998.

    Science.gov (United States)

    David E. Haugen

    2003-01-01

    The inventory of forest resources of the Shawnee National Forest reports 273.2 thousand acres of forest land, of which 249.3 thousand acres are timberland. This bulletin presents as analysis of forest resources focusing on change in tree species composition, timber volume, growth, removals, and mortality.

  5. The forest resources of the Hiawatha National Forest, 1993.

    Science.gov (United States)

    Thomas Schmidt; Mike Lanasa

    1995-01-01

    The inventory of the forest resources of Hiawatha National Forest reports 892.1 thousand acres of land, of which 756.7 thousand acres are forested. This bulletin presents statistical highlights and contains detailed tables of forest area, as well as of timber volume, growth, removals, and mortality.

  6. The forest resources of the Hoosier National Forest, 1998.

    Science.gov (United States)

    Earl C. Leatherberry

    2003-01-01

    The inventory of forest resources of the Hoosier National Forest reports 186 thousand acres of forest land, of which 169.8 thousand acres are timberland. This bulletin presents an analysis of forest resources, focusing on change in tree species composition, timber volume, growth, removals, and mortality.

  7. The forest resources of the Ottawa National Forest, 1993.

    Science.gov (United States)

    Earl C. Leatherberry; James L. Meunier

    1997-01-01

    The inventory of the forest resources of the Ottawa National Forest reports 967.0 thousand acres of land, of which 908.6 thousand acres are forested. This bulletin presents an analysis of forest resources focusing on change in tree species composition, timber volume, growth, removals, and mortality.

  8. Forest structure in low-diversity tropical forests: a study of Hawaiian wet and dry forests.

    Science.gov (United States)

    Ostertag, Rebecca; Inman-Narahari, Faith; Cordell, Susan; Giardina, Christian P; Sack, Lawren

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai'i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai'i forests were characterized by low species richness and very high relative dominance. The two Hawai'i forests were floristically distinct, yet similar in species richness (15 vs. 21 species) and stem density (3078 vs. 3486/ha). While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5->50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai'i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15-1182 species), six-fold variation in mean annual rainfall (835-5272 mm yr(-1)) and 1.8-fold variation in mean annual temperature (16.0-28.4°C). Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological theory for

  9. Self-potential anomalies in some Italian volcanic areas

    Directory of Open Access Journals (Sweden)

    C. Silenziario

    1996-06-01

    Full Text Available The study of Self-Potential (SP space and time variations in volcanic areas may provide useful information on both the geometrical structure of the volcanic apparatuses and the dynamical behaviour of the feeding and uprising systems. In this paper, the results obtained on the islands of Vulcano (Eolian arc and Ponza (Pontine archipelago and on the Mt. Somma-Vesuvius complex are shown. On the island of Vulcano and on the Mt. Somma-Vesuvius apparatus areal SP surveys were performed with the aim of evidencing anomalies closely associated to the zones of major volcanic activity. On the island of Vulcano a profile across the fumaroles along the crater rim of the Fossa Cone was also carried out in order to have a direct relationship between fumarolic fracture migration and flow rate and SP anomaly space and time variations. The areal survey on the island of Ponza, which is considered an inactive area, is assumed as a reference test with which to compare the amplitude and pattern of the anomalies in the active areas. A tentative interpretation of the SP anomalies in volcanic areas is suggested in terms of electrokinetic phenomena, related to the movement of fluids of both volcanic and non-volcanic origin.

  10. Volcanic hazard impacts to critical infrastructure: A review

    Science.gov (United States)

    Wilson, G.; Wilson, T. M.; Deligne, N. I.; Cole, J. W.

    2014-10-01

    Effective natural hazard risk assessment requires the characterisation of both hazards and vulnerabilities of exposed elements. Volcanic hazard assessment is at an advanced state and is a considerable focus of volcanic scientific inquiry, whereas comprehensive vulnerability assessment is lacking. Cataloguing and analysing volcanic impacts provide insight on likely societal and physical vulnerabilities during future eruptions. This paper reviews documented disruption and physical damage of critical infrastructure elements resulting from four volcanic hazards (tephra fall, pyroclastic density currents, lava flows and lahars) of eruptions in the last 100 years. We define critical infrastructure as including energy sector infrastructure, water supply and wastewater networks, transportation routes, communications, and critical components. Common trends of impacts and vulnerabilities are summarised, which can be used to assess and reduce volcanic risk for future eruptions. In general, tephra falls cause disruption to these infrastructure sectors, reducing their functionality, whilst flow hazards (pyroclastic density currents, lava flows and lahars) are more destructive causing considerable permanent damage. Volcanic risk assessment should include quantification of vulnerabilities and we challenge the volcanology community to address this through the implementation of a standardised vulnerability assessment methodology and the development and use of fragility functions, as has been successfully implemented in other natural hazard fields.

  11. Volcanic hazard on Deception Island (South Shetland Islands, Antarctica)

    Science.gov (United States)

    Bartolini, S.; Geyer, A.; Martí, J.; Pedrazzi, D.; Aguirre-Díaz, G.

    2014-09-01

    Deception Island is the most active volcano in the South Shetland Islands and has been the scene of more than twenty identified eruptions over the past two centuries. In this contribution we present the first comprehensive long-term volcanic hazard assessment for this volcanic island. The research is based on the use of probabilistic methods and statistical techniques to estimate volcanic susceptibility, eruption recurrence and the most likely future eruptive scenarios. We perform a statistical analysis of the time series of past eruptions and the spatial extent of their products, including lava flows, fallout, pyroclastic density currents and lahars. The Bayesian event tree statistical method HASSET is applied to calculate eruption recurrence, while the QVAST tool is used in an analysis of past activity to calculate the possibility that new vents will open (volcanic susceptibility). On the basis of these calculations, we identify a number of significant scenarios using the GIS-based VORIS 2.0.1 and LAHARZ software and evaluate the potential extent of the main volcanic hazards to be expected on the island. This study represents a step forward in the evaluation of volcanic hazard on Deception Island and the results obtained are potentially useful for long-term emergency planning.

  12. Scaling properties of planetary calderas and terrestrial volcanic eruptions

    Directory of Open Access Journals (Sweden)

    L. Sanchez

    2012-11-01

    Full Text Available Volcanism plays an important role in transporting internal heat of planetary bodies to their surface. Therefore, volcanoes are a manifestation of the planet's past and present internal dynamics. Volcanic eruptions as well as caldera forming processes are the direct manifestation of complex interactions between the rising magma and the surrounding host rock in the crust of terrestrial planetary bodies. Attempts have been made to compare volcanic landforms throughout the solar system. Different stochastic models have been proposed to describe the temporal sequences of eruptions on individual or groups of volcanoes. However, comprehensive understanding of the physical mechanisms responsible for volcano formation and eruption and more specifically caldera formation remains elusive. In this work, we propose a scaling law to quantify the distribution of caldera sizes on Earth, Mars, Venus, and Io, as well as the distribution of calderas on Earth depending on their surrounding crustal properties. We also apply the same scaling analysis to the distribution of interevent times between eruptions for volcanoes that have the largest eruptive history as well as groups of volcanoes on Earth. We find that when rescaled with their respective sample averages, the distributions considered show a similar functional form. This result implies that similar processes are responsible for caldera formation throughout the solar system and for different crustal settings on Earth. This result emphasizes the importance of comparative planetology to understand planetary volcanism. Similarly, the processes responsible for volcanic eruptions are independent of the type of volcanism or geographical location.

  13. Volcanic passive margins: another way to break up continents.

    Science.gov (United States)

    Geoffroy, L; Burov, E B; Werner, P

    2015-10-07

    Two major types of passive margins are recognized, i.e. volcanic and non-volcanic, without proposing distinctive mechanisms for their formation. Volcanic passive margins are associated with the extrusion and intrusion of large volumes of magma, predominantly mafic, and represent distinctive features of Larges Igneous Provinces, in which regional fissural volcanism predates localized syn-magmatic break-up of the lithosphere. In contrast with non-volcanic margins, continentward-dipping detachment faults accommodate crustal necking at both conjugate volcanic margins. These faults root on a two-layer deformed ductile crust that appears to be partly of igneous nature. This lower crust is exhumed up to the bottom of the syn-extension extrusives at the outer parts of the margin. Our numerical modelling suggests that strengthening of deep continental crust during early magmatic stages provokes a divergent flow of the ductile lithosphere away from a central continental block, which becomes thinner with time due to the flow-induced mechanical erosion acting at its base. Crustal-scale faults dipping continentward are rooted over this flowing material, thus isolating micro-continents within the future oceanic domain. Pure-shear type deformation affects the bulk lithosphere at VPMs until continental breakup, and the geometry of the margin is closely related to the dynamics of an active and melting mantle.

  14. Volcanic impact on the Atlantic ocean over the last millennium

    Directory of Open Access Journals (Sweden)

    J. Mignot

    2011-08-01

    Full Text Available The oceanic response to volcanic eruptions over the last 1000 years is investigated with a focus on the North Atlantic Ocean, using a fully coupled AOGCM forced by a realistic time series of volcanic eruptions, total solar irradiance (TSI and atmospheric greenhouse gases concentration. The model simulates little response to TSI variations but a strong and long-lasting thermal and dynamical oceanic adjustment to volcanic forcing, which is shown to be a function of the time period of the volcanic eruptions, probably due to their different seasonality. The thermal response consists of a fast tropical cooling due to the radiative forcing by the volcanic eruptions, followed by a penetration of this cooling in the subtropical ocean interior one to five years after the eruption, and propagation of the anomalies toward the high latitudes. The oceanic circulation first adjusts rapidly to low latitude anomalous wind stress induced by the strong cooling. The Atlantic Meridional Overturning Circulation (AMOC shows a significant intensification 5 to 10 years after the eruptions of the period post-1400 AD, in response to anomalous atmospheric momentum forcing, and a slight weakening in the following decade. In response to the stronger eruptions occurring between 1100 and 1300, the AMOC shows no intensification and a stronger reduction after 10 years. This study thus stresses the diversity of AMOC response to volcanic eruptions in climate models and tentatively points to an important role of the seasonality of the eruptions.

  15. Volcanic ash: What it is and how it forms

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, G.

    1991-09-13

    There are four basic eruption processes that produce volcanic ash: (1) decompression of rising magma, gas bubble growth, and fragmentation of the foamy magma in the volcanic vent (magmatic), (2) explosive mixing of magma with ground or surface water (hydrovolcanic), (3) fragmentation of country rock during rapid expansion of steam and/or hot water (phreatic), and (4) breakup of lava fragments during rapid transport from the vent. Variations in eruption style and the characteristics of volcanic ashes produced during explosive eruptions depend on many factors, including magmatic temperature, gas content, viscosity and crystal content of the magma before eruption, the ratio of magma to ground or surface water, and physical properties of the rock enclosing the vent. Volcanic ash is composed of rock and mineral fragments, and glass shards, which is less than 2 mm in diameter. Glass shard shapes and sizes depend upon size and shape of gas bubbles present within the magma immediately before eruption and the processes responsible for fragmentation of the magma. Shards range from slightly curved, thin glass plates, which were broken from large, thin-walled spherical bubble walls, to hollow needles broken from pumiceous melts containing gas bubbles stretched by magma flow within the volcanic vent. Pumice fragments make up the coarser-grained portions of the glass fraction. Particle sizes range from meters for large blocks expelled near the volcanic vent to nanometers for fine ash and aerosol droplets within well-dispersed eruption plumes. 18 refs., 6 figs., 1 tab.

  16. Volcanic hazards of the Idaho National Engineering Laboratory and adjacent areas

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, W.R. [WRH Associates, Salt Lake City, UT (United States); Smith, R.P. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1994-12-01

    Potential volcanic hazards are assessed, and hazard zone maps are developed for the Idaho National Engineering Laboratory (INEL) and adjacent areas. The basis of the hazards assessment and mapping is the past volcanic history of the INEL region, and the apparent similarity of INEL volcanism with equivalent, well-studied phenomena in other regions of active volcanism, particularly Hawaii and Iceland. The most significant hazards to INEL facilities are associated with basaltic volcanism, chiefly lava flows, which move slowly and mainly threaten property by inundation or burning. Related hazards are volcanic gases and tephra, and ground disturbance associated with the ascent of magma under the volcanic zones. Several volcanic zones are identified in the INEL area. These zones contain most of the volcanic vents and fissures of the region and are inferred to be the most probable sites of future INEL volcanism. Volcanic-recurrence estimates are given for each of the volcanic zones based on geochronology of the lavas, together with the results of field and petrographic investigations concerning the cogenetic relationships of INEL volcanic deposits and associated magma intrusion. Annual probabilities of basaltic volcanism within the INEL volcanic zones range from 6.2 {times} 10{sup {minus}5} per year (average 16,000-year interval between eruptions) for the axial volcanic zone near the southern INEL boundary and the Arco volcanic-rift zone near the western INEL boundary, to 1 {times} 10{sup {minus}5} per year (average 100,000-year interval between eruptions) for the Howe-East Butte volcanic rift zone, a geologically old and poorly defined feature of the central portion of INEL. Three volcanic hazard zone maps are developed for the INEL area: lava flow hazard zones, a tephra (volcanic ash) and gas hazard zone, and a ground-deformation hazard zone. The maps are useful in land-use planning, site selection, and safety analysis.

  17. Securing tropical forest carbon

    DEFF Research Database (Denmark)

    Scharlemann, Jörn P. W.; Kapos, Valerie; Campbell, Alison;

    2010-01-01

    Forest loss and degradation in the tropics contribute 6-17% of all greenhouse gas emissions. Protected areas cover 217.2 million ha (19.6%) of the world's humid tropical forests and contain c. 70.3 petagrams of carbon (Pg C) in biomass and soil to 1 m depth. Between 2000 and 2005, we estimate...... that 1.75 million ha of forest were lost from protected areas in humid tropical forests, causing the emission of 0.25-0.33 Pg C. Protected areas lost about half as much carbon as the same area of unprotected forest. We estimate that the reduction of these carbon emissions from ongoing deforestation...... in protected sites in humid tropical forests could be valued at USD 6,200-7,400 million depending on the land use after clearance. This is >1.5 times the estimated spending on protected area management in these regions. Improving management of protected areas to retain forest cover better may be an important...

  18. Volcanism-sedimentation interaction in the Campo de Calatrava Volcanic Field (Spain): a magnetostratigraphic and geochronological study

    Science.gov (United States)

    Herrero-Hernández, Antonio; López-Moro, Francisco Javier; Gallardo-Millán, José Luis; Martín-Serrano, Ángel; Gómez-Fernández, Fernando

    2015-01-01

    This work focuses on the influence of Cenozoic volcanism of the Campo de Calatrava volcanic field on the sedimentation of two small continental basins in Spain (Argamasilla and Calzada-Moral basins). The volcanism in this area was mainly monogenetic, according to the small-volume volcanic edifices of scoria cones that were generated and the occurrence of tuff rings and maars. A sedimentological analysis of the volcaniclastic deposits led to the identification of facies close to the vents, low-density (dilute) pyroclastic surges, secondary volcanic deposits and typical maar deposits. Whole-rock K/Ar dating, together with palaeomagnetic constraints, yielded an age of 3.11-3.22 Ma for the onset of maar formation, the deposition finished in the Late Gauss-Early Matuyana. Using both techniques and previous paleontological data allowed it to be inferred that the maar formation and the re-sedimentation stage that occurred in Argamasilla and Calzada-Moral basins were roughly coeval. The occurrence of syn-eruption volcaniclastic deposits with small thicknesses that were separated by longer inter-eruption periods, where fluvial and lacustrine sedimentation was prevalent, together with the presence of small-volume volcanic edifices indicated that there were short periods of volcanic activity in this area. The volcanic activity was strongly controlled by previous basement faults that favoured magma feeding, and the faults also controlled the location of volcanoes themselves. The occurrence of the volcanoes in the continental basins led to the creation of shallow lakes that were related to the maar formation and the modification of sedimentological intra-basinal features, specifically, valley slope and sediment load.

  19. Forests of East Texas, 2014

    Science.gov (United States)

    Thomas J. Brandeis

    2015-01-01

    This resource update provides an overview of forest resources in east Texas derived from an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) Program at the Southern Research Station in cooperation with the Texas A&M Forest Service. These estimates are based on field data collected using the FIA annualized sample design and are...

  20. Forests of east Texas, 2015

    Science.gov (United States)

    Kerry J.W. Dooley

    2017-01-01

    This resource update provides an overview of forest resources in east Texas based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Southern Research Station (SRS) in cooperation with Texas A&M Forest Service. The 254 counties of Texas are consolidated into seven FIA survey units—Southeast (unit 1),...

  1. The Challenge of Forest Diagnostics

    Directory of Open Access Journals (Sweden)

    Harini Nagendra

    2011-06-01

    Full Text Available Ecologists and practitioners have conventionally used forest plots or transects for monitoring changes in attributes of forest condition over time. However, given the difficulty in collecting such data, conservation practitioners frequently rely on the judgment of foresters and forest users for evaluating changes. These methods are rarely compared. We use a dataset of 53 forests in five countries to compare assessments of forest change from forest plots, and forester and user evaluations of changes in forest density. We find that user assessments of changes in tree density are strongly and significantly related to assessments of change derived from statistical analyses of randomly distributed forest plots. User assessments of change in density at the shrub/sapling level also relate to assessments derived from statistical evaluations of vegetation plots, but this relationship is not as strong and only weakly significant. Evaluations of change by professional foresters are much more difficult to acquire, and less reliable, as foresters are often not familiar with changes in specific local areas. Forester evaluations can instead better provide valid single-time comparisons of a forest with other areas in a similar ecological zone. Thus, in forests where local forest users are present, their evaluations can be used to provide reliable assessments of changes in tree density in the areas they access. However, assessments of spatially heterogeneous patterns of human disturbance and regeneration at the shrub/sapling level are likely to require supplemental vegetation analysis.

