WorldWideScience

Sample records for vlsi system design

  1. VLSI design

    CERN Document Server

    Basu, D K

    2014-01-01

    Very Large Scale Integrated Circuits (VLSI) design has moved from costly curiosity to an everyday necessity, especially with the proliferated applications of embedded computing devices in communications, entertainment and household gadgets. As a result, more and more knowledge on various aspects of VLSI design technologies is becoming a necessity for the engineering/technology students of various disciplines. With this goal in mind the course material of this book has been designed to cover the various fundamental aspects of VLSI design, like Categorization and comparison between various technologies used for VLSI design Basic fabrication processes involved in VLSI design Design of MOS, CMOS and Bi CMOS circuits used in VLSI Structured design of VLSI Introduction to VHDL for VLSI design Automated design for placement and routing of VLSI systems VLSI testing and testability The various topics of the book have been discussed lucidly with analysis, when required, examples, figures and adequate analytical and the...

  2. VLSI design

    CERN Document Server

    Einspruch, Norman G

    1986-01-01

    VLSI Electronics Microstructure Science, Volume 14: VLSI Design presents a comprehensive exposition and assessment of the developments and trends in VLSI (Very Large Scale Integration) electronics. This volume covers topics that range from microscopic aspects of materials behavior and device performance to the comprehension of VLSI in systems applications. Each article is prepared by a recognized authority. The subjects discussed in this book include VLSI processor design methodology; the RISC (Reduced Instruction Set Computer); the VLSI testing program; silicon compilers for VLSI; and special

  3. Harnessing VLSI System Design with EDA Tools

    CERN Document Server

    Kamat, Rajanish K; Gaikwad, Pawan K; Guhilot, Hansraj

    2012-01-01

    This book explores various dimensions of EDA technologies for achieving different goals in VLSI system design. Although the scope of EDA is very broad and comprises diversified hardware and software tools to accomplish different phases of VLSI system design, such as design, layout, simulation, testability, prototyping and implementation, this book focuses only on demystifying the code, a.k.a. firmware development and its implementation with FPGAs. Since there are a variety of languages for system design, this book covers various issues related to VHDL, Verilog and System C synergized with EDA tools, using a variety of case studies such as testability, verification and power consumption. * Covers aspects of VHDL, Verilog and Handel C in one text; * Enables designers to judge the appropriateness of each EDA tool for relevant applications; * Omits discussion of design platforms and focuses on design case studies; * Uses design case studies from diversified application domains such as network on chip, hospital on...

  4. VLSI design

    CERN Document Server

    Chandrasetty, Vikram Arkalgud

    2011-01-01

    This book provides insight into the practical design of VLSI circuits. It is aimed at novice VLSI designers and other enthusiasts who would like to understand VLSI design flows. Coverage includes key concepts in CMOS digital design, design of DSP and communication blocks on FPGAs, ASIC front end and physical design, and analog and mixed signal design. The approach is designed to focus on practical implementation of key elements of the VLSI design process, in order to make the topic accessible to novices. The design concepts are demonstrated using software from Mathworks, Xilinx, Mentor Graphic

  5. NASA Space Engineering Research Center for VLSI System Design

    Science.gov (United States)

    1993-01-01

    This annual report outlines the activities of the past year at the NASA SERC on VLSI Design. Highlights for this year include the following: a significant breakthrough was achieved in utilizing commercial IC foundries for producing flight electronics; the first two flight qualified chips were designed, fabricated, and tested and are now being delivered into NASA flight systems; and a new technology transfer mechanism has been established to transfer VLSI advances into NASA and commercial systems.

  6. Handbook of VLSI chip design and expert systems

    CERN Document Server

    Schwarz, A F

    1993-01-01

    Handbook of VLSI Chip Design and Expert Systems provides information pertinent to the fundamental aspects of expert systems, which provides a knowledge-based approach to problem solving. This book discusses the use of expert systems in every possible subtask of VLSI chip design as well as in the interrelations between the subtasks.Organized into nine chapters, this book begins with an overview of design automation, which can be identified as Computer-Aided Design of Circuits and Systems (CADCAS). This text then presents the progress in artificial intelligence, with emphasis on expert systems.

  7. NASA Space Engineering Research Center for VLSI systems design

    Science.gov (United States)

    1991-01-01

    This annual review reports the center's activities and findings on very large scale integration (VLSI) systems design for 1990, including project status, financial support, publications, the NASA Space Engineering Research Center (SERC) Symposium on VLSI Design, research results, and outreach programs. Processor chips completed or under development are listed. Research results summarized include a design technique to harden complementary metal oxide semiconductors (CMOS) memory circuits against single event upset (SEU); improved circuit design procedures; and advances in computer aided design (CAD), communications, computer architectures, and reliability design. Also described is a high school teacher program that exposes teachers to the fundamentals of digital logic design.

  8. A special purpose silicon compiler for designing supercomputing VLSI systems

    Science.gov (United States)

    Venkateswaran, N.; Murugavel, P.; Kamakoti, V.; Shankarraman, M. J.; Rangarajan, S.; Mallikarjun, M.; Karthikeyan, B.; Prabhakar, T. S.; Satish, V.; Venkatasubramaniam, P. R.

    1991-01-01

    Design of general/special purpose supercomputing VLSI systems for numeric algorithm execution involves tackling two important aspects, namely their computational and communication complexities. Development of software tools for designing such systems itself becomes complex. Hence a novel design methodology has to be developed. For designing such complex systems a special purpose silicon compiler is needed in which: the computational and communicational structures of different numeric algorithms should be taken into account to simplify the silicon compiler design, the approach is macrocell based, and the software tools at different levels (algorithm down to the VLSI circuit layout) should get integrated. In this paper a special purpose silicon (SPS) compiler based on PACUBE macrocell VLSI arrays for designing supercomputing VLSI systems is presented. It is shown that turn-around time and silicon real estate get reduced over the silicon compilers based on PLA's, SLA's, and gate arrays. The first two silicon compiler characteristics mentioned above enable the SPS compiler to perform systolic mapping (at the macrocell level) of algorithms whose computational structures are of GIPOP (generalized inner product outer product) form. Direct systolic mapping on PLA's, SLA's, and gate arrays is very difficult as they are micro-cell based. A novel GIPOP processor is under development using this special purpose silicon compiler.

  9. Transformational VLSI Design

    DEFF Research Database (Denmark)

    Rasmussen, Ole Steen

    This thesis introduces a formal approach to deriving VLSI circuits by the use of correctness-preserving transformations. Both the specification and the implementation are descibed by the relation based language Ruby. In order to prove the transformation rules a proof tool called RubyZF has been...... in connection with VLSI design are defined in terms of Pure Ruby and their properties proved. The design process is illustrated by several non-trivial examples of standard VLSI problems....

  10. The Fifth NASA Symposium on VLSI Design

    Science.gov (United States)

    1993-01-01

    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design.

  11. Mixed voltage VLSI design

    Science.gov (United States)

    Panwar, Ramesh; Rennels, David; Alkalaj, Leon

    1993-01-01

    A technique for minimizing the power dissipated in a Very Large Scale Integration (VLSI) chip by lowering the operating voltage without any significant penalty in the chip throughput even though low voltage operation results in slower circuits. Since the overall throughput of a VLSI chip depends on the speed of the critical path(s) in the chip, it may be possible to sustain the throughput rates attained at higher voltages by operating the circuits in the critical path(s) with a high voltage while operating the other circuits with a lower voltage to minimize the power dissipation. The interface between the gates which operate at different voltages is crucial for low power dissipation since the interface may possibly have high static current dissipation thus negating the gains of the low voltage operation. The design of a voltage level translator which does the interface between the low voltage and high voltage circuits without any significant static dissipation is presented. Then, the results of the mixed voltage design using a greedy algorithm on three chips for various operating voltages are presented.

  12. An Integrated Unix-based CAD System for the Design and Testing of Custom VLSI Chips

    Science.gov (United States)

    Deutsch, L. J.

    1985-01-01

    A computer aided design (CAD) system that is being used at the Jet Propulsion Laboratory for the design of custom and semicustom very large scale integrated (VLSI) chips is described. The system consists of a Digital Equipment Corporation VAX computer with the UNIX operating system and a collection of software tools for the layout, simulation, and verification of microcircuits. Most of these tools were written by the academic community and are, therefore, available to JPL at little or no cost. Some small pieces of software have been written in-house in order to make all the tools interact with each other with a minimal amount of effort on the part of the designer.

  13. Digital VLSI systems design a design manual for implementation of projects on FPGAs and ASICs using Verilog

    CERN Document Server

    Ramachandran, S

    2007-01-01

    Digital VLSI Systems Design is written for an advanced level course using Verilog and is meant for undergraduates, graduates and research scholars of Electrical, Electronics, Embedded Systems, Computer Engineering and interdisciplinary departments such as Bio Medical, Mechanical, Information Technology, Physics, etc. It serves as a reference design manual for practicing engineers and researchers as well. Diligent freelance readers and consultants may also start using this book with ease. The book presents new material and theory as well as synthesis of recent work with complete Project Designs

  14. The VLSI-PLM Board: Design, Construction, and Testing

    Science.gov (United States)

    1989-03-01

    Computer Aided Design CB- Xenologic Corporation’s X-1 cache board DAS - Digital Analysis System EECS - Electrical Engineering and Computer...PLM Board is to debug the VLSI-PLM Chip [STN88] and to interface the chip to the Xenologic Corporation’s X-1 cache board. The chip is a high...a wire-wrapped board designed for debugging VLSI-PLM [STN88] and connecting VLSI- PLM to the cache board of Xenologic Corporation’s X-1 system. The

  15. The 1992 4th NASA SERC Symposium on VLSI Design

    Science.gov (United States)

    Whitaker, Sterling R.

