Sample records for volcanic area requiring

  1. Geomorphological Approach for Regional Zoning In The Merapi Volcanic Area

    Directory of Open Access Journals (Sweden)

    Langgeng Wahyu Santosa


    Full Text Available Geomorphologial approach can be used as the basic for identifying and analyzing the natural resources potentials, especially in volcanic landscape. Based on its geomorphology, Merapi volcanic landscape can be divided into 5 morphological units, i.e.: volcanic cone, volcanic slope, volcanic foot, volcanic foot plain, and fluvio-volcanic plain. Each of these morphological units has specific characteristic and natural resources potential. Based on the condition of geomorphology, the regional zoning can be compiled to support the land use planning and to maintain the conservation of environmental function in the Merapi Volcanic area.

  2. Self-potential anomalies in some Italian volcanic areas

    Directory of Open Access Journals (Sweden)

    C. Silenziario


    Full Text Available The study of Self-Potential (SP space and time variations in volcanic areas may provide useful information on both the geometrical structure of the volcanic apparatuses and the dynamical behaviour of the feeding and uprising systems. In this paper, the results obtained on the islands of Vulcano (Eolian arc and Ponza (Pontine archipelago and on the Mt. Somma-Vesuvius complex are shown. On the island of Vulcano and on the Mt. Somma-Vesuvius apparatus areal SP surveys were performed with the aim of evidencing anomalies closely associated to the zones of major volcanic activity. On the island of Vulcano a profile across the fumaroles along the crater rim of the Fossa Cone was also carried out in order to have a direct relationship between fumarolic fracture migration and flow rate and SP anomaly space and time variations. The areal survey on the island of Ponza, which is considered an inactive area, is assumed as a reference test with which to compare the amplitude and pattern of the anomalies in the active areas. A tentative interpretation of the SP anomalies in volcanic areas is suggested in terms of electrokinetic phenomena, related to the movement of fluids of both volcanic and non-volcanic origin.

  3. Petrogeochemistry of Mesozoic basaltic volcanics in Daqingshan area

    International Nuclear Information System (INIS)

    Li Xiaoguang; Li Ziying; Wei Sanyuan; Qi Da'neng


    Through the discussion on petrogeochemistry of Later Mesozoic basaltic volcanics in Daqingshan Basin in Manzhouli area, combined with field observation and the predecessors' study, its magma evolution,genesis and diagenetic structural environment are discussed, and some suggestion are provided for the further work. Basaltic magma in this area is believed to be derived from mantle with incompatible elements which were later participated by some crustal materials. It is a partially melting product of mantle by early metasomatized fluid under lithosphere extension. Through petrogeochemical analysis of the volcanics and the contrast to the adjacent uranium-producing volcanics, it is concluded that this region has structural environment to form magma evolution series which are more favorable for volcanic hydrothermal-type uranium and polymetallic mineralization. (authors)

  4. Radon in active volcanic areas of Southern Italy

    International Nuclear Information System (INIS)

    Avino, R.; Capaldi, G.; Pece, R.


    The paper presents the preliminary data dealing with the variations in time of the radiogenic gas radon in soils and waters of many active volcanic areas of Southern Italy. The greatest differences in Rn content of the investigated volcanic areas are: Ischia and Campi Flegrei, which have more Rn than Vesuvio and Volcano, both in soils and in waters. The thermalized waters of Ischia are enriched in Rn 15 times with respect to soils, while in the other areas soils and underground waters have comparable Rn contents

  5. Classifcation of volcanic structure in mesozoic era in the Fuzhou-Shaoxing area

    International Nuclear Information System (INIS)

    Zhang Fengqi.


    The volcanic structure in the Fuzhou-Shaoxing area can be classified into IV grades: the grade I be the zone of volcanic activity; the grade II be the second zone of volcanic activity; the grade III be the positive, negative volcanic structure; the grade IV be volcanic conduit, volcanic crater, concealed eruption breccia pipe. Based on the geological situation in this area, the different types of volcanic structure are also dealt with. In the mean time, both the embossed type in the depression area and the depressed type in the embossed area in the volcanic basin are pointed out. It is of great advantage to Uranium mineralization

  6. Crustal Structure of the Tengchong Intra-plate Volcanic Area (United States)

    Qian, Rongyi; Tong, Vincent C. H.


    We here provide an overview of our current understanding of the crustal structure of Tengchong in southwest China, a key intra-plate volcanic area along the Himalayan geothermal belt. Given that there is hitherto a lack of information about the near-surface structure of intra-plate volcanic areas, we present the first seismic reflection and velocity constraints on the shallow crust between intra-plate volcanoes. Our near-surface seismic images reveal the existence of dome-shaped seismic reflectors (DSRs) in the shallow crust between intra-plate volcanic clusters in Tengchong. The two DSRs are both ~2 km wide, and the shallowest parts of the DSRs are found at the depth of 200-300 m. The velocity model shows that the shallow low-velocity layer (<4 km/s) is anomalously thick (~1 km) in the region where the DSRs are observed. The presence of DSRs indicates significant levels of intra-plate magmatism beneath the along-axis gap separating two volcano clusters. Along-axis gaps between volcano clusters are therefore not necessarily an indicator of lower levels of magmatism. The seismic images obtained in this technically challenging area for controlled-source seismology allow us to conclude that shallow crustal structures are crucial for understanding the along-axis variations of magmatism and hydrothermal activities in intra-plate volcanic areas.

  7. “Points requiring elucidation” about Hawaiian volcanism: Chapter 24 (United States)

    Poland, Michael P.; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique


    Hawaiian volcanoes, which are easily accessed and observed at close range, are among the most studied on the planet and have spurred great advances in the geosciences, from understanding deep Earth processes to forecasting volcanic eruptions. More than a century of continuous observation and study of Hawai‘i's volcanoes has also sharpened focus on those questions that remain unanswered. Although there is good evidence that volcanism in Hawai‘i is the result of a high-temperature upwelling plume from the mantle, the source composition and dynamics of the plume are controversial. Eruptions at the surface build the volcanoes of Hawai‘i, but important topics, including how the volcanoes grow and collapse and how magma is stored and transported, continue to be subjects of intense research. Forecasting volcanic activity is based mostly on pattern recognition, but determining and predicting the nature of eruptions, especially in serving the critical needs of hazards mitigation, require more realistic models and a greater understanding of what drives eruptive activity. These needs may be addressed by better integration among disciplines as well as by developing dynamic physics- and chemistry-based models that more thoroughly relate the physiochemical behavior of Hawaiian volcanism, from the deep Earth to the surface, to geological, geochemical, and geophysical data.

  8. Volcanic risk perception in the Campi Flegrei area (United States)

    Ricci, T.; Barberi, F.; Davis, M. S.; Isaia, R.; Nave, R.


    The Campi Flegrei which includes part of the city of Naples, is an active volcanic system; its last eruption occurred in 1538 AD. More recently two significant crises occurred between 1969 and 72 and 1982-84 and were accompanied by ground movements (bradyseism) and seismic activity, forcing people of the town of Pozzuoli to be evacuated. Since 1984 development of a volcanic emergency plan has been underway. In 2000 Civil Protection published a risk map which defined the Red Zone, an area highly at risk from pyroclastic flows, which would need to be evacuated before an eruption. The first study to evaluate the volcanic risk perceptions of the people living within the Campi Flegrei area was completed in spring 2006, resulting in the largest sample ever studied on this topic except for one on Vesuvio area residents by Barberi et al. (2008). A 46 item questionnaire was distributed to 2000 of the approximately 300,000 residents of the Campi Flegrei Red Zone, which includes three towns and four neighborhoods within the city of Naples. A total of 1161 questionnaires were returned, for an overall response rate of 58%. Surveys were distributed to junior high and high school students, as well as to adult members of the general population. Results indicated that unlike issues such as crime, traffic, trash, and unemployment, volcanic hazards are not spontaneously mentioned as a major problem facing their community. However, when asked specific questions about volcanic risks, respondents believe that an eruption is likely and could have serious consequences for themselves and their communities and they are quite worried about the threat. Considering the events of 1969-72 and 1982-84, it was not surprising that respondents indicated earthquakes and ground deformations as more serious threats than eruptive phenomena. Of significant importance is that only 17% of the sample knows about the existence of the Emergency Plan, announced in 2001, and 65% said that they have not received

  9. Volcanic hazards of the Idaho National Engineering Laboratory and adjacent areas

    International Nuclear Information System (INIS)

    Hackett, W.R.; Smith, R.P.


    Potential volcanic hazards are assessed, and hazard zone maps are developed for the Idaho National Engineering Laboratory (INEL) and adjacent areas. The basis of the hazards assessment and mapping is the past volcanic history of the INEL region, and the apparent similarity of INEL volcanism with equivalent, well-studied phenomena in other regions of active volcanism, particularly Hawaii and Iceland. The most significant hazards to INEL facilities are associated with basaltic volcanism, chiefly lava flows, which move slowly and mainly threaten property by inundation or burning. Related hazards are volcanic gases and tephra, and ground disturbance associated with the ascent of magma under the volcanic zones. Several volcanic zones are identified in the INEL area. These zones contain most of the volcanic vents and fissures of the region and are inferred to be the most probable sites of future INEL volcanism. Volcanic-recurrence estimates are given for each of the volcanic zones based on geochronology of the lavas, together with the results of field and petrographic investigations concerning the cogenetic relationships of INEL volcanic deposits and associated magma intrusion. Annual probabilities of basaltic volcanism within the INEL volcanic zones range from 6.2 x 10 -5 per year (average 16,000-year interval between eruptions) for the axial volcanic zone near the southern INEL boundary and the Arco volcanic-rift zone near the western INEL boundary, to 1 x 10 -5 per year (average 100,000-year interval between eruptions) for the Howe-East Butte volcanic rift zone, a geologically old and poorly defined feature of the central portion of INEL. Three volcanic hazard zone maps are developed for the INEL area: lava flow hazard zones, a tephra (volcanic ash) and gas hazard zone, and a ground-deformation hazard zone. The maps are useful in land-use planning, site selection, and safety analysis

  10. The volcanic rocks construction of the late paleozoic era and uranium mineralization in Beishan area of Gansu province

    International Nuclear Information System (INIS)

    An Zhengchang; Luo Xiaoqiang


    Late Paleozoic volcanic rocks in Beishan area are the favorable constructions of hydrothermal type and volcanic type deposit. From the distribution of volcanic rocks, the volcanic compositions, the volcanic facies, volcanic eruption method and rhythm, chemical and trace elements compositions, and so on, it discusses the characteristics of the Late Devonian volcanic construction in this area and its relationship with uranium mineralization, analyzes the role of volcanic ore-control mechanism, and summarizes uranium ore forming regularity of volcanic construction in Late Paleozoic. (authors)

  11. Aeromagnetic survey of the Somma-Vesuvius volcanic area

    Directory of Open Access Journals (Sweden)

    A. Rapolla


    Full Text Available In this paper we present and discuss the results of a geophysical airborne survey carried out in the Somma-Vesuvius volcanic area, Southern Italy, in 1999. The helicopter-borne survey was aimed at giving new detailed insights into the distribution of the magnetization of the area and, therefore, into the volcanological characteristics of the region, enhancing the knowledge given by a previous low resolution survey carried out at a regional scale by Agip. The new survey was carried out by flying on a surface parallel to the topography of the area, along flight lines spaced 600 m apart. The obtained total field map is dominated by a large anomaly related to the Mt. Somma-Vesuvius complex itself and characterized by a roughly elliptical shape. High-frequency anomalies occur in the edifice and in the area east of it, partly produced by cultural noise due to the densely inhabited area. The compilation of the maps of the analytic signal and of the horizontal derivative of the field allowed the location of the lateral boundaries of the magnetic sources of the area and represents a first step toward the interpretation of the maps in terms of geological structures.

  12. Change with time in extrusion and chemical composition of volcanic rock in geothermal areas in central Kyushu

    Energy Technology Data Exchange (ETDEWEB)

    Kamata, Hiroki


    Changes with time in extrusion and chemical composition of volcanic rocks in central Kyushu are studied to provide basic data required for evaluation of geothermal resources. Distribution of volcanic rocks in successive 1Ma (10/sup 6/ year) periods and the average thickness of volcanic rock layers in each period are determined, from which the volume of volcanic rocks in each 1Ma period is calculated. Results indicate that volcanos in central Kyushu extruded about 3,000 km/sup 3//Ma of volcanic rocks during the early periods (about 5Ma), followed by a series of declining periods up to the present. Comparison of volcanic extrusive rocks of each 1Ma period shows that lava of hornblende andesite and pyroxenic andesite has been extruded in great quantities in every period. Chemical composition is studied based on diagrams showing changes in SiO/sub 2/ content. The K/sub 2/O content is relatively high in most volcanos younger than 1.6Ma, compared to those older than 1.6Ma. the K/sub 2/O content in extruded rocks has been high during the latest 0.4Ma in the Aso volcanic area, unlike other island arc conjunction areas. (4 figs, 5 tabs, 28 refs)

  13. Automatic semi-continuous accumulation chamber for diffuse gas emissions monitoring in volcanic and non-volcanic areas (United States)

    Lelli, Matteo; Raco, Brunella; Norelli, Francesco; Virgili, Giorgio; Continanza, Davide


    Since various decades the accumulation chamber method is intensively used in monitoring activities of diffuse gas emissions in volcanic areas. Although some improvements have been performed in terms of sensitivity and reproducibility of the detectors, the equipment used for measurement of gas emissions temporal variation usually requires expensive and bulky equipment. The unit described in this work is a low cost, easy to install-and-manage instrument that will make possible the creation of low-cost monitoring networks. The Non-Dispersive Infrared detector used has a concentration range of 0-5% CO2, but the substitution with other detector (range 0-5000 ppm) is possible and very easy. Power supply unit has a 12V, 7Ah battery, which is recharged by a 35W solar panel (equipped with charge regulator). The control unit contains a custom programmed CPU and the remote transmission is assured by a GPRS modem. The chamber is activated by DataLogger unit, using a linear actuator between the closed position (sampling) and closed position (idle). A probe for the measure of soil temperature, soil electrical conductivity, soil volumetric water content, air pressure and air temperature is assembled on the device, which is already arranged for the connection of others external sensors, including an automatic weather station. The automatic station has been tested on the field at Lipari island (Sicily, Italy) during a period of three months, performing CO2 flux measurement (and also weather parameters), each 1 hour. The possibility to measure in semi-continuous mode, and at the same time, the gas fluxes from soil and many external parameters, helps the time series analysis aimed to the identification of gas flux anomalies due to variations in deep system (e.g. onset of volcanic crises) from those triggered by external conditions.

  14. The relational of Mesozoic volcanism to uranium mineralization in Guyuan-Hongshanzi area

    International Nuclear Information System (INIS)

    Wu Rengui; Xu Zhe; Yu Zhenqing; Jiang Shan; Shen Kefeng


    Based on the time of Mesozoic volcanism,the characteristic of major and trace element, and REE pattern of the volcanic rocks in Guyuan-Hongshanzi area, The Mesozoic volcanism can be divided into the early cycle and later cycle during the Early Cretaceous, and it's magma series is classified in two sub-series, one is alkaline series of trachyte dominated and another is subalkaline series of rhyolite dominated. The relations between Mesozoic volcanism and uranium mineralization is mainly shown in four aspects: (1) Uranium mineralization controlled by the coexist of two magma series; (2) Uranium mineralization controlled by superhypabyssal porphyry body in later cycle volcanism during the Early Cretaceous; (3) The porphyry body close to uranium mineralization,bearing the genesis characteristics of crust-mantle action; and (4) High Si and K content in the chemical composition of the mineralization volcanic rocks. (authors)


    Directory of Open Access Journals (Sweden)



    Full Text Available This paper presents the findings of compaction and strength characteristics of a Granular Volcanic Ash from Sana'a city center, which was mixed with various percentages of two binders to form a stabilized material namely; fine soil and Portland cement. The study showed a significant improvement of the Volcanic Ash properties. The maximum dry density and California bearing ration (CBR were considerably increased by addition of stabilizers at different rates for different binder contents. Optimum fine soil content for the maximum dry density and CBR is determined. A relationship between the optimum moisture content and the binder combination content for different fine soil percentages was established.

  16. Volcanic risk perception of young people in the urban areas of Vesuvius: Comparisons with other volcanic areas and implications for emergency management (United States)

    Carlino, S.; Somma, R.; Mayberry, G.C.


    More than 600 000 people are exposed to volcanic risk in the urban areas near the volcano, Vesuvius, and may need to be evacuated if there is renewed volcanic activity. The success of a future evacuation will strongly depend on the level of risk perception and preparedness of the at-risk communities during the current period of quiescence. The volcanic risk perception and preparedness of young people is of particular importance because hazard education programs in schools have been shown to increase the clarity of risk perception and students often share their knowledge with their parents. In order to evaluate young people's risk perception and preparedness for a volcanic crisis, a multiple choice questionnaire was distributed to 400 high-school students in three municipalities located close to the volcano. The overall results suggest that despite a 60-year period of quiescence at Vesuvius, the interviewed students have an accurate perception of the level of volcanic risk. On the other hand, the respondents demonstrate a clear lack of understanding of volcanic processes and their related hazards. Also, the interviewed students show high levels of fear, poor perceived ability to protect themselves from the effects of a future eruption, and insufficient knowledge of the National Emergency Plan for Vesuvian Area (NEPVA). The latter result suggests that in comparison with volcanic crises in other regions, during a future eruption of Vesuvius, there may not be enough time to educate the large number of people living near the volcano about how to appropriately respond. The inadequate risk education and preparedness of respondents implies that a strong effort is needed to improve communication strategies in order to facilitate successful evacuations. Therefore, it is important to take advantage of the present period of quiescence at Vesuvius to improve the accuracy of risk perception of youth in local communities. ?? 2008.

  17. K-Ar age of the Tertiary volcanic rocks in the Tohoku area, Japan

    International Nuclear Information System (INIS)

    Konda, Tadashi; Ueda, Yoshio.


    The absolute age of the Tertiary volcanic rocks in Tohoku area has been estimated by K-Ar method. The results are: (1) in case of the volcanic rocks of Monzen-Aikawa stage, 32.8 - 38.5 m.y.B.P., (2) in case of the volcanic rocks of Nozaki-Daijima stage, 22.0 - 25.1 m.y.B.P., (3) in case of the volcanic rocks of Nishikurosawa stage, 15.5 - 16.5 m.y.B.P., (4) in case of the volcanic rocks of Onnagawa stage, 12.6 - 14.8 m.y.B.P., (5) in case of the volcanic rocks of Funakawa stage, 9.6 - 11.3 m.y.B.P., and (6) in case of the volcanic rocks of Kitaura stage, 6.9 - 9.0 m.y.B.P. The samples used are such as biotite and whole rocks. The eruption periods in Tertiary volcanic activities presumed by K-Ar method are geologically significant. In the measurements made on the same system of samples under same conditions, there was difference in the K-Ar ages between the Monzen-Aikawa and the Nozaki-Daijima stages, and it was significantly noteworthy. It is indicated that the volcanic rock activities in the former stage had took place before those in the latter stage. In the Tohoku arc of northern Japan, the simultaneity in initial volcanic activities is not seen in the direction across the arc. (J.P.N.)

  18. The research of modern He discharge in volcanic and tectonically active areas of China's continent

    International Nuclear Information System (INIS)

    Shangguan, Z.G.


    The realising features of modern helium in volcanic and tectonically active areas of China's continent are here discussed, presenting that the current escaped He in volcanic areas are mainly the mantle-derived He. The 3 He/ 4 He ratios of crustal gases in Eastern China are relatively higher than those gases in Middle-Western China. The author considers difficult to interpret this phenomenon by means of the differences of tectonic activity in those areas: it may be related to the variation of crustal thickness of China's continent from East to West

  19. Multi-disciplinary approach in volcanic areas: case study of Kamchatka, Far East of Russia (United States)

    Kuznetsova, Elena


    Volcanic ash is associated with a considerable proportion of the Earth's land surface. At the same time, it is estimated that 15% of the land surface is affected by permafrost and glacial ice. As a consequences volcanic ash may play an important role in the aggradation and degradation of cold regions (Kellerer-Pirklbauer et al., 2007; Froese et al., 2008). An understanding of the influence of volcanic ash on these frozen areas allows for more accurate prediction of their stability in the future and provides a better knowledge of the factors affecting past climates, soils and soil stability. Vital to making accurate predictions is an understanding of the thermal properties of volcanic ash (Juen et al., 2013). For example, even for the same region of Kamchatka in eastern Russia volcanic ash may have not only different ages, different chemical composition of the glass, but also different weathering stages, mineralogical composition, and water saturation, furthermore, these ashes may be permanently frozen or unfrozen, all of which may affect their thermal properties (Kuznetsova & Motenko, 2014). These differences might be the reason why the critical thickness of tephra, at which the effect on ice and snow is rather insulating than ablative, for the volcanic material from different volcanoes may vary so much. The determined values of critical thickness deviate from 24 mm reported by Driedger (1980) for the glaciers at Mt. St. Helens, USA, and by (Manville et al., 2000) for tephra erupted in 1996 by Mt. Ruapehu, New Zealand, to weathering and new minerals formation (e.g. allophane, palagonite). The special properties of volcanic ash are critically reviewed particularly in relation to recent research in Kamchatka in the Far East of Russia. Of particular importance are the thermal properties and the unfrozen water contents of ash layers and the rate at which the weathering of volcanic glass takes place.

  20. Integration of geophysical datasets by a conjoint probability tomography approach: application to Italian active volcanic areas

    Directory of Open Access Journals (Sweden)

    D. Patella


    Full Text Available We expand the theory of probability tomography to the integration of different geophysical datasets. The aim of the new method is to improve the information quality using a conjoint occurrence probability function addressed to highlight the existence of common sources of anomalies. The new method is tested on gravity, magnetic and self-potential datasets collected in the volcanic area of Mt. Vesuvius (Naples, and on gravity and dipole geoelectrical datasets collected in the volcanic area of Mt. Etna (Sicily. The application demonstrates that, from a probabilistic point of view, the integrated analysis can delineate the signature of some important volcanic targets better than the analysis of the tomographic image of each dataset considered separately.

  1. Study on fractal characteristics of remote sensing image in the typical volcanic uranium metallogenic areas

    International Nuclear Information System (INIS)

    Pan Wei; Ni Guoqiang; Li Hanbo


    Computing Methods of fractal dimension and multifractal spectrum about the remote sensing image are briefly introduced. The fractal method is used to study the characteristics of remote sensing images in Xiangshan and Yuhuashan volcanic uranium metallogenic areas in southern China. The research results indicate that the Xiangshan basin in which lots of volcanic uranium deposits occur,is of bigger fractal dimension based on remote sensing image texture than that of the Yuhuashan basin in which two uranium ore occurrences exist, and the multifractal spectrum in the Xiangshan basin obviously leans to less singularity index than in the Yuhuashan basin. The relation of the fractal dimension and multifractal singularity of remote sensing image to uranium metallogeny are discussed. The fractal dimension and multifractal singularity index of remote sensing image may be used to predict the volcanic uranium metallogenic areas. (authors)

  2. Within-plate Cenozoic Volcanism and Mantle Sources Within The Western-central Mediterranean Area (United States)

    Beccaluva, L.; Bianchini, G.; Bonadiman, C.; Coltorti, M.; Siena, F.

    An integrated study of anorogenic basic magmas and entrained mantle xenoliths rep- resents a promising approach for a comprehension of the magmatogenic events occur- ring within the lithospheric mantle in the western-central Mediterranean area. In this contribution we review the geochemical characteristics of mafic lavas and associated peridotite xenoliths from three anorogenic volcanic districts: Pliocene-Quaternary vol- canism of Sardinia; Pliocene-Quaternary volcanism of the Iblean area (eastern Sicily); Paleocene-Oligocene Veneto Volcanic Province. Investigations have been focused on 1) petrological features of parental magmas, which may contribute to infer the com- positional characteristics of mantle sources and to constrain the modes of partial melt- ing; 2) modelling the depletion events and metasomatic enrichments in mantle xeno- liths of the three volcanic districts, as well as the nature of their causative agents. Petrological features and Sr-Nd-Pb isotopic data, both of lava and xenoliths, indicate that DM+HIMU components distinguish the lithospheric mantle sections of Iblean and Veneto Volcanic Provinces. On the other hand, lavas and xenoliths from Sardinia display a significant different isotopic signature characterised by DM+EM1. Similar geochemical fingerprints, i.e. the significant presence of EM components are gener- ally recorded by mafic lavas and mantle xenoliths from the European Plate, whereas they are not observed in the stable African lithospheric domain.

  3. Estimates of fluid pressure and tectonic stress in hydrothermal/volcanic areas:a methodological approach

    Directory of Open Access Journals (Sweden)

    G. Vilardo


    Full Text Available An analytical approach to estimate the relative contribution of the fluid pressure and tectonic stress in hydrothermal/ volcanic areas is proposed assuming a Coulomb criterion of failure. The analytical procedure requires the coefficient of internal friction, cohesion, rock density, and thickness of overburden to be known from geological data. In addition, the orientation of the principal stress axes and the stress ratio must be determined from the inversion of fault-slip or seismic data (focal mechanisms. At first, the stress magnitude is calculated assuming that faulting occurs in 'dry' conditions (fluid pressure=0. In a second step, the fluid pressure is introduced performing a grid search over the orientation of 1 fault planes that slip by shear failure or 2 cracks that open under different values of fluid pressure and calculating the consistency with the observed fault planes (i.e. strike and dip of faults, cracks, nodal planes from focal mechanisms. The analytical method is applied using fault-slip data from the Solfatara volcano (Campi Flegrei, Italy and seismic data (focal mechanisms from the Vesuvius volcano (Italy. In these areas, the fluid pressure required to activate faults (shear fractures and cracks (open fractures is calculated. At Solfatara, the ratio between the fluid pressure and the vertical stress ?is very low for faults ( ?=0.16 and relatively high for cracks ( ?=0.5. At Vesuvius, ?=0.6. Limits and uncertainties of the method are also discussed.

  4. Asthenospheric flow and origin of volcanism in the Baikal rift area

    NARCIS (Netherlands)

    Lebedev, S.; Meier, T.; Hilst, R.D. van der


    The origin of low-volume, hotspot-like volcanism often observed in continental rift areas is debated, as is the nature of the flow in the mantle beneath. In this paper we assemble seismic constraints on the mantle flow below the Baikal Rift Zone. We combine new evidence from upper-mantle

  5. Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, W.R.; Smith, R.P.


    In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

  6. Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, W.R.; Smith, R.P.


    In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

  7. Geology and zircon fission track ages of volcanic rocks in the western part of Hoshino gold area, Fukuoka Prefecture, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Belhadi, Ahmed; Himeno, Osamu; Watanabe, Koichiro; Izawa, Eiji [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering


    The Hoshino gold area is located in the western part of the Hohi volcanic zone, northern Kyushu. Volcanic rocks in this area vary from andesitic rocks in the north to dacite and rhyolite in the South. The basement is constituted by metamorphic rocks of pre-Cretaceous age. The volcanic rocks of Pliocene age were subdivided into eight volcanic units. Seven fission track ages of zircons from five volcanic units have been determined, using the external detector method. The age data obtained, combined with some previously reported ages, show that two main volcanic activities have occurred in the area. The first volcanic activity took place around 4.3 Ma, and resulted into the deposition of the Hoshino Andesite and the Ikenoyama Conglomerate. The second main volcanism started around 3.5 Ma, and was characterized by the eruption of the Shakadake Andesite and the Reiganji Andesite at the early stage, then, by more acidic rocks of the Takeyama Andesite, the Hyugami Dacite and the Kuroki Rhyolite at the later stage. The main volcanism in the area ceased around 2.6 Ma. (author)

  8. Neogene seismites and seismic volcanic rocks in the Linqu area, Shandong Province, E China

    Directory of Open Access Journals (Sweden)

    Tian H.S.


    Full Text Available The Yishu Fault Zone runs through the centre of Shandong Province (E China; it is a deep-seated large fault system that still is active. Two volcanic faulted basins (the Shanwang and Linqu Basins in the Linqu area, west of the fault zone, are exposed to rifting, which process is accompanied by a series of tectonic and volcanic earthquakes with a magnitude of 5-8. Lacustrine sediments in the basins were affected by these earthquakes so that seismites with a variety of soft-sediment deformation structures originated. The seismites form part of the Shanwang Formation of the Linqu Group. Semi-consolidated fluvial conglomerates became deformed in a brittle way; these seismites are present at the base of the Yaoshan Formation. Intense earthquakes triggered by volcanic activity left their traces in the form of seismic volcanic rocks associated with liquefied-sand veins in the basalt/sand intercalations at the base of the Yaoshan Formation. These palaeo-earthquake records are dated around 14-10 Ma; they are responses to the intense tectonic extension and the basin rifting in this area and even the activity of the Yishu Fault Zone in the Himalayan tectonic cycle.

  9. Stratigraphy and eruption age of the volcanic rocks in the west of Miyanoharu area, Kumamoto Prefecture

    International Nuclear Information System (INIS)

    Kamata, Hiroki


    The detailed stratigraphic survey, K-Ar age determinations and NRM measurements of the volcanic rocks in the west of Miyanoharu area revealed the volcanic history as follows: Hornblende andesite lava with plagioclase megacryst (Yoshinomoto lava) erupted during 2.8 - 2.5 Ma (Gauss normal epoch), accompanied by small amount of pyroclastic materials. After this eruption, Kamitarumizu hypersthene-augite andesite lava (1.7 - 1.3 Ma; reversed), Yabakei pyroclastic flow (0.99 Ma; Jaramillo normal event), Yamakogawa biotite rhyolite lava (0.9 Ma; reversed) and Daikanbo hypersthene-augite andesite lava (0.8 Ma; normal) erupted successively prior to the Aso-1 pyroclastic flow (0.3 - 0.4 Ma). Both the K-Ar ages and NRM data are consistent with the stratigraphic sequence (Fig. 2), which suggests that the activity of andesite and rhyolite is intercalated with each other during Pleistocene in the studied area. The compiled radiometric age data in the central-north Kyushu show that the age of volcanic activity that has previously been inferred as middle Miocene is of Pliocene, and its distribution is limited within the quadrilateral (60 km x 40 km) where the pre-Tertiary basement rocks are absent. The distribution of volcanic rocks is historically zonated such that the rocks of older age up to 5 Ma develop toward the outer rim of the quadrilateral, which coincides with the 0 mgal contour bordering the large low Bouguer anomaly. These facts suggest that the volcanic activity is remarkably relevant to the subsidence of this area, where the volcano-tectonic depression has been formed after 5 Ma to the present, and filled with lavas and pyroclastic materials with scarce sedimentary rocks in the tension stress field during Plio-Pleistocene age. (Kubozono, M.)

  10. Hydrological and geochemical investigation on the volcanic rock and gneissic rock area

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Yong Kwon; Jeong, Chan Ho; Ryu, Kun Seok; Kim, Byoung Yeop; Park, Hyung Kun; Yu, Sang Woo; Jang, Hyu Kun; Lee, Suk Chi; Choi, Ki Young; Jeon, Hyu Woong; Kim, Do Hyoung [Daejong University, Daejeon (Korea, Republic of)


    The purpose of this study is to supply the basic data and optimum study site among volcanic rock area and gneissic rock area for high-level radioactive waste disposal. For this purpose, geological, hydrogeological and geochemical data from previously published literatures were collected and analyzed. In this study, we selected 36 volcanic rock sites and 26 gneissic sites as the candidate sites for high level radwaste disposal. Finally, for four sites(M-1, M-13, V-1 and V-13 sites) were selected as the study sites. The geochemical characteristics of groundwaters of each study site were statistically analyzed. The nitrate contamination and the sea water mixing will be important factors on the assessment of behaviour of radionuclides under groundwater environment. From the deep geothermal study, alkaline and sodium-bicarbonate chemical environment, and sea water mixing should be considered as the key factors for the deep disposal of high-level radioactive waste

  11. Structural model of the Northern Latium volcanic area constrained by MT, gravity and aeromagnetic data

    Directory of Open Access Journals (Sweden)

    P. Gasparini


    Full Text Available The results of about 120 magnetotelluric soundings carried out in the Vulsini, Vico and Sabatini volcanic areas were modeled along with Bouguer and aeromagnetic anomalies to reconstruct a model of the structure of the shallow (less than 5 km of depth crust. The interpretations were constrained by the information gathered from the deep boreholes drilled for geothermal exploration. MT and aeromagnetic anomalies allow the depth to the top of the sedimentary basement and the thickness of the volcanic layer to be inferred. Gravity anomalies are strongly affected by the variations of morphology of the top of the sedimentary basement, consisting of a Tertiary flysch, and of the interface with the underlying Mesozoic carbonates. Gravity data have also been used to extrapolate the thickness of the neogenic unit indicated by some boreholes. There is no evidence for other important density and susceptibility heterogeneities and deeper sources of magnetic and/or gravity anomalies in all the surveyed area.

  12. Self-potential, geoelectric and magnetotelluric studies in Italian active volcanic areas


    Di Mai, R.; Mauriello, P.; Patella, D.; Petrillo, Z.; Piscitelli, S.; Siniscalchi, A.; Veneruso, M.


    We present the results of self-potential, geoelectric and magnetotelluric studies in Italian active volcanic areas as essential contributions both to structural modeling and to hazard evaluation. On Mt. Etna and Mt. Somma-Vesuvius complexes structural modeling was emphasized due to a lack of global information involving the whole apparatuses, at least from the electrical point of view. Hazard investigation was, instead, investigated with high resolution techniques on the island of Vulcano, wh...

  13. Reservoir characteristics and control factors of Carboniferous volcanic gas reservoirs in the Dixi area of Junggar Basin, China

    Directory of Open Access Journals (Sweden)

    Ji'an Shi


    Full Text Available Field outcrop observation, drilling core description, thin-section analysis, SEM analysis, and geochemistry, indicate that Dixi area of Carboniferous volcanic rock gas reservoir belongs to the volcanic rock oil reservoir of the authigenic gas reservoir. The source rocks make contact with volcanic rock reservoir directly or by fault, and having the characteristics of near source accumulation. The volcanic rock reservoir rocks mainly consist of acidic rhyolite and dacite, intermediate andesite, basic basalt and volcanic breccia: (1 Acidic rhyolite and dacite reservoirs are developed in the middle-lower part of the structure, have suffered strong denudation effect, and the secondary pores have formed in the weathering and tectonic burial stages, but primary pores are not developed within the early diagenesis stage. Average porosity is only at 8%, and the maximum porosity is at 13.5%, with oil and gas accumulation showing poor performance. (2 Intermediate andesite and basic basalt reservoirs are mainly distributed near the crater, which resembles the size of and suggests a volcanic eruption. Primary pores are formed in the early diagenetic stage, secondary pores developed in weathering and erosion transformation stage, and secondary fractures formed in the tectonic burial stage. The average porosity is at 9.2%, and the maximum porosity is at 21.9%: it is of the high-quality reservoir types in Dixi area. (3 The volcanic breccia reservoir has the same diagenetic features with sedimentary rocks, but also has the same mineral composition with volcanic rock; rigid components can keep the primary porosity without being affected by compaction during the burial process. At the same time, the brittleness of volcanic breccia reservoir makes it easily fracture under the stress; internal fracture was developmental. Volcanic breccia developed in the structural high part and suffered a long-term leaching effect. The original pore-fracture combination also made

  14. Carbon and Noble Gas Isotopes in the Tengchong Volcanic Geothermal Area, Yunnan, Southwestern China

    Institute of Scientific and Technical Information of China (English)

    XU Sheng; Shun'ich NAKAI; Hiroshi WAKITA; WANG Xianbin


    Carbon and noble gas isotope analyses are reported for bubbling gas samples from the Tengchong volcanic geothermal area near the Indo-Eurasian suture zone. All samples contain a resolvable component of mantle-derived 3He.Occurrence of mantle-derived 3He coincides with surface volcanism. However, 3He occurs over a larger geographic area than do surface volcanics. δ13C values for CO2 and CH4 vary from -33.4 ‰ to 1.6 ‰ and from -52.8 ‰ to -2.8 ‰,respectively. He and C isotope systematics indicate that CO2 and CH4 in the CO2-rich gases originated predominantly from magmatic component mixed with crustal CO2 produced from carbonate. However, breakdown of organic matter and nearsurface processes accounts for the CH4 and CO2 in N2-rich gases. 3He/4He ratio distribution pattern suggests that mantlederived He and heat sources of high-temperature system in central Tengchong originate from a hidden magma reservoir at subsurface. CO2-rich gases with the highest 3He/4He ratio (5.2 Ra) may be representative of the Tengchong magmatic component. Compared with MORB, this relative low 3He/4He ratio could be fully attributed to either deep crustal contamination, or radioactive aging, or past contamination of the local mantle by U- and Th-rich subducted crustal material.However, a combination of low 3He/4He, high radiogenic 4He/40Ar ratio and identical CO2/3He and δ13Cco2 relative to MORB may suggest addition of prior subductedd crsustal material (ca 1%-2%) to the MORB reservoir around 1.3 Ga ago,which is essentially compatible with the LIL-elements, and Sr-Nd-Pb isotopes of volcanic rocks.

  15. Volcanic or Fluvial Channels on Ascraeus Mons: Focus on the Source Area of Sinuous Channels on the Southeast Rift Apron (United States)

    Signorella, J. D.; de Wet, A. P.; Bleacher, J. E.; Collins, A.; Schierl, Z. P.; Schwans, B.


    This study focuses on the source area of sinuous channels on the southeast rift apron on Ascraeus Mons, Mars and attempts to understand whether the channels were formed through volcanic or fluvial processes.

  16. Spatial Characteristics of Geothermal Spring Temperatures and Discharge Rates in the Tatun Volcanic Area, Taiwan (United States)

    Jang, C. S.; Liu, C. W.


    The Tatun volcanic area is the only potential volcanic geothermal region in the Taiwan island, and abundant in hot spring resources owing to stream water mixing with fumarolic gases. According to the Meinzer's classification, spring temperatures and discharge rates are the most important properties for characterizing spring classifications. This study attempted to spatially characterize spring temperatures and discharge rates in the Tatun volcanic area, Taiwanusing indicator kriging (IK). First, data on spring temperatures and discharge rates, which were collected from surveyed data of the Taipei City Government, were divided into high, moderate and low categories according to spring classification criteria, and the various categories were regarded as estimation thresholds. Then, IK was adopted to model occurrence probabilities of specified temperatures and discharge rates in springs, and to determine their classifications based on estimated probabilities. Finally, nine combinations were obtained from the classifications of temperatures and discharge rates in springs. Moreover, the combinations and features of spring water were spatially quantified according to seven sub-zones of spring utilization. A suitable and sustainable development strategy of the spring area was proposed in each sub-zone based on probability-based combinations and features of spring water.The research results reveal that the probability-based classifications using IK provide an excellent insight in exploring the uncertainty of spatial features in springs, and can provide Taiwanese government administrators with detailed information on sustainable spring utilization and conservation in the overexploited spring tourism areas. The sub-zones BT (Beitou), RXY (Rd. Xingyi), ZSL (Zhongshanlou) and LSK (Lengshuikeng) with high or moderate discharge rates are suitable to supply spring water for tourism hotels.Local natural hot springs should be planned in the sub-zones DBT (Dingbeitou), ZSL, XYK

  17. Shear-wave velocity models and seismic sources in Campanian volcanic areas: Vesuvius and Phlegraean fields

    Energy Technology Data Exchange (ETDEWEB)

    Guidarelli, M; Zille, A; Sarao, A [Dipartimento di Scienze della Terra, Universita degli Studi di Trieste, Trieste (Italy); Natale, M; Nunziata, C [Dipartimento di Geofisica e Vulcanologia, Universita di Napoli ' Federico II' , Napoli (Italy); Panza, G F [Dipartimento di Scienze della Terra, Universita degli Studi di Trieste, Trieste (Italy); Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)


    This chapter summarizes a comparative study of shear-wave velocity models and seismic sources in the Campanian volcanic areas of Vesuvius and Phlegraean Fields. These velocity models were obtained through the nonlinear inversion of surface-wave tomography data, using as a priori constraints the relevant information available in the literature. Local group velocity data were obtained by means of the frequency-time analysis for the time period between 0.3 and 2 s and were combined with the group velocity data for the time period between 10 and 35 s from the regional events located in the Italian peninsula and bordering areas and two station phase velocity data corresponding to the time period between 25 and 100 s. In order to invert Rayleigh wave dispersion curves, we applied the nonlinear inversion method called hedgehog and retrieved average models for the first 30-35 km of the lithosphere, with the lower part of the upper mantle being kept fixed on the basis of existing regional models. A feature that is common to the two volcanic areas is a low shear velocity layer which is centered at the depth of about 10 km, while on the outside of the cone and along a path in the northeastern part of the Vesuvius area this layer is absent. This low velocity can be associated with the presence of partial melting and, therefore, may represent a quite diffused crustal magma reservoir which is fed by a deeper one that is regional in character and located in the uppermost mantle. The study of seismic source in terms of the moment tensor is suitable for an investigation of physical processes within a volcano; indeed, its components, double couple, compensated linear vector dipole, and volumetric, can be related to the movements of magma and fluids within the volcanic system. Although for many recent earthquake events the percentage of double couple component is high, our results also show the presence of significant non-double couple components in both volcanic areas. (author)

  18. Compilation of modal analyses of volcanic rocks from the Nevada Test Site area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Page, W.R.


    Volcanic rock samples collected from the Nevada Test Site, Nye County, Nevada, between 1960 and 1985 were analyzed by thin section to obtain petrographic mode data. In order to provide rapid accessibility to the entire database, all data from the cards were entered into a computerized database. This computer format will enable workers involved in stratigraphic studies in the Nevada Test Site area and other locations in southern Nevada to perform independent analyses of the data. The data were compiled from the mode cards into two separate computer files. The first file consists of data collected from core samples taken from drill holes in the Yucca Mountain area. The second group of samples were collected from measured sections and surface mapping traverses in the Nevada Test Site area. Each data file is composed of computer printouts of tables with mode data from thin section point counts, comments on additional data, and location data. Tremendous care was taken in transferring the data from the cards to computer, in order to preserve the original information and interpretations provided by the analyzer. In addition to the data files above, a file is included that consists of Nevada Test Site petrographic data published in other US Geological Survey and Los Alamos National Laboratory reports. These data are presented to supply the user with an essentially complete modal database of samples from the volcanic stratigraphic section in the Nevada Test Site area. 18 refs., 4 figs

  19. Self-potential, geoelectric and magnetotelluric studies in Italian active volcanic areas

    Directory of Open Access Journals (Sweden)

    A. Siniscalchi


    Full Text Available We present the results of self-potential, geoelectric and magnetotelluric studies in Italian active volcanic areas as essential contributions both to structural modeling and to hazard evaluation. On Mt. Etna and Mt. Somma-Vesuvius complexes structural modeling was emphasized due to a lack of global information involving the whole apparatuses, at least from the electrical point of view. Hazard investigation was, instead, investigated with high resolution techniques on the island of Vulcano, where intense unrest phenomena have long been recorded.

  20. GIS database and discussion for the distribution, composition, and age of Cenozoic volcanic rocks of the Pacific Northwest Volcanic Aquifer System study area (United States)

    Sherrod, David R.; Keith, Mackenzie K.


    A substantial part of the U.S. Pacific Northwest is underlain by Cenozoic volcanic and continental sedimentary rocks and, where widespread, these strata form important aquifers. The legacy geologic mapping presented with this report contains new thematic categorization added to state digital compilations published by the U.S. Geological Survey for Oregon, California, Idaho, Nevada, Utah, and Washington (Ludington and others, 2005). Our additional coding is designed to allow rapid characterization, mainly for hydrogeologic purposes, of similar rocks and deposits within a boundary expanded slightly beyond that of the Pacific Northwest Volcanic Aquifer System study area. To be useful for hydrogeologic analysis and to be more statistically manageable, statewide compilations from Ludington and others (2005) were mosaicked into a regional map and then reinterpreted into four main categories on the basis of (1) age, (2) composition, (3) hydrogeologic grouping, and (4) lithologic pattern. The coding scheme emphasizes Cenozoic volcanic or volcanic-related rocks and deposits, and of primary interest are the codings for composition and age.

  1. Applicability of `GREATEM' system in mapping geothermal regions in volcanic areas (United States)

    Verma, S. K.; Mogi, T.; Abd Allah, S.


    The ‘GREATEM’ helicopter borne TEM system employs a long grounded cable as transmitter while a light weight receiver coil is flown below a helicopter. This arrangement greatly simplifies the flying logistics and speed of the survey. Also there is very little reduction in the anomaly amplitude when the survey altitude is increased. This is a great advantage particularly in volcanic regions usually having rough topography, as the ‘GREATEM’ survey can be done with helicopter flying at a safe height. Many volcanic areas have anomalous geothermal regions containing hydrothermal fluids. Eruption of volcanoes may cause changes in the thermal character and spatial distribution of these regions. Mapping of these regions is important as they may be associated with hazards. Sometimes, if the temperature is high and volume of the geothermal region is large, they can provide a good source of geothermal energy. Applicability of ‘GREATEM’ system in mapping geothermal regions in volcanic areas is studied by numerical modeling. We have considered a 3D conductor at a shallow depth (50 t0 100m), representing the anomalous geothermal region with dimensions of 500m X 500m X 500m. Different types of geological host environment are considered by varying their resistivities from 10 Ohm.m to 2000 Ohm.m. The ‘GREATEM’ response is analyzed as ‘Percentage Difference (PD)’ over the response produced by the host environment. It is found that the “GREATEM’ system can delineate the geothermal region well. Many geothermal regions are associated with a deeper (> 1 km) reservoir of much larger dimensions. In this situation also it is found that the ‘GREATEM’ system can pick up the response of the shallower geothermal region against the background response of different types of geological host environment containing the deeper reservoir (Figure 1).

  2. Reconnaissance map showing thickness of volcanic ash deposits in the greater Hilo area, Hawaii (United States)

    Buchanan-Banks, Jane M.


    This study was undertaken to determine the thickness and distribution of volcanic ash deposits in the greater Hilo area, Hawaii, as a step toward evaluating their susceptibility to failure during earthquake shaking. On several occasions their instability has resulted in serious damage. For example, the 1868 earthquake (m=7+), following a prolonged rainy period, caused a debris flow of hillside ash deposits that killed 31 people in Wood Valley (Bringham, 1869). The 1973 Honomu earthquake (m=6.2) resulted in more damage from shaking to areas underlain by ash deposits in the older part of Hilo than in other areas, and soil slips in ash, as well as rockfalls, were common along the roads north of town (Nielsen and others, 1977). 

  3. Utilizing NASA Earth Observations to Model Volcanic Hazard Risk Levels in Areas Surrounding the Copahue Volcano in the Andes Mountains (United States)

    Keith, A. M.; Weigel, A. M.; Rivas, J.


    Copahue is a stratovolcano located along the rim of the Caviahue Caldera near the Chile-Argentina border in the Andes Mountain Range. There are several small towns located in proximity of the volcano with the two largest being Banos Copahue and Caviahue. During its eruptive history, it has produced numerous lava flows, pyroclastic flows, ash deposits, and lahars. This isolated region has steep topography and little vegetation, rendering it poorly monitored. The need to model volcanic hazard risk has been reinforced by recent volcanic activity that intermittently released several ash plumes from December 2012 through May 2013. Exposure to volcanic ash is currently the main threat for the surrounding populations as the volcano becomes more active. The goal of this project was to study Copahue and determine areas that have the highest potential of being affected in the event of an eruption. Remote sensing techniques were used to examine and identify volcanic activity and areas vulnerable to experiencing volcanic hazards including volcanic ash, SO2 gas, lava flow, pyroclastic density currents and lahars. Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Landsat 8 Operational Land Imager (OLI), EO-1 Advanced Land Imager (ALI), Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Shuttle Radar Topography Mission (SRTM), ISS ISERV Pathfinder, and Aura Ozone Monitoring Instrument (OMI) products were used to analyze volcanic hazards. These datasets were used to create a historic lava flow map of the Copahue volcano by identifying historic lava flows, tephra, and lahars both visually and spectrally. Additionally, a volcanic risk and hazard map for the surrounding area was created by modeling the possible extent of ash fallout, lahars, lava flow, and pyroclastic density currents (PDC) for future eruptions. These model results were then used to identify areas that should be prioritized for disaster relief and evacuation orders.

  4. Study of structural change in volcanic and geothermal areas using seismic tomography (United States)

    Mhana, Najwa; Foulger, Gillian; Julian, Bruce; peirce, Christine


    Long Valley caldera is a large silicic volcano. It has been in a state of volcanic and seismic unrest since 1978. Farther escalation of this unrest could pose a threat to the 5,000 residents and the tens of thousands of tourists who visit the area. We have studied the crustal structure beneath 28 km X 16 km area using seismic tomography. We performed tomographic inversions for the years 2009 and 2010 with a view to differencing it with the 1997 result to look for structural changes with time and whether repeat tomography is a capable of determining the changes in structure in volcanic and geothermal reservoirs. Thus, it might provide a useful tool to monitoring physical changes in volcanoes and exploited geothermal reservoirs. Up to 600 earthquakes, selected from the best-quality events, were used for the inversion. The inversions were performed using program simulps12 [Thurber, 1983]. Our initial results show that changes in both V p and V s were consistent with the migration of CO2 into the upper 2 km or so. Our ongoing work will also invert pairs of years simultaneously using a new program, tomo4d [Julian and Foulger, 2010]. This program inverts for the differences in structure between two epochs so it can provide a more reliable measure of structural change than simply differencing the results of individual years.

  5. Deformation at Krafla and Bjarnarflag geothermal areas, Northern Volcanic Zone of Iceland, 1993-2015 (United States)

    Drouin, Vincent; Sigmundsson, Freysteinn; Verhagen, Sandra; Ófeigsson, Benedikt G.; Spaans, Karsten; Hreinsdóttir, Sigrún


    The Krafla volcanic system has geothermal areas within the Krafla caldera and at Bjarnarflag in the Krafla fissure swarm, 9-km south of the Krafla caldera. Arrays of boreholes extract geothermal fluids for power plants in both areas. We collected and analyzed InSAR, GPS, and leveling data spanning 1993-2015 in order to investigate crustal deformation in these areas. The volcanic zone hosting the geothermal areas is also subject to large scale regional deformation processes, including plate spreading and deflation of the Krafla volcanic system. These deformation processes have to be taken into account in order to isolate the geothermal deformation signal. Plate spreading produces the largest horizontal displacements, but the regional deformation pattern also suggests readjustment of the Krafla system at depth after the 1975-1984 Krafla rifting episode. Observed deformation can be fit by an inflation source at about 20 km depth north of Krafla and a deflation source at similar depth directly below the Krafla caldera. Deflation signal along the fissure swarm can be reproduced by a 1-km wide sill at 4 km depth closing by 2-4 cm per year. These sources are considered to approximate the combined effects of vertical deformation associated with plate spreading and post-rifting response. Local deformation at the geothermal areas is well resolved in addition to these signals. InSAR shows that deformation at Bjarnarflag is elongated along the direction of the Krafla fissure swarm (∼ 4 km by ∼ 2 km) while it is circular at Krafla (∼ 5 km diameter). Rates of deflation at Krafla and Bjarnarflag geothermal areas have been relatively steady. Average volume decrease of about 6.6 × 105 m3/yr for Krafla and 3.9 × 105 m3/yr for Bjanarflag are found at sources located at ∼ 1.5 km depth, when interpreted by a spherical point source of pressure. This volume change represents about 8 × 10-3 m3/ton of the mass of geothermal fluid extracted per year, indicating important renewal

  6. Relationship between water quality of deep-groundwater and geology in non-volcanic areas in Japan

    International Nuclear Information System (INIS)

    Oyama, Yoichi; Takahashi, Masaaki; Tsukamoto, Hitoshi; Kazahaya, Kohei; Yasuhara, Masaya; Takahashi, Hiroshi; Morikawa, Noritoshi; Ohwada, Michiko; Shibahara, Akihiko; Inamura, Akihiko


    Geochemical characteristics in groundwater such as groundwater chemistry and physicochemical parameters are affected by their source and the interaction with rocks and minerals. We observed the relationships between groundwater chemistry of the deep-groundwater and the geology in non-volcanic areas in Japan using about 9300 of deep-groundwater data. A Geographical Information System (GIS) was used to extract data in non-volcanic areas and numbers of water data are about 5200. The data were further classified into four types of geology (sedimentary rock, accretionary complex, volcanic rock and plutonic rock). The pH, temperature and major ion concentrations among deep-groundwaters in each geology have been statistically analysed. Result shows that the total cation concentration of deep-groundwaters are significantly different between geology, and the average values are decreased in the order of the sedimentary rock (66.7 meq l -1 ), volcanic rock (43.0 meq l -1 ), accretionary complex (24.6 meq l -1 ), and plutonic rock (11.0 meq l -1 ). The average pH does not show the major difference between geology whereas the highest average temperature is found in volcanic rock. In addition, the all four major cations (Na, K, Mg, and Ca) show the highest average concentrations in sedimentary rock, within the highest average concentrations of major anions for Cl, SO 4 , and HCO 3 are found in sedimentary rock, volcanic rock and accretionary complex, respectively, indicating the difference of the influence on the anions varied with geology. The distribution of deep-groundwater that are dominated by each major anions implied that SO 4 -type groundwater in volcanic rocks are formed by the influence of Neogene volcanic rock (Green tuff). In addition, HCO 3 -type groundwater in accretionary complex found from Kinki to Shikoku regions are formed by the addition of CO 2 gases supplying not only from surface soil and carbonate minerals but from deep underground. (author)

  7. Subsurface Contamination Focus Area technical requirements. Volume 1: Requirements summary

    International Nuclear Information System (INIS)

    Nickelson, D.; Nonte, J.; Richardson, J.


    This document summarizes functions and requirements for remediation of source term and plume sites identified by the Subsurface Contamination Focus Area. Included are detailed requirements and supporting information for source term and plume containment, stabilization, retrieval, and selective retrieval remedial activities. This information will be useful both to the decision-makers within the Subsurface Contamination Focus Area (SCFA) and to the technology providers who are developing and demonstrating technologies and systems. Requirements are often expressed as graphs or charts, which reflect the site-specific nature of the functions that must be performed. Many of the tradeoff studies associated with cost savings are identified in the text

  8. Potential Magma Chambers beneath the Tatun Volcanic Area, Taiwan: Results from Magnetotelluric Survey and Monitoring (United States)

    Chen, C.


    Previous earthquakes analysis indicated existing seismicity anomaly beneath Tatun volcano, Taiwan, possibly caused by the fluid activity of the volcano. Helium isotope studies also indicated that over 60% of the fumarolic gases and vapors originated from deep mantle in the Tatun volcano area. The chemistry of the fumarolic gases and vapors and seismicity anomaly are important issues in view of possible magma chamber in the Tatun volcano, where is in the vicinity of metropolitan Taipei, only 15 km north of the capital city. In this study magnetotelluric (MT) soundings and monitoring were deployed to understand the geoelectric structures in the Tatun volcano as Electromagnetic methods are sensitive to conductivity contrasts and can be used as a supplementary tool to delineate reservoir boundaries. An anticline extending more than 10 km beneath the Chih-Shin-Shan and Da-You-Kan areas was recognized. Low resistivity at a shallow and highly porous layer 500m thick might indicate circulation of heated water. However, a high resistivity layer at depth between 2 and 6 km was detected. This layer could be associated with high micro-earthquakes zone. The characteristics of this layer produced by either the magma chamber or other geothermal activity were similar to that of some other active volcanic areas in the world. At 6 km underground was a dome structure of medium resistivity. This structure could be interpreted as a magma chamber in which the magma is possibly cooling down, as judged by its relatively high resistivity. The exact attributes of the magma chamber were not precisely determined from the limited MT soundings. At present, a joint monitors including seismic activity, ground deformation, volcanic gases, and changes in water levels and chemistry are conducted by universities and government agencies. When unusual activity is detected, a response team may do more ground surveys to better determine if an eruption is likely.

  9. K-Ar ages of the Nyuto-Takakura volcanic products, southern part of the Sengan geothermal area, northeast Japan

    International Nuclear Information System (INIS)

    Suto, Shigeru; Uto, Kozo; Uchiumi, Shigeru


    The K-Ar age determination of the volcanic rocks from the Nyuto-Takakura volcano group, northeast Japan, was carried out. Nyuto-Takakura volcanoes are situated in the southern part of the Sengan geothermal area. And the Young Volcanic Rocks in the area were already divided into the Early stage volcanics (erupted in Matsuyama reversed epoch or more older epoch) and the Later stage volcanics (erupted in Brunhes normal epoch) by accumulated paleomagnetic and K-Ar age data. The results in this study are as follows; Nyuto Volcano: 0.63±0.06, 0.36±0.07 Ma, Sasamoriyama Volcano: 0.09±0.07, 0.3±0.3 Ma, Marumori Lava Dome: 0.4±0.3, 0.31±0.12 Ma, Mikadoyama Lava Dome: <1 Ma, Takakurayama-Kotakakurayama volcano: 1.4±0.5, 1.0±0.4, <0.4 Ma. The determinated ages are concordant with the volcanic stratigraphy and the paleomagnetic data. Nyuto Volcano, Sasamoriyama Volcano, Marumori Lava Dome, Mikadoyama Lava Dome and upper part of the Takakurayama-Kotakakurayama Volcano are interpreted to be erupted in Brunhes normal epoch. The volcanic rocks from the lower part of the Takakurayama-Kotakakurayama volcano show normal magnetic polarity, so they are interpreted to be erupted in Jaramillo normal polarity event. The Early stage volcanics and the Later stage volcanics in the studied area are tend to be distributed in the central part and the outer part of the area, respectively. But the determinated ages in this study show that there is no simple migration of the eruption center of the volcanic rocks from the central part to the peripheral part. There is no geothermal manifestation or alteration area around the Sasamoriyama Volcano and the Marumori Lava Dome, which are the youngest volcanoes in the studied area. So it is concluded that there is no direct correlation between the eruption age of the nearest volcano and the geothermal activity. (author)

  10. Combination of geophysical prospecting techniques into areas of high protection value: Identification of shallow volcanic structures (United States)

    Gómez-Ortiz, David; Montesinos, Fuensanta G.; Martín-Crespo, Tomás; Solla, Mercedes; Arnoso, José; Vélez, Emilio


    Timanfaya National Park is a volcanic area located in the southwest of Lanzarote Island (Canary Islands, Spain). Several lava tubes have been found in the lava flows but many others remain unknown. Its location and identification are important to mitigate collapse hazards in this touristic area. We present a new study about the location of recent lava tubes by the analysis and joint interpretation of ground penetrating radar (GPR), microgravity and electromagnetic induction (EMI) data along the same profile over an area not previously surveyed. GPR data display a complex pattern of reflections up to ~ 10 m depth. The strongest hyperbolic reflections can be grouped in four different areas. Visual inspections carried out in the field allow confirming the occurrence of lava tubes at two of them. These reflections have been interpreted as the effect of the roof and bottom interfaces of several lava tubes. The microgravity survey defines a wide gravity low with several over-imposed minor highs and lows. Using the GPR data, a 2.5D gravity model has been obtained revealing four lava tubes. EMI data have been used to obtain an inverted resistivity model that displays four high resistivity areas that closely match the locations of the lava tubes derived from the previous methods. This resistivity model exhibits the lower resolution although reaches a deeper investigation depth (~ 20 m). The comparison of the results has revealed that joint interpretation of GPR, microgravity and EMI methods provides reliable models useful for the detection of unknown shallow lava tubes.

  11. Radioactivity level and soil radon measurement of a volcanic area in Cameroon

    Energy Technology Data Exchange (ETDEWEB)

    Ngachin, M. [Center for Atomic, Molecular Physics and Quantum Optics, University of Douala, P.O. Box 8580, Douala (Cameroon); Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34014 Trieste (Italy); Institut Pluridisciplinaire Hubert-Curien, UMR7178 CNRS-IN2P3 and Universite Louis Pasteur, 23 rue de Loess, BP 28, F-67037 Strasbourg cedex 02 (France)], E-mail:; Garavaglia, M.; Giovani, C. [Regional Agency for Environmental Protection (ARPA), 91 via Tavagnacco, 33100 Udine (Italy); Kwato Njock, M.G. [Center for Atomic, Molecular Physics and Quantum Optics, University of Douala, P.O. Box 8580, Douala (Cameroon); Nourreddine, A. [Institut Pluridisciplinaire Hubert-Curien, UMR7178 CNRS-IN2P3 and Universite Louis Pasteur, 23 rue de Loess, BP 28, F-67037 Strasbourg cedex 02 (France)


    The radioactivity level of soils in a volcanic area in Cameroon was determined and discussed. Thirty soils samples were collected from Buea and Limbe cities located in the south-western Cameroon. These two regions are known for theirs volcanic grounds due to the presence of Mount Cameroon Mountain. The activity concentrations of natural radionuclides as well as that of the fission product were evaluated by gamma-ray spectrometry using a hyper-purity germanium detector (HPGe). The ranges of concentrations in the surveyed soils were 11-17 Bq kg{sup -1}, 22-36 Bq kg{sup -1} and 43-201 Bq kg{sup -1} for {sup 226}Ra, {sup 232}Th and {sup 40}K, respectively. The radioisotope {sup 137}Cs was also found but in a very small amount. The outdoor absorbed dose rate 1 m above ground with the corresponding annual effective dose rate, assuming a 20% occupancy factor was estimated. The radium equivalent and the external hazard index were also evaluated and results are compared with available data from other studies and with the world average value [United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 1988. Sources, Effects and Risks of Ionizing Radiation. Report to the General Assembly on the Effects of Atomic Radiation. United Nations, New York; UNSCEAR, 2000. Sources and Effects of Ionizing Radiations. Report to the General Assembly with Scientific Annexes. United Nations, New York]. A solid state nuclear track detector (SSNTD), LR-115 was used for soil radon measurements at a depth of 50 cm. The ranges of soil radon concentrations were 6.7-10.8 kBq m{sup -3} and 5.5-8.7 kBq m{sup -3} in Buea and Limbe, respectively. A positive correlation was found between concentrations of radium measured with {gamma}-spectrometry and the soil radon concentrations measured with the nitrate cellulose detectors. The results of this study provide the radioactivity level in soil of a volcanic area, which has been found to be within the safety limits. The south

  12. Radioactivity level and soil radon measurement of a volcanic area in Cameroon

    International Nuclear Information System (INIS)

    Ngachin, M.; Garavaglia, M.; Giovani, C.; Kwato Njock, M.G.; Nourreddine, A.


    The radioactivity level of soils in a volcanic area in Cameroon was determined and discussed. Thirty soils samples were collected from Buea and Limbe cities located in the south-western Cameroon. These two regions are known for theirs volcanic grounds due to the presence of Mount Cameroon Mountain. The activity concentrations of natural radionuclides as well as that of the fission product were evaluated by gamma-ray spectrometry using a hyper-purity germanium detector (HPGe). The ranges of concentrations in the surveyed soils were 11-17 Bq kg -1 , 22-36 Bq kg -1 and 43-201 Bq kg -1 for 226 Ra, 232 Th and 40 K, respectively. The radioisotope 137 Cs was also found but in a very small amount. The outdoor absorbed dose rate 1 m above ground with the corresponding annual effective dose rate, assuming a 20% occupancy factor was estimated. The radium equivalent and the external hazard index were also evaluated and results are compared with available data from other studies and with the world average value [United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 1988. Sources, Effects and Risks of Ionizing Radiation. Report to the General Assembly on the Effects of Atomic Radiation. United Nations, New York; UNSCEAR, 2000. Sources and Effects of Ionizing Radiations. Report to the General Assembly with Scientific Annexes. United Nations, New York]. A solid state nuclear track detector (SSNTD), LR-115 was used for soil radon measurements at a depth of 50 cm. The ranges of soil radon concentrations were 6.7-10.8 kBq m -3 and 5.5-8.7 kBq m -3 in Buea and Limbe, respectively. A positive correlation was found between concentrations of radium measured with γ-spectrometry and the soil radon concentrations measured with the nitrate cellulose detectors. The results of this study provide the radioactivity level in soil of a volcanic area, which has been found to be within the safety limits. The south-western Cameroon can be considered as having normal

  13. Education as a key objective of the interdisciplinary volcanic risk mitigation strategy VESUVIUS PENTALOGUE for developing resilient and sustainable areas around Vesuvius (United States)

    Dobran, F.; Imperatrice, A.


    VESUVIUS PENTALOGUE requires the achievement of 5 key objectives for Summa-Vesuvius area: (1) Development of temporary settlements for the inhabitants close to their native homeland until the volcanic crisis subsides; (2) Division of the danger zone into an exclusion nucleus that prohibits all future human settlements and discourages the existing ones, a resilience belt that houses most of the current populations, and a sustainable area beyond the resilience belt that allows for sustainable practices and temporary resettlements of resilience belt citizens following the volcanic crises; (3) Development of built environment construction codes for the population of the danger zone by utilizing plinian eruption scenarios, scenario-based seismic hazard assessment and zonation, global volcanic simulator, and dynamic structural analysis; (4) Implementation of volcanic risk information and education campaigns for different risk areas surrounding the volcano; and (5) Production of a memorandum of understanding between the authorities and scientific communities, and production of periodic progress reports for keeping the populations informed on the developments leading to the realization of the above objectives.For the past 20 years we have devoted considerable efforts towards the achievement of educational objectives. We worked with local volunteers and social and cultural organizations and with our colleagues delivered over 200 public and school seminars in 15 communities around Vesuvius, organized 2 international scientific meetings for allowing the public and high school children to interact directly with the scientists working on this volcano, and established numerous contacts with school teachers for helping them engage their students on Vesuvius from the scientific, artistic, social, and cultural perspectives. Every year GVES has been the promoter of Vesuvius area manifestations where the school children have the opportunities to expose their works on this volcano and

  14. Groundwater flow in a relatively old oceanic volcanic island: The Betancuria area, Fuerteventura Island, Canary Islands, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Christian, E-mail: [Universidad Católica del Norte, Av. Angamos 0610, Antofagasta (Chile); Custodio, Emilio [Department of Geo-Engineering, Technical University of Catalonia (UPC), Barcelona (Spain)


    The island of Fuerteventura is the oldest of the Canary Islands' volcanic archipelago. It is constituted by volcanic submarine and subaerial activity and intrusive Miocene events, with some residual later volcanism and Quaternary volcanic deposits that have favored groundwater recharge. The climate is arid, with an average rainfall that barely attains 60 mm/year in the coast and up to 200 mm/year in the highlands. The aquifer recharge is small but significant; it is brackish due to large airborne atmospheric salinity, between 7 and 15 g m{sup −2} year{sup −1} of chloride deposition, and high evapo-concentration in the soil. The average recharge is estimated to be less than about 5 mm/year at low altitude and up to 10 mm/year in the highlands, and up to 20 mm/year associated to recent lava fields. Hydrochemical and water isotopic studies, supported by water table data and well and borehole descriptions, contribute a preliminary conceptual model of groundwater flow and water origin in the Betancuria area, the central area of the island. In general, water from springs and shallow wells tends to be naturally brackish and of recent origin. Deep saline groundwater is found and is explained as remnants of very old marine water trapped in isolated features in the very low permeability intrusive rocks. Preliminary radiocarbon dating indicates that this deep groundwater has an apparent age of less than 5000 years BP but it is the result of mixing recent water recharge with very old deep groundwater. Most of the groundwater flow occurs through the old raised volcanic shield of submarine and subaerial formations and later Miocene subaerial basalts. Groundwater transit time through the unsaturated zone is of a few decades, which allows the consideration of long-term quasi-steady state recharge. Transit times are up to a few centuries through the saturated old volcanics and up to several millennia in the intrusive formations, where isolated pockets of very old water may

  15. Deformation in volcanic areas: a numerical approach for their prediction in Teide volcano (Tenerife, Canary Islands); Deformaciones en areas volcanicas: una aproximacin numerica para su prediccion en el volcan Teide (Tenerife, Islas Canarias)

    Energy Technology Data Exchange (ETDEWEB)

    Charco, M.; Galan del Sastre, P.


    Active volcanic areas study comprises both, observation of physical changes in the natural media and the interpretation of such changes. Nowadays, the application of spatial geodetic techniques, such as GPS (Global Positioning System) or InSAR (Interferometry with Synthetic Aperture Radar), for deformation understanding in volcanic areas, revolutionizes our view of this geodetic signals. Deformation of the Earth's surface reflects tectonic, magmatic and hydrothermal processes at depth. In this way, the prediction of volcanic deformation through physical modelling provides a link between the observation and depth interior processes that could be crucial for volcanic hazards assessment. In this work, we develop a numerical model for elastic deformation study. The Finite Element Method (FEM) is used for the implementation of the numerical model. FEM allows to take into account different morphology, structural characteristics and the mechanical heterogeneities of the medium. Numerical simulations of deformation in Tenerife (Canary Islands) taking into account different medium hypothesis allow us to conclude that the accuracy of the predictions depends on how well the natural system is described. (Author) 22 refs.

  16. Petrology and geochemistry of volcanic rocks of Cheshmeh Khuri and Shekasteh Sabz areas, Khur, northwest of Birjand

    Directory of Open Access Journals (Sweden)

    Maryam Javidi Moghaddam


    Full Text Available Khur area is located in east of Iran and northwest of Birjand. The area comprises outcrops of Eocene to Oligocene volcanics with basaltic andesite to rhyolite composition, which were intruded by subvolcanic and intrusive bodies of granodiorite to gabbro. In the present work, petrogenesis of volcanic units in Cheshmeh Khuri and Shekasteh Sabz areas was studied, which are located in Khur area and these volcanics have most widespread in them. Rhyolite, dacite, andesite, trachyandesite and basaltic andesite units in Cheshmeh Khuri and trachyandesite unit in Shekasteh Sabz were identified. The main textures of these units are porphyritic, hialoporphyritic and microlitic and plagioclase, pyroxene, K-feldspar, hornblende, biotite and quartz are the main minerals. Volcanic units of Cheshmeh Khuri have characteristic of high-K Calc-alkaline. Enrichment of LREE relative to HREE and LILE to HFSE are important evidences that magma was formed in a magmatic belt of a subduction zone. Based on the initial 87Sr/86Sr of andesite and dacite, their magma has originated from partial melting of an enriched mantle and contaminated with the crust through its differentiation. Trachyandesites of Shekaste Sabz have characteristic of shoshonitic nature. These units are characterized by high FeOt/FeOt+MgO, K2O/Na2O and Zr>360 ppm, Y>39 ppm, and Ce> 100 ppm. Also, they are enrichment in REE particularly in LREE, depletion of Eu, strong enrichment in HFSE, and depletion in Ba and Sr. Therefore, trachyandesites of Shekaste Sabz belong to post collision volcanics.

  17. The Quaternary history of effusive volcanism of the Nevado de Toluca area, Central Mexico (United States)

    Torres-Orozco, R.; Arce, J. L.; Layer, P. W.; Benowitz, J. A.


    Andesite and dacite lava flows and domes, and intermediate-mafic cones from the Nevado de Toluca area were classified into five groups using field data and 40Ar/39Ar geochronology constraints. Thirty-four lava units of diverse mineralogy and whole-rock major-element geochemistry, distributed between the groups, were identified. These effusive products were produced between ∼1.5 and ∼0.05 Ma, indicating a mid-Pleistocene older-age for Nevado de Toluca volcano, coexisting with explosive products that suggest a complex history for this volcano. A ∼0.96 Ma pyroclastic deposit attests for the co-existence of effusive and explosive episodes in the mid-Pleistocene history. Nevado de Toluca initiated as a composite volcano with multiple vents until ∼1.0 Ma, when the activity began to centralize in an area close to the present-day crater. The modern main edifice reached its maximum height at ca. 50 ka after bulky, spiny domes erupted in the current summit of the crater. Distribution and geochemical behavior in major elements of lavas indicate a co-magmatic relationship between different andesite and dacite domes and flows, although unrelated to the magmatism of the monogenetic volcanism. Mafic-intermediate magma likely replenished the system at Nevado de Toluca since ca. ∼1.0 Ma and contributed to the eruption of new domes, cones, as well as effusive-explosive activity. Altogether, field and laboratory data suggest that a large volume of magma was ejected around 1 Ma in and around the Nevado de Toluca.