  2. Climate change and forest diseases

    Science.gov (United States)

    R.N. Sturrock; Susan Frankel; A. V. Brown; Paul Hennon; J. T. Kliejunas; K. J. Lewis; J. J. Worrall; A. J. Woods

    2011-01-01

    As climate changes, the effects of forest diseases on forest ecosystems will change. We review knowledge of relationships between climate variables and several forest diseases, as well as current evidence of how climate, host and pathogen interactions are responding or might respond to climate change. Many forests can be managed to both adapt to climate change and...

  3. 78 FR 23903 - Forest Service

    Science.gov (United States)

    2013-04-23

    ... Forest Service Dixie Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting... recommendations to the Forest Service concerning projects and funding consistent with Title II of the Act. The meeting is open to the public. The purpose of the meeting is to review proposals for forest projects and...

  4. Integrating Community Volcanic Hazard Mapping, Geographic Information Systems, and Modeling to Reduce Volcanic Hazard Vulnerability

    Science.gov (United States)

    Bajo Sanchez, Jorge V.

    This dissertation is composed of an introductory chapter and three papers about vulnerability and volcanic hazard maps with emphasis on lahars. The introductory chapter reviews definitions of the term vulnerability by the social and natural hazard community and it provides a new definition of hazard vulnerability that includes social and natural hazard factors. The first paper explains how the Community Volcanic Hazard Map (CVHM) is used for vulnerability analysis and explains in detail a new methodology to obtain valuable information about ethnophysiographic differences, hazards, and landscape knowledge of communities in the area of interest: the Canton Buenos Aires situated on the northern flank of the Santa Ana (Ilamatepec) Volcano, El Salvador. The second paper is about creating a lahar hazard map in data poor environments by generating a landslide inventory and obtaining potential volumes of dry material that can potentially be carried by lahars. The third paper introduces an innovative lahar hazard map integrating information generated by the previous two papers. It shows the differences in hazard maps created by the communities and experts both visually as well as quantitatively. This new, integrated hazard map was presented to the community with positive feedback and acceptance. The dissertation concludes with a summary chapter on the results and recommendations.

  5. Sedimentary-volcanic tuffs formed during the early Middle Triassic volcanic event in Guizhou Province and their stratigraphic significance

    Institute of Scientific and Technical Information of China (English)

    XIAO Jiafei; HU Ruizhong

    2005-01-01

    The sedimentary-volcanic tuff (locally called "green-bean rock") formed during the early Middle Triassic volcanic event in Guizhou Province is characterized as being thin, stable, widespread, short in forming time and predominantly green in color. The green-bean rock is a perfect indicator for stratigraphic division. Its petrographic and geochemical features are unique, and it is composed mainly of glassy fragments and subordinately of crystal fragments and volcanic ash balls. Analysis of the major and trace elements and rare-earth elements (REE), as well as the related diagrams, permits us to believe that the green-bean rock is acidic volcanic material of the calc-alkaline series formed in the Indosinian orogenic belt on the Sino-Vietnam border, which was atmospherically transported to the tectonically stable areas and then deposited as sedimentary-volcanic rocks there. According to the age of green-bean rock, it is deduced that the boundary age of the Middle-Lower Triassic overlain by the sedimentary-volcanic tuff is about 247 Ma.

  6. Age, distance, and geochemical evolution within a monogenetic volcanic field: Analyzing patterns in the Auckland Volcanic Field eruption sequence

    Science.gov (United States)

    Corvec, Nicolas Le; Bebbington, Mark S.; Lindsay, Jan M.; McGee, Lucy E.

    2013-09-01

    The Auckland Volcanic Field (AVF) is a young active monogenetic basaltic field, which contains ˜50 volcanoes scattered across the Auckland metropolitan area. Understanding the temporal, spatial, and chemical evolution of the AVF during the last c.a. 250 ka is crucial in order to forecast a future eruption. Recent studies have provided new age constraints and potential temporal sequences of the past eruptions within the AVF. We use this information to study how the spatial distribution of the volcanic centers evolves with time, and how the chemical composition of the erupted magmas evolves with time and space. We seek to develop a methodology which compares successive eruptions to describe the link between geochemical and spatiotemporal evolution of volcanic centers within a monogenetic volcanic field. This methodology is tested with the present day data of the AVF. The Poisson nearest neighbor analysis shows that the spatial behavior of the field has been constant overtime, with the spatial distribution of the volcanic centers fitting the Poisson model within the significance levels. The results of the meta-analysis show the existence of correlations between the chemical composition of the erupted magmas and distance, volume, and time. The apparent randomness of the spatiotemporal evolution of the volcanic centers observed at the surface is probably influenced by the activity of the source. The methodology developed in this study can be used to identify possible relationships between composition trends and volume, time and/or distance to the behavior of the source, for successive eruptions of the AVF.

  7. Saving the Forests

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Under a trial program, some forestry workers can acquire the operating rights to the forest in which they work Jiang Yongbin, 34, an employee of the Wumahe Forestry Administration of Yichun City, Heilongjiang Province, became famous overnight when he paid 62,901 yuan to buy 9.3 hectares of state-owned forest on April 29, making him the first person to participate in the country's forest tenure reform. Authorized by the State Council. China's cabinet, the State Forestry Administration approved a

  8. Fluid-magmatic systems and volcanic centers in Northern Caucasus

    Science.gov (United States)

    Sobisevich, Alexey L.; Masurenkov, Yuri P.; Pouzich, Irina N.; Laverova, Ninel I.

    2013-04-01

    The central segment of Alpine mobile folded system and the Greater Caucasus is considered with respect to fluid-magmatic activity within modern and Holocene volcanic centers. A volcanic center is a combination of volcanoes, intrusions, and hydrothermal features supported by endogenous flow of matter and energy localised in space and steady in time; responsible for magma generation and characterized by structural representation in the form of circular dome and caldera associations. Results of complimentary geological and geophysical studies carried out in the Elbrus volcanic area and the Pyatogorsk volcanic center are presented. The deep magmatic source and the peripheral magmatic chamber of the Elbrus volcano are outlined via comparative analysis of geological and experimental geophysical data (microgravity studies, magneto-telluric profiling, temperature of carbonaceous mineral waters). It has been determined that the peripheral magmatic chamber and the deep magmatic source of the volcano are located at depths of 0-7 and 20-30 km below sea level, respectively, and the geothermal gradient beneath the volcano is 100°C/km. In this study, analysis of processes of modern heat outflux produced by carbonaceous springs in the Elbrus volcanic center is carried out with respect to updated information about spatial configuration of deep fluid-magmatic structures of the Elbrus volcano. It has been shown, that degradation of the Elbrus glaciers throughout the historical time is related both to climatic variations and endogenic heat. The stable fast rate of melting for the glaciers on the volcano's eastern slope is of theoretical and practical interest as factors of eruption prognosis. The system approach to studying volcanism implies that events that seem to be outside the studied process should not be ignored. This concerns glaciers located in the vicinity of volcanoes. The crustal rocks contacting with the volcanism products exchange matter and energy between each other

  9. Volcanic unrest and hazard communication in Long Valley Volcanic Region, California

    Science.gov (United States)

    Hill, David P.; Mangan, Margaret T.; McNutt, Stephen R.

    2017-01-01

    The onset of volcanic unrest in Long Valley Caldera, California, in 1980 and the subsequent fluctuations in unrest levels through May 2016 illustrate: (1) the evolving relations between scientists monitoring the unrest and studying the underlying tectonic/magmatic processes and their implications for geologic hazards, and (2) the challenges in communicating the significance of the hazards to the public and civil authorities in a mountain resort setting. Circumstances special to this case include (1) the sensitivity of an isolated resort area to media hype of potential high-impact volcanic and earthquake hazards and its impact on potential recreational visitors and the local economy, (2) a small permanent population (~8000), which facilitates face-to-face communication between scientists monitoring the hazard, civil authorities, and the public, and (3) the relatively frequent turnover of people in positions of civil authority, which requires a continuing education effort on the nature of caldera unrest and related hazards. Because of delays associated with communication protocols between the State and Federal governments during the onset of unrest, local civil authorities and the public first learned that the U.S. Geological Survey was about to release a notice of potential volcanic hazards associated with earthquake activity and 25-cm uplift of the resurgent dome in the center of the caldera through an article in the Los Angeles Times published in May 1982. The immediate reaction was outrage and denial. Gradual acceptance that the hazard was real required over a decade of frequent meetings between scientists and civil authorities together with public presentations underscored by frequently felt earthquakes and the onset of magmatic CO2 emissions in 1990 following a 11-month long earthquake swarm beneath Mammoth Mountain on the southwest rim of the caldera. Four fatalities, one on 24 May 1998 and three on 6 April 2006, underscored the hazard posed by the CO2

  10. Numerical modeling of volcanic arc development

    Science.gov (United States)

    Gerya, T.; Gorczyk, W.; Nikolaeva, K.

    2007-05-01

    We have created a new coupled geochemical-petrological-thermomechanical numerical model of subduction associated with volcanic arc development. The model includes spontaneous slab bending, subducted crust dehydration, aqueous fluid transport, mantle wedge melting and melt extraction resulting in crustal growth. Two major volcanic arc settings are modeled so far: active continental margins, and intraoceanic subduction. In case of Pacific-type continental margin two fundamentally different regimes of melt productivity are observed in numerical experiments which are in line with natural observations: (1) During continuous convergence with coupled plates highest amounts of melts are formed immediately after the initiation of subduction and then decrease rapidly with time due to the steepening of the slab inclination angle precluding formation of partially molten mantle wedge plumes; (2) During subduction associated with slab delamination and trench retreat resulting in the formation of a pronounced back arc basin with a spreading center in the middle melt production increases with time due to shallowing/stabilization of slab inclination associated with upward asthenospheric mantle flow toward the extension region facilitating propagation of hydrous partially molten plumes from the slab. In case of spontaneous nucleation of retreating oceanic subduction two scenarios of tecono-magmatic evolution are distinguished: (1) decay and, ultimately, the cessation of subduction and related magmatic activity, (2) increase in subduction rate (to up to ~12 cm/yr) and stabilization of subduction and magmatic arc growth. In the first case the duration of subduction correlates positively with the intensity of melt extraction: the period of continued subduction increases from 15,4 Myrs to 47,6 Myrs with the increase of melt extraction threshold from 1% to 9%. In scenario (1) the magmatic arc crust includes large amounts of rocks formed by melting of subducted crust atop the thermally

  11. Carbonate-Sulfate Volcanism on Venus?

    Science.gov (United States)

    Kargel, J.S.; Kirk, R.L.; Fegley, B.; Treiman, A.H.

    1994-01-01

    Venusian canali, outflow channels, and associated volcanic deposits resemble fluvial landforms more than they resemble volcanic features on Earth and Mars. Some canali have meandering habits and features indicative of channel migration that are very similar to meandering river channels and flood plains on Earth, venusian outflow channels closely resemble water-carved outflow channels on Mars and the Channeled Scabland in Washington, collapsed terrains at the sources of some venusian channels resemble chaotic terrains at the sources of martian outflow channels, venusian lava deltas are similar to bird's-foot deltas such as the Mississippi delta, and venusian valley networks indicate sapping. The depositional fluvial-type features (deltas, braided bars, and channeled plains) are generally among the smoothest terrains at the Magellan radar wavelength (12.6 cm) on Venus. These features suggest the involvement of an unusual lava, unexpected processes, and/or extraordinary eruption conditions. Possibly the lava was an ordinary silicate lava such as basalt or a less common type of silicate lava, and conditions unique to Venus or to those particular eruptions may have caused an unusual volcanological behavior. We have developed the alternative possibility that the lava had a water-like rheology and a melting point slightly greater than Venus' surface temperature, thus accounting for the unusual behavior of the lava. Unlike silicate lavas, some carbonatites (including carbonate-sulfate-rich liquids) have these properties; thus they can flow great distances while retaining a high fluidity, significant mechanical erosiveness, and substantial capacity to transport and deposit sediment. Venusian geochemistry and petrology are consistent with extensive eruptions of carbonatite lavas, which could have crustal and/or mantle origins. Venus' atmosphere (especially CO2, HCl, and HF abundances) and rocks may be in local chemical equilibrium, which suggests that the upper crust

  12. Magma genesis of the acidic volcanism in the intra-arc rift zone of the Izu volcanic arc, Japan

    Science.gov (United States)

    Haraguchi, S.; Tokuyama, H.; Ishii, T.

    2010-12-01

    The Izu volcanic arc extends over 550 km from the Izu Peninsula, Japan, to the Nishinoshima Trough or Sofugan tectonic line. It is the northernmost segment of the Izu-Bonin-Mariana arc system, which is located at the eastern side of the Philippine Sea Plate. The recent magmatism of the Izu arc is bimodal and characterized by basalt and rhyolite (e.g. Tamura and Tatsumi 2002). In the southern Izu arc, volcanic front from the Aogashima to the Torishima islands is characterized by submarine calderas and acidic volcanisms. The intra-arc rifting, characterized by back-arc depressions, small volcanic knolls and ridges, is active in this region. Volcanic rocks were obtained in 1995 during a research cruise of the R/V MOANA WAVE (Hawaii University, cruise MW9507). Geochemical variation of volcanic rocks and magma genesis was studied by Hochstaedter et al. (2000, 2001), Machida et al (2008), etc. These studies focused magma and mantle dynamics of basaltic volcanism in the wedge mantle. Acidic volcanic rocks were also dredged during the curies MW9507. However, studies of these acidic volcanics were rare. Herein, we present petrographical and chemical analyses of these acidic rocks, and compare these results with those of other acidic rocks in the Izu arc and lab experiments, and propose a model of magma genesis in a context of acidic volcanism. Dredge sites by the cruise MW9507 are 120, and about 50 sites are in the rift zone. Recovered rocks are dominated by the bimodal assemblage of basalt-basaltic andesite and dacite-rhyolite. The most abundant phase is olivine basalt, less than 50 wt% SiO2. Andesites are minor in volume and compositional gap from 56 to 65 wt% SiO2 exists. The across-arc variation of the HFSE contents and ratios, such as Zr/Y and Nb/Zr of rhyolites exhibit depleted in the volcanic front side and enriched in reararc side. This characteristic is similar to basaltic volcanism pointed out by Hochstaedter et al (2000). The petrographical features of rhyolites

  13. Stochastic Modelling of Past Volcanic Crises

    Science.gov (United States)

    Woo, Gordon

    2017-04-01

    It is customary to have continuous monitoring of volcanoes showing signs of unrest that might lead to an eruption threatening local populations. Despite scientific progress in estimating the probability of an eruption occurring, the concept of continuously tracking eruption probability remains a future aspiration for volcano risk analysts. During some recent major volcanic crises, attempts have been made to estimate the eruption probability in real time to support government decision-making. These include the possibility of an eruption of Katla linked with the eruption of Eyjafjallajökull in 2010, and the Santorini crisis of 2011-2012. However, once a crisis fades, interest in analyzing the probability that there might have been an eruption tends to wane. There is an inherent outcome bias well known to psychologists: if disaster was avoided, there is perceived to be little purpose in exploring scenarios where a disaster might have happened. Yet the better that previous periods of unrest are understood and modelled, the better that the risk associated with future periods of unrest will be quantified. Scenarios are counterfactual histories of the future. The task of quantifying the probability of an eruption for a past period of unrest should not be merely a statistical calculation, but should serve to elucidate and refine geophysical models of the eruptive processes. This is achieved by using a Bayesian Belief Network approach, in which monitoring observations are used to draw inferences on the underlying causal factors. Specifically, risk analysts are interested in identifying what dynamical perturbations might have tipped an unrest period in history over towards an eruption, and assessing what was the likelihood of such perturbations. Furthermore, in what ways might a historical volcano crisis have turned for the worse? Such important counterfactual questions are addressed in this paper.

  14. Magnesium isotope geochemistry in arc volcanism

    Science.gov (United States)

    Teng, Fang-Zhen; Hu, Yan

    2016-01-01

    Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ26Mg of the Martinique Island lavas varies from −0.25 to −0.10, in contrast to the narrow range that characterizes the mantle (−0.25 ± 0.04, 2 SD). These high δ26Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid−mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration. PMID:27303032

  15. Io Volcanism: Modeling Vapor And Heat Transport

    Science.gov (United States)

    Allen, Daniel R.; Howell, R. R.

    2010-10-01

    Loki is a large, active volcanic source on Jupiter's moon, Io, whose overall temperatures are well explained by current cooling models, but there are unexplainable subtleties. Using the SO2 atmospheric models of Ingersoll (1989) as a starting point, we are investigating how volatiles, specifically sulfur, are transported on the surface and how they modify the temperatures at Loki and other volcanoes. Voyager images reveal light colored deposits, colloquially called "sulfur bergs,” on Loki's dark patera floor that may be sulfur fumaroles. Galileo images show the presence of red short-chain sulfur deposits around the patera. We are investigating the mechanisms that lead to these features. The light deposits are a few kilometers across. Calculations of the mean free paths for day time conditions on Io indicate lengths on the order of 0.1 km while poorly constrained night time conditions indicate mean free paths about 100 times greater, on the order of what is needed to produce the deposits under ballistic conditions. Preliminary calculations reveal horizontal transport length scales for diffuse transport in a collisional atmosphere of approximately 30 km for sublimating S8 sulfur at 300 K. These length scales would be sufficient to move the sulfur from the warm patera floor to the locations of the red sulfur deposits. At a typical Loki temperature of 300 K, the sublimation/evaporation rate of S8 is a few tens of microns/day. It then requires just a few days to deposit an optically thick 100 µm layer of material. Preliminary length scales and sublimation rates are thus of sufficient scale to produce the deposits. Investigations into the sulfur transport and its effect on temperature are ongoing.

  16. Galileo observations of volcanic plumes on Io

    Science.gov (United States)

    Geissler, P.E.; McMillan, M.T.