    1992-01-01

    Papers from the fourth annual NASA Symposium on VLSI Design, co-sponsored by the IEEE, are presented. Each year this symposium is organized by the NASA Space Engineering Research Center (SERC) at the University of Idaho and is held in conjunction with a quarterly meeting of the NASA Data System Technology Working Group (DSTWG). One task of the DSTWG is to develop new electronic technologies that will meet next generation electronic data system needs. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The NASA SERC is proud to offer, at its fourth symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories, the electronics industry, and universities. These speakers share insights into next generation advances that will serve as a basis for future VLSI design.

  16. VLSI mixed signal processing system

    Science.gov (United States)

    Alvarez, A.; Premkumar, A. B.

    1993-01-01

    An economical and efficient VLSI implementation of a mixed signal processing system (MSP) is presented in this paper. The MSP concept is investigated and the functional blocks of the proposed MSP are described. The requirements of each of the blocks are discussed in detail. A sample application using active acoustic cancellation technique is described to demonstrate the power of the MSP approach.

  17. Communication Protocols Augmentation in VLSI Design Applications

    Directory of Open Access Journals (Sweden)

    Kanhu Charan Padhy

    2015-05-01

    Full Text Available With the advancement in communication System, the use of various protocols got a sharp rise in the different applications. Especially in the VLSI design for FPGAs, ASICS, CPLDs, the application areas got expanded to FPGA based technologies. Today, it has moved from commercial application to the defence sectors like missiles & aerospace controls. In this paper the use of FPGAs and its interface with various application circuits in the communication field for data (textual & visual & control transfer is discussed. To be specific, the paper discusses the use of FPGA in various communication protocols like SPI, I2C, and TMDS in synchronous mode in Digital System Design using VHDL/Verilog.

  18. A coherent VLSI design environment

    Science.gov (United States)

    Penfield, Paul, Jr.

    1988-05-01

    The CAD effort is centered on timing analysis and circuit simulation. Advances have been made in tightening the bounds of timing analysis. The superiority of the Gauss-Jacobi technique for matrix solution, over the Gauss-Seidel method, has been proven when the algorithms are implemented on massively parallel machines. In the circuits area, one result of importance is a new technique for calculating the highest frequency of operation of transistors with parasitic elements present. Work on a synthesis technique is under way. In the architecture area, many new results have been derived for parallel algorithms and complexity. One of the most astonishing is that a hypercube with a large number of faulty nodes can be used, with high probability, as another perfectly functioning hypercube of half the size, by using reconfiguration algorithms that are simple, fast, and require only local information. Also, the design of the message-driven processor is continuing, with several advances in architecture, software, communications, and ALU design. Many of these are being implemented in VLSI circuits. The theory work has as a central theme that the cost of communication should be included in complexity analyses. This has led to advances in models for computation, including volume-universal networks, routing, network flow, fault avoidance, queue management, and network simulation.

  19. VLSI Design of a Turbo Decoder

    Science.gov (United States)

    Fang, Wai-Chi

    2007-01-01

    A very-large-scale-integrated-circuit (VLSI) turbo decoder has been designed to serve as a compact, high-throughput, low-power, lightweight decoder core of a receiver in a data-communication system. In a typical contemplated application, such a decoder core would be part of a single integrated circuit that would include the rest of the receiver circuitry and possibly some or all of the transmitter circuitry, all designed and fabricated together according to an advanced communication-system-on-a-chip design concept. Turbo codes are forward-error-correction (FEC) codes. Relative to older FEC codes, turbo codes enable communication at lower signal-to-noise ratios and offer greater coding gain. In addition, turbo codes can be implemented by relatively simple hardware. Therefore, turbo codes have been adopted as standard for some advanced broadband communication systems.

  20. Compact MOSFET models for VLSI design

    CERN Document Server

    Bhattacharyya, A B

    2009-01-01

    Practicing designers, students, and educators in the semiconductor field face an ever expanding portfolio of MOSFET models. In Compact MOSFET Models for VLSI Design , A.B. Bhattacharyya presents a unified perspective on the topic, allowing the practitioner to view and interpret device phenomena concurrently using different modeling strategies. Readers will learn to link device physics with model parameters, helping to close the gap between device understanding and its use for optimal circuit performance. Bhattacharyya also lays bare the core physical concepts that will drive the future of VLSI.

  1. Macrocell Builder: IP-Block-Based Design Environment for High-Throughput VLSI Dedicated Digital Signal Processing Systems

    Directory of Open Access Journals (Sweden)

    Urard Pascal

    2006-01-01

    Full Text Available We propose an efficient IP-block-based design environment for high-throughput VLSI systems. The flow generates SystemC register-transfer-level (RTL architecture, starting from a Matlab functional model described as a netlist of functional IP. The refinement model inserts automatically control structures to manage delays induced by the use of RTL IPs. It also inserts a control structure to coordinate the execution of parallel clocked IP. The delays may be managed by registers or by counters included in the control structure. The flow has been used successfully in three real-world DSP systems. The experimentations show that the approach can produce efficient RTL architecture and allows to save huge amount of time.

  2. VLSI binary multiplier using residue number systems

    Energy Technology Data Exchange (ETDEWEB)

    Barsi, F.; Di Cola, A.

    1982-01-01

    The idea of performing multiplication of n-bit binary numbers using a hardware based on residue number systems is considered. This paper develops the design of a VLSI chip deriving area and time upper bounds of a n-bit multiplier. To perform multiplication using residue arithmetic, numbers are converted from binary to residue representation and, after residue multiplication, the result is reconverted to the original notation. It is shown that the proposed design requires an area a=o(n/sup 2/ log n) and an execution time t=o(log/sup 2/n). 7 references.

  3. An Analog VLSI Saccadic Eye Movement System

    OpenAIRE

    1994-01-01

    In an effort to understand saccadic eye movements and their relation to visual attention and other forms of eye movements, we - in collaboration with a number of other laboratories - are carrying out a large-scale effort to design and build a complete primate oculomotor system using analog CMOS VLSI technology. Using this technology, a low power, compact, multi-chip system has been built which works in real-time using real-world visual inputs. We describe in this paper the performance of a...

  4. vPELS: An E-Learning Social Environment for VLSI Design with Content Security Using DRM

    Science.gov (United States)

    Dewan, Jahangir; Chowdhury, Morshed; Batten, Lynn

    2014-01-01

    This article provides a proposal for personal e-learning system (vPELS [where "v" stands for VLSI: very large scale integrated circuit])) architecture in the context of social network environment for VLSI Design. The main objective of vPELS is to develop individual skills on a specific subject--say, VLSI--and share resources with peers.…

  5. vPELS: An E-Learning Social Environment for VLSI Design with Content Security Using DRM

    Science.gov (United States)

    Dewan, Jahangir; Chowdhury, Morshed; Batten, Lynn

    2014-01-01

    This article provides a proposal for personal e-learning system (vPELS [where "v" stands for VLSI: very large scale integrated circuit])) architecture in the context of social network environment for VLSI Design. The main objective of vPELS is to develop individual skills on a specific subject--say, VLSI--and share resources with peers.…

  6. Design and Verification of High-Speed VLSI Physical Design

    Institute of Scientific and Technical Information of China (English)

    Dian Zhou; Rui-Ming Li

    2005-01-01

    With the rapid development of deep submicron (DSM) VLSI circuit designs, many issues such as time closure and power consumption are making the physical designs more and more challenging. In this review paper we provide readers with some recent progress of the VLSI physical designs. The recent developments of floorplanning and placement,interconnect effects, modeling and delay, buffer insertion and wire sizing, circuit order reduction, power grid analysis,parasitic extraction, and clock signal distribution are briefly reviewed.

  7. VLSI Design with Alliance Free CAD Tools: an Implementation Example

    OpenAIRE

    Chávez-Bracamontes Ramón; García-López Reyna Itzel; Gurrola-Navarro Marco Antonio; Bandala-Sánchez Manuel

    2015-01-01

    This paper presents the methodology used for a digital integrated circuit design that implements the communication protocol known as Serial Peripheral Interface, using the Alliance CAD System. The aim of this paper is to show how the work of VLSI design can be done by graduate and undergraduate students with minimal resources and experience. The physical design was sent to be fabricated using the CMOS AMI C5 process that features 0.5 micrometer in transistor size, sponsored ...

  8. VLSI Design with Alliance Free CAD Tools: an Implementation Example

    Directory of Open Access Journals (Sweden)

    Chávez-Bracamontes Ramón

    2015-07-01

    Full Text Available This paper presents the methodology used for a digital integrated circuit design that implements the communication protocol known as Serial Peripheral Interface, using the Alliance CAD System. The aim of this paper is to show how the work of VLSI design can be done by graduate and undergraduate students with minimal resources and experience. The physical design was sent to be fabricated using the CMOS AMI C5 process that features 0.5 micrometer in transistor size, sponsored by the MOSIS Educational Program. Tests were made on a platform that transfers data from inertial sensor measurements to the designed SPI chip, which in turn sends the data back on a parallel bus to a common microcontroller. The results show the efficiency of the employed methodology in VLSI design, as well as the feasibility of ICs manufacturing from school projects that have insufficient or no source of funding

  9. Parallel optimization algorithms and their implementation in VLSI design

    Science.gov (United States)

    Lee, G.; Feeley, J. J.

    1991-01-01

    Two new parallel optimization algorithms based on the simplex method are described. They may be executed by a SIMD parallel processor architecture and be implemented in VLSI design. Several VLSI design implementations are introduced. An application example is reported to demonstrate that the algorithms are effective.