  18. Microbial life in volcanic/geothermal areas: how soil geochemistry shapes microbial communities (United States)

    Gagliano, Antonina Lisa; D'Alessandro, Walter; Franzetti, Andrea; Parello, Francesco; Tagliavia, Marcello; Quatrini, Paola


    Extreme environments, such as volcanic/geothermal areas, are sites of complex interactions between geosphere and biosphere. Although biotic and abiotic components are strictly related, they were separately studied for long time. Nowadays, innovative and interdisciplinary approaches are available to explore microbial life thriving in these environments. Pantelleria island (Italy) hosts a high enthalpy geothermal system characterized by high CH4 and low H2S fluxes. Two selected sites, FAV1 and FAV2, located at Favara Grande, the main exhalative area of the island, show similar physical conditions with a surface temperature close to 60° C and a soil gas composition enriched in CH4, H2 and CO2. FAV1 soil is characterized by harsher conditions (pH 3.4 and 12% of H2O content); conversely, milder conditions were recorded at site FAV2 (pH 5.8 and 4% of H2O content). High methanotrophic activity (59.2 nmol g-1 h-1) and wide diversity of methanotrophic bacteria were preliminary detected at FAV2, while no activity was detected at FAV1(1). Our aim was to investigate how the soil microbial communities of these two close geothermal sites at Pantelleria island respond to different geochemical conditions. Bacterial and Archaeal communities of the sites were investigated by MiSeq Illumina sequencing of hypervariable regions of the 16S rRNA gene. More than 33,000 reads were obtained for Bacteria and Archaea from soil samples of the two sites. At FAV1 99% of the bacterial sequences were assigned to four main phyla (Proteobacteria, Firmicutes, Actinobacteria and Chloroflexi). FAV2 sequences were distributed in the same phyla with the exception of Chloroflexi that was represented below 1%. Results indicate a high abundance of thermo-acidophilic chemolithotrophs in site FAV1 dominated by Acidithiobacillus ferrooxidans (25%), Nitrosococcus halophilus (10%), Alicyclobacillus spp. (7%) and the rare species Ktedonobacter racemifer (11%). The bacterial community at FAV2 soil is dominated by

  19. Disruptive event analysis: volcanism and igneous intrusion

    International Nuclear Information System (INIS)

    Crowe, B.M.


    An evaluation is made of the disruptive effects of volcanic activity with respect to long term isolation of radioactive waste through deep geologic storage. Three major questions are considered. First, what is the range of disruption effects of a radioactive waste repository by volcanic activity. Second, is it possible, by selective siting of a repository, to reduce the risk of disruption by future volcanic activity. And third, can the probability of repository disruption by volcanic activity be quantified. The main variables involved in the evaluation of the consequences of repository disruption by volcanic activity are the geometry of the magma-repository intersection (partly controlled by depth of burial) and the nature of volcanism. Potential radionuclide dispersal by volcanic transport within the biosphere ranges in distance from several kilometers to global. Risk from the most catastrophic types of eruptions can be reduced by careful site selection to maximize lag time prior to the onset of activity. Certain areas or volcanic provinces within the western United States have been sites of significant volcanism and should be avoided as potential sites for a radioactive waste repository. Examples of projection of future sites of active volcanism are discussed for three areas of the western United States. Probability calculations require two types of data: a numerical rate or frequency of volcanic activity and a numerical evaluation of the areal extent of volcanic disruption for a designated region. The former is clearly beyond the current state of art in volcanology. The latter can be approximated with a reasonable degree of satisfaction. In this report, simplified probability calculations are attempted for areas of past volcanic activity

  20. Neogene volcanism and extension in Western Anatolian-Aegean area: A new geodynamic model

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, S; Tonarini, S [Istituto di Geoscienze e Georisorse, Consiglio Nazionale delle Ricerche, Via G. Moruzzi 1, 56124 Pisa (Italy); Doglioni, C [Dipartimento di Scienze della Terra, Universita La Sapienza, Roma (Italy); Innocenti, F [Dipartimento di Scienze della Terra, Universita di Pisa, Pisa (Italy); Manetti, P [Dipartimento di Scienze della Terra, Universita di Firenze, Firenze (Italy)], E-mail:


    The widespread Western Anatolian-Aegean Neogene volcanism presents a complex geochemical evolution reflecting the uncommon space-time variability of the geodynamic setting of the region. In the Western Anatolian and Central Aegean, a widespread supra-subduction magmatism, with calc-alkaline to shoshonitic affinity, took place from Early to Middle Miocene; this phase of activity ends with spots of ultra-K lavas and dykes. From Late Miocene onwards scattered alkali basaltic lavas with intraplate affinity were emitted, while calc-alkaline activity occurred in the South Aegean arc. Since Late Oligocene-Early Miocene, the region was, and still is, affected by extensional tectonics generally ascribed to a backarc rift. However the Aegean region should rather be considered as an unconventional backarc since its characteristics rather differ from 'typical' backarcs. In fact, in spite of a long lasting(>40Ma) active NE-directed subduction of Africa, the backarc area still maintains a relatively thick continental crust (>20-25 km). Moreover, the upper Eurasian plate is overriding the lower Africa plate with separate segments, with Greece moving faster, and Turkey moving slower. The differential velocity between Greece and Turkey determines extension in the upper plate, unrelated to the loss of subducted retreating lithosphere, which is the usual setting for the origin of 'classic' backarc settings. The geodynamic framework is supported by the geochemical and isotopic features of the supra-subduction magmas revealing the occurrence of a trapped, drying slab, with progressive decreasing of Fluid Mobile Elements/Fluid Immobile Elements ratios, {delta}{sup 11}B and {delta}{sup 7}Li, coupled with scarce variations of Sr and Nd isotopes. Moreover, the differential motion between the Greek and Anatolian micro-plates creates tear zones with the formation of slab ruptures or vertical slab windows. The occurrence of such windows is, in fact, outlined by the

  1. Monitoring and behavior of unsaturated volcanic pyroclastic in the Metropolitan Area of San Salvador, El Salvador. (United States)

    Chávez, José Alexander; Landaverde, José; Landaverde, Reynaldo López; Tejnecký, Václav


    Field monitoring and laboratory results are presented for an unsaturated volcanic pyroclastic. The pyroclastic belongs to the latest plinian eruption of the Ilopango Caldera in the Metropolitan Area of San Salvador, and is constantly affected by intense erosion, collapse, slab failure, sand/silt/debris flowslide and debris avalanche during the rainy season or earthquakes. Being the flowslides more common but with smaller volume. During the research, preliminary results of rain threshold were obtained of flowslides, this was recorded with the TMS3 (a moisture sensor device using time domain transmission) installed in some slopes. TMS3 has been used before in biology, ecology and soil sciences, and for the first time was used for engineering geology in this research. This device uses electromagnetic waves to obtain moisture content of the soil and a calibration curve is necessary. With the behavior observed during this project is possible to conclude that not only climatic factors as rain quantity, temperature and evaporation are important into landslide susceptibility but also information of suction-moisture content, seepage, topography, weathering, ground deformation, vibrations, cracks, vegetation/roots and the presence of crust covering the surface are necessary to research in each site. Results of the field monitoring indicates that the presence of biological soil crusts a complex mosaic of soil, green algae, lichens, mosses, micro-fungi, cyanobacteria and other bacteria covering the slopes surface can protect somehow the steep slopes reducing the runoff process and mass wasting processes. The results obtained during the assessment will help explaining the mass wasting problems occurring in some pyroclastic soils and its possible use in mitigation works and early warning system.

  2. Geological and 40Ar/39Ar age constraints on late-stage Deccan rhyolitic volcanism, inter-volcanic sedimentation, and the Panvel flexure from the Dongri area, Mumbai (United States)

    Sheth, Hetu C.; Pande, Kanchan


    Post-K-Pg Boundary Deccan magmatism is well known from the Mumbai area in the Panvel flexure zone. Represented by the Salsette Subgroup, it shows characters atypical of much of the Deccan Traps, including rhyolite lavas and tuffs, mafic tuffs and breccias, spilitic pillow basalts, and "intertrappean" sedimentary or volcanosedimentary deposits, with mafic intrusions as well as trachyte intrusions containing basaltic enclaves. The intertrappean deposits have been interpreted as formed in shallow marine or lagoonal environments in small fault-bounded basins due to syn-volcanic subsidence. We report a previously unknown sedimentary deposit underlying the Dongri rhyolite flow from the upper part of the Salsette Subgroup, with a westerly tectonic dip due to the Panvel flexure. We have obtained concordant 40Ar/39Ar ages of 62.6 ± 0.6 Ma (2σ) and 62.9 ± 0.2 Ma (2σ) for samples taken from two separate outcrops of this rhyolite. The results are significant in showing that (i) Danian inter-volcanic sedimentary deposits formed throughout Mumbai, (ii) the rock units are consistent with the stratigraphy postulated earlier for Mumbai, (iii) shale fragments known in some Dongri tuffs were likely derived from the sedimentary deposit under the Dongri rhyolite, (iv) the total duration of extrusive and intrusive Deccan magmatism was at least 8-9 million years, and (v) Panvel flexure formed, or continued to form, after 63 Ma, possibly even 62 Ma, and could not have formed by 65-64 Ma as concluded in a recent study.

  3. Unsupervised Change Detection for Geological and Ecological Monitoring via Remote Sensing: Application on a Volcanic Area (United States)

    Falco, N.; Pedersen, G. B. M.; Vilmunandardóttir, O. K.; Belart, J. M. M. C.; Sigurmundsson, F. S.; Benediktsson, J. A.


    The project "Environmental Mapping and Monitoring of Iceland by Remote Sensing (EMMIRS)" aims at providing fast and reliable mapping and monitoring techniques on a big spatial scale with a high temporal resolution of the Icelandic landscape. Such mapping and monitoring will be crucial to both mitigate and understand the scale of processes and their often complex interlinked feedback mechanisms.In the EMMIRS project, the Hekla volcano area is one of the main sites under study, where the volcanic eruptions, extreme weather and human activities had an extensive impact on the landscape degradation. The development of innovative remote sensing approaches to compute earth observation variables as automatically as possible is one of the main tasks of the EMMIRS project. Furthermore, a temporal remote sensing archive is created and composed by images acquired by different sensors (Landsat, RapidEye, ASTER and SPOT5). Moreover, historical aerial stereo photos allowed decadal reconstruction of the landscape by reconstruction of digital elevation models. Here, we propose a novel architecture for automatic unsupervised change detection analysis able to ingest multi-source data in order to detect landscape changes in the Hekla area. The change detection analysis is based on multi-scale analysis, which allows the identification of changes at different level of abstraction, from pixel-level to region-level. For this purpose, operators defined in mathematical morphology framework are implemented to model the contextual information, represented by the neighbour system of a pixel, allowing the identification of changes related to both geometrical and spectral domains. Automatic radiometric normalization strategy is also implemented as pre-processing step, aiming at minimizing the effect of different acquisition conditions. The proposed architecture is tested on multi-temporal data sets acquired over different time periods coinciding with the last three eruptions (1980-1981, 1991

  4. Freshwater molluscs from volcanic areas as model organisms to assess adaptation to metal chronic pollution

    International Nuclear Information System (INIS)

    Zaldibar, Benat; Rodrigues, Armindo; Lopes, Marco; Amaral, Andre; Marigomez, Ionan; Soto, Manu


    Cellular biomarkers of exposure and biological effects were measured in digestive gland of snails (Physa acuta) sampled in sites with and without active volcanism in Sao Miguel Island (Azores). Metal content in digestive cell lysosomes was determined by image analysis after autometallography (AMG) as volume density of autometallographed black silver deposits (Vv BSD ). Lysosomal structural changes (lysosomal volume, surface and numerical densities - Vv LYS, Sv LYS and Nv LYS- , and surface-to-volume ratio - S/V LYS -) were quantified by image analysis, after demonstration of β-glucuronidase activity, on digestive gland cryotome sections. Additional chemical analyses (atomic absorption spectrophotometry) were done in the digestive gland of snails. The highest metal concentrations were found in snails from the active volcanic site, which agreed with high intralysomal Vv BSD . Digestive cell lysosomes in snails inhabiting sites with active volcanism resembled a typical stress situation (enlarged and less numerous lysosomes). In conclusion, the biomarkers used in this work can be applied to detect changes in metal bioavailability due to chronic exposure to metals (volcanism), in combination with chemical analyses

  5. Modeling of hydrothermal circulation applied to active volcanic areas. The case of Vulcano (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Todesco, M. [Dip. Scienze della Terra, Posa (Italy)


    Modeling of fluid and heat flows through porous media has been diffusely applied up to date to the study of geothermal reservoirs. Much less has been done to apply the same methodology to the study of active volcanoes and of the associated volcanic hazard. Hydrothermal systems provide direct information on dormant eruptive centers and significant insights on their state of activity and current evolution. For this reason, the evaluation of volcanic hazard is also based on monitoring of hydrothermal activity. Such monitoring, however, provides measurements of surface parameters, such as fluid temperature or composition, that often are only representative of the shallower portion of the system. The interpretation of these data in terms of global functioning of the hydrothermal circulation can therefore be highly misleading. Numerical modeling of hydrothermal activity provides a physical approach to the description of fluid circulation and can contribute to its understanding and to the interpretation of monitoring data. In this work, the TOUGH2 simulator has been applied to study the hydrothermal activity at Vulcano (Italy). Simulations involved an axisymmetric domain heated from below, and focused on the effects of permeability distribution and carbon dioxide. Results are consistent with the present knowledge of the volcanic system and suggest that permeability distribution plays a major role in the evolution of fluid circulation. This parameter should be considered in the interpretation of monitoring data and in the evaluation of volcanic hazard at Vulcano.

  6. Neotectonics of Graciosa island (Azores: a contribution to seismic hazard assessment of a volcanic area in a complex geodynamic setting

    Directory of Open Access Journals (Sweden)

    Ana Hipólito


    Full Text Available Graciosa is a mid-Pleistocene to Holocene volcanic island that lies in a complex plate boundary between the North American, Eurasian, and Nubian plates. Large fault scarps displace the oldest (Middle Pleistocene volcanic units, but in the younger areas recent volcanism (Holocene to Upper Pleistocene conceals the surface expression of faulting, limiting neotectonic observations. The large displacement accumulated by the older volcanic units when compared with the younger formations suggests a variability of deformation rates and the possibility of alternating periods of higher and lower tectonic deformation rates; this would increase the recurrence interval of surface rupturing earthquakes. Nevertheless, in historical times a few destructive earthquakes affected the island attesting for its seismic hazard. Regarding the structural data, two main fault systems, incompatible with a single stress field, were identified at Graciosa Island. Thus, it is proposed that the region is affected by two alternating stress fields. The stress field #1 corresponds to the regional stress regime proposed by several authors for the interplate shear zone that constitutes the Azorean segment of the Eurasia-Nubia plate boundary. It is suggested that the stress field #2 will act when the area under the influence of the regional stress field #1 narrows as a result of variations in the differential spreading rates north and south of Azores. The islands closer to the edge of the sheared region will temporarily come under the influence of a different (external stress field (stress field #2. Such data support the concept that, in the Azores, the Eurasia-Nubia boundary corresponds to a complex and wide deformation zone, variable in time.

  7. U-Pb zircon age for a volcanic suite in the Rankin Inlet Group, Rankin Inlet map area, District of Keewatin, Northwest Territories

    Energy Technology Data Exchange (ETDEWEB)

    Tella, S; Roddick, J C; VanBreemen, O [Geological Survey of Canada, Ottawa, ON (Canada)


    U-Pb zircon analyses from a felsic band within dominantly mafic volcanics of the Rankin Inlet Group yields a U-Pb upper concordia intercept age of 2663 {+-} 3 Ma. These supracrustals at Rankin Inlet appear to be 15-20 Ma younger than volcanics of the Kaminak Group in the Tavani area, 70 km to the southwest. The 2.68-2.66 Ga volcanism in the Tavani and Rankin Inlet areas coincided with the last stage of the main phase of magmatism in the Slave Structural Province. (author). 16 refs., 1 tab., 3 figs.

  8. U-Pb zircon age for a volcanic suite in the Rankin Inlet Group, Rankin Inlet map area, District of Keewatin, Northwest Territories

    International Nuclear Information System (INIS)

    Tella, S.; Roddick, J.C.; VanBreemen, O.


    U-Pb zircon analyses from a felsic band within dominantly mafic volcanics of the Rankin Inlet Group yields a U-Pb upper concordia intercept age of 2663 ± 3 Ma. These supracrustals at Rankin Inlet appear to be 15-20 Ma younger than volcanics of the Kaminak Group in the Tavani area, 70 km to the southwest. The 2.68-2.66 Ga volcanism in the Tavani and Rankin Inlet areas coincided with the last stage of the main phase of magmatism in the Slave Structural Province. (author). 16 refs., 1 tab., 3 figs

  9. Mus musculus bone fluoride concentration as a useful biomarker for risk assessment of skeletal fluorosis in volcanic areas. (United States)

    Linhares, Diana; Camarinho, Ricardo; Garcia, Patrícia Ventura; Rodrigues, Armindo Dos Santos


    Fluoride is often found in elevated concentrations in volcanic areas due to the release of magmatic fluorine as hydrogen fluorine through volcanic degassing. The exposure to high levels of fluoride can affect the processes of bone formation and resorption causing skeletal fluorosis, a pathology that can easily be mistaken for other skeletal diseases. In this study, we aimed to determine if fluoride concentration in the femoral bone of wild populations of the house mouse (Mus musculus) is a good biomarker of exposure to active volcanic environments naturally enriched in fluoride, allowing their use in biomonitoring programs. The fluoride concentration of the whole femoral bone of 9 mice from Furnas (5 males and 4 females) and 33 mice from Rabo de Peixe (16 males and 17 females) was measured by the potentiometric method with a fluoride ion selective electrode. Fluoride in bones was significantly higher in the mice from Furnas when compared with the mice from Rabo de Peixe (616.5 ± 129.3 μg F/g vs. 253.8 ± 10.5 μg F/g). Accumulation rates were also significantly higher in the mice collected in Furnas when compared with Rabo de Peixe individuals (3.84 ± 0.52 μg F/day vs. 1.22 ± 0.06 μg F/day). The results demonstrate a significant association between exposure to fluoride in the active volcanic environment and fluoride content in bone, revealing that bone fluoride concentration is a suitable biomarker of chronic environmental exposure to fluoride. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Seismic reflection data processing in active volcanic areas: an application to Campi Flegrei and Somma Vesuvius offshore (Southern Italy

    Directory of Open Access Journals (Sweden)

    A. Rapolla


    Full Text Available The Campanian volcanism develops near the sea. Therefore, the geophysical study of the marine environment is a key to a better understanding of the tectonic evolution and the origin of volcanism in the area. An abundance of high quality seismic data in the marine sector, where little direct information is available, is critical to the study of Campanian volcanism. This paper concerns the reprocessing of a seismic reflection dataset acquired in Naples Bay and processed during 1973. Even though the overall data quality was high for that time, of course their acquisition technological limits have been overcome by the new processing. Our reprocessing aimed at: 1 reduction of random noise in the data; 2 removal of unwanted coherent events; 3 reduction of spatial aliasing by means of trace interpolation on Commod Shot Point (CSP gathering; 4 improvement of resolution of the seismic wavelet with spiking deconvolution algorithms and finally 5 reposition of reflectors in their correct locations in the space-TWT domain by means of dip moveout and post-stack time migration. A comparison between the new and old data shows that the new sections are characterized by a much higher S/N ratio. Diffraction hyperbole has been collapsed. Reverberations, ghosts and multiples have been removed or greatly attenuated, especially between the reflectors of interest, allowing us to follow them with more detail and with greater continuity. Furthermore, data resolution has been boosted by the reprocessing, allowing the interpreter to evaluate reflector position and continuity in greater detail. The reinterpretation phase of such lines, that is already in an advanced stage, will therefore allow us to gain new insights into the structural setting of the bay, with the aim of exploring the connection between tectonics and volcanism.

  11. Presence of soil gas and indoor Radon in volcanic areas located in Latium and Campania Regions, Italy

    International Nuclear Information System (INIS)

    Buccheri, G.; Addonizio, P.; Rinaldini, A.


    In Italy, radon highest concentrations concern all Tyrrhenian belt. The abundant distribution of the radioactive elements in Latium and in Campania, often accompanied by emissions of endogenic gas (CO_2, CO and H_2S), is strictly related to quaternary alkali-potassic volcanism. This article reports about connection between Radon presence and geology (which also influences the most used building materials) within two active areas in Latium and Campania Regions (Italy). Colli Albani are located in Latium. This area is considered as a quiescent volcano, whose last eruptive phase dates back to 41-36 kya, with deposition of Peperino di Albano, a lithoid granular tuff that Romans commonly used as a building and decorative material (lapis albanus). Campania is the second Region of Italy as for population (and more than 50 % of its 6 million of inhabitants are concentrated in the Province of Naples), and volcanism is mainly connected there to the presence of a deep and large volcanic complex, related to a mantle anomaly. INAIL is busy in research activity for evaluation and management of risk for health at workplaces, connected to exposure to indoor radon, taking into account of active laws. Starting from knowledge about geologic activity in Latium and in Campania, the aim of INAIL research activity is estimation of hazard, because of Rn, CO_2 and other endogenic toxic gases, at workplaces located in both Regions. In order to estimate risk from Radon, INAIL carried out soil gas measurements in Alban Hills area, and one more series of Radon measurements has been planned downtown in Naples, where many commercial and artisanal activities are located underground (mainly in tuffaceous buildings). According to the indications provided by the Directive 2013/59/Euratom, INAIL measurements will be aimed to realize Radon Potential Maps (RPM), that may help Italian Institutions to identify hazard areas, realize an effective territorial plan and to assess health risk. (authors)

  12. Using mosses as biomonitors to study trace element emissions and their distribution in six different volcanic areas (United States)

    Arndt, Julia; Calabrese, Sergio; D'Alessandro, Walter; Planer-Friedrich, Britta


    Volcanoes emit SO2, CO2, and H2S, but also trace elements gases and particles such as As, Cd, Cr, Cu, Hg, Ni, Pb, and Sb. Active moss bag biomonitoring, an easy to apply and low budget method, was used to determine trace element release from volcanic areas of different geological context and climates. Exposure height variations (0.7-1.6 m above ground) due to different availability of natural tie points did not affect the results. Accumulation was linear for exposure durations from three days to nine weeks, so values were comparable by normalization to moss exposure time. Uncovered moss bags showed higher accumulation than co-exposed covered ones because of additional dust and wet deposition while washout by rain was negligible. The selection of a specific moss significantly affected element accumulation with moss of lower shoot compactness accumulating more. For all volcanic areas, highest accumulation was found for S (1-1000 μmol·(g·d)- 1), followed by Fe and Mg (0.1-10 μmol·(g·d)- 1), Sr, Ba, Pb, Cr, Li (10- 4-10- 1 μmol·(g·d)- 1), then Co, Mo and the volatile elements As, Sb, Se, Tl, Bi (10- 6-10- 2 μmol·(g·d)- 1). For most elements, open conduit volcanoes (Etna, Stromboli, Nyiragongo) showed higher moss accumulation rates than more quiescent hydrothermal areas (Vulcano > Nisyros > Yellowstone National Park) and a correlation of S, Fe, and Pb from eruptive ash and lava emissions. For some volatile elements (S, As, Se), higher accumulation was observed within fumarolic fields compared to crater rims of open conduit volcanoes which is a relevant information for risk assessment of tourist exposure to volcanic gases.

  13. Groundwater flow in a volcanic-sedimentary coastal aquifer: Telde area, Gran Canaria, Canary Islands, Spain (United States)

    Cabrera, M. C.; Custodio, E.

    Groundwater conditions in a 75- km2 coastal area around the town of Telde in eastern Gran Canaria island have been studied. Pliocene to Recent volcanic materials are found, with an intercalated detrital formation (LPDF), which is a characteristic of the area. Groundwater development has become intensive since the 1950s, mostly for intensive agricultural irrigation and municipal water supply. The LPDF is one order of magnitude more transmissive and permeable than the underlying Phonolitic Formation when median values are compared (150 and 15 m2 day-1 5 and 0.5 m day-1, respectively). These two formations are highly heterogeneous and the ranges of expected well productivities partly overlap. The overlying recent basalts constituted a good aquifer several decades ago but now are mostly drained, except in the southern areas. Average values of drainable porosity (specific yield) seem to be about 0.03 to 0.04, or higher. Groundwater development has produced a conspicuous strip where the watertable has been drawn down as much as 40 m in 20 years, although the inland watertable elevation is much less affected. Groundwater reserve depletion contributes only about 5% of ed water, and more than 60% of this is transmitted from inland areas. Groundwater discharge into the sea may still be significant, perhaps 30% of total inflow to the area is discharged to the sea although this value is very uncertain. Les conditions de gisement de l'eau souterraine d'une région de 75 km2 de la côte Est de l'île de la Grande Canarie (archipel des Canaries), dans le secteur de Telde, ont été étudiées, en utilisant seulement les données fournies par les puits d'exploitation existants. Les matériaux volcaniques, d'âge Pliocène à sub-actuel, sont séparés par une formation détritique (FDLP), qui constitue la principale singularité de cette région. L'exploitation de l'eau souterraine est devenue intensive à partir de 1950, principalement pour des besoins d'irrigation (agriculture

  14. Volcanic materials superconductivity in desert areas of the states of Sonora and Baja California

    International Nuclear Information System (INIS)

    Holguín, Aldo


    Research was conducted to find materials in their natural state at room temperature and exhibit the effects of superconductivity in the volcanic region of deserts Altar in Sonora and Baja California Norte. 100 were collected at random samples of materials from different parts of the region and underwent tests to determine their electromagnetic parameters of electrical resistance, magnetism, temperature and conductivity. Only it has been found that the effects of superconductivity in them is only present at very low temperatures corroborating what has been done in other investigations, however no indication that there is a material or combination of materials that can produce the effects of superconductivity other temperatures so it is suggested to continue the search for such materials and / or develop a technique at room temperature to allow mimic the behavior of atoms when superconductivity occurs at. (paper)

  15. Comparison of the chemical composition of PM10 and PM2.5 particles collected in urban environments and volcanic areas of metropolitan Costa Rica

    Directory of Open Access Journals (Sweden)

    Jorge Herrera


    Full Text Available PM10 and PM2,5 were sampled simultaneously in urban and volcanic environments in the Metropolitan Area of Costa Rica from October to November 2012. Higher mass concentrations (42-29 μgm-3 of PM10 and PM2,5 were found at industrial and commercial areas with high traffic flow (La Uruca, Heredia and Belen compared with those found in the volcanic areas. The daily concentrations of PM10 and PM2,5 obtained in the Poas Volcano ranged from 3 -14 μgm-3 and 2-11 μgm-3, respectively. However the acidity of the collected particles in the Poas volcano was higher than those sampled in urban environments probably due to a lower occurrence rate of neutralization. The contribution of secondary ions was more important to the volcanic PM10 composition (around 40%, unlike the PM10 collected in urban areas.

  16. Earthquake swarm in the non-volcanic area north of Harrat Lunayyir, western Saudi Arabia: observations and imaging (United States)

    Youssof, M.; Mai, P. M.; Parisi, L.; Tang, Z.; Zahran, H. M.; El-Hadidy, S. Y.; Al-Raddadi, W.; Sami, M.; El-Hadidy, M. S. Y.


    We report on an unusual earthquake swarm in a non-volcanic area of western Saudi Arabia. Since March 2017, hundreds of earthquakes were recorded, reaching magnitude Ml 3.7, which occurred within a very narrowly defined rock volume. The seismicity is shallow, mostly between 4 to 8 km depths, with some events reaching as deep as 16 km. One set of events aligns into a well-defined horizontal tube of 2 km height, 1 km width, and 4-5 km E-W extent. Other event clusters exist, but are less well-defined. The focal mechanism solutions of the largest earthquakes indicate normal faulting, which agree with the regional stress field. The earthquake swarm occurs 75 km NW of Harrat Lunayyir. However, the area of interest doesn't seem to be associated with the well-known volcanic area of Harrat Lunayyir, which experienced a magmatic dike intrusion in 2009 with intense seismic activity (including a surface rupturing Mw 5.7 earthquake). Furthermore, the study area is characterized by a complex shear system, which host gold mineralization. Therefore, the exact origin of the swarm sequence is enigmatic as it's the first of its kind in this region. By using continuous seismological data recorded by the Saudi Geological Survey (SGS) that operates three permanent seismic stations and a temporary network of 11 broadband sensors, we analyze the seismic patterns in space and time. For the verified detected events, we assemble the body wave arrival times that are inverted for the velocity structures along with events hypocenters to investigate possible causes of this swarm sequence, that is, whether the activity is of tectonic- or hydro-thermal origin.

  17. The change of magma chamber depth in and around the Baekdu Volcanic area from late Cenozoic (United States)

    Lee, S. H.; Oh, C. W.; Lee, Y. S.; Lee, S. G.; Liu, J.


    The Baekdu Volcano is a 2750m high stratovolcanic cone resting on a basaltic shield and plateau and locates on the North Korea-China border. Its volcanic history can be divided into four stages (from the oldest to the youngest): (i) preshield plateau-forming eruptions, (ii) basalt shield formation, (iii) construction of a trachytic composite cone, and (iv) explosive ignimbrite forming eruptions. In the First stage, a fissure eruption produced basalts from the Oligocene to the Miocene (28-13 Ma) forming preshield plateau. Fissure and central eruptions occurred together during the shield-forming eruptions (4.21-1.70 Ma). In the third stage, the trachytic composite volcano formed during the Pleistocene (0.61-0.09 Ma). In this stage, magma changed to an acidic melt. The latest stage has been characterized by explosive ignimbrite-forming eruptions during the Holocene. The composite volcanic part consists of the Xiaobaishan, Lower, Middle and Upper Trachytes with rhyolites. The whole rock and clinopyroxene in basalts, trachytic and rhyolite, are analyzed to study the depth of magma chambers under the Baekdu Volcano. From the rhyolite, 9.8-12.7kbar is obtained for the depth of magma chamber. 3.7-4.1, 8.9-10.5 and 8.7 kbar are obtained from the middle, lower and Xiaobaishan trachytes. From the first and second stage basalts, 16.9-17.0 kbar and 14-14.4kbar are obtained respectively. The first stage basalt give extrusive age of 11.98 Ma whereas 1.12 and 1.09 Ma are obtained from the feldspar and groundmass in the second stage basalt. The Xiaobaishan trachyte and rhyolite give 0.25 and 0.21 Ma whereas the Middle trachyte gives 0.07-0.06 Ma. These data indicate that the magma chambers of the first and second stage basalts were located in the mantle and the magma chamber for the second stage basalt may have been underplated below continental crust. The Xiaobisan trachyte and rhyolite originated from the magma chamber in the depth of ca. 30-40 km and the Middle trachyte

  18. An approximate inversion method of geoelectrical sounding data using linear and bayesian statistical approaches. Examples of Tritrivakely volcanic lake and Mahitsy area (central part of Madagascar)

    International Nuclear Information System (INIS)

    Ranaivo Nomenjanahary, F.; Rakoto, H.; Ratsimbazafy, J.B.


    This paper is concerned with resistivity sounding measurements performed from single site (vertical sounding) or from several sites (profiles) within a bounded area. The objective is to present an accurate information about the study area and to estimate the likelihood of the produced quantitative models. The achievement of this objective obviously requires quite relevant data and processing methods. It also requires interpretation methods which should take into account the probable effect of an heterogeneous structure. In front of such difficulties, the interpretation of resistivity sounding data inevitably involves the use of inversion methods. We suggest starting the interpretation in simple situation (1-D approximation), and using the rough but correct model obtained as an a-priori model for any more refined interpretation. Related to this point of view, special attention should be paid for the inverse problem applied to the resistivity sounding data. This inverse problem is nonlinear, while linearity inherent in the functional response used to describe the physical experiment. Two different approaches are used to build an approximate but higher dimensional inversion of geoelectrical data: the linear approach and the bayesian statistical approach. Some illustrations of their application in resistivity sounding data acquired at Tritrivakely volcanic lake (single site) and at Mahitsy area (several sites) will be given. (author). 28 refs, 7 figs

  19. Improved techniques in data analysis and interpretation of potential fields: examples of application in volcanic and seismically active areas

    Directory of Open Access Journals (Sweden)

    G. Florio


    Full Text Available Geopotential data may be interpreted by many different techniques, depending on the nature of the mathematical equations correlating specific unknown ground parameters to the measured data set. The investigation based on the study of the gravity and magnetic anomaly fields represents one of the most important geophysical approaches in the earth sciences. It has now evolved aimed both at improving of known methods and testing other new and reliable techniques. This paper outlines a general framework for several applications of recent techniques in the study of the potential methods for the earth sciences. Most of them are here described and significant case histories are shown to illustrate their reliability on active seismic and volcanic areas.

  20. Full moment tensor retrieval and fluid dynamics in volcanic areas: The case of phlegraean field (south Italy)

    International Nuclear Information System (INIS)

    Campus, P.; Cespuglio, G.


    When studying seismicity in volcanic areas it is appropriate to treat the seismic source in a form a priori not restricted to a double couple, since its mechanism may reflect not only small scale tectonics but also fluid dynamics. The monitoring of fluid dynamics can be therefore attempted from the retrieval of the rupture processes. It is not possible to use standard methods, based on the distribution of polarities of first arrivals to determine the non double-couple components of the seismic source. The new method presented here is based on the wave form inversion of the dominant part of the seismograms, where the signal to noise ratio is very large and allows the inversion of the full seismic moment tensor. The results of a pilot study in the Phlegraean Fields (South Italy) are presented. 13 refs, 10 figs, 4 tabs

  1. Metallogenetic prospecting prediction of volcanic rock type of uranium deposit in Pucheng Area

    International Nuclear Information System (INIS)

    Xiao Bin; Wang Yong


    Based on the metallogenetic geological conditions of Pucheng area, metallogenetic geological model existing and the information quality method, the logic vector length method and the logic vector length weighted method, some favorable geological variance are selected. The assessment model is set up and some favorable metallogenetic area are delineated according to the different contribution degrees of the geological variances to mineralization. By geological assessment in the favorable metallogenetic areas, it is considered that the favorable metallogenetic geological conditions exist in this areas, and there are prospecting prospective surroundings areas and glorious prospecting future were confirmed in the district

  2. Zircon U-Pb chronology, geochemistry and Sr-Nd-Pb isotopic compositions of the Volcanic Rocks in the Elashan area, NW China: petrogenesis and tectonic implications (United States)

    Zhou, H.; Wei, J.; Shi, W.; Li, P.; Chen, M.; Zhao, X.


    Elashan area is located in the intersection of the East Kunlun Orogenic Belt (EKOB) and the West Qinling Orogenic (WQOB). We present petrology, zircon U-Pb ages, whole-rock geochemistry and Sr-Nd-Pb isotopic compositions from the andesite and felsic volcanic rocks (rhyolite and rhyolitic tuffs) in Elashan group volcanic rock. The LA-ICP-MS zircon U-Pb age data indicate that the volcanic rocks are emplaced at 250 247 Ma. The volcanic rocks have high -K and aluminum - peraluminous characteristics, A/CNK = 1.07 1.82, δ ranges from 1.56 2.95, the main body is calc-alkaline rock. They are enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs) and depleted in some high field strength elements (HFSEs, e.g., Nb, Ta, P and Ti), while having a flat heavy REE (HREEs) pattern. The ∑REE values of 178.68 to 298.11 ppm, average 230.50 ppm. The LREE/HREE values of 4.39 to 11.78 ppm, average 6.77 ppm. REE fractionation is obvious, REE distribution curve was right smooth, and have slightly negative Eu anomalies (Eu/Eu*=0.44-0.80, average 0.60), which as similar to the island arc volcanic rocks. The volcanic rocks have initial 87Sr/86Sr ratios of 0.71028-0.71232, ɛNd(t) values of -6.7 to -7.6, with T2DM-Nd ranging from 1561 to 1640 Ma. Pb isotopic composition (206 Pb / 204 Pb)t = 18.055 18.330, (207 Pb / 204 Pb)t = 15.586 15.618, (208 Pb / 204 Pb)t = 37.677 38.332. Geochemical and Sr-Nd-Pb isotopes indicates that Elashan group volcanic magma derived mainly from the lower crust. Elashan group volcanic rocks is the productive East Kunlun block and West Qinling block collision, which makes the thicken crust caused partial melting in the study area. The source rocks is probably from metamorphic sandstone of Bayankala. But with Y-Nb and Rb-(Y+Nb), R1-R2 and Rb/10-Hf-Ta*3 diagrams showing that intermediate-acid rocks mainly formed in volcanic arc-collision environment, probably the collision event is short , therefore rocks retain the original island

  3. Seasonal and spatial variation of arsenic in groundwater in a rhyolithic volcanic area of Lesvos Island, Greece. (United States)

    Zkeri, Eirini; Aloupi, Maria; Gaganis, Petros


    A survey conducted in water wells located in the rhyolithic volcanic area of Mandamados, Lesvos Island, Greece, indicated that significant seasonal variation of arsenic concentration in groundwater exists mainly in wells near the coastal zone. However, there were differences among those coastal wells with regard to the processes and factors responsible for the observed seasonal variability of the element, although they are all located in a small homogeneous area. These processes and factors include (a) a higher rate of silicate weathering and ion exchange during the dry period followed by the dilution by the recharge water during the wet period, (b) enhanced desorption promoted by higher pH in summer and subsequent dilution of As by rainwater infiltration during the wet period, and (c) reductive dissolution of Mn during the wet period and by desorption under high pH values during the dry period. On the other hand, in wells located in higher-relief regions, the concentration of As in groundwater followed a fairly constant pattern throughout the year, which is probably related to the faster flow of groundwater in this part of the area due to a higher hydraulic gradient. In general, seasonal variation of As in groundwater in the study area was found to be related to geology, recharge rate, topography-distance from coast, and well depth.

  4. 2D resistivity survey in complex geological structure area. Application to the volcanic area; Fukuzatsuna chishitsu kozo chiiki ni okeru hiteiko nijigen tansa. Kazangan chiiki deno tekiorei

    Energy Technology Data Exchange (ETDEWEB)

    Asakawa, S; Ikuma, T; Tanifuji, R [DIA Consultants Co. Ltd., Tokyo (Japan)


    Introduced herein is an application of 2D resistivity survey to a volcanic rock area where the survey result is difficult to interpret because of its complex geological structure. In a dam site survey, main problems involve the permeability of water through faults and weathered, altered zones. At this site, a 2D resistivity survey was conducted, a 2D geological structure was deduced from the resistivity section, and the result was examined. It was found that resistivity distribution was closely related to hydrographic factors, but no obvious correlation was detected between rock classes and R, Q, and D. In conducting investigations into a section planned for a highway tunnel, it was learned that the problem was a volcanic ash layer to collapse instantly upon absorbing water, and the distribution of the ash layer, not to be disclosed by boring, was subjected to a 2D resistivity survey. The survey was conducted into the structure above where the tunnel would run, and further into the face, and studies were made about what layer was reflected by the resistivity distribution obtained by analysis. The result of the analysis agreed with the details of the layer that was disclosed afterward. 4 figs., 1 tab.

  5. Geochemistry and tectonomagatic setting of Tertiary volcanic rocks of the Kangan area, northeast of Sarbisheh, southern Khorasan

    Directory of Open Access Journals (Sweden)

    Mahshid Malekian Dastjerdi


    Full Text Available Introduction The study area is located 12km away from the north east of Sarbisheh at the eastern border of the Lut block (Karimpour et al., 2011; Richards et al., 2012. The magmatic activity in the Lut blockhas begun in the middle Jurassic (165-162 Ma and reached its peak in the Tertiary age (Jung et al., 1983; Karimpour et al., 2011. Volcanic and subvolcanic rocks in the Tertiary age cover over half of the Lut block with up to 2000 m thickness and they were formed due to subduction prior to the collision of the Arabian and Asian plates (Jung et al., 1983; Karimpour et al., 2011. In the Kangan area, the basaltic lavas cropped out beyond the above intermediate to acid volcanic rocks. In this area, bentonite and perlite deposits have an economic importance. The main purpose of this paper is to present a better understanding of the tectono-magmatic settings of volcanic rocks in the northeast of Sarbisheh, east of Iran based on their geochemical characteristics. Materials and methods Fifteen samples were analyzed for major elements by inductively coupled plasma (ICP technologies and trace elements by using inductively coupled plasma mass spectrometry (ICP-MS, following a lithium metaborate/tetraborate fusion and nitric acid total digestion, at the Acme laboratories, Vancouver, Canada. Results The Kangan area is located at the northeast of Sarbishe, Southern Khorasan and the eastern border of the Lut block. In this area, basaltic lavas have cropped out above intermediate to acid lavas such as andesite, dacite, rhyolite (sometimes perlitic .The main minerals in the basalt are plagioclase, olivine and pyroxene, in andesite contain plagioclase, pyroxene, biotite and amphibole and in acid rocks include plagioclase, quartz, sanidine, biotite and amphibole. Intermediate to acid rocks have medium to high-K calc-alkaline nature and basalt is alkaline. Enrichment in LREE relative to HREE (Ce/Yb= 21.14-28.7, high ratio of Zr/Y(4.79- 10.81, enrichment in LILE

  6. Volcanic stratigraphy: A review (United States)

    Martí, Joan; Groppelli, Gianluca; Brum da Silveira, Antonio


    Volcanic stratigraphy is a fundamental component of geological mapping in volcanic areas as it yields the basic criteria and essential data for identifying the spatial and temporal relationships between volcanic products and intra/inter-eruptive processes (earth-surface, tectonic and climatic), which in turn provides greater understanding of the geological evolution of a region. Establishing precise stratigraphic relationships in volcanic successions is not only essential for understanding the past behaviour of volcanoes and for predicting how they might behave in the future, but is also critical for establishing guidelines for exploring economic and energy resources associated with volcanic systems or for reconstructing the evolution of sedimentary basins in which volcanism has played a significant role. Like classical stratigraphy, volcanic stratigraphy should also be defined using a systematic methodology that can provide an organised and comprehensive description of the temporal and spatial evolution of volcanic terrain. This review explores different methods employed in studies of volcanic stratigraphy, examines four case studies that use differing stratigraphic approaches, and recommends methods for using systematic volcanic stratigraphy based on the application of the concepts of traditional stratigraphy but adapted to the needs of volcanological environment.

  7. 7 CFR 1780.11 - Service area requirements. (United States)


    ..., maintenance, debt service, and reserve requirements. Such guarantees from developers will meet the... 7 Agriculture 12 2010-01-01 2010-01-01 false Service area requirements. 1780.11 Section 1780.11... AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS General Policies and Requirements § 1780.11 Service...

  8. GeoNetGIS: a Geodetic Network Geographical Information System to manage GPS networks in seismic and volcanic areas (United States)

    Cristofoletti, P.; Esposito, A.; Anzidei, M.


    This paper presents the methodologies and issues involved in the use of GIS techniques to manage geodetic information derived from networks in seismic and volcanic areas. Organization and manipulation of different geodetical, geological and seismic database, give us a new challenge in interpretation of information that has several dimensions, including spatial and temporal variations, also the flexibility and brand range of tools available in GeoNetGIS, make it an attractive platform for earthquake risk assessment. During the last decade the use of geodetic networks based on the Global Positioning System, devoted to geophysical applications, especially for crustal deformation monitoring in seismic and volcanic areas, increased dramatically. The large amount of data provided by these networks, combined with different and independent observations, such as epicentre distribution of recent and historical earthquakes, geological and structural data, photo interpretation of aerial and satellite images, can aid for the detection and parameterization of seismogenic sources. In particular we applied our geodetic oriented GIS to a new GPS network recently set up and surveyed in the Central Apennine region: the CA-GeoNet. GeoNetGIS is designed to analyze in three and four dimensions GPS sources and to improve crustal deformation analysis and interpretation related with tectonic structures and seismicity. It manages many database (DBMS) consisting of different classes, such as Geodesy, Topography, Seismicity, Geology, Geography and Raster Images, administrated according to Thematic Layers. GeoNetGIS represents a powerful research tool allowing to join the analysis of all data layers to integrate the different data base which aid for the identification of the activity of known faults or structures and suggesting the new evidences of active tectonics. A new approach to data integration given by GeoNetGIS capabilities, allow us to create and deliver a wide range of maps, digital

  9. Exploring deformation scenarios in Timanfaya volcanic area (Lanzarote, Canary Islands) from GNSS and ground based geodetic observations (United States)

    Riccardi, U.; Arnoso, J.; Benavent, M.; Vélez, E.; Tammaro, U.; Montesinos, F. G.


    We report on a detailed geodetic continuous monitoring in Timanfaya volcanic area (TVA), where the most intense geothermal anomalies of Lanzarote Island are located. We analyze about three years of GNSS data collected on a small network of five permanent stations, one of which at TVA, deployed on the island, and nearly 20 years of tiltmeter and strainmeter records acquired at Los Camelleros site settled in the facilities of the Geodynamics Laboratory of Lanzarote within TVA. This study is intended to contribute to understanding the active tectonics on Lanzarote Island and its origin, mainly in TVA. After characterizing and filtering out the seasonal periodicities related to "non-tectonic" sources from the geodetic records, a tentative ground deformation field is reconstructed through the analysis of both tilt, strain records and the time evolution of the baselines ranging the GNSS stations. The joint interpretation of the collected geodetic data show that the area of the strongest geothermal anomaly in TVA is currently undergoing a SE trending relative displacement at a rate of about 3 mm/year. This area even experiences a significant subsidence with a maximum rate of about 6 mm/year. Moreover, we examine the possible relation between the observed deformations and atmospheric effects by modelling the response functions of temperature and rain recorded in the laboratory. Finally, from the retrieval of the deformation patterns and the joint analysis of geodetic and environmental observations, we propose a qualitative model of the interplaying role between the hydrological systems and the geothermal anomalies. Namely, we explain the detected time correlation between rainfall and ground deformation because of the enhancement of the thermal transfer from the underground heat source driven by the infiltration of meteoric water.

  10. Surface temperature monitoring by integrating satellite data and ground thermal camera network on Solfatara Crater in Campi Flegrei volcanic area (Italy) (United States)

    Buongiorno, M. F.; Musacchio, M.; Silvestri, M.; Vilardo, G.; Sansivero, F.; caPUTO, T.; bellucci Sessa, E.; Pieri, D. C.


    Current satellite missions providing imagery in the TIR region at high spatial resolution offer the possibility to estimate the surface temperature in volcanic area contributing in understanding the ongoing phenomena to mitigate the volcanic risk when population are exposed. The Campi Flegrei volcanic area (Italy) is part of the Napolitan volcanic district and its monitored by INGV ground networks including thermal cameras. TIRS on LANDSAT and ASTER on NASA-TERRA provide thermal IR channels to monitor the evolution of the surface temperatures on Campi Flegrei area. The spatial resolution of the TIR data is 100 m for LANDSAT8 and 90 m for ASTER, temporal resolution is 16 days for both satellites. TIRNet network has been developed by INGV for long-term volcanic surveillance of the Flegrei Fields through the acquisition of thermal infrared images. The system is currently comprised of 5 permanent stations equipped with FLIR A645SC thermo cameras with a 640x480 resolution IR sensor. To improve the systematic use of satellite data in the monitor procedures of Volcanic Observatories a suitable integration and validation strategy is needed, also considering that current satellite missions do not provide TIR data with optimal characteristics to observe small thermal anomalies that may indicate changes in the volcanic activity. The presented procedure has been applied to the analysis of Solfatara Crater and is based on 2 different steps: 1) parallel processing chains to produce ground temperature data both from satellite and ground cameras; 2) data integration and comparison. The ground cameras images generally correspond to views of portion of the crater slopes characterized by significant thermal anomalies due to fumarole fields. In order to compare the satellite and ground cameras it has been necessary to take into account the observation geometries. All thermal images of the TIRNet have been georeferenced to the UTM WGS84 system, a regular grid of 30x30 meters has been

  11. Integrated Geoscience Studies in the Greater Yellowstone Area - Volcanic, Tectonic, and Hydrothermal Processes in the Yellowstone Geoecosystem (United States)

    Morgan, Lisa A.


    Yellowstone National Park, rimmed by a crescent of older mountainous terrain, has at its core the Quaternary Yellowstone Plateau, an undulating landscape shaped by forces of volcanism, tectonism, and later glaciation. Its spectacular hydrothermal systems cap this landscape. From 1997 through 2003, the United States Geological Survey Mineral Resources Program conducted a multidisciplinary project of Yellowstone National Park entitled Integrated Geoscience Studies of the Greater Yellowstone Area, building on a 130-year foundation of extensive field studies (including the Hayden survey of 1871, the Hague surveys of the 1880s through 1896, the studies of Iddings, Allen, and Day during the 1920s, and NASA-supported studies starting in the 1970s - now summarized in USGS Professional Paper 729 A through G) in this geologically dynamic terrain. The project applied a broad range of scientific disciplines and state-of-the-art technologies targeted to improve stewardship of the unique natural resources of Yellowstone and enable the National Park Service to effectively manage resources, protect park visitors from geologic hazards, and better educate the public on geologic processes and resources. This project combined a variety of data sets in characterizing the surficial and subsurface chemistry, mineralogy, geology, geophysics, and hydrothermal systems in various parts of the park. The sixteen chapters presented herein in USGS Professional Paper 1717, Integrated Geoscience Studies in the Greater Yellowstone Area - Volcanic, Tectonic, and Hydrothermal Processes in the Yellowstone Geoecosystem, can be divided into four major topical areas: (1) geologic studies, (2) Yellowstone Lake studies, (3) geochemical studies, and (4) geophysical studies. The geologic studies include a paper by Ken Pierce and others on the influence of the Yellowstone hotspot on landscape formation, the ecological effects of the hotspot, and the human experience and human geography of the greater

  12. Dating and source determination of volcanic rocks from Khunik area (South of Birjand, South Khorasan using Rb-Sr and Sm-Nd isotopes

    Directory of Open Access Journals (Sweden)

    Somayeh Samiee


    Full Text Available The Khunik area is located in the south of Birjand, Khorasan province, in the eastern margin of Lut block. Tertiary volcanic rocks have andesite to trachy-andesite composition. Dating analyzing by Rb-Sr method on plagioclase and hornblende as well as whole-rock isochron method was performed on pyroxene-hornblende andesite rock unit. On this basis the emplacement age is Upper Paleocene (58±11 Ma. These rocks have initial 87Sr/86Sr and εNd 0.7046-0.7049 and 2.16-3.12, respectively. According to isotopic data, volcanic rocks originated from depleted mantle and have the least crust contamination while it was fractionated. Geochemically, Khunik volcanic rocks have features typical of calk-alkaline to shoshonite and are metaluminous. Enrichment in LILEs and typical negative anomalies of Nb and Ti are evidences that the volcanic rocks formed in a subduction zone and active continental margin. Modeling suggests that these rocks were derived dominantly from 1–5% partial melting of a mainly spinel garnet lherzolite mantle source that is metasomatized by slab-derived fluid.

  13. Geochemistry and Mineral Chemistry of Zeolites Bearing Basic Volcanic Rocks from the Boumehen-Roudehen Area, East of Tehran

    Directory of Open Access Journals (Sweden)

    Amir Ali Tabbakh Shabani


    Full Text Available Introduction The Upper Eocene basic volcanic rocks that have cropped out in Karaj formation in the Boumehen and Roudehen area in the east of Tehran are characterized by fibrous zeolites filling their vesicles, cavities and fractures creating amygdale texture. The study area is located structurally in the Central Alborz orogenic belt. The presence of large volumes of shoshonitic magma during the Middle to Late Eocene in southern–central Alborz implies that partial melting to produce shoshsonitic melts was not a local petrological event. Thus, their ages, formation processes, and interpretations are of regional tectonic significance. In this study, we present a detailed petrography, mineral chemistry, and whole-rock geochemistry of high-K (shoshonitic basic rocks to understand the petrogenesis and source region and to deduce the nature of the tectonomagmatic regime of the Alborz. Materials and methods In this study, we present new major and trace element data for a selection of 4 of the least altered samples by a combination of X-ray fluorescence (XRF and ICP-OES techniques at the Zarazma Mineral Studies Company. Mineral analyses were obtained by wavelength dispersive X-ray spectrometry on polished thin sections prepared from each rock sample described above for 12 elements using a Cameca SX-50 electron microprobe at the Istituto di Geologia e Geoingegneria Ambientale, C.N.R., University La Sapienza of Rome, Italy. Typical beam operating conditions were 15 kV and probe current of 15 nA. The accuracy of the analyses is 1% for major and 10% for minor elements. A total of 24 point analyses were collected. Results and Discussion The extent of alteration in the study rocks varies from slight to severe and shows porphyritic to glomeroporphyritic textures. Pyroxenes are generally subhedral to euhedral and occur as discrete crystals as well as aggregates. Olivine may occur only as relics filled with iddingsite, chlorite and calcite. Plagioclase is

  14. Definition of areas requiring criticality alarm annunciation and emergency control

    International Nuclear Information System (INIS)

    Hobson, J.M.


    The design of fissile material handling at British Nuclear Fuels plc requires the provision of a criticality incident detection system unless a specific case for omission can be formally made. Where such systems are provided, the 100 mSv contour resulting from a reference criticality incident must be restricted to an area of administrative control within which it is reasonably practicable to provide alarm annunciation and for which emergency arrangements can be defined. For typical reprocessing plant applications, the definition of these areas, and their restriction by provision of shielding where necessary, potentially requires a very large number of three dimensional neutron transport calculations in complex geometries. However, by considering the requirements and nature of this assessment, simple generic methods have been developed and justified. Consequently, rapid and inexpensive assessments of control areas can be carried out

  15. Identifying areas of high economic-potential copper mineralization using ASTER data in the Urumieh-Dokhtar Volcanic Belt, Iran (United States)

    Pour, Amin Beiranvand; Hashim, Mazlan


    This study investigates the application of spectral image processing methods to ASTER data for mapping hydrothermal alteration zones associated with porphyry copper mineralization and related host rock. The study area is located in the southeastern segment of the Urumieh-Dokhtar Volcanic Belt of Iran. This area has been selected because it is a potential zone for exploration of new porphyry copper deposits. Spectral transform approaches, namely principal component analysis, band ratio and minimum noise fraction were used for mapping hydrothermally altered rocks and lithological units at regional scale. Spectral mapping methods, including spectral angle mapper, linear spectral unmixing, matched filtering and mixture tuned matched filtering were applied to differentiate hydrothermal alteration zones associated with porphyry copper mineralization such as phyllic, argillic and propylitic mineral assemblages.Spectral transform methods enhanced hydrothermally altered rocks associated with the known porphyry copper deposits and new identified prospects using shortwave infrared (SWIR) bands of ASTER. These methods showed the discrimination of quartz rich igneous rocks from the magmatic background and the boundary between igneous and sedimentary rocks using the thermal infrared (TIR) bands of ASTER at regional scale. Spectral mapping methods distinguished the sericitically- and argillically-altered rocks (the phyllic and argillic alteration zones) that surrounded by discontinuous to extensive zones of propylitized rocks (the propylitic alteration zone) using SWIR bands of ASTER at both regional and district scales. Linear spectral unmixing method can be best suited for distinguishing specific high economic-potential hydrothermal alteration zone (the phyllic zone) and mineral assemblages using SWIR bands of ASTER. Results have proven to be effective, and in accordance with the results of field surveying, spectral reflectance measurements and X-ray diffraction (XRD) analysis

  16. Subsurface contamination focus area technical requirements. Volume II

    International Nuclear Information System (INIS)

    Nickelson, D.; Nonte, J.; Richardson, J.


    This is our vision, a vision that replaces the ad hoc or open-quotes delphiclose quotes method which is to get a group of open-quotes expertsclose quotes together and make decisions based upon opinion. To fulfill our vision for the Subsurface Contaminants Focus Area (SCFA), it is necessary to generate technical requirements or performance measures which are quantitative or measurable. Decisions can be supported if they are based upon requirements or performance measures which can be traced to the origin (documented) and are verifiable, i.e., prove that requirements are satisfied by inspection (show me), demonstration, analysis, monitoring, or test. The data from which these requirements are derived must also reflect the characteristics of individual landfills or plumes so that technologies that meet these requirements will necessarily work at specific sites. Other subjective factors, such as stakeholder concerns, do influence decisions. Using the requirements as a basic approach, the SCFA can depend upon objective criteria to help influence the areas of subjectivity, like the stakeholders. In the past, traceable requirements were not generated, probably because it seemed too difficult to do so. There are risks that the requirements approach will not be accepted because it is new and represents a departure from the historical paradigm

  17. Subsurface contamination focus area technical requirements. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Nickelson, D.; Nonte, J.; Richardson, J.


    This is our vision, a vision that replaces the ad hoc or {open_quotes}delphi{close_quotes} method which is to get a group of {open_quotes}experts{close_quotes} together and make decisions based upon opinion. To fulfill our vision for the Subsurface Contaminants Focus Area (SCFA), it is necessary to generate technical requirements or performance measures which are quantitative or measurable. Decisions can be supported if they are based upon requirements or performance measures which can be traced to the origin (documented) and are verifiable, i.e., prove that requirements are satisfied by inspection (show me), demonstration, analysis, monitoring, or test. The data from which these requirements are derived must also reflect the characteristics of individual landfills or plumes so that technologies that meet these requirements will necessarily work at specific sites. Other subjective factors, such as stakeholder concerns, do influence decisions. Using the requirements as a basic approach, the SCFA can depend upon objective criteria to help influence the areas of subjectivity, like the stakeholders. In the past, traceable requirements were not generated, probably because it seemed too difficult to do so. There are risks that the requirements approach will not be accepted because it is new and represents a departure from the historical paradigm.

  18. Mineral chemistry, thermobarometry and tectonomagmatic setting of Late-Cretaceous volcanic rocks from the Kojid area (south of Lahijan, northern Alborz

    Directory of Open Access Journals (Sweden)

    morteza delavari


    Full Text Available The volcanic rocks of Kojid area (south of Lahijan crop out in northern Alborz. They show mainly pillow structure with numerous cross-cutting dykes. Based on lithostratigraphic relationships and interpillow pelagic limestones, the volcanics are Late Cretaceous in age. The volcanics of Kojid area are predominantly basic in composition (olivine basalt and basalt and minor more evolved suites such as trachyandesite and dacite. Olivine phenocrysts display forsterite (Fo content of 63 to 83%. The phenocrystic and interstitial clinopyroxene crystals are augite to diopside in composition, with Na2O, Al2O3 and TiO2 contents of 0.24- 0.68, 2.3-6.53 and 1-5.1 wt.%, respectively. Furthermore, plagioclase is labradorite (An%= 51-68. The results of various geothermobarometric methods of clinopyroxene, plagioclase and olivine indicate good correlation with each other. Different thermometric calculations yielded temperatures in the range of 1100 to 1250 °C which are compatible with temperatures of basic melts. Moreover, clinopyroxene and plagioclase barometry of the phenocrysts (4 to 8 Kb and interstitial phases (

  19. Magma injection beneath the urban area of Naples: a new mechanism for the 2012–2013 volcanic unrest at Campi Flegrei caldera (United States)

    D’Auria, Luca; Pepe, Susi; Castaldo, Raffaele; Giudicepietro, Flora; Macedonio, Giovanni; Ricciolino, Patrizia; Tizzani, Pietro; Casu, Francesco; Lanari, Riccardo; Manzo, Mariarosaria; Martini, Marcello; Sansosti, Eugenio; Zinno, Ivana


    We found the first evidence, in the last 30 years, of a renewed magmatic activity at Campi Flegrei caldera from January 2012 to June 2013. The ground deformation, observed through satellite interferometry and GPS measurements, have been interpreted as the effect of the intrusion at shallow depth (3090 ± 138 m) of 0.0042 ± 0.0002 km3 of magma within a sill. This interrupts about 28 years of dominant hydrothermal activity and occurs in the context of an unrest phase which began in 2005 and within a more general ground uplift that goes on since 1950. This discovery has implications on the evaluation of the volcanic risk and in the volcanic surveillance of this densely populated area. PMID:26279090

  20. Magma injection beneath the urban area of Naples: a new mechanism for the 2012-2013 volcanic unrest at Campi Flegrei caldera. (United States)

    D'Auria, Luca; Pepe, Susi; Castaldo, Raffaele; Giudicepietro, Flora; Macedonio, Giovanni; Ricciolino, Patrizia; Tizzani, Pietro; Casu, Francesco; Lanari, Riccardo; Manzo, Mariarosaria; Martini, Marcello; Sansosti, Eugenio; Zinno, Ivana


    We found the first evidence, in the last 30 years, of a renewed magmatic activity at Campi Flegrei caldera from January 2012 to June 2013. The ground deformation, observed through satellite interferometry and GPS measurements, have been interpreted as the effect of the intrusion at shallow depth (3090 ± 138 m) of 0.0042 ± 0.0002 km(3) of magma within a sill. This interrupts about 28 years of dominant hydrothermal activity and occurs in the context of an unrest phase which began in 2005 and within a more general ground uplift that goes on since 1950. This discovery has implications on the evaluation of the volcanic risk and in the volcanic surveillance of this densely populated area.

  1. Data requirements and data sources for biodiversity priority area ...

    Indian Academy of Sciences (India)


    tions required for a priority areas analysis. An important ..... Analysis Project, etc. Even before bias can be assessed and decisions taken either to proceed with existing data, model expected data. (see below), collect new data, or reject the data, those data have to be ..... Caudill 1990). They are a form of artificial intelligence,.

  2. Assessment of volcanic hazards, vulnerability, risk and uncertainty (Invited) (United States)

    Sparks, R. S.


    many sources of uncertainty in forecasting the areas that volcanic activity will effect and the severity of the effects. Uncertainties arise from: natural variability, inadequate data, biased data, incomplete data, lack of understanding of the processes, limitations to predictive models, ambiguity, and unknown unknowns. The description of volcanic hazards is thus necessarily probabilistic and requires assessment of the attendant uncertainties. Several issues arise from the probabilistic nature of volcanic hazards and the intrinsic uncertainties. Although zonation maps require well-defined boundaries for administrative pragmatism, such boundaries cannot divide areas that are completely safe from those that are unsafe. Levels of danger or safety need to be defined to decide on and justify boundaries through the concepts of vulnerability and risk. More data, better observations, improved models may reduce uncertainties, but can increase uncertainties and may lead to re-appraisal of zone boundaries. Probabilities inferred by statistical techniques are hard to communicate. Expert elicitation is an emerging methodology for risk assessment and uncertainty evaluation. The method has been applied at one major volcanic crisis (Soufrière Hills Volcano, Montserrat), and is being applied in planning for volcanic crises at Vesuvius.

  3. Geochemical features of the Cretaceous alkaline volcanics in the area of Morado hill, Jachal town, San Juan, Argentina

    International Nuclear Information System (INIS)

    Perez, L.


    This paper is about the alkaline volcanic rocks that crop out at the Morado hill located in the southern end of the Mogna ranges, which are part of the Eastern border of the pre mountain in the San Juan province, Argentina.The petrography and geochemistry study of the alkaline volcanics has allowed to classify them as tephrite basanite or basanite nephelinite, with strong alkaline chemical affinity, showing a characteristic composition of within plate geochemistry environment. The radimetric analysis, K-Ar data, has shown an average 90 ∓ 8 m.y. age for this rocks, (Cingolani et al. 1984) pointing out the Upper Cretaceous (lower section) stratigraphical position for the suite. The discussion of the results makes conspicuous the relationships of these alkaline rocks with others of the central and northwestern regions of the country that allowed to establish an alkaline petrographic province

  4. Subaqueous volcanism in the Etnean area: evidence for hydromagmatic activity and regional uplift inferred from the Castle Rock of Acicastello (United States)

    Corsaro, R. A.; Cristofolini, R.


    The subalkaline rocks outcropping at the Acicastello Castle Rock, Catania, Sicily, and on its abrasion platforms, are related to the oldest Etnean volcanism (500-300 ka; [Gillot, P.Y., Kieffer, G., Romano, R., 1994. The evolution of Mount Etna in the light of potassium-argon dating. Acta Vulcanol. 5, 81-87.]). Here, submarine lavas with pillows closely packed onto each other are associated with heterogeneous and poorly sorted volcaniclastic breccia levels with sub-vertical sharp boundaries. The present-day attitude was previously interpreted as due to a local tilt [Di Re, M., 1963. Hyaloclastites and pillow-lavas of Acicastello (Mt. Etna). Bull. Volcanol. 25, 281-284.; Kieffer, G., 1985. Evolution structurale et dynamique d'un grand volcan polygenique: stades d'edification et activitè actuelle de l'Etna (Sicile). Clermont Ferrand IIDoctorat Etat Tesi, Clermont Ferrand II.], or to the seaward sliding of the entire eastern Etnean flank [Borgia, A., Ferrari, L., Pasquarè, G., 1992. Importance of gravitational spreading in the tectonic and volcanic evolution of Mount Etna. Nature 357, 231-235.], on the assumption of originally horizontal boundaries. On the contrary, our observations do not match the hypothesis of a significantly tilted succession and lead us to conclude that, apart from the strong regional uplift, the present Castle Rock exposure did not suffer any substantial change of its attitude.

  5. Paleomagnetically inferred ages of a cluster of Holocene monogenetic eruptions in the Tacámbaro-Puruarán area (Michoacán, México): Implications for volcanic hazards (United States)

    Mahgoub, Ahmed Nasser; Böhnel, Harald; Siebe, Claus; Salinas, Sergio; Guilbaud, Marie-Noëlle


    clusters have been identified recently. These enigmatic small "flare-ups" (outbursts of small pods of magma in geologically short periods of time within a small area) have also been encountered in other subduction-related volcanic fields around the globe (e.g. Cascades arc in the western U.S.A.) and still require to be investigated by geophysical and petrological means in order to understand their origin.

  6. Sentinel-1 automatic processing chain for volcanic and seismic areas monitoring within the Geohazards Exploitation Platform (GEP) (United States)

    De Luca, Claudio; Zinno, Ivana; Manunta, Michele; Lanari, Riccardo; Casu, Francesco


    The microwave remote sensing scenario is rapidly evolving through development of new sensor technology for Earth Observation (EO). In particular, Sentinel-1A (S1A) is the first of a sensors' constellation designed to provide a satellite data stream for the Copernicus European program. Sentinel-1A has been specifically designed to provide, over land, Differential Interferometric Synthetic Aperture Radar (DInSAR) products to analyze and investigate Earth's surface displacements. S1A peculiarities include wide ground coverage (250 km of swath), C-band operational frequency and short revisit time (that will reduce from 12 to 6 days when the twin system Sentinel-1B will be placed in orbit during 2016). Such characteristics, together with the global coverage acquisition policy, make the Sentinel-1 constellation to be extremely suitable for volcanic and seismic areas studying and monitoring worldwide, thus allowing the generation of both ground displacement information with increasing rapidity and new geological understanding. The main acquisition mode over land is the so called Interferometric Wide Swath (IWS) that is based on the Terrain Observation by Progressive Scans (TOPS) technique and that guarantees the mentioned S1A large coverage characteristics at expense of a not trivial interferometric processing. Moreover, the satellite spatial coverage and the reduced revisit time will lead to an exponential increase of the data archives that, after the launch of Sentine-1B, will reach about 3TB per day. Therefore, the EO scientific community needs from the one hand automated and effective DInSAR tools able to address the S1A processing complexity, and from the other hand the computing and storage capacities to face out the expected large amount of data. Then, it is becoming more crucial to move processors and tools close to the satellite archives, being not efficient anymore the approach of downloading and processing data with in-house computing facilities. To address

  7. Geochemistry and petrogenesis of lava flows around Linga, Chhindwara area in the Eastern Deccan Volcanic Province (EDVP), India (United States)

    Ganguly, Sohini; Ray, Jyotisankar; Koeberl, Christian; Saha, Abhishek; Thöni, Martin; Balaram, V.


    Based on systematic three-tier arrangement of vesicles, entablature and columnar joints, three distinct quartz normative tholeiitic lava flows (I, II and III) were recognized in the area around Linga, in the Eastern Deccan Volcanic Province (EDVP). Each of the flows exhibits intraflow chemical variations marked by high Mg#-low Ti, and low Mg#-high Ti contents. The MgO (4.27-7.74 wt.%), Mg# (23.45-41.89) and Zr (161.5-246.3 ppm) of Linga flows suggest an evolved chemistry marked by fractional crystallization and crustal contamination processes. Positive Rb and Th anomalies, negative Nb anomalies, relative enrichment of LILE-LREE with respect to Nb, Nb/Th:3.71-6.77 indicate crustal contamination of magma by continental materials through magma-crust interaction during melt migration and contributions from sub-continental lithospheric mantle (SCLM). Negative K, Sr and Ti anomalies corroborate an intracontinental, rift-controlled tectonic setting for the genesis and evolution of Linga basalts. Chondrite-normalized REE patterns reflect low HREE abundances and prominent LREE/HREE, MREE/HREE fractionation thereby pointing towards partial melting of garnet peridotite mantle source. Nb, Zr, Y variations suggest 10-15% partial melting of mantle source for the derivation of parent tholeiitic melt that suffered crystal fractionation of phenocrystal phases and subsequent liquid immiscibility. Critical evaluation of Srinitial and Ndinitial (65 Ma) isotopic compositions (87Sr/86Srinitial between 0.705656 and 0.706980 and 143Nd/144Ndinitial between 0.512523 and 0.512598) suggests that these basalts were derived from an enriched mantle (∼EM I-EM II) source. The εSr (21.84-41.27) and εNd (-0.28 to 1.10) isotopic signatures defined by higher εSr and lower εNd fingerprint a plume-related source. Positive and negative values of εNd indicate an isotopically heterogeneous mantle source marked by mixing of depleted (DM) and enriched mantle (EM I-EM II) components at the source

  8. Assessment of planetary geologic mapping techniques for Mars using terrestrial analogs: The SP Mountain area of the San Francisco Volcanic Field, Arizona (United States)

    Tanaka, K.L.; Skinner, J.A.; Crumpler, L.S.; Dohm, J.M.


    understand that surficial materials (such as alluvium and volcanic ash deposits) are likely to be under-mapped yet are important because they obscure underlying units and contacts; (4) where possible, mapping multiple contact and structure types based on their varying certainty and exposure that reflect the perceived accuracy of the linework; (5) reviewing the regional context and searching for evidence of geologic activity that may have affected the map area yet for which evidence within the map area may be absent; and (6) for multi-authored maps, collectively analyzing the mapping relations, approaches, and methods throughout the duration of the mapping project with the objective of achieving a solid, harmonious product.

  9. Petrography, mineral chemistry and geochemistry of post-ophiolitic volcanic rocks in the Ratouk area (south of Gazik, east of Iran

    Directory of Open Access Journals (Sweden)

    Zahra Vahedi Tabas


    Full Text Available Introduction Basaltic volcanoes are one of the volcanisms that have occurred in different parts of the world. The study of these lavas is important for petrologists, because they are seen in different tectonic settings and therefore diverse mechanisms affect their formation (Chen et al., 2007. Young volcanic rocks such as Quaternary basalts are one of latest products of magmatism in Iran that are related to deep fractures and active faults in Quaternary (Emami, 2000. The study area is located at 140km east of Birjand at Gazik 1:100000 geological map (Guillou et al., 1981 and have 60̊ 11' to 60̊ 15 '27" eastward longitude and 32̊ 33' 24" to 32̊ 39' 10" northward latitude. On the basis of structural subdivisions of Iran, this area is located in the northern part of the Sistan suture zone (Tirrul et al., 1983. Because of the importance of basaltic rocks in Sistan suture, this research is done with the aim of investigating the petrography and mineralogy of basaltic lavas, the nature of basaltic and intermediate magmatism and finally determination of tectonomagmatic regime. Materials and methods After field studies and sampling, 85 thin sections were prepared and carefully studied. Then ten samples with the lowest alteration were analyzed for major elements by inductively coupled plasma (ICP technologies and trace elements were analyzed using inductively coupled plasma mass spectrometry (ICP-MS, following a lithium metaborate/tetraborate fusion and nitric acid total digestion at the Acme laboratories, Vancouver, Canada. Electron probe micro analyses of clinopyroxene and olivine were done at the Iranian mineral processing research center (IMPRC by Cameca SX100 machine. X-ray diffraction analysis of minerals was done at the X-ray laboratory of the University of Birjand. Results In 60km south of GaziK at the east of the southern Khorasan province and the northern part of the Sistan suture zone, volcanic rocks with intermediate (Oligomiocene and

  10. Global positioning system survey data for active seismic and volcanic areas of eastern Sicily, 1994 to 2013 (United States)

    Bonforte, Alessandro; Fagone, Sonia; Giardina, Carmelo; Genovese, Simone; Aiesi, Gianpiero; Calvagna, Francesco; Cantarero, Massimo; Consoli, Orazio; Consoli, Salvatore; Guglielmino, Francesco; Puglisi, Biagio; Puglisi, Giuseppe; Saraceno, Benedetto


    This work presents and describes a 20-year long database of GPS data collected by geodetic surveys over the seismically and volcanically active eastern Sicily, for a total of more than 6300 measurements. Raw data were initially collected from the various archives at the Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania—Osservatorio Etneo and organized in a single repository. Here, quality and completeness checks were performed, while all necessary supplementary information were searched, collected, validated and organized together with the relevant data. Once all data and information collections were completed, raw binary data were converted into the universal ASCII RINEX format; all data are provided in this format with the necessary information for precise processing. In order to make the data archive readily consultable, we developed software allowing the user to easily search and obtain the needed data by simple alphanumeric and geographic queries.

