WorldWideScience

Sample records for volatile compound production

  1. Analyzing volatile compounds in dairy products

    Science.gov (United States)

    Volatile compounds give the first indication of the flavor in a dairy product. Volatiles are isolated from the sample matrix and then analyzed by chromatography, sensory methods, or an electronic nose. Isolation may be performed by solvent extraction or headspace analysis, and gas chromatography i...

  2. Volatile compounds in meat and meat products

    Directory of Open Access Journals (Sweden)

    Monika KOSOWSKA

    Full Text Available Abstract Meaty flavor is composed of a few hundreds of volatile compounds, only minor part of which are responsible for the characteristic odor. It is developed as a result of multi-directional reactions proceeding between non-volatile precursors contained in raw meat under the influence of temperature. The volatile compounds are generated upon: Maillard reactions, lipid oxidation, interactions between Maillard reaction products and lipid oxidation products as well as upon thiamine degradation. The developed flavor is determined by many factors associated with: raw material (breed, sex, diet and age of animal, conditions and process of slaughter, duration and conditions of meat storage, type of muscle, additives applied and the course of the technological process. The objective of this review article is to draw attention to the issue of volatile compounds characteristic for meat products and factors that affect their synthesis.

  3. Volatile Sulfur Compounds from Livestock Production

    DEFF Research Database (Denmark)

    Kasper, Pernille

    2017-01-01

    Volatile sulfur compounds, i.e. hydrogen sulfide, methanethiol and dimethyl sulfide have been identified as key odorants in livestock production due to their high concentration levels and low odor threshold values. At the same time their removal with abatement technologies based on mass transfer...... and, thus, odor removal in these systems. In this context, two processes based on the absorptive oxidation of sulfur compounds in trickling filters containing metal catalysts were examined. One process with iron chelated by ethylenediaminetetraacetic acid (EDTA) was shown to remove hydrogen sulfide...... that the original sample composition was significantly impaired due to adsorption and diffusion at the walls of the measuring equipment. Generally, sulfur compounds were best preserved in both olfactometers and sample bags, while carboxylic acids, 4-methylphenol and trimethylamine were found to undergo substantial...

  4. Volatile compounds present in traditional meat products (charqui and longaniza sausage in Chile

    Directory of Open Access Journals (Sweden)

    María Pía Gianelli

    2012-08-01

    Full Text Available The aim of this work was to identify and quantify the volatile compounds in five different commercial brands of charqui and longaniza sausages. Volatile compounds were extracted from some samples headspace using solid phase microextraction (SPME. The identification and quantification were made through the gas chromatography with a mass-selective detector (GS-MS. Fifty-four volatile compounds were identified in charqui samples and thirty-two volatile compounds in longaniza sausages. The chemical groups of the volatile compounds found in both the products were: aldehydes, alcohols, ketones, organic acids, furans, aromatic and aliphatic hydrocarbons. Significant differences were found (p<0.05 in the volatile compounds among the brands of longaniza and charqui. A characteristic volatile compounds profile was not found in the analyzed products. However, an important percentage of the volatile compounds in charqui came from the lipid oxidation. In the case of longanizas sausages, volatile compounds come mainly from the carbohydrates fermentation and spices.

  5. Influence of volatile organic compounds on Fusarium graminearum mycotoxin production

    Science.gov (United States)

    Volatile organic compounds (VOCs) are involved in a diverse range of ecological interactions. Due to their low molecular weight, lipophilic nature, and high vapor pressure at ambient temperatures, they can serve as airborne signaling molecules that are capable of mediating inter and intraspecies com...

  6. Volatile compound profiling of Turkish Divle Cave cheese during production and ripening

    NARCIS (Netherlands)

    Ozturkoglu-Budak, S; Gursoy, A; Aykas, D P; Koçak, C; Dönmez, S; de Vries, R P; Bron, P A

    2016-01-01

    The formation of volatile compounds in Turkish Divle Cave cheese produced in 3 different dairy farms was determined during production and ripening, revealing 110 compounds including acids, alcohols, ketones, esters, and terpenes. The presence and concentration of these volatile compounds varied betw

  7. Volatile Organic Compounds (VOCs)

    Science.gov (United States)

    ... Contact Us Share Volatile Organic Compounds' Impact on Indoor Air Quality On this page: Introduction Sources Health Effects Levels in Homes Steps to Reduce Exposure Standards or Guidelines Additional Resources Introduction Volatile organic compounds ( ...

  8. Microbial production of volatile sulphur compounds in the large intestine of pigs fed two different diets

    DEFF Research Database (Denmark)

    Poulsen, Henrik Vestergaard; Jensen, Bent Borg; Finster, Kai

    2012-01-01

    Aims: To investigate the production of volatile sulphur compounds (VSC) in segments of the large intestine of pigs and to assess the impact of diet on this production. Methods and Results: Pigs were fed two diets based on either wheat and barley (STD) or wheat and dried distillers grains with sol......Aims: To investigate the production of volatile sulphur compounds (VSC) in segments of the large intestine of pigs and to assess the impact of diet on this production. Methods and Results: Pigs were fed two diets based on either wheat and barley (STD) or wheat and dried distillers grains...... significantly higher in the STD group. Conversely, the net methanethiol production rate was significantly higher in the DDGS-group, while no difference was observed for dimethyl sulphide. The number of sulphate reducing bacteria and total bacteria were determined by quantitative PCR and showed a significant...

  9. Lipid oxidation in baked products: impact of formula and process on the generation of volatile compounds.

    Science.gov (United States)

    Maire, Murielle; Rega, Barbara; Cuvelier, Marie-Elisabeth; Soto, Paola; Giampaoli, Pierre

    2013-12-15

    This paper investigates the effect of ingredients on the reactions occurring during the making of sponge cake and leading to the generation of volatile compounds related to flavour quality. To obtain systems sensitive to lipid oxidation (LO), a formulation design was applied varying the composition of fatty matter and eggs. Oxidation of polyunsaturated fatty acids (PUFA) and formation of related volatile compounds were followed at the different steps of cake-making. Optimised dynamic Solid Phase Micro Extraction was applied to selectively extract either volatile or semi-volatile compounds directly from the baking vapours. We show for the first time that in the case of alveolar baked products, lipid oxidation occurs very early during the step of dough preparation and to a minor extent during the baking process. The generation of lipid oxidation compounds depends on PUFA content and on the presence of endogenous antioxidants in the raw matter. Egg yolk seemed to play a double role on reactivity: protecting unsaturated lipids from oxidation and being necessary to generate a broad class of compounds of the Maillard reaction during baking and linked to the typical flavour of sponge cake.

  10. Production of volatile and sulfur compounds by ten Saccharomyces cerevisiae strains inoculated in Trebbiano must

    Directory of Open Access Journals (Sweden)

    Francesca ePatrignani

    2016-03-01

    Full Text Available In wines, the presence of sulphur compounds is the resulting of several contributions among which yeast metabolism. The characterization of the starter Saccharomyces cerevisiae needs to be performed also taking into account this ability even if evaluated together with the overall metabolic profile. In this perspective, principal aim of this experimental research was the evaluation of the volatile profiles, throughout GC/MS technique coupled with solid phase micro extraction, of wines obtained throughout the fermentation of 10 strains of Saccharomyces cerevisiae. In addition, the production of sulphur compounds was further evaluated by using a gas-chromatograph coupled with a Flame Photometric Detector. Specifically, the ten strains were inoculated in Trebbiano musts and the fermentations were monitored for 19 days. In the produced wines, volatile and sulphur compounds as well as amino acid concentrations were investigated. Also the physico-chemical characteristics of the wines and their electronic nose profiles were evaluated.

  11. Involvement of a broccoli COQ5 methyltransferase in the production of volatile selenium compounds.

    Science.gov (United States)

    Zhou, Xin; Yuan, Youxi; Yang, Yong; Rutzke, Michael; Thannhauser, Theodore W; Kochian, Leon V; Li, Li

    2009-10-01

    Selenium (Se) is an essential micronutrient for animals and humans but becomes toxic at high dosage. Biologically based Se volatilization, which converts Se into volatile compounds, provides an important means for cleanup of Se-polluted environments. To identify novel genes whose products are involved in Se volatilization from plants, a broccoli (Brassica oleracea var italica) cDNA encoding COQ5 methyltransferase (BoCOQ5-2) in the ubiquinone biosynthetic pathway was isolated. Its function was authenticated by complementing a yeast coq5 mutant and by detecting increased cellular ubiquinone levels in the BoCOQ5-2-transformed bacteria. BoCOQ5-2 was found to promote Se volatilization in both bacteria and transgenic Arabidopsis (Arabidopsis thaliana) plants. Bacteria expressing BoCOQ5-2 produced an over 160-fold increase in volatile Se compounds when they were exposed to selenate. Consequently, the BoCOQ5-2-transformed bacteria had dramatically enhanced tolerance to selenate and a reduced level of Se accumulation. Transgenic Arabidopsis expressing BoCOQ5-2 volatilized three times more Se than the vector-only control plants when treated with selenite and exhibited an increased tolerance to Se. In addition, the BoCOQ5-2 transgenic plants suppressed the generation of reactive oxygen species induced by selenite. BoCOQ5-2 represents, to our knowledge, the first plant enzyme that is not known to be directly involved in sulfur/Se metabolism yet was found to mediate Se volatilization. This discovery opens up new prospects regarding our understanding of the complete metabolism of Se and may lead to ways to modify Se-accumulator plants with increased efficiency for phytoremediation of Se-contaminated environments.

  12. Estimation of the Accuracy of Method for Quantitative Determination of Volatile Compounds in Alcohol Products

    CERN Document Server

    Charepitsa, S V; Zadreyko, Y V; Sytova, S N

    2016-01-01

    Results of the estimation of the precision for determination volatile compounds in alcohol-containing products by gas chromatography: acetaldehyde, methyl acetate, ethyl acetate, methanol, isopropyl alcohol, propyl alcohol, isobutyl alcohol, butyl alcohol, isoamyl alcohol are presented. To determine the accuracy, measurements were planned in accordance with ISO 5725 and held at the gas chromatograph Crystal-5000. Standard deviation of repeatability, intermediate precision and their limits are derived from obtained experimental data. The uncertainty of the measurements was calculated on the base of an "empirical" method. The obtained values of accuracy indicate that the developed method allows measurement uncertainty extended from 2 to 20% depending on the analyzed compound and measured concentration.

  13. Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications

    Energy Technology Data Exchange (ETDEWEB)

    Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto; Kerminen, Veli-Matti; Junninen, Heikki; Paasonen, Pauli; Stratmann, Frank; Herrmann, Hartmut; Guenther, Alex B.; Worsnop, Douglas R.; Kulmala, M.; Ehn, Mikael K.; Sipila, Mikko

    2015-06-09

    Extremely low volatility organic compounds (ELVOC) are suggested to promote aerosol particle formation and cloud condensation nuclei (CCN) production in the atmosphere. We show that the capability of biogenic VOC (BVOC) to produce ELVOC depends strongly on their chemical structure and relative oxidant levels. BVOC with an endocyclic double bond, representative emissions from, e.g., boreal forests, efficiently produce ELVOC from ozonolysis. Compounds with exocyclic double bonds or acyclic compounds including isoprene, emission representative of the tropics, produce minor quantities of ELVOC, and the role of OH radical oxidation is relatively larger. Implementing these findings into a global modeling framework shows that detailed assessment of ELVOC production pathways is crucial for understanding biogenic secondary organic aerosol and atmospheric CCN formation.

  14. Comprehensive verification of new method "Ethanol as Internal Standard" for determination of volatile compounds in alcohol products by gas chromatography

    CERN Document Server

    Charapitsa, Siarhei V; Markovsky, Mikhail G; Yakuba, Yurii F; Kotov, Yurii N

    2014-01-01

    Recently proposed new method "Ethanol as Internal Standard" for determination of volatile compounds in alcohol products by gas chromatography is investigated from different sides. Results of experimental study from three different laboratories from Belarus and Russian Federation are presented.

  15. Lipid and cholesterol oxidation, color changes, and volatile compounds production in irradiated raw pork batters with different fat content

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Cheo Run; Byun, Myung Woo [KAERI, Taejon (Korea, Republic of)

    2000-05-01

    An emulsion-type product was prepared to determine the effect of irradiation on lipid and cholesterol oxidation, color change, and volatile production in raw pork with different fat content. Lipid oxidation increased with an increase in fat content or irradiation dose. Irradiated batters had higher cholesterol oxides than did non-irradiated batters, and the major cholesterol oxides formed in irradiated pork batters were 7{alpha}- and 7{beta}- hydroxycholesterol. Hunter color a- and b-values of raw pork batters were decreased by irradiation regardless of fat content. Irradiation significantly increased the amount of volatile compounds. Although lipid oxidation of high fat products (10 and 15% fat) was higher than that of low fat products (4%), high fat products did not always produce greater amount of volatile compounds in raw pork batters. In summary, irradiation increased lipid and cholesterol oxidation, and volatile compounds production, and had detrimental effects on the color of raw pork batter under aerobic conditions.

  16. Microorganisms Associated with Volatile Organic Compound Production in Spoilt Mango Fruits

    Directory of Open Access Journals (Sweden)

    Aliyu D. Ibrahim

    2015-11-01

    Full Text Available Microorganisms associated with the production of volatile compound in spoilt mango fruits sold in Sokoto town were isolated and identified. The organisms include seven species of bacteria and a species of yeast. These include Bacillus pumilus, Bacillus firmus, Brevibacillus laterosporus, Morganella morganii, Paenibacillus alvei, Staphylococcus saccharolyticus, Listeria monocytogenes and Candida krusei respectively. GC-MS analysis revealed the presence of eleven and sixteen volatile organic compound in the healthy and spoilt ripe mango fruits. Octadecanoic acid, oleic acid, 1 – Butanol, 3 – methyl-, carbonate (2:1 and 3,7 – Dimethyl nonane were common to both healthy and spoilt fruits with the first three having higher concentration in healthy fruits than spoilt while the later had higher concentration in the spoilt. One methyl group of 3,3- Dimethyl hexane in healthy fruit was shifted to position two to yield 2,3-Dimethyl hexane in the spoilt fruits. 2,2-Dimethylbutane, Methyl(methyl-4-deoxy-2,3-di-O-methyl.beta.1-threo-hex-4-enopyranosid urinate, 3-(4-amino-phenyl-2-(toluene-4-sulfonylamino-propionic acid, 2-Methyl-3-heptanone, 3,5-Nonadien-7-yn-2-ol, (E,E, Butanoic acid, 1,1-dimethylethyl ester, 1-methyl-3-beta.phenylethyl-2,4,5-trioxoimidazolidine, Pentanoic acid, 2,2-dimethyl, ethyl ester (Vinyl 2,2-dimethylpentanoate, 4-Methyurazole, 1-Tridecyn- 4 – 9 – ol, 1-Hexyl-1-nitrocyclohexane were unique to spoilt fruits. This study suggests that these unique volatile metabolites could be exploited as biomarkers to discriminate pathogens even when more than one disease is present thereby curbing post harvest loss during storage after further validation and the volatile organic compound could form the basis for constructing a metabolomics database for Nigeria.

  17. Growth and volatile compound production by Brettanomyces/Dekkera bruxellensis in red wine.

    Science.gov (United States)

    Romano, A; Perello, M C; de Revel, G; Lonvaud-Funel, A

    2008-06-01

    Brettanomyces/Dekkera bruxellensis is a particularly troublesome wine spoilage yeast. This work was aimed at characterizing its behaviour in terms of growth and volatile compound production in red wine. Sterile red wines were inoculated with 5 x 10(3) viable cells ml(-1) of three B. bruxellensis strains and growth and volatile phenol production were followed for 1 month by means of plate counts and gas chromatography-mass spectrometry (GC-MS) respectively. Maximum population levels generally attained 10(6)-10(7) colony forming units (CFU) ml(-1) and volatile phenol concentrations ranged from 500 to 4000 microg l(-1). Brettanomyces bruxellensis multiplication was also accompanied by the production of organic acids (from C(2) to C(10)), short chain acid ethyl-esters and the 'mousy off-flavour' component 2-acetyl-tetrahydropyridine. Different kinds of 'Brett character' characterized by distinct metabolic and sensory profiles can arise in wine depending on the contaminating strain, wine pH and sugar content and the winemaking stage at which contamination occurs. We identified new chemical markers that indicate wine defects caused by B. bruxellensis. Further insight was provided into the role of some environmental conditions in promoting wine spoilage.

  18. Fungal volatile compounds induce production of the secondary metabolite Sodorifen in Serratia plymuthica PRI-2C.

    Science.gov (United States)

    Schmidt, Ruth; Jager, Victor de; Zühlke, Daniela; Wolff, Christian; Bernhardt, Jörg; Cankar, Katarina; Beekwilder, Jules; Ijcken, Wilfred van; Sleutels, Frank; Boer, Wietse de; Riedel, Katharina; Garbeva, Paolina

    2017-04-13

    The ability of bacteria and fungi to communicate with each other is a remarkable aspect of the microbial world. It is recognized that volatile organic compounds (VOCs) act as communication signals, however the molecular responses by bacteria to fungal VOCs remain unknown. Here we perform transcriptomics and proteomics analyses of Serratia plymuthica PRI-2C exposed to VOCs emitted by the fungal pathogen Fusarium culmorum. We find that the bacterium responds to fungal VOCs with changes in gene and protein expression related to motility, signal transduction, energy metabolism, cell envelope biogenesis, and secondary metabolite production. Metabolomic analysis of the bacterium exposed to the fungal VOCs, gene cluster comparison, and heterologous co-expression of a terpene synthase and a methyltransferase revealed the production of the unusual terpene sodorifen in response to fungal VOCs. These results strongly suggest that VOCs are not only a metabolic waste but important compounds in the long-distance communication between fungi and bacteria.

  19. Exposure to Volatile Organic Compounds and Possibility of Exposure to By-product Volatile Organic Compounds in Photolithography Processes in Semiconductor Manufacturing Factories.

    Science.gov (United States)

    Park, Seung-Hyun; Shin, Jung-Ah; Park, Hyun-Hee; Yi, Gwang Yong; Chung, Kwang-Jae; Park, Hae-Dong; Kim, Kab-Bae; Lee, In-Seop

    2011-09-01

    The purpose of this study was to measure the concentration of volatile organic compound (VOC)s originated from the chemicals used and/or derived from the original parental chemicals in the photolithography processes of semiconductor manufacturing factories. A total of four photolithography processes in 4 Fabs at three different semiconductor manufacturing factories in Korea were selected for this study. This study investigated the types of chemicals used and generated during the photolithography process of each Fab, and the concentration levels of VOCs for each Fab. A variety of organic compounds such as ketone, alcohol, and acetate compounds as well as aromatic compounds were used as solvents and developing agents in the processes. Also, the generation of by-products, such as toluene and phenol, was identified through a thermal decomposition experiment performed on a photoresist. The VOC concentration levels in the processes were lower than 5% of the threshold limit value (TLV)s. However, the air contaminated with chemical substances generated during the processes was re-circulated through the ventilation system, thereby affecting the airborne VOC concentrations in the photolithography processes. Tens of organic compounds were being used in the photolithography processes, though the types of chemical used varied with the factory. Also, by-products, such as aromatic compounds, could be generated during photoresist patterning by exposure to light. Although the airborne VOC concentrations resulting from the processes were lower than 5% of the TLVs, employees still could be exposed directly or indirectly to various types of VOCs.

  20. Process engineering versus product engineering - A case study on volatile organic compounds removal

    DEFF Research Database (Denmark)

    Coutinho, João A.P.; Vilela, T.; Pereira, P.

    2005-01-01

    to the problem-need specified in the beginning of the project, but producing a novel formulation (chemical product design) represents a method that results to a completely xylene-free process which is environmentally and economically more interesting than those generated via the more traditional process......Three solutions for removing the dangerous volatile organic compound (VOC) xylene from an industrial coating process are presented and compared. Two of them are based on classical process engineering principles, i.e., development of separation-cleaning methods such as incineration and adsorption....... The last approach is somewhat different and is based on the so-called product engineering concept, i.e., in this case, a change of the formulation so that xylene is entirely eliminated from the process. It is shown that both the process and the product engineering approaches yield viable solutions...

  1. Correct quantitative determination of ethanol and volatile compounds in alcohol products

    CERN Document Server

    Charapitsa, Siarhei; Sytova, Svetlana; Yakuba, Yurii

    2014-01-01

    Determination of the volume content of ethanol in the alcohol products in practice is usually determined by pycnometry, electronic densimetry, or densimetry using a hydrostatic balance in accordance with Commission Regulation No 2870/2000. However, these methods determine directly only density of the tested liquid sample and does not take into account the effects of other volatile components such as aldehydes, esters and higher alcohols. So they are appropriate only for binary water-ethanol solutions in accordance with international table adopted by the International Legal Metrology Organization in its Recommendation No 22. Availability notable concentrations of the higher alcohols and ethers in different alcohol-based products, e. g. in whisky, cognac, brandy, wine as well as in waste alcohol and alcohol beverage production, leads to the significant contribution of these compounds in the value of the density of tested alcohol-containing sample. As a result, determination of the volume of ethanol content for ...

  2. Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms.

    Science.gov (United States)

    Tian, Yuting; Zhao, Yingting; Huang, Jijun; Zeng, Hongliang; Zheng, Baodong

    2016-04-15

    Various drying methods play important roles in the preservation of foods. However, how the different drying methods affect the quality of some foods is not clear. This paper evaluates the effects of hot air, vacuum, microwave, and microwave vacuum drying techniques on important qualities and volatile compounds of whole shiitake (Lentinus edodes) mushrooms. These four drying methods resulted in a significantly (pdried products. Microwave vacuum drying helped to maintain larger amounts of taste-active amino acids, and improved nutrient retention and color attributes. Furthermore, the uniform honeycomb network created by microwave vacuum drying along with a less collapsed structure of dried samples can be used to explain the observed high rehydration ratio. Therefore, microwave vacuum drying should be a potential method for obtaining high-quality dried mushrooms.

  3. [Volatile organic compounds in ready-to-eat fruits and vegetable products].

    Science.gov (United States)

    Mezzetta, S; Capobianco, E; Sansebastiano, E

    2008-01-01

    An increased consumer demand for bagged prepared fruits and vegetables has recently occurred, these being ready-to-eat products. The different phases in the preparation of these products include cleaning, peeling, cutting, washing, drying and packaging. The quality, safety and shelf-life of ready-to-eat products is highly influenced by the washing process which is generally performed by soaking the vegetables in cold water containing disinfectants (usually sodium hypochlorite). We therefore evaluated the presence of halogenated volatile organic compounds (VOC) in 70 samples of ready-to-eat products produced by 15 different establishments. Results showed that 54% of the products were contaminated by at least one halogenated VOC. Trialomethane was the most frequently detected contaminant and 50% of samples were found to contain chloroform. Contamination by other halogenated VOCs was less frequent. Also, there was variation in concentration values of contaminants between different establishments and different packages. No halogenated VOCs were found in products from only three of the 15 establishments included in the study.

  4. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    Directory of Open Access Journals (Sweden)

    F. D. Lopez-Hilfiker

    2015-02-01

    Full Text Available We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer, but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25–50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS. Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products. Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas–particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing

  5. Production of volatile aroma compounds by bacterial strains isolated from different surface-ripened French cheeses.

    Science.gov (United States)

    Deetae, Pawinee; Bonnarme, Pascal; Spinnler, Henry E; Helinck, Sandra

    2007-10-01

    Twelve bacterial strains belonging to eight taxonomic groups: Brevibacterium linens, Microbacterium foliorum, Arthrobacter arilaitensis, Staphylococcus cohnii, Staphylococcus equorum, Brachybacterium sp., Proteus vulgaris and Psychrobacter sp., isolated from different surface-ripened French cheeses, were investigated for their abilities to generate volatile aroma compounds. Out of 104 volatile compounds, 54 volatile compounds (identified using dynamic headspace technique coupled with gas chromatography-mass spectrometry [GC-MS]) appeared to be produced by the different bacteria on a casamino acid medium. Four out of eight species used in this study: B. linens, M. foliorum, P. vulgaris and Psychrobacter sp. showed a high flavouring potential. Among these four bacterial species, P. vulgaris had the greatest capacity to produce not only the widest varieties but also the highest quantities of volatile compounds having low olfactive thresholds such as sulphur compounds. Branched aldehydes, alcohols and esters were produced in large amounts by P. vulgaris and Psychrobacter sp. showing their capacity to breakdown the branched amino acids. This investigation shows that some common but rarely mentioned bacteria present on the surface of ripened cheeses could play a major role in cheese flavour formation and could be used to produce cheese flavours.

  6. Volatile flavor compounds in yogurt: a review.

    Science.gov (United States)

    Cheng, Hefa

    2010-11-01

    Considerable knowledge has been accumulated on the volatile compounds contributing to the aroma and flavor of yogurt. This review outlines the production of the major flavor compounds in yogurt fermentation and the analysis techniques, both instrumental and sensory, for quantifying the volatile compounds in yogurt. The volatile compounds that have been identified in plain yogurt are summarized, with the few key aroma compounds described in detail. Most flavor compounds in yogurt are produced from lipolysis of milkfat and microbiological transformations of lactose and citrate. More than 100 volatiles, including carbonyl compounds, alcohols, acids, esters, hydrocarbons, aromatic compounds, sulfur-containing compounds, and heterocyclic compounds, are found in yogurt at low to trace concentrations. Besides lactic acid, acetaldehyde, diacetyl, acetoin, acetone, and 2-butanone contribute most to the typical aroma and flavor of yogurt. Extended storage of yogurt causes off-flavor development, which is mainly attributed to the production of undesired aldehydes and fatty acids during lipid oxidation. Further work on studying the volatile flavor compounds-matrix interactions, flavor release mechanisms, and the synergistic effect of flavor compounds, and on correlating the sensory properties of yogurt with the compositions of volatile flavor compounds are needed to fully elucidate yogurt aroma and flavor.

  7. Volatile organic compounds at oil and natural gas production well pads in Colorado and Texas using passive samplers

    Science.gov (United States)

    A pilot study was conducted in application of the U.S. Environmental Protection Agency (EPA) Methods 325A/B variant for monitoring volatile organic compounds (VOCs) near two oil and natural gas (ONG) production well pads in the Texas Barnett Shale formation and Colorado Denver&nd...

  8. Productions of Volatile Organic Compounds (VOCs) in Surface Waters from Reactions with Atmospheric Ozone

    Science.gov (United States)

    Hopkins, Frances; Bell, Thomas; Yang, Mingxi

    2017-04-01

    Ozone (O3) is a key atmospheric oxidant, greenhouse gas and air pollutant. In marine environments, some atmospheric ozone is lost by reactions with aqueous compounds (e.g. dissolved organic material, DOM, dimethyl sulfide, DMS, and iodide) near the sea surface. These reactions also lead to formations of volatile organic compounds (VOCs). Removal of O3 by the ocean remains a large uncertainty in global and regional chemical transport models, hampering coastal air quality forecasts. To better understand the role of the ocean in controlling O3 concentrations in the coastal marine atmosphere, we designed and implemented a series of laboratory experiments whereby ambient surface seawater was bubbled with O3-enriched, VOC-free air in a custom-made glass bubble equilibration system. Gas phase concentrations of a range of VOCs were monitored continuously over the mass range m/z 33 - 137 at the outflow of the bubble equilibrator by a proton transfer reaction - mass spectrometer (PTR-MS). Gas phase O3 was also measured at the input and output of the equilibrator to monitor the uptake due to reactions with dissolved compounds in seawater. We observed consistent productions of a variety of VOCs upon reaction with O3, notably isoprene, aldehydes, and ketones. Aqueous DMS is rapidly removed from the reactions with O3. To test the importance of dissolved organic matter precursors, we added increasing (milliliter) volumes of Emiliania huxleyi culture to the equilibrator filled with aged seawater, and observed significant linear increases in gas phase concentrations of a number of VOCs. Reactions between DOM and O3 at the sea-air interface represent a potentially significant source of VOCs in marine air and a sink of atmospheric O3.

  9. Emissions of volatile organic compounds from building materials and consumer products

    Science.gov (United States)

    Wallace, Lance A.; Pellizzari, Edo; Leaderer, Brian; Zelon, Harvey; Sheldon, Linda

    EPA's TEAM Study of personal exposure to volatile organic compounds (VOC) in air and drinking water of 650 residents of seven U.S. cities resulted in the identification of a number of possible sources encountered in peoples' normal daily activities and in their homes. A follow-up EPA study of publicaccess buildings implicated other potential sources of exposure. To learn more about these potential sources, 15 building materials and common consumer products were analyzed using a headspace technique to detect organic emissions and to compare relative amounts. About 10-100 organic compounds were detected offgassing from each material. Four mixtures of materials were then chosen for detailed study: paint on sheetrock; carpet and carpet glue; wallpaper and adhesives; cleansers and a spray pesticide. The materials were applied as normally used, allowed to age 1 week (except for the cleansers and pesticides, which were used normally during the monitoring period), and placed in an environmentally controlled chamber. Organic vapors were collected on Tenax-GC over a 4-h period and analyzed by GC-MS techniques. Emission rates and chamber concentrations were calculated for 17 target chemicals chosen for their toxic, carcinogenic or mutagenic properties. Thirteen of the 17 chemicals were emitted by one or more of the materials. Elevated concentrations of chloroform, carbon tetrachloride, 1,1,1-trichloroethane, n-decane, n-undecane, p-dichlorobenzene, 1,2-dichloroethane and styrene were produced by the four mixtures of materials tested. For some chemicals, these amounts were sufficient to account for a significant fraction of the elevated concentrations observed in previous indoor air studies. We conclude that common materials found in nearly every home and place of business may cause elevated exposures to toxic chemicals.

  10. Potential atmospheric production of small volatile organic compounds from soot oxidation

    Science.gov (United States)

    Horn, A.; Carpenter, L.; Daly, H.; Jones, C.

    2003-04-01

    In the polluted troposphere, VOCs are involved in a range of interlinked chemical and photochemical cycles with a direct bearing on the production of ozone. The rates of emission, production and reaction of VOC are therefore an important component of atmospheric models. Recent urban measurements using 2D-GC methods show that there are a large number of unidentified and unattributed VOC components. Any new sources of such material with high photochemical ozone creation potentials may therefore be significant. Hydrocarbon, fossil fuel and biomass burning produces particulate carbonaceous aerosols (soot) in addition to gas phase products. Soot in the atmosphere is known to undergo oxidation becoming hydrophilic in aged urban plumes and the process is also known to produce water soluble organic compounds. In our experiments, soot samples are prepared by combustion of appropriate liquid hydrocarbons and reacted with ozone in a glass reaction vessel. Analysis of the surface and gas-phase during the course of this reaction confirms kinetic measurements showing irreversible uptake of O_3 on soot and further identify that the reaction has oxidised the surface. Transmission electron micrographs of the fresh and ozonised soot reveal small, coagulated particles: fresh soot particle size ranges from 50--90 nm which reduces to 40--50 nm after ozonolysis. Separation of the soluble components of fresh and ozonised soot samples analysed by GC/MS reveal the presence of polyaromatic and unsaturated components in unreacted soot and partially oxidised components post-ozonolysis. ATR-IR spectra of soot extracts and ozonised soot confirm that surface features due to the creation of oxidised surface products grow in with exposure time. These include carbonyl, ester and alcohol functional groups. Direct sampling of the gas-phase during the ozone reaction allows some gaseous products to be identified as small organic acids, ketones and alcohols. Overall, the reaction of ozone with soot

  11. Volatile organic compound emissions from unconventional natural gas production: Source signatures and air quality impacts

    Science.gov (United States)

    Swarthout, Robert F.

    Advances in horizontal drilling and hydraulic fracturing over the past two decades have allowed access to previously unrecoverable reservoirs of natural gas and led to an increase in natural gas production. Intensive unconventional natural gas extraction has led to concerns about impacts on air quality. Unconventional natural gas production has the potential to emit vast quantities of volatile organic compounds (VOCs) into the atmosphere. Many VOCs can be toxic, can produce ground-level ozone or secondary organic aerosols, and can impact climate. This dissertation presents the results of experiments designed to validate VOC measurement techniques, to quantify VOC emission rates from natural gas sources, to identify source signatures specific to natural gas emissions, and to quantify the impacts of these emissions on potential ozone formation and human health. Measurement campaigns were conducted in two natural gas production regions: the Denver-Julesburg Basin in northeast Colorado and the Marcellus Shale region surrounding Pittsburgh, Pennsylvania. An informal measurement intercomparison validated the canister sampling methodology used throughout this dissertation for the measurement of oxygenated VOCs. Mixing ratios of many VOCs measured during both campaigns were similar to or higher than those observed in polluted cities. Fluxes of natural gas-associated VOCs in Colorado ranged from 1.5-3 times industry estimates. Similar emission ratios relative to propane were observed for C2-C6 alkanes in both regions, and an isopentane:n-pentane ratio ≈1 was identified as a unique tracer for natural gas emissions. Source apportionment estimates indicated that natural gas emissions were responsible for the majority of C2-C8 alkanes observed in each region, but accounted for a small proportion of alkenes and aromatic compounds. Natural gas emissions in both regions accounted for approximately 20% of hydroxyl radical reactivity, which could hinder federal ozone standard

  12. Impact of yeast starter formulations on the production of volatile compounds during wine fermentation.

    Science.gov (United States)

    Romano, Patrizia; Pietrafesa, Rocchina; Romaniello, Rossana; Zambuto, Marianna; Calabretti, Antonella; Capece, Angela

    2015-01-01

    The most diffused starter formulation in winemaking is actually represented by active dry yeast (ADY). Spray-drying has been reported as an appropriate preservation method for yeast and other micro-organisms. Despite the numerous advantages of this method, the high air temperatures used can negatively affect cell viability and the fermentative performance of dried cells. In the present study, 11 wine S. cerevisiae strains (both indigenous and commercial) were submitted to spray-drying; different process conditions were tested in order to select the conditions allowing the highest strain survival. The strains exhibited high variability for tolerance to spray-drying treatment. Selected strains were tested in fermentation at laboratory scale in different formulations (free fresh cells, free dried cells, immobilized fresh cells and immobilized dried cells), in order to assess the influence of starter formulation on fermentative fitness of strains and aromatic quality of wine. The analysis of volatile fraction in the experimental wines produced by selected strains in different formulations allowed identification of > 50 aromatic compounds (alcohols, esters, ketones, aldehydes and terpenes). The results obtained showed that the starter formulation significantly influenced the content of volatile compounds. In particular, the wines obtained by strains in dried forms (as both free and immobilized cells) contained higher numbers of volatile compounds than wines obtained from fresh cells.

  13. Production of volatile organic compounds in the culture of marine α-proteobacteria

    Science.gov (United States)

    Hirata, M.; Abe, M.; Hashimoto, S.

    2014-12-01

    Volatile organic compounds (VOCs) release halogens in the troposphere and in the stratosphere by photolysis and released halogens catalyze ozone depletion . In the ocean, macroalgae, phytoplankton, and bacteria are considered to be the main producers of VOCs. Recent investigations have shown that marine bacteria produce halomethanes such as chloromethane, bromomethane, and iodomethane. However, knowledge of aquatic VOC production, particularly through bacteria, is lacking. We studied the production of VOCs, including halomethanes, through the bacterium HKF-1. HKF-1 was isolated from brackish water in Sanaru Lake, Shizuoka prefecture, Japan. The bacterium belongs to the α-proteobacteria. Bacteria were incubated in marine broth 2216 (Difco) added with KI and KIO3 (each at 0.02 μmol/L) at 25°C. VOCs in the gas phase above the cultured samples was determined using a dynamic headspace (GESTEL DHS)—gas chromatograph (Agilent 6890N)—mass spectrometer (Agilent 5975C) at 0, 4, 7, 10 and 12 incubation days. In addition, the optical density at 600 nm (OD600) was measured during the culture period. Measurement of VOCs showed that chloromethane, bromomethane, iodomethane, isoprene, methanethiol, dimethyl sulfide, and dimethyl disulfide were produced in the culture of HKF-1. Dihalomethanes and trihalomethanes, such as dibromomethane, chloroiodomethane, bromoiodomethane, and tribromomethane, were not detected. Given that monohalomethanes and sulfur-containing VOCs were abundant in the culture, HKF-1 is one of the possible candidates as a producer of monohalomethane and sulfur-containing VOCs in marine environment, but not of di- or trihalomethanes.

  14. Volatilization of low vapor pressure--volatile organic compounds (LVP-VOCs) during three cleaning products-associated activities: Potential contributions to ozone formation.

    Science.gov (United States)

    Shin, Hyeong-Moo; McKone, Thomas E; Bennett, Deborah H

    2016-06-01

    There have been many studies to reduce ozone formation mostly from volatile organic compound (VOC) sources. However, the role of low vapor pressure (LVP)-VOCs from consumer products remains mostly unexplored and unaddressed. This study explores the impact of high production volume LVP-VOCs on ozone formation from three cleaning products-associated activities (dishwashing, clothes washing, and surface cleaning). We develop a model framework to account for the portion available for ozone formation during the use phase and from the down-the-drain disposal. We apply experimental studies that measured emission rates or models that were developed for estimating emission rates of organic compounds during the use phase. Then, the fraction volatilized (fvolatilized) and the fraction disposed down the drain (fdown-the-drain) are multiplied by the portion available for ozone formation for releases to the outdoor air (fO3|volatilized) and down-the-drain (fO3|down-the-drain), respectively. Overall, for chemicals used in three specific cleaning-product uses, fvolatilized is less than 0.6% for all studied LVP-VOCs. Because greater than 99.4% of compounds are disposed of down the drain during the use phase, when combined with fO3|volatilized and fO3|down-the-drain, the portion available for ozone formation from the direct releases to outdoor air and the down-the-drain disposal is less than 0.4% and 0.2%, respectively. The results from this study indicate that the impact of the studied LVP-VOCs on ozone formation is very sensitive to what occurs during the use phase and suggest the need for future research on experimental work at the point of use.

  15. Method "Ethanol as Internal Standard" for determination of volatile compounds in alcohol products by gas chromatography in daily practice

    CERN Document Server

    Charapitsa, Siarhei V; Makhomet, Andrey A; Guguchkina, Tatiana I; Markovsky, Mikhail G; Yakuba, Yurii F; Kotov, Yurii N

    2016-01-01

    Recently proposed new method "Ethanol as Internal Standard" for determination of volatile compounds in alcohol products by gas chromatography (GC) is investigated from different sides including method testing on prepared standard solutions like cognac and brandy, different ethanol-water solutions and certified reference material CRM LGC5100 Whisky-Congeners. Analysis of obtained results of experimental study from four different laboratories shows that relative bias between the experimentally measured concentrations calculated in accordance with proposed method and the values of concentrations assigned during the preparation by gravimetric method for all analyzed compounds does not exceed 10 %. It is shown that relative response factors (RRF) between analyzed volatile compounds and ethanol do not depend on time of analysis and are constant for every model of GC. It is shown the possibility to use predetermined RRF in daily practice of testing laboratories and to implement this new method in the international s...

  16. Involvement of a Broccoli COQ5 Methyltransferase in the Production of Volatile Selenium Compounds[C][OA

    Science.gov (United States)

    Zhou, Xin; Yuan, Youxi; Yang, Yong; Rutzke, Michael; Thannhauser, Theodore W.; Kochian, Leon V.; Li, Li

    2009-01-01

    Selenium (Se) is an essential micronutrient for animals and humans but becomes toxic at high dosage. Biologically based Se volatilization, which converts Se into volatile compounds, provides an important means for cleanup of Se-polluted environments. To identify novel genes whose products are involved in Se volatilization from plants, a broccoli (Brassica oleracea var italica) cDNA encoding COQ5 methyltransferase (BoCOQ5-2) in the ubiquinone biosynthetic pathway was isolated. Its function was authenticated by complementing a yeast coq5 mutant and by detecting increased cellular ubiquinone levels in the BoCOQ5-2-transformed bacteria. BoCOQ5-2 was found to promote Se volatilization in both bacteria and transgenic Arabidopsis (Arabidopsis thaliana) plants. Bacteria expressing BoCOQ5-2 produced an over 160-fold increase in volatile Se compounds when they were exposed to selenate. Consequently, the BoCOQ5-2-transformed bacteria had dramatically enhanced tolerance to selenate and a reduced level of Se accumulation. Transgenic Arabidopsis expressing BoCOQ5-2 volatilized three times more Se than the vector-only control plants when treated with selenite and exhibited an increased tolerance to Se. In addition, the BoCOQ5-2 transgenic plants suppressed the generation of reactive oxygen species induced by selenite. BoCOQ5-2 represents, to our knowledge, the first plant enzyme that is not known to be directly involved in sulfur/Se metabolism yet was found to mediate Se volatilization. This discovery opens up new prospects regarding our understanding of the complete metabolism of Se and may lead to ways to modify Se-accumulator plants with increased efficiency for phytoremediation of Se-contaminated environments. PMID:19656903

  17. Emission of volatile organic compounds and production of secondary organic aerosol from stir-frying spices.

    Science.gov (United States)

    Liu, Tengyu; Liu, Qianyun; Li, Zijun; Huo, Lei; Chan, ManNin; Li, Xue; Zhou, Zhen; Chan, Chak K

    2017-12-01

    Cooking is an important source of volatile organic compounds (VOCs) and a potential source of secondary organic aerosol (SOA) both indoors and outdoors. In this study, VOC emissions from heating corn oil and stir-frying spices (i.e. garlic, ginger, myrcia and zanthoxylum piperitum (Sichuan pepper)) were characterized using an on-line membrane inlet vacuum ultraviolet single-photon ionization time-of-flight mass spectrometer (VUV-SPI-TOFMS). VOC emissions from heating corn oil were dominated by aldehydes, which were enhanced by factors of one order of magnitude when stir-frying spices. Stir-frying any of the spices studied generated large amounts of methylpyrrole (m/z 81). In addition, stir-frying garlic produced abundant dihydrohydroxymaltol (m/z 144) and diallyldisulfide (DADS) (m/z 146), while stir-frying ginger, myrcia and zanthoxylum piperitum produced abundant monoterpenes (m/z 136) and terpenoids (m/z 152, 154). SOA formed from emissions of stir-frying spices through reactions with excess ozone in a flow reactor as well as primary organic aerosol (POA) emissions were characterized using a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS). Stir-frying garlic and ginger generated similar POA concentrations to those from heating corn oil while stir-frying myrcia and zanthoxylum piperitum generated double the amount of emissions. No SOA was observed from stir-frying garlic and ginger. The rates of SOA production from stir-frying myrcia and zanthoxylum piperitum were 1.8μgmin(-1)gspice(-1) and 8.7μgmin(-1)gspice(-1), equivalent to 13.4% and 53.1% of their own POA emission rates, respectively. Therefore, the contribution of stir-frying spices to ambient organic aerosol levels is likely dominated by POA. The rates of total terpene emission from stir-frying myrcia and zanthoxylum piperitum were estimated to be 5.1μgmin(-1)gspice(-1) and 24.9μgmin(-1)gspice(-1), respectively. Our results suggest

  18. atmospheric volatile organic compounds

    Directory of Open Access Journals (Sweden)

    A. R. Koss

    2016-07-01

    organic compounds (VOCs that cannot be ionized with H3O+ ions (e.g., in a PTR-MS or H3O+ CIMS instrument. Here we describe the adaptation of a high-resolution time-of-flight H3O+ CIMS instrument to use NO+ primary ion chemistry. We evaluate the NO+ technique with respect to compound specificity, sensitivity, and VOC species measured compared to H3O+. The evaluation is established by a series of experiments including laboratory investigation using a gas-chromatography (GC interface, in situ measurement of urban air using a GC interface, and direct in situ measurement of urban air. The main findings are that (1 NO+ is useful for isomerically resolved measurements of carbonyl species; (2 NO+ can achieve sensitive detection of small (C4–C8 branched alkanes but is not unambiguous for most; and (3 compound-specific measurement of some alkanes, especially isopentane, methylpentane, and high-mass (C12–C15 n-alkanes, is possible with NO+. We also demonstrate fast in situ chemically specific measurements of C12 to C15 alkanes in ambient air.

  19. Fast analysis of volatile organic compounds and disinfection by-products in drinking water using solid-phase microextraction-gas chromatography/time-of-flight mass spectrometry.

    Science.gov (United States)

    Niri, Vadoud H; Bragg, Leslie; Pawliszyn, Janusz

    2008-08-08

    A fast method was developed for the extraction and analysis of volatile organic compounds, including disinfection by-products (DBPs), with headspace solid-phase microextraction (HS-SPME) and gas chromatography/mass spectrometry (GC/MS) techniques. A GC/time-of-flight (TOF)-MS instrument, which had fast acquisition rates and powerful deconvolution software, was used. Under optimum conditions total runtime was 45s. Volatile organic compounds (VOCs), including purgeable A and B compounds (listed in US Environmental Protection Agency method 624), were identified in standard water samples. Extraction times were 1min for more volatile compounds and 2min for less volatile compounds. The method was applied to the analysis of water samples treated under different disinfection processes and the results were compared with those from a liquid-liquid extraction method.

  20. Medical costs and lost productivity from health conditions at volatile organic compound-contaminated Superfund sites

    Energy Technology Data Exchange (ETDEWEB)

    Lybarger, J.A.; Spengler, R.F.; Brown, D.R. [Agency for Toxic Substances and Disease Registry, Atlanta, GA (United States). Div. of Health Studies; Lee, R.; Vogt, D.P. [Oak Ridge National Lab., TN (United States)]|[Joint Inst. for Energy and Environment, Oak Ridge, TN (United States); Perhac, R.M. Jr. [Univ. of Tennessee, Knoxville, TN (United States)]|[Joint Inst. for Energy and Environment, Oak Ridge, TN (United States)

    1998-10-01

    This paper estimates the health costs at Superfund sites for conditions associated with volatile organic compounds (VOCs) in drinking water. Health conditions were identified from published literature and registry information as occurring at excess rates in VOC-exposed populations. These health conditions were: (1) some categories of birth defects, (2) urinary tract disorders, (3) diabetes, (4) eczema and skin conditions, (5) anemia, (6) speech and hearing impairments in children under 10 years of age, and (7) stroke. Excess rates were used to estimate the excess number of cases occurring among the total population living within one-half mile of 258 Superfund sites. These sites had evidence of completed human exposure pathways for VOCs in drinking water. For each type of medical condition, an individual`s expected medical costs, long-term care costs, and lost work time due to illness or premature mortality were estimated. Costs were calculated to be approximately $330 million per year, in the absence of any remediation or public health intervention programs. The results indicate the general magnitude of the economic burden associated with a limited number of contaminants at a portion of all Superfund sites, thus suggesting that the burden would be greater than that estimated in this study if all contaminants at all Superfund sites could be taken into account.

  1. Development of volatile compounds during storage at various conditions of different lipid containing lip balm products

    DEFF Research Database (Denmark)

    Thomsen, Birgitte Raagaard; Horn, A. F.; Hyldig, Grethe

    Many lip balms contain various lipids to care and soften the lips. However, the content of these lipids even in small amounts increases the risk of oxidation when exposed to heat, light or other conditions with a pro-oxidative effect. The progress of oxidation can be affected by several factors...... volatile compounds with off-odours. This presentation will include results from a storage experiment on four lip balms stored between 14 and 84 days, under different conditions. The samples were exposed to heat (20°C, 40°C and 50°C), light (samples at 20°C) and iron (samples at 40°C). Samples were analysed......; the degree of unsaturation, the content of antioxidants and the quality of the raw materials. When stored in the homes of consumers the lip balms may be exposed to relatively high temperatures and light. Hence, especially lip balms sold in countries with a warm climate can undergo lipid oxidation and develop...

  2. In vitro effects of Melaleuca alternifolia essential oil on growth and production of volatile sulphur compounds by oral bacteria

    Science.gov (United States)

    GRAZIANO, Talita Signoreti; CALIL, Caroline Morini; SARTORATTO, Adilson; FRANCO, Gilson César Nobre; GROPPO, Francisco Carlos; COGO-MÜLLER, Karina

    2016-01-01

    ABSTRACT Objective Halitosis can be caused by microorganisms that produce volatile sulphur compounds (VSCs), which colonize the surface of the tongue and subgingival sites. Studies have reported that the use of natural products can reduce the bacterial load and, consequently, the development of halitosis. The aim of this study was to evaluate the antimicrobial activity of the essential oil of Melaleuca alternifolia on the growth and volatile sulphur compound (VSC) production of oral bacteria compared with chlorhexidine. Material and Methods The effects of these substances were evaluated by the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) in planktonic cultures of Porphyromonas gingivalis and Porphyromonas endodontalis. In addition, gas chromatography analyses were performed to measure the concentration of VSCs from bacterial cultures and to characterize M. alternifolia oil components. Results The MIC and MBC values were as follows: M. alternifolia - P. gingivalis (MIC and MBC=0.007%), P. endodontalis (MIC and MBC=0.007%=0.5%); chlorhexidine - P. gingivalis and P. endodontalis (MIC and MBC=1.5 mg/mL). M. alternifolia significantly reduced the growth and production of hydrogen sulfide (H2S) by P. gingivalis (p<0.05, ANOVA-Dunnet) and the H2S and methyl mercaptan (CH3SH) levels of P. endodontalis (p<0.05, ANOVA-Dunnet). Chlorhexidine reduced the growth of both microorganisms without altering the production of VSC in P. endodontalis. For P. gingivalis, the production of H2S and CH3SH decreased (p<0.05, ANOVA-Dunnet). Conclusion M. alternifolia can reduce bacterial growth and VSCs production and could be used as an alternative to chlorhexidine. PMID:28076463

  3. In vitro effects of Melaleuca alternifolia essential oil on growth and production of volatile sulphur compounds by oral bacteria

    Directory of Open Access Journals (Sweden)

    Talita Signoreti GRAZIANO

    Full Text Available ABSTRACT Objective Halitosis can be caused by microorganisms that produce volatile sulphur compounds (VSCs, which colonize the surface of the tongue and subgingival sites. Studies have reported that the use of natural products can reduce the bacterial load and, consequently, the development of halitosis. The aim of this study was to evaluate the antimicrobial activity of the essential oil of Melaleuca alternifolia on the growth and volatile sulphur compound (VSC production of oral bacteria compared with chlorhexidine. Material and Methods The effects of these substances were evaluated by the Minimum Inhibitory Concentration (MIC and Minimum Bactericidal Concentration (MBC in planktonic cultures of Porphyromonas gingivalis and Porphyromonas endodontalis. In addition, gas chromatography analyses were performed to measure the concentration of VSCs from bacterial cultures and to characterize M. alternifolia oil components. Results The MIC and MBC values were as follows: M. alternifolia - P. gingivalis (MIC and MBC=0.007%, P. endodontalis (MIC and MBC=0.007%=0.5%; chlorhexidine - P. gingivalis and P. endodontalis (MIC and MBC=1.5 mg/mL. M. alternifolia significantly reduced the growth and production of hydrogen sulfide (H2S by P. gingivalis (p<0.05, ANOVA-Dunnet and the H2S and methyl mercaptan (CH3SH levels of P. endodontalis (p<0.05, ANOVA-Dunnet. Chlorhexidine reduced the growth of both microorganisms without altering the production of VSC in P. endodontalis. For P. gingivalis, the production of H2S and CH3SH decreased (p<0.05, ANOVA-Dunnet. Conclusion M. alternifolia can reduce bacterial growth and VSCs production and could be used as an alternative to chlorhexidine.

  4. Health evaluation of volatile organic compound (VOC) emission from exotic wood products

    DEFF Research Database (Denmark)

    Kirkeskov, L; Witterseh, T; Funch, L W

    2009-01-01

    analyses by climate chamber measurement (iroko, ramin, sheesham, merbau, and rubber tree). Samples of exotic wood (rubber tree and belalu) were further analyzed for emission of chemical compounds by migration into artificial saliva and for content of pesticides and allergenic natural rubber latex (NR latex......) (rubber tree). The toxicological effects of all substances identified were evaluated and the lowest concentrations of interest (LCI) assessed. An R-value was calculated for each wood product (R-value below 1 is considered to be unproblematic as regards health). Emission from the evaluated exotic wood only...

  5. Identification of volatile organic compounds (VOCs in plastic products using gas chromatography and mass spectrometry (GC/MS

    Directory of Open Access Journals (Sweden)

    Nerlis Pajaro-Castro

    2014-10-01

    Full Text Available Plastic materials are widely used in daily life. They contain a wide range of compounds with low molecular mass, including monomeric and oligomeric residues of polymerization, solvent-related chemicals residues, and various additives. Plastic products made of expanded polystyrene (EPS are currently employed as food containers. This study therefore sought to identify volatile organic compounds released by EPS from food packages and utensils used in Cartagena, Colombia. EPS-based plates, food and soup containers were subjected to various temperatures and released chemicals captured by solid phase microextraction, followed by on-column thermal desorption and gas chromatography/mass spectrometry analysis. The results revealed the presence of at least 30 different compounds in the EPS-based products examined; the most frequently found were benzaldehyde, styrene, ethylbenzene and tetradecane. The release of these molecules was temperature-dependent. It is therefore advisable to regulate the use of EPS products which may be subjected to heating in order to protect human health by decreasing the exposure to these chemicals.

  6. The Biological Diversity and Production of Volatile Organic Compounds by Stem-Inhabiting Endophytic Fungi of Ecuador

    Directory of Open Access Journals (Sweden)

    Susan M. Rundell

    2015-12-01

    Full Text Available Fungal endophytes colonize every major lineage of land plants without causing apparent harm to their hosts. Despite their production of interesting and potentially novel compounds, endophytes—particularly those inhabiting stem tissues—are still a vastly underexplored component of microbial diversity. In this study, we explored the diversity of over 1500 fungal endophyte isolates collected from three Ecuadorian ecosystems: lowland tropical forest, cloud forest, and coastal dry forest. We sought to determine whether Ecuador’s fungal endophytes are hyperdiverse, and whether that biological diversity is reflected in the endophytes’ chemical diversity. To assess this chemical diversity, we analyzed a subset of isolates for their production of volatile organic compounds (VOCs, a representative class of natural products. This study yielded a total of 1526 fungal ITS sequences comprising some 315 operational taxonomic units (OTUs, resulting in a non-asymptotic OTU accumulation curve and characterized by a Fisher’s α of 120 and a Shannon Diversity score of 7.56. These figures suggest that the Ecuadorian endophytes are hyperdiverse. Furthermore, the 113 isolates screened for VOCs produced more than 140 unique compounds. These results present a mere snapshot of the remarkable biological and chemical diversity of stem-inhabiting endophytic fungi from a single neotropical country.

  7. 76 FR 4835 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Volatile Organic Compound...

    Science.gov (United States)

    2011-01-27

    ... Organic Compound Reinforced Plastics Composites Production Operations Rule AGENCY: Environmental... control of volatile organic compound (VOC) emissions from reinforced plastic composites production..., Volatile organic compounds. Dated: January 14, 2011. Susan Hedman, Regional Administrator, Region...

  8. Volatile organic compounds and metal leaching from composite products made from fiberglass-resin portion of printed circuit board waste.

    Science.gov (United States)

    Guo, Jie; Jiang, Ying; Hu, Xiaofang; Xu, Zhenming

    2012-01-17

    This study focused on the volatile organic compounds (VOCs) and metal leaching from three kinds of composite products made from fiberglass-resin portion (FRP) of crushed printed circuit board (PCB) waste, including phenolic molding compound (PMC), wood plastic composite (WPC), and nonmetallic plate (NMP). Released VOCs from the composite products were quantified by air sampling on adsorbent followed by thermal desorption and GC-MS analysis. The results showed that VOCs emitted from composite products originated from the added organic components during manufacturing process. Phenol in PMC panels came primarily from phenolic resin, and the airborne concentration of phenol emitted from PMC product was 59.4 ± 6.1 μg/m(3), which was lower than odor threshold of 100% response for phenol (180 μg/m(3)). VOCs from WPC product mainly originated from wood flour, e.g., benzaldehyde, octanal, and d-limonene were emitted in relatively low concentrations. For VOCs emitted from NMP product, the airborne concentration of styrene was the highest (633 ± 67 μg/m(3)). Leaching characteristics of metal ions from composite products were tested using acetic acid buffer solution and sulphuric acid and nitric acid solution. Then the metal concentrations in the leachates were tested by ICP-AES. The results showed that only the concentration of Cu (average = 893 mg/L; limit = 100 mg/L) in the leachate solution of the FRP using acetic acid buffer solution exceeded the standard limit. However, concentrations of other metal ions (Pb, Cd, Cr, Ba, and Ni) were within the standard limit. All the results indicated that the FRP in composite products was not a major concern in terms of environmental assessment based upon VOCs tests and leaching characteristics.

  9. Species-specific production of microbial volatile organic compounds (MVOC) by airborne fungi from a compost facility.

    Science.gov (United States)

    Fischer, G; Schwalbe, R; Möller, M; Ostrowski, R; Dott, W

    1999-08-01

    Thirteen airborne fungal species frequently isolated in composting plants were screened for microbial volatile organic compounds (MVOC), i.e., Aspergillus candidus, A. fumigatus, A. versicolor, Emericella nidulans, Paecilomyces variotii, Penicillium brevicompactum, Penicillium clavigerum, Penicillium crustosum, Penicillium cyclopium, Penicillium expansum, Penicillium glabrum, Penicillium verruculosum, and Tritirachium oryzae. Air samples from pure cultures were sorbed on Tenax GR and analyzed by thermal desorption in combination with GC/MS. Various hydrocarbons of different chemical groups and a large number of terpenes were identified. Some compounds such as 3-methyl-1-butanol and 1-octen-3-ol were produced by a number of species, whereas some volatiles were specific for single species. An inventory of microbial metabolites will allow identification of potential health hazards due to an exposure to fungal propagules and metabolites in the workplace. Moreover, species-specific volatiles may serve as marker compounds for the selective detection of fungal species in indoor domestic and working environments.

  10. 40 CFR 60.602 - Standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

  11. Studies of the Atmospheric Chemsitry of Energy-Related Volatile Organic Compounds and of their Atmospheric Reaction Products

    Energy Technology Data Exchange (ETDEWEB)

    Roger Atkinson; Janet Arey

    2007-04-14

    The focus of this contract was to investigate selected aspects of the atmospheric chemistry of volatile organic compounds (VOCs) emitted into the atmosphere from energy-related sources as well as from biogenic sources. The classes of VOCs studied were polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs, the biogenic VOCs isoprene, 2-methyl-3-buten-2-ol and cis-3-hexen-1-ol, alkenes (including alkenes emitted from vegetation) and their oxygenated atmospheric reaction products, and a series of oxygenated carbonyl and hydroxycarbonyl compounds formed as atmospheric reaction products of aromatic hydrocarbons and other VOCs. Large volume reaction chambers were used to investigate the kinetics and/or products of photolysis and of the gas-phase reactions of these organic compounds with hydroxyl (OH) radicals, nitrate (NO3) radicals, and ozone (O3), using an array of analytical instrumentation to analyze the reactants and products (including gas chromatography, in situ Fourier transform infrared spectroscopy, and direct air sampling atmospheric pressure ionization tandem mass spectrometry). The following studies were carried out. The photolysis rates of 1- and 2-nitronaphthalene and of eleven isomeric methylnitronaphthalenes were measured indoors using blacklamp irradiation and outdoors using natural sunlight. Rate constants were measured for the gas-phase reactions of OH radicals, Cl atoms and NO3 radicals with naphthalene, 1- and 2-methylnaphthalene, 1- and 2-ethylnaphthalene and the ten dimethylnaphthalene isomers. Rate constants were measured for the gas-phase reactions of OH radicals with four unsaturated carbonyls and with a series of hydroxyaldehydes formed as atmospheric reaction products of other VOCs, and for the gas-phase reactions of O3 with a series of cycloalkenes. Products of the gas-phase reactions of OH radicals and O3 with a series of biogenically emitted VOCs were identified and quantified. Ambient atmospheric measurements of the concentrations of a

  12. Key volatile compounds in red koji-shochu, a Monascus-fermented product, and their formation steps during fermentation.

    Science.gov (United States)

    Rahayu, Yen Yen Sally; Yoshizaki, Yumiko; Yamaguchi, Keiko; Okutsu, Kayu; Futagami, Taiki; Tamaki, Hisanori; Sameshima, Yoshihiro; Takamine, Kazunori

    2017-06-01

    Red koji, which refers the solid culture grown koji mold on the steamed rice, is one of the ingredients of Asian fermented foods including the Japanese spirit shochu. This study was aimed at elucidating the characteristic flavor and key volatile compounds of red koji-shochu as well as the mechanism of their formation. Sensory evaluation showed that red koji-shochu has the distinctive flavors cheese, sour, milky, and oily. Fifteen key volatile compounds of red koji-shochu were identified by gas chromatography-mass spectrometry and high-performance liquid chromatography, and by comparison between red koji-shochu and white koji-shochu, as another typical shochu. The mash analysis revealed that ketone compounds and short-chain acids derive from red koji. Furthermore, although other key compounds were produced by yeast, it is highly likely that their concentrations were affected directly or indirectly by the high activities of protease and lipase in red koji.

  13. Wounding tomato fruit elicits ripening-stage specific changes in gene expression and production of volatile compounds.

    Science.gov (United States)

    Baldassarre, Valentina; Cabassi, Giovanni; Spadafora, Natasha D; Aprile, Alessio; Müller, Carsten T; Rogers, Hilary J; Ferrante, Antonio

    2015-03-01

    Fleshy fruits develop from an unripe organ that needs to be protected from damage to a ripe organ that attracts frugivores for seed dispersal through production of volatile organic compounds (VOCs). Thus, different responses to wounding damage are predicted. The aim of this study was to discover whether wound-induced changes in the transcriptome and VOC production alter as tomato transitions from unripe to ripe. Transcript changes were analysed 3h post-wounding using microarray analysis in two commercial salad-tomato (Solanum lycopersicum L.) cultivars: Luna Rossa and AVG, chosen for their high aroma production. This was followed by quantitative PCR on Luna Rossa genes involved in VOC biosynthesis and defence responses. VOCs elicited by wounding at different ripening stages were analysed by solid phase micro extraction and gas chromatography-mass spectrometry. Approximately 4000 differentially expressed genes were identified in the cultivar AVG and 2500 in Luna Rossa. In both cultivars the majority of genes were up-regulated and the most affected pathways were metabolism of terpenes, carotenoids, and lipids. Defence-related genes were mostly up-regulated in immature stages of development, whereas expression of genes related to VOCs changed at riper stages. More than 40 VOCs were detected and profiles changed with ripening stage. Thus, both transcriptome and VOC profiles elicited by wounding depend on stage of ripening, indicating a shift from defence to attraction.

  14. 76 FR 41086 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Volatile Organic Compound...

    Science.gov (United States)

    2011-07-13

    ... Organic Compound Reinforced Plastic Composites Production Operations Rule AGENCY: Environmental Protection...) a new rule for the control of volatile organic compound (VOC) emissions from reinforced plastic..., Reporting and recordkeeping requirements, Volatile organic compounds. Dated: June 24, 2011. Susan...

  15. Volatile compounds of commercial Milano salami.

    Science.gov (United States)

    Meynier, A; Novelli, E; Chizzolini, R; Zanardi, E; Gandemer, G

    1999-02-01

    The relationship between extracted volatiles of Milano salami, one of the main dry-cured sausages produced in Italy, and their olfactory properties was studied. Volatile compounds were extracted by a purge-and-trap method, quantified using a flame ionisation detector and identified by mass spectrometry. Olfactory analysis was performed by sniffing the gas chromatographic effluent. Nearly 80 compounds were identified and quantified: most came from spices (60.5%), 18.9% from lipid oxidation, 11.8% from amino acid catabolism and 4.9% from fermentation processes. Panellists detected 19 odours by sniffing. These odours were associated with spices, lipid oxidation or fermentation and were in agreement with the contributions of each reaction to the overall aroma of the product.

  16. Evolution of Volatile Flavour Compounds during Fermentation of African Oil Bean (Pentaclethra macrophylla Benth) Seeds for "Ugba" Production.

    Science.gov (United States)

    Nwokeleme, C O; Ugwuanyi, J Obeta

    2015-01-01

    Fermented African oil bean (Pentaclethra macrophylla Benth) seed is a successful and well studied seasoning and snack in parts of Western Africa. GC-MS analysis of fermenting seeds revealed a mixture of several volatile aroma compounds which changed with time and starter organism. During natural mixed culture process 36 volatile compounds including 12 hydrocarbons, 10 esters, 5 alcohols, 2 phenols, 2 ketones, and one each of furan, amine, acid, thiophene, and lactone were identified. When Bacillus subtilis was used in pure culture, 30 compounds comprising 10 hydrocarbons, 8 esters, 3 alcohols, 2 amines, 2 sulfur compounds, and one of each of acid, aldehyde, phenol, ketone, and furan were identified. Sample fermented with B. megaterium produced 29 aroma compounds comprising 9 hydrocarbons, 10 esters, 2 nitrogenous compounds, 2 ketones, 3 alcohols, and one of each of lactone, aldehyde, furan, and amine. Methyl esters of various long chain fatty acids may be key aroma compounds, based on consistency and persistence. Qualitative or quantitative contribution of individual compounds may only be determined following flavour threshold analysis.

  17. Volatile and non-volatile/semi-volatile compounds and in vitro bioactive properties of Chilean Ulmo (Eucryphia cordifolia Cav.) honey.

    Science.gov (United States)

    Acevedo, Francisca; Torres, Paulina; Oomah, B Dave; de Alencar, Severino Matias; Massarioli, Adna Prado; Martín-Venegas, Raquel; Albarral-Ávila, Vicenta; Burgos-Díaz, César; Ferrer, Ruth; Rubilar, Mónica

    2017-04-01

    Ulmo honey originating from Eucryphia cordifolia tree, known locally in the Araucania region as the Ulmo tree is a natural product with valuable nutritional and medicinal qualities. It has been used in the Mapuche culture to treat infections. This study aimed to identify the volatile and non-volatile/semi-volatile compounds of Ulmo honey and elucidate its in vitro biological properties by evaluating its antioxidant, antibacterial, antiproliferative and hemolytic properties and cytotoxicity in Caco-2 cells. Headspace volatiles of Ulmo honey were isolated by solid-phase microextraction (SPME); non-volatiles/semi-volatiles were obtained by removing all saccharides with acidified water and the compounds were identified by GC/MS analysis. Ulmo honey volatiles consisted of 50 compounds predominated by 20 flavor components. Two of the volatile compounds, lyrame and anethol have never been reported before as honey compounds. The non-volatile/semi-volatile components of Ulmo honey comprised 27 compounds including 13 benzene derivatives accounting 75% of the total peak area. Ulmo honey exhibited weak antioxidant activity but strong antibacterial activity particularly against gram-negative bacteria and methicillin-resistant Staphylococcus aureus (MRSA), the main strain involved in wounds and skin infections. At concentrations >0.5%, Ulmo honey reduced Caco-2 cell viability, released lactate dehydrogenase (LDH) and increased reactive oxygen species (ROS) production in a dose dependent manner in the presence of foetal bovine serum (FBS). The wide array of volatile and non-volatile/semi-volatile constituents of Ulmo honey rich in benzene derivatives may partly account for its strong antibacterial and antiproliferative properties important for its therapeutic use. Our results indicate that Ulmo honey can potentially inhibit cancer growth at least partly by modulating oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Fast online emission monitoring of volatile organic compounds (VOC) in wastewater and product streams (using stripping with direct steam injection).

    Science.gov (United States)

    Schocker, Alexander; Lissner, Bert

    2012-03-01

    Open-loop stripping analysis (also referred to as dynamic headspace) is a very flexible and robust technology for online monitoring of volatile organic compounds in wastewater or coolant. However, the quality and reliability of the analytical results depend strongly on the temperature during the stripping process. Hence, the careful and constant heating of the liquid phase inside the stripping column is a critical parameter. In addition, this stripping at high temperatures extends the spectrum of traceable organics to less volatile and more polar compounds with detection limits down to the ppm-level. This paper presents a novel and promising approach for fast, efficient, and constant heating by the direct injection of process steam into the strip medium. The performance of the system is demonstrated for temperatures up to 75 °C and traces of various hydrocarbons in water (e.g., tetrahydrofuran, methanol, 1-propanol, n-butanol, ethylbenzene).