    2008-01-01

    Io's volcanic plumes erupt in a dazzling variety of sizes, shapes, colors and opacities. In general, the plumes fall into two classes, representing distinct source gas temperatures. Most of the Galileo imaging observations were of the smaller, more numerous Prometheus-type plumes that are produced when hot flows of silicate lava impinge on volatile surface ices of SO2. Few detections were made of the giant, Pele-type plumes that vent high temperature, sulfur-rich gases from the interior of Io; this was partly because of the insensitivity of Galileo's camera to ultraviolet wavelengths. Both gas and dust spout from plumes of each class. Favorably located gas plumes were detected during eclipse, when Io was in Jupiter's shadow. Dense dust columns were imaged in daylight above several Prometheus-type eruptions, reaching heights typically less than 100 km. Comparisons between eclipse observations, sunlit images, and the record of surface changes show that these optically thick dust columns are much smaller in stature than the corresponding gas plumes but are adequate to produce the observed surface deposits. Mie scattering calculations suggest that these conspicuous dust plumes are made up of coarse grained “ash” particles with radii on the order of 100 nm, and total masses on the order of 106 kg per plume. Long exposure images of Thor in sunlight show a faint outer envelope apparently populated by particles small enough to be carried along with the gas flow, perhaps formed by condensation of sulfurous “snowflakes” as suggested by the plasma instrumentation aboard Galileo as it flew through Thor's plume [Frank, L.A., Paterson, W.R., 2002. J. Geophys. Res. (Space Phys.) 107, doi:10.1029/2002JA009240. 31-1]. If so, the total mass of these fine, nearly invisible particles may be comparable to the mass of the gas, and could account for much of Io's rapid resurfacing.

  17. Sensitivity analysis of distributed volcanic source inversion

    Science.gov (United States)

    Cannavo', Flavio; Camacho, Antonio G.; González, Pablo J.; Puglisi, Giuseppe; Fernández, José

    2016-04-01

    A recently proposed algorithm (Camacho et al., 2011) claims to rapidly estimate magmatic sources from surface geodetic data without any a priori assumption about source geometry. The algorithm takes the advantages of fast calculation from the analytical models and adds the capability to model free-shape distributed sources. Assuming homogenous elastic conditions, the approach can determine general geometrical configurations of pressured and/or density source and/or sliding structures corresponding to prescribed values of anomalous density, pressure and slip. These source bodies are described as aggregation of elemental point sources for pressure, density and slip, and they fit the whole data (keeping some 3D regularity conditions). Although some examples and applications have been already presented to demonstrate the ability of the algorithm in reconstructing a magma pressure source (e.g. Camacho et al., 2011,Cannavò et al., 2015), a systematic analysis of sensitivity and reliability of the algorithm is still lacking. In this explorative work we present results from a large statistical test designed to evaluate the advantages and limitations of the methodology by assessing its sensitivity to the free and constrained parameters involved in inversions. In particular, besides the source parameters, we focused on the ground deformation network topology, and noise in measurements. The proposed analysis can be used for a better interpretation of the algorithm results in real-case applications. Camacho, A. G., González, P. J., Fernández, J. & Berrino, G. (2011) Simultaneous inversion of surface deformation and gravity changes by means of extended bodies with a free geometry: Application to deforming calderas. J. Geophys. Res. 116. Cannavò F., Camacho A.G., González P.J., Mattia M., Puglisi G., Fernández J. (2015) Real Time Tracking of Magmatic Intrusions by means of Ground Deformation Modeling during Volcanic Crises, Scientific Reports, 5 (10970) doi:10.1038/srep

  18. Properties of volcanic soils in cold climate conditions

    Science.gov (United States)

    Kuznetsova, Elena

    2017-04-01

    Layers of volcanic ash and the Andosol soils derived from them may play an important role in preserving snow and ice as well as developing permafrost conditions in the immediate vicinity of volcanoes of high elevation or those situated at high latitudes, and land areas, often distant from volcanic activity that are either prone to permafrost or covered by snow and ice, but are affected by the deposition of subaerial ash. The special properties of volcanic ash that are responsible are critically reviewed particularly in relation to recent research in Kamchatka in the Far East of Russia. Of particular importance are the thermal properties and the unfrozen water contents of ash layers and the rate at which the weathering of volcanic glass takes place. Volcanic glass is the most easily weathered component of volcanic ejecta (Shoji et al., 1993; Kimble et al., 2000). There are many specific environmental conditions, including paleoclimate and present-day climate, the composition of volcanic tephra and glaciation history, which cause the differences in weathering and development of volcanic ash soils (Zehetner et al., 2003). The preservation of in situ, unweathered, and unaltered surficial ash-fall deposits in the cold regions has important implications for paleoclimate and glacial history. Ash-fall deposits, which trap and preserve the soils, sediments, and landforms on which they fall, can be used to resolve local climate conditions (temperature and moisture) at the ash site during ash-fall deposition. The preservation of detailed sedimentary features (e.g. bedding in the ash, sharpness of stratigraphic contacts) can tell us about their post-depositional history, whether they have been redeposited by wind or water, or overridden by glaciers (Marchant et al., 1996). Weathering of volcanic glass results in the development of amorphous clay minerals (e.g. allophane, opal, palagonite) but this takes place much slower in cold than under warmer climate conditions. Only few

  19. Restoring forest structure and process stabilizes forest carbon in wildfire-prone southwestern ponderosa pine forests

    Science.gov (United States)

    Matthew D. Hurteau; Shuang Liang; Katherine L. Martin; Malcolm P. North; George W. Koch; Bruce A. Hungate

    2016-01-01

    Changing climate and a legacy of fire-exclusion have increased the probability of high-severity wildfire, leading to an increased risk of forest carbon loss in ponderosa pine forests in the southwestern USA. Efforts to reduce high-severity fire risk through forest thinning and prescribed burning require both the removal and emission of carbon from these forests, and...

  20. A-type volcanics in Central Eastern Sinai, Egypt

    Science.gov (United States)

    Samuel, M. D.; Moussa, H. E.; Azer, M. K.

    2007-04-01

    Alkaline rhyolitic and minor trachytic volcanics were erupted ˜580-530 Ma ago. They occur with their A-type intrusive equivalents in Sinai, southern Negev and southwestern Jordan. At Taba-Nuweiba district, these volcanics outcrop in three areas, namely, Wadi El-Mahash, Wadi Khileifiya and Gebel El-Homra. Mineralogically, they comprise alkali feldspars, iron-rich biotite and arfvedsonite together with rare ferro-eckermannite. Geochemically, the older rhyolitic volcanics are highly evolved, enriched in HFSE including REE and depleted in Ca, Mg, Sr and Eu. The rhyolitic rocks of Wadi El-Mahash and Gebel El-Homra are enriched in K 2O content (5.3-10.1 wt.%) and depleted in Na 2O content (0.08-2.97 wt.%), while the rhyolites of Wadi Khileifiya have normal contents of alkalis. Their REE patterns are uniform, parallel to subparallel, fractionated [(La/Yb) n = 5.4] and show prominent negative Eu-anomalies. They are classified as alkali rhyolites with minor comendites. The younger volcanics are classified as trachyandesite and quartz trachyte (56.6-62.9 wt.% SiO 2). Both older and younger volcanics represent two separate magmatic suites. The overall mineralogical and chemical characteristics of these volcanics are consistent with within plate tectonic setting. It is suggested that partial melting of crustal rocks yielded the source magma. Lithospheric extension and crustal rupture occurred prior to the eruption of these volcanics. The rather thin continental crust (˜35 km) as well as the continental upheaval and extensive erosion that preceded their emplacement favoured pressure release and increasing mantle contribution. The volatiles of the upper mantle were important agents for heat transfer, and sufficient for the anatexis of the crustal rocks. A petrogenetic hypothesis is proposed for the genesis of the recorded potassic and ultrapotassic rhyolitic rocks through the action of dissolved volatiles and their accumulation in the uppermost part of the magma chamber.

  1. Building Better Volcanic Hazard Maps Through Scientific and Stakeholder Collaboration

    Science.gov (United States)

    Thompson, M. A.; Lindsay, J. M.; Calder, E.

    2015-12-01

    All across the world information about natural hazards such as volcanic eruptions, earthquakes and tsunami is shared and communicated using maps that show which locations are potentially exposed to hazards of varying intensities. Unlike earthquakes and tsunami, which typically produce one dominant hazardous phenomenon (ground shaking and inundation, respectively) volcanic eruptions can produce a wide variety of phenomena that range from near-vent (e.g. pyroclastic flows, ground shaking) to distal (e.g. volcanic ash, inundation via tsunami), and that vary in intensity depending on the type and location of the volcano. This complexity poses challenges in depicting volcanic hazard on a map, and to date there has been no consistent approach, with a wide range of hazard maps produced and little evaluation of their relative efficacy. Moreover, in traditional hazard mapping practice, scientists analyse data about a hazard, and then display the results on a map that is then presented to stakeholders. This one-way, top-down approach to hazard communication does not necessarily translate into effective hazard education, or, as tragically demonstrated by Nevado del Ruiz, Columbia in 1985, its use in risk mitigation by civil authorities. Furthermore, messages taken away from a hazard map can be strongly influenced by its visual design. Thus, hazard maps are more likely to be useful, usable and used if relevant stakeholders are engaged during the hazard map process to ensure a) the map is designed in a relevant way and b) the map takes into account how users interpret and read different map features and designs. The IAVCEI Commission on Volcanic Hazards and Risk has recently launched a Hazard Mapping Working Group to collate some of these experiences in graphically depicting volcanic hazard from around the world, including Latin America and the Caribbean, with the aim of preparing some Considerations for Producing Volcanic Hazard Maps that may help map makers in the future.

  2. Critical review of a new volcanic eruption chronology

    Science.gov (United States)

    Neuhäuser, Dagmar L.; Neuhäuser, Ralph

    2016-04-01

    Sigl. et al. (2015, Nature) present historical evidence for 32 volcanic eruptions to evaluate their new polar ice core 10-Be chronology - 24 are dated within three years of sulfur layers in polar ice. Most of them can be interpreted as weather phenomena (Babylonia: disk of sun like moon, reported for only one day, e.g. extinction due to clouds), Chinese sunspot reports (pellet, black vapor, etc.), solar eclipses, normal ice-halos and coronae (ring, bow, etc.), one aurora (redness), red suns due to mist drops in wet fog or fire-smoke, etc. Volcanic dust may facilitate detections of sunspots and formation of Bishop's ring, but tend to inhibit ice-halos, which are otherwise often reported in chronicles. We are left with three reports possibly indicating volcanic eruptions, namely fulfilling genuine criteria for atmospheric disturbances due to volcanic dust, e.g. bluish or faint sun, orange sky, or fainting of stars for months (BCE 208, 44-42, and 32). Among the volcanic eruptions used to fix the chronology (CE 536, 626, 939, 1257), the reports cited for the 930s deal only with 1-2 days, at least one reports an eclipse. In the new chronology, there is a sulfur detection eight years after the Vesuvius eruption, but none in CE 79. It may appear surprising that, from BCE 500 to 1, all five northern sulfur peaks labeled in figure 2 in Sigl et al. are systematically later by 2-4 years than the (corresponding?) southern peaks, while all five southern peaks from CE 100 to 600 labeled in figure 2 are systematically later by 1-4 years than the (corresponding?) northern peaks. Furthermore, in most of their six strongest volcanic eruptions, temperatures decreased years before their sulfur dating - correlated with weak solar activity as seen in radiocarbon, so that volcanic climate forcing appears dubious here. Also, their 10-Be peaks at CE 775 and 994 are neither significant nor certain in dating.

  3. A submarine perspective of the Honolulu Volcanics, Oahu

    Science.gov (United States)

    Clague, David A.; Paduan, Jennifer B.; McIntosh, William C.; Cousens, Brian L.; Davis, Alicé S.; Reynolds, Jennifer R.

    2006-03-01

    Lavas and volcaniclastic deposits were observed and collected from 4 submarine cones that are part of the Honolulu Volcanics on Oahu, Hawaii. The locations of these and a few additional, but unsampled, vents demonstrate that nearly all the vents are located on or very close to the shoreline of Oahu, with the most distal vent just 12 km offshore. The clastic samples and outcrops range from coarse breccias to cross-bedded ash deposits and show that explosive volcanism at depths between about 350 and 590 m depth played a part in forming these volcanic cones. The eruptive styles appear to be dominantly effusive to strombolian at greater depths, but apparently include violent phreatomagmatic explosive activity at the shallower sites along the submarine southwest extension of the Koko Rift. The compositions of the recovered samples are broadly similar to the strongly alkalic subaerial Honolulu Volcanics lavas, but the submarine lavas, erupted further from the Koolau caldera, have slightly more radiogenic Sr isotopic ratios, and trace element patterns that are distinct from either the subaerial Honolulu Volcanics or the submarine North Arch lavas. These patterns are characterized by moderate to strong positive Sr and P anomalies, and moderate to strong negative Cs, Rb, U, Th, Zr, and Hf anomalies. Most samples have strong negative K and moderate negative Ti anomalies, as do all subaerial Honolulu Volcanics and North Arch samples, but one group of samples from the Koko Rift lack this chemical signature. The data are consistent with more garnet in the source region for the off-shore samples than for either the on-shore Honolulu Volcanics lavas. New Ar-Ar ages show that eruptions at the submarine vents and Diamond Head occurred between about 0.5 Ma and 0.1 Ma, with the youngest ages from the Koko Rift. These ages are in general agreement with most published ages for the formation and suggest that some much younger ages reported previously from the Koko Rift are probably

  4. Trading forest carbon - OSU

    Science.gov (United States)

    Issues associate with trading carbon sequestered in forests are discussed. Scientific uncertainties associated with carbon measurement are discussed with respect to proposed accounting procedures. Major issues include: (1) Establishing baselines. (2) Determining additivity from f...

  5. 1Moist Forest R

    African Journals Online (AJOL)

    USER

    2014-11-15

    Nov 15, 2014 ... 1Moist Forest Research Station, Forestry Research Institute of ... extension contact, cocoa income, livestock income as well as level of education. .... The zone is a tropical coastal wetland with ..... Dry-Season Farming and.

  6. Mangrove forest decline

    DEFF Research Database (Denmark)

    Malik, Abdul; Mertz, Ole; Fensholt, Rasmus

    2017-01-01

    Mangrove forests in the tropics and subtropics grow in saline sediments in coastal and estuarine environments. Preservation of mangrove forests is important for many reasons, including the prevention of coastal erosion and seawater intrusion; the provision of spawning, nursery, and feeding grounds...... and severe mangrove loss with serious consequences. The mangrove forests of the Takalar District, South Sulawesi, are studied here as a case area that has suffered from degradation and declining spatial extent during recent decades. On the basis of a post-classification comparison of change detection from...... satellite imagery and a survey of households, we provide an estimate of the mangrove change in the Takalar District during 1979–2011 and the consequences of those changes. Mangrove forest areas were reduced by 66.05 % (3344 hectares) during the 33-year period of analysis, and the biggest annual negative...

  7. Boosted Random Forest

    National Research Council Canada - National Science Library

    MISHINA, Yohei; MURATA, Ryuei; YAMAUCHI, Yuji; YAMASHITA, Takayoshi; FUJIYOSHI, Hironobu

    2015-01-01

    .... Within machine learning, a Random Forest is a multi-class classifier with high-performance classification, achieved using bagging and feature selection, and is capable of high-speed training and classification...

  8. Trading forest carbon - OSU

    Science.gov (United States)

    Issues associate with trading carbon sequestered in forests are discussed. Scientific uncertainties associated with carbon measurement are discussed with respect to proposed accounting procedures. Major issues include: (1) Establishing baselines. (2) Determining additivity from f...

  9. Disturbing forest disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Volney, W.J.A.; Hirsch, K.G. [Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, AB (Canada)

    2005-10-01

    This paper described the role that disturbances play in maintaining the ecological integrity of Canadian boreal forests. Potential adaptation options to address the challenges that these disturbances present were also examined. Many forest ecosystems need fire for regeneration, while other forests rely on a cool, wet disintegration process driven by insects and commensal fungi feeding on trees to effect renewal. While there are characteristic natural, temporal and spatial patterns to these disturbances, recent work has demonstrated that the disturbances are being perturbed by climatic change that has been compounded by anthropogenic disturbances in forests. Fire influences species composition and age structure, regulates forest insects and diseases, affects nutrient cycling and energy fluxes, and maintains the productivity of different habitats. Longer fire seasons as a result of climatic change will lead to higher intensity fires that may more easily evade initial attacks and become problematic. Fire regimes elevated beyond the range of natural variation will have a dramatic effect on the regional distribution and functioning of forest ecosystems and pose a threat to the safety and prosperity of people. While it was acknowledged that if insect outbreaks were to be controlled on the entire forest estate, the productivity represented by dead wood would be lost, it was suggested that insects such as the forest tent caterpillar and the spruce bud worm may also pose a greater threat as the climate gets warmer and drier. Together with fungal associates, saproxylic arthropods are active in nutrient cycling and ultimately determine the fertility of forest sites. It was suggested that the production of an age class structure and forest mosaic would render the forest landscape less vulnerable to the more negative aspects of climate change on vegetation response. It was concluded that novel management design paradigms are needed to successfully reduce the risk from threats

  10. Human-Forest Relationships

    DEFF Research Database (Denmark)

    Ritter, Eva; Dauksta, Dainis

    2012-01-01

    The relationship between forests and people goes back to the early development of civilisation. However, parallel with technical innovations and an increasing urbanisation of the society, an alienation from nature has taken place......The relationship between forests and people goes back to the early development of civilisation. However, parallel with technical innovations and an increasing urbanisation of the society, an alienation from nature has taken place...

  11. Culturing the forest [Review

    DEFF Research Database (Denmark)

    Plieninger, Tobias

    2014-01-01

    Reviw of: The Social Lives of Forests Past, Present, and Future of Woodland Resurgence Susanna B. Hecht, Kathleen D. Morrison, and Christine Padoch, Eds. University of Chicago Press, Chicago, 2014. 507 pp. $50, £35. ISBN 9780226322667.......Reviw of: The Social Lives of Forests Past, Present, and Future of Woodland Resurgence Susanna B. Hecht, Kathleen D. Morrison, and Christine Padoch, Eds. University of Chicago Press, Chicago, 2014. 507 pp. $50, £35. ISBN 9780226322667....