  11. Global positioning system survey data for active seismic and volcanic areas of eastern Sicily, 1994 to 2013. (United States)

    Bonforte, Alessandro; Fagone, Sonia; Giardina, Carmelo; Genovese, Simone; Aiesi, Gianpiero; Calvagna, Francesco; Cantarero, Massimo; Consoli, Orazio; Consoli, Salvatore; Guglielmino, Francesco; Puglisi, Biagio; Puglisi, Giuseppe; Saraceno, Benedetto


    This work presents and describes a 20-year long database of GPS data collected by geodetic surveys over the seismically and volcanically active eastern Sicily, for a total of more than 6300 measurements. Raw data were initially collected from the various archives at the Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania-Osservatorio Etneo and organized in a single repository. Here, quality and completeness checks were performed, while all necessary supplementary information were searched, collected, validated and organized together with the relevant data. Once all data and information collections were completed, raw binary data were converted into the universal ASCII RINEX format; all data are provided in this format with the necessary information for precise processing. In order to make the data archive readily consultable, we developed software allowing the user to easily search and obtain the needed data by simple alphanumeric and geographic queries.

  12. Isotopic clues to magmatic source regions for neogene Andean volcanic rocks in the El Teniente area near 38oS latitude

    International Nuclear Information System (INIS)

    Kay, Suzanne Mahlburg; Kurtz, A.C


    The origin of isotopic variations in Central Andean arc lavas is a long-standing problem that involves identifying mantle and crustal source regions. Advances have come from analyzing temporal and spatial variations in constrained tectonic settings. The purpose here is to highlight the similarities of temporal variations in an east-west transect of Neogene magmatic units near 34 O S latitude with those from a south-north transect along the modern Southern Volcanic Zone (SVZ, e.g. Hildreth and Moorbath 1988, Tormey et al. 1991). The comparison shows the importance of crustal thickening processes associated with compressional shortening and of lithospheric scale adjustments associated with eastward migration of the arc front on magma sources. Sr, Nd and Pb isotopic analyses of 27 Neogene volcanic and plutonic samples from the El Teniente area are presented in Table 1 and plotted along with some analyses from Skewes and Stern (1994) and Stern and Skewes (1995) in Figure 2. The data show a clear progression from older samples with more 'depleted' isotopic signatures (lower 87 Sr/ 86 Sr and Pb isotopic ratios, higher εNd) to younger samples with more 'enriched' signatures (higher 87 Sr/ 86 Sr and Pb isotopic ratios, lower εNd). In detail, four temporal and spatial groups marked by discontinuities in isotopic trends can be defined. Within each group, εNd tends to decrease and 87 Sr/ 86 Sr ratios to increase with SiO2 concentration (au)

  13. Modeling volcanic ash dispersal

    CERN Multimedia

    CERN. Geneva


    The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard...

  14. Statistical analysis of long term (2006-2016) TIR imagery based on Generalized Extreme Value estimator: an application at Pisciarelli volcanic area (Campi Flegrei, Italy). (United States)

    Petrillo, Zaccaria; Vilardo, Giuseppe; Sansivero, Fabio; Mangiacapra, Annarita; Caliro, Stefano; Caputo, Teresa


    Quantifying and monitoring energy budgets at calderas, released in terms of heat output during unrest periods, is crucial to understand the state of activity, the system evolution and to draw a possible future eruptive scenario. Campi Flegrei, a restless caldera in Southern Italy, during the last years is experiencing clear signs of potential reawakening. Indeed, is now more important then ever to consider, analyse and monitor all the potential precursors, contributing to the caldera volcanic hazard assessment. We analysed the continuous long term (2006-2016) TIR images night-time collected at Pisciarelli site. This volcanic area, is located above a critical volume which recently showed an increase and clustering of earthquakes distribution and which shows the most impressive gas discharge (mainly H2O and CO2) at Campi Flegrei caldera. We treated in a statistical way the TIR images, defining an anomaly zone, which we compared to a background area. The pixel distributions, as function of the temperature, showed a generalized extreme value structure. The anomaly area, with a long tail toward high temperature values, showed a positive factor form ( f > 0, Frechet distribution). This value was constantly above zero and kept stable along the whole 2006-2016 period, while the scale factor was estimated with a decreasing trend (variance reduction). Pixels of the background TIR images, in contrast, showed a factor form between zero and a weakly negative value (f = 0 or f < 0) Gumbel or Weibull distribution). We used the location parameter as representative of the temperature distribution (which is very near the average temperature) and analysed its trend as function of time, removing the annual variation using a 365.25 days mobile average.

  15. Disequilibria in the disintegration series of U and Th and chemical parameters in thermal spring waters from the Tatun volcanic area (Taiwan)

    International Nuclear Information System (INIS)

    Lin Chunchih; Chu Tiehchi; Huang Yufen


    The activity concentrations of 238 U, 234 U, 230 Th, 226 Ra, 232 Th, and 228 Th in thermal spring waters in the Tatun volcanic area were determined. Parameters including acidity, Cl - and SO 4 2- concentrations in spring waters at the sampling sites have been investigated to allow interpretation of the migration of the radionuclides, and to elucidate the influence of these parameters on the variations of radionuclide contents. Radioactive disequilibria were found in uranium and thorium series in thermal spring waters. The contents of uranium and thorium decreased with increasing pH. The ratios of 230 Th/ 234 U, 226 Ra/ 230 Th and 228 Th/ 232 Th show significant disequilibria. The 226 Ra/ 230 Th ratio (0.60-34.8) decreased with the Cl - or SO 4 2- concentration. All 228 Th/ 232 Th ratios (1.01-9.49) deviated from unity due to the co-precipitation of 228 Ra with barium and lead sulfate. (orig.)

  16. Speech and Language Functions that Require a Functioning Broca's Area (United States)

    Davis, Cameron; Kleinman, Jonathan T.; Newhart, Melissa; Gingis, Leila; Pawlak, Mikolaj; Hillis, Argye E.


    A number of previous studies have indicated that Broca's area has an important role in understanding and producing syntactically complex sentences and other language functions. If Broca's area is critical for these functions, then either infarction of Broca's area or temporary hypoperfusion within this region should cause impairment of these…

  17. 40Ar/39Ar ages of the post-collision volcanic rocks and their geological significance in Yangyingxiang area, south Tibet

    International Nuclear Information System (INIS)

    Zhou Su; Mo Xuanxue; Zhao Zhidan; Zhang Shuangquan; Guo Tieying; Qiu Ruizhao


    Ten new 40 Ar/ 39 Ar age determination of mineral separates have been carried out to date volcanic rocks of Yangyingxiang in the eastern part of the Gangdese, Tibet. The age range of Sanidine and biotite in the five volcanic rock samples from the Yangyingxiang is 10.68 ± 0.05 - 11.42 ± 0.09 Ma. These results, combining with the previously published data, confirmed that Neogene post-collision volcanic rocks in the Gangdese widely occurred and their ages were getting younger eastwards. These volcanic rocks are different from those in Pana Formation of Linzizhong group (52.9 ± 2 Ma) outside Yangyingxiang geothermal field. (authors)

  18. Application of Clinopyroxene Chemistry to Interpret the Physical Conditions of Ascending Magma, a Case Study of Eocene Volcanic Rocks in the Ghohrud Area (North of Isfahan

    Directory of Open Access Journals (Sweden)

    Mohammad Sayari


    Full Text Available Introduction Volcanic rocks with a porphyritic texture have experienced two crystallization stages. The first is slow, resulting in phenocrysts, and the second, which took place at, or near the surface, or during intrusion into a cooler body of rock, result in a groundmass of glass, or fine crystals. The pressure and temperature history of a magma during crystallization is recorded in the chemical composition of the phenocrysts during both stages. These phenocrysts provide valuable data about the physicochemical conditions of the parent magma during the process of crystallization. The composition of clinopyroxene (cpx reflects not only the chemical condition and therefore the magmatic series, but also the physical conditions, i.e., temperature and pressure of a magma at the time when clinopyroxene crystallized. The Ghohrud area lies in the middle part of the Urumieh-Dokhtar Magmatic Arc , which is part of a much larger magmatic province extending in a vast region of convergence between Arabia and Eurasia north of the Zagros-Bitlis suture zone (Dilek et al., 2010. In the Ghohrud area, north of Isfahan, exposed Eocene volcanic rocks belong to the first pulse of Cenozoic volcanism of Iran (Sayari, 2015, ranging in composition from andesitic basalt to basalt. The basaltic rocks of the Ghohrud area are composed mainly of plagioclase phenocrysts surrounded by smaller crystals of clinopyroxene in a groundmass of microlites, glass and opaques. In this study, the clinopyroxene and plagioclase of these rocks were analyzed in order to estimate the physicochemical conditions of the parent magmas. Results Clinopyroxene and plagioclase phenocrysts of nineteen samples were analyzed with the electron microprobe. The chemical compositions of the clinopyroxenes were used to estimate both the chemical evolution and temperature and pressure conditions of the magmas during crystallization, using SCG, a specialized software for clinopyroxene thermobarometry (Sayari

  19. Outline of tectonic geology of the cenozoic Pacific volcanic zone concerned with geothermal areas in the central America; Chubei ni okeru chinetsutai wo tomonau shinseidai Taiheiyo kazantai no chishitsu gaisetsu

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, T [Kyushu University, Fukuoka (Japan); Matsumoto, Y [Yamaguchi University, Yamaguchi (Japan)


    For the purpose of technological cooperation on geothermal development, investigations and discussions have been given on the geological background in the geothermal areas in Central America where the Pacific volcanic zone stretches. The geology in Central America is divided largely into three geological structures distributed in a band form in the east-west direction. Among these structure, the Pacific Volcanic Province is a Caenozoic volcanic area ranging along the Pacific Ocean coast in the south-east direction, where young and active Quarternary volcanoes are lined straight over a distance of 1,400 km. The geological structure is such that continuously traceable rift valley or pit structure agrees with the array of volcanoes. The long and wide rift valley that governs this volcanic activity forms the base of the geothermal areas dotted in the above structure. Guatemala had been proceeding with a 24-MW power plant plan in Zunil, the most important point, but the construction has been delayed because of a landslide that caused impediment to the productive wells. The plant completion is now scheduled for 1995. El Salvador is the most advanced country in geothermal power generation, which operates three plants in the Ahuachapa geothermal area, with the output reaching 95 MW. The geothermal condition per production well is 110 tons per hour at 250{degree}C. Nicaragua had been successful in generating power of 70 KW with two plants in Momtombo by 1989. 22 refs., 8 figs., 4 tabs.

  20. The Volcanic Hazards Assessment Support System for the Online Hazard Assessment and Risk Mitigation of Quaternary Volcanoes in the World

    Directory of Open Access Journals (Sweden)

    Shinji Takarada


    Full Text Available Volcanic hazards assessment tools are essential for risk mitigation of volcanic activities. A number of offline volcanic hazard assessment tools have been provided, but in most cases, they require relatively complex installation procedure and usage. This situation causes limited usage of volcanic hazard assessment tools among volcanologists and volcanic hazards communities. In addition, volcanic eruption chronology and detailed database of each volcano in the world are essential key information for volcanic hazard assessment, but most of them are isolated and not connected to and with each other. The Volcanic Hazard Assessment Support System aims to implement a user-friendly, WebGIS-based, open-access online system for potential hazards assessment and risk-mitigation of Quaternary volcanoes in the world. The users can get up-to-date information such as eruption chronology and geophysical monitoring data of a specific volcano using the direct link system to major volcano databases on the system. Currently, the system provides 3 simple, powerful and notable deterministic modeling simulation codes of volcanic processes, such as Energy Cone, Titan2D and Tephra2. The system provides deterministic tools because probabilistic assessment tools are normally much more computationally demanding. By using the volcano hazard assessment system, the area that would be affected by volcanic eruptions in any location near the volcano can be estimated using numerical simulations. The system is being implemented using the ASTER Global DEM covering 2790 Quaternary volcanoes in the world. The system can be used to evaluate volcanic hazards and move this toward risk-potential by overlaying the estimated distribution of volcanic gravity flows or tephra falls on major roads, houses and evacuation areas using the GIS-enabled systems. The system is developed for all users in the world who need volcanic hazards assessment tools.

  1. Groundwater flow in a closed basin with a saline shallow lake in a volcanic area: Laguna Tuyajto, northern Chilean Altiplano of the Andes

    International Nuclear Information System (INIS)

    Herrera, Christian; Custodio, Emilio; Chong, Guillermo; Lambán, Luis Javier; Riquelme, Rodrigo; Wilke, Hans; Jódar, Jorge; Urrutia, Javier; Urqueta, Harry; Sarmiento, Alvaro


    Laguna Tuyajto is a small, shallow saline water lake in the Andean Altiplano of northern Chile. In the eastern side it is fed by springs that discharge groundwater of the nearby volcanic aquifers. The area is arid: rainfall does not exceed 200 mm/year in the rainiest parts. The stable isotopic content of spring water shows that the recharge is originated mainly from winter rain, snow melt, and to a lesser extent from some short and intense sporadic rainfall events. Most of the spring water outflowing in the northern side of Laguna Tuyajto is recharged in the Tuyajto volcano. Most of the spring water in the eastern side and groundwater are recharged at higher elevations, in the rims of the nearby endorheic basins of Pampa Colorada and Pampa Las Tecas to the East. The presence of tritium in some deep wells in Pampa Colorada and Pampa Las Tecas indicates recent recharge. Gas emission in recent volcanoes increase the sulfate content of atmospheric deposition and this is reflected in local groundwater. The chemical composition and concentration of spring waters are the result of meteoric water evapo-concentration, water–rock interaction, and mainly the dissolution of old and buried evaporitic deposits. Groundwater flow is mostly shallow due to a low permeability ignimbrite layer of regional extent, which also hinders brine spreading below and around the lake. High deep temperatures near the recent Tuyajto volcano explain the high dissolved silica contents and the δ"1"8O shift to heavier values found in some of the spring waters. Laguna Tuyajto is a terminal lake where salts cumulate, mostly halite, but some brine transfer to the Salar de Aguas Calientes-3 cannot be excluded. The hydrogeological behavior of Laguna Tuyajto constitutes a model to understand the functioning of many other similar basins in other areas in the Andean Altiplano. - Highlights: • Recent volcanism formations play a key role in producing recharge. • Groundwater can flow across local

  2. Groundwater flow in a closed basin with a saline shallow lake in a volcanic area: Laguna Tuyajto, northern Chilean Altiplano of the Andes

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Christian, E-mail: [Departamento de Ciencias Geológicas, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA), Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Custodio, Emilio [Department of Geo-Engineering, Technical University of Catalonia/Barcelona Tech (UPC), Barcelona (Spain); Chong, Guillermo [Departamento de Ciencias Geológicas, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Lambán, Luis Javier [Geological Institute of Spain (IGME), Zaragoza (Spain); Riquelme, Rodrigo; Wilke, Hans [Departamento de Ciencias Geológicas, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Jódar, Jorge [Department of Geo-Engineering, Technical University of Catalonia/Barcelona Tech (UPC), Barcelona (Spain); Urrutia, Javier; Urqueta, Harry [Departamento de Ciencias Geológicas, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA), Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Sarmiento, Alvaro [Departamento de Ciencias Geológicas, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); and others


    Laguna Tuyajto is a small, shallow saline water lake in the Andean Altiplano of northern Chile. In the eastern side it is fed by springs that discharge groundwater of the nearby volcanic aquifers. The area is arid: rainfall does not exceed 200 mm/year in the rainiest parts. The stable isotopic content of spring water shows that the recharge is originated mainly from winter rain, snow melt, and to a lesser extent from some short and intense sporadic rainfall events. Most of the spring water outflowing in the northern side of Laguna Tuyajto is recharged in the Tuyajto volcano. Most of the spring water in the eastern side and groundwater are recharged at higher elevations, in the rims of the nearby endorheic basins of Pampa Colorada and Pampa Las Tecas to the East. The presence of tritium in some deep wells in Pampa Colorada and Pampa Las Tecas indicates recent recharge. Gas emission in recent volcanoes increase the sulfate content of atmospheric deposition and this is reflected in local groundwater. The chemical composition and concentration of spring waters are the result of meteoric water evapo-concentration, water–rock interaction, and mainly the dissolution of old and buried evaporitic deposits. Groundwater flow is mostly shallow due to a low permeability ignimbrite layer of regional extent, which also hinders brine spreading below and around the lake. High deep temperatures near the recent Tuyajto volcano explain the high dissolved silica contents and the δ{sup 18}O shift to heavier values found in some of the spring waters. Laguna Tuyajto is a terminal lake where salts cumulate, mostly halite, but some brine transfer to the Salar de Aguas Calientes-3 cannot be excluded. The hydrogeological behavior of Laguna Tuyajto constitutes a model to understand the functioning of many other similar basins in other areas in the Andean Altiplano. - Highlights: • Recent volcanism formations play a key role in producing recharge. • Groundwater can flow across local

  3. Volcanic risk

    International Nuclear Information System (INIS)

    Rancon, J.P.; Baubron, J.C.


    This project follows the previous multi-disciplinary studies carried out by the French Bureau de Recherches Geologiques et Minieres (BRGM) on the two active volcanoes of the French lesser Antilles: Mt Pelee (Martinique) and Soufriere (Guadeloupe) for which geological maps and volcanic risk studies have been achieved. The research program comprises 5 parts: the study of pyroclastic deposits from recent eruptions of the two volcanoes for a better characterization of their eruptive phenomenology and a better definition of crisis scenarios; the study of deposits and structures of active volcanoes from Central America and the study of eruptive dynamics of andesite volcanoes for a transposition to Antilles' volcanoes; the starting of a methodological multi-disciplinary research (volcanology, geography, sociology...) on the volcanic risk analysis and on the management of a future crisis; and finally, the development of geochemical survey techniques (radon, CO 2 , H 2 O) on active volcanoes of Costa-Rica and Europe (Fournaise, Furnas, Etna) and their application to the Soufriere. (J.S.). 9 refs., 3 figs

  4. Determination of Habitat Requirements For Birds in Suburban Areas (United States)

    Jack Ward Thomas; Richard M. DeGraaf; Joseph C. Mawson


    Songbird populations can be related to habitat components by a method that allows the simultaneous determination of habitat requirements for a variety of species . Through correlation and multiple-regression analyses, 10 bird species were studied in a suburban habitat, which was stratified according to human density. Variables used to account for bird distribution...

  5. The Campi Flegrei Blind Test: Evaluating the Imaging Capability of Local Earthquake Tomography in a Volcanic Area

    Directory of Open Access Journals (Sweden)

    E. Priolo


    Full Text Available During the 1982–1984 bradyseismic crises in the Campi Flegrei area (Italy, the University of Wisconsin deployed a network of seismological stations to record local earthquakes. In order to analyse the potential of the recorded data in terms of tomographic imaging, a blind test was recently set up and carried out in the framework of a research project. A model representing a hypothetical 3D structure of the area containing the Campi Flegrei caldera was also set up, and a synthetic dataset of time arrivals was in turn computed. The synthetic dataset consists of several thousand P- and S-time arrivals, computed at about fourteen stations. The tomographic inversion was performed by four independent teams using different methods. The teams had no knowledge of either the input velocity model or the earthquake hypocenters used to create the synthetic dataset. The results obtained by the different groups were compared and analysed in light of the true model. This work provides a thorough analysis of the earthquake tomography potential of the dataset recording the seismic activity at Campi Flegrei in the 1982–1984 period. It shows that all the tested earthquake tomography methods provide reliable low-resolution images of the background velocity field of the Campi Flegrei area, but with some differences. However, none of them succeeds in detecting the hypothetical structure details (i.e. with a size smaller than about 1.5–2 km, such as a magmatic chamber 4 km deep and especially the smaller, isolated bodies, which represent possible magmatic chimneys and intrusions.

  6. The age and significance of in-situ sinter at the Te Kopia thermal area, Taupo Volcanic Zone, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Rod; Rodgers, Kerry A. [Auckland Univ., Dept. of Geology, Auckland (New Zealand); Mildenhall, Dallas C. [Institute of Geological and Nuclear Sciences, Lower Hutt (New Zealand); Browne, Patrick R.L. [Auckland Univ., Dept. of Geology, Auckland (New Zealand); Auckland Univ., Geothermal Inst., Auckland (New Zealand)


    One hundred pollen grains and spores, recovered from a single sample of in situ silica sinter from the Te Kopia geothermal field, include some from a podocarp forest that grew in a temperate, frost-free climate, unlike that of today, as indicated by the presence of Ascarina. Also present are pollen from taxa introduced within the last 100 years. Ascarina has been absent from the area since at least 1800 B.P. and its presence in the sinter indicates that alkali chloride waters discharged at the surface of Te Kopia before 1800 B.P., and possibly before 3500 B.P. Although palynology is a powerful tool to place age limits on fluctuations in the shallow hydrology of geothermal fields, interpretation must be moderated by considering the present flora and also changes in both local and regional flora, habitat and climate. (Author)

  7. Transdimensional inversion of scattered body waves for 1D S-wave velocity structure - Application to the Tengchong volcanic area, Southwestern China (United States)

    Li, Mengkui; Zhang, Shuangxi; Bodin, Thomas; Lin, Xu; Wu, Tengfei


    Inversion of receiver functions is commonly used to recover the S-wave velocity structure beneath seismic stations. Traditional approaches are based on deconvolved waveforms, where the horizontal component of P-wave seismograms is deconvolved by the vertical component. Deconvolution of noisy seismograms is a numerically unstable process that needs to be stabilized by regularization parameters. This biases noise statistics, making it difficult to estimate uncertainties in observed receiver functions for Bayesian inference. This study proposes a method to directly invert observed radial waveforms and to better account for data noise in a Bayesian formulation. We illustrate its feasibility with two synthetic tests having different types of noises added to seismograms. Then, a real site application is performed to obtain the 1-D S-wave velocity structure beneath a seismic station located in the Tengchong volcanic area, Southwestern China. Surface wave dispersion measurements spanning periods from 8 to 65 s are jointly inverted with P waveforms. The results show a complex S-wave velocity structure, as two low velocity zones are observed in the crust and uppermost mantle, suggesting the existence of magma chambers, or zones of partial melt. The upper magma chambers may be the heart source that cause the thermal activity on the surface.

  8. Interstratified arkosic and volcanic rocks of the Miocene Spanish Canyon Formation, Alvord Mountain area, California: descriptions and interpretations (United States)

    Buesch, David C.


    The Spanish Canyon Foundation in the Alvord Mountain area, California, varies from about 50 to 120 m thick and records the interstratification of arkosic sandstone and conglomerate with tuffaceous deposits and lava flows. In the lower third of the formation, arkosic sandstone and conglomerate are interstratified with tuffaceous deposits. Some tuffs might have been deposited as primary, nonwelded to partially welded ignimbrites or fallout tephra. Many of the tuffaceous deposits represent redeposited material that formed tuffaceous sandstone, and many of these deposits contain arkosic grains that represent mixing of different source matieral. Arkosic sandstone, and especially conglomerate (some with maximum clast lengths up to 1 m), represent intermittent incursions of coarser plutoniclastic fan deposits into other finer grained and mostly volcaniclastic basin deposits. After deposition of the 18.78 Ma Peach Spring Tuff, the amount of tuffaceous material decreased. The upper two-thirds of the formation has arkosic sandstone and conglomerate interstratified with two olivine basalt lave flows. locally, conglomerate clasts in this part of the section have maximum lengths up to 1 m. Many tuffaceous and arkosic sandstone beds of the Spanish Canyon Formation have tabular to broad (low-relief) lenticular geometry, and locally, some arkosic conglomerate fills channels as much as 1.5 m deep. These bedforms are consistent with deposition in medial to distal alluvial-fan or fluvial environments; some finer-grained deposits might have formed in lacustrine environments.

  9. Groundwater flow in a closed basin with a saline shallow lake in a volcanic area: Laguna Tuyajto, northern Chilean Altiplano of the Andes. (United States)

    Herrera, Christian; Custodio, Emilio; Chong, Guillermo; Lambán, Luis Javier; Riquelme, Rodrigo; Wilke, Hans; Jódar, Jorge; Urrutia, Javier; Urqueta, Harry; Sarmiento, Alvaro; Gamboa, Carolina; Lictevout, Elisabeth


    Laguna Tuyajto is a small, shallow saline water lake in the Andean Altiplano of northern Chile. In the eastern side it is fed by springs that discharge groundwater of the nearby volcanic aquifers. The area is arid: rainfall does not exceed 200mm/year in the rainiest parts. The stable isotopic content of spring water shows that the recharge is originated mainly from winter rain, snow melt, and to a lesser extent from some short and intense sporadic rainfall events. Most of the spring water outflowing in the northern side of Laguna Tuyajto is recharged in the Tuyajto volcano. Most of the spring water in the eastern side and groundwater are recharged at higher elevations, in the rims of the nearby endorheic basins of Pampa Colorada and Pampa Las Tecas to the East. The presence of tritium in some deep wells in Pampa Colorada and Pampa Las Tecas indicates recent recharge. Gas emission in recent volcanoes increase the sulfate content of atmospheric deposition and this is reflected in local groundwater. The chemical composition and concentration of spring waters are the result of meteoric water evapo-concentration, water-rock interaction, and mainly the dissolution of old and buried evaporitic deposits. Groundwater flow is mostly shallow due to a low permeability ignimbrite layer of regional extent, which also hinders brine spreading below and around the lake. High deep temperatures near the recent Tuyajto volcano explain the high dissolved silica contents and the δ(18)O shift to heavier values found in some of the spring waters. Laguna Tuyajto is a terminal lake where salts cumulate, mostly halite, but some brine transfer to the Salar de Aguas Calientes-3 cannot be excluded. The hydrogeological behavior of Laguna Tuyajto constitutes a model to understand the functioning of many other similar basins in other areas in the Andean Altiplano. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Reassessment of petrogenesis of Carboniferous–Early Permian rift-related volcanic rocks in the Chinese Tianshan and its neighboring areas

    Directory of Open Access Journals (Sweden)

    Linqi Xia


    Full Text Available The Carboniferous−Early Permian rift-related volcanic successions, covering large areas in the Chinese Tianshan and its adjacent areas, make up a newly recognized important Phanerozoic large igneous province in the world, which can be further divided into two sub-provinces: Tianshan and Tarim. The regional unconformity of Lower Carboniferous upon basement or pre-Carboniferous rocks, the ages (360–351 Ma of the youngest ophiolite and the peak of subduction metamorphism of high pressure–low temperature metamorphic belt and the occurrence of Ni-Cu-bearing mafic-ultramafic intrusion with age of ∼352 Ma and A-type granite with age of ∼358 Ma reveal that the final closure of the Paleo-Asian Ocean might take place in the Early Mississippian. Our summation shows that at least four criteria, being normally used to identify ancient asthenosphere upwelling (or mantle plumes, are met for this large igneous province: (1 surface uplift prior to magmatism; (2 being associated with continental rifting and breakup events; (3 chemical characteristics of asthenosphere (or plume derived basalts; (4 close links to large-scale mineralization and the uncontaminated basalts, being analogous to those of many “ore-bearing” large igneous provinces, display Sr-Nd isotopic variations between plume and EM1 geochemical signatures. These suggest that a Carboniferous asthenosphere upwelling and an Early Permian plume played the central role in the generation of the Tianshan–Tarim (central Asia large igneous province.

  11. Multidisciplinary approach for the characterization of landslides in volcanic areas - a case study from the Palma Sola-Chiconquiaco Mountain Range, Mexico (United States)

    Wilde, Martina; Rodríguez Elizarrarás, Sergio R.; Morales Barrera, Wendy V.; Schwindt, Daniel; Bücker, Matthias; Flores Orozco, Adrián; García García, Emilio; Pita de la Paz, Carlos; Terhorst, Birgit


    The Palma Sola-Chiconquiaco mountain range, situated in the State of Veracruz, Mexico, is highly susceptible to landslides, which is evidenced by the high frequency of landslide events of different sizes. The study area is located near the Gulf of Mexico coastline in the eastern sector of the Trans Mexican Volcanic Belt. There, landslide triggers are intense rainfalls related to tropical storms and hurricanes. Steeper slopes are commonly affected by rockfalls, whereas moderate slopes, covered by massive slope deposits, are affected by shallow as well as deep seated landslides. Some of the landslides in the slope deposits reach dimensions of more than 1000 m in length and depths of over 30 m. The heterogeneous parent material as well as older slide masses hamper the detailed characterization of the involved materials. Therefore, in this study, a multidisciplinary approach is applied that integrates geomorphological, geological, and geophysical data. The aim is the reconstruction of process dynamics by analyzing the geomorphological situation and subsurface conditions before and after the event. The focus lies on the identification of past landslide areas, which represent areas with high susceptibility for the reactivation of old slide masses. Furthermore, the analysis of digital terrain models, generated before the landslide event, indicate initial movements like extension cracks, which are located close to the current scarp area. In order to characterize the subsurface of slide masses geophysical investigations are applied. The geophysical survey consists of a total of nine profiles covering relevant key features of the large affected area. Along these profiles, electrical resistivity tomography (ERT) and seismic refraction tomography (SRT) data were collected. Both, electrical and seismic images reveal a sharp contrast between relatively loose and dry material of the slide mass (high resistivities and low seismic velocities) and the former land surface that is

  12. Volcanic features of Io

    International Nuclear Information System (INIS)

    Carr, M.H.; Masursky, H.; Strom, R.G.; Terrile, R.J.


    The volcanic features of Io as detected during the Voyager mission are discussed. The volcanic activity is apparently higher than on any other body in the Solar System. Its volcanic landforms are compared with features on Earth to indicate the type of volcanism present on Io. (U.K.)

  13. Volcanic eruptions on Io (United States)

    Strom, R. G.; Schneider, N. M.; Terrile, R. J.; Hansen, C.; Cook, A. F.


    Nine eruption plumes which were observed during the Voyager 1 encounter with Io are discussed. During the Voyager 2 encounter, four months later, eight of the eruptions were still active although the largest became inactive sometime between the two encounters. Plumes range in height from 60 to over 300 km with corresponding ejection velocities of 0.5 to 1.0 km/s and plume sources are located on several plains and consist of fissures or calderas. The shape and brightness distribution together with the pattern of the surface deposition on a plume 3 is simulated by a ballistic model with a constant ejection velocity of 0.5 km/s and ejection angles which vary from 0-55 deg. The distribution of active and recent eruptions is concentrated in the equatorial regions and indicates that volcanic activity is more frequent and intense in the equatorial regions than in the polar regions. Due to the geologic setting of certain plume sources and large reservoirs of volatiles required for the active eruptions, it is concluded that sulfur volcanism rather than silicate volcanism is the most likely driving mechanism for the eruption plumes.

  14. Rate of volcanism on Venus

    International Nuclear Information System (INIS)

    Fegley, B. Jr.; Prinn, R.G.


    The maintenance of the global H 2 SO 4 clouds on Venus requires volcanism to replenish the atmospheric SO 2 which is continually being removed from the atmosphere by reaction with calcium minerals on the surface of Venus. The first laboratory measurements of the rate of one such reaction, between SO 2 and calcite (CaCO 3 ) to form anhydrite (CaSO 4 ), are reported. If the rate of this reaction is representative of the SO 2 reaction rate at the Venus surface, then we estimate that all SO 2 in the Venus atmosphere (and thus the H 2 SO 4 clouds) will be removed in 1.9 million years unless the lost SO 2 is replenished by volcanism. The required rate of volcanism ranges from about 0.4 to about 11 cu km of magma erupted per year, depending on the assumed sulfur content of the erupted material. If this material has the same composition as the Venus surface at the Venera 13, 14 and Vega 2 landing sites, then the required rate of volcanism is about 1 cu km per year. This independent geochemically estimated rate can be used to determine if either (or neither) of the two discordant (2 cu km/year vs. 200 to 300 cu km/year) geophysically estimated rates is correct. The geochemically estimated rate also suggests that Venus is less volcanically active than the Earth

  15. Cenozoic volcanic rocks of Saudi Arabia (United States)

    Coleman, R.G.; Gregory, R.T.; Brown, G.F.


    The Cenozoic volcanic rocks of Saudi Arabia cover about 90,000 km2, one of the largest areas of alkali olivine basalt in the world. These volcanic rocks are in 13 separate fields near the eastern coast of the Red Sea and in the western Arabian Peninsula highlands from Syria southward to the Yemen Arab Republic.

  16. Paleoproterozoic (~1.88Ga felsic volcanism of the Iricoumé Group in the Pitinga Mining District area, Amazonian Craton, Brazil: insights in ancient volcanic processes from field and petrologic data

    Directory of Open Access Journals (Sweden)

    Ronaldo Pierosan


    Full Text Available The Iricoumé Group correspond to the most expressive Paleoproterozoic volcanism in the Guyana Shield, Amazonian craton. The volcanics are coeval with Mapuera granitoids, and belong to the Uatumã magmatism. They have U-Pb ages around 1880 Ma, and geochemical signatures of α-type magmas. Iricoumé volcanics consist of porphyritic trachyte to rhyolite, associated to crystal-rich ignimbrites and co-ignimbritic fall tuffs and surges. The amount and morphology of phenocrysts can be useful to distinguish lava (flow and dome from hypabyssal units. The morphology of ignimbrite crystals allows the distinction between effusive units and ignimbrite, when pyroclasts are obliterated. Co-ignimbritic tuffs are massive, and some show stratifications that suggest deposition by current traction flow. Zircon and apatite saturation temperatures vary from 799°C to 980°C, are in agreement with most temperatures of α-type melts and can be interpreted as minimum liquidus temperature. The viscosities estimation for rhyolitic and trachytic compositions yield values close to experimentally determined melts, and show a typical exponential decay with water addition. The emplacement of Iricoumé volcanics and part of Mapuera granitoids was controlled by ring-faults in an intracratonic environment. A genesis related to the caldera complex setting can be assumed for the Iricoumé-Mapuera volcano-plutonic association in the Pitinga Mining District.O Grupo Iricoumé corresponde ao mais expressivo vulcanismo Paleoproterozóico do Escudo das Guianas, craton Amazônico. As rochas vulcânicas são coexistentes com os granitóides Mapuera, e pertencem ao magmatismo Uatumã. Possuem idades U-Pb em torno 1888 Ma, e assinaturas geoquímicas de magmas tipo-A. As vulcânicas do Iricoumé consistem de traquitos a riolitos porfiríticos, associados a ignimbritos ricos em cristal e tufos co-ignimbríticos de queda e surge. A quantidade e a morfologia dos fenocristais podem ser

  17. Fine crustal and uppermost mantle S-wave velocity structure beneath the Tengchong volcanic area inferred from receiver function and surface-wave dispersion: constraints on magma chamber distribution (United States)

    Li, Mengkui; Zhang, Shuangxi; Wu, Tengfei; Hua, Yujin; Zhang, Bo


    The Tengchong volcanic area is located in the southeastern margin of the collision zone between the Indian and Eurasian Plates. It is one of the youngest intraplate volcano groups in mainland China. Imaging the S-wave velocity structure of the crustal and uppermost mantle beneath the Tengchong volcanic area is an important means of improving our understanding of its volcanic activity and seismicity. In this study, we analyze teleseismic data from nine broadband seismic stations in the Tengchong Earthquake Monitoring Network. We then image the crustal and uppermost mantle S-wave velocity structure by joint analysis of receiver functions and surface-wave dispersion. The results reveal widely distributed low-velocity zones. We find four possible magma chambers in the upper-to-middle crust and one in the uppermost mantle. The chamber in the uppermost mantle locates in the depth range from 55 to 70 km. The four magma chambers in the crust occur at different depths, ranging from the depth of 7 to 25 km in general. They may be the heat sources for the high geothermal activity at the surface. Based on the fine crustal and uppermost mantle S-wave velocity structure, we propose a model for the distribution of the magma chambers.

  18. Modeling of methane bubbles released from large sea-floor area: Condition required for methane emission to the atmosphere


    Yamamoto, A.; Yamanaka, Y.; Tajika, E.


    Massive methane release from sea-floor sediments due to decomposition of methane hydrate, and thermal decomposition of organic matter by volcanic outgassing, is a potential contributor to global warming. However, the degree of global warming has not been estimated due to uncertainty over the proportion of methane flux from the sea-floor to reach the atmosphere. Massive methane release from a large sea-floor area would result in methane-saturated seawater, thus some methane would reach the atm...

  19. The emissions and soil concentrations of N2O and CH4 from natural soil temperature gradients in a volcanic area in southwest Iceland (United States)

    Maljanen, Marja; Yli-Moijala, Heli; Leblans, Niki I. W.; De Boeck, Hans J.; Bjarnadóttir, Brynhildur; Sigurdsson, Bjarni D.


    We studied nitrous oxide (N2O) and methane (CH4) emissions along three natural geothermal soil temperature (Ts) gradients in a volcanic area in southwest Iceland. Two of the gradients (on a grassland and a forest site, respectively) were recently formed (in May 2008). The third gradient, a grassland site, had been subjected to long-term soil warming (over 30 years, and probably centuries). Nitrous oxide and methane emissions were measured along the temperature gradients using the static chamber method and also soil gas concentrations were studied. With a moderate soil temperature increase (up to +5 °C) there were no significant increase in gas flux rates in any of the sites but an increase of 20 to 45 °C induced an increase in both N2O and CH4 emissions. The measured N2O emissions (up to 2600 μg N2O m-2 h-1) from the warmest plots were about two magnitudes higher compared with the coolest plots (less than 20 μg N2O m-2 h-1). While a net uptake of CH4 was measured in the coolest plots (up to -0.15 mg CH4 m-2 h-1), a net emission of CH4 was measured from the warmest plots (up to 1.3 mg CH4 m-2 h-1). Soil CH4 concentrations decreased first with a moderate (up to +5 °C) increase in Ts, but above that threshold increased significantly. The soil N2O concentration at depths from 5 to 20 cm increased with increasing Ts, indicating enhanced N-turnover. Further, there was a clear decrease in soil organic matter (SOM), C- and N concentration with increasing Ts at all sites. One should note, however, that a part of the N2O emitted from the warmest plots may be partly geothermally derived, as was revealed by 15N2O isotope studies. These natural Ts gradients show that the emission of N2O and CH4 can increase significantly when Ts increases considerably. This implies that these geothermally active sites can act as local hot spots for CH4 and N2O emissions.

  20. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.; Delworth, Thomas L.; Ramaswamy, V.; Stouffer, Ronald J.; Wittenberg, Andrew; Zeng, Fanrong


    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean

  1. Climatic impact of volcanic eruptions (United States)

    Rampino, Michael R.


    Studies have attempted to 'isolate' the volcanic signal in noisy temperature data. This assumes that it is possible to isolate a distinct volcanic signal in a record that may have a combination of forcings (ENSO, solar variability, random fluctuations, volcanism) that all interact. The key to discovering the greatest effects of volcanoes on short-term climate may be to concentrate on temperatures in regions where the effects of aerosol clouds may be amplified by perturbed atmospheric circulation patterns. This is especially true in subpolar and midlatitude areas affected by changes in the position of the polar front. Such climatic perturbation can be detected in proxy evidence such as decrease in tree-ring widths and frost rings, changes in the treeline, weather anomalies, severity of sea-ice in polar and subpolar regions, and poor grain yields and crop failures. In low latitudes, sudden temperature drops were correlated with the passage overhead of the volcanic dust cloud (Stothers, 1984). For some eruptions, such as Tambora, 1815, these kinds of proxy and anectdotal information were summarized in great detail in a number of papers and books (e.g., Post, 1978; Stothers, 1984; Stommel and Stommel, 1986; C. R. Harrington, in press). These studies lead to the general conclusion that regional effects on climate, sometimes quite severe, may be the major impact of large historical volcanic aerosol clouds.

  2. Analysis of the variation of the compressibility index (Cc of volcanic clays and its application to estimate subsidence in lacustrine areas

    Directory of Open Access Journals (Sweden)

    D. Carreón-Freyre


    Full Text Available An analysis of the deformation conditions of lacustrine materials deposited at three sites in the volcanic valley of the Mexico City is presented. Currently geotechnical studies assume that compressibility of granular materials decreases in depth due to the lithostatic load. That means that the deeper the sample the more rigid is supposed to be, this assumption should be demonstrated by a decreased Compression Index (Cc in depth. Studies indicate that Mexico City clays exhibit brittle behaviour, and have high water content, low shear strength and variable Cc values. Furthermore, groundwater withdrawal below the city causes a differential decrease in pore pressure, which is related to the physical properties of granular materials (hydraulic conductivity, grain size distribution and conditions of formation. Our results show that Cc for fine grain materials (lacustrine can be vertically variable, particularly when soils and sediments are the product of different volcanic materials. Lateral and vertical variations in the distribution of the fluvio-lacustrine materials, especially in basins with recent volcanic activity, may be assessed by Cc index variations. These variations can also be related to differential deformation, nucleation and propagation of fractures and need to be considered when modelling land subsidence.

  3. Summary of Energy Assessment Requirements under the Area Source Boiler Rule (United States)

    This document provides an overview of the energy assessment requirements for the national emission standards for hazardous air pollutants (NESHAP) for area sources: industrial, commercial and Institutional boilers, 40 CFR Part 63, Subpart JJJJJJ.

  4. Heat flow in vapor dominated areas of the Yellowstone Plateau volcanic field: implications for the thermal budget of the Yellowstone Caldera (United States)

    Hurwitz, Shaul; Harris, Robert; Werner, Cynthia Anne; Murphy, Fred


    Characterizing the vigor of magmatic activity in Yellowstone requires knowledge of the mechanisms and rates of heat transport between magma and the ground surface. We present results from a heat flow study in two vapor dominated, acid-sulfate thermal areas in the Yellowstone Caldera, the 0.11 km2 Obsidian Pool Thermal Area (OPTA) and the 0.25 km2 Solfatara Plateau Thermal Area (SPTA). Conductive heat flux through a low permeability layer capping large vapor reservoirs is calculated from soil temperature measurements at >600 locations and from laboratory measurements of soil properties. The conductive heat output is 3.6 ± 0.4 MW and 7.5 ± 0.4 MW from the OPTA and the SPTA, respectively. The advective heat output from soils is 1.3 ± 0.3 MW and 1.2 ± 0.3 MW from the OPTA and the SPTA, respectively and the heat output from thermal pools in the OPTA is 6.8 ± 1.4 MW. These estimates result in a total heat output of 11.8 ± 1.4 MW and 8.8 ± 0.4 MW from OPTA and SPTA, respectively. Focused zones of high heat flux in both thermal areas are roughly aligned with regional faults suggesting that faults in both areas serve as conduits for the rising acid vapor. Extrapolation of the average heat flux from the OPTA (103 ± 2 W·m−2) and SPTA (35 ± 3 W·m−2) to the ~35 km2 of vapor dominated areas in Yellowstone yields 3.6 and 1.2 GW, respectively, which is less than the total heat output transported by steam from the Yellowstone Caldera as estimated by the chloride inventory method (4.0 to 8.0 GW).

  5. Recurrence models of volcanic events: Applications to volcanic risk assessment

    International Nuclear Information System (INIS)

    Crowe, B.M.; Picard, R.; Valentine, G.; Perry, F.V.


    An assessment of the risk of future volcanism has been conducted for isolation of high-level radioactive waste at the potential Yucca Mountain site in southern Nevada. Risk used in this context refers to a combined assessment of the probability and consequences of future volcanic activity. Past studies established bounds on the probability of magmatic disruption of a repository. These bounds were revised as additional data were gathered from site characterization studies. The probability of direct intersection of a potential repository located in an eight km 2 area of Yucca Mountain by ascending basalt magma was bounded by the range of 10 -8 to 10 -10 yr -1 2 . The consequences of magmatic disruption of a repository were estimated in previous studies to be limited. The exact releases from such an event are dependent on the strike of an intruding basalt dike relative to the repository geometry, the timing of the basaltic event relative to the age of the radioactive waste and the mechanisms of release and dispersal of the waste radionuclides in the accessible environment. The combined low probability of repository disruption and the limited releases associated with this event established the basis for the judgement that the risk of future volcanism was relatively low. It was reasoned that that risk of future volcanism was not likely to result in disqualification of the potential Yucca Mountain site

  6. On the Compliance of Simbol-X Mirror Roughness with its Effective Area Requirements

    International Nuclear Information System (INIS)

    Spiga, D.; Basso, S.; Cotroneo, V.; Pareschi, G.; Tagliaferri, G.


    Surface microroughness of X-ray mirrors is a key issue for the angular resolution of Simbol-X to comply with the required one (<20 arcsec at 30 keV). The maximum tolerable microroughness for Simbol-X mirrors, in order to satisfy the required imaging capability, has already been derived in terms of its PSD (Power Spectral Density). However, also the Effective Area of the telescope is affected by the mirror roughness. In this work we will show how the expected effective area of the Simbol-X mirror module can be computed from the roughness PSD tolerance, checking its compliance with the requirements.

  7. On the Compliance of Simbol-X Mirror Roughness with its Effective Area Requirements (United States)

    Spiga, D.; Basso, S.; Cotroneo, V.; Pareschi, G.; Tagliaferri, G.


    Surface microroughness of X-ray mirrors is a key issue for the angular resolution of Simbol-X to comply with the required one (Simbol-X mirrors, in order to satisfy the required imaging capability, has already been derived in terms of its PSD (Power Spectral Density). However, also the Effective Area of the telescope is affected by the mirror roughness. In this work we will show how the expected effective area of the Simbol-X mirror module can be computed from the roughness PSD tolerance, checking its compliance with the requirements.

  8. Preliminary investigations into the mineralogy and potential uses of the stilbite rich turfs from Kratovo-Zletovo volcanic area, Republic of Macedonia

    International Nuclear Information System (INIS)

    Blazev, K.; Sijakova-Ivanova, T.; Panov, Z.; Zajkova-Paneva, V.


    This paper presents preliminary results of investigation of the stilbite (NaCa 2 Al 5 Si 1 3O 3 6–14H 2 O) rich tuffs from Rajcani and Kriva Krusa. Investigation tuffs are situated in the south part of the Kratovo–Zletovo volcanic district and they are a part of this big volcanic complex. No presence of zeolites in these tuffs is determined in all previous ublications. In our investigation we found out that stilbite, about 57%, is presented in Rajcani deposit while in Kriva Krusa stilbite is presented by 27%. Cation exchange capacity (CEC) and ammonium exchange capacity (AEC) values for samples from Rajcani deposit are in the range of 69–82meq/100g for CECs and 71–87 meq/100 g for AECs. Kriva Krusa deposits are in the range of 94–102 meq/100 g for CECs and 109–114 meq/100 g for AECs. All the values show that these tuffs could be very effective in a wide range of applications such as waste water ammonium removal, in animal nutrition, fertilizers, fish farming, additives to cement and others. The preliminary results of this study warrant further characterization, because these zeolitic tuffs have not received an overall and systematic study of their physical and chemical properties, necessary for the exploitation and utilization

  9. Volcanic Characteristics of Kueishantao in Northeast Taiwan and Their Implications

    Directory of Open Access Journals (Sweden)

    Ching-Lung Chiu


    Full Text Available Kueishantao (KST is a small offshore volcanic island located at the southernmost part of the Okinawa Trough. In this study, we conducted a detailed mapping incorporating the new high resolution LiDAR DTM laser scanning device to accurately construct a volcanic sequence. A new 1/5000 geological map was established. One primary volcanic cone, composed of layers of both lava flows and pyroclastic rocks constituted the major edifice of KST. The other minor volcanic cone, which consists of volcanic lapillis and blocks, is seated to the east of the main cone. The escarped and nearly straight coast in the southern part of the KST indicates that the volcano suffered a large post-volcanic edifice collapse erasing nearly one half of the volume of both volcanic cones. The increase in the abundance of the xenoliths of sedimentary rocks from the lower to the upper part of the volcanic sequence indicates that the formation of volcanic rocks of the KST involved an intensification of crustal contamination. The possibility of volcanic eruption can not be excluded in the future based on the present thermolu¬minescene age data of 7 ka. The associated eruptive ash fall and tsunami induced by the further collapse of the KST volcanic edifice might have great influence to the adjacent inland. Thus, long-term monitoring of volcanic activities around KST should be required for future hazard assessments.

  10. Volcanic hazards in Central America (United States)

    Rose, William I.; Bluth, Gregg J.S.; Carr, Michael J.; Ewert, John W.; Patino, Lina C.; Vallance, James W.


    This volume is a sampling of current scientific work about volcanoes in Central America with specific application to hazards. The papers reflect a variety of international and interdisciplinary collaborations and employ new methods. The book will be of interest to a broad cross section of scientists, especially volcanologists. The volume also will interest students who aspire to work in the field of volcano hazards mitigation or who may want to work in one of Earth’s most volcanically active areas.

  11. Structural controls on fluid circulation at the Caviahue-Copahue Volcanic Complex (CCVC) geothermal area (Chile-Argentina), revealed by soil CO2 and temperature, self-potential, and helium isotopes (United States)

    Roulleau, Emilie; Bravo, Francisco; Pinti, Daniele L.; Barde-Cabusson, Stéphanie; Pizarro, Marcela; Tardani, Daniele; Muñoz, Carlos; Sanchez, Juan; Sano, Yuji; Takahata, Naoto; de la Cal, Federico; Esteban, Carlos; Morata, Diego


    Natural geothermal systems are limited areas characterized by anomalously high heat flow caused by recent tectonic or magmatic activity. The heat source at depth is the result of the emplacement of magma bodies, controlled by the regional volcano-tectonic setting. In contrast, at a local scale a well-developed fault-fracture network favors the development of hydrothermal cells, and promotes the vertical advection of fluids and heat. The Southern Volcanic Zone (SVZ), straddling Chile and Argentina, has an important, yet unexplored and undeveloped geothermal potential. Studies on the lithological and tectonic controls of the hydrothermal circulation are therefore important for a correct assessment of the geothermal potential of the region. Here, new and dense self-potential (SP), soil CO2 and temperature (T) measurements, and helium isotope data measured in fumaroles and thermal springs from the geothermal area located in the north-eastern flank of the Copahue volcanic edifice, within the Caviahue Caldera (the Caviahue-Copahue Volcanic Complex - CCVC) are presented. Our results allowed to the constraint of the structural origin of the active thermal areas and the understanding of the evolution of the geothermal system. NE-striking faults in the area, characterized by a combination of SP, CO2, and T maxima and high 3He/4He ratios (up to 8.16 ± 0.21Ra, whereas atmospheric Ra is 1.382 × 10- 6), promote the formation of vertical permeability preferential pathways for fluid circulation. WNW-striking faults represent low-permeability pathways for hydrothermal fluid ascent, but promote infiltration of meteoric water at shallow depths, which dilute the hydrothermal input. The region is scattered with SP, CO2, and T minima, representing self-sealed zones characterized by impermeable altered rocks at depth, which create local barriers for fluid ascent. The NE-striking faults seem to be associated with the upflowing zones of the geothermal system, where the boiling process

  12. A Volcanic Hydrogen Habitable Zone

    International Nuclear Information System (INIS)

    Ramirez, Ramses M.; Kaltenegger, Lisa


    The classical habitable zone (HZ) is the circular region around a star in which liquid water could exist on the surface of a rocky planet. The outer edge of the traditional N_2–CO_2–H_2O HZ extends out to nearly ∼1.7 au in our solar system, beyond which condensation and scattering by CO_2 outstrips its greenhouse capacity. Here, we show that volcanic outgassing of atmospheric H_2 can extend the outer edge of the HZ to ∼2.4 au in our solar system. This wider volcanic-hydrogen HZ (N_2–CO_2–H_2O–H_2) can be sustained as long as volcanic H_2 output offsets its escape from the top of the atmosphere. We use a single-column radiative-convective climate model to compute the HZ limits of this volcanic hydrogen HZ for hydrogen concentrations between 1% and 50%, assuming diffusion-limited atmospheric escape. At a hydrogen concentration of 50%, the effective stellar flux required to support the outer edge decreases by ∼35%–60% for M–A stars. The corresponding orbital distances increase by ∼30%–60%. The inner edge of this HZ only moves out ∼0.1%–4% relative to the classical HZ because H_2 warming is reduced in dense H_2O atmospheres. The atmospheric scale heights of such volcanic H_2 atmospheres near the outer edge of the HZ also increase, facilitating remote detection of atmospheric signatures.

  13. A Volcanic Hydrogen Habitable Zone

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Ramses M.; Kaltenegger, Lisa, E-mail: [Carl Sagan Institute, Cornell University, Ithaca, NY (United States)


    The classical habitable zone (HZ) is the circular region around a star in which liquid water could exist on the surface of a rocky planet. The outer edge of the traditional N{sub 2}–CO{sub 2}–H{sub 2}O HZ extends out to nearly ∼1.7 au in our solar system, beyond which condensation and scattering by CO{sub 2} outstrips its greenhouse capacity. Here, we show that volcanic outgassing of atmospheric H{sub 2} can extend the outer edge of the HZ to ∼2.4 au in our solar system. This wider volcanic-hydrogen HZ (N{sub 2}–CO{sub 2}–H{sub 2}O–H{sub 2}) can be sustained as long as volcanic H{sub 2} output offsets its escape from the top of the atmosphere. We use a single-column radiative-convective climate model to compute the HZ limits of this volcanic hydrogen HZ for hydrogen concentrations between 1% and 50%, assuming diffusion-limited atmospheric escape. At a hydrogen concentration of 50%, the effective stellar flux required to support the outer edge decreases by ∼35%–60% for M–A stars. The corresponding orbital distances increase by ∼30%–60%. The inner edge of this HZ only moves out ∼0.1%–4% relative to the classical HZ because H{sub 2} warming is reduced in dense H{sub 2}O atmospheres. The atmospheric scale heights of such volcanic H{sub 2} atmospheres near the outer edge of the HZ also increase, facilitating remote detection of atmospheric signatures.

  14. ASI-Sistema Rischio Vulcanico SRV: a pilot project to develop EO data processing modules and products for volcanic activity monitoring based on Italian Civil Protection Department requirements and needs (United States)

    Buongiorno, Maria Fabrizia; Musacchio, Massimo; Silvestri, Malvina; Spinetti, Claudia; Corradini, Stefano; Lombardo, Valerio; Merucci, Luca; Sansosti, Eugenio; Pugnagli, Sergio; Teggi, Sergio; Pace, Gaetano; Fermi, Marco; Zoffoli, Simona


    The Project called Sistema Rischio Vulcanico (SRV) is funded by the Italian Space Agency (ASI) in the frame of the National Space Plan 2003-2005 under the Earth Observations section for natural risks management. The SRV Project is coordinated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) which is responsible at national level for the volcanic monitoring. The objective of the project is to develop a pre-operative system based on EO data and ground measurements integration to support the volcanic risk monitoring of the Italian Civil Protection Department which requirements and need are well integrated in the GMES Emergency Core Services program. The project philosophy is to implement, by incremental versions, specific modules which allow to process, store and visualize through Web GIS tools EO derived parameters considering three activity phases: 1) knowledge and prevention; 2) crisis; 3) post crisis. In order to combine effectively the EO data and the ground networks measurements the system will implement a multi-parametric analysis tool, which represents and unique tool to analyze contemporaneously a large data set of data in "near real time". The SRV project will be tested his operational capabilities on three Italian Volcanoes: Etna,Vesuvio and Campi Flegrei.

  15. Volcanism on Io (United States)

    Davies, Ashley Gerard


    Preface; Introduction; Part I. Io, 1610 to 1995: Galileo to Galileo: 1. Io, 1610-1979; 2. Between Voyager and Galileo: 1979-95; 3. Galileo at Io; Part II. Planetary Volcanism: Evolution and Composition: 4. Io and Earth: formation, evolution, and interior structure; 5. Magmas and volatiles; Part III. Observing and Modeling Volcanic Activity: 6. Observations: thermal remote sensing of volcanic activity; 7. Models of effusive eruption processes; 8. Thermal evolution of volcanic eruptions; Part IV. Galileo at Io: the Volcanic Bestiary: 9. The view from Galileo; 10. The lava lake at Pele; 11. Pillan and Tvashtar: lava fountains and flows; 12. Prometheus and Amirani: Effusive activity and insulated flows; 13. Loki Patera: Io's powerhouse; 14. Other volcanoes and eruptions; Part V. Volcanism on Io: The Global View: 15. Geomorphology: paterae, shields, flows and mountains; 16. Volcanic plumes; 17. Hot spots; Part VI. Io after Galileo: 18. Volcanism on Io: a post-Galileo view; 19. The future of Io observations; Appendix 1; Appendix 2; References; Index.

  16. B4G local area: high level requirements and system design

    DEFF Research Database (Denmark)

    Mogensen, Preben; Pajukoski, Kari; Raaf, Bernhard


    A next generation Beyond 4G (B4G) radio access technology is expected to become available around 2020 in order to cope with the exponential increase of mobile data traffic. In this paper, research motivations and high level requirements for a B4G local area concept are discussed. Our suggestions ...

  17. National Ignition Facility subsystem design requirements target area auxiliary subsystem SSDR 1.8.6

    International Nuclear Information System (INIS)

    Reitz, T.


    This Subsystem Design Requirement (SSDR) establishes the performance, design, development, and test requirements for the Target Area Auxiliary Subsystems (WBS 1.8.6), which is part of the NIF Target Experimental System (WBS 1.8). This document responds directly to the requirements detailed in NIF Target Experimental System SDR 003 document. Key elements of the Target Area Auxiliary Subsystems include: WBS Local Utility Services; WBS Cable Trays; WBS Personnel, Safety, and Occupational Access; WBS Assembly, Installation, and Maintenance Equipment; WBS Target Chamber Service System; WBS Target Bay Service Systems

  18. Volcanic Supersites as cross-disciplinary laboratories (United States)

    Provenzale, Antonello; Beierkuhnlein, Carl; Giamberini, Mariasilvia; Pennisi, Maddalena; Puglisi, Giuseppe


    Volcanic Supersites, defined in the frame of the GEO-GSNL Initiative, are usually considered mainly for their geohazard and geological characteristics. However, volcanoes are extremely challenging areas from many other points of view, including environmental and climatic properties, ecosystems, hydrology, soil properties and biogeochemical cycling. Possibly, volcanoes are closer to early Earth conditions than most other types of environment. During FP7, EC effectively fostered the implementation of the European volcano Supersites (Mt. Etna, Campi Flegrei/Vesuvius and Iceland) through the MED-SUV and FUTUREVOLC projects. Currently, the large H2020 project ECOPOTENTIAL (2015-2019, 47 partners, contributes to GEO/GEOSS and to the GEO ECO Initiative, and it is devoted to making best use of remote sensing and in situ data to improve future ecosystem benefits, focusing on a network of Protected Areas of international relevance. In ECOPOTENTIAL, remote sensing and in situ data are collected, processed and used for a better understanding of the ecosystem dynamics, analysing and modelling the effects of global changes on ecosystem functions and services, over an array of different ecosystem types, including mountain, marine, coastal, arid and semi-arid ecosystems, and also areas of volcanic origin such as the Canary and La Reunion Islands. Here, we propose to extend the network of the ECOPOTENTIAL project to include active Volcanic Supersites, such as Mount Etna and other volcanic Protected Areas, and we discuss how they can be included in the framework of the ECOPOTENTIAL workflow. A coordinated and cross-disciplinary set of studies at these sites should include geological, biological, ecological, biogeochemical, climatic and biogeographical aspects, as well as their relationship with the antropogenic impact on the environment, and aim at the global analysis of the volcanic Earth Critical Zone - namely, the upper layer of the Earth

  19. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.


    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean integrates volcanic radiative cooling and responds over a wide range of time scales. The associated processes, especially ocean heat uptake, play a key role in ongoing climate change. However, they are not well constrained by observations, and attempts to simulate them in current climate models used for climate predictions yield a range of uncertainty. Volcanic impacts on the ocean provide an independent means of assessing these processes. This study focuses on quantification of the seasonal to multidecadal time scale response of the ocean to explosive volcanism. It employs the coupled climate model CM2.1, developed recently at the National Oceanic and Atmospheric Administration\\'s Geophysical Fluid Dynamics Laboratory, to simulate the response to the 1991 Pinatubo and the 1815 Tambora eruptions, which were the largest in the 20th and 19th centuries, respectively. The simulated climate perturbations compare well with available observations for the Pinatubo period. The stronger Tambora forcing produces responses with higher signal-to-noise ratio. Volcanic cooling tends to strengthen the Atlantic meridional overturning circulation. Sea ice extent appears to be sensitive to volcanic forcing, especially during the warm season. Because of the extremely long relaxation time of ocean subsurface temperature and sea level, the perturbations caused by the Tambora eruption could have lasted well into the 20th century.

  20. The minimum area requirements (MAR) for giant panda: an empirical study. (United States)

    Qing, Jing; Yang, Zhisong; He, Ke; Zhang, Zejun; Gu, Xiaodong; Yang, Xuyu; Zhang, Wen; Yang, Biao; Qi, Dunwu; Dai, Qiang


    Habitat fragmentation can reduce population viability, especially for area-sensitive species. The Minimum Area Requirements (MAR) of a population is the area required for the population's long-term persistence. In this study, the response of occupancy probability of giant pandas against habitat patch size was studied in five of the six mountain ranges inhabited by giant panda, which cover over 78% of the global distribution of giant panda habitat. The probability of giant panda occurrence was positively associated with habitat patch area, and the observed increase in occupancy probability with patch size was higher than that due to passive sampling alone. These results suggest that the giant panda is an area-sensitive species. The MAR for giant panda was estimated to be 114.7 km 2 based on analysis of its occupancy probability. Giant panda habitats appear more fragmented in the three southern mountain ranges, while they are large and more continuous in the other two. Establishing corridors among habitat patches can mitigate habitat fragmentation, but expanding habitat patch sizes is necessary in mountain ranges where fragmentation is most intensive.

  1. Volcanic Alert System (VAS) developed during the (2011-2013) El Hierro (Canary Islands) volcanic process (United States)

    Ortiz, Ramon; Berrocoso, Manuel; Marrero, Jose Manuel; Fernandez-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Garcia, Alicia


    In volcanic areas with long repose periods (as El Hierro), recently installed monitoring networks offer no instrumental record of past eruptions nor experience in handling a volcanic crisis. Both conditions, uncertainty and inexperience, contribute to make the communication of hazard more difficult. In fact, in the initial phases of the unrest at El Hierro, the perception of volcanic risk was somewhat distorted, as even relatively low volcanic hazards caused a high political impact. The need of a Volcanic Alert System became then evident. In general, the Volcanic Alert System is comprised of the monitoring network, the software tools for the analysis of the observables, the management of the Volcanic Activity Level, and the assessment of the threat. The Volcanic Alert System presented here places special emphasis on phenomena associated to moderate eruptions, as well as on volcano-tectonic earthquakes and landslides, which in some cases, as in El Hierro, may be more destructive than an eruption itself. As part of the Volcanic Alert System, we introduce here the Volcanic Activity Level which continuously applies a routine analysis of monitoring data (particularly seismic and deformation data) to detect data trend changes or monitoring network failures. The data trend changes are quantified according to the Failure Forecast Method (FFM). When data changes and/or malfunctions are detected, by an automated watchdog, warnings are automatically issued to the Monitoring Scientific Team. Changes in the data patterns are then translated by the Monitoring Scientific Team into a simple Volcanic Activity Level, that is easy to use and understand by the scientists and technicians in charge for the technical management of the unrest. The main feature of the Volcanic Activity Level is its objectivity, as it does not depend on expert opinions, which are left to the Scientific Committee, and its capabilities for early detection of precursors. As a consequence of the El Hierro

  2. Inexpensive Instrument for In Situ Characterization of Particulate Matter in Volcanic Ash Plumes, Phase I (United States)

    National Aeronautics and Space Administration — Volcanic research is a significant part of the "Earth Surface & Interior" focus area of the NASA Earth Science program. After a volcanic eruption, the smallest...

  3. 40Ar/39Ar laster fusion and K-Ar ages from Lathrop Wells, Nevada, and Cima, California: The age of the latest volcanic activity in the Yucca Mountain area

    International Nuclear Information System (INIS)

    Turrin, B.D.; Champion, D.E.


    K-Ar and 40 Ar/ 39 Ar ages from the Lathrop Wells volcanic center, Nevada, and from the Cima volcanic field, California, indicate that the recently reported 20-ka age estimate for the Lathrop Wells volcanic center is incorrect. Instead, an age of 119 ± 11 to 141 ± 10 ka is indicated for the Lathrop Wells volcanic center. This age corrected is concordant with the ages determined by two independent isotopic geochronometric techniques and with the stratigraphy of surficial deposits in the Yucca Mountain region. In addition, paleomagnetic data and radiometric age data indicate only two volcanic events at the Lathrop Wells volcanic center that are probably closely linked in time, not as many as five as recently reported. 32 refs., 2 figs., 2 tabs

  4. Volcanic Rocks and Features (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanoes have contributed significantly to the formation of the surface of our planet. Volcanism produced the crust we live on and most of the air we breathe. The...

  5. Volcanic crisis in

    Directory of Open Access Journals (Sweden)

    Mgs. Víctor Manuel Pérez Martínez


    Full Text Available The article is the result of an investigation which is focussed on some deontological aspects of the scientificjournalism. In the first place it gives a theoretical vision about science, journalism, internet and including some reflectionsabout the deontological principles in handling the information about science and technology. This focus is useful as it formsthe base of an investigation where we deal with the information about a possible ”volcanic crisis” in El Teide during the years2004-2005 done by the digital newspaper” El Dïa” a canarian newspaper from Tenerife. The work required the revision of theinformation which was published and a followed analysis of its context. It was used the digital version with the purpose ofvisualizing the news which was published. It was also compared with a printed version, with local cover but divulged theinformation to the public who was most affected by this particular news. The results give rise to some questions regardinghow the information is given to a topic which is of local interest as well as national and international interest due to therepercussions in the social, economical and tourist field (the tourist field is the main industrial sector in Tenerife by receivingthis type of news.

  6. Martian volcanism: A review

    International Nuclear Information System (INIS)

    Carr, M.H.


    Martian volcanism is reviewed. It is emphasized that lava plains constitute the major type of effusive flow, and can be differentiated by morphologic characteristics. Shield volcanoes, domes, and patera constitute the major constructional landforms, and recent work has suggested that explosive activity and resulting pyroclastic deposits may have been involved with formation of some of the small shields. Analysis of morphology, presumed composition, and spectroscopic data all indicate that Martian volcanism was dominantly basaltic in composition

  7. Technical assessment of compliance with workplace air sampling requirements in the 300 Area

    International Nuclear Information System (INIS)

    Olsen, P.A.


    The purpose of this Technical Work Document is to satisfy HSRCM-1, the ''Hanford Site Radiological Control Manual.'' Article 551.4 of that manual states a requirement for a documented study of facility workplace air sampling programs (WPAS). This first revision of the original Supporting Document covers the period from January 1, 1995 to December 31, 1995. HSRCM-1 is the primary guidance for radiological control at Westinghouse Hanford Company (WHC). It was written to implement DOE/EH-0256T ''US Department of Energy Radiological Control Manual'' as it applies to programs at Hanford. As such, it complies with Title 10, Part 835 of the Code of Federal Regulations. There are also several Department of Energy (DOE) Orders, national consensus standards, and reports that provide criteria, standards, and requirements for workplace air sampling programs. This document provides a summary of these, as they apply to WHC facility workplace air sampling programs. This document also provides an evaluation of the compliance of 300 Areas' workplace air sampling program to the criteria, standards, and requirements and documents compliance with the requirements where appropriate. Where necessary, it also indicates changes needed to bring specific locations into compliance. The areas evaluated were the 340 Facility, the Advanced Reactor Operations Division Facilities, the N Reactor Fuels Supply Facility, and The Geotechnical Engineering Laboratory

  8. Global volcanic emissions: budgets, plume chemistry and impacts (United States)

    Mather, T. A.


    Over the past few decades our understanding of global volcanic degassing budgets, plume chemistry and the impacts of volcanic emissions on our atmosphere and environment has been revolutionized. Global volcanic emissions budgets are needed if we are to make effective use of regional and global atmospheric models in order to understand the consequences of volcanic degassing on global environmental evolution. Traditionally volcanic SO2 budgets have been the best constrained but recent efforts have seen improvements in the quantification of the budgets of other environmentally important chemical species such as CO2, the halogens (including Br and I) and trace metals (including measurements relevant to trace metal atmospheric lifetimes and bioavailability). Recent measurements of reactive trace gas species in volcanic plumes have offered intriguing hints at the chemistry occurring in the hot environment at volcanic vents and during electrical discharges in ash-rich volcanic plumes. These reactive trace species have important consequences for gas plume chemistry and impacts, for example, in terms of the global fixed nitrogen budget, volcanically induced ozone destruction and particle fluxes to the atmosphere. Volcanically initiated atmospheric chemistry was likely to have been particularly important before biological (and latterly anthropogenic) processes started to dominate many geochemical cycles, with important consequences in terms of the evolution of the nitrogen cycle and the role of particles in modulating the Earth's climate. There are still many challenges and open questions to be addressed in this fascinating area of science.

  9. Monitoring Persistent Volcanic Emissions from Sulphur Springs, Saint Lucia: A Community Approach to Disaster Risk Reduction (United States)

    Joseph, E. P.; Beckles, D. M.; Cox, L.; Jackson, V. B.; Alexander, D.


    Volcanic and geothermal emissions are known natural sources of volatiles to the atmosphere. Volcanogenic air pollutants known to cause the most serious impact are carbon dioxide (CO2), sulphur dioxide (SO2), hydrogen chloride (HCl) and hydrogen fluoride (HF). Some studies into the potential for volcanic emissions to produce chronic diseases in humans indicate that areas of major concern include respiratory problems, particularly silicosis (Allen et al. 2000; Baxter et al. 1999; Buist et al. 1986), psychological stress (Shore et al. 1986), and chemical impacts of gas or ash (Giammanco et al. 1998). Sulphur Springs Park in Saint Lucia has a very high recreational value with >200,000 visitors annually, while the nearby town of Soufrière has >8,400 residents. Residents and visitors have raised concerns about the volcanic emissions and its health effects. As part of the volcanic surveillance programme undertaken by the UWI, Seismic Research Centre (SRC) in Saint Lucia, a new monitoring network has been established for quantifying the ambient SO2 in air, to which staff and visitors at the volcanic park are exposed to. The implementation and continued operation of this network has involved the training of local personnel in the active field sampling and analytical techniques required for the assessment of ambient SO2 concentrations, using a low cost monitor as well as commercial passive samplers. This approach recognizes that environmental hazards are a usual part of life and productive livelihoods, and to minimize post-disaster response and recovery it is beneficial to promote preparedness and mitigation, which is best achieved at the local level with community involvement. It is also intended that the volcanic emissions monitoring network could be used as a method to establish and maintain community-based initiatives that would also be helpful when volcanic threat manifests.