  19. Volatile organic compounds at two oil and natural gas production well pads in Colorado and Texas using passive samplers.

    Science.gov (United States)

    Eisele, Adam P; Mukerjee, Shaibal; Smith, Luther A; Thoma, Eben D; Whitaker, Donald A; Oliver, Karen D; Wu, Tai; Colon, Maribel; Alston, Lillian; Cousett, Tamira A; Miller, Michael C; Smith, Donald M; Stallings, Casson

    2016-04-01

    A pilot study was conducted in application of the U.S. Environmental Protection Agency (EPA) Methods 325A/B variant for monitoring volatile organic compounds (VOCs) near two oil and natural gas (ONG) production well pads in the Texas Barnett Shale formation and Colorado Denver-Julesburg Basin (DJB), along with a traffic-dominated site in downtown Denver, CO. As indicated in the EPA method, VOC concentrations were measured for 14-day sampling periods using passive-diffusive tube samplers with Carbopack X sorbent at fenceline perimeter and other locations. VOCs were significantly higher at the DJB well pad versus the Barnett well pad and were likely due to higher production levels at the DJB well pad during the study. Benzene and toluene were significantly higher at the DJB well pad versus downtown Denver. Except for perchloroethylene, VOCs measured at passive sampler locations (PSs) along the perimeter of the Barnett well pad were significantly higher than PSs farther away. At the DJB well pad, most VOC concentrations, except perchloroethylene, were significantly higher prior to operational changes than after these changes were made. Though limited, the results suggest passive samplers are precise (duplicate precision usually ≤10%) and that they can be useful to assess spatial gradients and operational conditions at well pad locations over time-integrated periods. Recently enacted EPA Methods 325A/B use passive-diffusive tube samplers to measure benzene at multiple fenceline locations at petrochemical refineries. This pilot study presents initial data demonstrating the utility of Methods 325A/B for monitoring at ONG facilities. Measurements revealed elevated concentrations reflective of production levels and spatial gradients of VOCs relative to source proximity at the Barnett well pad, as well as operational changes at the DJB well pad. Though limited, these findings indicate that Methods 325A/B can be useful in application to characterize VOCs at well pad

  20. Development of volatile compounds during storage of different skin care products at various conditions

    DEFF Research Database (Denmark)

    Horn, A. F.; Thomsen, Birgitte Raagaard; Hyldig, Grethe

    Many skin care products contain various lipids to care and soften the skin. These lipids are either saturated or unsaturated. In the case of even small amounts of unsaturated lipids, these are at risk of oxidizing when exposed to heat, light or other conditions with a pro-oxidative effect. When s...... chromatography-mass spectrometry and peroxide value, and compared to samples stored at 2°C in the dark. In addition, sensory analyses were carried out to assess the off-odours developed in the samples....

  1. Volatile Organic Compound Emission from Quercus suber, Quercus canariensis, and its hybridisation product Quercus afares

    Science.gov (United States)

    Welter, S.; Bracho Nuñez, A.; Staudt, M.; Kesselmeier, J.

    2009-04-01

    Oaks represent one of the most important plant genera in the Northern hemisphere and include many intensively VOC emitting species. The major group constitutes the isoprene emitters, but also monoterpene emitters and non-emitters can be found. These variations in the oak species might partly be due to their propensity for inter- and intraspecific hybridisation. This study addresses the foliar VOC production of the former hybridisation product the deciduous Quercus afares and its parents, two very distant species: the evergreen monoterpene emitter Quercus suber and the deciduous isoprene emitter Quercus canariensis. The measurements were performed in Southern France, applying two different methods. Plants were investigated in situ in the field with a portable gas exchange measuring system as well as in the laboratory on cut branches with an adapted enclosure system. Quercus afares was found to be a monoterpene emitting species. However, the monoterpene emission was lower and the composition different to that of Quercus suber. Whereas Quercus suber trees belonged to the pinene type most individuals of Quercus afares were identified to represent a limonene type. Quercus canariensis emitted besides high amounts of isoprene also linalool and (Z)-3-hexenylacetate. Emissions from Quercus suber and Quercus afares were higher in the field measurements than in the laboratory on cut branches whereas Quercus canariensis exhibited lower isoprene emissions from cut branches. The results demonstrate the need of further emission studies on a plant species level.

  2. Volatile organic compound flux from manure of cattle fed diets differing in grain processing method and co-product inclusion

    Science.gov (United States)

    Hales, Kristin; Parker, David B.; Cole, N. Andy

    2015-01-01

    Odor emissions from livestock production have become increasingly important in the past decade. Odors derived from animal feeding operations are caused by odorous VOC emitted from the mixture of feces and urine, as well as feed and silage which may be experiencing microbial fermentation. Distillers grains are a by-product of corn grain fermentation used to produce fuel ethanol, and this industry has grown rapidly throughout the U.S. in past years. Therefore, the use of wet distillers grains with solubles (WDGS) in feedlot cattle diets has also increased. The objective of this research was to determine specific VOC emissions from feces and urine or a mixture of both, from cattle fed steam flaked or dry-rolled corn (DRC)-based diets containing either 0% or 30% WDGS. Flux of dimethyl trisulfide was greater from feces of cattle fed DRC than steam-flaked corn (SFC) diets. No other differences in flux from feces were detected across dietary treatments for phenol, 4-methylphenol, indole, skatole, dimethyl disulfide, and flux of volatile fatty acids (VFA) such as acetic, propionic, isobutyric, butyric, isovaleric, and valeric acids (P > 0.15). Flux of skatole, acetic acid, and valeric acid from urine was greater for cattle fed SFC than DRC diets (P acetic acid and heptanoic acid from urine was greater when cattle were fed diets containing 0% WDGS than 30% WDGS (P < 0.05). When combining urine and feces in the ratio in which they were excreted from the animal, flux of propionic acid was greater when cattle were fed DRC vs. SFC diets (P = 0.05). Based on these results, the majority of the VOC, VFA, and odor flux from cattle feeding operations is from the urine. Therefore, dietary strategies to reduce odor from cattle feeding facilities should primarily focus on reducing excretion of odorous compounds in the urine.

  3. Pineapple (Ananas comosus L. Merr.) wine production in Angola: Characterisation of volatile aroma compounds and yeast native flora.

    Science.gov (United States)

    Dellacassa, Eduardo; Trenchs, Oriol; Fariña, Laura; Debernardis, Florencia; Perez, Gabriel; Boido, Eduardo; Carrau, Francisco

    2017-01-16

    A pineapple vinification process was conducted through inoculated and spontaneous fermentation to develop a process suitable for a quality beverage during two successive vintages in Huambo, Angola. Wines obtained with the conventional Saccharomyces cerevisiae strain, were analysed by gas chromatography, and a total of 61 volatile constituents were detected in the volatile fraction and 18 as glycosidically bound aroma compounds. Concentration levels of carbonyl and sulphur compounds were in agreement with the limited information reported about pineapple fruits of other regions. We report, for the first time in pineapple wines, the presence of significant concentrations of lactones, ketones, terpenes, norisoprenoids and a variety of volatile phenols. Eight native yeast strains were isolated from spontaneous batches. Further single-strain fermentations allowed us to characterise their suitability for commercial fermentation. Three native strains (Hanseniaspora opuntiae, H. uvarum and Meyerozyma guilliermondii) were selected with sensory potential to ferment pineapple fruits with increased flavour diversity. Results obtained here contribute to a better understanding of quality fermentation alternatives of this tropical fruit in subtropical regions.

  4. Characterisation of selected volatile organic compounds in ...

    African Journals Online (AJOL)

    kshale

    2013-05-15

    May 15, 2013 ... spectrometry. K. Shale1*, J. Mukamugema2, R. J. Lues1, P. Venter3 and K. K. Mokoena1 ..... Cajka T, Riddellova K, Tomaniova M, Hajslova J (2010). Recognition of ... volatile organic compounds of coniferous needle litter.

  5. Ethanol yield and volatile compound content in fermentation of agave must by Kluyveromyces marxianus UMPe-1 comparing with Saccharomyces cerevisiae baker's yeast used in tequila production.

    Science.gov (United States)

    López-Alvarez, Arnoldo; Díaz-Pérez, Alma Laura; Sosa-Aguirre, Carlos; Macías-Rodríguez, Lourdes; Campos-García, Jesús

    2012-05-01

    In tequila production, fermentation is an important step. Fermentation determines the ethanol productivity and organoleptic properties of the beverage. In this study, a yeast isolated from native residual agave must was identified as Kluyveromyces marxianus UMPe-1 by 26S rRNA sequencing. This yeast was compared with the baker's yeast Saccharomyces cerevisiae Pan1. Our findings demonstrate that the UMPe-1 yeast was able to support the sugar content of agave must and glucose up to 22% (w/v) and tolerated 10% (v/v) ethanol concentration in the medium with 50% cells survival. Pilot and industrial fermentation of agave must tests showed that the K. marxianus UMPe-1 yeast produced ethanol with yields of 94% and 96% with respect to fermentable sugar content (glucose and fructose, constituting 98%). The S. cerevisiae Pan1 baker's yeast, however, which is commonly used in some tequila factories, showed 76% and 70% yield. At the industrial level, UMPe-1 yeast shows a maximum velocity of fermentable sugar consumption of 2.27g·L(-1)·h(-1) and ethanol production of 1.38g·L(-1)·h(-1), providing 58.78g ethanol·L(-1) at 72h fermentation, which corresponds to 96% yield. In addition, the major and minor volatile compounds in the tequila beverage obtained from UMPe-1 yeast were increased. Importantly, 29 volatile compounds were identified, while the beverage obtained from Pan1-yeast contained fewer compounds and in lower concentrations. The results suggest that the K. marxianus UMPe-1 is a suitable yeast for agave must fermentation, showing high ethanol productivity and increased volatile compound content comparing with a S. cerevisiae baker's yeast used in tequila production.

  6. Can volatile organic compounds be markers of sea salt?

    Science.gov (United States)

    Silva, Isabel; Coimbra, Manuel A; Barros, António S; Marriott, Philip J; Rocha, Sílvia M

    2015-02-15

    Sea salt is a handmade food product that is obtained by evaporation of seawater in saltpans. During the crystallisation process, organic compounds from surroundings can be incorporated into sea salt crystals. The aim of this study is to search for potential volatile markers of sea salt. Thus, sea salts from seven north-east Atlantic Ocean locations (France, Portugal, Continental Spain, Canary Islands, and Cape Verde) were analysed by headspace solid-phase microextraction combined with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. A total of 165 compounds were detected, ranging from 32 to 71 compounds per salt. The volatile composition revealed the variability and individuality of each salt, and a set of ten compounds were detected in all samples. From these, seven are carotenoid-derived compounds that can be associated with the typical natural surroundings of ocean hypersaline environment. These ten compounds are proposed as potential volatile markers of sea salt.

  7. Evolution of Volatile Compounds during the Distillation of Cognac Spirit.

    Science.gov (United States)

    Awad, Pierre; Athès, Violaine; Decloux, Martine Esteban; Ferrari, Gérald; Snakkers, Guillaume; Raguenaud, Patrick; Giampaoli, Pierre

    2017-09-06

    Cognac wine spirit has a complex composition in volatile compounds which contributes to its organoleptic profile. This work focused on the batch distillation process and, in particular, on volatile compounds specifically produced by chemical reactions during the distillation of Cognac wine spirit, traditionally conducted in two steps with charentais pot stills. The aim of this study was to characterize these volatile compounds formed during distillation. Sampling has been performed on the distillates and inside the boiler during a typical Cognac distillation. The analysis of these samples allowed us to perform a mass balance and to point out several types of volatile compounds whose quantities strongly increased during the distillation process. These compounds were distinguished by their chemical family. It has been found that the first distillation step was decisive for the formation of volatile compounds. Moreover, 2 esters, 3 aldehydes, 12 norisoprenoids, and 3 terpenes were shown to be generated during the process. These results suggest that some volatile compounds found in Cognac spirit are formed during distillation due to chemical reactions induced by high temperature. These findings give important indications to professional distillers in order to enhance the product's quality.

  8. Volatile organic compound emissions from silage systems

    Science.gov (United States)

    As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols with other impor...

  9. A plan to reduce volatile organic compound emissions from consumer products in Canada (excluding windshield washer fluid and surface coatings) : final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    This report highlights the recommendations made by the Canadian Council of Ministers of the Environment for the development of a guideline to provide a means by which to reduce (VOC) emissions from consumer products (excluding windshield washer fluid and surface coatings) in Canada. VOCs and nitrogen oxides react photochemically in the presence of sunlight to create ground-level ozone, a primary component of urban smog which has a detrimental effect on human health, agricultural crops and building materials. In recent years, most urban areas of Canada have shown an annual increase in the maximum acceptable air quality levels for ground level ozone. Reducing emissions of volatile organic compounds (VOCs) from consumer products was first suggested in 1990 by the Canadian Council of Ministers of the Environment in phase one of their program entitled the 'Management plan for nitrogen oxides and volatile organic compounds'. Phase 2 of the program was implemented in 1997 to harmonize the emissions reduction program with the United States Environmental Protection Agency regulations. The Canadian Environmental Protection Agency (CEPA) recommended the following control options: (1) a CEPA guideline should be developed which states the maximum VOC and high-volatility organic compound (HVOC) content in Canadian consumer products including hair care products, herbicides, insecticides, air fresheners, deodorants, fungicides, surface cleaners, fragrance products, anti-microbial agents, laundry products and automotive detailing products. These limits should be identical to those found in the 1998 U.S. Final Rule for Consumer Products, (2) the CEPA guideline should require that records specifying VOC content in weight-per cent be maintained for a period of three years, (3) the CEPA guideline should include a declaration procedure for Canadian importers and manufacturers of consumer products to report to Environment Canada regarding the VOC content of their products, and

  10. Volatile compound formation during argan kernel roasting.

    Science.gov (United States)

    El Monfalouti, Hanae; Charrouf, Zoubida; Giordano, Manuela; Guillaume, Dominique; Kartah, Badreddine; Harhar, Hicham; Gharby, Saïd; Denhez, Clément; Zeppa, Giuseppe

    2013-01-01

    Virgin edible argan oil is prepared by cold-pressing argan kernels previously roasted at 110 degrees C for up to 25 minutes. The concentration of 40 volatile compounds in virgin edible argan oil was determined as a function of argan kernel roasting time. Most of the volatile compounds begin to be formed after 15 to 25 minutes of roasting. This suggests that a strictly controlled roasting time should allow the modulation of argan oil taste and thus satisfy different types of consumers. This could be of major importance considering the present booming use of edible argan oil.

  11. Effect of Se treatment on the volatile compounds in broccoli.

    Science.gov (United States)

    Lv, Jiayu; Wu, Jie; Zuo, Jinhua; Fan, Linlin; Shi, Junyan; Gao, Lipu; Li, Miao; Wang, Qing

    2017-02-01

    Broccoli contains high levels of bioactive compounds but deteriorates and senesces easily. In the present study, freshly harvested broccoli was treated with selenite and stored at two different temperatures. The effect of selenite treatment on sensory quality and postharvest physiology were analyzed. Volatile components were assessed by HS-SPME combined with GC-MS and EN. The metabolism of Se and S was also examined. Results indicated that Se treatment had a significant effect on maintaining the sensory quality, suppressing the respiration intensity and ethylene production, as well as increasing the content of Se and decreasing the content of S. In particular, significant differences in the composition of volatile compounds were present between control and Se-treated. The differences were mainly due to differences in alcohols and sulfide compounds. These results demonstrate that Se treatment can have a positive effect on maintaining quality and enhancing its sensory quality through the release of volatile compounds.

  12. Degradation products of citrus volatile organic compounds (VOCs) acting as phagostimulants that increase probing behavior of Asian citrus psyllid

    Science.gov (United States)

    Volatile phytochemicals play a role in orientation by phytophagous insects. We studied antennal and behavioral responses of the Asian citrus psyllid, Diaphorina citri Kuwayama, vector of the citrus greening disease pathogen. Little or no response to citrus leaf volatiles was detected by electroanten...

  13. Contribution of low vapor pressure-volatile organic compounds (LVP-VOCs) from consumer products to ozone formation in urban atmospheres

    Science.gov (United States)

    Shin, Hyeong-Moo; McKone, Thomas E.; Bennett, Deborah H.

    2015-05-01

    Because recent laboratory testing indicates that some low vapor pressure-volatile organic compounds (LVP-VOC) solvents readily evaporate at ambient conditions, LVP-VOCs used in some consumer product formulations may contribute to ozone formation. The goal of this study is to determine the fraction of LVP-VOCs available for ozone formation from the use of consumer products for two hypothetical emissions. This study calculates and compares the fraction of consumed product available for ozone formation as a result of (a) volatilization to air during use and (b) down-the-drain disposal. The study also investigates the impact of different modes of releases on the overall fraction available in ambient air for ozone formation. For the portion of the LVP-VOCs volatilized to air during use, we applied a multi-compartment mass-balance model to track the fate of emitted LVP-VOCs in a multimedia urban environment. For the portion of the LVP-VOCs disposed down the drain, we used a wastewater treatment plant (WWTP) fate model to predict the emission rates of LVP-VOCs to ambient air at WWTPs or at the discharge zone of the facilities and then used these results as emissions in the multimedia urban environment model. In a WWTP, the LVP-VOCs selected in this study are primarily either biodegraded or removed via sorption to sludge depending on the magnitude of the biodegradation half-life and the octanol-water partition coefficient. Less than 0.2% of the LVP-VOCs disposed down the drain are available for ozone formation. In contrast, when the LVP-VOC in a consumer product is volatilized from the surface to which it has been applied, greater than 90% is available for photochemical reactions either at the source location or in the downwind areas. Comparing results from these two modes of releases allows us to understand the importance of determining the fraction of LVP-VOCs volatilized versus disposed down the drain when the product is used by consumers. The results from this study

  14. Study of volatile compounds from the radiosterilization of solid cephalosporins

    Energy Technology Data Exchange (ETDEWEB)

    Barbarin, N.; Crucq, A.S.; Tilquin, B. [Universite Catholique de Louvain (UCL), Louvain-la-Neuve (Belgium)

    1996-12-01

    The use of {gamma}-rays is a promising method to sterilize thermosensitive drugs. Although radiosterilization does not modify drugs activity, this mode of sterilization produces new radiolytic products. This study is devoted to the analysis of volatile compounds which may induce a modification of odour. The volatile compounds produced by radiolysis of cefotaxime, cefuroxime and ceftazidime, three cephalosporins, were analyzed by gas chromatography with a headspace sampling. They were detected and identified by mass and infrared spectrometry. An explanation of their origin is proposed. (Author).

  15. Factors affecting the volatilization of volatile organic compounds from wastewater

    Directory of Open Access Journals (Sweden)

    Junya Intamanee

    2006-09-01

    Full Text Available This study aimed to understand the influence of the wind speed (U10cm, water depth (h and suspended solids (SS on mass transfer coefficient (KOLa of volatile organic compounds (VOCs volatilized from wastewater. The novelty of this work is not the method used to determine KOLa but rather the use of actual wastewater instead of pure water as previously reported. The influence of U10cm, h, and SS on KOLa was performed using a volatilization tank with the volume of 100-350 L. Methyl Ethyl Ketone (MEK was selected as a representative of VOCs investigated here in. The results revealed that the relationship between KOLa and the wind speeds falls into two regimes with a break at the wind speed of 2.4 m/s. At U10cm 2.4 m/s, KOLa increased more rapidly. The relationship between KOLa and U10cm was also linear but has a distinctly higher slope. For the KOLa dependency on water depth, the KOLa decreased significantly with increasing water depth up to a certain water depth after that the increase in water depth had small effect on KOLa. The suspended solids in wastewater also played an important role on KOLa. Increased SS resulted in a significant reduction of KOLa over the investigated range of SS. Finally, the comparison between KOLa obtained from wastewater and that of pure water revealed that KOLa from wastewater were much lower than that of pure water which was pronounced at high wind speed and at small water depth. This was due the presence of organic mass in wastewater which provided a barrier to mass transfer and reduced the degree of turbulence in the water body resulting in low volatilization rate and thus KOLa. From these results, the mass transfer model for predicting VOCs emission from wastewater should be developed based on the volatilization of VOCs from wastewater rather than that from pure water.

  16. Volatile compounds released during ripening in Italian dried sausage

    DEFF Research Database (Denmark)

    Sunesen, Lars Oddershede; Dorigoni, V.; Zanardi, E.

    2001-01-01

    A commercial production was analysed at six stages during ripening. Water content, pH and bacterial counts were followed, and volatile compounds from sausages were extracted by dynamic headspace sampling and analysed by gas chromatography/mass spectrometry. Total concentrations of all classes inc...

  17. Volatile compounds released during ripening in Italian dried sausage

    DEFF Research Database (Denmark)

    Sunesen, Lars Oddershede; Dorigoni, V.; Zanardi, E.;

    2001-01-01

    A commercial production was analysed at six stages during ripening. Water content, pH and bacterial counts were followed, and volatile compounds from sausages were extracted by dynamic headspace sampling and analysed by gas chromatography/mass spectrometry. Total concentrations of all classes...

  18. Marine Vibrio Species Produce the Volatile Organic Compound Acetone

    OpenAIRE

    Nemecek-Marshall, M; Wojciechowski, C; Kuzma, J.; Silver, G. M.; Fall, R.

    1995-01-01

    While screening aerobic, heterotrophic marine bacteria for production of volatile organic compounds, we found that a group of isolates produced substantial amounts of acetone. Acetone production was confirmed by gas chromatography, gas chromatography-mass spectrometry, and high-performance liquid chromatography. The major acetone producers were identified as nonclinical Vibrio species. Acetone production was maximal in the stationary phase of growth and was stimulated by addition of l-leucine...

  19. Methods in plant foliar volatile organic compounds research 1

    OpenAIRE

    Materić, Dušan; Bruhn, Dan; Turner, Claire; Morgan, Geraint; Mason, Nigel J.; Gauci, Vincent

    2015-01-01

    Plants are a major atmospheric source of volatile organic compounds (VOCs). These secondary metabolic products protect plants from high-temperature stress, mediate in plant–plant and plant–insect communication, and affect our climate globally. The main challenges in plant foliar VOC research are accurate sampling, the inherent reactivity of some VOC compounds that makes them hard to detect directly, and their low concentrations. Plant VOC research relies on analytical techniques for trace gas...

  20. Volatile organic compound remedial action project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-01

    This Environmental Assessment (EA) reviews a proposed project that is planned to reduce the levels of volatile organic compound (VOC) contaminants present in the Mound domestic water supply. The potable and industrial process water supply for Mound is presently obtained from a shallow aquifer via on-site production wells. The present levels of VOCs in the water supply drawn from the on-site wells are below the maximum contaminant levels (MCLs) permissible for drinking water under Safe Drinking Water Act (SDWA; 40 CFR 141); however, Mound has determined that remedial measures should be taken to further reduce the VOC levels. The proposed project action is the reduction of the VOC levels in the water supply using packed tower aeration (PTA). This document is intended to satisfy the requirements of the National Environmental Policy Act (NEPA) of 1969 and associated Council on Environmental Quality regulations (40 CFR parts 1500 through 1508) as implemented through U.S. Department of Energy (DOE) Order 5440.1D and supporting DOE NEPA Guidelines (52 FR 47662), as amended (54 FR 12474; 55 FR 37174), and as modified by the Secretary of Energy Notice (SEN) 15-90 and associated guidance. As required, this EA provides sufficient information on the probable environmental impacts of the proposed action and alternatives to support a DOE decision either to prepare an Environmental Impact Statement (EIS) or issue a Finding of No Significant Impact (FONSI).

  1. Linking gene regulation and the exo-metabolome: A comparative transcriptomics approach to identify genes that impact on the production of volatile aroma compounds in yeast

    Directory of Open Access Journals (Sweden)

    Bauer Florian F

    2008-11-01

    Full Text Available Abstract Background 'Omics' tools provide novel opportunities for system-wide analysis of complex cellular functions. Secondary metabolism is an example of a complex network of biochemical pathways, which, although well mapped from a biochemical point of view, is not well understood with regards to its physiological roles and genetic and biochemical regulation. Many of the metabolites produced by this network such as higher alcohols and esters are significant aroma impact compounds in fermentation products, and different yeast strains are known to produce highly divergent aroma profiles. Here, we investigated whether we can predict the impact of specific genes of known or unknown function on this metabolic network by combining whole transcriptome and partial exo-metabolome analysis. Results For this purpose, the gene expression levels of five different industrial wine yeast strains that produce divergent aroma profiles were established at three different time points of alcoholic fermentation in synthetic wine must. A matrix of gene expression data was generated and integrated with the concentrations of volatile aroma compounds measured at the same time points. This relatively unbiased approach to the study of volatile aroma compounds enabled us to identify candidate genes for aroma profile modification. Five of these genes, namely YMR210W, BAT1, AAD10, AAD14 and ACS1 were selected for overexpression in commercial wine yeast, VIN13. Analysis of the data show a statistically significant correlation between the changes in the exo-metabome of the overexpressing strains and the changes that were predicted based on the unbiased alignment of transcriptomic and exo-metabolomic data. Conclusion The data suggest that a comparative transcriptomics and metabolomics approach can be used to identify the metabolic impacts of the expression of individual genes in complex systems, and the amenability of transcriptomic data to direct applications of

  2. The Effect of CmLOXs on the Production of Volatile Organic Compounds in Four Aroma Types of Melon (Cucumis melo).

    Science.gov (United States)

    Tang, Yufan; Zhang, Chong; Cao, Songxiao; Wang, Xiao; Qi, Hongyan

    2015-01-01

    Lipoxygenases (LOXs) play important role in the synthesis of volatile organic compounds (VOCs), which influence the aroma of fruit. In this study, we elucidate that there is a positive relationship between LOXs activity and VOC production in melon (Cucumis melo), and CmLOX genes are involved in fruit aroma generation in melon. To this end, we tested four aroma types of melon that feature a thin pericarp: two aromatic cultivars of the oriental melons (C. melo var. makuwa Makino), 'Yu Meiren' (YMR) and 'Cui Bao' (CB); a non-aromatic oriental pickling melon (C. melo var. conomon), 'Shao Gua' (SHAO); and a non-aromatic snake melon (C. melo L. var. flexuosus Naud), 'Cai Gua' (CAI). A principal component analysis (PCA) revealed that the aromas of SHAO and CAI are similar in nature because their ester contents are lower than those of YMR and CB. Ethyl acetate, benzyl acetate, (E, Z)-2, 6-nonadienal and menthol are four principal volatile compounds that affect the aromatic characteristics of these four types of melons. The LOX activity and total ester content in YMR were the highest among the examined melon varieties. The expression patterns of 18 CmLOX genes were found to vary based on the aromatic nature of the melon. Four of them were highly expressed in YMR. Moreover, we treated the fruit disks of YMR with LOX substrates (linoleic acid and linolenic acid) and LOX inhibitors (n-propyl gallate and nordihydroguariaretic acid). Substrate application promoted LOX activity and induced accumulation of hexanal, (2E)-nonenal and straight-chain esters, such as ethyl acetate. In contrast, LOX inhibitors decreased the levels of these compounds. The effect of CmLOXs in the biosynthesis of esters in melons are discussed.

  3. The Effect of CmLOXs on the Production of Volatile Organic Compounds in Four Aroma Types of Melon (Cucumis melo.

    Directory of Open Access Journals (Sweden)

    Yufan Tang

    Full Text Available Lipoxygenases (LOXs play important role in the synthesis of volatile organic compounds (VOCs, which influence the aroma of fruit. In this study, we elucidate that there is a positive relationship between LOXs activity and VOC production in melon (Cucumis melo, and CmLOX genes are involved in fruit aroma generation in melon. To this end, we tested four aroma types of melon that feature a thin pericarp: two aromatic cultivars of the oriental melons (C. melo var. makuwa Makino, 'Yu Meiren' (YMR and 'Cui Bao' (CB; a non-aromatic oriental pickling melon (C. melo var. conomon, 'Shao Gua' (SHAO; and a non-aromatic snake melon (C. melo L. var. flexuosus Naud, 'Cai Gua' (CAI. A principal component analysis (PCA revealed that the aromas of SHAO and CAI are similar in nature because their ester contents are lower than those of YMR and CB. Ethyl acetate, benzyl acetate, (E, Z-2, 6-nonadienal and menthol are four principal volatile compounds that affect the aromatic characteristics of these four types of melons. The LOX activity and total ester content in YMR were the highest among the examined melon varieties. The expression patterns of 18 CmLOX genes were found to vary based on the aromatic nature of the melon. Four of them were highly expressed in YMR. Moreover, we treated the fruit disks of YMR with LOX substrates (linoleic acid and linolenic acid and LOX inhibitors (n-propyl gallate and nordihydroguariaretic acid. Substrate application promoted LOX activity and induced accumulation of hexanal, (2E-nonenal and straight-chain esters, such as ethyl acetate. In contrast, LOX inhibitors decreased the levels of these compounds. The effect of CmLOXs in the biosynthesis of esters in melons are discussed.

  4. Application of dispersive liquid-liquid microextraction and gas chromatography with mass spectrometry for the determination of oxygenated volatile organic compounds in effluents from the production of petroleum bitumen.

    Science.gov (United States)

    Boczkaj, Grzegorz; Makoś, Patrycja; Przyjazny, Andrzej

    2016-07-01

    We present a new procedure for the determination of oxygenated volatile organic compounds in samples of postoxidative effluents from the production of petroleum bitumens using dispersive liquid-liquid microextraction and gas chromatography with mass spectrometry. The eight extraction parameters were optimized for 43 oxygenated volatile organic compounds. The detection limits obtained ranged from 0.07 to 0.82 μg/mL for most of the analytes, the precision was good (relative standard deviation below 2.91% at the 5 μg/mL level and 4.75% at the limit of quantification), the recoveries for the majority of compounds varied from 70.6 to 118.9%, and the linear range was wide, which demonstrates the usefulness of the procedure. The developed procedure was used for the determination of oxygenated volatile organic compounds in samples of raw postoxidative effluents and in effluents after chemical treatment. In total, 23 compounds at concentration levels from 0.37 to 32.95 μg/mL were identified in real samples. The same samples were also analyzed in the SCAN mode, which resulted in four more phenol derivatives being identified and tentatively determined. The studies demonstrated the need for monitoring volatile organic compounds content in effluents following various treatments due to the formation of secondary oxygenated volatile organic compounds.

  5. Determination of Volatile Organic Compounds in Selected Strains of Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Ivan Milovanović

    2015-01-01

    Full Text Available Microalgal biomass can be used in creating various functional food and feed products, but certain species of microalgae and cyanobacteria are known to produce various compounds causing off-flavour. In this work, we investigated selected cyanobacterial strains of Spirulina, Anabaena, and Nostoc genera originating from Serbia, with the aim of determining the chemical profile of volatile organic compounds produced by these organisms. Additionally, the influence of nitrogen level during growth on the production of volatile compounds was investigated for Nostoc and Anabaena strains. In addition, multivariate techniques, namely, principal component analysis (PCA and hierarchical cluster analysis (HCA, were used for making distinction among different microalgal strains. The results show that the main volatile compounds in these species are medium chain length alkanes, but other odorous compounds such as 2-methylisoborneol (0.51–4.48%, 2-pentylfuran (0.72–8.98%, β-cyclocitral (0.00–1.17%, and β-ionone (1.15–2.72% were also detected in the samples. Addition of nitrogen to growth medium was shown to negatively affect the production of 2-methylisoborneol, while geosmin was not detected in any of the analyzed samples, which indicates that the manipulation of growth conditions may be useful in reducing levels of some unwanted odor-causing components.

  6. Influence of ventilation type in volatile organic compounds exposure: poultry case

    OpenAIRE

    Viegas, Susana; Monteiro, ANA; Manteigas, Vítor; Carolino, Elisabete; Viegas, Carla

    2012-01-01

    Agricultural workers especially poultry farmers are at increased risk of occupational respiratory diseases. Epidemiological studies showed increased prevalence of respiratory symptoms and adverse changes in pulmonary function parameters in poultry workers. In poultry production volatile organic compounds (VOCs) presence can be due to some compounds produced by molds that are volatile and are released directly into the air. These are known as microbial volatile organic compounds (MVOCs). Be...

  7. State-of-the-art in the measurement of volatile organic compounds emitted from building products: results of European interlaboratory comparison.

    Science.gov (United States)

    De Bortoli, M; Kephalopoulos, S; Kirchner, S; Schauenburg, H; Vissers, H

    1999-06-01

    Eighteen laboratories from 10 European countries participated in a comparison organized as part of the VOCEM project, a 2.5-year research collaboration among 4 research institutes and 4 industrial companies. The scope of the project was to improve the procedure used to measure volatile organic compounds (VOC) emitted from building materials and products in small test chambers. The interlaboratory comparison included the GC-MS determination of 5 target compounds from carpet, 8 from polyvinyl chloride (PVC) cushion vinyl and 2 from paint; for the first time, chamber recovery (sinks), homogeneity of solid materials and possible contamination during transport were tested. The results show that the intralaboratory variance (random errors) is much smaller than the interlaboratory variance (systematic errors). Causes of the largest interlaboratory discrepancies were: (i) analytical errors; (ii) losses of the heaviest compounds due to sorption on the chamber walls; and (iii) non homogeneity of the materials. The output of this work concerns both the objective of labelling materials with regard to their VOC emissions and the pre-standard drafted by the European Commitee for Standardization (CEN) for this type of determination.

  8. Volatile and non-volatile compounds in green tea affected in harvesting time and their correlation to consumer preference.

    Science.gov (United States)

    Kim, Youngmok; Lee, Kwang-Geun; Kim, Mina K

    2016-10-01

    Current study was designed to find out how tea harvesting time affects the volatile and non-volatile compounds profiles of green tea. In addition, correlation of instrumental volatile and non-volatile compounds analyses to consumer perception were analyzed. Overall, earlier harvested green tea had stronger antioxidant capacity (~61.0%) due to the polyphenolic compounds from catechin (23,164 mg/L), in comparison to later harvested green teas (11,961 mg/L). However, high catechin content in green tea influenced negatively the consumer likings of green tea, due to high bitterness (27.6%) and astringency (13.4%). Volatile compounds drive consumer liking of green tea products were also identified, that included linalool, 2,3-methyl butanal, 2-heptanone, (E,E)-3,5-Octadien-2-one. Finding from current study are useful for green tea industry as it provide the difference in physiochemical properties of green tea harvested at different intervals.

  9. Effect of organic fertilizers prepared from organic waste materials on the production of antibacterial volatile organic compounds by two biocontrol Bacillus amyloliquefaciens strains.

    Science.gov (United States)

    Raza, Waseem; Wei, Zhong; Ling, Ning; Huang, Qiwei; Shen, Qirong

    2016-06-10

    Three organic fertilizers made of different animal and plant waste materials (BOFs) were evaluated for their effects on the production of antibacterial volatile organic compounds (VOCs) by two Bacillus amyloliquefaciens strains SQR-9 and T-5 against the tomato wilt pathogen Ralstonia solanacearum (RS). Both strains could produce VOCs that inhibited the growth and virulence traits of RS; however, in the presence of BOFs, the production of antibacterial VOCs was significantly increased. The maximum inhibition of growth and virulence traits of RS by VOCs of T-5 and SQR-9 was determined at 1.5% BOF2 and 2% BOF3, respectively. In case of strain T-5, 2-nonanone, nonanal, xylene, benzothiazole, and butylated hydroxy toluene and in case of strain SQR-9, 2-nonanone, nonanal, xylene and 2-undecanone were the main antibacterial VOCs whose production was increased in the presence of BOFs. The results of this study reveal another significance of using organic fertilizers to improve the antagonistic activity of biocontrol agents against phytopathogens.

  10. Characterization of volatile compounds in Fen-Daqu - a traditional Chinese liquor fermentation starter

    NARCIS (Netherlands)

    Van-Diep, L.; Zheng, X.; Chen, J.Y.; Han, B.Z.

    2012-01-01

    Fen-Daqu is a saccharifying agent and fermentation starter for the production of Chinese liquor Fen (alcoholic spirit) and Fen traditional vinegar. The volatile compounds produced at seven incubation steps were analysed by HS-SPME-GC-MS. A total of 83 major volatile compounds were identified,

  11. Characterization of volatile compounds in Fen-Daqu - a traditional Chinese liquor fermentation starter

    NARCIS (Netherlands)

    Van-Diep, L.; Zheng, X.; Chen, J.Y.; Han, B.Z.

    2012-01-01

    Fen-Daqu is a saccharifying agent and fermentation starter for the production of Chinese liquor Fen (alcoholic spirit) and Fen traditional vinegar. The volatile compounds produced at seven incubation steps were analysed by HS-SPME-GC-MS. A total of 83 major volatile compounds were identified, includ

  12. Emission Rates of Volatile Organic Compounds Released from Newly Produced Household Furniture Products Using a Large-Scale Chamber Testing Method

    Directory of Open Access Journals (Sweden)

    Duy Xuan Ho

    2011-01-01

    Full Text Available The emission rates of volatile organic compounds (VOCs were measured to investigate the emission characteristics of five types of common furniture products using a 5 m3 size chamber at 25°C and 50% humidity. The results indicated that toluene and α-pinene are the most dominant components. The emission rates of individual components decreased constantly through time, approaching the equilibrium emission level. The relative ordering of their emission rates, if assessed in terms of total VOC (TVOC, can be arranged as follows: dining table > sofa > desk chair > bedside table > cabinet. If the emission rates of VOCs are examined between different chemical groups, they can also be arranged in the following order: aromatic (AR > terpenes (TER > carbonyl (CBN > others > paraffin (PR > olefin (HOL > halogenated paraffin (HPR. In addition, if emission strengths are compared between coated and uncoated furniture, there is no significant difference in terms of emission magnitude. Our results indicate that the emission characteristics of VOC are greatly distinguished between different furniture products in terms of relative dominance between different chemicals.

  13. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani Jr.; Theresa M. Bomstad

    2002-06-01

    Western Research Institute (WRI) initiated exploratory work towards the development of new field screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of carbon-halogen bonds. Commercially available heated diode and corona discharge leak detectors were procured and evaluated for halogenated VOC response. The units were modified to provide a digital readout of signal related to VOC concentration. Sensor response was evaluated with carbon tetrachloride and tetrachloroethylene (perchloroethylene, PCE), which represent halogenated VOCs with and without double bonds. The response characteristics were determined for the VOCs directly in headspace in Tedlar bag containers. Quantitation limits in air were estimated. Potential interferences from volatile hydrocarbons, such as toluene and heptane, were evaluated. The effect of humidity was studied also. The performance of the new devices was evaluated in the laboratory by spiking soil samples and monitoring headspace for halogenated VOCs. A draft concept of the steps for a new analytical method was outlined. The results of the first year effort show that both devices show potential utility for future analytical method development work towards the goal of developing a portable test kit for screening halogenated VOCs in the field.

  14. Primary emissions and secondary formation of volatile organic compounds from natural gas production in five major U.S. shale plays

    Science.gov (United States)

    Gilman, J.; Lerner, B. M.; Warneke, C.; Graus, M.; Lui, R.; Koss, A.; Yuan, B.; Murphy, S. M.; Alvarez, S. L.; Lefer, B. L.; Min, K. E.; Brown, S. S.; Roberts, J. M.; Osthoff, H. D.; Hatch, C. D.; Peischl, J.; Ryerson, T. B.; De Gouw, J. A.

    2014-12-01

    According to the U.S. Energy and Information Administration (EIA), domestic production of natural gas from shale formations is currently at the highest levels in U.S. history. Shale gas production may also result in the production of natural gas plant liquids (NGPLs) such as ethane and propane as well as natural gas condensate composed of a complex mixture of non-methane hydrocarbons containing more than ~5 carbon atoms (e.g., hexane, cyclohexane, and benzene). The amounts of natural gas liquids and condensate produced depends on the particular reservoir. The source signature of primary emissions of hydrocarbons to the atmosphere within each shale play will therefore depend on the composition of the raw natural gas as well as the industrial processes and equipment used to extract, separate, store, and transport the raw materials. Characterizing the primary emissions of VOCs from natural gas production is critical to assessing the local and regional atmospheric impacts such as the photochemical formation of ozone and secondary formation of organic aerosol. This study utilizes ground-based measurements of a full suite of volatile organic compounds (VOCs) in two western U.S. basins, the Uintah (2012-2014 winter measurements only) and Denver-Julesburg (winter 2011 and summer 2012), and airborne measurements over the Haynesville, Fayetteville, and Marcellus shale basins (summer 2013). By comparing the observed VOC to propane enhancement ratios, we show that each basin has a unique VOC source signature associated with oil and natural gas operations. Of the shale basins studied, the Uintah basin had the largest overall VOC to propane enhancement ratios while the Marcellus had the lowest. For the western basins, we will compare the composition of oxygenated VOCs produced from photochemical oxidation of VOC precursors and contrast the oxygenated VOC mixture to a "typical" summertime urban VOC mixture. The relative roles of alkanes, alkenes, aromatics, and cycloalkanes as

  15. Volatile organic compound detection using nanostructured copolymers.

    Science.gov (United States)

    Li, Bo; Sauvé, Genevieve; Iovu, Mihaela C; Jeffries-El, Malika; Zhang, Rui; Cooper, Jessica; Santhanam, Suresh; Schultz, Lawrence; Revelli, Joseph C; Kusne, Aaron G; Kowalewski, Tomasz; Snyder, Jay L; Weiss, Lee E; Fedder, Gary K; McCullough, Richard D; Lambeth, David N

    2006-08-01

    Regioregular polythiophene-based conductive copolymers with highly crystalline nanostructures are shown to hold considerable promise as the active layer in volatile organic compound (VOC) chemresistor sensors. While the regioregular polythiophene polymer chain provides a charge conduction path, its chemical sensing selectivity and sensitivity can be altered either by incorporating a second polymer to form a block copolymer or by making a random copolymer of polythiophene with different alkyl side chains. The copolymers were exposed to a variety of VOC vapors, and the electrical conductivity of these copolymers increased or decreased depending upon the polymer composition and the specific analytes. Measurements were made at room temperature, and the responses were found to be fast and appeared to be completely reversible. Using various copolymers of polythiophene in a sensor array can provide much better discrimination to various analytes than existing solid state sensors. Our data strongly indicate that several sensing mechanisms are at play simultaneously, and we briefly discuss some of them.

  16. Volatile organic compound flux from manure of cattle fed diets differing in grain processing method and co-product inclusion

    Science.gov (United States)

    Odor emissions from livestock production have become increasingly important in the past decade. Odors derived from animal feeding operations are caused by odorous VOC emitted from the mixture of feces and urine, as well as feed and silage which may be experiencing microbial fermentation. Distiller...

  17. Volatile Flavor Compounds of Chestnuts and Puffed Chestnut Products%板栗及其膨化制品的挥发性香气成分分析

    Institute of Scientific and Technical Information of China (English)

    王文艳; 刘凌; 吴娜; 张晓磊

    2012-01-01

    采用顶空固相微萃取结合气相色谱-质谱联用技术对生板栗粉、煮板栗和3种膨化板栗制品的挥发性香气成分进行分离鉴定。共鉴定出68种挥发性物质,初步认定吡嗪类物质中的甲基吡嗪、2,3-二甲基吡嗪、2.乙基-6-甲基吡嗪、2,6-二-甲基吡嗪;呋喃类物质中的2-戊基呋喃、γ-丁内酯、2-糠醇、2,5-二氢-3,5-二甲基-2-呋喃酮和1-辛内酯及芳香族类物质中的苯甲醛是板栗的特征风味物质。煮制可提升板栗的香气。膨化板栗片的膨化加工方式对其香气成分影响显著,挤压膨化板栗片的香气物质组成和煮板栗比较相似,微波膨化板栗片中易产生具有枯焦气息的2,4-二叔丁基苯酚,油炸膨化板栗片的挥发性成分最复杂,醛类物质较多。%The volatile flavor compounds of chestnut powder, boiled chestnut and three puffed chestnut products were determined by HS-SPME-GC/MS. Sixty eight kinds of volatile flavor compounds were identified. Four kinds of pyrazine (methylpyrazine, 2,3-dimethyl pyrazine, 2-ethyl-6-methyl pyrazine, 2,6 - dimethyl pyrazine) , five kinds of furans (2-pentyl furan, γ-Butyrolactone, 2-furfuryl alcohol, 2,5-dihydro-3,5-dimethyl-2-furanone, 2 ( 3 H )-Fura-none, 5-butyldihydro-) as well as one kind of aromatic substances ( Benzaldehyde ) were initially identified as impor-tant aroma impact compounds. Chestnut aroma enhanced after cooking. Different puffing significantly influence aroma compositions of puffed chestnuts crisps. The aroma substance composition of extruded chestnut crisps and boiled chestnut are quite similar. A lot of 2,4-di-tert-butylphenol, which has paste flavor was generated in microwave puffing chestnut crisps. Volatile components of fried puffed chestnut crisps were the most complex which contained more alde-hydes substances.

  18. Volatile compounds in samples of cork and also produced by selected fungi.

    Science.gov (United States)

    Barreto, M C; Vilas Boas, L; Carneiro, L C; San Romão, M V

    2011-06-22

    The production of volatile compounds by microbial communities of cork samples taken during the cork manufacturing process was investigated. The majority of volatiles were found in samples collected at two stages: resting after the first boiling and nontreated cork disks. Volatile profiles produced by microbiota in both stages are similar. The releasable volatile compounds and 2,4,6-trichloroanisole (TCA) produced in cork-based culture medium by five isolated fungal species in pure and mixed cultures were also analyzed by gas chromatography coupled with mass spectrometry (GC-MS).The results showed that 1-octen-3-ol and esters of fatty acids (medium chain length C8-C20) were the main volatile compounds produced by either pure fungal species or their mixture. Apparently, Penicillium glabrum is the main contributor to the overall volatile composition observed in the mixed culture. The production of releasable TCA on cork cannot be attributed to any of the assayed fungal isolates.

  19. Production of Volatile Compounds in Reconstituted Milk Reduced-Fat Cheese and the Physicochemical Properties as Affected by Exopolysaccharide-Producing Strain

    Directory of Open Access Journals (Sweden)

    Weijun Wang

    2012-12-01

    Full Text Available The application of the exopolysaccharide-producing strains for improving the texture and technical properties of reduced-fat cheese looks very promising. Streptococcus thermophilus TM11 was evaluated for production of reduced-fat cheese using reconstituted milk powder (CRMP. The physicochemical analysis of fresh and stored cheeses showed that this strain slightly increased moisture content resulting in cheese with higher yield and lower protein content compared to the direct acidified cheese. The volatiles of cheese were determined by SPME and GC equipped with a mass spectrometer. The results indicated that the major compounds included aldehydes, ketones and acids, whereas, alcohols and branched-chain aldehydes that contribute to exciting and harsh flavors were not found in CRMP. By the textural profile analysis, we found the cheese made with S. thermophilus TM11 had lower cohesiveness, resilience and higher adhesiveness than the direct acidified cheese, and had similar hardness. Further, S. thermophilus TM11 greatly changed the protein matrix with more opened cavities according to observation by scanning electron microscopy. Consequently, use of S. thermophilus TM11 could endow CRMP with the novel and suitable flavor properties and improved texture quality.

  20. A chromatographic method to analyze products from photo-oxidation of anthropogenic and biogenic mixtures of volatile organic compounds in smog chambers.

    Science.gov (United States)

    Pindado Jiménez, Oscar; Pérez Pastor, Rosa M; Vivanco, Marta G; Santiago Aladro, Manuel

    2013-03-15

    A method for quantifying secondary organic aerosol compounds (SOA) and water soluble secondary organic aerosol compounds (WSOA) produced from photo-oxidation of complex mixtures of volatile organic compounds (VOCs) in smog chambers by gas chromatography/mass spectrometry (GC/MS) has been developed. This method employs a double extraction with water and methanol jointly to a double derivatization with N,O-bis (trimethylsilil) trifluoroacetamide (BSTFA) and O-(2,3,4,5,6)-pentafluorobenzyl-hydroxylamine hydrochloride (PFBHA) followed by an analysis performed by GC/MS. The analytical procedure complements other methodologies because it can analyze SOA and WSOA compounds simultaneously at trace levels. As application, the methodology was employed to quantify the organic composition of aerosols formed in a smog chamber as a result of photo-oxidation of two different mixtures of volatile organic compounds: an anthropogenic mixture and a biogenic mixture. The analytical method allowed us to quantify up to 17 SOA compounds at levels higher than 20 ng m(-3) with reasonable recovery and a precision below 11%. Values found for applicability, selectivity, linearity, precision, recovery, detection limit, quantification limit and sensitivity demonstrated that the methodology can be satisfactorily applied to quantify SOA and WSOA.

  1. Biogenic volatile organic compounds - small is beautiful

    Science.gov (United States)

    Owen, S. M.; Asensio, D.; Li, Q.; Penuelas, J.

    2012-12-01

    While canopy and regional scale flux measurements of biogenic volatile organic compounds (bVOCs) are essential to obtain an integrated picture of total compound reaching the atmosphere, many fascinating and important emission details are waiting to be discovered at smaller scales, in different ecological and functional compartments. We concentrate on bVOCs below ground to allelopathy. A gradient of monoterpene concentration was found in soil around Pinus sylvestris and Pinus halepensis, decreasing with distance from the tree. Some compounds (α-pinene, sabinene, humulene and caryophyllene) in mineral soil were linearly correlated with the total amount of each compound in the overlying litter, indicating that litter might be the dominant source of these compounds. However, α-pinene did not fall within the correlation, indicating a source other than litter, probably root exudates. We also show that rhizosphere bVOCs can be a carbon source for soil microbes. In a horizontal gradient from Populus tremula trees, microbes closest to the tree trunk were better enzymatically equipped to metabolise labeled monoterpene substrate. Monoterpenes can also increase the degradation rate in soil of the persistant organic pollutants, likely acting as analogues for the cometabo-lism of polychlorinated biphenyls (PCBs) Flowers of a ginger species (Alpinia kwangsiensis) and a fig species (Ficus hispida) showed different bVOC signals pre- and post pollination. For Ficus hispida, there are three floral stages of a fig-wasp dependency mechanism: receptive, post pollinator and interfloral. Of 28 compounds detected, transcaryophyllene with trans-β-farnesene were the most important at the receptor stage, trans-caryophyllene was the most abundant at the post-pollinator stage, and isoprene was the most abundant in the interfloral stage. Alpinia kwangsiensis presents two morphologies for the reproductive parts of the flower. The "anaflexistyle" morphology has the flower style lowered in the

  2. Measurement of volatile organic compounds inside automobiles.

    Science.gov (United States)

    Fedoruk, Marion J; Kerger, Brent D

    2003-01-01

    The objective of the current study was to evaluate the types and concentrations of volatile organic compounds (VOCs) in the passenger cabin of selected sedan automobiles under static (parked, unventilated) and specified conditions of operation (i.e., driving the vehicle using air conditioning alone, vent mode alone, or driver's window half open). Data were collected on five different passenger sedan vehicles from three major automobile manufacturers. Airborne concentrations were assessed using 90-min time-weighted average (TWA) samples under U.S. Environmental Protection Agency (USEPA) Method IP-1B to assess individual VOC compounds and total VOCs (TVOCs) calibrated to toluene. Static vehicle testing demonstrated TVOC levels of approximately 400-800 microg/m(3) at warm interior vehicle temperatures (approximately 80 degrees F), whereas TVOCs at least fivefold higher were observed under extreme heat conditions (e.g., up to 145 degrees F). The profile of most prevalent individual VOC compounds varied considerably according to vehicle brand, age, and interior temperature tested, with predominant compounds including styrene, toluene, and 8- to 12-carbon VOCs. TVOC levels under varied operating conditions (and ventilation) were generally four- to eightfold lower (at approximately 50-160 microg/m(3)) than the static vehicle measurements under warm conditions, with the lowest measured levels generally observed in the trials with the driver's window half open. These data indicate that while relatively high concentrations of certain VOCs can be measured inside static vehicles under extreme heat conditions, normal modes of operation rapidly reduce the inside-vehicle VOC concentrations even when the air conditioning is set on recirculation mode.

  3. Variation of volatile compounds among wheat varieties and landraces.

    Science.gov (United States)

    Starr, G; Petersen, M A; Jespersen, B M; Hansen, Å S

    2015-05-01

    Analysis of volatile compounds was performed on 81 wheat varieties and landraces, grown under controlled greenhouse conditions, in order to investigate the possibility of differentiating wheat varieties according to their volatile compound profiles. Volatile compounds from wheat samples were extracted by dynamic headspace extraction and analysed by gas chromatography-mass spectrometry. Seventy-two volatile compounds were identified in the wheat samples. Multivariate analysis of the data showed a large diversity in volatile profiles between samples. Differences occurred between samples from Austria compared to British, French and Danish varieties. Landraces were distinguishable from modern varieties and they were characterised by higher averaged peak areas for esters, alcohols, and some furans. Modern varieties were characterised by higher averaged peak areas for terpenes, pyrazines and straight-chained aldehydes. Differences in volatile profiles are demonstrated between wheat samples for the first time, based on variety. These results are significant to plant breeders and commercial users of wheat.

  4. Volatile Organic Compound Analysis in Istanbul

    Science.gov (United States)

    Ćapraz, Ö.; Deniz, A.; Öztürk, A.; Incecik, S.; Toros, H.; Coşkun, M.

    2012-04-01

    Volatile Organic Compound Analysis in Istanbul Ö. Çapraz1, A. Deniz1,3, A. Ozturk2, S. Incecik1, H. Toros1 and, M. Coskun1 (1) Istanbul Technical University, Faculty of Aeronautics and Astronautics, Department of Meteorology, 34469, Maslak, Istanbul, Turkey. (2) Istanbul Technical University, Faculty of Chemical and Metallurgical, Chemical Engineering, 34469, Maslak, Istanbul, Turkey. (3) Marmara Clean Air Center, Ministry of Environment and Urbanization, Nişantaşı, 34365, İstanbul, Turkey. One of the major problems of megacities is air pollution. Therefore, investigations of air quality are increasing and supported by many institutions in recent years. Air pollution in Istanbul contains many components that originate from a wide range of industrial, heating, motor vehicle, and natural emissions sources. VOC, originating mainly from automobile exhaust, secondhand smoke and building materials, are one of these compounds containing some thousands of chemicals. In spite of the risks to human health, relatively little is known about the levels of VOC in Istanbul. In this study, ambient air quality measurements of 32 VOCs including hydrocarbons, halogenated hydrocarbons and carbonyls were conducted in Kağıthane (Golden Horn) region in Istanbul during the winter season of 2011 in order to develop the necessary scientific framework for the subsequent developments. Kağıthane creek valley is the source part of the Golden Horn and one of the most polluted locations in Istanbul due to its topographical form and pollutant sources in the region. In this valley, horizontal and vertical atmospheric motions are very weak. The target compounds most commonly found were benzene, toluene, xylene and ethyl benzene. Concentrations of total hydrocarbons ranged between 1.0 and 10.0 parts per billion, by volume (ppbv). Ambient air levels of halogenated hydrocarbons appeared to exhibit unique spatial variations and no single factor seemed to explain trends for this group of

  5. Volatile Compounds Produced by Lactobacillus paracasei During Oat Fermentation.

    Science.gov (United States)

    Lee, Sang Mi; Oh, Jieun; Hurh, Byung-Serk; Jeong, Gwi-Hwa; Shin, Young-Keum; Kim, Young-Suk

    2016-12-01

    This study investigated the profiles of volatile compounds produced by Lactobacillus paracasei during oat fermentation using gas chromatography-mass spectrometry coupled with headspace solid-phase microextraction method. A total of 60 compounds, including acids, alcohols, aldehydes, esters, furan derivatives, hydrocarbons, ketones, sulfur-containing compounds, terpenes, and other compounds, were identified in fermented oat. Lipid oxidation products such as 2-pentylfuran, 1-octen-3-ol, hexanal, and nonanal were found to be the main contributors to oat samples fermented by L. paracasei with the level of 2-pentylfuran being the highest. In addition, the contents of ketones, alcohols, acids, and furan derivatives in the oat samples consistently increased with the fermentation time. On the other hand, the contents of degradation products of amino acids, such as 3-methylbutanal, benzaldehyde, acetophenone, dimethyl sulfide, and dimethyl disulfide, decreased in oat samples during fermentation. Principal component analysis (PCA) was applied to discriminate the fermented oat samples according to different fermentation times. The fermented oats were clearly differentiated on PCA plots. The initial fermentation stage was mainly affected by aldehydes, whereas the later samples of fermented oats were strongly associated with acids, alcohols, furan derivatives, and ketones. The application of PCA to data of the volatile profiles revealed that the oat samples fermented by L. paracasei could be distinguished according to fermentation time. © 2016 Institute of Food Technologists®.

  6. Determination of volatile marker compounds of common coffee roast defects.

    Science.gov (United States)

    Yang, Ni; Liu, Chujiao; Liu, Xingkun; Degn, Tina Kreuzfeldt; Munchow, Morten; Fisk, Ian

    2016-11-15

    Coffee beans from the same origin were roasted using six time-temperature profiles, in order to identify volatile aroma compounds associated with five common roast coffee defects (light, scorched, dark, baked and underdeveloped). Thirty-seven volatile aroma compounds were selected on the basis that they had previously been identified as potent odorants of coffee and were also identified in all coffee brew preparations; the relative abundance of these aroma compounds was then evaluated using gas chromatography mass spectrometry (GC-MS) with headspace solid phase micro extraction. Some of the 37 key aroma compounds were significantly changed in each coffee roast defect and changes in one marker compound was chosen for each defect type, that is, indole for light defect, 4-ethyl-2-methoxyphenol for scorched defect, phenol for dark defect, maltol for baked defect and 2,5-dimethylfuran for underdeveloped defect. The association of specific changes in aroma profiles for different roast defects has not been shown previously and could be incorporated into screening tools to enable the coffee industry quickly identify if roast defects occur during production.

  7. 40 CFR 60.462 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date on... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  8. 40 CFR 60.542 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... Rubber Tire Manufacturing Industry § 60.542 Standards for volatile organic compounds. (a) On and after... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.542 Section 60.542 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  9. 40 CFR 60.442 - Standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds... Pressure Sensitive Tape and Label Surface Coating Operations § 60.442 Standard for volatile organic compounds. (a) On and after the date on which the performance test required by § 60.8 has been...

  10. 40 CFR 60.622 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected petroleum... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  11. 40 CFR 60.582 - Standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.582 Section 60.582 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic compounds. (a)...

  12. 40 CFR 60.712 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or operator... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.712 Section 60.712 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  13. 40 CFR 60.492 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... Beverage Can Surface Coating Industry § 60.492 Standards for volatile organic compounds. On or after the... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.492 Section 60.492 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  14. 40 CFR 60.392 - Standards for volatile organic compounds

    Science.gov (United States)

    2010-07-01

    ... Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic compounds... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds 60.392 Section 60.392 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  15. 40 CFR 60.722 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... volatile organic compounds. (a) Each owner or operator of any affected facility which is subject to the... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.722 Section 60.722 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  16. 40 CFR 60.452 - Standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial Surface Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or...

  17. 40 CFR 60.742 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... Polymeric Coating of Supporting Substrates Facilities § 60.742 Standards for volatile organic compounds. (a... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.742 Section 60.742 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  18. Rapid changes of induced volatile organic compounds in Pinus massoniana

    Institute of Scientific and Technical Information of China (English)

    REN Qin; JIN Youju; HU Yongiian; CHEN Huajun; LI Zhenyu

    2007-01-01

    Using the thermal-desorption cold trap gas chromatography/mass spectrometer(TCT-GC-MS)technique,the composition and relative contents of volatile compounds were analyzed in undamaged(control),insect-damaged(ID)and artificially-damaged(AD)leaves ofPinus massoniana in field at different times and levels of damage.Results showed that although volatile substances were highly released earlier in AD leaves plants,they were significantly less abundant in AD than in ID leaves treatments.Also,the damage level considerably influenced the changes of induced volatile products from leaves.Compared with the control,the emission rate of camphene,β-pinene,phellandrene,caryophyllene and(E)farnesene was high after 1 h in 25%-40% ID-affected leaves,whereas that of tricyclene,myrcene,camphene,β-Pinene,phellandrene and caryophyllene reached its maximum after 24 h in 60%-75% D-affected leaves.In the same manner,some volatile compounds in the AD leaves treatment displayed their peaks just after 1 h,but others after 24 h.The AD and ID leaves at the damage level of 25%-40% did not exhibit an obvious regularity with time;however,in 60%- 75% AD leaves,peaks of volatile substances were attained after 1 or 2 h.Our results also showed that the relative content ofβ-pinene increased and was higher in damaged than control plants,β-pinene plays an important role in inducing the insect resistance of P.massoniana trees.

  19. Development of an analytical method coupling cell membrane chromatography with gas chromatography-mass spectrometry via microextraction by packed sorbent and its application in the screening of volatile active compounds in natural products.

    Science.gov (United States)

    Li, Miao; Wang, Sicen; He, Langchong

    2015-01-01

    Natural products (NPs) are important sources of lead compounds in modern drug discovery. To facilitate the screening of volatile active compounds in NPs, we have developed a new biochromatography method that uses rat vascular smooth muscle cells (VSMC), which are rich in L-type calcium channels (LCC), to prepare the stationary phase. This integrated method, which couples cell membrane chromatography (CMC) with gas chromatography-mass spectrometry (GC-MS) via microextraction by packed sorbent (MEPS) technology, has been termed VSMC/CMC-MEPS-GC-MS. Methodological validation confirmed its specificity, reliability and convenience. Screening results for Radix Angelicae Dahuricae and Fructus Cnidii obtained using VSMC/CMC-MEPS-GC-MS were consistent with those obtained using VSMC/CMC-offline-GC-MS. MEPS connection plays as simplified solid-phase extraction and replaces the uncontrollable evaporation operation in reported offline connections, so our new method is supposed to be more efficient and reliable than the offline ones, especially for compounds that are volatile, thermally unstable or difficult to purify. In application, senkyunolide A and ligustilide were preliminary identified as the volatile active components in Rhizoma Chuanxiong. We have thus confirmed the suitability of VSMC/CMC-MEPS-GC-MS for volatile active compounds screening in NP. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Effect of water activity on the production of volatile organic compounds by Muscodor albus and their effect on three pathogens in stored potato.

    Science.gov (United States)

    Corcuff, Ronan; Mercier, Julien; Tweddell, Russell; Arul, Joseph

    2011-03-01

    Muscodor albus (Xylariaceae, Ascomycetes) isolate CZ-620 produces antimicrobial volatile organic compounds (VOC), which appear to have potential for the control of various postharvest diseases. The effect of water activity (Aw) on the production of VOC by M. albus culture, and their inhibitory effects on the growth of three pathogens of potato tuber (Fusarium sambucinum, Helminthosporium solani, and Pectobacterium atrosepticum) and the development of diseases caused by the three pathogens (dry rot, silver scurf, and bacterial soft rot, respectively) were investigated. Rye grain culture of the fungus produced six alcohols, three aldehydes, five acids or esters, and two terpenoids. The most abundant VOC were: isobutyric acid; bulnesene, a sesquiterpene; an unidentified terpene; 2 and 3-methyl-1-butanol; and ethanol. However, the level of each of those VOC varied with Aw of the culture. Emission activity occurred mainly at Aw above 0.75 and high emission of most VOC occurred only at Aw above 0.90. The aldehydes (2-methyl-propanal and 3-methyl-butanal) were the only VOC produced in quantities below an Aw of 0.90. An Aw value of 0.96 favored maximum emission of acids, esters, and terpenoids. There was a higher production of alcohols and a decrease in aldehydes with increase in Aw. Isobutyric acid, which has been the main M. albus VOC monitored in previous studies as an indicator of antifungal activity, had a rather narrow optimum, peaking at Aw of 0.96 and declining sharply above 0.98. Results showed that substrate Aw affects the production dynamics of each group of VOC by the fungus, and suggest that VOC production can be prolonged by maintaining M. albus culture at a constant optimum Aw. The VOC was inhibitory to F. sambucinum, H. solani, and P. atrosepticum; and biofumigation with M. albus significantly reduced dry rot and soft rot development, and completely controlled silver scurf in inoculated tubers incubated at both 8°C and 22°C. The results show that Aw

  1. Comparison of methods for determining volatile compounds in cheese, milk, and whey powder

    Science.gov (United States)

    Solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) are commonly used for qualitative and quantitative analysis of volatile compounds in various dairy products, but selecting the proper procedures presents challenges. Heat is applied to drive volatiles from the samp...

  2. Volatile organic compound emissions from Larrea tridentata (creosotebush)

    Science.gov (United States)

    Jardine, K.; Abrell, L.; Kurc, S. A.; Huxman, T.; Ortega, J.; Guenther, A.

    2010-12-01

    We present results from the CREosote ATmosphere Interactions through Volatile Emissions (CREATIVE 2009) field study in southern Arizona aimed at quantifying emission rates of VOCs from creosotebush (Larrea tridentata) during the summer 2009 monsoon season. This species was chosen because of its vast distribution in North and South American deserts and because its resins have been reported to contain a rich set of volatile organic compounds (VOC). While a variety of ecosystems have been investigated for VOC emissions, deserts remain essentially unstudied, partially because of their low biomass densities and water limitations. However, during the North American monsoon, a pronounced increase in rainfall from an extremely dry June (80 mm) occurs over large areas of the Sonoran desert in the southwestern United States and northwestern Mexico. We observed a strong diurnal pattern of branch emissions and ambient concentrations of an extensive suite of VOCs with maxima in early afternoon. These include VOCs typically observed in forest sites (oxygenated VOCs and volatile isoprenoids) as well as a large number of other compounds, some of which have not been previously described from any plant including 1-chloro-2-methoxy-benzene and isobutyronitrile. Although generally considered to be derived from anthropogenic sources, we observed emissions of aromatic compounds including benzene, and a broad range of phenolics. Dimethyl sulfide emissions from creosotebush were higher than reported from any previously studied plant suggesting that terrestrial ecosystems should be reconsidered as an important source of this climatically important gas. We also present direct, primary emission measurements of isoprene and its apparent oxidation products methyl vinyl ketone, methacrolein, and 3-methyl furan (the later three compounds are typically assumed to form from secondary reactions within the atmosphere), as well as a group of compounds considered to be fatty acid oxidation products

  3. Volatile organic compound emissions from Larrea tridentata (creosotebush

    Directory of Open Access Journals (Sweden)

    J. Ortega

    2010-07-01

    Full Text Available The emission of Volatile Organic Compounds (VOCs from plants impacts both climate and air quality by fueling atmospheric chemistry and by contributing to aerosol particles. While a variety of ecosystems have been investigated for VOC emissions, deserts remain essentially unstudied, partially because of their low biomass densities and water limitations. However, during the North American monsoon, a pronounced increase in rainfall from an extremely dry June (<5 mm precipitation to a rainy July (>80 mm occurs over large areas of the Sonoran desert in the Southwestern United States and Northwestern Mexico. We present results from the CREosote ATmosphere Interactions through Volatile Emissions (CREATIVE 2009 field study in Southern Arizona aimed at quantifying emission rates of VOCs from creosotebush (Larrea tridentata during the summer 2009 monsoon season. This species was chosen because of its vast distribution in North and South American deserts and because its resins have been reported to contain a rich set of VOCs. We observed a strong diurnal pattern with branch emissions and ambient concentrations of an extensive suite of VOCs with maxima in early afternoon. These include VOCs typically observed in forest sites (oxygenated VOCs and volatile isoprenoids as well as a large number of other compounds, some of which have not been previously described from any plant including 1-chloro-2-methoxy-benzene and isobutyronitrile. Although generally considered to be derived from anthropogenic sources, we observed emissions of aromatic compounds including benzene, and a broad range of phenolics. Dimethyl sulfide emissions from creosotebush were higher than reported from any previously studied plant suggesting that terrestrial ecosystems should be reconsidered as an important source of this climatically important gas. We also present direct, primary emission measurements of isoprene and its apparent oxidation products methyl vinyl ketone, methacrolein, and 3

  4. Volatile organic compound emissions from Larrea tridentata (creosotebush

    Directory of Open Access Journals (Sweden)

    A. Guenther

    2010-12-01

    Full Text Available We present results from the CREosote ATmosphere Interactions through Volatile Emissions (CREATIVE 2009 field study in southern Arizona aimed at quantifying emission rates of VOCs from creosotebush (Larrea tridentata during the summer 2009 monsoon season. This species was chosen because of its vast distribution in North and South American deserts and because its resins have been reported to contain a rich set of volatile organic compounds (VOC. While a variety of ecosystems have been investigated for VOC emissions, deserts remain essentially unstudied, partially because of their low biomass densities and water limitations. However, during the North American monsoon, a pronounced increase in rainfall from an extremely dry June (80 mm occurs over large areas of the Sonoran desert in the southwestern United States and northwestern Mexico. We observed a strong diurnal pattern of branch emissions and ambient concentrations of an extensive suite of VOCs with maxima in early afternoon. These include VOCs typically observed in forest sites (oxygenated VOCs and volatile isoprenoids as well as a large number of other compounds, some of which have not been previously described from any plant including 1-chloro-2-methoxy-benzene and isobutyronitrile. Although generally considered to be derived from anthropogenic sources, we observed emissions of aromatic compounds including benzene, and a broad range of phenolics. Dimethyl sulfide emissions from creosotebush were higher than reported from any previously studied plant suggesting that terrestrial ecosystems should be reconsidered as an important source of this climatically important gas. We also present direct, primary emission measurements of isoprene and its apparent oxidation products methyl vinyl ketone, methacrolein, and 3-methyl furan (the later three compounds are typically assumed to form from secondary reactions within the atmosphere, as well as a group of compounds considered to be fatty acid

  5. Substitution of carcinogenic solvent dichloromethane for the extraction of volatile compounds in a fat-free model food system.