  12. National forest inventory contributions to forest biodiversity monitoring

    DEFF Research Database (Denmark)

    Chirici, Cherardo; McRoberts, Ronald; Winter, Susanne

    2012-01-01

    Forests are the most biodiverse terrestrial ecosystems. National forest inventories (NFIs) are the main source of information on the status and trends of forests, but they have traditionally been designed to assess land coverage and the production value of forests rather than forest biodiversity....... The primary international processes dealing with biodiversity and sustainable forest management, the Convention on Biological Diversity (CBD), Forest Europe, Streamlining European Biodiversity Indicators 2010 of the European Environmental Agency, and the Montréal Process, all include indicators related...... to forest biodiversity. The scope of this article is to review and present possibilities offered by NFIs to harmonize estimation of indicators useful for international forest biodiversity monitoring and reporting. We summarize key findings from Working Group 3 of Action E43 (“Harmonisation of National...

  13. Laser Scanning in Forests

    Directory of Open Access Journals (Sweden)

    Håkan Olsson

    2012-09-01

    Full Text Available The introduction of Airborne Laser Scanning (ALS to forests has been revolutionary during the last decade. This development was facilitated by combining earlier ranging lidar discoveries [1–5], with experience obtained from full-waveform ranging radar [6,7] to new airborne laser scanning systems which had components such as a GNSS receiver (Global Navigation Satellite System, IMU (Inertial Measurement Unit and a scanning mechanism. Since the first commercial ALS in 1994, new ALS-based forest inventory approaches have been reported feasible for operational activities [8–12]. ALS is currently operationally applied for stand level forest inventories, for example, in Nordic countries. In Finland alone, the adoption of ALS for forest data collection has led to an annual savings of around 20 M€/year, and the work is mainly done by companies instead of governmental organizations. In spite of the long implementation times and there being a limited tradition of making changes in the forest sector, laser scanning was commercially and operationally applied after about only one decade of research. When analyzing high-ranked journal papers from ISI Web of Science, the topic of laser scanning of forests has been the driving force for the whole laser scanning research society over the last decade. Thus, the topic “laser scanning in forests” has provided a significant industrial, societal and scientific impact. [...

  14. Global volcanic aerosol properties derived from emissions, 1990-2014, using CESM1(WACCM): VOLCANIC AEROSOLS DERIVED FROM EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Michael J. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Schmidt, Anja [School of Earth and Environment, University of Leeds, Leeds UK; Easter, Richard [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Solomon, Susan [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge Massachusetts USA; Kinnison, Douglas E. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Ghan, Steven J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Neely, Ryan R. [School of Earth and Environment, University of Leeds, Leeds UK; National Centre for Atmospheric Science, University of Leeds, Leeds UK; Marsh, Daniel R. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Conley, Andrew [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Bardeen, Charles G. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Gettelman, Andrew [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA

    2016-03-06

    Accurate representation of global stratospheric aerosol properties from volcanic and non-volcanic sulfur emissions is key to understanding the cooling effects and ozone-loss enhancements of recent volcanic activity. Attribution of climate and ozone variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the apparent rate of global average temperature increases, and variable recovery of the Antarctic ozone hole. We have developed a climatology of global aerosol properties from 1990 to 2014 calculated based on volcanic and non-volcanic emissions of sulfur sources. We have complied a database of volcanic SO2 emissions and plume altitudes for eruptions between 1990 and 2014, and a new prognostic capability for simulating stratospheric sulfate aerosols in version 5 of the Whole Atmosphere Community Climate Model, a component of the Community Earth System Model. Our climatology shows remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD), and with in situ measurements of aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD climatology represents a significant improvement over satellite-based analyses, which ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at mid- and high-latitudes. Our SAD climatology significantly improves on that provided for the Chemistry-Climate Model Initiative, which misses 60% of the SAD measured in situ. Our climatology of aerosol properties is publicly available on the Earth System Grid.

  15. Geochemical characterization of a Quaternary monogenetic volcano in Erciyes Volcanic Complex: Cora Maar (Central Anatolian Volcanic Province, Turkey)

    Science.gov (United States)

    Gencalioglu-Kuscu, Gonca

    2011-11-01

    Central Anatolian Volcanic Province (CAVP) is a fine example of Neogene-Quaternary post-collisional volcanism in the Alpine-Mediterranean region. Volcanism in the Alpine-Mediterranean region comprises tholeiitic, transitional, calc-alkaline, and shoshonitic types with an "orogenic" fingerprint. Following the orogenic volcanism, subordinate, within-plate alkali basalts ( sl) showing little or no orogenic signature are generally reported in the region. CAVP is mainly characterized by widespread calc-alkaline andesitic-dacitic volcanism with orogenic trace element signature, reflecting enrichment of their source regions by subduction-related fluids. Cora Maar (CM) located within the Erciyes pull-apart basin, is an example to numerous Quaternary monogenetic volcanoes of the CAVP, generally considered to be alkaline. Major and trace element geochemical and geochronological data for the CM are presented in comparison with other CAVP monogenetic volcanoes. CM scoria is basaltic andesitic, transitional-calc-alkaline in nature, and characterized by negative Nb-Ta, Ba, P and Ti anomalies in mantle-normalized patterns. Unlike the "alkaline" basalts of the Mediterranean region, other late-stage basalts from the CAVP monogenetic volcanoes are classified as tholeiitic, transitional and mildly alkaline. They display the same negative anomalies and incompatible element ratios as CM samples. In this respect, CM is comparable to other CAVP monogenetic basalts ( sl), but different from the Meditterranean intraplate alkali basalts. Several lines of evidence suggest derivation of CM and other CAVP monogenetic basalts from shallow depths within the lithospheric mantle, that is from a garnet-free source. In a wider regional context, CAVP basalts ( sl) are comparable to Apuseni (Romania) and Big Pine (Western Great Basin, USA) volcanics, except the former have depleted Ba contents. This is a common feature for the CAVP volcanics and might be related to crustal contamination or source

  16. Volcanic influence on centennial to millennial Holocene Greenland temperature change.

    Science.gov (United States)

    Kobashi, Takuro; Menviel, Laurie; Jeltsch-Thömmes, Aurich; Vinther, Bo M; Box, Jason E; Muscheler, Raimund; Nakaegawa, Toshiyuki; Pfister, Patrik L; Döring, Michael; Leuenberger, Markus; Wanner, Heinz; Ohmura, Atsumu

    2017-05-03

    Solar variability has been hypothesized to be a major driver of North Atlantic millennial-scale climate variations through the Holocene along with orbitally induced insolation change. However, another important climate driver, volcanic forcing has generally been underestimated prior to the past 2,500 years partly owing to the lack of proper proxy temperature records. Here, we reconstruct seasonally unbiased and physically constrained Greenland Summit temperatures over the Holocene using argon and nitrogen isotopes within trapped air in a Greenland ice core (GISP2). We show that a series of volcanic eruptions through the Holocene played an important role in driving centennial to millennial-scale temperature changes in Greenland. The reconstructed Greenland temperature exhibits significant millennial correlations with K(+) and Na(+) ions in the GISP2 ice core (proxies for atmospheric circulation patterns), and δ(18)O of Oman and Chinese Dongge cave stalagmites (proxies for monsoon activity), indicating that the reconstructed temperature contains hemispheric signals. Climate model simulations forced with the volcanic forcing further suggest that a series of large volcanic eruptions induced hemispheric-wide centennial to millennial-scale variability through ocean/sea-ice feedbacks. Therefore, we conclude that volcanic activity played a critical role in driving centennial to millennial-scale Holocene temperature variability in Greenland and likely beyond.

  17. Modeling transport and aggregation of volcanic ash particles

    Science.gov (United States)

    Costa, Antonio; Folch, Arnau; Macedonio, Giovanni; Durant, Adam

    2010-05-01

    A complete description of ash aggregation processes in volcanic clouds is an very arduous task and the full coupling of ash transport and ash aggregation models is still computationally prohibitive. A large fraction of fine ash injected in the atmosphere during explosive eruptions aggregate because of complex interactions of surface liquid layers, electrostatic forces, and differences in settling velocities. The formation of aggregates of size and density different from those of the primary particles dramatically changes the sedimentation dynamics and results in lower atmospheric residence times of ash particles and in the formation of secondary maxima of tephra deposit. Volcanic ash transport models should include a full aggregation model accounting for all particle class interaction. However this approach would require prohibitive computational times. Here we present a simplified model for wet aggregation that accounts for both atmospheric and volcanic water transport. The aggregation model assumes a fractal relationship for the number of primary particles in aggregates, average efficiencies factors, and collision frequency functions accounting for Brownian motion, laminar and turbulent fluid shear, and differential settling velocity. We implemented the aggregation model in the WRF+FALL3D coupled modelling system and applied it to different eruptions where aggregation has been recognized to play an important role, such as the August and September 1992 Crater Peak eruptions and the 1980 Mt St Helens eruption. Moreover, understanding aggregation processes in volcanic clouds will contribute to mitigate the risks related with volcanic ash transport and sedimentation.

  18. Impact of major volcanic eruptions on stratospheric water vapour

    Science.gov (United States)

    Löffler, Michael; Brinkop, Sabine; Jöckel, Patrick

    2016-05-01

    Volcanic eruptions can have a significant impact on the Earth's weather and climate system. Besides the subsequent tropospheric changes, the stratosphere is also influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry-climate model simulations. This study is based on two simulations with specified dynamics of the European Centre for Medium-Range Weather Forecasts Hamburg - Modular Earth Submodel System (ECHAM/MESSy) Atmospheric Chemistry (EMAC) model, performed within the Earth System Chemistry integrated Modelling (ESCiMo) project, of which only one includes the long-wave volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour induced by the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on tropospheric water vapour and El Niño-Southern Oscillation (ENSO) are evident, if the long-wave forcing is strong enough. Our results are corroborated by additional sensitivity simulations of the Mount Pinatubo period with reduced nudging and reduced volcanic aerosol extinction.

  19. Io - One of at Least Four Simultaneous Erupting Volcanic Eruptions

    Science.gov (United States)

    1979-01-01

    This photo of an active volcanic eruption on Jupiter's satellite Io was taken 1 hour, 52 minutes after the accompanying picture, late in the evening of March 4, 1979, Pacific time. On the limb of the satellite can be seen one of at least four simultaneous volcanic eruptions -- the first such activity ever observed on another celestial body. Seen against the limb are plume-like structures rising more than 60 miles (100 kilometers) above the surface. Several eruptions have been identified with volcanic structures on the surface of Io, which have also been identified by Voyager 1's infrared instrument as being abnormally hot -- several hundred degrees warmer than surrounding terrain. The fact that several eruptions appear to be occurring at the same time suggests that Io has the most active surface in the solar system and that volcanism is going on there essentially continuously. Another characteristic of the observed volcanism is that it appears to be extremely explosive, with velocities more than 2,000 miles an hour (at least 1 kilometer per second). That is more violent than terrestrial volcanoes like Etna, Vesuvius or Krakatoa.

  20. Integrated Geophysical Techniques for Exploring Deep Volcanic Rock Reservoir

    Institute of Scientific and Technical Information of China (English)

    LiuXuejun; UDechun; ZhangChangjiang; RanXuefeng

    2003-01-01

    The Carboniferous and Pre-Carboniferous formations in Ludong, Zhungar basin, contain favorable oil/gas reservoirs. The Carboniferous formations, however, are complex in structure and exhibit lateral variations in lithology. Seismic reflections from Pre-Triassic formations are poor and the volcanic reservoirs are very difficult to identify. The analysis of physical properties concluded that the major targets in this region, i.e., the top of the Jurassic and Carboniferous formations, provide distinct density interfaces. The basic, intermediate and acid volcanic rocks were also different in density,resulting in distinguishable gravity anomalies. The differences in magnetism in this region existed not only between the volcanic rocks and clastic sedimentary rocks but also among volcanic rocks with different compositions. All formations and volcanic rocks of different lithologies presented high and low resistance interbeds, which are characterized by regional trends.The modeling study demonstrated that non-seismic integrated geophysical techniques should be feasible in this region, especiaUy the high-precision gravity/magnetic methods combined with long offset transient electromagnetic sounding.

  1. Analysis of Volcanic Plume Detection on Mount Etna through GPS

    Science.gov (United States)

    Cannavo, F.; Aranzulla, M.; Scollo, S.; Puglisi, G.; Imme', G.

    2013-12-01

    Volcanic ash produced during explosive eruptions causes disruptions to aviation operations and to population living around active volcanoes. In order to reduce their impact, the detection of volcanic plume is a necessary step and this is usually carried out using different platforms such as satellites, radars and lidars. Recently, the capability of GPS to retrieve volcanic plumes has been also investigated and some tests applied to explosive activity of Etna have demonstrated that also the GPS may give useful information. In this work, we use the permanent and continuous GPS network of the Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo (Italy) that consists of 35 stations located all around volcano flanks. Data are processed by the GAMIT package developed by Massachusetts Institute of Technology. Here we investigate the possibility to detect the volcanic plume through the GPS signal features and to estimate its spatial distribution by means of a tomographic inversion algorithm. The method is tested on volcanic plumes produced during the lava fountain of 4-5 September 2007, already used to confirm if weak explosive activity may or may not affect the GPS signals. Others tests were finally applied to some lava fountains produced during the recent Etna explosive activity between 2011 and 2013.

  2. The Earth System Science Pathfinder VOLCAM Volcanic Hazard Mission

    Science.gov (United States)

    Krueger, Arlin J.

    1999-01-01

    The VOLCAM mission is planned for research on volcanic eruptions and as a demonstration of a satellite system for measuring the location and density of volcanic eruption clouds for use in mitigating hazards to aircraft by the operational air traffic control systems. A requirement for 15 minute time resolution is met by flight as payloads of opportunity on geostationary satellites. Volcanic sulfur dioxide and ash are detected using techniques that have been developed from polar orbiting TOMS (UV) and AVHRR (IR) data. Seven band UV and three band IR filter wheel cameras are designed for continuous observation of the full disk of the earth with moderate (10 - 20 km) ground resolution. This resolution can be achieved with small, low cost instruments but is adequate for discrimination of ash and sulfur dioxide in the volcanic clouds from meteorological clouds and ozone. The false alarm rate is small through use of sulfur dioxide as a unique tracer of volcanic clouds. The UV band wavelengths are optimized to detect very small sulfur dioxide amounts that are present in pre-eruptive outgassing of volcanoes. The system is also capable of tracking dust and smoke clouds, and will be used to infer winds at tropopause level from the correlation of total ozone with potential vorticity.

  3. Space-based observation of volcanic iodine monoxide

    Science.gov (United States)

    Schönhardt, Anja; Richter, Andreas; Theys, Nicolas; Burrows, John P.

    2017-04-01

    Volcanic eruptions inject substantial amounts of halogens into the atmosphere. Chlorine and bromine oxides have frequently been observed in volcanic plumes from different instrumental platforms such as from ground, aircraft and satellites. The present study is the first observational evidence that iodine oxides are also emitted into the atmosphere during volcanic eruptions. Large column amounts of iodine monoxide, IO, are observed in satellite measurements following the major eruption of the Kasatochi volcano, Alaska, in 2008. The IO signal is detected in measurements made both by SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY) on ENVISAT (Environmental Satellite) and GOME-2 (Global Ozone Monitoring Experiment-2) on MetOp-A (Meteorological Operational Satellite A). Following the eruption on 7 August 2008, strongly elevated levels of IO slant columns of more than 4 × 1013 molec cm-2 are retrieved along the volcanic plume trajectories for several days. The retrieved IO columns from the different instruments are consistent, and the spatial distribution of the IO plume is similar to that of bromine monoxide, BrO. Details in the spatial distribution, however, differ between IO, BrO and sulfur dioxide, SO2. The column amounts of IO are approximately 1 order of magnitude smaller than those of BrO. Using the GOME-2A observations, the total mass of IO in the volcanic plume injected into the atmosphere from the eruption of Kasatochi on 7 August 2008, is determined to be on the order of 10 Mg.

  4. Alkali and Halogen Chemistry in Volcanic Gases on Io

    CERN Document Server

    Schaefer, L

    2004-01-01

    We use chemical equilibrium calculations to model the speciation of alkalis and halogens in volcanic gases emitted on Io. The calculations cover wide temperature (500-2000 K) and pressure (10^-6 to 10^+1 bars) ranges, which overlap the nominal conditions at Pele (T = 1760 K, P = 0.01 bars). About 230 compounds of 11 elements (O, S, Li, Na, K, Rb, Cs, F, Cl, Br, I) are considered. We predict the major alkali and halogen species in a Pele-like volcanic gas and the major alklai and halogen condensates. We also model disequilibrium chemistry of the alkalis and halogens in the volcanic plume. Based on this work and our prior modeling for Na, K, and Cl in a volcanic plume, we predict the major loss processes for the alkali halide gases are photolysis and/or condensation onto grains. On the basis of elemental abundances and photochemical lifetimes, we recommend searching for gaseous KCl, NaF, LiF, LiCl, RbF, RbCl, CsF, and CsCl around volcanic vents during eruptions. Based on abundance considerations and observation...

  5. Long-lived volcanism within Argyre basin, Mars

    Science.gov (United States)

    Williams, Jean-Pierre; Dohm, James M.; Soare, Richard J.; Flahaut, Jessica; Lopes, Rosaly M. C.; Pathare, Asmin V.; Fairén, Alberto G.; Schulze-Makuch, Dirk; Buczkowski, Debra L.

    2017-09-01

    The Argyre basin, one of the largest impact structures on Mars with a diameter >1200 km, formed in the Early Noachian ∼3.93 Ga. The basin has collected volatiles and other material through time, and experienced partial infilling with water evident from stratigraphic sequences, crater statistics, topography, and geomorphology. Although volcanism has not been previously associated with the Argyre basin, our study of the northwest portion of the basin floor has revealed landforms suggesting volcanic and tectonic activity occurred including Argyre Mons, a ∼50 km wide volcanic-structure formed ∼3 Ga. Giant polygons with a similar surface age are also identified on terrain adjacent to the base of Argyre Mons, indicating the structure may have formed in a water-rich environment. In addition to Argyre Mons, cones, vents, mounds, dikes, and cavi or hollows, many of which are associated with extensional tectonics, are observed in the region. Multiple features appear to disrupt icy (and largely uncratered) terrain indicating a relatively young, Late Amazonian, formation age for at least some of the volcanic and tectonic features. The discovery of Argyre Mons, along with additional endogenic modification of the basin floor, suggests that the region has experienced episodes of volcanism over a protracted period of time. This has implications for habitability as the basin floor has been a region of elevated heat flow coupled with liquid water, water ice, and accumulation of sediments of diverse provenance with ranging geochemistry, along with magma-water interactions.