  10. VLSI Design of a Variable-Length FFT/IFFT Processor for OFDM-Based Communication Systems

    Directory of Open Access Journals (Sweden)

    Jen-Chih Kuo

    2003-12-01

    Full Text Available The technique of {orthogonal frequency division multiplexing (OFDM} is famous for its robustness against frequency-selective fading channel. This technique has been widely used in many wired and wireless communication systems. In general, the {fast Fourier transform (FFT} and {inverse FFT (IFFT} operations are used as the modulation/demodulation kernel in the OFDM systems, and the sizes of FFT/IFFT operations are varied in different applications of OFDM systems. In this paper, we design and implement a variable-length prototype FFT/IFFT processor to cover different specifications of OFDM applications. The cached-memory FFT architecture is our suggested VLSI system architecture to design the prototype FFT/IFFT processor for the consideration of low-power consumption. We also implement the twiddle factor butterfly {processing element (PE} based on the {{coordinate} rotation digital computer (CORDIC} algorithm, which avoids the use of conventional multiplication-and-accumulation unit, but evaluates the trigonometric functions using only add-and-shift operations. Finally, we implement a variable-length prototype FFT/IFFT processor with TSMC 0.35 μm 1P4M CMOS technology. The simulations results show that the chip can perform (64-2048-point FFT/IFFT operations up to 80 MHz operating frequency which can meet the speed requirement of most OFDM standards such as WLAN, ADSL, VDSL (256∼2K, DAB, and 2K-mode DVB.

  11. Replacing design rules in the VLSI design cycle

    Science.gov (United States)

    Hurley, Paul; Kryszczuk, Krzysztof

    2012-03-01

    We make a case for the migration of Design Rule Check (DRC), the first step in the modern VLSI design process, to a model-based system. DRC uses a large set of rules to determine permitted designs. We argue that it is a legacy of the past: slow, labor intensive, ad-hoc, inaccurate and too restrictive. We envisage the replacement of DRC and printability simulation by a signal processing and machine learning-based approach for 22nm technology nodes and beyond. Such a process would produce fast, accurate, autonomous printability prediction for optical lithography. As such, we built a proof-of-concept demonstrator that can predict OPC problems using a trained classifier without the need to fall back on costly first-principle simulation. For one sample test site, and for the OPC Line Width error type OPC violation marker, the demonstrator obtained an Equal Error Rate of ca. 4%.

  12. A Coherent VLSI Design Environment

    Science.gov (United States)

    1987-03-31

    In the figure, AminH and Ama.H represent the smallest and largest eigenvalues I of YH and AminAH and AmaAH represent the smallest and largest...Press, Princeton, NJ, 1970. [17] G. Clark and R. Zippel, "Schema: An Architecture for Knowledge Based Design," International Conference on Computer-Aided

  13. Formal verification an essential toolkit for modern VLSI design

    CERN Document Server

    Seligman, Erik; Kumar, M V Achutha Kiran

    2015-01-01

    Formal Verification: An Essential Toolkit for Modern VLSI Design presents practical approaches for design and validation, with hands-on advice for working engineers integrating these techniques into their work. Building on a basic knowledge of System Verilog, this book demystifies FV and presents the practical applications that are bringing it into mainstream design and validation processes at Intel and other companies. The text prepares readers to effectively introduce FV in their organization and deploy FV techniques to increase design and validation productivity. Presents formal verific

  14. A Design Methodology for Optoelectronic VLSI

    Science.gov (United States)

    2007-01-01

    it for the layout of large-scale VLSI circuits such as bit-parallel datapaths , crossbars, RAMs, megacells and cores. These VLSI circuits have custom...by the 64-bit ALU and the 64-bit register file circuits. Typically, these VLSI circuits use a datapath layout style that creates a highly regular row...and column structure. The datapath layout style is preferred for multiple-bit processing circuits because it achieves uniform timing for all bits in a

  15. Artificial immune system algorithm in VLSI circuit configuration

    Science.gov (United States)

    Mansor, Mohd. Asyraf; Sathasivam, Saratha; Kasihmuddin, Mohd Shareduwan Mohd

    2017-08-01

    In artificial intelligence, the artificial immune system is a robust bio-inspired heuristic method, extensively used in solving many constraint optimization problems, anomaly detection, and pattern recognition. This paper discusses the implementation and performance of artificial immune system (AIS) algorithm integrated with Hopfield neural networks for VLSI circuit configuration based on 3-Satisfiability problems. Specifically, we emphasized on the clonal selection technique in our binary artificial immune system algorithm. We restrict our logic construction to 3-Satisfiability (3-SAT) clauses in order to outfit with the transistor configuration in VLSI circuit. The core impetus of this research is to find an ideal hybrid model to assist in the VLSI circuit configuration. In this paper, we compared the artificial immune system (AIS) algorithm (HNN-3SATAIS) with the brute force algorithm incorporated with Hopfield neural network (HNN-3SATBF). Microsoft Visual C++ 2013 was used as a platform for training, simulating and validating the performances of the proposed network. The results depict that the HNN-3SATAIS outperformed HNN-3SATBF in terms of circuit accuracy and CPU time. Thus, HNN-3SATAIS can be used to detect an early error in the VLSI circuit design.

  16. Technology computer aided design simulation for VLSI MOSFET

    CERN Document Server

    Sarkar, Chandan Kumar

    2013-01-01

    Responding to recent developments and a growing VLSI circuit manufacturing market, Technology Computer Aided Design: Simulation for VLSI MOSFET examines advanced MOSFET processes and devices through TCAD numerical simulations. The book provides a balanced summary of TCAD and MOSFET basic concepts, equations, physics, and new technologies related to TCAD and MOSFET. A firm grasp of these concepts allows for the design of better models, thus streamlining the design process, saving time and money. This book places emphasis on the importance of modeling and simulations of VLSI MOS transistors and

  17. A pipeline VLSI design of fast singular value decomposition processor for real-time EEG system based on on-line recursive independent component analysis.

    Science.gov (United States)

    Huang, Kuan-Ju; Shih, Wei-Yeh; Chang, Jui Chung; Feng, Chih Wei; Fang, Wai-Chi

    2013-01-01

    This paper presents a pipeline VLSI design of fast singular value decomposition (SVD) processor for real-time electroencephalography (EEG) system based on on-line recursive independent component analysis (ORICA). Since SVD is used frequently in computations of the real-time EEG system, a low-latency and high-accuracy SVD processor is essential. During the EEG system process, the proposed SVD processor aims to solve the diagonal, inverse and inverse square root matrices of the target matrices in real time. Generally, SVD requires a huge amount of computation in hardware implementation. Therefore, this work proposes a novel design concept for data flow updating to assist the pipeline VLSI implementation. The SVD processor can greatly improve the feasibility of real-time EEG system applications such as brain computer interfaces (BCIs). The proposed architecture is implemented using TSMC 90 nm CMOS technology. The sample rate of EEG raw data adopts 128 Hz. The core size of the SVD processor is 580×580 um(2), and the speed of operation frequency is 20MHz. It consumes 0.774mW of power during the 8-channel EEG system per execution time.

  18. VLSI design of turbo decoder for integrated communication system on a chip applications

    Science.gov (United States)

    Fang, Wai-Chi; Sethuram, Ashwin; Belevi, Kemal

    2003-01-01

    A high-throughput low-power turbo decoder core has been developed for integrated communication system applications such as satellite communications, wireless LAN, digital TV, cable modem, Digital Video Broadcast (DVB), and xDSL systems. The turbo decoder is based on convolutional constituent codes, which outperform all other Forward Error Correction techniques. This turbo decoder core is parameterizable and can be modified easily to fit any size for advanced communication system-on-chip products. The turbo decoder core provides Forward Error Correction of up to 15 Mbits/sec on a 0.13-micron CMOS FPGA prototyping chip at a power of 0.1 watts.

  19. Advanced symbolic analysis for VLSI systems methods and applications

    CERN Document Server

    Shi, Guoyong; Tlelo Cuautle, Esteban

    2014-01-01

    This book provides comprehensive coverage of the recent advances in symbolic analysis techniques for design automation of nanometer VLSI systems. The presentation is organized in parts of fundamentals, basic implementation methods and applications for VLSI design. Topics emphasized include  statistical timing and crosstalk analysis, statistical and parallel analysis, performance bound analysis and behavioral modeling for analog integrated circuits . Among the recent advances, the Binary Decision Diagram (BDD) based approaches are studied in depth. The BDD-based hierarchical symbolic analysis approaches, have essentially broken the analog circuit size barrier. In particular, this book   • Provides an overview of classical symbolic analysis methods and a comprehensive presentation on the modern  BDD-based symbolic analysis techniques; • Describes detailed implementation strategies for BDD-based algorithms, including the principles of zero-suppression, variable ordering and canonical reduction; • Int...

  20. Fault handling schemes in electronic systems with specific application to radiation tolerance and VLSI design

    Science.gov (United States)

    Attia, John Okyere

    1993-01-01

    Naturally occurring space radiation particles can produce transient and permanent changes in the electrical properties of electronic devices and systems. In this work, the transient radiation effects on DRAM and CMOS SRAM were considered. In addition, the effect of total ionizing dose radiation of the switching times of CMOS logic gates were investigated. Effects of transient radiation on the column and cell of MOS dynamic memory cell was simulated using SPICE. It was found that the critical charge of the bitline was higher than that of the cell. In addition, the critical charge of the combined cell-bitline was found to be dependent on the gate voltage of the access transistor. In addition, the effect of total ionizing dose radiation on the switching times of CMOS logic gate was obtained. The results of this work indicate that, the rise time of CMOS logic gates increases, while the fall time decreases with an increase in total ionizing dose radiation. Also, by increasing the size of the P-channel transistor with respect to that of the N-channel transistor, the propagation delay of CMOS logic gate can be made to decrease with, or be independent of an increase in total ionizing dose radiation. Furthermore, a method was developed for replacing polysilicon feedback resistance of SRAMs with a switched capacitor network. A switched capacitor SRAM was implemented using MOS Technology. The critical change of the switched capacitor SRAM has a very large critical charge. The results of this work indicate that switched capacitor SRAM is a viable alternative to SRAM with polysilicon feedback resistance.