    Science.gov (United States)

    Cayot, Nathalie; Lafarge, Céline; Bou-Maroun, Elias; Cayot, Philippe

    2016-07-22

    Dichloromethane is known as a very efficient solvent, but, as other halogenated solvents, is recognized as a hazardous product (CMR substance). The objective of the present work is to propose substitution solvent for the extraction of volatile compounds. The most important physico-chemical parameters in the choice of an appropriate extraction solvent of volatile compounds are reviewed. Various solvents are selected on this basis and on their hazard characteristics. The selected solvents, safer than dichloromethane, are compared using the extraction efficiency of volatile compounds from a model food product able to interact with volatile compounds. Volatile compounds with different hydrophobicity are used. High extraction yields were positively correlated with high boiling points and high Log Kow values of volatile compounds. Mixtures of solvents such as azeotrope propan-2-one/cyclopentane, azeotrope ethyl acetate/ethanol, and mixture ethyl acetate/ethanol (3:1, v/v) gave higher extraction yields than those obtained with dichloromethane.

  6. 40 CFR 60.432 - Standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic...

  7. BIOCONCENTRATION FACTORS FOR VOLATILE ORGANIC COMPOUNDS IN VEGETATION

    Science.gov (United States)

    Samples of air and leaves were taken at the University of Nevada-Las Vegas campus and analyzed for volatile organic compounds using vacuum distillation coupled with gas chromatography/mass spectrometry. The data were used to estimate the bioconcentration of volatile organic compo...

  8. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    Data.gov (United States)

    U.S. Environmental Protection Agency — Supporting information Tables S3 and S4 list emission factors in g/kg of speciated volatile and particulate organic compounds emitted from peat burning. Peat samples...

  9. Total volatile organic compounds (TVOC) in indoor air quality investigations

    DEFF Research Database (Denmark)

    Mølhave, L.; Clausen, Geo; Berglund, B.

    1997-01-01

    The amount of volatile organic compounds (VOCs) in indoor air, usually called TVOC (total volatile organic compounds), has been measured using different definitions and techniques which yield different results. This report recommends a definition of TVOC referring to a specified range of VOCs...... for characterizing indoor pollution and for improving source control as required from the points of view of health, comfort, energy efficiency and sustainability. (C) Indoor Air (1997)....

  10. Are Some Fungal Volatile Organic Compounds (VOCs) Mycotoxins?

    OpenAIRE

    Bennett, Joan W.; Arati A. Inamdar

    2015-01-01

    Volatile organic compounds (VOCs) are carbon-compounds that easily evaporate at room temperature. Toxins are biologically produced poisons; mycotoxins are those toxins produced by microscopic fungi. All fungi emit blends of VOCs; the qualitative and quantitative composition of these volatile blends varies with the species of fungus and the environmental situation in which the fungus is grown. These fungal VOCs, produced as mixtures of alcohols, aldehydes, acids, ethers, esters, ketones, terpe...

  11. Measurement of volatile organic compounds in human blood.

    OpenAIRE

    Ashley, D L; Bonin, M A; Cardinali, F L; McCraw, J. M.; Wooten, J V

    1996-01-01

    Volatile organic compounds (VOCs) are an important public health problem throughout the developed world. Many important questions remain to be addressed in assessing exposure to these compounds. Because they are ubiquitous and highly volatile, special techniques must be applied in the analytical determination of VOCs. The analytical methodology chosen to measure toxicants in biological materials must be well validated and carefully carried out; poor quality assurance can lead to invalid resul...

  12. Characterization of volatile and non-volatile compounds of fresh pepper (Capsicum annuum)

    NARCIS (Netherlands)

    Eggink, P.M.; Haanstra, J.P.W.; Tikunov, Y.M.; Bovy, A.G.; Visser, R.G.F.

    2010-01-01

    In this study volatile and non-volatile compounds and several agronomical important parameters were measured in mature fruits of elite sweet pepper breeding lines and hybrids and several genebank accessions from different Capsicum species. The sweet pepper breeding lines and hybrids were chosen to

  13. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani, Jr.; Theresa M. Bomstad

    2003-07-01

    Western Research Institute (WRI) is continuing work toward the development of new screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of halogens. In prior work, the devices were tested for response to carbon tetrachloride, heptane, toluene, and water vapors. In the current work, sensor response was evaluated with sixteen halogenated VOCs relative to carbon tetrachloride. The results show that the response of the various chlorinated VOCs is within an order of magnitude of the response to carbon tetrachloride for each of the sensors. Thus, for field screening a single response factor can be used. Both types of leak detectors are being further modified to provide an on-board LCD signal readout, which is related to VOC concentration. The units will be fully portable and will operate with 115-V line or battery power. Signal background, noise level, and response data on the Bacharach heated diode detector and the TIF corona discharge detector show that when the response curves are plotted against the log of concentration, the plot is linear to the upper limit for the particular unit, with some curvature at lower levels. When response is plotted directly against concentration, the response is linear at the low end and is curved at the high end. The dynamic ranges for carbon tetrachloride of the two devices from the lower detection limit (S/N=2) to signal saturation are 4-850 vapor parts per million (vppm) for the corona discharge unit and 0.01-70 vppm for the heated diode unit. Additional circuit modifications are being made to lower the detection limit and increase the dynamic response range of the corona discharge unit. The results indicate that both devices show potential utility for future analytical method development work toward

  14. Volatile compounds of some popular Mediterranean seafood species

    Directory of Open Access Journals (Sweden)

    I. GIOGIOS

    2013-06-01

    Full Text Available The volatile compounds of highly commercialised fresh Mediterranean seafood species, including seven fish (sand-smelt Atherina boyeri, picarel Spicara smaris, hake Merluccius merluccius, pilchard Sardina pilchardus, bogue Boobps boops, anchovy Engraulis encrasicolus and striped-mullet Mullus barbatus, squid (Loligo vulgaris, shrimp (Parapenaeus longirostris and mussel (Mytilus galloprovincialis, were evaluated by simultaneous steam distillation-extraction and subsequent GC-MS analysis. A total of 298 volatile compounds were detected. The mussels contained the highest total concentration of volatile compounds, while pilchard among fish species contained the highest number and concentrations of volatile compounds. Individual patterns of volatile compounds have been distinguished. The fish species when compared to the shellfish species studied, contained 6 to 30 times more 1-penten-3-ol, higher quantities of 2-ethylfuran, and 2,3-pentanedione, which was absent from the shellfish species. Pilchard is characterized by a high concentration of alcohols, shrimps by the high presence of amines and S-compounds, while mussels by high amounts of aldehydes, furans, and N-containing compounds (pyridine, pyrazines and pyrrols. The fatty acid-originating carbonyl compounds in fish seem to be related to the species’ fat content.

  15. Volatile compounds of some popular Mediterranean seafood species

    Directory of Open Access Journals (Sweden)

    I. GIOGIOS

    2013-07-01

    Full Text Available The volatile compounds of highly commercialised fresh Mediterranean seafood species, including seven fish (sand-smelt Atherina boyeri, picarel Spicara smaris, hake Merluccius merluccius, pilchard Sardina pilchardus, bogue Boobps boops, anchovy Engraulis encrasicolus and striped-mullet Mullus barbatus, squid (Loligo vulgaris, shrimp (Parapenaeus longirostris and mussel (Mytilus galloprovincialis, were evaluated by simultaneous steam distillation-extraction and subsequent GC-MS analysis. A total of 298 volatile compounds were detected. The mussels contained the highest total concentration of volatile compounds, while pilchard among fish species contained the highest number and concentrations of volatile compounds. Individual patterns of volatile compounds have been distinguished. The fish species when compared to the shellfish species studied, contained 6 to 30 times more 1-penten-3-ol, higher quantities of 2-ethylfuran, and 2,3-pentanedione, which was absent from the shellfish species. Pilchard is characterized by a high concentration of alcohols, shrimps by the high presence of amines and S-compounds, while mussels by high amounts of aldehydes, furans, and N-containing compounds (pyridine, pyrazines and pyrrols. The fatty acid-originating carbonyl compounds in fish seem to be related to the species’ fat content.

  16. Fate of Volatile Organic Compounds in Constructed Wastewater Treatment Wetlands

    Science.gov (United States)

    Keefe, S.H.; Barber, L.B.; Runkel, R.L.; Ryan, J.N.

    2004-01-01

    The fate of volatile organic compounds was evaluated in a wastewater-dependent constructed wetland near Phoenix, AZ, using field measurements and solute transport modeling. Numerically based volatilization rates were determined using inverse modeling techniques and hydraulic parameters established by sodium bromide tracer experiments. Theoretical volatilization rates were calculated from the two-film method incorporating physicochemical properties and environmental conditions. Additional analyses were conducted using graphically determined volatilization rates based on field measurements. Transport (with first-order removal) simulations were performed using a range of volatilization rates and were evaluated with respect to field concentrations. The inverse and two-film reactive transport simulations demonstrated excellent agreement with measured concentrations for 1,4-dichlorobenzene, tetrachloroethene, dichloromethane, and trichloromethane and fair agreement for dibromochloromethane, bromo-dichloromethane, and toluene. Wetland removal efficiencies from inlet to outlet ranged from 63% to 87% for target compounds.

  17. First Characterisation of Volatile Organic Compounds Emitted by Banana Plants.

    Science.gov (United States)

    Berhal, Chadi; De Clerck, Caroline; Fauconnier, Marie-Laure; Levicek, Carolina; Boullis, Antoine; Kaddes, Amine; Jijakli, Haïssam M; Verheggen, François; Massart, Sébastien

    2017-05-16

    Banana (Musa sp.) ranks fourth in term of worldwide fruit production, and has economical and nutritional key values. The Cavendish cultivars correspond to more than 90% of the production of dessert banana while cooking cultivars are widely consumed locally around the banana belt production area. Many plants, if not all, produce Volatile Organic Compounds (VOCs) as a means of communication with their environment. Although flower and fruit VOCs have been studied for banana, the VOCs produced by the plant have never been identified despite their importance in plant health and development. A volatile collection methodology was optimized to improve the sensitivity and reproducibility of VOCs analysis from banana plants. We have identified 11 VOCs for the Cavendish, mainly (E,E)-α-farnesene (87.90 ± 11.28 ng/μl), methyl salicylate (33.82 ± 14.29) and 6-methyl-5-hepten-2-one (29.60 ± 11.66), and 14 VOCs for the Pacific Plantain cultivar, mainly (Z,E)-α-farnesene (799.64 ± 503.15), (E,E)-α-farnesene (571.24 ± 381.70) and (E) β ocimene (241.76 ± 158.49). This exploratory study paves the way for an in-depth characterisation of VOCs emitted by Musa plants.

  18. Emission of Biogenic Volatile Organic Compounds in the Arctic

    DEFF Research Database (Denmark)

    Lindwall, Frida

    Emissions of biogenic volatile organic compounds (BVOCs) from arctic ecosystems are scarcely studied and the effect of climate change on BVOC emissions even less so. BVOCs are emitted from all living organisms and play a role for atmospheric chemistry. The major part of BVOCs derives from plants,......, arctic BVOC emissions will become more important for the global BVOC budget as well as for the regional climate due to the positive and negative climate warming feedbacks.......Emissions of biogenic volatile organic compounds (BVOCs) from arctic ecosystems are scarcely studied and the effect of climate change on BVOC emissions even less so. BVOCs are emitted from all living organisms and play a role for atmospheric chemistry. The major part of BVOCs derives from plants...... growing seasons, low temperatures and low statured plants, occurs at twice the speed of the global average. Changes in temperature and precipitation patterns have consequences for soil, plant species distribution, plant biomass and reproductive success. Emission and production of BVOCs are temperature...

  19. Permeation of volatile compounds through starch films

    NARCIS (Netherlands)

    Yilmaz, G.; Jongboom, R.O.J.; Feil, H.; Dijk, van C.; Hennink, W.E.

    2004-01-01

    The aim of this study was to gain insight into the factors that affect the permeation of volatiles through starch films. These films were obtained by casting gelatinized starch/water/glycerol mixtures. The films were dried and conditioned under different conditions (temperature and relative humidity

  20. The volatile compound BinBase mass spectral database

    Directory of Open Access Journals (Sweden)

    Barupal Dinesh K

    2011-08-01

    Full Text Available Abstract Background Volatile compounds comprise diverse chemical groups with wide-ranging sources and functions. These compounds originate from major pathways of secondary metabolism in many organisms and play essential roles in chemical ecology in both plant and animal kingdoms. In past decades, sampling methods and instrumentation for the analysis of complex volatile mixtures have improved; however, design and implementation of database tools to process and store the complex datasets have lagged behind. Description The volatile compound BinBase (vocBinBase is an automated peak annotation and database system developed for the analysis of GC-TOF-MS data derived from complex volatile mixtures. The vocBinBase DB is an extension of the previously reported metabolite BinBase software developed to track and identify derivatized metabolites. The BinBase algorithm uses deconvoluted spectra and peak metadata (retention index, unique ion, spectral similarity, peak signal-to-noise ratio, and peak purity from the Leco ChromaTOF software, and annotates peaks using a multi-tiered filtering system with stringent thresholds. The vocBinBase algorithm assigns the identity of compounds existing in the database. Volatile compound assignments are supported by the Adams mass spectral-retention index library, which contains over 2,000 plant-derived volatile compounds. Novel molecules that are not found within vocBinBase are automatically added using strict mass spectral and experimental criteria. Users obtain fully annotated data sheets with quantitative information for all volatile compounds for studies that may consist of thousands of chromatograms. The vocBinBase database may also be queried across different studies, comprising currently 1,537 unique mass spectra generated from 1.7 million deconvoluted mass spectra of 3,435 samples (18 species. Mass spectra with retention indices and volatile profiles are available as free download under the CC-BY agreement (http

  1. Comparison of methods for determining volatile compounds in milk, cheese, and whey powder

    Science.gov (United States)

    Solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) are commonly used for qualitative and quantitative analysis of volatile compounds in various dairy products, but conditions have to be adjusted for optimal SPME release while not generating new compounds that are abs...

  2. Emissions of biogenic volatile organic compounds & their photochemical transformation

    Science.gov (United States)

    Yu, Zhujun; Hohaus, Thorsten; Tillmann, Ralf; Andres, Stefanie; Kuhn, Uwe; Rohrer, Franz; Wahner, Andreas; Kiendler-Scharr, Astrid

    2015-04-01

    Natural and anthropogenic activities emit volatile organic compounds (VOC) into the atmosphere. While it is known that land vegetation accounts for 90% of the global VOC emissions, only a few molecules' emission factors are understood. Through VOCs atmospheric oxidation intermediate products are formed. The detailed chemical mechanisms involved are insufficiently known to date and need to be understood for air quality management and climate change predictions. In an experiment using a PTR-ToF-MS with the new-built plant chamber SAPHIR-PLUS in Forschungszentrum Juelich, biogenic emissions of volatile organic compounds (BVOC) from Quercus ilex trees were measured. The BVOC emissions were dominated by monoterpenes, minor emissions of isoprene and methanol were also observed with the overall emission pattern typical for Quercus ilex trees in the growing season. Monoterpenes and isoprene emissions showed to be triggered by light. Additionally, their emissions showed clear exponential temperature dependence under constant light condition as reported in literature. As a tracer for leaf growth, methanol emission showed an abrupt increase at the beginning of light exposure. This is explained as instantaneous release of methanol produced during the night once stomata of leaves open upon light exposure. Emission of methanol showed a near linear increase with temperature in the range of 10 to 35 °C. BVOC were transferred from the plant chamber PLUS to the atmospheric simulation chamber SAPHIR, where their oxidation products from O3 oxidation were measured with PTR-ToF-MS. Gas phase oxidation products such as acetone and acetaldehyde were detected. A quantitative analysis of the data will be presented, including comparison of observations to the Master Chemical Mechanism model.

  3. Predicting the emission of volatile organic compounds from silage systems

    Science.gov (United States)

    As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major VOC emission source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols wit...

  4. Characterization and extraction of volatile compounds from pineapple (Ananas comosus L. Merril processing residues

    Directory of Open Access Journals (Sweden)

    Lília Calheiros de Oliveira Barretto

    2013-12-01

    Full Text Available The aim of this study was to extract and identify volatile compounds from pineapple residues generated during concentrated juice processing. Distillates of pineapple residues were obtained using the following techniques: simple hydrodistillation and hydrodistillation by passing nitrogen gas. The volatile compounds present in the distillates were captured by the solid-phase microextraction technique. The volatile compounds were identified in a system of high resolution gas chromatography system coupled with mass spectrometry using a polyethylene glycol polar capillary column as stationary phase. The pineapple residues constituted mostly of esters (35%, followed by ketones (26%, alcohols (18%, aldehydes (9%, acids (3% and other compounds (9%. Odor-active volatile compounds were mainly identified in the distillate obtained using hydrodistillation by passing nitrogen gas, namely decanal, ethyl octanoate, acetic acid, 1-hexanol, and ketones such as γ-hexalactone, γ-octalactone, δ-octalactone, γ-decalactone, and γ-dodecalactone. This suggests that the use of an inert gas and lower temperatures helped maintain higher amounts of flavor compounds. These data indicate that pineapple processing residue contained important volatile compounds which can be extracted and used as aroma enhancing products and have high potential for the production of value-added natural essences.

  5. Catabolism of volatile organic compounds influences plant survival.

    Science.gov (United States)

    Oikawa, Patricia Y; Lerdau, Manuel T

    2013-12-01

    Plants emit a diverse array of phytogenic volatile organic compounds (VOCs). The production and emission of VOCs has been an important area of research for decades. However, recent research has revealed the importance of VOC catabolism by plants and VOC degradation in the atmosphere for plant growth and survival. Specifically, VOC catabolism and degradation have implications for plant C balance, tolerance to environmental stress, plant signaling, and plant-atmosphere interactions. Here we review recent advances in our understanding of VOC catabolism and degradation, propose experiments for investigating VOC catabolism, and suggest ways to incorporate catabolism into VOC emission models. Improving our knowledge of VOC catabolism and degradation is crucial for understanding plant metabolism and predicting plant survival in polluted environments.

  6. Volatile compounds of dry beans (Phaseolus vulgaris L.).

    Science.gov (United States)

    Oomah, B Dave; Liang, Lisa S Y; Balasubramanian, Parthiba

    2007-12-01

    Volatile compounds of uncooked dry bean (Phaseolus vulgaris L.) cultivars representing three market classes (black, dark red kidney and pinto) grown in 2005 were isolated with headspace solid phase microextraction (HS-SPME), and analyzed with gas chromatography mass spectrometry (GC-MS). A total of 62 volatiles consisting of aromatic hydrocarbons, aldehydes, alkanes, alcohols and ketones represented on average 62, 38, 21, 12, and 9 x 10(6) total area counts, respectively. Bean cultivars differed in abundance and profile of volatiles. The combination of 18 compounds comprising a common profile explained 79% of the variance among cultivars based on principal component analysis (PCA). The SPME technique proved to be a rapid and effective method for routine evaluation of dry bean volatile profile.

  7. Comparation sensory characteristic, non-volatile compounds, volatile compounds and antioxidant activity of MRPs by novel gradient temperature-elevating and traditional isothermal methods

    National Research Council Canada - National Science Library

    Huang, Meigui; Zhang, Xiaoming; Karangwa, Eric

    2015-01-01

    .... The main purpose of the present study was to compare the color, taste characteristic, non-volatile compounds, volatile compounds and antioxidant activity of MRPs prepared by the novel gradient...

  8. Methods in plant foliar volatile organic compounds research.

    Science.gov (United States)

    Materić, Dušan; Bruhn, Dan; Turner, Claire; Morgan, Geraint; Mason, Nigel; Gauci, Vincent

    2015-12-01

    Plants are a major atmospheric source of volatile organic compounds (VOCs). These secondary metabolic products protect plants from high-temperature stress, mediate in plant-plant and plant-insect communication, and affect our climate globally. The main challenges in plant foliar VOC research are accurate sampling, the inherent reactivity of some VOC compounds that makes them hard to detect directly, and their low concentrations. Plant VOC research relies on analytical techniques for trace gas analysis, usually based on gas chromatography and soft chemical ionization mass spectrometry. Until now, these techniques (especially the latter one) have been developed and used primarily by physicists and analytical scientists, who have used them in a wide range of scientific research areas (e.g., aroma, disease biomarkers, hazardous compound detection, atmospheric chemistry). The interdisciplinary nature of plant foliar VOC research has recently attracted the attention of biologists, bringing them into the field of applied environmental analytical sciences. In this paper, we review the sampling methods and available analytical techniques used in plant foliar VOC research to provide a comprehensive resource that will allow biologists moving into the field to choose the most appropriate approach for their studies.

  9. Catalytic oxidation of volatile organic compounds (VOCs) - A review

    Science.gov (United States)

    Kamal, Muhammad Shahzad; Razzak, Shaikh A.; Hossain, Mohammad M.

    2016-09-01

    Emission of volatile organic compounds (VOCs) is one of the major contributors to air pollution. The main sources of VOCs are petroleum refineries, fuel combustions, chemical industries, decomposition in the biosphere and biomass, pharmaceutical plants, automobile industries, textile manufacturers, solvents processes, cleaning products, printing presses, insulating materials, office supplies, printers etc. The most common VOCs are halogenated compounds, aldehydes, alcohols, ketones, aromatic compounds, and ethers. High concentrations of these VOCs can cause irritations, nausea, dizziness, and headaches. Some VOCs are also carcinogenic for both humans and animals. Therefore, it is crucial to minimize the emission of VOCs. Among the available technologies, the catalytic oxidation of VOCs is the most popular because of its versatility of handling a range of organic emissions under mild operating conditions. Due to that fact, there are numerous research initiatives focused on developing advanced technologies for the catalytic destruction of VOCs. This review discusses recent developments in catalytic systems for the destruction of VOCs. Review also describes various VOCs and their sources of emission, mechanisms of catalytic destruction, the causes of catalyst deactivation, and catalyst regeneration methods.

  10. The Influence of Spices on the Volatile Compounds of Cooked Beef Patty.

    Science.gov (United States)

    Jung, Samooel; Jo, Cheorun; Kim, Il Suk; Nam, Ki Chang; Ahn, Dong Uk; Lee, Kyung Heang

    2014-01-01

    The aim of this study is to examine the influences of spices on the amounts and compositions of volatile compounds released from cooked beef patty. Beef patty with 0.5% of spice (nutmeg, onion, garlic, or ginger powder, w/w) was cooked by electronic pan until they reached an internal temperature of 75℃. A total of 46 volatile compounds (6 alcohols, 6 aldehydes, 5 hydrocarbons, 6 ketones, 9 sulfur compounds, and 14 terpenes) from cooked beef patties were detected by using purgeand- trap GC/MS. The addition of nutmeg, onion, or ginger powder significantly reduced the production of the volatile compounds via lipid oxidation in cooked beef patty when compared to those from the control. Also, the addition of nutmeg and garlic powder to beef patty generated a lot of trepans or sulfur volatile compounds, respectively. From these results, the major proportion by chemical classes such as alcohols, aldehydes, hydrocarbons, ketones, sulfur compounds, and terpenes was different depending on the spice variations. The results indicate that addition of spices to the beef patty meaningfully changes the volatile compounds released from within. Therefore, it can be concluded that spices can interact with meat aroma significantly, and thus, the character of each spice should be considered before adding to the beef patty.

  11. Relationship between sensory attributes and volatile compounds of polish dry-cured loin

    Directory of Open Access Journals (Sweden)

    Ewa Górska

    2017-05-01

    Full Text Available Objective The aim of this work was to determine the relationship between objective sensory descriptors and volatile flavour compound composition of Polish traditional dry-cured loin. Methods The volatile compounds were investigated by using solid phase microextraction (SPME and gas chromatography–mass spectrometry (GC–MS. For sensory assessment, the quantitative descriptive analysis (QDA method was used. Results A total of 50 volatile compounds were found and assigned to 17 chemical families. Most of the detected volatile compounds derived from smoking, lipid oxidative reactions and seasoning (46.8%, 21.7%, and 18.9%, respectively. The dominant compounds were: aromatic hydrocarbon (toluene; alkanes (hexane, heptane, and 2,2,4-trimethylpentane; aldehyde (hexanal; alcohol (2-furanmethanol; ketone (3-hydroxy-2-butanone; phenol (guaiacol; and terpenes (eucalyptol, cymene, γ-terpinen, and limonene. Correlation analysis showed that some compounds derived from smoking were positively correlated with the intensity of cured meat odour and flavour and negatively with the intensity of dried meat odour and flavour, while terpenes were strongly correlated with odour and flavour of added spices. Conclusion The analysed dry-cured loins were characterized by specific and unique sensory profile. Odour and flavour of studied loins was mainly determined by volatile compounds originating from smoking, seasoning and lipid oxidation. Obtained results suggest that smoking process is a crucial stage during Polish traditional dry-cured loins production.

  12. Antibacterial and insecticidal activity of volatile compounds of three algae species of Oman Sea

    OpenAIRE

    Pasdaran, Ardalan; Hamedi, Azadeh; Mamedov, Nazim A.

    2016-01-01

    Many of the volatile oils showed important biologicaland pharmacological activities, these compounds as part of the traditionalmedicine in many cultures used as long time. Potencies of them caused thesenatural products gained many scientific researches in felid of naturalproducts. The volatile oils of Actinotrichiafragilis (Forsskål) Børgesen,Liagora ceranoides J.V.Lamouroux and Colpomenia sinuosa (Mertensex Roth) Derbes and. Solier were extracted by hydrodistillation. Thesevolatile oils were...

  13. Volatile compounds in the thermoplastic extrusion of bovine rumen

    Directory of Open Access Journals (Sweden)

    Ana Carolina Conti e Silva

    2008-01-01

    Full Text Available The volatile compounds of raw and extruded bovine rumen, extracted by dynamic headspace, were separated by gas chromatography and analyzed by GC-MS. Raw and extruded materials presented thirty-two volatile compounds. The following compounds were identified in raw bovine rumen: heptane, 1-heptene, 4-methyl-2-pentanone, toluene, hexanal, ethyl butyrate, o-xylene, m-xylene, p-xylene, heptanal, limonene, nonanal, dodecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane and octadecane. The following compounds were identified in the extruded material: 1-heptene, 2,4-dimethylhexane, toluene, limonene, undecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane and nonadecane. Mass spectra of some unidentified compounds indicated the presence of hydrocarbons with branched chains or cyclic structure.

  14. Volatile organic compounds and oxides of nitrogen. Further emission reductions

    Energy Technology Data Exchange (ETDEWEB)

    Froste, H. [comp.

    1996-12-31

    This report presents the current status in relation to achievement of the Swedish Environmental target set by Parliament to reduce emission of volatile organic compounds by 50 per cent between 1988 and 2000. It also instructed the Agency to formulate proposed measures to achieve a 50 per cent reduction of emission of nitrogen oxides between 1985 and 2005. The report presents an overall account of emission trends for volatile organic compounds (from all sectors) and nitrogen oxides (from the industry sector) and steps proposed to achieve further emission reductions. 43 refs

  15. Volatile Organic Compounds are Ghosts for Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Prakash R. Somani

    2014-11-01

    Full Text Available All our efforts to demonstrate a multifunctional device – photovoltaic gas sensor (i.e. solar cell which show photovoltaic action depending on the gas / volatile organic compounds (VOC in the surrounding atmosphere yielded negative results. Photovoltaic performance of the organic solar cells under study degraded – almost permanently by exposing them to volatile organic compounds (VOCs. Although, the proposed multifunctional device could not be demonstrated; Present investigations yielded very important result that organic solar cells have problems not only with oxygen and humidity (known facts but also with many VOCs and hazardous gases – making lamination / encapsulation step mandatory for their practical utilization.

  16. 76 FR 18893 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Volatile Organic Compound...

    Science.gov (United States)

    2011-04-06

    ... Organic Compound Emission Control Measures for Lithographic and Letterpress Printing in Cleveland AGENCY... volatile organic compound (VOC) rule. These rule revisions specify compliance dates for subject facilities... approved offset lithographic and letterpress printing volatile organic compound (VOC) rule for...

  17. Effect on microorganisms of volatile compounds released from germinating seeds.

    Science.gov (United States)

    Schenck, S; Stotzky, G

    1975-10-01

    Volatile compounds evolved from germinating seeds of slash pine, bean, cabbage, corn, cucumber, and pea were evaluated for their ability to support growth of microorganisms in liquid mineral salts media lacking a carbon source. Growth of eight bacteria was measured turbidimetrically and of six fungi as dry weight of mycelium. Volatiles caused increased growth of Pseudomonas fluorescens, Bacillus cereus, Erwinia carotovora, Agrobacterium tumefaciens, A. radiobacter, Rhizobium japonicum, Mucor mucedo, Fusarium oxysporum f. conglutinans, Trichoderma viride, and Penicillium vermiculatum but not of Sarcina lutea, Serratia marcescens, Chaetomium globosum, or Schizophyllum commune. Spores of Trichoderma viride showed higher germination in the presence of volatiles. Effects on growth were apparent only during the first 3 or 4 days after planting the seeds. Killed or dried seeds had no effect. The volatiles did not support microbial growth in the absence of nitrogen nor did they supply growth factors. Passing volatiles through KMnO4 or hydrazone reduced growth of the bacteria, indicating that oxidizable organic compounds, primarily aldehydes, were the active components. The volatiles were not absorbed by sterile soil, clay minerals, or water, but they were absorbed by non-steril soil and activated charcoal.

  18. Supercritical fluid extraction of volatile and non-volatile compounds from Schinus molle L.

    Directory of Open Access Journals (Sweden)

    M. S. T. Barroso

    2011-06-01

    Full Text Available Schinus molle L., also known as pepper tree, has been reported to have antimicrobial, antifungal, anti-inflammatory, antispasmodic, antipyretic, antitumoural and cicatrizing properties. This work studies supercritical fluid extraction (SFE to obtain volatile and non-volatile compounds from the aerial parts of Schinus molle L. and the influence of the process on the composition of the extracts. Experiments were performed in a pilot-scale extractor with a capacity of 1 L at pressures of 9, 10, 12, 15 and 20 MPa at 323.15 K. The volatile compounds were obtained by CO2 supercritical extraction with moderate pressure (9 MPa, whereas the non-volatile compounds were extracted at higher pressure (12 to 20 MPa. The analysis of the essential oil was carried out by GC-MS and the main compounds identified were sabinene, limonene, D-germacrene, bicyclogermacrene, and spathulenol. For the non-volatile extracts, the total phenolic content was determined by the Folin-Ciocalteau method. Moreover, one of the goals of this study was to compare the experimental data with the simulated yields predicted by a mathematical model based on mass transfer. The model used requires three adjustable parameters to predict the experimental extraction yield curves.

  19. Analysis of volatile compounds from Iberian hams: a review

    Directory of Open Access Journals (Sweden)

    Narváez-Rivas, M.

    2012-10-01

    Full Text Available This article provides information on the study of the volatile compounds in raw and dry-cured Iberian hams. Different volatile compounds are identified and studies carried out by different authors are presented. This article reviews the analytical methods that have been used to determine the different volatiles of these samples. Furthermore, all volatile compounds identified (a total of 411 volatiles have been collected in several tables according to different series of compounds: hydrocarbons, aldehydes, ketones, alcohols, esters and ethers, lactones, terpenes and chloride compounds, nitrogenous compounds, sulfur compounds and carboxylic acids. This review can be useful in subsequent research due to the complexity of the study.

    En este artículo se proporciona información sobre el estudio de los compuestos volátiles del jamón ibérico tanto fresco como curado. Se presentan los diferentes compuestos volátiles identificados por distintos autores. Además, se evalúan los métodos analíticos que han sido utilizados para determinar dichos compuestos volátiles en este tipo de muestras. Todos los compuestos identificados y descritos en esta revisión (un total de 411 compuestos volátiles han sido agrupados en diversas tablas de acuerdo a las diferentes familias a que pertenecen: hidrocarburos, aldehídos, cetonas, alcoholes, ésteres y éteres, lactonas, terpenos, compuestos halogenados, compuestos nitrogenados, compuestos de azufre y ácidos carboxílicos. Debido a la complejidad de este estudio, la presente revisión puede ser muy útil en investigaciones posteriores.

  20. Characterization of Volatile Flavor Compounds in Chinese Rice Wine Fermented from Enzymatic Extruded Rice.

    Science.gov (United States)

    Xu, Enbo; Long, Jie; Wu, Zhengzong; Li, Hongyan; Wang, Fang; Xu, Xueming; Jin, Zhengyu; Jiao, Aiquan

    2015-07-01

    Enzymatic extrusion, instead of traditional steam cooking, to treat rice is an efficient and alternative pretreatment for Chinese rice wine fermentation. In order to determine the formation of volatiles in enzymatic extrusion-processed rice wine (EE), and to confirm its characteristic flavor compounds, headspace solid-phase micro-extraction followed by GC-MS was used. A total of 66 volatile compounds were identified in EE. During fermentation, most volatiles generated from enzymatic extruded rice had the similar trends with those from steam-cooked rice, but the differences in the concentration of volatiles indicated a changed balance of flavors release caused by enzymatic extrusion. Besides, the concentrations and sorts of volatiles in EEs fermented from different rice particle sizes, were not dramatically different. By principal component analysis, EE could be distinctly separated from other traditional Chinese rice wines according to its characteristic volatiles, namely, 2-heptanol, 1-octen-3-ol, ethyl 4-hydroxybenzoate, methylpentyl 2-propenoate, γ-hexalactone, and 4-vinylguaiacol. Enzymatic extrusion liquefaction has been a popular thermal treatment for cereals, and gradually being applied in fermentation and liquor-making industry all over the world. The characterization of volatile flavor compounds in Chinese rice wine processed by enzymatic extrusion liquefaction pretreatment, might be made use not only for a better understanding of this new-type rice wine, but for the further utilization of enzymatic extrusion in other wine or alcohol production as well. © 2015 Institute of Food Technologists®

  1. Dynamic headspace gas chromatography of volatile compounds in milk.

    Science.gov (United States)

    Urbach, G

    1987-08-28

    A method is described for investigating volatile compounds in milk. The volatiles are removed from milk by a stream of helium swept at 100 ml/min over the surface of the milk at 70 degrees C. They are trapped on 40 mg of NIOSH charcoal and then desorbed by heat and re-trapped on the front of a chromatographic column of Tenax-GC coated with 1% OV-275, the column being maintained at room temperature during trapping. An amount of 40 mg NIOSH charcoal under these conditions traps over 90% of the total quantity of the lowest boiling compounds swept from the milk, such as acetaldehyde and ethanol, and retains 100% of the total quantity of acetone, propanol and higher boiling compounds from the gas stream. The volume of milk and its temperature affect the ratios of volatiles collected and these factors are useful in increasing the proportion of a volatile of particular interest. The addition of potassium carbonate increases the yield of volatiles from 100 ml aqueous phase but not from 10 ml.

  2. Aroma Volatile Compounds from Two Fresh Pineapple Varieties in China

    Directory of Open Access Journals (Sweden)

    Chang-Bin Wei

    2012-06-01

    Full Text Available Volatile compounds from two pineapples varieties (Tainong No.4 and No.6 were isolated by headspace solid phase microextraction (HS-SPME and identified and quantified by gas chromatography-mass spectrometry (GC/MS. In the Tainong No. 4 and No. 6 pineapples, a total of 11 and 28 volatile compounds were identified according to their retention time on capillary columns and their mass spectra, and quantified with total concentrations of 1080.44 µg·kg−1 and 380.66 µg·kg−1 in the Tainong No.4 and No. 6 pineapples, respectively. The odor active values (OAVs of volatile compounds from pineapples were also calculated. According to the OAVs, four compounds were defined as the characteristic aroma compounds for the Tainong No. 4 pineapple, including furaneol, 3-(methylthiopropanoic acid methyl ester, 3-(methylthiopropanoic acid ethyl ester and δ-octalactone. The OAVs of five compounds including ethyl-2-methylbutyrate, methyl-2-methylbutyrate, 3-(methylthiopropanoic acid ethyl ester, ethyl hexanoate and decanal were considered to be the characteristic aroma compounds for the Tainong No. 6 pineapple.

  3. Hybrid organic PVDF-inorganic M-rGO-TiO2 (M = Ag, Pt) nanocomposites for multifunctional volatile organic compound sensing and photocatalytic degradation-H2 production.

    Science.gov (United States)

    Ong, W L; Gao, M; Ho, G W

    2013-11-21

    This work focused on the development of a hybrid organic-inorganic TiO2 nanocomposite, which demonstrates the first ever report on harmful volatile organic compound (VOC) sensing and photocatalytic degradation-H2 production. The sensing and photocatalytic properties are enhanced by the synergetic effects of well-structured TiO2 nanotubes, metal nanoparticles and reduced graphene oxide loading for enhanced light absorption and charge-transfer kinetics. Hybridization of a functionalized TiO2 nanocomposite with a polyvinylidene fluoride (PVDF) matrix induced strong cross-linking networks between the inorganic-organic components, which promote mechanical reinforcement-flexibility and highly porous asymmetric structures. The developed solution processable nanocomposite has immense potential to remedy the global environmental and energy issues by producing clean water/air and energy from organic compound waste.

  4. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    Science.gov (United States)

    Speciated volatile organic compounds (VOCs) and organic fine particulate matter (PM2.5) mass emission factors were determined from laboratory peat fire experiments. Peat samples originated from two wildlife reserves located near the coast of North Carolina, U.S. Gas and particula...

  5. Volatile organic compounds of whole grain soft winter wheat

    Science.gov (United States)

    The aroma from volatile organic compounds (VOCs) is an indicator of grain soundness and also an important quality attribute of grain foods. To identify the inherent VOCs of wheat grain unaffected by fungal infestation and other extrinsic factors, grains of nine soft wheat varieties were collected at...

  6. Modeling emissions of volatile organic compounds from silage

    Science.gov (United States)

    Photochemical smog is a major air pollution problem and a significant cause of premature death in the U.S. Smog forms in the presence of volatile organic compounds (VOCs), which are emitted primarily from industry and motor vehicles in the U.S. However, dairy farms may be an important source in so...

  7. The emission of volatile compounds from leaf litter

    NARCIS (Netherlands)

    Derendorp, L.

    2012-01-01

    Leaf litter is available at the Earth’s surface in large quantities. During the decomposition of leaf litter, volatile compounds can be released into the atmosphere, where they potentially influence local air quality, atmospheric chemistry or the global climate. In this thesis the focus was on the e

  8. Development of volatile compounds in processed cheese during storage

    DEFF Research Database (Denmark)

    Sunesen, Lars Oddershede; Lund, Pia; Sørensen, J.

    2002-01-01

    The purpose of this work teas to study tire impact of storage conditions, such as light and temperature, on the development of volatile compounds to processed cheese. Cheese in glass containers was stored at 5, 20 or 37 degreesC in light or darkness for up to 1 yr. Dynamic headspace and gas...

  9. Qualitative analysis of volatile organic compounds on biochar

    Science.gov (United States)

    Qualitative identification of sorbed volatile organic compounds (VOCs) on biochar was conducted by headspace thermal desorption coupled to capillary gas chromatographic-mass spectrometry. VOCs may have a mechanistic role influencing plant and microbial responses to biochar amendments, since VOCs ca...

  10. The emission of volatile compounds from leaf litter

    NARCIS (Netherlands)

    Derendorp, L.|info:eu-repo/dai/nl/314016414

    2012-01-01

    Leaf litter is available at the Earth’s surface in large quantities. During the decomposition of leaf litter, volatile compounds can be released into the atmosphere, where they potentially influence local air quality, atmospheric chemistry or the global climate. In this thesis the focus was on the

  11. Emission of volatile organic compounds from silage: Compounds, sources, and implications

    Science.gov (United States)

    Hafner, Sasha D.; Howard, Cody; Muck, Richard E.; Franco, Roberta B.; Montes, Felipe; Green, Peter G.; Mitloehner, Frank; Trabue, Steven L.; Rotz, C. Alan

    2013-10-01

    Silage, fermented cattle feed, has recently been identified as a significant source of volatile organic compounds (VOCs) to the atmosphere. A small number of studies have measured VOC emission from silage, but not enough is known about the processes involved to accurately quantify emission rates and identify practices that could reduce emissions. Through a literature review, we have focused on identifying the most important compounds emitted from corn silage (the most common type of silage in the US) and the sources of these compounds by quantifying their production and emission potential in silage and describing production pathways. We reviewed measurements of VOC emission from silage and assessed the importance of individual silage VOCs through a quantitative analysis of VOC concentrations within silage. Measurements of VOC emission from silage and VOCs present within silage indicated that alcohols generally make the largest contribution to emission from corn silage, in terms of mass emitted and potential ozone formation. Ethanol is the dominant alcohol in corn silage; excluding acids, it makes up more than half of the mean mass of VOCs present. Acids, primarily acetic acid, may be important when emission is high and all VOCs are nearly depleted by emission. Aldehydes and esters, which are more volatile than acids and alcohols, are important when exposure is short, limiting emission of more abundant but less volatile compounds. Variability in silage VOC concentrations is very high; for most alcohols and acids, tolerance intervals indicate that 25% of silages have concentrations a factor of two away from median values, and possibly much further. This observation suggests that management practices can significantly influence VOC concentrations. Variability also makes prediction of emissions difficult. The most important acids, alcohols, and aldehydes present in silage are probably produced by bacteria (and, in the case of ethanol, yeasts) during fermentation and

  12. Bioactivity of volatile organic compounds produced by Pseudomonas tolaasii

    Directory of Open Access Journals (Sweden)

    Pietro eLo Cantore

    2015-10-01

    Full Text Available Pseudomonas tolaasii is the main bacterial pathogen of several mushroom species. In this paper we report that strains of P. tolaasii produce volatile substances inducing in vitro mycelia growth inhibition of Pleurotus ostreatus and P. eryngii, and Agaricus bisporus and P. ostreatus basidiome tissue blocks brown discoloration. P. tolaasii strains produced the volatile ammonia but not hydrogen cyanide. Among the volatiles detected by GC-MS, methanethiol, dimethyl disulfide, and 1-undecene were identified. The latter, when assayed individually as pure compounds, led to similar effects noticed when P. tolaasii volatiles natural blend was used on mushrooms mycelia and basidiome tissue blocks. Furthermore, the natural volatile mixture, resulted toxic toward lettuce and broccoli seedling growth. In contrast, pure volatiles showed different activity according to their nature and/or doses applied. Indeed, methanethiol resulted toxic at all the doses used, while dimethyl disulfide toxicity was assessed till a quantity of 1.25 µg, below which it caused, together with 1-undecene ( 10 µg, broccoli growth increase.

  13. Environmental Aspects of Two Volatile Organic Compound Groundwater Treatment Designs at the Rocky Flats Site - 13135

    Energy Technology Data Exchange (ETDEWEB)

    Michalski, Casey C.; DiSalvo, Rick; Boylan, John [Stoller LMS Team, 11025 Dover Street, Suite 1000, Westminster, CO 80021 (United States)

    2013-07-01

    DOE's Rocky Flats Site in Colorado is a former nuclear weapons production facility that began operations in the early 1950's. Because of releases of hazardous substances to the environment, the federally owned property and adjacent offsite areas were placed on the CERCLA National Priorities List in 1989. The final remedy was selected in 2006. Engineered components of the remedy include four groundwater treatment systems that were installed before closure as CERCLA-accelerated actions. Two of the systems, the Mound Site Plume Treatment System and the East Trenches Plume Treatment System, remove low levels of volatile organic compounds using zero-valent iron media, thereby reducing the loading of volatile organic compounds in surface water resulting from the groundwater pathway. However, the zero-valent iron treatment does not reliably reduce all volatile organic compounds to consistently meet water quality goals. While adding additional zero-valent iron media capacity could improve volatile organic compound removal capability, installation of a solar powered air-stripper has proven an effective treatment optimization in further reducing volatile organic compound concentrations. A comparison of the air stripper to the alternative of adding additional zero-valent iron capacity to improve Mound Site Plume Treatment System and East Trenches Plume Treatment System treatment based on several key sustainable remediation aspects indicates the air stripper is also more 'environmentally friendly'. These key aspects include air pollutant emissions, water quality, waste management, transportation, and costs. (authors)

  14. Potential Signatures of Semi-volatile Compounds Associated With Nuclear Processing

    Energy Technology Data Exchange (ETDEWEB)

    Probasco, Kathleen M.; Birnbaum, Jerome C.; Maughan, A. D.

    2002-06-01

    Semi-volatile chemicals associated with nuclear processes (e.g., the reprocessing of uranium to produce plutonium for nuclear weapons, or the separation of actinides from processing waste streams), can provide sticky residues or signatures that will attach to piping, ducting, soil, water, or other surface media. Volatile compounds, that are more suitable for electro-optical sensing, have been well studied. However, the semi-volatile compounds have not been well documented or studied. A majority of these semi-volatile chemicals are more robust than typical gaseous or liquid chemicals and can have lifetimes of several weeks, months, or years in the environment. However, large data gaps exist concerning these potential signature compounds and more research is needed to fill these data gaps so that important signature information is not overlooked or discarded. This report investigates key semi-volatile compounds associated with nuclear separations, identifies available chemical and physical properties, and discusses the degradation products that would result from hydrolysis, radiolysis and oxidation reactions on these compounds.

  15. Characterization of volatile aroma compounds in different brewing barley cultivars.

    Science.gov (United States)

    Dong, Liang; Hou, Yingmin; Li, Feng; Piao, Yongzhe; Zhang, Xiao; Zhang, Xiaoyu; Li, Cheng; Zhao, Changxin

    2015-03-30

    Beer is a popular alcoholic malt beverage resulting from fermentation of the aqueous extract of malted barley with hops. The aroma of brewing barley impacts the flavor of beer indirectly, because some flavor compounds or their precursors in beer come from the barley. The objectives of this research were to study volatile profiles and to characterize odor-active compounds of brewing barley in order to determine the variability of the aroma composition among different brewing barley cultivars. Forty-one volatiles comprising aldehydes, ketones, alcohols, organic acids, aromatic compounds and furans were identified using solid phase microextraction combined with gas chromatography/mass spectrometry, among which aldehydes, alcohols and ketones were quantitatively in greatest abundance. Quantitative measurements performed by means of solvent extraction and calculation of odor activity values revealed that acetaldehyde, 2-methylpropanal, 3-methylbutanal, 2-methylbutanal, hexanal, heptanal, octanal, nonanal, 3-methyl-1-butanol, cyclopentanol, 2,3-butanedione, 2,3-pentanedione, 2-heptanone, acetic acid, ethyl acetate, 2-pentylfuran and benzeneacetaldehyde, whose concentrations exceeded their odor thresholds, could be considered as odor-active compounds of brewing barley. Principal component analysis was employed to evaluate the differences among cultivars. The results demonstrated that the volatile profile based on the concentrations of aroma compounds enabled good differentiation of most barley cultivars. © 2014 Society of Chemical Industry.

  16. Isolation and preconcentration of volatile organic compounds from water; Review

    Energy Technology Data Exchange (ETDEWEB)

    Namiesnik, J.; Gorecki, T.; Biziuk, M.; Torres, L. (Technical Univ. of Gdansk (Poland) Ecole Nationale Superieure de Chimie, Toulouse (France))

    1990-10-01

    Methods for the isolation and/or concentration of volatile organic compounds from water samples for trace organic analysis by gas chromatography are reviewed. The following basic groups of methods are discussed: liquid-liquid extraction, adsorption on solid sorbents, extraction with gas (gas stripping and static and dynamic headspace techniques) and membrane processes. The theoretical bases of these methods are discussed. Experimental arrangements for the isolation and/or concentration of volatile compounds from water are presented and discussed with respect to their efficiency. The applicability of the described methods to the isolation and/or concentration of various organic compounds from waters of various origins is discussed. 26 figs., 7 tabs., 695 refs.

  17. Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors.

    Science.gov (United States)

    Šetka, Milena; Drbohlavová, Jana; Hubálek, Jaromír

    2017-03-10

    The aim of this review is to summarize the recent progress in the fabrication of efficient nanostructured polymer-based sensors with special focus on polypyrrole. The correlation between physico-chemical parameters, mainly morphology of various polypyrrole nanostructures, and their sensitivity towards selected gas and volatile organic compounds (VOC) is provided. The different approaches of polypyrrole modification with other functional materials are also discussed. With respect to possible sensors application in medicine, namely in the diagnosis of diseases via the detection of volatile biomarkers from human breath, the sensor interaction with humidity is described as well. The major attention is paid to analytes such as ammonia and various alcohols.

  18. Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors

    Directory of Open Access Journals (Sweden)

    Milena Šetka

    2017-03-01

    Full Text Available The aim of this review is to summarize the recent progress in the fabrication of efficient nanostructured polymer-based sensors with special focus on polypyrrole. The correlation between physico-chemical parameters, mainly morphology of various polypyrrole nanostructures, and their sensitivity towards selected gas and volatile organic compounds (VOC is provided. The different approaches of polypyrrole modification with other functional materials are also discussed. With respect to possible sensors application in medicine, namely in the diagnosis of diseases via the detection of volatile biomarkers from human breath, the sensor interaction with humidity is described as well. The major attention is paid to analytes such as ammonia and various alcohols.

  19. Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors

    Science.gov (United States)

    Šetka, Milena; Drbohlavová, Jana; Hubálek, Jaromír

    2017-01-01

    The aim of this review is to summarize the recent progress in the fabrication of efficient nanostructured polymer-based sensors with special focus on polypyrrole. The correlation between physico-chemical parameters, mainly morphology of various polypyrrole nanostructures, and their sensitivity towards selected gas and volatile organic compounds (VOC) is provided. The different approaches of polypyrrole modification with other functional materials are also discussed. With respect to possible sensors application in medicine, namely in the diagnosis of diseases via the detection of volatile biomarkers from human breath, the sensor interaction with humidity is described as well. The major attention is paid to analytes such as ammonia and various alcohols. PMID:28287435

  20. Emission of volatile organic compounds after land application of cattle manure

    Science.gov (United States)

    Beef cattle manure can serve as a valuable source of nutrients for crop production. However, emissions of volatile organic compounds (VOCs) following land application may pose an odor nuisance to downwind populations. This study was conducted to evaluate the effects of application method, diet, so...

  1. Emission of volatile organic compounds as affected by rate of application of cattle manure

    Science.gov (United States)

    Beef cattle manure can serve as a valuable nutrient source for crop production. However, emissions of volatile organic compounds (VOCs) following land application may pose a potential off-site odor concern. This study was conducted to evaluate the effects of land application method, N- application...

  2. ISOTOPIC (14C) AND CHEMICAL COMPOSITION OF ATMOSPHERIC VOLATILE ORGANIC COMPOUND FRACTIONS - PRECURSORS TO OZONE FORMATION

    Science.gov (United States)

    Atmospheric volatile organic compounds (VOCs) are an important factor in the production of ozone near ground level [3]. Many hydrocarbons originate from auto exhaust. However, a number of VOCs, e.g., isoprene, are known to be natural in origin. To develop reliable models for un...

  3. Volatile organic compound emissions in relation to plant carbon fixation and the terrestrial carbon budget

    NARCIS (Netherlands)

    Kesselmeier, J.; Ciccioli, P.; Kuhn, U.; Stefani, P.; Biesenthal, T.; Rottenberger, S.; Wolf, A.; Vitullo, M.; Valentini, R.; Nobre, A.; Kabat, P.; Andreae, M.O.

    2002-01-01

    A substantial amount of carbon is emitted by terrestrial vegetation as biogenic volatile organic compounds (VOC), which contributes to the oxidative capacity of the atmosphere, to particle production and to the carbon cycle. With regard to the carbon budget of the terrestrial biosphere, a release of

  4. Beer volatile compounds and their application to low-malt beer fermentation.

    Science.gov (United States)

    Kobayashi, Michiko; Shimizu, Hiroshi; Shioya, Suteaki

    2008-10-01

    Low-malt beers, in which the amount of wort is adjusted to less than two-thirds of that in regular beer, are popular in the Japanese market because the flavor of low-malt beer is similar to that of regular beer but the price lesser than that of regular beer. There are few published articles about low-malt beer. However, in the production process, there are many similarities between low-malt and regular beer, e.g., the yeast used in low-malt beer fermentation is the same as that used for regular beer. Furthermore, many investigations into regular beer are applicable to low-malt beer production. In this review, we focus on production of volatile compounds, and various studies that are applicable to regular and low-malt beer. In particular, information about metabolism of volatile compounds in yeast cells during fermentation, volatile compound measurement and estimation methods, and control of volatile compound production are discussed in this review, which concentrates on studies published in the last 5-6 years.

  5. New graphene fiber coating for volatile organic compounds analysis.

    Science.gov (United States)

    Zhang, GuoJuan; Guo, XiaoXi; Wang, ShuLing; Wang, XueLan; Zhou, YanPing; Xu, Hui

    2014-10-15

    In the work, a novel graphene-based solid phase microextraction-gas chromatography/mass spectrometry method was developed for the analysis of trace amount of volatile organic compounds in human exhaled breath vapor. The graphene fiber coating was prepared by a one-step hydrothermal reduction reaction. The fiber with porous and wrinkled structure exhibited excellent extraction efficiency toward eight studied volatile organic compounds (two n-alkanes, five n-aldehydes and one aromatic compound). Meanwhile, remarkable thermal and mechanical stability, long lifespan and low cost were also obtained for the fiber. Under the optimal conditions, the developed method provided low limits of detection (1.0-4.5ngL(-1)), satisfactory reproducibility (3.8-13.8%) and acceptable recoveries (93-122%). The method was applied successfully to the analysis of breath samples of lung cancer patients and healthy individuals. The unique advantage of this approach includes simple setup, non-invasive analysis, cost-efficient and sufficient sensitivity. The proposed method supply us a new possibility to monitor volatile organic compounds in human exhaled breath samples.

  6. 75 FR 2090 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compound...

    Science.gov (United States)

    2010-01-14

    ... Organic Compound Automobile Refinishing Rules for Indiana AGENCY: Environmental Protection Agency (EPA... relations, Nitrogen dioxide, Ozone, Reporting and recordkeeping requirements, Volatile organic compounds... Plan (SIP). These rule revisions extend the applicability of Indiana's approved volatile...

  7. Comparison of SPME Methods for Determining Volatile Compounds in Milk, Cheese, and Whey Powder

    Directory of Open Access Journals (Sweden)

    Michael H. Tunick

    2013-11-01

    Full Text Available Solid phase microextraction and gas chromatography-mass spectrometry (SPME-GC-MS are commonly used for qualitative and quantitative analysis of volatile compounds in various dairy products, but conditions have to be adjusted to maximize release while not generating new compounds that are absent in the original sample. Queso Fresco, a fresh non-melting cheese, may be heated at 60 °C for 30 min; in contrast, compounds are produced in milk when exposed to light and elevated temperatures, so milk samples are heated as little as possible. Products such as dehydrated whey protein are more stable and can be exposed to longer periods (60 min of warming at lower temperature (40 °C without decomposition, allowing for capture and analysis of many minor components. The techniques for determining the volatiles in dairy products by SPME and GC-MS have to be optimized to produce reliable results with minimal modifications and analysis times.

  8. Volatile products controlling Titan's tholins production

    KAUST Repository

    Carrasco, Nathalie

    2012-05-01

    A quantitative agreement between nitrile relative abundances and Titan\\'s atmospheric composition was recently shown with a reactor simulating the global chemistry occurring in Titan\\'s atmosphere (Gautier et al. [2011]. Icarus, 213, 625-635). Here we present a complementary study on the same reactor using an in situ diagnostic of the gas phase composition. Various initial N 2/CH 4 gas mixtures (methane varying from 1% to 10%) are studied, with a monitoring of the methane consumption and of the stable gas neutrals by in situ mass spectrometry. Atomic hydrogen is also measured by optical emission spectroscopy. A positive correlation is found between atomic hydrogen abundance and the inhibition function for aerosol production. This confirms the suspected role of hydrogen as an inhibitor of heterogeneous organic growth processes, as found in Sciamma-O\\'Brien et al. (Sciamma-O\\'Brien et al. [2010]. Icarus, 209, 704-714). The study of the gas phase organic products is focussed on its evolution with the initial methane amount [CH 4] 0 and its comparison with the aerosol production efficiency. We identify a change in the stationary gas phase composition for intermediate methane amounts: below [CH 4] 0=5%, the gas phase composition is mainly dominated by nitrogen-containing species, whereas hydrocarbons are massively produced for [CH 4] 0>5%. This predominance of N-containing species at lower initial methane amount, compared with the maximum gas-to solid conversion observed in Sciamma-O\\'Brien et al. (2010) for identical methane amounts confirms the central role played by N-containing gas-phase compounds to produce tholins. Moreover, two protonated imines (methanimine CH 2NH and ethanamine CH 3CHNH) are detected in the ion composition in agreement with Titan\\'s INMS measurements, and reinforcing the suspected role of these chemical species on aerosol production. © 2012 Elsevier Inc.

  9. [Design of artificial foetor flatus based on bacterial volatile compounds].

    Science.gov (United States)

    Justesen, Ulrik Stenz

    2016-12-12

    Excessive flatulence can be a huge social problem. The purpose of this study was to design artificial flatus from bacterial volatile compounds to stimulate research into neutralizing measures. Anaerobic bacteria, representing a broad spectrum, from a recognized international culture collection were included. The strains were incubated in an anaerobic jar. After 24 hours the lid was removed, and the odour was evaluated by a specialist in clinical microbiology. Four different anaerobic strains were chosen for further studies based on their individual odours. In total, seven different combinations of two or three strains were tested. The combination of Bacteroides fragilis ATCC 25285, Clostridium difficile ATCC 700057 and Fusobacterium necrophorum ATCC 25286 was chosen as it had a suitably foul odour. It is possible to design artificial flatus from bacterial volatile compounds. The method is easy and inexpensive and can stimulate further research into neutralizing measures. none. none.

  10. Analytical methods for volatile compounds in wheat bread.

    Science.gov (United States)

    Pico, Joana; Gómez, Manuel; Bernal, José; Bernal, José Luis

    2016-01-08

    Bread aroma is one of the main requirements for its acceptance by consumers, since it is one of the first attributes perceived. Sensory analysis, crucial to be correlated with human perception, presents limitations and needs to be complemented with instrumental analysis. Gas chromatography coupled to mass spectrometry is usually selected as the technique to determine bread volatile compounds, although proton-transfer reaction mass spectrometry begins also to be used to monitor aroma processes. Solvent extraction, supercritical fluid extraction and headspace analysis are the main options for the sample treatment. The present review focuses on the different sample treatments and instrumental alternatives reported in the literature to analyse volatile compounds in wheat bread, providing advantages and limitations. Usual parameters employed in these analytical methods are also described.

  11. 78 FR 11119 - Air Quality: Revision to Definition of Volatile Organic Compounds-Exclusion of trans

    Science.gov (United States)

    2013-02-15

    ... AGENCY 40 CFR Part 51 RIN 2060-AQ38 Air Quality: Revision to Definition of Volatile Organic Compounds...: Proposed rule. SUMMARY: The EPA is proposing to revise the definition of volatile organic compounds (VOCs..., Reporting and recordkeeping requirements, Volatile organic compounds. Dated: February 4, 2013. Lisa...

  12. Volatile organic compound optical fiber sensors: a review

    OpenAIRE

    Arregui, Francisco J.; Candido Bariain; Matias, Ignacio R; Cesar Elosua

    2006-01-01

    Volatile organic compound (VOC) detection is a topic of growing interest with applications in diverse fields, ranging from environmental uses to the food or chemical industries. Optical fiber VOC sensors offering new and interesting properties which overcame some of the inconveniences found on traditional gas sensors appeared over two decades ago. Thanks to its minimum invasive nature and the advantages that optical fiber offers such as light weight, passive nature, low attenuation and the...

  13. Pengaruh Ritma Circadian Terhadap Produksi Volatile Sulfur Compounds (VSC Oral

    Directory of Open Access Journals (Sweden)

    Supriatno Supriatno

    2013-06-01

    Full Text Available Volatile sulfur compounds (VSCs oral dihasilkan dari produk putrifikasi mikroba gas hidrogen sulfida (H2S, metil merkaptan (CH3SH dan dimetil sulfida [(CH32S] yang merupakan gas utama penyebab halitosis. Ritma circadian mempunyai pengaruh terhadap fungsi beberapa organ tubuh termasuk sekresi saliva, produksi hormon, fungsi sistem tubuh, dan aktivitas mikroorganisma. Penelitian bertujuan menguji pengaruh ritma circadian terhadap produksi VSC oral yang diukur menggunakan OralChroma portable. Penelitian dilakukan dengan mengukur gas VSC individu yang sama pada pagi, siang dan malam hari di laboratorium riset terpadu FKG UGM. Hasil pengukuran H2S, CH3SH dan (CH32S diuji menggunakan analisis statistik Anava dua jalur dilanjutkan uji LSD dan uji korelasi Pearson dengan derajat kemaknaan 95%. Hasil penelitian menunjukkan terdapat perbedaan yang sangat bermakna antara produksi gas H2S, CH3SH dan (CH32S dengan waktu pengukuran (efek circadian (p=0,000. Perbedaan sangat bermakna diketahui pula pada pengukuran gas H2S dan (CH32S antara pagi, siang dan malam (p=0,01 dan p= 0,00, serta pengukuran gas CH3SH siang dan malam (p=0,006, tetapi tidak pada CH3SH pagi hari (p=0,061. Produksi gas H2S tertinggi diketahui pada pagi hari (mean 1,198 ng/10 ml, CH3SH pada malam hari (mean 0,099 ng/10 ml, dan (CH32S pada siang hari (mean 1,216 ng/10 ml. Kekuatan hubungan pengukuran antara ke tiga gas dengan efek circadian diketahui sebesar r=0,738. Disimpulkan bahwa ritma circadian berpengaruh terhadap produksi VSCs oral. Produksi gas H2S dan (CH32S berbeda antara pagi, siang dan malam hari, sedangkan produksi gas CH3SH berbeda hanya pengukuran siang dan malam hari. Produksi gas H2S tertinggi diketahui pada pagi hari, gas CH3SH pada malam hari, dan gas (CH32S pada siang hari. Maj Ked Gi. Juni 2013; 20(1: 14 - 20. The Effect Of Circadian Rhythm To Oral Volatile Sulfur Compounds Production. Oral volatile sulfur compound (VSC is produced from microbial purification

  14. Volatile Compounds in Dry Dog Foods and Their Influence on Sensory Aromatic Profile

    Directory of Open Access Journals (Sweden)

    Koushik Adhikari

    2013-02-01

    Full Text Available The aim of this study was to determine volatile compounds in dry dog foods and their possible influence on sensory aromatic profile. Grain-free dry dog foods were compared to dry dog foods manufactured with grain, but also with different protein sources for their aromatic volatiles. Solid-phase microextraction/gas chromatography/mass spectrometry was used to determine the aromatic compounds present in the headspace of these samples. Partial Least Squares regression was performed to correlate the instrumental aromatic data with the descriptive aroma analysis data. A total of 54 aromatic compounds were tentatively identified in the dry dog food samples, with aldehydes and ketones being the most represented organic volatiles group. Grain-added products were on the average higher in total volatiles than grain-free products. Partial Least Squares regression analysis indicated possible connections with sensory aromatic profile and grain-added samples, such as rancid aroma and aldehydes, especially hexanal. The results of this study showed that dry dog foods are products with complex odor characteristics and that grain-free products are less aromatic.

  15. Volatile compounds in dry dog foods and their influence on sensory aromatic profile.

    Science.gov (United States)

    Koppel, Kadri; Adhikari, Koushik; Di Donfrancesco, Brizio

    2013-02-27

    The aim of this study was to determine volatile compounds in dry dog foods and their possible influence on sensory aromatic profile. Grain-free dry dog foods were compared to dry dog foods manufactured with grain, but also with different protein sources for their aromatic volatiles. Solid-phase microextraction/gas chromatography/mass spectrometry was used to determine the aromatic compounds present in the headspace of these samples. Partial Least Squares regression was performed to correlate the instrumental aromatic data with the descriptive aroma analysis data. A total of 54 aromatic compounds were tentatively identified in the dry dog food samples, with aldehydes and ketones being the most represented organic volatiles group. Grain-added products were on the average higher in total volatiles than grain-free products. Partial Least Squares regression analysis indicated possible connections with sensory aromatic profile and grain-added samples, such as rancid aroma and aldehydes, especially hexanal. The results of this study showed that dry dog foods are products with complex odor characteristics and that grain-free products are less aromatic.

  16. Solvent desorption dynamic headspace sampling of fermented dairy product volatiles.

    Science.gov (United States)

    Rankin, S A

    2001-01-01

    A method was developed based on solvent desorption dynamic headspace analysis for the identification and relative quantification of volatiles significant to the study of fermented dairy product aroma. Descriptions of applications of this method are presented including the measurement of diacetyl and acetoin in fermented milk, the evaluation of volatile-hydrocolloid interactions in dairy-based matrices, and the identification of volatiles in cheeses for canonical discriminative analysis. Advantages of this method include rapid analysis, minimal equipment investment, and the ability to analyze samples with traditional GC split/splitless inlet systems. Limitations of this method are that the sample must be in the liquid state and the inherent analytical limitation to those compounds that do not coelute with the solvent or solvent impurity peaks.

  17. Are Some Fungal Volatile Organic Compounds (VOCs) Mycotoxins?

    Science.gov (United States)

    Bennett, Joan W; Inamdar, Arati A

    2015-09-22

    Volatile organic compounds (VOCs) are carbon-compounds that easily evaporate at room temperature. Toxins are biologically produced poisons; mycotoxins are those toxins produced by microscopic fungi. All fungi emit blends of VOCs; the qualitative and quantitative composition of these volatile blends varies with the species of fungus and the environmental situation in which the fungus is grown. These fungal VOCs, produced as mixtures of alcohols, aldehydes, acids, ethers, esters, ketones, terpenes, thiols and their derivatives, are responsible for the characteristic moldy odors associated with damp indoor spaces. There is increasing experimental evidence that some of these VOCs have toxic properties. Laboratory tests in mammalian tissue culture and Drosophila melanogaster have shown that many single VOCs, as well as mixtures of VOCs emitted by growing fungi, have toxic effects. This paper describes the pros and cons of categorizing toxigenic fungal VOCs as mycotoxins, uses genomic data to expand on the definition of mycotoxin, and summarizes some of the linguistic and other conventions that can create barriers to communication between the scientists who study VOCs and those who study toxins. We propose that "volatoxin" might be a useful term to describe biogenic volatile compounds with toxigenic properties.