  6. Using multiple data sets to populate probabilistic volcanic event trees

    Science.gov (United States)

    Newhall, C.G.; Pallister, John S.

    2014-01-01

    The key parameters one needs to forecast outcomes of volcanic unrest are hidden kilometers beneath the Earth’s surface, and volcanic systems are so complex that there will invariably be stochastic elements in the evolution of any unrest. Fortunately, there is sufficient regularity in behaviour that some, perhaps many, eruptions can be forecast with enough certainty for populations to be evacuated and kept safe. Volcanologists charged with forecasting eruptions must try to understand each volcanic system well enough that unrest can be interpreted in terms of pre-eruptive process, but must simultaneously recognize and convey uncertainties in their assessment. We have found that use of event trees helps to focus discussion, integrate data from multiple sources, reach consensus among scientists about both pre-eruptive process and uncertainties and, in some cases, to explain all of this to officials. Figure 1 shows a generic volcanic event tree from Newhall and Hoblitt (2002) that can be modified as needed for each specific volcano. This paper reviews how we and our colleagues have used such trees during a number of volcanic crises worldwide, for rapid hazard assessments in situations in which more formal expert elicitations could not be conducted. We describe how Multiple Data Sets can be used to estimate probabilities at each node and branch. We also present case histories of probability estimation during crises, how the estimates were used by public officials, and some suggestions for future improvements.

  7. Months between rejuvenation and volcanic eruption at Yellowstone caldera, Wyoming

    Science.gov (United States)

    Till, Christy B.; Vazquez, Jorge A.; Boyce, Jeremy W

    2015-01-01

    Rejuvenation of previously intruded silicic magma is an important process leading to effusive rhyolite, which is the most common product of volcanism at calderas with protracted histories of eruption and unrest such as Yellowstone, Long Valley, and Valles, USA. Although orders of magnitude smaller in volume than rare caldera-forming super-eruptions, these relatively frequent effusions of rhyolite are comparable to the largest eruptions of the 20th century and pose a considerable volcanic hazard. However, the physical pathway from rejuvenation to eruption of silicic magma is unclear particularly because the time between reheating of a subvolcanic intrusion and eruption is poorly quantified. This study uses geospeedometry of trace element profiles with nanometer resolution in sanidine crystals to reveal that Yellowstone’s most recent volcanic cycle began when remobilization of a near- or sub-solidus silicic magma occurred less than 10 months prior to eruption, following a 220,000 year period of volcanic repose. Our results reveal a geologically rapid timescale for rejuvenation and effusion of ~3 km3 of high-silica rhyolite lava even after protracted cooling of the subvolcanic system, which is consistent with recent physical modeling that predict a timescale of several years or less. Future renewal of rhyolitic volcanism at Yellowstone is likely to require an energetic intrusion of mafic or silicic magma into the shallow subvolcanic reservoir and could rapidly generate an eruptible rhyolite on timescales similar to those documented here.

  8. Global monsoon precipitation responses to large volcanic eruptions.

    Science.gov (United States)

    Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan

    2016-04-11

    Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do.

  9. On a Possible Unified Scaling Law for Volcanic Eruption Durations.

    Science.gov (United States)

    Cannavò, Flavio; Nunnari, Giuseppe

    2016-03-01

    Volcanoes constitute dissipative systems with many degrees of freedom. Their eruptions are the result of complex processes that involve interacting chemical-physical systems. At present, due to the complexity of involved phenomena and to the lack of precise measurements, both analytical and numerical models are unable to simultaneously include the main processes involved in eruptions thus making forecasts of volcanic dynamics rather unreliable. On the other hand, accurate forecasts of some eruption parameters, such as the duration, could be a key factor in natural hazard estimation and mitigation. Analyzing a large database with most of all the known volcanic eruptions, we have determined that the duration of eruptions seems to be described by a universal distribution which characterizes eruption duration dynamics. In particular, this paper presents a plausible global power-law distribution of durations of volcanic eruptions that holds worldwide for different volcanic environments. We also introduce a new, simple and realistic pipe model that can follow the same found empirical distribution. Since the proposed model belongs to the family of the self-organized systems it may support the hypothesis that simple mechanisms can lead naturally to the emergent complexity in volcanic behaviour.

  10. Does participatory forest management promote sustainable forest utilisation in Tanzania?

    DEFF Research Database (Denmark)

    Treue, Thorsten; Ngaga, Y.M.; Meilby, Henrik

    2014-01-01

    Over the past 20 years, Participatory Forest Management (PFM) has become a dominant forest management strategy in Tanzania, covering more than 4.1 million hectares. Sustainable forest use and supply of wood products to local people are major aims of PFM. This paper assesses the sustainability......-PFM). Extraction of products is intense in forests close to Dar es Salaam, regardless of management regime. Further from Dar es Salaam, harvesting levels in forests under PFM are, with one prominent exception, broadly sustainable. Using GIS data from 116 wards, it is shown that half of the PFM forests in Tanzania...

  11. Does participatory forest management promote sustainable forest utilisation in Tanzania?

    DEFF Research Database (Denmark)

    Treue, Thorsten; Ngaga, Y.M.; Meilby, Henrik;

    2014-01-01

    Over the past 20 years, Participatory Forest Management (PFM) has become a dominant forest management strategy in Tanzania, covering more than 4.1 million hectares. Sustainable forest use and supply of wood products to local people are major aims of PFM. This paper assesses the sustainability......-PFM). Extraction of products is intense in forests close to Dar es Salaam, regardless of management regime. Further from Dar es Salaam, harvesting levels in forests under PFM are, with one prominent exception, broadly sustainable. Using GIS data from 116 wards, it is shown that half of the PFM forests in Tanzania...

  12. A Centrifugal Volcanism Mechanism for the AMO

    Science.gov (United States)

    Pratt, V. R.

    2016-12-01

    The Atlantic Multidecadal Oscillation has proved hard to isolate from both (i) global warming and (ii) faster oscillations. For (i), we showed [1] that by filtering all harmonics of a 63-year period, what remained could be explained remarkably accurately by the expected contribution of greenhouse warming along with the interesting increase in TSI during 1900-1950, leading to considerable confidence that global surface temperature averaged over 2069-2131 will be very close to 3 C above preindustrial. For (ii), principal component analysis of HadCRUT4 since 1850, Central England Temperature since 1659, and various other land and sea time series all show a distinct 21-year oscillation the start of whose downward swing is well synchronized with the maximum solar activity of the odd-numbered solar cycles, persisting even through the Maunder Minimum. After these are removed there remains a well-defined signal that has been associated with the so-called Atlantic Multidecadal Oscillation. There are two schools of thought, the AMO is of either radiative (RAD) or internal (INT) origin. RAD is explained in terms of aerosol fluctuations of volcanic origin. In [2] we gave what we felt was a knockdown argument against RAD. INT so far has been explained mainly in terms of instabilities in ocean currents such as the Atlantic Meridional Overturning Current. An interesting correlation between the AMO and Earth's Length of Day (LOD) has been noted by several authors. Missing is a plausible mechanism explaining this correlation. The mechanism we propose here is that magma welling up through ocean ridges is in a quasi-equilibrium that even small fluctuations in LOD can disturb significantly. Heat from emerging magma is carried up to the oceanic mixed layer in very large thermals. A simple model of this process leads to a correlation that is excellent except for the period 1940-1950. We propose to explain this difference in terms of a lifting of the crust by the excess magma developed

  13. Napoli and Volcanism - Vesuvius and Mt. Etna

    Science.gov (United States)

    2002-01-01

    For more than 240 million years the region now known as Italy has been the scene of episodic volcanic activity. East-southeast of Napoli (Naples) stands the imposing cone of Vesuvius, which erupted explosively in 79 A.D. to bury Pompeii and Herculaneum. More recently, when the crew of Space Shuttle mission STS-104 captured this view, Mt. Etna (Sicily, not seen in this image, but photographed the day before) was spewing ash and gas thousands of meters into the air, some of which can be seen as a brownish smear over Isola d' Ischia and the Tyrrhenian Sea. The Appenine ranges extend from northern Italy, down the boot of the peninsula and westward into Sicily. This photograph of the Appenino Napoletano is part of an 18-frame stereophoto mapping strip that spans the entire mountain chain. The almost 1200-km-long belt of volcanoes and folded/faulted mountains is a result of the ongoing collision of Africa and Eurasia, accompanied by the progressive closing of the Mediterranean Sea. Using overlapping pairs of stereophotos, and a special viewer, scientists can get a three-dimensional perspective on the ranges that surpasses any image viewed alone. For more information, see another image of Mt. Vesuvius, taken by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). References: Behncke, Boris, 2000, Vesuvio - The eruption of A.D. 79: Italy's Volcanoes - The Cradle of Volcanology [http://www.geo.mtu.edu/boris/VESUVIO_79.html (accessed 10/18/01)] Doglioni, C., and Flores, G., 1997, Italy, in Moores, E. M., and Fairbridge, R. W., editors, Encyclopedia of European and Asian Regional Geology: London, Chapman and Hall, p. 414-435 Shuttle photograph STS104-710-60 was taken 23 July 2001 from the orbiter Atlantis using a Hasselblad camera with 250-mm lens. The image is provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. The entire mapping series (of frames numbered in sequence from 50 through 68) can also be downloaded from the

  14. Napoli and Volcanism - Vesuvius and Mt. Etna

    Science.gov (United States)

    2002-01-01

    For more than 240 million years the region now known as Italy has been the scene of episodic volcanic activity. East-southeast of Napoli (Naples) stands the imposing cone of Vesuvius, which erupted explosively in 79 A.D. to bury Pompeii and Herculaneum. More recently, when the crew of Space Shuttle mission STS-104 captured this view, Mt. Etna (Sicily, not seen in this image, but photographed the day before) was spewing ash and gas thousands of meters into the air, some of which can be seen as a brownish smear over Isola d' Ischia and the Tyrrhenian Sea. The Appenine ranges extend from northern Italy, down the boot of the peninsula and westward into Sicily. This photograph of the Appenino Napoletano is part of an 18-frame stereophoto mapping strip that spans the entire mountain chain. The almost 1200-km-long belt of volcanoes and folded/faulted mountains is a result of the ongoing collision of Africa and Eurasia, accompanied by the progressive closing of the Mediterranean Sea. Using overlapping pairs of stereophotos, and a special viewer, scientists can get a three-dimensional perspective on the ranges that surpasses any image viewed alone. For more information, see another image of Mt. Vesuvius, taken by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). References: Behncke, Boris, 2000, Vesuvio - The eruption of A.D. 79: Italy's Volcanoes - The Cradle of Volcanology [http://www.geo.mtu.edu/boris/VESUVIO_79.html (accessed 10/18/01)] Doglioni, C., and Flores, G., 1997, Italy, in Moores, E. M., and Fairbridge, R. W., editors, Encyclopedia of European and Asian Regional Geology: London, Chapman and Hall, p. 414-435 Shuttle photograph STS104-710-60 was taken 23 July 2001 from the orbiter Atlantis using a Hasselblad camera with 250-mm lens. The image is provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. The entire mapping series (of frames numbered in sequence from 50 through 68) can also be downloaded from the

  15. Ecological Resilience and Resistance in the Hyper Diverse Forests on the Eastern Andean Flank (Mera, Ecuador)

    Science.gov (United States)

    Keen, H. F.; Gosling, W. D.; Montoya, E.; Sherlock, S.; Mothes, P. A.

    2014-12-01

    Today the Neotropics contain some of the world's most biodiverse and threatened ecosystems. Sediments obtained from two radiocarbon infinite (>48,000 years) stratigraphic sections on the eastern Andean flank, provide new insight into the relationship between biodiversity and disturbance during the Pleistocene (~200,000 years). Pollen analysis of modern and fossil material indicates that hyper diverse forest vegetation has been a feature of the Andean flank landscape for 100,000 years (pollen richness: modern = 44, fossil = 48). Correlation of past vegetation with disturbance events (volcanic and fluvial) indicates the response of hyper-diverse forest to past landscape scale change. Pollen records from near Mera (01°27 S, 78°06 W; 1117 m asl) indicate two major changes in the pollen assemblage, with forest communities dominated by: i) Hedyosmum-Alnus-Ilex, and ii) Combretaceae-Melastomataceae-Myrtaceae. These two pollen assemblages most closely resemble modern vegetation cloud forest (2500-3400m asl) and lower montane rain forest (700-2499 m asl) respectively. Sedimentary evidence suggests that at least 21 volcanic events and three changes in the local fluvial regime perturbed the regional landscape during the period of deposition. However, there is no evidence for volcanic or fluvial disturbance events causing a persistent change in vegetation community. Volcanic events (tephra deposits) are associated with increased fire (charcoal particles), and changes in vegetation (pollen grains); however, within ~50cm of sediment accumulation above each tephra, pollen assemblages revert to pre-deposition compositions. Increased fluvial influence (gravel deposits) is associated with elevated input of pollen from taxa today found at higher elevations (Podocarpus-Celtis). The input of high elevation taxa concomitant with fluvial deposits is most likely indicative of an increase in long-distance transport of pollen along water courses originating in the Andes. Our data indicate

  16. Bedout basement rise, offshore northwestern Australia: evidence of an unshocked mafic volcanic hyaloclastite volcanic breccia

    Science.gov (United States)

    Glikson, A.

    2004-12-01

    Core samples from Bedout-1 (3035.8-3044.95 m.), Bedout basement rise, offshore northwestern Australia, were examined by optical microscopy, SEM, EDS and WDS spectrometry. At this stratigraphic depth level Becker et al. (2004) interpret cryptocrystalline alteration zones around and within plagioclase in terms of shock-induced transformation of feldspar into diaplectic maskelynite glass _u postulating a ~200 km-large impact structure and thereby an impact connection of the Permian-Triassic boundary mass extinction. However, the breccia is dominated by fragments of microlitic basalt and ophitic-textured dolerite with well preserved igneous textures, showing no evidence of shock metamorphism. Euhedral pseudomorphs of chlorite and amphibole, probably after pyroxene, protrude into or are enveloped by euhedral albite-twinned calcic plagioclase (andesine to bytownite). Minor phases include euhedral ilmenite needles and subhedral magnetite grains. Plagioclase is altered by cryptocrystalline albite and microcrystalline albite-chlorite matrix along crystal boundaries, along twin lamella and within internal oscillatory crystal zones, consistent with burial metamorphosed hydrovolcanic basalts and spilites (e.g. Amstutz, 1974). The volcanic fragments are set within, and injected by, microcrystalline intergranular mesostasis of mixed mineral fragments and volcanic meta-glass. Becker et al. (2004) refer to the breccia in part as product of Mg-rich sediments (e.g. dolomites). However, apart from the pristine igneous textures of the breccia, the transition element levels (chlorite in dolerite fragment "C Ni 97-160 ppm; Co 75-152 ppm; Cu 69-204 ppm; mesostasis "C Ni 29-45 ppm; Co 18-52 ppm; Cu 26-110 ppm) are consistent with Fe-rich basalts but exceed common abundances in carbonates and marls (BVTP, 1981; Wedepohl, 1978). No shock metamorphic features, such as planar deformation features (PDF), are observed in the feldspar or in any other phases. No criteria for discriminating

  17. Where do forests influence rainfall?

    Science.gov (United States)

    Wang-Erlandsson, Lan; van der Ent, Ruud; Fetzer, Ingo; Keys, Patrick; Savenije, Hubert; Gordon, Line

    2017-04-01

    Forests play a major role in hydrology. Not only by immediate control of soil moisture and streamflow, but also by regulating climate through evaporation (i.e., transpiration, interception, and soil evaporation). The process of evaporation travelling through the atmosphere and returning as precipitation on land is known as moisture recycling. Whether evaporation is recycled depends on wind direction and geography. Moisture recycling and forest change studies have primarily focused on either one region (e.g. the Amazon), or one biome type (e.g. tropical humid forests). We will advance this via a systematic global inter-comparison of forest change impacts on precipitation depending on both biome type and geographic location. The rainfall effects are studied for three contemporary forest changes: afforestation, deforestation, and replacement of mature forest by forest plantations. Furthermore, as there are indications in the literature that moisture recycling in some places intensifies during dry years, we will also compare the rainfall impacts of forest change between wet and dry years. We model forest change effects on evaporation using the global hydrological model STEAM and trace precipitation changes using the atmospheric moisture tracking scheme WAM-2layers. This research elucidates the role of geographical location of forest change driven modifications on rainfall as a function of the type of forest change and climatic conditions. These knowledge gains are important at a time of both rapid forest and climate change. Our conclusions nuance our understanding of how forests regulate climate and pinpoint hotspot regions for forest-rainfall coupling.

  18. Design of forest rent accounting

    Directory of Open Access Journals (Sweden)

    T.S. Osadcha

    2016-12-01

    Full Text Available The urgent task for the effective functioning of the national economy is the need to reflect income from the use of forest resources in accounting, which will allow management personnel to prove the effectiveness of environmental protection measures, to assess the amount of expenses taken during restoration and protection of forest resources. The study aims at identifying characteristics of forest rent to determine the amount and its reflection in the accounting for its management. The author understands a forest rent as the income received from the owner of forest resources. The above procedure for determining the amount of forest rent can be used to display it in the accounting. A forest rent is a type of business income, so for its reflection in the accounting it is proposed to open the analytical accounts to account 79 named «Financial results». To determine the amount of forest rent and its reflection in the accounting the author suggests the calculation form of a forest rent. In order to manage the size of a forest rent and expenses incurred to obtain it the author proposes to use the information from the developed report about the forest rent formation. The displaying forest rents in accounting will provide accurate and deep information to the management about the revenue and assets of a company. The rational use of forest resources and accounting reflection of a forest rent will strengthen control over the influence of human activity on natural resources and keep the conception of sustainable development.