  1. Application of evolutionary algorithms for multi-objective optimization in VLSI and embedded systems

    CERN Document Server

    2015-01-01

    This book describes how evolutionary algorithms (EA), including genetic algorithms (GA) and particle swarm optimization (PSO) can be utilized for solving multi-objective optimization problems in the area of embedded and VLSI system design. Many complex engineering optimization problems can be modelled as multi-objective formulations. This book provides an introduction to multi-objective optimization using meta-heuristic algorithms, GA and PSO, and how they can be applied to problems like hardware/software partitioning in embedded systems, circuit partitioning in VLSI, design of operational amplifiers in analog VLSI, design space exploration in high-level synthesis, delay fault testing in VLSI testing, and scheduling in heterogeneous distributed systems. It is shown how, in each case, the various aspects of the EA, namely its representation, and operators like crossover, mutation, etc. can be separately formulated to solve these problems. This book is intended for design engineers and researchers in the field ...

  2. VLSI design techniques for floating-point computation

    Energy Technology Data Exchange (ETDEWEB)

    Bose, B. K.

    1988-01-01

    The thesis presents design techniques for floating-point computation in VLSI. A basis for area-time design decisions for arithmetic and memory operations is formulated from a study of computationally intensive programs. Tradeoffs in the design and implementation of an efficient coprocessor interface are studied, together with the implications of hardware support for the IEEE Floating-Point Standard. Algorithm area-time tradeoffs for basic arithmetic functions are analyzed in light of changing technology. Details of a single-chip floating-point unit designed in two-micron CMOS for SPUR are described, including special design considerations for very wide data paths. The pervasive effects of scaling technology on different levels of design are explored, from devices and circuits, through logic and micro-architecture, to algorithms and systems.

  3. Design of 10Gbps optical encoder/decoder structure for FE-OCDMA system using SOA and opto-VLSI processors.

    Science.gov (United States)

    Aljada, Muhsen; Hwang, Seow; Alameh, Kamal

    2008-01-21

    In this paper we propose and experimentally demonstrate a reconfigurable 10Gbps frequency-encoded (1D) encoder/decoder structure for optical code division multiple access (OCDMA). The encoder is constructed using a single semiconductor optical amplifier (SOA) and 1D reflective Opto-VLSI processor. The SOA generates broadband amplified spontaneous emission that is dynamically sliced using digital phase holograms loaded onto the Opto-VLSI processor to generate 1D codewords. The selected wavelengths are injected back into the same SOA for amplifications. The decoder is constructed using single Opto-VLSI processor only. The encoded signal can successfully be retrieved at the decoder side only when the digital phase holograms of the encoder and the decoder are matched. The system performance is measured in terms of the auto-correlation and cross-correlation functions as well as the eye diagram.

  4. The design, fabrication, and test of a new VLSI hybrid analog-digital neural processing element

    Science.gov (United States)

    Deyong, Mark R.; Findley, Randall L.; Fields, Chris

    1992-01-01

    A hybrid analog-digital neural processing element with the time-dependent behavior of biological neurons has been developed. The hybrid processing element is designed for VLSI implementation and offers the best attributes of both analog and digital computation. Custom VLSI layout reduces the layout area of the processing element, which in turn increases the expected network density. The hybrid processing element operates at the nanosecond time scale, which enables it to produce real-time solutions to complex spatiotemporal problems found in high-speed signal processing applications. VLSI prototype chips have been designed, fabricated, and tested with encouraging results. Systems utilizing the time-dependent behavior of the hybrid processing element have been simulated and are currently in the fabrication process. Future applications are also discussed.

  5. The design, fabrication, and test of a new VLSI hybrid analog-digital neural processing element

    Science.gov (United States)

    Deyong, Mark R.; Findley, Randall L.; Fields, Chris

    1992-01-01

    A hybrid analog-digital neural processing element with the time-dependent behavior of biological neurons has been developed. The hybrid processing element is designed for VLSI implementation and offers the best attributes of both analog and digital computation. Custom VLSI layout reduces the layout area of the processing element, which in turn increases the expected network density. The hybrid processing element operates at the nanosecond time scale, which enables it to produce real-time solutions to complex spatiotemporal problems found in high-speed signal processing applications. VLSI prototype chips have been designed, fabricated, and tested with encouraging results. Systems utilizing the time-dependent behavior of the hybrid processing element have been simulated and are currently in the fabrication process. Future applications are also discussed.

  6. A VLSI Processor Design of Real-Time Data Compression for High-Resolution Imaging Radar

    Science.gov (United States)

    Fang, W.

    1994-01-01

    For the high-resolution imaging radar systems, real-time data compression of raw imaging data is required to accomplish the science requirements and satisfy the given communication and storage constraints. The Block Adaptive Quantizer (BAQ) algorithm and its associated VLSI processor design have been developed to provide a real-time data compressor for high-resolution imaging radar systems.

  7. VLSI physical design analyzer: A profiling and data mining tool

    Science.gov (United States)

    Somani, Shikha; Verma, Piyush; Madhavan, Sriram; Batarseh, Fadi; Pack, Robert C.; Capodieci, Luigi

    2015-03-01

    Traditional physical design verification tools employ a deck of known design rules, each of which has a pre-defined pass/fail criteria associated with it. While passing a design rule deck is a necessary condition for a VLSI design to be manufacturable, it is not sufficient. Other physical design profiling decks that attempt to obtain statistical information about the various critical dimensions in the VLSI design lack a systematic methodology for rule enumeration. These decks are often inadequate, unable to extract all the interlayer and intralayer dimensions in a design that have a correlation with process yield. The Physical Design Analyzer is a comprehensive design analysis tool built with the objective of exhaustively exploring design-process correlations to increase the wafer yield.

  8. Wavelength-encoded OCDMA system using opto-VLSI processors.

    Science.gov (United States)

    Aljada, Muhsen; Alameh, Kamal

    2007-07-01

    We propose and experimentally demonstrate a 2.5 Gbits/sper user wavelength-encoded optical code-division multiple-access encoder-decoder structure based on opto-VLSI processing. Each encoder and decoder is constructed using a single 1D opto-very-large-scale-integrated (VLSI) processor in conjunction with a fiber Bragg grating (FBG) array of different Bragg wavelengths. The FBG array spectrally and temporally slices the broadband input pulse into several components and the opto-VLSI processor generates codewords using digital phase holograms. System performance is measured in terms of the autocorrelation and cross-correlation functions as well as the eye diagram.

  9. Design of a VLSI Decoder for Partially Structured LDPC Codes

    Directory of Open Access Journals (Sweden)

    Fabrizio Vacca

    2008-01-01

    of their parity matrix can be partitioned into two disjoint sets, namely, the structured and the random ones. For the proposed class of codes a constructive design method is provided. To assess the value of this method the constructed codes performance are presented. From these results, a novel decoding method called split decoding is introduced. Finally, to prove the effectiveness of the proposed approach a whole VLSI decoder is designed and characterized.

  10. DESIGN AND ANALOG VLSI IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    D.Yammenavar

    2011-08-01

    Full Text Available Nature has evolved highly advanced systems capable of performing complex computations, adoption andlearning using analog computations. Furthermore nature has evolved techniques to deal with impreciseanalog computations by using redundancy and massive connectivity. In this paper we are making use ofArtificial Neural Network to demonstrate the way in which the biological system processes in analogdomain.We are using 180nm CMOS VLSI technology for implementing circuits which performs arithmeticoperations and for implementing Neural Network. The arithmetic circuits presented here are based onMOS transistors operating in subthreshold region. The basic blocks of artificial neuron are multiplier,adder and neuron activation function.The functionality of designed neural network is verified for analog operations like signal amplificationand frequency multiplication. The network designed can be adopted for digital operations like AND, ORand NOT. The network realizes its functionality for the trained targets which is verified using simulationresults. The schematic, Layout design and verification of proposed Neural Network is carried out usingCadence Virtuoso tool.

  11. Design and Analog VLSI Implementation of Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Prof. Bapuray.D.Yammenavar

    2011-07-01

    Full Text Available Nature has evolved highly advanced systems capable of performing complex computations, adoption and learning using analog computations. Furthermore nature has evolved techniques to deal with imprecise analog computations by using redundancy and massive connectivity. In this paper we are making use of Artificial Neural Network to demonstrate the way in which the biological system processes in analog domain. We are using 180nm CMOS VLSI technology for implementing circuits which performs arithmetic operations and for implementing Neural Network. The arithmetic circuits presented here are based on MOS transistors operating in subthreshold region. The basic blocks of artificial neuron are multiplier, adder and neuron activation function. The functionality of designed neural network is verified for analog operations like signal amplification and frequency multiplication. The network designed can be adopted for digital operations like AND, OR and NOT. The network realizes its functionality for the trained targets which is verified using simulation results. The schematic, Layout design and verification of proposed Neural Network is carried out using Cadence Virtuoso tool.

  12. Dual Butterfly Match Filter VLSI Design

    Institute of Scientific and Technical Information of China (English)

    LIU Zhenyu; HAN Yueqiu

    2001-01-01

    Match filter is widely used in realtime signal processing, especially in Radar Signal Processing. This paper provides a novel ASIC design,which not only saves resource, but also improves thethroughput of the system. This ASIC is specially designed for Radar Pulse Compression. Certainly it canalso be used in other circumstances, such as FIR filter.

  13. DESIGN AND ANALOG VLSI IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORK

    OpenAIRE

    2011-01-01

    Nature has evolved highly advanced systems capable of performing complex computations, adoption and learning using analog computations. Furthermore nature has evolved techniques to deal with imprecise analog computations by using redundancy and massive connectivity. In this paper we are making use of Artificial Neural Network to demonstrate the way in which the biological system processes in analog domain. We are using 180nm CMOS VLSI technology for implementing circuits which ...