  18. Are Some Fungal Volatile Organic Compounds (VOCs Mycotoxins?

    Directory of Open Access Journals (Sweden)

    Joan W. Bennett

    2015-09-01

    Full Text Available Volatile organic compounds (VOCs are carbon-compounds that easily evaporate at room temperature. Toxins are biologically produced poisons; mycotoxins are those toxins produced by microscopic fungi. All fungi emit blends of VOCs; the qualitative and quantitative composition of these volatile blends varies with the species of fungus and the environmental situation in which the fungus is grown. These fungal VOCs, produced as mixtures of alcohols, aldehydes, acids, ethers, esters, ketones, terpenes, thiols and their derivatives, are responsible for the characteristic moldy odors associated with damp indoor spaces. There is increasing experimental evidence that some of these VOCs have toxic properties. Laboratory tests in mammalian tissue culture and Drosophila melanogaster have shown that many single VOCs, as well as mixtures of VOCs emitted by growing fungi, have toxic effects. This paper describes the pros and cons of categorizing toxigenic fungal VOCs as mycotoxins, uses genomic data to expand on the definition of mycotoxin, and summarizes some of the linguistic and other conventions that can create barriers to communication between the scientists who study VOCs and those who study toxins. We propose that “volatoxin” might be a useful term to describe biogenic volatile compounds with toxigenic properties.

  19. Volatile organic compound (VOC) emissions during malting and beer manufacture

    Science.gov (United States)

    Gibson, Nigel B.; Costigan, Gavin T.; Swannell, Richard P. J.; Woodfield, Michael J.

    Estimates have been made of the amounts of volatile organic compounds (VOCs) released during different stages of beer manufacture. The estimates are based on recent measurements and plant specification data supplied by manufacturers. Data were obtained for three main manufacturing processes (malting, wort processing and fermentation) for three commercial beer types. Some data on the speciation of emitted compounds have been obtained. Based on these measurements, an estimate of the total unabated VOC emission. from the U.K. brewing industry was calculated as 3.5 kta -1, over 95% of which was generated during barley malting. This value does not include any correction for air pollution control.

  20. [Binding of Volatile Organic Compounds to Edible Biopolymers].

    Science.gov (United States)

    Misharina, T A; Terenina, M B; Krikunova, N I; Medvedeva, I B

    2016-01-01

    Capillary gas chromatography was used to study the influence of the composition and structure of different edible polymers (polysaccharides, vegetable fibers, and animal protein gelatin) on the binding of essential oil components. The retention of volatile organic compounds on biopolymers was shown to depend on their molecule structure and the presence, type, and position of a functional group. The maximum extent of the binding was observed for nonpolar terpene and sesquiterpene hydrocarbons, and the minimum extent was observed for alcohols. The components of essential oils were adsorbed due mostly to hydrophobic interactions. It was shown that the composition and structure of a compound, its physico-chemical state, and the presence of functional groups influence the binding. Gum arabic and guar gum were found to bind nonpolar compounds to a maximum and minimum extent, respectively. It was demonstrated the minimum adsorption ability of locust bean gum with respect to all studied compounds.

  1. Avaliação do uso de inibidores de etileno sobre a produção de compostos voláteis e de mangiferina em manga Evaluation of the use of ethylene inhibitors on production of volatile compounds and mangiferin in mango fruit

    Directory of Open Access Journals (Sweden)

    Kirley Marques Canuto

    2010-01-01

    Full Text Available Effects of two ethylene inhibitors, 1-methylcylopropene (1-MCP and aminoethoxyvinylglycine (AVG, on production of volatile compounds and mangiferin (a bioactive xanthone in 'Tommy Atkins' mango fruit were investigated. Volatile composition and mangiferin content, in treated and untreated fruits at three maturity, stages were determined by SPME-GC-MS and HPLC, respectively. These chromatographical analysis revealed that the volatile profiles and mangiferin concentrations were not significantly different, suggesting that the use of ethylene inhibitors does not affect the mango aroma and functional properties relative to this xanthone. Moreover, a simple, precise and accurate HPLC method was developed for quantifying mangiferin in mango pulp.

  2. Volatile organic compounds associated with Plasmodium falciparum infection in vitro.

    Science.gov (United States)

    Correa, Ricardo; Coronado, Lorena M; Garrido, Anette C; Durant-Archibold, Armando A; Spadafora, Carmenza

    2017-05-02

    In order to identify new ways to prevent transmission of vector-borne diseases such as malaria, efforts have been made to understand how insects are attracted to humans. Vector-host interaction studies have shown that several volatile compounds play an important role in attracting mosquitoes to human targets. A headspace solid-phase micro-extraction/gas chromatography-mass spectrometry (HSPME GC-MS) analysis of the volatile organic composition of extracellular vesicles (EVs) and supernatants of ultracentrifugation (SNUs) was carried out in Plasmodium falciparum-infected cultures with high and low parasitemias. A list of 18 volatile organic compounds (VOCs) was obtained from the EVs of both infected and uninfected RBCs with 1,2,3-Propanetriol, diacetate (diacetin) increased in the infected EVs, regardless of the parasitemia of the culture. The supernatant analysis, however, gave off 56 VOCs, with pentane 2,2,4-trimethyl being present in all the SNUs of uninfected erythrocytes but absent from the parasite-infected ones. Standing out in this study was hexanal, a reported insect attractant, which was the only VOC present in all samples from SNUs from infected erythrocytes and absent from uninfected ones, suggesting that it originates during parasite infection. The hexanal compound, reportedly a low-level component found in healthy human samples such as breath and plasma, had not been found in previous analyses of P. falciparum-infected patients or cultures. This compound has been reported as an Anopheles gambiae attractant in plants. While the compound could be produced during infection by the malaria parasite in human erythrocytes, the A. gambiae attraction could be used by the parasite as a strategy for transmission.

  3. A case study: shelf-life of smoked herring fillets by volatile compounds analysis.

    Directory of Open Access Journals (Sweden)

    Cristian Bernardi

    2014-02-01

    Full Text Available Two different products of vacuum packed cold smoked herrings were analyzed at time intervals in order to evaluate the efficiency of the processing and product stability. Microbiological total counts, lactic acid bacteria, total coliforms, pH, water activity, water content, salt content (WPS were determined. Differences in hygienic conditions and salt content were found. Principal components analysis (PCA of volatile compounds determined by GC-MS analysis allowed the differentiation of the processing.

  4. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    Science.gov (United States)

    George, Ingrid J.; Black, Robert R.; Geron, Chris D.; Aurell, Johanna; Hays, Michael D.; Preston, William T.; Gullett, Brian K.

    2016-05-01

    In this study, volatile and semi-volatile organic compound (VOCs and SVOCs) mass emission factors were determined from laboratory peat fire experiments. The peat samples originated from two National Wildlife Refuges on the coastal plain of North Carolina, U.S.A. Gas- and particle-phase organic compounds were quantified by gas chromatography-mass spectrometry and by high pressure liquid chromatography. Hazardous air pollutants (HAPs) accounted for a large fraction (∼60%) of the speciated VOC emissions from peat burning, including large contributions of acetaldehyde, formaldehyde, benzene, toluene, and chloromethane. In the fine particle mass (PM2.5), the following organic compound classes were dominant: organic acids, levoglucosan, n-alkanes, and n-alkenes. Emission factors for the organic acids in PM2.5 including n-alkanoic acids, n-alkenoic acids, n-alkanedioic acids, and aromatic acids were reported for the first time for peat burning, representing the largest fraction of organic carbon (OC) mass (11-12%) of all speciated compound classes measured in this work. Levoglucosan contributed to 2-3% of the OC mass, while methoxyphenols represented 0.2-0.3% of the OC mass on a carbon mass basis. Retene was the most abundant particulate phase polycyclic aromatic hydrocarbon (PAH). Total HAP VOC and particulate PAH emissions from a 2008 peat wildfire in North Carolina were estimated, suggesting that peat fires can contribute a large fraction of state-wide HAP emissions.

  5. Volatile organic compounds in pharmacy – the range of the problem

    Directory of Open Access Journals (Sweden)

    Marzena Jamrógiewicz

    2013-09-01

    Full Text Available The sensitivity and chemical instability of the active pharmaceutical ingredients (API may result in the formation and emission of volatile substances which affect not only the stability of the medicinal product, but also leads to changes of physicochemical properties, causing negative pharmacologic effects sometimes toxic. For this reason, it is important to conduct routine stability tests, as well as, to determine gaseous degradation products using modern analytical methods, often unconventional. Knowledge of medicinal chemistry, physical chemistry, technology and toxicology is needed to provide a stable form of the drug and its utmost therapeutic effect. Available guidelines on determined volatile organic compounds (VOCs present in samples of drug substances have been verified , types of VOCs have been specified and classified. Current literature reviewed shows the results of determination of VOCs in active drug compounds and medicinal products, including discussion on various possibilities of their detection and identification. Currently used methods are based on gas chromatography and ion mobility spectrometry IMS.

  6. Volatile Organic Compound Emissions from Dairy Facilities in Central California

    Science.gov (United States)

    Hasson, A. S.; Ogunjemiyo, S. O.; Trabue, S.; Middala, S. R.; Ashkan, S.; Scoggin, K.; Vu, K. K.; Addala, L.; Olea, C.; Nana, L.; Scruggs, A. K.; Steele, J.; Shelton, T. C.; Osborne, B.; McHenry, J. R.

    2011-12-01

    Emissions of volatile organic compounds (VOCs) from dairy facilities are thought to be an important contributor to high ozone levels in Central California, but emissions inventories from these sources contain significant uncertainties. In this work, VOC emissions were measured at two Central California dairies during 2010 and 2011. Isolation flux chambers were used to measure direct emissions from specific dairy sources, and upwind/downwind ambient profiles were measured from ground level up to heights of 60 m. Samples were collected using a combination of canisters and sorbent tubes, and were analyzed by GC-MS. Additional in-situ measurements were made using infra-red photoaccoustic detectors and Diode Laser Absorption Spectroscopy. Temperature and ozone profiles up to 250 m above ground level were also measured using a tethersonde. Substantial fluxes of a number of VOCs including alcohols, volatile fatty acids and esters were observed at both sites. Implications of these measurements for regional air quality will be discussed.

  7. Effect of immobilized Lactobacillus casei on volatile compounds of heat treated probiotic dry-fermented sausages.

    Science.gov (United States)

    Sidira, Marianthi; Kandylis, Panagiotis; Kanellaki, Maria; Kourkoutas, Yiannis

    2015-07-01

    The effect of the amount of immobilized Lactobacillus casei ATCC 393 on wheat grains on the generation of volatile compounds during the production of heat treated probiotic dry-fermented sausages was investigated. For comparison reasons, sausages containing free L. casei cells or no starter culture as well as a similar commercial product were also included in the study. Samples ripened for 8 days and heat treated to 70-72°C for 8-10 min were subjected to Solid Phase Microextraction (SPME) Gas Chromatography/Mass Spectrometry (GC/MS) analysis. The starter culture affected significantly the production of volatile compounds. The highest content of esters and alcohols was observed in the sample containing 30 g of immobilized cells/kg of stuffing mixture, while the highest concentration of organic acids was observed in the sausages with no starter culture. In contrast, the commercial product contained the lowest concentration of volatiles. Principal component analysis of the semi-quantitative data revealed that the volatile composition was affected primarily by the nature and concentration of the starter culture.

  8. Emission and Chemical Transformation of Biogenic Volatile Organic Compounds (echo)

    Science.gov (United States)

    Koppmann, R.; Hoffmann, T.; Kesselmeier, J.; Schatzmann, M.

    Forests are complex sources of biogenic volatile organic compounds (VOC) in the planetary boundary layer. The impact of biogenic VOC on tropospheric photochem- istry, air quality, and the formation of secondary products affects our climate on a regional and global scale but is far from being understood. A considerable lack of knowledge exists concerning a forest stand as a net source of reactive trace com- pounds, which are transported directly into the planetary boundary layer (PBL). In particular, little is known about the amounts of VOC which are processed within the canopy. The goal of ECHO, which is presented in this poster, is to investigate these questions and to improve our understanding of biosphere-atmosphere interactions and their effects on the PBL. The investigation of emissions, chemical processing and vertical transport of biogenic VOC will be carried out in and above a mixed forest stand in Jülich, Germany. A large set of trace gases, free radicals and meteorologi- cal parameters will be measured at different heights in and above the canopy, covering concentrations of VOC, CO, O3, organic nitrates und NOx as well as organic aerosols. For the first time concentration profiles of OH, HO2, RO2 und NO3 radicals will be measured as well together with the actinic UV radiation field and photolysis frequen- cies of all relevant radical precursors (O3, NO2, peroxides, oxygenated VOC). The different tasks of the field experiments will be supported by simulation experiments investigating the primary emission and the uptake of VOC by the plants in stirred tank reactors, soil parameters and soil emissions in lysimeter experiments, and the chem- ical processing of the trace gases as observed in and above the forest stand in the atmosphere simulation chamber SAPHIR. The planning and interpretation of the field experiments is supported by simulations of the field site in a wind tunnel.

  9. Transport, behavior, and fate of volatile organic compounds in streams

    Science.gov (United States)

    Rathbun, R.E.

    2000-01-01

    Volatile organic compounds (VOCs) are compounds with chemical and physical properties that allow the compounds to move freely between the water and air phases of the environment. VOCs are widespread in the environment because of this mobility. Many VOCs have properties that make them suspected or known hazards to the health of humans and aquatic organisms. Consequently, understanding the processes affecting the concentration and distribution of VOCs in the environment is necessary. The transport, behavior, and fate of VOCs in streams are determined by combinations of chemical, physical, and biological processes. These processes are volatilization, absorption, wet and dry deposition, microbial degradation, sorption, hydrolysis, aquatic photolysis, oxidation, chemical reaction, biocon-centration, advection, and dispersion. The relative importance of each of these processes depends on the characteristics of the VOC and the stream. The U.S. Geological Survey National Water-Quality Assessment Program selected 55 VOCs for study. This article reviews the characteristics of the various processes that could affect the transport, behavior, and fate of these VOCs in streams.

  10. Volatile organic compounds in the unsaturated zone from radioactive wastes

    Science.gov (United States)

    Baker, Ronald J.; Andraski, Brian J.; Stonestrom, David A.; Luo, Wentai

    2012-01-01

    Volatile organic compounds (VOCs) are often comingled with low-level radioactive wastes (LLRW), but little is known about subsurface VOC emanations from LLRW landfills. The current study systematically quantified VOCs associated with LLRW over an 11-yr period at the USGS Amargosa Desert Research Site (ADRS) in southwestern Nevada. Unsaturated-zone gas samples of VOCs were collected by adsorption on resin cartridges and analyzed by thermal desorption and GC/MS. Sixty of 87 VOC method analytes were detected in the 110-m-thick unsaturated zone surrounding a LLRW disposal facility. Chlorofluorocarbons (CFCs) were detected in 100% of samples collected. Chlorofluorocarbons are powerful greenhouse gases, deplete stratospheric ozone, and are likely released from LLRW facilities worldwide. Soil-gas samples collected from a depth of 24 m and a horizontal distance 100 m south of the nearest waste-disposal trench contained >60,000 ppbv total VOCs, including >37,000 ppbv CFCs. Extensive sampling in the shallow unsaturated zone (0–2 m deep) identified areas where total VOC concentrations exceeded 5000 ppbv at the 1.5-m depth. Volatile organic compound concentrations exceeded background levels up to 300 m from the facility. Maximum vertical diffusive fluxes of total VOCs were estimated to be 1 g m-2 yr-1. Volatile organic compound distributions were similar but not identical to those previously determined for tritium and elemental mercury. To our knowledge, this study is the first to characterize the unsaturated zone distribution of VOCs emanating from a LLRW landfill. Our results may help explain anomalous transport of radionuclides at the ADRS and elsewhere.

  11. Synthesis of Carbon Nanotubes and Volatile Organic Compounds Detection

    Directory of Open Access Journals (Sweden)

    Sobri S.

    2016-01-01

    Full Text Available In this work, the adsorption effect of volatile organic compounds (chloroacetophenone, acetonitrile and hexane towards the change of resistance of CNTs pellet as sensor signal was investigated. CNTs used in this research were synthesized using Floating Catalyst – Chemical Vapor Deposition (FC-CVD method in optimum condition. The synthesized CNTs were characterized using Scanning Electron Microscopy (SEM, Transmission Electron Microscopy (TEM and Raman Spectroscopy. The variation of resistance changes towards the tested gases were recorded using a multimeter. CNTs sensor pellet showed good responses towards the tested gases, however, the sensitivity, response time and recovery time of sensor pellet need to be optimized.

  12. Volatile organic compound emission profiles of four common arctic plants

    DEFF Research Database (Denmark)

    Vedel-Petersen, Ida; Schollert, Michelle; Nymand, Josephine;

    2015-01-01

    The biogenic volatile organic compound (BVOC) emissions from plants impact atmosphere and climate. The species-specific emissions, and thereby the atmospheric impact, of many plant species are still unknown. Knowledge of BVOC emission from arctic plants is particularly limited. The vast area...... and relatively high leaf temperature give the Arctic potential for emissions that cannot be neglected. This field study aimed to elucidate the BVOC emission profiles for four common arctic plant species in their natural environment during the growing season. BVOCs were sampled from aboveground parts of Empetrum...

  13. The sampling apparatus of volatile organic compounds for wood composites

    Institute of Scientific and Technical Information of China (English)

    SHENJun; ZHAOLin-bo; LIUYu

    2005-01-01

    Terpenes, aldehydes, ketones, benzene, and toluene are the important volatile organic compounds (VOCs) emitted from wood composites. A sampling apparatus of VOCs for wood composites was designed and manufactured by Northeast Forestry University in China.The concentration of VOCs derived from wood based materials, such as flooring, panel wall, finishing, and furniture can be sampled in a small stainless steel chambers. A protocol is also developed in this study to sample and measure the new and representative specimens. Preliminary research showed that the properties of the equipment have good stability. The sort and the amount of different components can be detected from it. The apparatus is practicable.

  14. Review on Volatile Organic Compounds Emission from Wood Composites

    Institute of Scientific and Technical Information of China (English)

    LIU Yu; YU Yaoming; SHEN Jun; LIU Ming

    2006-01-01

    The problem of indoor air quality (IAQ) is mainly caused by the volatile organic compounds (VOC) emission from the wood-based composites. As a material for decoration, furniture manufacturing or building, wood-based composite is one of the sources of VOC emissions. Most of them are formaldehyde, terpene, ketone and benzene. The paper reviews on VOC emission of wood-based composites at home and abroad, including the source of the VOC, its impacts on IAQ, its emission during processing and using, the usual sampling and analyse methods of VOC in different conditions. Meanwhile, main problems existed in the past researches are summarized and some suggestions are put forward.

  15. Identification of volatile compounds in codfish ( Gadus) by a combination of two extraction Methods coupled with GC-MS analysis

    Science.gov (United States)

    Chang, Yufei; Hou, Hu; Li, Bafang

    2016-06-01

    Codfish is a kind of abyssal fish species with a great value in food industry. However, the flavor of codfish, especially the unpleasant odor, has caused serious problems in its processing. To accurately identify the volatile compounds in codfish, a combination of solid phase micro-extraction (SPME) method and simultaneous distillation extraction (SDE) method was used to extract the volatiles. Gas chromatography-mass spectrometry (GC-MS) along with Kovats indices (KI) and authentic standard compounds were used to identify the volatiles. The results showed that a total of 86 volatile compounds were identified in codfish, of them 24 were extracted by SDE, 69 compounds by SPME, and 10 compounds by both SDE and SPME. Seventy volatile compounds were found to have specific odors, of them 7 typical compounds contributed significantly to the flavor of codfish. Alcohols ( i.e., (E)-2-penten-1-ol and 2-octanol), esters ( i.e., ethyl butyrate and methyl geranate), aldehydes ( i.e., 2-dodecenal and pentadecanal) contributed the most to fresh flavor while nitrogen compounds, sulphur compounds, furans, as well as some ketones ( i.e., 2-hydroxy-3-pentanone) brought unpleasant odor, such as fishy and earthy odor. It was indicated that the combination of multiple extraction methods and GC-MS analysis can enhance the accuracy of identification, and provide a reference for the further study on flavor of aquatic products.

  16. Emission of volatile organic compounds from silage: compounds, sources, and implications

    Science.gov (United States)

    Silage, fermented cattle feed, has recently been identified as a significant source of volatile organic compounds (VOCs) emitted to the atmosphere. A small number of studies have measured VOC emission from silage, but not enough is known about the processes involved to accurately quantify emission r...

  17. Volatile compounds of raspberry fruit: from analytical methods to biological role and sensory impact.

    Science.gov (United States)

    Aprea, Eugenio; Biasioli, Franco; Gasperi, Flavia

    2015-01-30

    Volatile compounds play a key role in the formation of the well-recognized and widely appreciated raspberry aroma. Studies on the isolation and identification of volatile compounds in raspberry fruit (Rubus idaeus L.) are reviewed with a focus on aroma-related compounds. A table is drawn up containing a comprehensive list of the volatile compounds identified so far in raspberry along with main references and quantitative data where available. Two additional tables report the glycosidic bond and enantiomeric distributions of the volatile compounds investigated up to now in raspberry fruit. Studies on the development and evolution of volatile compounds during fruit formation, ripening and senescence, and genetic and environmental influences are also reviewed. Recent investigations showing the potential role of raspberry volatile compounds in cultivar differentiation and fruit resistance to mold disease are reported as well. Finally a summary of research done so far and our vision for future research lines are reported.

  18. Volatile Compounds of Raspberry Fruit: From Analytical Methods to Biological Role and Sensory Impact

    Directory of Open Access Journals (Sweden)

    Eugenio Aprea

    2015-01-01

    Full Text Available Volatile compounds play a key role in the formation of the well-recognized and widely appreciated raspberry aroma. Studies on the isolation and identification of volatile compounds in raspberry fruit (Rubus idaeus L. are reviewed with a focus on aroma-related compounds. A table is drawn up containing a comprehensive list of the volatile compounds identified so far in raspberry along with main references and quantitative data where available. Two additional tables report the glycosidic bond and enantiomeric distributions of the volatile compounds investigated up to now in raspberry fruit. Studies on the development and evolution of volatile compounds during fruit formation, ripening and senescence, and genetic and environmental influences are also reviewed. Recent investigations showing the potential role of raspberry volatile compounds in cultivar differentiation and fruit resistance to mold disease are reported as well. Finally a summary of research done so far and our vision for future research lines are reported.

  19. Biogenic Emissions of Volatile Organic Compounds by Urban Forests

    Institute of Scientific and Technical Information of China (English)

    CENTRITTOMauro; LIUShirong; LORETOFrancesco

    2005-01-01

    All plants emit a wide range of volatile compounds, the so-called biogenic volatile organic compounds (BVOC). BVOC emissions have received increased scientific attention in the last two decades because they may profoundly influence the chemical and physical properties of the atmosphere, and may modulate plant tolerance to heat, pollutants, oxidative stress and abiotic stresses, and affect plant-plant and plant-insect interactions. Urban forestry may have a high impact on atmospheric composition, air quality, environment,and quality of life in urban areas. However, few studies have been carried out where the emission of BVOC could have important consequence for the quality of air and contribute to pollution episodes. A screening of BVOC emission by the mixed stand constituting urban forests is therefore required if emissions are to be reliably predicted. Monitoring the emission rates simultaneously with measurements of air quality, plant physiology and micrometeorology on selected urban forests, will allow detailed quantitative information on the inventory of BVOC emissions by urban vegetation to be compiled. This information will make it possible to propose an innovative management of urban vegetation in cities characterised by heavy emissions of anthropogenic pollutants, aiming at the abatement of BVOC emissions through the introduction or selection of non-BVOC emitting species in urban areas subjected to pollution episodes and in the new afforestation areas covering peri-urban parks, green belts and green corridors between peri-urban rural areas and the conurbations.

  20. Evaporation of volatile organic compounds from human skin in vitro.

    Science.gov (United States)

    Gajjar, Rachna M; Miller, Matthew A; Kasting, Gerald B

    2013-08-01

    The specific evaporation rates of 21 volatile organic compounds (VOCs) from either human skin or a glass substrate mounted in modified Franz diffusion cells were determined gravimetrically. The diffusion cells were positioned either on a laboratory bench top or in a controlled position in a fume hood, simulating indoor and outdoor environments, respectively. A data set of 54 observations (34 skin and 20 glass) was assembled and subjected to a correlation analysis employing 5 evaporative mass transfer relationships drawn from the literature. Models developed by Nielsen et al. (Prediction of isothermal evaporation rates of pure volatile organic compounds in occupational environments: a theoretical approach based on laminar boundary layer theory. Ann Occup Hyg 1995;39:497-511.) and the U.S. Environmental Protection Agency (Peress, Estimate evaporative losses from spills. Chem Eng Prog 2003; April: 32-34.) were found to be the most effective at correlating observed and calculated evaporation rates under the various conditions. The U.S. EPA model was selected for further use based on its simplicity. This is a turbulent flow model based only on vapor pressure and molecular weight of the VOC and the effective air flow rate u. Optimum values of u for the two laboratory environments studied were 0.23 m s(-1) (bench top) and 0.92 m s(-1) (fume hood).

  1. Volatile organic compounds emissions from gasoline and diesel powered vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Mugica, V [Universidad Autonoma Metropolitana, Mexico, D.F. (Mexico); Vega, E; Sanchez, G; Reyes, E; Arriaga, J. L [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Chow, J; Watson, J; Egami, R [Desert Research Institute, Reno, NV (United States)

    2001-01-01

    In this research, volatile organic compound emissions were characterized from gasoline and diesel vehicles. Sampling campaigns in the Metropolitan Area of Mexico City were designed and carried out in tunnels, crossroads, and truck and bus terminals. The samples were analyzed with gas chromatography getting more than 250 different compounds, being more or less 60 of them the 80% of all the emissions. The most abundant are the two carbon compounds, as a result of the combustion, and compounds related to fuels compositions, like isopentane, xylenes, toluene among others. The profiles obtained in tunnels and crossroads were very similar with the exception of the 3 and 4 carbon compounds, which were found in bigger proportion in the profiles at crossroads. This may probably be due to the blend with the ambient air. The profiles corresponding to trucks and buses have a smaller content of two carbon compounds and a bigger content of xylenes, toluene and ethylbenzene. The variations in the proportions of the compounds allow differentiating the profiles of vehicles using gasoline and diesel. [Spanish] En este trabajo se caracterizaron las emisiones de compuestos organicos volatiles provenientes de vehiculos a gasolina y a diesel. Para ello, se disenaron diversas campanas de muestreo en la zona Metropolitana de la Ciudad de Mexico, en tuneles, cruceros y estaciones de camiones de carga y autobuses. Las muestras se analizaron con cromatografia, de gases obteniendose mas de 250 compuestos distintos, de los cuales aproximadamente 60 corresponden a mas del 80% de las emisiones. Los compuestos mas abundantes son los de dos carbonos, resultado de la combustion, y 4 carbonos que se encontraron en mayor proporcion en los perfiles de cruceros, lo cual se debe probablemente a la mezcla con el aire ambiente. Los perfiles correspondientes a camiones de carga y autobuses tienen un menor contenido de compuestos de dos carbonos y un mayor contenido de xilenos, tolueno y etilbenceno. Estas

  2. Chemical composition and volatile compounds in the artisanal ...

    African Journals Online (AJOL)

    Araceli

    2012-09-27

    Sep 27, 2012 ... ends, the fermented product is transferred to copper ..... Clostridium bacteria or Kloeckera spp. yeast .... Evolution of chemical compounds during fermentation of A. angustifolia musts with and without addition of ammonium ...

  3. Anti-Salmonella Activity of Volatile Compounds of Vietnam Coriander.

    Science.gov (United States)

    Fujita, Ken-Ichi; Chavasiri, Warinthorn; Kubo, Isao

    2015-07-01

    Essential oil derived from the fresh leaves of Polygonum odoratum Lour was tested for their effects on a foodborne bacterium Salmonella choleraesuis subsp. choleraesuis ATCC 35640 using a broth dilution method. This essential oil showed a significant antibacterial activity against S. choleraesuis at the concentration of 200 µg/mL. Twenty-five volatile compounds were characterized from this essential oil by GC-MS, and aldehyde compounds were found abundant and accounted for more than three-fourths of the essential oil. Among the compounds characterized, dodecanal (C12 ) was the most abundant (55.5%), followed by decanal (C10 ) (11.6%). Both alkanals were effective against S. choleraesuis with the minimum growth inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 100 µg/mL. The most potent antibacterial activity against this bacterium was found with two minor compounds, dodecanol (lauryl alcohol) and 2E-dodecenal, both with each MBC of 6.25 µg/mL. Their primary antibacterial action against S. choleraesuis provably comes from their ability to function as nonionic surface-active agents (surfactants), disrupting the native function of integral membrane proteins nonspecifically. Thus, the antibacterial activity is mediated by biophysical processes. In the case of 2E-alkenals, a biochemical mechanism is also somewhat involved, depending on their alkyl chain length.

  4. Recovery of volatile fruit juice aroma compounds by membrane technology

    DEFF Research Database (Denmark)

    Bagger-Jørgensen, Rico; Meyer, Anne S.; Pinelo, Manuel

    2011-01-01

    The influence of temperature (10–45°C), feed flow rate (300–500L/h) and sweeping gas flow rate (1.2–2m3/h) on the recovery of berry fruit juice aroma compounds by sweeping gas membrane distillation (SGMD) was examined on an aroma model solution and on black currant juice in a lab scale membrane...... (Cpermeate/Cfeed) of the aroma compounds. At 45°C the most volatile and hydrophobic aroma compounds obtained the highest concentration factors: 12.1–9.3 (black currant juice) and 17.2–12.8 (model solution). With black currant juice a volume reduction of 13.7% (vol.%) at 45°C, 400L/h, resulted in an aroma...... the degradation of anthocyanins and polyphenolic compounds in the juice. Industrial relevanceHigh temperature evaporation is the most widely used industrial technique for aroma recovery and concentration of juices, but membrane distillation (MD) may provide for gentler aroma stripping and lower energy consumption...

  5. Volatile Organic Compound Investigation Results, 300 Area, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Robert E.; Williams, Bruce A.; Smith, Ronald M.

    2008-07-07

    Unexpectedly high concentrations of volatile organic compounds (VOC) were discovered while drilling in the unconfined aquifer beneath the Hanford Site’s 300 Area during 2006. The discovery involved an interval of relatively finer-grained sediment within the unconfined aquifer, an interval that is not sampled by routine groundwater monitoring. Although VOC contamination in the unconfined aquifer has been identified and monitored, the concentrations of newly discovered contamination are much higher than encountered previously, with some new results significantly higher than the drinking water standards. The primary contaminant is trichloroethene, with lesser amounts of tetrachloroethene. Both chemicals were used extensively as degreasing agents during the fuels fabrication process. A biological degradation product of these chemicals, 1,2-dichloroethene, was also detected. To further define the nature and extent of this contamination, additional characterization drilling was undertaken during 2007. Four locations were drilled to supplement the information obtained at four locations drilled during the earlier investigation in 2006. The results of the combined drilling indicate that the newly discovered contamination is limited to a relatively finer-grained interval of Ringold Formation sediment within the unconfined aquifer. The extent of this contamination appears to be the area immediately east and south of the former South Process Pond. Samples collected from the finer-grained sediment at locations along the shoreline confirm the presence of the contamination near the groundwater/river interface. Contamination was not detected in river water that flows over the area where the river channel potentially incises the finer-grained interval of aquifer sediment. The source for this contamination is not readily apparent. A search of historical documents and the Hanford Waste Information Data System did not provide definitive clues as to waste disposal operations and

  6. PERUBAHAN KOMPOSISI VOLATIL DAGING BUAH MANGGA "KENSINGTON PRIDE" SELAMA PEMASAKAN [Changes in Volatile Compound Composition of Kensington Pride Mango Pulp During Fruit Ripening

    Directory of Open Access Journals (Sweden)

    Herianus J.D Lalel

    2003-08-01

    Full Text Available Volatile compounds of ‘Kesington Pride’ mango produced from the pulp during fruit ripening were studied using headspace solid-phase microextraction (SPME as a sampling method and gas chromatography with a flame ionisation detector (GC-FID and gas chromatography mass spectrophotometry (GC-MS for analysis. Ethylene production and respiration reached a peak on the second and third day of ripening, respectively. Seventy-eight volatile compounds were identified from the pulp of ‘Kesington Pride’ mango; however, only 73 volatile compounds were present in notable amount. The most abundant group of volatile compounds was monoterpenes, accounting for abaout 44% of the total identified compounds, followed by sesquiterpenes (19%, aldehydes (11%,esters (10% aromatics (8%, alcohol (2%, ketones (2%, alkanes (1% and norisoprenoid (1%. -Terpinolene was the major compound during ripening. Except for -pinene, 3,7-dimethl-1,3,7-octatriene, 4-methl-1 (1-methylethylidene-cyclohexene, p-mentha-1,5,8-triene, aloocimene, the concentration of all other monoterpenes increased for the first six or eight days and decreased afterwards. All sesquiteroenes, p-cymene, p-cymen-9-ol,2-ethyl-1,4-dimethl benzene also increased during ripening and peaked on day four, six or eight of ripening. Ketones, aldehydes alkane and cis-3-hexenol, on the other hand, decreased during ripening. Ethanol, esters and norisoprenoid increased quite sharply at the end of ripening period.

  7. Effects of potassium sorbate and Lactobacillus plantarum MTD1 on production of ethanol and other volatile organic compounds in corn silage

    DEFF Research Database (Denmark)

    Hafner, Sasha D.; Windle, Michelle; Merrill, Caitlyn

    2015-01-01

    ); and a combination of both additives were compared to a control treatment, which received only water. Silage was made in bucket silos which were opened after 119 days of ensiling. Potassium sorbate reduced ethanol production by >70% and ethyl lactate and ethyl acetate by >65% whether or not L. plantarum was included...

  8. Sensory Profiles and Volatile Compounds of Wheat Species, Landraces and Modern Varieties

    DEFF Research Database (Denmark)

    Starr, Gerrard

    ). Seventy two volatile compounds were identified in the grain of 81 wheat varieties (Paper II). Out of these, 7 selected wheat volatile compounds were significantly varied among 14 wheat varieties, indicating huge variation in volatile compound profiles among wheat varieties. Multivariate analysis showed...... that several wheat samples retained their configuration of distribution throughout the sensory tests. The same varieties also retained the same distribution configuration when analysed for volatile compounds which could link volatile profiles to sensory evaluation results (Papers II and III). Landraces were...... distinguishable from modern varieties and varieties from Austria could be distinguished from Danish, French and British varieties based on volatile profiles. This suggests that wheat volatile composition has genetic causes. The results in this study provide a strong case that there is wide variation among wheat...

  9. Effects of airborne volatile organic compounds on plants.

    Science.gov (United States)

    Cape, J N

    2003-01-01

    Routine measurements of volatile organic compounds (VOCs) in air have shown that average concentrations are very much smaller than those used in laboratory experiments designed to study the effects of VOCs on plants. However, maximum hourly concentrations of some VOCs can be 100 times larger than the average, even in rural air. Experimental studies have rarely extended for longer than a few days, so there is little information on potential long-term effects of exposure to small concentrations. This review considers the available evidence for long-term effects, based on laboratory and field data. Previous reviews of the literature from Germany and the USA are cited, prior to an assessment of the effects of individual VOCs. Although hydrocarbons from vehicle exhausts have been implicated in the observed effects on roadside vegetation, the evidence suggests that it is the nitrogen oxides in the exhaust gases that are mostly responsible. There is evidence that aromatic hydrocarbons can be metabolised in plants, although the fate of the metabolites is not known. There is a large literature on the effects of ethylene, because of its role as a plant hormone. Effects have been reported in the field, in response to industrial emissions, and dose-response experiments over several weeks in laboratory studies have clearly identified the potential for effects at ambient concentrations. The main responses are morphological (e.g. epinasty), which may be reversible, and on the development of flowers and fruit. Effects on seed production may be positive or negative, depending on the exposure concentration. Chlorinated hydrocarbons have been identified as potentially harmful to vegetation, but only one long-term experiment has studied dose-response relationships. As for ethylene, the most sensitive indication of effect was on seed production, although long-term accumulation of trichloroacetic acid in tissue may also be a problem. There is little evidence of the direct effects of

  10. Online measurements of the emissions of intermediate-volatility and semi-volatile organic compounds from aircraft

    Directory of Open Access Journals (Sweden)

    E. S. Cross

    2013-08-01

    Full Text Available A detailed understanding of the climate and air quality impacts of aviation requires measurements of the emissions of intermediate-volatility and semi-volatile organic compounds (I/SVOCs from aircraft. Currently both the amount and chemical composition of aircraft I/SVOC emissions remain poorly characterized. Here we characterize I/SVOC emissions from aircraft, using a novel instrument for the online, quantitative measurement of the mass loading and composition of low-volatility organic vapors. Emissions from the NASA DC8 aircraft were sampled on the ground 143 m downwind of the engines and characterized as a function of engine power from idle (4% maximum rated thrust through 85% power. Results show that I/SVOC emissions are highest during engine idle operating conditions, with decreasing but non-zero I/SVOC emissions at higher engine powers. Comparison of I/SVOC emissions with total hydrocarbon (THC measurements, VOC measurements, and an established emissions profile indicates that I/SVOCs comprise 10–20% of the total organic gas-phase emissions at idle, and an increasing fraction of the total gas-phase organic emissions at higher powers. Positive matrix factorization of online mass spectra is used to identify three distinct types of I/SVOC emissions: aliphatic, aromatic and oxygenated. The volatility and chemical composition of the emissions suggest that unburned fuel is the dominant source of I/SVOCs at idle, while pyrolysis products make up an increasing fraction of the I/SVOCs at higher powers. Oxygenated I/SVOC emissions were detected at lower engine powers (≤30% and may be linked to cracked, partially oxidized or unburned fuel components.

  11. Online measurements of the emissions of intermediate-volatility and semi-volatile organic compounds from aircraft

    Directory of Open Access Journals (Sweden)

    E. S. Cross

    2013-03-01

    Full Text Available A detailed understanding of the climate and air quality impacts of aviation requires detailed measurements of the emissions of intermediate-volatility and semi-volatile organic compounds (I/SVOCs from aircraft. Currently both the amount and chemical composition of aircraft I/SVOC emissions remain poorly characterized. Here we characterize I/SVOC emissions from aircraft, using a novel instrument for the online, quantitative measurement of the mass loading and composition of low-volatility organic vapors. Emissions from the NASA DC8 aircraft were sampled on the ground, 143 m downwind of the engines and characterized as a function of engine power from ground idle (~4% maximum rated thrust through 85% power. Results show that I/SVOC emissions are highest during engine-idle operating conditions, with decreasing but non-zero I/SVOC emissions at higher engine powers. Comparison of I/SVOC emissions with total hydrocarbon (THC measurements, VOC measurements, and an established emissions profile indicates that I/SVOCs comprise 10–20% of the total organic gas phase emissions at idle, and an increasing fraction of the total gas phase organic emissions at higher powers. Positive matrix factorization of online mass spectra is used to identify three distinct types of I/SVOC emissions: aliphatic, aromatic and oxygenated. The volatility and chemical composition of the emissions suggest that unburned fuel is the dominant source of I/SVOCs at idle, while pyrolysis products make up an increasing fraction of the I/SVOCs at higher powers. Oxygenated I/SVOC emissions were detected at lower engine powers (≤30% and may be linked to cracked, partially oxidized or unburned fuel components.

  12. Development of novel biofilters for treatment of volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, D.F. [Environmental Protection Agency, Cincinnati, OH (United States). National Risk Management Research Lab.; Govind, R. [Univ. of Cincinnati, OH (United States). Dept. of Chemical Engineering

    1995-12-31

    Biofiltration involves contacting a contaminated gas stream with immobilized microorganisms in a contactor to biodegrade the contaminants. It is emerging as an attractive technology for removing low concentrations (i.e., less than 800 ppmv) of volatile organic chemicals (VOCs) from air. Compared with other technologies, biofiltration fully mineralizes the contaminants, is inexpensive and reliable, and requires no posttreatment. In the study described in this paper, four types of media consisting of porous ceramic monoliths with several straight passages were studied to determine the effects of adsorptive and nonadsorptive media on biofilter startup time, dynamic response to step changes in inlet substrate concentration, biofilm adherence, and overall VOC-removal efficiency. Volatile compounds studied were benzene, toluene, ethylbenzene, m-xylene, and o-xylene. Adsorbing media such as activated carbon, when compared with nonadsorbing media such as ceramic, exhibit faster biofilter startup, are more stable to dynamic changes in inlet concentration, and attain higher VOC-removal efficiencies due to better adherence of biofilm on media surfaces.

  13. Biofiltration for control of volatile organic compounds (VOCS)

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, D.F. [Environmental Protection Agency, Cincinnati, OH (United States); Govind, R. [Univ. of Cincinnati, OH (United States)

    1995-10-01

    Air biofiltration is a promising technology for control of air emissions of biodegradable volatile organic compounds (VOCs). In conjunction with vacuum extraction of soils or air stripping of ground water, it can be used to mineralize VOCs removed from contaminated soil or groundwater. The literature describes three major biological systems for treating contaminated air bioscrubbers, biotrickling filters and biofilters. Filter media can be classified as: bioactive fine or irregular particulates, such as soil, peat, compost or mixtures of these materials; pelletized, which are randomly packed in a bed; and structured, such as monoliths with defined or variable passage size and geometry. The media can be made of sorbing and non-absorbing materials. Non-bioactive pelletized and structured media require recycled solutions of nutrients and buffer for efficient microbial activity and are thus called biotrickling filters. Extensive work has been conducted to improve biofiltration by EPA`s Risk Reduction Engineering Laboratory and the University of Cincinnati in biofilters using pelletized and structured media and improved operational approaches. Representative VOCs in these studies included compounds with a range of aqueous solubilities and octanol-water partition coefficients. The compounds include iso-pentane, toluene, methylene chloride, trichloroethylene (TCE), ethyl benzene, chlorobenzene and perchloroethylene (PCE) and alpha ({alpha}-) pinene. Comparative studies were conducted with peat/compost biofilters using isopentane and {alpha}-pinene. Control studies were also conducted to investigate adsorption/desorption of contaminants on various media using mercuric chloride solution to insure the absence of bioactivity.

  14. [Ion mobility spectrometry for the isomeric volatile organic compounds].

    Science.gov (United States)

    Han, Hai-yan; Jia, Xian-de; Huang, Guo-dong; Wang, Hong-mei; Li, Jian-quan; Jin, Shun-ping; Jiang, Hai-he; Chu, Yan-nan; Zhou, Shi-kang

    2007-10-01

    Ion mobility spectrometry (IMS) is based on determining the drift velocities, which the ionized sample molecules attain in the weak electric field of a drift tube at atmospheric pressure. The drift behavior can be affected by structural differences of the analytes, so that ion mobility spectrometry has the ability to separated isomeric compounds. In the present article, an introduction to IMS is given, followed by a description of the instrument used for the experiments to differentiate isomeric compounds. Positive ion mobility spectras of three kinds of isomeric volatile organic compounds were studied in a homemade high-resolution IMS apparatus with a discharge ionization source. The study includes the differences in the structure of carbon chain, the style of function group, and the position of function group. The reduced mobility values were determined, which are in very good agreement with the previously reported theoretical values using neural network theory. The influence of the structural features of the substances and including the size and shape of the molecule has been investigated. The reduced mobility values increases in the order: alcohols ion mobility spectra of the constitutional isomers studied reflect the influence of structural features. In order to calibrate or determine the detection limits and the sensitivity of the ion mobility spectrometry, the exponential dilution flask (EDF) was used. Using this method, the detection limit of the analytes can reach the order of magnitude of ng x L(-1).

  15. Emission of Biogenic Volatile Organic Compounds in the Arctic

    DEFF Research Database (Denmark)

    Lindwall, Frida

    Emissions of biogenic volatile organic compounds (BVOCs) from arctic ecosystems are scarcely studied and the effect of climate change on BVOC emissions even less so. BVOCs are emitted from all living organisms and play a role for atmospheric chemistry. The major part of BVOCs derives from plants...... in the atmosphere. This may warm the climate due to a prolonged lifetime of the potent greenhouse gas methane in the atmosphere. However, oxidized BVOCs may participate in formation or growth of aerosols, which in turn may mitigate climate warming. Climate change in the Arctic, an area characterized by short...... dependent and the emissions will increase in a future warmer climate. The aims of this dissertation were to study BVOC emission rates and blends from arctic ecosystems and to reveal the effect of climate change on BVOC emissions from the Arctic. BVOC emissions were measured in ambient and modified...

  16. Cyclodextrin-based microsensors for volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, B.; Johnson, S.; Shi, J.; Yang, Xiaoguang

    1997-10-01

    Host-guest chemistry and self-assembly techniques are being explored to develop species selective thin-films for real-time sensing of volatile organic compounds (VOCs). Cyclodextrin (CD) and calixarene (CA) molecules are known to form guest-host inclusion complexes with a variety of organic molecules. Through the control of the cavity size and chemical functionality on the rims of these bucket-like molecules, the binding affinities for formation of inclusion complexes can be controlled and optimized for specific agents. Self-assembly techniques are used to covalently bond these reagent molecules to the surface of acoustic transducers to create dense, highly oriented, and stable thin films. Self-assembly techniques have also been used to fabricate multilayer thin film containing molecular recognition reagents through alternating adsorption of charged species in aqueous solutions. Self-assembly of polymeric molecules of the SAW device was also explored for fabricating species selective interfaces.

  17. HS-SPME-GC-MS ANALYSIS OF VOLATILE AND SEMI-VOLATILE COMPOUNDS FROM DRIED LEAVES OF Mikania glomerata Sprengel

    Directory of Open Access Journals (Sweden)

    Esmeraldo A. Cappelaro

    2015-03-01

    Full Text Available This paper reports on the identification of volatile and semi-volatile compounds and a comparison of the chromatographic profiles obtained by Headspace Solid-Phase Microextraction/Gas Chromatography with Mass Spectrometry detection (HS-SPME-GC-MS of dried leaves of Mikania glomerata Sprengel (Asteraceae, also known as 'guaco.' Three different types of commercial SPME fibers were tested: polydimethylsiloxane (PDMS, polydimethylsiloxane/divinylbenzene (PDMS/DVB and polyacrylate (PA. Fifty-nine compounds were fully identified by HS-SPME-HRGC-MS, including coumarin, a marker for the quality control of guaco-based phytomedicines; most of the other identified compounds were mono- and sesquiterpenes. PA fibers performed better in the analysis of coumarin, while PDMS-DVB proved to be the best choice for a general and non-selective analysis of volatile and semi-volatile guaco-based compounds. The SPME method is faster and requires a smaller sample than conventional hydrodistillation of essential oils, providing a general overview of the volatile and semi-volatile compounds of M. glomerata.

  18. Relationship between the catalytic properties of the products of the oxidative thermolysis of certain complexes and the porous structures of samples in the oxidation reactions of volatile organic compounds

    Science.gov (United States)

    Semushina, Yu. P.; Pechenyuk, S. I.; Kuzmich, L. F.; Knyazeva, A. I.

    2017-01-01

    The rate of the gas-phase oxidation of ethanol, 2-propanol, acetone, ethyl acetate, dioxane, and benzene with atmospheric oxygen is studied on surfaces of bimetallic oxide catalysts Co-Fe, Cu-Fe, Cr-Co, and Ni-Fe, prepared via thermal decomposition of double complex compounds in air. It is found that the rate of oxidation of volatile compounds depends on the volume of the transient pores in the catalyst sample. The rate of oxidation on the same catalyst at 350°C depends on the nature of the substance in the order: acetone > ethyl acetate > ethanol > propanol > dioxane, benzene.

  19. Water-Air Volatilization Factors to Determine Volatile Organic Compound (VOC Reference Levels in Water

    Directory of Open Access Journals (Sweden)

    Vicenç Martí

    2014-06-01

    Full Text Available The goal of this work is the modeling and calculation of volatilization factors (VFs from water to air for volatile organic compounds (VOCs in order to perform human health risk-based reference levels (RLs for the safe use of water. The VF models have been developed starting from the overall mass-transfer coefficients (Koverall concept from air to water for two interaction geometries (flat surface and spherical droplets in indoor and outdoor scenarios. For a case study with five groups of risk scenarios and thirty VOCs, theoretical VFs have been calculated by using the developed models. Results showed that Koverall values for flat and spherical surface geometries were close to the mass transfer coefficient for water (KL when Henry’s law constant (KH was high. In the case of spherical drop geometry, the fraction of volatilization (fV was asymptotical when increasing KH with fV values also limited due to Koverall. VFs for flat surfaces were calculated from the emission flux of VOCs, and results showed values close to 1000KH for the most conservative indoor scenarios and almost constant values for outdoor scenarios. VFs for spherical geometry in indoor scenarios followed also constant VFs and were far from 1000KH. The highest calculated VF values corresponded to the E2A, E2B, E3A and E5A scenarios and were compared with experimental and real results in order to check the goodness of flat and sphere geometry models. Results showed an overestimation of calculated values for the E2A and E2B scenarios and an underestimation for the E3A and E5A scenarios. In both cases, most of the calculated VFs were from 0.1- to 10-times higher than experimental/real values.

  20. Volatile compounds and odor preferences of ground beef added with garlic and red wine, and irradiated with charcoal pack

    Science.gov (United States)

    Lee, Kyung Haeng; Yun, Hyejeong; Lee, Ju Woon; Ahn, Dong Uk; Lee, Eun Joo; Jo, Cheorun

    2012-08-01

    Irradiation is the most efficient non-thermal technology for improving hygienic quality and extending the shelf-life of food products. One of the adverse effects of food irradiation, however, is off-flavor production, which significantly affects the sensory preferences for certain foods. In this study, garlic (5%, w/w) and red wine (1:1, w/w) were added to ground beef to increase the radiation sensitivity of pathogens and improve meat odor/flavor. Samples were irradiated at 0 or 5 kGy in the presence of charcoal pack. SPME-GC-MS analysis was performed to measure the changes in the volatile compounds and sensory characteristics of the samples. The amount of total volatile compounds produced from ground beef was greater when the sample was irradiated. When garlic and red wine were added to the ground beef, the amount of volatile compounds significantly increased, and the amount of volatile compounds increased even further after irradiation. However, when the samples were irradiated with charcoal pack, the amount of volatile compounds decreased significantly. Sensory evaluation indicated that charcoal pack significantly increased the odor preferences for both irradiated and non-irradiated ground beef added with garlic. These results indicated that addition of charcoal pack to ground beef could reduce off-odor problems induced by irradiation, and this effect was consistent even when certain additives such as garlic and red wine were added.

  1. DETERMINATION AND CLASSIFICATION OF VOLATILE COMPOUNDS OF PASTIRMA USING SOLID PHASE MICROEXTRACTION/GAS CHROMATOGRAPHY/MASS SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    Eda Demirok

    2013-10-01

    Full Text Available Pastırma, a traditional dry cured Turkish meat product, has a great number of specific aroma compounds, which occur as a result of lipid oxidation, protein degradation and formulation of çemen paste. These compounds give characteristic flavor to pastırma and the main objective of this study was to determine the nature of these compounds. Fifty-eight volatile compounds, grouped into nine chemical classes were identified using solid phase microextraction technique (SPME coupled to gas chromatography/mass spectrometry (GC-MS. Aldehydes, mostly lipid oxidation products, were determined as the major chemical group, representing 17.54-78.02% of total volatile compounds. The major volatile aldehyde was hexanal (2.36-55.41%, followed by 2-methyl-2-butenal (0.97-14.69% and then heptanal (0.29-4.77%. Sulfur compounds possibly derived from spices or formed by proteolysis of sulfur-containing amino acids, were the second most abundant group, with concentrations ranging between 6.04 and 50.60%. Other important volatile compounds of pastırma were aliphatic hydrocarbons, aromatic ketones, hydrocarbons, esters, alcohols, acids, terpenes, and furans.

  2. Thermogenic respiratory processes drive the exponential increase of volatile organic compound emissions in Macrozamia cycad cones.

    Science.gov (United States)

    Terry, L Irene; Roemer, Robert B; Booth, David T; Moore, Chris J; Walter, Gimme H

    2016-07-01

    An important outcome of plant thermogenesis is increased emissions of volatiles that mediate pollinator behaviour. We investigated whether the large increase in emissions, mainly the monoterpene ß-myrcene (>90%), during daily thermogenic events of Macrozamia macleayi and lucida cycad cones are due solely to the influence of high cone temperatures or are, instead, a result of increased respiratory rates during thermogenesis. We concurrently measured temperature, oxygen consumption and ß-myrcene emission profiles during thermogenesis of pollen cones under typical environmental temperatures and during experimental manipulations of cone temperatures and aerobic conditions, all in the dark. The exponential rise in ß-myrcene emissions never occurred without a prior, large increase in respiration, whereas an increase in cone temperature alone did not increase emissions. When respiration during thermogenesis was interrupted by anoxic conditions, ß-myrcene emissions decreased. The increased emission rates are not a result of increased cone temperature per se (through increased enzyme activity or volatilization of stored volatiles) but are dependent on biosynthetic pathways associated with increased respiration during thermogenesis that provide the carbon, energy (ATP) and reducing compounds (NADPH) required for ß-myrcene production through the methylerythritol phosphate (MEP) pathway. These findings establish the significant contribution of respiration to volatile production during thermogenesis.

  3. Biofiltration kinetics for volatile organic compounds (VOCs) and development of a structure-biodegradability relationship

    Energy Technology Data Exchange (ETDEWEB)

    Govind, R.; Wang, Z. [Univ. of Cincinnati, OH (United States). Dept. of Chemical Engineering; Bishop, D.F. [Environmental Protection Agency, Cincinnati, OH (United States). National Risk Management Research Lab.

    1997-12-31

    In recent years, regulation of hazardous air pollutants under the Clean Air Act and its amendments, has emerged as a major environmental issue. Major sources of volatile organic compounds (VOCs) in air are chemical production plants, manufacturing sites using common solvents, combustion sources, and waste treatment operations, such as waste water treatment plants, vacuum extraction of contaminated soils, and ground water stripping operations. Biofiltration is an emerging technology for treatment of biodegradable volatile organic compounds (VOCs) present in air. In biofiltration, the contaminants are contacted with active microorganisms present either in naturally bioactive materials, such as soil, peat, compost, etc., or immobilized on an inactive support media. Design of biofilters requires information on biodegradation kinetics which controls biofilter size. In this paper, an experimental microbiofilter system is presented which can be used to measure biofiltration kinetics for any volatile organic compound. A mathematical model is used to derive the Monod biokinetic parameters from the experimental data. Finally, a structure-bioactivity relationship is derived for estimating the biofiltration biokinetic parameters for a variety of VOCs.

  4. Biodegradation of volatile organic compounds by five fungal species

    Energy Technology Data Exchange (ETDEWEB)

    Qi, B.; Moe, W.M. [Dept. of Civil and Environmental Engineering, Louisiana State Univ., Baton Rouge, LA (United States); Kinney, K.A. [Dept. of Civil Engineering, Univ. of Texas, Austin (United States)

    2002-07-01

    Five fungal species, Cladosporium resinae (ATCC 34066), Cladosporium sphaerospermum (ATCC 200384), Exophiala lecanii-corni (CBS 102400), Mucor rouxii (ATCC 44260), and Phanerochaete chrysosporium (ATCC 24725), were tested for their ability to degrade nine compounds commonly found in industrial off-gas emissions. Fungal cultures inoculated on ceramic support media were provided with volatile organic compounds (VOCs) via the vapor phase as their sole carbon and energy sources. Compounds tested included aromatic hydrocarbons (benzene, ethylbenzene, toluene, and styrene), ketones (methyl ethyl ketone, methyl isobutyl ketone, and methyl propyl ketone), and organic acids (n-butyl acetate, ethyl 3-ethoxypropionate). Experiments were conducted using three pH values ranging from 3.5 to 6.5. Fungal ability to degrade each VOC was determined by observing the presence or absence of visible growth on the ceramic support medium during a 30-day test period. Results indicate that E. lecanii-corni and C. sphaerospermum can readily utilize each of the nine VOCs as a sole carbon and energy source. P. chrysosporium was able to degrade all VOCs tested except for styrene under the conditions imposed. C. resinae was able to degrade both organic acids, all of the ketones, and some of the aromatic compounds (ethylbenzene and toluene); however, it was not able to grow utilizing benzene or styrene under the conditions tested. With the VOCs tested, M. rouxii produced visible growth only when supplied with n-butyl acetate or ethyl 3-ethoxypropionate. Maximum growth for most fungi was observed at a pH of approximately 5.0. The experimental protocol utilized in these studies is a useful tool for assessing the ability of different fungal species to degrade gas-phase VOCs under conditions expected in a biofilter application. (orig.)

  5. Contribution of a selected fungal population to the volatile compounds on dry-cured ham.

    Science.gov (United States)

    Martín, Alberto; Córdoba, Juan J; Aranda, Emilio; Córdoba, M Guía; Asensio, Miguel A

    2006-07-01

    Dry-cured ham is obtained after several months of ripening. Different fungi strive on the surface, including toxigenic molds. Proteolysis and lipolysis by the endogenous and microbial enzymes seem to play a decisive role in the generation of flavor precursors in dry-cured meat products. In addition, fungi show a positive impact on the volatile compounds of ripened pork loins. However, the contribution of the fungal population to flavor formation in dry-cured ham remains unclear. One selected strain each of Penicillium chrysogenum and Debaryomyces hansenii was inoculated as starter cultures on dry-cured ham. Volatile compounds extracted by solid phase micro-extraction technique were analyzed by gas chromatography/mass spectrometry. A trained panel evaluated flavor and texture of fully ripened hams. The wild fungal population on non-inoculated control hams correlates with higher levels of short chain aliphatic carboxylic acids and their esters, branched carbonyls, branched alcohols, and some sulfur compounds, particularly at the outer muscle. Conversely, P. chrysogenum and D. hansenii seem to be responsible for higher levels of long chain aliphatic and branched hydrocarbons, furanones, long chain carboxylic acids and their esters. The very limited impact of P. chrysogenum on pyrazines in inoculated hams can be due to the activity of the yeast. Lower levels for some of the more volatile linear carbonyls at the ham surface suggest an anti-oxidant effect by micro-organisms. The differences in volatile compounds did not show a neat impact on flavor in the sensorial analysis. Nonetheless, inoculated hams got a better overall acceptability, which has to be attributed to their improved texture. The lower toughness of inoculated hams is a direct consequence of an early settling of a highly proteolytic mold. Thus, the use of selected fungi as starter cultures may be useful to obtain high-quality and safe dry-cured ham.

  6. 78 FR 55234 - Approval and Promulgation of Implementation Plans; Indiana; Volatile Organic Compound Emission...

    Science.gov (United States)

    2013-09-10

    ... Compound Emission Control Measures for Industrial Solvent Cleaning for Northwest Indiana AGENCY... of Environmental Management (IDEM) submitted revisions to its volatile organic compound (VOC... less than or equal to 8 millimeters of mercury; (2) several work practices must be...

  7. Diurnal characteristics of volatile organic compounds in the Seoul atmosphere

    Science.gov (United States)

    Na, Kwangsam; Kim, Yong Pyo; Moon, Kil Choo

    Concentrations of volatile organic compounds (VOCs) were measured at a site in central Seoul from 8 to 13 September 1998. On each sampling day, three 2-h-integrated canister samples were collected in the morning, afternoon and evening, respectively, to observe diural variations of VOCs. Most of the VOCs species showed diurnal variations with higher concentrations during the morning and evening, and lower concentrations during the afternoon. However, in the afternoon, the concentrations of aromatic compounds, closely correlated with solvent usage such as toluene, ethylbenzene, m-/p-xylene, and o-xylene, were slightly higher than or comparable to those in the morning. This may be due to the increase of evaporative emissions derived from the rise in ambient temperature and additional sources such as the use of solvents in painting, printing and dry cleaning. To estimate the participation of individual VOCs in ozone formation, propylene equivalent concentrations were calculated. The results showed that toluene was the most dominant contributor to ozone formation as well as ambient VOC concentrations. Toluene/benzene and m-/ p-xylene/benzene ratios showed a high observed in the afternoon and a low observed in the morning and evening. This may be because the contribution of evaporative emissions by solvent usage on the ambient VOC concentrations is more dominant than those of vehicle-related emissions and photochemical loss.

  8. Emission characteristics of volatile organic compounds from semiconductor manufacturing.

    Science.gov (United States)

    Chein, HungMin; Chen, Tzu Ming

    2003-08-01

    A huge amount of volatile organic compounds (VOCs) is produced and emitted with waste gases from semiconductor manufacturing processes, such as cleaning, etching, and developing. VOC emissions from semiconductor factories located at Science-Based Industrial Park, Hsin-chu, Taiwan, were measured and characterized in this study. A total of nine typical semiconductor fabricators (fabs) were monitored over a 12-month period (October 2000-September 2001). A flame ionization analyzer was employed to measure the VOC emission rate continuously in a real-time fashion. The amount of chemical use was adopted from the data that were reported to the Environmental Protection Bureau in Hsin-chu County as per the regulation of the Taiwan Environmental Protection Administration. The VOC emission factor, defined as the emission rate (kg/month) divided by the amount of chemical use (L/month), was determined to be 0.038 +/- 0.016 kg/L. A linear regression equation is proposed to fit the data with the correlation coefficient (R2)=0.863. The emission profiles of VOCs, which were drawn using the gas chromatograph/mass spectrometer analysis method, show that isopropyl alcohol is the dominant compound in most of the fabs.

  9. Constituents of volatile organic compounds of evaporating essential oil

    Science.gov (United States)

    Chiu, Hua-Hsien; Chiang, Hsiu-Mei; Lo, Cho-Ching; Chen, Ching-Yen; Chiang, Hung-Lung

    2009-12-01

    Essential oils containing aromatic compounds can affect air quality when used indoors. Five typical and popular essential oils—rose, lemon, rosemary, tea tree and lavender—were investigated in terms of composition, thermal characteristics, volatile organic compound (VOC) constituents, and emission factors. The activation energy was 6.3-8.6 kcal mol -1, the reaction order was in the range of 0.6-0.8, and the frequency factor was 0.01-0.24 min -1. Toluene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, n-undecane, p-diethylbenzene and m-diethylbenzene were the predominant VOCs of evaporating gas of essential oils at 40 °C. In addition, n-undecane, p-diethylbenzene, 1,2,4-trimethylbenzene, m-diethylbenzene, and 1,2,3-trimethylbenzene revealed high emission factors during the thermogravimetric (TG) analysis procedures. The sequence of the emission factors of 52 VOCs (137-173 mg g -1) was rose ≈ rosemary > tea tree ≈ lemon ≈ lavender. The VOC group fraction of the emission factor of aromatics was 62-78%, paraffins were 21-37% and olefins were less than 1.5% during the TG process. Some unhealthy VOCs such as benzene and toluene were measured at low temperature; they reveal the potential effect on indoor air quality and human health.

  10. Volatile organic compounds in fourteen U.S. retail stores.

    Science.gov (United States)

    Nirlo, E L; Crain, N; Corsi, R L; Siegel, J A

    2014-10-01

    Retail buildings have a potential for both short-term (customer) and long-term (occupational) exposure to indoor pollutants. However, little is known about volatile organic compound (VOC) concentrations in the retail sector and influencing factors, such as ventilation, in-store activities, and store type. We measured VOC concentrations and ventilation rates in 14 retail stores in Texas and Pennsylvania. With the exception of formaldehyde and acetaldehyde, VOCs were present in retail stores at concentrations well below health guidelines. Indoor formaldehyde concentrations ranged from 4.6 ppb to 67 ppb. The two mid-sized grocery stores in the sample had the highest levels of ethanol and acetaldehyde, with concentrations up to 2.6 ppm and 92 ppb, respectively, possibly due to the preparation of dough and baking activities. Indoor-to-outdoor concentration ratios indicated that indoor sources were the main contributors to indoor VOC concentrations for the majority of compounds. There was no strong correlation between ventilation and VOC concentrations across all stores. However, increasing the air exchange rates at two stores led to lower indoor VOC concentrations, suggesting that ventilation can be used to reduce concentrations for some specific stores.

  11. Gas chromatography-olfactometry analysis of the volatile compounds of two commercial Irish beef meats

    NARCIS (Netherlands)

    Machiels, D.; Ruth, van S.M.; Posthumus, M.A.; Istasse, L.

    2003-01-01

    The volatile flavour compounds of two commercial Irish beef meats (labelled as conventional and organic) were evaluated by gas chromatography-olfactometry and were identified by gas chromatography-mass spectrometry. The volatile compounds were isolated in a model mouth system. Gas

  12. 40 CFR 60.542a - Alternate standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... Rubber Tire Manufacturing Industry § 60.542a Alternate standard for volatile organic compounds. (a) On... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Alternate standard for volatile organic compounds. 60.542a Section 60.542a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  13. 40 CFR 60.312 - Standard for volatile organic compounds (VOC).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds (VOC). 60.312 Section 60.312 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Surface Coating of Metal Furniture § 60.312 Standard for volatile organic compounds (VOC). (a) On...

  14. 40 CFR 60.112b - Standard for volatile organic compounds (VOC).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds... organic compounds (VOC). (a) The owner or operator of each storage vessel either with a design capacity... for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for...

  15. 40 CFR 60.112 - Standard for volatile organic compounds (VOC).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds (VOC). 60.112 Section 60.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... After June 11, 1973, and Prior to May 19, 1978 § 60.112 Standard for volatile organic compounds...

  16. 75 FR 57412 - Approval and Promulgation of Implementation Plans Alabama: Volatile Organic Compounds

    Science.gov (United States)

    2010-09-21

    ... ``volatile organic compounds'' (VOCs) found at Alabama Administrative Code section 335-3-1-.02(gggg... AGENCY 40 CFR Part 52 Approval and Promulgation of Implementation Plans Alabama: Volatile Organic Compounds AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing...

  17. 75 FR 82363 - Approval and Promulgation of Implementation Plans; Ohio; Volatile Organic Compound Emission...

    Science.gov (United States)

    2010-12-30

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Implementation Plans; Ohio; Volatile Organic Compound... printing volatile organic compound (VOC) rule for approval into the Ohio State Implementation Plan (SIP... mercury at 20 degrees Celsius. This rule also contains the appropriate test methods ] for determining...

  18. Gas chromatography-olfactometry analysis of the volatile compounds of two commercial Irish beef meats

    NARCIS (Netherlands)

    Machiels, D.; Ruth, van S.M.; Posthumus, M.A.; Istasse, L.

    2003-01-01

    The volatile flavour compounds of two commercial Irish beef meats (labelled as conventional and organic) were evaluated by gas chromatography-olfactometry and were identified by gas chromatography-mass spectrometry. The volatile compounds were isolated in a model mouth system. Gas chromatography-olf

  19. Concentrations of volatile organic compounds at a building with health and comfort complaints.

    Science.gov (United States)

    Weschler, C J; Shields, H C; Rainer, D

    1990-05-01

    For four separate periods over a 1-yr span, the concentrations of volatile organic compounds (VOCs) have been measured at a facility with a history of occupant complaints. The reported symptoms were characteristic of "sick building syndrome." This study was initiated to determine if VOC levels were higher than those measured in "complaint-free" buildings and, if so, to identify sources and other factors that might contribute to the elevated concentrations. VOCs were collected with passive samplers, using a sampling interval that lasted from 3 to 4 weeks. Following collection, the samplers were extracted, and the compounds in the extract were separated and identified using standard gas chromatographic-mass spectrometric procedures. Over 40 different organic compounds with concentrations in excess of 1 microgram/m3 were identified; several species had values greater than 100 micrograms/m3. For each of the first three sampling periods, the total concentration of VOCs detected using this methodology was in excess of 3 mg/m3. Sources of the identified compounds included cleaning products, floor wax, latex paints, and reentrained motor vehicle exhaust. However, the dominant source was the hydraulic system for the buildings' elevators. Compounds were volatilizing from the hydraulic fluid used in this system. Neither the elevator shafts nor the mechanical room housing the fluid reservoirs were vented to the outside. The problem was compounded by the relatively small amount of outside air used for ventilation at this facility (less than 6 L/sec [12 cfm]/occupant or about 1/4 air change/hr). At such low ventilation rates, compounds with strong sources can achieve high steady-state concentrations within the facility. Recommendations have been made to reduce the VOC levels at this site. Although implementing the recommendations will be costly, even a slight improvement in employee productivity will offset these costs.