  10. Holocene volcanic geology, volcanic hazard, and risk on Taveuni, Fiji

    International Nuclear Information System (INIS)

    Cronin, S.J.; Neall, V.E.


    freehold land. The area identified with the present greatest volcanic risk, in south Taveuni, is also where rapid and ongoing population growth is centred. The results from this study may be used within planning strategies to minimise vulnerability of future developments on the island as well as contributing to national and community-level emergency or contingency plans. (author). 55 refs., 10 figs., 2 tabs

  11. Functional requirements of the borrow area and haul route for the Waste Area Grouping projects at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Miller, D.G.


    This report describes the mission and functional requirements for the development of a borrow area and the associated haul route to support closure and/or remediation of Waste Area Grouping (WAG) 6 and other WAGs at Oak Ridge National Laboratory. This document specifies the basic functional requirements that must be met by the borrow area and haul route developed to produce low-permeability soil for the covers or caps at WAG 6

  12. Venus - Volcanic features in Atla Region (United States)


    This Magellan image from the Atla region of Venus shows several types of volcanic features and superimposed surface fractures. The area in the image is approximately 350 kilometers (217 miles) across, centered at 9 degrees south latitude, 199 degrees east longitude. Lava flows emanating from circular pits or linear fissures form flower-shaped patterns in several areas. A collapse depression approximately 20 kilometers by 10 kilometers (12 by 6 miles) near the center of the image is drained by a lava channel approximately 40 kilometers (25 miles) long. Numerous surface fractures and graben (linear valleys) criss-cross the volcanic deposits in north to northeast trends. The fractures are not buried by the lavas, indicating that the tectonic activity post-dates most of the volcanic activity.

  13. MSAT wide-area fleet management: End-user requirements and applications (United States)

    Pedersen, Allister


    MSAT (Mobile SATellite) Services will become a reality in North America in 1995. MSAT will provide wide-area voice, data and fax services to land, marine and aeronautical mobile users anywhere in North America including 200 nautical miles off the coasts and into the Arctic waters. MSAT will also convey GPS position information from mobiles to dispatch centers. One broad application of MSAT is Wide Area Fleet Management (WAFM). This paper defines WAFM, outlines end-user requirements and identifies potential applications of MSAT WAFM. The paper draws from information obtained in several preMSAT WAFM field trials in land, marine and aeronautical mobile environments. The paper concludes with an outline of the potential benefits of MSAT WAFM.

  14. Minimum area requirements for an at-risk butterfly based on movement and demography. (United States)

    Brown, Leone M; Crone, Elizabeth E


    Determining the minimum area required to sustain populations has a long history in theoretical and conservation biology. Correlative approaches are often used to estimate minimum area requirements (MARs) based on relationships between area and the population size required for persistence or between species' traits and distribution patterns across landscapes. Mechanistic approaches to estimating MAR facilitate prediction across space and time but are few. We used a mechanistic MAR model to determine the critical minimum patch size (CMP) for the Baltimore checkerspot butterfly (Euphydryas phaeton), a locally abundant species in decline along its southern range, and sister to several federally listed species. Our CMP is based on principles of diffusion, where individuals in smaller patches encounter edges and leave with higher probability than those in larger patches, potentially before reproducing. We estimated a CMP for the Baltimore checkerspot of 0.7-1.5 ha, in accordance with trait-based MAR estimates. The diffusion rate on which we based this CMP was broadly similar when estimated at the landscape scale (comparing flight path vs. capture-mark-recapture data), and the estimated population growth rate was consistent with observed site trends. Our mechanistic approach to estimating MAR is appropriate for species whose movement follows a correlated random walk and may be useful where landscape-scale distributions are difficult to assess, but demographic and movement data are obtainable from a single site or the literature. Just as simple estimates of lambda are often used to assess population viability, the principles of diffusion and CMP could provide a starting place for estimating MAR for conservation. © 2015 Society for Conservation Biology.

  15. Role of crustal assimilation and basement compositions in the petrogenesis of differentiated intraplate volcanic rocks: a case study from the Siebengebirge Volcanic Field, Germany (United States)

    Schneider, K. P.; Kirchenbaur, M.; Fonseca, R. O. C.; Kasper, H. U.; Münker, C.; Froitzheim, N.


    The Siebengebirge Volcanic Field (SVF) in western Germany is part of the Cenozoic Central European Volcanic Province. Amongst these volcanic fields, the relatively small SVF comprises the entire range from silica-undersaturated mafic lavas to both silica-undersaturated and silica-saturated differentiated lavas. Owing to this circumstance, the SVF represents a valuable study area representative of intraplate volcanism in Europe. Compositions of the felsic lavas can shed some new light on differentiation of intraplate magmas and on the extent and composition of potential crustal assimilation processes. In this study, we provide detailed petrographic and geochemical data for various differentiated SVF lavas, including major and trace element concentrations as well as Sr-Nd-Hf-Pb isotope compositions. Samples include tephriphonolites, latites, and trachytes with SiO2 contents ranging between 53 and 66 wt%. If compared to previously published compositions of mafic SVF lavas, relatively unradiogenic 143Nd/144Nd and 176Hf/177Hf coupled with radiogenic 87Sr/86Sr and 207Pb/204Pb lead to the interpretation that the differentiated volcanic rocks have assimilated significant amounts of lower crustal mafic granulites like the ones found as xenoliths in the nearby Eifel volcanic field. These crustal contaminants should possess unradiogenic 143Nd/144Nd and 176Hf/177Hf, radiogenic 87Sr/86Sr, and highly radiogenic 207Pb/204Pb compositions requiring the presence of ancient components in the central European lower crust that are not sampled on the surface. Using energy-constrained assimilation-fractional crystallisation (EC-AFC) model calculations, differentiation of the SVF lithologies can be modelled by approximately 39-47 % fractional crystallisation and 6-15 % crustal assimilation. Notably, the transition from silica-undersaturated to silica-saturated compositions of many felsic lavas in the SVF that is difficult to account for in closed-system models is also well explained by

  16. User requirements in the area of safety of innovative nuclear reactors and fuel cycle installations

    International Nuclear Information System (INIS)

    Kuczera, B.; Juhn, P.E.; Fukuda, K.; )


    Full text: Against the background of already existing IAEA and INSAC publications in the area of safety, in the framework of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) a set of user requirements for the safety of future nuclear installations has been established. Five top-level requirements are expected to apply to any type of innovative design. They should foster an increased level of safety that is transparent to and fully accepted by the general public. The approach to future reactor safety includes two complementary strategies: increased emphasis on inherent safety characteristics and enhancement of defense in depth. As compared to existing plants, the effectiveness of preventing measures should be highly enhanced, resulting in fewer mitigation measures. The targets and possible approaches of each of the five levels of defense developed for innovative reactor designs are outlined in the paper

  17. A decision-making framework to model environmental flow requirements in oasis areas using Bayesian networks (United States)

    Xue, Jie; Gui, Dongwei; Zhao, Ying; Lei, Jiaqiang; Zeng, Fanjiang; Feng, Xinlong; Mao, Donglei; Shareef, Muhammad


    The competition for water resources between agricultural and natural oasis ecosystems has become an increasingly serious problem in oasis areas worldwide. Recently, the intensive extension of oasis farmland has led to excessive exploitation of water discharge, and consequently has resulted in a lack of water supply in natural oasis. To coordinate the conflicts, this paper provides a decision-making framework for modeling environmental flows in oasis areas using Bayesian networks (BNs). Three components are included in the framework: (1) assessment of agricultural economic loss due to meeting environmental flow requirements; (2) decision-making analysis using BNs; and (3) environmental flow decision-making under different water management scenarios. The decision-making criterion is determined based on intersection point analysis between the probability of large-level total agro-economic loss and the ratio of total to maximum agro-economic output by satisfying environmental flows. An application in the Qira oasis area of the Tarim Basin, Northwest China indicates that BNs can model environmental flow decision-making associated with agricultural economic loss effectively, as a powerful tool to coordinate water-use conflicts. In the case study, the environmental flow requirement is determined as 50.24%, 49.71% and 48.73% of the natural river flow in wet, normal and dry years, respectively. Without further agricultural economic loss, 1.93%, 0.66% and 0.43% of more river discharge can be allocated to eco-environmental water demands under the combined strategy in wet, normal and dry years, respectively. This work provides a valuable reference for environmental flow decision-making in any oasis area worldwide.

  18. Volcanic hazards to airports (United States)

    Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.


    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies

  19. MED SUV TASK 6.3 Capacity building and interaction with decision makers: Improving volcanic risk communication through volcanic hazard tools evaluation, Campi Flegrei Caldera case study (Italy) (United States)

    Nave, Rosella; Isaia, Roberto; Sandri, Laura; Cristiani, Chiara


    has been applied also on the scientific output of MED-SUV WP6, as a tool for the short-term probabilistic volcanic hazard assessment. For the Campi Flegrei volcanic system, the expected tool has been implemented to compute hazard curves, hazard maps and probability maps for tephra fallout on a target grid covering the Campania region. This allows the end user to visualize the hazard from tephra fallout and its uncertainty. The response of end-users to such products will help to determine to what extent end-users understand them, find them useful, and match their requirements. In order to involve also Etna area in WP6 TASK 3 activities, a questionnaire developed in the VUELCO project (Volcanic Unrest in Europe and Latin America) has been proposed to Sicily Civil Protection officials having decision-making responsibility in case of volcanic unrest at Etna and Stromboli, to survey their opinions and requirements also in case of volcanic unrest

  20. Use of probabilistic risk assessments to define areas of possible exemption from regulatory requirements

    International Nuclear Information System (INIS)

    Thompson, C.A.; Carlson, D.; Kolaczkowski, A.; LaChance, J.


    The Risk-Based Licensing Program (RBLP) was sponsored by the Department of Energy for the purpose of establishing and demonstrating an approach for identifying potential areas for exemption from current regulatory requirements in the licensing of nuclear power plants. Such an approach could assist in the improvement of the regulatory process for both current and future nuclear plant designs. Use of the methodology could result in streamlining the regulatory process by eliminating unnecessarily detailed reviews of portions of a plant design not important to risk. The RBLP methodology utilizes probabilistic risk assessments, (PRAs), which are required of all future applicants for nuclear power plant licenses. PRA results are used as a screening tool to determine the risk significance of various plant features which are correlated to the risk importance of regulations to identify potential areas for regulatory exemption. Additional consideration is then given to non-risk factors in the final determination of exemption candidates. The RBLP methodology was demonstrated using an existing PRA. The results of the demonstration are highlighted. 10 refs

  1. Energy requirements and physical activity level of active elderly people in rural areas of cuba

    International Nuclear Information System (INIS)

    Hernandez-Triana, M.; Porrata Maury, C.; Jimenez Acosta, S.; Gonzalez Perez, T.; Diaz, M.E.; Martin, I.; Sanchez, V.; Monterrey, P.


    Obesity and non-insulin dependent diabetes mellitus (NIDDM) are common in the Third Age and increasing in Cuba. Among the life-style changes associated with increased prevalence of obesity and its related disorders, diet and activity patterns are prime candidates. The transition to this life-style model may induce a decrease in the energy needs. There is an urgent need for tools which have been validated for measuring diet and physical activity in nutritional studies in the developing world, but also a more urgent need for reference values for the total energy requirements of healthy elderly people. Regular physical activity reduces the likelihood to develop diseases that characterise the metabolic cardiovascular syndrome. Previous studies done in Havana showed values of physical activity level (PAL) which are lower than the reported for elderly subjects. Elderly people living in rural areas use to have physical activity levels which differ from the observed in urban areas. With the purpose of estimating the energy requirements, a group of 40 apparently healthy people older than 60 years of age living in a rural mountain community will be submitted to a medical, epidemiological, dietary, anthropometric and insulin resistance study. Physical activity will be determined by questionnaire and by the calculation of the PAL from the basal metabolic rate (BMR) and total energy expenditure (TEE) measured with the doubly-labelled water method (DLW). Associations with the prevalence of insulin resistance and obesity will be assessed. (author)

  2. Payenia volcanic province, southern Mendoza, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina; Holm, Paul Martin; Llambias, Eduardo Jorge


    The Pleistocene to Holocene Payenia volcanic province is a backarc region of 60,000 km2 in Mendoza, Argentina, which is dominated by transitional to alkaline basalts and trachybasalts. We present major and trace element compositions of 139 rocks from this area of which the majority are basaltic...

  3. 40 CFR 51.914 - What new source review requirements apply for 8-hour ozone nonattainment areas? (United States)


    ... apply for 8-hour ozone nonattainment areas? 51.914 Section 51.914 Protection of Environment... Standard § 51.914 What new source review requirements apply for 8-hour ozone nonattainment areas? The requirements for new source review for the 8-hour ozone standard are located in § 51.165 of this part. [70 FR...

  4. Volcanic unrest and hazard communication in Long Valley Volcanic Region, California (United States)

    Hill, David P.; Mangan, Margaret T.; McNutt, Stephen R.


    The onset of volcanic unrest in Long Valley Caldera, California, in 1980 and the subsequent fluctuations in unrest levels through May 2016 illustrate: (1) the evolving relations between scientists monitoring the unrest and studying the underlying tectonic/magmatic processes and their implications for geologic hazards, and (2) the challenges in communicating the significance of the hazards to the public and civil authorities in a mountain resort setting. Circumstances special to this case include (1) the sensitivity of an isolated resort area to media hype of potential high-impact volcanic and earthquake hazards and its impact on potential recreational visitors and the local economy, (2) a small permanent population (~8000), which facilitates face-to-face communication between scientists monitoring the hazard, civil authorities, and the public, and (3) the relatively frequent turnover of people in positions of civil authority, which requires a continuing education effort on the nature of caldera unrest and related hazards. Because of delays associated with communication protocols between the State and Federal governments during the onset of unrest, local civil authorities and the public first learned that the U.S. Geological Survey was about to release a notice of potential volcanic hazards associated with earthquake activity and 25-cm uplift of the resurgent dome in the center of the caldera through an article in the Los Angeles Times published in May 1982. The immediate reaction was outrage and denial. Gradual acceptance that the hazard was real required over a decade of frequent meetings between scientists and civil authorities together with public presentations underscored by frequently felt earthquakes and the onset of magmatic CO2 emissions in 1990 following a 11-month long earthquake swarm beneath Mammoth Mountain on the southwest rim of the caldera. Four fatalities, one on 24 May 1998 and three on 6 April 2006, underscored the hazard posed by the CO2

  5. Energy requirements and physical activity level of active elderly people in rural areas of China

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Triana, M; Aleman Mateo, H; Valencia Julleirat, M [Institute of Nutrition and Food Hygiene, Havana (Cuba); and others


    Obesity and NIDDM are common in the Third Age and increasing in Cuba. Among the life-style changes associated with increased prevalence of obesity and its related disorders, diet and activity patterns are prime candidates. The transition to this life-style model may induce a decrease in the energy needs. There is an urgent need for tools which have been validated for measuring diet and physical activity in nutritional studies in the developing world, but also a more urgent need for reference values for the total energy requirements of healthy elderly people. Regular physical activity reduces the likelihood to develop diseases that characterise the metabolic cardiovascular syndrome. With the purpose of estimating the energy requirements, a group of 48 elderly people aged 61-74 years living in a rural mountain community was submitted to a medical, epidemiological, dietary and biochemical study of the nutritional status. Glucose intolerance was diagnosed in 40% and arterial hypertension was present in 23 of them. Ten subjects without signs or symptoms of the metabolic cardiovascular syndrome were submitted to a measurement of the total energy expenditure by the doubly labelled water method. PAL values of 2.13 and 1. 77 were measured for men and women, values which were significantly higher that the recommended value of 1.51 for elderly subjects. The estimation of energy requirements by the energy intake or by the factorial method using the physical activity questionnaires generated values, which were 11% and 30% lower than the values obtained by the DLW-method The value of 1.51 x BMR for the estimation of the energy requirements of elderly subjects living in rural areas and submitted to higher levels of physical activity seems to be sub estimated. (author)

  6. Energy requirements and physical activity level of active elderly people in rural areas of China

    International Nuclear Information System (INIS)

    Hernandez-Triana, M.; Aleman Mateo, H.; Valencia Julleirat, M.


    Obesity and NIDDM are common in the Third Age and increasing in Cuba. Among the life-style changes associated with increased prevalence of obesity and its related disorders, diet and activity patterns are prime candidates. The transition to this life-style model may induce a decrease in the energy needs. There is an urgent need for tools which have been validated for measuring diet and physical activity in nutritional studies in the developing world, but also a more urgent need for reference values for the total energy requirements of healthy elderly people. Regular physical activity reduces the likelihood to develop diseases that characterise the metabolic cardiovascular syndrome. With the purpose of estimating the energy requirements, a group of 48 elderly people aged 61-74 years living in a rural mountain community was submitted to a medical, epidemiological, dietary and biochemical study of the nutritional status. Glucose intolerance was diagnosed in 40% and arterial hypertension was present in 23 of them. Ten subjects without signs or symptoms of the metabolic cardiovascular syndrome were submitted to a measurement of the total energy expenditure by the doubly labelled water method. PAL values of 2.13 and 1. 77 were measured for men and women, values which were significantly higher that the recommended value of 1.51 for elderly subjects. The estimation of energy requirements by the energy intake or by the factorial method using the physical activity questionnaires generated values, which were 11% and 30% lower than the values obtained by the DLW-method The value of 1.51 x BMR for the estimation of the energy requirements of elderly subjects living in rural areas and submitted to higher levels of physical activity seems to be sub estimated. (author)

  7. Energy requirements and physical activity level of active elderly people in rural areas of Cuba

    International Nuclear Information System (INIS)

    Hernandez-Triana, M.H.; Sanchez, V.; Basabe-Tuero, B.; Gonzalez-Calderin, S.; Diaz, M.E.; Aleman-Mateo, H.; Valencia-Julleirat, M.; Salazar, G.


    Obesity and NIDDM are common in the Third Age and increasing in Cuba. Among the life-style changes associated with increased prevalence of obesity and its related disorders, diet and activity patterns are prime candidates. The transition to this life-style model may induce a decrease in the energy needs. There is an urgent need for tools which have been validated for measuring diet and physical activity in nutritional studies in the developing world, but also a more urgent need for reference values for the total energy requirements of healthy elderly people. Regular physical activity reduces the likelihood to develop diseases that characterise the metabolic cardiovascular syndrome. With the purpose of estimating the energy requirements, a group of 48 elderly people aged 61-74 years living in a rural mountain community was submitted to a medical, epidemiological, dietary and biochemical study of the nutritional status. Glucose intolerance was diagnosed in 40% and arterial hypertension was present in 23 % of them. Ten subjects without signs or symptoms of the metabolic cardiovascular syndrome were submitted to a measurement of the total energy expenditure by the doubly labelled water method. PAL values of 2.13 and 1.77 were measured for men and women, values which were significantly higher that the recommended value of 1.51 for elderly subjects. The total energy expenditure: The estimation of energy requirements by the energy intake or by the factorial method using the physical activity questionnaires generated values, which were 11 % and 30% lower than the values obtained by the DLW-method. The value of 1.51 x BMR for the estimation of the energy requirements of elderly subjects living in rural areas and submitted to higher levels of physical activity seems to be sub estimated

  8. Thermal vesiculation during volcanic eruptions. (United States)

    Lavallée, Yan; Dingwell, Donald B; Johnson, Jeffrey B; Cimarelli, Corrado; Hornby, Adrian J; Kendrick, Jackie E; von Aulock, Felix W; Kennedy, Ben M; Andrews, Benjamin J; Wadsworth, Fabian B; Rhodes, Emma; Chigna, Gustavo


    Terrestrial volcanic eruptions are the consequence of magmas ascending to the surface of the Earth. This ascent is driven by buoyancy forces, which are enhanced by bubble nucleation and growth (vesiculation) that reduce the density of magma. The development of vesicularity also greatly reduces the 'strength' of magma, a material parameter controlling fragmentation and thus the explosive potential of the liquid rock. The development of vesicularity in magmas has until now been viewed (both thermodynamically and kinetically) in terms of the pressure dependence of the solubility of water in the magma, and its role in driving gas saturation, exsolution and expansion during decompression. In contrast, the possible effects of the well documented negative temperature dependence of solubility of water in magma has largely been ignored. Recently, petrological constraints have demonstrated that considerable heating of magma may indeed be a common result of the latent heat of crystallization as well as viscous and frictional heating in areas of strain localization. Here we present field and experimental observations of magma vesiculation and fragmentation resulting from heating (rather than decompression). Textural analysis of volcanic ash from Santiaguito volcano in Guatemala reveals the presence of chemically heterogeneous filaments hosting micrometre-scale vesicles. The textures mirror those developed by disequilibrium melting induced via rapid heating during fault friction experiments, demonstrating that friction can generate sufficient heat to induce melting and vesiculation of hydrated silicic magma. Consideration of the experimentally determined temperature and pressure dependence of water solubility in magma reveals that, for many ascent paths, exsolution may be more efficiently achieved by heating than by decompression. We conclude that the thermal path experienced by magma during ascent strongly controls degassing, vesiculation, magma strength and the effusive

  9. A case study on determining air monitoring requirements in a radioactive materials handling area

    International Nuclear Information System (INIS)

    Newton, G.J.; Bechtold, W.E.; Hoover, M.D.; Ghanbari, F.; Herring, P.S.; Jow, Hong-Nian


    A technical, defensible basis for the number and placement of air sampling instruments in a radioactive materials handling facility was developed. Historical air sampling data, process and physicochemical knowledge, qualitative smoke dispersion studies with video documentation, and quantitative trace gas dispersion studies were used to develop a strategy for number and placement of air samplers. These approaches can be used in other facilities to provide a basis for operational decisions. The requirements for retrospective sampling, personal sampling, and real-time monitoring are included. Other relevant operational decisions include selecting the numbers, placement, and appropriate sampling rates for instruments, identifying areas of stagnation or recirculation, and determining the adequacy and efficiency of any sampling transport lines. Justification is presented for using a graded approach to characterizing the workplace and determining air sampling and monitoring needs

  10. A novel horizontal subsurface flow constructed wetland: Reducing area requirements and clogging risk. (United States)

    Tatoulis, Triantafyllos; Akratos, Christos S; Tekerlekopoulou, Athanasia G; Vayenas, Dimitrios V; Stefanakis, Alexandros I


    The use of Constructed Wetlands (CWs) has been nowadays expanded from municipal to industrial and agro-industrial wastewaters. The main limitations of CWs remain the relatively high area requirements compared to mechanical treatment technologies and the potential occurrence of the clogging phenomenon. This study presents the findings of an innovative CW design where novel materials were used. Four pilot-scale CW units were designed, built and operated for two years. Each unit consisted of two compartments, the first of which (two thirds of the total unit length) contained either fine gravel (in two units) or random type high density polyethylene (HDPE) (in the other two units). This plastic media type was tested in a CW system for the first time. The second compartment of all four units contained natural zeolite. Two units (one with fine gravel and one with HDPE) were planted with common reeds, while the other two were kept unplanted. Second cheese whey was introduced into the units, which were operated under hydraulic residence times (HRT) of 2 and 4 days. After a two-year operation and monitoring period, pollutant removal rates were approximately 80%, 75% and 90% for COD, ammonium and ortho-phosphate, respectively, while temperature and HRT had no significant effect on pollutant removal. CWs containing the plastic media achieved the same removal rates as those containing gravel, despite receiving three times higher hydraulic surface loads (0.08 m/d) and four times higher organic surface loads (620 g/m 2 /d). This reveals that the use of HDPE plastic media could reduce CW surface area requirements by 75%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. U-Th-Pb zircon geochronology on igneous rocks in the Toija and Salittu Formations, Orijärvi area, southwestern Finland: constraints on the age of volcanism and metamorphism

    Directory of Open Access Journals (Sweden)

    Christopher L. Kirkland


    Full Text Available Zircons from a felsic volcanic rock in the Toija Formation and a synvolcanic gabbro intrusion in the Salittu Formation within the Orijärvi area were dated by U-Th-Pb SIMS in order to provide depositional constraints on these formations. Zircon crystals from the felsic rock preserve a two-stage crystallisation history with zoned core domains and homogeneous rim domains. Inner domains yield a 1878±4 Ma concordia age, interpreted to determine the crystallisation of this rock. Rims yield a 1815±3 Ma concordia age interpretedto determine the regional metamorphism. Small rounded zircon grains from the Salittu gabbro, located within the Jyly shear zone, yield a concordia age of 1792±5 Ma. We interpret the grain textures to suggest that they recrystallised from inherited zircon seeds during the heat and fluid flow into the shear zone. Although no direct ages for the Salittu Formation have been recovered, field relationships imply that it was deposited between 1878−1875 Ma.

  12. Tropical Volcanic Soils From Flores Island, Indonesia

    Directory of Open Access Journals (Sweden)



    Full Text Available Soils that are developed intropical region with volcanic parent materials have many unique properties, and high potential for agricultural use.The purpose of this study is to characterize the soils developed on volcanic materials from Flores Island, Indonesia,and to examine if the soils meet the requirements for andic soil properties. Selected five soils profiles developed fromandesitic volcanic materials from Flores Island were studied to determine their properties. They were compared intheir physical, chemical and mineralogical characteristics according to their parent material, and climatic characteristicdifferent. The soils were developed under humid tropical climate with ustic to udic soil moisture regimes withdifferent annual rainfall. The soils developed from volcanic ash parent materials in Flores Island showed differentproperties compared to the soils derived from volcanic tuff, even though they were developed from the sameintermediary volcanic materials. The silica contents, clay mineralogy and sand fractions, were shown as the differences.The different in climatic conditions developed similar properties such as deep solum, dark color, medium texture, andvery friable soil consistency. The soils have high organic materials, slightly acid to acid, low to medium cationexchange capacity (CEC. The soils in western region have higher clay content and showing more developed than ofthe eastern region. All the profiles meet the requirements for andic soil properties, and classified as Andisols order.The composition of sand mineral was dominated by hornblende, augite, and hypersthenes with high weatherablemineral reserves, while the clay fraction was dominated by disordered kaolinite, and hydrated halloysite. The soilswere classified into subgroup as Thaptic Hapludands, Typic Hapludands, and Dystric Haplustands

  13. Indirect Climatic Effects of Major Volcanic Eruptions (United States)

    Hofmann, D. J.


    The direct effects on climate, related to atmospheric emissions to the atmosphere following major volcanic eruptions, are well-known although the sparseness of such eruptions make detailed study on the range of such variations difficult. In general terms, infrared absorption by volcanic emissions to the stratosphere result in local heating early in the event when gaseous sulfur compounds exist. This early period is followed by gas to particle conversion, on a time scale of 1-2 months, promoting the formation of sulfuric acid-water droplets. Coagulation and droplet growth result in the "volcanic stratospheric aerosol layer" which is related to the predominant direct climatic effect of large eruptions, the cooling of the troposphere by backscattering of solar visible radiation to space with a recovery time scale of 1-2 years. In this paper we will discuss some of the less-known "indirect" effects of the volcanic stratospheric aerosol on climate. We label them indirect as they act on climate through intermediary atmospheric constituents. The intermediaries in the volcanic indirect climatic effect are generally atmospheric greenhouse gases or other atmospheric gases and conditions which affect greenhouse gases. For example, cooling of the troposphere following major eruptions reduces the growth rate of atmospheric carbon dioxide related to respiration by the terrestrial biosphere. In addition, redirection of part of the direct solar beam into diffuse radiation by the volcanic stratospheric aerosol stimulates plant photosynthesis, further reducing the carbon dioxide growth rate. The growth rate of the second-most important atmospheric greenhouse gas, methane, is also affected by volcanic emissions. Volcanic stratospheric aerosol particles provide surface area which catalyzes heterogeneous chemical reactions thus stimulating removal of stratospheric ozone, also a greenhouse gas. Although major droughts usually related to ENSO events have opposite effects on carbon

  14. Abstract on the Effective validation of both new and existing methods for the observation and forecasting of volcanic emissions (United States)

    Sathnur, Ashwini


    Validation of the Existing products of the Remote Sensing instruments Review Comment Number 1 Ground - based instruments and space - based instruments are available for remote sensing of the Volcanic eruptions. Review Comment Number 2 The sunlight spectrum appears over the volcanic geographic area. This sunlight is reflected with the image of the volcano geographic area, to the satellite. The satellite captures this emitted spectrum of the image and further calculates the occurrences of the volcanic eruption. Review Comment Number 3 This computation system derives the presence and detection of sulphur dioxide and Volcanic Ash in the emitted spectrum. The temperature of the volcanic region is also measured. If these inputs derive the possibility of occurrence of an eruption, then the data is manually captured by the system for further usage and hazard mitigation. Review Comment Number 4 The instrument is particularly important in capturing the volcanogenic signal. This capturing operation should be carried out during the appropriate time of the day. This is carried out ideally at the time of the day when the reflected image spectra is best available. Capturing the data is not advisable to be performed at the night time, as the sunlight spectra is at its minimum. This would lead to erroneous data interpretation, as there is no sunlight for reflection of the volcanic region. Thus leading to the least capture of the emitted light spectra. Review Comment Number 5 An ideal area coverage of the spectrometer is mandatory. This is basically for the purpose of capturing the right area of data, in order to precisely derive the occurrence of a volcanic eruption. The larger the spatial resolution, there would be a higher capture of the geographic region, and this would lead to a lesser precise data capture. This would lead to missing details in the data capture. Review Comment Number 6 Ideal qualities for the remote sensing instrument are mentioned below:- Minimum "false

  15. Occurrence of tephra/volcanic tuff in the tertiary sediments of Himachal Himalaya from Tileli area, Mandi district, H.P.: implication for stratigraphy and uranium mineralization

    International Nuclear Information System (INIS)

    Pandey, Pradeep; Chabbra, Jyotsana; Joshi, G.B.; Parihar, P.S.


    Presence of Early Tertiary pyroclastic material (tephra) has been documented petrographically, for the first time, in the Mandi-Bilaspur Sector from Tileli area, Dharamsala basin of Himachal Pradesh. The tephra is reported from the red shale, identified as tuffaceous siltstone belonging to lower Dharamsala Formation that lies above the uraniferous sandstone body and occurs as thin layers of over 300m along the strike, close to the contact of lower and upper Dharamsala formations. The tuffaceous material shows crude but preferred orientation of minerals like biotite, muscovite, chlorite, clay, hematite and specularite. Various features indicating presence of tephra are, glass shards altered to clay but retaining 'U' shaped outline, spindle-shaped hematite with preferred orientation, spherical to sub-spherical clay and altered Fe oxide rich balls, clay groundmass with flow pattern, flaky minerals in association with clast depicting asymmetrical ramp structure. A zone of approximately 300 m length containing tuffaceous material has been established at Tileli overlying the uraniferous sandstone body. Identification of tephra at Tileli has significant implications as it enabled in demarcating the boundary between the upper and lower Dharamsala formations in central part of the basin in Bilaspur-Mandi Sector of HP Himalaya and also in guiding the uranium exploration programme in the lower Dharamsala Formation. (author)

  16. The Dilemmas of Risk-Sensitive Development on a Small Volcanic Island

    Directory of Open Access Journals (Sweden)

    Emily Wilkinson


    Full Text Available In the Small Islands Developing State (SIDS of St Vincent and the Grenadines in the Caribbean, the most destructive disasters in terms of human casualties have been the multiple eruptions of La Soufrière volcano situated in the north of St Vincent. Despite this major threat, people continue to live close to the volcano and national development plans do not include risk reduction measures for volcanic hazards. This paper examines the development options in volcanic SIDS and presents a number of conundrums for disaster risk management on the island of St Vincent. Improvements in monitoring of volcanic hazards and ongoing programmes to enhance communications systems and encourage community preparedness planning have increased awareness of the risks associated with volcanic hazards, yet this has not translated into more risk-informed development planning decisions. The current physical development plan in fact promotes investment in infrastructure in settlements located within the zone designated very high-hazard. However, this is not an anomaly or an irrational decision: severe space constraints in SIDS, as well as other historical social and economic factors, limit growth and options for low-risk development. Greater attention needs to be placed on developing measures to reduce risk, particularly from low-intensity hazards like ash, limiting where possible exposure to volcanic hazards and building the resilience of communities living in high-risk areas. This requires planning for both short- and longer-term impacts from renewed activity. Volcanic SIDS face multiple hazards because of their geography and topography, so development plans should identify these interconnected risks and options for their reduction, alongside measures aimed at improving personal preparedness plans so communities can learn to live with risk.

  17. Zircon U-Pb geochronology, Sm-Nd and Pb-Pb isotope systematics of Ediacaran post-collisional high-silica Acampamento Velho volcanism at the Tupanci area, NW of the Sul-Rio-Grandense Shield, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Carlos Augusto; Leitzke, Felipe Padilha; Lima, Evandro Fernandes de; Barreto, Carla Joana Santos; Matté, Vinicius; Philipp, Ruy Paulo; Conceição, Rommulo Vieira, E-mail:, E-mail:, E-mail:, E-mail: [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Instituto de Geociências; Lafon, Jean Michel, E-mail: [Universidade Federal do Pará (UFPA), Belém, PA (Brazil). Laboratório de Geologia Isotópica; Basei, Miguel Ângelo Stipp, E-mail: [Universidade de São Paulo (CPGeo/IGc/USP), São Paulo, SP (Brazil)


    We present new U-Pb zircon ages and Sm-Nd-Pb isotopic data for volcanic and hypabyssal acid rocks from the northernmost exposure of the Acampamento Velho Formation in the NW portion of the Sul-Rio-Grandense Shield, Brazil. The first volcanic episode, grouped in the high-Ti rhyolites from the Tupanci hill, shows age of 579 ± 5.6 Ma, which is in agreement with the post-collisional Acampamento Velho Formation volcanism in the Bom Jardim Group of the Camaquã Basin. A poorly constrained age of 558+/- 39Ma was obtained for rhyolites from the low-Ti group at the Picados Hill, which may indicate a younger acid volcanism, or a greater time span for the volcanism of the Acampamento Velho Formation in southernmost Brazil. Regarding magmatic sources, Sm/Nd isotopic data coupled to Pb isotopes and a review of trace element geochemistry indicate different amounts of Paleoproterozoic (Dom Feliciano, Pinheiro Machado Suite) to Neoproterozoic (Rio Vacacaí terrane) lower crust melting. Our data, coupled with literature data, contribute to a better understanding of the stratigraphic evolution for the Neoproterozoic post-collisional volcanic successions of the Camaquã Basin in the Sul-Rio-Grandense Shield. (author)

  18. Electrostatic phenomena in volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Lane, S J; James, M R; Gilbert, J S, E-mail: [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)


    Electrostatic phenomena have long been associated with the explosive eruption of volcanoes. Lightning generated in volcanic plumes is a spectacular atmospheric electrical event that requires development of large potential gradients over distances of up to kilometres. This process begins as hydrated liquid rock (magma) ascends towards Earth's surface. Pressure reduction causes water supersaturation in the magma and the development of bubbles of supercritical water, where deeper than c. 1000 m, and water vapour at shallower depths that drives flow expansion. The generation of high strain rates in the expanding bubbly magma can cause it to fracture in a brittle manner, as deformation relaxation timescales are exceeded. The brittle fracture provides the initial charge separation mechanism, known as fractoemission. The resulting mixture of charged silicate particles and ions evolves over time, generating macro-scale potential gradients in the atmosphere and driving processes such as particle aggregation. For the silicate particles, aggregation driven by electrostatic effects is most significant for particles smaller than c. 100 {mu}m. Aggregation acts to change the effective aerodynamic behaviour of silicate particles, thus altering the sedimentation rates of particles from volcanic plumes from the atmosphere. The presence of liquid phases also promotes aggregation processes and lightning.

  19. Ash production by attrition in volcanic conduits and plumes. (United States)

    Jones, T J; Russell, J K


    Tephra deposits result from explosive volcanic eruption and serve as indirect probes into fragmentation processes operating in subsurface volcanic conduits. Primary magmatic fragmentation creates a population of pyroclasts through volatile-driven decompression during conduit ascent. In this study, we explore the role that secondary fragmentation, specifically attrition, has in transforming primary pyroclasts upon transport in volcanic conduits and plumes. We utilize total grain size distributions from a suite of natural and experimentally produced tephra to show that attrition is likely to occur in all explosive volcanic eruptions. Our experimental results indicate that fine ash production and surface area generation is fast (eruption column stability, tephra dispersal, aggregation, volcanic lightening generation, and has concomitant effects on aviation safety and Earth's climate.

  20. Screening criteria of volcanic hazards aspect in the NPP site evaluation

    International Nuclear Information System (INIS)

    Nur Siwhan


    Studies have been conducted on the completeness of regulation in Indonesia particularly on volcanic hazards aspects in the evaluation of nuclear power plant site. Volcanic hazard aspect needed to identify potential external hazards that may endanger the safety of the operation of nuclear power plants. There are four stages for evaluating volcanic hazards, which are initial assessment, characterization sources of volcanic activity in the future, screening volcanic hazards and assessment of capable volcanic hazards. This paper discuss the third stage of the general evaluation which is the screening procedure of volcanic hazards. BAPETEN Chairman Regulation No. 2 Year of 2008 has only one screening criteria for missile volcanic phenomena, so it required screening criteria for other hazard phenomena that are pyroclastic flow density; lava flows; avalanche debris materials; lava; opening hole new eruptions, volcano missile; tsunamis; ground deformation; and hydrothermal system and ground water anomaly. (author)

  1. The use of Remote Sensing for the Study of the Relationships Between Tectonics and Volcanism (United States)

    Chorowicz, J.; Dhont, D.; Yanev, Y.; Bardintzeff, J.


    Observations of geometric relationships between tectonics and volcanism is a fruitful approach in geology. On the one hand analysis of the distribution and types of volcanic vents provides information on the geodynamics. On the other hand tectonic analysis explains the location of volcanics vents. Volcanic edifices often result from regional scale deformation, forming open structures constituting preferred pathways for the rise of magmas. Analysis of the shape and the distribution of vents can consequently provide data on the regional deformation. Remote sensing imagery gives synoptic views of the earth surface allowing the analysis of landforms of still active tectonic and volcanic features. Shape and distribution of volcanic vents, together with recent tectonic patterns are best observed by satellite data and Digital Elevation Models than in the field. The use of radar scenes for the study of the structural relationships between tectonic and volcanic features is particularly efficient because these data express sensitive changes in the morphology. In various selected areas, we show that volcanic edifices are located on tension fractures responsible for fissure eruptions, volcanic linear clusters and elongate volcanoes. Different types of volcanic emplacements can be also distinguished such as tail-crack or horse-tail features, and releasing bend basins along strike-slip faults. Caldera complexes seem to be associated to horse-tail type fault terminations. At a regional scale, the distribution of volcanic vents and their relationships with the faults is able to explain the occurrence of volcanism in collisional areas.

  2. Volcanic ash in ancient Maya ceramics of the limestone lowlands: implications for prehistoric volcanic activity in the Guatemala highlands (United States)

    Ford, Anabel; Rose, William I.


    In the spirit of collaborative research, Glicken and Ford embarked on the problem of identifying the source of volcanic ash used as temper in prehistoric Maya ceramics. Verification of the presence of glass shards and associated volcanic mineralogy in thin sections of Maya ceramics was straightforward and pointed to the Guatemala Highland volcanic chain. Considering seasonal wind rose patterns, target volcanoes include those from the area west of and including Guatemala City. Joint field research conducted in 1983 by Glicken and Ford in the limestone lowlands of Belize and neighboring Guatemala, 300 km north of the volcanic zone and 150 km from the nearest identified ash deposits, was unsuccessful in discovering local volcanic ash deposits. The abundance of the ash in common Maya ceramic vessels coupled with the difficulties of long-distance procurement without draft animals lead Glicken to suggest that ashfall into the lowlands would most parsimoniously explain prehistoric procurement; it literally dropped into their hands. A major archaeological problem with this explanation is that the use of volcanic ash occurring over several centuries of the Late Classic Period (ca. 600-900 AD). To accept the ashfall hypothesis for ancient Maya volcanic ash procurement, one would have to demonstrate a long span of consistent volcanic activity in the Guatemala Highlands for the last half of the first millennium AD. Should this be documented through careful petrographic, microprobe and tephrachronological studies, a number of related archaeological phenomena would be explained. In addition, the proposed model of volcanic activity has implications for understanding volcanism and potential volcanic hazards in Central America over a significantly longer time span than the historic period. These avenues are explored and a call for further collaborative research of this interdisciplinary problem is extended in this paper.

  3. Quaternary basaltic volcanism in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina

    primitive basalts and trachybasalts but also more evolved samples from the retroarc region and the larger volcanoes Payún Matrú and Payún Liso are presented. The samples cover a broad range of compositions from intraplate lavas similar to ocean island basalts to arc andesites. A common feature found...... are isotopically similar to the Andean Southern Volcanic Zone arc rocks and their mantle source possibly resembled the source of South Atlantic N-MORB prior to addition of fluids and melts from the subduction channel. However, it must have been more enriched than the estimates of depleted upper mantle from...... the lithosphere is thinnest and possibly in areas of elevated mantle temperatures. The pyroxenite melts formed at deeper levels react with the surrounding peridotite and thereby changes composition leading to eruption of melts which experienced variable degrees of melt-peridotite interaction. This can presumably...

  4. 50 CFR 648.60 - Sea scallop area access program requirements. (United States)


    ... subsequent fishing year. For example, a vessel that terminates an Elephant Trunk Access Area trip on December...) Elephant Trunk Access Area. For the 2010 fishing year, the observer set-aside for the Elephant Trunk Access... Area. For the 2010 fishing year, the research set-aside for the Elephant Trunk Access Area is 277,060...

  5. Backprojection of volcanic tremor (United States)

    Haney, Matthew M.


    Backprojection has become a powerful tool for imaging the rupture process of global earthquakes. We demonstrate the ability of backprojection to illuminate and track volcanic sources as well. We apply the method to the seismic network from Okmok Volcano, Alaska, at the time of an escalation in tremor during the 2008 eruption. Although we are able to focus the wavefield close to the location of the active cone, the network array response lacks sufficient resolution to reveal kilometer-scale changes in tremor location. By deconvolving the response in successive backprojection images, we enhance resolution and find that the tremor source moved toward an intracaldera lake prior to its escalation. The increased tremor therefore resulted from magma-water interaction, in agreement with the overall phreatomagmatic character of the eruption. Imaging of eruption tremor shows that time reversal methods, such as backprojection, can provide new insights into the temporal evolution of volcanic sources.

  6. Assessment of the atmospheric impact of volcanic eruptions (United States)

    Sigurdsson, H.


    The dominant global impact of volcanic activity is likely to be related to the effects of volcanic gases on the Earth's atmosphere. Volcanic gas emissions from individual volcanic arc eruptions are likely to cause increases in the stratospheric optical depth that result in surface landmass temperature decline of 2 to 3 K for less than a decade. Trachytic and intermediate magmas are much more effective in this regard than high-silica magmas, and may also lead to extensive ozone depletion due to effect of halogens and magmatic water. Given the assumed relationship between arc volcanism and subduction rate, and the relatively small variation in global spreading rates in the geologic record, it is unlikely that the rates of arc volcanism have varied greatly during the Cenozoic. Hotspot related basaltic fissure eruptions in the subaerial environment have a higher mass yield of sulfur, but lofting of the valcanic aerosol to levels above the tropopause is required for a climate impact. High-latitude events, such as the Laki 1783 eruption can easily penetrate the tropopause and enter the stratosphere, but formation of a stratospheric volcanic aerosol form low-latitude effusive basaltic eruptions is problematical, due to the elevated low-latitude tropopause. Due to the high sulfur content of hotspot-derived basaltic magmas, their very high mass eruption rates and the episodic behavior, hotspots must be regarded as potentially major modifiers of Earth's climate through the action of their volcanic volatiles on the chemistry and physics of the atmosphere.

  7. The Online GVP/USGS Weekly Volcanic Activity Report: Providing Timely Information About Worldwide Volcanism (United States)

    Mayberry, G. C.; Guffanti, M. C.; Luhr, J. F.; Venzke, E. A.; Wunderman, R. L.


    over 60 volcanoes, with an average of 10 volcanoes discussed each week. Notable volcanic activity during November 2000-November 2001 included an eruption beginning on 6 February at Nyamuragira in the Democratic Republic of the Congo; it issued low-viscosity lava flows that traveled towards inhabited towns, and also produced ash clouds that adversely effected the health of residents and livestock near the volcano. Eruptions at Mayon in the Philippines on 24 June and 25 July caused local authorities to raise the alert to the highest level, close area airports, and evacuate thousands of residents near the volcano. Most recently a large flank eruption at Etna in Italy began on 17 July and gained worldwide attention as extensive lava flows threatened a small town and a tourist complex. While the information found in the Weekly Volcanic Activity Report, ranging from large eruptions to small precursory events, is of interest to the general public, it has also proven to be a valuable resource to volcano observatory staff, universities, researchers, secondary schools, and the aviation community.

  8. United States-Chile binational exchange for volcanic risk reduction, 2015—Activities and benefits (United States)

    Pierson, Thomas C.; Mangan, Margaret T.; Lara Pulgar, Luis E.; Ramos Amigo, Álvaro


    In 2015, representatives from the United States and Chile exchanged visits to discuss and share their expertise and experiences dealing with volcano hazards. Communities in both countries are at risk from various volcano hazards. Risks to lives and property posed by these hazards are a function not only of the type and size of future eruptions but also of distances from volcanoes, structural integrity of volcanic edifices, landscape changes imposed by recent past eruptions, exposure of people and resources to harm, and any mitigative measures taken (or not taken) to reduce risk. Thus, effective risk-reduction efforts require the knowledge and consideration of many factors, and firsthand experience with past volcano crises provides a tremendous advantage for this work. However, most scientists monitoring volcanoes and most officials delegated with the responsibility for emergency response and management in volcanic areas have little or no firsthand experience with eruptions or volcano hazards. The reality is that eruptions are infrequent in most regions, and individual volcanoes may have dormant periods lasting hundreds to thousands of years. Knowledge may be lacking about how to best plan for and manage future volcanic crises, and much can be learned from the sharing of insights and experiences among counterpart specialists who have had direct, recent, or different experiences in dealing with restless volcanoes and threatened populations. The sharing of information and best practices can help all volcano scientists and officials to better prepare for future eruptions or noneruptive volcano hazards, such as large volcanic mudflows (lahars), which could affect their communities.

  9. Developing International Guidelines on Volcanic Hazard Assessments for Nuclear Facilities (United States)

    Connor, Charles


    Worldwide, tremendous progress has been made in recent decades in forecasting volcanic events, such as episodes of volcanic unrest, eruptions, and the potential impacts of eruptions. Generally these forecasts are divided into two categories. Short-term forecasts are prepared in response to unrest at volcanoes, rely on geophysical monitoring and related observations, and have the goal of forecasting events on timescales of hours to weeks to provide time for evacuation of people, shutdown of facilities, and implementation of related safety measures. Long-term forecasts are prepared to better understand the potential impacts of volcanism in the future and to plan for potential volcanic activity. Long-term forecasts are particularly useful to better understand and communicate the potential consequences of volcanic events for populated areas around volcanoes and for siting critical infrastructure, such as nuclear facilities. Recent work by an international team, through the auspices of the International Atomic Energy Agency, has focused on developing guidelines for long-term volcanic hazard assessments. These guidelines have now been implemented for hazard assessment for nuclear facilities in nations including Indonesia, the Philippines, Armenia, Chile, and the United States. One any time scale, all volcanic hazard assessments rely on a geologically reasonable conceptual model of volcanism. Such conceptual models are usually built upon years or decades of geological studies of specific volcanic systems, analogous systems, and development of a process-level understanding of volcanic activity. Conceptual models are used to bound potential rates of volcanic activity, potential magnitudes of eruptions, and to understand temporal and spatial trends in volcanic activity. It is these conceptual models that provide essential justification for assumptions made in statistical model development and the application of numerical models to generate quantitative forecasts. It is a

  10. Development of the Visual Word Form Area Requires Visual Experience: Evidence from Blind Braille Readers. (United States)

    Kim, Judy S; Kanjlia, Shipra; Merabet, Lotfi B; Bedny, Marina


    Learning to read causes the development of a letter- and word-selective region known as the visual word form area (VWFA) within the human ventral visual object stream. Why does a reading-selective region develop at this anatomical location? According to one hypothesis, the VWFA develops at the nexus of visual inputs from retinotopic cortices and linguistic input from the frontotemporal language network because reading involves extracting linguistic information from visual symbols. Surprisingly, the anatomical location of the VWFA is also active when blind individuals read Braille by touch, suggesting that vision is not required for the development of the VWFA. In this study, we tested the alternative prediction that VWFA development is in fact influenced by visual experience. We predicted that in the absence of vision, the "VWFA" is incorporated into the frontotemporal language network and participates in high-level language processing. Congenitally blind ( n = 10, 9 female, 1 male) and sighted control ( n = 15, 9 female, 6 male), male and female participants each took part in two functional magnetic resonance imaging experiments: (1) word reading (Braille for blind and print for sighted participants), and (2) listening to spoken sentences of different grammatical complexity (both groups). We find that in blind, but not sighted participants, the anatomical location of the VWFA responds both to written words and to the grammatical complexity of spoken sentences. This suggests that in blindness, this region takes on high-level linguistic functions, becoming less selective for reading. More generally, the current findings suggest that experience during development has a major effect on functional specialization in the human cortex. SIGNIFICANCE STATEMENT The visual word form area (VWFA) is a region in the human cortex that becomes specialized for the recognition of written letters and words. Why does this particular brain region become specialized for reading? We

  11. Volcanic hazards of North Island, New Zealand-overview (United States)

    Dibble, R. R.; Nairn, I. A.; Neall, V. E.


    In October 1980, a National Civil Defence Planning Committee on Volcanic Hazards was formed in New Zealand, and solicited reports on the likely areas and types of future eruptions, the risk to public safety, and the need for special precautions. Reports for eight volcanic centres were received, and made available to the authors. This paper summarises and quantifies the type and frequency of hazard, the public risk, and the possibilities for mitigation at the 7 main volcanic centres: Northland, Auckland, White Island, Okataina, Taupo, Tongariro, and Egmont. On the basis of Recent tephrostratigraphy, eruption probabilities up to 20% per century (but commonly 5%), and tephra volumes up to 100 km 3 are credible.

  12. Volcanic ash as fertiliser for the surface ocean

    Directory of Open Access Journals (Sweden)

    B. Langmann


    Full Text Available Iron is a key limiting micro-nutrient for marine primary productivity. It can be supplied to the ocean by atmospheric dust deposition. Volcanic ash deposition into the ocean represents another external and so far largely neglected source of iron. This study demonstrates strong evidence for natural fertilisation in the iron-limited oceanic area of the NE Pacific, induced by volcanic ash from the eruption of Kasatochi volcano in August 2008. Atmospheric and oceanic conditions were favourable to generate a massive phytoplankton bloom in the NE Pacific Ocean which for the first time strongly suggests a connection between oceanic iron-fertilisation and volcanic ash supply.

  13. MODIS volcanic ash retrievals vs FALL3D transport model: a quantitative comparison (United States)

    Corradini, S.; Merucci, L.; Folch, A.


    Satellite retrievals and transport models represents the key tools to monitor the volcanic clouds evolution. Because of the harming effects of fine ash particles on aircrafts, the real-time tracking and forecasting of volcanic clouds is key for aviation safety. Together with the security reasons also the economical consequences of a disruption of airports must be taken into account. The airport closures due to the recent Icelandic Eyjafjöll eruption caused millions of passengers to be stranded not only in Europe, but across the world. IATA (the International Air Transport Association) estimates that the worldwide airline industry has lost a total of about 2.5 billion of Euro during the disruption. Both security and economical issues require reliable and robust ash cloud retrievals and trajectory forecasting. The intercomparison between remote sensing and modeling is required to assure precise and reliable volcanic ash products. In this work we perform a quantitative comparison between Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of volcanic ash cloud mass and Aerosol Optical Depth (AOD) with the FALL3D ash dispersal model. MODIS, aboard the NASA-Terra and NASA-Aqua polar satellites, is a multispectral instrument with 36 spectral bands operating in the VIS-TIR spectral range and spatial resolution varying between 250 and 1000 m at nadir. The MODIS channels centered around 11 and 12 micron have been used for the ash retrievals through the Brightness Temperature Difference algorithm and MODTRAN simulations. FALL3D is a 3-D time-dependent Eulerian model for the transport and deposition of volcanic particles that outputs, among other variables, cloud column mass and AOD. Three MODIS images collected the October 28, 29 and 30 on Mt. Etna volcano during the 2002 eruption have been considered as test cases. The results show a general good agreement between the retrieved and the modeled volcanic clouds in the first 300 km from the vents. Even if the

  14. Content Area Reading Instruction for Secondary Teacher Candidates: A Case Study of a State-Required Online Content Area Reading Course (United States)

    Biggs, Brad


    This dissertation examined in a state-required, online preservice teacher course in content area reading instruction (CARI) at a large land-grant university in Minnesota. Few studies have been published to date on revitalized literacy teacher preparation efforts in CARI (See Vagle, Dillon, Davison-Jenkins, & LaDuca, 2005; Dillon, O'Brien,…

  15. Land substitution effects of biofuel side products and implications on the land area requirement for EU 2020 biofuel targets

    International Nuclear Information System (INIS)

    Ozdemir, Enver Doruk; Haerdtlein, Marlies; Eltrop, Ludger


    The provision of biofuels today is based on energy crops rather than residual biomass, which results in the requirement of agricultural land area. The side products may serve as animal feed and thus prevent cultivation of other feedstock and the use of corresponding land area. These effects of biofuel provision have to be taken into account for a comprising assessment of land area requirement for biofuel provision. Between 18.5 and 21.1 Mio. hectares (ha) of land area is needed to meet the EU 2020 biofuel target depending on the biofuel portfolio when substitution effects are neglected. The utilization of the bioethanol side products distiller's dried grain and solubles (DDGS) and pressed beet slices may save up to 0.7 Mio. ha of maize cultivation area in the EU. The substitution effect due to the utilization of biodiesel side products (oil cakes of rape, palm and soy) as animal feed may account for up to 7.1 Mio. ha of soy cultivation area in Brazil. The results show that the substitution of land area due to use of side products might ease the pressures on land area requirement considerably and should therefore not be neglected in assessing the impacts of biofuel provision worldwide.

  16. Geochemical and geochronological constrains on the Chiang Khong volcanic rocks (northwestern Thailand) and its tectonic implications (United States)

    Qian, Xin; Feng, Qinglai; Chonglakmani, Chongpan; Monjai, Denchok


    Volcanic rocks in northwestern Thailand exposed dominantly in the Chiang Khong area, are commonly considered to be genetically linked to the tectonic evolution of the Paleo-Tethyan Ocean. The volcanic rocks consist mainly of andesitic to rhyolitic rocks and are traditionally mapped as Permian-Triassic sequences. Our zircon U-Pb geochronological results show that two andesitic samples (TL-1-B and TL-31-B), are representative of the Doi Yao volcanic zone, and give a mean weighted age of 241.2±4.6 Ma and 241.7±2.9 Ma, respectively. The rhyolitic sample (TL-32-B1) from the Doi Khun Ta Khuan volcanic zone erupted at 238.3±3.8 Ma. Such ages indicate that Chiang Khong volcanic rocks erputed during the early Middle Triassic period. Seven samples from the Doi Yao and Doi Khun Ta Khuan zones exhibit an affinity to arc volcanics. Three rhyolitic samples from the Chiang Khong area have a geochemical affinity to both arc and syn-collisional volcanic rocks. The Chiang Khong arc volcanic rocks can be geochemically compared with those in the Lampang area in northern Thailand, also consistent with those in Jinghong area of southwestern Yunnan. This indicates that the Chiang Rai arc-volcanic zone might northwardly link to the Lancangjiang volcanic zone in southwestern China.

  17. Lidar detection of carbon dioxide in volcanic plumes (United States)

    Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Maio, Giovanni; Del Franco, Mario; Aiuppa, Alessandro


    Volcanic gases give information on magmatic processes. In particular, anomalous releases of carbon dioxide precede volcanic eruptions. Up to now, this gas has been measured in volcanic plumes with conventional measurements that imply the severe risks of local sampling and can last many hours. For these reasons and for the great advantages of laser sensing, the thorough development of volcanic lidar has been undertaken at the Diagnostics and Metrology Laboratory (UTAPRAD-DIM) of the Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA). In fact, lidar profiling allows one to scan remotely volcanic plumes in a fast and continuous way, and with high spatial and temporal resolution. Two differential absorption lidar instruments will be presented in this paper: BILLI (BrIdge voLcanic LIdar), based on injection seeded Nd:YAG laser, double grating dye laser, difference frequency mixing (DFM) and optical parametric amplifier (OPA), and VULLI (VULcamed Lidar), based on injection seeded Nd:YAG laser and optical parametric oscillator (OPO). The first one is funded by the ERC (European Research Council) project BRIDGE and the second one by the ERDF (European Regional Development Fund) project VULCAMED. While VULLI has not yet been tested in a volcanic site, BILLI scanned the gas emitted by Pozzuoli Solfatara (Campi Flegrei volcanic area, Naples, Italy) during a field campaign carried out from 13 to 17 October 2014. Carbon dioxide concentration maps were retrieved remotely in few minutes in the crater area. Lidar measurements were in good agreement with well-established techniques, based on different operating principles. To our knowledge, it is the first time that carbon dioxide in a volcanic plume is retrieved by lidar, representing the first direct measurement of this kind ever performed on an active volcano and showing the high potential of laser remote sensing in geophysical research.

  18. Coping with volcanic hazards; a global perspective (United States)

    Tilling, R.I.


    Compared to some other natural hazards-such as floods, storms, earthquakes, landslides- volcanic hazards strike infrequently. However, in populated areas , even very small eruptions can wreak havoc and cause widespread devastation. For example, the 13 November 1985 eruption of Nevado del Ruiz in Colombia ejected only about 3 percent of the volume of ash produced during the 18 May 1980 eruption of Mount St. Helens. Yet, the mudflows triggered by this tiny eruption killed more than 25,000 people.

  19. Nature and origin of secondary mineral coatings on volcanic rocks of the Black Mountain, Stonewall Mountain, and Kane Springs Wash volcanic centers, southern, Nevada (United States)

    Taranik, James V.; Hsu, Liang C.; Spatz, David M.; Chenevey, Michael J.


    The following subject areas are covered: (1) genetic, spectral, and LANDSAT Thematic Mapper imagery relationship between desert varnish and tertiary volcanic host rocks, southern Nevada; (2) reconnaissance geologic mapping of the Kane Springs Wash Volcanic Center, Lincoln County, Nevada, using multispectral thermal infrared imagery; (3) interregional comparisons of desert varnish; and (4) airborne scanner (GERIS) imagery of the Kane Springs Wash Volcanic Center, Lincoln County, Nevada.

  20. Mainshock-Aftershocks Clustering Detection in Volcanic Regions (United States)

    Garza Giron, R.; Brodsky, E. E.; Prejean, S. G.


    Crustal earthquakes tend to break their general Poissonean process behavior by gathering into two main kinds of seismic bursts: swarms and mainshock-aftershocks sequences. The former is commonly related to volcanic or geothermal processes whereas the latter is a characteristic feature of tectonically driven seismicity. We explore the mainshock-aftershock clustering behavior of different active volcanic regions in Japan and its comparison to non-volcanic regions. We find that aftershock production in volcanoes shows mainshock-aftershocks clustering similar to what is observed in non-volcanic areas. The ratio of volanic areas that cluster in mainshock-aftershocks sequences vs the areas that do not is comparable to the ratio of non-volcanic regions that show clustering vs the ones that do not. Furthermore, the level of production of aftershocks for most volcanic areas where clustering is present seems to be of the same order of magnitude, or slightly higher, as the median of the non-volcanic regions. An interesting example of highly aftershock-productive volcanoes emerges from the 2000 Miyakejima dike intrusion. A big seismic cluster started to build up rapidly in the south-west flank of Miyakejima to later propagate to the north-west towards the Kozushima and Niijima volcanoes. In Miyakejima the seismicity showed a swarm-like signature with a constant earthquake rate, whereas Kozushima and Niijima both had expressions of highly productive mainshock-aftershocks sequences. These findings are surprising given the alternative mechanisms available in volcanic systems for releasing deviatoric strain. We speculate that aftershock behavior might hold a relationship with the rheological properties of the rocks of each system and with the capacity of a system to accumulate or release the internal pressures caused by magmatic or hydrothermal systems.

  1. 30 CFR 250.459 - What are the safety requirements for drilling fluid-handling areas? (United States)


    ... addition: (1) If natural means provide adequate ventilation, then a mechanical ventilation system is not... areas where adequate ventilation is provided by natural means. You must test and recalibrate gas... install and maintain a ventilation system and gas monitors. Drilling fluid-handling areas must have the...

  2. Guidelines, minimal requirements and standard of cancer care around the Mediterranean Area: report from the Collaborative AROME (Association of Radiotherapy and Oncology of the Mediterranean Area) working parties. (United States)


    Guidelines are produced in oncology to facilitate clinical decision making and improve clinical practice. However, existing guidelines are mainly developed for countries with a certain availability of means and cultural aspects are rarely taken into account. Around the Mediterranean Area, countries share common cultural backgrounds but also great disparities with respect to availability of means; current guidelines by most societies are not applicable to all of those countries. Association of Radiotherapy and Oncology of the Mediterranean Area (AROME) is a scientific organization for the promotion and overcoming of inequalities in oncology clinical practice around the Mediterranean Area. In an effort to accomplish this goal, members of the AROME society have developed clinical recommendations for most common cancer sites in countries around the Mediterranean Area. The structure of these recommendations lies in the concept of minimal requirements vs. standard of care; they are being presented and discussed in the main text. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Lunar cryptomaria: Physical characteristics, distribution, and implications for ancient volcanism (United States)

    Whitten, Jennifer L.; Head, James W.


    Cryptomaria, lunar volcanic deposits obscured by crater and basin impact ejecta, can provide important information about the thermal and volcanic history of the Moon. The timing of cryptomare deposition has implications for the duration and flux of mare basalt volcanism. In addition, knowing the distribution of cryptomaria can provide information about mantle convection and lunar magma ocean solidification. Here we use multiple datasets (e.g., M3, LOLA, LROC, Diviner) to undertake a global analysis to identify the general characteristics (e.g., topography, surface roughness, rock abundance, albedo, etc.) of lunar light plains in order to better distinguish between ancient volcanic deposits (cryptomaria) and impact basin and crater ejecta deposits. We find 20 discrete regions of cryptomaria, covering approximately 2% of the Moon, which increase the total area covered by mare volcanism to 18% of the lunar surface. Comparisons of light plains deposits indicate that the two deposit types (volcanic and impact-produced) are best distinguished by mineralogic data. On the basis of cryptomaria locations, the distribution of mare volcanism does not appear to have changed in the time prior to its exposed mare basalt distribution. There are several hypotheses explaining the distribution of mare basalts, which include the influence of crustal thickness, mantle convection patterns, asymmetric distribution of source regions, KREEP distribution, and the influence of a proposed Procellarum impact basin. The paucity of farside mare basalts means that multiple factors, such as crustal thickness variations and mantle convection, are likely to play a role in mare basalt emplacement.

  4. Cooling Rates of Lunar Volcanic Glass Beads (United States)

    Hui, Hejiu; Hess, Kai-Uwe; Zhang, Youxue; Peslier, Anne; Lange, Rebecca; Dingwell, Donald; Neal, Clive


    It is widely accepted that the Apollo 15 green and Apollo 17 orange glass beads are of volcanic origin. The diffusion profiles of volatiles in these glass beads are believed to be due to degassing during eruption (Saal et al., 2008). The degree of degassing depends on the initial temperature and cooling rate. Therefore, the estimations of volatiles in parental magmas of lunar pyroclastic deposits depend on melt cooling rates. Furthermore, lunar glass beads may have cooled in volcanic environments on the moon. Therefore, the cooling rates may be used to assess the atmospheric condition in an early moon, when volcanic activities were common. The cooling rates of glasses can be inferred from direct heat capacity measurements on the glasses themselves (Wilding et al., 1995, 1996a,b). This method does not require knowledge of glass cooling environments and has been applied to calculate the cooling rates of natural silicate glasses formed in different terrestrial environments. We have carried out heat capacity measurements on hand-picked lunar glass beads using a Netzsch DSC 404C Pegasus differential scanning calorimeter at University of Munich. Our preliminary results suggest that the cooling rate of Apollo 17 orange glass beads may be 12 K/min, based on the correlation between temperature of the heat capacity curve peak in the glass transition range and glass cooling rate. The results imply that the parental magmas of lunar pyroclastic deposits may have contained more water initially than the early estimations (Saal et al., 2008), which used higher cooling rates, 60-180 K/min in the modeling. Furthermore, lunar volcanic glass beads could have been cooled in a hot gaseous medium released from volcanic eruptions, not during free flight. Therefore, our results may shed light on atmospheric condition in an early moon.

  5. Volcanic risk; Risque volcanique

    Energy Technology Data Exchange (ETDEWEB)

    Rancon, J.P.; Baubron, J.C.


    This project follows the previous multi-disciplinary studies carried out by the French Bureau de Recherches Geologiques et Minieres (BRGM) on the two active volcanoes of the French lesser Antilles: Mt Pelee (Martinique) and Soufriere (Guadeloupe) for which geological maps and volcanic risk studies have been achieved. The research program comprises 5 parts: the study of pyroclastic deposits from recent eruptions of the two volcanoes for a better characterization of their eruptive phenomenology and a better definition of crisis scenarios; the study of deposits and structures of active volcanoes from Central America and the study of eruptive dynamics of andesite volcanoes for a transposition to Antilles` volcanoes; the starting of a methodological multi-disciplinary research (volcanology, geography, sociology...) on the volcanic risk analysis and on the management of a future crisis; and finally, the development of geochemical survey techniques (radon, CO{sub 2}, H{sub 2}O) on active volcanoes of Costa-Rica and Europe (Fournaise, Furnas, Etna) and their application to the Soufriere. (J.S.). 9 refs., 3 figs.

  6. Volcanic Eruptions and Climate (United States)

    LeGrande, Allegra N.; Anchukaitis, Kevin J.


    Volcanic eruptions represent some of the most climatically important and societally disruptive short-term events in human history. Large eruptions inject ash, dust, sulfurous gases (e.g. SO2, H2S), halogens (e.g. Hcl and Hbr), and water vapor into the Earth's atmosphere. Sulfurous emissions principally interact with the climate by converting into sulfate aerosols that reduce incoming solar radiation, warming the stratosphere and altering ozone creation, reducing global mean surface temperature, and suppressing the hydrological cycle. In this issue, we focus on the history, processes, and consequences of these large eruptions that inject enough material into the stratosphere to significantly affect the climate system. In terms of the changes wrought on the energy balance of the Earth System, these transient events can temporarily have a radiative forcing magnitude larger than the range of solar, greenhouse gas, and land use variability over the last millennium. In simulations as well as modern and paleoclimate observations, volcanic eruptions cause large inter-annual to decadal-scale changes in climate. Active debates persist concerning their role in longer-term (multi-decadal to centennial) modification of the Earth System, however.

  7. Application of spatial methods to identify areas with lime requirement in eastern Croatia (United States)

    Bogunović, Igor; Kisic, Ivica; Mesic, Milan; Zgorelec, Zeljka; Percin, Aleksandra; Pereira, Paulo


    With more than 50% of acid soils in all agricultural land in Croatia, soil acidity is recognized as a big problem. Low soil pH leads to a series of negative phenomena in plant production and therefore as a compulsory measure for reclamation of acid soils is liming, recommended on the base of soil analysis. The need for liming is often erroneously determined only on the basis of the soil pH, because the determination of cation exchange capacity, the hydrolytic acidity and base saturation is a major cost to producers. Therefore, in Croatia, as well as some other countries, the amount of liming material needed to ameliorate acid soils is calculated by considering their hydrolytic acidity. For this research, several interpolation methods were tested to identify the best spatial predictor of hidrolitic acidity. The purpose of this study was to: test several interpolation methods to identify the best spatial predictor of hidrolitic acidity; and to determine the possibility of using multivariate geostatistics in order to reduce the number of needed samples for determination the hydrolytic acidity, all with an aim that the accuracy of the spatial distribution of liming requirement is not significantly reduced. Soil pH (in KCl) and hydrolytic acidity (Y1) is determined in the 1004 samples (from 0-30 cm) randomized collected in agricultural fields near Orahovica in eastern Croatia. This study tested 14 univariate interpolation models (part of ArcGIS software package) in order to provide most accurate spatial map of hydrolytic acidity on a base of: all samples (Y1 100%), and the datasets with 15% (Y1 85%), 30% (Y1 70%) and 50% fewer samples (Y1 50%). Parallel to univariate interpolation methods, the precision of the spatial distribution of the Y1 was tested by the co-kriging method with exchangeable acidity (pH in KCl) as a covariate. The soils at studied area had an average pH (KCl) 4,81, while the average Y1 10,52 cmol+ kg-1. These data suggest that liming is necessary

  8. Geophysical expression of caldera related volcanism, structures and mineralization in the McDermitt volcanic field (United States)

    Rytuba, J. J.; Blakely, R. J.; Moring, B.; Miller, R.


    The High Rock, Lake Owyhee, and McDermitt volcanic fields, consisting of regionally extensive ash flow tuffs and associated calderas, developed in NW Nevada and SE Oregon following eruption of the ca. 16.7 Ma Steens flood basalt. The first ash flow, the Tuff of Oregon Canyon, erupted from the McDermitt volcanic field at 16.5Ma. It is chemically zoned from peralkaline rhyolite to dacite with trace element ratios that distinguish it from other ash flow tuffs. The source caldera, based on tuff distribution, thickness, and size of lithic fragments, is in the area in which the McDermitt caldera (16.3 Ma) subsequently formed. Gravity and magnetic anomalies are associated with some but not all of the calderas. The White Horse caldera (15.6 Ma), the youngest caldera in the McDermitt volcanic field has the best geophysical expression, with both aeromagnetic and gravity lows coinciding with the caldera. Detailed aeromagnetic and gravity surveys of the McDermitt caldera, combined with geology and radiometric surveys, provides insight into the complexities of caldera collapse, resurgence, post collapse volcanism, and hydrothermal mineralization. The McDermitt caldera is among the most mineralized calderas in the world, whereas other calderas in these three Mid Miocene volcanic fields do not contain important hydrothermal ore deposits, despite having similar age and chemistry. The McDermitt caldera is host to Hg, U, and Li deposits and potentially significant resources of Ga, Sb, and REE. The geophysical data indicate that post-caldera collapse intrusions were important in formation of the hydrothermal systems. An aeromagnetic low along the E caldera margin reflects an intrusion at a depth of 2 km associated with the near-surface McDermitt-hot-spring-type Hg-Sb deposit, and the deeper level, high-sulfidation Ga-REE occurrence. The Li deposits on the W side of the caldera are associated with a series of low amplitude, small diameter aeromagnetic anomalies that form a continuous

  9. Sediment-infill volcanic breccia from the Neoarchean Shimoga greenstone terrane, western Dharwar Craton: Implications on pyroclastic volcanism and sedimentation in an active continental margin (United States)

    Manikyamba, C.; Saha, Abhishek; Ganguly, Sohini; Santosh, M.; Lingadevaru, M.; Rajanikanta Singh, M.; Subba Rao, D. V.


    We report sediment-infill volcanic breccia from the Neoarchean Shimoga greenstone belt of western Dharwar Craton which is associated with rhyolites, chlorite schists and pyroclastic rocks. The pyroclastic rocks of Yalavadahalli area of Shimoga greenstone belt host volcanogenic Pb-Cu-Zn mineralization. The sediment-infill volcanic breccia is clast-supported and comprises angular to sub-angular felsic volcanic clasts embedded in a dolomitic matrix that infilled the spaces in between the framework of volcanic clasts. The volcanic clasts are essentially composed of alkali feldspar and quartz with accessory biotite and opaques. These clasts have geochemical characteristics consistent with that of the associated potassic rhyolites from Daginkatte Formation. The rare earth elements (REE) and high field strength element (HFSE) compositions of the sediment-infill volcanic breccia and associated mafic and felsic volcanic rocks suggest an active continental margin setting for their generation. Origin, transport and deposition of these rhyolitic clasts and their aggregation with infiltrated carbonate sediments may be attributed to pyroclastic volcanism, short distance transportation of felsic volcanic clasts and their deposition in a shallow marine shelf in an active continental margin tectonic setting where the rhyolitic clasts were cemented by carbonate material. This unique rock type, marked by close association of pyroclastic volcanic rocks and shallow marine shelf sediments, suggest shorter distance between the ridge and shelf in the Neoarchean plate tectonic scenario.