  19. Volcanic tremors: Good indicators of change in plumbing systems during volcanic eruptions

    Science.gov (United States)

    Tárraga, Marta; Martí, Joan; Abella, Rafael; Carniel, Roberto; López, Carmen

    2014-03-01

    Geophysical and geochemical signals recorded during episodes of unrest preceding volcanic eruptions provide information on movements of magma inside the lithosphere and on how magma prepares to reach the surface. When the eruption ensues continuous volcanic monitoring can reveal the nature of changes occurring in the volcano's plumbing system, which may be correlated with changes in both eruption behaviour and products. During the 2011-2012 submarine eruption of El Hierro (Canary Islands), the seismic signal, surface deformation, a broad stain on the sea surface of the eruption site, and the occasional appearance of floating lava balloons and pyroclastic fragments were the main observable signs. A strong continuous tremor in the vent accompanied the eruption and varied significantly in amplitude, frequency and dynamical parameters. We analysed these variations and correlated them with changes in the distribution of earthquakes and in the petrology of the erupting magma. This enabled us to relate variations in tremors to changes in the (i) stress conditions of the plumbing system, (ii) dimensions of the conduit and vent, (iii) intensity of the explosive episodes, and (iv) rheological changes in the erupting magma. The results obtained show how the tremor signal was strongly influenced by stress changes in the host rock and in the rheological variations in the erupting magma. We conclude that the tracking of real-time syn-eruptive tremor signals via the observation of variations in plumbing systems and magma physics is a potentially effective tool for interpreting eruption dynamics, and suggest that similar variations observed in pre-eruptive tremors will have a similar origin.

  20. Multidimensional analysis and probabilistic model of volcanic and seismic activities

    Science.gov (United States)

    Fedorov, V.

    2009-04-01

    A search for space and time regularities in volcanic and seismic events for the purpose of forecast method development seems to be of current concern, both scientifically and practically. The seismic and volcanic processes take place in the Earth's field of gravity which in turn is closely related to gravitational fields of the Moon, the Sun, and the planets of the Solar System. It is mostly gravity and tidal forces that exercise control over the Earth's configuration and relief. Dynamic gravitational interaction between the Earth and other celestial bodies makes itself evident in tidal phenomena and other effects in the geospheres (including the Earth's crust). Dynamics of the tidal and attractive forces is responsible for periodical changes in gravity force, both in value and direction [Darwin, 1965], in the rate of rotation and orbital speed; that implies related changes in the endogenic activity of the Earth. The Earth's rotation in the alternating gravitational field accounts to a considerable extent for regular pattern of crustal deformations and dislocations; it is among principal factors that control the Earth's form and structure, distribution of oceans and continents and, probably, continental drift [Peive, 1969; Khain, 1973; Kosygin, 1983]. The energy of gravitational interaction is transmitted through the tidal energy to planetary spheres and feeds various processes there, including volcanic and seismic ones. To determine degree, character and special features of tidal force contribution to the volcanic and seismic processes is of primary importance for understanding of genetic and dynamic aspects of volcanism and seismicity. Both volcanic and seismic processes are involved in evolution of celestial bodies; they are operative on the planets of the Earth group and many satellites [Essays…, 1981; Lukashov, 1996]. From this standpoint, studies of those processes are essential with a view to development of scenarios of the Earth's evolution as a celestial

  1. Atmospheric and environmental impacts of volcanic ash particle emissions

    Science.gov (United States)

    Durant, Adam

    2010-05-01

    Globally, at any one time, there may be 20 volcanoes erupting that collectively emit a constant flux of gases and aerosol, including silicate particles (tephra), to the atmosphere which influences processes including cloud microphysics, heterogeneous chemistry and radiative balance. The nature and impact of atmospheric volcanic particle fluxes depend on total mass erupted, emission rate, emission source location, physical and chemical properties of the particles, and the location and residence time of the particles in the atmosphere. Removal of ash particles from the atmosphere through sedimentation is strongly influenced by particle aggregation through hydrometeor formation, and convective instabilities such as mammatus. I will address the following questions: What are the atmospheric impacts of volcanic ash emissions? What controls the residence time of volcanic particles in the atmosphere? What affects particle accumulation at the surface? And what are the human and environmental impacts of ash fallout?

  2. Rapid laccolith intrusion driven by explosive volcanic eruption

    Science.gov (United States)

    Castro, Jonathan M.; Cordonnier, Benoit; Schipper, C. Ian; Tuffen, Hugh; Baumann, Tobias S.; Feisel, Yves

    2016-11-01

    Magmatic intrusions and volcanic eruptions are intimately related phenomena. Shallow magma intrusion builds subsurface reservoirs that are drained by volcanic eruptions. Thus, the long-held view is that intrusions must precede and feed eruptions. Here we show that explosive eruptions can also cause magma intrusion. We provide an account of a rapidly emplaced laccolith during the 2011 rhyolite eruption of Cordón Caulle, Chile. Remote sensing indicates that an intrusion began after eruption onset and caused severe (>200 m) uplift over 1 month. Digital terrain models resolve a laccolith-shaped body ~0.8 km3. Deformation and conduit flow models indicate laccolith depths of only ~20-200 m and overpressures (~1-10 MPa) that likely stemmed from conduit blockage. Our results show that explosive eruptions may rapidly force significant quantities of magma in the crust to build laccoliths. These iconic intrusions can thus be interpreted as eruptive features that pose unique and previously unrecognized volcanic hazards.

  3. Volcanism and global change conference set for 1992

    Science.gov (United States)

    Papers are solicited for the AGU Chapman Conference on Climate, Volcanism, and Global Change, to be held March 23-27, 1992, in Hilo, Hawaii. Conference conveners are Stephen Self, University of Hawaii at Manoa, and Richard P. Turco, University of California, Los Angeles. Papers should focus on areas related to volcanic eruption dynamics and geochemistry, dispersion and removal of volcanogenic aerosols, effects on the atmosphere and climate, and signatures in sediments, ice cores, and tree rings. The conference will bring together a broad range of geophysicists whose research or interests involve volcanic eruptions and their impact. Results obtained from investigations of the El Chichón 1982 event and its aftermath are of particular interest for sessions dedicated to this specific, well-documented atmospheric perturbation.

  4. Local to global: a collaborative approach to volcanic risk assessment

    Science.gov (United States)

    Calder, Eliza; Loughlin, Sue; Barsotti, Sara; Bonadonna, Costanza; Jenkins, Susanna

    2017-04-01

    Volcanic risk assessments at all scales present challenges related to the multitude of volcanic hazards, data gaps (hazards and vulnerability in particular), model representation and resources. Volcanic hazards include lahars, pyroclastic density currents, lava flows, tephra fall, ballistics, gas dispersal and also earthquakes, debris avalanches, tsunamis and more ... they can occur in different combinations and interact in different ways throughout the unrest, eruption and post-eruption period. Volcanoes and volcanic hazards also interact with other natural hazards (e.g. intense rainfall). Currently many hazards assessments consider the hazards from a single volcano but at national to regional scales the potential impacts of multiple volcanoes over time become important. The hazards that have the greatest tendency to affect large areas up to global scale are those transported in the atmosphere: volcanic particles and gases. Volcanic ash dispersal has the greatest potential to directly or indirectly affect the largest number of people worldwide, it is currently the only volcanic hazard for which a global assessment exists. The quantitative framework used (primarily at a regional scale) considers the hazard at a given location from any volcano. Flow hazards such as lahars and floods can have devastating impacts tens of kilometres from a source volcano and lahars can be devastating decades after an eruption has ended. Quantitative assessment of impacts is increasingly undertaken after eruptions to identify thresholds for damage and reduced functionality. Some hazards such as lava flows could be considered binary (totally destructive) but others (e.g. ash fall) have varying degrees of impact. Such assessments are needed to enhance available impact and vulnerability data. Currently, most studies focus on physical vulnerability but there is a growing emphasis on social vulnerability showing that it is highly variable and dynamic with pre-eruption socio

  5. Volcanic Infrasound - A technical topic communicated in an entertaining way

    Science.gov (United States)

    Kerlow, Isaac

    2017-04-01

    Volcanic Infrasound is a 9-minute film about using infrasound waves to detect and measure volcanic eruptions as they unfold. The film was made by an interdisciplinary team of filmmakers and scientists for a general audience. The movie explains the basic facts of using infrasound to detect volcanic activity, and it also shows volcano researchers as they install infrasound sensors in a natural reserve in the middle of the city. This is the first in a series of films that seek to address natural hazards of relevance to Singapore, a country shielded from violent hazards. This presentation reviews the science communication techniques and assumptions used to develop and produce this entertaining scientific documentary short. Trailer: https://vimeo.com/192206460

  6. Whose reality counts? Factors affecting the perception of volcanic risk

    Science.gov (United States)

    Haynes, Katharine; Barclay, Jenni; Pidgeon, Nick

    2008-05-01

    Understanding how people perceive risk has become increasingly important for improving risk communication and reducing risk associated conflicts. This paper builds upon findings, methodologies and lessons learned from other fields to help understand differences between scientists, authorities and the public. Qualitative and quantitative methods were used to analyse underlying attitudes and judgements during an ongoing volcanic crisis on the Caribbean Island of Montserrat. Specific differences between the public, authorities and scientists were found to have been responsible for misunderstandings and misinterpretations of information and roles, resulting in differing perceptions of acceptable risk. Difficulties in the articulation and understanding of uncertainties pertaining to the volcanic risk led to a situation in which the roles of hazard monitoring, risk communication and public protection became confused. In addition, social, economic and political forces were found to have distorted risk messages, leading to a public reliance upon informal information networks. The implications of these findings for volcanic risk management and communication are discussed.

  7. Complex Volcanism at Oppenheimer U Floor-Fractured Crater

    Science.gov (United States)

    Gaddis, L. R.; Bennett, K.; Horgan, B.; McBride, Marie; Stopar, J.; Lawrence, S.; Gustafson, J. O.; Giguere, T.

    2017-01-01

    Recent remote sensing studies have identified complex volcanism in the floor-fractured crater (FFC) Oppenheimer U, located in the northwest floor of Oppenheimer crater (35.2degS, 166.3degW, 208 km dia., Figure 1) within the "South Pole - Aitken basin" (SPA) region of the lunar far side. Up to 15 sites of pyroclastic volcanism have been identified in the floor of Oppenheimer crater. Studies of Moon Mineralogy Mapper data (M3, 0.4-3 microns, 86 bands, [5]) indicated that the pyroclastic deposits are comprised of mixtures of clinopyroxene and iron-rich glass, with the Oppenheimer U deposit showing variable composition within the FFC and having the most iron-rich volcanic glass thus far identified on the Moon. Here we examine the floor of Oppenheimer U in more detail and show evidence for possible multiple eruptive vents.

  8. Atmospheric oxygenation caused by a change in volcanic degassing pressure.

    Science.gov (United States)

    Gaillard, Fabrice; Scaillet, Bruno; Arndt, Nicholas T

    2011-10-12

    The Precambrian history of our planet is marked by two major events: a pulse of continental crust formation at the end of the Archaean eon and a weak oxygenation of the atmosphere (the Great Oxidation Event) that followed, at 2.45 billion years ago. This oxygenation has been linked to the emergence of oxygenic cyanobacteria and to changes in the compositions of volcanic gases, but not to the composition of erupting lavas--geochemical constraints indicate that the oxidation state of basalts and their mantle sources has remained constant since 3.5 billion years ago. Here we propose that a decrease in the average pressure of volcanic degassing changed the oxidation state of sulphur in volcanic gases, initiating the modern biogeochemical sulphur cycle and triggering atmospheric oxygenation. Using thermodynamic calculations simulating gas-melt equilibria in erupting magmas, we suggest that mostly submarine Archaean volcanoes produced gases with SO(2)/H(2)S atmosphere.

  9. Time-space mapping of Easter Chain volcanism

    Science.gov (United States)

    O'Connor, John M.; Stoffers, Peter; McWilliams, Michael O.

    1995-12-01

    New 40Ar/ 39Ar and published K sbnd Ar ages show that the locus of volcanism along the Easter Volcanic Chain (EVC) has shifted systematically from the Nazca Ridge, at about 26 m.y., to the recently active Sala y Gomez Island/Easter Island region. This indicates a plume rather than a hotline (i.e., mantle roll) origin for the EVC. The time-space distribution of ages, combined with published ages for the Galapagos and Juan Fernandez volcanic chains, is used to reconstruct Nazca plate velocities over the past 26 m.y. A plume now located in the region of Sala y Gomez Island is most compatible with these data. West of the plume, the EVC records neither Nazca nor Pacific plate motions. This section of the EVC may be related to westward channeling of plume material to the Pacific-Nazca spreading boundary region.

  10. Morphometric characterization of monogenetic volcanic cones of the Chichinautzin and Michoacán-Guanajuato monogenetic volcanic fields in Mexico

    Science.gov (United States)

    Zarazua-Carbajal, Maria Cristina; De la Cruz-Reyna, Servando; Mendoza-Rosas, Ana Teresa

    2014-05-01

    Morphometric characterization of volcanic edifices is one of the main approaches providing information about a volcano eruptive history, whether it has one or more eruptive vents or if it had any sector collapses. It also provides essential information about the physical processes that modify their shapes during periods of quietness, and quite significantly, about the volcanoes' ages. In the case of monogenetic activity, a volcanic field can be characterized by the size and slope distributions, and other cone's morphometric parameter distributions that may provide valuable information about the temporal evolution of the volcanic field. The increasingly available high-resolution digital elevation models and the continuously developing computer tools have allowed a faster development and more detailed morphometric characterization techniques. We present here a methodology to readily obtain diverse volcanic cone shape parameters from the contour curves such as mean slope, slope distribution, dimensions of the cone and crater, crater location within the cone, orientation of the cone's principal axis, eccentricity, and other morphological features using an analysis algorithm that we developed, programmed in Python and ArcPy. Preliminary results from the implementation of this methodology to the Chichinautzin and Michoacán-Guanajuato monogenetic volcanic fields in Mexico have permitted a preliminary estimation of the age distribution of some of the cones with an acceptable correlation with the available radiometric ages. A large part of the Chichinautzin region DEM was obtained from a LIDAR survey by the Mexican National Institute of Statistics and Geography (INEGI).

  11. Short-term volcanic hazard assessment through Bayesian inference: retrospective application to the Pinatubo 1991 volcanic crisis

    Science.gov (United States)

    Sobradelo, Rosa; Martí, Joan

    2015-01-01

    One of the most challenging aspects of managing a volcanic crisis is the interpretation of the monitoring data, so as to anticipate to the evolution of the unrest and implement timely mitigation actions. An unrest episode may include different stages or time intervals of increasing activity that may or may not precede a volcanic eruption, depending on the causes of the unrest (magmatic, geothermal or tectonic). Therefore, one of the main goals in monitoring volcanic unrest is to forecast whether or not such increase of activity will end up with an eruption, and if this is the case, how, when, and where this eruption will take place. As an alternative method to expert elicitation for assessing and merging monitoring data and relevant past information, we present a probabilistic method to transform precursory activity into the probability of experiencing a significant variation by the next time interval (i.e. the next step in the unrest), given its preceding evolution, and by further estimating the probability of the occurrence of a particular eruptive scenario combining monitoring and past data. With the 1991 Pinatubo volcanic crisis as a reference, we have developed such a method to assess short-term volcanic hazard using Bayesian inference.

  12. Geochemistry of high-potassium rocks from the mid-Tertiary Guffey volcanic center, Thirtynine Mile volcanic field, central Colorado

    Science.gov (United States)

    Wobus, Reinhard A.; Mochel, David W.; Mertzman, Stanley A.; Eide, Elizabeth A.; Rothwarf, Miriam T.; Loeffler, Bruce M.; Johnson, David A.; Keating, Gordon N.; Sultze, Kimberly; Benjamin, Anne E.; Venzke, Edward A.; Filson, Tammy

    1990-07-01

    The Guffey volcanic center is the largest within the 2000 km2 mid-Tertiary Thirtynine Mile volcanic field of central Colorado. This study is the first to provide extensive chemical data for these alkalic volcanic and subvolcanic rocks, which represent the eroded remnants of a large stratovolcano of Oligocene age. Formation of early domes and flows of latite and trachyte within the Guffey center was followed by extrusion of a thick series of basalt, trachybasalt, and shoshonite flows and lahars. Plugs, dikes, and vents ranging from basalt to rhyolite cut the thick mafic deposits, and felsic tuffs and tuff breccias chemically identical to the small rhyolitic plutons are locally preserved. Whole-rock major and trace element analyses of 80 samples, ranging almost continuously from 47% to 78%SiO2, indicate that the rocks of the Guffey center are among the most highly enriched in K2O (up to 6%) and rare earth elements (typically 200-300 ppm) of any volcanic rocks in Colorado. These observations, along with the relatively high concentrations of Ba and Rb and the depletion of Cr and Ni, suggest an appreciable contribution of lower crustal material to the magmas that produced the Thirtynine Mile volcanic rocks.

  13. An aggregation model for ash particles in volcanic clouds

    Science.gov (United States)

    Costa, A.; Folch, A.; Macedonio, G.; Durant, A.