  20. Volatile sulphur compounds elimination: A new insight in periodontal treatment

    Directory of Open Access Journals (Sweden)

    Ernie Maduratna Setiawatie

    2011-12-01

    Full Text Available Background: Recent evidences had demonstrated a link between halitosis and apoptosis in periodontitis. Periodontal pathogenic micro-organisms produce volatile sulphur compounds (VSCs. VSCs are toxic to periodontal tissue. Purpose: The purpose of this paper was to reveal the mechanism of VSCs in periodontal breakdown according to the most recent knowledges. Reviews: Halitosis is mainly attributed to VSCs such as hydrogen sulfide, methyl mercaptan and dimethyl sulfide. Several studies demonstrated a strong relationship between VSCs and periodontal disease progression. VSCs are released from amino acid breakdown from food, protein, cells, blood and saliva. In prone subjects, the VSCs may cause alteration in tissue integrity by increasing its permeability and facilitate the endotoxin to penetrate the tissue barrier. They may also causing apoptotic in gingival and periodontal tissue, which are considered the main pathogenesis in aggravating the periodontitis. VSCs may also initiate the increase of proinflammatory cytokines which is considered to have negative effects in host response. Conclusion: VSCs had been shown to have detrimental effects in gingival and periodontal ligament cells. The use of chlorine dioxine agent and topical antioxidant is beneficial in controlling the periodontal disease severity.Latar belakang: Penelitian terakhir menunjukkan adanya hubungan antara halitosis dengan terjadinya apoptosis pada periodontitis. Mikroorganisme penyebab periodontitis memproduksi volatile sulphur compounds (VSCs yang bersifat toksik terhadap jaringan periodontal. Tujuan: Tujuan penulisan ini adalah membahas mekanisme VSCs dalam menyebabkan kerusakan periodontal berdasarkan penelitian terakhir yang ada. Tinjauan pustaka: Halitosis seringkali dikaitkan dengan timbulnya VSCs seperti hidrogen sulfida, metil merkaptan, dan dimetil sulfida. Penelitian terakhir menunjukkan bahwa VSCs yang dilepaskan dari pemecahan asam amino makanan ternyata memiliki

  1. Effects of high hydrostatic pressure and thermal processing on bioactive compounds, antioxidant activity, and volatile profile of mulberry juice.

    Science.gov (United States)

    Wang, Fan; Du, Bao-Lei; Cui, Zheng-Wei; Xu, Li-Ping; Li, Chun-Yang

    2017-03-01

    The aim of this study was to investigate the effects of high hydrostatic pressure and thermal processing on microbiological quality, bioactive compounds, antioxidant activity, and volatile profile of mulberry juice. High hydrostatic pressure processing at 500 MPa for 10 min reduced the total viable count from 4.38 log cfu/ml to nondetectable level and completely inactivated yeasts and molds in raw mulberry juice, ensuring the microbiological safety as thermal processing at 85 ℃ for 15 min. High hydrostatic pressure processing maintained significantly (p juice than thermal processing. The main volatile compounds of mulberry juice were aldehydes, alcohols, and ketones. High hydrostatic pressure processing enhanced the volatile compound concentrations of mulberry juice while thermal processing reduced them in comparison with the control. These results suggested that high hydrostatic pressure processing could be an alternative to conventional thermal processing for production of high-quality mulberry juice.

  2. Solid phase microextraction for profiling volatile compounds in liquered white wines

    Directory of Open Access Journals (Sweden)

    Henryk H. Jeleń

    2010-03-01

    Full Text Available Background. Profile of volatile compounds is a distinct feature of wine, which is dependent on the type of wine, grapes, fermentation and ageing processes. Profiling volatile compounds in wine using fast method provides information on major groups of compounds and can be used for classification/differentiation purposes. Solid phase microextraction (SPME was used for the profiling of volatile compounds in liquered white wines in this study. Material and methods. Different fibers were tested for this purpose: PDMS, Carboxene/ PDMS, Carboxene/DVB/PDMS, Polyacrylate, Divinylbenzene/PDMS. Different times were compared to optimize extraction process. Profile and amount of volatile compounds extracted by SPME fiber was compared for eight liquered white wines. Results. Carboxene/DVB/PDMS showed the highest efficiency in extracting higher alcohols, esters, carbonyls and terpenes. Of tested extraction times ranging from 5 to 30 min. 20 minutes was chosen providing sufficient peak responses. Using SPME total amount of volatile compounds in eight liquered wines was compared – Riversaltes, Offley Porto and Jutrzenka having the highest amount of adsorbed volatiles. Profiles of volatiles of analysed wines revealed that dominating compounds in 6 wines were esters, followed by higher alcohols, two analysed Muscat wines had high terpene contents compared to remaining wines. Conclusion. SPME can be used for relatively fast profiling of wine volatiles, that can be used for wines classification.  

  3. Characteristics of volatile organic compounds emission profiles from hot road bitumens.

    Science.gov (United States)

    Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian

    2014-07-01

    A procedure for the investigation and comparison of volatile organic compounds (VOCs) emission profiles to the atmosphere from road bitumens with various degrees of oxidation is proposed. The procedure makes use of headspace analysis and gas chromatography with universal as well as selective detection, including gas chromatography-mass spectrometry (GC-MS). The studies revealed that so-called vacuum residue, which is the main component of the charge, contains variable VOC concentrations, from trace to relatively high ones, depending on the extent of thermal cracking in the boiler of the vacuum distillation column. The VOC content in the oxidation product, so-called oxidized paving bitumen, is similarly varied. There are major differences in VOC emission profiles between vacuum residue and oxidized bitumens undergoing thermal cracking. The VOC content in oxidized bitumens, which did not undergo thermal cracking, increases with the degree of oxidation of bitumens. The studies revealed that the total VOC content increases from about 120 ppm for the raw vacuum residue to about 1900 ppm for so-called bitumen 35/50. The amount of volatile sulfur compounds (VSCs) in the volatile fraction of fumes of oxidized bitumens increases with the degree of oxidation of bitumen and constitutes from 0.34% to 3.66% (w/w). The contribution of volatile nitrogen compounds (VNCs) to total VOC content remains constant for the investigated types of bitumens (from 0.16 to 0.28% (w/w) of total VOCs). The results of these studies can also find use during the selection of appropriate bitumen additives to minimize their malodorousness. The obtained data append the existing knowledge on VOC emission from oxidized bitumens. They should be included in reports on the environmental impact of facilities in which hot bitumen binders are used.

  4. Determination of volatile compounds in four commercial samples of Japanese green algae using solid phase microextraction gas chromatography mass spectrometry.

    Science.gov (United States)

    Yamamoto, Masayoshi; Baldermann, Susanne; Yoshikawa, Keisuke; Fujita, Akira; Mase, Nobuyuki; Watanabe, Naoharu

    2014-01-01

    Green algae are of great economic importance. Seaweed is consumed fresh or as seasoning in Japan. The commercial value is determined by quality, color, and flavor and is also strongly influenced by the production area. Our research, based on solid phase microextraction gas chromatography mass spectrometry (SPME-GC-MS), has revealed that volatile compounds differ intensely in the four varieties of commercial green algae. Accordingly, 41 major volatile compounds were identified. Heptadecene was the most abundant compound from Okayama (Ulva prolifera), Tokushima (Ulva prolifera), and Ehime prefecture (Ulva linza). Apocarotenoids, such as ionones, and their derivatives were prominent volatiles in algae from Okayama (Ulva prolifera) and Tokushima prefecture (Ulva prolifera). Volatile, short chained apocarotenoids are among the most potent flavor components and contribute to the flavor of fresh, processed algae, and algae-based products. Benzaldehyde was predominant in seaweed from Shizuoka prefecture (Monostroma nitidum). Multivariant statistical analysis (PCA) enabled simple discrimination of the samples based on their volatile profiles. This work shows the potential of SPME-GC-MS coupled with multivariant analysis to discriminate between samples of different geographical and botanical origins and form the basis for development of authentication methods of green algae products, including seasonings.

  5. 78 FR 9823 - Air Quality: Revision to Definition of Volatile Organic Compounds-Exclusion of a Group of Four...

    Science.gov (United States)

    2013-02-12

    ... four HFPE compounds (these being in the family of products known by the trade name H-Galden) and is... of Risk to Human Health or the Environment D. Conclusion III. Public Comments IV. Final Action V... Ozone Reactivity Scales for Volatile Organic Compositions,'' Journal of the Air & Waste...

  6. Development and validation of a portable gas phase standard generation and calibration system for volatile organic compounds

    Science.gov (United States)

    P. Veres; J. B. Gilman; J. M. Roberts; W. C. Kuster; C. Warneke; I. R. Burling; J. de Gouw

    2010-01-01

    We report on the development of an accurate, portable, dynamic calibration system for volatile organic compounds (VOCs). The Mobile Organic Carbon Calibration System (MOCCS) combines the production of gas-phase VOC standards using permeation or diffusion sources with quantitative total organic carbon (TOC) conversion on a palladium surface to CO2 in the presence of...

  7. Characterization of a behaviorally active, gender-specific volatile compound from the male asparagus fly Plioreocepta poeciloptera.

    Science.gov (United States)

    Thibout, E; Arnault, I; Auger, J; Petersen, K S; Oliver, J E

    2005-04-01

    Adult male asparagus flies exhibit typical calling behaviors (suggestive of pheromone production) during which they emit a single volatile compound that was identified as isopropyl (S)-5-hydroxyhexanoate. In laboratory bioassays, synthetic samples elicited an arrestant response in females, but did not appear to attract females. On the other hand, the synthetic material attracted conspecific males in olfactometer bioassays.

  8. Methanol ice VUV photoprocessing: GC-MS analysis of volatile organic compounds

    Science.gov (United States)

    Abou Mrad, Ninette; Duvernay, Fabrice; Chiavassa, Thierry; Danger, Grégoire

    2016-05-01

    Next to water, methanol is one of the most abundant molecules in astrophysical ices. A new experimental approach is presented here for the direct monitoring via gas chromatography coupled to mass spectrometry (GC-MS) of a sublimating photoprocessed pure methanol ice. Unprecedentedly, in a same analysis, compelling evidences for the formation of 33 volatile organic compounds are provided. The latter are C1-C6 products including alcohols, aldehydes, ketones, esters, ethers and carboxylic acids. Few C3 and all C4 detected compounds have been identified for the first time. Tentative detections of few C5 and C6 compounds are also presented. GC-MS allows for the first time the direct quantification of C2-C4 photoproducts and shows that their abundances decrease with the increase of their carbon chain length. These qualitative and quantitative measurements provide important complementary results to previous experiments, and present interesting similarities with observations of sources rich in methanol.

  9. Urinary Volatile Organic Compounds for the Detection of Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Tanzeela Khalid

    Full Text Available The aim of this work was to investigate volatile organic compounds (VOCs emanating from urine samples to determine whether they can be used to classify samples into those from prostate cancer and non-cancer groups. Participants were men referred for a trans-rectal ultrasound-guided prostate biopsy because of an elevated prostate specific antigen (PSA level or abnormal findings on digital rectal examination. Urine samples were collected from patients with prostate cancer (n = 59 and cancer-free controls (n = 43, on the day of their biopsy, prior to their procedure. VOCs from the headspace of basified urine samples were extracted using solid-phase micro-extraction and analysed by gas chromatography/mass spectrometry. Classifiers were developed using Random Forest (RF and Linear Discriminant Analysis (LDA classification techniques. PSA alone had an accuracy of 62-64% in these samples. A model based on 4 VOCs, 2,6-dimethyl-7-octen-2-ol, pentanal, 3-octanone, and 2-octanone, was marginally more accurate 63-65%. When combined, PSA level and these four VOCs had mean accuracies of 74% and 65%, using RF and LDA, respectively. With repeated double cross-validation, the mean accuracies fell to 71% and 65%, using RF and LDA, respectively. Results from VOC profiling of urine headspace are encouraging and suggest that there are other metabolomic avenues worth exploring which could help improve the stratification of men at risk of prostate cancer. This study also adds to our knowledge on the profile of compounds found in basified urine, from controls and cancer patients, which is useful information for future studies comparing the urine from patients with other disease states.

  10. Quantifying Volatile Organic Compound Emissions from Solvents and their Impacts on Urban Air Quality

    Science.gov (United States)

    Mcdonald, B. C.; De Gouw, J. A.; Gilman, J.; Ahmadov, R.; Cappa, C. D.; Frost, G. J.; Goldstein, A. H.; Jathar, S.; Jimenez, J. L.; Kim, S. W.; McKeen, S. A.; Roberts, J. M.; Trainer, M.

    2016-12-01

    Solvents, which consist of personal care products, paints, degreasing agents, and other chemical products, are an important anthropogenic source of volatile organic compound (VOC) emissions. Yet there are many unresolved questions related to their emission rates, chemical composition, and relative importance on urban air quality problems. Using atmospheric measurements of speciated VOCs collected at a ground site located in the Los Angeles basin during the California Nexus (CalNex) Study in 2010, and utilizing data on the composition of solvent emissions from the California Air Resources Board (CARB), we are able to reconcile solvent emissions with ambient observations. Our analysis indicates that solvent emissions are underestimated by a factor of 2-3 in the CARB inventory. We then estimate the reactivity of solvent emissions with the hydroxyl (OH) radical, and also estimate the propensity of solvent emissions to form secondary organic aerosol (SOA). Solvents contain significant fractions of oxygenated compounds, including intermediate volatility compounds, which if released to the atmosphere are potentially reactive and can lead to the formation of SOA. Overall, our results suggest that in the Los Angeles basin, solvents are now the largest anthropogenic source of VOC emissions, OH reactivity, and SOA formation, and larger than the contribution from motor vehicles. This suggests that more research is needed in better constraining this potentially important source of urban VOC emissions.

  11. Sweet scents from good bacteria: Case studies on bacterial volatile compounds for plant growth and immunity.

    Science.gov (United States)

    Chung, Joon-hui; Song, Geun Cheol; Ryu, Choong-Min

    2016-04-01

    Beneficial bacteria produce diverse chemical compounds that affect the behavior of other organisms including plants. Bacterial volatile compounds (BVCs) contribute to triggering plant immunity and promoting plant growth. Previous studies investigated changes in plant physiology caused by in vitro application of the identified volatile compounds or the BVC-emitting bacteria. This review collates new information on BVC-mediated plant-bacteria airborne interactions, addresses unresolved questions about the biological relevance of BVCs, and summarizes data on recently identified BVCs that improve plant growth or protection. Recent explorations of bacterial metabolic engineering to alter BVC production using heterologous or endogenous genes are introduced. Molecular genetic approaches can expand the BVC repertoire of beneficial bacteria to target additional beneficial effects, or simply boost the production level of naturally occurring BVCs. The effects of direct BVC application in soil are reviewed and evaluated for potential large-scale field and agricultural applications. Our review of recent BVC data indicates that BVCs have great potential to serve as effective biostimulants and bioprotectants even under open-field conditions.

  12. Characterization of volatile organic compounds from different cooking emissions

    Science.gov (United States)

    Cheng, Shuiyuan; Wang, Gang; Lang, Jianlei; Wen, Wei; Wang, Xiaoqi; Yao, Sen

    2016-11-01

    Cooking fume is regarded as one of the main sources of urban atmospheric volatile organic compounds (VOCs) and its chemical characteristics would be different among various cooking styles. In this study, VOCs emitted from four different Chinese cooking styles were collected. VOCs concentrations and emission characteristics were analyzed. The results demonstrated that Barbecue gave the highest VOCs concentrations (3494 ± 1042 μg/m3), followed by Hunan cuisine (494.3 ± 288.8 μg/m3), Home cooking (487.2 ± 139.5 μg/m3), and Shandong cuisine (257.5 ± 98.0 μg/m3). The volume of air drawn through the collection hood over the stove would have a large impact on VOCs concentration in the exhaust. Therefore, VOCs emission rates (ER) and emission factors (EF) were also estimated. Home cooking had the highest ER levels (12.2 kg/a) and Barbecue had the highest EF levels (0.041 g/kg). The abundance of alkanes was higher in Home cooking, Shandong cuisine and Hunan cuisine with the value of 59.4%-63.8%, while Barbecue was mainly composed of alkanes (34.7%) and alkenes (39.9%). The sensitivity species of Home cooking and Hunan cuisine were alkanes, and that of Shandong cuisine and Barbecue were alkenes. The degree of stench pollution from cooking fume was lighter.

  13. Volatile organic silicon compounds: the most undesirable contaminants in biogases.

    Science.gov (United States)

    Ohannessian, Aurélie; Desjardin, Valérie; Chatain, Vincent; Germain, Patrick

    2008-01-01

    Recently a lot of attention has been focused on volatile organic silicon compounds (VOSiC) present in biogases. They induce costly problems due to silicate formation during biogas combustion in valorisation engine. The cost of converting landfill gas and digester gas into electricity is adversely affected by this undesirable presence. VOSiC in biogases spark off formation of silicate deposits in combustion chambers. They engender abrasion of the inner surfaces leading to serious damage, which causes frequent service interruptions, thus reducing the economic benefit of biogases. It is already known that these VOSiC originate from polydimethylsiloxanes (PDMS) hydrolysis. PDMS (silicones) are used in a wide range of consumer and industrial applications. PDMS are released into the environment through landfills and wastewater treatment plants. There is a lack of knowledge concerning PDMS biodegradation during waste storage. Consequently, understanding PDMS behaviour in landfill cells and in sludge digester is particularly important. In this article, we focused on microbial degradation of PDMS through laboratory experiments. Preliminary test concerning anaerobic biodegradation of various PDMS have been investigated. Results demonstrate that the biotic step has an obvious influence on PDMS biodegradation. IWA Publishing 2008.

  14. [Determination of volatile organic compounds in atmospheric environment].

    Science.gov (United States)

    Chen, H W; Li, G K; Li, H; Zhang, Z X; Wang, B G; Li, T; Luo, H K

    2001-11-01

    It is well known that volatile organic compounds (VOCs) are the main photochemical pollutants and ozone precursors of the photochemical smog. Investigation of photochemical pollution in the ambient air must focus on VOCs, but the concentration of VOCs in ambient air is in a very low level (10(-9)-10(-12), volume fraction), so there are difficulties in the determination of VOCs. In this work, based on the TO14A and TO15 methods recommended by the Environmental Protection Agency of United States, an improved method for the determination of fifty-six VOCs, mainly O3 precursors, in atmospheric environment was developed. Operating conditions of VOCs preconcentrator, gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) were optimized. Air sample was first frozen by liquid nitrogen, and then H2O and CO2 were eliminated in the VOCs preconcentrator. The preconcentrated VOCs sample was injected to GC and detected by MS or hydrogen flame ionization detector (FID). The C2-C10 hydrocarbons were separated effectively in capillary columns under the high concentration of CO2. The detection limits were 0.1 microgram.m-3 and the relative standard deviations were in the range from 2.57% to 9.82%. This method has been used for the determination of VOCs in real samples. The results were satisfactory.

  15. A biogenic volatile organic compounds emission inventory for Yunnan Province

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-hui; BAI Yu-hua; ZHANG Shu-yu

    2005-01-01

    The first detailed inventory for volatile organic compounds(VOC) emissions from vegetation over Yunnan Province, China was presented. The spatially and temporally resolved inventory was developed based on a geographic information system (GIS), remote sensing(RS) data and field measurement data, such as digitized land-use data, normalized difference vegetation index (NDVl) and temperature data from direct real-time measurement. The inventory has a spatial resolution of 5 km × 5 km and a time resolution of 1 h.Urban, agriculture, and natural land-use distributions in Yunnan Province were combined with biomass factors for each land-use category to produce a spatially resolved biomass inventory. A biogenic emission inventory was developed by combining the biomass inventory with hourly emission rates for tree, shrub and ground cover species of the study area. Correcting for environmental factors, including light intensity and temperature, a value of 1.1 × 1012 gC for total annual biogenic VOC emissions from Yunnan Province, including 6.1 × 1011 gCfor isoprene, 2.1 × 1011 gC for monoterpenes, and 2.6 × 1011 gC for OVOC was obtained. The highest VOC emissions occurred in the northwestern, southwestern and north region of Yunnan Province. Some uncertainties were also discussed in this study.

  16. Analysis of volatile organic compounds released during food decaying processes.

    Science.gov (United States)

    Phan, Nhu-Thuc; Kim, Ki-Hyun; Jeon, Eui-Chan; Kim, Uk-Hun; Sohn, Jong Ryeul; Pandey, Sudhir Kumar

    2012-03-01

    A number of volatile organic compounds (VOCs) including acetone, methyl ethyl ketone, toluene, ethylbenzene, m,p-xylene, styrene, and o- xylene released during food decaying processes were measured from three types of decaying food samples (Kimchi (KC), fresh fish (FF), and salted fish (SF)). To begin with, all the food samples were contained in a 100-mL throwaway syringe. These samples were then analyzed sequentially for up to a 14-day period. The patterns of VOC release contrasted sharply between two types of fish (FF and SF) and KC samples. A comparison of data in terms of total VOC showed that the mean values for the two fish types were in the similar magnitude with 280 ± 579 (FF) and 504 ± 1,089 ppmC (SF), while that for KC was much lower with 16.4 ± 7.6 ppmC. There were strong variations in VOC emission patterns during the food decaying processes between fishes and KC that are characterized most sensitively by such component as styrene. The overall results of this study indicate that concentration levels of the VOCs differed significantly between the food types and with the extent of decaying levels through time.

  17. Development and mining of a volatile organic compound database.

    Science.gov (United States)

    Abdullah, Azian Azamimi; Altaf-Ul-Amin, Md; Ono, Naoaki; Sato, Tetsuo; Sugiura, Tadao; Morita, Aki Hirai; Katsuragi, Tetsuo; Muto, Ai; Nishioka, Takaaki; Kanaya, Shigehiko

    2015-01-01

    Volatile organic compounds (VOCs) are small molecules that exhibit high vapor pressure under ambient conditions and have low boiling points. Although VOCs contribute only a small proportion of the total metabolites produced by living organisms, they play an important role in chemical ecology specifically in the biological interactions between organisms and ecosystems. VOCs are also important in the health care field as they are presently used as a biomarker to detect various human diseases. Information on VOCs is scattered in the literature until now; however, there is still no available database describing VOCs and their biological activities. To attain this purpose, we have developed KNApSAcK Metabolite Ecology Database, which contains the information on the relationships between VOCs and their emitting organisms. The KNApSAcK Metabolite Ecology is also linked with the KNApSAcK Core and KNApSAcK Metabolite Activity Database to provide further information on the metabolites and their biological activities. The VOC database can be accessed online.

  18. Photo-activated luminescence sensor and method of detecting trichloroethylene and related volatile organochloride compounds

    Science.gov (United States)

    Dinh, Tuan V.

    1996-01-01

    A sensor for detecting trichloroethylene and related volatile organochloride compounds uses a photo-activator that produces a photo-product complex with the contaminant. Characteristics of the light emitted from the complex will indicate the presence of the contaminant. A probe containing the photo-activator has an excitation light interface and a contaminant interface. One particular embodiment uses a porous membrane as the contaminant interface, so that the contaminant can migrate therethrough to the photo-activator and thereby form the complex.

  19. Microcantilever sensors coated with a sensitive polyaniline layer for detecting volatile organic compounds.

    Science.gov (United States)

    Steffens, C; Leite, F L; Manzoli, A; Sandovall, R D; Fatibello, O; Herrmann, P S P

    2014-09-01

    This paper describes a silicon cantilever sensor coated with a conducting polymer layer. The mechanical response (deflection) of the bimaterial (the coated microcantilever) was investigated under the influence of several volatile compounds-methanol, ethanol, acetone, propanol, dichloroethane, toluene and benzene. The variations in the deflection of the coated and uncoated microcantilevers when exposed to volatile organic compounds were evaluated, and the results indicated that the highest sensitivity was obtained with the coated microcantilever and methanol. The uncoated microcantilever was not sensitive to the volatile organic compounds. An increase in the concentration of the volatile organic compound resulted in higher deflections of the microcantilever sensor. The sensor responses were reversible, sensible, rapid and proportional to the volatile concentration.

  20. Non-conventional gas phase remediation of volatile halogenated compounds by dehydrated bacteria

    OpenAIRE

    Erable, Benjamin; Goubet, Isabelle; Seltana, Amira; Maugard, Thierry

    2009-01-01

    Traditional biological removal processes are limited by the low solubility of halogenated compounds in aqueous media. A new technology appears very suitable for the remediation of these volatile organic compounds (VOCs). Solid/gas bio-catalysis applied in VOC remediation can transform halogenated compounds directly in the gas phase using dehydrated cells as a bio-catalyst. The hydrolysis of volatile halogenated substrates into the corresponding alcohol was studied in a solid/gas bio...

  1. Exchange of volatile organic compounds in the boreal forest floor

    Science.gov (United States)

    Aaltonen, Hermanni; Bäck, Jaana; Pumpanen, Jukka; Pihlatie, Mari; Hakola, Hannele; Hellén, Heidi; Aalto, Juho; Heinonsalo, Jussi; Kajos, Maija K.; Kolari, Pasi; Taipale, Risto; Vesala, Timo

    2013-04-01

    Terrestrial ecosystems, mainly plants, emit large amounts of volatile organic compounds (VOCs) into the atmosphere. In addition to plants, VOCs also have less-known sources, such as soil. VOCs are a very diverse group of reactive compounds, including terpenoids, alcohols, aldehydes and ketones. Due to their high reactivity, VOCs take part in formation and growth of secondary organic aerosols in the atmosphere and thus affect also Earth's radiation balance (Kulmala et al. 2004). We have studied boreal soil and forest floor VOC fluxes with chamber and snow gradient techniques we were developed. Spatial and temporal variability in VOC fluxes was studied with year-round measurements in the field and the sources of boreal soil VOCs in the laboratory with fungal isolates. Determination of the compounds was performed mass spectrometrically. Our results reveal that VOCs from soil are mainly emitted by living roots, above- and belowground litter and microbes. The strongest source appears to be litter, in which both plant residuals and decomposers play a role in the emissions. Soil fungi showed high emissions of lighter VOCs, like acetone, acetaldehyde and methanol, from isolates. Temperature and moisture are the most critical physical factors driving VOC fluxes. Since the environment in boreal forests undergoes strong seasonal changes, the VOC flux strength of the forest floor varies markedly during the year, being highest in spring and autumn. The high spatial heterogeneity of the forest floor was also clearly visible in VOC fluxes. The fluxes of other trace gases (CO2, CH4 and N2O) from soil, which are also related to the soil biological activity and physical conditions, did not show correlations with the VOC fluxes. These results indicate that emissions of VOCs from the boreal forest floor account for as much as several tens of percent, depending on the season, of the total forest ecosystem VOC emissions. This emphasises that forest floor compartment should be taken into

  2. Novel Set-Up for Low-Disturbance Sampling of Volatile and Non-volatile Compounds from Plant Roots.

    Science.gov (United States)

    Eilers, Elisabeth J; Pauls, Gerhard; Rillig, Matthias C; Hansson, Bill S; Hilker, Monika; Reinecke, Andreas

    2015-03-01

    Most studies on rhizosphere chemicals are carried out in substrate-free set-ups or in artificial substrates using sampling methods that require an air flow and may thus cause disturbance to the rhizosphere. Our study aimed to develop a simplified and inexpensive system that allows analysis of rhizosphere chemicals at experimentally less disturbed conditions. We designed a mesocosm in which volatile rhizosphere chemicals were sampled passively (by diffusion) without air- and water flow on polydimethylsiloxane-(PDMS) tubes. Dandelion (Taraxacum sect. ruderalia) was used as model plant; roots were left undamaged. Fifteen volatiles were retrieved from the sorptive material by thermal desorption for analysis by gas chromatography/mass spectrometry (GC/MS). Furthermore, three sugars were collected from the rhizosphere substrate by aqueous extraction and derivatized prior to GC/MS analysis. In order to study how the quantity of detected rhizosphere compounds depends on the type of soil or substrate, we determined the matrix-dependent recovery of synthetic rhizosphere chemicals. Furthermore, we compared sorption of volatiles on PDMS tubes with and without direct contact to the substrate. The results show that the newly designed mesocosm is suitable for low-invasive extraction of volatile and non-volatile compounds from rhizospheres. We further highlight how strongly the type of substrate and contact of PDMS tubes to the substrate affect the detectability of compounds from rhizospheres.

  3. Reaction of ozone with c5 and c6 biogenic volatile organic compounds

    Science.gov (United States)

    O Connor, M.; O Dwyer, M.; Wenger, J.

    2003-04-01

    REACTION OF OZONE WITH C5 AND C6 BIOGENIC VOLATILE ORGANIC COMPOUNDS M. O'Connor, M. O'Dwyer, J. Wenger CRAC-Centre for Research into Atmospheric Chemistry, Department of Chemistry, University College Cork, Ireland. jwenger@chemistry.ucc.ie Biogenic volatile organic compounds (BVOCs) account for around 90% of hydrocarbon emissionsinto the Earth's atmosphere. During the last ten years an increasing number of oxygenated BVOCs have also been detected in field measurement campaigns and plant emission studies. In particular a range of C5 and C6 oxygenates have been identifiedincluding compounds such as 1-penten-3-ol, E-2-hexenal and E-2-hexenyl acetate. The atmospheric impact of many of these compounds is largely unknown. The major atmospheric degradation processes for biogenic VOCs are gas-phase reaction with hydroxyl (OH) radicals, nitrate (NO3) radicals and ozone (O3). These reactions produce oxidized hydrocarbons, ozone and secondary organic aerosol and, as a result, exert a strong influence on the chemical compositionof the atmosphere. Although a number of studies have been made on the kinetics of the degradation of BVOCs, very few details are available concerning the reaction products and chemical mechanisms. In this work we have studied the reaction of O3 with a series of C5 unsaturated alcohols and C6 unsaturated aldehydes. Rate coefficients for these reactions have been studied using the relative rate method and gas-phase oxidation products have been identified using FTIR spectroscopy and PFBHA derivatisation coupled with GC-MS analysis. In addition secondary organic aerosol (SOA) formation has been studied as a function of humidity. The data obtained in this work will be used to further our knowledge of the atmospheric degradation of these naturally occurring compounds.

  4. Ethanol as Internal Standard for Quantitative Determination of Volatile Compounds in Spirit Drinks by Gas Chromatography

    CERN Document Server

    Charapitsa, Siarhei V; Kulevich, Nikita V; Makoed, Nicolai M; Mazanik, Arkadzi L; Sytova, Svetlana N

    2012-01-01

    The new methodical approach of using ethanol as internal standard in gas chromatographic analysis of volatile compounds in spirit drinks in daily practice of testing laboratories is proposed. This method provides determination of volatile compounds concentrations in spirit drinks directly expressed in milligrams per liter (mg/L) of absolute alcohol according to official methods without measuring of alcohol strength of analyzed sample. The experimental demonstration of this method for determination of volatile compounds in spirit drinks by gas chromatography is described. Its validation was carried out by comparison with experimental results obtained by internal standard method and external standard method.

  5. Transport of volatile organic compounds across the capillary fringe

    Science.gov (United States)

    McCarthy, Kathleen A.; Johnson, Richard L.

    1993-01-01

    Physical experiments were conducted to investigate the transport of a dissolved volatile organic compound (trichloroethylene, TCE) from shallow groundwater to the unsaturated zone under a variety of conditions including changes in the soil moisture profile and water table position. Experimental data indicated that at moderate groundwater velocities (0.1 m/d), vertical mechanical dispersion was negligible and molecular diffusion was the dominant vertical transport mechanism. Under these conditions, TCE concentrations decreased nearly 3 orders of magnitude across the capillary fringe and soil gas concentrations remained low relative to those of underlying groundwater. Data collected during a water table drop showed a short-term increase in concentrations throughout most of the unsaturated zone, but these concentrations quickly declined and approached initial values after the water table was returned to its original level. In the deep part of the unsaturated zone, the water table drop resulted in a long-term decrease in concentrations, illustrating the effects of hysteresis in the soil moisture profile. A two-dimensional random walk advection-diffusion model was developed to simulate the experimental conditions, and numerical simulations agreed well with experimental data. A simpler, one-dimensional finite-difference diffusion-dispersion model was also developed. One-dimensional simulations based on molecular diffusion also agreed well with experimental data. Simulations which incorporated mechanical dispersion tended to overestimate flux across the capillary fringe. Good agreement between the one- and two-dimensional models suggested that a simple, one-dimensional approximation of vertical transport across the capillary fringe can be useful when conditions are appropriate.

  6. Diagnosing Tibetan pollutant sources via volatile organic compound observations

    Science.gov (United States)

    Li, Hongyan; He, Qiusheng; Song, Qi; Chen, Laiguo; Song, Yongjia; Wang, Yuhang; Lin, Kui; Xu, Zhencheng; Shao, Min

    2017-10-01

    Atmospheric transport of black carbon (BC) from surrounding areas has been shown to impact the Tibetan environment, and clarifying the geographical source and receptor regions is crucial for providing guidance for mitigation actions. In this study, 10 trace volatile organic compounds (VOCs) sampled across Tibet are chosen as proxies to diagnose source regions and related transport of pollutants to Tibet. The levels of these VOCs in Tibet are higher than those in the Arctic and Antarctic regions but much lower than those observed at many remote and background sites in Asia. The highest VOC level is observed in the eastern region, followed by the southern region and the northern region. A positive matrix factorization (PMF) model found that three factors-industry, biomass burning, and traffic-present different spatial distributions, which indicates that different zones of Tibet are influenced by different VOC sources. The average age of the air masses in the northern and eastern regions is estimated to be 3.5 and 2.8 days using the ratio of toluene to benzene, respectively, which indicates the foreign transport of VOC species to those regions. Back-trajectory analyses show that the Afghanistan-Pakistan-Tajikistan region, Indo-Gangetic Plain (IGP), and Meghalaya-Myanmar region could transport industrial VOCs to different zones of Tibet from west to east. The agricultural bases in northern India could transport biomass burning-related VOCs to the middle-northern and eastern zones of Tibet. High traffic along the unique national roads in Tibet is associated with emissions from local sources and neighboring areas. Our study proposes international joint-control efforts and targeted actions to mitigate the climatic changes and effects associated with VOCs in Tibet, which is a climate sensitive region and an important source of global water.

  7. Assessment of volatile organic compound emissions from ecosystems of China

    Science.gov (United States)

    Klinger, L. F.; Li, Q.-J.; Guenther, A. B.; Greenberg, J. P.; Baker, B.; Bai, J.-H.

    2002-11-01

    Isoprene, monoterpene, and other volatile organic compound (VOC) emissions from grasslands, shrublands, forests, and peatlands in China were characterized to estimate their regional magnitudes and to compare these emissions with those from landscapes of North America, Europe, and Africa. Ecological and VOC emission sampling was conducted at 52 sites centered in and around major research stations located in seven different regions of China: Inner Mongolia (temperate), Changbai Mountain (boreal-temperate), Beijing Mountain (temperate), Dinghu Mountain (subtropical), Ailao Mountain (subtropical), Kunming (subtropical), and Xishuangbanna (tropical). Transects were used to sample plant species and growth form composition, leafy (green) biomass, and leaf area in forests representing nearly all the major forest types of China. Leafy biomass was determined using generic algorithms based on tree diameter, canopy structure, and absolute cover. Measurements of VOC emissions were made on 386 of the 541 recorded species using a portable photo-ionization detector method. For 105 species, VOC emissions were also measured using a flow-through leaf cuvette sampling/gas chromatography analysis method. Results indicate that isoprene and monoterpene emissions, as well as leafy biomass, vary systematically along gradients of ecological succession in the same manner found in previous studies in the United States, Canada, and Africa. Applying these results to a regional VOC emissions model, we arrive at a value of 21 Tg C for total annual biogenic VOC emissions from China, compared to 5 Tg C of VOCs released annually from anthropogenic sources there. The isoprene and monoterpene emissions are nearly the same as those reported for Europe, which is comparable in size to China.

  8. Stable carbon isotope ratios of ambient aromatic volatile organic compounds

    Science.gov (United States)

    Kornilova, Anna; Huang, Lin; Saccon, Marina; Rudolph, Jochen

    2016-09-01

    Measurements of mixing ratios and stable carbon isotope ratios of aromatic volatile organic compounds (VOC) in the atmosphere were made in Toronto (Canada) in 2009 and 2010. Consistent with the kinetic isotope effect for reactions of aromatic VOC with the OH radical the observed stable carbon isotope ratios are on average significantly heavier than the isotope ratios of their emissions. The change of carbon isotope ratio between emission and observation is used to determine the extent of photochemical processing (photochemical age, ∫ [OH]dt) of the different VOC. It is found that ∫ [OH]dt of different VOC depends strongly on the VOC reactivity. This demonstrates that for this set of observations the assumption of a uniform ∫ [OH]dt for VOC with different reactivity is not justified and that the observed values for ∫ [OH]dt are the result of mixing of VOC from air masses with different values for ∫ [OH]dt. Based on comparison between carbon isotope ratios and VOC concentration ratios it is also found that the varying influence of sources with different VOC emission ratios has a larger impact on VOC concentration ratios than photochemical processing. It is concluded that for this data set the use of VOC concentration ratios to determine ∫ [OH]dt would result in values for ∫ [OH]dt inconsistent with carbon isotope ratios and that the concept of a uniform ∫ [OH]dt for an air mass has to be replaced by the concept of individual values of an average ∫ [OH]dt for VOC with different reactivity.

  9. Effects of soy sauce and packaging method on volatile compounds and lipid oxidation of cooked irradiated beef patties

    Science.gov (United States)

    Kim, Hyun-Wook; Lee, Soo-Yeon; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Ham, Yun-Kyung; Lee, Choong-Hee; Choi, Yun-Sang; Lee, Ju-Woon; Kim, Cheon-Jei

    2014-10-01

    The objective of this study is to determine the effect of soy sauce on volatile compounds and lipid oxidation of cooked irradiated beef patties. Sulfur-containing volatile components, which are produced by irradiation, were not found in all treatments. Volatile components derived from soy sauce, such as 3-hydroxy-2-butanone, acetic acid, 3-methyl-1-butanol and 2-methyl-1-butanol, were detected in beef patties containing soy sauce regardless of irradiation and packaging method. Volatile aldehydes, including hexanal, significantly decreased the irradiated beef patty prepared with soy sauce compared to those of irradiated beef patty made with NaCl at 1 day and 5 days after irradiation. In addition, combined use of vacuum packaging and soy sauce treatments could inhibit the formation of volatile compounds and 2-thiobarbituric acid reactive substances during chilled storage. Therefore, the use of soy sauce in cooked and irradiated beef could reduce the production of volatile components associated with the irradiation-induced off-flavor and lipid oxidation.

  10. Volatile compounds in light, medium, and dark black walnut and their influence on the sensory aromatic profile.

    Science.gov (United States)

    Lee, Jeehyun; Vázquez-Araújo, Laura; Adhikari, Koushik; Warmund, Michele; Elmore, Janelle

    2011-03-01

    Light, medium, and dark colored kernels from 3 different cultivars (Emma K, Kwik Krop, and Sparks 127) and one wild species of black walnut were studied for their aroma volatiles. Solid-phase microextraction-gas chromatography-mass spectrometry was used to determine the aromatic compounds present in the headspace of these samples. Partial least square regression was used to correlate the instrumental aromatic data with the sensory responses, obtained in a previous study, for the same samples. Thirty-four aromatic compounds were found in the black walnut cultivars, highlighting among them the presence of 14 esters. Although more than 50% of the total concentration of volatile compounds, esters were not important compounds in determining the differences in the sensory aromatic profiles of the 3 colors of the nuts. As a general trend, the concentration of total volatile compounds was always significantly higher in light black walnuts than in the medium colored samples; medium colored samples had higher volatile content than the dark black walnuts. The presence of hexanal was related to rancid and acrid aromas and was determined to differentiate the dark black walnuts from the medium and light colored samples. The data presented in this article will help understand the aromatic differences between light, medium, and dark colored kernels of domestic and wild black walnut. The aromatic profile of these nuts, not studied until this moment, can be used as a model to develop flavorings and new products by the food industries.

  11. Determination of volatile organic compounds responsible for flavour in cooked river buffalo meat

    Directory of Open Access Journals (Sweden)

    A. Di Luccia

    2010-02-01

    Full Text Available Flavour is an important consumer attractive that directly influences the success of food products on the market. The determination of odorous molecules and their identification allows to useful knowledge for producers to valorise their own products. Buffalo meat has a different chemical composition from pork and beef and requires some cautions in cooking and processing. This work aims at the identification of volatile molecules responsible for flavours in river buffalo meat. The determination was carried out by solid phase micro-extraction (SPME technique and analysed by gas chromatography coupled to mass spectrometry (GC-MS. The most relevant results were the higher odorous impact of buffalo meat and the higher content of sulphide compounds responsible for wild aroma respect to pork and beef. These results were obtained comparing the total area of peaks detected in every chromatogram. We have also found significant differences concerning the contents of pentadecane, 1-hexanol-2 ethyl, butanoic acid, furano-2-penthyl. The origin of volatile organic compounds and their influence on the river buffalo aromas were discussed.

  12. 40 CFR 60.112a - Standard for volatile organic compounds (VOC).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds (VOC). 60.112a Section 60.112a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Commenced After May 18, 1978, and Prior to July 23, 1984 § 60.112a Standard for volatile organic...

  13. Volatile organic compounds from native potato-associated Pseudomonas as potential anti-oomycete agents.

    Directory of Open Access Journals (Sweden)

    Mout eDeVrieze

    2015-11-01

    Full Text Available The plant kingdom represents a prominent biodiversity island for microbes that associate with the below- or aboveground organs of vegetal species. Both the root and the leaf represent interfaces where dynamic biological interactions influence plant life. Beside well-studied communication strategies based on soluble compounds and protein effectors, bacteria were recently shown to interact both with host plants and other microbial species through the emissions of volatile organic compounds (VOCs. Focusing on the potato late blight-causing agent Phytophthora infestans, this work addresses the potential role of the bacterial volatilome in suppressing plant diseases. In a previous study, we isolated and identified a large collection of strains with anti-Phytophthora potential from both the phyllosphere and the rhizosphere of potato. Here we report the characterization and quantification of their emissions of biogenic volatiles, comparing 16 Pseudomonas strains differing in i origin of isolation (phyllosphere vs. rhizosphere, ii in vitro inhibition of P. infestans growth and sporulation behavior, and iii protective effects against late blight on potato leaf discs. We systematically tested the pharmacological inhibitory activity of core and strain-specific single compounds against P. infestans mycelial growth and sporangial behavior in order to identify key effective candidate molecules present in the complex natural VOCs blends. We envisage the plant bacterial microbiome as a reservoir for functional VOCs and establish the basis for finding the primary enzymatic toolset that enables the production of active components of the volatile bouquet in plant-associated bacteria. Comprehension of these functional interspecies interactions will open perspectives for the sustainable control of plant diseases in forthcoming agriculture.

  14. Induction of volatile organic compound in the leaves of Lycopersicon esculentum by chitosan oligomer

    Institute of Scientific and Technical Information of China (English)

    He Peiqing; Lin Xuezheng; Shen Jihong; Huang Xiaohang; Chen Kaoshan; Li Guangyou

    2005-01-01

    Induction of VOCs (volatile organic compounds) in the leaves of Lycopersicon esculentum by chitosan oligomer elictor was studied. The results demonstrated that VOCs in chitosan oligomer-treated leaves showed stronger inhibitory activity against Botrytis cinerea than that in water-treated leaves, and the spore germination was reduced by 22.1% in 144h after elicitor treatment at a concentration of 1.0%. A total of 16 constituents were detected in water-treated leaves, and chitosan oligomer treatment increased the amount of VOCs production. Chitosan oligomer at different concentration and different time courses of induction treatment could induce different amount of VOCs. Chitosan oligomer resulted in an optimal production of VOCs in 144h after elicitation at concentration of 0.6%. Chitosan oligomer also enhanced activtity of PAL and LOX. The results showed that the enhancement of VOCs production after chitosan oligomer treatment might be an important agent for L.esculentum acquiring resistance against pathogen.

  15. Continuous Underway Seawater Measurements of Biogenic Volatile Organic Compounds in the Western Atlantic Ocean

    Science.gov (United States)

    Zoerb, M.; Kim, M.; Bertram, T. H.

    2014-12-01

    The products of isoprene and terpene oxidation have been shown to contribute significantly to secondary aerosol production rates over continental regions, where the emission rates have been well characterized. Significantly less is known about the emission of isoprene and monoterpenes from marine sources. We discuss the development of a chemical ionization mass spectrometer (CIMS) employing benzene reagent ion chemistry for the selective detection of biogenic volatile organic compounds. The CIMS was coupled to a seawater equilibrator for the measurement of dissolved gases in surface seawater. This system was deployed aboard the R/V Knorr during the Western Atlantic Climate Study II in Spring 2014. Here, we report surface seawater (5 m depth) concentrations of dimethyl sulfide, isoprene, and alpha-pinene. The concentration measurements are discussed in terms of surface seawater temperature, nutrient availability, and primary productivity.

  16. Utilization of Volatile Organic Compounds as an Alternative for Destructive Abatement

    Directory of Open Access Journals (Sweden)

    Satu Ojala

    2015-07-01

    Full Text Available The treatment of volatile organic compounds (VOC emissions is a necessity of today. The catalytic treatment has already proven to be environmentally and economically sound technology for the total oxidation of the VOCs. However, in certain cases, it may also become economical to utilize these emissions in some profitable way. Currently, the most common way to utilize the VOC emissions is their use in energy production. However, interesting possibilities are arising from the usage of VOCs in hydrogen and syngas production. Production of chemicals from VOC emissions is still mainly at the research stage. However, few commercial examples exist. This review will summarize the commercially existing VOC utilization possibilities, present the utilization applications that are in the research stage and introduce some novel ideas related to the catalytic utilization possibilities of the VOC emissions. In general, there exist a vast number of possibilities for VOC utilization via different catalytic processes, which creates also a good research potential for the future.

  17. Potential of volatile compounds produced by fungi to influence sensory quality of coffee beverage

    DEFF Research Database (Denmark)

    Iamanaka, B. T.; Teixeira, A. A.; Teixeira, A. R. R.

    2014-01-01

    Fungi are known producers of a large number of volatile compounds (VCs). Several VCs such as 2,4,6 trichloroanisole (TCA), geosmin and terpenes have been found in coffee beverages, and these compounds can be responsible for off-flavor development. However, few studies have related the fungal...... contamination of coffee with the sensory characteristics of the beverage. The aim of this research was to investigate the production of VCs by fungi isolated from coffee and their potential as modifiers of the sensory coffee beverage quality. Three species were isolated from coffee from the southwest of São...... Paulo state and selected for the study: Penicillium brevicompactum, Aspergillus luchuensis (belonging to section Nigri) and Penicillium sp. nov. (related to Penicillium crustosum). VCs produced by the fungal inoculated in raw coffee beans were extracted and tentatively identified by SPME...

  18. Partition of volatile compounds in pea globulin-maltodextrin aqueous two-phase system.

    Science.gov (United States)

    Nguyen, Thanh Dat; Lafarge, Céline; Murat, Chloé; Mession, Jean-Luc; Cayot, Nathalie; Saurel, Rémi

    2014-12-01

    This study is based on the assumption that the off-flavour of pea proteins might be decreased using the retention of volatile compounds by a mixture with another biopolymer. The partition of volatile compounds in an aqueous system containing pea protein and maltodextrins was followed under thermodynamic incompatibility conditions. Firstly, the phase diagram of the system was established. Then, the partition of aroma compounds between the phase rich in protein and the phase rich in maltodextrin was measured by SPME-GC-MS. There was a transfer of volatile compounds during phase separation. Variations of pH were also used to vary the retention of volatile compounds by proteins. The concentration of volatile compounds in protein solution at pH 2.4 was higher than at pH 7.2. It was possible to increase the transfer of volatile compounds from the phase rich in protein to the phase rich in maltodextrin using the effect of pH on protein denaturation.

  19. Analysis of volatile compounds of Malaysian Tualang (Koompassia excelsa) honey using gas chromatography mass spectrometry.

    Science.gov (United States)

    Nurul Syazana, M S; Gan, S H; Halim, A S; Shah, Nurul Syazana Mohamad; Gan, Siew Hua; Sukari, Halim Ahmad

    2013-01-01

    The constituents of honey's volatile compounds depend on the nectar source and differ depending on the place of origin. To date, the volatile constituents of Tualang honey have never been investigated. The objective of this study was to analyze the volatile compounds in local Malaysian Tualang honey. A continuous extraction of Tualang honey using five organic solvents was carried out starting from non-polar to polar solvents and the extracted samples were analysed using gas chromatography-mass spectrometry (GC-MS). Overall, 35 volatile compounds were detected. Hydrocarbons constitute 58.5% of the composition of Tualang honey. Other classes of chemical compounds detected included acids, aldehydes, alcohols, ketones, terpenes, furans and a miscellaneous group. Methanol yielded the highest number of extracted compounds such as acids and 5-(Hydroxymethyl) furfural (HMF). This is the first study to describe the volatile compounds in Tualang honey. The use of a simple one tube, stepwise, non-thermal liquid-liquid extraction of honey is a advantageous as it prevents sample loss. Further research to test the clinical benefits of these volatile compounds is recommended.

  20. Effect of culture of accumulation white mold volatile aromatic compounds in cheese

    OpenAIRE

    Zhukova, Y.; MALOVA V.; KOROL TS.; KOZLOVA L.; PHEDIN PH.

    2012-01-01

    The influence of different cultures of white mold Penicillium caseicolum and Geotrichum candidum on the content of aromatic compounds in a soft cheese have been investigated, methodical approaches to the definition of aromatic compounds by capillary gas chromatography have been developed, a number of characteristic volatile compounds identified and defined that have a specific cheese flavor.

  1. Analysis of breath volatile organic compounds as a screening tool for detection of Tuberculosis in cattle

    Science.gov (United States)

    • Keywords: bovine tuberculosis; Mycobacterium bovis; breath analysis; volatile organic compound; gas chromatography; mass spectrometry; NaNose • Introduction: This presentation describes two studies exploring the use of breath VOCs to identify Mycobacterium bovis infection in cattle. • Methods: ...

  2. Predicting partitioning of volatile organic compounds from air into plant cuticular matrix by quantum chemical descriptors

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on theoretical linear solvation energy relationship and quantum chemical descriptors computed by AM1 Hamiltonian, a new model is developed to predict the partitioning of some volatile organic compounds between the plant cuticular matrix and air.

  3. Factors that influence the volatile organic compound content in human breath

    NARCIS (Netherlands)

    Blanchet, L.; Smolinska, Agnieszka; Baranska, Agnieszka; Tigchelaar-Feenstra, E.; Swertz, M.; Zhernakova, A.; Dallinga, J. W.; Wijmenga, C.; van Schooten, Frederik J.

    Background. Thousands of endogenous and exogenous volatile organic compounds (VOCs) are excreted in each breath. Inflammatory and deviant metabolic processes affect the level of endogeneous VOCs, which can serve as specific biomarkers for clinical diagnosis and disease monitoring. Important issues

  4. APPLICATION OF MICROWAVE IRRADIATION FOR THE TREATMENT OF ADSORBED VOLATILE ORGANIC COMPOUNDS ON GRANULAR ACTIVATED CARBON

    National Research Council Canada - National Science Library

    A Dehdashti; A Khavanin; A Rezaee; H Assilian; M Motalebi

    2011-01-01

      The purpose of this laboratory scale experimental research was to investigate the application of integrated microwave irradiation and granular activated carbon adsorption for removing volatile organic compounds (VOCs...

  5. Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds

    NARCIS (Netherlands)

    Park, Yong-Soon; Dutta, Swarnalee; Ann, Mina; Raaijmakers, Jos M.; Park, Kyungseok

    2015-01-01

    Abstract Volatile organic compounds (VOCs) from plant growth-promoting rhizobacteria (PGPR) play key roles in modulating plant growth and induced systemic resistance (ISR) to pathogens. Despite their significance, the physiological functions of the specific VOCs produced by Pseudomonas fluorescens

  6. VOLATILE ORGANIC COMPOUNDS INHIBIT HUMAN AND RAT NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS EXPRESSED IN XENOPUS OOCYTES.

    Science.gov (United States)

    This manuscript provides evidence to indicate that rats and humans are equally sensitive at the pharmacodynamic level to effects of volatile organic compounds.? This manuscript also presents novel data that provides a plausible mechanism, disruption of ion channel functi...

  7. VOLATILE ORGANIC COMPOUND EMISSION RATES FROM MIXED DECIDUOUS AND CONIFEROUS FORESTS IN NORTHERN WISCONSIN, USA

    Science.gov (United States)

    Biogenic emissions of volatile organic compounds (VOC) from forests play an important role in regulating the atmospheric trace gas composition including global tropospheric ozone concentrations. However, more information is needed on VOC emission rates from different forest regio...

  8. Characterization of volatile production during storage of lettuce (Lactuca sativa) seed

    Science.gov (United States)

    The duration that seeds stay vigorous during storage is difficult to predict but critical to seed industry and conservation communities. Production of volatile compounds from lettuce seeds during storage was investigated as a non-invasive and early detection method of seed aging rates. Over thirty...

  9. VOLATILE COMPOUNDS OF WATER-ETHANOLIC EXTRACT OF SATUREJA MONTANA L.

    Directory of Open Access Journals (Sweden)

    A. E. Paliy

    2014-01-01

    Full Text Available We have studied a composition and content of volatile compounds of Satureja montana L. extract. It was established that concentration of volatile compounds in water-ethanol extract of S. montana amounted to 325 mg/100g. The principal component of the extract is carvacrol. It was shown that the extract of Satureja montana represents high biological value

  10. Airborne flux measurements of biogenic volatile organic compounds over California

    Science.gov (United States)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-03-01

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK + MAC, methanol, monoterpenes, and MBO over ∼10 000 km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z / zi). Fluxes were generally measured by flying consistently at 400 ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  11. Effects of trace volatile organic compounds on methane oxidation

    Directory of Open Access Journals (Sweden)

    Wilai Chiemchaisri

    2001-06-01

    Full Text Available The effects of volatile organic compounds (VOCs on methane oxidation in landfill cover soils were examined. The batch experiments were conducted using single and mixed VOCs, such as, dichloromethane (DCM, trichloroethylene (TCE, tetrachloroethylene (PCE, and benzene. The results from all combinations showed a decrease in methane oxidation rate with increase in VOC concentrations. Moreover, inhibition effects of TCE and DCM were found higher than benzene and PCE. The reduction of methane oxidation by benzene and PCE could be attributed to the toxicity effect, whereas TCE and DCM were found to exhibit the competitive-inhibition effect. When the soil was mixed with DCM, no methane oxidation was found. Damage to the cell’s internal membrane was found in a methanotrophic culture exposed to VOC gases which is the attachment site of a key enzyme needed for methane oxidationOs efeitos dos compostos orgânicos voláteis (VOCs na oxidação do metano em camadas superficiais do solo. Os experimentos foram conduzidos usando somente VOCs ou mistura do mesmo, como, diclorometano (DCM, tricloroetileno (TCE, tetracloroetileno (PCE, e benzeno. Os resultados de todas as combinações mostraram uma diminuição na taxa da oxidação do metano com aumento nas concentrações de VOC. Além disso, os efeitos da inibição de TCE e de DCM foram mais elevados do que do benzeno e PCE. A redução da oxidação do metano pelo benzeno e PCE poderia ser atribuída ao efeito da toxicidade, visto que TCE e DCM exibiram o efeito de competição-inibição. Quando o solo foi misturado com o DCM, nenhuma oxidação do metano foi encontrada. Os danos à membrana interna celular foi observada em uma cultura metanotrófica exposta aos gases de VOC que é o local de ligação de uma enzima chave necessário para a oxidação do metano.

  12. Analysis of volatile compounds of Iberian dry-cured loins with different intramuscular fat contents using SPME-DED.

    Science.gov (United States)

    Ventanas, Sonia; Estevez, Mario; Andrés, Ana I; Ruiz, Jorge

    2008-05-01

    In order to study the effect of both, ripening time and IMF content on the volatile profile of Iberian dry-cured loin, volatile compounds from the headspace of 10 Iberian dry-cured loins with different intramuscular fat contents (IMF), low (average IMF content of 2.3%) and high (average IMF content of 6.7%), at days 40 and 55 of the ripening process were analysed using SPME coupled to a direct extraction device (DED) and subsequent gas chromatography/mass spectrometry (GC/MS). Chromatographic areas of the main chemical families detected (hydrocarbons, aldehydes, alcohols, ketones and acids) increased with ripening time. A higher total chromatographic area was detected in the headspace of high IMF loins compared to low IMF ones. Several volatile compounds derived from lipid oxidative reactions, such as hexanol, octanal, (E,E)-2,4-heptadienal or (E)-2-decenal, and others from the degradation of certain amino acids, such as dimethylsulfide, 3-methylbutanal or phenylacetaldehyde, showed higher chromatographic areas in the headspace of high IMF loins than in low IMF ones. Thus, IMF content could influence both the generation of volatile compounds and the transfer of such compounds from the product matrix to the headspace.

  13. Characterization of carbon, sulfur and volatile compounds in nuclear fuel U{sub 3}SI{sub 2}-AL

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Sergio C.; Coelho, Felipe P.; Bustillos, Jose O.V., E-mail: ovega@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (CNEN/IPEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The scope of this work is to describe the characterization of Carbon, Sulfur and Volatile Compounds in nuclear fuel U{sub 3}Si{sub 2}-Al used in a research pool type reactor with 5 KW power capacities, located in Sao Paulo, Brazil. This reactor produces a large range of radioisotopes for radiopharmaceutical needed in Brazil nuclear medicine. The fabrication of the fuel U{sub 3}Si{sub 2}-Al plate is the key of the whole assembly production and its quality directly affects the safety and reliability of the fuel assembly performance. For this reason, it is very necessary to analyze the Carbon, Sulfur and Volatile Compounds to avoid damage in the fuel plate. The Carbon and Sulfur are characterized by the method of radio frequency furnace gas extraction system coupled with infrared cell detector. The Volatile Compounds are characterized by the method of heat gas extraction coupled with gravimetric technique. These methods are recommended by American Society for Testing Materials ASTM for nuclear materials. The average carbon and sulfur analyzed are 30 μg/g and 3 μg/g, respectively. The average for Volatile Compounds is 40 μg/g. These results represent satisfactory performance of the fuel inside the nuclear reactor. A statistical laboratory program has been set to validate the data generated in the nuclear fuel material to specify any agreement with the recommended ASTM methods. (author)

  14. SPME analysis of volatile compounds from unfermented olives subjected to thermal treatment.

    Science.gov (United States)

    Navarro, T; De Lorenzo, C; Pérez, R A

    2004-07-01

    The effect of different types of thermal treatment, designed to increase the product's shelf-life, on the volatile composition of "Campo Real" unfermented table olives, has been studied by headspace solid-phase microextraction (HS-SPME) and GC-MS analysis. Different SPME fibres were evaluated to determine their selectivity for a mixture of the main components of the different spices used in "Campo Real" olive dressing. Of the different fibres investigated, the polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibre was selected for analysis of the olive brines, which contained nine main aroma components. The types of thermal treatment were sterilisation (121 degrees C, 15 min) and four pasteurisation conditions (60 degrees C or 80 degrees C each for 5 or 9 min). Pasteurisation did not lead to significant changes in the amounts of these nine volatile compounds; the 2-butanol signal was reduced by treatment at 80 degrees C. On the other hand, sterilisation of the brine resulted in an decrease in the signals from these compounds and the appearance of a new, high signal for benzaldehyde; the origin of this has not yet been determined. Results suggest that the selected pasteurisation conditions do not significantly modify the typical, and valued, aroma characteristics of "Campo Real".

  15. Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens.

    Science.gov (United States)

    Asari, Shashidar; Matzén, Staffan; Petersen, Mikael Agerlin; Bejai, Sarosh; Meijer, Johan

    2016-06-01

    Biotic interactions through volatile organic compounds (VOC) are frequent in nature. This investigation aimed to study the role of ITALIC! BacillusVOC for the beneficial effects on plants observed as improved growth and pathogen control. Four ITALIC! Bacillus amyloliquefacienssubsp. ITALIC! plantarumstrains were screened for VOC effects on ITALIC! Arabidopsis thalianaCol-0 seedlings and ITALIC! Brassicafungal phytopathogens. VOC from all four ITALIC! Bacillusstrains could promote growth of ITALIC! Arabidopsisplants resulting in increased shoot biomass but the effects were dependent on the growth medium. Dose response studies with UCMB5113 on MS agar with or without root exudates showed significant plant growth promotion even at low levels of bacteria. ITALIC! BacillusVOC antagonized growth of several fungal pathogens ITALIC! in vitro However, the plant growth promotion efficacy and fungal inhibition potency varied among the ITALIC! Bacillusstrains. VOC inhibition of several phytopathogens indicated efficient microbial antagonism supporting high rhizosphere competence of the ITALIC! Bacillusstrains. GC-MS analysis identified several VOC structures where the profiles differed depending on the growth medium. The ability of ITALIC! Bacillusstrains to produce both volatile and soluble compounds for plant growth promotion and disease biocontrol provides examples of rhizosphere microbes as an important ecosystem service with high potential to support sustainable crop production.

  16. Proteomic and metabolomic analyses provide insight into production of volatile and non-volatile flavor components in mandarin hybrid fruit

    Science.gov (United States)

    Although many of the volatile constituents of flavor and aroma in citrus have been identified, the molecular mechanism and regulation of volatile production is not well understood. Our aim was to understand mechanisms of flavor volatile production and regulation in mandarin fruit. To this end fruits...

  17. Speciation of volatile organic compound emissions for regional air quality modeling of particulate matter and ozone

    Science.gov (United States)

    Makar, P. A.; Moran, M. D.; Scholtz, M. T.; Taylor, A.

    2003-01-01

    A new classification scheme for the speciation of organic compound emissions for use in air quality models is described. The scheme uses 81 organic compound classes to preserve both net gas-phase reactivity and particulate matter (PM) formation potential. Chemical structure, vapor pressure, hydroxyl radical (OH) reactivity, freezing point/boiling point, and solubility data were used to create the 81 compound classes. Volatile, semivolatile, and nonvolatile organic compounds are included. The new classification scheme has been used in conjunction with the Canadian Emissions Processing System (CEPS) to process 1990 gas-phase and particle-phase organic compound emissions data for summer and winter conditions for a domain covering much of eastern North America. A simple postprocessing model was used to analyze the speciated organic emissions in terms of both gas-phase reactivity and potential to form organic PM. Previously unresolved compound classes that may have a significant impact on ozone formation include biogenic high-reactivity esters and internal C6-8 alkene-alcohols and anthropogenic ethanol and propanol. Organic radical production associated with anthropogenic organic compound emissions may be 1 or more orders of magnitude more important than biogenic-associated production in northern United States and Canadian cities, and a factor of 3 more important in southern U.S. cities. Previously unresolved organic compound classes such as low vapour pressure PAHs, anthropogenic diacids, dialkyl phthalates, and high carbon number alkanes may have a significant impact on organic particle formation. Primary organic particles (poorly characterized in national emissions databases) dominate total organic particle concentrations, followed by secondary formation and primary gas-particle partitioning. The influence of the assumed initial aerosol water concentration on subsequent thermodynamic calculations suggests that hydrophobic and hydrophilic compounds may form external

  18. Non-random species loss in bacterial communities reduces antifungal volatile production.

    Science.gov (United States)

    Hol, W H Gera; Garbeva, Paolina; Hordijk, Cornelis; Hundscheid, P J; Gunnewiek, Paulien J A Klein; Van Agtmaal, Maaike; Kuramae, Eiko E; De Boer, Wietse

    2015-08-01

    The contribution of low-abundance microbial species to soil ecosystems is easily overlooked because there is considerable overlap between metabolic abilities (functional redundancy) of dominant and subordinate microbial species. Here we studied how loss of less abundant soil bacteria affected the production of antifungal volatiles, an important factor in the natural control of soil-borne pathogenic fungi. We provide novel empirical evidence that the loss of soil bacterial species leads to a decline in the production of volatiles that suppress root pathogens. By using dilution-to-extinction for seven different soils we created bacterial communities with a decreasing number of species and grew them under carbon-limited conditions. Communities with high bacterial species richness produced volatiles that strongly reduced the hyphal growth of the pathogen Fusarium oxysporum. For most soil origins loss of bacterial species resulted in loss of antifungal volatile production. Analysis of the volatiles revealed that several known antifungal compounds were only produced in the more diverse bacterial communities. Our results suggest that less abundant bacterial species play an important role in antifungal volatile production by soil bacterial communities and, consequently, in the natural suppression of soil-borne pathogens.

  19. Growth promotion of Lactuca sativa in response to volatile organic compounds emitted from diverse bacterial species.

    Science.gov (United States)

    Fincheira, Paola; Venthur, Herbert; Mutis, Ana; Parada, Maribel; Quiroz, Andrés

    2016-12-01

    Agrochemicals are currently used in horticulture to increase crop production. Nevertheless, their indiscriminate use is a relevant issue for environmental and legal aspects. Alternative tools for reducing fertilizers and synthetic phytohormones are being investigated, such as the use of volatile organic compounds (VOCs) as growth inducers. Some soil bacteria, such as Pseudomonas and Bacillus, stimulate Arabidopsis and tobacco growth by releasing VOCs, but their effects on vegetables have not been investigated. Lactuca sativa was used as model vegetable to investigate bacterial VOCs as growth inducers. We selected 10 bacteria strains, belonging to Bacillus, Staphylococcus and Serratia genera that are able to produce 3-hydroxy-2-butanone (acetoin), a compound with proven growth promoting activity. Two-day old-seedlings of L. sativa were exposed to VOCs emitted by the selected bacteria grown in different media cultures for 7 days. The results showed that the VOCs released from the bacteria elicited an increase in the number of lateral roots, dry weight, root growth and shoot length, depending on the media used. Three Bacillus strains, BCT53, BCT9 and BCT4, were selected according to its their growth inducing capacity. The BCT9 strain elicited the greatest increases in dry weight and primary root length when L. sativa seedlings were subjected to a 10-day experiment. Finally, because acetoin only stimulated root growth, we suggest that other volatiles could be responsible for the growth promotion of L. sativa. In conclusion, our results strongly suggest that bacteria volatiles can be used as growth-inducers as alternative or complementary strategies for application in horticulture species. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. On the volatile flavour compounds of cooked trassi, a cured shrimp paste condiment of the Far East

    NARCIS (Netherlands)

    Soedarmo Moeljohardjo, D.

    1972-01-01

    The volatile compounds of cooked trassi, a cured shrimp paste condiment of the Far East have been studied. The techniques of volatiles isolation, concentration, fractionation as well as methods of identification have been described. 138 volatile compounds, which included 16 hydrocarbons, 7 alcohols,

  1. On the volatile flavour compounds of cooked trassi, a cured shrimp paste condiment of the Far East

    NARCIS (Netherlands)

    Soedarmo Moeljohardjo, D.

    1972-01-01

    The volatile compounds of cooked trassi, a cured shrimp paste condiment of the Far East have been studied. The techniques of volatiles isolation, concentration, fractionation as well as methods of identification have been described. 138 volatile compounds, which included 16 hydrocarbons, 7

  2. Analysis of Volatile Compounds from Solanumbetaceum Cav. Fruits from Panama by Head-Space Micro Extraction

    Directory of Open Access Journals (Sweden)

    Armando A. Durant

    2013-01-01

    Full Text Available The characterization of the volatile compounds of two varieties of Solanum betaceum Cav. by means of headspace solid-phase microextraction (HS-SPME coupled with gas chromatography-mass spectrometry ( GC-MS i s presented. The HS-SPME method for extraction of the volatiles compounds was optimized by using a 2 3 central composite design. Maximum extraction of volatile compounds was achieved by using a divinylbenzene-carboxen-polydimethylsiloxane (DVB/CAR/PDMS fiber, extraction temperature 76° C, incubation time 44 min, and extraction time of 46 min. The main types of compounds detected in both varieties are terpenoids, followed by aromatics, esters, and aldehydes. Golden-yellow cultivars contained higher levels of esters and terpenes, while the reddish-purple variety contained a significant amount of aromatic compounds. The data structure of the chemical information obtained as well as the relationship between variables was evaluated by means of principal component analysis and cluster analysis.