  10. Friction in volcanic environments (United States)

    Kendrick, Jackie E.; Lavallée, Yan


    Volcanic landscapes are amongst the most dynamic on Earth and, as such, are particularly susceptible to failure and frictional processes. In rocks, damage accumulation is frequently accompanied by the release of seismic energy, which has been shown to accelerate in the approach to failure on both a field and laboratory scale. The point at which failure occurs is highly dependent upon strain-rate, which also dictates the slip-zone properties that pertain beyond failure, in scenarios such as sector collapse and pyroclastic flows as well as the ascent of viscous magma. High-velocity rotary shear (HVR) experiments have provided new opportunities to overcome the grand challenge of understanding faulting processes during volcanic phenomena. Work on granular ash material demonstrates that at ambient temperatures, ash gouge behaves according to Byerlee's rule at low slip velocities, but is slip-weakening, becoming increasingly lubricating as slip ensues. In absence of ash along a slip plane, rock-rock friction induces cataclasis and heating which, if sufficient, may induce melting (producing pseudotachylyte) and importantly, vesiculation. The viscosity of the melt, so generated, controls the subsequent lubrication or resistance to slip along the fault plane thanks to non-Newtonian suspension rheology. The shear-thinning behaviour and viscoelasticity of frictional melts yield a tendency for extremely unstable slip, and occurrence of frictional melt fragmentation. This velocity-dependence acts as an important feedback mechanism on the slip plane, in addition to the bulk composition, mineralogy and glass content of the magma, that all influence frictional behaviour. During sector collapse events and in pyroclastic density currents it is the frictional properties of the rocks and ash that, in-part, control the run-out distance and associated risk. In addition, friction plays an important role in the eruption of viscous magmas: In the conduit, the rheology of magma is integral

  11. From "Volcanic Field" to "Volcanic Province": A Continuum of Spatial-Clustered Structures With Geological Significance or a Matter of Academic Snobbism? (United States)

    Canon-Tapia, E.


    "Volcanic Field" is a term commonly used to describe a group of small, monogenetic and dominantly basaltic volcanoes, but that often includes groups of mixed monogenetic and polygenetic edifices. Besides ambiguities on the type of edifice that should be considered to form a VF, there is a lack of agreement concerning the number of volcanoes required to define a VF (ranging from five to over 1000), it is uncertain if the area covered by the volcanoes forming a VF must have a minimum number of volcanoes/unit area, or if the distance between adjacent structures needs to have a specific length. Furthermore, in many cases it is uncertain whether some area is occupied by two adjacent fields or if it is occupied by two subgroups belonging to a unique field. On the other hand, in analogy with the official definition of a geologic province, a "Volcanic Province" can be defined as a large region or area characterized by similar volcanic features, or by a history differing significantly from that of adjacent areas. Because neither the dimensions of the region nor the characteristics of the features to be used as reference are specified, there is an inherent ambiguity in this definition, which in some cases might become the source of unnecessary confusion. This work presents a review of the various ambiguities that remain unaddressed on the definition of a VF, and that bear some connection with the definition of VPs in general, with special interest in intraplate settings. It is shown that questions such as a) how many volcanoes are required to form a VF and b) when two "neighbor" volcanoes should not be considered to be part of the same field, can be adequately addressed by adopting the techniques of cluster analysis. Other parameters might not be as easy to address including aspects related to total volume of magma erupted, overall composition of the erupted products and age spans of activity and intermediate gaps. Based on the evidence presented, it is shown that there is a

  12. Intraplate volcanism influenced by distal subduction tectonics at Jeju Island, Republic of Korea

    NARCIS (Netherlands)

    Brenna, M.; Cronin, S.J.; Kereszturi, G.; Sohn, Y.K.; Smith, I.E.M.; Wijbrans, J.R.


    The drivers behind the inception of, and the variable, pulsatory eruption rates at distributed intraplate volcanic fields are not well understood. Such broad areas of monogenetic volcanism cover vast areas of the world and are often heavily populated. Reliable models to unravel their behaviour

  13. Timing and compositional evolution of Late Pleistocene to Holocene volcanism within the Harrat Rahat volcanic field, Kingdom of Saudi Arabia (United States)

    Stelten, M. E.; Downs, D. T.; Dietterich, H. R.


    Harrat Rahat is one of the largest ( 20,000 km2) of 15 active Cenozoic volcanic fields that stretch 3,000 km along the western Arabian Peninsula from Yemen to Syria. The Harrat Rahat volcanic field is 310 km long (N-S) by 75 km wide (E-W), and is dominated by alkalic basalts with minor hawaiite, mugearite, benmoreite, and trachyte eruptives. The timing of volcanism within greater Harrat Rahat is poorly constrained, but field relations and geochronology indicate that northern Harrat Rahat hosted the most recent eruptions. To better constrain the timing and compositional evolution of Harrat Rahat during this recent phase, we present 743 geochemical analyses, 144 40Ar/39Ar ages, and 9 36Cl exposure ages for volcanic strata from northernmost Harrat Rahat. These data demonstrate that volcanism has been ongoing from at least 1.2 Ma to the present, with the most recent eruption known from historical accounts at 1256 CE. Basalt has erupted persistently from 1.2 Ma to the present, but more evolved volcanism has been episodic. Benmoreite erupted at 1.1 Ma and between 550 to 400 ka. Trachytic volcanism has only occurred over the past 150 ka, with the most recent eruption at 5 ka. Aside from the well-documented basaltic eruption at 1256 CE, prior workers interpreted 6 additional basaltic eruptions during the Holocene. However, our 36Cl exposure ages demonstrate that these erupted between 60 to 13 ka. Interestingly, in the northern part of our field area, where the spatial density of volcanic vents is low, young volcanism (<150 ka) is dominated by basaltic eruptions. Conversely, young volcanism in the southern part of our field area, where volcanic vent density is high, is dominated by trachyte. This observation is consistent with a process wherein the time-integrated effects of basaltic influx into the crust in the south produced a mafic intrusive complex, through which younger basaltic magmas cannot ascend. Instead, these magmas stall and produce trachyte, likely through

  14. Temporal resolution requirements of satellite constellations for 30 m global burned area mapping (United States)

    Melchiorre, A.; Boschetti, L.


    Global burned area maps have been generated systematically with daily, coarse resolution satellite data (Giglio et al. 2013). The production of moderate resolution (10 - 30 m) global burned area products would meet the needs of several user communities: improved carbon emission estimations due to heterogeneous landscapes and for local scale air quality and fire management applications (Mouillot et al. 2014; van der Werf et al. 2010). While the increased spatial resolution reduces the influence of mixed burnt/unburnt pixels and it would increase the spectral separation of burned areas, moderate resolution satellites have reduced temporal resolution (10 - 16 days). Fire causes a land-cover change spectrally visible for a period ranging from a few weeks in savannas to over a year in forested ecosystems (Roy et al. 2010); because clouds, smoke, and other optically thick aerosols limit the number of available observations (Roy et al. 2008; Smith and Wooster 2005), burned areas might disappear before they are observed by moderate resolution sensors. Data fusion from a constellation of different sensors has been proposed to overcome these limits (Boschetti et al. 2015; Roy 2015). In this study, we estimated the probability of moderate resolution satellites and virtual constellations (including Landsat-8/9, Sentinel-2A/B) to provide sufficient observations for burned area mapping globally, and by ecosystem. First, we estimated the duration of the persistence of the signal associated with burned areas by combining the MODIS Global Burned Area and the Nadir BRDF-Adjusted Reflectance Product by characterizing the post-fire trends in reflectance to determine the length of the period in which the burn class is spectrally distinct from the unburned and, therefore, detectable. The MODIS-Terra daily cloud data were then used to estimate the probability of cloud cover. The cloud probability was used at each location to estimate the minimum revisit time needed to obtain at least one

  15. Transition of neogene arc volcanism in central-western Hokkaido, viewed from K-Ar ages, style of volcanic activity, and bulk rock chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Wataru; Iwasaki, Miyuki; Nakagawa, Mitsuhiro [Hokkaido Univ., Sapporo (Japan)


    Spatial and temporal variations in late Cenozoic volcanism of southwestern Hokkaido at the northern end of NE-Japan arc have been clarified by 261 K-Ar and 76 FT ages including 49 newly determined K-Ar ages, volcanic stratigraphy, physical volcanology and whole-rock geochemistry. Arc volcanism characterized by rocks with low-Ti and Nb, and by across-arc increase in K{sub 2}O content in these rocks has continued at least since 12 Ma. Based on volcanic stratigraphy, physical volcanology and whole-rock geochemistry, volcanism after 12 Ma can be subdivided into 4 stages, 12-5, 5-1.7, and 1.7-0 Ma. The volcanism from 12 Ma to 5 Ma extended northward widely compared with distribution of Quaternary arc volcanism (1.7-0 Ma). This suggests that the arc trench junction between Kuril and NE-Japan arc's trenches was located about 100 km northward from the present position. Since around 5 Ma until 1.7 Ma, different type of volcanism under local extension field, characterized by a group of monogenetic volcanoes of alkali basalt and shield volcanoes of calc-alkaline andesite, had occurred at northern end of the volcanic region (Takikawa-Mashike region). During and after this volcanism, the northern edge of arc volcanism in the area has migrated southward. This suggests that the trench junction has migrated about 100 km southward since {approx}5 Ma. The quaternary arc volcanism (1.7-0 Ma) has been restricted at the southern part of the region. The volcanism since 12 Ma might be influenced by oblique subduction of Pacific plate beneath Kuril arc, resulting in the formation of local back arc basin at the junction and to southward migration of the trench junction. (author)

  16. Areal and time distributions of volcanic formations on Mars

    International Nuclear Information System (INIS)

    Katterfeld, G.N.; Vityaz, V.I.


    The analysis of igneous rock distribution has been fulfilled on the basis of the geomorphological map of Mars at scale 1:5,000,000, according to data obtained from interpretation of 1:2,000,000 scale pictures of Mariner 9, Mars 4, Mars 5, Viking 1 and 2. Areological areas are listed as having been distinguished as the stratigraphic basis for a martian time scale. The area of volcanic eruptions and the number of eruptive centers are calculated on 10 x 10 deg cells and for each areological eras. The largest area of eruptive happening at different times is related with Tharsis tectonic uplift. The study of distribution of igneous rock area and volcanic centers number on 10 deg sectors and zones revealed the concentration belts of volcanic formations

  17. Areal and time distributions of volcanic formations on Mars (United States)

    Katterfeld, G. N.; Vityaz, V. I.


    The analysis of igneous rock distribution has been fulfilled on the basis of the geomorphological map of Mars at scale 1:5,000,000, according to data obtained from interpretation of 1:2,000,000 scale pictures of Mariner 9, Mars 4, Mars 5, Viking 1 and 2. Areological areas are listed as having been distinguished as the stratigraphic basis for a martian time scale. The area of volcanic eruptions and the number of eruptive centers are calculated on 10 x 10 deg cells and for each areological eras. The largest area of eruptive happening at different times is related with Tharsis tectonic uplift. The study of distribution of igneous rock area and volcanic centers number on 10 deg sectors and zones revealed the concentration belts of volcanic formations.

  18. Obsidian hydration dating of volcanic events (United States)

    Friedman, I.; Obradovich, J.


    Obsidian hydration dating of volcanic events had been compared with ages of the same events determined by the 14C and KAr methods at several localities. The localities, ranging in age from 1200 to over 1 million yr, include Newberry Craters, Oregon; Coso Hot Springs, California; Salton Sea, California; Yellowstone National Park, Wyoming; and Mineral Range, Utah. In most cases the agreement is quite good. A number of factors including volcanic glass composition and exposuretemperature history must be known in order to relate hydration thickness to age. The effect of composition can be determined from chemical analysis or the refractive index of the glass. Exposure-temperature history requires a number of considerations enumerated in this paper. ?? 1981.

  19. Determining reserve requirements in DK1 area of Nord Pool using a probabilistic approach

    DEFF Research Database (Denmark)

    Saez Gallego, Javier; Morales González, Juan Miguel; Madsen, Henrik


    a probabilistic framework where the reserve requirements are computed based on scenarios of wind power forecast error, load forecast errors and power plant outages. Our approach is first motivated by the increasing wind power penetration in power systems worldwide as well as the current market design of the DK1...... System Operator). © 2014 Elsevier Ltd. All rights reserved....

  20. 29 CFR 780.720 - “Area of production” requirement of exemption. (United States)


    ... employed is located in the “open country or a rural community,” as defined in the regulations, and receives... or for market but in connection with its secondary, incidental, or side-line functions of selling products and services used in the operation of a farm (see § 780.610) are not required to be counted in...

  1. 50 CFR 32.2 - What are the requirements for hunting on areas of the National Wildlife Refuge System? (United States)


    ... migratory game bird, upland game, and big game hunting appear in §§ 32.20 through 32.72. (g) The use of any... HUNTING AND FISHING General Provisions § 32.2 What are the requirements for hunting on areas of the...

  2. 33 CFR 165.830 - Regulated Navigation Area; Reporting Requirements for Barges Loaded with Certain Dangerous... (United States)


    ... either by telephone to (866) 442-6089, by fax to (866) 442-6107, or by e-mail to [email protected] A reporting form and e-mail link are available at (5) The general... used to move, transport, or deliver a CDC barge within a fleeting area. Inland River Vessel Movement...

  3. 33 CFR 165.921 - Regulated Navigation Area; Reporting Requirements for Barges Loaded with Certain Dangerous... (United States)


    ... either by telephone to (866) 442-6089, by fax to (866) 442-6107, or by e-mail to [email protected] A reporting form and e-mail link are available at (5) The general... size vessel that is used to move, transport, or deliver a CDC barge within a fleeting area. Fleeting...

  4. Explosive Volcanic Eruptions from Linear Vents on Earth, Venus and Mars: Comparisons with Circular Vent Eruptions (United States)

    Glaze, Lori S.; Baloga, Stephen M.; Wimert, Jesse


    Conditions required to support buoyant convective plumes are investigated for explosive volcanic eruptions from circular and linear vents on Earth, Venus, and Mars. Vent geometry (linear versus circular) plays a significant role in the ability of an explosive eruption to sustain a buoyant plume. On Earth, linear and circular vent eruptions are both capable of driving buoyant plumes to equivalent maximum rise heights, however, linear vent plumes are more sensitive to vent size. For analogous mass eruption rates, linear vent plumes surpass circular vent plumes in entrainment efficiency approximately when L(sub o) > 3r(sub o) owing to the larger entrainment area relative to the control volume. Relative to circular vents, linear vents on Venus favor column collapse and the formation of pyroclastic flows because the range of conditions required to establish and sustain buoyancy is narrow. When buoyancy can be sustained, however, maximum plume heights exceed those from circular vents. For current atmospheric conditions on Mars, linear vent eruptions are capable of injecting volcanic material slightly higher than analogous circular vent eruptions. However, both geometries are more likely to produce pyroclastic fountains, as opposed to convective plumes, owing to the low density atmosphere. Due to the atmospheric density profile and water content on Earth, explosive eruptions enjoy favorable conditions for producing sustained buoyant columns, while pyroclastic flows would be relatively more prevalent on Venus and Mars. These results have implications for the injection and dispersal of particulates into the planetary atmosphere and the ability to interpret the geologic record of planetary volcanism.

  5. Closer look at lunar volcanism

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Heiken, G.; Taylor, G.J.


    Although the American Apollo and Soviet Luna missions concentrated on mare basalt samples, major questions remain about lunar volcanism. Lunar field work will be indispensable for resolving the scientific questions about ages, compositions, and eruption processes of lunar volcanism. From a utilitarian standpoint, a better knowledge of lunar volcanism will also yield profitable returns in lunar base construction (e.g., exploitation of rille or lava-tube structures) and in access to materials such as volatile elements, pure glass, or ilmenite for lunar industry

  6. The Ngorongoro Volcanic Highland and its relationships to volcanic deposits at Olduvai Gorge and East African Rift volcanism. (United States)

    Mollel, Godwin F; Swisher, Carl C


    The Ngorongoro Volcanic Highland (NVH), situated adjacent and to the east of Olduvai Gorge in northern Tanzania, is the source of the immense quantities of lava, ignimbrite, air fall ash, and volcaniclastic debris that occur interbedded in the Plio-Pleistocene sedimentary deposits in the Laetoli and Olduvai areas. These volcanics have proven crucial to unraveling stratigraphic correlations, the age of these successions, the archaeological and paleontological remains, as well as the source materials from which the bulk of the stone tools were manufactured. The NVH towers some 2,000 m above the Olduvai and Laetoli landscapes, affecting local climate, run-off, and providing varying elevation - climate controlled ecosystem, habitats, and riparian corridors extending into the Olduvai and Laetoli lowlands. The NVH also plays a crucial role in addressing the genesis and history of East African Rift (EAR) magmatism in northern Tanzania. In this contribution, we provide age and petrochemical compositions of the major NVH centers: Lemagurut, basalt to benmorite, 2.4-2.2 Ma; Satiman, tephrite to phonolite, 4.6-3.5 Ma; Oldeani, basalt to trachyandesite, 1.6-1.5 Ma; Ngorongoro, basalt to rhyolite, 2.3-2.0 Ma; Olmoti, basalt to trachyte, 2.0-1.8 Ma; Embagai, nephelinite to phonolite, 1.2-0.6 Ma; and Engelosin, phonolite, 3-2.7 Ma. We then discuss how these correlate in time and composition with volcanics preserved at Olduvai Gorge. Finally, we place this into context with our current understanding as to the eruptive history of the NVH and relationship to East African Rift volcanism. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Requirement of a Ship Breaking Yard at the Arvand Free Zone Area


    Homayoun Yousefi


    In this paper, the author is going to investigate the concept of ship recycling which implies to the materials and equipment including end of ships life. The scraped steel is melted down and is commonly used in the construction industries of ship recycling countries, and some equipment might be re-used in other industries too. A segment of this paper is dedicated to describe about the strategic position of Arvand River and the location of Arvand Free Zone area at the Persian Gulf. It should b...

  8. Gas measurements from the Costa Rica-Nicaragua volcanic segment suggest possible along-arc variations in volcanic gas chemistry (United States)

    Aiuppa, A.; Robidoux, P.; Tamburello, G.; Conde, V.; Galle, B.; Avard, G.; Bagnato, E.; De Moor, J. M.; Martínez, M.; Muñóz, A.


    Obtaining accurate estimates of the CO2 output from arc volcanism requires a precise understanding of the potential along-arc variations in volcanic gas chemistry, and ultimately of the magmatic gas signature of each individual arc segment. In an attempt to more fully constrain the magmatic gas signature of the Central America Volcanic Arc (CAVA), we present here the results of a volcanic gas survey performed during March and April 2013 at five degassing volcanoes within the Costa Rica-Nicaragua volcanic segment (CNVS). Observations of the volcanic gas plume made with a multicomponent gas analyzer system (Multi-GAS) have allowed characterization of the CO2/SO2-ratio signature of the plumes at Poás (0.30±0.06, mean ± SD), Rincón de la Vieja (27.0±15.3), and Turrialba (2.2±0.8) in Costa Rica, and at Telica (3.0±0.9) and San Cristóbal (4.2±1.3) in Nicaragua (all ratios on molar basis). By scaling these plume compositions to simultaneously measured SO2 fluxes, we estimate that the CO2 outputs at CNVS volcanoes range from low (25.5±11.0 tons/day at Poás) to moderate (918 to 1270 tons/day at Turrialba). These results add a new information to the still fragmentary volcanic CO2 output data set, and allow estimating the total CO2 output from the CNVS at 2835±1364 tons/day. Our novel results, with previously available information about gas emissions in Central America, are suggestive of distinct volcanic gas CO2/ST (= SO2 + H2S)-ratio signature for magmatic volatiles in Nicaragua (∼3) relative to Costa Rica (∼0.5-1.0). We also provide additional evidence for the earlier theory relating the CO2-richer signature of Nicaragua volcanism to increased contributions from slab-derived fluids, relative to more-MORB-like volcanism in Costa Rica. The sizeable along-arc variations in magmatic gas chemistry that the present study has suggested indicate that additional gas observations are urgently needed to more-precisely confine the volcanic CO2 from the CAVA, and from

  9. Where can pixel counting area estimates meet user-defined accuracy requirements? (United States)

    Waldner, François; Defourny, Pierre


    Pixel counting is probably the most popular way to estimate class areas from satellite-derived maps. It involves determining the number of pixels allocated to a specific thematic class and multiplying it by the pixel area. In the presence of asymmetric classification errors, the pixel counting estimator is biased. The overarching objective of this article is to define the applicability conditions of pixel counting so that the estimates are below a user-defined accuracy target. By reasoning in terms of landscape fragmentation and spatial resolution, the proposed framework decouples the resolution bias and the classifier bias from the overall classification bias. The consequence is that prior to any classification, part of the tolerated bias is already committed due to the choice of the spatial resolution of the imagery. How much classification bias is affordable depends on the joint interaction of spatial resolution and fragmentation. The method was implemented over South Africa for cropland mapping, demonstrating its operational applicability. Particular attention was paid to modeling a realistic sensor's spatial response by explicitly accounting for the effect of its point spread function. The diagnostic capabilities offered by this framework have multiple potential domains of application such as guiding users in their choice of imagery and providing guidelines for space agencies to elaborate the design specifications of future instruments.

  10. Evolving protected-area impacts in Panama: impact shifts show that plans require anticipation

    International Nuclear Information System (INIS)

    Haruna, Akiko; Pfaff, Alexander; Van den Ende, Sander; Joppa, Lucas


    Protected areas (PAs) are the leading forest conservation policy, so accurate evaluation of future PA impact is critical in conservation planning. Yet by necessity impact evaluations use past data. Here we argue that forward-looking plans should blend such evaluations with anticipation of shifts in threats. Applying improved methods to evaluate past impact, we provide rigorous support for that conceptual approach by showing that PAs’ impacts on deforestation shifted with land use. We study the Republic of Panama, where species-dense tropical forest faces real pressure. Facing variation in deforestation pressure, the PAs’ impacts varied across space and time. Thus, if shifts in pressure levels and patterns could be anticipated, that could raise impact. (paper)

  11. Requirement of a Ship Breaking Yard at the Arvand Free Zone Area

    Directory of Open Access Journals (Sweden)

    Homayoun Yousefi


    Full Text Available In this paper, the author is going to investigate the concept of ship recycling which implies to the materials and equipment including end of ships life. The scraped steel is melted down and is commonly used in the construction industries of ship recycling countries, and some equipment might be re-used in other industries too. A segment of this paper is dedicated to describe about the strategic position of Arvand River and the location of Arvand Free Zone area at the Persian Gulf. It should be noted that ship recycling commonly takes place in developing countries which tend to have a competitive advantage due to the low cost labor, may have weaker environmental protection / worker health and safety regulations, and have national demand for the outputs of the activity. The International Maritime Organization (IMO adopted the Hong Kong International Convention related to the safety and environmental sound recycling of ships to address the growing about the environment, job health and safety risks related to ship recycling. A part of this paper dedicated to review the role of the Hong Kong Convention in order to ensure the process of ship recycling without risks to human health and to the environment. The main part of this paper is designated to evaluate the role of establishment of a ship scraping yard at the Arvand Free Zone Area, its market at the Persian Gulf and improving the safety of navigation at the Arvand River. The research methodology of this paper will be designated to consider the qualitative part of this research by using interview with the experts in order to find out and select the key factors for further consideration; as a result of that a model will be created which can be tested by a questioner. In addition to the above explanation, relationship between the variables and testing hypothesizes of this research will be analyzed by using SPSS and Lisrel software as quantitative part of this research.

  12. Volcanic hazard assessment for the Canary Islands (Spain using extreme value theory

    Directory of Open Access Journals (Sweden)

    R. Sobradelo


    Full Text Available The Canary Islands are an active volcanic region densely populated and visited by several millions of tourists every year. Nearly twenty eruptions have been reported through written chronicles in the last 600 yr, suggesting that the probability of a new eruption in the near future is far from zero. This shows the importance of assessing and monitoring the volcanic hazard of the region in order to reduce and manage its potential volcanic risk, and ultimately contribute to the design of appropriate preparedness plans. Hence, the probabilistic analysis of the volcanic eruption time series for the Canary Islands is an essential step for the assessment of volcanic hazard and risk in the area. Such a series describes complex processes involving different types of eruptions over different time scales. Here we propose a statistical method for calculating the probabilities of future eruptions which is most appropriate given the nature of the documented historical eruptive data. We first characterize the eruptions by their magnitudes, and then carry out a preliminary analysis of the data to establish the requirements for the statistical method. Past studies in eruptive time series used conventional statistics and treated the series as an homogeneous process. In this paper, we will use a method that accounts for the time-dependence of the series and includes rare or extreme events, in the form of few data of large eruptions, since these data require special methods of analysis. Hence, we will use a statistical method from extreme value theory. In particular, we will apply a non-homogeneous Poisson process to the historical eruptive data of the Canary Islands to estimate the probability of having at least one volcanic event of a magnitude greater than one in the upcoming years. This is done in three steps: First, we analyze the historical eruptive series to assess independence and homogeneity of the process. Second, we perform a Weibull analysis of the

  13. Volcanology: Volcanic bipolar disorder explained (United States)

    Jellinek, Mark


    Eruptions come in a range of magnitudes. Numerical simulations and laboratory experiments show that rare, giant super-eruptions and smaller, more frequent events reflect a transition in the essential driving forces for volcanism.

  14. Lidar sounding of volcanic plumes (United States)

    Fiorani, Luca; Aiuppa, Alessandro; Angelini, Federico; Borelli, Rodolfo; Del Franco, Mario; Murra, Daniele; Pistilli, Marco; Puiu, Adriana; Santoro, Simone


    Accurate knowledge of gas composition in volcanic plumes has high scientific and societal value. On the one hand, it gives information on the geophysical processes taking place inside volcanos; on the other hand, it provides alert on possible eruptions. For this reasons, it has been suggested to monitor volcanic plumes by lidar. In particular, one of the aims of the FP7 ERC project BRIDGE is the measurement of CO2 concentration in volcanic gases by differential absorption lidar. This is a very challenging task due to the harsh environment, the narrowness and weakness of the CO2 absorption lines and the difficulty to procure a suitable laser source. This paper, after a review on remote sensing of volcanic plumes, reports on the current progress of the lidar system.

  15. Requirements on information of the site of the European Union from member states within the area of the environment

    International Nuclear Information System (INIS)

    Virgovic, R.; Grofova, R; Sochorova, O.


    In this presentation authors deal with requirements on information of the site of the European Union from member states within the area of the environment. As of May 1, 2004 with entrance into the European Union for the Slovak Republic results the responsibility feeding reports about the environment. Reports about the environment (State of the environment Report - Slovak Republic) deal with the following areas: (A) Horizontally measures; (B) Air protection; (C) Waste management; (D) Water protection; (E) Nature protection; (F) Inspection of industrial pollution and risk management; (G) Chemical agents and genetically modified organisms; (H) Noise from motor-cars and machines; (I) Nuclear safety; (J) Civil protection

  16. Mud volcanism of South-Caspian depression

    International Nuclear Information System (INIS)

    Aliyev, A.A.


    Full text : South-Caspian depression is presented by area of large warping with thick (more than 25 km) sedimentary series and with wide development of mud volcanism. This depression is unique according to its number of mud volcanoes and intensity of their eruptions. There are about 400 mud volcanoes in this area, which is more than than a half of all volcanoes of the planet. Among them - 220 are continental, more 170 are marine, defined by different methods in the South-Caspian aquatorium. As a result of mudvolcanic activity islands, banks, shoals and underwater ridges are formed in marine conditions. Depths of underwater volcanoes vary from few meters to 900 m as the height of cones are different too. Marine mud volcanoes in geological history of Caspian sea evolution and in its recent history had and important significance. Activity of mud volcanoes in sea conditions lead to the formation of positive elements of relief. Products of ejection take part in the formation of microrelief of surrounding areas of sea bottom influence upon its dynamics and composition of bottom sediments. The carried out comparative analysis of mud volcanism manifestation both onshore and offshore showed the basic differences and similarities in morphology of volcanoes and geology-geochemical peculiarities of eruption products. New data on tectonics of mud volcanism development has been obtained over recent years. Mud volcanoes of South-Caspian depression are studied for assessment and oil-gas content of deep-seated deposits. Geochemical method of search of oil and gas deposits in mudvolcanic areas had been worked out.

  17. Volcanic eruption plumes on Io

    International Nuclear Information System (INIS)

    Strom, R.G.; Terrile, R.J.; Masursky, H.; Hansen, C.


    The detection of an umbrella-shaped plume extending about 280 km above the bright limb of Io was one of the most important discoveries made during the Voyager 1 encounter with the jovian system. This discovery proves that Io is volcanically active at present, and the number and magnitude of these eruptions indicate that Io is the most volcanically active body so far discovered in the Solar System. Preliminary analyses of these eruptive plumes are presented. (U.K.)

  18. Volcanic hazards and aviation safety (United States)

    Casadevall, Thomas J.; Thompson, Theodore B.; Ewert, John W.; ,


    An aeronautical chart was developed to determine the relative proximity of volcanoes or ash clouds to the airports and flight corridors that may be affected by volcanic debris. The map aims to inform and increase awareness about the close spatial relationship between volcanoes and aviation operations. It shows the locations of the active volcanoes together with selected aeronautical navigation aids and great-circle routes. The map mitigates the threat that volcanic hazards pose to aircraft and improves aviation safety.

  19. Using Satellite Observations to Evaluate the AeroCOM Volcanic Emissions Inventory and the Dispersal of Volcanic SO2 Clouds in MERRA (United States)

    Hughes, Eric J.; Krotkov, Nickolay; da Silva, Arlindo; Colarco, Peter


    Simulation of volcanic emissions in climate models requires information that describes the eruption of the emissions into the atmosphere. While the total amount of gases and aerosols released from a volcanic eruption can be readily estimated from satellite observations, information about the source parameters, like injection altitude, eruption time and duration, is often not directly known. The AeroCOM volcanic emissions inventory provides estimates of eruption source parameters and has been used to initialize volcanic emissions in reanalysis projects, like MERRA. The AeroCOM volcanic emission inventory provides an eruptions daily SO2 flux and plume top altitude, yet an eruption can be very short lived, lasting only a few hours, and emit clouds at multiple altitudes. Case studies comparing the satellite observed dispersal of volcanic SO2 clouds to simulations in MERRA have shown mixed results. Some cases show good agreement with observations Okmok (2008), while for other eruptions the observed initial SO2 mass is half of that in the simulations, Sierra Negra (2005). In other cases, the initial SO2 amount agrees with the observations but shows very different dispersal rates, Soufriere Hills (2006). In the aviation hazards community, deriving accurate source terms is crucial for monitoring and short-term forecasting (24-h) of volcanic clouds. Back trajectory methods have been developed which use satellite observations and transport models to estimate the injection altitude, eruption time, and eruption duration of observed volcanic clouds. These methods can provide eruption timing estimates on a 2-hour temporal resolution and estimate the altitude and depth of a volcanic cloud. To better understand the differences between MERRA simulations and volcanic SO2 observations, back trajectory methods are used to estimate the source term parameters for a few volcanic eruptions and compared to their corresponding entry in the AeroCOM volcanic emission inventory. The nature of

  20. Are Protected Areas Required to Maintain Functional Diversity in Human-Modified Landscapes? (United States)

    Cottee-Jones, H. Eden W.; Matthews, Thomas J.; Bregman, Tom P.; Barua, Maan; Tamuly, Jatin; Whittaker, Robert J.


    The conversion of forest to agriculture across the world’s tropics, and the limited space for protected areas, has increased the need to identify effective conservation strategies in human-modified landscapes. Isolated trees are believed to conserve elements of ecological structure, providing micro-sites for conservation in matrix landscapes, and facilitating seed dispersal and forest restoration. Here we investigate the role of isolated Ficus trees, which are of critical importance to tropical forest ecosystems, in conserving frugivore composition and function in a human-modified landscape in Assam, India. We surveyed the frugivorous birds feeding at 122 isolated Ficus trees, 33 fruit trees, and 31 other large trees across a range of 32 km from the nearest intact forest. We found that Ficus trees attracted richer and more abundant assemblages of frugivores than the other tree categories. However, incidence function estimates revealed that forest specialist species decreased dramatically within the first kilometre of the forest edge. Despite this, species richness and functional diversity remained consistent across the human-modified landscape, as habitat generalists replaced forest-dependent frugivores, and accounted for most of the ecological function found in Ficus trees near the forest edge. We recommend that isolated Ficus trees are awarded greater conservation status, and suggest that their conservation can support ecologically functional networks of frugivorous bird communities. PMID:25946032

  1. The operational eEMEP model version 10.4 for volcanic SO2 and ash forecasting (United States)

    Steensen, Birthe M.; Schulz, Michael; Wind, Peter; Valdebenito, Álvaro M.; Fagerli, Hilde


    This paper presents a new version of the EMEP MSC-W model called eEMEP developed for transportation and dispersion of volcanic emissions, both gases and ash. EMEP MSC-W is usually applied to study problems with air pollution and aerosol transport and requires some adaptation to treat volcanic eruption sources and effluent dispersion. The operational set-up of model simulations in case of a volcanic eruption is described. Important choices have to be made to achieve CPU efficiency so that emergency situations can be tackled in time, answering relevant questions of ash advisory authorities. An efficient model needs to balance the complexity of the model and resolution. We have investigated here a meteorological uncertainty component of the volcanic cloud forecast by using a consistent ensemble meteorological dataset (GLAMEPS forecast) at three resolutions for the case of SO2 emissions from the 2014 Barðarbunga eruption. The low resolution (40 × 40 km) ensemble members show larger agreement in plume position and intensity, suggesting that the ensemble here does not give much added value. To compare the dispersion at different resolutions, we compute the area where the column load of the volcanic tracer, here SO2, is above a certain threshold, varied for testing purposes between 0.25 and 50 Dobson units. The increased numerical diffusion causes a larger area (+34 %) to be covered by the volcanic tracer in the low resolution simulations than in the high resolution ones. The higher resolution (10 × 10 km) ensemble members show higher column loads farther away from the volcanic eruption site in narrower clouds. Cloud positions are more varied between the high resolution members, and the cloud forms resemble the observed clouds more than the low resolution ones. For a volcanic emergency case this means that to obtain quickly results of the transport of volcanic emissions, an individual simulation with our low resolution is sufficient; however, to forecast peak

  2. The onset of the volcanism in the Ciomadul Volcanic Dome Complex (Eastern Carpathians): Eruption chronology and magma type variation (United States)

    Molnár, Kata; Harangi, Szabolcs; Lukács, Réka; Dunkl, István; Schmitt, Axel K.; Kiss, Balázs; Garamhegyi, Tamás; Seghedi, Ioan


    Combined zircon U-Th-Pb and (U-Th)/He dating was applied to refine the eruption chronology of the last 2 Myr for the andesitic and dacitic Pilişca volcano and Ciomadul Volcanic Dome Complex (CVDC), the youngest volcanic area of the Carpathian-Pannonian region, located in the southernmost Harghita, eastern-central Europe. The proposed eruption ages, which are supported also by the youngest zircon crystallization ages, are much younger than the previously determined K/Ar ages. By dating every known eruption center in the CVDC, repose times between eruptive events were also accurately determined. Eruption of the andesite at Murgul Mare (1865 ± 87 ka) and dacite of the Pilişca volcanic complex (1640 ± 37 ka) terminated an earlier pulse of volcanic activity within the southernmost Harghita region, west of the Olt valley. This was followed by the onset of the volcanism in the CVDC, which occurred after several 100s kyr of eruptive quiescence. At ca. 1 Ma a significant change in the composition of erupted magma occurred from medium-K calc-alkaline compositions to high-K dacitic (Baba-Laposa dome at 942 ± 65 ka) and shoshonitic magmas (Malnaş and Bixad domes; 964 ± 46 ka and 907 ± 66 ka, respectively). Noteworthy, eruptions of magmas with distinct chemical compositions occurred within a restricted area, a few km from one another. These oldest lava domes of the CVDC form a NNE-SSW striking tectonic lineament along the Olt valley. Following a brief (ca. 100 kyr) hiatus, extrusion of high-K andesitic magma continued at Dealul Mare (842 ± 53 ka). After another ca. 200 kyr period of quiescence two high-K dacitic lava domes extruded (Puturosul: 642 ± 44 ka and Balvanyos: 583 ± 30 ka). The Turnul Apor lava extrusion occurred after a ca. 200 kyr repose time (at 344 ± 33 ka), whereas formation of the Haramul Mic lava dome (154 ± 16 ka) represents the onset of the development of the prominent Ciomadul volcano. The accurate determination of eruption dates shows that the

  3. The requirements for implementing Sustainable Development Goals (SDGs) and for planning and implementing Integrated Territorial Investments (ITI) in mining areas (United States)

    Florkowska, Lucyna; Bryt-Nitarska, Izabela


    The notion of Integrated Territorial Investments (ITI) appears more and more frequently in contemporary regional development strategies. Formulating the main assumptions of ITI is a response to a growing need for a co-ordinated, multi-dimensional regional development suitable for the characteristics of a given area. Activities are mainly aimed at improving people's quality of life with their significant participation. These activities include implementing the Sustainable development Goals (SDGs). Territorial investments include, among others, projects in areas where land and building use is governed not only by general regulations (Spatial Planning and Land Development Act) but also by separate legal acts. This issue also concerns areas with active mines and post-mining areas undergoing revitalization. For the areas specified above land development and in particular making building investments is subject to the requirements set forth in the Geological and Mining Law and in the general regulations. In practice this means that factors connected with the present and future mining impacts must be taken into consideration in planning the investment process. This article discusses the role of proper assessment of local geological conditions as well as the current and future mining situation in the context of proper planning and performance of the Integrated Territorial Investment programme and also in the context of implementing the SDGs. It also describes the technical and legislative factors which need to be taken into consideration in areas where mining is planned or where it took place in the past.

  4. Space and time variability of heating requirements for greenhouse tomato production in the Euro-Mediterranean area. (United States)

    Mariani, Luigi; Cola, Gabriele; Bulgari, Roberta; Ferrante, Antonio; Martinetti, Livia


    The Euro-Mediterranean area is the seat of a relevant greenhouse activity, meeting the needs of important markets. A quantitative assessment of greenhouse energy consumption and of its variability in space and time is an important decision support tool for both greenhouse-sector policies and farmers. A mathematical model of greenhouse energy balance was developed and parameterized for a state-of-the-art greenhouse to evaluate the heating requirements for vegetables growing. Tomato was adopted as reference crop, due to its high energy requirement for fruit setting and ripening and its economic relevance. In order to gain a proper description of the Euro-Mediterranean area, 56 greenhouse areas located within the ranges 28°N-72°N and 11°W-55°E were analyzed over the period 1973-2014. Moreover, the two 1973-1987 and 1988-2014 sub-periods were separately studied to describe climate change effects on energy consumption. Results account for the spatial variability of energy needs for tomato growing, highlighting the strong influence of latitude on the magnitude of heat requirements. The comparison between the two selected sub-periods shows a decrease of energy demand in the current warm phase, more relevant for high latitudes. Finally, suggestions to reduce energy consumptions are provided. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Structural control of monogenetic volcanism in the Garrotxa volcanic field (Northeastern Spain) from gravity and self-potential measurements (United States)

    Barde-Cabusson, S.; Gottsmann, J.; Martí, J.; Bolós, X.; Camacho, A. G.; Geyer, A.; Planagumà, Ll.; Ronchin, E.; Sánchez, A.


    We report new geophysical observations on the distribution of subsurface structures associated with monogenetic volcanism in the Garrotxa volcanic field (Northern Spain). As part of the Catalan Volcanic Zone, this Quaternary volcanic field is associated with the European rifts system. It contains the most recent and best preserved volcanic edifices of the Catalan Volcanic Zone with 38 monogenetic volcanoes identified in the Garrotxa Natural Park. We conducted new gravimetric and self-potential surveys to enhance our understanding of the relationship between the local geology and the spatial distribution of the monogenetic volcanoes. The main finding of this study is that the central part of the volcanic field is dominated by a broad negative Bouguer anomaly of around -0.5 mGal, within which a series of gravity minima are found with amplitudes of up to -2.3 mGal. Inverse modelling of the Bouguer data suggests that surficial low-density material dominates the volcanic field, most likely associated with effusive and explosive surface deposits. In contrast, an arcuate cluster of gravity minima to the NW of the Croscat volcano, the youngest volcano of this zone, is modelled by vertically extended low-density bodies, which we interpret as a complex ensemble of fault damage zones and the roots of young scoria cones. A ground-water infiltration zone identified by a self-potential anomaly is associated with a steep horizontal Bouguer gravity gradient and interpreted as a fault zone and/or magmatic fissure, which fed the most recent volcanic activity in the Garrotxa. Gravimetric and self-potential data are well correlated and indicate a control on the locations of scoria cones by NNE-SSW and NNW-SSE striking tectonic features, which intersect the main structural boundaries of the study area to the north and south. Our interpretation of the data is that faults facilitated magma ascent to the surface. Our findings have major implications for understanding the relationship

  6. Model-based aviation advice on distal volcanic ash clouds by assimilating aircraft in situ measurements

    Directory of Open Access Journals (Sweden)

    G. Fu


    Full Text Available The forecast accuracy of distal volcanic ash clouds is important for providing valid aviation advice during volcanic ash eruption. However, because the distal part of volcanic ash plume is far from the volcano, the influence of eruption information on this part becomes rather indirect and uncertain, resulting in inaccurate volcanic ash forecasts in these distal areas. In our approach, we use real-life aircraft in situ observations, measured in the northwestern part of Germany during the 2010 Eyjafjallajökull eruption, in an ensemble-based data assimilation system combined with a volcanic ash transport model to investigate the potential improvement on the forecast accuracy with regard to the distal volcanic ash plume. We show that the error of the analyzed volcanic ash state can be significantly reduced through assimilating real-life in situ measurements. After a continuous assimilation, it is shown that the aviation advice for Germany, the Netherlands and Luxembourg can be significantly improved. We suggest that with suitable aircrafts measuring once per day across the distal volcanic ash plume, the description and prediction of volcanic ash clouds in these areas can be greatly improved.

  7. Was there a volcanic eruption off Vietnam in AD 608? (United States)

    Khoo, T. T.

    In the Sui-shu (Annals of the Sui Dynasty, 581-618), there is a record that returning envoys of the Chinese court to a state in northeastern Malay peninsula had in April-June AD 608 reached the state of Lin-i where for a whole day's sail the air around the vessel was yellowish and fetid. Lin-i was located at the southern end of the Annam Highlands chain and it is interpreted here that the phenominon reported could be due to a volcanic eruption in the Poulo Cecir-Ile des Cendres-Veteran volcanic islands group near the area. During the months of May to June the winds of the southwest monsoon, too, blow from the volcanic area toward the southern end of the Annam Highlands.

  8. Properties of volcanic soils in cold climate conditions (United States)

    Kuznetsova, Elena


    Layers of volcanic ash and the Andosol soils derived from them may play an important role in preserving snow and ice as well as developing permafrost conditions in the immediate vicinity of volcanoes of high elevation or those situated at high latitudes, and land areas, often distant from volcanic activity that are either prone to permafrost or covered by snow and ice, but are affected by the deposition of subaerial ash. The special properties of volcanic ash that are responsible are critically reviewed particularly in relation to recent research in Kamchatka in the Far East of Russia. Of particular importance are the thermal properties and the unfrozen water contents of ash layers and the rate at which the weathering of volcanic glass takes place. Volcanic glass is the most easily weathered component of volcanic ejecta (Shoji et al., 1993; Kimble et al., 2000). There are many specific environmental conditions, including paleoclimate and present-day climate, the composition of volcanic tephra and glaciation history, which cause the differences in weathering and development of volcanic ash soils (Zehetner et al., 2003). The preservation of in situ, unweathered, and unaltered surficial ash-fall deposits in the cold regions has important implications for paleoclimate and glacial history. Ash-fall deposits, which trap and preserve the soils, sediments, and landforms on which they fall, can be used to resolve local climate conditions (temperature and moisture) at the ash site during ash-fall deposition. The preservation of detailed sedimentary features (e.g. bedding in the ash, sharpness of stratigraphic contacts) can tell us about their post-depositional history, whether they have been redeposited by wind or water, or overridden by glaciers (Marchant et al., 1996). Weathering of volcanic glass results in the development of amorphous clay minerals (e.g. allophane, opal, palagonite) but this takes place much slower in cold than under warmer climate conditions. Only few

  9. Exploring Geology on the World-Wide Web--Volcanoes and Volcanism. (United States)

    Schimmrich, Steven Henry; Gore, Pamela J. W.


    Focuses on sites on the World Wide Web that offer information about volcanoes. Web sites are classified into areas of Global Volcano Information, Volcanoes in Hawaii, Volcanoes in Alaska, Volcanoes in the Cascades, European and Icelandic Volcanoes, Extraterrestrial Volcanism, Volcanic Ash and Weather, and Volcano Resource Directories. Suggestions…

  10. National Ignition Facility subsystem design requirements laser and target area building (LTAB) SSDR

    International Nuclear Information System (INIS)

    Kempel, P.; Hands, J.


    This Subsystem Design Requirements (SSDR) document establishes the performance, design, and verification requirements for the conventional building systems and subsystems of the Laser and Target Area Building (LTAB), including those that house and support the operation of high-energy laser equipment and the operational flow of personnel and materials throughout the facility. This SSDR addresses the following subsystems associated with the LTAB: Building structural systems for the Target Bay, Switchyards, Diagnostic Building, Decontamination Area, Laser Bays, Capacitor Bays and Operations Support Area, and the necessary space associated with building-support equipment; Architectural building features associated with housing the space and with the operational cleanliness of the functional operation of the facilities; Heating, Ventilating, and Air Conditioning (HVAC) systems for maintaining a clean and thermally stable ambient environment within the facilities; Plumbing systems that provide potable water and sanitary facilities for the occupants, plus stormwater drainage for transporting rainwater; Fire Protection systems that guard against fire damage to the facilities and their contents; Material handling systems for transporting personnel and heavy materials within the building areas; Mechanical process piping systems for liquids and gases that provide cooling and other service to experimental laser equipment and components; Electrical power and grounding systems that provide service and standby power to building and experimental equipment, including lighting distribution and communications systems for the facilities; Instrumentation and control systems that ensure the safe operation of conventional facilities systems, such as those listed above. Detailed requirements for building subsystems that are not addressed in this document (such as specific sizes, locations, or capacities) are included in detail-level NIP Project Interface Control Documents (ICDS)

  11. A database of volcanic hazards and their physical impacts to critical infrastructure (United States)

    Wilson, Grant; Wilson, Thomas; Deligne, Natalia


    Approximately 10% of the world's population lives within 100 km of historically active volcanoes. Consequently, considerable critical infrastructure is at risk of being affected by volcanic eruptions, where critical infrastructure includes: electricity and wastewater networks; water supply systems; transport routes; communications; and buildings. Appropriate risk management strategies are required to minimise the risk to infrastructure, which necessitates detailed understanding of both volcanic hazards and infrastructure parameters and vulnerabilities. To address this, we are developing a database of the physical impacts and vulnerability of critical infrastructure observed during/following historic eruptions, placed in the context of event-specific volcanic hazard and infrastructure parameters. Our database considers: volcanic hazard parameters for each case study eruption (tephra thickness, dynamic pressure of PDCs, etc.); inventory of infrastructure elements present within the study area (geographical extent, age, etc.); the type and number of impacts and disruption caused to particular infrastructure sectors; and the quantified assessment of the vulnerability of built environments. Data have been compiled from a wide range of literature, focussing in particular on impact assessment studies which document in detail the damage sustained by critical infrastructure during a given eruption. We are creating a new vulnerability ranking to quantify the vulnerability of built environments affected by volcanic eruptions. The ranking is based upon a range of physical impacts and service disruption criteria, and is assigned to each case study. This ranking will permit comparison of vulnerabilities between case studies as well as indicate expected vulnerability during future eruptions. We are also developing hazard intensity thresholds indicating when specific damage states are expected for different critical infrastructure sectors. Finally, we have developed a data quality

  12. Metallogenetic regularity exploration model and prospecting potential of the mesocenozoic volcanic type uranium deposit in the east of south China

    International Nuclear Information System (INIS)

    Wang Yusheng; Li Wenjun


    During the Meso-Cenozoic era, the crust in the east of South China experienced an evolutional process of compression-relaxed extension-local disintegration, correspondingly, three periods of volcanic activity were developed, forming initial volcanic cycle, principal volcanic cycle and caldera volcanic cycle. The caldera volcanic cycle was expressed as a 'bimodal type' rock suite, indicating the entering of the region into an evolutional stage of new embryonic refitting. The volcanic type uranium deposit is characterized by ore-formation during caldera volcanic cycle, ore control by the mobile belt of caldera volcanic cycle and double superposition and concentration, and it can be summarized as a new unconformity-related type uranium deposit of caldera volcanic series, which is divided into three morphological types: body type, layer type and vein type and relevant exploration models are proposed. The new unconformity-related type uranium deposits of the caldera volcanic series in the east of South China have a great prospecting potential. The tectonomagmatic complex area of the caldera volcanic cycle developed on the granite basement is the favourable target area in searching for large uranium deposits from now on

  13. The Te Rere and Okareka eruptive episodes : Okataina Volcanic Centre, Taupo Volcanic Zone, New Zealand

    International Nuclear Information System (INIS)

    Nairn, I.A.


    The Te Rere and Okareka eruptive episodes occurred within the Okataina Volcanic Centre at c. 21 000 and 18 000 yr B.P., respectively. The widespread rhyolitic pumice fall deposits of Te Rere Ash (volume 5 km 3 ) and Okareka Ash (6 km 3 ) are only rarely exposed in near-source areas, and locations of their vent areas have been uncertain. New exposures and petrographic and chemical analyses show that the Te Rere episode eruptions occurred from multiple vents, up to 20 km apart, on the Haroharo linear vent zone. The Okareka episode eruptions occurred from vents since buried beneath the Tarawera volcanic massif. Eruption of the rhyolitic Okareka pumice fall was immediately preceded by a small basaltic scoria eruption, apparently from vents close to those for the following rhyolite eruptions. Dacitic mixed pumices scattered within the rhyolite pumice layers immediately overlying the scoria were formed by mixing of the basalt and rhyolite magmas. The Te Rere and Okareka pyroclastic eruptions were both followed by extrusion of voluminous rhyolite lavas. These eruptive episodes mark the commencement of growth of the present-day Haroharo and Tarawera volcanic complexes. (author). 27 refs., 14 figs., 6 tabs

  14. Volcanic Eruptions in Kamchatka (United States)


    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Sheveluch Stratovolcano Click on the image for full resolution TIFF Klyuchevskoy Stratovolcano Click on the image for full resolution TIFF One of the most volcanically active regions of the world is the Kamchatka Peninsula in eastern Siberia, Russia. It is not uncommon for several volcanoes to be erupting at the same time. On April 26, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radioneter (ASTER) on NASA's Terra spacecraft captured these images of the Klyuchevskoy and Sheveluch stratovolcanoes, erupting simultaneously, and 80 kilometers (50 miles) apart. Over Klyuchevskoy, the thermal infrared data (overlaid in red) indicates that two open-channel lava flows are descending the northwest flank of the volcano. Also visible is an ash-and-water plume extending to the east. Sheveluch volcano is partially cloud-covered. The hot flows highlighted in red come from a lava dome at the summit. They are avalanches of material from the dome, and pyroclastic flows. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and

  15. Automatized near-real-time short-term Probabilistic Volcanic Hazard Assessment of tephra dispersion before eruptions: BET_VHst for Vesuvius and Campi Flegrei during recent exercises (United States)

    Selva, Jacopo; Costa, Antonio; Sandri, Laura; Rouwet, Dmtri; Tonini, Roberto; Macedonio, Giovanni; Marzocchi, Warner


    Probabilistic Volcanic Hazard Assessment (PVHA) represents the most complete scientific contribution for planning rational strategies aimed at mitigating the risk posed by volcanic activity at different time scales. The definition of the space-time window for PVHA is related to the kind of risk mitigation actions that are under consideration. Short temporal intervals (days to weeks) are important for short-term risk mitigation actions like the evacuation of a volcanic area. During volcanic unrest episodes or eruptions, it is of primary importance to produce short-term tephra fallout forecast, and frequently update it to account for the rapidly evolving situation. This information is obviously crucial for crisis management, since tephra may heavily affect building stability, public health, transportations and evacuation routes (airports, trains, road traffic) and lifelines (electric power supply). In this study, we propose a methodology named BET_VHst (Selva et al. 2014) for short-term PVHA of volcanic tephra dispersal based on automatic interpretation of measures from the monitoring system and physical models of tephra dispersal from all possible vent positions and eruptive sizes based on frequently updated meteorological forecasts. The large uncertainty at all the steps required for the analysis, both aleatory and epistemic, is treated by means of Bayesian inference and statistical mixing of long- and short-term analyses. The BET_VHst model is here presented through its implementation during two exercises organized for volcanoes in the Neapolitan area: MESIMEX for Mt. Vesuvius, and VUELCO for Campi Flegrei. References Selva J., Costa A., Sandri L., Macedonio G., Marzocchi W. (2014) Probabilistic short-term volcanic hazard in phases of unrest: a case study for tephra fallout, J. Geophys. Res., 119, doi: 10.1002/2014JB011252

  16. Quantification of Environmental Flow Requirements to Support Ecosystem Services of Oasis Areas: A Case Study in Tarim Basin, Northwest China

    Directory of Open Access Journals (Sweden)

    Jie Xue


    Full Text Available Recently, a wide range of quantitative research on the identification of environmental flow requirements (EFRs has been conducted. However, little focus is given to EFRs to maintain multiple ecosystem services in oasis areas. The present study quantifies the EFRs in oasis areas of Tarim Basin, Xinjiang, Northwest China on the basis of three ecosystem services: (1 maintenance of riverine ecosystem health, (2 assurance of the stability of oasis–desert ecotone and riparian (Tugai forests, and (3 restoration of oasis–desert ecotone groundwater. The identified consumptive and non-consumptive water requirements are used to quantify and determine the EFRs in Qira oasis by employing the summation and compatibility rules (maximum principle. Results indicate that the annual maximum, medium, and minimum EFRs are 0.752 × 108, 0.619 × 108, and 0.516 × 108 m3, respectively, which account for 58.75%, 48.36%, and 40.29% of the natural river runoff. The months between April and October are identified as the most important periods to maintain the EFRs. Moreover, the water requirement for groundwater restoration of the oasis–desert ecotone accounts for a large proportion, representing 48.27%, 42.32%, and 37.03% of the total EFRs at maximum, medium, and minimum levels, respectively. Therefore, to allocate the integrated EFRs, focus should be placed on the water demand of the desert vegetation’s groundwater restoration, which is crucial for maintaining desert vegetation to prevent sandstorms and soil erosion. This work provides a reference to quantify the EFRs of oasis areas in arid regions.

  17. Volcanic eruptions and solar activity (United States)

    Stothers, Richard B.


    The historical record of large volcanic eruptions from 1500 to 1980 is subjected to detailed time series analysis. In two weak but probably statistically significant periodicities of about 11 and 80 yr, the frequency of volcanic eruptions increases (decreases) slightly around the times of solar minimum (maximum). Time series analysis of the volcanogenic acidities in a deep ice core from Greenland reveals several very long periods ranging from about 80 to about 350 yr which are similar to the very slow solar cycles previously detected in auroral and C-14 records. Solar flares may cause changes in atmospheric circulation patterns that abruptly alter the earth's spin. The resulting jolt probably triggers small earthquakes which affect volcanism.

  18. The Lathrop Wells volcanic center

    International Nuclear Information System (INIS)

    Crowe, B.; Morley, R.


    The Lathrop Wells volcanic center is located 20 km south of the potential Yucca Mountain site, at the south end of the Yucca Mountain range. This paper discusses a detailed Study Plan which was prepared describing planned geochronology and field studies to assess the chronology of the Lathrop Wells volcanic center and other Quaternary volcanic centers in the region. A paper was published discussing the geomorphic and soil evidence for a late Pleistocene or Holoceno age for the main cone of the center. The purpose of this paper was to expose the ideas concerning the age of the Lathrop Wells center to scientific scrutiny. Additionally, field evidence was described suggesting the Lathrop Wells center may have formed from multiple eruptive events with significant intervals of no activity between events. This interpretation breaks with established convention in the volcanological literature that small volume basalt centers are monogenetic

  19. Andisols from Tondano Area, North Sulawesi: Properties and Classification

    Directory of Open Access Journals (Sweden)



    Full Text Available Three pedons of Andisol (TN-1, TN-2 and TN-3 developed from young volcanic materials of the Lokon, Soputan, and Lengkoan volcanoes respectively in the Tondano area, North Sulawesi, were studied in the field, and 18 soil samples were analysed in the laboratory for physical, chemical, and mineralogical properties, and they were classified according to Keys to Soil Taxonomy 2003. The results indicated that all the pedons meet the requirements of the andic soil properties, and thus classified into Andisol order. Pedon TN-1 meets bulk density 85%, and (Alo + 0.5Feo content extracted by ammonium oxalate > 2.0%, while pedons TN-2 and TN-3 meet the requirements of P retention > 25%, (Alo + 0.5Feo content > 0.4%, volcanic glass content > 5%, and value of [%(Alo+0.5Feo x 15.625 + (% volcanic glass] is > 36.25. Composition of sand mineral fraction indicate that pedon TN-1 and TN-3 show andesitic to basaltic volcanic materials, whereas pedon TN-2 with high olivin content belongs to basaltic volcanic materials. Clay minerals of all the pedons was dominated by hydrated-halloysite with few of disordered-kaolinite, which indicated a little weathering of the pedons. The pedons were classified at family level as Typic Hapludand, medial, amorphic, isothermic (TN-1, Humic Udivitrand, ashy, amorphic, isothermic (TN-2, and Alfic Hapludand, medial, glassy, isothermic (TN-3.

  20. Evidence for volcanism in NW Ishtar Terra, Venus

    International Nuclear Information System (INIS)

    Gaddis, L.; Greeley, R.


    Venera 15/16 radar data for an area in NW Ishtar Terra, Venus, show an area with moderate radar return and a smooth textured surface which embays low lying areas of the surrounding mountainous terrain. Although this unit may be an extension of the lava plains of Lakshmi Planum to the southeast, detailed study suggests a separate volcanic center in NW Ishtar Terra. Lakshmi Planum, on the Ishtar Terra highland, exhibits major volcanic and tectonic features. On the Venera radar image radar brightness is influenced by slope and roughness; radar-facing slopes (east-facing) and rough surfaces (approx. 8 cm average relief) are bright, while west-facing slopes and smooth surfaces are dark. A series of semi-circular features, apparently topographic depressions, do not conform in orientation to major structural trends in this region of NW Ishtar Terra. The large depression in NW Ishtar Terra is similar to the calderas of Colette and Sacajawea Paterae, as all three structures are large irregular depressions. NW Ishtar Terra appears to be the site of a volcanic center with a complex caldera structure, possibly more than one eruptive vent, and associated lobed flows at lower elevations. The morphologic similarity between this volcanic center and those of Colette and Sacajawea suggests that centralized eruptions have been the dominant form of volcanism in Ishtar. The location of this volcanic center at the intersection of two major compressional mountain belts and the large size of the calders (with an inferred larg/deep magma source) support a crustal thickening/melting rather than a hot-spot origin for these magmas

  1. Strike-slip pull-apart process and emplacement of Xiangshan uranium-producing volcanic basin

    International Nuclear Information System (INIS)

    Qiu Aijin; Guo Lingzhi; Shu Liangshu


    Xiangshan volcanic basin is one of the famous uranium-producing volcanic basins in China. Emplacement mechanism of Xiangshan uranium-producing volcanic basin is discussed on the basis of the latest research achievements of deep geology in Xiangshan area and the theory of continental dynamics. The study shows that volcanic activity in Xiangshan volcanic basin may be divided into two cycles, and its emplacement is controlled by strike-ship pull-apart process originated from the deep regional faults. Volcanic apparatus in the first cycle was emplaced in EW-trending structure activated by clockwise strike-slipping of NE-trending deep fault, forming the EW-trending fissure-type volcanic effusion belt. Volcanic apparatus in the second cycle was emplaced at junction points of SN-trending pull-apart structure activated by sinistral strike-slipping of NE-trending deep faults and EW-trending basement faults causing the center-type volcanic magma effusion and extrusion. Moreover, the formation mechanism of large-rich uranium deposits is discussed as well

  2. Assessment and Evaluation of Volcanic Rocks Used as Construction ...

    African Journals Online (AJOL)

    Assessment and Evaluation of Volcanic Rocks Used as Construction Materials in the City of Addis Ababa. ... So, field observation and sample collection for laboratory investigations were conducted on six selected target areas of the city periphery. In doing so, the compressive strength, open porosity, water absorption and ...

  3. An approach of understanding acid volcanics and tuffaceous ...

    Indian Academy of Sciences (India)

    Sukanta Goswami


    Mar 6, 2018 ... Presence of bimodal volcanism is an indication of continental rift setting. Various genetic processes ... relatively fast accumulation and great variety that .... The areas where fall deposits are better preserved ...... nental margin tectonism; Precamb. Res. ... arcs: An example from the Izu–Bonin Arc; J. Petrol. 43.

  4. Treatment of low-level radioactive waste using Volcanic ash

    International Nuclear Information System (INIS)

    Valdezco, E.M.; Marcelo, E.A.; Junio, J.B.; Caseria, E.S.; Salom, D.S.; Alamares, A.L.


    The effective application of volcanic ash, an indigenous adsorptive material abundant in the Mt. Pinatubo area, in the removal of radioiodine from radioactive waste streams was demonstrated. Factors such as availability, low cost and comparative retention capacity with respect to activated charcoal make volcanic ash an attractive alternative in the conditioning of radioactive waste containing radioiodine. Chemical precipitation was employed in the treatment of low level aqueous waste containing 137 Cs. It was shown that there exists an optimum concentration of ferric ion that promotes maximum precipitation of caesium. It was further demonstrated that complete removal of caesium can be achieved with the addition of nickel hexacyanoferrate. (author). 5 refs, 3 figs

  5. Treatment of low-level radioactive waste using Volcanic ash

    Energy Technology Data Exchange (ETDEWEB)

    Valdezco, E M; Marcelo, E A; Junio, J B; Caseria, E S; Salom, D S; Alamares, A L [Philippine Nuclear Research Inst., Manila (Philippines). Radiation Protection Services


    The effective application of volcanic ash, an indigenous adsorptive material abundant in the Mt. Pinatubo area, in the removal of radioiodine from radioactive waste streams was demonstrated. Factors such as availability, low cost and comparative retention capacity with respect to activated charcoal make volcanic ash an attractive alternative in the conditioning of radioactive waste containing radioiodine. Chemical precipitation was employed in the treatment of low level aqueous waste containing {sup 137}Cs. It was shown that there exists an optimum concentration of ferric ion that promotes maximum precipitation of caesium. It was further demonstrated that complete removal of caesium can be achieved with the addition of nickel hexacyanoferrate. (author). 5 refs, 3 figs.


    International Nuclear Information System (INIS)

    G.A. Valentine; F.V. Perry; S. Dartevelle


    Risk is the product of the probability and consequences of an event. Both of these must be based upon sound science that integrates field data, experiments, and modeling, but must also be useful to decision makers who likely do not understand all aspects of the underlying science. We review a decision framework used in many fields such as performance assessment for hazardous and/or radioactive waste disposal sites that can serve to guide the volcanological community towards integrated risk assessment. In this framework the underlying scientific understanding of processes that affect probability and consequences drive the decision-level results, but in turn these results can drive focused research in areas that cause the greatest level of uncertainty at the decision level. We review two examples of the determination of volcanic event probability: (1) probability of a new volcano forming at the proposed Yucca Mountain radioactive waste repository, and (2) probability that a subsurface repository in Japan would be affected by the nearby formation of a new stratovolcano. We also provide examples of work on consequences of explosive eruptions, within the framework mentioned above. These include field-based studies aimed at providing data for ''closure'' of wall rock erosion terms in a conduit flow model, predictions of dynamic pressure and other variables related to damage by pyroclastic flow into underground structures, and vulnerability criteria for structures subjected to conditions of explosive eruption. Process models (e.g., multiphase flow) are important for testing the validity or relative importance of possible scenarios in a volcanic risk assessment. We show how time-dependent multiphase modeling of explosive ''eruption'' of basaltic magma into an open tunnel (drift) at the Yucca Mountain repository provides insight into proposed scenarios that include the development of secondary pathways to the Earth's surface. Addressing volcanic risk within a decision

  7. Global volcanic aerosol properties derived from emissions, 1990-2014, using CESM1(WACCM): VOLCANIC AEROSOLS DERIVED FROM EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Michael J. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Schmidt, Anja [School of Earth and Environment, University of Leeds, Leeds UK; Easter, Richard [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Solomon, Susan [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge Massachusetts USA; Kinnison, Douglas E. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Ghan, Steven J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Neely, Ryan R. [School of Earth and Environment, University of Leeds, Leeds UK; National Centre for Atmospheric Science, University of Leeds, Leeds UK; Marsh, Daniel R. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Conley, Andrew [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Bardeen, Charles G. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Gettelman, Andrew [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA


    Accurate representation of global stratospheric aerosol properties from volcanic and non-volcanic sulfur emissions is key to understanding the cooling effects and ozone-loss enhancements of recent volcanic activity. Attribution of climate and ozone variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the apparent rate of global average temperature increases, and variable recovery of the Antarctic ozone hole. We have developed a climatology of global aerosol properties from 1990 to 2014 calculated based on volcanic and non-volcanic emissions of sulfur sources. We have complied a database of volcanic SO2 emissions and plume altitudes for eruptions between 1990 and 2014, and a new prognostic capability for simulating stratospheric sulfate aerosols in version 5 of the Whole Atmosphere Community Climate Model, a component of the Community Earth System Model. Our climatology shows remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD), and with in situ measurements of aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD climatology represents a significant improvement over satellite-based analyses, which ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at mid- and high-latitudes. Our SAD climatology significantly improves on that provided for the Chemistry-Climate Model Initiative, which misses 60% of the SAD measured in situ. Our climatology of aerosol properties is publicly available on the Earth System Grid.

  8. Monitoring the Sumatra volcanic arc with InSAR (United States)

    Chaussard, E.; Hong, S.; Amelung, F.


    The Sumatra volcanic arc is the result of the subduction of the Indo-Australian plate under the Sunda plate. The arc consists of 35 known volcanic centers, subaerials on the west coast of the Sumatra and Andaman Islands and submarines between these islands. Six active centers are known in the Sumatra volcanic arc. Surface deformation in volcanic areas usually indicates movement of magma or hydrothermal fluids at depth. Here we present a satellite-based Interferometric synthetic aperture radar (InSAR) survey of the Sumatra volcanic arc using ALOS data. Spanning the years 2007 to beginning of 2009, our survey reveals the background level of activity of the 35 volcanoes. We processed data from 40 tracks (24 in descending orbit and 16 in ascending orbit) to cover the whole Sumatra arc. In the first results five of these six known active centers show no sign of activity: Dempo, Kaba, Marapi, Talang and Peuet. The remaining active volcano, Mount Kerinci, has an ambiguous signal. We used pair-wise logic and InSAR time series of the available ALOS data to determine if the observed InSAR signal is caused by ground deformation or by atmospheric delays.

  9. Eruptive history of the Elysium volcanic province of Mars

    International Nuclear Information System (INIS)

    Tanaka, K.L.; Scott, D.H.


    New geologic mapping of the Elysium volcanic province at 1:2,000,000 scale and crater counts provide a basis for describing its overall eruptive history. Four stages are listed and described in order of their relative age. They are also distinguished by eruption style and location. Stage 1: Central volcanism at Hecates and Albor Tholi. Stage 2: Shield and complex volcanism at Elysium Mons and Elysium Fossae. Stage 3: Rille volcanism at Elysium Fossae and Utopia Planitia. Stage 4: Flood lava and pyroclastic eruptions at Hecates Tholus and Elysium Mons. Tectonic and channeling activity in the Elysium region is intimately associated with volcanism. Recent work indicates that isostatic uplift of Tharsis, loading by Elysium Mons, and flexural uplift of the Elysium rise produced the stresses responsible for the fracturing and wrinkle-ridge formation in the region. Coeval faulting and channel formation almost certainly occurred in the pertinent areas in Stages 2 to 4. Older faults east of the lava flows and channels on Hecates Tholus may be coeval with Stage 1

  10. Systematic change in global patterns of streamflow following volcanic eruptions. (United States)

    Iles, Carley E; Hegerl, Gabriele C


    Following large explosive volcanic eruptions precipitation decreases over much of the globe1-6, particularly in climatologically wet regions4,5. Stratospheric volcanic aerosols reflect sunlight, which reduces evaporation, whilst surface cooling stabilises the atmosphere and reduces its water-holding capacity7. Circulation changes modulate this global precipitation reduction on regional scales1,8-10. Despite the importance of rivers to people, it has been unclear whether volcanism causes detectable changes in streamflow given large natural variability. Here we analyse observational records of streamflow volume for fifty large rivers from around the world which cover between two and 6 major volcanic eruptions in the 20 th and late 19 th century. We find statistically significant reductions in flow following eruptions for the Amazon, Congo, Nile, Orange, Ob, Yenisey and Kolyma amongst others. When data from neighbouring rivers are combined - based on the areas where climate models simulate either an increase or a decrease in precipitation following eruptions - a significant (peruptions is detected in northern South American, central African and high-latitude Asian rivers, and on average across wet tropical and subtropical regions. We also detect a significant increase in southern South American and SW North American rivers. This suggests that future volcanic eruptions could substantially affect global water availability.

  11. The Volcanism Ontology (VO): a model of the volcanic system (United States)

    Myer, J.; Babaie, H. A.


    We have modeled a part of the complex material and process entities and properties of the volcanic system in the Volcanism Ontology (VO) applying several top-level ontologies such as Basic Formal Ontology (BFO), SWEET, and Ontology of Physics for Biology (OPB) within a single framework. The continuant concepts in BFO describe features with instances that persist as wholes through time and have qualities (attributes) that may change (e.g., state, composition, and location). In VO, the continuants include lava, volcanic rock, and volcano. The occurrent concepts in BFO include processes, their temporal boundaries, and the spatio-temporal regions within which they occur. In VO, these include eruption (process), the onset of pyroclastic flow (temporal boundary), and the space and time span of the crystallization of lava in a lava tube (spatio-temporal region). These processes can be of physical (e.g., debris flow, crystallization, injection), atmospheric (e.g., vapor emission, ash particles blocking solar radiation), hydrological (e.g., diffusion of water vapor, hot spring), thermal (e.g., cooling of lava) and other types. The properties (predicates) relate continuants to other continuants, occurrents to continuants, and occurrents to occurrents. The ontology also models other concepts such as laboratory and field procedures by volcanologists, sampling by sensors, and the type of instruments applied in monitoring volcanic activity. When deployed on the web, VO will be used to explicitly and formally annotate data and information collected by volcanologists based on domain knowledge. This will enable the integration of global volcanic data and improve the interoperability of software that deal with such data.