    2009-12-01

    A large fraction of fine ash particles injected into the atmosphere during explosive eruptions aggregate through complex interactions of surface liquid layers, electrostatic forces, and differences in particle settling velocities. The aggregates formed have a different size and density compared to primary particles formed during eruption which dramatically changes the dynamics of sedimentation from the volcanic cloud. Consequently, the lifetime of ash particles in the atmosphere is reduced and a distal mass deposition maximum is often generated in resulting tephra deposits. A complete and rigorous description of volcanic ash fallout requires the full coupling of models of volcanic cloud dynamics and dispersion, and ash particle transport, aggregation and sedimentation. Furthermore, volcanic ash transport models should include an aggregation model that accounts for the interaction of all particle size classes. The problem with this approach is that simulations would require excessively long computational times thereby prohibiting its application in an operational setting during an explosive volcanic eruption. Here we present a simplified model for ash particle transport and aggregation that includes the effects of water in the volcanic cloud and surrounding atmosphere. The aggregation model assumes a fractal relationship for the number of primary particles in aggregates, average sticking efficiency factors, and collision frequency functions that account for Brownian motion, laminar and turbulent fluid shear, and differential settling velocity. A parametric study on the key parameters of the model was performed. We implemented the aggregation model in the WRF+FALL3D coupled modelling system and applied it to different eruptions where aggregation has been recognized to play an important role, including the August and September 1992 Crater Peak eruptions and the 1980 Mt St Helens eruption. In these cases, mass deposited as a function of deposit area and the particle

  14. Remote monitoring of volcanic gases using passive Fourier transform spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Love, S.P.; Goff, F.; Counce, D.; Schmidt, S.C. [Los Alamos National Lab., NM (United States); Siebe, C.; Delgado, H. [Univ. Nactional Autonoma de Mexico, Coyoacan (Mexico)

    1999-06-01

    Volcanic gases provide important insights on the internal workings of volcanoes and changes in their composition and total flux can warn of impending changes in a volcano`s eruptive state. In addition, volcanoes are important contributors to the earth`s atmosphere, and understanding this volcanic contribution is crucial for unraveling the effect of anthropogenic gases on the global climate. Studies of volcanic gases have long relied upon direct in situ sampling, which requires volcanologists to work on-site within a volcanic crater. In recent years, spectroscopic techniques have increasingly been employed to obtain information on volcanic gases from greater distances and thus at reduced risk. These techniques have included UV correlation spectroscopy (Cospec) for SO{sub 2} monitoring, the most widely-used technique, and infrared spectroscopy in a variety of configurations, both open- and closed-path. Francis et al. have demonstrated good results using the sun as the IR source. This solar occultation technique is quite useful, but puts rather strong restrictions on the location of instrument and is thus best suited to more accessible volcanoes. In order to maximize the flexibility and range of FTIR measurements at volcanoes, work over the last few years has emphasized techniques which utilize the strong radiance contrast between the volcanic gas plume and the sky. The authors have successfully employed these techniques at several volcanoes, including the White Island and Ruapehu volcanoes in New Zealand, the Kilauea volcano on Hawaii, and Mt. Etna in Italy. But Popocatepetl (5452 m), the recently re-awakened volcano 70 km southeast of downtown Mexico City, has provided perhaps the best examples to date of the usefulness of these techniques.

  15. The Role of Authigenic Volcanic Ash in Marine Sediment

    Science.gov (United States)

    Scudder, R.; McKinley, C. C.; Thomas, D. J.; Murray, R. W.

    2016-12-01

    Marine sediments are a fundamental archive of the history of weathering and erosion, biological productivity, volcanic activity, patterns of deep-water formation and circulation, and a multitude of other earth, ocean, and atmosphere processes. In particular, the record and consequences of volcanic eruptions have long fascinated humanity. Volcanic ash layers are often visually stunning, and can have thicknesses of 10s of cm or more. While the ash layer records are of great importance by themselves, we are missing a key piece of information-that of the very fined grained size fractions. Dispersed ash is the very fine grained-component that has either been mixed into the bulk sediment by bioturbation, or is deposited from subaqueous eruptions, erosion of terrestrial deposits, general input during time periods of elevated global volcanism, or other mechanisms, plays an important role in the marine sediment. The presence of dispersed ash in the marine record has previously been relatively over-looked as it is difficult to identify petrographically due to its commonly extremely fine grain size and/or alteration to authigenic clay. The dispersed ash, either altered or unaltered, is extremely difficult to differentiate from detrital/terrigenous/authigenic clay, as they are all "aluminosilicates". Here we apply a combined geochemical, isotopic, and statistical technique that enables us to resolve volcanic from detrital terrigenous inputs at DSDP/ODP/IODP sites from both the Brazil Margin and the Northwest Pacific Oceans. Incorporating the combined geochemical/statistical techniques with radiogenic isotope records allows us to address paleoceanographic questions in addition to studies of the effect of sediment fluxes on carbon cycling, the relationship between volcanic ash and biological productivity of the open ocean and nutrient availability for subseafloor microbial life.

  16. Comparative Analysis of Volcanic Inflation—Deflation Cycles

    Science.gov (United States)

    Walwer, D.; Ghil, M.; Calais, E.

    2016-12-01

    GPS geodetic data together with INSAR images are often used to formulate kinematic models of the sources of volcanic deformations. The increasing amount of data now available allows one to produce time series that are several years long and thus capture continuously the history of volcanic deformations, in particular their nonlinear behavior. This information is highly valuable in helping understand the dynamics of volcanic systems.Nonlinear deformation signals are, however, difficult to extract from the background noise inherent in the GPS time series. It is also arduous to unravel the signal of interest from other nonlinear signals, such as the seasonal oscillations associated with mass variations in the atmosphere, the ocean, and the hydrological reservoirs. Here we use Multichannel Singular Spectrum Analysis (M-SSA) — an advanced, data-adaptive method for time series analysis that exploits simultaneously the temporal and spatial correlations of geophysical fields — to extract such deformation signals.We apply M-SSA to GPS data sets from four volcanoes: Akutan, Alaska; Okmok, Alaska; Westdahl, Alaska; and Piton de la Fournaise, La Reunion. Our analyses show that all four volcanoes share similar features in their deformation history, suggesting similarities in the dynamics that generate the inflation-deflation cycles. In particular, all four volcanic systems exhibit sawtooth-shaped oscillations with slow inflations followed by slower deflations, with time scales that vary from 6 months to 4 years. This relation of dynamical similarity is further highlighted by the phase portrait reconstruction of the four systems in the plane of deformation vs. rate-of-deformation, as obtained from the deformation signals extracted from the GPS time series using M-SSA.The inflating phase of these oscillations is followed by eruptions at Okmok volcano and at Piton de la Fournaise. These analysis results suggest that these volcanic inflation—deflation cycles are associated

  17. Evidence for volcanism in NW Ishtar Terra, Venus

    Science.gov (United States)

    Gaddis, L.; Greeley, Ronald

    Venera 15/16 radar data for an area in NW Ishtar Terra, Venus, show an area with moderate radar return and a smooth textured surface which embays low lying areas of the surrounding mountainous terrain. Although this unit may be an extension of the lava plains of Lakshmi Planum to the southeast, detailed study suggests a separate volcanic center in NW Ishtar Terra. Lakshmi Planum, on the Ishtar Terra highland, exhibits major volcanic and tectonic features. On the Venera radar image radar brightness is influenced by slope and roughness; radar-facing slopes (east-facing) and rough surfaces (approx. 8 cm average relief) are bright, while west-facing slopes and smooth surfaces are dark. A series of semi-circular features, apparently topographic depressions, do not conform in orientation to major structural trends in this region of NW Ishtar Terra. The large depression in NW Ishtar Terra is similar to the calderas of Colette and Sacajawea Paterae, as all three structures are large irregular depressions. NW Ishtar Terra appears to be the site of a volcanic center with a complex caldera structure, possibly more than one eruptive vent, and associated lobed flows at lower elevations. The morphologic similarity between this volcanic center and those of Colette and Sacajawea suggests that centralized eruptions have been the dominant form of volcanism in Ishtar. The location of this volcanic center at the intersection of two major compressional mountain belts and the large size of the calders (with an inferred large/deep magma source) support a crustal thickening/melting rather than a hot-spot origin for these magmas.

  18. A Model Simulation of Pinatubo Volcanic Aerosols in the Stratosphere

    Science.gov (United States)

    Zhao , Jing-xia; Turco, Richard P.; Toon, Owen B.

    1995-01-01

    A one-dimensional, time-dependent model is used to study the chemical, microphysical, and radiative properties of volcanic aerosols produced by the Mount Pinatubo eruption on June 15, 1991. Our model treats gas-phase sulfur photochemistry, gas-to-particle conversion of sulfur, and the microphysics of sulfate aerosols and ash particles under stratospheric conditions. The dilution and diffusion of the volcanic eruption clouds are also accounted for in these conditions. Heteromolecular homogeneous and heterogeneous binary H2SO4/H2O nucleation, acid and water condensational growth, coagulation, and gravitational sedimentation are treated in detail in the model. Simulations suggested that after several weeks, the volcanic cloud was composed mainly of sulfuric acid/water droplets produced in situ from the SO2 emissions. The large amounts of SO2 (around 20 Mt) injected into the stratosphere by the Pinatubo eruption initiated homogeneous nucleation which generated a high concentration of small H2SO4/H2O droplets. These newly formed particles grew rapidly by condensation and coagulation in the first few months and then reach their stabilized sizes with effective radii in a range between 0.3 and 0.5 micron approximately one-half year after the eruption. The predicted volcanic cloud parameters reasonably agree with measurements in term of the vertical distribution and lifetime of the volcanic aerosols, their basic microphysical structures (e.g., size distribution, concentration, mass ratio, and surface area) and radiative properties. The persistent volcanic aerosols can produce significant anomalies in the radiation field, which have important climatic consequences. The large enhancement in aerosol surface area can result in measurable global stratospheric ozone depletion.

  19. The Extremes of Volcanic Activity: Earth and Jupiter's Moon Io

    Science.gov (United States)

    Lowes, L. L.; Lopes, R.

    2004-12-01

    Jupiter's moon Io is the solar system's most volcanically active body, and the only place that magmatic volcanic eruptions have been observed beyond Earth. One of the first images of Io obtained by NASA's Voyager 1 spacecraft in 1979 shows a plume above one of its volcanoes. The NASA Voyager and Galileo spacecraft imaged many explosive eruptions of plumes and deposits - which travel hundreds of kilometers (farther than on the Earth or the Moon). Very hot lavas that are erupting from volcanic vents on Io may be similar to lavas that erupted on Earth billions of years ago. Understanding the physical processes driving volcanic eruptions is important for the understanding of terrestrial volcanoes, not only because of their potential hazards, but also as geologic resources, biologic environments, and for their role in shaping the surface of Earth and other planets. Volcanic eruptions are perhaps the most dramatic events on Earth, and are of intrinsic interest to students, youth, and adults. Topics involving volcanoes are a part of the national science education benchmarks for understanding the Earth's composition and structure for grades 6-8 (the process of creating landforms) and grades 9-12 (the effects of movement of crustal plates). Natural events on Earth coupled with exciting discoveries in space can serve to heighten the awareness of these phenomena and provide learning opportunities for real world applications of science. Educational applications for youth to compare volcanic activity on Io and Earth have been done through NASA-sponsored field trip workshops to places such as Yellowstone National Park (allowing educators to experience environments similar to those on other worlds), targeted classroom and hands-on activities, special interest books, and other resources. A sampling of such activities will be presented, and discussion invited on other related developmentally appropriate resources and activities.

  20. "Last mile" challenges to in situ volcanic data transmission

    Directory of Open Access Journals (Sweden)

    J. F. B. D. Fonseca

    2013-08-01

    Full Text Available Scientists play a key role in volcanic risk mitigation, but rely heavily on fast access to data acquired in the vicinity of an active volcano. Hazardous volcanoes are often located in remote areas were telecommunications infrastructure is fragile. Besides being exposed directly to the volcanic hazard, the infrastructure in such remote areas can suffer also from "last mile" limitations derived from lack of market demand for data transmission services. In this paper, we report on the findings of FP7 MIAVITA project in the topic of volcanic data transmission. We draw on the contribution of partners from emergent or developing countries to identify the main bottlenecks and fragilities. We present also the results of an experiment conducted in Fogo island, Cape Verde, to test the availability of VSAT services adequate for volcanic monitoring. We warn against the false sense of security resulting from increasingly ubiquitous connectivity, and point out the lack of reliability of many consumer-type services, particularly during emergencies when such services are likely to crash due to excess of demand from the public. Finally, we propose guidelines and recommend best practices for the design of volcanic monitoring networks in what concerns data transmission. In particular, we advise that the data transmission equipment close to the exposed area should be owned, operated and maintained by the volcanic monitoring institution. We exemplify with the setup of the Fogo telemetric interface, which uses low-power licence-free radio modems to reach a robust point of entry into the public network at a suitable distance from the volcano.

  1. "Last mile" challenges to in situ volcanic data transmission

    Science.gov (United States)

    Fonseca, J. F. B. D.; Faria, B. V. E.; Trindade, J.; Cruz, G.; Chambel, A.; Silva, F. M.; Pereira, R. L.; Vazão, T.

    2013-12-01

    Scientists play a key role in volcanic risk management, but rely heavily on fast access to data acquired in the vicinity of an active volcano. Hazardous volcanoes are often located in remote areas were telecommunications infrastructure is fragile. Besides being exposed directly to the volcanic hazard, the infrastructure in such remote areas can also suffer from "last mile" limitations derived from lack of market demand for data transmission services. In this paper, we report on the findings of the FP7 MIAVITA project in the topic of volcanic data transmission. We draw on the contribution of partners from emergent or developing countries to identify the main bottlenecks and fragilities. We also present the results of an experiment conducted on Fogo Island, Cape Verde, to test the availability of VSAT services adequate for volcanic monitoring. We warn against the false sense of security resulting from increasingly ubiquitous connectivity, and point out the lack of reliability of many consumer-type services, particularly during emergencies when such services are likely to crash due to excess of demand from the public. Finally, we propose guidelines and recommend best practices for the design of volcanic monitoring networks in what concerns data transmission. In particular, we advise that the data transmission equipment close to the exposed area should be owned, operated and maintained by the volcanic monitoring institution. We exemplify with the set-up of the Fogo telemetric interface, which uses low-power licence-free radio modems to reach a robust point of entry into the public network at a suitable distance from the volcano.

  2. Hydrocarbon- Generating Model of the Area Covered With Volcanic Rock

    Institute of Scientific and Technical Information of China (English)

    Guo Zhanqian; Zhang Yuwei

    2000-01-01

    The distribution of Oil & gas fields shows their close relationship with the most active tectonic regions. This is not a coincidence but having a scientific reasons. The crustal active regions, refer to the places where the active natural earthquake, volcanic activities, underground water happened, and the areas of the leaking off of natural gas to the surface of the crust. The magma of volcanic activities brings the organic "kitchen range body" hydrocarbon- generating model and inorganic genetic hydrocarbon to the regions covered by volcanic rock. Underground water brings a catalytic hydrocarbongenerating model for organic matter, and the leaking- off of H2 and CO2 contributes a synthetic hydrocarbon - generating model. Volcanic activities bring the assemblage of Source, Reservoir and Seal formed by the sediments and magma the sedimentary basins, and the hydrocarbon - generating system with a "water - volcano" binary structure is formed. All these conditions are favorable and excellent for the formation of oil & gas fields. The distribution of American oil & gas fields have very close relationship with the mines of Fe, Mn, Ct, Mo, W and V, deposits of Zn, Cu, V, Pb, Al and Hg, and the deposits of fluorite, sulfur, potassium salt, phosphate and halite, and the distribution of sulfate- chloride of river water. The reason why few oil & gas fields discovered in the regions covered by volcanic rock in western America maybe because of the view of "inconsistency between petroleum and volcano". Further more, It's very difficult to carry out a geophysical exploration in such kinds of regions.This paper examined a few hydrocarbon-generating models (systems) mentioned above and came up with some fresh ideas on the exploration in the areas covered with volcanic rocks.

  3. US Forest Service National Forest System Trails With Data Status

    Data.gov (United States)

    US Forest Service, Department of Agriculture — A map service on the world wide web that depicts National Forest Service trails that have been approved for publication. It also depicts the availability of trails...

  4. US Forest Service Forest Carbon Stocks Contiguous United States

    Data.gov (United States)

    US Forest Service, Department of Agriculture — Through application of a nearest-neighbor imputation approach, mapped estimates of forest carbon density were developed for the contiguous United States using the...

  5. US Forest Service Collaborative Forest Landscape Restoration Program

    Data.gov (United States)

    US Forest Service, Department of Agriculture — A map service on the www that depicts Collaborative Forest Landscape Restoration (CFLR) and High Priority Restoration (HRP) project accomplishments. These are ten...

  6. Role of volcanic forcing on future global carbon cycle

    Directory of Open Access Journals (Sweden)

    J. F. Tjiputra

    2011-06-01

    Full Text Available Using a fully coupled global climate-carbon cycle model, we assess the potential role of volcanic eruptions on future projection of climate change and its associated carbon cycle feedback. The volcanic-like forcings are applied together with a business-as-usual IPCC-A2 carbon emissions scenario. We show that very large volcanic eruptions similar to Tambora lead to short-term substantial global cooling. However, over a long period, smaller eruptions similar to Pinatubo in amplitude, but set to occur frequently, would have a stronger impact on future climate change. In a scenario where the volcanic external forcings are prescribed with a five-year frequency, the induced cooling immediately lower the global temperature by more than one degree before it returns to the warming trend. Therefore, the climate change is approximately delayed by several decades, and by the end of the 21st century, the warming is still below two degrees when compared to the present day period. Our climate-carbon feedback analysis shows that future volcanic eruptions induce positive feedbacks (i.e., more carbon sink on both the terrestrial and oceanic carbon cycle. The feedback signal on the ocean is consistently smaller than the terrestrial counterpart and the feedback strength is proportionally related to the frequency of the volcanic eruption events. The cooler climate reduces the terrestrial heterotrophic respiration in the northern high latitude and increases net primary production in the tropics, which contributes to more than 45 % increase in accumulated carbon uptake over land. The increased solubility of CO2 gas in seawater associated with cooler SST is offset by a reduced CO2 partial pressure gradient between the ocean and the atmosphere, which results in small changes in net ocean carbon uptake. Similarly, there is nearly no change in the seawater buffer capacity simulated between the different volcanic scenarios. Our study shows that even

  7. Delimitation of volcanic edifices for landscape characterization and planning

    Science.gov (United States)

    Melis, Maria Teresa; Mundula, Filippo; Dessì, Francesco; Danila Patta, Elisabetta; Funedda, Antonio; Cioni, Raffaello

    2014-05-01

    The European Landscape Convention, recently adopted in Italy, indicates specific landforms to be selected as special protected sites. Active and inactive volcanic edifices, defined as the products of evolution of aggradational (lava effusion, pyroclastic deposition, magma intrusion) and degradational processes (erosion, deformation, gravitative phenomena), are one of the specific landforms to be protected. In order to protect these sites, management and planning measures are to be defined and shared with the local communities. In the framework of the Regional Landscape Management Plan of Sardinia (Italy), a detailed study aimed at identifying and delimiting Cenozoic volcanic edifices was performed. The large geological and morphological variability of the volcanic edifices of Sardinia in terms of type, dimension, age, integrity (a measure of the wholeness and intactnes of the volcanic edifice), geology and paleomorphology of the substrate, does not allow the definition of an automatic procedure for extracting the boundaries to delimit the volcanic edifices. In addition, quantitative geomorphological studies in the field of volcanology are confined to specific volcano types, and landscape literature does not suggest any universal criteria for delimiting volcanic edifices, except for the use of the concave breaks in slope at their base (Euillades et al., Computers and Geosciences, 2013). As this simple criterion can be unequivocally applied only in the ideal case of symmetric cones or domes built up on a planar surface, we developed a multidisciplinary methodology based on the integrated analysis of geological, geomorphological and morphometrical data of each edifice. The process of selection and delimitation of the volcanic edifices is the result of the following steps: i) a literature based delimitation of the volcanic edifice; ii) a preliminary delimitation through photo-interpretation and the use of geological criteria; and iii) a final refinement based on the

  8. Volcanism and soil mercury on Mars - Consequences for terrestrial microorganisms

    Science.gov (United States)

    Siegel, B. Z.; Siegel, S. M.