  3. Removal of volatile organic compounds using amphiphilic cyclodextrin-coated polypropylene.

    Science.gov (United States)

    Lumholdt, Ludmilla; Fourmentin, Sophie; Nielsen, Thorbjørn T; Larsen, Kim L

    2014-01-01

    Polypropylene nonwovens were functionalised using a self-assembled, amphiphilic cyclodextrin coating and the potential for water purification by removal of pollutants was studied. As benzene is one of the problematic compounds in the Water Framework Directive, six volatile organic compounds (benzene and five benzene-based substances) were chosen as model compounds. The compounds were tested as a mixture in order to provide a more realistic situation since the wastewater will be a complex mixture containing multiple pollutants. The volatile organic compounds are known to form stable inclusion complexes with cyclodextrins. Six different amphiphilic cyclodextrin derivatives were synthesised in order to elucidate whether or not the uptake abilities of the coating depend on the structure of the derivative. Headspace gas chromatography was used for quantification of the uptake exploiting the volatile nature of benzene and its derivatives. The capacity was shown to increase beyond the expected stoichiometries of guest-host complexes with ratios of up to 16:1.

  4. Metal organic frameworks as sorption media for volatile and semi-volatile organic compounds at ambient conditions

    Science.gov (United States)

    Vellingiri, Kowsalya; Szulejko, Jan E.; Kumar, Pawan; Kwon, Eilhann E.; Kim, Ki-Hyun; Deep, Akash; Boukhvalov, Danil W.; Brown, Richard J. C.

    2016-06-01

    In this research, we investigated the sorptive behavior of a mixture of 14 volatile and semi-volatile organic compounds (four aromatic hydrocarbons (benzene, toluene, p-xylene, and styrene), six C2-C5 volatile fatty acids (VFAs), two phenols, and two indoles) against three metal-organic frameworks (MOFs), i.e., MOF-5, Eu-MOF, and MOF-199 at 5 to 10 mPa VOC partial pressures (25 °C). The selected MOFs exhibited the strongest affinity for semi-volatile (polar) VOC molecules (skatole), whereas the weakest affinity toward was volatile (non-polar) VOC molecules (i.e., benzene). Our experimental results were also supported through simulation analysis in which polar molecules were bound most strongly to MOF-199, reflecting the presence of strong interactions of Cu2+ with polar VOCs. In addition, the performance of selected MOFs was compared to three well-known commercial sorbents (Tenax TA, Carbopack X, and Carboxen 1000) under the same conditions. The estimated equilibrium adsorption capacity (mg.g‑1) for the all target VOCs was in the order of; MOF-199 (71.7) >Carboxen-1000 (68.4) >Eu-MOF (27.9) >Carbopack X (24.3) >MOF-5 (12.7) >Tenax TA (10.6). Hopefully, outcome of this study are expected to open a new corridor to expand the practical application of MOFs for the treatment diverse VOC mixtures.

  5. Effect of {gamma}-irradiation on the volatile compounds of medicinal herb, Paeoniae Radix

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Sung-Lye; Hwang, In-Min; Ryu, Keun-Young; Jung, Min-Seok [Department of Food and Nutrition, Chosun University (Korea, Republic of); Seo, Hye-young [Korea Food Research Institute (Korea, Republic of); Kim, Hee-Yeon [Korea Food and Drug Administration (Korea, Republic of); Song, Hyun-Pa; Kim, Jae-Hun; Lee, Ju-Woon; Byun, Myung-Woo [Advanced Radiation Technology Institute, KAERI, Jeongeup 580-185 (Korea, Republic of); Kwon, Joong-Ho [Department of Food Science and Technology, Kyungpook National University (Korea, Republic of); Kim, Kyong-Su [Korea Food Research Institute (Korea, Republic of)], E-mail: kskim@chosun.ac.kr

    2009-07-15

    A study was carried out to find the effect of {gamma}-irradiation on contents of volatile compounds from medicinal herb, Paeoniae Radix (Paenia albiflora Pallas var. trichocarpa Bunge). The volatile compounds of control, 1, 3, 5 and 10 kGy irradiated samples were extracted by simultaneous steam distillation and extraction (SDE) method and analyzed by gas chromatograph-mass spectrometer. The major volatile compounds were paeonol, (E)-carveol, (E,E)-2,4-octadienal, methyl salicylate, myrtanol and eugenol acetate. Volatile compounds belonging to chemical classes of acids, alcohols, aldehydes, esters, hydrocarbons and miscellaneous were identified in all experimental samples. The types of volatile compounds in irradiated samples were similar to those of non-irradiated sample and the concentrations of these compounds differed between treatments. 1,3-Bis (1,1-dimethylethyl)-benzene was identified by using the selected ion monitoring (GC/MS-SIM) mode. The concentration of this compound increased with the increase of irradiation dose level. These results suggest that it could be used as the base data for the effect of {gamma}-irradiation on medicinal herb.

  6. The Volatile Compounds of the Elderflowers Extract and the Essential Oil

    Directory of Open Access Journals (Sweden)

    Hale Gamze Ağalar

    2017-09-01

    Full Text Available Sambucus nigra L. (Caprifoliaceae known as ‘black elder’ is widely used as both food and medicinal plant in Europe. Elderflowers are consumed as herbal tea and its gargle has benefits in respiratory tract illnesses such as cough, influenza, inflammation in throat. In this study, we aimed to show the compositions of the volatile compounds-rich in extract and the essential oil of the elderflowers cultivated in Kütahya, Turkey. HS-SPME (Headspace-Solid Phase MicroExtraction technique was employed to trap volatile compounds in the hexane extract of dried elderflowers. The volatile compounds in the essential oil from elderflowers isolated by hydrodistillation were analyzed GC and GC-MS systems, simultaneously. Results for the n-hexane extract: thirty volatile compounds were identified representing 84.4% of the sample. cis-Linalool oxide (27.3% and 2-hexanone (10.5% were found to be main compounds of the n-hexane extract. Results for the essential oil: fifteen volatile compounds were identified representing 90.4% of the oil. Heneicosane (18.8%, tricosane (17.3%, nonadecane (13% and pentacosane (10.3% were the major compounds of the oil.

  7. Characterization of traditional Istrian dry-cured ham by means of physical and chemical analyses and volatile compounds.

    Science.gov (United States)

    Marušić, Nives; Petrović, Marinko; Vidaček, Sanja; Petrak, Tomislav; Medić, Helga

    2011-08-01

    The aroma-active compounds of Istrian dry-cured ham were investigated by using headspace-solid phase microextraction and gas chromatography-mass spectrometry (GC-MS). Samples of biceps femoris were also evaluated by measuring physical and chemical characteristics: moisture, protein, fat, ash and NaCl content, a(w) value; colour: L*, a*, b* and oxidation of fat: TBARS test. About 50 volatile compounds were identified and quantified which belonged to several classes of chemical: 5 alcohols, 8 aldehydes, 7 alkanes, 1 ketone, 2 esters, 9 monoterpenes and 15 sesquiterpenes. Except volatile compounds derived from lipolysis and proteolysis the most abundant constituents were terpenes (62.97; 41.43%) that originate from spices added in the salting phase of the production process.

  8. Volatile profile, lipid oxidation and protein oxidation of irradiated ready-to-eat cured turkey meat products

    Science.gov (United States)

    Feng, Xi; Ahn, Dong Uk

    2016-10-01

    Irradiation had little effects on the thiobarbituric acid reactive substances (TBARS) values in ready-to-eat (RTE) turkey meat products, while it increased protein oxidation at 4.5 kGy. The volatile profile analyses indicated that the amount of sulfur compounds increased linearly as doses increased in RTE turkey meat products. By correlation analysis, a positive correlation was found between benzene/ benzene derivatives and alcohols with lipid oxidation, while aldehydes, ketones and alkane, alkenes and alkynes were positively correlated with protein oxidation. Principle component analysis showed that irradiated meat samples can be discriminated by two categories of volatile compounds: Strecker degradation products and radiolytic degradation products. The cluster analysis of volatile data demonstrated that low-dose irradiation had minor effects on the volatile profile of turkey sausages (<1.5 kGy). However, as the doses increased, the differences between the irradiated and non-irradiated cured turkey products became significant.

  9. Atmospheric fate of non volatile and ionizable compounds

    DEFF Research Database (Denmark)

    Franco, Antonio; Hauschild, Michael Zwicky; Jolliet, Olivier

    2011-01-01

    A modified version of theMultimedia Activity Model for Ionics MAMI, including two-layered atmosphere,air–water interface partitioning, intermittent rainfall and variable cloud coverage was developed to simulate the atmospheric fate of ten low volatility or ionizable organic chemicals. Probabilist...

  10. Determination of the solubility of low volatility liquid organic compounds in water using volatile-tracer assisted headspace gas chromatography.

    Science.gov (United States)

    Zhang, Shu-Xin; Chai, Xin-Sheng; Barnes, Donald G

    2016-02-26

    This study reports a new headspace gas chromatographic method (HS-GC) for the determination of water solubility of low volatility liquid organic compounds (LVLOs). The HS-GC analysis was performed on a set of aqueous solutions containing a range of concentrations of toluene-spiked (as a tracer) LVLOs, from under-saturation to over-saturation. A plot of the toluene tracer GC signal vs. the concentration of the LVLO results in two lines of different slopes that intersect at the concentration corresponding to the compound's solubility in water. The results showed that the HS-GC method has good precision (RSD solubility of LVLOs at elevated temperatures. This approach should be of special interest to those concerned about the impact of the presence of low-volatility organic liquids in waters of environmental and biological systems.

  11. Airborne flux measurements of biogenic volatile organic compounds over California

    Directory of Open Access Journals (Sweden)

    P. K. Misztal

    2014-03-01

    Full Text Available Biogenic Volatile Organic Compound (BVOC fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK + MAC, methanol, monoterpenes, and MBO over ∼10 000 km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z / zi. Fluxes were generally measured by flying consistently at 400 ± 50 m (a.g.l. altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF landcover datasets used to drive biogenic VOC (BVOC emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m−2 h−1 above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions

  12. [Ammonia volatilization of slow release compound fertilizer in different soils water conditions].

    Science.gov (United States)

    Hu, Xiao-feng; Wang, Zheng-yin; You, Yuan; Li, Jing-chao

    2010-08-01

    By using venting method incubation experiment, we studied the ammonia volatilization and kinetics characteristics of uncoated slowed release compound fertilizer (SRF) under different soil water conditions and the growth and nitrogen utilization efficiency of rice in pot experiment. Results indicated that the ammonia volatilization of SRF under waterflooding reached the peak ahead of 3-4 days compared to the moist treatment. The peak and accumulation of ammonia volatilization in the waterflooding treatments were higher than those under the moist condition. SRF could significantly reduce total ammonia volatilization compared to the common compound fertilizer (CCF), reduced by 50.6% and 22.8% in the moist treatment and reduced by 24.2% and 10.4% in the waterflooding treatment,but the loss of ammonia volatilization of SRF was higher significantly than that of the coated fertilizer (CRF). Ammonia volatilization increased with the increasing of fertilizer application. The dynamics of ammonia volatilization of SRF could be quantitatively described with three equations: the first order kinetics equation, Elovich equation and parabola equation. Compared to moist condition, the biomass of rice plant in SRF, CCF and SRF treatments increased by 67.86%, 78.25% and 48.75%, and nitrogen utilization efficiency increased by 57.73%, 80.70% and 12.06% under waterflooding condition, respectively. Comparing with CCF, nitrogen utilization efficiency in SRF treatment improved by 59.10% and 10.40% under two soil moisture conditions. SRF could reduce ammonia volatilization and improve biomass and nitrogen utilization efficiency.

  13. Volatile organic compound (VOC) determination in working atmospheres; Determinacion de compuestos organicos volatiles (VOC) en ambiente laboral

    Energy Technology Data Exchange (ETDEWEB)

    Blass A, Georgina; Panama T, Luz A; Corrales C, Deyanira [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2003-07-01

    The present work describes, in a synthesized way, the implementation and application of procedures based on the normativity related to the subject of the volatile organic compounds (Volatile Organic Compounds VOC), that allow to sample, quantify and evaluate the present contamination in the working atmosphere of a refinery due to the fugitive emissions of VOC and other substances. In accordance with the corresponding normativity, more than 189 organic compounds denominated dangerous air polluting agents (Hazardous Air Pollutants, HAP) can be found in a working atmosphere, but they are the 11 main HAP that can be found in a refinery. In the present article the work made for the sampling and quantification of 5 of the 11 dangerous polluting agents of the air: benzene, toluene, xylene, iso-octane and naphthalene. [Spanish] El presente trabajo describe, de manera sintetizada, la implementacion y aplicacion de procedimientos basados en la normatividad relacionada al tema de los compuestos organicos volatiles (Volatil Organic Compounds, VOC), que permiten muestrear, cuantificar y evaluar la contaminacion presente en el ambiente laboral de una refineria debido a las emisiones fugitivas de VOC y otras sustancias. De acuerdo con la normatividad correspondiente, mas de 189 compuestos organicos denominados contaminantes peligrosos del aire (Hazardous Air Pollutants, HAP), pueden ser encontrados en un ambiente laboral, pero son 11 los principales HAP que pueden ser hallados en una refineria. En el presente articulo se informa el trabajo realizado para el muestreo y cuantificacion de 5 de los 11 contaminantes peligrosos del aire: benceno, tolueno, xileno, iso-octano y naftaleno.

  14. Evaluation of Penicillium expansum for growth, patulin accumulation, nonvolatile compounds and volatile profile in kiwi juices of different cultivars.

    Science.gov (United States)

    Wang, Yuan; Shan, Tingting; Yuan, Yahong; Zhang, Zhiwei; Guo, Chunfeng; Yue, Tianli

    2017-08-01

    Patulin (PAT) contamination and changes of nonvolatile and volatile compounds caused by Penicillium expansum in fresh juices of 8 kiwi cultivars were investigated. Growth and PAT production of P. expansum were greater at 25°C than at 4°C. P. expansum grew in kiwi juices under pH ranging from 2.75 to 3.27 and produced 45.10-268.88μg/mL of PAT at 25°C. Decreases occurred in malic acid and soluble protein; while consumption and production simultaneously happened for reducing sugar, total soluble solid, titratable acid, citric acid, ascorbic acid and total phenolics. A large number of volatile organic compounds (VOCs) were produced during infection and each cultivar presented a distinct profile. Most of the alcohols, acids, ketones and phenols increased while aldehydes decreased. VOCs that were specific to infected kiwi juices are potential biomarkers for GC-MS analysis of kiwifruit infected by P. expansum.

  15. Volatile Organic Compounds Obtained by in Vitro Callus Cultivation of Plectranthus ornatus Codd. (Lamiaceae

    Directory of Open Access Journals (Sweden)

    Fabio S. de Oliveira

    2013-08-01

    Full Text Available Plectranthus spp (Lamiaceae are plants of economic importance because they are sources of aromatic essential oils and are also cultivated and several species of this genus are used as folk medicines. This paper describes the effects of different concentrations of the 2,4-dichlorophenoxyacetic acid (2,4-D and 1-naphthaleneacetic acid (NAA on the induction of callus from nodal segments of Plectranthus ornatus Codd and in the production of volatile organic compounds (monoterpenes and sesquiterpenes. The 20 and 40 day calli were subjected to solid phase micro extraction (HS-SPME and submitted to GCMS analysis. Variations in VOCs between the samples were observed and, a direct relationship was observed between of the major constituent detected (α-terpinyl acetate and the monoterpenes α-thujene, α-pinene, β-pinene, camphene, sabinene and α-limonene that were present in the volatile fractions. Besides α-terpinyl acetate, isobornyl acetate and α-limonene were also major constituents. Variations were observed in VOCs in the analyzed periods. The best cultivation media for the production of VOCs was found to be MS0 (control. Moderate success was achieved by treatment with 2.68 µM and 5:37 µM NAA (Group 2. With 2,4-D (9.0 µM, only the presence of α-terpinyl acetate and isocumene were detected and, with 2.26 µM of 2,4-D was produced mainly α-terpinyl acetate, α-thujene and β-caryophyllene (16.2%. The VOC profiles present in P. ornatus were interpreted using PCA and HCA. The results permitted us to determine the best cultivation media for VOC production and, the PCA and HCA analysis allowed us to recognize four groups among the different treatments from the compounds identified in this set of treatments.

  16. Volatile organic compounds in exhaled breath in a healthy population: effect of tobacco smoking.

    Science.gov (United States)

    Jareño-Esteban, José Javier; Muñoz-Lucas, M Ángeles; Carrillo-Aranda, Belén; Maldonado-Sanz, José Ángel; de Granda-Orive, Ignacio; Aguilar-Ros, Antonio; Civera-Tejuca, Concepción; Gutiérrez-Ortega, Carlos; Callol-Sánchez, Luis Miguel

    2013-11-01

    Tobacco smoke is a source of free radicals and reactive oxygen and nitrogen species, which are the main causes of oxidative stress. The analysis of volatile organic compounds (VOC) in exhaled breath is an indirect method of measuring the level of oxidative stress that occurs in the airways caused by tobacco consumption. The aim of this study was to determine whether smoking influences the production of VOC, in a clinically healthy population. Exhaled breath from 89 healthy volunteers, divided into three groups (non-smokers, ex-smokers and smokers) was analysed. Samples were collected using Bio-VOC® devices and transferred to universal desorption tubes. Chemical compounds were analysed by thermal desorption, gas chromatography and mass spectrometry. We analysed hexanal, heptanal, octanal, nonanal, nonanoic acid and propanoic acid, all identified by retention time and mass spectra referenced in the NIST 08 mass spectral library; confirmation was carried out using reference standards of the pure chemical compound. These VOC were found in very low concentrations. Only nonanal showed significant quantitative and qualitative statistical differences among the study groups. Nonanal concentration is dependent on smoking, but is independent of the amount of tobacco consumed, age and gender. Nonanal in exhaled breath is associated with tobacco consumption, current or previous. Nonanal is a sub-product of the destruction of the cell membrane, and its finding may be indicative of cell damage in smokers. This result appears in many farmers who smoke. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  17. Volatile organic compounds in natural biofilm in polyethylene pipes supplied with lake water and treated water from the distribution network.

    Science.gov (United States)

    Skjevrak, Ingun; Lund, Vidar; Ormerod, Kari; Herikstad, Hallgeir

    2005-10-01

    The objective of this work was investigation of volatile organic compounds (VOC) in natural biofilm inside polyethylene (HDPE) pipelines at continuously flowing water. VOC in biofilm may contribute to off-flavour episodes in drinking water. The pipelines were supplied with raw lake water and treated water from the distribution network. Biofilm was established at test sites located at two different drinking water distribution networks and their raw water sources. A whole range of volatile compounds were identified in the biofilm, including compounds frequently associated with cyanobacteria and algae, such as ectocarpene, dictyopterene A and C', geosmin, beta-ionone and 6-methyl-5-hepten-2-one. In addition, volatile amines, dimethyldisulphide and 2-nonanone, presumably originating from microorganisms growing in the biofilm, were identified. C8-compounds such as 1-octen-3-one and 3-octanone were believed to be products from microfungi in the biofilm. Degradation products from antioxidants such as Irgafos 168, Irganox 1010 and Irganox 1076 used in HDPE pipes, corresponding to 2,4-di-tert-butylphenol and 2,6-di-tert-butylbenzoquinone, were present in the biofilm.

  18. [Health effect of volatile aldehyde compounds in photocatalytic oxidation of aromatics compounds].

    Science.gov (United States)

    Zhao, Wei-rong; Liao, Qiu-wen; Yang, Ya-nan; Dai, Jiu-song

    2013-05-01

    Photocatalytic oxidation (PCO) of toluene and benzaldehyde in indoor air by N doped TiO2 (N-TiO2) was conducted under UV irradiation of 254 nm. The intermediates were identified and monitored on real-time by proton transfer reaction-mass spectrometry. The health risks of PCO of toluene and benzaldehyde were assessed based on health risk influence index (eta). Results indicated that both the conversion rate and mineralization rate of toluene and benzaldehyde were relatively high, however, the volatile aldehyde compounds (VAs), including acetaldehyde and formaldehyde generated from ring-opening, significantly influenced the health risks of PCO of toluene and benzaldehyde. Acetaldehyde played a crucial role on health risks, which was inclined to desorb from the surface of catalysts, accumulate in gas-phase, and increase the health risks of PCO of the aromatic compounds. The concentration of formaldehyde kept stable at a relatively low level, however its impact cannot be neglected. In the PCO process of toluene and benzaldehyde, eta reached the maximum values of 8 499.68 and 21.43, with the eta(VAs), contribution of VAs to the health risk influence index of outlet, reaching 99.3% and 98.3%, respectively. The average values of eta in the PCO process of 30 min were 932.86 and 8.52, and for which eta(VAs), reached 98.5% and 98.0%, respectively. When PCO of toluene and benzaldehyde reached steady state, eta were 236.09 and 2.30, and eta(VAs) reached 97.9% and 97.8%, respectively. Hence, eta(VAs), can be taken as a characteristic parameter in assessment of health risks of PCO of aromatic compounds.

  19. Volatile Compounds and Sensory Evaluation of Spreadable Creams Based on Roasted Sunflower Kernels and Cocoa or Carob Powder

    Directory of Open Access Journals (Sweden)

    Emil Racolța

    2014-11-01

    Full Text Available The known confectionery spreadable cream product category includes well-known cocoa - hazelnut pastes as well as peanut butter, products that became very popular in the last decades due to their pleasant taste and ease of eating. However, health constraints appeared both hazelnut and peanut are food allergens, while cocoa excites central nervous system (CNS and on everyday consumption causes dependence. The aim of this work was to characterize the aroma and sensory of an innovative product that belongs to the same confectionery spreadable cream product category. Six spreadable cream prototypes were produced by using sugar, roasted sunflower kernel, carob or cocoa powder, palm or coconut fat and, lecithin. The obtained samples were firstly analyzed by using the nine point hedonic scale test. The volatile compounds profile analysis (“In Tube Extraction”- GC-MS was performed on the best samples (in terms of sensory containing cocoa or carob powder, as well as a control. The main volatile compound of all three samples was pinene (42-51% which is a characteristic flavor of turpentine, wood. Acetophenone instead (20-25% gives flavors of almond, floral, sweetish. Benzaldehyde (8.11-9.73% is characteristic for almond flavor with hints of caramel. The study revealed that the analyzed spreadable creams have similar volatile profiles, even if carob and cocoa powder showed different volatile compounds profiles, with the major compound for both being Propanoic acid, 2-methyl. Thus, with similar taste to cocoa sample, carob-sunflower spreadable cream is an alternative that not include ingredients with allergic potential or CNS stimulants. 

  20. Biomass torrefaction: modeling of volatile and solid product evolution kinetics.

    Science.gov (United States)

    Bates, Richard B; Ghoniem, Ahmed F

    2012-11-01

    The aim of this work is the development of a kinetics model for the evolution of the volatile and solid product composition during torrefaction conditions between 200 and 300°C. Coupled to an existing two step solid mass loss kinetics mechanism, this model describes the volatile release kinetics in terms of a set of identifiable chemical components, permitting the solid product composition to be estimated by mass conservation. Results show that most of the volatiles released during the first stage include highly oxygenated species such as water, acetic acid, and carbon dioxide, while volatiles released during the second step are composed primarily of lactic acid, methanol, and acetic acid. This kinetics model will be used in the development of a model to describe reaction energy balance and heat release dynamics.

  1. Performance of commercial non-methane hydrocarbon analyzers in monitoring polar volatile organic compounds

    Science.gov (United States)

    Quantifying non-methane hydrocarbons (NMHC) from animal feeding operations (AFOs) is challenging due to the broad spectrum of compounds and the polar nature of the most abundant compounds. The purpose of this study was to determine the performance of commercial NMHC analyzers for measuring volatile ...

  2. Effect of sequential fermentations and grape cultivars on volatile compounds and sensory profiles of Danish wines

    DEFF Research Database (Denmark)

    Liu, Jing; Arneborg, Nils; Toldam-Andersen, Torben

    2017-01-01

    : The different non-Saccharomyces strains and cool-climate grape cultivars produced wines with a distinctive aromatic profile. A total of 67 volatile compounds were identified, including 43 esters, 14 alcohols, five acids, two ketones, a C13-norisoprenoid, a lactone and a sulfur compound. The use of M. viticola...

  3. Analysis of volatile organic compound from Elaeis guineensis inflorescences planted on different soil types in Malaysia

    Science.gov (United States)

    Muhamad Fahmi, M. H.; Ahmad Bukhary, A. K.; Norma, H.; Idris, A. B.

    2016-11-01

    The main attractant compound for Eleidobius kamerunicus to male spikelet Elaeis guineensis (oil palm) were determined by analyzing volatile organic compound extracted from E. guineenses inflorescences planted on different soil types namely peat soil, clay soil and sandy soil. Anthesizing male oil palm inflorescences were randomly choosen from palm aged between 4-5 years old age. Extraction of the volatiles from the oil palm inflorescences were performed by Accelerated Solvent Extraction method (ASE). The extracted volatile compound were determined by using gas chromatography-mass spectrometry. Out of ten identified compound, estragole was found to be a major compound in sandy soil (37.49%), clay soil (30.71%) and peat soil (27.79%). Other compound such as 9,12-octadecadieonic acid and n-hexadecanoic acid were found as major compound in peat soil (27.18%) and (7.45%); sandy soil (14.15 %) and (9.31%); and clay soil (30.23%) and (4.99%). This study shows that estragole was the predominant volatile compound detected in oil palm inflorescences with highly concentrated in palm planted in sandy soil type.

  4. The Influence of Spices on the Volatile Compounds of Cooked Beef Patty

    OpenAIRE

    Jung, Samooel; Jo, Cheorun; Kim, Il Suk; Nam, Ki Chang; Ahn, Dong Uk; Lee, Kyung Heang

    2014-01-01

    The aim of this study is to examine the influences of spices on the amounts and compositions of volatile compounds released from cooked beef patty. Beef patty with 0.5% of spice (nutmeg, onion, garlic, or ginger powder, w/w) was cooked by electronic pan until they reached an internal temperature of 75℃. A total of 46 volatile compounds (6 alcohols, 6 aldehydes, 5 hydrocarbons, 6 ketones, 9 sulfur compounds, and 14 terpenes) from cooked beef patties were detected by using purgeand- trap GC/MS....

  5. [Emission model of volatile organic compounds from materials used indoors].

    Science.gov (United States)

    Han, K

    1998-11-30

    Various materials, such as wall-paper, floor-wax, paint, multicolor wall-coat, air freshener and mothball were experimented in a simulated test chamber under constant selected temperature, humidity and air exchange rate. The relation between the total VOCs concentration and time was regressed by four emission models and the surface emission rate was calculated. The regressed results indicated the similarity among four emission models for the liquid materials with volatile-solvent such as paint and multicolor wall-coat. But for low volatile solid materials, such as wall-paper, floor-wax, mothball, the sink model and the empirical model were better than the dilution model and vapor pressure model. Only for air freshener, it was improper to the total VOCs concentration as a parameter.

  6. Relationships between volatile compounds and sensory characteristics in virgin olive oil by analytical and chemometric approaches.

    Science.gov (United States)

    Procida, Giuseppe; Cichelli, Angelo; Lagazio, Corrado; Conte, Lanfranco S

    2016-01-15

    The volatile fraction of virgin olive oil is characterised by low molecular weight compounds that vaporise at room temperature. In order to obtain an aroma profile similar to natural olfactory perception, the composition of the volatile compounds was determined by applying dynamic headspace gas chromatography, performed at room temperature, with a cryogenic trap directly connected to a gas chromatograph-mass spectrometer system. Samples were also evaluated according to European Union and International Olive Council official methods for sensory evaluation. In this paper, the composition of the volatile fraction of 25 extra virgin olive oils from different regions of Italy was analysed and some preliminary considerations on relationships between chemical composition of volatile fraction and sensory characteristics are reported. Forty-two compounds were identified by means of the particular analytical technique used. All the analysed samples, classified as extra virgin by the panel test, never present peaks whose magnitude is important enough in defected oils. The study was focused on the evaluation of volatile compounds responsible for the positive impact on olive odour properties ('green-fruity' and 'sweet') and olfactory perception. Chemometric evaluation of data, obtained through headspace analysis and the panel test evaluation, showed a correlation between chemical compounds and sensory properties. On the basis of the results, the positive attributes of virgin olive oil are divided into two separated groups: sweet types or green types. Sixteen volatile compounds with known positive impact on odour properties were extracted and identified. In particular, eight compounds seem correlated with sweet properties whereas the green sensation appears to be correlated with eight other different substances. The content of the compounds at six carbon atoms proves to be very important in defining positive attributes of extra virgin olive oils and sensory evaluation. © 2015

  7. Volatile organic compounds generated by cultures of bacteria and viruses associated with respiratory infections.

    Science.gov (United States)

    Abd El Qader, Amir; Lieberman, David; Shemer Avni, Yonat; Svobodin, Natali; Lazarovitch, Tsilia; Sagi, Orli; Zeiri, Yehuda

    2015-12-01

    Respiratory infections (RI) can be viral or bacterial in origin. In either case, the invasion of the pathogen results in production and release of various volatile organic compounds (VOCs). The present study examines the VOCs released from cultures of five viruses (influenza A, influenza B, adenovirus, respiratory syncitial virus and parainfluenza 1 virus), three bacteria (Moraxella catarrhalis, Haemophilus influenzae and Legionella pneumophila) and Mycoplasma pneumoniae isolated colonies. Our results demonstrate the involvement of inflammation-induced VOCs. Two significant VOCs were identified as associated with infectious bacterial activity, heptane and methylcyclohexane. These two VOCs have been linked in previous studies to oxidative stress effects. In order to distinguish between bacterial and viral positive cultures, we performed principal component analysis including peak identity (retention time) and VOC concentration (i.e. area under the peak) revealing 1-hexanol and 1-heptadecene to be good predictors.

  8. Identification of volatile organic compounds in suburban Bangkok, Thailand and their potential for ozone formation

    Science.gov (United States)

    Suthawaree, Jeeranut; Tajima, Yosuke; Khunchornyakong, Alisa; Kato, Shungo; Sharp, Alice; Kajii, Yoshizumi

    2012-02-01

    Measurement of Volatile Organic Compound (VOC) was carried out in suburban Bangkok during July 2-8, 2008. Analysis was performed using GC-FID and GC-MS. High mixing ratios of VOCs detected during the morning and evening are most likely due to vehicular emissions. Averaged VOC mixing ratios revealed distinct difference between mixing ratios of weekdays and weekend, which the latter were found to be lower. The most abundance species were propane and toluene. Ratios of benzene over toluene suggested that additional toluene mixing ratios was owing to industrial emission, which was particularly larger during weekdays. Comparison between C2Cl4 and CH3Cl mixing ratios obtained for suburban Tokyo reveal a relatively lower influence of biomass burning than suburban Bangkok. Elucidating by Ozone Formation Potential, toluene was found to contribute the most to O3 production followed by ethylene, m-,p-xylene, and propylene.

  9. [Preliminary study concerning emissions of the volatile organic compounds from cooking oils].

    Science.gov (United States)

    He, Wan-Qing; Tian, Gang; Nie, Lei; Qu, Song; Li, Jing; Wang, Min-Yan

    2012-09-01

    Cooking oil fume is one of the important sources of atmospheric volatile organic compounds (VOCs), which are the key precursors of ozone and secondary organic aerosols in air. In this study, the production of cooking oil fume was simulated by heating typical pure vegetable oils (peanut oil, sunflower oil, soybean oil, olive oil and blend oil) at different temperatures in beakers to investigate the VOCs emission characteristics. The emitted VOCs were sampled with a Tenax adsorption tube and analyzed using GC-MS after thermal desorption. The results showed that the emission of VOCs increased with the increase of the heating temperature for all the investigated cooking oils, and at a given temperature, the blend oil emitted the lowest amount of VOCs. The VOCs emission intensity at different heating temperatures fitted well with binomial equations and ranged from 1.6-11.1 mg x (kg x min)(-1).

  10. Degradation of volatile organic compounds in a non-thermal plasma air purifier.

    Science.gov (United States)

    Schmid, Stefan; Jecklin, Matthias C; Zenobi, Renato

    2010-03-01

    The degradation of volatile organic compounds in a commercially available non-thermal plasma based air purifying system was investigated. Several studies exist that interrogate the degradation of VOCs in closed air systems using a non-thermal plasma combined with a heterogeneous catalyst. For the first time, however, our study was performed under realistic conditions (normal indoor air, 297.5K and 12.5 g m(-3) water content) on an open system, in the absence of an auxiliary catalyst, and using standard operating air flow rates (up to 320 L min(-1)). Cyclohexene, benzene, toluene, ethylbenzene and the xylene isomers were nebulized and guided through the plasma air purifier. The degradation products were trapped by activated charcoal tubes or silica gel tubes, and analyzed using gas chromatography mass spectrometry. Degradation efficiencies of 11+/-1.6% for cyclohexene, air purifier.

  11. Associations of Volatile Compounds with Sensory Aroma and Flavor: The Complex Nature of Flavor

    Directory of Open Access Journals (Sweden)

    Edgar Chambers IV

    2013-04-01

    Full Text Available Attempts to relate sensory analysis data to specific chemicals such as volatile compounds have been frequent. Often these associations are difficult to interpret or are weak in nature. Although some difficulties may relate to the methods used, the difficulties also result from the complex nature of flavor. For example, there are multiple volatiles responsible for a flavor sensation, combinations of volatiles yield different flavors than those expected from individual compounds, and the differences in perception of volatiles in different matrices. This review identifies some of the reasons sensory analysis and instrumental measurements result in poor associations and suggests issues that need to be addressed in future research for better understanding of the relationships of flavor/aroma phenomena and chemical composition.

  12. Volatile organic compounds released by blowfly larvae and pupae: new perspectives in forensic entomology.

    Science.gov (United States)

    Frederickx, C; Dekeirsschieter, J; Brostaux, Y; Wathelet, J-P; Verheggen, F J; Haubruge, E

    2012-06-10

    To evaluate postmortem intervals (PMIs), one should take into account the determined age of necrophagous flies present on the cadaver. However, PMI determination needs further improvement, and rapid and accurate approaches have therefore to be developed. While previous studies have focussed on insect cuticular hydrocarbons, here we explore the volatile profile released by larvae and pupae of Calliphora vicina Robineau-Desvoidy (Diptera: Calliphoridae). We monitored changes in volatile compounds daily, by headspace solid-phase microextraction, followed by gas chromatography-mass spectrometry. Branched and unbranched hydrocarbons, alcohols, esters and acids were identified, and the volatile profile was shown to vary, in both composition and quantity, with the age of the larva/pupa under investigation. We concluded, based on the analysis of the released volatile organic compounds, that it is possible to increase the accuracy of the estimated PMI, through improved estimation of the age of blowflies present on the cadaver.

  13. Chemical and olfactometric characterization of volatile flavor compounds in a fish oil enriched milk emulsion

    DEFF Research Database (Denmark)

    Venkateshwarlu Venkat, Guidipati; Bruni Let, Mette; Meyer, Anne S.

    2004-01-01

    Development of objectionable fishy off-flavors is an obstacle in the development of fish oil enriched foods. Only little is known about the sensory impact of specific volatile fish oil oxidation products in food emulsions. This study examined the volatiles profiles of fish oil enriched milk during...

  14. Organic nitrate aerosol formation via NO3 + biogenic volatile organic compounds in the southeastern United States

    Science.gov (United States)

    Ayres, B. R.; Allen, H. M.; Draper, D. C.; Brown, S. S.; Wild, R. J.; Jimenez, J. L.; Day, D. A.; Campuzano-Jost, P.; Hu, W.; de Gouw, J.; Koss, A.; Cohen, R. C.; Duffey, K. C.; Romer, P.; Baumann, K.; Edgerton, E.; Takahama, S.; Thornton, J. A.; Lee, B. H.; Lopez-Hilfiker, F. D.; Mohr, C.; Wennberg, P. O.; Nguyen, T. B.; Teng, A.; Goldstein, A. H.; Olson, K.; Fry, J. L.

    2015-12-01

    Gas- and aerosol-phase measurements of oxidants, biogenic volatile organic compounds (BVOCs) and organic nitrates made during the Southern Oxidant and Aerosol Study (SOAS campaign, Summer 2013) in central Alabama show that a nitrate radical (NO3) reaction with monoterpenes leads to significant secondary aerosol formation. Cumulative losses of NO3 to terpenes are correlated with increase in gas- and aerosol-organic nitrate concentrations made during the campaign. Correlation of NO3 radical consumption to organic nitrate aerosol formation as measured by aerosol mass spectrometry and thermal dissociation laser-induced fluorescence suggests a molar yield of aerosol-phase monoterpene nitrates of 23-44 %. Compounds observed via chemical ionization mass spectrometry (CIMS) are correlated to predicted nitrate loss to BVOCs and show C10H17NO5, likely a hydroperoxy nitrate, is a major nitrate-oxidized terpene product being incorporated into aerosols. The comparable isoprene product C5H9NO5 was observed to contribute less than 1 % of the total organic nitrate in the aerosol phase and correlations show that it is principally a gas-phase product from nitrate oxidation of isoprene. Organic nitrates comprise between 30 and 45 % of the NOy budget during SOAS. Inorganic nitrates were also monitored and showed that during incidents of increased coarse-mode mineral dust, HNO3 uptake produced nitrate aerosol mass loading at a rate comparable to that of organic nitrate produced via NO3 + BVOCs.

  15. Phenotypic profiling and gene expression analyses for aromatic and volatile compounds in Chamoes (Cucumis melo).

    Science.gov (United States)

    Lee, Jeongyeo; Kim, Min Keun; Hwang, Seung Hwan; Kim, Jungeun; Ahn, Jong Moon; Min, Sung Ran; Park, Sang Un; Lim, Soon Sung; Kim, HyeRan

    2014-05-01

    Gotgam chamoe (GgC), a native oriental melon in Korea, is known to possess the aroma of a dried persimmon, an agronomic relevance for melon breeding program. The volatile compounds and the transcript levels of aromatic compound genes in cultivar (Ohbokggul chamoe [OC]) and GgC were profiled. A total of 62 volatile compounds were identified and quantified. Twenty-eight volatile compounds were specific to either the OC or the GgC. The amounts of volatile alcohol, saturated hydrocarbon, and unsaturated hydrocarbon compounds were 2.2, 2.7, and 1.1 times higher in OC, respectively. The amounts of ketone volatiles were 1.2 times higher in GgC, whereas the total amounts of esters were similar. In the shikimate pathway, transcriptional patterns with the fruit parts were different between the two chamoes for CmDAHPS, CmDHD/SDH, and CmEPSPS. The expression levels of all six genes investigated, especially CmCS, were highest in the peel of both chamoes compared to the other parts. The transcript levels of the aromatic amino acid biosynthesis genes demonstrate that phenylalanine and tyrosine are present more in edible parts of the chamoe, while tryptophan may be accumulated low in the chamoe. In addition, phenylalanine and tryptophan are synthesized more in GgC than the OC.

  16. Ambient Concentrations and Emissions of a Comprehensive Suite of Volatile Organic Compounds at the CalNex-Bakersfield Supersite

    Science.gov (United States)

    Gentner, D. R.; Goldstein, A. H.

    2010-12-01

    Ambient concentrations of ~250 Volatile Organic Compounds (VOCs) were measured hourly via in-situ gas chromatography at the Bakersfield, CA supersite in May & June 2010 as part of the California at the Nexus between Air Quality and Climate Change (CalNex) Experiment. Measurements included anthropogenic and biogenic VOCs containing 1 to 17 carbon atoms and a variety of functional groups (e.g. aldehydes, ketones, alcohols, halogens, sulfur, & nitrogen). We quantified a very broad range of primary gas-phase organics that lead to the formation of secondary organic aerosol (SOA) and tropospheric ozone, and we also observed many gas-phase products of VOC photooxidation. Many of the observed VOCs are volatile and have been measured previously, but in this experiment we tailored the instrumentation to also measure compounds in the intermediate volatility range, which are thought to contribute significantly to SOA and have rarely or never been reported from in-situ measurements. Among the observed gas-phase VOCs with lower volatility are PAHs (e.g. naphthalene, methylnaphthalenes, and dimethylnaphthalenes), alkanes up to 17 carbon atoms, aromatics and cycloalkanes with multiple alkyl groups, and functionalized VOCs with lower volatility. Analyses of the diurnal variability, covariance between compounds, weekday/weekend differences, and statistical analyses for source apportionment such as Positive Matrix Factorization (PMF) will be utilized to establish the major sources of these compounds and estimate regional emissions. Our VOC data provides excellent context for analysis of the broad array of gas and particle phase measurements during CalNex2010, which will be used to elucidate the chemistry leading to formation of SOA and tropospheric ozone in this polluted region of California with diverse urban, industrial, agricultural, and natural emission sources.

  17. Changes in volatile compounds of gamma-irradiated fresh cilantro leaves during cold storage.

    Science.gov (United States)

    Fan, Xuetong; Sokorai, Kimberly J B

    2002-12-18

    Consumption of salsas and dishes containing cilantro has been linked to several recent outbreaks of food-borne illness due to contamination with human pathogens. Ionizing irradiation can effectively eliminate food-borne pathogens from various vegetables including cilantro. However, the effect of irradiation on aroma of fresh cilantro is unknown. This study was conducted to investigate the effect of irradiation on volatile compounds of fresh cilantro leaves. Fresh cilantro leaves (Coriandrum sativum L) were irradiated with 0, 1, 2, or 3 kGy gamma radiation and then stored at 3 degrees C up to 14 days. Volatile compounds were extracted using solid-phase microextraction (SPME), followed by gas chromatographic separation and mass spectra detection at 0, 3, 7, and 14 days after irradiation. Most of the volatile compounds identified were aldehydes. Decanal and (E)-2-decenal were the most abundant compounds, accounting for more than 80% of the total amount of identified compounds. The amounts of linalool, dodecanal, and (E)-2-dodecenal in irradiated samples were significantly lower than those in nonirradiated samples at day 14. However, the most abundant compounds [decanal and (E)-2-decenal] were not consistently affected by irradiation. During storage at 3 degrees C, the amount of most aldehydes peaked at 3 days and then decreased afterward. Our results suggest irradiation of fresh cilantro for safety enhancement at doses up to 3 kGy had minimal effect on volatile compounds compared with the losses that occurred during storage.

  18. Head Space Solid Phase Micro-Extraction (HS - SPME of volatile organic compounds produced by Sporidiobolus salmonicolor (CBS 2636

    Directory of Open Access Journals (Sweden)

    Eunice Valduga

    2010-12-01

    Full Text Available The aim of the present study was the assessment of volatile organic compounds produced by Sporidiobolus salmonicolor (CBS 2636 using methyl and ethyl ricinoleate, ricinoleic acid and castor oil as precursors. The analysis of the volatile organic compounds was carried out using Head Space Solid Phase Micro-Extraction (HS - SPME. Factorial experimental design was used for investigating extraction conditions, verifying stirring rate (0-400 rpm, temperature (25-60 ºC, extraction time (10-30 minutes, and sample volume (2-3 mL. The identification of volatile organic compounds was carried out by Gas Chromatography with Mass Spectrum Detector (GC/MSD. The conditions that resulted in maximum extraction were: 60 ºC, 10 minutes extraction, no stirring, sample volume of 2.0 mL, and addition of saturated KCl (1:10 v/v. In the bio-production of volatile organic compounds the effect of stirring rate (120-200 rpm, temperature (23-33 ºC, pH (4.0-8.0, precursor concentration (0.02-0.1%, mannitol (0-6%, and asparagine concentration (0-0.2% was investigated. The bio-production at 28 ºC, 160 rpm, pH 6,0 and with the addition of 0.02% ricinoleic acid to the medium yielded the highest production of VOCs, identified as 1,4-butanediol, 1,2,2-trimethylciclopropilamine, beta-ionone; 2,3-butanodione, pentanal, tetradecane, 2-isononenal, 4-octen-3-one, propanoic acid, and octadecane.

  19. Phytoactivity of secondary compounds in aromatic plants by volatile and water-soluble ways of release

    OpenAIRE

    A. S. Dias; Dias, L. S.

    2005-01-01

    Phytoactivity should be expected as a generalized trait of secondary plant compounds if their primary role is defence against co-occurring plants, and volatilization should be their predominant way of release in dry climates while in wet climates water leaching should prevail. Bioassays were designed to compare the ability of volatiles and water-solubles of four aromatic species thriving in dry environments (Cistus salvifolius L., Foeniculum vulgare Miller, Myrtus communis L., and Rosmarinus ...

  20. Volatile compound changes during shelf life of dried Boletus edulis: comparison between SPME-GC-MS and PTR-ToF-MS analysis.

    Science.gov (United States)

    Aprea, Eugenio; Romano, Andrea; Betta, Emanuela; Biasioli, Franco; Cappellin, Luca; Fanti, Marco; Gasperi, Flavia

    2015-01-01

    Drying process is commonly used to allow long time storage of valuable porcini mushrooms (Boletus edulis). Although considered a stable product dried porcini flavour changes during storage. Monitoring of volatile compounds during shelf life may help to understand the nature of the observed changes. In the present work two mass spectrometric techniques were used to monitor the evolution of volatile compounds during commercial shelf life of dried porcini. Solid phase microextraction (SPME) coupled to gas chromatography - mass spectrometry (GC-MS) allowed the identification of 66 volatile compounds, 36 of which reported for the first time, monitored during the commercial shelf life of dried porcini. Proton transfer reaction - time of flight - mass spectrometry (PTR-ToF-MS) , a direct injection mass spectrometric technique, was shown to be a fast and sensitive instrument for the general monitoring of volatile compound evolution during storage of dried porcini. Furthermore, PTR-ToF-MS grants access to compounds whose determination would otherwise require lengthy pre-concentration and/or derivatization steps such as ammonia and small volatile amines. The two techniques, both used for the first time to study dried porcini, provided detailed description of time evolution of volatile compounds during shelf life. Alcohols, aldehydes, ketones and monoterpenes diminish during the storage while carboxylic acids, pyrazines, lactones and amines increase. The storage temperature modifies the rate of the observed changes influencing the final quality of the dried porcini. We showed the advantages of both techniques, suggesting a strategy to be adopted to follow time evolution of volatile compounds in food products during shelf life, based on the identification of compounds by GC-MS and the rapid time monitoring by PTR-ToF-MS measurements in order to maximize the advantages of both techniques. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia.

    Science.gov (United States)

    Huang, R; Li, G Q; Zhang, J; Yang, L; Che, H J; Jiang, D H; Huang, H C

    2011-07-01

    A study was conducted to identify volatile organic compounds or volatiles produced by Candida intermedia strain C410 using gas chromatography-mass spectrometry, and to determine efficacy of the volatiles of C. intermedia in suppression of conidial germination and mycelial growth of Botrytis cinerea and control of Botrytis fruit rot of strawberry. Results showed that, among 49 volatiles (esters, alcohols, alkenes, alkanes, alkynes, organic acids, ketones, and aldehydes) identified from C. intermedia cultures on yeast extract peptone dextrose agar, two compounds, 1,3,5,7-cyclooctatetraene and 3-methyl-1-butanol, were the most abundant. Synthetic chemicals of 1,3,5,7-cyclooctatetraene; 3-methyl-1-butanol; 2-nonanone; pentanoic acid, 4-methyl-, ethyl ester; 3-methyl-1-butanol, acetate; acetic acid, pentyl ester; and hexanoic acid, ethyl ester were highly inhibitory to conidial germination and mycelial growth of B. cinerea. Inhibition of conidial germination and mycelial growth of B. cinerea by volatiles of C. intermedia was also observed. Meanwhile, results showed that incidence and severity of Botrytis fruit rot of strawberry was significantly (P fruit to the volatiles from C. intermedia cultures or C. intermedia-infested strawberry fruit. These results suggest that the volatiles of C. intermedia C410 are promising biofumigants for control of Botrytis fruit rot of strawberry.

  2. 78 FR 62451 - Air Quality: Revision to Definition of Volatile Organic Compounds-Exclusion of 2,3,3,3...

    Science.gov (United States)

    2013-10-22

    ... AGENCY 40 CFR Part 51 RIN 2060-AR70 Air Quality: Revision to Definition of Volatile Organic Compounds.... SUMMARY: The EPA is taking final action to revise the regulatory definition of volatile organic compounds... those organic compounds of carbon that form ozone through atmospheric photochemical reactions....

  3. Malodorous volatile organic sulfur compounds: Sources, sinks and significance in inland waters.

    Science.gov (United States)

    Watson, Susan B; Jüttner, Friedrich

    2017-03-01

    Volatile Organic Sulfur Compounds (VOSCs) are instrumental in global S-cycling and greenhouse gas production. VOSCs occur across a diversity of inland waters, and with widespread eutrophication and climate change, are increasingly linked with malodours in organic-rich waterbodies and drinking-water supplies. Compared with marine systems, the role of VOSCs in biogeochemical processes is far less well characterized for inland waters, and often involves different physicochemical and biological processes. This review provides an updated synthesis of VOSCs in inland waters, focusing on compounds known to cause malodours. We examine the major limnological and biochemical processes involved in the formation and degradation of alkylthiols, dialkylsulfides, dialkylpolysulfides, and other organosulfur compounds under different oxygen, salinity and mixing regimes, and key phototropic and heterotrophic microbial producers and degraders (bacteria, cyanobacteria, and algae) in these environs. The data show VOSC levels which vary significantly, sometimes far exceeding human odor thresholds, generated by a diversity of biota, biochemical pathways, enzymes and precursors. We also draw attention to major issues in sampling and analytical artifacts which bias and preclude comparisons among studies, and highlight significant knowledge gaps that need addressing with careful, appropriate methods to provide a more robust understanding of the potential effects of continued global development.

  4. Volatile organic compound constituents from an integrated iron and steel facility.

    Science.gov (United States)

    Tsai, Jiun-Horng; Lin, Kuo-Hsiung; Chen, Chih-Yu; Lai, Nina; Ma, Sen-Yi; Chiang, Hung-Lung

    2008-09-15

    This study measured the volatile organic compound (VOC) constituents of four processes in an integrated iron and steel industry; cokemaking, sintering, hot forming, and cold forming. Toluene, 1,2,4-trimethylbenzene, isopentane, m,p-xylene, 1-butene, ethylbenzene, and benzene were the predominant VOC species in these processes. However, some of the chlorinated compounds were high (hundreds ppbv), i.e., trichloroethylene in all four processes, carbon tetrachloride in the hot forming process, chlorobenzene in the cold forming process, and bromomethane in the sintering process. In the sintering process, the emission factors of toluene, benzene, xylene, isopentane, 1,2,4-trimethylbenzene, and ethylbenzene were over 9 g/tonne-product. In the vicinity of the manufacturing plant, toluene, isopentane, 1,2,4-trimethylbenzene, xylene and ethylbenzene were high. Toluene, 1,2,4-trimethylbenzene, xylene, 1-butene and isopentane were the major ozone formation species. Aromatic compounds were the predominant VOC groups, constituting 45-70% of the VOC concentration and contributing >70% to the high ozone formation potential in the stack exhaust and workplace air. The sequence of VOC concentration and ozone formation potential was as follows: cold forming>sintering>hot forming>cokemaking. For the workplace air, cokemaking was the highest producer, which was attributed to the fugitive emissions of the coke oven and working process release.

  5. Boundary layer concentrations and landscape scale emissions of volatile organic compounds in early spring

    Directory of Open Access Journals (Sweden)

    S. Haapanala

    2007-01-01

    Full Text Available Boundary layer concentrations of several volatile organic compounds (VOC were measured during two campaigns in springs of 2003 and 2006. The measurements were conducted over boreal landscapes near SMEAR II measurement station in Hyytiälä, Southern Finland. In 2003 the measuremens were performed using a light aircraft and in 2006 using a hot air balloon. Isoprene concentrations were low, usually below detection limit. This can be explained by low biogenic production due to cold weather, phenological stage of the isoprene emitting plants, and snow cover. Monoterpenes were observed frequently. The average total monoterpene concentration in the boundary layer was 33 pptv. Many anthropogenic compounds such as benzene, xylene and toluene, were observed in high amounts. Ecosystem scale surface emissions were estimated using a simple mixed box budget methodology. Total monoterpene emissions varied up to 80 μg m−2 h−1, α-pinene contributing typically more than two thirds of that. These emissions were somewhat higher that those calculated using emission algorithm. The highest emissions of anthropogenic compounds were those of p/m xylene.

  6. Volatile Organic Compounds (VOCs in Conventional and High Performance School Buildings in the U.S.

    Directory of Open Access Journals (Sweden)

    Lexuan Zhong

    2017-01-01

    Full Text Available Exposure to volatile organic compounds (VOCs has been an indoor environmental quality (IEQ concern in schools and other buildings for many years. Newer designs, construction practices and building materials for “green” buildings and the use of “environmentally friendly” products have the promise of lowering chemical exposure. This study examines VOCs and IEQ parameters in 144 classrooms in 37 conventional and high performance elementary schools in the U.S. with the objectives of providing a comprehensive analysis and updating the literature. Tested schools were built or renovated in the past 15 years, and included comparable numbers of conventional, Energy Star, and Leadership in Energy and Environmental Design (LEED-certified buildings. Indoor and outdoor VOC samples were collected and analyzed by thermal desorption, gas chromatography and mass spectroscopy for 94 compounds. Aromatics, alkanes and terpenes were the major compound groups detected. Most VOCs had mean concentrations below 5 µg/m3, and most indoor/outdoor concentration ratios ranged from one to 10. For 16 VOCs, the within-school variance of concentrations exceeded that between schools and, overall, no major differences in VOC concentrations were found between conventional and high performance buildings. While VOC concentrations have declined from levels measured in earlier decades, opportunities remain to improve indoor air quality (IAQ by limiting emissions from building-related sources and by increasing ventilation rates.

  7. Volatile Organic Compounds (VOCs) in Conventional and High Performance School Buildings in the U.S.

    Science.gov (United States)

    Zhong, Lexuan; Su, Feng-Chiao; Batterman, Stuart

    2017-01-01

    Exposure to volatile organic compounds (VOCs) has been an indoor environmental quality (IEQ) concern in schools and other buildings for many years. Newer designs, construction practices and building materials for “green” buildings and the use of “environmentally friendly” products have the promise of lowering chemical exposure. This study examines VOCs and IEQ parameters in 144 classrooms in 37 conventional and high performance elementary schools in the U.S. with the objectives of providing a comprehensive analysis and updating the literature. Tested schools were built or renovated in the past 15 years, and included comparable numbers of conventional, Energy Star, and Leadership in Energy and Environmental Design (LEED)-certified buildings. Indoor and outdoor VOC samples were collected and analyzed by thermal desorption, gas chromatography and mass spectroscopy for 94 compounds. Aromatics, alkanes and terpenes were the major compound groups detected. Most VOCs had mean concentrations below 5 µg/m3, and most indoor/outdoor concentration ratios ranged from one to 10. For 16 VOCs, the within-school variance of concentrations exceeded that between schools and, overall, no major differences in VOC concentrations were found between conventional and high performance buildings. While VOC concentrations have declined from levels measured in earlier decades, opportunities remain to improve indoor air quality (IAQ) by limiting emissions from building-related sources and by increasing ventilation rates. PMID:28117727

  8. Composition of Sulla (Hedysarum coronarium L. Honey Solvent Extractives Determined by GC/MS: Norisoprenoids and Other Volatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    Dragan Bubalo

    2010-09-01

    Full Text Available Samples of unifloral sulla (Hedysarum coronarum L. honey from Sardinia (Italy were analysed. To investigate the chemical composition of the honey volatiles two solvent systems were used for ultrasonic solvent extraction (USE: 1 a 1:2 (v/v pentane and diethyl ether mixture and 2 dichloromethane. All the extracts were analysed by GC and GC/MS. These procedures have permitted the identification of 56 compounds that include norisoprenoids, benzene derivatives, aliphatic compounds and Maillard reaction products. Norisoprenoids were the major compounds in both extracts, dominated by vomifoliol (5.3-11.2%; 9.6-14.0% followed by minor percentages of other norisoprenoids such as α-isophorone, 4-ketoisophorone, 3-oxo-α-ionol or 3-oxo-α-ionone. Other abundant single compounds in the extracts were 3-hydroxy-4-phenylbutan-2-one (0.8-5.4%; 0.6-5.7% and methyl syringate (3.0-5.7%; 2.2-4.1%. The composition of the volatiles and semi-volatiles in the obtained extracts suggests that sulla honey is quite distinctive relative to the other honeys that have been chemically studied by GC/MS, but no specific markers of the honey botanical origin were found.

  9. Composition of sulla (Hedysarum coronarium L.) honey solvent extractives determined by GC/MS: norisoprenoids and other volatile organic compounds.

    Science.gov (United States)

    Jerković, Igor; Tuberoso, Carlo I G; Tuberso, Carlo I G; Gugić, Mirko; Bubalo, Dragan

    2010-09-09

    Samples of unifloral sulla (Hedysarum coronarum L.) honey from Sardinia (Italy) were analysed. To investigate the chemical composition of the honey volatiles two solvent systems were used for ultrasonic solvent extraction (USE): 1) a 1:2 (v/v) pentane and diethyl ether mixture and 2) dichloromethane. All the extracts were analysed by GC and GC/MS. These procedures have permitted the identification of 56 compounds that include norisoprenoids, benzene derivatives, aliphatic compounds and Maillard reaction products. Norisoprenoids were the major compounds in both extracts, dominated by vomifoliol (5.3-11.2%; 9.6-14.0%) followed by minor percentages of other norisoprenoids such as α-isophorone, 4-ketoisophorone, 3-oxo-α-ionol or 3-oxo-α-ionone. Other abundant single compounds in the extracts were 3-hydroxy-4-phenylbutan-2-one (0.8-5.4%; 0.6-5.7%) and methyl syringate (3.0-5.7%; 2.2-4.1%). The composition of the volatiles and semi-volatiles in the obtained extracts suggests that sulla honey is quite distinctive relative to the other honeys that have been chemically studied by GC/MS, but no specific markers of the honey botanical origin were found.

  10. Comparison of volatile and semivolatile compounds from commercial cigarette by supercritical fluid extraction and simultaneous distillation extraction

    Institute of Scientific and Technical Information of China (English)

    徐子刚; 郑琳

    2004-01-01

    Supercritical carbon dioxide fluid extraction (SFE) was studied as a rapid method for extraction of volatile and semivolatile compounds of Chinese commercial cigarettes. The method was compared with simultaneous distillation and extraction (SDE). Temperature and pressure for the SFE were optimized. The extracts obtained by the two methods showed different characters in composition and represented differently the flavor characteristics of tobacco; compared to SDE, SFE can extract compounds within a shorter time and avoid the thermal degradation and solvent contamination of samples. The extracts by the two extraction methods are complementary for investigating the flavor characteristic of tobacco products.

  11. Comparison of volatile and semivolatile compounds from commercial cigarette by supercritical fluid extraction and simultaneous distillation extraction

    Institute of Scientific and Technical Information of China (English)

    徐子刚; 郑琳

    2004-01-01

    Supercritical carbon dioxide fluid extraction (SFE) was studied as a rapid method for extraction of volatile and semivolatile compounds of Chinese commercial cigarettes. The method was compared with simultaneous distillation and extraction (SDE). Temperature and pressure for the SFE were optimized. The extracts obtained by the two methods showed different characters in composition and represented differently the flavor characteristics of tobacco; compared to SDE, SFE can extract compounds within a shorter time and avoid the thermal degradation and solvent contamination of samples. The extracts by the two extraction methods are complementary for investigating the flavor characteristic of tobacco products.

  12. A variety of volatile compounds as markers in unifloral honey from dalmatian sage (Salvia officinalis L.).

    Science.gov (United States)

    Jerković, Igor; Mastelić, Josip; Marijanović, Zvonimir

    2006-12-01

    Volatile compounds of unifloral Salvia officinalis L. honey has been investigated for the first time. The botanical origin of ten unifloral Salvia honey samples has been ascertained by pollen analysis (the honey samples displayed 23-60% of Salvia pollen). Fifty-four volatile compounds were identified by GC and GC/MS in ten Salvia honey extracts obtained by ultrasound-assisted extraction (USE) with pentane/Et(2)O 1 : 2. The yield of isolated volatiles varied from 25.7 to 30.5 mg kg(-1). Salvia honey could be distinguished on the basis of the high percentage of benzoic acid (6.4-14.8%), and especially phenylacetic acid (5.7-18.4%). Minor, but floral-origin important volatiles were identified such as shikimate pathway derivatives, 'degraded-carotenoid-like' structures (3,5,5-trimethylcyclohex-2-ene derivatives) and 2,6,6-trimethylcyclohex-2-ene derivatives. Compounds from other metabolic pathways such as aliphatic acids and higher linear hydrocarbons, as well as heterocycles (pyrans, furans, and pyrroles), were also present. Most of the identified compounds do not constitute specific Salvia honey markers, due to their presence in honeys of other botanical origins; however, their ratio in different honeys could be useful to distinguish floral origin. Salvia-honey volatile markers were: benzoic acid, phenylacetic acid, p-anisaldehyde, alpha-isophorone, 4-ketoisophorone, dehydrovomifoliol, 2,6,6-trimethyl-4-oxocyclohex-2-ene-1-carbaldehyde, 2,2,6-trimethylcyclohexane-1,4-dione, and coumaran.

  13. Characterisation of volatile organic compounds in stemwood using solid-phase microextraction.

    Science.gov (United States)

    Wajs, A; Pranovich, A; Reunanen, M; Willför, S; Holmbom, B

    2006-01-01

    Solid-phase microextraction (SPME), hydrodistillation and dynamic headspace combined with GC and GC-MS were applied and compared for the analysis of volatile organic compounds (VOCs) from coniferous wood. The SPME conditions (type of fibre, size of wood sample, temperature and exposure time) were optimised, and more than 100 VOCs and semi-volatile compounds extracted and identified from the sapwood and heartwood of Norway spruce (Picea abies). The total number of mono- and sesquiterpenes eluted and identified was similar for the SPME and hydrodistillation methods, but more semi-volatile compounds were released by hydrodistillation. By applying dynamic headspace at room temperature, it was possible to analyse only the most volatile compounds. The qualitative composition of VOCs was similar in spruce sapwood and heartwood, although Z-beta-ocimene occurred only in sapwood while fenchol was present only in heartwood. SPME sampling coupled with GC, applied here to the analysis of VOCs released from stemwood of firs for the first time, is a convenient, sensitive, fast, solvent-free and simple method for the determination of wood volatiles. The technique requires much smaller sample amounts compared with hydrodistillation, and the total amount of VOCs extracted and identified is higher than that obtained by hydrodistillation or dynamic headspace. The relative ratios of the main mono- and sesquiterpenes and -terpenoids were similar using the SPME-GC and hydrodistillation methods.

  14. Male Phyllotreta striolata (F.) produce an aggregation pheromone: identification of male-specific compounds and interaction with host plant volatiles.

    Science.gov (United States)

    Beran, Franziska; Mewis, Inga; Srinivasan, Ramasamy; Svoboda, Jiří; Vial, Christian; Mosimann, Hervé; Boland, Wilhelm; Büttner, Carmen; Ulrichs, Christian; Hansson, Bill S; Reinecke, Andreas

    2011-01-01

    The chrysomelid beetle Phyllotreta striolata is an important pest of Brassicaceae in Southeast Asia and North America. Here, we identified the aggregation pheromone of a population of P. striolata from Taiwan, and host plant volatiles that interact with the pheromone. Volatiles emitted by feeding male P. striolata attracted males and females in the field. Headspace volatile analyses revealed that six sesquiterpenes were emitted specifically by feeding males. Only one of these, however, elicited an electrophysiological response from antennae of both sexes. A number of host plant volatiles, e.g., 1-hexanol, (Z)-3-hexen-1-ol, and the glucosinolate hydrolysis products allyl isothiocyanate (AITC), 3-butenyl isothiocyanate, and 4-pentenyl isothiocyanate also elicited clear responses from the antenna. The active male-specific compound was identified as (+)-(6R,7S)-himachala-9,11-diene by chiral stationary phase gas-chromatography with coupled mass spectrometry, and by comparison with reference samples from Abies nordmanniana, which is known to produce the corresponding enantiomer. The pheromone compound was synthesized starting from (-)-α-himachalene isolated from Cedrus atlantica. Under field conditions, the activity of the synthetic pheromone required concomitant presence of the host plant volatile allyl isothiocyanate. However, both synthetic (+)-(6R,7S)-himachala-9,11-diene alone and in combination with AITC were attractive in a two-choice laboratory assay devoid of other natural olfactory stimuli. We hypothesize that P. striolata adults respond to the pheromone only if specific host volatiles are present. In the same laboratory set up, more beetles were attracted by feeding males than by the synthetic stimuli. Thus, further research will be necessary to reveal the components of a more complex blend of host or male-produced semiochemicals that might enhance trap attractiveness in the field.

  15. [Impact of air fresheners and deodorizers on the indoor total volatile organic compounds].

    Science.gov (United States)

    Jinno, Hideto; Tanaka-Kagawa, Toshiko; Obama, Tomoko; Miyagawa, Makoto; Yoshikawa, Jun; Komatsu, Kazuhiro; Tokunaga, Hiroshi

    2007-01-01

    Indoor air quality is a growing health concern because of the increased incidence of the building-related illness, such as sick-building syndrome and multiple chemical sensitivity/idiopathic environmental intolerance. In order to effectively reduce the unnecessary chemical exposure in the indoor environment, it would be important to quantitatively compare the emissions from many types of sources. Besides the chemical emissions from the building materials, daily use of household products may contribute at significant levels to the indoor volatile organic compounds (VOCs). In this study, we investigated the emission rate of VOCs and carbonyl compounds for 30 air fresheners and deodorizers by the standard small chamber test method (JIS A 1901). The total VOC (TVOC) emission rates of these household products ranged from the undetectable level (< 20 microg/unit/h) to 6,900 microg/unit/h. The mean TVOC emission rate of the air fresheners for indoor use (16 products) was 1,400 microg/unit/ h and that of the deodorizers for indoor use (6 products) was 58 microg/unit/h, indicating that the fragrances in the products account for the major part of the TVOC emissions. Based on the emission rates, the impacts on the indoor TVOC were estimated by the simple model with a volume of 17.4 m3 and a ventilation frequency of 0.5 times/h. The mean of the TVOC increment for the indoor air fresheners was 170 microg/m3, accounting for 40% of the current provisional target value, 400 microg/m3. These results suggest that daily use of household products can significantly influence the indoor air quality.

  16. Real-time monitoring of volatile organic compounds using chemical ionization mass spectroscopy: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thornberg, S.M.; Mowry, C.D.; Keenan, M.R.; Bender, S.F.A. [Sandia National Labs., Albuquerque, NM (United States). Gas Analysis Lab.; Owen, T. [Intel Corp., Rio Rancho, NM (United States)

    1997-04-01

    Volatile organic compound (VOC) emission to the atmosphere is of great concern to semiconductor manufacturing industries, research laboratories, the public, and regulatory agencies. Some industries are seeking ways to reduce emissions by reducing VOCs at the point of use (or generation). This paper discusses the requirements, design, calibration, and use of a sampling inlet/quadrupole mass spectrometer system for monitoring VOCs in a semiconductor manufacturing production line. The system uses chemical ionization to monitor compounds typically found in the lithography processes used to manufacture semiconductor devices (e.g., acetone, photoresist). The system was designed to be transportable from tool to tool in the production line and to give the operator real-time feedback so the process(es) can be adjusted to minimize VOC emissions. Detection limits ranging from the high ppb range for acetone to the low ppm range fore other lithography chemicals were achieved using chemical ionization mass spectroscopy at a data acquisition rate of approximately 1 mass spectral scan (30 to 200 daltons) per second. A demonstration of exhaust VOC monitoring was performed at a working semiconductor fabrication facility during actual wafer processing.

  17. Volatile organic compound emissions from elephant grass and bamboo cultivars used as potential bioethanol crop

    Science.gov (United States)

    Crespo, E.; Graus, M.; Gilman, J. B.; Lerner, B. M.; Fall, R.; Harren, F. J. M.; Warneke, C.