  14. VLSI Universal Noiseless Coder

    Science.gov (United States)

    Rice, Robert F.; Lee, Jun-Ji; Fang, Wai-Chi

    1989-01-01

    Proposed universal noiseless coder (UNC) compresses stream of data signals for efficient transmission in channel of limited bandwidth. Noiseless in sense original data completely recoverable from output code. System built as very-large-scale integrated (VLSI) circuit, compressing data in real time at input rates as high as 24 Mb/s, and possibly faster, depending on specific design. Approach yields small, lightweight system operating reliably and consuming little power. Constructed as single, compact, low-power VLSI circuit chip. Design of VLSI circuit chip made specific to code algorithms. Entire UNC fabricated in single chip, worst-case power dissipation less than 1 W.

  15. VLSI technology for smaller, cheaper, faster return link systems

    Science.gov (United States)

    Nanzetta, Kathy; Ghuman, Parminder; Bennett, Toby; Solomon, Jeff; Dowling, Jason; Welling, John

    1994-01-01

    Very Large Scale Integration (VLSI) Application-specific Integrated Circuit (ASIC) technology has enabled substantially smaller, cheaper, and more capable telemetry data systems. However, the rapid growth in available ASIC fabrication densities has far outpaced the application of this technology to telemetry systems. Available densities have grown by well over an order magnitude since NASA's Goddard Space Flight Center (GSFC) first began developing ASIC's for ground telemetry systems in 1985. To take advantage of these higher integration levels, a new generation of ASIC's for return link telemetry processing is under development. These new submicron devices are designed to further reduce the cost and size of NASA return link processing systems while improving performance. This paper describes these highly integrated processing components.

  16. VLSI design for fault-dictionary based testability

    Science.gov (United States)

    Miller, Charles D.

    The fault-dictionary approach to isolating failures in digital circuits provides inferior isolation accuracy compared to that which is now generally attained with other isolation methods. This limitation is particularly apparent when circuits which use bidirectional bus configurations are being tested. For this reason, fault-dictionary-based isolation has serious economic implications when testing digital circuits which use expensive VLSI or HSIC devices. However, by incorporating relatively minor circuit additions into the design of VLSI and HSIC devices, the normal set/scan or equivalent testability pins can additionally serve to improve actual fault-isolation accuracy. The described additions for improving fault-dictionary-based fault isolation require little semiconductor area, and one configuration even serves to prevent bus-drive conflicts.

  17. Design of Analog VLSI Architecture for DCT

    Directory of Open Access Journals (Sweden)

    M.Thiruveni

    2012-08-01

    Full Text Available When implementing real-time DSP algorithms on digital circuits, the system is always constrained by limited speed, accuracy and roundoff noise. These limitations must be taken into account for the design and implementation stages. Doubling the dynamic rate of theanalog DCT is expensive, whereas in digital DCT an addition of 1 bit in data path is adequate. This paper proposes a novel approach ofanalog CMOS implementation technique for Digital Signal Processing (DSP algorithms to reduce the area and power requirement in theexisting Digital CMOS implementations. Discrete Cosine Transform (DCT with signed coefficients have been designed andimplemented in this paper. The problems of digital DCTs viz., quantization error, round-off noise, high power consumption and largearea are overcome by the proposed implementation. It can be used to develop the architecture design of DFT, DST and DHT.

  18. Design of Analog VLSI Architecture for DCT

    OpenAIRE

    2012-01-01

    When implementing real-time DSP algorithms on digital circuits, the system is always constrained by limited speed, accuracy and roundoff noise. These limitations must be taken into account for the design and implementation stages. Doubling the dynamic rate of theanalog DCT is expensive, whereas in digital DCT an addition of 1 bit in data path is adequate. This paper proposes a novel approach ofanalog CMOS implementation technique for Digital Signal Processing (DSP) algorithms to reduce the ar...

  19. Current-mode subthreshold MOS circuits for analog VLSI neural systems

    Science.gov (United States)

    Andreou, Andreas G.; Boahen, Kwabena A.; Pouliquen, Philippe O.; Pavasovic, Aleksandra; Jenkins, Robert E.

    1991-03-01

    An overview of the current-mode approach for designing analog VLSI neural systems in subthreshold CMOS technology is presented. Emphasis is given to design techniques at the device level using the current-controlled current conveyor and the translinear principle. Circuits for associative memory and silicon retina systems are used as examples. The design methodology and how it relates to actual biological microcircuits are discussed.

  20. Current-mode subthreshold MOS circuits for analog VLSI neural systems.

    Science.gov (United States)

    Andreou, A G; Boahen, K A; Pouliquen, P O; Pavasovic, A; Jenkins, R E; Strohbehn, K

    1991-01-01

    An overview of the current-mode approach for designing analog VLSI neural systems in subthreshold CMOS technology is presented. Emphasis is given to design techniques at the device level using the current-controlled current conveyor and the translinear principle. Circuits for associative memory and silicon retina systems are used as examples. The design methodology and how it relates to actual biological microcircuits are discussed.

  1. Simplified microprocessor design for VLSI control applications

    Science.gov (United States)

    Cameron, K.

    1991-01-01

    A design technique for microprocessors combining the simplicity of reduced instruction set computers (RISC's) with the richer instruction sets of complex instruction set computers (CISC's) is presented. They utilize the pipelined instruction decode and datapaths common to RISC's. Instruction invariant data processing sequences which transparently support complex addressing modes permit the formulation of simple control circuitry. Compact implementations are possible since neither complicated controllers nor large register sets are required.

  2. A VLSI design concept for parallel iterative algorithms

    Directory of Open Access Journals (Sweden)

    C. C. Sun

    2009-05-01

    Full Text Available Modern VLSI manufacturing technology has kept shrinking down to the nanoscale level with a very fast trend. Integration with the advanced nano-technology now makes it possible to realize advanced parallel iterative algorithms directly which was almost impossible 10 years ago. In this paper, we want to discuss the influences of evolving VLSI technologies for iterative algorithms and present design strategies from an algorithmic and architectural point of view. Implementing an iterative algorithm on a multiprocessor array, there is a trade-off between the performance/complexity of processors and the load/throughput of interconnects. This is due to the behavior of iterative algorithms. For example, we could simplify the parallel implementation of the iterative algorithm (i.e., processor elements of the multiprocessor array in any way as long as the convergence is guaranteed. However, the modification of the algorithm (processors usually increases the number of required iterations which also means that the switch activity of interconnects is increasing. As an example we show that a 25×25 full Jacobi EVD array could be realized into one single FPGA device with the simplified μ-rotation CORDIC architecture.

  3. VLSI neural system architecture for finite ring recursive reduction.

    Science.gov (United States)

    Zhang, D; Jullien, G A

    1996-12-01

    The use of neural-like networks to implement finite ring computations has been presented in a previous paper. This paper develops efficient VLSI neural system architecture for the finite ring recursive reduction (FRRR), including module reduction, MSB carry iteration and feedforward processing. These techniques deal with the basic principles involved in constructing a FRRR, and their implementations are efficiently matched to the VLSI medium. Compared with the other structure models for finite ring computation (e.g. modification of binary arithmetic logic and bit-steered ROM's), the FRRR structure has the lowest area complexity in silicon while maintaining a high throughput rate. Examples of several implementations are used to illustrate the effectiveness of the FRRR architecture.

  4. Methodology of Efficient Energy Design for Noisy Deep Submicron VLSI Chips

    Institute of Scientific and Technical Information of China (English)

    WANGJun

    2004-01-01

    Power dissipation is becoming increasingly important as technology continues to scale. This paper describes a way to consider the dynamic, static and shortcircuit power dissipation simultaneously for making complete, quantitative prediction on the total power dissipation of noisy VLSI chip. Especially, this new method elucidates the mechanism of power dissipation caused by the intrinsic noise of deep submicron VLSI chip. To capture the noise dependency of efficient energy design strategies for VLSI chip, the simulation of two illustrative cases are observed. Finally, the future works are proposed for the optimum tradeoff among the power, speed and area, which includes the use of floating-body partially depleted silicon-on-insulator CMOS technology.

  5. International Conference on VLSI, Communication, Advanced Devices, Signals & Systems and Networking

    CERN Document Server

    Shirur, Yasha; Prasad, Rekha

    2013-01-01

    This book is a collection of papers presented by renowned researchers, keynote speakers and academicians in the International Conference on VLSI, Communication, Analog Designs, Signals and Systems, and Networking (VCASAN-2013), organized by B.N.M. Institute of Technology, Bangalore, India during July 17-19, 2013. The book provides global trends in cutting-edge technologies in electronics and communication engineering. The content of the book is useful to engineers, researchers and academicians as well as industry professionals.

  6. Design of Low Power Phase Locked Loop (PLL Using 45NM VLSI Technology

    Directory of Open Access Journals (Sweden)

    Ms. Ujwala A. Belorkar

    2010-06-01

    Full Text Available Power has become one of the most important paradigms of design convergence for multigigahertz communication systems such as optical data links, wireless products, microprocessor &ASIC/SOC designs. POWER consumption has become a bottleneck in microprocessor design. The coreof a microprocessor, which includes the largest power density on the microprocessor. In an effort toreduce the power consumption of the circuit, the supply voltage can be reduced leading to reduction ofdynamic and static power consumption. Lowering the supply voltage, however, also reduces theperformance of the circuit, which is usually unacceptable. One way to overcome this limitation, availablein some application domains, is to replicate the circuit block whose supply voltage is being reduced inorder to maintain the same throughput .This paper introduces a design aspects for low power phaselocked loop using VLSI technology. This phase locked loop is designed using latest 45nm processtechnology parameters, which in turn offers high speed performance at low power. The main noveltyrelated to the 45nm technology such as the high-k gate oxide ,metal-gate and very low-k interconnectdielectric described. VLSI Technology includes process design, trends, chip fabrication, real circuitparameters, circuit design, electrical characteristics, configuration building blocks, switching circuitry,translation onto silicon, CAD, practical experience in layout design

  7. VLSI Architectures for Computing DFT's

    Science.gov (United States)

    Truong, T. K.; Chang, J. J.; Hsu, I. S.; Reed, I. S.; Pei, D. Y.