    1978-01-01

    An earth-Mars depletion formula proposed by Anders and Owen for volatiles is used to calculate a range of putative Hg levels for Martian volcanic soils based upon analyzed samples from Hawaii. The range is about 50-150 microgram per kg. When applied either in conventional or special media (e.g., basalt powder), these levels of Hg are effective inhibitors of the growth of earth microorganisms. Taken together with other hostile chemical and physical factors, volcanic toxicants would appear to provide a further deterrent to the accidental establishment of terrestrial microbiota on Mars.

  9. An assessment of future volcanic hazard at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, W.R. [WRH Associates, Salt Lake City, UT (United States)

    1996-12-01

    Preliminary results and methods of a volcanic-hazards assessment for the proposed high-level nuclear-waste repository at Yucca Mountain are given. The most significant hazards are potential intersection of the repository by a basaltic dike, or structural disruption associated with dike intrusion. Two approaches are taken, which give similar results: homogeneous volcanic-source zones and spatial smoothing. The preliminary computed probabilities of intersection of the Yucca Mountain repository by a basaltic dike are in the range 10{sup -7} to 10{sup -8} per year.

  10. Geology and geothermal potential of Alid volcanic center, Eritrea, Africa

    Science.gov (United States)

    Clynne, Michael A.; Duffield, Wendell A.; Fournier, Robert O.; Giorgis, Leake W.; Janik, Cathy J.; Kahsai, Gabreab; Lowenstern, Jacob; Mariam, Kidane W.; Smith, James G.; Tesfai, Theoderos; ,

    1996-01-01

    Alid volcanic center, a 700-meter-tall mountain in Eritrea, northeast Africa, straddles the axis of an active crustal-spreading center called the Danakil Depression. Boiling-temperature fumaroles are common on Alid, and their gas compositions indicate a reservoir temperature of at least 250 ??C. The history of volcanism and the high reservoir temperature indicated by the Alid fumarole gases suggest that a geothermal resource of electrical grade lies beneath the mountain. Though drilling is needed to determine subsurface conditions, the process of dome formation and the ongoing crustal spreading can create and maintain fracture permeability in the hydrothermal system that feeds the Alid fumaroles.

  11. Role of volcanic forcing on future global carbon cycle

    Science.gov (United States)

    Tjiputra, J. F.; Otterå, O. H.

    2011-06-01

    Using a fully coupled global climate-carbon cycle model, we assess the potential role of volcanic eruptions on future projection of climate change and its associated carbon cycle feedback. The volcanic-like forcings are applied together with a business-as-usual IPCC-A2 carbon emissions scenario. We show that very large volcanic eruptions similar to Tambora lead to short-term substantial global cooling. However, over a long period, smaller eruptions similar to Pinatubo in amplitude, but set to occur frequently, would have a stronger impact on future climate change. In a scenario where the volcanic external forcings are prescribed with a five-year frequency, the induced cooling immediately lower the global temperature by more than one degree before it returns to the warming trend. Therefore, the climate change is approximately delayed by several decades, and by the end of the 21st century, the warming is still below two degrees when compared to the present day period. Our climate-carbon feedback analysis shows that future volcanic eruptions induce positive feedbacks (i.e., more carbon sink) on both the terrestrial and oceanic carbon cycle. The feedback signal on the ocean is consistently smaller than the terrestrial counterpart and the feedback strength is proportionally related to the frequency of the volcanic eruption events. The cooler climate reduces the terrestrial heterotrophic respiration in the northern high latitude and increases net primary production in the tropics, which contributes to more than 45 % increase in accumulated carbon uptake over land. The increased solubility of CO2 gas in seawater associated with cooler SST is offset by a reduced CO2 partial pressure gradient between the ocean and the atmosphere, which results in small changes in net ocean carbon uptake. Similarly, there is nearly no change in the seawater buffer capacity simulated between the different volcanic scenarios. Our study shows that even in the relatively extreme scenario where

  12. Recent seismicity detection increase at Santorini' s volcanic islands

    Science.gov (United States)

    Chouliaras, G.; Drakatos, G.; Makropoulos, K.; Melis, N. S.

    2012-04-01

    Santorini is the most active volcano in the southern Aegean volcanic arc. To improve the seismological network detectability of the Santorini seismicity, the Institute of Geodynamics of the National Observatory of Athens (NOA) installed 6 new seismological stations. The addition of these stations which begun in the year 2010 has significantly improved the detectability and reporting of the local seismic activity in NOA's instrumental seismicity catalog. Anomalous spatial and temporal changes in the b-value of the frequency-magnitude relationship and changes in the seismicity rate have been reported for many active volcanoes and have been used for the mapping of active magma chambers. In this study we present the results from a quantitative analysis of the seismicity in the Santorini volcanic complex using the seismicity catalog of NOA. From these results we observe a significant detection increase after the year 2010 mainly for events of small magnitudes and an increase in the seismicity rate by more than 100%. The statistical significance of this rate change is determined and mapped with the z-value method and it is found that the seismicity rate increases significantly within the two main active fault zones of the volcanic complex, in a zone perpendicular to the extensive tectonic regime that characterizes this region. Temporal variations in the b-value for different time periods indicate a rather homogeneous behaviour of the frequency-magnitude curves. The spatial distribution of the b-value is shown to vary around the volcanic complex exhibiting low b-values in the two main regions of seismic activity. A b-value cross section of the volcanic complex indicates relatively high b-values under the caldera and a significant b-value decrease with depth. The results from this study are found to be in general agreement with the results from other volcanic regions and they encourage further investigations concerning the seismic and volcanic hazard and risk estimates for

  13. Deccan volcanism at the Cretaceous-Tertiary boundary

    Science.gov (United States)

    Courtillot, V.; Vandamme, D.; Besse, J.

    1988-01-01

    The accuracy with which one can claim that Deccan trap volcanism occurred at the Cretaceous-Tertiary boundary (KTB) over a very short time interval is of key importance in deciding whether a volcanic origin of the KTB events should be taken seriously. In the two years since paleomagnetic, paleontological and geodynamic evidence was published, further data have become available and the case now appears to be well constrained. The Ar-40/Ar-39 results from six labs have yielded some 24 reliable plateau ages that narrow the age range to 65 to 69 Ma. Moreover, it appears that a significant part of this range results from inter-lab spread and possible minor alteration. Paleontology demonstrates that volcanism started in the Maestrichtian, more precisely in the A. mayaroensis zone. Paleomagnetism shows that volcanism spanned only 3 chrons and only one correlation remains possible, that of the main central reversed chron with 29R. Therefore, whereas Ar-40/Ar-39 is able only to restrict the duration of volcanism to some 4 Ma, paleomagnetism restricts it to 0.5 Ma. Using some geochemical indicators such as C-13 as proxy, it is suggested that volcanism actually consists of a few shorter events of unequal magnitude. Extrusion rates may be as high as 100 cu km/yr and fissure lengths as long as several 100 km. Such a scenario appears to be at least as successful as others in accounting for most anomalies observed at the KTB. Particularly important are Iridium and other platinum group elements (PGE) profiles, Sr-87/Sr-86, C-13, 0-18, other exotic geochemical signatures, spherules, soot, shocked minerals, selective and stepwise extinctions. The environmental impact of CO2 possibly released during explosive phases of volcanism, and SO2 released during effusive phases, and the ability of volcanism to ensure worldwide distribution of KTB products are now all addressed. In conclusion, the case for a causal link between internal hotspot activity, birth of the Reunion hotspot itself as

  14. Geodetic Monitoring System Operating On Neapolitan Volcanic Area (southern Italy)

    Science.gov (United States)

    Pingue, F.; Ov-Geodesy Team

    The Neapolitan volcanic area is located in the southern sector of the Campanian Plain Graben including three volcanic active structures (Somma-Vesuvius, Campi Flegrei and Ischia). The Somma-Vesuvius complex, placed East of Naples, is a strato-volcano composed by a more ancient apparatus (Mt. Somma) and a younger cone (Mt. Vesu- vius) developed inside Somma caldera. Since last eruption (1944) it is in a quiescent state characterised by a low level seismicity and deformation activity. The Campi Fle- grei, located West of Naples, are a volcanic field inside an older caldera rim. The last eruption, occurred in the 1538, built up the Mt. Nuovo cone. The Campi Flegrei are subject to a slow vertical deformation, called bradyseism. In the 1970-1972 and 1982-1984 they have been affected by two intense episodes of ground upheaval (ac- companied by an intense seismic activity)0, followed by a subsidence phase, slower than uplift and still active. Though such phenomenon has not been followed by erup- tive events, it caused serious damages, emphasizing the high volcanic risk of the phle- grean caldera. The Ischia island, located SW of Naples, has been characterised by a volcanic activity both explosive and effusive, occurred mainly in the last 50,000 years. These events modelled the topography producing fault systems and structures delim- iting the Mt. Epomeo resurgent block. The last eruption has occurred on 1302. After, the dynamics of the island has been characterised by seismic activity (the strongest earthquake occurred on 1883) and by a meaningful subsidence, on the S and NW sec- tors of the island. The concentration of such many active volcanoes in an area with a dense urbanization (about 1,500,000 inhabitants live) needs systematic and contin- uous monitoring of the dynamics. These information are necessary in order to char- acterise eruptive precursors useful for modelling the volcanoes behaviour. Insofar, the entire volcanic Neapolitan area, characterised by a

  15. Development of forest inventory methods in multifunctional forest management

    Directory of Open Access Journals (Sweden)

    Borecki Tomasz

    2015-06-01

    Full Text Available The demand for wide range and precise information on forests promotes continuous development of forest inventory methods, owing to the fact that compilation of reliable data is prerequisite not only for improving forest management schedules but also planning land use and natural environment management. In the reality of contemporary forestry, a requirement to improve forest inventory methods stems from obligation to acquire information on broadly understood issues of forestry as well as the protection of nature and environment.

  16. Potential of the Russian forests and forest industries

    Energy Technology Data Exchange (ETDEWEB)

    Anttonen, T.; Petrov, A.P. [eds.

    1997-12-31

    The publication contains the proceedings of the seminar `Potential of the Russian Forests and Forest Industries` held in Moscow, May 14-16, 1997. The seminar was one step along the road to spread knowledge and become acquainted with forestry and forest industries in northern Europe and Russia. The seminar proceedings contain a lot of fresh information concerning forestry and forest industries in Russia. Both have undergone many changes and reforms during the last few years

  17. A Preliminary Study of the Types of Volcanic Earthquakes and Volcanic Activity at the Changbaishan Tianchi Volcano

    Institute of Scientific and Technical Information of China (English)

    Ming Yuehong; Su Wei; Fang Lihua

    2006-01-01

    Since 2002, a significant increase in seismicity, obvious ground deformation and geochemical anomalies have been observed in the Changbaishan Tianchi volcanic area. A series felt earthquakes occur near the caldera, causing great influence to society. In this paper, the types of volcanic earthquakes recorded by the temporal seismic network since 2002 have been classified by analyzing the spectrum, time-frequency characteristics and seismic waveforms at different stations. The risk of volcano eruptions was also estimated. Our results show that almost all earthquakes occurring in Tianchi volcano are volcanic-tectonic earthquakes. The low frequency seismic waveforms observed at a few stations may be caused by local mediums, and have no relation with long-period events. Although the level of seismicity increased obviously and earthquake swarms occurred more frequently than before, we considered that the magma activity is still in its early stage and the eruption risk of Changbaishan Tianchi volcano is still iow in the near future.

  18. Durham, North Carolina, Students Study Martian Volcanism

    Science.gov (United States)

    2008-01-01

    This image of the wall of a graben a depressed block of land between two parellel faults in Tyrrhena Terra, in Mars' ancient southern highlands, was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 0914 UTC (4:14 a.m. EST) on February 6, 2008, near 17.3 degrees south latitude, 95.5 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 35 meters (115 feet) across. The region covered is just over 10 kilometers (6.2 miles) wide at its narrowest point. This image was part of an investigation planned by students in four high schools in Durham, North Carolina. The students are working with the CRISM science team in a project called the Mars Exploration Student Data Teams (MESDT), which is part of NASA's Mars Public Engagement Program and Arizona State University's Mars Education Program. Starting with a medium-resolution map of the area, taken as part of CRISM's 'multispectral survey' campaign to map Mars in 72 colors at 200 meters (660 feet) per pixel, the students identified a key rock outcrop to test their hypothesis that the irregular depression was formed by Martian volcanism. They provided the coordinates of the target to CRISM's operations team, who took a high-resolution image of the site. The Context Imager (CTX) accompanied CRISM with a 6 meter (20 feet) per pixel, high-resolution image to sharpen the relationship of spectral variations to the underlying surface structures. The Durham students worked with a mentor on the CRISM team to analyze the data, and presented their results at the 39th Lunar and Planetary Science Conference, held in League City, Texas, on March 10-14, 2008. The upper panel of the image shows the location of the CRISM data and the surrounding, larger CTX image, overlain on an image mosaic taken by the Thermal Emission Imaging System (THEMIS) on Mars Odyssey. The mosaic has been color-coded for elevation using data from the Mars Orbiter Laser

  19. Durham, North Carolina, Students Study Martian Volcanism

    Science.gov (United States)

    2008-01-01

    This image of the wall of a graben a depressed block of land between two parellel faults in Tyrrhena Terra, in Mars' ancient southern highlands, was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 0914 UTC (4:14 a.m. EST) on February 6, 2008, near 17.3 degrees south latitude, 95.5 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 35 meters (115 feet) across. The region covered is just over 10 kilometers (6.2 miles) wide at its narrowest point. This image was part of an investigation planned by students in four high schools in Durham, North Carolina. The students are working with the CRISM science team in a project called the Mars Exploration Student Data Teams (MESDT), which is part of NASA's Mars Public Engagement Program and Arizona State University's Mars Education Program. Starting with a medium-resolution map of the area, taken as part of CRISM's 'multispectral survey' campaign to map Mars in 72 colors at 200 meters (660 feet) per pixel, the students identified a key rock outcrop to test their hypothesis that the irregular depression was formed by Martian volcanism. They provided the coordinates of the target to CRISM's operations team, who took a high-resolution image of the site. The Context Imager (CTX) accompanied CRISM with a 6 meter (20 feet) per pixel, high-resolution image to sharpen the relationship of spectral variations to the underlying surface structures. The Durham students worked with a mentor on the CRISM team to analyze the data, and presented their results at the 39th Lunar and Planetary Science Conference, held in League City, Texas, on March 10-14, 2008. The upper panel of the image shows the location of the CRISM data and the surrounding, larger CTX image, overlain on an image mosaic taken by the Thermal Emission Imaging System (THEMIS) on Mars Odyssey. The mosaic has been color-coded for elevation using data from the Mars Orbiter Laser

  20. Small instrument to volcanic seismic signals

    Science.gov (United States)

    Carreras, Normandino; Gomariz, Spartacus; Manuel, Antoni

    2014-05-01

    Currently, the presence of volcanoes represents a threat to their local populations, and for this reason, scientific communities invest resources to monitor seismic activity of an area, and to obtain information to identify risk situations. To perform such monitoring, it can use different general purpose acquisition systems commercially available, but these devices do not meet to the specifications of reduced dimensions, low weight, low power consumption and low cost. These features allow the system works in autonomous mode for a long period of time, and it makes easy to be carried and to be installed. In the line of designing a volcanic acquisition system with the previously mentioned specifications, exists the Volcanology Department of CSIC, developers of a system with some of these specifications. The objective of this work is to improve the energy consumption requirements of the previous system, providing three channels of data acquisition and with the possibility to transmit data acquisition via radio frequency to a base station, allowing operation it in remote mode. The developed acquisition system consists of three very low-power acquisition modules of Texas Instruments (ADS1246), and this is designed to capture information of the three coordinate axes. A microprocessor also of Texas Instruments (MSP430F5438) is used to work in low-power, due to it is ready to run this consumption and also takes advantage the power save mode in certain moments when system is not working. This system is configurable by serial port, and it has a SD memory to storage data. Contrast to the previous system, it has a RF communication module incorporated specially to work in remote mode of Lynx (YLX-TRM8053-025-05), and boasts also with a GPS module which keeps the time reference synchronized with module of SANAV (GM-1315LA). Thanks to this last selection of components, it is designed a small system about 106 x 106 mm. Assuming that the power supply system is working during all the