    2013-02-01

    Volatile organic compound (VOC) emissions from elephant grass (Miscanthus gigantus) and black bamboo (Phyllostachys nigra) were measured online in semi-field chamber and plant enclosure experiments during growth and harvest using proton-transfer reaction mass spectrometry (PTR-MS), proton-transfer reaction ion-trap mass spectrometry (PIT-MS) and gas chromatography-mass spectrometry (GC-MS). Both cultivars are being considered for second-generation biofuel production. Before this study, no information was available on their yearly VOC emissions. This exploratory investigation shows that black bamboo is a strong isoprene emitter (daytime 28,516 ng gdwt-1 h-1) and has larger VOC emissions, especially for wound compounds from the hexanal and hexenal families, than elephant grass. Daytime emissions of methanol, acetaldehyde, acetone + propanal and acetic acid of black bamboo were 618, 249, 351, and 1034 ng gdwt-1 h-1, respectively. In addition, it is observed that elephant grass VOC emissions after harvesting strongly depend on the seasonal stage. Not taking VOC emission variations throughout the season for annual and perennial species into account, may lead to an overestimation of the impact on local air quality in dry periods. In addition, our data suggest that the use of perennial grasses for extensive growing for biofuel production have lower emissions than woody species, which might be important for regional atmospheric chemistry.

  18. Assessment of Volatile Organic Compound and Hazardous Air Pollutant Emissions from Oil and Natural Gas Well Pads using Mobile Remote and On-site Direct Measurements

    Science.gov (United States)

    Emissions of volatile organic compounds (VOC) and hazardous air pollutants (HAP) from oil and natural gas production were investigated using direct measurements of component-level emissions on well pads in the Denver-Julesburg (DJ) Basin and remote measurements of production pad-...

  19. Adsorption of Organic Compounds to Building Products

    DEFF Research Database (Denmark)

    Kjær, Ulla Dorte

    The presence of VOCs (Volatile Organic Compounds) in the indoor air may be a contributory cause of complaints about irritation of mucous membranes in eyes, nose and throat, difficulty in breathing, frequent airway inflammation, skin irritation, fatigue, concentration difficulty, dizziness and hea...

  20. Volatile compounds of black cumin seeds (Nigella sativa L.) from microwave-heating and conventional roasting.

    Science.gov (United States)

    Kiralan, Mustafa

    2012-04-01

    The volatile compounds in raw, conventionally roasted and microwave roasted black cumin (Nigella sativa L.) seeds at 0.45 kW for 2, 4, and 8 min, were analyzed by headspace-SPME gas chromatography-mass spectrometry. Among the 38 volatile compounds identified, the major compounds were thymoquinone and p-cymene in all samples. The levels of these compounds decreased with roasting. However, concentrations of pyrazines and furans increased significantly as a result of roasting and these compounds may affect the flavor of roasted black cumin seeds. Methyl pyrazine and 2,5-dimethylpyrazine were major pyrazines, formed at high concentration in seeds roasted for 8 min and in conventional roasting.

  1. HS-GC-MS Volatile compounds recovered in freshly pressed and commercial Wonderful pomegranate juices

    Science.gov (United States)

    Consumption and production of superfruits has been increasing. Highly colored fruits often have bitter and astringent components that may make them undesirable, especially when processed. Many pomegranate volatile reports involved commercial samples, complicated isolation methods, or blending and ...

  2. Sensory and Physiological Effects on Humans of Combined Exposures to Air Temperatures and Volatile Organic Compounds

    DEFF Research Database (Denmark)

    Mølhave, Lars; Liu, Zunyong; Jørgensen, Anne Hempel

    1993-01-01

    Ten healthy humans were exposed to combinations of volatile organic compounds (VOCs) and air temperature (0 mg/m3 and 10 mg/m3 of a mixture of 22 volatile organic compounds and 18, 22 and 26° C). Previously demonstrated effects of VOCs and thermal exposures were replicated. For the first time nasal...... cross-sectional areas and nasal volumes, as measured by acoustic rhinometry, were shown to decrease with decreasing temperature and increasing VOC exposure. Temperature and pollutant exposures affected air quality, the need for more ventilation, skin humidity on the forehead, sweating, acute sensory...

  3. Safety of food contact silicone rubber: Liberation of volatile compounds from soothers and teats

    DEFF Research Database (Denmark)

    Lund, Kirsten H.; Petersen, Jens Højslev

    2002-01-01

    The release of volatile compounds from soothers and teats made from silicone rubber has been investigated. Firstly, measurements of the total release of volatiles were performed according to the method in the draft European standard (CEN). Weight losses of 0.17-0.80% after four hours at 200 degre......) detectors. The main compounds were siloxane oligomers and aliphatic hydrocarbons. One teat released about 0.1 mg diethyl phtalate (DEP), which is considered to be quite a high quantity. Limited amounts of the antioxidant 3,5-di-t-butyl-4-hydroxytoluene (BHT) were found in most samples....

  4. Identification of Odor Volatile Compounds and Deodorization ofPaphia undulataEnzymatic Hydrolysate

    Institute of Scientific and Technical Information of China (English)

    CHEN Deke; CHEN Xin; CHEN Hua; CAI Bingna; WAN Peng; ZHU Xiaolian; SUN Han; SUN Huili; PAN Jianyu

    2016-01-01

    Unfavorable fishy odour is an inevitable problem in aquatic products. In the present study, headspace solid-phase mi-croextraction gas chromatography mass spectrometry (HS-SPME-GC-MS) analysis of volatiles from untreated samples and three deodorized samples (under the optimal conditions) of Paphia undulata enzymatic hydrolysate revealed that the compounds contrib-uting to the distinctive odor were 1-octen-3-ol, n-hexanal, n-heptanal, 2,4-heptadienal, and 2,4-decadienal, whereas n-pentanal, n-octanal, n-octanol, benzaldehyde, 2-ethylfuran and 2-pentylfuran were the main contributors to the aromatic flavor. The deodoriz-ing effects of activated carbon (AC) adsorption, yeast extract (YE) masking and tea polyphenol (TP) treatment on aP. undulata en-zymatic hydrolysate were investigated using orthogonal experiments with sensory evaluation as the index. The following optimized deodorization conditions were obtained: AC adsorption (35mgmL−1, 80℃, 40min), YE masking (7mgmL−1, 45℃, 30min) and TP treatment (0.4mgmL−1, 40℃, 50min). AC adsorption effectively removed off-flavor volatile aldehydes and ketones. YE masking modified the odor profile by increasing the relative contents of aromatic compounds and decreasing the relative contents of aldehydes and ketones. The TP treatment was not effective in reducing the odor score, but it significantly reduced the relative content of alde-hydes while increasing that of alkanes. It is also notable that TP effectively suppressed trimethylamine (TMA) formation in a P. un-dulate hydrolysate solution for a period of 72h.

  5. Identification of odor volatile compounds and deodorization of Paphia undulata enzymatic hydrolysate

    Science.gov (United States)

    Chen, Deke; Chen, Xin; Chen, Hua; Cai, Bingna; Wan, Peng; Zhu, Xiaolian; Sun, Han; Sun, Huili; Pan, Jianyu

    2016-12-01

    Unfavorable fishy odour is an inevitable problem in aquatic products. In the present study, headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME-GC-MS) analysis of volatiles from untreated samples and three deodorized samples (under the optimal conditions) of Paphia undulata enzymatic hydrolysate revealed that the compounds contributing to the distinctive odor were 1-octen-3-ol, n-hexanal, n-heptanal, 2,4-heptadienal, and 2,4-decadienal, whereas n-pentanal, n-octanal, n-octanol, benzaldehyde, 2-ethylfuran and 2-pentylfuran were the main contributors to the aromatic flavor. The deodorizing effects of activated carbon (AC) adsorption, yeast extract (YE) masking and tea polyphenol (TP) treatment on a P. undulata enzymatic hydrolysate were investigated using orthogonal experiments with sensory evaluation as the index. The following optimized deodorization conditions were obtained: AC adsorption (35 mg mL-1, 80°C, 40 min), YE masking (7 mg mL-1, 45°C, 30 min) and TP treatment (0.4 mg mL-1, 40°C, 50 min). AC adsorption effectively removed off-flavor volatile aldehydes and ketones. YE masking modified the odor profile by increasing the relative contents of aromatic compounds and decreasing the relative contents of aldehydes and ketones. The TP treatment was not effective in reducing the odor score, but it significantly reduced the relative content of aldehydes while increasing that of alkanes. It is also notable that TP effectively suppressed trimethylamine (TMA) formation in a P. undulate hydrolysate solution for a period of 72 h.

  6. Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production.

    Science.gov (United States)

    Aggelopoulos, Theodoros; Katsieris, Konstantinos; Bekatorou, Argyro; Pandey, Ashok; Banat, Ibrahim M; Koutinas, Athanasios A

    2014-02-15

    Growth of selected microorganisms of industrial interest (Saccharomyces cerevisiae, Kluyveromyces marxianus and kefir) by solid state fermentation (SSF) of various food industry waste mixtures was studied. The fermented products were analysed for protein, and nutrient minerals content, as well as for aroma volatile compounds by GC/MS. The substrate fermented by K. marxianus contained the highest sum of fat and protein concentration (59.2% w/w dm) and therefore it could be considered for utilisation of its fat content and for livestock feed enrichment. Regarding volatiles, the formation of high amounts of ε-pinene was observed only in the SSF product of kefir at a yield estimated to be 4 kg/tn of SSF product. A preliminary design of a biorefinery-type process flow sheet and its economic analysis, indicated potential production of products (enriched livestock feed, fat and ε-pinene) of significant added value.

  7. Improvement of a headspace solid phase microextraction-gas chromatography/mass spectrometry method for the analysis of wheat bread volatile compounds.

    Science.gov (United States)

    Raffo, Antonio; Carcea, Marina; Castagna, Claudia; Magrì, Andrea

    2015-08-07

    An improved method based on headspace solid phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME/GC-MS) was proposed for the semi-quantitative determination of wheat bread volatile compounds isolated from both whole slice and crust samples. A DVB/CAR/PDMS fibre was used to extract volatiles from the headspace of a bread powdered sample dispersed in a sodium chloride (20%) aqueous solution and kept for 60min at 50°C under controlled stirring. Thirty-nine out of all the extracted volatiles were fully identified, whereas for 95 other volatiles a tentative identification was proposed, to give a complete as possible profile of wheat bread volatile compounds. The use of an array of ten structurally and physicochemically similar internal standards allowed to markedly improve method precision with respect to previous HS-SPME/GC-MS methods for bread volatiles. Good linearity of the method was verified for a selection of volatiles from several chemical groups by calibration with matrix-matched extraction solutions. This simple, rapid, precise and sensitive method could represent a valuable tool to obtain semi-quantitative information when investigating the influence of technological factors on volatiles formation in wheat bread and other bakery products.

  8. Evolution of volatile compounds in gluten-free bread: From dough to crumb.

    Science.gov (United States)

    Pico, Joana; Martínez, Mario M; Bernal, José; Gómez, Manuel

    2017-07-15

    Understanding the evolution of volatile compounds from dough to crumb is necessary in order to improve the weak aroma of gluten-free breads. Additionally, sensitive analytical methods are required to detect small changes. In the present study, a solvent extraction method combined with GC/MS was selected to examine the evolution of 31 principal volatile compounds from the beginning of fermentation to the end of baking in maize starch bread. During fermentation, only hexanal, hexanoic acid, benzaldehyde, benzyl alcohol, furfural and furfuryl alcohol remained constant whereas the rest became more abundant. After baking, 2,3-butanedione, 1-propanol, 2-methyl-1-propanol, 3/2-methyl-1-butanol and ethyl octanoate were evaporated whereas the other volatile compounds increased. The alcohols from fermentation, 2,3-butanedione, acetoin, acetic acid, isobutyric acid and ethyl octanoate, were the main volatile compounds in dough; all of them were formed during fermentation. In crumb, alongside those compounds, hexanal, 1-octen-3-ol and nonanal, produced from lipid oxidation, were also important contributors.

  9. Analysis of organic volatile flavor compounds in fermented stinky tofu using SPME with different fiber coatings.

    Science.gov (United States)

    Liu, Yuping; Miao, Zhiwei; Guan, Wei; Sun, Baoguo

    2012-03-26

    The organic volatile flavor compounds in fermented stinky tofu (FST) were studied using SPME-GC/MS. A total of 39 volatile compounds were identified, including nine esters, seven alcohols, five alkenes, four sulfides, three heterocycles, three carboxylic acids, three ketones, two aldehydes, one phenol, one amine and one ether. These compounds were determined by MS, and conformed by comparison of the retention times of the separated constituents with those of authentic samples and by comparison of retention indexes (RIs) of separated constituents with the RIs reported in the literature. The predominant volatile compound in FST was indole, followed by dimethyl trisulfide, phenol, dimethyl disulfide and dimethyl tetrasulfide. In order to find a better extraction time, the extraction times was optimized for each type of SPME fiber; the results show that the best extraction time for Carboxen/PDMS is 60 min, for PDMS/DVB 30 min, for DVB/CAR/PDMS 60 min and for PDMS 75 min. Of the four fibers used in this work, Carboxen/PDMS is found to be the most suitable to extract the organic volatile flavor compounds in fermented stinky tofu.

  10. Analysis of Organic Volatile Flavor Compounds in Fermented Stinky Tofu Using SPME with Different Fiber Coatings

    Directory of Open Access Journals (Sweden)

    Wei Guan

    2012-03-01

    Full Text Available The organic volatile flavor compounds in fermented stinky tofu (FST were studied using SPME-GC/MS. A total of 39 volatile compounds were identified, including nine esters, seven alcohols, five alkenes, four sulfides, three heterocycles, three carboxylic acids, three ketones, two aldehydes, one phenol, one amine and one ether. These compounds were determined by MS, and conformed by comparison of the retention times of the separated constituents with those of authentic samples and by comparison of retention indexes (RIs of separated constituents with the RIs reported in the literature. The predominant volatile compound in FST was indole, followed by dimethyl trisulfide, phenol, dimethyl disulfide and dimethyl tetrasulfide. In order to find a better extraction time, the extraction times was optimized for each type of SPME fiber; the results show that the best extraction time for Carboxen/PDMS is 60 min, for PDMS/DVB 30 min, for DVB/CAR/PDMS 60 min and for PDMS 75 min. Of the four fibers used in this work, Carboxen/PDMS is found to be the most suitable to extract the organic volatile flavor compounds in fermented stinky tofu.

  11. Influence of rearing conditions on the volatile compounds of cooked fillets of Silurus glanis (European catfish).

    Science.gov (United States)

    Hallier, Arnaud; Prost, Carole; Serot, Thierry

    2005-09-07

    Volatile compounds of cooked fillets of Silurus glanis reared under two conditions occurring in France were studied. They were extracted by dynamic headspace, identified by gas chromatography/mass spectrometry, and quantified by gas chromatography-flame ionization detection. Odor active volatile compounds were characterized by gas chromatography-olfactometry. Sixty volatile compounds were detected in dynamic headspace extracts, among which 33 were odor active. Rearing conditions affected their estimated concentrations and their odor intensities, but very few qualitative differences were exhibited (only seven volatile compounds were concerned). A good correlation between quantitative and olfactometric results is shown. 2-Methylisoborneol and (E)-2-hexenal were less represented in OUTDOOR extracts, while 2-butanone was less represented in INDOOR extracts. In addition, olfactometric results can be closely related to those previously obtained by sensory analysis. Boiled potato sensory odor of the silurus cooked fillets can be related to (Z)-4-heptenal and methional, and buttery odor can be related to 2,3-butanedione, an unknown compound (RI = 1010), and 2,3-pentadione.

  12. VOLATILE COMPOUNDS IDENTIFIED IN BARBADOS CHERRY ‘BRS-366 JABURÚ’

    Directory of Open Access Journals (Sweden)

    Y. M. Garcia

    2016-07-01

    Full Text Available In foods, the flavor and aroma are very important attributes, thus the main objective of this study was to identify the volatile compounds (VC of the "BRS-366 Jaburú" acerola variety, for which we used the solid phase microextraction method (SPE. The separation and identification of volatile compounds was made using gas chromatography-mass spectrometry (GC-MS. Three fibers were evaluated, Polydimethylsiloxane / Divinylbenzene (PDMS / DVB, 65 micrometres Divinylbenzene / Carboxen / Polydimethylsiloxane (DVB / CAR / PDMS 50/30 m and polyacrylate (PA 85 uM to compare the extraction of its components. Thirty-three volatile compounds were identified and classified into eight chemical classes: carboxylic acids, alcohols, aldehydes, ketones, esters, hydrocarbons, phenylpropanoids and terpenoids. The peak areas of each of the extracted compounds were expressed as percentages to indicate the relative concentration of each, of which ethyl acetate is distinguished by being responsible for the fruity aroma notes. Thus, the fiber PDMS / DVB was the best as it enabled to extract a greater amount of volatile compounds

  13. [Influence of exogenous sulfur-containing compounds on the exchange fluxes of volatile organic sulfur compounds].

    Science.gov (United States)

    Yi, Zhi-Gang; Wang, Xin-Ming

    2011-08-01

    The influences of cysteine, sodium sulfide (Na2S) and sodium sulfate (Na2SO4) on the soil-air exchange fluxes of volatile organic sulfur compounds (VOSCs), including carbonyl sulfide (COS), dimethyl sulfide (DMS), carbon disulfide (CS2) and dimethyl disulfide (DMDS), were studied employing static chamber enclosure followed by laboratory determination using an Entech 7100 preconcentrator coupled with an Agilent 5973 GC-MSD. The results showed that after the addition of cysteine, the soil for the exchange fluxes of COS and CS2 shifted to be the source from sink and the emissions of DMS and DMDS increased significant. The emission amount of DMS and CS2 accounted for 89.2% to the total VOSCs after the addition of cysteine, implying that cysteine is an important precursor for DMS and CS2 in the soil. The amount of DMDS accounted for 93.2% to the total sulfur from the soil after addition of Na2S, indicating that Na2S is a key precursor for DMDS. No significant difference of VOSCs fluxes was found between the controlled soil and the soil with addition of Na2SO4, suggesting Na2SO4 was not the direct precursor for VOSCs in soil. VOSCs exchange rates reached the maximum at 6 to 8 days after addition of cysteine. As for addition of Na2S, the maximal emission rates of different VOSCs appeared at different dates, and the dates differed significantly from those after addition of cysteine, implying that the formation process of VOSCs from the soil with addition of Na2S was more complex and different from the soil with addition of cysteine.

  14. Flavour compounds in tomato fruits: identification of loci and potential pathways affecting volatile composition.

    Science.gov (United States)

    Mathieu, Sandrine; Cin, Valeriano Dal; Fei, Zhangjun; Li, Hua; Bliss, Peter; Taylor, Mark G; Klee, Harry J; Tieman, Denise M

    2009-01-01

    The unique flavour of a tomato fruit is the sum of a complex interaction among sugars, acids, and a large set of volatile compounds. While it is generally acknowledged that the flavour of commercially produced tomatoes is inferior, the biochemical and genetic complexity of the trait has made breeding for improved flavour extremely difficult. The volatiles, in particular, present a major challenge for flavour improvement, being generated from a diverse set of lipid, amino acid, and carotenoid precursors. Very few genes controlling their biosynthesis have been identified. New quantitative trait loci (QTLs) that affect the volatile emissions of red-ripe fruits are described here. A population of introgression lines derived from a cross between the cultivated tomato Solanum lycopersicum and its wild relative, S. habrochaites, was characterized over multiple seasons and locations. A total of 30 QTLs affecting the emission of one or more volatiles were mapped. The data from this mapping project, combined with previously collected data on an IL population derived from a cross between S. lycopersicum and S. pennellii populations, were used to construct a correlational database. A metabolite tree derived from these data provides new insights into the pathways for the synthesis of several of these volatiles. One QTL is a novel locus affecting fruit carotenoid content on chromosome 2. Volatile emissions from this and other lines indicate that the linear and cyclic apocarotenoid volatiles are probably derived from separate carotenoid pools.

  15. Characterization of Volatile Organic Compound Profiles of Bacterial Threat Agents

    Science.gov (United States)

    2008-12-01

    compounds contained in the headspace of bacterial cultures (Aathithan et al., 2001, Bunge et al., 2008, Casalinuovo et al., 2006, Lechner et al...Clin. Micro. 39: 2590-2593. Bunge M, Araghipour N, Mikoviny T, Dunkl J, Schnitzhofer R, Hansel A, Schinner F, Wisthaler A, Margesin R, and Mark T

  16. The Amazonian Floodplains, an ecotype with challenging questions on volatile organic compound (VOC) emissions

    Science.gov (United States)

    Kesselmeier, J.

    2012-12-01

    Volatile organic compound (VOC) emissions are affected by a variety of biotic and abiotic factors such as light intensity, temperature, CO2 and drought. Another factor usually overlooked but very important for the tropical rainforest in Amazonia is regular flooding. According to recent estimates, the total Amazonian floodplain area easily ranges up to 700,000 km^2, including whitewater river floodplains (várzea) blackwater regions (igapó) and further clearwater regions. Regarding the total Amazonian wetlands the area sums up to more than 2.000.000 km^2, i.e. 30% of Amazonia. To survive the flooding periods causing anoxic conditions for the root system of up to several months, vegetation has developed several morphological, anatomical and physiological strategies. One is to switch over the root metabolism to fermentation, thus producing ethanol as one of the main products. Ethanol is a toxic metabolite which is transported into the leaves by the transpiration stream. From there it can either be directly emitted into the atmosphere, or can be re-metabolized to acetaldehyde and/or acetate. All of these compounds are volatile enough to be partly released into the atmosphere. We observed emissions of ethanol, acetaldehyde and acetic acid under root anoxia. Furthermore, plant stress induced by flooding also affected leaf primary physiological processes as well as other VOC emissions such as the release of isoprenoids and other volatiles. For example, Hevea spruceana could be identified as a monoterpene emitting tree species behaving differently upon anoxia depending on the origin, with increasing emissions of the species from igapó and decreasing with the corresponding species from várzea. Contrasting such short term inundations, studies of VOC emissions under long term conditions (2-3 months) did not confirm the ethanol/acetaldehyde emissions, whereas emissions of other VOC species decreased considerably. These results demonstrate that the transfer of our knowledge

  17. Semi-volatile compounds variation among Brazilian populations of Ilex paraguariensis St. Hil.

    Directory of Open Access Journals (Sweden)

    Rogério Luis Cansian

    2008-02-01

    Full Text Available The use of compressed carbon towards extracting semi-volatile compounds present in maté leaves (Ilex paraguariensis St. Hil. is due to the growing interest in mate constituents to develop new products in the cosmetic, pharmaceutical and food industries. The objective of this work was to assess the chemical distribution of semi-volatile compounds in 20 native populations of maté collected all over Brazil. The extracts of bulk samples (30 plants of each population were obtained by the high-pressure carbon dioxide extraction technique, and analyzed by GC/MSD. The quantification of compounds (caffeine, theobromine, phytol, squalene, vitamin E, eicosane, pentatriacontane, and stigmasterol showed significant variations within the different populations and compounds analyzed, which are not related to geographical origin or macroclimate characteristics. The results pointed out to the importance of genetic and local environmental factors on the chemical composition of this species.A extração empregando dióxido de carbono a altas pressões em erva-mate (Ilex paraguariensis St. Hil., tem sido justificada pelo crescente interesse desta matriz vegetal ou de parte de seus constituintes na formulação de novos produtos, tais como cosméticos e medicamentos, entre outros. Neste contexto, o objetivo do presente trabalho é avaliar a distribuição química de compostos semi-voláteis em 20 populações de erva-mate coletadas em toda área de distribuição desta espécie no Brasil. 30 plantas foram selecionadas para produzir a amostra de cada população. Os extratos de cada amostra foram obtidos por extração com dióxido de carbono a alta pressão e, posteriormente, foram analisados por CG/EM. A quantificação de alguns compostos semi-voláteis presentes nos extratos (cafeína, teobromina, fitol, esqualeno, vitamina E, eicosano, pentatriacontano e stigmasterol, apresentaram variações significativas entre as concentrações dos diferentes compostos

  18. Comparative Study of Volatile Compounds from Genus Ocimum

    Directory of Open Access Journals (Sweden)

    S. R. Vani

    2009-01-01

    Full Text Available There are distinct varieties of basil types in the genus Ocimum which makes them very special. Genus Ocimum is widespread over Asia, Africa and Central & Southern America. All basils are member of the Lamiaceae family. The colors of the leaves vary from bright green to purple-green and sometimes almost black. Fresh basil leaves have a strong and characteristic aroma, not comparable to any other spice, although there is a hint of clove traceable. Ocimum Sanctum, also addressed as Ocimum Tenuiflorum is a sacred plant in the Hindu culture and known as Tulasi in Tamil or Holy Basil in English. Meanwhile Ocimum Basilicum, known as Common or Sweet Basil has very dark green leaves. The genus Ocimum is cultivated for its remarkable essential oil which exhibits many usages such as in medicinal application, herbs, culinary, perfume for herbal toiletries, aromatherapy treatment and as flavoring agent. Due to varying essential oil profiles even within the same species, plants may often be classified as a different species as a result of different scents. In the present study, volatile constituents of Ocimum Sanctum and Ocimum Basilicum were extracted using various solvents and their chemical constituents were identified and quantified by using GC-MS in optimized conditions. The profiles of extract from both species were compared in an effort to investigate effects of seasonal variation on their chemical compositions. The predominant species in Ocimum Sanctum and Ocimum Basilicum was found to be methyl eugenol and methyl chavicol, respectively, during different months of analysis.

  19. Characterization, Concentrations and Emission Rates of Volatile Organic Compounds from Two Major Landfill Sites in Kuwait

    Directory of Open Access Journals (Sweden)

    Mohammad AlAhmad

    2012-01-01

    Full Text Available Problem statement: The emission of pollutants from landfill sites in Kuwait is of major concern due to the associated adverse environmental and health impacts. There are 18 landfill sites in Kuwait which are contributing to the emission of atmospheric pollutants including; methane, carbon dioxide and Volatile Organic Compounds (VOCs. Approach: Determine the concentration and composition of VOCs in LFG emissions from two major landfill sites in Kuwait and to investigate the influence of the "In-Situ Aerobic Stabilization" on the reduction of VOCs emission. VOCs samples were collected during an intensive, short-term field sampling campaign conducted in 2010 where 50 individual volatile organic compounds were identified and quantified in landfill gas samples collected from the two landfill sites and the Project Area. Results: The concentration levels of VOCs were found to be significantly different within the same landfill site; however, the average total VOCs emissions were comparable between the two landfill sites. Concentration of total VOCs (i.e., sum of 50 compounds in LFG emissions varied between 9.4-67.2 ppm in Jleeb Al-Shuyoukh landfill site and from 15.4-57.7 ppm in Al-Qurain landfill site. Annual emissions of the well-known five VOCs (i.e., benzene, toluene, ethylbenzene, m-, o- and p-xylenes and styrene were also computed for each vent pipe from Jleeb Al-Shuyoukh landfill using the measured average concentrations and LFG flow rates. The results, if calculated in terms of the average ΣBTEX+S quantity emitted per vent pipe per year, showed that the magnitude of ΣBTEX+S emissions ranged between 0.108 -11.686 g y−1. Conclusion: The results of this pilot project demonstrated that the “in-situ aerobic stabilization method” applied on old solid waste deposits in the project area of Jleeb Al-Shuyoukh landfill can significantly reduce the average VOCs concentration in LFG emissions from high-productivity wells in the project

  20. Direct ecosystem fluxes of volatile organic compounds from oil palms in South-East Asia

    Directory of Open Access Journals (Sweden)

    P. K. Misztal

    2011-04-01

    Full Text Available This paper reports the first direct eddy covariance fluxes of reactive biogenic volatile organic compounds (BVOCs from oil palms to the atmosphere using proton-transfer-reaction mass spectrometry (PTR-MS, measured at a plantation in Malaysian Borneo. At midday, net isoprene flux constituted the largest fraction (84% of all emitted BVOCs measured, at up to 30 mg m−2 h−1 over 12 days. By contrast, the sum of its oxidation products methyl vinyl ketone (MVK and methacrolein (MACR exhibited clear deposition, with a small average canopy resistance of 230 s m−1. Approximately 15% of the resolved BVOC flux from oil palm trees could be attributed to floral emissions, which are thought to be the largest reported biogenic source of estragole and possibly also toluene. Although on average the midday volume mixing ratio of estragole exceeded that of toluene by almost a factor of two, the corresponding fluxes of these two compounds were nearly the same, amounting to 0.81 and 0.76 mg m−2 h−1, respectively. By fitting the canopy temperature and PAR response of the MEGAN emissions algorithm for isoprene and other emitted BVOCs a basal emission rate of isoprene of 7.8 mg m−2 h−1 was derived. We parameterise fluxes of depositing compounds using a resistance approach using direct canopy measurements of deposition. We propose that it is important to include deposition in flux models, especially for secondary oxidation products, in order to improve flux predictions.

  1. On the use of plant emitted volatile organic compounds for atmospheric chemistry simulation experiments

    Science.gov (United States)

    Kiendler-Scharr, A.; Hohaus, T.; Yu, Z.; Tillmann, R.; Kuhn, U.; Andres, S.; Kaminski, M.; Wegener, R.; Novelli, A.; Fuchs, H.; Wahner, A.

    2015-12-01

    Biogenic volatile organic compounds (BVOC) contribute to about 90% of the emitted VOC globally with isoprene being one of the most abundant BVOC (Guenther 2002). Intensive efforts in studying and understanding the impact of BVOC on atmospheric chemistry were undertaken in the recent years. However many uncertainties remain, e.g. field studies have shown that in wooded areas measured OH reactivity can often not be explained by measured BVOC and their oxidation products (e.g. Noelscher et al. 2012). This discrepancy may be explained by either a lack of understanding of BVOC sources or insufficient understanding of BVOC oxidation mechanisms. Plants emit a complex VOC mixture containing likely many compounds which have not yet been measured or identified (Goldstein and Galbally 2007). A lack of understanding BVOC sources limits bottom-up estimates of secondary products of BVOC oxidation such as SOA. Similarly, the widespread oversimplification of atmospheric chemistry in simulation experiments, using single compound or simple BVOC mixtures to study atmospheric chemistry processes limit our ability to assess air quality and climate impacts of BVOC. We will present applications of the new extension PLUS (PLant chamber Unit for Simulation) to our atmosphere simulation chamber SAPHIR. PLUS is used to produce representative BVOC mixtures from direct plant emissions. We will report on the performance and characterization of the newly developed chamber. As an exemplary application, trees typical of a Boreal forest environment were used to compare OH reactivity as directly measured by LIF to the OH reactivity calculated from BVOC measured by GC-MS and PTRMS. The comparison was performed for both, primary emissions of trees without any influence of oxidizing agents and using different oxidation schemes. For the monoterpene emitters investigated here, we show that discrepancies between measured and calculated total OH reactivity increase with increasing degree of oxidation

  2. Oxidation of diesel-generated volatile organic compounds in the selective catalytic reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Elsener, M. [Paul Scherrer Inst., Villigen (Switzerland). Combustion Research

    1998-10-01

    The main part of the VOCs (volatile organic compounds) contained in diesel exhaust ({approx}80%) is oxidized to CO and CO{sub 2} over an SCR (selective catalytic reduction) catalyst. CO is the major product of this oxidation, representing about 50--70% of the formed products (CO + CO{sub 2}). This preferential formation of CO leads to a pronounced increase of CO emissions when an SCR process is added to a diesel engine. A small fraction of the VOCs is selectively oxidized to carboxylic acids over the SCR catalyst. This selectivity is due to the acidic properties of the catalyst causing the preferential desorption at the oxidation state of the acid. The main products of these oxidation reactions are the lower monocarboxylic acids and some dicarboxylic acids forming stable anhydrides, especially maleic and phthalic acid. The highest emissions of these acids are found at low temperatures; they decrease at higher temperatures. Formic acid is preferentially decomposed into carbon monoxide and water. It must therefore be assumed that the strong increase of CO mentioned above is due to a mechanism involving the thermal decomposition of formic acid formed from various primary VOCs.

  3. Volatile organic compounds of polyethylene vinyl acetate plastic are toxic to living organisms.

    Science.gov (United States)

    Meng, Tingzhu Teresa

    2014-01-01

    Volatile organic compounds (VOCs) in polyvinyl chloride (PVC) plastic products readily evaporate; as a result, hazardous gases enter the ecosystem, and cause cancer in humans and other animals. Polyethylene vinyl acetate (PEVA) plastic has recently become a popular alternative to PVC since it is chlorine-free. In order to determine whether PEVA is harmful to humans, this research employed the freshwater oligochaete Lumbriculus variegatus as a model to compare their oxygen intakes while they were exposed to the original stock solutions of PEVA, PVC or distilled water at a different length of time for one day, four days or eight days. During the exposure periods, the oxygen intakes in both PEVA and PVC groups were much higher than in the distilled water group, indicating that VOCs in both PEVA and PVC were toxins that stressed L. variegatus. Furthermore, none of the worms fully recovered during the24-hr recovery period. Additionally, the L. variegatus did not clump together tightly after four or eight days' exposure to either of the two types of plastic solutions, which meant that both PEVA and PVC negatively affected the social behaviors of these blackworms. The LD50 tests also supported the observations above. For the first time, our results have shown that PEVA plastic has adverse effects on living organisms, and therefore it is not a safe alternative to PVC. Further studies should identify specific compounds causing the adverse effects, and determine whether toxic effect occurs in more complex organisms, especially humans.

  4. Recovery of volatile aroma compounds from black currant juice by vacuum membrane distillation

    DEFF Research Database (Denmark)

    Bagger-Jørgensen, Rico; Meyer, Anne S.; Warming, C.

    2004-01-01

    l/h at 30 degreesC gave concentration factors, calculated for each aroma compound as C-permeate/C-feed: from similar to4 to 15. The concentration factors increased with decreased juice temperature during VMD; at 10 degreesC concentration factors of 21-31 were obtained for the highly volatile aroma....... VMD thus turned out to be a promising technique for gentle stripping of black currant juice aroma compounds....

  5. Volatile Compounds of New Promising Dried Apricot (Prunus armeniaca L. Genotypes

    Directory of Open Access Journals (Sweden)

    Burhanettin IMRAK

    2016-12-01

    Full Text Available Turkey has rich wild apricot populations and all Turkish apricot cultivars were previously selected among wild apricots. On this background for apricot breeding, six new late flowering dried apricot genotypes were taken under study, along with wide spread cv. ‘Hacihaliloglu’; all genotypes were examined in terms of volatile compounds using Headspace-Solid Phase Micro Extraction - Mass Spectrometry (HSSPME/GC/MS techniques. The most important volatiles of apricot genotypes were aldehydes, alcohols, esters, terpenes, ketones and acids. Among these compounds, ethanol, hexanal, 3-carene, squalene, acetic acid, tetradecaonic acid, pentadecaonic acid, octadecaonic acid, n- hexadecaonic acid and 1-hdroxy-2-propanone were present in all genotypes studied at certain levels. In general, total concentrations of aroma compounds were higher in some promising genotypes under study than within ‘Hacihaliloglu’ cultivar, except total alcohol compound (53.33%. Volatile compounds, particularly esters, were the major contributors to fruity, floral and pleasant fruit flavours. The highest esters’ compound contents were detected in ‘N95’ (9.2% and ‘N57’ (2.18% genotypes, while ‘Hacihaliloglu’ had 1.61% ester compounds. Lacton (γ-decalactone was a key aroma compound of apricot. γ-decalactone was detected ranging between 0.4-1.13% in all genotypes, except cv. ‘Hacihaliloglu’. The hereby obtained results showed that the volatile composition depended largely upon the apricot genotypes, moment of harvest, growing conditions and cultural applications that may all affect fruit quality. These results represent valuable starting points for apricot breeding programs.

  6. Bioactive and volatile organic compounds in Southern Brazilian blackberry (Rubus Fruticosus) fruit cv. Tupy

    OpenAIRE

    Andressa Carolina Jacques; Fábio Clasen Chaves; Rui Carlos Zambiazi; Márcia Campos Brasil; Elina Bastos Caramão

    2014-01-01

    Blackberry (Rubus fruticosus, cultivar Tupy), an expanding fruit crop in southern Brazil, is greatly appreciated for its flavor and bioactive potential with limited characterization of its metabolite content. The purpose of this study was to characterize the bioactive and volatile organic compound (VOC) content of mature blackberry fruit of cultivar Tupy. Gallic acid, (-)-epicatechin, ferulic acid, and quercetin were the main phenolic compounds found in mature fruit. Among the VOCs identified...

  7. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Science.gov (United States)

    2010-07-01

    ... (VOC) emissions from bulk gasoline terminals. 60.502 Section 60.502 Protection of Environment... SOURCES Standards of Performance for Bulk Gasoline Terminals § 60.502 Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which § 60.8(a) requires a...

  8. Electrospun Polyurethane Fibers for Absorption of Volatile Organic Compounds from Air

    NARCIS (Netherlands)

    Scholten, E.; Bromberg, L.; Rutledge, G.C.; Hatton, T.A.

    2011-01-01

    Electrospun polyurethane fibers for removal of volatile organic compounds (VOC) from air with rapid VOC absorption and desorption have been developed. Polyurethanes based on 4,4-methylenebis(phenylisocyanate) (MDI) and aliphatic isophorone diisocyanate as the hard segments and butanediol and

  9. SCREENING PROCESSED MILK FOR VOLATILE ORGANIC COMPOUNDS USING VACUUM DISTILLATION/GAS CHROMATOGRAPHY/MASS SPECTROMETRY

    Science.gov (United States)

    An adaptation of Office of Solid Waste and Emergency Response' Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW-846) method 8261 to analyze milk for an expanded list of volatile organic compounds is presented. The milk matriz exhibits a strong affinity for o...

  10. Modeling emissions of volatile organic compounds from silage storages and feed lanes

    Science.gov (United States)

    An initial volatile organic compound (VOC) emission model for silage sources, developed using experimental data from previous studies, was incorporated into the Integrated Farm System Model (IFSM), a whole-farm simulation model used to assess the performance, environmental impacts, and economics of ...

  11. Emission rates of selected volatile organic compounds from skin of healthy volunteers.

    Science.gov (United States)

    Mochalski, Paweł; King, Julian; Unterkofler, Karl; Hinterhuber, Hartmann; Amann, Anton

    2014-05-15

    Gas chromatography with mass spectrometric detection (GC-MS) coupled with solid phase micro-extraction as pre-concentration method (SPME) was applied to identify and quantify volatile organic compounds (VOCs) emitted by human skin. A total of 64 C4-C10 compounds were quantified in skin emanation of 31 healthy volunteers. Amongst them aldehydes and hydrocarbons were the predominant chemical families with eighteen and seventeen species, respectively. Apart from these, there were eight ketones, six heterocyclic compounds, six terpenes, four esters, two alcohols, two volatile sulphur compounds, and one nitrile. The observed median emission rates ranged from 0.55 to 4,790 fmol cm(-2)min(-1). Within this set of analytes three volatiles; acetone, 6-methyl-5-hepten-2-one, and acetaldehyde exhibited especially high emission rates exceeding 100 fmol cm(-2)min(-1). Thirty-three volatiles were highly present in skin emanation with incidence rates over 80%. These species can be considered as potential markers of human presence, which could be used for early location of entrapped victims during Urban Search and Rescue Operations (USaR).

  12. Can ornamental potted plants remove volatile organic compounds from indoor air? - a review

    DEFF Research Database (Denmark)

    Dela Cruz, Majbrit; Christensen, Jan H.; Thomsen, Jane Dyrhauge;

    2014-01-01

    Volatile organic compounds (VOCs) are found in indoor air, and many of these can affect human health (e.g. formaldehyde and benzene are carcinogenic). Plants affect the levels of VOCs in indoor environments, thus they represent a potential green solution for improving indoor air quality...

  13. MEASUREMENTS OF VOLATILE ORGANIC COMPOUNDS AND PARTICLES DURING APPLICATION OF LATEX PAINT WITH AN AIRLESS SPRAYER

    Science.gov (United States)

    The paper discusses experiments, conducted at EPA's Indoor Air Quality Research House, to measure airborne concentrations of volatile organic compounds (VOCs) and particles during and following the spray-application of latex wall paint. (NOTE: Paint may be applied indoors by a v...

  14. Electrospun Polyurethane Fibers for Absorption of Volatile Organic Compounds from Air

    NARCIS (Netherlands)

    Scholten, E.; Bromberg, L.; Rutledge, G.C.; Hatton, T.A.

    2011-01-01

    Electrospun polyurethane fibers for removal of volatile organic compounds (VOC) from air with rapid VOC absorption and desorption have been developed. Polyurethanes based on 4,4-methylenebis(phenylisocyanate) (MDI) and aliphatic isophorone diisocyanate as the hard segments and butanediol and tetrame

  15. 77 FR 14324 - National Volatile Organic Compound Emission Standards for Aerosol Coatings-Addition of Dimethyl...

    Science.gov (United States)

    2012-03-09

    .... Email: a-and-r-docket@epa.gov . Fax: (202) 566-9744. Mail: U.S. Postal Service, send comments to: EPA... Factors AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: The EPA is proposing to amend the National Volatile Organic Compound Emission Standards for Aerosol Coatings final rule...

  16. BIOGENIC VOLATILE ORGANIC COMPOUND EMISSIONS FROM A LOWLAND TROPICAL WET FOREST IN COSTA RICA

    Science.gov (United States)

    Twenty common plant species were screened for emissions of biogenic volatile organic compounds (BVOCS) at a lowland tropical wet forest site in Costa Rica. Ten of the species. examined emitted substantial quantities of isoprene. These species accounted for 35-50% of the total bas...

  17. Removal of H2S and volatile organic sulfur compounds by silicone membrane extraction

    NARCIS (Netherlands)

    Manconi, I.; Lens, P.N.L.

    2009-01-01

    BACKGROUND: This study explores an alternative process for the abatement and/or desulfurization of H2S and volatile organic sulfur compounds (VOSC) containing waste streams, which employs a silicone-based membrane to simultaneously remove H2S and VOSC. An extractive membrane reactor allows the selec

  18. Cold Temperature and Biodiesel Fuel Effects on Speciated Emissions of Volatile Organic Compounds from Diesel Trucks

    Science.gov (United States)

    Speciated volatile organic compounds (VOCs) were measured in diesel exhaust from three medium heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a chassis dynamometer at two ambient temperatures (-6.7°C and 21.7°C) operating on ...

  19. Removal of volatile organic compounds in vertical flow filters: predictions from Reactive Transport Modeling

    NARCIS (Netherlands)

    De Biase, C.; Maier, U.; Baeder-Bederski, O.; Bayer, P.; Oswald, S.E.; Thullner, M.

    2011-01-01

    Vertical flow filters are containers filled with porous medium that are recharged from top and drained at the bottom, and are operated at partly saturated conditions. They have recently been suggested as treatment technology for groundwater containing volatile organic compounds (VOCs). Numerical rea

  20. Removal of volatile organic compounds in vertical flow filters: predictions from Reactive Transport Modeling

    NARCIS (Netherlands)

    De Biase, C.; Maier, U.; Baeder-Bederski, O.; Bayer, P.; Oswald, S.E.; Thullner, M.

    2011-01-01

    Vertical flow filters are containers filled with porous medium that are recharged from top and drained at the bottom, and are operated at partly saturated conditions. They have recently been suggested as treatment technology for groundwater containing volatile organic compounds (VOCs). Numerical rea

  1. Development of the colorimetric sensor array for detection of explosives and volatile organic compounds in air

    DEFF Research Database (Denmark)

    Kostesha, Natalie; Alstrøm, Tommy Sonne; Johnsen, C

    2010-01-01

    In the framework of the research project 'Xsense' at the Technical University of Denmark (DTU) we are developing a simple colorimetric sensor array which can be useful in detection of explosives like DNT and TNT, and identification of volatile organic compounds in the presence of water vapor in air...

  2. SUPERCRITICAL FLUID EXTRACTION OF SEMI-VOLATILE ORGANIC COMPOUNDS FROM PARTICLES

    Science.gov (United States)

    A nitrogen oxide flux chamber was modified to measure the flux of semi-volatile organic compounds (SVOCs). Part of the modification involved the development of methods to extract SVOCs from polyurethane foam (PUF), sand, and soil. Breakthroughs and extraction efficiencies were ...

  3. FINAL REPORT: MEMBRANE-MEDIATED EXTRACTION AND BIODEGRADATION OF VOLATILE ORGANIC COMPOUNDS FROM AIR

    Science.gov (United States)

    The report describes feasibility tests of a two-step strategy for air pollution control applicable to exhaust air contaminated with volatile organic compounds (VOCs) from painting aircraft. In the first step, the VOC-contaminated air passes over coated, polypropylene, hollow-fibe...

  4. Detection of diseased plants by analysis of volatile organic compound emission

    NARCIS (Netherlands)

    Jansen, R.M.C.; Wildt, J.; Kappers, I.F.; Bouwmeester, H.J.; Hofstee, J.W.; Henten, van E.

    2011-01-01

    This review focuses on the detection of diseased plants by analysis of volatile organic compound (VOC) emissions. It includes an overview of studies that report on the impact of infectious and noninfectious diseases on these emissions and discusses the specificity of disease-induced emissions. The

  5. A POLYMER-CERAMIC COMPOSITE MEMBRANE FOR RECOVERING VOLATILE ORGANIC COMPOUNDS FROM WASTEWATERS BY PERVAPORATION

    Science.gov (United States)

    A composite membrane was constructed on a porous ceramic support from a block copolymer of styrene and butadiene (SBS). It was tested in a laboratory pervaporation apparatus for recovering volatile organic compounds (VOCs) such a 1,1,1-trichloroethane (TCA) and trichloroethylene ...

  6. Changes in volatile compounds in whey protein concentrate stored at elevated temperature and humidity

    Science.gov (United States)

    Whey protein concentrate (WPC) has been recommended for use in emergency aid programs, but it is often stored overseas without temperature and relative humidity (RH) control, which may cause it to be rejected because of yellowing, off-flavors, or clumping. Therefore, the volatile compounds present ...

  7. OPTIMIZATION OF MULTICOMPONENT PERVAPORATION FOR REMOVAL OF VOLATILE ORGANIC COMPOUNDS FROM WATER

    Science.gov (United States)

    Optimal operation of a hollow fiber membrane module for pervaporative removal of multicomponent volatile organic compounds (VOCs) from wastewater was studied. A shell-and-tube heat-exchange type of hollow fiber module was considered for treatment of a wastewater containing toluen...

  8. Removal of volatile organic compounds in vertical flow filters: predictions from Reactive Transport Modeling

    NARCIS (Netherlands)

    De Biase, C.; Maier, U.; Baeder-Bederski, O.; Bayer, P.; Oswald, S.E.; Thullner, M.

    2011-01-01

    Vertical flow filters are containers filled with porous medium that are recharged from top and drained at the bottom, and are operated at partly saturated conditions. They have recently been suggested as treatment technology for groundwater containing volatile organic compounds (VOCs). Numerical

  9. Volatile compound profile of sous-vide cooked lamb loins at different temperature-time combinations.

    Science.gov (United States)

    Roldán, Mar; Ruiz, Jorge; Del Pulgar, José Sánchez; Pérez-Palacios, Trinidad; Antequera, Teresa

    2015-02-01

    Lamb loins were subjected to sous-vide cooking at different combinations of temperature (60 and 80°C) and time (6 and 24h) to assess the effect on the volatile compound profile. Major chemical families in cooked samples were aliphatic hydrocarbons and aldehydes. The volatile compound profile in sous-vide cooked lamb loin was affected by the cooking temperature and time. Volatile compounds arising from lipid oxidation presented a high abundance in samples cooked at low or moderate cooking conditions (60°C for 6 and 24h, 80°C for 6h), while a more intense time and temperature combination (80°C for 24h) resulted on a higher concentration of volatile compounds arising from Strecker degradations of amino acids, as 2-methylpropanal and 3-methylbutanal. Therefore, sous-vide cooking at moderately high temperatures for long times would result in the formation of a stronger meaty flavor and roast notes in lamb meat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Flavor of roasted peanuts (Arachis hypogaea) - Part II: Correlation of volatile compounds to sensory characteristics

    NARCIS (Netherlands)

    Lykomitros, Dimitrios; Fogliano, Vincenzo; Capuano, Edoardo

    2016-01-01

    Flavor and color of roasted peanuts are important research areas due to their significant influence on consumer preference. The aim of the present study was to explore correlations between sensory attributes of peanuts, volatile headspace compounds and color parameters. Different raw peanuts were se

  11. Detection of diseased plants by analysis of volatile organic compound emission

    NARCIS (Netherlands)

    Jansen, R.M.C.; Wildt, J.; Kappers, I.F.; Bouwmeester, H.J.; Hofstee, J.W.; Henten, van E.

    2011-01-01

    This review focuses on the detection of diseased plants by analysis of volatile organic compound (VOC) emissions. It includes an overview of studies that report on the impact of infectious and noninfectious diseases on these emissions and discusses the specificity of disease-induced emissions. The r

  12. Analysis of selected volatile organic compounds at background level in South Africa.

    Science.gov (United States)

    Ntsasa, Napo; Tshilongo, James; Lekoto, Goitsemang

    2017-04-01

    Volatile organic compounds (VOC) are measured globally at urban air pollution monitoring and background level at specific locations such as the Cape Point station. The urban pollution monitoring is legislated at government level; however, the background levels are scientific outputs of the World Meteorological Organisation Global Atmospheric Watch program (WMO/GAW). The Cape Point is a key station in the Southern Hemisphere which monitors greenhouse gases and halocarbons, with reported for over the past decade. The Cape Point station does not have the measurement capability VOC's currently. A joint research between the Cape Point station and the National Metrology Institute of South Africa (NMISA) objective is to perform qualitative and quantitative analysis of volatile organic compounds listed in the GAW program. NMISA is responsible for development, maintain and disseminate primary reference gas mixtures which are directly traceable to the International System of Units (SI) The results of some volatile organic compounds which where sampled in high pressure gas cylinders will be presented. The analysis of samples was performed on the gas chromatography with flame ionisation detector and mass selective detector (GC-FID/MSD) with a dedicate cryogenic pre-concentrator system. Keywords: volatile organic compounds, gas chromatography, pre-concentrator

  13. INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.

    Science.gov (United States)

    INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS. A.S. Bale*; P.J. Bushnell; C.A. Meacham; T.J. Shafer Neurotoxicology Division, NHEERL, ORD, US Environmental Protection Agency, Research Triangle Park, NC, USA Toluene (TOL...

  14. Geographical provenance of palm oil by fatty acid and volatile compound fingerprinting techniques

    NARCIS (Netherlands)

    Tres, A.; Ruiz - Samblas, C.; Veer, van der G.; Ruth, van S.M.

    2013-01-01

    Analytical methods are required in addition to administrative controls to verify the geographical origin of vegetable oils such as palm oil in an objective manner. In this study the application of fatty acid and volatile organic compound fingerprinting in combination with chemometrics have been appl

  15. Identification of volatile compounds from a food-grade vinegar attractive to house flies (Diptera: Muscidae)

    Science.gov (United States)

    We report our recent findings on the identification of volatile compounds released from the ChiangKiang vinegar that is attractive to house flies, Musca domestica. The field trapping experiments showed that the traps baited with 50-ml of the vinegar captured the highest house flies in the diary farm...

  16. Volatile organic compound emmission rates from mixed deciduous and coniferous foest in Northern Wisconsin, USA

    Science.gov (United States)

    J. G. Isebrands; A. B. Guenther; P. Harley; D. Helmig; L. Klinger; L. Vierling; P. Zimmerman; C. Geron

    1999-01-01

    Biogenic emissions of volatile organic compounds {VOC) from forests play an important role in regulating the atmospheric trace gas composition including global tropospheric ozone concentrations. However, more information is needed on VOC emission rates from different forest regions of the world to understand regional and global impacts and to implement possible...

  17. Changes in guava (Psidium guajava L. var. Paluma nectar volatile compounds concentration due to thermal processing and storage

    Directory of Open Access Journals (Sweden)

    Maria Ivaneide Coutinho Correa

    2010-12-01

    Full Text Available Guava nectars were formulated for approximately 10, 12, or 14 ºBrix, with 40% guava pulp. Sodium benzoate, 500 mg.kg-1 was used as preservative. The Brix value was adjusted with saturated sucrose syrup. The guava nectar was pasteurized (85 ºC/42 seconds in tubular heat exchanger and then hot filled in 500 mL white glass bottles. The products were stored either at room temperature (25 ± 5 ºC or refrigerated (5 ± 2 ºC under fluorescent light exposure and analyzed on the day after processing (time zero and also 40, 80, and 120 days of storage. Eight compounds were identified and quantified by Gas Chromatography (GC -Mass Spectrometry (MS: hexanal, (E-hex-2-enal, 1-hexenol, (Z-hex-3-enol, (Z-hex-3-enyl acetate, phenyl-3-propyl acetate, cinnamyl acetate, and acetic acid. There was no significant effect of thermal treatment on the volatile compound concentrations, except for a significant decrease (p = 0.0001 in hexanal and (Z-hex-3-enyl acetate (p = 0.0029. As for the storage time, there was a much greater decrease in the esters contents, such as (Z-hex-3-enyl and phenyl-3-propyl acetates. Cinnamyl acetate had the greatest decrease over storage time. Refrigeration was better than room temperature for guava nectar volatile compounds stability over storage time, mainly for esters compounds, which are important for the product aroma and flavor

  18. Infrared decontamination of oregano: effects on Bacillus cereus spores, water activity, color, and volatile compounds.

    Science.gov (United States)

    Eliasson, Lovisa; Libander, Patrik; Lövenklev, Maria; Isaksson, Sven; Ahrné, Lilia

    2014-12-01

    Infrared (IR) heating, a novel technology for decontaminating oregano, was evaluated by investigating the reduction of inoculated Bacillus cereus spores and the effect on water activity (a(w)), color, and headspace volatile compounds after exposure to IR treatment. Conditioned oregano (a(w) 0.88) was IR-treated in a closed heating unit at 90 and 100 °C for holding times of 2 and 10 min, respectively. The most successful reduction in B. cereus spore numbers (5.6 log units) was achieved after a holding time of 10 min at 90 °C, while treatment at 100 °C for the same time resulted in a lower reduction efficiency (4.7 log units). The lower reduction at 100 °C was probably due to a reduced aw (aw 0.76) during IR treatment or possibly to the alteration or loss of volatile compounds possessing antimicrobial properties. The green color of oregano was only slightly affected, while the composition of volatile compounds was clearly altered by IR heating. However, two of the key aroma compounds, carvacrol and thymol, were only slightly affected, compared to the effect on the other studied compounds, indicating that the typical oregano aroma can likely be preserved. In conclusion, IR heating shows potential for the successful decontamination of oregano without severe alteration of its color or the key aroma compounds, carvacrol and thymol.

  19. Optimization of the HS-SPME-GC/MS technique for determining volatile compounds in red wines made from Isabel grapes (Vitis labrusca

    Directory of Open Access Journals (Sweden)

    Narciza Maria de Oliveira ARCANJO

    2015-01-01

    Full Text Available AbstractBrazilian wine production is characterized by Vitis labrusca grape varieties, especially the economically important Isabel cultivar, with over 80% of its production destined for table wine production. The objective of this study was to optimize and validate the conditions for extracting volatile compounds from wine with the solid-phase microextraction technique, using the response surface method. Based on the response surface analysis, it can be concluded that the central point values maximize the process of extracting volatile compounds from wine, i.e., an equilibrium time of 15 minutes, an extraction time of 35 minutes, and an extraction temperature of 30 °C. Esters were the most numerous compounds found under these extraction conditions, indicating that wines made from Isabel cultivar grapes are characterized by compounds that confer a fruity aroma; this finding corroborates the scientific literature.

  20. Contributions of individual reactive biogenic volatile organic compounds to organic nitrates above a mixed forest

    Directory of Open Access Journals (Sweden)

    K. A. Pratt

    2012-11-01

    Full Text Available Biogenic volatile organic compounds (BVOCs can react in the atmosphere to form organic nitrates, which serve as NOx (NO + NO2 reservoirs, impacting ozone and secondary organic aerosol production, the oxidative capacity of the atmosphere, and nitrogen availability to ecosystems. To examine the contributions of biogenic emissions and the formation and fate of organic nitrates in a forest environment, we simulated the oxidation of 57 individual BVOCs emitted from a rural mixed forest in northern Michigan. Key BVOC-oxidant reactions were identified for future laboratory and field investigations into reaction rate constants, yields, and speciation of oxidation products. Of the total simulated organic nitrates, monoterpenes contributed ~70% in the early morning at ~12 m above the forest canopy when isoprene emissions were low. In the afternoon, when vertical mixing and isoprene nitrate production were highest, the simulated contribution of isoprene-derived organic nitrates was greater than 90% at all altitudes, with the concentration of secondary isoprene nitrates increasing with altitude. Notably, reaction of isoprene with NO3 leading to isoprene nitrate formation was found to be significant (~8% of primary organic nitrate production during the daytime, and monoterpene reactions with NO3 were simulated to comprise up to ~83% of primary organic nitrate production at night. Lastly, forest succession, wherein aspen trees are being replaced by pine and maple trees, was predicted to lead to increased afternoon concentrations of monoterpene-derived organic nitrates. This further underscores the need to understand the formation and fate of these species, which have different chemical pathways and oxidation products compared to isoprene-derived organic nitrates and can lead to secondary organic aerosol formation.

  1. Attraction of the gypsy moth to volatile organic compounds (VOCs) of damaged Dahurian larch.

    Science.gov (United States)

    Li, Jing; Valimaki, Sanna; Shi, Juan; Zong, Shixiang; Luo, Youqing; Heliovaara, Kari

    2012-01-01

    Olfactory responses of the gypsy moth Lymantria dispar (L.) (Lepidoptera: Lymantriidae), a major defoliator of deciduous trees, were examined in Inner Mongolia, China. We studied whether the gypsy moth adults are attracted by the major volatile organic compounds (VOCs) of damaged Larix gmelinii (Dahurian larch) foliage and compared the attractiveness of the plant volatiles with that of the synthetic sex pheromone. Our results indicated that the VOCs of the Dahurian larch were effective in attracting gypsy moth males especially during the peak flight period. The VOCs also attracted moths significantly better than the sex pheromone of the moth. Our study is the first trial to show the responses of adult gypsy moths to volatile compounds emitted from a host plant. Electroantennogram responses of L. gmelinii volatiles on gypsy moths supported our field observations. A synergistic effect between host plant volatiles and sex pheromone was also obvious, and both can be jointly applied as a new attractant method or population management strategy of the gypsy moth.

  2. Liquid biofuel production from volatile fatty acids

    NARCIS (Netherlands)

    Steinbusch, K.J.J.

    2010-01-01

    The production of renewable fuels and chemicals reduces the dependency on fossil fuels and limits the increase of CO2 concentration in the atmosphere only if a sustainable feedstock and an energy efficient process are used. The thesis assesses the possibility to use municipal and industrial waste as

  3. Turbulent exchange and segregation of HOx radicals and volatile organic compounds above a deciduous forest

    Directory of Open Access Journals (Sweden)

    G. Kramm

    2010-07-01

    Full Text Available The eddy covariance method was applied for the first time to estimate fluxes of OH and HO2 together with fluxes of isoprene, the sum of methyl vinyl ketone (MVK and methacrolein (MACR and the sum of monoterpenes above a mixed deciduous forest. Highly sensitive measurements of OH and HO2 were performed by laser induced fluorescence (LIF, and biogenic volatile organic compounds (BVOCs were measured by Proton-Transfer-Reaction Mass Spectrometry (PTR-MS at a time resolution of 5 s, each. Wind speed was measured by a sonic anemometer at 10 Hz. The one-day feasibility study was conducted at a total height of 37 m, about 7 m above forest canopy, during the ECHO (Emission and CHemical transformation of biogenic volatile Organic compounds intensive field study in July 2003. The daytime measurements yielded statistically significant OH fluxes directed downward into the direction of the canopy and HO2 fluxes mainly upward out of the canopy. This hints towards a significant local chemical sink of OH by reactions with BVOCs, other organic and inorganic compounds and conversion of OH to HO2 above the canopy. For OH the measured flux is locally balanced by chemical sources and sinks and direct transport of OH plays no important role for the local chemical OH budget at the measurement height, as expected from the short OH lifetime (2 the chemical lifetime (20 s is in the range of the turbulent transport time for transfer between the top of the canopy and the measuring point. In this case, the radical balance is significantly influenced by both chemistry and transport processes. In addition, the highly time-resolved trace gas measurements were used to calculate the intensity of segregation of OH and BVOCs, demonstrating that the effective reaction rate of isoprene and OH was slowed down as much as 15% due to inhomogeneous mixing of the reactants. The paper describes the results, the applied methods and provides a detailed analysis of possible systematic errors

  4. Distribution of volatile organic compounds in Madrid (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Pastor, R.M.; Garcia-Alonso, S.; Quejido Cabezas, A.J. [CIEMAT, Madrid (Spain)

    1999-07-01

    From November 1995 to October 1996, airborne concentrations of VOCs were measured in the Madrid area to study the organic pollution in general, and the correlation between different pollutants in relation to such parameters as location and season. Mean concentrations for up to 90 compounds were measured at four test sites, including both urban and suburban areas. At the urban sites, maximum concentrations occurred in the autumn and winter, whereas minimum concentrations were reached in summer and spring. Similar changes were obtained for the less-contaminated site located in the SE of the city, whereas a different pattern was found at the site in the NW of the city due to meteorological aspects. Mean levels of hydrocarbons in Madrid were quite similar to those found in other European cities. Chemometrical techniques were applied to the set of data in order to assess the influence of such factors as traffic, temperature and seasonal variations on the VOC levels. (orig.)

  5. Maximizing Information from Residential Measurements of Volatile Organic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Maddalena, Randy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Li, Na [Berkeley Analytical Associates, Richmond, CA (United States); Hodgson, Alfred [Berkeley Analytical Associates, Richmond, CA (United States); Offermann, Francis [Indoor Environmental Engineering, San Francisco, CA (United States); Singer, Brett [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-02-01

    Continually changing materials used in home construction and finishing can introduce new chemicals or changes in the VOC profile in residential air and the trend towards tighter homes can lead to higher exposure concentrations for many indoor sources. However, the complex mixture of VOCs in residential air makes it difficult to discover emerging contaminants and/or trends in pollutant profiles. The purpose of this study is to prepare a comprehensive library of chemicals found in homes, along with a semi-quantitative approach to maximize the information gained from VOC measurements. We carefully reviewed data from 108 new California homes and identified 238 individual compounds. The majority of the identified VOCs originated indoors. Only 31% were found to have relevant health based exposure guidelines and less than 10% had a chronic reference exposure level (CREL). The finding highlights the importance of extending IAQ studies to include a wider range of VOCs

  6. Evaporation losses and dispersion of volatile organic compounds from tank farms.

    Science.gov (United States)

    Howari, Fares M

    2015-05-01

    The present study is an application of a Gaussian dispersion model to evaluate volatilization losses from tank farms. It reports methodology to estimate evaporation losses of volatile organic compounds (VOCs) from organic liquid in storage tanks. This study used fixed roof and floating roof equations for breathing and working losses. Total loss, the breathing loss, vapor pressure, molecular weight of the product, tank diameter, diurnal temperature, paint factor, tank capacity, and number of turnovers were considered and factored in the calculation. AERMOD and ALOHA softwares were used to simulate the dispersion of VOCs under normal and accidental scenarios. For the modeling purposes, meteorological data such as annual average ambient temperature, annual average atmospheric pressure, daily minimum ambient temperature, daily maximum ambient temperature, solar insulation factor, and average wind speed were included as input in the calculation and modeling activities. The study took place in Sharjah Emirate in United Arab Emirates, which borders Dubai to the south and Ajman to the north, and the three form a conurbation. The reported method was used to estimate evaporation losses for baseline and hypothetical leak scenarios. Results of this research show that liquid storage tanks in the study area emit a low concentration of VOC under the studied and assumed conditions, e.g., new tanks with high performance sealing as well as the noted earlier climatic conditions. The dispersion of those concentrations is controlled by the prevailing wind direction. The predicted VOCs concentrations were within the range of the measured VOCs values in air. The study found that the spatial distributions of the predicted concentration attenuate with time and distance. Under the reported accidental spill scenario, the Gaussian model indicates that the danger area starts within the zone of less than 10 m. The danger area is subjected to flame pockets, and the VOC concentrations in this

  7. Biogenic volatile organic compound emissions along a high arctic soil moisture gradient.

    Science.gov (United States)

    Svendsen, Sarah Hagel; Lindwall, Frida; Michelsen, Anders; Rinnan, Riikka

    2016-12-15

    Emissions of biogenic volatile organic compounds (BVOCs) from terrestrial ecosystems are important for the atmospheric chemistry and the formation of secondary organic aerosols, and may therefore influence the climate. Global warming is predicted to change patterns in precipitation and plant species compositions, especially in arctic regions where the temperature increase will be most pronounced. These changes are potentially highly important for the BVOC emissions but studies investigating the effects are lacking. The aim of this study was to investigate the quality and quantity of BVOC emissions from a high arctic soil moisture gradient extending from dry tundra to a wet fen. Ecosystem BVOC emissions were sampled five times in the July-August period using a push-pull enclosure technique, and BVOCs trapped in absorbent cartridges were analyzed using gas chromatography-mass spectrometry. Plant species compositions were estimated using the point intercept method. In order to take into account important underlying ecosystem processes, gross ecosystem production, ecosystem respiration and net ecosystem production were measured in connection with chamber-based BVOC measurements. Highest emissions of BVOCs were found from vegetation communities dominated by Salix arctica and Cassiope tetragona, which had emission profiles dominated by isoprene and monoterpenes, respectively. These results show that emissions of BVOCs are highly dependent on the plant cover supported by the varying soil moisture, suggesting that high arctic BVOC emissions may affect the climate differently if soil water content and plant cover change.

  8. Role of Aerosol Liquid Water in Secondary Organic Aerosol Formation from Volatile Organic Compounds.

    Science.gov (United States)

    Faust, Jennifer A; Wong, Jenny P S; Lee, Alex K Y; Abbatt, Jonathan P D

    2017-02-07

    A key mechanism for atmospheric secondary organic aerosol (SOA) formation occurs when oxidation products of volatile organic compounds condense onto pre-existing particles. Here, we examine effects of aerosol liquid water (ALW) on relative SOA yield and composition from α-pinene ozonolysis and the photooxidation of toluene and acetylene by OH. Reactions were conducted in a room-temperature flow tube under low-NOx conditions in the presence of equivalent loadings of deliquesced (∼20 μg m(-3) ALW) or effloresced (∼0.2 μg m(-3) ALW) ammonium sulfate seeds at exactly the same relative humidity (RH = 70%) and state of wall conditioning. We found 13% and 19% enhancements in relative SOA yield for the α-pinene and toluene systems, respectively, when seeds were deliquesced rather than effloresced. The relative yield doubled in the acetylene system, and this enhancement was partially reversible upon drying the prepared SOA, which reduced the yield by 40% within a time scale of seconds. We attribute the high relative yield of acetylene SOA on deliquesced seeds to aqueous partitioning and particle-phase reactions of the photooxidation product glyoxal. The observed range of relative yields for α-pinene, toluene, and acetylene SOA on deliquesced and effloresced seeds suggests that ALW plays a complicated, system-dependent role in SOA formation.

  9. Study of Biogenic Volatile Organic Compounds at the French Guiana Tropical Forest

    Science.gov (United States)

    Corain Lopes, Paula Regina; Guenther, Alex; Turnipseed, Andrew; Bonal, Damien; Serça, Dominique; Burban, Benôit; Siebicke, Lukas; Emmons, Louisa; Bustillos, José Oscar W. V.

    2013-04-01

    process and the majority of them were released in the atmosphere. Isoprene was by far the biogenic volatile organic compound with the highest concentration and flux, followed by alpha-pinene. The lowest concentration and flux rate for all the studied compounds was observed during the months of March and late July and beginning of August indicating a lower production of those BVOCs by vegetation during those periods. Previous limited studies in Amazonia and the Congo suggested that a higher concentration and flux rate of isoprene and α-pinene should be expected during the dry season with lower emissions during the wet season, which is in relative agreement with what was observed at this tropical forest site in French Guiana. The exceptions were observed in April and June which correspond to a long wet period in which the concentration of isoprene and α-pinene increased more than it was expected for this time of the year. The observations will be compared to output from the global chemistry transport model CAM-chem, which includes the MEGAN biogenic emissions model.