  12. Ejection age of volcano rocks and trend of volcanic activity

    Energy Technology Data Exchange (ETDEWEB)

    Sakaguchi, Keiichi


    This report is II-7 of an interim report on research and development of the Sunshine Project for 1986. This report considers on the trend of volcanic activities in the South of Kyushu area. K-Ar age measurement was newly made and reported. Age values obtained were 1.09 plus minus 0.21 Ma for Nagaoyama andesite, 1.33 plus minus 0.18 Ma for Nozato andesite, and 0.3 plus minus 0.1 Ma for Imuta volcanos. Including these age values, from the age values and their distribution of the volcanic rocks in the South Kyushu district, the following three districts were selected to represent the volcanic activities since the Pliocene Epoch. As these districts are mutually overwrapped, verification at these overwrapped districts are necessary. (4 figs, 1 tab, 12 refs)

  13. Months between rejuvenation and volcanic eruption at Yellowstone caldera, Wyoming (United States)

    Till, Christy B.; Vazquez, Jorge A.; Boyce, Jeremy W


    Rejuvenation of previously intruded silicic magma is an important process leading to effusive rhyolite, which is the most common product of volcanism at calderas with protracted histories of eruption and unrest such as Yellowstone, Long Valley, and Valles, USA. Although orders of magnitude smaller in volume than rare caldera-forming super-eruptions, these relatively frequent effusions of rhyolite are comparable to the largest eruptions of the 20th century and pose a considerable volcanic hazard. However, the physical pathway from rejuvenation to eruption of silicic magma is unclear particularly because the time between reheating of a subvolcanic intrusion and eruption is poorly quantified. This study uses geospeedometry of trace element profiles with nanometer resolution in sanidine crystals to reveal that Yellowstone’s most recent volcanic cycle began when remobilization of a near- or sub-solidus silicic magma occurred less than 10 months prior to eruption, following a 220,000 year period of volcanic repose. Our results reveal a geologically rapid timescale for rejuvenation and effusion of ~3 km3 of high-silica rhyolite lava even after protracted cooling of the subvolcanic system, which is consistent with recent physical modeling that predict a timescale of several years or less. Future renewal of rhyolitic volcanism at Yellowstone is likely to require an energetic intrusion of mafic or silicic magma into the shallow subvolcanic reservoir and could rapidly generate an eruptible rhyolite on timescales similar to those documented here.

  14. The Earth System Science Pathfinder VOLCAM Volcanic Hazard Mission (United States)

    Krueger, Arlin J.


    The VOLCAM mission is planned for research on volcanic eruptions and as a demonstration of a satellite system for measuring the location and density of volcanic eruption clouds for use in mitigating hazards to aircraft by the operational air traffic control systems. A requirement for 15 minute time resolution is met by flight as payloads of opportunity on geostationary satellites. Volcanic sulfur dioxide and ash are detected using techniques that have been developed from polar orbiting TOMS (UV) and AVHRR (IR) data. Seven band UV and three band IR filter wheel cameras are designed for continuous observation of the full disk of the earth with moderate (10 - 20 km) ground resolution. This resolution can be achieved with small, low cost instruments but is adequate for discrimination of ash and sulfur dioxide in the volcanic clouds from meteorological clouds and ozone. The false alarm rate is small through use of sulfur dioxide as a unique tracer of volcanic clouds. The UV band wavelengths are optimized to detect very small sulfur dioxide amounts that are present in pre-eruptive outgassing of volcanoes. The system is also capable of tracking dust and smoke clouds, and will be used to infer winds at tropopause level from the correlation of total ozone with potential vorticity.

  15. Candidate constructional volcanic edifices on Mercury


    Wright, J.; Rothery, D. A.; Balme, M. R.; Conway, S. J.


    [Introduction] Studies using MESSENGER data suggest that Mercury’s crust is predominantly a product of effusive volcanism that occurred in the first billion years following the planet’s formation. Despite this planet-wide effusive volcanism, no constructional volcanic edifices, characterized by a topographic rise, have hitherto been robustly identified on Mercury, whereas constructional volcanoes are common on other planetary bodies in the solar system with volcanic histories. Here, we descri...

  16. Probabilistic short-term volcanic hazard in phases of unrest: A case study for tephra fallout (United States)

    Selva, Jacopo; Costa, Antonio; Sandri, Laura; Macedonio, Giovanni; Marzocchi, Warner


    During volcanic crises, volcanologists estimate the impact of possible imminent eruptions usually through deterministic modeling of the effects of one or a few preestablished scenarios. Despite such an approach may bring an important information to the decision makers, the sole use of deterministic scenarios does not allow scientists to properly take into consideration all uncertainties, and it cannot be used to assess quantitatively the risk because the latter unavoidably requires a probabilistic approach. We present a model based on the concept of Bayesian event tree (hereinafter named BET_VH_ST, standing for Bayesian event tree for short-term volcanic hazard), for short-term near-real-time probabilistic volcanic hazard analysis formulated for any potential hazardous phenomenon accompanying an eruption. The specific goal of BET_VH_ST is to produce a quantitative assessment of the probability of exceedance of any potential level of intensity for a given volcanic hazard due to eruptions within restricted time windows (hours to days) in any area surrounding the volcano, accounting for all natural and epistemic uncertainties. BET_VH_ST properly assesses the conditional probability at each level of the event tree accounting for any relevant information derived from the monitoring system, theoretical models, and the past history of the volcano, propagating any relevant epistemic uncertainty underlying these assessments. As an application example of the model, we apply BET_VH_ST to assess short-term volcanic hazard related to tephra loading during Major Emergency Simulation Exercise, a major exercise at Mount Vesuvius that took place from 19 to 23 October 2006, consisting in a blind simulation of Vesuvius reactivation, from the early warning phase up to the final eruption, including the evacuation of a sample of about 2000 people from the area at risk. The results show that BET_VH_ST is able to produce short-term forecasts of the impact of tephra fall during a rapidly

  17. Disruptive event analysis: volcanism and igneous intrusion

    International Nuclear Information System (INIS)

    Crowe, B.M.


    Three basic topics are addressed for the disruptive event analysis: first, the range of disruptive consequences of a radioactive waste repository by volcanic activity; second, the possible reduction of the risk of disruption by volcanic activity through selective siting of a repository; and third, the quantification of the probability of repository disruption by volcanic activity

  18. Robust satellite techniques for monitoring volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Pergola, N.; Pietrapertosa, C. [Consiglio Nazionale delle Ricerche, Istituto di Metodologie Avanzate, Tito Scalo, PZ (Italy); Lacava, T.; Tramutoli, V. [Potenza Universita' della Basilicata, Potenza (Italy). Dipt. di Ingegneria e Fisica dell' Ambiente


    Through this paper the robust approach to monitoring volcanic aerosols by satellite is applied to an extended set of events affecting Stromboli and Etna volcanoes to assess its performance in automated detection of eruptive clouds and in monitoring pre-eruptive emission activities. Using only NOAA/AVHRR data at hand (without any specific atmospheric model or ancillary ground-based measurements) the proposed method automatically discriminates meteorological from eruptive volcanic clouds and, in several cases, identified pre-eruptive anomalies in the emission rates not identified by traditional methods. The main merit of this approach is its effectiveness in recognising field anomalies also in the presence of a highly variable surface background as well as its intrinsic exportability not only on different geographic areas but also on different satellite instrumental packages. In particular, the possibility to extend the proposed method to the incoming new MSG/SEVIRI satellite package (which is going to fly next year) with its improved spectral (specific bands for SO{sub 2}) and temporal (up to 15 min) resolutions has been evaluated representing the natural continuation of this work.

  19. Active Volcanic Eruptions on Io (United States)


    Six views of the volcanic plume named Prometheus, as seen against Io's disk and near the bright limb (edge) of the satellite by the SSI camera on the Galileo spacecraft during its second (G2) orbit of Jupiter. North is to the top of each frame. To the south-southeast of Prometheus is another bright spot that appears to be an active plume erupting from a feature named Culann Patera. Prometheus was active 17 years ago during both Voyager flybys, but no activity was detected by Voyager at Culann. Both of these plumes were seen to glow in the dark in an eclipse image acquired by the imaging camera during Galileo's first (G1) orbit, and hot spots at these locations were detected by Galileo's Near-Infrared Mapping Spectrometer.The plumes are thought to be driven by heating sulfur dioxide in Io's subsurface into an expanding fluid or 'geyser'. The long-lived nature of these eruptions requires that a substantial supply of sulfur dioxide must be available in Io's subsurface, similar to groundwater. Sulfur dioxide gas condenses into small particles of 'snow' in the expanding plume, and the small particles scatter light and appear bright at short wavelengths. The images shown here were acquired through the shortest-wavelength filter (violet) of the Galileo camera. Prometheus is about 300 km wide and 75 km high and Culann is about 150 km wide and less than 50 km high. The images were acquired on September 4, 1996 at a range of 2,000,000 km (20 km/pixel resolution). Prometheus is named after the Greek fire god and Culann is named after the Celtic smith god.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL Background information and educational context for the images can

  20. Mantle updrafts and mechanisms of oceanic volcanism (United States)

    Anderson, Don L.; Natland, James H.


    Convection in an isolated planet is characterized by narrow downwellings and broad updrafts-consequences of Archimedes' principle, the cooling required by the second law of thermodynamics, and the effect of compression on material properties. A mature cooling planet with a conductive low-viscosity core develops a thick insulating surface boundary layer with a thermal maximum, a subadiabatic interior, and a cooling highly conductive but thin boundary layer above the core. Parts of the surface layer sink into the interior, displacing older, colder material, which is entrained by spreading ridges. Magma characteristics of intraplate volcanoes are derived from within the upper boundary layer. Upper mantle features revealed by seismic tomography and that are apparently related to surface volcanoes are intrinsically broad and are not due to unresolved narrow jets. Their morphology, aspect ratio, inferred ascent rate, and temperature show that they are passively responding to downward fluxes, as appropriate for a cooling planet that is losing more heat through its surface than is being provided from its core or from radioactive heating. Response to doward flux is the inverse of the heat-pipe/mantle-plume mode of planetary cooling. Shear-driven melt extraction from the surface boundary layer explains volcanic provinces such as Yellowstone, Hawaii, and Samoa. Passive upwellings from deeper in the upper mantle feed ridges and near-ridge hotspots, and others interact with the sheared and metasomatized surface layer. Normal plate tectonic processes are responsible both for plate boundary and intraplate swells and volcanism.

  1. Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, N.E.; Flexser, S.


    Recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. The areas studied were: (1) Salton Trough, (2) The Geysers-Clear Lake, (3) Long Valley caldera, (4) Coso volcanic field, and (5) Medicine Lake volcano, all located in California and all selected on the basis of recent volcanic activity and published indications of crustal melt zones. 23 figs.

  2. Petrographic and geochemical data for Cenozoic volcanic rocks of the Bodie Hills, California and Nevada (United States)

    du Bray, Edward A.; John, David A.; Box, Stephen E.; Vikre, Peter G.; Fleck, Robert J.; Cousens, Brian L.


    Petrographic and geochemical data for Cenozoic volcanic rocks of the Bodie Hills, California and Nevada // // This report presents petrographic and geochemical data for samples collected during investigations of Tertiary volcanism in the Bodie Hills of California and Nevada. Igneous rocks in the area are principally 15–6 Ma subduction-related volcanic rocks of the Bodie Hills volcanic field but also include 3.9–0.1 Ma rocks of the bimodal, post-subduction Aurora volcanic field. Limited petrographic results for local basement rocks, including Mesozoic granitoid rocks and their metamorphic host rocks, are also included in the compilation. The petrographic data include visual estimates of phenocryst abundances as well as other diagnostic petrographic criteria. The geochemical data include whole-rock major oxide and trace element data, as well as limited whole-rock isotopic data.

  3. Can rain cause volcanic eruptions? (United States)

    Mastin, Larry G.


    Volcanic eruptions are renowned for their violence and destructive power. This power comes ultimately from the heat and pressure of molten rock and its contained gases. Therefore we rarely consider the possibility that meteoric phenomena, like rainfall, could promote or inhibit their occurrence. Yet from time to time observers have suggested that weather may affect volcanic activity. In the late 1800's, for example, one of the first geologists to visit the island of Hawaii, J.D. Dana, speculated that rainfall influenced the occurrence of eruptions there. In the early 1900's, volcanologists suggested that some eruptions from Mount Lassen, Calif., were caused by the infiltration of snowmelt into the volcano's hot summit. Most such associations have not been provable because of lack of information; others have been dismissed after careful evaluation of the evidence.

  4. Source mechanisms of volcanic tsunamis. (United States)

    Paris, Raphaël


    Volcanic tsunamis are generated by a variety of mechanisms, including volcano-tectonic earthquakes, slope instabilities, pyroclastic flows, underwater explosions, shock waves and caldera collapse. In this review, we focus on the lessons that can be learnt from past events and address the influence of parameters such as volume flux of mass flows, explosion energy or duration of caldera collapse on tsunami generation. The diversity of waves in terms of amplitude, period, form, dispersion, etc. poses difficulties for integration and harmonization of sources to be used for numerical models and probabilistic tsunami hazard maps. In many cases, monitoring and warning of volcanic tsunamis remain challenging (further technical and scientific developments being necessary) and must be coupled with policies of population preparedness. © 2015 The Author(s).

  5. Improving global detection of volcanic eruptions using the Ozone Monitoring Instrument (OMI

    Directory of Open Access Journals (Sweden)

    V. J. B. Flower


    Full Text Available Volcanic eruptions pose an ever-present threat to human populations around the globe, but many active volcanoes remain poorly monitored. In regions where ground-based monitoring is present the effects of volcanic eruptions can be moderated through observational alerts to both local populations and service providers, such as air traffic control. However, in regions where volcano monitoring is limited satellite-based remote sensing provides a global data source that can be utilised to provide near-real-time identification of volcanic activity. This paper details a volcanic plume detection method capable of identifying smaller eruptions than is currently feasible, which could potentially be incorporated into automated volcanic alert systems. This method utilises daily, global observations of sulfur dioxide (SO2 by the Ozone Monitoring Instrument (OMI on NASA's Aura satellite. Following identification and classification of known volcanic eruptions in 2005–2009, the OMI SO2 data, analysed using a logistic regression analysis, permitted the correct classification of volcanic events with an overall accuracy of over 80 %. Accurate volcanic plume identification was possible when lower-tropospheric SO2 loading exceeded ∼ 400 t. The accuracy and minimal user input requirements of the developed procedure provide a basis for incorporation into automated SO2 alert systems.

  6. Volcanic deformation in the Andes (United States)

    Riddick, S.; Fournier, T.; Pritchard, M.


    We present the results from an InSAR survey of volcanic activity in South America. We use data from the Japanese Space Agency's ALOS L-band radar satellite from 2006-2009. The L-band instrument provides better coherence in densely vegetated regions, compared to the shorter wave length C-band data. The survey reveals volcano related deformation in regions, north, central and southern, of the Andes volcanic arc. Since observations are limited to the austral summer, comprehensive coverage of all volcanoes is not possible. Yet, our combined observations reveal volcanic/hydrothermal deformation at Lonquimay, Llaima, Laguna del Maule, and Chaitén volcanoes, extend deformation measurements at Copahue, and illustrate temporal complexity to the previously described deformation at Cerro Hudson and Cordón Caulle. No precursory deformation is apparent before the large Chaitén eruption (VEI_5) of 2 May 2008, (at least before 16 April) suggesting rapid magma movement from depth at this long dormant volcano. Subsidence at Ticsani Volcano occurred coincident with an earthquake swarm in the same region.

  7. Volcanic mercury in Pinus canariensis (United States)

    Rodríguez Martín, José Antonio; Nanos, Nikos; Miranda, José Carlos; Carbonell, Gregoria; Gil, Luis


    Mercury (Hg) is a toxic element that is emitted to the atmosphere by both human activities and natural processes. Volcanic emissions are considered a natural source of mercury in the environment. In some cases, tree ring records taken close to volcanoes and their relation to volcanic activity over time are contradictory. In 1949, the Hoyo Negro volcano (La Palma-Canary Islands) produced significant pyroclastic flows that damaged the nearby stand of Pinus canariensis. Recently, 60 years after the eruption, we assessed mercury concentrations in the stem of a pine which survived volcano formation, located at a distance of 50 m from the crater. We show that Hg content in a wound caused by pyroclastic impacts (22.3 μg kg-1) is an order of magnitude higher than the Hg concentrations measured in the xylem before and after the eruption (2.3 μg kg-1). Thus, mercury emissions originating from the eruption remained only as a mark—in pyroclastic wounds—and can be considered a sporadic and very high mercury input that did not affect the overall Hg input in the xylem. In addition, mercury contents recorded in the phloem (9.5 μg kg-1) and bark (6.0 μg kg-1) suggest that mercury shifts towards non-living tissues of the pine, an aspect that can be related to detoxification in volcanism-adapted species.

  8. Source mechanism of volcanic tremor

    Energy Technology Data Exchange (ETDEWEB)

    Ferrick, M.G.; Qamar, A.; St. Lawrence, W.F.


    Low-frequency (<10 Hz) volcanic earthquakes originate at a wide range of depths and occur before, during, and after magmatic eruptions. The characteristics of these earthquakes suggest that they are not typical tectonic events. Physically analogous processes occur in hydraulic fracturing of rock formations, low-frequency icequakes in temperate glaciers, and autoresonance in hydroelectric power stations. We propose that unsteady fluid flow in volcanic conduits is the common source mechanism of low-frequency volcanic earthquakes (tremor). The fluid dynamic source mechanism explains low-frequency earthquakes of arbitrary duration, magnitude, and depth of origin, as unsteady flow is independent of physical properties of the fluid and conduit. Fluid transients occur in both low-viscosity gases and high-viscosity liquids. A fluid transient analysis can be formulated as generally as is warranted by knowledge of the composition and physical properties of the fluid, material properties, geometry and roughness of the conduit, and boundary conditions. To demonstrate the analytical potential of the fluid dynamic theory, we consider a single-phase fluid, a melt of Mount Hood andesite at 1250/sup 0/C, in which significant pressure and velocity variations occur only in the longitudinal direction. Further simplification of the conservation of mass and momentum equations presents an eigenvalue problem that is solved to determine the natural frequencies and associated damping of flow and pressure oscillations.

  9. Volcanic mercury in Pinus canariensis. (United States)

    Rodríguez Martín, José Antonio; Nanos, Nikos; Miranda, José Carlos; Carbonell, Gregoria; Gil, Luis


    Mercury (Hg) is a toxic element that is emitted to the atmosphere by both human activities and natural processes. Volcanic emissions are considered a natural source of mercury in the environment. In some cases, tree ring records taken close to volcanoes and their relation to volcanic activity over time are contradictory. In 1949, the Hoyo Negro volcano (La Palma-Canary Islands) produced significant pyroclastic flows that damaged the nearby stand of Pinus canariensis. Recently, 60 years after the eruption, we assessed mercury concentrations in the stem of a pine which survived volcano formation, located at a distance of 50 m from the crater. We show that Hg content in a wound caused by pyroclastic impacts (22.3 μg kg(-1)) is an order of magnitude higher than the Hg concentrations measured in the xylem before and after the eruption (2.3 μg kg(-1)). Thus, mercury emissions originating from the eruption remained only as a mark-in pyroclastic wounds-and can be considered a sporadic and very high mercury input that did not affect the overall Hg input in the xylem. In addition, mercury contents recorded in the phloem (9.5 μg kg(-1)) and bark (6.0 μg kg(-1)) suggest that mercury shifts towards non-living tissues of the pine, an aspect that can be related to detoxification in volcanism-adapted species.

  10. Local to global: a collaborative approach to volcanic risk assessment (United States)

    Calder, Eliza; Loughlin, Sue; Barsotti, Sara; Bonadonna, Costanza; Jenkins, Susanna


    Volcanic risk assessments at all scales present challenges related to the multitude of volcanic hazards, data gaps (hazards and vulnerability in particular), model representation and resources. Volcanic hazards include lahars, pyroclastic density currents, lava flows, tephra fall, ballistics, gas dispersal and also earthquakes, debris avalanches, tsunamis and more ... they can occur in different combinations and interact in different ways throughout the unrest, eruption and post-eruption period. Volcanoes and volcanic hazards also interact with other natural hazards (e.g. intense rainfall). Currently many hazards assessments consider the hazards from a single volcano but at national to regional scales the potential impacts of multiple volcanoes over time become important. The hazards that have the greatest tendency to affect large areas up to global scale are those transported in the atmosphere: volcanic particles and gases. Volcanic ash dispersal has the greatest potential to directly or indirectly affect the largest number of people worldwide, it is currently the only volcanic hazard for which a global assessment exists. The quantitative framework used (primarily at a regional scale) considers the hazard at a given location from any volcano. Flow hazards such as lahars and floods can have devastating impacts tens of kilometres from a source volcano and lahars can be devastating decades after an eruption has ended. Quantitative assessment of impacts is increasingly undertaken after eruptions to identify thresholds for damage and reduced functionality. Some hazards such as lava flows could be considered binary (totally destructive) but others (e.g. ash fall) have varying degrees of impact. Such assessments are needed to enhance available impact and vulnerability data. Currently, most studies focus on physical vulnerability but there is a growing emphasis on social vulnerability showing that it is highly variable and dynamic with pre-eruption socio

  11. Initial discussion on ore-forming conditions and prospecting direction of volcanic type uranium deposits in the gangdise tectonic belt

    International Nuclear Information System (INIS)

    Zhao Baoguang; Wang Sili; Wang Qin; Sun Yue; Du Xiaolin; Chen Yuliang


    The most active volcanic activity in the Gangdise tectonic belt happened in early Cretaceous, Paleocene and Eocene, and Eocene is the most active period. The distribution of volcanic rock is controlled by latitudinal deep fault and deuteric longitudinal fault. Paleo-volcano was located at these structural compounds frequently. The volcanics which appeared near the merdional large scale pull-apart construction in Neogene is considered as land facies medium-acidic volcanics which brought by various kinds of volcanic basin. A large stream sediment anomaly (>6.8 x 10 -6 ) has been found at Cenozoic volcanics in south of CuoQin basin, and its areas amount to hundreds square kilometers. The uranium content of volcanics in Wuyu basin amounts to 20.0 x 10 -6 at most. It has favorable Ore-forming conditions for forming volcanic type uranium deposit due to the volcanic geologic environment, accompanying mineral, region feature of geochemistry and geophysical, volcanic-tectonic depression and so on. The major prospecting targets are the south of CuoQin basin and the Nanmulin district. (authors)

  12. Petrology and geochronology of metamorphosed volcanic rocks and a middle Cretaceous volcanic neck in the east-central Sierra Nevada, California. (United States)

    Kistler, R.W.; Swanson, S.E.


    Metamorphosed Mesozoic volcanic rocks from the E-central Sierra Nevada range in composition from basalt to rhyolite and have ages, based on whole rock Rb-Sr and U-Pb zircon dating, of about 237- 224, 185, 163, 134, and 100Ma. The major plutons of the batholith in this area are of Triassic (215-200Ma) and Cretaceous (94-80Ma) ages. Initial 87Sr/86Sr values for the metamorphosed volcanic rocks of the area are in the range from 0.7042 to 0.7058 and are generally different from the values for the surrounding batholithic rocks (0.7056-0.7066). A circular, zoned granitic pluton, with an outcrop area of 2.5km2, similar in appearance to a ring dike complex, was apparently a conduit for some or possibly all of the middle-Cretaceous metamorphosed volcanic rocks exposed about 5km to the S in the western part of the Ritter Range. Samples from the metamorphosed volcanic rocks and the pluton yield a Rb/Sr whole rock isochron age of 99.9+ or -2.2Ma with an intitial 87Sr/86Sr of 0.7048+ or -0.00001. Major element variation diagrams of the pluton and volcanic rocks define coincident compositional trends. The ages of volcanic events relative to the ages of the major intrusive epochs and the major element and isotopic compositions of the volcanic rocks relative to the major plutons indicate that the volcanic rocks are not simply or directly related to the major plutons in the Sierra Nevada. -from Authors

  13. Multiteide Project: Multiparametric characterization of the activity of Teide-Pico Viejo volcanic system (United States)

    Domínguez Cerdeña, Itahiza; Villasante-Marcos, Victor; Meletlidis, Stavros; Sainz-Maza, Sergio; Abella, Rafael; Torres, Pedro A.; Sánchez, Nieves; Luengo-Oroz, Natividad; José Blanco, María; García-Cañada, Laura; Pereda de Pablo, Jorge; Lamolda, Héctor; Moure, David; Del Fresno, Carmen; Finizola, Anthony; Felepto, Alicia


    Teide-Pico Viejo complex stands for one of the major natural volcanic hazards in the Canary Islands, due to the expected types of eruptions in the area and the high number of inhabitants in Tenerife Island. Therefore, it is necessary to have a volcanic alert system able to afford a precise assessment of the current state of the complex. For this purpose, the knowledge of the expected signals at each volcanic activity level is required. Moreover, the external effects that can affect the measurements shall be distinguished, external influences as the atmosphere are qualitatively known but have not been quantified yet. The objective of the project is to collect, analyze and jointly and continuously evaluate over time geophysical, geodetic, geochemical and meteorological data from the Teide-Pico Viejo complex and its surroundings. A continuous multiparametric network have been deployed in the area, which, together with the data provided by the Volcano Monitoring Network of the Instituto Geográfico Nacional (IGN) and data from other institutions will provide a comprehensive set of data with high resolution in both space and time. This multiparametric network includes a seismic array, two self-potential lines for continuous measurements, five magnetometers and two weather stations. The network will be complemented with 8 CGPS stations, one tiltmeter, 10 seismic stations, and four thermometric stations on the fumaroles of Teide volcano that IGN already manage in Tenerife. The data will be completed with the results from different repeated surveys of self potential, soil temperature and CO2 diffuse flux in several pre-established areas on top of Teide throughout the entire duration of project. During the project, new computation tools will be developed to study the correlation between the different parameters analyzed. The results obtained will characterize the possible seasonal fluctuations of each parameter and the variations related to meteorological phenomena. In

  14. Calderas and mineralization: volcanic geology and mineralization in the Chianti caldera complex, Trans-Pecos Texas

    Energy Technology Data Exchange (ETDEWEB)

    Duex, T.W.; Henry, C.D.


    This report describes preliminary results of an ongoing study of the volcanic stratigraphy, caldera activity, and known and potential mineralization of the Chinati Mountains area of Trans-Pecos Texas. Many ore deposits are spatially associated with calderas and other volcanic centers. A genetic relationship between calderas and base and precious metal mineralization has been proposed by some and denied by others. Steven and others have demonstrated that calderas provide an important setting for mineralization in the San Juan volcanic field of Colorado. Mineralization is not found in all calderas but is apparently restricted to calderas that had complex, postsubsidence igneous activity. A comparison of volcanic setting, volcanic history, caldera evolution, and evidence of mineralization in Trans-Pecos to those of the San Juan volcanic field, a major mineral producer, indicates that Trans-Pecos Texas also could be an important mineralized region. The Chianti caldera complex in Trans-Pecos Texas contains at least two calderas that have had considerable postsubsidence activity and that display large areas of hydrothermal alteration and mineralization. Abundant prospects in Trans-Pecos and numerous producing mines immediately south of the Trans-Pecos volcanic field in Mexico are additional evidence that ore-grade deposits could occur in Texas.

  15. Median Filtering Methods for Non-volcanic Tremor Detection (United States)

    Damiao, L. G.; Nadeau, R. M.; Dreger, D. S.; Luna, B.; Zhang, H.


    Various properties of median filtering over time and space are used to address challenges posed by the Non-volcanic tremor detection problem. As part of a "Big-Data" effort to characterize the spatial and temporal distribution of ambient tremor throughout the Northern San Andreas Fault system, continuous seismic data from multiple seismic networks with contrasting operational characteristics and distributed over a variety of regions are being used. Automated median filtering methods that are flexible enough to work consistently with these data are required. Tremor is characterized by a low-amplitude, long-duration signal-train whose shape is coherent at multiple stations distributed over a large area. There are no consistent phase arrivals or mechanisms in a given tremor's signal and even the durations and shapes among different tremors vary considerably. A myriad of masquerading noise, anthropogenic and natural-event signals must also be discriminated in order to obtain accurate tremor detections. We present here results of the median methods applied to data from four regions of the San Andreas Fault system in northern California (Geysers Geothermal Field, Napa, Bitterwater and Parkfield) to illustrate the ability of the methods to detect tremor under diverse conditions.

  16. Monitoring diffuse volcanic degassing during volcanic unrests: the case of Campi Flegrei (Italy). (United States)

    Cardellini, C; Chiodini, G; Frondini, F; Avino, R; Bagnato, E; Caliro, S; Lelli, M; Rosiello, A


    In volcanoes with active hydrothermal systems, diffuse CO 2 degassing may constitute the primary mode of volcanic degassing. The monitoring of CO 2 emissions can provide important clues in understanding the evolution of volcanic activity especially at calderas where the interpretation of unrest signals is often complex. Here, we report eighteen years of CO 2 fluxes from the soil at Solfatara of Pozzuoli, located in the restless Campi Flegrei caldera. The entire dataset, one of the largest of diffuse CO 2 degassing ever produced, is made available for the scientific community. We show that, from 2003 to 2016, the area releasing deep-sourced CO 2 tripled its extent. This expansion was accompanied by an increase of the background CO 2 flux, over most of the surveyed area (1.4 km 2 ), with increased contributions from non-biogenic source. Concurrently, the amount of diffusively released CO 2 increased up to values typical of persistently degassing active volcanoes (up to 3000 t d -1 ). These variations are consistent with the increase in the flux of magmatic fluids injected into the hydrothermal system, which cause pressure increase and, in turn, condensation within the vapor plume feeding the Solfatara emission.

  17. Status of volcanic hazard studies for the Nevada Nuclear Waste Storage Investigations. Volume II

    International Nuclear Information System (INIS)

    Crowe, B.M.; Wohletz, K.H.; Vaniman, D.T.; Gladney, E.; Bower, N.


    Volcanic hazard investigations during FY 1984 focused on five topics: the emplacement mechanism of shallow basalt intrusions, geochemical trends through time for volcanic fields of the Death Valley-Pancake Range volcanic zone, the possibility of bimodal basalt-rhyolite volcanism, the age and process of enrichment for incompatible elements in young basalts of the Nevada Test Site (NTS) region, and the possibility of hydrovolcanic activity. The stress regime of Yucca Mountain may favor formation of shallow basalt intrusions. However, combined field and drill-hole studies suggest shallow basalt intrusions are rare in the geologic record of the southern Great Basin. The geochemical patterns of basaltic volcanism through time in the NTS region provide no evidence for evolution toward a large-volume volcanic field or increases in future rates of volcanism. Existing data are consistent with a declining volcanic system comparable to the late stages of the southern Death Valley volcanic field. The hazards of bimodal volcanism in this area are judged to be low. The source of a 6-Myr pumice discovered in alluvial deposits of Crater Flat has not been found. Geochemical studies show that the enrichment of trace elements in the younger rift basalts must be related to an enrichment of their mantle source rocks. This geochemical enrichment event, which may have been metasomatic alteration, predates the basalts of the silicic episode and is, therefore, not a young event. Studies of crater dimensions of hydrovolcanic landforms indicate that the worst case scenario (exhumation of a repository at Yucca Mountain by hydrovolcanic explosions) is unlikely. Theoretical models of melt-water vapor explosions, particularly the thermal detonation model, suggest hydrovolcanic explosion are possible at Yucca Mountain. 80 refs., 21 figs., 5 tabs

  18. Volcanic rises on Venus: Geology, formation, and sequence of evolution (United States)

    Senske, D. A.; Stofan, E. R.; Bindschadler, D. L.; Smrekar, S. E.


    Large centers of volcanism on Venus are concentrated primarily in the equatorial region of the planet and are associated with regional topographic rises. Analysis of both radar images and geophysical data suggest that these uplands are sites of mantle upwelling. Magellan radar imaging provides a globally contiguous data set from which the geology of these regions is evaluated and compared. In addition, high resolution gravity data currently being collected provide a basis to assess the relationship between these uplands and processes in the planet's interior. Studies of the geology of the three largest volcanic highlands (Beta Regio, Atla Regio, Western Eistla Regio) show them to be distinct, having a range of volcanic and tectonic characteristics. In addition to these large areas, a number of smaller uplands are identified and are being analyzed (Bell Regio, Imdr Regio, Dione Regio (Ushas, Innini, and Hathor Montes), and Themis Regio). To understand better the mechanisms by which these volcanic rises form and evolve, we assess their geologic and geophysical characteristics.

  19. Delineation of a volcanic ash body using electrical resistivity profiling

    International Nuclear Information System (INIS)

    Xia, Jianghai; Ludvigson, Greg; Miller, Richard D; Mayer, Lindsay; Haj, Adel


    Four lines of electrical resistivity profiling (ERP) were performed to define the extent of a shallow Quaternary volcanic ash deposit being mined in the United States. Inversion results of ERP proved suitable for defining the thickness and lateral extent of the volcanic ash deposit at this testing site. These interpretations were confirmed by shallow borehole drilling. The model sensitivity information indicates that inverted models possess sufficient resolving power down to a depth of 7 m and are fairly consistent in terms of horizontal resolution along the four ERP lines. The bottom of most of the volcanic ash deposit in the study area is less than 7 m in depth. Based on synthesis of the ERP and drill information, the limits of the mineable ash bed resources were clearly defined. Moreover, by integrating the ERP results with a minimal number of optimally placed borings, the volume of the volcanic ash deposit was established at a lesser cost, and with greater accuracy than would be possible with a traditionally designed grid drilling programme

  20. Analysis of volcanic tephra as a material of environment (United States)

    Sitek, J.; Dekan, J.; Fang, X.; Xiaoli, P.; Chmielewská, E.


    Tephra is a fragmental material produced by volcanic eruption. Here, volcanic tephra deposit from the northeast of China was used for our study. Samples of unaltered tephra are usually composed of feldspar, glass, pyroxene, and olivine. Moreover, these volcanic alteration products also contain Fe oxides, phylosilicates, sulfates, and amorphous Al-Si-bearing material. Six different samples of tephra obtained were analyzed by Mössbauer spectroscopy. A typical Mössbauer spectrum of tephra consists of magnetic and non-magnetic components (magnetic component represents about 11% and non-magnetic component about 89% of spectral area). According to the structural composition, it may be supposed that the magnetic component can be assigned to titanomagnetite. Non-magnetic components contain two quadrupole doublets (Fe2+ species) and one doublet containing Fe3+. According to the measured values of Mössbauer spectra, the first two doublets are very similar with pyroxene, olivine and the third to phylosilicate, aluminosilicate or iron oxide of FeO type. Recently, volcanic tephra was applied as an ecological substance. Special solution was proposed for tephra utilization, especially for phosphate removal from contaminated water.

  1. Relationships between mineralization and silicic volcanism in the central Andes

    Energy Technology Data Exchange (ETDEWEB)

    Francis, P.W.; Halls, C.; Baker, M.C.W.


    Studies of late Tertiary silicic volcanic centers in the Western and Eastern Cordilleras of the Central Andes show that three volcanic environments are appropriate sites for mineralization: (1) ring-fracture extrusions post-dating large calderas; (2) similar extrusions within ignimbrite shields; and (3) isolated, small silicic volcanoes. Subvolcanic tin mineralization in the Eastern Cordillera is located in silicic stocks and associated breccias of Miocene age. The Cerro Rico stock, Potosi, Bolivia, contains tin and silver mineralization and has an intrusion age apparently millions of years younger than that of the associated Kari Kari caldera. Similar age relationships between mineralization and caldera formation have been described from the San Juan province, Colorado. The vein deposits of Chocaya, southern Bolivia, were emplaced in the lower part of an ignimbrite shield, a type of volcanic edifice as yet unrecognized in comparable areas of silicic volcanism. The El Salvador porphyry copper deposit, Chile, is related to silicic stocks which may have been intruded along a caldera ring fracture. Existing models for the genesis of porphyry copper deposits suggest that they formed in granodioritic stocks located in the infrastructure of andesitic stratovolcanoes. The dome of La Soufriere, Guadeloupe is proposed as a modern analog for the surface expression of subvolcanic mineralization processes, the phreatic eruptions there suggesting the formation of hydrothermal breccia bodies in depth.

  2. Spatio-volumetric hazard estimation in the Auckland volcanic field (United States)

    Bebbington, Mark S.


    The idea of a volcanic field `boundary' is prevalent in the literature, but ill-defined at best. We use the elliptically constrained vents in the Auckland Volcanic Field to examine how spatial intensity models can be tested to assess whether they are consistent with such features. A means of modifying the anisotropic Gaussian kernel density estimate to reflect the existence of a `hard' boundary is then suggested, and the result shown to reproduce the observed elliptical distribution. A new idea, that of a spatio-volumetric model, is introduced as being more relevant to hazard in a monogenetic volcanic field than the spatiotemporal hazard model due to the low temporal rates in volcanic fields. Significant dependencies between the locations and erupted volumes of the observed centres are deduced, and expressed in the form of a spatially-varying probability density. In the future, larger volumes are to be expected in the `gaps' between existing centres, with the location of the greatest forecast volume lying in the shipping channel between Rangitoto and Castor Bay. The results argue for tectonic control over location and magmatic control over erupted volume. The spatio-volumetric model is consistent with the hypothesis of a flat elliptical area in the mantle where tensional stresses, related to the local tectonics and geology, allow decompressional melting.

  3. Unzen volcanic rocks as heat source of geothermal activity

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Masao; Sugiyama, Hiromi


    Only a few radiometric ages have been reported so far for the Unzen volcanic rocks. In this connection, in order to clarify the relation between volcanism and geothermal activity, fission track ages of zircon seperated from the Unzen volcanic rocks in western Kyushu have been dated. Since all the rocks are thought to be young, the external surface re-etch method was adopted. The results are that the age and standard error of the basal volcaniclastic rocks of the Tatsuishi formation are 0.28 +- 0.05 Ma and 0.25 +- 0.05 Ma. The next oldest Takadake lavas range from 0.26 to 0.20 Ma. The Kusenbudake lavas fall in a narrow range from 0.19 to 0.17 Ma. The latest Fugendake lavas are younger than 0.07 Ma.In conclusion, the most promising site for geothermal power generation is the Unzen hot spring field because of its very high temperature. After that, comes the Obama hot spring field because of the considerable high temperature chemically estimated. In addition, the northwestern area of the Unzen volcanic region will be promising for electric power generation in spite of no geothermal manifestations, since its volcanos are younger than 0.2 Ma. (14 figs, 14 tabs, 22 refs)

  4. Quantitative physical models of volcanic phenomena for hazards assessment of critical infrastructures (United States)

    Costa, Antonio


    Volcanic hazards may have destructive effects on economy, transport, and natural environments at both local and regional scale. Hazardous phenomena include pyroclastic density currents, tephra fall, gas emissions, lava flows, debris flows and avalanches, and lahars. Volcanic hazards assessment is based on available information to characterize potential volcanic sources in the region of interest and to determine whether specific volcanic phenomena might reach a given site. Volcanic hazards assessment is focussed on estimating the distances that volcanic phenomena could travel from potential sources and their intensity at the considered site. Epistemic and aleatory uncertainties strongly affect the resulting hazards assessment. Within the context of critical infrastructures, volcanic eruptions are rare natural events that can create severe hazards. In addition to being rare events, evidence of many past volcanic eruptions is poorly preserved in the geologic record. The models used for describing the impact of volcanic phenomena generally represent a range of model complexities, from simplified physics based conceptual models to highly coupled thermo fluid dynamical approaches. Modelling approaches represent a hierarchy of complexity, which reflects increasing requirements for well characterized data in order to produce a broader range of output information. In selecting models for the hazard analysis related to a specific phenomenon, questions that need to be answered by the models must be carefully considered. Independently of the model, the final hazards assessment strongly depends on input derived from detailed volcanological investigations, such as mapping and stratigraphic correlations. For each phenomenon, an overview of currently available approaches for the evaluation of future hazards will be presented with the aim to provide a foundation for future work in developing an international consensus on volcanic hazards assessment methods.

  5. Meteorological Controls on Local and Regional Volcanic Ash Dispersal. (United States)

    Poulidis, Alexandros P; Phillips, Jeremy C; Renfrew, Ian A; Barclay, Jenni; Hogg, Andrew; Jenkins, Susanna F; Robertson, Richard; Pyle, David M


    Volcanic ash has the capacity to impact human health, livestock, crops and infrastructure, including international air traffic. For recent major eruptions, information on the volcanic ash plume has been combined with relatively coarse-resolution meteorological model output to provide simulations of regional ash dispersal, with reasonable success on the scale of hundreds of kilometres. However, to predict and mitigate these impacts locally, significant improvements in modelling capability are required. Here, we present results from a dynamic meteorological-ash-dispersion model configured with sufficient resolution to represent local topographic and convectively-forced flows. We focus on an archetypal volcanic setting, Soufrière, St Vincent, and use the exceptional historical records of the 1902 and 1979 eruptions to challenge our simulations. We find that the evolution and characteristics of ash deposition on St Vincent and nearby islands can be accurately simulated when the wind shear associated with the trade wind inversion and topographically-forced flows are represented. The wind shear plays a primary role and topographic flows a secondary role on ash distribution on local to regional scales. We propose a new explanation for the downwind ash deposition maxima, commonly observed in volcanic eruptions, as resulting from the detailed forcing of mesoscale meteorology on the ash plume.

  6. Field-trip guide to mafic volcanism of the Cascade Range in Central Oregon—A volcanic, tectonic, hydrologic, and geomorphic journey (United States)

    Deligne, Natalia I.; Mckay, Daniele; Conrey, Richard M.; Grant, Gordon E.; Johnson, Emily R.; O'Connor, Jim; Sweeney, Kristin


    The Cascade Range in central Oregon has been shaped by tectonics, volcanism, and hydrology, as well as geomorphic forces that include glaciations. As a result of the rich interplay between these forces, mafic volcanism here can have surprising manifestations, which include relatively large tephra footprints and extensive lava flows, as well as water shortages, transportation and agricultural disruption, and forest fires. Although the focus of this multidisciplinary field trip will be on mafic volcanism, we will also look at the hydrology, geomorphology, and ecology of the area, and we will examine how these elements both influence and are influenced by mafic volcanism. We will see mafic volcanic rocks at the Sand Mountain volcanic field and in the Santiam Pass area, at McKenzie Pass, and in the southern Bend region. In addition, this field trip will occur during a total solar eclipse, the first one visible in the United States in more than 25 years (and the first seen in the conterminous United States in more than 37 years).The Cascade Range is the result of subduction of the Juan de Fuca plate underneath the North American plate. This north-south-trending volcanic mountain range is immediately downwind of the Pacific Ocean, a huge source of moisture. As moisture is blown eastward from the Pacific on prevailing winds, it encounters the Cascade Range in Oregon, and the resulting orographic lift and corresponding rain shadow is one of the strongest precipitation gradients in the conterminous United States. We will see how the products of the volcanoes in the central Oregon Cascades have had a profound influence on groundwater flow and, thus, on the distribution of Pacific moisture. We will also see the influence that mafic volcanism has had on landscape evolution, vegetation development, and general hydrology.

  7. New Data on the Composition of Cretaceous Volcanic Rocks of the Alazeya Plateau, Northeastern Yakutia (United States)

    Tsukanov, N. V.; Skolotnev, S. G.


    This work presents new data on the composition of volcanics, developed within the Alazeya Plateau of the Kolyma-Indigirka fold area (Northeast Russia), which indicate essential differences in their composition and, accordingly, different geodynamic settings of the formation of rocks. The studied igneous rocks are subdivided into two groups. Volcanics of the first group of the Late Cretaceous age, which are represented by differentiated volcanic rock series (from andesitobasalts to dacites and rhyolites), were formed under island arc conditions in the continent-ocean transition zone. Volcanics of the second group are ascribed to the tholeiitic series and were formed under the other geodynamic setting, which is associated with the regime of extension and riftogenesis, manifested in the studied area probably at the later stage.

  8. Functional requirements for the Tumulus I and II cap Waste Area Grouping 6 Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Cox, L.C.


    The tumulus method of solid low-level waste (LLW) disposal began in 1989 with the Tumulus Disposal Demonstration (TDD) project, conducted on Tumulus I. LLW is contained in 4-ft x 4-ft x 6-ft boxes which are placed into precast concrete casks. The annular space around the box is grouted with a cementious grout before the lid is installed. The LLW does not contain RCRA materials or liquids. The casks are then stacked two high on the concrete tumulus pad. Prior to filling Tumulus I to capacity Tumulus II was constructed. Tumulus II will be filled to capacity by the end of 1991 at which time the Interim Waste Management Facility (IWMF) will have been constructed and will provide approximately six years of LLW disposal capacity. This project will provide interim closure of the Tumulus I and II by designing and constructing a multilayered cap, with monitoring capabilities, which will be consistent in purpose with the requirements of a Record of Decision (ROD) which will result from the Waste Area Group (WAG) 6 closure and remediation effort. Capping Tumulus I and II has been a part of the overall tumulus disposal plan since inception in the Low Level Waste Disposal, Development and Demonstration (LLWDDD) program strategy issued in 1988. This project consists of the design and construction of a low permeability cap over the Tumulus I and II disposal units. The cap shall incorporate a drainage system and be maintainable. The monitoring systems now in place will be modified and be utilized for post-closure monitoring of the pads and groundwater. The capability for performance assessment monitoring will be included in the design

  9. Deriving spatial patterns from a novel database of volcanic rock geochemistry in the Virunga Volcanic Province, East African Rift (United States)

    Poppe, Sam; Barette, Florian; Smets, Benoît; Benbakkar, Mhammed; Kervyn, Matthieu


    The Virunga Volcanic Province (VVP) is situated within the western branch of the East-African Rift. The geochemistry and petrology of its' volcanic products has been studied extensively in a fragmented manner. They represent a unique collection of silica-undersaturated, ultra-alkaline and ultra-potassic compositions, displaying marked geochemical variations over the area occupied by the VVP. We present a novel spatially-explicit database of existing whole-rock geochemical analyses of the VVP volcanics, compiled from international publications, (post-)colonial scientific reports and PhD theses. In the database, a total of 703 geochemical analyses of whole-rock samples collected from the 1950s until recently have been characterised with a geographical location, eruption source location, analytical results and uncertainty estimates for each of these categories. Comparative box plots and Kruskal-Wallis H tests on subsets of analyses with contrasting ages or analytical methods suggest that the overall database accuracy is consistent. We demonstrate how statistical techniques such as Principal Component Analysis (PCA) and subsequent cluster analysis allow the identification of clusters of samples with similar major-element compositions. The spatial patterns represented by the contrasting clusters show that both the historically active volcanoes represent compositional clusters which can be identified based on their contrasted silica and alkali contents. Furthermore, two sample clusters are interpreted to represent the most primitive, deep magma source within the VVP, different from the shallow magma reservoirs that feed the eight dominant large volcanoes. The samples from these two clusters systematically originate from locations which 1. are distal compared to the eight large volcanoes and 2. mostly coincide with the surface expressions of rift faults or NE-SW-oriented inherited Precambrian structures which were reactivated during rifting. The lava from the Mugogo

  10. Volcanic hazards and public response (United States)

    Peterson, Donald W.


    Although scientific understanding of volcanoes is advancing, eruptions continue to take a substantial toll of life and property. Some of these losses could be reduced by better advance preparation, more effective flow of information between scientists and public officials, and better understanding of volcanic behavior by all segments of the public. The greatest losses generally occur at volcanoes that erupt infrequently where people are not accustomed to dealing with them. Scientists sometimes tend to feel that the blame for poor decisions in emergency management lies chiefly with officials or journalists because of their failure to understand the threat. However, the underlying problem embraces a set of more complex issues comprising three pervasive factors. The first factor is the volcano: signals given by restless volcanoes are often ambiguous and difficult to interpret, especially at long-quiescent volcanoes. The second factor is people: people confront hazardous volcanoes in widely divergent ways, and many have difficulty in dealing with the uncertainties inherent in volcanic unrest. The third factor is the scientists: volcanologists correctly place their highest priority on monitoring and hazard assessment, but they sometimes fail to explain clearly their conclusions to responsible officials and the public, which may lead to inadequate public response. Of all groups in society, volcanologists have the clearest understanding of the hazards and vagaries of volcanic activity; they thereby assume an ethical obligation to convey effectively their knowledge to benefit all of society. If society resists, their obligation nevertheless remains. They must use the same ingenuity and creativity in dealing with information for the public that they use in solving scientific problems. When this falls short, even excellent scientific results may be nullified.

  11. Volcanism in the Sumisu Rift. Pt. 2

    International Nuclear Information System (INIS)

    Hochstaedter, A.G.; Gill, J.B.; Morris, J.D.


    A bimodal suite of volcanic rocks collected from the Sumisu Rift by ALVIN provide present day example of the first magmatic products of arc rifting during the initiation of back-arc spreading. The trace element and isotopic composition of these rocks, which are contemporaneous with island arc tholeiite lavas of the Izu-Ogasawara arc 20 km to the east, differ from those of arc rocks and N-MORB in their relative incorporation of both subduction-related and non-subduction-related components. Subduction-related components, i.e., those that distinguish volcanic arc basalts from N-MORB, are less pronounced in rift lavas than in arc lavas. Alkali and alkaline earth to high field strength element and REE ratios as well as 87 Sr/ 86 Sr are intermediate between those of N-MORB and Izu arc lavas and indicate that Sumisu Rift basalts are similar to BABB erupted in other, more mature back-arc basins. These results show that back-arc basins may begin their magmatic evolution with BABB rather than more arc-like lavas. Evidence of non-subduction related components remains after the effects of subduction related components are removed or accounted for. Compared to the arc, higher HFSE and REE concentrations, contrasting REE patterns, and ≤ε Nd in the rift reflect derivation of rift lavas from more enriched components. Although SR basalt resembles E-MORB in many trace element ratios, it is referred to as BABB because low concentrations of Nb are similar to those in volcanic arcs and H 2 O/REE and H 2 O/K 2 O exceed those of E-MORB. Differences in HREE pattern and ε Nd require that the E-MORB characteristics result from source heterogeneities and not lower degrees of melting. Enriched mantle beneath the rift may reflect enriched blobs entrained in a more depleted matrix, or injection of new, more enriched mantle. High 208 Pb/ 204 Pb and moderate 207 Pb/ 204 Pb ratios with respect to Pacific MORB also reflect ancient mantle enrichment. (orig.)

  12. The effect of offset on fracture permeability of rocks from the Southern Andes Volcanic Zone, Chile (United States)

    Pérez-Flores, P.; Wang, G.; Mitchell, T. M.; Meredith, P. G.; Nara, Y.; Sarkar, V.; Cembrano, J.


    The Southern Andes Volcanic Zone (SVZ) represents one of the largest undeveloped geothermal provinces in the world. Development of the geothermal potential requires a detailed understanding of fluid transport properties of its main lithologies. The permeability of SVZ rocks is altered by the presence of fracture damage zones produced by the Liquiñe-Ofqui Fault System (LOFS) and the Andean Transverse Faults (ATF). We have therefore measured the permeability of four representative lithologies from the volcanic basement in this area: crystalline tuff, andesitic dike, altered andesite and granodiorite. For comparative purposes, we have also measured the permeability of samples of Seljadalur basalt, an Icelandic rock with widely studied and reported hydraulic properties. Specifically, we present the results of a systematic study of the effect of fractures and fracture offsets on permeability as a function of increasing effective pressure. Baseline measurements on intact samples of SVZ rocks show that the granodiorite has a permeability (10-18 m2), two orders of magnitude higher than that of the volcanic rocks (10-20 m2). The presence of throughgoing mated macro-fractures increases permeability by between four and six orders of magnitude, with the highest permeability recorded for the crystalline tuff. Increasing fracture offset to produce unmated fractures results in large increases in permeability up to some characteristic value of offset, beyond which permeability changes only marginally. The increase in permeability with offset appears to depend on fracture roughness and aperture, and these are different for each lithology. Overall, fractured SVZ rocks with finite offsets record permeability values consistent with those commonly found in geothermal reservoirs (>10-16 m2), which potentially allow convective/advective flow to develop. Hence, our results demonstrate that the fracture damage zones developed within the SVZ produce permeable regions, especially within the

  13. The Lanzarote Geodynamic Laboratory: new capabilities for monitoring of volcanic activity at Canary Islands (United States)

    Arnoso, J.; Vélez, E. J.; Soler, V.; Montesinos, F. G.; Benavent, M.


    The volcanic island of Lanzarote is located at the northeastern end of the Canary Islands. Together with Fuerteventura Island, Lanzarote constitutes the emergent part of the East Canary Ridge, which presents a NNE-SSW volcanic alignment. Last eruptive events took place in 1824 and during the period 1730-1736, which is the largest to occur in the archipelago and throw out about 1.3 km3 of volcanic materials. The Lanzarote Geodynamic Laboratory (LGL) was created in 1986 with the idea of making Lanzarote as a natural laboratory to carry out studies in order to acquire more knowledge about its origin, present status and evolution (Vieira et al., 1991; 2006). The LGL has a multidisciplinary scientific purpose and, among others, various objectives are devoted to investigate mass distribution in the Earth system and surface displacements associated to volcanic and/or seismic activity in the island. The influence of LGL is extended throughout the whole geographical area of Lanzarote, including small islands located at the north. The laboratory has 3 observing modules distributed along the island according to its infrastructure and scientific objectives, where more than 70 sensors are recording continuously gravity variations, ground deformations, sea level, seismic activity, meteorological parameters, etc. All these observations are supplemented by periodic measurement of geodetic and geophysical networks that allow us to make studies at local, insular and regional scales. The application of geodetic and geophysical techniques to identify geodynamic signals related to volcanic processes is then a permanent research activity of the laboratory. Nowadays, this fact becomes more interesting due to the ongoing volcanic eruption that is taking place in other island of the Canary Archipelago, El Hierro, since past July 2011. That is, the multidisciplinary research carry on up to now at the LGL allow us to apply multiparameter observations of different kinds of volcanic

  14. Considerations on comprehensive risk assessment and mitigation planning of volcanic ash-fall

    International Nuclear Information System (INIS)

    Toshida, Kiyoshi


    Volcanic ash-fall is inevitable hazard throughout Japan, and causes wide range of effects due to its physical and chemical properties. Nuclear power plants in Japan face the necessity to assess the risk from volcanic ash-fall. Risk assessment of the volcanic ash-fall should include engineering solution and mitigation planning as well as the ash-fall hazard. This report points out the characteristics for reducing the various effects of volcanic ash-fall as follows. Large-scale eruptions produce prominent volcanic ash-falls that can approach power plants at a great distance. Aftermath hazards of ash-fall events, such as remobilization of fine ash particles and generation of lahars, require further assessments. The kind and extent of damages becomes greater whenever ash is wet. Wet ash requires separate assessments in contrast to dry ash. The mitigation and recovery measures at power plants involve quick cleanup operations of volcanic ash. Those operations should be prepared through comprehensive risk assessment, and by cooperation with authorities, during pre-eruption repose period. The comprehensive assessment for volcanic ash-fall hazards, however, has yet to be conducted. Development of risk communication method may result in increased implementation mitigation planning. Numerical analysis of the ash-fall hazards provides quantitative data on particle motions that can be used in the risk assessment. In order to implement the quantitative assessment method, the verification on the effect of ambient air condition to the altitude of volcanic ash cloud is necessary. We need to develop a three-dimensional model of volcanic ash cloud, and calculate motions of ash clouds under multiple conditions of ambient air. (author)

  15. Chemical deposits in volcanic caves of Argentina

    Directory of Open Access Journals (Sweden)

    Carlos Benedetto


    Full Text Available During the last Conference of the FEALC (Speleological Federation of Latin America and Caribbean Islands which was held in the town of Malargue, Mendoza, in February 1997, two volcanic caves not far from that town were visited and sampled for cave mineral studies. The first cave (Cueva del Tigre opens close to the Llancanelo lake, some 40 kms far from Malargue and it is a classical lava tube. Part of the walls and of the fallen lava blocks are covered by white translucent fibres and grains. The second visited cave is a small tectonic cavity opened on a lava bed some 100 km southward of Malargue. The cave “El Abrigo de el Manzano” is long no more than 10-12 meters with an average width of 3 meters and it hosts several bird nests, the larger of which is characterized by the presence of a relatively thick pale yellow, pale pink flowstone. Small broken or fallen samples of the secondary chemical deposits of both these caves have been collected in order to detect their mineralogical composition. In the present paper the results of the detailed mineralogical analyses carried out on the sampled material are shortly reported. In the Cueva del Tigre lava tube the main detected minerals are Sylvite, Thenardite, Bloedite and Kieserite, all related to the peculiar dry climate of that area. The flowstone of “El Abrigo de el Manzano” consists of a rather complex admixture of several minerals, the large majority of which are phosphates but also sulfates and silicates, not all yet identified. The origin of all these minerals is related to the interaction between bird guano and volcanic rock.

  16. [Effects of volcanic eruptions on environment and health]. (United States)

    Zuskin, Eugenija; Mustajbegović, Jadranka; Doko Jelinić, Jagoda; Pucarin-Cvetković, Jasna; Milosević, Milan


    Volcanoes pose a threat to almost half a billion people; today there are approximately 500 active volcanoes on Earth, and every year there are 10 to 40 volcanic eruptions. Volcanic eruptions produce hazardous effects for the environment, climate, and the health of the exposed persons, and are associated with the deterioration of social and economic conditions. Along with magma and steam (H2O), the following gases surface in the environment: carbon dioxide (CO2) and sulphur dioxide (SO2), carbon monoxide (CO), hydrogen sulphide (H2S), carbon sulphide (CS), carbon disulfide (CS2), hydrogen chloride (HCl), hydrogen (H2), methane (CH4), hydrogen fluoride (HF), hydrogen bromide (HBr) and various organic compounds, as well as heavy metals (mercury, lead, gold).Their unfavourable effects depend on the distance from a volcano, on magma viscosity, and on gas concentrations. The hazards closer to the volcano include pyroclastic flows, flows of mud, gases and steam, earthquakes, blasts of air, and tsunamis. Among the hazards in distant areas are the effects of toxic volcanic ashes and problems of the respiratory system, eyes and skin, as well as psychological effects, injuries, transport and communication problems, waste disposal and water supplies issues, collapse of buildings and power outage. Further effects are the deterioration of water quality, fewer periods of rain, crop damages, and the destruction of vegetation. During volcanic eruptions and their immediate aftermath, increased respiratory system morbidity has been observed as well as mortality among those affected by volcanic eruptions. Unfavourable health effects could partly be prevented by timely application of safety measures.

  17. Volcanism and associated hazards: the Andean perspective (United States)

    Tilling, R. I.


    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (Colombia) killed about 25 000 people - the worst volcanic disaster in the Andean region as well as the second worst in the world in the 20th century. The Ruiz tragedy has been attributed largely to ineffective communications of hazards information and indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant

  18. Volcanic glass signatures in spectroscopic survey of newly proposed lunar pyroclastic deposits (United States)

    Besse, S.; Sunshine, J.M.; Gaddis, L.R.


    Moon Mineralogy Mapper spectroscopic observations are used to assess the mineralogy of five sites that have recently been proposed to include lunar dark mantle deposits (DMDs). Volcanic glasses have, for the first time, clearly been identified at the location of three of the proposed pyroclastic deposits. This is the first time that volcanic glasses have been identified at such a small scale on the lunar surface from remote sensing observations. Deposits at Birt E, Schluter, and Walther A appear to be glassy DMDs. Deposits at Birt E and Schluter show (1) morphological evidence suggesting a likely vent and (2) mineralogical evidence indicative of the presence of volcanic glasses. The Walther A deposits, although they show no morphological evidence of vents, have the spectroscopic characteristics diagnostic of volcanic glasses. The deposits of the Freundlich-Sharonov basin are separated in two areas: (1) the Buys-Ballot deposits lack mineralogical and morphological evidence and thus are found to be associated with mare volcanism not with DMDs and (2) the Anderson crater deposits, which do not exhibit glassy DMD signatures, but they appear to be associated with possible vent structures and so may be classifiable as DMDs. Finally, dark deposits near the crater Kopff are found to be associated with likely mare volcanism and not associated with DMDs. The spectral identification of volcanic glass seen in many of the potential DMDs is a strong indicator of their pyroclastic origin.

  19. Seismic network based detection, classification and location of volcanic tremors (United States)

    Nikolai, S.; Soubestre, J.; Seydoux, L.; de Rosny, J.; Droznin, D.; Droznina, S.; Senyukov, S.; Gordeev, E.


    Volcanic tremors constitute an important attribute of volcanic unrest in many volcanoes, and their detection and characterization is a challenging issue of volcano monitoring. The main goal of the present work is to develop a network-based method to automatically classify volcanic tremors, to locate their sources and to estimate the associated wave speed. The method is applied to four and a half years of seismic data continuously recorded by 19 permanent seismic stations in the vicinity of the Klyuchevskoy volcanic group (KVG) in Kamchatka (Russia), where five volcanoes were erupting during the considered time period. The method is based on the analysis of eigenvalues and eigenvectors of the daily array covariance matrix. As a first step, following Seydoux et al. (2016), most coherent signals corresponding to dominating tremor sources are detected based on the width of the covariance matrix eigenvalues distribution. With this approach, the volcanic tremors of the two volcanoes known as most active during the considered period, Klyuchevskoy and Tolbachik, are efficiently detected. As a next step, we consider the array covariance matrix's first eigenvectors computed every day. The main hypothesis of our analysis is that these eigenvectors represent the principal component of the daily seismic wavefield and, for days with tremor activity, characterize the dominant tremor sources. Those first eigenvectors can therefore be used as network-based fingerprints of tremor sources. A clustering process is developed to analyze this collection of first eigenvectors, using correlation coefficient as a measure of their similarity. Then, we locate tremor sources based on cross-correlations amplitudes. We characterize seven tremor sources associated with different periods of activity of four volcanoes: Tolbachik, Klyuchevskoy, Shiveluch, and Kizimen. The developed method does not require a priori knowledge, is fully automatic and the database of network-based tremor fingerprints

  20. Handbook for Volcanic Risk Management: an outcome from MIAVITA project (United States)

    Bignami, Christian; Bosi, Vittorio; Costantini, Licia; Cristiani, Chiara; Lavigne, Franck; Thierry, Pierre


    Volcanic eruptions are one of the most impressive, violent and dramatic agents of change on Earth, threatening hundreds of millions of people. The crises management implies a strong cooperation among the main stakeholders (e.g., civil protection authorities, scientific institutions, operational forces). Considering the great amount of different actions required during the whole volcanic cycle (e.g., preparedness, unrest phase, crisis management, resilience), the role and responsibilities of stakeholders should be clarified in advance. In particular, the role of scientists, fundamental in all the phases, should be well discussed with the other stakeholders and well defined, for every country. This will allow a better management and response, and contribute to avoid misunderstanding. The new "Handbook for Volcanic Risk Management" issued by the MIAVITA European project, funded by the European Commission (Mitigate and Assess risk from Volcanic Impact on Terrain and human Activities) gives a contribution to that. Indeed, this handbook aims at synthesizing the acquired knowledge on volcanic risk management, such as prevention, preparedness, mitigation, intervention, crisis management and resilience, in a practical and useful way. It promotes the creation of an ideal bridge between different actors involved in risk management, improving and facilitating interactions among authorities and scientists. This work is based on current scientific research and the shared experience of the different MIAVITA project partners as well as on international good practices previously recommended. The handbook is composed of six sections. The first one briefly explains the global volcanic context and the principles of corresponding risk management. Section 2 contains a description of volcanic phenomena, damage and understanding size and effects that can be expected. Sections 3, 4 and 5 meet preparation and prevention issues and describe actions to be undertaken during the response phase

  1. Uranium occurrences in the volcanic rocks of Upper Mahakam, east Kalimantan

    International Nuclear Information System (INIS)

    Djokolelono, S.; Agoes, E.


    The Kawat area, which is about 35 km 2 in size, is located in the Upper Mahakam region and is one of the areas being prospected in Kalimantan. It has already been covered by general, detailed and systematic prospection. The Kawat area formed a tectonical depression and was intercepted by the volcanic products of various episodes. The regional stratigraphy of this area, from the bottom upwards, is as follows: Unit 1: quartzite and ophiolitic green rock; Unit 2: black shale, sometimes with boulders of quartzite and radiolarite; Unit 3: massive conglomeratic sandstone, alternating with claystone and sandstone sequences; Unit 4: sandstone, siltstone and claystone, with an intercalation of volcanic rocks. Uraniferous occurrences are reflected by anomalous zones located in the volcanic facies of Unit 4, usually in aphanitic rhyolite. Mineralization consists of pitchblende associated with molybdenite and pyrite. Although the Kawat area is very remote, future development is of great interest. (author). 4 figs

  2. Epac Signaling Is Required for Cocaine-Induced Change in AMPA Receptor Subunit Composition in the Ventral Tegmental Area. (United States)

    Liu, Xiaojie; Chen, Yao; Tong, Jiaqing; Reynolds, Ashley M; Proudfoot, Sarah C; Qi, Jinshun; Penzes, Peter; Lu, Youming; Liu, Qing-Song


    Exchange protein directly activated by cAMP (Epac) and protein kinase A (PKA) are intracellular receptors for cAMP. Although PKA and its downstream effectors have been studied extensively in the context of drug addiction, whether and how Epac regulates cellular and behavioral effects of drugs of abuse remain essentially unknown. Epac is known to regulate AMPA receptor (AMPAR) trafficking. Previous studies have shown that a single cocaine exposure in vivo leads to an increase in GluA2-lacking AMPARs in dopamine neurons of the ventral tegmental area (VTA). We tested the hypothesis that Epac mediates cocaine-induced changes in AMPAR subunit composition in the VTA. We report that a single cocaine injection in vivo in wild-type mice leads to inward rectification of EPSCs and renders EPSCs sensitive to a GluA2-lacking AMPAR blocker in VTA dopamine neurons. The cocaine-induced increase in GluA2-lacking AMPARs was absent in Epac2-deficient mice but not in Epac1-deficient mice. In addition, activation of Epac with the selective Epac agonist 8-CPT-2Me-cAMP (8-CPT) recapitulated the cocaine-induced increase in GluA2-lacking AMPARs, and the effects of 8-CPT were mediated by Epac2. We also show that conditioned place preference to cocaine was impaired in Epac2-deficient mice and in mice in which Epac2 was knocked down in the VTA but was not significantly altered in Epac1-deficient mice. Together, these results suggest that Epac2 is critically involved in the cocaine-induced change in AMPAR subunit composition and drug-cue associative learning. Addictive drugs, such as cocaine, induce long-lasting adaptions in the reward circuits of the brain. A single intraperitoneal injection of cocaine leads to changes in the composition and property of the AMPAR that carries excitatory inputs to dopamine neurons. Here, we provide evidence that exchange protein directly activated by cAMP (Epac), a cAMP sensor protein, is required for the cocaine-induced changes of the AMPAR. We found that the

  3. The volcanism of the western part of the Los Frailes Meseta (Bolivia): a representative example of the Andean volcanism since the Upper Oligocene

    International Nuclear Information System (INIS)

    Leroy, L.; Jimenez, N.


    The Los Frailes Meseta (Bolivia) is one of the large tertiary ignimbritic fields of the inner volcanic arc from Central Andes (Central Volcanic Zone. CVZ), in contact zone between the Altiplano to the west and the Eastern Cordillera to the east. Field observations and mineralogical and geochemical studies (major and trace elements) lead to distinguish two types of volcanism in the western border to the Meseta. During the Middle Miocene and Pliocene, the volcanic activity can be subdivided into three pyroclastic emission cycles, the Larco, Coroma and Pliocene ignimbrites, the first two being separated by the Quechua 2 orogeny. All these ignimbrites are very similar and correspond to peraluminous rhyolites to rhyodacites. In the studies area, the Coroma cycle is the only one where an ignimbrite-less evolved resurgent dome association can be observed. Beside these ignimbrites, isolated small lava flows and domes overlay and/or intrude all the other formations. They are meta-aluminous lavas with a shoshonitic affinity. A quaternary age can be attributed to his second volcanism. These two volcanic types are well-known in the CVZ and are related to the different deformation stages, either compressional or extensional, which occur alternately in the Cordillera since 26 Ma. (authors). 61 refs., 12 figs., 3 tabs

  4. 50 CFR 32.5 - What are the requirements for sportfishing on areas of the National Wildlife Refuge System? (United States)


    ... engaged in public sport fishing on a wildlife refuge area: (a) Each person shall secure and possess the... and use of the wildlife refuge area. (e) Each person must comply with the provisions of any refuge.... In addition, refuge-specific sport fishing regulations appear in §§ 32.20 through 32.72. [58 FR 5064...

  5. Small instrument to volcanic seismic signals (United States)

    Carreras, Normandino; Gomariz, Spartacus; Manuel, Antoni


    Currently, the presence of volcanoes represents a threat to their local populations, and for this reason, scientific communities invest resources to monitor seismic activity of an area, and to obtain information to identify risk situations. To perform such monitoring, it can use different general purpose acquisition systems commercially available, but these devices do not meet to the specifications of reduced dimensions, low weight, low power consumption and low cost. These features allow the system works in autonomous mode for a long period of time, and it makes easy to be carried and to be installed. In the line of designing a volcanic acquisition system with the previously mentioned specifications, exists the Volcanology Department of CSIC, developers of a system with some of these specifications. The objective of this work is to improve the energy consumption requirements of the previous system, providing three channels of data acquisition and with the possibility to transmit data acquisition via radio frequency to a base station, allowing operation it in remote mode. The developed acquisition system consists of three very low-power acquisition modules of Texas Instruments (ADS1246), and this is designed to capture information of the three coordinate axes. A microprocessor also of Texas Instruments (MSP430F5438) is used to work in low-power, due to it is ready to run this consumption and also takes advantage the power save mode in certain moments when system is not working. This system is configurable by serial port, and it has a SD memory to storage data. Contrast to the previous system, it has a RF communication module incorporated specially to work in remote mode of Lynx (YLX-TRM8053-025-05), and boasts also with a GPS module which keeps the time reference synchronized with module of SANAV (GM-1315LA). Thanks to this last selection of components, it is designed a small system about 106 x 106 mm. Assuming that the power supply system is working during all the

  6. Bioavailability and cellular effects of metals on Lumbricus terrestris inhabiting volcanic soils

    International Nuclear Information System (INIS)

    Amaral, Andre; Soto, Manu; Cunha, Regina; Marigomez, Ionan; Rodrigues, Armindo


    Whether the radial thickness (RT) of the chloragogenous tissue and intestinal epithelium of earthworms (Lumbricus terrestris) reflects the bioavailability of metals in soils was investigated in two areas, one with active volcanism (Furnas) and another with no volcanic activity since 3 million years ago (Santa Maria), in the Azores. Metal contents in soil samples and earthworms from the two areas were analyzed. Autometallography and measurements of the RT were performed in the chloragogenous tissue and intestinal epithelium. Earthworms from the active volcanic area demonstrated lower RT of chloragogenous tissue and intestinal epithelium as well as higher levels of bioavailable metals, especially Zn and Cd. Comparison of bioavailable metal contents between both areas suggests a higher risk for uptake of potentially toxic metals in the active volcanic area than in the non-active volcanic area, which is reflected by the lower RT of the chloragogenous tissue and intestinal epithelium in the former. - In earthworms, differences in the chloragogenous tissue morphometry may be related to the bioavailability of metals in soils

  7. Diffuse Helium Emission as a Precursory Sign of Volcanic Unrest (United States)

    Padron, E.; Perez, N.; Hernandez Perez, P. A.; Sumino, H.; Melian Rodriguez, G.; Barrancos, J.; Nolasco, D.; Padilla, G.; Dionis, S.; Rodriguez, F.; Hernandez, I.; Calvo, D.; Peraza, M.; Nagao, K.


    Since July 16, 2011, an anomalous seismicity at El Hierro island, the youngest and smallest of the Canary Islands, was recorded by IGN seismic network. After the occurrence of more than 10,000 seismic events, volcanic tremor was recorded since 05:15 of the October 10, by all of the seismic stations on the island, with highest amplitudes recorded in the southernmost station. During the afternoon of October 12 a large light-green coloured area was observed in the sea to the souht of La Restinga village (at the southernmost part of El Hierro island), suggesting the existence of a submarine eruption. Since October 12, frequent episodes of, turbulent gas emission and foaming, and the appearance of steamy lava fragments has been observed on the sea surface. As part of the volcanic surveillance of the island, the Instituto Volcanologico de Canarias (INVOLCAN) geochemical monitoring program is carrying out diffuse helium surveys on the surface environment of El Hierro (soil atmosphere). This nobel gas has been investigated because it has been considered an almost ideal geochemical indicator because it is chemically inert, physically stable, nonbiogenic, sparingly soluble in water under ambient conditions and almost non-adsorbable. At each survey, 600 sampling sites covering the whole island and following an homogeneous distribution are selected for helium measurements in the soil gases, The helium concentration gradients with respect to its value on air (5.24 ppm) allow us to estimate a pure diffusive emission rate of helium throughout the island. The first survey was carried out on the summer of 2003, when the island was on a quiescence period. At this survey, the amount of helium released by the volcanic system of El Hierro was estimated in 6 kg/d. Since the beginning of the seismic unrest, 13 helium emission surveys have been carried out. The helium emission rate has shown an excellent agreement with the evolution of the volcanic crisis of the island, reaching 30 kg

  8. Geochemistry and composition of the Middle Devonian Srbsko Formation in Barrandian Area, Bohemian Massif: A trench or fore-arc strike-slip basin fill with material from volcanic arc of continental margin?