    1986-01-01

    Simplifications result from use of residue Fermat number systems. System of finite arithmetic over residue Fermat number systems enables calculation of discrete Fourier transform (DFT) of series of complex numbers with reduced number of multiplications. Computer architectures based on approach suitable for design of very-large-scale integrated (VLSI) circuits for computing DFT's. General approach not limited to DFT's; Applicable to decoding of error-correcting codes and other transform calculations. System readily implemented in VLSI.

  8. VLSI implementation of a fairness ATM buffer system

    DEFF Research Database (Denmark)

    Nielsen, J.V.; Dittmann, Lars; Madsen, Jens Kargaard

    1996-01-01

    This paper presents a VLSI implementation of a resource allocation scheme, based on the concept of weighted fair queueing. The design can be used in asynchronous transfer mode (ATM) networks to ensure fairness and robustness. Weighted fair queueing is a scheduling and buffer management scheme...... that can provide a resource allocation policy and enforcement of this policy. It can be used in networks in order to provide defined allocation policies (fairness) and improve network robustness. The presented design illustrates how the theoretical weighted fair queueing model can be approximated...

  9. Low-power VLSI circuits and systems

    CERN Document Server

    Pal, Ajit

    2015-01-01

    The book provides a comprehensive coverage of different aspects of low power circuit synthesis at various levels of design hierarchy; starting from the layout level to the system level. For a seamless understanding of the subject, basics of MOS circuits has been introduced at transistor, gate and circuit level; followed by various low-power design methodologies, such as supply voltage scaling, switched capacitance minimization techniques and leakage power minimization approaches. The content of this book will prove useful to students, researchers, as well as practicing engineers.

  10. Parallel VLSI design for the fast -D DWT core algorithm

    Institute of Scientific and Technical Information of China (English)

    WEI Benjie; LIU Mingye; ZHOU Yihua; CHENG Baodong

    2007-01-01

    By studying the core algorithm of a three-dimensional discrete wavelet transform (3-D DWT) in depth,this Paper divides it into three one-dimensional discrete wavelet transforms (1-D DWTs).Based on the implementation of a 3-D DWT software,a parallel architecture design of a very large-scale integration(VLSI)is produced.It needs three dual-port random-access memory(RAM)to store the temporary results and transpose the matrix,then builds up a pipeline model composed of the three 1-D DWTs.In the design.the finite state machine(FSM)is used well to control the flow.Compared with the serial mode.the experimental results of the post synthesized simulation show that the design method is correct and effective.It can increase the processing speed by about 66%.work at 59 MHz,and meet the real-time needs of the video encoder.

  11. VLSI electronics microstructure science

    CERN Document Server

    1981-01-01

    VLSI Electronics: Microstructure Science, Volume 3 evaluates trends for the future of very large scale integration (VLSI) electronics and the scientific base that supports its development.This book discusses the impact of VLSI on computer architectures; VLSI design and design aid requirements; and design, fabrication, and performance of CCD imagers. The approaches, potential, and progress of ultra-high-speed GaAs VLSI; computer modeling of MOSFETs; and numerical physics of micron-length and submicron-length semiconductor devices are also elaborated. This text likewise covers the optical linewi

  12. Implementing neural architectures using analog VLSI circuits

    Science.gov (United States)

    Maher, Mary Ann C.; Deweerth, Stephen P.; Mahowald, Misha A.; Mead, Carver A.

    1989-05-01

    Analog very large-scale integrated (VLSI) technology can be used not only to study and simulate biological systems, but also to emulate them in designing artificial sensory systems. A methodology for building these systems in CMOS VLSI technology has been developed using analog micropower circuit elements that can be hierarchically combined. Using this methodology, experimental VLSI chips of visual and motor subsystems have been designed and fabricated. These chips exhibit behavior similar to that of biological systems, and perform computations useful for artificial sensory systems.

  13. Geometric Design Rule Check of VLSI Layouts in Mesh Connected Processors

    Directory of Open Access Journals (Sweden)

    S. K. Nandy

    1994-01-01

    Full Text Available Design Rule Checking is a compute-intensive VLSI CAD tool. In this paper we propose a parallel algorithm to perform Design Rule Check (DRC of Layout geometries in a VLSI layout. The algorithm assumes the parallel architecture to be a two-dimensional mesh of processors. The algorithm is based on a linear quadtree representation of the layout. Through a complexity analysis it is shown that it is possible to achieve a linear speedup in DRC with respect to the number of processors.

  14. Digital VLSI design with Verilog a textbook from Silicon Valley Technical Institute

    CERN Document Server

    Williams, John

    2008-01-01

    This unique textbook is structured as a step-by-step course of study along the lines of a VLSI IC design project. In a nominal schedule of 12 weeks, two days and about 10 hours per week, the entire verilog language is presented, from the basics to everything necessary for synthesis of an entire 70,000 transistor, full-duplex serializer - deserializer, including synthesizable PLLs. Digital VLSI Design With Verilog is all an engineer needs for in-depth understanding of the verilog language: Syntax, synthesis semantics, simulation, and test. Complete solutions for the 27 labs are provided on the

  15. Circuit design of VLSI for microelectronic coordinate-sensitive detector for material element analysis

    Directory of Open Access Journals (Sweden)

    Sidorenko V. P.

    2012-08-01

    Full Text Available There has been designed, manufactured and tested a VLSI providing as a part of the microelectronic coordinate-sensitive detector the simultaneous elemental analysis of all the principles of the substance. VLSI ensures the amplifier-converter response on receiving of 1,6.10–13 С negative charge to its input. Response speed of the microcircuit is at least 3 MHz in the counting mode and more than 4 MHz in the counter information read-out mode. The power consumption of the microcircuit is no more than 7 mA.

  16. A neuromorphic VLSI design for spike timing and rate based synaptic plasticity.

    Science.gov (United States)

    Rahimi Azghadi, Mostafa; Al-Sarawi, Said; Abbott, Derek; Iannella, Nicolangelo

    2013-09-01

    Triplet-based Spike Timing Dependent Plasticity (TSTDP) is a powerful synaptic plasticity rule that acts beyond conventional pair-based STDP (PSTDP). Here, the TSTDP is capable of reproducing the outcomes from a variety of biological experiments, while the PSTDP rule fails to reproduce them. Additionally, it has been shown that the behaviour inherent to the spike rate-based Bienenstock-Cooper-Munro (BCM) synaptic plasticity rule can also emerge from the TSTDP rule. This paper proposes an analogue implementation of the TSTDP rule. The proposed VLSI circuit has been designed using the AMS 0.35 μm CMOS process and has been simulated using design kits for Synopsys and Cadence tools. Simulation results demonstrate how well the proposed circuit can alter synaptic weights according to the timing difference amongst a set of different patterns of spikes. Furthermore, the circuit is shown to give rise to a BCM-like learning rule, which is a rate-based rule. To mimic an implementation environment, a 1000 run Monte Carlo (MC) analysis was conducted on the proposed circuit. The presented MC simulation analysis and the simulation result from fine-tuned circuits show that it is possible to mitigate the effect of process variations in the proof of concept circuit; however, a practical variation aware design technique is required to promise a high circuit performance in a large scale neural network. We believe that the proposed design can play a significant role in future VLSI implementations of both spike timing and rate based neuromorphic learning systems.

  17. VLSI System Implementation of 200 MHz, 8-bit, 90nm CMOS Arithmetic and Logic Unit (ALU Processor Controller

    Directory of Open Access Journals (Sweden)

    Fazal NOORBASHA

    2012-08-01

    Full Text Available In this present study includes the Very Large Scale Integration (VLSI system implementation of 200MHz, 8-bit, 90nm Complementary Metal Oxide Semiconductor (CMOS Arithmetic and Logic Unit (ALU processor control with logic gate design style and 0.12µm six metal 90nm CMOS fabrication technology. The system blocks and the behaviour are defined and the logical design is implemented in gate level in the design phase. Then, the logic circuits are simulated and the subunits are converted in to 90nm CMOS layout. Finally, in order to construct the VLSI system these units are placed in the floor plan and simulated with analog and digital, logic and switch level simulators. The results of the simulations indicates that the VLSI system can control different instructions which can divided into sub groups: transfer instructions, arithmetic and logic instructions, rotate and shift instructions, branch instructions, input/output instructions, control instructions. The data bus of the system is 16-bit. It runs at 200MHz, and operating power is 1.2V. In this paper, the parametric analysis of the system, the design steps and obtained results are explained.

  18. A VLSI Design Flow for Secure Side-Channel Attack Resistant ICs

    OpenAIRE

    Tiri, Kris; Verbauwhede, Ingrid

    2007-01-01

    Submitted on behalf of EDAA (http://www.edaa.com/); International audience; This paper presents a digital VLSI design flow to create secure, side-channel attack (SCA) resistant integrated circuits. The design flow starts from a normal design in a hardware description language such as VHDL or Verilog and provides a direct path to a SCA resistant layout. Instead of a full custom layout or an iterative design process with extensive simulations, a few key modifications are incorporated in a regul...