  10. Spatial variation of volatile organic compounds and carbon ...

    African Journals Online (AJOL)

    GREG

    2013-05-12

    May 12, 2013 ... 10.92 ± 0.74 ppm, and lowest for industrial locations (1.11 ± 0.13 ppm). With the exception of ..... solvents and petrochemical product lines contributing more of the fugitive .... A Handbook of Statistical Analyses using. SPSS ...

  11. Origin and variability of volatile organic compounds observed at an eastern Mediterranean background site (Cyprus)

    Science.gov (United States)

    Debevec, Cécile; Sauvage, Stéphane; Gros, Valérie; Sciare, Jean; Pikridas, Michael; Leonardis, Thierry; Gaudion, Vincent; Depelchin, Laurence; Fronval, Isabelle; Pillet, Laetitia; Sarda-Estève, Roland; Baisnée, Dominique; Bonsang, Bernard; Locoge, Nadine

    2016-04-01

    Volatile organic compounds (VOCs) include a large number of species from various anthropic and natural sources. Their interest is linked to their toxicity and they are key players in photochemical processes leading to secondary pollutant formation such as ozone, oxygenated species and secondary organic aerosols. More than 7,000 atmospheric measurements of over eighty C2-C16 VOCs, including a wide range of tracers of different specific sources, have been conducted at a background site in Cyprus during a 29-day intensive field campaign held in March 2015 within the framework of ChArMEx and ENVI-Med "CyAr" programs. Primary anthropogenic and biogenic VOCs and oxygenated VOCs (OVOCs), including a number of secondary oxidation products, were measured on-line thanks to flame ionization detection/gas chromatography and proton transfer mass spectrometry (2 GC-FID, time resolution 30 min, 1 PTR-QMS, time resolution 5 min). Additionally, more than 400 off-line 3h-integrated air samples were collected on cartridge and analyzed by GC-FID. Recovery of the different techniques, regular quality checks and uncertainty determination approach allow insuring a good robustness of the dataset. In order to study the variability and the origin of these VOCs, their time series were first analyzed here on the basis of meteorological data and clustering of air mass trajectories. Biogenic compounds appear mainly of local origin and present specific diurnal cycles such as daily maximum for isoprene and a nighttime maximum for monoterpenes. Long-lived anthropogenic compounds as well as OVOCs display higher mixing ratios under the influence of eastern and northern sectors (i.e. Middle East and Turkey) indicating that long-range transport significantly contributes to the VOCs levels in the area. A first factor analysis performed in order to examine different species co-variations allows discerning different source types (primary/secondary, anthropogenic/biogenic, local/regional).

  12. Long-term stability measurements of low concentration Volatile Organic Compound gas mixtures

    Science.gov (United States)

    Allen, Nick; Amico di Meane, Elena; Brewer, Paul; Ferracci, Valerio; Corbel, Marivon; Worton, David

    2017-04-01

    VOCs (Volatile Organic Compounds) are a class of compounds with significant influence on the atmosphere due to their large anthropogenic and biogenic emission sources. VOC emissions have a significant impact on the atmospheric hydroxyl budget and nitrogen reservoir species, while also contributing indirectly to the production of tropospheric ozone and secondary organic aerosol. However, the global budget of many of these species are poorly constrained. Moreover, the World Meteorological Organization's (WMO) Global Atmosphere Watch (GAW) have set challenging data quality objectives for atmospheric monitoring programmes for these classes of traceable VOCs, despite the lack of available stable gas standards. The Key-VOCs Joint Research Project is an ongoing three-year collaboration with the aim of improving the measurement infrastructure of important atmospheric VOCs by providing traceable and comparable reference gas standards and by validating new measurement systems in support of the air monitoring networks. It focuses on VOC compounds that are regulated by European legislation, that are relevant for indoor air monitoring and for air quality and climate monitoring programmes like the VOC programme established by the WMO GAW and the European Monitoring and Evaluation Programme (EMEP). These VOCs include formaldehyde, oxy[genated]-VOCs (acetone, ethanol and methanol) and terpenes (a-pinene, 1,8-cineole, δ-3-carene and R-limonene). Here we present the results of a novel long term stability study for low concentration formaldehyde, oxy-VOC and terpenes gas mixtures produced by the Key-VOCs consortium with discussion regarding the implementation of improved preparation techniques and the use of novel cylinder passivation chemistries to guarantee mixture stability.

  13. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    Directory of Open Access Journals (Sweden)

    E. C. Apel

    2010-03-01

    Full Text Available The volatile organic compound (VOC distribution in the Mexico City Metropolitan Area (MCMA and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs but with a substantial contribution from oxygenated volatile organic compounds (OVOCs, predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry model and MOZART (Model for Ozone and Related chemical Tracers were able to approximate the observed MCMA daytime patterns and absolute values of the VOC OH reactivity. The MOZART model is also in agreement with observations showing that NMHCs dominate the reactivity distribution except in the afternoon hours. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height.

    A northeast transport event was studied in which air originating in the MCMA was intercepted aloft with the Department of Energy (DOE G1 on 18 March and downwind with the National Center for Atmospheric Research (NCAR C130 one day later on 19 March. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind; ozone was shown to be photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial extent and temporal evolution of the plume

  14. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    Directory of Open Access Journals (Sweden)

    W. Junkermann

    2009-11-01

    Full Text Available The volatile organic compound (VOC distribution in the Mexico City Metropolitan Area (MCMA and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs but with a substantial contribution from oxygenated volatile organic compounds (OVOCs, predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry model and MOZART (Model for Ozone and Related chemical Tracers were able to reproduce the general features of the daytime cycle of the VOC OH reactivity distribution showing that NMHCs dominate the distribution except in the afternoon hours and that the VOC OH reactivity peaks in the early morning due to high morning emissions from the city into a shallow boundary layer. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height. In addition, a plume was studied in which air was advected out of the MCMA and intercepted downwind with the DOE G1 on 18~March and the NCAR C130 one day later on 19~March. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind. Ozone and many OVOCs were photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial and temporal extent of the 19~March plume and to help interpret

  15. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Apel, E.; Springston, S.; Karl, T.; Emmons, L.; Flocke, F.; Hills, A. J.; Madronich, S.; Lee-Taylor, J.; Fried, A.; Weibring, P.; Walega, J.; Richter, D., Tie, X.; Mauldin, L.; Campos, T.; Sive, B.; Kleinman, L.; Springston, S., Zaveri, R.; deGouw, J.; Zheng, J.; Zhang, R.; Rudolph, J.; Junkermann, W.; Riemer, D. D.

    2009-11-01

    The volatile organic compound (VOC) distribution in the Mexico City Metropolitan Area (MCMA) and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs) but with a substantial contribution from oxygenated volatile organic compounds (OVOCs), predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry) model and MOZART (Model for Ozone and Related chemical Tracers) were able to reproduce the general features of the daytime cycle of the VOC OH reactivity distribution showing that NMHCs dominate the distribution except in the afternoon hours and that the VOC OH reactivity peaks in the early morning due to high morning emissions from the city into a shallow boundary layer. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height. In addition, a plume was studied in which air was advected out of the MCMA and intercepted downwind with the DOE G1 on 18 March and the NCAR C130 one day later on 19 March. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind. Ozone and many OVOCs were photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial and temporal extent of the 19 March plume and to help interpret the OH

  16. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Apel, Eric; Emmons, L.; Karl, Thomas G.; Flocke, Frank M.; Hills, A. J.; Madronich, Sasha; Lee-Taylor, J.; Fried, Alan; Weibring, P.; Walega, J.; Richter, Dirk; Tie, X.; Mauldin, L.; Campos, Teresa; Weinheimer, Andrew J.; Knapp, David; Sive, B.; Kleinman, Lawrence I.; Springston, S.; Zaveri, Rahul A.; Ortega, John V.; Voss, Paul B.; Blake, D. R.; Baker, Angela K.; Warneke, Carsten; Welsh-Bon, Daniel; de Gouw, Joost A.; Zheng, J.; Zhang, Renyi; Rudolph, Jochen; Junkermann, W.; Riemer, D.

    2010-01-01

    The volatile organic compound (VOC) distribution in the Mexico City Metropolitan Area (MCMA) and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs) but with a substantial contribution from oxygenated volatile organic compounds (OVOCs), predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry) model and MOZART (Model for Ozone and Related chemical Tracers) were able to reproduce the general features of the daytime cycle of the VOC OH reactivity distribution showing that NMHCs dominate the distribution except in the afternoon hours and that the VOC OH reactivity peaks in the early morning due to high morning emissions from the city into a shallow boundary layer. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height. In addition, a plume was studied in which air was advected out of the MCMA and intercepted downwind with the DOE G1 on March 18 and the NCAR C130 one day later on March 19. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind. Ozone and many OVOCs were photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial and temporal extent of the March 19 plume and to help interpret the OH

  17. Volatile compounds of healthy and insect-damaged Hippophae rhamnoides sinensis in natural and planted forests.

    Science.gov (United States)

    Zong, Shixiang; Luo, Youqing; Zhou, Jiao; Liu, Shujing

    2012-01-01

    Volatile compounds of healthy and insect-damaged stems of Hippophae rhamnoides sinensis were analysed using dynamic headspace and thermal-desorption cold-trap injector gas chromatography/mass spectroscopy (TCT-GC/MS). Sixteen compounds, belonging to alkanes, alcohols, aldehydes, esters, ketones, and ethers, were identified in the stems of healthy H. rhamnoides sinensis; the compounds in H. rhamnoides sinensis occurring naturally or cultivated in plantations were similar, but the relative contents were significantly different. In plants damaged by Holcocerus hippophaecolus, the nature and content of the volatile compounds were greatly changed. Butanedione and butyl glyoxylate were newly generated after damage by the pest, and the relative levels of pentanal, heptanal, eucalyptol, terpineol, and camphor were sharply increased in both naturally occurring and plantation-grown plants. n-Decane, trans-2-nonen-1-ol, and n-hexadecane levels increased in plants cultivated in the plantation and decreased in natural forests, whereas the levels of other types were reduced. Thus, both the nature and the content of volatile compounds of H. rhamnoides sinensis are affected by H. hippophaecolus damage, providing a theoretical basis to identify the mechanism of pest destruction.

  18. Removal of volatile organic compounds using amphiphilic cyclodextrin-coated polypropylene

    Directory of Open Access Journals (Sweden)

    Ludmilla Lumholdt

    2014-11-01

    Full Text Available Polypropylene nonwovens were functionalised using a self-assembled, amphiphilic cyclodextrin coating and the potential for water purification by removal of pollutants was studied. As benzene is one of the problematic compounds in the Water Framework Directive, six volatile organic compounds (benzene and five benzene-based substances were chosen as model compounds. The compounds were tested as a mixture in order to provide a more realistic situation since the wastewater will be a complex mixture containing multiple pollutants. The volatile organic compounds are known to form stable inclusion complexes with cyclodextrins. Six different amphiphilic cyclodextrin derivatives were synthesised in order to elucidate whether or not the uptake abilities of the coating depend on the structure of the derivative. Headspace gas chromatography was used for quantification of the uptake exploiting the volatile nature of benzene and its derivatives. The capacity was shown to increase beyond the expected stoichiometries of guest–host complexes with ratios of up to 16:1.

  19. Comparison of four extraction methods for analysis of volatile hop-derived aroma compounds in beer.

    Science.gov (United States)

    Richter, Tobias M; Eyres, Graham T; Silcock, Patrick; Bremer, Phil J

    2017-09-09

    The volatile organic compound profile in beer is derived from hops, malt, yeast, and interactions between the ingredients, making it very diverse and complex. Due to the range and diversity of the volatile organic compounds present, the choice of the extraction method is extremely important for optimal sensitivity and selectivity. This study compared four extraction methods for hop-derived compounds in beer late hopped with Nelson Sauvin. Extraction capacity and variation were compared for headspace solid phase micro extraction, stir bar sorptive extraction, headspace sorptive extraction, and solvent assisted flavour evaporation. Generally, stir bar sorptive extraction was better suited for acids, headspace sorptive extraction for esters and aldehydes, while headspace solid phase micro extraction was less sensitive overall, extracting 40% fewer compounds. Solvent assisted flavour evaporation with dichloromethane was not suitable for the extraction of hop-derived volatile organic compounds in beer, as the profile was strongly skewed towards alcohols and acids. Overall, headspace sorptive extraction found to be best suited, closely followed by stir bar sorptive extraction. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Free amino acids and other non-volatile compounds formed during processing of Iberian ham.

    Science.gov (United States)

    Martín, L; Antequera, T; Ventanas, J; Benítez-Donoso, R; Córdoba, J J

    2001-12-01

    Fifty-five legs from Iberian pigs were traditionally processed into dry cured hams. Free amino acids and other non-volatile compounds in the water-soluble fraction from the biceps femoris muscle were analyzed by HPLC. At the drying stage and in the last months in the cellar the largest increases in these water-soluble compounds took place. There was a clear influence on free amino acid formation of salt content and on the formation of peptides of the temperature at each processing stage. As the amount of non-volatile compounds in the water-soluble fraction increases with processing time, their determination could provide a maturation index for Iberian ham.

  1. Fatty acid composition and volatile compounds of caviar from farmed white sturgeon (Acipenser transmontanus).

    Science.gov (United States)

    Caprino, Fabio; Moretti, Vittorio Maria; Bellagamba, Federica; Turchini, Giovanni Mario; Busetto, Maria Letizia; Giani, Ivan; Paleari, Maria Antonietta; Pazzaglia, Mario

    2008-06-09

    The present study was conducted to characterize caviar obtained from farmed white sturgeons (Acipenser transmontanus) subjected to different dietary treatments. Twenty caviar samples from fish fed two experimental diets containing different dietary lipid sources have been analysed for chemical composition, fatty acids and flavour volatile compounds. Fatty acid make up of caviar was only minimally influenced by dietary fatty acid composition. Irrespective of dietary treatments, palmitic acid (16:0) and oleic acid (OA, 18:1 n-9) were the most abundant fatty acid followed by docosahexaenoic acid (DHA, 22:6 n-3) and eicopentaenoic (EPA, 20:5 n-3). Thirty-three volatile compounds were isolated using simultaneous distillation-extraction (SDE) and identified by GC-MS. The largest group of volatiles were represented by aldehydes with 20 compounds, representing the 60% of the total volatiles. n-Alkanals, 2-alkenals and 2,4-alkadienals are largely the main responsible for a wide range of flavours in caviar from farmed white surgeon.

  2. Volatile organic compounds in the air of Izmir, Turkey

    Science.gov (United States)

    Muezzinoglu, Aysen; Odabasi, Mustafa; Onat, Levent

    A sampling program was conducted to determine the ambient VOC levels in the city of Izmir, Turkey during daytime and overnight periods between mid-August and mid-September 1998. Sampling sites were selected at high-density traffic roads and junctions far from stationary VOC sources. Samples were analyzed for benzene, toluene, m, p-xylene and o-xylene (BTX), alkylbenzenes (ethylbenzene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene), n-hexane and, n-heptane. Results were compared with similar data from other cities around the world and for probable health dangers and sources of the compounds. Results of this study indicated that Izmir has rather high ambient BTX concentrations compared to many polluted cities in the world. Toluene was the most abundant VOC in Izmir air and was followed by xylenes, benzene and alkylbenzenes, respectively. All were strongly dependent on the expected daily variations of traffic flow in the city. The concentrations of other VOCs correlated well with benzene concentration at most sampling sites, excluding Gumuldur station indicating that ambient VOC levels were mainly affected by motor vehicle emissions. The toluene-to-benzene ratios for urban and non-urban sites were in good agreement with previously reported values, indicating a good relationship between the motor vehicle emissions and ambient VOC levels.

  3. Fluxes of biogenic volatile organic compounds measured and modelled above a Norway spruce forest

    Science.gov (United States)

    Juráň, Stanislav; Fares, Silvano; Pallozzi, Emanuele; Guidolotti, Gabriele; Savi, Flavia; Alivernini, Alessandro; Calfapietra, Carlo; Večeřová, Kristýna; Křůmal, Kamil; Večeřa, Zbyněk; Cudlín, Pavel; Urban, Otmar

    2016-04-01

    Fluxes of biogenic volatile organic compounds (BVOCs) were investigated at Norway spruce forest at Bílý Kříž in Beskydy Mountains of the Czech Republic during the summer 2014. A proton-transfer-reaction-time-of-flight mass spectrometer (PTR-TOF-MS, Ionicon Analytik, Austria) has been coupled with eddy-covariance system. Additionally, Inverse Lagrangian Transport Model has been used to derive fluxes from concentration gradient of various monoterpenes previously absorbed into n-heptane by wet effluent diffusion denuder with consequent quantification by gas chromatography with mass spectrometry detection. Modelled data cover each one day of three years with different climatic conditions and previous precipitation patterns. Model MEGAN was run to cover all dataset with monoterpene fluxes and measured basal emission factor. Highest fluxes measured by eddy-covariance were recorded during the noon hours, represented particularly by monoterpenes and isoprene. Inverse Lagrangian Transport Model suggests most abundant monoterpene fluxes being α- and β-pinene. Principal component analysis revealed dependencies of individual monoterpene fluxes on air temperature and particularly global radiation; however, these dependencies were monoterpene specific. Relationships of monoterpene fluxes with CO2 flux and relative air humidity were found to be negative. MEGAN model correlated to eddy-covariance PTR-TOF-MS measurement evince particular differences, which will be shown and discussed. Bi-directional fluxes of oxygenated short-chain volatiles (methanol, formaldehyde, acetone, acetaldehyde, formic acid, acetic acid, methyl vinyl ketone, methacrolein, and methyl ethyl ketone) were recorded by PTR-TOF-MS. Volatiles of anthropogenic origin as benzene and toluene were likely transported from the most benzene polluted region in Europe - Ostrava city and adjacent part of Poland around Katowice, where metallurgical and coal mining industries are located. Those were accumulated during

  4. Determination of volatile compounds in Grenache wines in relation with different terroirs in the Rhone Valley.

    Science.gov (United States)

    Sabon, Isabelle; De Revel, Gilles; Kotseridis, Yorgos; Bertrand, Alain

    2002-10-23

    This paper describes the study of 19 wines of the Grenache Noir cultivar obtained from representative soils of the Rhone Valley according to their geographical site, climatic conditions, hydrological regulation, and soil profile. Among the volatile compounds analyzed by GC/MS/FID, the concentrations of the varietal compounds (i.e., beta-damascenone, beta-ionone, and geraniol) and those of the compounds without direct influence on the wine aroma (i.e., hexenols and methanol) indicated the existence of two groups of wines. These concentrations were correlated with grape maturity due to the ecosystem and particularly the soil.

  5. Profiling of volatile compounds in APC(Min/+) mice blood by dynamic headspace extraction and gas chromatography/mass spectrometry.

    Science.gov (United States)

    Kakuta, Shoji; Nishiumi, Shin; Yoshida, Masaru; Fukusaki, Eiichiro; Bamba, Takeshi

    2015-10-15

    Various volatile compounds as well as hydrophilic compounds exist in the blood. For example, 2-alkenals, 4-hydroxy-2-alkenals, and ketoaldehydes have been reported as oxidized lipid-derived volatiles in blood. These specific volatiles have been associated with diseases; however, multi-volatile analyses have not been performed. In this study, volatile profiling of APC(Min/+) mouse plasma by dynamic headspace extraction was performed for multi-volatile analysis. In total, 19 volatiles were detected in the plasma of mice, based on information regarding oxidized lipid-derived volatile compounds, and eight of these compounds differed significantly between normal and diseased mice. 2-Methyl-2-butanol and benzyl alcohol were previously unreported in blood samples. Furthermore, 3,5,5-trimethyl-2(5H)-furanone was only detected in normal mice. 5-Methyl-3-hexanone and benzaldehyde have been detected in subjects with gastrointestinal diseases and lung cancer, respectively. Therefore, volatile profiling can be used to detect differences between samples and to identify compounds associated with diseases.

  6. Volatile aromatic compounds in Mexico City atmosphere: levels and source apportionment

    Energy Technology Data Exchange (ETDEWEB)

    Mugica, V. [Universidad Autonoma Metropolitana - Unidad Azcapotzalco, Mexico, D.F. (Mexico); Ruiz, M.E. [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Watson, J.; Chow, J. [Desert Research Institute, Reno, Nevada (United States)

    2003-01-01

    Samples of ambient air were simultaneously collected at three different sites of Mexico City in March of 1997 in order to quantify the most abundant volatile aromatic compounds and estimate the source contributions by application of the chemical mass balance model (CMB). Volatile aromatic compounds were around 20% of the total of non-methane hydrocarbons present in morning air samples. The most abundant volatile aromatic species in urban air were toluene and xylenes followed by 1, 2, 4 trimethylbenzene, benzene, ethylbenzene, metaethyltoluene, 1, 3, 5 trimethylbenzene, styrene, n propylbenzene, and isopropylbenzene. Sampling campaigns were carried out at crossroads, a bus station, a parking place, and areas where solvents and petroleum distillates are used, with the objective of determining people's exposure to volatile aromatic compounds. The CMB was applied for estimating the contribution of different sources to the presence of each one of the most abundant aromatic compounds. Motor vehicle exhaust was the main source of all aromatic compounds, especially gasoline exhaust, although diesel exhausts and asphalt operations also accounted for toluene, xylenes, ethylbenzene, propylbenzenes, and styrene. Graphic arts and paint applications had an important impact on the presence of toluene. [Spanish] Se colectaron simultaneamente muestras de aire ambiente en tres sitios de la Ciudad de Mexico durante el mes de marzo de 1997 con el fin de conocer las concentraciones y el origen de compuestos aromaticos utilizando el modelo de balance de masa de especies quimicas (CMB). Los compuestos aromaticos volatiles representaron alrededor del 20% del total de hidrocarburos no metalicos presentes en las muestras matutinas colectadas. Las especies aromaticas volatiles mas abundantes en el ambiente fueron el tolueno y los xilenos, seguidos por 1, 2, 4 trimetilbenceno, benceno, etilbenceno, metaetiltolueno, nporpilbenceno, isopropilbenceno, 1, 3, 5 trimetilbenceno y estireno. Se

  7. Biotic and abiotic factors affect green ash volatile production and emerald ash borer adult feeding preference.

    Science.gov (United States)

    Chen, Yigen; Poland, Therese M

    2009-12-01

    The emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an exotic woodborer first detected in 2002 in Michigan and Ontario and is threatening the ash resource in North America. We examined the effects of light exposure and girdling on green ash (Fraxinus pennsylvanica Marsh) volatile production, and effects of light exposure, girdling, and leaf age on emerald ash borer adult feeding preferences and phototaxis. Green ash seedlings grown under higher light exposure had lower amounts of three individual volatile compounds, (Z)-3-hexenol, (E)-beta-ocimene, and (Z,E)-alpha-farnesene, as well as the total amount of six detected volatile compounds. Girdling did not affect the levels of these volatiles. Emerald ash borer females preferred mature leaves, leaves from girdled trees, and leaves grown in the sun over young leaves, leaves from nongirdled trees, and leaves grown in the shade, respectively. These emerald ash borer preferences were most likely because of physical, nutritional, or biochemical changes in leaves in response to the different treatments. Emerald ash borer females and males showed positive phototaxis in laboratory arenas, a response consistent with emerald ash borer preference for host trees growing in sunlight.

  8. Release of bioactive volatiles from supramolecular hydrogels: influence of reversible acylhydrazone formation on gel stability and volatile compound evaporation.

    Science.gov (United States)

    Buchs, Barbara; Fieber, Wolfgang; Vigouroux-Elie, Florence; Sreenivasachary, Nampally; Lehn, Jean-Marie; Herrmann, Andreas

    2011-04-21

    In the presence of alkali metal cations, guanosine-5'-hydrazide (1) forms stable supramolecular hydrogels by selective self-assembly into a G-quartet structure. Besides being physically trapped inside the gel structure, biologically active aldehydes or ketones can also reversibly react with the free hydrazide functions at the periphery of the G-quartet to form acylhydrazones. This particularity makes the hydrogels interesting as delivery systems for the slow release of bioactive carbonyl derivatives. Hydrogels formed from 1 were found to be significantly more stable than those obtained from guanosine. Both physical inclusion of bioactive volatiles and reversible hydrazone formation could be demonstrated by indirect methods. Gel stabilities were measured by oscillating disk rheology measurements, which showed that thermodynamic equilibration of the gel is slow and requires several cooling and heating cycles. Furthermore, combining the rheology data with dynamic headspace analysis of fragrance evaporation suggested that reversible hydrazone formation of some carbonyl compounds influences the release of volatiles, whereas the absolute stability of the gel seemed to have no influence on the evaporation rates.

  9. The prey's scent - Volatile organic compound mediated interactions between soil bacteria and their protist predators.

    Science.gov (United States)

    Schulz-Bohm, Kristin; Geisen, Stefan; Wubs, E R Jasper; Song, Chunxu; de Boer, Wietse; Garbeva, Paolina

    2017-03-01

    Protists are major predators of bacteria in soils. However, it remains unknown how protists sense their prey in this highly complex environment. Here, we investigated whether volatile organic compounds (VOCs) of six phylogenetic distinct soil bacteria affect the performance of three different soil protists and how that relates to direct feeding interactions. We observed that most bacteria affected protist activity by VOCs. However, the response of protists to the VOCs was strongly dependent on both the bacterial and protist interacting partner. Stimulation of protist activity by volatiles and in direct trophic interaction assays often coincided, suggesting that VOCs serve as signals for protists to sense suitable prey. Furthermore, bacterial terpene synthase mutants lost the ability to affect protists, indicating that terpenes represent key components of VOC-mediated communication. Overall, we demonstrate that volatiles are directly involved in protist-bacterial predator-prey interactions.

  10. Volatile and non-volatile compounds in ripened cheese: their formation and their contribution to flavour.

    NARCIS (Netherlands)

    Engels, W.J.M.

    1997-01-01

    Flavour is one of the most important attributes of cheese. Cheese flavour is the result of the breakdown of milk protein, fat, lactose and citrate due to enzymes from milk, rennet and microorganisms during production and ripening of cheese. For a large part the development of flavour during the ripe

  11. Volatile and non-volatile compounds in ripened cheese : their formation and their contribution to flavour

    NARCIS (Netherlands)

    Engels, W.J.M.

    1997-01-01


    Flavour is one of the most important attributes of cheese. Cheese flavour is the result of the breakdown of milk protein, fat, lactose and citrate due to enzymes from milk, rennet and microorganisms during production and ripening of cheese. For a large part the development of flavour duri

  12. Volatile and non-volatile compounds in ripened cheese : their formation and their contribution to flavour

    NARCIS (Netherlands)

    Engels, W.J.M.

    1997-01-01


    Flavour is one of the most important attributes of cheese. Cheese flavour is the result of the breakdown of milk protein, fat, lactose and citrate due to enzymes from milk, rennet and microorganisms during production and ripening of cheese. For a large part the development of flavour

  13. Analytical performance of three commonly used extraction methods for the gas chromatography-mass spectrometry analysis of wine volatile compounds.

    Science.gov (United States)

    Andujar-Ortiz, I; Moreno-Arribas, M V; Martín-Alvarez, P J; Pozo-Bayón, M A

    2009-10-23

    The analytical performance of three extraction procedures based on cold liquid-liquid extraction using dicloromethane (LLE), solid phase extraction (SPE) using a styrene-divinylbenzene copolymer and headspace solid phase microextraction (SPME) using a carboxen-polydimethylsiloxane coated fibre has been evaluated based on the analysis of 30 representative wine volatile compounds. From the comparison of the three procedures, LLE and SPE showed very good linearity covering a wide range of concentrations of wine volatile compounds, low detection limits, high recovery for most of the volatile compounds under study and higher sensitivity compared to the headspace-SPME procedure. The latter showed in general, poor recovery for polar volatile compounds. Despite some drawbacks associated with the LLE and SPE procedures such as the more tedious sampling treatment and the use of organic solvents, the analytical performance of both procedures showed that they are more adequate for the analysis of wine volatiles.

  14. Analysis of seven salad rocket (Eruca sativa) accessions: The relationships between sensory attributes and volatile and non-volatile compounds.

    Science.gov (United States)

    Bell, Luke; Methven, Lisa; Signore, Angelo; Oruna-Concha, Maria Jose; Wagstaff, Carol

    2017-03-01

    Sensory and chemical analyses were performed on accessions of rocket (Eruca sativa) to determine phytochemical influences on sensory attributes. A trained panel was used to evaluate leaves, and chemical data were obtained for polyatomic ions, amino acids, sugars and organic acids. These chemical data (and data of glucosinolates, flavonols and headspace volatiles previously reported) were used in Principal Component Analysis (PCA) to determine variables statistically important to sensory traits. Significant differences were observed between samples for polyatomic ion and amino acid concentrations. PCA revealed strong, positive correlations between glucosinolates, isothiocyanates and sulfur compounds with bitterness, mustard, peppery, warming and initial heat mouthfeel traits. The ratio between glucosinolates and sugars inferred reduced perception of bitter aftereffects. We highlight the diversity of E. sativa accessions from a sensory and phytochemical standpoint, and the potential for breeders to create varieties that are nutritionally and sensorially superior to existing ones.

  15. Validation of thermodesorption method for analysis of semi-volatile organic compounds adsorbed on wafer surface.

    Science.gov (United States)

    Hayeck, Nathalie; Gligorovski, Sasho; Poulet, Irène; Wortham, Henri

    2014-05-01

    To prevent the degradation of the device characteristics it is important to detect the organic contaminants adsorbed on the wafers. In this respect, a reliable qualitative and quantitative analytical method for analysis of semi-volatile organic compounds which can adsorb on wafer surfaces is of paramount importance. Here, we present a new analytical method based on Wafer Outgassing System (WOS) coupled to Automated Thermal Desorber-Gas chromatography-Mass spectrometry (ATD-GC-MS) to identify and quantify volatile and semi-volatile organic compounds from 6", 8" and 12" wafers. WOS technique allows the desorption of organic compounds from one side of the wafers. This method was tested on three important airborne contaminants in cleanroom i.e. tris-(2-chloroethyl) phosphate (TCEP), tris-(2-chloroisopropyl) phosphate (TCPP) and diethyl phthalate (DEP). In addition, we validated this method for the analysis and quantification of DEP, TCEP and TCPP and we estimated the backside organic contamination which may contribute to the front side of the contaminated wafers. We are demonstrating that WOS/ATD-GC-MS is a suitable and highly efficient technique for desorption and quantitative analysis of organophosphorous compounds and phthalate ester which could be found on the wafer surface.

  16. Volatile compounds and sensory characteristics of various instant teas produced from black tea.

    Science.gov (United States)

    Kraujalytė, Vilma; Pelvan, Ebru; Alasalvar, Cesarettin

    2016-03-01

    Various instant teas produced differently from black tea [freeze-dried instant tea (FDIT), spray-dried instant tea (SDIT), and decaffeinated instant tea (DCIT)], were compared for their differences in volatile compounds as well as descriptive sensory analysis (DSA). A total of 63 volatile compounds in all tea samples (eight aldehydes, ten alcohols, nine ketones, five esters, eight acids, ten terpenes/terpenoids, ten furans/furanones, two pyrroles, and one miscellaneous compound) were tentatively identified. Black tea, FDIT, SDIT, and DCIT contained 60, 55, 47, and 40 volatile compounds, respectively. Ten flavour attributes such as after taste, astringency, bitter, caramel-like, floral/sweet, green/grassy, hay-like, malty, roasty, and seaweed were identified. Intensities for a number of flavour attributes (except for caramel-like in SDIT and bitter and after taste in DCIT) were not significantly different (p>0.05) among tea samples. The present study suggests that instant teas can also be used as good alternative to black tea.

  17. 泡椒牛百叶加工工艺优化及其挥发性风味成分分析%Optimization of Processing Conditions for the Production of Bovine Omasum with Pickled Peppers and Analysis of Its Volatile Compounds

    Institute of Scientific and Technical Information of China (English)

    刘奕琳; 杨勇; 李诚; 李俣珠; 林琪; 朱成林; 姜海洋; 刘韫滔; 冯朝辉; 刘爱平

    2016-01-01

    In this study one-factor-at-a-time method and Box-Behnken response surface methodology were employed to optimize the conditions for producing bovine omasum with pickled peppers. The volatile lfavor compounds of this product were analyzed by a headspace solid-phase microextraction-gas chromatography-mass spectrometry method (HS-SPME-GC-MS). The product obtained by cooking bovine omasum for 25 s and subsequently marinating it with a mixture of 30% pickled peppers, 5% salt, 20% white vinegar, and 7% crystal sugar had the best sensory evaluation. A total of 46 volatile flavor compounds were found in the product, including esters, aldehydes, hydrocarbons, alcohols, acids, heterocyclic compounds, and phenols. Among these compounds, esters, alcohols and aldehydes made greater contribution to the lfavor of bovine omasum with pickled peppers.%以新鲜牛百叶为原料,通过单因素试验和Box-Behnken中心组合响应面试验,优化泡椒牛百叶的加工工艺,并采用顶空固相微萃取(headspace solid-phase microextraction,HS-SPME)结合气相色谱-质谱联用(gas chromatography-mass spectrometry,GC-MS)对泡椒牛百叶的挥发性风味成分进行分析。结果表明:牛百叶煮制25 s、腌制10 h,泡椒、食盐、白醋和冰糖添加量(以质量分数计)分别为30%、5%、20%和7%时,泡椒牛百叶的感官评价结果最好;在最佳工艺条件下制备的泡椒牛百叶共分析出酯类、醛类、烃类、醇类、酸类、杂环类化合物、酚类等挥发性风味成分共46种。其中酯类、醇类和醛类对泡椒牛百叶挥发性风味的贡献较大。

  18. Concentrations and flux measurements of volatile organic compounds (VOC) in boreal forest soil

    Science.gov (United States)

    Mäki, Mari; Aaltonen, Hermanni; Heinonsalo, Jussi; Hellén, Heidi; Pumpanen, Jukka; Bäck, Jaana

    2017-04-01

    Volatile organic compounds (VOC) impact soil processes as VOCs transmit signals between roots and rhizosphere (Ditengou et al., 2015), VOCs can regulate microbial activity (Asensio et al., 2012), and VOCs can also promote root growth (Hung et al., 2012). Belowground concentrations of VOCs have not been measured in situ and for this reason, knowledge of how different soil organisms such as roots, rhizosphere and decomposers contribute to VOC production is limited. The aim of this study was to determine and quantify VOC fluxes and concentrations of different horizons from boreal forest soil. The VOC concentrations and fluxes were measured from Scots pine (Pinus sylvestris) forest soil at the SMEAR II station in southern Finland from 21th of April to 2nd of December in 2016. VOC fluxes were measured using dynamic (flow-through) chambers from five soil collars placed on five different locations. VOC concentrations were also measured in each location from four different soil horizons with the measurement depth 1-107 cm. VOCs were collected from underground gas collectors into the Tenax-Carbopack-B adsorbent tubes using portable pumps ( 100 ml min-1). The VOC concentrations and fluxes of isoprene, 11 monoterpenes, 13 sesquiterpenes and different oxygenated VOCs were measured. Sample tubes were analyzed using thermal desorption-gas chromatograph-mass spectrometry (TD-GC-MS). Soil temperature and soil water content were continuously monitored for each soil horizon. Our preliminary results show that the primary source of VOCs is organic soil layer and the contribution of mineral soil to the VOC formation is minor. VOC fluxes and concentrations were dominated by monoterpenes such as α-pinene, camphene, β-pinene, and Δ3-carene. Monoterpene concentration is almost 10-fold in organic soil compared to the deeper soil layers. However, the highest VOC fluxes on the soil surface were measured in October, whereas the monoterpene concentrations in organic soil were highest in July

  19. Pengaruh Cara Aplikasi Pasta Gigi Herbal terhadap Produksi Volatile Sulfur Compound

    Directory of Open Access Journals (Sweden)

    Suryono Suryono

    2015-12-01

    Full Text Available Volatile Sulfur Compound (VSC merupakan komponen gas yang dihasilkan oleh bakteri dalam rongga mulut, terdiri dari Hidrogen sulfide, Methyl Mercaptan dan Dimethyl Sulfide. Ketiga komponen gas tersebut sering digunakan sebagai indikator untuk menilai status bau mulut seseorang. Pasta gigi berbasis herbal telah dilaporkan pada penelitian sebelumnya mampu menghambat pertumbuhan kuman penyebab penyakit periodontal. Bakteri plak dalam rongga mulut dapat dikurangi melalui cara gosok gigi dan/atau penggunaan material antiseptik. Dua kelompok subjek terpilih diberikan perlakuan dengan menggunakan pasta gigi herbal dengan cara yang berbeda, kelompok pertama dengan cara menggosok gigi dengan pasta gigi herbal sesuai dengan cara yang sudah biasa mereka lakukan dan kelompok ke-2 diberikan perlakuan dengan cara mengoleskan pasta herbal di daerah molar kiri dan kanan rahang atas. Pengambilan sampel nafas dilakukan sebelum perlakuan, 5 menit dan 2 jam paska menggosok gigi atau mengoles pasta herbal. Hasil pengamatan menunjukkan bahwa penggunaan pasta gigi herbal dengan cara sikat gigi maupun pengolesan memiliki pola yang sama pada masing-masing komponen gas sulfur yaitu peningkatan pada lima menit paska aplikasi kemudian menurun pada 2 jam paska aplikasi. Pasta gigi herbal yang diaplikasikan dengan cara gosok gigi maupun dengan cara pengolesan mempengaruhi kadar VSC yaitu yaitu menurunkan kadar Hydrogen sulfide, relatif stabil kadar methyl mercaptan dan terjadi peningkatan kadar dimethyl sulfide. Pasta gigi berbasis herbal dapat digunakan dengan cara sikat gigi maupun pengolesan untuk menurunkan kadar gas VSC, khususnya Hydrogen sulfide pada subjek normal. Effect of Herbal Toothpaste Application Method on Production of Volatile Sulfur Compound. Volatile sulfur compound (VSC is a component of the gas produced by bacteria in the oral cavity, consisting of hydrogen sulfide,methyl mercaptan and dimethyl sulfide. This gas is often used as an indicator to assess the

  20. Volatile compounds formation in alcoholic fermentation from grapes collected at 2 maturation stages: influence of nitrogen compounds and grape variety.

    Science.gov (United States)

    Martínez-Gil, Ana M; Garde-Cerdán, Teresa; Lorenzo, Cándida; Lara, José Félix; Pardo, Francisco; Salinas, M Rosario

    2012-01-01

    The aim of this work was to study the influence of nitrogen compounds on the formation of volatile compounds during the alcoholic fermentation carried out with 4 nonaromatic grape varieties collected at 2 different maturation stages. To do this, Monastrell, Merlot, Syrah, and Petit Verdot grapes were collected 1 wk before harvest and at harvest. Then, the musts were inoculated with the same Saccharomyces cerevisiae yeast strain and were fermented in the same winemaking conditions. Amino acids that showed the highest and the lowest concentration in the must were the same, regardless of the grape variety and maturation stage. Moreover, the consumption of amino acids during the fermentation increased with their concentration in the must. The formation of volatile compounds was not nitrogen composition dependent. However, the concentration of amino acids in the must from grapes collected 1 wk before harvest can be used as a parameter to estimate the concentration of esters in wines from grapes collected at harvest and therefore to have more information to know the grape oenological capacity. Application of principal components analysis (PCA) confirmed the possibility to estimate the concentration of esters in the wines with the concentration of nitrogen compounds in the must.

  1. Sources of SOA gaseous precursors in contrasted urban environments: a focus on mono-aromatic compounds and intermediate volatility compounds

    Science.gov (United States)

    Salameh, Therese; Borbon, Agnès; Ait-Helal, Warda; Afif, Charbel; Sauvage, Stéphane; Locoge, Nadine; Bonneau, Stéphane; Sanchez, Olivier

    2016-04-01

    Among Volatile Organic Compounds (VOC), the mono-aromatic compounds so-called BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes) and the intermediate volatility organic compounds (IVOC) with C>12 are two remarkable chemical families having high impact on health, as well as on the production of secondary pollutants like secondary organic aerosols (SOA) and ozone. However, the nature and relative importance of their sources and, consequently, their impact on SOA formation at urban scale is still under debate. On the one hand, BTEX observations in urban areas of northern mid-latitudes do not reconcile with emission inventories; the latter pointing to solvent use as the dominant source compared to traffic. Moreover, a recent study by Borbon et al. (2013) has shown an enrichment in the C7-C9 aromatic fraction in Paris atmosphere by a factor of 3 compared to other cities. Causes would be: (i) differences in gasoline composition, (ii) differences in vehicle fleet composition, and (iii) differences in solvent use related sources. On the other hand, many smog chamber studies have highlighted IVOCs as important SOA precursors over the last decade but their origin and importance in urban areas relative to other precursors like BTEX is still poorly addressed. Here we combined large VOC datasets to investigate sources of BTEX and IVOC in contrasted urban areas by source-receptor approaches and laboratory experiments. Ambient data include multi-site speciated ambient measurements of C2 to C17 VOCs (traffic, urban background, and tunnel) from air quality networks (ie. AIRPARIF in Paris) and intensive field campaigns (MEGAPOLI-Paris, TRANSEMED in Beirut and Istanbul, PHOTOPAQ in Brussels). Preliminary results for Paris suggest that traffic dominates BTEX concentrations while traffic and domestic heating for IVOC (>70%). In parallel, the detailed composition of the fuel liquid phase was determined at the laboratory for typical fuels distributed in Ile de France region (diesel, SP95

  2. Development of a fast GC/MS-system for airborne measurements of Volatile Organic Compounds

    Science.gov (United States)

    Wenk, Ann-Kathrin; Wegener, Robert; Hofzumahaus, Andreas; Wahner, Andreas

    2010-05-01

    Volatile Organic Compounds (VOC) determine the radical chemistry of the atmosphere. They can serve both as sources, or sinks for radicals. Mass spectrometry linked to gas chromatography (GC/MS) is a widespread technique in environmental analysis since it can be used to separate and analyze any compound which can be evaporated and pass the analytical column with very high precision and a good sensitivity. The use of special chromatographic phases and long capillary columns enables the quantification of a wide range of compounds with little interference from other sample constituents. An in situ GC/MS consists in principle of three compartments, 1) a preconcentration unit where the sample is extracted from the air, focussed onto a small volume and volatilized, 2) a chromatographic system where the analytes are separated on the analytical column and 3) a mass spectrometer where the compounds are ionized and detected. VOC have to be preconcentrated due to their low concentration level and in order to get enough sensitivity for analysis. The aim of this project was to develop an in situ GC/MS system to analyze volatile Nonmethane Hydrocarbons (NMHC) and Oxygenated Volatile Organic Compounds (OVOC) for the High Altitude and LOng Range Research Aircraft (HALO). In contrast to other analytical instruments a GC/MS works discontinuously. The preconcentration unit is either heated up when the compounds are volatilized or cooled down when substances are adsorbed. The same is true for the GC oven. It is heated up when the compounds are separated or it is cooled down to be ready for the next injection. On a system with a single GC oven, these processes will inevitably lengthen the whole analytical procedure. To speed up the analytical process the GC/MS system described here was equipped with two GC ovens and two adsorption units. While the components are adsorbed in one adsorption unit, in the other unit the components are desorbed and transferred to the GC unit. The second GC

  3. Membrane System for Recovery of Volatile Organic Compounds from Remediation Off-Gases.: Phase 1.

    Energy Technology Data Exchange (ETDEWEB)

    Wijmans, J.G.; Goakey, S.; Wang, X.; Baker, R.W.; Kaschemekat, J.H.

    1997-04-01

    In situ vacuum extraction, air or steam sparging, and vitrification are widely used methods of remediating soil contaminated with volatile organic compounds (VOCs). All of these processes produce a VOC-laden air stream from which the VOC must be removed before the air can be discharged or recycled to the generating process. Treatment of these off-gases is often a major portion of the cost of the remediation project. Carbon adsorption and catalytic incineration, the most common methods of treating these gas streams, suffer from significant drawbacks. This report covers the first phase of a two-phase project. The first phase involved the laboratory demonstration of the water separation section of the unit, the production and demonstration of new membrane modules to improve the separation, the design studies required for the demonstration system, and initial contacts with potential field sites. In the second phase, the demonstration system will be built and, after a short laboratory evaluation, will be tested at two field sites.

  4. Determination of volatile halogenated organic compounds in the tropical terrestrial ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Quintana, A.; Lopez-Garriga, J. [Univ. of Puerto Rico, Mayaguez (Puerto Rico)

    1995-12-01

    Volatile Halogenated Organic Compounds are discharged into our biosphere by plants, marine organisms, fungi and by other natural processes. Due to the high rate of evaporation of the tropical terrestrial ecosystem, the production of VHOC by fungi, higher plants and other organisms may be one of the most important sources of the total amount of VHOC released to the atmosphere from biogenic origin. The main goal of this research was to determine the VHOC`s released to the surroundings from biogenic origin in the tropical terrestrial ecosystem. Using vacuum distillation with cryogenic trapping and a thermal desorption unit coupled to a GC-ECD, we found that samples of air, water and soil contains 36.418 ng/L, 0.222 ng/mL and 9.156 ng/g (wet) of chloroform. Microorganisms such as the Actinomycetes and Halobacterium salinarium were also analyzed for VHOC`S contents. Carbontetrachloride, 1,1-dichloroethene, dichlorodifluoromethane, trichlorofluoromethane and other VHOC`S of environmental importance were determined. This is the first time that the presence of VHOC`S is reported in pure cultured bacteria.

  5. River water quality analysis via headspace detection of volatile organic compounds

    Science.gov (United States)

    Tang, Johnny Jock Lee; Nishi, Phyllis Jacqueline; Chong, Gabriel Eng Wee; Wong, Martin Gideon; Chua, Hong Siang; Persaud, Krishna; Ng, Sing Muk

    2017-03-01

    Human civilization has intensified the interaction between the community and the environment. This increases the threat on the environm ent for being over exploited and contaminated with m anmade products and synthetic chemicals. Of all, clean water is one of the resources that can be easily contaminated since it is a universal solvent and of high mobility. This work reports the development and optimization of a water quality monitoring system based on metal oxide sensors. The system is intended to a ssist the detection of volatile organic compounds (VOCs) present in water sources online and onsite. The sampling mechanism was based on contactless mode, where headspace partial pressure of the VOCs formed above the water body in a close chamber was drawn for detection at the sensor platform. Pure toluene was used as standard to represent the broad spectrum of VOCs, and the sensor dynamic range was achieved from 1-1000 ppb. Several sensing parameters such as sampling time, headspace volume, and sensor recovery were s tudied and optimized. Besides direct detection of VOC contaminants in the water, the work has also been extended to detect VOCs produced by microbial communities and to c orrelate the size of the communities with the reading of V OCs recorded. This can serve to give b etter indication of water quality, not only on the conce ntration of VOCs c ontamination from chemicals, but also the content of microbes, which some can have severe effect on human health.

  6. Nutritional composition, bioactive compounds and volatile profile of cocoa beans from different regions of Cameroon.

    Science.gov (United States)

    Caprioli, Giovanni; Fiorini, Dennis; Maggi, Filippo; Nicoletti, Marcello; Ricciutelli, Massimo; Toniolo, Chiara; Prosper, Biapa; Vittori, Sauro; Sagratini, Gianni

    2016-06-01

    Analysis of the complex composition of cocoa beans provides fundamental information for evaluating the quality and nutritional aspects of cocoa-based food products, nutraceuticals and supplements. Cameroon, the world's fourth largest producer of cocoa, has been defined as "Africa in miniature" because of the variety it habitats. In order to evaluate the nutritional characteristics of cocoa beans from five different regions of Cameroon, we studied their polyphenolic content, volatile compounds and fatty acids composition. The High Performance Thin Layer Chromatography (HPTLC) analysis showed that the Mbalmayo sample had the highest content of theobromine (11.6 mg/g) and caffeic acid (2.1 mg/g), while the Sanchou sample had the highest level of (-)-epicatechin (142.9 mg/g). Concerning fatty acids, the lowest level of stearic acid was found in the Mbalmayo sample while the Bertoua sample showed the highest content of oleic acid. Thus, we confirmed that geographical origin influences the quality and nutritional characteristics of cocoa from these regions of Cameroon.

  7. Turbulent exchange and segregation of HOx radicals and volatile organic compounds above a deciduous forest

    Directory of Open Access Journals (Sweden)

    A. Knaps

    2009-11-01

    Full Text Available The eddy covariance method was applied for the first time to estimate fluxes of OH and HO2 together with fluxes of isoprene, the sum of methyl vinyl ketone (MVK and methacrolein (MACR and the sum of monoterpenes above a mixed deciduous forest. Highly sensitive measurements of OH and HO2 were performed by laser induced fluorescence (LIF, and biogenic volatile organic compounds (BVOCs were measured by Proton-Transfer-Reaction Mass Spectrometry (PTR-MS at a time resolution of 5 s, each. Wind speed was measured by a sonic anemometer at 10 Hz. The one-day feasibility study was conducted at a total height of 37 m, about 7 m above forest canopy, during the ECHO 2003 intensive field study in July 2003. The daytime measurements yielded statistically significant OH fluxes that indicate downward transport of OH into the direction of the canopy and HO2 fluxes mainly upward out of the canopy. This hints towards a significant chemical sink of OH by reaction with BVOCs and conversion of OH to HO2 at the canopy. In addition, the highly time-resolved trace gas measurements were used to calculate the intensity of segregation of OH and BVOCs, demonstrating that the effective reaction rate of isoprene and OH was slowed down as much as 15% due to inhomogeneous mixing of the reactants. The paper describes the applied methods and provides a detailed analysis of possible systematic errors of the covariance products.

  8. Volatile compounds in medlar fruit (Mespilus germanica L. at two ripening stages

    Directory of Open Access Journals (Sweden)

    Veličković Milovan M.

    2013-01-01

    Full Text Available Medlar is the fruit of Mespilus germanica L. in the family of Rosaceae. The fruit can be eaten only if ‘bletted’ (softened by frost or longer storage. The effect of the maturation stages on the volatile compounds of the medlar fruit was investigated during two different stages. Volatile flavour substances were isolated from the minced pulp of unripe and full ripe medlar fruits by simultaneous steam distillation extraction (SDE with methilen chloride as the extracting solvent. The concentrate was analysed by GC-FID-MS. Hexanoic and hexadecanoic acids were the predominant acids, hexanal and (E-2-hexenal were the predominant aldehydes, (Z-3-hexenol and hexanol were the predominant alcohols, with p-cymene, terpinen-4-ol, and γ-terpiene (the terpenes responsible for the characteristic medlar flavour being also present. The C6 aliphatic compounds, such as hexanal and (E-2-hexenal, were observed as the major volatile constituents in the green stage. In contrast, hexanol and (Z-3-hexenol were the main volatiles in ripe fruits.

  9. Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum

    Directory of Open Access Journals (Sweden)

    Annalisa eGiorgio

    2015-10-01

    Full Text Available Six rhizobacteria isolated from common bean and able to protect bean plants from the common bacterial blight causal agent, were in vitro evaluated for their potential antifungal effects toward different plant pathogenic fungi, mostly soil-borne. By dual culture assays, the above bacteria resulted producing diffusible and volatile metabolites which inhibited the growth of the majority of the pathogens under study. In particular, the latter substances highly affected the mycelium growth of Sclerotinia sclerotiorum strains, one of which was selected for further studies either on mycelium or sclerotia.Gas chromatographic analysis of the bacterial volatiles led to the identification of an array of volatile organic compounds (VOCs. Time course studies showed the modification of the VOCs profile along a period of 5 days. In order to evaluate the single detected VOC effects on fungal growth, some of the pure compounds were tested on S. sclerotiorum mycelium and their minimal inhibitory quantities were determined. Similarly, the minimal inhibitory quantities on sclerotia germination were also defined. Moreover, observations by light and transmission electron microscopes highlighted hyphae cytoplasm granulation and ultrastructural alterations at cell organelles, mostly membranes, mitochondria and endoplasmic reticulum. The membranes appeared one of the primary targets of bacterial volatiles, as confirmed by haemolytic activity observed for the majority of pure VOCs. However, of interest is the alteration observed on mitochondria as well.

  10. Volatile organic compounds produced by the phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria 85-10

    Directory of Open Access Journals (Sweden)

    Teresa Weise

    2012-04-01

    Full Text Available Xanthomonas campestris is a phytopathogenic bacterium and causes many diseases of agricultural relevance. Volatiles were shown to be important in inter- and intraorganismic attraction and defense reactions. Recently it became apparent that also bacteria emit a plethora of volatiles, which influence other organisms such as invertebrates, plants and fungi. As a first step to study volatile-based bacterial–plant interactions, the emission profile of Xanthomonas c. pv. vesicatoria 85-10 was determined by using GC/MS and PTR–MS techniques. More than 50 compounds were emitted by this species, the majority comprising ketones and methylketones. The structure of the dominant compound, 10-methylundecan-2-one, was assigned on the basis of its analytical data, obtained by GC/MS and verified by comparison of these data with those of a synthetic reference sample. Application of commercially available decan-2-one, undecan-2-one, dodecan-2-one, and the newly synthesized 10-methylundecan-2-one in bi-partite Petri dish bioassays revealed growth promotions in low quantities (0.01 to 10 μmol, whereas decan-2-one at 100 μmol caused growth inhibitions of the fungus Rhizoctonia solani. Volatile emission profiles of the bacteria were different for growth on media (nutrient broth with or without glucose.

  11. Volatile organic compounds produced by the phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria 85-10.

    Science.gov (United States)

    Weise, Teresa; Kai, Marco; Gummesson, Anja; Troeger, Armin; von Reuß, Stephan; Piepenborn, Silvia; Kosterka, Francine; Sklorz, Martin; Zimmermann, Ralf; Francke, Wittko; Piechulla, Birgit

    2012-01-01

    Xanthomonas campestris is a phytopathogenic bacterium and causes many diseases of agricultural relevance. Volatiles were shown to be important in inter- and intraorganismic attraction and defense reactions. Recently it became apparent that also bacteria emit a plethora of volatiles, which influence other organisms such as invertebrates, plants and fungi. As a first step to study volatile-based bacterial-plant interactions, the emission profile of Xanthomonas c. pv. vesicatoria 85-10 was determined by using GC/MS and PTR-MS techniques. More than 50 compounds were emitted by this species, the majority comprising ketones and methylketones. The structure of the dominant compound, 10-methylundecan-2-one, was assigned on the basis of its analytical data, obtained by GC/MS and verified by comparison of these data with those of a synthetic reference sample. Application of commercially available decan-2-one, undecan-2-one, dodecan-2-one, and the newly synthesized 10-methylundecan-2-one in bi-partite Petri dish bioassays revealed growth promotions in low quantities (0.01 to 10 μmol), whereas decan-2-one at 100 μmol caused growth inhibitions of the fungus Rhizoctonia solani. Volatile emission profiles of the bacteria were different for growth on media (nutrient broth) with or without glucose.

  12. Sensory characteristics and related volatile flavor compound profiles of different types of whey.

    Science.gov (United States)

    Gallardo-Escamilla, F J; Kelly, A L; Delahunty, C M

    2005-08-01

    To characterize the flavor of liquid whey, 11 samples of whey representing a wide range of types were sourced from cheese and casein-making procedures, either industrial or from pilot-plant facilities. Whey samples were assessed for flavor by descriptive sensory evaluation and analyzed for headspace volatile composition by proton transfer reaction-mass spectrometry (PTR-MS). The sensory data clearly distinguished between the samples in relation to the processes of manufacture; that is, significant differences were apparent between cheese, rennet, and acid wheys. For Mozzarella and Quarg wheys, in which fermentation progressed to low pH values, the starter cultures used for cheese making had a significant influence on flavor. In comparison, Cheddar and Gouda wheys were described by milk-like flavors, and rennet casein wheys were described by "sweet" (oat-like and "sweet") and thermally induced flavors. The volatile compound data obtained by PTR-MS differentiated the samples as distinctive and reproducible "chemical fingerprints". On applying partial least squares regression to determine relationships between sensory and volatile composition data, sensory characteristics such as "rancid" and cheese-like odors and "caramelized milk," yogurt-like, "sweet," and oat-like flavors were found to be related to the presence and absence of specific volatile compounds.

  13. Effect of gamma radiation on the content {beta}-carotene and volatile compounds of cantaloupe melon

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Stefania P. de; Cardozo, Monique; Lima, Keila dos S.C.; Lima, Antonio L. dos S., E-mail: keila@ime.eb.br, E-mail: santoslima@ime.eb.br [Departamento de Quimica - IME - Instituto Militar de Engenharia, RJ (Brazil)

    2011-07-01

    The Japanese melon or cantaloupe (Cucumis melo L.) is characterized by fruits with almost 1.0 Kg, pulp usually salmon and musky scent. The fruits when ripe are sensitive to post harvest handling. This low transport resistance and reduced shelf-life makes it necessary to delay the ripening of fruit. In this way the use of irradiation technique is a good choice. Irradiation is the process of exposing food to high doses of gamma rays. The processing of fruits and vegetables with ionizing radiation has as main purpose to ensure its preservation. However, like other forms of food processing, irradiation may cause changes in chemical composition and nutritional value. This study aims to assess possible changes in carotene content and volatile compounds caused by exposure of cantaloupe melon fruit to gamma irradiation. Irradiation of the samples occurred in Centro Tecnologico do Exercito (Guaratiba-RJ), using Gamma irradiator (Cs{sub 137} source, dose rate 1.8 kGy/h), being applied 0.5 and 1.0 kGy doses and separated a control group not irradiated. Carotenoids were extracted with acetone and then suffered partition to petroleum ether, solvent was removed under nitrogen flow and the remainder dissolved in acetone again. The chromatographic analysis was performed using a Shimadzu gas chromatograph, with C30 column. For volatile compounds, we used gas chromatography (GC) associated with mass (MS). As a result, it was verified in analysis of carotenoids that cantaloupe melon is rich in {beta}-carotene. Both total content of carotenoids and specific {beta}-carotene amount wasn't suffer significant reduction in irradiated fruits at two doses, demonstrating that the irradiation process under these conditions implies a small loss of nutrients. The major volatile compounds were: 2-methyl-1-butyl acetate, ethyl hexanoate, n-hexyl acetate, benzyl acetate, 6-nonenyl acetate and {alpha} -terpinyl acetate. For all compounds we observed an increase in the volatile content in 0.5 k

  14. Fluxes of Primary and Secondary Biogenic Volatile Organic Compounds (BVOC) During the BEWA Field Experiments

    Science.gov (United States)

    Steinbrecher, R.; Rappenglück, B.; Steigner, D.; Hansel, A.; Graus, M.; Lindinger, C.

    2003-12-01

    Biogenic volatile organic compounds (BVOCs) play a crucial role in the formation of photo-oxidants and particles through the diverse BVOC degradation pathways. Yet, current estimations about temporal and spatial BVOC emissions, including the specific BVOC mix are rather vague. This paper reports results from the determination of BVOC net emission rates that were obtained within the frame of the BEWA field experiments at the Waldstein site in the Fichtelgebirge in 2001 and 2002, an extended forest site that is largely dominated by Norway spruce (Picea abies [L.] Karst.). Stand fluxes of volatile organic compounds were determined with Proton Transfer Reaction Mass Spectrometry (PTR-MS) coupled to a Relaxed-Eddy-Accumulation (REA) system. The PTR-MS is capable to measure simultaneously a variety of organic trace gases, including oxygenated compounds. Air samples were taken at the top of a meteorological tower at the height of 32 m a.g.l. close to the Gill Sonic anemometer that controlled the REA-sampling. A critical value when using the REA approach is the Businger-Oncley parameter b. For this canopy type a b value of 0.39 (threshold velocity wo = 0.6) was determined. The PTR-MS data show clear diurnal variations of ambient air mixing ratios of isoprene and monoterpenes, but also of oxygenated VOC such as methanol, carbonyls, methylvinylketone (MVK) and methacrolein (MAC). Canopy fluxes of isoprene reached up to 7 nmol m-2 s-1 during daytime. The fluxes of the sum of monoterpenes were in the same range. MVK and MAC are products from isoprene oxidation. The BEWA data confirm this relationship and reveal a better correlation of MVK+MAC with isoprene (r2=0.78) than with the sum of monoterpenes (r2=0.30). In our study MVK+MAC fluxes were about 30% lower than isoprene fluxes. Both observations indicate active photochemical degradation of isoprene in this area. Actealdehyde and acetone are typical intermediate compounds in the photochemical degradation of both anthropogenic

  15. An alternative method based on enzymatic fat hydrolysis to quantify volatile compounds in wheat bread crumb.

    Science.gov (United States)

    Pico, Joana; Nozal, María Jesús; Gómez, Manuel; Bernal, José Luis

    2016-09-01

    An alternative method to quantify 40 volatile compounds in wheat bread crumb is proposed. It consists of a Soxhlet extraction with a mixture of dichloromethane and diethyl ether containing lipases and a subsequent concentration with Vigreux column. It is the first time that lipases are added to transform the fat into free fatty acids and glycerol, which elute at the end of the chromatogram after the analytes, avoiding problems in the chromatography due to fat residues, such as dirtiness in the injector, column clogging or overlapping peaks. The extract is most easily analysed by GC/MS, using a standard addition method to correct matrix effect. The method was fully validated, with extraction efficiencies between 70% and 100% and precision RSD lower than 15%. The method was applied to a commercial crumb, with acetoin, phenylethyl alcohol and acetic acid as highly abundant compounds, which are considered main volatiles in crumb.

  16. Volatile organic compounds and Photobacterium phosphoreum associated with spoilage of modified-atmosphere-packaged raw pork

    DEFF Research Database (Denmark)

    Nieminen, Timo T.; Dalgaard, Paw; Björkroth, Johanna

    2016-01-01

    Accumulation of volatile organic compounds was monitored in association with sensory quality, bacterial concentrations and culture-independent microbial community analyses in raw pork loin and pork collar during storage under high-oxygen modified atmosphere at +4°C. Of the 48 volatile compounds....... According to the culture-dependent and culture-independent characterization of bacterial communities, Brochothrix thermosphacta, lactic acid bacteria (Carnobacterium, Lactobacillus, Lactococcus, Leuconostoc, Weissella) and Photobacterium spp. predominated in pork samples. Photobacterium spp., typically...... not associated with spoilage of meat, were detected also in 8 of the 11 retail packages of pork investigated subsequently. Eleven isolates from the pork samples were shown to belong to Photobacterium phosphoreum by phenotypic tests and sequencing of the 16S rRNA and gyrB gene fragments. Off-odors in pork samples...

  17. Prediction of air to liver partition coefficient for volatile organic compounds using QSAR approaches.

    Science.gov (United States)

    Dashtbozorgi, Zahra; Golmohammadi, Hassan

    2010-06-01

    In this work a quantitative structure-activity relationship (QSAR) technique was developed to investigate the air to liver partition coefficient (log Kliver) for volatile organic compounds (VOCs). Suitable set of molecular descriptors was calculated and the important descriptors were selected by GA-PLS methods. These variables were served as inputs to generate neural networks. After optimization and training of the networks, they were used for the calculation of log Kliver for the validation set. The root mean square errors for the neural network calculated log Kliver of training, test, and validation sets are 0.100, 0.091, and 0.112, respectively. Results obtained reveal the reliability and good predictivity of neural network for the prediction of air to liver partition coefficient for volatile organic compounds.

  18. [Emission characteristics and hazard assessment analysis of volatile organic compounds from chemical synthesis pharmaceutical industry].

    Science.gov (United States)

    Li, Yan; Wang, Zhe-Ming; Song, Shuang; Xu, Zhi-Rong; Xu, Ming-Zhu; Xu, Wei-Li

    2014-10-01

    In this study, volatile organic compounds (VOCs) released from chemical synthesis pharmaceutical industry in Taizhou, Zhejiang province were analyzed quantitatively and qualitatively. The total volatile organic compounds (TVOCs) was in the range of 14.9-308.6 mg · m(-3). Evaluation models of ozone formation potentials (OFP) and health risk assessment were adopted to preliminarily assess the environmental impact and health risk of VOCs. The results showed that the values of OFP of VOCs were in the range of 3.1-315.1 mg · m(-3), based on the maximum incremental reactivity, the main principal contribution was toluene, tetrahydrofuran (THF), acetic ether etc. The non-carcinogenic risk and the carcinogen risk fell in the ranges of 9.48 x 10(-7)-4.98 x 10(-4) a(-1) and 3.17 x 10(-5)- 6.33 x 10(-3). The principal contribution of VOCs was benzene, formaldehyde and methylene chloride.

  19. Source Apportionment of Volatile Organic Compounds in an Urban Environment at the Yangtze River Delta, China.

    Science.gov (United States)

    An, Junlin; Wang, Junxiu; Zhang, Yuxin; Zhu, Bin

    2017-04-01

    Volatile organic compounds (VOCs) were collected continuously during June-August 2013 and December 2013-February 2014 at an urban site in Nanjing in the Yangtze River Delta. The positive matrix factorization receptor model was used to analyse the sources of VOCs in different seasons. Eight and seven sources were identified in summer and winter, respectively. In summer and winter, the dominant sources of VOCs were vehicular emissions, liquefied petroleum gas/natural gas (LPG/NG) usage, solvent usage, biomass/biofuel burning, and industrial production. In summer, vehicular emissions made the most significant contribution to ambient VOCs (38%), followed by LPG/NG usage (20%), solvent usage (19%), biomass/biofuel burning (13%), and industrial production (10%). In winter, LPG/NG usage accounted for 36% of ambient VOCs, whereas vehicular emissions, biomass/biofuel burning, industrial production and solvent usage contributed 30, 18, 9, and 6%, respectively. The contribution of LPG/NG usage in winter was approximately four times that in summer, whereas the contribution from biomass/biofuel burning in winter was more than twice that in summer. The sources related to vehicular emissions and LPG/NG usages were important. Using conditional probability function analysis, the VOC sources were mainly associated with easterly, northeasterly and southeasterly directions, pointing towards the major expressway and industrial area. Using the propylene-equivalent method, paint and varnish (23%) was the highest source of VOCs in summer and biomass/biofuel burning (36%) in winter. Using the ozone formation potential method, the most important source was biomass/biofuel burning (32% in summer and 47% in winter). The result suggests that the biomass/biofuel burning and paint and varnish play important roles in controlling ozone chemical formation in Nanjing.

  20. Emissions of volatile organic compounds (VOCs) from the food and drink industries of the European community

    Science.gov (United States)

    Passant, Neil R.; Richardson, Stephen J.; Swannell, Richard P. J.; Gibson, N.; Woodfield, M. J.; van der Lugt, Jan Pieter; Wolsink, Johan H.; Hesselink, Paul G. M.

    Estimates were made of the amounts of volatile organic compounds (VOCs) released into the atmosphere as a result of the industrial manufacture and processing of food and drink in the European Community. The estimates were based on a review of literature sources, industrial and government contacts and recent measurements. Data were found on seven food manufacturing sectors (baking, vegetable oil extraction, solid fat processing, animal rendering, fish meal processing, coffee production and sugar beet processing) and three drink manufacturing sectors (brewing, spirit production and wine making). The principle of a data quality label is advocated to illustrate the authors' confidence in the data, and to highlight areas for further research. Emissions of ethanol from bread baking and spirit maturation were found to be the principle sources. However, significant losses of hexane and large quantities of an ill-defined mixture of partially oxidized hydrocarbons were noted principally from seed oil extraction and the drying of plant material, respectively. This latter mixture included low molecular weight aldehydes, carboxylic acids, ketones, amines and esters. However, the precise composition of many emissions were found to be poorly understood. The total emission from the food and drink industry in the EC was calculated as 260 kt yr -1. However, many processes within the target industry were found to be completely uncharacterized and therefore not included in the overall estimate (e.g. soft drink manufacture, production of animal food, flavourings, vinegar, tea, crisps and other fried snacks). Moreover, the use of data quality labels illustrated the fact that many of our estimates were based on limited data. Hence, further emissions monitoring is recommended from identified sources (e.g. processing of sugar beet, solid fat and fish meal) and from uncharacterized sources.