    Czech Academy of Sciences Publication Activity Database

    Strnad, L.; Hladil, Jindřich


    Roč. 13, - (2001), s. 111-114 ISSN 1210-9606. [Meeting of the Czech Tectonic Studies Group /6./. Donovaly - Nízké Tatry, 03.05.2001-06.05.2001] R&D Projects: GA AV ČR KSK3012103 Institutional research plan: CEZ:AV0Z3013912 Keywords : Geochemistry * tectonic setting * Srbsko Formation of the Barrandian area Subject RIV: DB - Geology ; Mineralogy

  9. Large Volcanic Rises on Venus (United States)

    Smrekar, Suzanne E.; Kiefer, Walter S.; Stofan, Ellen R.


    Large volcanic rises on Venus have been interpreted as hotspots, or the surface manifestation of mantle upwelling, on the basis of their broad topographic rises, abundant volcanism, and large positive gravity anomalies. Hotspots offer an important opportunity to study the behavior of the lithosphere in response to mantle forces. In addition to the four previously known hotspots, Atla, Bell, Beta, and western Eistla Regiones, five new probable hotspots, Dione, central Eistla, eastern Eistla, Imdr, and Themis, have been identified in the Magellan radar, gravity and topography data. These nine regions exhibit a wider range of volcano-tectonic characteristics than previously recognized for venusian hotspots, and have been classified as rift-dominated (Atla, Beta), coronae-dominated (central and eastern Eistla, Themis), or volcano-dominated (Bell, Dione, western Eistla, Imdr). The apparent depths of compensation for these regions ranges from 65 to 260 km. New estimates of the elastic thickness, using the 90 deg and order spherical harmonic field, are 15-40 km at Bell Regio, and 25 km at western Eistla Regio. Phillips et al. find a value of 30 km at Atla Regio. Numerous models of lithospheric and mantle behavior have been proposed to interpret the gravity and topography signature of the hotspots, with most studies focusing on Atla or Beta Regiones. Convective models with Earth-like parameters result in estimates of the thickness of the thermal lithosphere of approximately 100 km. Models of stagnant lid convection or thermal thinning infer the thickness of the thermal lithosphere to be 300 km or more. Without additional constraints, any of the model fits are equally valid. The thinner thermal lithosphere estimates are most consistent with the volcanic and tectonic characteristics of the hotspots. Estimates of the thermal gradient based on estimates of the elastic thickness also support a relatively thin lithosphere (Phillips et al.). The advantage of larger estimates of

  10. Influence of regional support systems (pillars and backfill) on local areas and internal support requirements adjacent to that regional support.

    CSIR Research Space (South Africa)

    Squelch, AP


    Full Text Available was observed of backfill creating worse hangingwall conditions; instead it was observed that poor backfill placement was associated with the less favourable hangingwall conditions. • Generally, well placed backfill improves conditions in face areas... if it is kept close to the face and conventionally designed working area support that fits in well with the backfilling/mining cycle is implemented. Conversely, quality is not assured if backfill is not well placed. Also large fill-to-face distances...

  11. Isotopic feature and uranium dating of the volcanic rocks in the Okinawa Trough

    Institute of Scientific and Technical Information of China (English)


    Volcanic rocks from the northern and middle Okinawa Trough were dated by uranium-series dating method. Differential fractions using magnetic procedure were designed to separate samples. New report on the ages and isotopic data of rocks in the northern trough (especially black pumice) was discussed. Based on the uranium dates and Sr-Nd isotopic ratio, magmatic evolution process of the Okinawa Trough was noted. Firstly, there have been wide silicic volcanic activities in the Okinawa Trough from late Pleistocene to present, and the volcanic rocks can be divided into three subgroups. Secondly, magma generally came from PREMA source area under the Okinawa Trough. Magmatic evolution in the northern trough was similar to the middle, but different to the south. Finally, volcanic activities indicated that opening of the southern Okinawa Trough did not happen due to the collision between Luson Arc and Eurasian Plate until the early Pleistocene.

  12. Geophysical exploration on the subsurface geology of La Garrotxa monogenetic volcanic field (NE Iberian Peninsula) (United States)

    Bolós, Xavier; Barde-Cabusson, Stéphanie; Pedrazzi, Dario; Martí, Joan; Casas, Albert; Lovera, Raúl; Nadal-Sala, Daniel


    We applied self-potential (SP) and electrical resistivity tomography (ERT) to the exploration of the uppermost part of the substrate geology and shallow structure of La Garrotxa monogenetic volcanic field, part of the European Neogene-Quaternary volcanic province. The aim of the study was to improve knowledge of the shallowest part of the feeding system of these monogenetic volcanoes and of its relationship with the subsurface geology. This study complements previous geophysical studies carried out at a less detailed scale and aimed at identifying deeper structures, and together will constitute the basis to establish volcanic susceptibility in La Garrotxa. SP study complemented previous smaller-scale studies and targeted key areas where ERT could be conducted. The main new results include the generation of resistivity models identifying dykes and faults associated with several monogenetic cones. The combined results confirm that shallow tectonics controlling the distribution of the foci of eruptive activity in this volcanic zone mainly correspond to NNW-SSE and accessorily by NNE-SSW Neogene extensional fissures and faults and concretely show the associated magmatic intrusions. These structures coincide with the deeper ones identified in previous studies, and show that previous Alpine tectonic structures played no apparent role in controlling the loci of this volcanism. Moreover, the results obtained show that the changes in eruption dynamics occurring at different vents located at relatively short distances in this volcanic area are controlled by shallow stratigraphical, structural and hydrogeological differences underneath these monogenetic volcanoes.

  13. Geophysical evidence for widespread reversely magnetised pyroclastics in the western Taupo Volcanic Zone (New Zealand)

    International Nuclear Information System (INIS)

    Soengkono, S.; Hochstein, M.P.; Smith, I.E.M.; Itaya, T.


    Low-altitude aeromagnetic data show that negative residual anomalies are widespread over the western Taupo Volcanic Zone, New Zealand. Paleomagnetic study of eight rhyolitic ignimbrite units and two lava flows which are exposed in this area, together with new K-Ar dates of four of the ignimbrite units, indicate that the two lava units and seven of the ignimbrite units were erupted during the Matuyama geomagnetic epoch (>0.73 Ma B.P.) and suggest that rhyolitic volcanism in the western Taupo Volcanic Zone began as early as 1.6 Ma B.P. These results provide the basis for an interpretation of our aeromagnetic data which confirms the hypothesis that the magnetic anomalies observed in the western Taupo Volcanic Zone are caused by widespread, thick, reversely magnetised pyroclastic and lava flows. Magnetic modelling also allows thickness estimates of the younger, normally magnetised cover rocks which reach a maximum thickness of the order of 0.5 km in the Mangakino area. The magnetic structure of these volcanic rocks defines approximately the lateral extent of the Mangakino Volcanic Centre. (author). 41 refs., 2 figs., 3 tabs

  14. K-Ar chronological study of the quaternary volcanic activity in Shin-etsu Highland

    International Nuclear Information System (INIS)

    Kaneko, Takayuki; Shimizu, Satoshi; Itaya, Tetsumaru.


    In order to clarify the temporal and spatial patterns in arc volcanism, 55 K-Ar ages of volcanic rocks from 17 volcanoes in Shin-etsu Highland, central Japan were determined. In addition, life spans, volume of erupted materials and eruption rates of each volcano were estimated. Graphical analysis demonstrates that volume of ejecta varies proportionately with both life span and eruption rate, and that there is no significant correlation between eruption rate and distance from the volcanic front. The life span of each volcano in this Highland is less than 0.6 m.y. In the central Shiga and southern Asama area, the volcanism started at 1 Ma and is still active. However the former had a peak in the activity at around 0.5 Ma, while the latter is apparently most intense at present. Northern Kenashi area has the volcanism without peak in 1.7 - 0.2 Ma, though the activity within a volcanic cluster or chain in central Japan lasts generally for 1 m.y. or less with a peak. (author)

  15. Dinasour extinction and volcanic activity (United States)

    Gledhill, J. A.

    There is at present some controversy about the reason for the mass extinction of dinosaurs and other forms of life at the end of the Cretaceous. A suggestion by Alvarez et al. [1980] that this was due to the collision of the earth with a meteorite 10 km or so in diameter has excited considerable interest [Silver and Schultz, 1982] and also some criticism [Stanley, 1984]. A recent publication [Wood, 1984] describing the catastrophic effects of a relatively minor lava flow in Iceland suggests that intense volcanic activity could have played a large part in the extinctions. In this letter it is pointed out that the Deccan lava flows in India took place in the appropriate time and may well have been of sufficient magnitude to be a major factor in the Cretaceous-Tertiary (C-T) boundary catastrophe.

  16. Volcanic eruption crisis and the challenges of geoscience education in Indonesia (United States)

    Hariyono, E.; Liliasari, Tjasyono, B.; Madlazim


    The study aims was to describe of the profile of geoscience education conducted at the institution of teacher education for answer challenges of volcanic eruption crisis in Indonesia. The method used is descriptive analysis based on result of test and interview to 31 students of physics pre-service teachers about volcanoes through field study. The results showed that the students have a low understanding of volcanic material and there are several problems associated with the volcanoes concept. Other facts are geoscience learning does not support to the formation of geoscience knowledge and skills, dominated by theoretical studies and less focused on effort to preparing students towards disasters particularly to the volcanic eruption. As a recommendation, this require to restructuring geoscience education so as relevant with the social needs. Through courses accordingly, we can greatly help student's physics prospective teacher to improve their participations to solve problems of volcanic eruption crisis in the society.

  17. Estimation of the rate of volcanism on Venus from reaction rate measurements (United States)

    Fegley, Bruce, Jr.; Prinn, Ronald G.


    Laboratory rate data for the reaction between SO2 and calcite to form anhydrite are presented. If this reaction rate represents the SO2 reaction rate on Venus, then all SO2 in the Venusian atmosphere will disappear in 1.9 Myr unless volcanism replenishes the lost SO2. The required volcanism rate, which depends on the sulfur content of the erupted material, is in the range 0.4-11 cu km of magma erupted per year. The Venus surface composition at the Venera 13, 14, and Vega 2 landing sites implies a volcanism rate of about 1 cu km/yr. This geochemically estimated rate can be used to determine if either (or neither) of two discordant geophysically estimated rates is correct. It also suggests that Venus may be less volcanically active than the earth.

  18. Strength and deformation properties of volcanic rocks in Iceland

    DEFF Research Database (Denmark)

    Foged, Niels Nielsen; Andreassen, Katrine Alling


    rock from Iceland has been the topic for rock mechanical studies carried out by Ice-landic guest students at the Department of Civil Engineering at the Technical University of Den-mark over a number of years in cooperation with University of Iceland, Vegagerðin (The Icelandic Road Directorate......) and Landsvirkjun (The National Power Company of Iceland). These projects involve engineering geological properties of volcanic rock in Iceland, rock mechanical testing and parameter evaluation. Upscaling to rock mass properties and modelling using Q- or GSI-methods have been studied by the students......Tunnelling work and preinvestigations for road traces require knowledge of the strength and de-formation properties of the rock material involved. This paper presents results related to tunnel-ling for Icelandic water power plants and road tunnels from a number of regions in Iceland. The volcanic...

  19. The Western Arabian intracontinental volcanic fields as a potential UNESCO World Heritage site (United States)

    Németh, Károly; Moufti, Mohammed R.


    UNESCO promotes conservation of the geological and geomoprhological heritage through promotion of protection of these sites and development of educational programs under the umbrella of geoparks among the most globally significant ones labelled as UNESCO Global Geoparks. UNESCO also maintains a call to list those natural sites that provide universal outstanding values to demonstrate geological features or their relevance to our understanding the evolution of Earth. Volcanoes currently got a surge in nomination to be UNESCO World Heritage sites. Volcanic fields in the contrary fell in a grey area of nominations as they represents the most common manifestation of volcanism on Earth hence they are difficult to view as having outstanding universal values. A nearly 2500-km long 300-km wide region of dispersed volcanoes located in the Western Arabian Penninsula mostly in the Kingdom of Saudi Arabia form a near-continuous location that carries universal outstanding value as one of the most representative manifestation of dispersed intracontinental volcanism on Earth to be nominated as an UNESCO World Heritage site. The volcanic fields formed in the last 20 Ma along the Red Sea as group of simple basaltic to more mature and long-lived basalt to trachyte-to-rhyolite volcanic fields each carries high geoheritage values. While these volcanic fields are dominated by scoria and spatter cones and transitional lava fields, there are phreatomagmatic volcanoes among them such as maars and tuff rings. Phreatomagmatism is more evident in association with small volcanic edifices that were fed by primitive magmas, while phreatomagmatic influences during the course of a larger volume eruption are also known in association with the silicic eruptive centres in the harrats of Rahat, Kishb and Khaybar. Three of the volcanic fields are clearly bimodal and host small-volume relatively short-lived lava domes and associated block-and-ash fans providing a unique volcanic landscape commonly not

  20. Heavy metals in the volcanic environment and thyroid cancer. (United States)

    Vigneri, R; Malandrino, P; Gianì, F; Russo, M; Vigneri, P


    In the last two decades thyroid cancer incidence has increased worldwide more than any other cancer. Overdiagnosis of subclinical microcarcinomas has certainly contributed to this increase but many evidences indicate that a true increase, possibly due to environmental factors, has also occurred. Thyroid cancer incidence is markedly increased in volcanic areas. Thus, the volcanic environment is a good model to investigate the possible factors favoring thyroid cancer. In the volcanic area of Mt. Etna in Sicily, as well as in other volcanic areas, a non-anthropogenic pollution with heavy metals has been documented, a consequence of gas, ash and lava emission. Soil, water and atmosphere contamination, via the food chain, biocontaminate the residents as documented by high levels in the urines and the scalp hair compared to individuals living in adjacent non-volcanic areas. Trace amounts of metals are essential nutrients but, at higher concentrations, can be toxic for living cells. Metals can behave both as endocrine disruptors, perturbing the hormonal system, and as carcinogens, promoting malignant transformation. Similarly to other carcinogens, the transforming effect of heavy metals is higher in developing organisms as the fetus (contaminated via the mother) and individuals in early childhood. In the last decades environment metal pollution has greatly increased in industrialized countries. Although still within the "normal" limits for each single metal the hormesis effect (heavy metal activity at very low concentration because of biphasic, non linear cell response) and the possible potentiation effect resulting from the mixture of different metals acting synergistically can explain cell damage at very low concentrations. The effect of metals on the human thyroid is poorly studied: for some heavy metals no data are available. The scarce studies that have been performed mainly focus on metal effect as thyroid endocrine disruptors. The metal concentration in tissues has

  1. Is it possible to do a re-sizing of a warehouse without affecting the quality and requirements of the operative areas?

    Energy Technology Data Exchange (ETDEWEB)

    Dagnino, Miguel Angel; Ferrario, Alejandro Daniel


    VISION: In that case we considered, within of Supplying Area, to count whit Deposits of Materials-DM, distributed geographically according to an optimal criterion, determine the proportions suitably, contemplating the Logistics of Supplying to the different Operative Areas, diminishing the energy cost and with an optimal amount of materials according to, on the one hand, the operative requirements and, on the other, adopting an iron Policy of Stock Management. DEVELOPMENT: we began from a real case where as a result of a companies merger, one took place a rearrangement and re-sizing of the Operative Areas of each one of the original Companies.

  2. 40 CFR 51.918 - Can any SIP planning requirements be suspended in 8-hour ozone nonattainment areas that have air... (United States)


    ... suspended in 8-hour ozone nonattainment areas that have air quality data that meets the NAAQS? 51.918 Section 51.918 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... 8-hour Ozone National Ambient Air Quality Standard § 51.918 Can any SIP planning requirements be...

  3. Volcanic Plume Measurements with UAV (Invited) (United States)

    Shinohara, H.; Kaneko, T.; Ohminato, T.


    Volatiles in magmas are the driving force of volcanic eruptions and quantification of volcanic gas flux and composition is important for the volcano monitoring. Recently we developed a portable gas sensor system (Multi-GAS) to quantify the volcanic gas composition by measuring volcanic plumes and obtained volcanic gas compositions of actively degassing volcanoes. As the Multi-GAS measures variation of volcanic gas component concentrations in the pumped air (volcanic plume), we need to bring the apparatus into the volcanic plume. Commonly the observer brings the apparatus to the summit crater by himself but such measurements are not possible under conditions of high risk of volcanic eruption or difficulty to approach the summit due to topography etc. In order to overcome these difficulties, volcanic plume measurements were performed by using manned and unmanned aerial vehicles. The volcanic plume measurements by manned aerial vehicles, however, are also not possible under high risk of eruption. The strict regulation against the modification of the aircraft, such as installing sampling pipes, also causes difficulty due to the high cost. Application of the UAVs for the volcanic plume measurements has a big advantage to avoid these problems. The Multi-GAS consists of IR-CO2 and H2O gas analyzer, SO2-H2O chemical sensors and H2 semiconductor sensor and the total weight ranges 3-6 kg including batteries. The necessary conditions of the UAV for the volcanic plumes measurements with the Multi-GAS are the payloads larger than 3 kg, maximum altitude larger than the plume height and installation of the sampling pipe without contamination of the exhaust gases, as the exhaust gases contain high concentrations of H2, SO2 and CO2. Up to now, three different types of UAVs were applied for the measurements; Kite-plane (Sky Remote) at Miyakejima operated by JMA, Unmanned airplane (Air Photo Service) at Shinomoedake, Kirishima volcano, and Unmanned helicopter (Yamaha) at Sakurajima

  4. Smart destinations for smart Generation? – The requirements of Generation Y in the area of innovative communication


    Sziva, Ivett


    Social media and mobile-marketing all among the most challenging trends the tourism destinations facing with, particularly in the area of reaching the so called smart or Internet Generation, the tourists from the Generation Y. However the most innovative destinations’ objective is to implement SoCoMo (Social-context-based – mobile marketing), the main question is whether the members of the Generation Y need these kind of approaches. Generation Y is considered as the most technology savvy Gene...

  5. Volcanism and Subduction: The Kamchatka Region (United States)

    Eichelberger, John; Gordeev, Evgenii; Izbekov, Pavel; Kasahara, Minoru; Lees, Jonathan

    The Kamchatka Peninsula and contiguous North Pacific Rim is among the most active regions in the world. Kamchatka itself contains 29 active volcanoes, 4 now in a state of semi-continuous eruption, and I has experienced 14 magnitude 7 or greater earthquakes since accurate recording began in 1962. At its heart is the uniquely acute subduction cusp where the Kamchatka and Aleutian Arcs and Emperor Seamount Chain meet. Volcanism and Subduction covers coupled magmatism and tectonics in this spectacular region, where the torn North Pacific slab dives into hot mantle. Senior Russian and American authors grapple with the dynamics of the cusp with perspectives from the west and east of it, respectively, while careful tephrostratigraphy yields a remarkably precise record of behavior of storied volcanoes such as Kliuchevskoi and Shiveluch. Towards the south, Japanese researchers elucidate subduction earthquake processes with unprecedented geodetic resolution. Looking eastward, new insights on caldera formation, monitoring, and magma ascent are presented for the Aleutians. This is one of the first books of its kind printed in the English language. Students and scientists beginning research in the region will find in this book a useful context and introduction to the region's scientific leaders. Others who wish to apply lessons learned in the North Pacific to their areas of interest will find the volume a valuable reference.

  6. Quantitative volcanic susceptibility analysis of Lanzarote and Chinijo Islands based on kernel density estimation via a linear diffusion process (United States)

    Galindo, I.; Romero, M. C.; Sánchez, N.; Morales, J. M.


    Risk management stakeholders in high-populated volcanic islands should be provided with the latest high-quality volcanic information. We present here the first volcanic susceptibility map of Lanzarote and Chinijo Islands and their submarine flanks based on updated chronostratigraphical and volcano structural data, as well as on the geomorphological analysis of the bathymetric data of the submarine flanks. The role of the structural elements in the volcanic susceptibility analysis has been reviewed: vents have been considered since they indicate where previous eruptions took place; eruptive fissures provide information about the stress field as they are the superficial expression of the dyke conduit; eroded dykes have been discarded since they are single non-feeder dykes intruded in deep parts of Miocene-Pliocene volcanic edifices; main faults have been taken into account only in those cases where they could modified the superficial movement of magma. The application of kernel density estimation via a linear diffusion process for the volcanic susceptibility assessment has been applied successfully to Lanzarote and could be applied to other fissure volcanic fields worldwide since the results provide information about the probable area where an eruption could take place but also about the main direction of the probable volcanic fissures.

  7. Geothermal Prospecting with Remote Sensing and Geographical Information System Technologies in Xilingol Volcanic Field in the Eastern Inner Mongolia, NE China (United States)

    Peng, F.; Huang, S.; Xiong, Y.; Zhao, Y.; Cheng, Y.


    Geothermal energy is a renewable and low-carbon energy source independent of climate change. It is most abundant in Cenozoic volcanic areas where high temperature can be obtained within a relatively shallow depth. Like other geological resources, geothermal resource prospecting and exploration require a good understanding of the host media. Remote sensing (RS) has the advantages of high spatial and temporal resolution and broad spatial coverage over the conventional geological and geophysical prospecting, while geographical information system (GIS) has intuitive, flexible, and convenient characteristics. In this study, we apply RS and GIS technics in prospecting the geothermal energy potential in Xilingol, a Cenozoic volcanic field in the eastern Inner Mongolia, NE China. Landsat TM/ETM+ multi-temporal images taken under clear-sky conditions, digital elevation model (DEM) data, and other auxiliary data including geological maps of 1:2,500,000 and 1:200,000 scales are used in this study. The land surface temperature (LST) of the study area is retrieved from the Landsat images with the single-channel algorithm on the platform of ENVI developed by ITT Visual Information Solutions. Information of linear and circular geological structure is then extracted from the LST maps and compared to the existing geological data. Several useful technologies such as principal component analysis (PCA), vegetation suppression technique, multi-temporal comparative analysis, and 3D Surface View based on DEM data are used to further enable a better visual geologic interpretation with the Landsat imagery of Xilingol. The Preliminary results show that major faults in the study area are mainly NE and NNE oriented. Several major volcanism controlling faults and Cenozoic volcanic eruption centers have been recognized from the linear and circular structures in the remote images. Seven areas have been identified as potential targets for further prospecting geothermal energy based on the visual

  8. Volcanic geomorphology using TanDEM-X (United States)

    Poland, Michael; Kubanek, Julia


    Topography is perhaps the most fundamental dataset for any volcano, yet is surprisingly difficult to collect, especially during the course of an eruption. For example, photogrammetry and lidar are time-intensive and often expensive, and they cannot be employed when the surface is obscured by clouds. Ground-based surveys can operate in poor weather but have poor spatial resolution and may expose personnel to hazardous conditions. Repeat passes of synthetic aperture radar (SAR) data provide excellent spatial resolution, but topography in areas of surface change (from vegetation swaying in the wind to physical changes in the landscape) between radar passes cannot be imaged. The German Space Agency's TanDEM-X satellite system, however, solves this issue by simultaneously acquiring SAR data of the surface using a pair of orbiting satellites, thereby removing temporal change as a complicating factor in SAR-based topographic mapping. TanDEM-X measurements have demonstrated exceptional value in mapping the topography of volcanic environments in as-yet limited applications. The data provide excellent resolution (down to ~3-m pixel size) and are useful for updating topographic data at volcanoes where surface change has occurred since the most recent topographic dataset was collected. Such data can be used for applications ranging from correcting radar interferograms for topography, to modeling flow pathways in support of hazards mitigation. The most valuable contributions, however, relate to calculating volume changes related to eruptive activity. For example, limited datasets have provided critical measurements of lava dome growth and collapse at volcanoes including Merapi (Indonesia), Colima (Mexico), and Soufriere Hills (Montserrat), and of basaltic lava flow emplacement at Tolbachik (Kamchatka), Etna (Italy), and Kīlauea (Hawai`i). With topographic data spanning an eruption, it is possible to calculate eruption rates - information that might not otherwise be available

  9. The Variable Climate Impact of Volcanic Eruptions (United States)

    Graf, H.


    The main effect of big volcanic eruptions in the climate system is due to their efficient transport of condensable gases and their precursors into the stratosphere. There the formation of aerosols leads to effects on atmospheric radiation transfer inducing a reduction of incoming solar radiation by reflection (i.e. cooling of the Earth surface) and absorption of near infrared radiation (i.e. heating) in the aerosol laden layers. In the talk processes determining the climate effect of an eruption will be illustrated by examples, mainly from numerical modelling. The amount of gases released from a magma during an eruption and the efficiency of their transport into very high altitudes depends on the geological setting (magma type) and eruption style. While mid-sized eruption plumes of Plinian style quickly can develop buoyancy by entrainment of ambient air, very large eruptions with high magma flux rates often tend to collapsing plumes and co-ignimbrite style. These cover much bigger areas and are less efficient in entraining ambient air. Vertical transport in these plumes is chaotic and less efficient, leading to lower neutral buoyancy height and less gas and particles reaching high stratospheric altitudes. Explosive energy and amount of released condensable gases are not the only determinants for the climatic effect of an eruption. The effect on shortwave radiation is not linear with the amount of aerosols formed since according to the Lambert-Beer Law atmospheric optical depth reaches a saturation limit with increased absorber concentration. In addition, if more condensable gas is available for aerosol growth, particles become larger and this affects their optical properties to less reflection and more absorption. Larger particles settle out faster, thus reducing the life time of the aerosol disturbance. Especially for big tropical eruptions the strong heating of the stratosphere in low latitudes leads to changes in atmospheric wave propagation by strengthened

  10. Organizational preparedness for and management of volcanic crises at Kīlauea and Mauna Loa volcanoes, Hawaii (United States)

    Gregg, C. E.; Reeves, A.; Lindell, M. K.; Prater, C.; Joyner, T. A.; Eggert, S.


    The eruption of Kīlauea volcano since 1983 has produced a series of crises, the latest one occurring in 2014 and 2015 when a new vent sent lava flows northeastward toward developed areas in the lower Puna District of Kīlauea. The June 27 lava flow took about 2 months to advance to the edge of developed areas in Puna, prompting widespread reaction. Volcanic eruptions often have large economic consequences out of proportion with their magnitudes, and uncertainties about the physical and organizational communication of risk information amplify these losses. This study aims to improve tools to communicate uncertainty of volcanic activity and organizational and individual response, offering clearer and more reliable information to guide civic leaders in issuing appropriate warnings. One significant impediment to risk communication is limited knowledge about the most effective ways to communicate scientific uncertainty through verbal, numeric and graphic methods. The public's demand for near-real time information updates during the June 27 lava crisis, including both written messages and graphics, required some agencies to provide information at a faster rate than in any previous eruption. In order to understand how these and other stakeholders involved with the crisis can better plan for and manage future crises, including implementing evacuation decisions, we conducted a series of interviews and a mental model exercise with stakeholders. We explored their knowledge of local risk communication messages and hazard mitigation efforts and their experiences during the June 27 lava flow crisis. Stakeholders represented county, state and federal agencies and included elected officials, emergency managers, scientists, and other professionals involved with the crisis (traffic engineers, land use planners, police officers, fire fighters). We also assessed factors that influence individual and household preparedness to implement officials' protective action recommendations

  11. Learning about hydrothermal volcanic activity by modeling induced geophysical changes (United States)

    Currenti, Gilda M.; Napoli, Rosalba


    Motivated by ongoing efforts to understand the nature and the energy potential of geothermal resources, we devise a coupled numerical model (hydrological, thermal, mechanical), which may help in the characterization and monitoring of hydrothermal systems through computational experiments. Hydrothermal areas in volcanic regions arise from a unique combination of geological and hydrological features which regulate the movement of fluids in the vicinity of magmatic sources capable of generating large quantities of steam and hot water. Numerical simulations help in understanding and characterizing rock-fluid interaction processes and the geophysical observations associated with them. Our aim is the quantification of the response of different geophysical observables (i.e. deformation, gravity and magnetic field) to hydrothermal activity on the basis of a sound geological framework (e.g. distribution and pathways of the flows, the presence of fractured zones, caprock). A detailed comprehension and quantification of the evolution and dynamics of the geothermal systems and the definition of their internal state through a geophysical modeling approach are essential to identify the key parameters for which the geothermal system may fulfill the requirements to be exploited as a source of energy. For the sake of illustration only, the numerical computations are focused on a conceptual model of the hydrothermal system of Vulcano Island by simulating a generic 1-year unrest and estimating different geophysical changes. We solved (i) the mass and energy balance equations of flow in porous media for temperature, pressure and density changes, (ii) the elastostatic equation for the deformation field and (iii) the Poisson’s equations for gravity and magnetic potential fields. Under the model assumptions, a generic unrest of 1-year engenders on the ground surface low amplitude changes in the investigated geophysical observables, that are, however, above the accuracies of the modern

  12. Volcanic Ash Advisory Database, 1983-2003 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanic ash is a significant hazard to aviation and can also affect global climate patterns. To ensure safe navigation and monitor possible climatic impact, the...

  13. Age of the Auckland Volcanic Field

    International Nuclear Information System (INIS)

    Lindsay, J.; Leonard, G.S.


    In 2008 a multi-disciplinary research programme was launched, a GNS Science-University of Auckland collaboration with the aim of DEtermining VOlcanic Risk in Auckland (DEVORA). A major aspiration of DEVORA is development of a probabilistic hazard model for the Auckland Volcanic Field (AVF). This will be achieved by investigating past eruption magnitude-frequency relationships and comparing these with similar data from analogous volcanic fields. A key data set underpinning this is an age database for the AVF. To this end a comprehensive dating campaign is planned as part of DEVORA. This report, Age of the Auckland Volcanic Field, is a synthesis of all currently available age data for the AVF. It represents one of several reports carried out as part of the 'synthesis' phase of DEVORA, whereby existing data from all previous work is collated and summarised, so that gaps in current knowledge can be identified and addressed. (author). 60 refs., 7 figs., 31 tabs.

  14. Volcanic eruptions are cooling the earth

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern


    The article discusses how volcanic eruptions may influence the climate. The environmental impacts both on the earth surface and the atmosphere are surveyed. Some major eruptions in modern times are mentioned

  15. Stochastic Modeling of Past Volcanic Crises (United States)

    Woo, Gordon


    The statistical foundation of disaster risk analysis is past experience. From a scientific perspective, history is just one realization of what might have happened, given the randomness and chaotic dynamics of Nature. Stochastic analysis of the past is an exploratory exercise in counterfactual history, considering alternative possible scenarios. In particular, the dynamic perturbations that might have transitioned a volcano from an unrest to an eruptive state need to be considered. The stochastic modeling of past volcanic crises leads to estimates of eruption probability that can illuminate historical volcanic crisis decisions. It can also inform future economic risk management decisions in regions where there has been some volcanic unrest, but no actual eruption for at least hundreds of years. Furthermore, the availability of a library of past eruption probabilities would provide benchmark support for estimates of eruption probability in future volcanic crises.

  16. K-Ar ages of the Neogene volcanic rocks from the Oshamambe district, southwestern Hokkaido

    International Nuclear Information System (INIS)

    Kubo, Kazuya; Shibata, Ken; Ishida, Masao


    Oshamanbe district is on the northern extension of the so-called green tuff district in northeastern Japan, and the sedimentary rocks in a sea area and volcanic rocks from Miocene to Pleistocene widely distribute. The authors carried out the geological survey of this district, and published the results as the geological features in Oshamanbe district. The volcanic rocks distributing in this district range from andesite to dacite and rhyolite. Their lithofacies are mostly volcanic breccia and tuff breccia, accompanied by lava and dikes. This time, the measurement of the age of these volcanic rocks was carried out, and the stratigraphical table made by the authors was investigated. It is considered that those age values offer important information for determining the age of the Setana formation. The outline of the geological features, the samples for the measurement, the method of measurement of Ar isotopic ratio and K, and the results of measurement are reported. As the results, 4.38 - 4.47 Ma were obtained for Garogawa volcanic rocks, and 2.59 Ma for Shamanbesan volcanic rocks. The period of sedimentation of the Setana formation was from the latter period of Pliocene to pleistocene. (Kako, I.)

  17. Geologic evolution of the Jemez Mountains and their potential for future volcanic activity

    International Nuclear Information System (INIS)

    Burton, B.W.


    Geophysical and geochemical data and the geologic history of the Rio Grande rift and the vicinity of the Jemez Mountains are summarized to determine the probability of future volcanic activity in the Los Alamos, New Mexico area. The apparent cyclic nature of volcanism in the Jemez Mountains may be related to intermittent thermal inputs into the volcanic system beneath the region. The Jemez lineament, an alignment of late Cenozoic volcanic centers that crosses the rift near Los Alamos, has played an important role in the volcanic evolution of the Jemez Mountains. Geophysical data suggest that there is no active shallow magma body beneath the Valles caldera, though magma probably exists at about 15 km beneath this portion of the rift. The rate of volcanism in the Jemez Mountains during the last 10 million years has been 5 x 10 -9 /km 2 /y. Lava or ash flows overriding Laboratory radioactive waste disposal sites would have little potential to release radionuclides to the environment. The probability of a new volcano intruding close enough to a radioactive waste disposal site to effect radionuclide release is 2 x 10 -7 /y

  18. Geologic field-trip guide to the volcanic and hydrothermal landscape of the Yellowstone Plateau (United States)

    Morgan Morzel, Lisa Ann; Shanks, W. C. Pat; Lowenstern, Jacob B.; Farrell, Jamie M.; Robinson, Joel E.


    Yellowstone National Park, a nearly 9,000 km2 (~3,468 mi2) area, was preserved in 1872 as the world’s first national park for its unique, extraordinary, and magnificent natural features. Rimmed by a crescent of older mountainous terrain, Yellowstone National Park has at its core the Quaternary Yellowstone Plateau, an undulating landscape shaped by forces of late Cenozoic explosive and effusive volcanism, on-going tectonism, glaciation, and hydrothermal activity. The Yellowstone Caldera is the centerpiece of the Yellowstone Plateau. The Yellowstone Plateau lies at the most northeastern front of the 17-Ma Yellowstone hot spot track, one of the few places on Earth where time-transgressive processes on continental crust can be observed in the volcanic and tectonic (faulting and uplift) record at the rate and direction predicted by plate motion. Over six days, this field trip presents an intensive overview into volcanism, tectonism, and hydrothermal activity on the Yellowstone Plateau (fig. 1). Field stops are linked directly to conceptual models related to monitoring of the various volcanic, geochemical, hydrothermal, and tectonic aspects of the greater Yellowstone system. Recent interest in young and possible future volcanism at Yellowstone as well as new discoveries and synthesis of previous studies, (for example, tomographic, deformation, gas, aeromagnetic, bathymetric, and seismic surveys), provide a framework in which to discuss volcanic, hydrothermal, and seismic activity in this dynamic region.

  19. Vesuvio civil protection exercise MESIMEX: survey on volcanic risk perception

    Directory of Open Access Journals (Sweden)

    Tullio Ricci


    Full Text Available In October 2006 the European Civil Protection Exercise MESIMEX (Somma Vesuvio Mesimex – Major Emergency SIMulation Exercise on volcanic risk took place at Vesuvio, promoted by Campania Region and coordinated by the Italian Civil Protection Department. The exercise was focused on the preparedness phase for a major volcanic emergency in the area of Vesuvio. An evacuation of a sample of 1800 inhabitants from the Vesuvio Red Zone was also tested during the drill because the emergency plan ensures the complete evacuation of the population from the higher risk zone before the onset of the eruption. During that event a survey on volcanic risk perception was carried out on the evacuated population in order to compare the results with the ones coming from a previous similar survey, using the same questionnaire, carried out on a wider sample of residents in the Vesuvio Red Zone few months before MESIMEX exercise. The aim was to point out any differences in population’s attitude towards volcanic risk after having received detailed information on the emergency plan and on the hazards and risk related to the reactivation of Vesuvio, and experiencing the exercise. 463 questionnaires were distributed to the population evacuated from the 18 municipalities of the Red Zone and participating to the exercise. Main results in comparing data from MESIMEX survey with the Vesuvio previous one, put in evidence how the general level of Vesuvio residents’ trust remains quite low, indicating that a continuous and effective effort has to be done by both scientific community and Civil Protection Department. Particular attention should be paid in education and outreach activities and in involving people in risk mitigation procedures, also through more frequent exercises.

  20. A 3D model of crustal magnetization at the Pinacate Volcanic Field, NW Sonora, Mexico (United States)

    García-Abdeslem, Juan; Calmus, Thierry


    The Pinacate Volcanic Field (PVF) is located near the western border of the southern Basin and Range province, in the State of Sonora NW Mexico, and within the Gulf of California Extensional Province. This volcanic field contains the shield volcano Santa Clara, which mainly consists of basaltic to trachytic volcanic rocks, and reaches an altitude of 1200 m. The PVF disrupts a series of discontinuous ranges of low topographic relief aligned in a NW direction, which consist mainly of Proterozoic metamorphic rocks and Proterozoic through Paleogene granitoids. The PVF covers an area of approximately 60 by 55 km, and includes more than 400 well-preserved cinder cones and vents and eight maar craters. It was active from about 1.7 Ma until about 13 ka. We have used the ages and magnetic polarities of the volcanic rocks, along with mapped magnetic anomalies and their inverse modeling to determine that the Pinacate Volcanic Field was formed during two volcanic episodes. The oldest one built the Santa Clara shield volcano of basaltic and trachytic composition, and occurred during the geomagnetic Matuyama Chron of reverse polarity, which also includes the normal polarity Jaramillo and Olduvai Subchrons, thus imprinting both normal and reverse magnetization in the volcanic products. The younger Pinacate series of basaltic composition represents monogenetic volcanic activity that extends all around the PVF and occurred during the subsequent geomagnetic Brunhes Chron of normal polarity. Magnetic anomalies toward the north of the Santa Clara volcano are the most intense in the PVF, and their inverse modeling indicates the presence of a large subsurface body magnetized in the present direction of the geomagnetic field. This suggests that the magma chambers at depth cooled below the Curie temperature during the Brunhes Chron.

  1. Field-trip guides to selected volcanoes and volcanic landscapes of the western United States (United States)



    The North American Cordillera is home to a greater diversity of volcanic provinces than any comparably sized region in the world. The interplay between changing plate-margin interactions, tectonic complexity, intra-crustal magma differentiation, and mantle melting have resulted in a wealth of volcanic landscapes.  Field trips in this guide book collection (published as USGS Scientific Investigations Report 2017–5022) visit many of these landscapes, including (1) active subduction-related arc volcanoes in the Cascade Range; (2) flood basalts of the Columbia Plateau; (3) bimodal volcanism of the Snake River Plain-Yellowstone volcanic system; (4) some of the world’s largest known ignimbrites from southern Utah, central Colorado, and northern Nevada; (5) extension-related volcanism in the Rio Grande Rift and Basin and Range Province; and (6) the eastern Sierra Nevada featuring Long Valley Caldera and the iconic Bishop Tuff.  Some of the field trips focus on volcanic eruptive and emplacement processes, calling attention to the fact that the western United States provides opportunities to examine a wide range of volcanological phenomena at many scales.The 2017 Scientific Assembly of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) in Portland, Oregon, was the impetus to update field guides for many of the volcanoes in the Cascades Arc, as well as publish new guides for numerous volcanic provinces and features of the North American Cordillera. This collection of guidebooks summarizes decades of advances in understanding of magmatic and tectonic processes of volcanic western North America. These field guides are intended for future generations of scientists and the general public as introductions to these fascinating areas; the hope is that the general public will be enticed toward further exploration and that scientists will pursue further field-based research.

  2. Imaging volcanic CO2 and SO2 (United States)

    Gabrieli, A.; Wright, R.; Lucey, P. G.; Porter, J. N.


    Detecting and quantifying volcanic carbon dioxide (CO2) and sulfur dioxide (SO2) emissions is of relevance to volcanologists. Changes in the amount and composition of gases that volcanoes emit are related to subsurface magma movements and the probability of eruptions. Volcanic gases and related acidic aerosols are also an important atmospheric pollution source that create environmental health hazards for people, animals, plants, and infrastructures. For these reasons, it is important to measure emissions from volcanic plumes during both day and night. We present image measurements of the volcanic plume at Kīlauea volcano, HI, and flux derivation, using a newly developed 8-14 um hyperspectral imaging spectrometer, the Thermal Hyperspectral Imager (THI). THI is capable of acquiring images of the scene it views from which spectra can be derived from each pixel. Each spectrum contains 50 wavelength samples between 8 and 14 um where CO2 and SO2 volcanic gases have diagnostic absorption/emission features respectively at 8.6 and 14 um. Plume radiance measurements were carried out both during the day and the night by using both the lava lake in the Halema'uma'u crater as a hot source and the sky as a cold background to detect respectively the spectral signatures of volcanic CO2 and SO2 gases. CO2 and SO2 path-concentrations were then obtained from the spectral radiance measurements using a new Partial Least Squares Regression (PLSR)-based inversion algorithm, which was developed as part of this project. Volcanic emission fluxes were determined by combining the path measurements with wind observations, derived directly from the images. Several hours long time-series of volcanic emission fluxes will be presented and the SO2 conversion rates into aerosols will be discussed. The new imaging and inversion technique, discussed here, are novel allowing for continuous CO2 and SO2 plume mapping during both day and night.

  3. Nd and Sr isotopes and K-Ar ages of the Ulreungdo alkali volcanic rocks in the East Sea, South Korea

    International Nuclear Information System (INIS)

    Kim Kyuhan; Jang Sunkyung; Tanaka, Tsuyoshi; Nagao, Keisuke


    Temporal geochemical and isotopical variations in the Ulreundgo alkali volcanic rocks provide important constraints on the origin and evolution of the volcanic rocks in relation to backarc basin tectonism. We determined the K-Ar ages, major and trace element contents, and Nd and Sr isotopic rations of the alkali volcanic rocks. The activities of Ulreungdo volcanoes can be divided, on the basis of radiometric ages and field occurrences, into five stages, though their activities range from 1.4 Ma to 0.01 Ma with short volcanic hiatus (ca. 0.05-0.3 Ma). The Nd-Sr isotopic data for Ulreungdo volcanic rocks enable us to conclude that: (1) the source materials of Ulreungdo volcanics are isotopically heterogeneous in composition, which is explained by the mixing of mantle derived magma and continental crustal source rocks. There is no systematic isotopic variations with eruption stages. Particularly, some volcanic rocks of stage 2 and 3 have extremely wide initial 87 Sr/ 86 Sr isotopic variations ranging from 0.7038 to 0.7092, which are influenced by seawater alterations; (2) the Ulreungdo volcanic rocks show EMI characteristic, while volcanic rocks from the Jejudo, Yeong-il and Jeon-gok areas have slightly depleted mantle source characteristics; (3) the trachyandesite of the latest eruption stage was originated from the mantle source materials which differ from other stages. A schematic isotopic evolution model for alkali basaltic magma is presented in the Ulreungdo volcanic island of the backarc basin of Japanese island arc system. (author)

  4. An approach of understanding acid volcanics and tuffaceous volcaniclastics from field studies: A case from Tadpatri Formation, Proterozoic Cuddapah basin, Andhra Pradesh, India (United States)

    Goswami, Sukanta; Upadhyay, P. K.; Bhagat, Sangeeta; Zakaulla, Syed; Bhatt, A. K.; Natarajan, V.; Dey, Sukanta


    The lower stratigraphic part of the Cuddapah basin is marked by mafic and felsic volcanism. Tadpatri Formation consists of a greater variety of rock types due to bimodal volcanism in the upper part. Presence of bimodal volcanism is an indication of continental rift setting. Various genetic processes involved in the formation of such volcanic sequence result in original textures which are classified into volcaniclastic and coherent categories. Detailed and systematic field works in Tadpatri-Tonduru transect of SW Cuddapah basin have provided information on the physical processes producing this diversity of rock types. Felsic volcanism is manifested here with features as finger print of past rhyolite-dacite eruptions. Acid volcanics, tuffs and associated shale of Tadpatri Formation are studied and mapped in the field. With supporting subordinate studies on geochemistry, mineralogy and petrogenesis of the volcanics to validate field features accurately, it is understood that volcanism was associated with rifting and shallow marine environmental condition. Four facies (i.e., surge, flow, fall and resedimented volcaniclastic) are demarcated to describe stratigraphic units and volcanic history of the mapped area. The present contribution focuses on the fundamental characterization and categorization of field-based features diagnostic of silica-rich volcanic activities in the Tadpatri Formation.

  5. A sensorimotor area in the songbird brain is required for production of vocalizations in the song learning period of development. (United States)

    Piristine, Hande C; Choetso, Tenzin; Gobes, Sharon M H


    Sensory feedback is essential for acquiring and maintaining complex motor behaviors, including birdsong. In zebra finches, auditory feedback reaches the song control circuits primarily through the nucleus interfacialis nidopalii (Nif), which provides excitatory input to HVC (proper name)-a premotor region essential for the production of learned vocalizations. Despite being one of the major inputs to the song control pathway, the role of Nif in generating vocalizations is not well understood. To address this, we transiently inactivated Nif in late juvenile zebra finches. Upon Nif inactivation (in both hemispheres or on one side only), birds went from singing stereotyped zebra finch song to uttering highly variable and unstructured vocalizations resembling sub-song, an early juvenile song form driven by a basal ganglia circuit. Simultaneously inactivating Nif and LMAN (lateral magnocellular nucleus of the anterior nidopallium), the output nucleus of a basal ganglia circuit, inhibited song production altogether. These results suggest that Nif is required for generating the premotor drive for song. Permanent Nif lesions, in contrast, have only transient effects on vocal production, with song recovering within a day. The sensorimotor nucleus Nif thus produces a premotor drive to the motor pathway that is acutely required for generating learned vocalizations, but once permanently removed, the song system can compensate for its absence. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1213-1225, 2016. © 2016 Wiley Periodicals, Inc.

  6. Local and remote infrasound from explosive volcanism (United States)

    Matoza, R. S.; Fee, D.; LE Pichon, A.


    Explosive volcanic eruptions can inject large volumes of ash into heavily travelled air corridors and thus pose a significant societal and economic hazard. In remote volcanic regions, satellite data are sometimes the only technology available to observe volcanic eruptions and constrain ash-release parameters for aviation safety. Infrasound (acoustic waves ~0.01-20 Hz) data fill this critical observational gap, providing ground-based data for remote volcanic eruptions. Explosive volcanic eruptions are among the most powerful sources of infrasound observed on earth, with recordings routinely made at ranges of hundreds to thousands of kilometers. Advances in infrasound technology and the efficient propagation of infrasound in the atmosphere therefore greatly enhance our ability to monitor volcanoes in remote regions such as the North Pacific Ocean. Infrasound data can be exploited to detect, locate, and provide detailed chronologies of the timing of explosive volcanic eruptions for use in ash transport and dispersal models. We highlight results from case studies of multiple eruptions recorded by the International Monitoring System and dedicated regional infrasound networks (2008 Kasatochi, Alaska, USA; 2008 Okmok, Alaska, USA; 2009 Sarychev Peak, Kuriles, Russian Federation; 2010 Eyjafjallajökull, Icleand) and show how infrasound is currently used in volcano monitoring. We also present progress towards characterizing and modeling the variability in source mechanisms of infrasound from explosive eruptions using dedicated local infrasound field deployments at volcanoes Karymsky, Russian Federation and Sakurajima, Japan.

  7. Timing the evolution of a monogenetic volcanic field: Sierra Chichinautzin, Central Mexico (United States)

    Jaimes-Viera, M. C.; Martin Del Pozzo, A. L.; Layer, P. W.; Benowitz, J. A.; Nieto-Torres, A.


    The unique nature of monogenetic volcanism has always raised questions about its origin, longevity and spatial distribution. Detailed temporal and spatial boundaries resulted from a morphometric study, mapping, relative dating, twenty-four new 40Ar/39Ar dates, and chemical analyses for the Sierra Chichinautzin, Central Mexico. Based on these results the monogenetic cones were divided into four groups: (1) Peñón Monogenetic Volcanic Group (PMVG); (2) Older Chichinautzin Monogenetic Volcanic Group (Older CMVG); (3) Younger Chichinautzin Monogenetic Volcanic Group (Younger CMVG) and (4) Sierra Santa Catarina Monogenetic Volcanic Group (SSC). The PMVG cover the largest area and marks the northern and southern boundaries of this field. The oldest monogenetic volcanism (PMVG; 1294 ± 36 to 765 ± 30 ka) started in the northern part of the area and the last eruption of this group occurred in the south. These basaltic-andesite cones are widely spaced and are aligned NE-SW (N60°E). After this activity, monogenetic volcanism stopped for 527 ka. Monogenetic volcanism was reactivated with the birth of the Tezoyuca 1 Volcano, marking the beginning of the second volcanic group (Older CMVG; 238 ± 51 to 95 ± 12 ka) in the southern part of the area. These andesitic to basaltic andesite cones plot into two groups, one with high MgO and Nb, and the other with low MgO and Nb, suggesting diverse magma sources. The eruption of the Older CMVG ended with the eruption of Malacatepec volcano and then monogenetic volcanism stopped again for 60 ka. At 35 ka, monogenetic volcanism started again, this time in the eastern part of the area, close to Popocatépetl volcano, forming the Younger CMVG (<35 ± 4 ka). These cones are aligned in an E-W direction. Geochemical composition of eruptive products of measured samples varies from basalts to dacites with low and high MgO. The Younger CMVG is considered still active since the last eruptions took place <2 ka. The SSC (132 ± 70 to 2 ± 56 ka

  8. Volcanic tremor and local earthquakes at Copahue volcanic complex, Southern Andes, Argentina (United States)

    Ibáñez, J. M.; Del Pezzo, E.; Bengoa, C.; Caselli, A.; Badi, G.; Almendros, J.


    In the present paper we describe the results of a seismic field survey carried out at Copahue Volcano, Southern Andes, Argentina, using a small-aperture, dense seismic antenna. Copahue Volcano is an active volcano that exhibited a few phreatic eruptions in the last 20 years. The aim of this experiment was to record and classify the background seismic activity of this volcanic area, and locate the sources of local earthquakes and volcanic tremor. Data consist of several volcano-tectonic (VT) earthquakes, and many samples of back-ground seismic noise. We use both ordinary spectral, and multi-spectral techniques to measure the spectral content, and an array technique [Zero Lag Cross Correlation technique] to measure the back-azimuth and apparent slowness of the signals propagating across the array. We locate VT earthquakes using a procedure based on the estimate of slowness vector components and S-P time. VT events are located mainly along the border of the Caviahue caldera lake, positioned at the South-East of Copahue volcano, in a depth interval of 1-3 km below the surface. The background noise shows the presence of many transients with high correlation among the array stations in the frequency band centered at 2.5 Hz. These transients are superimposed to an uncorrelated background seismic signal. Array solutions for these transients show a predominant slowness vector pointing to the exploited geothermal field of "Las Maquinitas" and "Copahue Village", located about 6 km north of the array site. We interpret this coherent signal as a tremor generated by the activity of the geothermal field.

  9. Commercial/industrial photovoltaic module and array requirement study. Low-cost solar array project engineering area (United States)


    Design requirements for photovoltaic modules and arrays used in commercial and industrial applications were identified. Building codes and referenced standards were reviewed for their applicability to commercial and industrial photovoltaic array installation. Four general installation types were identified - integral (replaces roofing), direct (mounted on top of roofing), stand-off (mounted away from roofing), and rack (for flat or low slope roofs, or ground mounted). Each of the generic mounting types can be used in vertical wall mounting systems. This implies eight mounting types exist in the commercial/industrial sector. Installation costs were developed for these mounting types as a function of panel/module size. Cost drivers were identified. Studies were performed to identify optimum module shapes and sizes and operating voltage cost drivers. The general conclusion is that there are no perceived major obstacles to the use of photovoltaic modules in commercial/industrial arrays.

  10. Residential photovoltaic module and array requirement study. Low-Cost Solar Array Project engineering area. Final report appendices

    Energy Technology Data Exchange (ETDEWEB)


    This volume contains the appendices to a study to identify design requirements for photovoltaic modules and arrays used in residential applications. Appendices include: (1) codes, standards, and manuals of accepted practice-definition and importance; (2) regional code variations-impact; (3) model and city codes-review; (4) National Electric Code (NEC)-review; (5) types of standards-definition and importance; (6) federal standards-review; (7) standards review method; (8) manuals of accepted practice; (9) codes and referenced standards-summary; (10) public safety testing laboratories; (11) insurance review; (12) studies approach; (13) mounting configurations; (14) module/panel size and shape cost analysis; (15) grounding, wiring, terminal and voltage studies; (16) array installation cost summary; (17) photovoltaic shingle/module comparison; (18) retrofit application; (19) residential photovoltaic module performance criteria; (20) critique of JPL's solar cell module design and test specifications for residential applications; and (21) CSI format specification. (WHK)

  11. The Origin of Widespread Long-lived Volcanism Across the Galapagos Volcanic Province (United States)

    O'Connor, J. M.; Stoffers, P.; Wijbrans, J. R.; Worthington, T. J.


    40Ar/39Ar ages for rocks dredged (SO144 PAGANINI expedition) and drilled (DSDP) from the Galapagos Volcanic Province (Cocos, Carnegie, Coiba and Malpelo aseismic ridges and associated seamounts) show evidence of 1) increasing age with distance from the Galapagos Archipelago, 2) long-lived episodic volcanism at many locations, and 3) broad overlapping regions of coeval volcanism. The widespread nature of synchronous volcanism across the Galapagos Volcanic Province (GVP) suggests a correspondingly large Galapagos hotspot melting anomaly (O'Connor et al., 2004). Development of the GVP via Cocos and Nazca plate migration and divergence over this broad melting anomaly would explain continued multiple phases of volcanism over millions of years following the initial onset of hotspot volcanism. The question arising from these observations is whether long-lived GVP episodic volcanism is equivalent to `rejuvenescent' or a `post-erosional' phase of volcanism that occurs hundreds of thousands or million years after the main shield-building phase documented on many mid-plate seamount chains, most notably along the Hawaiian-Emperor Seamount Chain? Thus, investigating the process responsible for long-lived episodic GVP volcanism provides the opportunity to evaluate this little understood process of rejuvenation in a physical setting very different to the Hawaiian-Emperor Chain (i.e. on/near spreading axis versus mid-plate). We consider here timing and geochemical information to test the various geodynamic models proposed to explain the origin of GVP hotspot volcanism, especially the possibility of rejuvenated phases that erupt long after initial shield-building.

  12. Comparison between geoelectric and electromagnetic sounding responses in volcanic areas

    Directory of Open Access Journals (Sweden)

    L. Alfano


    Full Text Available The structure of active and inactive volcanoes can be explored with electric and electromagnetic surveys. We test the actual applicability of prospecting methods that employ both stationary and time-varying fields, using mathematical models both for layered and complex structures. The geometry and the resistivities of the geological structures which are considered have been taken from real case studies reported in the literature. In particular we analyse the sensitivity of different methods to conductive and resistant bodies.

  13. Development of mobile sensor for volcanic observation "HOMURA": Test campaigns for a long-term operation (United States)

    Kaneko, K.; Iwahori, K.; Ito, K.; Sagi, H.


    Unmanned robots are useful to observe volcanic phenomena near active volcanic vents, to learn symptoms and transitions of eruptions, and to mitigate volcanic disasters. We have been trying to develop a practical UGV robot for flexible observation of active volcanic vents. We named this system "Homura". In this presentation, we report results of test campaigns of Homura for observation in a volcanic field. We have developed a prototype of Homura, which is a small robot vehicle with six wheels (75 x 43 x 31 cm and a weight of about 12 kg). It is remotely controlled with mobile phone radio waves; it can move in volcanic fields and send real time data of sensors (camera and gas sensors) equipped in the vehicle to the base station. Homura has a small solar panel (4 W). Power consumption of Homura is about 4 W in operation of sensors and less than 0.1 W in idle state, so that Homura can work outdoors for a long time by intermittent operation.We carried out two test campaigns of Homura at Iwo-yama to examine if Homura can work for a few month in natural volcanic fields (however, it had no solar panel in these campaigns). Iwo-yama is one of craters in the Kirishima volcanic field, SW Japan; the area within 1 km from the crater was an off-limit area from Oct., 2014 to May, 2015 and from Feb. to Mar., 2016 because of strong volcanic seismicity. On Feb. 19th, 2015 and Mar. 7th, 2016, we carried and put Homura at the rim of the crater. Unfortunately, mobile phone connectivity was not entirely stable around Iwo-yama. Then, we did not move Homura and only obtain real time data of the sensors. In the two campaigns, we operated Homura at our office for a few hours every day for 49 and 37 days, respectively. Although the weather was often bad (rain, fog, or cold temperature) during the campaigns, Homura perfectly worked. The results of these campaigns indicate that Homura is useful as s simple monitoring station in volcanic fields where mobile phone connection is available.

  14. Volcanic Eruption: Students Develop a Contingency Plan (United States)

    Meisinger, Philipp; Wittlich, Christian


    Dangerous, loud, sensational, exciting - natural hazards have what it takes to get students attention around the globe. Arising interest is the first step to develop an intrinsic motivation to learn about the matter and endure the hardships that students might discover along the way of the unit. Natural hazards thereby establish a close-knit connection between physical and anthropological geography through analyzing the hazardous event and its consequences for the people living in the affected area. Following a general principle of didactics we start searching right on our doorsteps to offer students the possibility to gain knowledge on the familiar and later transfer it to the unknown example. Even in Southwest Germany - a region that is rather known for its wine than its volcanic activity - we can find a potentially hazardous region. The "Laacher See" volcano (a caldera lake) in northern Rhineland-Palatinate is according to Prof. H.U. Schminke a "potentially active volcano" . Its activity can be proven by seismic activities, or experienced when visiting the lake's southeastern shore, where carbondioxid and sulphur gases from the underlying magma chamber still bubble up. The Laacher See is part of a range of volcanoes (classified from 'potentially active' to 'no longer active') of the East Eifel Volcanic Field. Precariously the Laacher See is located closely to the densely populated agglomerations of Cologne (NE, distance: 45 km) and the former capital Bonn (NE: 35km), as well as Koblenz (E: 24km) and the Rhine river. Apart from that, the towns of Andernach (E: 8km ± 30 000 inhabitants) and Mayen (SW: 11km ±20 000 inhabitants) and many smaller towns and villages are nearby due to economic reasons. The number of people affected by a possible eruption easily exceeds two million people considering the range as prime measurement. The underlying danger, as projected in a simulation presented by Prof. Schminke, is a lava stream running down the Brohltal valley

  15. Gravity in extensional regimes: A case study in the Central Volcanic Region, New Zealand (United States)

    Greve, A.; Stern, T. A.


    Using the interpretation of a large crustal seismic experiment conducted in 2009 as boundary model, we produced a sequence of new 2D gravity models for the central North Island in New Zealand. The Bouguer gravity field in the region ranges from -100 to 60 mGal and is dominated by the long wavelength signals of the subduction of the Pacific beneath the Australian plate along the Hikurangi margin and the transition from continental to oceanic lithosphere about the Bay of Plenty coast (NE New Zealand). Removal of these broad regional trends reveals the presence of a triangular shaped area, within the lines Taranaki-Coromandel and Taranaki - White Island, with negative anomalies between -30 and 60 mGal and positive anomalies around 10 mGal along the margins. This area, commonly referred to as the Central Volcanic Region (CVR) represents the continental continuation of the Lau-Havre, oceanic, back-arc rift basin. The Taupo Volcanic Zone forms the active eastern half of the CVR, where anomalously high heat output, geothermal activity and active volcanism occur. The new gravity model includes the presence of a 90km wide, ca. 10 km thick rift pillow of new underplated, lower crust between the depths of 15 and 25 km. A positive density contrast of 300 kg/m3 for this body is consistent with the observed seismic velocities (6.8 ≤ Vp ≤ 7.1 km/s). A ca. 2.5 km deep basin dominates the upper crustal structure and is about 50 km wide, infilled by low density volcaniclastics, with adopted average negative densities of -425 kg/m3. In the mid-crustal region, between 2.5 and 15 km depth, isostatic compensation requires a small density contrast of -110 kg/m3. This density contrast, with respect to a standard crustal model, can be ascribed to the presence of low density intrusives, within the old and now stretched crust. On the basis of this new crustal structure model we estimate a stretching factor (ß) for the old crust of 2-2.4. The intruded mid crust and the underplated new

  16. Petrography and geochemistry of lithic fragments in ignimbrites from the Mangakino Volcanic Centre : implications for the composition of the subvolcanic crust in western Taupo Volcanic Zone, New Zealand

    International Nuclear Information System (INIS)

    Krippner, S.J.P.; Briggs, R.M.; Wilson, C.J.N.; Cole, J.W.


    The Mangakino Volcanic Centre is the westernmost and oldest rhyolitic caldera volcano in the Taupo Volcanic Zone, North Island, New Zealand. The largest eruptions from Mangakino occurred in two periods of caldera-forming activity during the 1.68-1.53 Ma (Period I), and 1.21-0.95 Ma (Period IIA), producing several voluminous widespread welded and nonwelded ignimbrites and minor fall deposits. Other activity from Mangakino generated fall deposits and rhyolitic lava domes. Lithic fragments are common in all Mangakino ignimbrites (1-10 modal %), and consist of diverse lithologies including: rhyolite, dacite, andesite, and basaltic andesite lava, welded ignimbrite, tuff, volcanic breccia, biotite granite, granodiorite porphyry, siltstone, sandstone, greywacke, metagreywacke, metaconglomerate, biotite and hornblende-biotite schist. Lithic populations in Period I ignimbrites are dominated by andesite lavas, suggesting that there was a pre-existing andesite volcano in the Mangakino area, geochemically distinct from Titiraupenga and Pureora, the nearest roughly contemporaneous andesitic volcanoes. Later ignimbrites that erupted during Period IIA, contain predominantly rhyolitic lava lithics, implying that significant dome building activity occurred at Mangakino, which represented greater volumes of rhyolitic lava than previously described from the area. Petrographic, geochemical, and geophysical (density and magnetic susceptibility) data measured from the lithic fragments are used to propose a model for the shallow crust below Mangakino Volcanic Centre. This model postulates eruptions through a basement of Mesozoic biotite schists overlain by metagreywackes, a thin cover of Tertiary sandstones and siltsones, and an overlying volcanic succession of andesite, dacite and rhyolite lavas, welded ignimbrites, and lacustrine sediments. Ignimbrite eruptions incorporated comagmatic biotite granite fragments from the crystallised margins of the silicic magma chambers, and effectively

  17. Mass movement processes associated with volcanic structures in Mexico City

    Directory of Open Access Journals (Sweden)

    Víctor Carlos Valerio


    Full Text Available Mexico City, one of the most populated areas of the world, has been affected by various hazards of natural origin, such as subsidence and cracking of the soil, seismicity, floods and mass movement processes (MMPs. Owing to the lack of space on the plain, in recent years urban growth has been concentrated particularly on the slopes of the surrounding mountain ranges, and this has significantly modified the dynamics of the relief as well as the hydrogeological conditions. The specific character of natural susceptibility to mass movements is strongly dependent on the geological–structural and morphological characteristics of the volcanic bodies that form the mountainous relief. This natural susceptibility, combined with the characteristics of vulnerability of the society, creates risk conditions that can generate severe consequences for the population and the economy. Hence, based on an inventory of mass movement processes comprising 95 data points, the present study aimed to achieve a zoning of the areas susceptible to these processes, as well as to characterize the mechanisms of instability in the volcanic structures that form the relief of the area in question. The results of this work clearly show the role of the lithology, the mode of emplacement and the morpho–structural characteristics of the volcanic structures, in the types of mass movement processes. In addition, it identifies the diverse activities of anthropogenic origin that favour slope instability in the zone: deforestation and burning of rubbish, felling of timber on the slopes for building infrastructure and dwellings, leakages of water, vibrations of vehicles, rotating machinery and the use of explosives in mining works, overloading the heads of the slopes, disturbance of the geohydrological regime, generation of rubbish tips, terracing of the slopes for cultivation, inadequate building regulations, and the use of counterproductive or ineffectual stabilization measures.

  18. Volcanic risk: the responsibility of science in communication (United States)

    Piccione, Caterina


    The knowledge of the places where we live comes both from the experience handed down from one generation to the other and from scientific knowledge. In some cases, natural risks are "invisible", such as earthquakes, in some other cases, natural risks are seemingly "invisible", such as a wall in danger of collapse or a valley in a flood zone. And besides all this, there is volcanic risk, where the power of the forces of nature appears in all its beauty and majesty. The possibility to see volcanoes, to perceive their changes, to observe them closely and the need to live with them, makes it very important for the population living in these areas to have an adequate knowledge of the risk, a knowledge that should be based on scientific research. In Italy the experience of the Istituto Nazionale di Geofisica e Vulcanologia in the Vesuvio area, in the Aeolian Islands and around Etna shows how vital it is to make people aware of volcanic risk. Thanks to the support of the scientific community, the population can develop the best possible coexistence with volcanoes and with the risk they represent. These are extreme situations, but they are the starting point for educational and informative activities continuing to evolve and upgrade in parallel to the availability of new technologies and media and the progress of research that INGV has been conducting for years through specific projects. The scientific community and individual researchers have the ethical duty to share with the community the knowledge on risk, a responsibility that becomes especially important in those areas affected by volcanic risk. It is from this educational action that depends on the awareness of the populations with regard to the risk they are exposed to, that results in a responsible behavior in case of emergency, and that becomes the main variable for the safety of communities coexisting with active volcanoes.

  19. Volcanism on differentiated asteroids (Invited) (United States)

    Wilson, L.


    after passing through optically dense fire fountains. At low eruption rates and high volatile contents many clasts cooled to form spatter or cinder deposits, but at high eruption rates and low volatile contents most clasts landed hot and coalesced into lava ponds to feed lava flows. Lava flow thickness varies with surface slope, acceleration due to gravity, and lava yield strength induced by cooling. Low gravity on asteroids caused flows to be relatively thick which reduced the effects of cooling, and many flows probably attained lengths of tens of km and stopped as a result of cessation of magma supply from the reservoir rather than cooling. On most asteroids larger than 100 km radius experiencing more than ~30% mantle melting, the erupted volcanic deposits will have buried the original chondritic surface layers of the asteroid to such great depths that they were melted, or at least heavily thermally metamorphosed, leaving no present-day meteoritical evidence of their prior existence. Tidal stresses from close encounters between asteroids and proto-planets may have very briefly increased melting and melt migration speeds in asteroid interiors but only gross structural disruption would have greatly have changed volcanic histories.

  20. Toward Assessing the Causes of Volcanic Diversity in the Cascades Arc (United States)

    Till, C. B.; Kent, A. J.; Abers, G. A.; Pitcher, B.; Janiszewski, H. A.; Schmandt, B.


    A fundamental unanswered question in subduction system science is the cause of the observed diversity in volcanic arc style at an arc-segment to whole-arc scale. Specifically, we have yet to distinguish the predominant mantle and crustal processes responsible for the diversity of arc volcanic phenomenon, including the presence of central volcanoes vs. dispersed volcanism; episodicity in volcanic fluxes in time and space; variations in magma chemistry; and differences in the extent of magmatic focusing. Here we present a thought experiment using currently available data to estimate the relative role of crustal magmatic processes in producing the observed variations in Cascades arc volcanism. A compilation of available major element compositions of Quaternary arc volcanism and estimates of eruptive volumes are used to examine variations in the composition of arc magmas along strike. We then calculate the Quaternary volcanic heat flux into the crust, assuming steady state, required to produce the observed distribution of compositions via crystallization of mantle-derived primitive magmas vs. crustal melting using experiment constraints on possible liquid lines of descent and crustal melting scenarios. For pure crystallization, heat input into the crust scales with silica content, with dacitic to rhyolite compositions producing significantly greater latent heat relative to basalts to andesites. In contrast, the heat required to melt lower crustal amphibolite decreases with increasing silica and is likely provided by the latent heat of crystallization. Thus we develop maximum and minimum estimates for heat added to the crust at a given SiO2 range. When volumes are considered, we find that the average Quaternary volcanic heat flux at latitudes south of South Sister to be more than twice that to the north. Distributed mafic volcanism produces only a quarter to half the heat flux calculated for the main edifices at a given latitude because of their lesser eruptive volumes

  1. Global scale concentrations of volcanic activity on Venus: A summary of three 23rd Lunar and Planetary Science Conference abstracts. 1: Venus volcanism: Global distribution and classification from Magellan data. 2: A major global-scale concentration of volcanic activity in the Beta-Atla-Themis region of Venus. 3: Two global concentrations of volcanism on Venus: Geologic associations and implications for global pattern of upwelling and downwelling (United States)

    Crumpler, L. S.; Aubele, Jayne C.; Head, James W.; Guest, J.; Saunders, R. S.


    As part of the analysis of data from the Magellan Mission, we have compiled a global survey of the location, dimensions, and subsidiary notes of all identified volcanic features on Venus. More than 90 percent of the surface area was examined and the final catalog comprehensively identifies 1548 individual volcanic features larger than approximately 20 km in diameter. Volcanic features included are large volcanoes, intermediate volcanoes, fields of small shield volcanoes, calderas, large lava channels, and lava floods as well as unusual features first noted on Venus such as coronae, arachnoids, and novae.

  2. Remote Sensing as a First Step in Geothermal Exploration in the Xilingol Volcanic Field in NE China (United States)

    Peng, F.; Huang, S.; Xiong, Y.


    Geothermal energy is a renewable and low-carbon energy source independent of climate change. It is most abundant in Cenozoic volcanic areas where high temperature can be obtained within a relatively shallow depth. Geological structures play an important role in the transfer and storage of geothermal energy. Like other geological resources, geothermal resource prospecting and exploration require a good understanding of the host media. Remote sensing (RS) has the advantages of high spatial and temporal resolution and broad spatial coverage over the conventional geological and geophysical prospecting techniques, while geographical information system (GIS) has intuitive, flexible, and convenient characteristics. In this study, RS and GIS techniques are utilized to prospect the geothermal energy potential in Xilingol, a Cenozoic volcanic area in the eastern Inner Mongolia, NE China. Landsat TM/ETM+ multi-temporal images taken under clear-sky conditions, digital elevation model (DEM) data, and other auxiliary data including geological maps of 1:2,500,000 and 1:200,000 scales are used in this study. The land surface temperature (LST) of the study area is retrieved from the Landsat images with a single-channel algorithm. Prior to the LST retrieval, the imagery data are preprocessed to eliminate abnormal values by reference to the normalized difference vegetation index (NDVI) and the improved normalized water index (MNDWI) on the ENVI platform developed by ITT Visual Information Solutions. Linear and circular geological structures are then inferred through visual interpretation of the LST maps with references to the existing geological maps in conjunction with the computer automatic interpretation features such as lineament frequency, lineament density, and lineament intersection. Several useful techniques such as principal component analysis (PCA), image classification, vegetation suppression, multi-temporal comparative analysis, and 3D Surface View based on DEM data are

  3. Synthesis of geopolymer composites from a mixture of volcanic scoria and metakaolin

    Directory of Open Access Journals (Sweden)

    J.N.Y. Djobo


    Full Text Available The aim of this work is to valorize volcanic scoria by using them as starting material for geopolymers production. Nevertheless, volcanic scoria possesses low reactivity. Various amounts of metakaolin (5%, 10%, 15%, 20% and 25% were added into two volcanic scoria (ZD and ZG in order to improve their reactivity. Two alkaline solutions were used to activate the aluminosilicate materials. The starting materials were characterized by particle size distribution, specific surface area, chemical and mineralogical composition. The geopolymers were characterized by the setting time, XRD, FTIR, SEM and compressive strength. The results indicated that volcanic scoria have low specific surface area (2.3 m2/g for ZD, 15.7 m2/g for ZG, high average particle size (d50 = 13.08 μm and 10.68 μm for ZD and for ZG respectively and low glass phase contents. Metakaolin have a smaller average particle size (d50 = 9.95 μm and high specific surface (20.5 m2/g. The compressive strength of geopolymers increased in the ranges of 23–68 MPa and 39–64 MPa for geopolymers from ZD–MK and ZG–MK respectively. This study shows that despite the low reactivity of volcanic scoria it can still be used to synthesize geopolymers with good physical and mechanical properties.