  19. A configurable realtime DWT-based neural data compression and communication VLSI system for wireless implants.

    Science.gov (United States)

    Yang, Yuning; Kamboh, Awais M; Mason, Andrew J

    2014-04-30

    This paper presents the design of a complete multi-channel neural recording compression and communication system for wireless implants that addresses the challenging simultaneous requirements for low power, high bandwidth and error-free communication. The compression engine implements discrete wavelet transform (DWT) and run length encoding schemes and offers a practical data compression solution that faithfully preserves neural information. The communication engine encodes data and commands separately into custom-designed packet structures utilizing a protocol capable of error handling. VLSI hardware implementation of these functions, within the design constraints of a 32-channel neural compression implant, is presented. Designed in 0.13μm CMOS, the core of the neural compression and communication chip occupies only 1.21mm(2) and consumes 800μW of power (25μW per channel at 26KS/s) demonstrating an effective solution for intra-cortical neural interfaces.

  20. A new VLSI complex integer multiplier which uses a quadratic-polynomial residue system with Fermat numbers

    Science.gov (United States)

    Shyu, H. C.; Reed, I. S.; Truong, T. K.; Hsu, I. S.; Chang, J. J.

    1987-01-01

    A quadratic-polynomial Fermat residue number system (QFNS) has been used to compute complex integer multiplications. The advantage of such a QFNS is that a complex integer multiplication requires only two integer multiplications. In this article, a new type Fermat number multiplier is developed which eliminates the initialization condition of the previous method. It is shown that the new complex multiplier can be implemented on a single VLSI chip. Such a chip is designed and fabricated in CMOS-Pw technology.

  1. Carbon nanotube based VLSI interconnects analysis and design

    CERN Document Server

    Kaushik, Brajesh Kumar

    2015-01-01

    The brief primarily focuses on the performance analysis of CNT based interconnects in current research scenario. Different CNT structures are modeled on the basis of transmission line theory. Performance comparison for different CNT structures illustrates that CNTs are more promising than Cu or other materials used in global VLSI interconnects. The brief is organized into five chapters which mainly discuss: (1) an overview of current research scenario and basics of interconnects; (2) unique crystal structures and the basics of physical properties of CNTs, and the production, purification and applications of CNTs; (3) a brief technical review, the geometry and equivalent RLC parameters for different single and bundled CNT structures; (4) a comparative analysis of crosstalk and delay for different single and bundled CNT structures; and (5) various unique mixed CNT bundle structures and their equivalent electrical models.

  2. VLSI Architecture for Configurable and Low-Complexity Design of Hard-Decision Viterbi Decoding Algorithm

    Directory of Open Access Journals (Sweden)

    Rachmad Vidya Wicaksana Putra

    2016-06-01

    Full Text Available Convolutional encoding and data decoding are fundamental processes in convolutional error correction. One of the most popular error correction methods in decoding is the Viterbi algorithm. It is extensively implemented in many digital communication applications. Its VLSI design challenges are about area, speed, power, complexity and configurability. In this research, we specifically propose a VLSI architecture for a configurable and low-complexity design of a hard-decision Viterbi decoding algorithm. The configurable and low-complexity design is achieved by designing a generic VLSI architecture, optimizing each processing element (PE at the logical operation level and designing a conditional adapter. The proposed design can be configured for any predefined number of trace-backs, only by changing the trace-back parameter value. Its computational process only needs N + 2 clock cycles latency, with N is the number of trace-backs. Its configurability function has been proven for N = 8, N = 16, N = 32 and N = 64. Furthermore, the proposed design was synthesized and evaluated in Xilinx and Altera FPGA target boards for area consumption and speed performance.

  3. A cost-effective methodology for the design of massively-parallel VLSI functional units

    Science.gov (United States)

    Venkateswaran, N.; Sriram, G.; Desouza, J.

    1993-01-01

    In this paper we propose a generalized methodology for the design of cost-effective massively-parallel VLSI Functional Units. This methodology is based on a technique of generating and reducing a massive bit-array on the mask-programmable PAcube VLSI array. This methodology unifies (maintains identical data flow and control) the execution of complex arithmetic functions on PAcube arrays. It is highly regular, expandable and uniform with respect to problem-size and wordlength, thereby reducing the communication complexity. The memory-functional unit interface is regular and expandable. Using this technique functional units of dedicated processors can be mask-programmed on the naked PAcube arrays, reducing the turn-around time. The production cost of such dedicated processors can be drastically reduced since the naked PAcube arrays can be mass-produced. Analysis of the the performance of functional units designed by our method yields promising results.

  4. Analog VLSI Models of Range-Tuned Neurons in the Bat Echolocation System

    Directory of Open Access Journals (Sweden)

    Horiuchi Timothy

    2003-01-01

    Full Text Available Bat echolocation is a fascinating topic of research for both neuroscientists and engineers, due to the complex and extremely time-constrained nature of the problem and its potential for application to engineered systems. In the bat's brainstem and midbrain exist neural circuits that are sensitive to the specific difference in time between the outgoing sonar vocalization and the returning echo. While some of the details of the neural mechanisms are known to be species-specific, a basic model of reafference-triggered, postinhibitory rebound timing is reasonably well supported by available data. We have designed low-power, analog VLSI circuits to mimic this mechanism and have demonstrated range-dependent outputs for use in a real-time sonar system. These circuits are being used to implement range-dependent vocalization amplitude, vocalization rate, and closest target isolation.

  5. VLSI System Implementation of 200 MHz, 8-bit, 90nm CMOS Arithmetic and Logic Unit (ALU) Processor Controller

    OpenAIRE

    2012-01-01

    In this present study includes the Very Large Scale Integration (VLSI) system implementation of 200MHz, 8-bit, 90nm Complementary Metal Oxide Semiconductor (CMOS) Arithmetic and Logic Unit (ALU) processor control with logic gate design style and 0.12µm six metal 90nm CMOS fabrication technology. The system blocks and the behaviour are defined and the logical design is implemented in gate level in the design phase. Then, the logic circuits are simulated and the subunits are converted in to 90n...

  6. A fast lightstripe rangefinding system with smart VLSI sensor

    Science.gov (United States)

    Gruss, Andrew; Carley, L. Richard; Kanade, Takeo

    1989-01-01

    The focus of the research is to build a compact, high performance lightstripe rangefinder using a Very Large Scale Integration (VLSI) smart photosensor array. Rangefinding, the measurement of the three-dimensional profile of an object or scene, is a critical component for many robotic applications, and therefore many techniques were developed. Of these, lightstripe rangefinding is one of the most widely used and reliable techniques available. Though practical, the speed of sampling range data by the conventional light stripe technique is severely limited. A conventional light stripe rangefinder operates in a step-and-repeat manner. A stripe source is projected on an object, a video image is acquired, range data is extracted from the image, the stripe is stepped, and the process repeats. Range acquisition is limited by the time needed to grab the video images, increasing linearly with the desired horizontal resolution. During the acquisition of a range image, the objects in the scene being scanned must be stationary. Thus, the long scene sampling time of step-and-repeat rangefinders limits their application. The fast range sensor proposed is based on the modification of this basic lightstripe ranging technique in a manner described by Sato and Kida. This technique does not require a sampling of images at various stripe positions to build a range map. Rather, an entire range image is acquired in parallel while the stripe source is swept continuously across the scene. Total time to acquire the range image data is independent of the range map resolution. The target rangefinding system will acquire 1,000 100 x 100 point range images per second with 0.5 percent range accuracy. It will be compact and rugged enough to be mounted on the end effector of a robot arm to aid in object manipulation and assembly tasks.

  7. High-Level Synthesis of VLSI Processors for Intelligent Integrated SystemsBased on Logic-in-Memory Structure

    Science.gov (United States)

    Kudoh, Takao; Kameyama, Michitaka

    One of the most serious problems in recent VLSI systems is data transfer bottleneck between memories and processing elements. To solve the problem, a model of highly parallel VLSI processors for intelligent integrated systems is presented. A logic-in-memory module composed of a processing element, a register and a local memory is defined as a basic building block to form a regular parallel structure. The data transfer between adjacent modules are done simply in a single clock period by a shift-register chain. A high-level synthesis method is discussed on the hardware model, when a data-dependency graph corresponding to a processing algorithm is given. We must simultaneously consider both scheduling and allocation for the time optimization problem under a constraint of an chip area. That is, we consider the best scheduling together with allocation such that the processing time becomes minimum under a constraint of a fixed number of modules. Not only an exhaustive enumeration method but also a branch-and-bound method is proposed for the problem. As a result, it is made clear that the proposed high-level synthesis method is very effective to design special-purpose VLSI processors free from data transfer bottleneck.

  8. Ant System-Corner Insertion Sequence: An Efficient VLSI Hard Module Placer

    Directory of Open Access Journals (Sweden)

    HOO, C.-S.

    2013-02-01

    Full Text Available Placement is important in VLSI physical design as it determines the time-to-market and chip's reliability. In this paper, a new floorplan representation which couples with Ant System, namely Corner Insertion Sequence (CIS is proposed. Though CIS's search complexity is smaller than the state-of-the-art representation Corner Sequence (CS, CIS adopts a preset boundary on the placement and hence, leading to search bound similar to CS. This enables the previous unutilized corner edges to become viable. Also, the redundancy of CS representation is eliminated in CIS leads to a lower search complexity of CIS. Experimental results on Microelectronics Center of North Carolina (MCNC hard block benchmark circuits show that the proposed algorithm performs comparably in terms of area yet at least two times faster than CS.

  9. Performance Analysis of Low Power, High Gain Operational Amplifier Using CMOS VLSI Design

    Directory of Open Access Journals (Sweden)

    Ankush S. Patharkar

    2014-07-01

    Full Text Available The operational amplifier is one of the most useful and important component of analog electronics. They are widely used in popular electronics. Their primary limitation is that they are not especially fast. The typical performance degrades rapidly for frequencies greater than about 1 MHz, although some models are designed specifically to handle higher frequencies. The primary use of op-amps in amplifier and related circuits is closely connected to the concept of negative feedback. The operational amplifier has high gain, high input impedance and low output impedance. Here the operational amplifier designed by using CMOS VLSI technology having low power consumption and high gain.