  4. Sediment transport in headwaters of a volcanic catchment—Kamchatka Peninsula case study (United States)

    Chalov, Sergey R.; Tsyplenkov, Anatolii S.; Pietron, Jan; Chalova, Aleksandra S.; Shkolnyi, Danila I.; Jarsjö, Jerker; Maerker, Michael


    Due to specific environmental conditions, headwater catchments located on volcanic slopes and valleys are characterized by distinctive hydrology and sediment transport patterns. However, lack of sufficient monitoring causes that the governing processes and patterns in these areas are rarely well understood. In this study, spatiotemporal water discharge and sediment transport from upstream sources was investigated in one of the numerous headwater catchments located in the lahar valleys of the Kamchatka Peninsula Sukhaya Elizovskaya River near Avachinskii and Koryakskii volcanoes. Three different subcatchments and corresponding channel types (wandering rivers within lahar valleys, mountain rivers within volcanic slopes and rivers within submountain terrains) were identified in the studied area. Our measurements from different periods of observations between years 2012-2014 showed that the studied catchment was characterized by extreme diurnal fluctuation of water discharges and sediment loads that were influenced by snowmelt patterns and high infiltration rates of the easily erodible lahar deposits. The highest recorded sediment loads were up to 9•104 mg/L which was related to an increase of two orders of magnitude within a one day of observations. Additionally, to get a quantitative estimate of the spatial distribution of the eroded material in the volcanic substrates we applied an empirical soil erosion and sediment yield model-modified universal soil loss equation (MUSLE). The modeling results showed that even if the applications of the universal erosion model to different non-agricultural areas (e.g., volcanic catchments) can lead to irrelevant results, the MUSLE model delivered might be acceptable for non-lahar areas of the studied volcanic catchment. Overall the results of our study increase our understanding of the hydrology and associated sediment transport for prediction of risk management within headwater volcanic catchments.

  5. Preliminary assessment of the risk of volcanism at a proposed nuclear-waste repository in the southern Great Basin

    International Nuclear Information System (INIS)

    Crowe, B.M.; Carr, W.J.


    Volcanic hazard studies of the southern Great Basin are being conducted on behalf of the Nevada Nuclear Waste Storage Investigations program. Current work is chiefly concerned with characterizing the geology, chronology, and tectonic setting of Pliocene and Quaternary volcanism in the Nevada Test Site region, and assessing volcanic risk through consequence and probability studies, particularly with respect to a potential site in the southwestern Nevada Test Site. Young ( - 6 volcanic events per year. Based on this rate, the annual probability of disruption of a 10-km 2 repository located within a 25-km radius circle centered at Yucca Mountain, southwestern Nevada Test Site, is 10 - 8 . A larger area, 50-km radius, yields a disruption probability of 10 - 9 per year. Current tectonic zonation studies of the southern Great Basin will reduce the calculated probabilities of basaltic eruption for certain areas. 21 references, 3 figures

  6. Video Games in Volcanic Hazard Communications: Methods & Issues (United States)

    Mani, Lara; Cole, Paul; Stewart, Iain


    Educational outreach plays a vital role in improving the resilience of vulnerable populations at risk from natural disasters. Currently, that activity is undertaken in many guises including the distribution of leaflets and posters, maps, presentations, education sessions and through radio and TV broadcasts. Such tried-and-tested communication modes generally target traditional stakeholder groups, but it is becoming increasingly important to engage with the new generation of learners who, due to advancements in technology, obtain information in ways different to their predecessors. That new generation is defined by a technological way of life and it remains a challenge to keep them motivated. On the eastern Caribbean island of St. Vincent, the La Soufriere Volcano lies in quiescence since the last eruption in 1979. Since then, an entire generation - over 56% of the population (Worldbank, 2015) - has little or no direct experience of a volcanic eruption. The island experiences, more frequently, other hazards (hurricanes, flooding, earthquakes landsliding), such that disaster preparedness measures give less priority to volcanic threats, which are deemed to pose less of a risk. With no accurate predictions to warn of the next eruption, it is especially important to educate residents about the potential of future volcanic hazards on the island, and to motivate them to prepare to mitigate their risk. This research critically examines the application of video games in supporting and enhancing existing public education and outreach programmes for volcanic hazards. St. Vincent's Volcano is a computer game designed to improve awareness and knowledge of the eruptive phenomena from La Soufriere that could pose a threat to residents. Within an interactive and immersive environment, players become acquainted with a 3D model of St. Vincent together with an overlay of the established volcanic hazard map (Robertson, 2005). Players are able to view visualisations of two historical

  7. Ages of plains volcanism on Mars (United States)

    Hauber, Ernst; Jagert, Felix; Broz, Petr


    Plain-style volcanism [1] is widespread in the Tharsis and Elysium volcanic provinces on Mars, [2,3]. Detailed images and topographic data reveal the morphology and topography of clusters of low shields and associated lava flows. The landforms of plains volcanism on Mars have all well-known terrestrial analogues in basaltic volcanic regions, such as Hawaii, Iceland, and in particular the Snake River Plains [4]. The very gentle flank slopes (J. (1981) Icarus, 45, 586-601. [3] Hodges C.A. and Moore H.J. (1994) Atlas of volcanic features on Mars: USGS Prof. Paper 1534, 194 p. [4] Hauber E. et al. (2009) J. Volcanol. Geotherm. Res. 185, 69-95. [5] Wilson L. et al. (2009) J. Volcanol. Geotherm. Res. 185, 28-46. [6] Vaucher, J. et al. (2009) Icarus 204, 418-442. [7] Baratoux D. et al. (2009) J. Volcanol. Geotherm. Res. 185, 47-68. [8] Bleacher J.E. et al. (2009) J. Volcanol. Geotherm. Res. 185, 96-102. [9] Ivanov B.A. (2001) Space Sci. Rev. 96, 87-104. [10] Hartmann W.H. and Neukum G. (2001) Space Sci. Rev. 96, 165-194 [11] Kneissl T. et al. (2010) LPS XVI, submitted. [12] Michael, G.G. and Neukum G. (2010) Earth Planet. Sci. Lett., in press. . [13] Malin M.C. et al. (2007) JGR 112, E05S04, doi: 10.1029/2006JE002808.

  8. Biogeochemistry and nitrogen cycling in an Arctic, volcanic ecosystem (United States)

    Fogel, M. L.; Benning, L.; Conrad, P. G.; Eigenbrode, J.; Starke, V.


    As part of a study on Mars Analogue environments, the biogeochemistry of Sverrefjellet Volcano, Bocfjorden, Svalbard, was conducted and compared to surrounding glacial, thermal spring, and sedimentary environments. An understanding of how nitrogen might be distributed in a landscape that had extinct or very cold adapted, slow- growing extant organisms should be useful for detecting unknown life forms. From high elevations (900 m) to the base of the volcano (sea level), soil and rock ammonium concentrations were uniformly low, typically less than 1- 3 micrograms per gm of rock or soil. In weathered volcanic soils, reduced nitrogen concentrations were higher, and oxidized nitrogen concentrations lower. The opposite was found in a weathered Devonian sedimentary soil. Plants and lichens growing on volcanic soils have an unusually wide range in N isotopic compositions from -5 to +12‰, a range rarely measured in temperate ecosystems. Nitrogen contents and isotopic compositions of volcanic soils and rocks were strongly influenced by the presence or absence of terrestrial herbivores or marine avifauna with higher concentrations of N and elevated N isotopic compositions occurring as patches in areas immediately influenced by reindeer, Arctic fox ( Alopex lagopus), and marine birds. Because of the extreme conditions in this area, ephemeral deposition of herbivore feces results in a direct and immediate N pulses into the ecosystem. The lateral extent and distribution of marine- derived nitrogen was measured on a landscape scale surrounding an active fox den. Nitrogen was tracked from the bones of marine birds to soil to vegetation. Because of extreme cold, slow biological rates and nitrogen cycling, a mosaic of N patterns develops on the landscape scale.

  9. The effects and consequences of very large explosive volcanic eruptions. (United States)

    Self, S


    Every now and again Earth experiences tremendous explosive volcanic eruptions, considerably bigger than the largest witnessed in historic times. Those yielding more than 450km3 of magma have been called super-eruptions. The record of such eruptions is incomplete; the most recent known example occurred 26000 years ago. It is more likely that the Earth will next experience a super-eruption than an impact from a large meteorite greater than 1km in diameter. Depending on where the volcano is located, the effects will be felt globally or at least by a whole hemisphere. Large areas will be devastated by pyroclastic flow deposits, and the more widely dispersed ash falls will be laid down over continent-sized areas. The most widespread effects will be derived from volcanic gases, sulphur gases being particularly important. This gas is converted into sulphuric acid aerosols in the stratosphere and layers of aerosol can cover the global atmosphere within a few weeks to months. These remain for several years and affect atmospheric circulation causing surface temperature to fall in many regions. Effects include temporary reductions in light levels and severe and unseasonable weather (including cool summers and colder-than-normal winters). Some aspects of the understanding and prediction of super-eruptions are problematic because they are well outside modern experience. Our global society is now very different to that affected by past, modest-sized volcanic activity and is highly vulnerable to catastrophic damage of infrastructure by natural disasters. Major disruption of services that society depends upon can be expected for periods of months to, perhaps, years after the next very large explosive eruption and the cost to global financial markets will be high and sustained.

  10. Characteristics of volcanic reservoirs and distribution rules of effective reservoirs in the Changling fault depression, Songliao Basin

    Directory of Open Access Journals (Sweden)

    Pujun Wang


    Full Text Available In the Songliao Basin, volcanic oil and gas reservoirs are important exploration domains. Based on drilling, logging, and 3D seismic (1495 km2 data, 546 sets of measured physical properties and gas testing productivity of 66 wells in the Changling fault depression, Songliao Basin, eruptive cycles and sub-lithofacies were distinguished after lithologic correction of the 19,384 m volcanic well intervals, so that a quantitative analysis was conducted on the relation between the eruptive cycles, lithologies and lithofacies and the distribution of effective reservoirs. After the relationship was established between lithologies, lithofacies & cycles and reservoir physical properties & oil and gas bearing situations, an analysis was conducted on the characteristics of volcanic reservoirs and the distribution rules of effective reservoirs. It is indicated that 10 eruptive cycles of 3 sections are totally developed in this area, and the effective reservoirs are mainly distributed at the top cycles of eruptive sequences, with those of the 1st and 3rd Members of Yingcheng Formation presenting the best reservoir properties. In this area, there are mainly 11 types of volcanic rocks, among which rhyolite, rhyolitic tuff, rhyolitic tuffo lava and rhyolitic volcanic breccia are the dominant lithologies of effective reservoirs. In the target area are mainly developed 4 volcanic lithofacies (11 sub-lithofacies, among which upper sub-lithofacies of effusive facies and thermal clastic sub-lithofacies of explosion lithofacies are predominant in effective reservoirs. There is an obvious corresponding relationship between the physical properties of volcanic reservoirs and the development degree of effective reservoirs. The distribution of effective reservoirs is controlled by reservoir physical properties, and the formation of effective reservoirs is influenced more by porosity than by permeability. It is concluded that deep volcanic gas exploration presents a good

  11. Mapping Intraplate Volcanic Fields: A Case Study from Harrat Rahat, Saudi Arabia (United States)

    Downs, D. T.; Stelten, M. E.; Champion, D. E.; Dietterich, H. R.


    Continental intraplate mafic volcanoes are typically small-volume (200 volcanic fields proposed to be active worldwide during the Holocene. Their small individual eruption volumes make any hazards low, however their high prevalence offsets this by raising the risk to populations and infrastructure. The western Arabian Plate hosts at least 15 continental, intra-plate volcanic fields that stretch >3,000 km south to north from Yemen to Turkey. In total, these volcanic fields comprise one of the largest alkali basalt volcanic provinces on Earth, covering an area of 180,000 km2. With a total volume of 20,000 km3, Harrat Rahat in western Saudi Arabia is one of the largest of these volcanic fields. Our study focused on mapping the northern third of the Harrat Rahat volcanic field using a multidisciplinary approach. We have discriminated >200 individual eruptive units, mainly basaltic lava flows throughout Harrat Rahat that are distinguished through a combination of field observations, petrography, geochemistry, paleomagnetism, and 40Ar/39Ar radiometric and 36Cl cosmogenic surface-exposure dating. We have compiled these results into a high-resolution geologic map, which provides new information about the timing, compositions, and eruptive processes of Quaternary volcanism in Harrat Rahat. For example, prior mapping and geochronology undertaken during the 1980s suggested that the majority of mafic and silicic volcanics erupted during the Miocene and Pliocene, whereas several of the youngest-appearing lava flows were interpreted to be Neolithic ( 7,000 to 4,500 years BP) to post-Neolithic. New mapping and age-constrained stratigraphic relations indicate that all exposed volcanic units within the northern third of Harrat Rahat erupted during the Pleistocene, with the exception of a single Holocene eruption in 1256 AD. This new multidisciplinary mapping is critical for understanding the overall spatial, temporal, and compositional evolution of Harrat Rahat, timescales of

  12. Volcanic Ash Impacts on Air Traffic from the 2009 Mt. Redoubt Eruption (United States)

    Murray, J. J.; Matus, A. V.; Hudnall, L. A.; Krueger, A. J.; Haynes, J. A.; Pippin, M. R.


    The dispersion of volcanic ash during the March 2009 eruption of Mt. Redoubt created the potential for major problems for aviation. Mt. Redoubt is located 110 km west-southwest of Alaska Airlines hub in Anchorage. It last erupted in 1990 and caused an estimated $101 million cost to the aviation industry (Waythomas, 1998). This study was conducted to assist in improving warning systems, policy and procedures for addressing the impact of volcanic ash on aviation. The study had two primary components. First, the altitude and extent of SO2 dispersion was determined through analysis of synoptic meteorological conditions and satellite imagery. Second, impacts on aviation from the volcanic ash dispersion were investigated. OMI SO2 column measurements were employed to assess the altitude and extent of SO2 dispersion of volcanic ash. To accomplish this, OMI data were assimilated with CALIPSO backscatter profiles, geopotential height plots, and HYSPLIT forward model trajectories. Volcanic Ash Advisories were compared to airport and pilot reports to assess aviation impacts. The eruption produced a complex dispersion of volcanic ash. Volcanic ash altitudes estimated for 23 March 2009 indicate that the majority of the plume remained at approximately 8 km, although reports indicate that the initial plume may have reached as high as18 km (60,000 ft). A low pressure system which passed over the eruption area appears to have entrained most of the ash at approximately 8 km, however the CALIPSO satellite indicates that dispersion also extended to 10 km and 16 km. Atmospheric patterns suggest dispersion at approximately 3 km near Hudson Bay. Analysis of 25 March 2009 indicates that much of the ash plume was dispersed at higher altitudes, where CALIPSO data locates the stratospheric ash plume at approximately 14 km above mean sea level. By the time the eruptions had subsided in April, Alaska Airlines had cancelled 295 flights and disrupted the flights of over 20,000 passengers. This

  13. National volcanic ash operations plan for aviation (United States)

    ,; ,


    The National Aviation Weather Program Strategic Plan (1997) and the National Aviation Weather Initiatives (1999) both identified volcanic ash as a high-priority informational need to aviation services. The risk to aviation from airborne volcanic ash is known and includes degraded engine performance (including flameout), loss of visibility, failure of critical navigational and operational instruments, and, in the worse case, loss of life. The immediate costs for aircraft encountering a dense plume are potentially major—damages up to $80 million have occurred to a single aircraft. Aircraft encountering less dense volcanic ash clouds can incur longer-term costs due to increased maintenance of engines and external surfaces. The overall goal, as stated in the Initiatives, is to eliminate encounters with ash that could degrade the in-flight safety of aircrews and passengers and cause damage to the aircraft. This goal can be accomplished by improving the ability to detect, track, and forecast hazardous ash clouds and to provide adequate warnings to the aviation community on the present and future location of the cloud. To reach this goal, the National Aviation Weather Program established three objectives: (1) prevention of accidental encounters with hazardous clouds; (2) reduction of air traffic delays, diversions, or evasive actions when hazardous clouds are present; and (3) the development of a single, worldwide standard for exchange of information on airborne hazardous materials. To that end, over the last several years, based on numerous documents (including an OFCMsponsored comprehensive study on aviation training and an update of Aviation Weather Programs/Projects), user forums, and two International Conferences on Volcanic Ash and Aviation Safety (1992 and 2004), the Working Group for Volcanic Ash (WG/VA), under the OFCM-sponsored Committee for Aviation Services and Research, developed the National Volcanic Ash Operations Plan for Aviation and Support of the

  14. Geochemistry of the volcanic dome in the Municipality of Iza, Boyaca Department, geodynamic interpretation and comparison with Neogene volcanism of the Eastern Cordillera

    International Nuclear Information System (INIS)

    Vesga, Ana Maria; Jaramillo, Jose


    This work has as purpose to offer new analytic data, supplemented the available ones until the present regarding the volcanic rocks of the region of Iza, (Boyaca); in the same way, the development of a new approach, as for determining if exists a direct connection with other volcanic deposits geographically near to the study area, using descriptive statistical methods. It was realized a characterization geochemistry for 12 samples gathered in the area, where were analyzed big elements, smaller and traces and using diagrams of characterization for effusive rocks, it is corroborated that these possess an alkaline likeness of riolitic composition. Besides the use of normalized diagrams whose abundances of elements of strong electrostatic field (HFSE) as the Nb and Zr, and elements of big ionic radio (LILE) in this case the Rb, they allowed to this rocks characteristic of ambient coalitional. On the other hand, with the obtained results of the statistical analyses, the existent relationship settled down between two geographically places near, as are it volcanic bodies of Los Naranjos and those of Paipa. As for of Iza, it was found that relationship doesn't exist some with another volcanic body among the studied sectors, probably due the alteration hydrothermal that presents the dome of Iza.

  15. Ozone depletion following future volcanic eruptions (United States)

    Eric Klobas, J.; Wilmouth, David M.; Weisenstein, Debra K.; Anderson, James G.; Salawitch, Ross J.


    While explosive volcanic eruptions cause ozone loss in the current atmosphere due to an enhancement in the availability of reactive chlorine following the stratospheric injection of sulfur, future eruptions are expected to increase total column ozone as halogen loading approaches preindustrial levels. The timing of this shift in the impact of major volcanic eruptions on the thickness of the ozone layer is poorly known. Modeling four possible climate futures, we show that scenarios with the smallest increase in greenhouse gas concentrations lead to the greatest risk to ozone from heterogeneous chemical processing following future eruptions. We also show that the presence in the stratosphere of bromine from natural, very short-lived biogenic compounds is critically important for determining whether future eruptions will lead to ozone depletion. If volcanic eruptions inject hydrogen halides into the stratosphere, an effect not considered in current ozone assessments, potentially profound reductions in column ozone would result.

  16. Geochemistry of volcanic series of Aragats province

    International Nuclear Information System (INIS)

    Meliksetyan, Kh.B.


    In this contribution we discuss geochemical and isotope characteristics of volcanism of the Aragats volcanic province and possible petrogenetical models of magma generation in collision zone of Armenian highland. We talk about combination of some specific features of collision related volcanism such as dry and high temperature conditions of magma generation, that demonstrate some similarities to intraplate-like petrogenesis and presence of mantle source enriched by earlier subductions, indicative to island-arc type magma generation models. Based on comprehensive analysis of isotope and geochemical data and some published models of magma generation beneath Aragats we lead to a petrogenetic model of origin of Aragats system to be a result of magma mixture between mantle originated mafic magma with felsic, adakite-type magmas

  17. Seismic equivalents of volcanic jet scaling laws and multipoles in acoustics (United States)

    Haney, Matthew M.; Matoza, Robin S.; Fee, David; Aldridge, David F.


    We establish analogies between equivalent source theory in seismology (moment-tensor and single-force sources) and acoustics (monopoles, dipoles and quadrupoles) in the context of volcanic eruption signals. Although infrasound (acoustic waves volcanic eruptions may be more complex than a simple monopole, dipole or quadrupole assumption, these elementary acoustic sources are a logical place to begin exploring relations with seismic sources. By considering the radiated power of a harmonic force source at the surface of an elastic half-space, we show that a volcanic jet or plume modelled as a seismic force has similar scaling with respect to eruption parameters (e.g. exit velocity and vent area) as an acoustic dipole. We support this by demonstrating, from first principles, a fundamental relationship that ties together explosion, torque and force sources in seismology and highlights the underlying dipole nature of seismic forces. This forges a connection between the multipole expansion of equivalent sources in acoustics and the use of forces and moments as equivalent sources in seismology. We further show that volcanic infrasound monopole and quadrupole sources exhibit scalings similar to seismicity radiated by volume injection and moment sources, respectively. We describe a scaling theory for seismic tremor during volcanic eruptions that agrees with observations showing a linear relation between radiated power of tremor and eruption rate. Volcanic tremor over the first 17 hr of the 2016 eruption at Pavlof Volcano, Alaska, obeyed the linear relation. Subsequent tremor during the main phase of the eruption did not obey the linear relation and demonstrates that volcanic eruption tremor can exhibit other scalings even during the same eruption.

  18. The significance of volcanic ash in Greenland ice cores during the Common Era (United States)

    Plunkett, G.; Pilcher, J. R.; McConnell, J. R.; Sigl, M.; Chellman, N.


    Volcanic forcing is now widely regarded as a leading natural factor in short-term climate variability. Polar ice cores provide an unrivalled and continuous record of past volcanism through their chemical and particulate content. With an almost annual precision for the Common Era, the ice core volcanic record can be combined with historical data to investigate the climate and social impacts of the eruptions. The sulfate signature in ice cores is critical for determining the possible climate effectiveness of an eruption, but the presence and characterization of volcanic ash (tephra) in the ice is requisite for establishing the source eruption so that location and eruptive style can be better factored in to climate models. Here, we review the Greenland tephra record for the Common Era, and present the results of targeted sampling for tephra of volcanic events that are of interest either because of their suspected climate and societal impacts or because of their potential as isochrons in paleoenvironmental (including ice core) archives. The majority of identifiable tephras derive from Northern Hemisphere mid- to high latitude eruptions, demonstrating the significance of northern extra-tropical volcanic regions as a source of sulfates in Greenland. A number of targets are represented by sparse or no tephra, or shards that cannot be firmly correlated with a source. We consider the challenges faced in isolating and characterizing tephra from low latitude eruptions, and the implications for accurately modelling climate response to large, tropical events. Finally, we compare the ice core tephra record with terrestrial tephrostratigraphies in the circum-North Atlantic area to evaluate the potential for intercontinental tephra linkages and the refinement of volcanic histories.

  19. Petrogenesis and tectonic implication of the Late Triassic post-collisional volcanic rocks in Chiang Khong, NW Thailand (United States)

    Qian, Xin; Wang, Yuejun; Feng, Qinglai; Zi, Jian-Wei; Zhang, Yuzhi; Chonglakmani, Chongpan


    The volcanic rocks exposed within the Chiang Khong-Lampang-Tak igneous zone in NW Thailand provide important constraints on the tectonic evolution of the eastern Paleotethys ocean. An andesite sample from the Chiang Khong area yields a zircon U-Pb age of 229 ± 4 Ma, significantly younger than the continental-arc and syn-collisional volcanic rocks (ca. 238-241 Ma). The Chiang Khong volcanic rocks are characterized by low MgO (1.71-6.72 wt.%) and high Al2O3 (15.03-17.76 wt.%). They are enriched in LILEs and LREEs and depleted in HFSEs, and have 87Sr/86Sr (i) ratios of 0.7050-0.7065, εNd (t) of - 0.32 to - 1.92, zircon εHf (t) and δ18O values of 3.5 to - 11.7 and 4.30-9.80 ‰, respectively. The geochemical data for the volcanic rocks are consistent with an origin from the enriched lithospheric mantle that had been modified by slab-derived fluid and recycled sediments. Based on available geochronological and geochemical evidences, we propose that the Late Triassic Chiang Khong volcanic rocks are equivalent to the contemporaneous volcanic rocks in the Lancangjiang igneous zone in SW China. The formation of these volcanic rocks was possibly related to the upwelling of the asthenospheric mantle during the Late Triassic, shortly after slab detachment, which induced the melting of the metasomatized mantle wedge.

  20. Guidelines, "minimal requirements" and standard of care in glioblastoma around the Mediterranean Area: A report from the AROME (Association of Radiotherapy and Oncology of the Mediterranean arEa) Neuro-Oncology working party. (United States)


    Glioblastoma is the most common and the most lethal primary brain tumor in adults. Although studies are ongoing, the epidemiology of glioblastoma in North Africa (i.e. Morocco, Algeria and Tunisia) remains imperfectly settled and needs to be specified for a better optimization of the neuro-oncology healthcare across the Mediterranean area and in North Africa countries. Over the last years significant therapeutic advances have been accomplished improving survival and quality of life of glioblastoma patients. Indeed, concurrent temozolomide-radiotherapy (temoradiation) and adjuvant temozolomide has been established as the standard of care associated with a survival benefit and a better outcome. Therefore, considering this validated strategy and regarding the means and some other North Africa countries specificities, we decided, under the auspices of AROME (association of radiotherapy and oncology of the Mediterranean area;, a non-profit organization, to organize a dedicated meeting to discuss the standards and elaborate a consensus on the "minimal requirements" adapted to the local resources. Thus, panels of physicians involved in daily multidisciplinary brain tumors management in the two borders of the Mediterranean area have been invited to the AROME neuro-oncology working party. We report here the consensus, established for minimal human and material resources for glioblastoma diagnosis and treatment faced to the standard of care, which should be reached. If the minimal requirements are not reached, the patients should be referred to the closest specialized medical center where at least minimal requirements, or, ideally, the standard of care should be guaranteed to the patients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Applying geophysical surveys for studying subsurface geology of monogenetic volcanic fields: the example of La Garrotxa Volcanic Field (NE of Iberian Peninsula) (United States)

    Bolós, Xavier; Barde-Cabusson, Stéphanie; Pedrazzi, Dario; Martí, Joan; Casas, Albert; Lovera, Raúl; Nadal-Sala, Daniel


    Improving knowledge of the shallowest part of the feeding system of monogenetic volcanoes and the relationship with the subsurface geology is an important task. We applied high-precision geophysical techniques that are self-potential and electrical resistivity tomography, for the exploration of the uppermost part of the substrate of La Garrotxa Volcanic Field, which is part of the European Cenozoic Rift System. Previous geophysical studies carried out in the same area at a less detailed scale were aimed at identifying deeper structures, and together constitute the basis to establish volcanic susceptibility in La Garrotxa. Self-potential study allowed identifying key areas where electrical resistivity tomography could be conducted. Dykes and faults associated with several monogenetic cones were identified through the generation of resistivity models. The combined results confirm that shallow tectonics controlling the distribution of the foci of eruptive activity in this volcanic zone mainly correspond to NNW-SSE and accessorily by NNE-SSW Neogene extensional fissures and faults and concretely show the associated magmatic intrusions. These studies show that previous alpine tectonic structures played no apparent role in controlling the loci of this volcanism. Furthermore, the results obtained show that the changes in eruption dynamics occurring at different vents located at relatively short distances in this volcanic area can be controlled by shallow stratigraphical, structural, and hydrogeological features underneath these monogenetic volcanoes. This study was partially funded by the Beca Ciutat d'Olot en Ciències Naturals and the European Commission (FT7 Theme: ENV.2011.1.3.3-1; Grant 282759: "VUELCO").

  2. Magmatic activity stages of the El'brus volcanic center (Great Caucasus): isotope geochronological data

    International Nuclear Information System (INIS)

    Chernyshev, I.V.; Lebedev, V.A.; Bubnov, S.N.; Arakelyants, M.M.; Gol'tsman, Yu.V.


    The age of volcanites in the Elbrus volcanic center was determined by the methods of K-Ar- and Rb-Sr-dating to ascertain stages of magmatic activity in the area. The data obtained suggest existence of at least two stages of magmatic activity: Middle Neopleistocene (225-180 thous. years) and Late Neopleistocene-Holocene ( [ru

  3. Tellurium in active volcanic environments: Preliminary results (United States)

    Milazzo, Silvia; Calabrese, Sergio; D'Alessandro, Walter; Brusca, Lorenzo; Bellomo, Sergio; Parello, Francesco


    Tellurium is a toxic metalloid and, according to the Goldschmidt classification, a chalcophile element. In the last years its commercial importance has considerably increased because of its wide use in solar cells, thermoelectric and electronic devices of the last generation. Despite such large use, scientific knowledge about volcanogenic tellurium is very poor. Few previous authors report result of tellurium concentrations in volcanic plume, among with other trace metals. They recognize this element as volatile, concluding that volcanic gases and sulfur deposits are usually enriched with tellurium. Here, we present some results on tellurium concentrations in volcanic emissions (plume, fumaroles, ash leachates) and in environmental matrices (soils and plants) affected by volcanic emissions and/or deposition. Samples were collected at Etna and Vulcano (Italy), Turrialba (Costa Rica), Miyakejima, Aso, Asama (Japan), Mutnovsky (Kamchatka) at the crater rims by using common filtration techniques for aerosols (polytetrafluoroethylene filters). Filters were both eluted with Millipore water and acid microwave digested, and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Volcanic ashes emitted during explosive events on Etna and Copahue (Argentina) were analyzed for tellurium bulk composition and after leaching experiments to evaluate the soluble fraction of tellurium. Soils and leaves of vegetation were also sampled close to active volcanic vents (Etna, Vulcano, Nisyros, Nyiragongo, Turrialba, Gorely and Masaya) and investigated for tellurium contents. Preliminary results showed very high enrichments of tellurium in volcanic emissions comparing with other volatile elements like mercury, arsenic, thallium and bismuth. This suggests a primary transport in the volatile phase, probably in gaseous form (as also suggested by recent studies) and/or as soluble salts (halides and/or sulfates) adsorbed on the surface of particulate particles and ashes. First

  4. Volcanic air pollution hazards in Hawaii (United States)

    Elias, Tamar; Sutton, A. Jeff


    Noxious sulfur dioxide gas and other air pollutants emitted from Kīlauea Volcano on the Island of Hawai‘i react with oxygen, atmospheric moisture, and sunlight to produce volcanic smog (vog) and acid rain. Vog can negatively affect human health and agriculture, and acid rain can contaminate household water supplies by leaching metals from building and plumbing materials in rooftop rainwater-catchment systems. U.S. Geological Survey scientists, along with health professionals and local government officials are working together to better understand volcanic air pollution and to enhance public awareness of this hazard.

  5. Volcanic Eruptions and Climate: Outstanding Research Issues (United States)

    Robock, Alan


    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of this aerosol cloud produce responses in the climate system. Based on observations after major eruptions of the past and experiments with numerical models of the climate system, we understand much about their climatic impact, but there are also a number of unanswered questions. Volcanic eruptions produce global cooling, and are an important natural cause of interannual, interdecadal, and even centennial-scale climate change. One of the most interesting volcanic effects is the "winter warming" of Northern Hemisphere continents following major tropical eruptions. During the winter in the Northern Hemisphere following every large tropical eruption of the past century, surface air temperatures over North America, Europe, and East Asia were warmer than normal, while they were colder over Greenland and the Middle East. This pattern and the coincident atmospheric circulation correspond to the positive phase of the Arctic Oscillation. While this response is observed after recent major eruptions, most state-of-the-art climate models have trouble simulating winter warming. Why? High latitude eruptions in the Northern Hemisphere, while also producing global cooling, do not have the same impact on atmospheric dynamics. Both tropical and high latitude eruptions can weaken the Indian and African summer monsoon, and the effects can be seen in past records of flow in the Nile and Niger Rivers. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade have had a small effect on global temperature trends. Some important outstanding research questions include: How much seasonal, annual, and decadal predictability is possible following a large volcanic eruption? Do

  6. Winter warming from large volcanic eruptions (United States)

    Robock, Alan; Mao, Jianping


    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95-percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  7. Field Courses for Volcanic Hazards Mapping at Parícutinand Jorullo Volcanoes (Mexico) (United States)

    Victoria Morales, A.; Delgado Granados, H.; Roberge, J.; Farraz Montes, I. A.; Linares López, C.


    During the last decades, Mexico has suffered several geologic phenomena-related disasters. The eruption of El Chichón volcano in 1982 killed >2000 people and left a large number of homeless populations and severe economic damages. The best way to avoid and mitigate disasters and their effects is by making geologic hazards maps. In volcanic areas these maps should show in a simplified fashion, but based on the largest geologic background possible, the probable (or likely) distribution in time and space of the products related to a variety of volcanic processes and events, according to likely magnitude scenarios documented on actual events at a particular volcano or a different one with similar features to the volcano used for calibration and weighing geologic background. Construction of hazards maps requires compilation and acquisition of a large amount of geological data in order to obtain the physical parameters needed to calibrate and perform controlled simulation of volcanic events under different magnitude-scenarios in order to establish forecasts. These forecasts are needed by the authorities to plan human settlements, infrastructure, and economic development. The problem is that needs are overwhelmingly faster than the adjustments of university programs to include courses. At the Earth Science División of the Faculty of Engineering at the Universidad Nacional Autónoma de México, the students have a good background that permits to learn the methodologies for hazards map construction but no courses on hazards evaluations. Therefore, under the support of the university's Program to Support Innovation and Improvement of Teaching (PAPIME, Programa de Apoyo para la Innovación y Mejoramiento de la Enseñanza) a series of field-based intensive courses allow the Earth science students to learn what kind of data to acquire, how to record, and process in order to carry out hazards evaluations. This training ends with hazards maps that can be used immediately by the

  8. Volcanic gas impacts on vegetation at Turrialba Volcano, Costa Rica (United States)

    Teasdale, R.; Jenkins, M.; Pushnik, J.; Houpis, J. L.; Brown, D. L.


    Turrialba volcano is an active composite stratovolcano that is located approximately 40 km east of San Jose, Costa Rica. Seismic activity and degassing have increased since 2005, and gas compositions reflect further increased activity since 2007 peaking in January 2010 with a phreatic eruption. Gas fumes dispersed by trade winds toward the west, northwest, and southwest flanks of Turrialba volcano have caused significant vegetation kill zones, in areas important to local agriculture, including dairy pastures and potato fields, wildlife and human populations. In addition to extensive vegetative degradation is the potential for soil and water contamination and soil erosion. Summit fumarole temperatures have been measured over 200 degrees C and gas emissions are dominated by SO2; gas and vapor plumes reach up to 2 km (fumaroles and gases are measured regularly by OVSICORI-UNA). A recent network of passive air sampling, monitoring of water temperatures of hydrothermal systems, and soil pH measurements coupled with measurement of the physiological status of surrounding plants using gas exchange and fluorescence measurements to: (1) identify physiological correlations between leaf-level gas exchange and chlorophyll fluorescence measurements of plants under long term stress induced by the volcanic gas emissions, and (2) use measurements in tandem with remotely sensed reflectance-derived fluorescence ratio indices to track natural photo inhibition caused by volcanic gas emissions, for use in monitoring plant stress and photosynthetic function. Results may prove helpful in developing potential land management strategies to maintain the biological health of the area.

  9. Metallogenic characteristics of volcanic hydrothermal type U-Au-polymetallic deposits in Yanshan-Liaoning region

    International Nuclear Information System (INIS)

    Luo Yi; Zhou Dean; He Yiqiang; Tao Quan; Xia Yuliang; Cui Huanmin; Zhu Deling


    Yanshan-Liaoning area is located in the east part of the northern margin of North-China platform. It is a famous metallogenic region of Mesozoic volcanic hydrothermal type U-Au-polymetallic deposits in the country. The metallogenesis is controlled by a united Late Mesozoic continental taphrogenic volcano-magmatic activity. The metallogenic epochs are concentrated in Late Jurassic-Early Cretaceous periods. The metallogenic media are moderate and moderate-low temperature volcanic hydrothermal solutions originated from the mixing of volcano-magmatic water, metamorphic water and atmospheric water. The ore-forming materials are mainly derived from enrichment type upper mantle and lower crust. (8 refs., 5 figs.)

  10. Characteristics of Volcanic Soils in Landslide during the 2016 Kumamoto Earthquake, Japan (United States)

    Hazarika, H.; Fukuoka, H.; Kokusho, T.; Sumartini, O.; Bhoopendra, D.


    There were many seismic subsidence, debris flows, landslides and slope failures, which occurred in Aso area due to the 2016 Kumamoto earthquake, Japan. This research aims to determine the failure mechanism of many mild slopes, and elucidate the strength characteristics of volcanic soils collected from the sites. A series of undrained static and cyclic triaxial tests, ring shear tests and direct shear tests were performed. Also, for further understanding of volcanic soils' material strength, X-ray powder diffraction analysis (XRD), X-ray fluorescence analysis (XRF), and Scanning electron microscope analysis (SEM) were performed. In this paper, preliminary results of the experimental testing program are discussed.

  11. NW-SE Pliocene-Quaternary extension in the Apan-Acoculco region, eastern Trans-Mexican Volcanic Belt (United States)

    García-Palomo, Armando; Macías, José Luis; Jiménez, Adrián; Tolson, Gustavo; Mena, Manuel; Sánchez-Núñez, Juan Manuel; Arce, José Luis; Layer, Paul W.; Santoyo, Miguel Ángel; Lermo-Samaniego, Javier


    The Apan-Acoculco area is located in the eastern portion of the Mexico basin and the Trans-Mexican Volcanic Belt. The area is transected by right-stepping variably dipping NE-SW normal faults. The Apan-Tlaloc Fault System is a major discontinuity that divides the region into two contrasting areas with different structural and volcanic styles. a) The western area is characterized by a horst-graben geometry with widespread Quaternary monogenetic volcanism and scattered outcrops of Miocene and Pliocene rocks. b) The eastern area is dominated by tilted horsts with a domino-like geometry with widespread Miocene and Pliocene rocks, scattered Quaternary monogenetic volcanoes and the Acoculco Caldera. Gravity data suggest that this structural geometry continues into the Mesozoic limestones. Normal faulting was active since the Pliocene with three stages of extension. One of them, an intense dilatational event began during late Pliocene and continues nowadays, contemporaneously with the emplacement of the Apan-Tezontepec Volcanic Field and the Acoculco caldera. Statistical analysis of cone elongation, cone instability, and the kinematic analysis of faults attest for a NW50°SE ± 7° extensional regime in the Apan-Acoculco area. The activity in some portions of the Apan-Tlaloc Fault System continues today as indicated by earthquake swarms recorded in 1992 and 1996, that disrupted late Holocene paleosols, and Holocene volcanism.

  12. Knowledge Sharing and Collaboration in Volcanic Risk Mitigation at Galeras Volcano, Colombia: A Participative Workshop to Reduce Volcanic Risk (United States)

    Sheridan, M. F.; Cordoba, G. A.


    Galeras has been in nearly constant activity during modern historic times (roughly the past 500 years). Approximately 10,000 people live within an area designated as the highest-hazard and nearly 400,000 people are within areas of potential harmful effects. A wide variety of stakeholders are affected by the hazards, including: farmers, indigenous villagers, and people in urban environments. Hazards assessment and volcano monitoring are the responsibility of the Colombian Geological Survey (INGEOMINAS), whereas decisions regarding mitigation and response procedures are the responsibility of various governmental offices and the national emergency system (SNPAD). According to the current plan, when the risk level rises to a high level the people in the highest risk zone are required to evacuate. The volcano currently is in a very active, but fluctuating, condition and a future large eruption in a medium time frame (years to decades) is possible. There is a growing level of discomfort among many of the affected groups, including indigenous communities, farmers, and urban dwellers, related to the risk assessment. The general opinion prior to July 2009 was quite polarized as the decision makers saw the people of the region as poorly prepared to understand this hazard, whereas the population felt that their views were not being heard. The result was that the people in the hazardous areas decided not to evacuate, even during the current period of explosive activity. To resolve this situation the University of Nariño (Colombia) and the State University of New York at Buffalo organized a workshop named "Knowledge, Sharing and Collaboration in Volcanic Risk Mitigation at Galeras Volcano, Colombia" that was held in Pasto (Colombia), between 6 and 11 July, 2009. The general objective of this workshop was to analyze the existing hazard maps and safety plans for Galeras and form a bridge connecting scientists, decision makers, and other stake holders to promote a better

  13. The structural architecture of the Los Humeros volcanic complex and geothermal field, Trans-Mexican Volcanic Belt, Central Mexico (United States)

    Norini, Gianluca; Groppelli, Gianluca; Sulpizio, Roberto; Carrasco Núñez, Gerardo; Davila Harris, Pablo


    the structural features of the studied area. The integration of these structural data with available stratigraphy, geological maps and well logs is used to propose a new model of the caldera and geothermal field. As a result of our study, we interpret the Xaltipan and Zaragoza calderas mainly as trap-door structures. These calderas affected a cone-shaped volcanic sequence, formed mainly by effusive products emitted in the pre-caldera forming phase and now hosting the geothermal reservoir (11-1.5 Ma). The main ring faults of the two calderas are buried and sealed by widespread post-calderas volcanic products, and for this reason probably do not have enough secondary permeability to be main channels for hydrothermal fluid circulation. Active, fast-moving subvertical faults have been identified inside the Zaragoza caldera depression. These structures affect recent post-caldera pyroclastic deposits and probably are related both to active resurgence inside the caldera and to regional faults NW-SE striking. The presence of active faults generating high secondary permeability is the most important structural element shaping the geothermal reservoir. Future plans of expansion of the geothermal field should focus on these active faults, considering their geometry at depth and the whole structural architecture of the Los Humeros volcanic complex.

  14. Recurrence Rate and Magma Effusion Rate for the Latest Volcanism on Arsia Mons, Mars (United States)

    Richardson, Jacob A.; Wilson, James A.; Connor, Charles B.; Bleacher, Jacob E.; Kiyosugi, Koji


    Magmatism and volcanism have evolved the Martian lithosphere, surface, and climate throughout the history of Mars. Constraining the rates of magma generation and timing of volcanism on the surface clarifies the ways in which magma and volcanic activity have shaped these Martian systems. The ages of lava flows on other planets are often estimated using impact crater counts, assuming that the number and size-distribution of impact craters per unit area reflect the time the lava flow has been on the surface and exposed to potential impacts. Here we show that impact crater age model uncertainty is reduced by adding stratigraphic information observed at locations where neighboring lavas abut each other, and demonstrate the significance of this reduction in age uncertainty for understanding the history of a volcanic field comprising 29 vents in the 110-kilometer-diameter caldera of Arsia Mons, Mars. Each vent within this caldera produced lava flows several to tens of kilometers in length; these vents are likely among the youngest on Mars, since no impact craters in their lava flows are larger than 1 kilometer in diameter. First, we modeled the age of each vent with impact crater counts performed on their corresponding lava flows and found very large age uncertainties for the ages of individual vents, often spanning the estimated age for the entire volcanic field. The age model derived from impact crater counts alone is broad and unimodal, with estimated peak activity in the field around 130Ma (megaannum, 1 million years). Next we applied our volcano event age model (VEAM), which uses a directed graph of stratigraphic relationships and random sampling of the impact crater age determinations to create alternative age models. Monte Carlo simulation was used to create 10,000 possible vent age sets. The recurrence rate of volcanism is calculated for each possible age set, and these rates are combined to calculate the median recurrence rate of all simulations. Applying this

  15. Evidences for a volcanic province in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Sudhakar, M.

    Based on various lines of evidence such as the widespread occurrence of basalts, pumice, volcanic glass shards and their transformational products (zeolites, palagonites, and smectite-rich sediments), we suggest the presence of a volcanic province...

  16. The possible influence of volcanic emissions on atmospheric aerosols in the city of Colima, Mexico

    International Nuclear Information System (INIS)

    Miranda, Javier; Zepeda, Francisco; Galindo, Ignacio


    An elemental composition study of atmospheric aerosols from the City of Colima, in the Western Coast of Mexico, is presented. Samples of PM 15 -PM 2.5 and PM 2.5 were collected with Stacked Filter Units (SFU) of the Davis design, in urban and rural sites, the latter located between the City of Colima and the Volcan de Colima, an active volcano. Elemental analyses were carried out using Particle Induced X-ray Emission (PIXE). The gravimetric mass concentrations for the fine fraction were slightly higher in the urban site, while the mean concentrations in the coarse fraction were equal within the uncertainties. High Cl contents were determined in the coarse fraction, a fact also observed in emissions from the Volcan de Colima by other authors. In addition to average elemental concentrations, cluster analysis based on elemental contents was performed, with wind speed and direction data, showing that there is an industrial contributor to aerosols North of the urban area. Moreover, a contribution from the volcanic emissions was identified from the grouping of S, Cl, Cu, and Zn, elements associated to particles emitted by the Volcan de Colima. - Elemental analyses of PM 15 in the City of Colima, Mexico, were done to identify possible contributions from the Volcan de Colima, an active volcano

  17. Vulcamera: a program for measuring volcanic SO2 using UV cameras

    Directory of Open Access Journals (Sweden)

    Alessandro Aiuppa


    Full Text Available We report here on Vulcamera, a stand-alone program for the determination of volcanic SO2  fluxes using ultraviolet cameras. The code enables field image acquisition and all the required post-processing operations.

  18. Assessing qualitative long-term volcanic hazards at Lanzarote Island (Canary Islands) (United States)

    Becerril, Laura; Martí, Joan; Bartolini, Stefania; Geyer, Adelina


    Conducting long-term hazard assessment in active volcanic areas is of primary importance for land-use planning and defining emergency plans able to be applied in case of a crisis. A definition of scenario hazard maps helps to mitigate the consequences of future eruptions by anticipating the events that may occur. Lanzarote is an active volcanic island that has hosted the largest (> 1.5 km3 DRE) and longest (6 years) eruption, the Timanfaya eruption (1730-1736), on the Canary Islands in historical times (last 600 years). This eruption brought severe economic losses and forced local people to migrate. In spite of all these facts, no comprehensive hazard assessment or hazard maps have been developed for the island. In this work, we present an integrated long-term volcanic hazard evaluation using a systematic methodology that includes spatial analysis and simulations of the most probable eruptive scenarios.

  19. Assessing qualitative long-term volcanic hazards at Lanzarote Island (Canary Islands

    Directory of Open Access Journals (Sweden)

    L. Becerril


    Full Text Available Conducting long-term hazard assessment in active volcanic areas is of primary importance for land-use planning and defining emergency plans able to be applied in case of a crisis. A definition of scenario hazard maps helps to mitigate the consequences of future eruptions by anticipating the events that may occur. Lanzarote is an active volcanic island that has hosted the largest (>  1.5 km3 DRE and longest (6 years eruption, the Timanfaya eruption (1730–1736, on the Canary Islands in historical times (last 600 years. This eruption brought severe economic losses and forced local people to migrate. In spite of all these facts, no comprehensive hazard assessment or hazard maps have been developed for the island. In this work, we present an integrated long-term volcanic hazard evaluation using a systematic methodology that includes spatial analysis and simulations of the most probable eruptive scenarios.

  20. A decade of global volcanic SO2 emissions measured from space (United States)

    Carn, S. A.; Fioletov, V. E.; McLinden, C. A.; Li, C.; Krotkov, N. A.


    The global flux of sulfur dioxide (SO2) emitted by passive volcanic degassing is a key parameter that constrains the fluxes of other volcanic gases (including carbon dioxide, CO2) and toxic trace metals (e.g., mercury). It is also a required input for atmospheric chemistry and climate models, since it impacts the tropospheric burden of sulfate aerosol, a major climate-forcing species. Despite its significance, an inventory of passive volcanic degassing is very difficult to produce, due largely to the patchy spatial and temporal coverage of ground-based SO2 measurements. We report here the first volcanic SO2 emissions inventory derived from global, coincident satellite measurements, made by the Ozone Monitoring Instrument (OMI) on NASA’s Aura satellite in 2005-2015. The OMI measurements permit estimation of SO2 emissions from over 90 volcanoes, including new constraints on fluxes from Indonesia, Papua New Guinea, the Aleutian Islands, the Kuril Islands and Kamchatka. On average over the past decade, the volcanic SO2 sources consistently detected from space have discharged a total of ~63 kt/day SO2 during passive degassing, or ~23 ± 2 Tg/yr. We find that ~30% of the sources show significant decadal trends in SO2 emissions, with positive trends observed at multiple volcanoes in some regions including Vanuatu, southern Japan, Peru and Chile.

  1. Anchorage Areas (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — An anchorage area is a place where boats and ships can safely drop anchor. These areas are created in navigable waterways when ships and vessels require them for...

  2. Plateau subduction, intraslab seismicity, and the Denali (Alaska) volcanic gap (United States)

    Chuang, Lindsay Yuling; Bostock, Michael; Wech, Aaron; Plourde, Alexandre


    Tectonic tremors in Alaska (USA) are associated with subduction of the Yakutat plateau, but their origins are unclear due to lack of depth constraints. We have processed tremor recordings to extract low-frequency earthquakes (LFEs), and generated a set of six LFE waveform templates via iterative network matched filtering and stacking. The timing of impulsive P (compressional) wave and S (shear) wave arrivals on template waveforms places LFEs at 40–58 km depth, near the upper envelope of intraslab seismicity and immediately updip of increased levels of intraslab seismicity. S waves at near-epicentral distances display polarities consistent with shear slip on the plate boundary. We compare characteristics of LFEs, seismicity, and tectonic structures in central Alaska with those in warm subduction zones, and propose a new model for the region’s unusual intraslab seismicity and the enigmatic Denali volcanic gap (i.e., an area of no volcanism where expected). We argue that fluids in the Yakutat plate are confined to its upper crust, and that shallow subduction leads to hydromechanical conditions at the slab interface in central Alaska akin to those in warm subduction zones where similar LFEs and tremor occur. These conditions lead to fluid expulsion at shallow depths, explaining strike-parallel alignment of tremor occurrence with the Denali volcanic gap. Moreover, the lack of double seismic zone and restriction of deep intraslab seismicity to a persistent low-velocity zone are simple consequences of anhydrous conditions prevailing in the lower crust and upper mantle of the Yakutat plate.

  3. QVAST: a new Quantum GIS plugin for estimating volcanic susceptibility (United States)

    Bartolini, S.; Cappello, A.; Martí, J.; Del Negro, C.


    One of the most important tasks of modern volcanology is the construction of hazard maps simulating different eruptive scenarios that can be used in risk-based decision making in land-use planning and emergency management. The first step in the quantitative assessment of volcanic hazards is the development of susceptibility maps (i.e., the spatial probability of a future vent opening given the past eruptive activity of a volcano). This challenging issue is generally tackled using probabilistic methods that use the calculation of a kernel function at each data location to estimate probability density functions (PDFs). The smoothness and the modeling ability of the kernel function are controlled by the smoothing parameter, also known as the bandwidth. Here we present a new tool, QVAST, part of the open-source geographic information system Quantum GIS, which is designed to create user-friendly quantitative assessments of volcanic susceptibility. QVAST allows the selection of an appropriate method for evaluating the bandwidth for the kernel function on the basis of the input parameters and the shapefile geometry, and can also evaluate the PDF with the Gaussian kernel. When different input data sets are available for the area, the total susceptibility map is obtained by assigning different weights to each of the PDFs, which are then combined via a weighted summation and modeled in a non-homogeneous Poisson process. The potential of QVAST, developed in a free and user-friendly environment, is here shown through its application in the volcanic fields of Lanzarote (Canary Islands) and La Garrotxa (NE Spain).

  4. The role of magmatic loads and rift jumps in generating seaward dipping reflectors on volcanic rifted margins (United States)

    Buck, W. Roger


    The largest volcanic constructs on Earth are the seismically imaged seaward dipping reflector (SDR) units found offshore of many rifted continental margins, including most that border the Atlantic Ocean. Whether their formation requires large magnitude (i.e. 10 s of km) of normal fault slip or results from the deflection of the lithosphere by the weight of volcanic flows is controversial. Though there is evidence for faulting associated with some SDRs, this paper considers the range of structures that can be produced by magmatic and volcanic loading alone. To do this an idealized mechanical model for the construction of rift-related volcanic flow structures is developed. Dikes open as plates move away from the center of a model rift and volcanic flows fill the depression produced by the load caused by dike solidification. The thin elastic plate flexure approximation allows a closed form description of the shape of both the contacts between flows and between the flows and underlying dikes. The model depends on two independent parameters: the flexure parameter, α, and the maximum isostatically supported extrusive layer thickness, w0. For reasonable values of these parameters the model reproduces the observed down-dip thickening of flows and the range of reflector dip angles. A numerical scheme using the analytic results allows simulation of the effect of temporal changes in the locus of magmatic spreading as well as changes in the amount of volcanic infill. Either jumps in the location of the center of diking or periods with no volcanism result in separate units or "packages" of model SDRs, in which the flow-dike contact dips landward, consistent with observations previously attributed only to listric normal fault offset. When jumps in the spreading center are small (i.e. less than α) they result in thicker, narrower volcanic units on one side of a rift compared to those on the other side. This is similar to the asymmetric distributions of volcanic packages seen

  5. Study on the ratio and properties of the slurry of light insulation masonry with volcanic slag (United States)

    Liguang, Xiao; Dawei, Jiang


    Volcanic slag is a kind of natural high quality porous material, and it has a good thermal insulation effect, and it is an extremely rich natural resource. Therefore, this paper adopts the natural volcanic slag as the aggregate to build the insulation mortar mix design for the slag masonry, and tests the related performance of the mortar. The results show that adopts natural volcanic slag as the aggregate and the cement use fly ash to replace, and the appropriate uniform sealing pores were introduced into the mortar mix. The performance of the manufactured products can meet the requirements of JC/T890. The coefficient of thermal conductivity of lightweight masonry mortar is less than 0.14W/(m•K), and the frost resistance is greater than 100 times, and it is with a low price.

  6. Volcanic activity in the Acambay Graben: a < 25 Ka subplinian eruption from the Temascalcingo volcano and implications for volcanic hazard. (United States)

    Pedrazzi, Dario; Aguirre Díaz, Gerardo; Sunyé Puchol, Ivan; Bartolini, Stefania; Geyer, Adelina


    The Trans-Mexican Volcanic Belt (TMVB) contains a large number of stratovolcanoes, some well-known, as Popocatepetl, Iztaccihuatl, Nevado de Toluca, or Colima and many others of more modest dimensions that are not well known but constitute the majority in the TMVB. Such volcanoes are, for example, Tequila, San Juan, Sangangüey, Cerro Culiacán, Cerro Grande, El Zamorano, La Joya, Palo Huerfano, Jocotitlán, Altamirano and Temascalcingo, among many others. The Temascalcingo volcano (TV) is an andesitic-dacitic stratovolcano located in the Trans-Mexican Volcanic Belt (TMVB) at the eastern part of the Acambay Graben (northwest portion of Estado de México). The TV is composed mainly by dacitic, porphyritic lavas, block and ash deposits and subordinate pumice fall deposits and ignimbrites (Roldán-Quintana et al., 2011). The volcanic structure includes a summit caldera that has a rectangular shape, 2.5×3.5 km, with the largest side oriented E-W, parallel to major normal faults affecting the edifice. The San Mateo Pumice eruption is one of the greatest paroxysmal episodes of this volcano with pumice deposits mainly exposed at the scarp of the Acambay-Tixmadeje fault and at the northern and northeastern flanks of TV. It overlies a paleosol dated at 25 Ka. A NE-trending dispersion was obtained from field data covering an area of at least 80 km2. These deposits overlie older lava flows and mud flows and are discontinuously covered and eroded by younger reworked deposits of Temascalcingo volcano. This event represents a highly explosive phase that generated a relatively thick and widespread pumice fallout deposit that may occur again in future eruptions. A similar eruption today would have a significantly impact in the region, overall due to the fact that there has been no systematic assessment of the volcanic hazard in any of the studies that have been conducted so far in the area. So, this is a pending and urgent subject that must be tackled without delay. Financed by

  7. Observations and modelling of inflation in the Lazufre volcanic region, South America (United States)

    Pearse, J.; Lundgren, P.


    The Central Volcanic Zone (CVZ) is an active volcanic arc in the central Andes, extending through Peru, southwestern Bolivia, Chile, and northwestern Argentina [De Silva, 1989; De Silva and Francis, 1991]. The CVZ includes a number of collapsed calderas, remnants of catastrophic eruptions, which are now thought to be inactive. However, recent Interferometric Synthetic Aperture Radar (InSAR) observations [Pritchard and Simons, 2004] show surface deformation occurring at some of these large ancient volcanic regions, indicating that magma chambers are slowly inflating beneath the surface. The mechanisms responsible for the initiation and growth of large midcrustal magma chambers remains poorly understood, and InSAR provides an opportunity for us to observe volcanic systems in remote regions that are otherwise difficult to monitor and observe. The Lastarria-Cordon del Azufre ("Lazufre" [Pritchard and Simons, 2002]) volcanic area is one such complex showing recent deformation, with average surface uplift rates of approximately 2.5 cm/year [Froger et al., 2007; Ruch et al, 2008]. We have processed InSAR data from ERS-1/2 and Envisat in the Lazufre volcanic area, including both ascending and descending satellite tracks. Time series analysis of the data shows steady uplift beginning in about 2000, continuing into 2010. We use boundary-element elastic models to invert for the depth and shape of the magmatic source responsible for the surface deformation. Given data from both ascending and descending tracks, we are able to resolve the ambiguity between the source depth and size, and constrain the geometry of the inflating magma source. Finite element modelling allows us to understand the effect of viscoelasticity on the development of the magma chamber.

  8. Development of Air Quality Impact Assessment Method of Potential Volcanic Hazard near the Korean Peninsula (United States)

    Sunwoo, Y.; Kim, Y. J.; Kim, D.; Park, J. E.; Hong, K. H.


    Many volcanos are located within 1,500 km of Korea which implies that a potential disaster is always possible. Several eruption precursors were observed rather recently at Mt. Baekdu, which has sparked intensive research on volcanic disasters in Korea. For assessment of potential volcanic hazard in Korea, we developed classification method of volcanic eruption dates using the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT-4) regarding air quality impact. And, we conducted 3 dimensional chemistry transport modeling for selected eruption dates. WRF-ARW(version 3.6.1) meteorological modeling was employed for high resolution HYSPLIT input meteorological data,. The modeling domain covers Northeast Asia including Korea, Japan, east China, and part of Russia. Forward trajectories were calculated every 3 hours for 1 year (2010) and the trajectories were initiated from 3 volcanoes, Mt. Baekdu, Mt. Aso, and Mt. Tarumae. Selected eruption dates were classified into 5 classes using 4 parameters, PBL, trajectory retention time, initial trajectory altitude and exposed population. The number of significant days for volcanic eruption impact were 7 for Mt. Baekdu (spring and fall), 7 for Mt. Aso (summer), 1 for Mt. Tarumae (spring), and these were classified as class A, with the highest risk of incurring severe air pollution episodes in the receptor area. In addition, we analyzed the spatio-temporal distributions of these trajectories in the receptor area to help determine the period and domain of the volcanic eruption 3 dimensional chemistry transport modeling. Using class A eruption dates, we conducted CMAQ(v5.0.2) modeling for calculate full chemical reactions of volcanic gases and ashes in troposphere.

  9. Grain size and shape analysis of the AD 1226 tephra layer, Reykjanes volcanic system (United States)

    Ösp Magnúsdóttir, Agnes; Höskuldsson, Ármann; Larsen, Guðrún; Tumi Guðmunsson, Magnús; Sigurgeirsson, Magnús Á.


    Recent explosive eruptions in Iceland have drawn attention to long range tephra transport in the atmosphere. In Iceland tephra forming explosion eruptions are frequent, due to abundance of water. However, the volcanism on the island is principally basaltic. Volcanism along the Reykjanes Peninsula is divided into five distinct volcanic systems. Volcano-tectonic activity within these systems is periodic, with recurrence intervals in the range of 1 ka. Last volcano-tectonic sequence began around AD 940, shortly after settlement of Iceland, and lasted through AD 1340. During this period activity was characterized by basaltic fissure eruptions. Furthermore, this activity period on the Reykjanes peninsula began within the eastern most volcanic system and gradually moved towards the west across the peninsula. The 1226 eruption was a basaltic fissure eruption with in the Reykjanes volcanic system. The eruption began on land and gradually progressed towards the SW until the volcanic fissure extended into the sea. Water-magma interaction changed the eruption from effusive into explosive forming the largest tephra layer on the peninsula. Due to its close proximity to the Keflavik international airport and that of the capital of Iceland it is important to get an insight into, the characteristics, generation and distribution of such tephra deposits. In this eruption the tephra produced had an approximate volume of 0.1 km3 and covered an area of some 3500 km2 within the 0.5 cm isopach. Total grain size distribution of this tephra layer will be presented along with analysis of principal grain shapes of the finer portion of the tephra layer as a function of distance from the source. The tephra grain size is dominated by particles finer than 1 millimeter with an almost complete absence of large grains independent of distance from the source. Comprehensive understanding of the characteristics of tephra generated in this eruption can help us to understand hazards posed by future

  10. Evaluation on changes caused by volcanic activities in the groundwater environment as a natural barrier for the HLW disposal. Literature survey and groundwater observation conducted at Mt. Iwate

    International Nuclear Information System (INIS)

    Mahara, Yasunori; Nakata, Eiji; Tanaka, Kazuhiro


    It is very important in the site characterization for the HLW disposal to understand changes in geochemical performances caused by volcanic activities in the groundwater environment as the natural barrier. The various effects and its magnitude of changes were listed up and were filed from literature surveys of the correlation between volcanic activities and hydrological can geochemical changes (e.g. water temperature, water pressure, water level, dissolved gas concentration of He and Rn, isotopic ratio of He, and chloride concentration) in volcanic aquifer. However, it is difficult to evaluate the magnitude of impacts, which volcanic activities will give to the groundwater environment in the natural barrier, through only the literature surveys. We have started monitoring of groundwater level and changes in groundwater quality, since volcanic activities have enhanced at Mt. Iwate from June in 1998. Judging from variation of isotopic ratio of dissolved He in groundwater, a prompt and sharp signals indicating volcanic activities will easily be found in shallow groundwater and discharged ponds. On the other hands, geochemical conditions in deep groundwater surroundings from some 100 m to 1000 m deep will be very stable, if the area being more than 5 km apart from the volcanic active center. Consequently, our observed results suggest that the groundwater environment which is not directly disturbed by the underground magmatic activities spreads under the area that is connected to trench side of the volcanic front. (author)

  11. Improved prediction and tracking of volcanic ash clouds (United States)

    Mastin, Larry G.; Webley, Peter


    During the past 30??years, more than 100 airplanes have inadvertently flown through clouds of volcanic ash from erupting volcanoes. Such encounters have caused millions of dollars in damage to the aircraft and have endangered the lives of tens of thousands of passengers. In a few severe cases, total engine failure resulted when ash was ingested into turbines and coating turbine blades. These incidents have prompted the establishment of cooperative efforts by the International Civil Aviation Organization and the volcanological community to provide rapid notification of eruptive activity, and to monitor and forecast the trajectories of ash clouds so that they can be avoided by air traffic. Ash-cloud properties such as plume height, ash concentration, and three-dimensional ash distribution have been monitored through non-conventional remote sensing techniques that are under active development. Forecasting the trajectories of ash clouds has required the development of volcanic ash transport and dispersion models that can calculate the path of an ash cloud over the scale of a continent or a hemisphere. Volcanological inputs to these models, such as plume height, mass eruption rate, eruption duration, ash distribution with altitude, and grain-size distribution, must be assigned in real time during an event, often with limited observations. Databases and protocols are currently being developed that allow for rapid assignment of such source parameters. In this paper, we summarize how an interdisciplinary working group on eruption source parameters has been instigating research to improve upon the current understanding of volcanic ash cloud characterization and predictions. Improved predictions of ash cloud movement and air fall will aid in making better hazard assessments for aviation and for public health and air quality. ?? 2008 Elsevier B.V.

  12. Improving volcanic ash forecasts with ensemble-based data assimilation

    NARCIS (Netherlands)

    Fu, Guangliang


    The 2010 Eyjafjallajökull volcano eruption had serious consequences to civil aviation. This has initiated a lot of research on volcanic ash forecasting in recent years. For forecasting the volcanic ash transport after eruption onset, a volcanic ash transport and diffusion model (VATDM) needs to be

  13. Apollo 15 mare volcanism: constraints and problems

    International Nuclear Information System (INIS)

    Delano, J.W.


    The Apollo 15 landing site contains more volcanics in the form of crystalline basalts and pristine glasses, which form the framework for all models dealing with the mantle beneath that site. Major issues on the petrology of the mare source regions beneath that portion of Mare Imbrium are summarized

  14. Monogenetic volcanism: personal views and discussion (United States)

    Németh, K.; Kereszturi, G.


    Monogenetic volcanism produces small-volume volcanoes with a wide range of eruptive styles, lithological features and geomorphic architectures. They are classified as spatter cones, scoria (or cinder) cones, tuff rings, maars (maar-diatremes) and tuff cones based on the magma/water ratio, dominant eruption styles and their typical surface morphotypes. The common interplay between internal, such as the physical-chemical characteristics of magma, and external parameters, such as groundwater flow, substrate characteristics or topography, plays an important role in creating small-volume volcanoes with diverse architectures, which can give the impression of complexity and of similarities to large-volume polygenetic volcanoes. In spite of this volcanic facies complexity, we defend the term "monogenetic volcano" and highlight the term's value, especially to express volcano morphotypes. This study defines a monogenetic volcano, a volcanic edifice with a small cumulative volume (typically ≤1 km3) that has been built up by one continuous, or many discontinuous, small eruptions fed from one or multiple magma batches. This definition provides a reasonable explanation of the recently recognized chemical diversities of this type of volcanism.

  15. Monitoring and forecasting Etna volcanic plumes

    Directory of Open Access Journals (Sweden)

    S. Scollo


    Full Text Available In this paper we describe the results of a project ongoing at the Istituto Nazionale di Geofisica e Vulcanologia (INGV. The objective is to develop and implement a system for monitoring and forecasting volcanic plumes of Etna. Monitoring is based at present by multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager on board the Meteosat Second Generation geosynchronous satellite, visual and thermal cameras, and three radar disdrometers able to detect ash dispersal and fallout. Forecasting is performed by using automatic procedures for: i downloading weather forecast data from meteorological mesoscale models; ii running models of tephra dispersal, iii plotting hazard maps of volcanic ash dispersal and deposition for certain scenarios and, iv publishing the results on a web-site dedicated to the Italian Civil Protection. Simulations are based on eruptive scenarios obtained by analysing field data collected after the end of recent Etna eruptions. Forecasting is, hence, supported by plume observations carried out by the monitoring system. The system was tested on some explosive events occurred during 2006 and 2007 successfully. The potentiality use of monitoring and forecasting Etna volcanic plumes, in a way to prevent threats to aviation from volcanic ash, is finally discussed.

  16. X-ray microanalysis of volcanic ash

    International Nuclear Information System (INIS)

    Kearns, S L; Buse, B


    The 2010 eruption of Eyjafjallajökull volcano in Iceland demonstrated the disruptive nature of high-level volcanic ash emissions to the world's air traffic. The chemistry of volcanic material is complex and varied. Different eruptions yield both compositional and morphological variation. Equally a single eruption, such as that in Iceland will evolve over time and may potentially produce a range of volcanic products of varying composition and morphology. This variability offers the petrologist the opportunity to derive a tracer to the origins both spatially and temporally of a single particle by means of electron microbeam analysis. EPMA of volcanic ash is now an established technique for this type of analysis as used in tephrachronology. However, airborne paniculate material may, as in the case of Eyjafjallajökull, result in a particle size that is too small and too dispersed for preparation of standard EPMA mounts. Consequently SEM-EDS techniques are preferred for this type of quantitative analysis . Results of quantitative SEM-EDS analysis yield data with a larger precision error than EPMA yet sufficient to source the original eruption. Uncoated samples analyzed using variable pressure SEM yield slightly poorer results at modest pressures.

  17. Amazonian volcanism inside Valles Marineris on Mars

    Czech Academy of Sciences Publication Activity Database

    Brož, Petr; Hauber, E.; Wray, J. J.; Michael, G.


    Roč. 473, September (2017), s. 122-130 ISSN 0012-821X Institutional support: RVO:67985530 Keywords : Mars * Valles Marineris * volcanism * scoria cone * hydrothermal activity Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 4.409, year: 2016

  18. The Elusive Evidence of Volcanic Lightning. (United States)

    Genareau, K; Gharghabi, P; Gafford, J; Mazzola, M


    Lightning strikes are known to morphologically alter and chemically reduce geologic formations and deposits, forming fulgurites. A similar process occurs as the result of volcanic lightning discharge, when airborne volcanic ash is transformed into lightning-induced volcanic spherules (LIVS). Here, we adapt the calculations used in previous studies of lightning-induced damage to infrastructure materials to determine the effects on pseudo-ash samples of simplified composition. Using laboratory high-current impulse experiments, this research shows that within the lightning discharge channel there is an ideal melting zone that represents roughly 10% or less of the total channel radius at which temperatures are sufficient to melt the ash, regardless of peak current. The melted ash is simultaneously expelled from the channel by the heated, expanding air, permitting particles to cool during atmospheric transport before coming to rest in ash fall deposits. The limited size of this ideal melting zone explains the low number of LIVS typically observed in volcanic ash despite the frequent occurrence of lightning during explosive eruptions.

  19. Le volcanisme cambrien du Maroc central : implications géodynamiquesThe Central Morocco Cambrian volcanism: geodynamic implications (United States)

    Ouali, Houssa; Briand, Bernard; Bouchardon, Jean-Luc; Capiez, Paul


    In southeastern Central Morocco, the Bou-Acila volcanic complex is considered of Cambrian age. In spite of low-grade metamorphic effect, initial volcanic texture and mineralogy can be recognized and volcanic rocks are dominated by dolerites and porphyric dolerites. The initial mineralogy is composed of plagioclases, pyroxenes and dark minerals. A secondary mineral assemblage is composed of albite, epidote, chlorite and calcite. According to their immobile elements compositions, the southeastern central Morocco metavolcanites are of within-plate continental tholeiites. This volcanism and those recognized in many other areas in Morocco confirm a Cambrian extensive episode within the Gondwana supercontinent. To cite this article: H. Ouali et al., C. R. Geoscience 335 (2003).To cite this article: H. Ouali et al., C. R. Geoscience 335 (2003).

  20. K-Ar Geochronology and isotopic composition of the late oligocene- early miocene Ancud volcanic complex, Chiloe

    International Nuclear Information System (INIS)

    Munoz B, Jorge; Duhart O, Paul; Farmer, G. Lang; Stern, Charles R


    The Ancud Volcanic Complex (Gally and Sanchez , 1960) forms a portion of the Mid-Tertiary Coastal Magmatic Belt which outcrops in the area of northern Chiloe island. Main exposures occur at Ancud, Punta Polocue, Punihuil, Pumillahue, Tetas de Teguaco and Bahia Cocotue. The Ancud Volcanic Complex consists of basaltic to basaltic andesites lava flows and volcanic necks and rhyolitic pyroclastic flows and vitric domes. Previous studies indicate a Late Oligocene-Early Miocene age (Garcia et al., 1988; Stern and Vergara, 1992; Munoz et al., 2000). The Ancud Volcanic Complex covers and intrudes Palaeozoic-Triassic metamorphic rocks and is partially covered by an early to middle Miocene marine sedimentary sequence known as Lacui Formation (Valenzuela, 1982) and by Pleistocene glacial deposits (Heusser, 1990). At Punihuil locality, lava flows are interbedded with the lower part of the marine sedimentary sequence, which includes significant amounts of redeposited pyroclastic components. Locally, the presence of hyaloclastic breccias suggests i