  10. Control of autonomous mobile robots using custom-designed qualitative reasoning VLSI chips and boards

    Energy Technology Data Exchange (ETDEWEB)

    Pin, F.G.; Pattay, R.S.

    1991-01-01

    Two types of computer boards including custom-designed VLSI chips have been developed to provide a qualitative reasoning capability for the real-time control of autonomous mobile robots. The design and operation of these boards are described and an example of application of qualitative reasoning for the autonomous navigation of a mobile robot in a-priori unknown environments is presented. Results concerning consistency and modularity in the development of qualitative reasoning schemes as well as the general applicability of these techniques to robotic control domains are also discussed. 17 refs., 4 figs.

  11. Driving a car with custom-designed fuzzy inferencing VLSI chips and boards

    Science.gov (United States)

    Pin, Francois G.; Watanabe, Yutaka

    1993-01-01

    Vehicle control in a-priori unknown, unpredictable, and dynamic environments requires many calculational and reasoning schemes to operate on the basis of very imprecise, incomplete, or unreliable data. For such systems, in which all the uncertainties can not be engineered away, approximate reasoning may provide an alternative to the complexity and computational requirements of conventional uncertainty analysis and propagation techniques. Two types of computer boards including custom-designed VLSI chips were developed to add a fuzzy inferencing capability to real-time control systems. All inferencing rules on a chip are processed in parallel, allowing execution of the entire rule base in about 30 microseconds, and therefore, making control of 'reflex-type' of motions envisionable. The use of these boards and the approach using superposition of elemental sensor-based behaviors for the development of qualitative reasoning schemes emulating human-like navigation in a-priori unknown environments are first discussed. Then how the human-like navigation scheme implemented on one of the qualitative inferencing boards was installed on a test-bed platform to investigate two control modes for driving a car in a-priori unknown environments on the basis of sparse and imprecise sensor data is described. In the first mode, the car navigates fully autonomously, while in the second mode, the system acts as a driver's aid providing the driver with linguistic (fuzzy) commands to turn left or right and speed up or slow down depending on the obstacles perceived by the sensors. Experiments with both modes of control are described in which the system uses only three acoustic range (sonar) sensor channels to perceive the environment. Simulation results as well as indoors and outdoors experiments are presented and discussed to illustrate the feasibility and robustness of autonomous navigation and/or safety enhancing driver's aid using the new fuzzy inferencing hardware system and some human

  12. UW VLSI chip tester

    Science.gov (United States)

    McKenzie, Neil

    1989-12-01

    We present a design for a low-cost, functional VLSI chip tester. It is based on the Apple MacIntosh II personal computer. It tests chips that have up to 128 pins. All pin drivers of the tester are bidirectional; each pin is programmed independently as an input or an output. The tester can test both static and dynamic chips. Rudimentary speed testing is provided. Chips are tested by executing C programs written by the user. A software library is provided for program development. Tests run under both the Mac Operating System and A/UX. The design is implemented using Xilinx Logic Cell Arrays. Price/performance tradeoffs are discussed.

  13. The VLSI handbook

    CERN Document Server

    Chen, Wai-Kai

    2007-01-01

    Written by a stellar international panel of expert contributors, this handbook remains the most up-to-date, reliable, and comprehensive source for real answers to practical problems. In addition to updated information in most chapters, this edition features several heavily revised and completely rewritten chapters, new chapters on such topics as CMOS fabrication and high-speed circuit design, heavily revised sections on testing of digital systems and design languages, and two entirely new sections on low-power electronics and VLSI signal processing. An updated compendium of references and othe

  14. On VLSI Design of Rank-Order Filtering using DCRAM Architecture.

    Science.gov (United States)

    Lin, Meng-Chun; Dung, Lan-Rong

    2008-02-01

    This paper addresses on VLSI design of rank-order filtering (ROF) with a maskable memory for real-time speech and image processing applications. Based on a generic bit-sliced ROF algorithm, the proposed design uses a special-defined memory, called the dual-cell random-access memory (DCRAM), to realize major operations of ROF: threshold decomposition and polarization. Using the memory-oriented architecture, the proposed ROF processor can benefit from high flexibility, low cost and high speed. The DCRAM can perform the bit-sliced read, partial write, and pipelined processing. The bit-sliced read and partial write are driven by maskable registers. With recursive execution of the bit-slicing read and partial write, the DCRAM can effectively realize ROF in terms of cost and speed. The proposed design has been implemented using TSMC 0.18 μm 1P6M technology. As shown in the result of physical implementation, the core size is 356.1 × 427.7μm(2) and the VLSI implementation of ROF can operate at 256 MHz for 1.8V supply.

  15. Research News: Are VLSI Microcircuits Too Hard to Design?

    Science.gov (United States)

    Robinson, Arthur L.

    1980-01-01

    This research news article on microelectronics discusses the scientific challenge the integrated circuit industry will have in the next decade, for designing the complicated microcircuits made possible by advancing miniaturization technology. (HM)

  16. Principles of VLSI RTL design a practical guide

    CERN Document Server

    Churiwala, Sanjay; Gianfagna, Mike

    2011-01-01

    This book examines the impact of register transfer level (RTL) design choices that may result in issues of testability, data synchronization across clock domains, synthesizability, power consumption and routability, that appear later in the product lifecycle.

  17. A VLSI Design Flow for Secure Side-Channel Attack Resistant ICs

    CERN Document Server

    Tiri, Kris

    2011-01-01

    This paper presents a digital VLSI design flow to create secure, side-channel attack (SCA) resistant integrated circuits. The design flow starts from a normal design in a hardware description language such as VHDL or Verilog and provides a direct path to a SCA resistant layout. Instead of a full custom layout or an iterative design process with extensive simulations, a few key modifications are incorporated in a regular synchronous CMOS standard cell design flow. We discuss the basis for side-channel attack resistance and adjust the library databases and constraints files of the synthesis and place & route procedures accordingly. Experimental results show that a DPA attack on a regular single ended CMOS standard cell implementation of a module of the DES algorithm discloses the secret key after 200 measurements. The same attack on a secure version still does not disclose the secret key after more than 2000 measurements.

  18. A VLSI Neural Monitoring System With Ultra-Wideband Telemetry for Awake Behaving Subjects.

    Science.gov (United States)

    Greenwald, E; Mollazadeh, M; Hu, C; Wei Tang; Culurciello, E; Thakor, V

    2011-04-01

    Long-term monitoring of neuronal activity in awake behaving subjects can provide fundamental information about brain dynamics for neuroscience and neuroengineering applications. Here, we present a miniature, lightweight, and low-power recording system for monitoring neural activity in awake behaving animals. The system integrates two custom designed very-large-scale integrated chips, a neural interface module fabricated in 0.5 μm complementary metal-oxide semiconductor technology and an ultra-wideband transmitter module fabricated in a 0.5 μm silicon-on-sapphire (SOS) technology. The system amplifies, filters, digitizes, and transmits 16 channels of neural data at a rate of 1 Mb/s. The entire system, which includes the VLSI circuits, a digital interface board, a battery, and a custom housing, is small and lightweight (24 g) and, thus, can be chronically mounted on small animals. The system consumes 4.8 mA and records continuously for up to 40 h powered by a 3.7-V, 200-mAh rechargeable lithium-ion battery. Experimental benchtop characterizations as well as in vivo multichannel neural recordings from awake behaving rats are presented here.

  19. Design and implementation of multipattern generators in analog VLSI.

    Science.gov (United States)

    Kier, Ryan J; Ames, Jeffrey C; Beer, Randall D; Harrison, Reid R

    2006-07-01

    In recent years, computational biologists have shown through simulation that small neural networks with fixed connectivity are capable of producing multiple output rhythms in response to transient inputs. It is believed that such networks may play a key role in certain biological behaviors such as dynamic gait control. In this paper, we present a novel method for designing continuous-time recurrent neural networks (CTRNNs) that contain multiple embedded limit cycles, and we show that it is possible to switch the networks between these embedded limit cycles with simple transient inputs. We also describe the design and testing of a fully integrated four-neuron CTRNN chip that is used to implement the neural network pattern generators. We provide two example multipattern generators and show that the measured waveforms from the chip agree well with numerical simulations.

  20. A digital neuron-type processor and its VLSI design

    Science.gov (United States)

    Akel, H.; Habib, Mahmoud K.

    1989-05-01

    A set of neuron-type circuits elements based on logic gate circuits with multiinput multifan output capability is described. Three types of elements are introduced, one called the cell body with its dendritic inputs and synaptic junction, another representing the axon base, and the axon circuit. These three elements are cascaded to form a neuron-type processing element. The circuit performs input temporal and spatial summation as well as thresholding. The entire neuron circuit is simulated and a design is given using VSLI techniques.

  1. Knowledge-based synthesis of custom VLSI physical design tools: First steps

    Science.gov (United States)

    Setliff, Dorothy E.; Rutenbar, Rob A.

    A description is given of how program synthesis techniques can be applied to the synthesis of technology-sensitive VLSI physical design tools. Physical design refers to the process of reducing a structural description of a piece of hardware down to the geometric layout of an integrated circuit. Successful physical design tools must cope with shifting technology and application environments. The goal is to automatically generate a tool's implementation to match the application. The authors describe a synthesis architecture that combines knowledge of the application domain and knowledge of generic programming mechanics. The approach uses a very high-level language to describe algorithms, domain and programming knowledge to select appropriate algorithms and data structures, and code generation to arrive at final executable code. Results are presented detailing the performance and implementation of ELF, a prototype generator for wire-routing applications. Comparisons between a hand-crafted router and an automatically synthesized router are presented.

  2. Emergent Auditory Feature Tuning in a Real-Time Neuromorphic VLSI System.

    Science.gov (United States)

    Sheik, Sadique; Coath, Martin; Indiveri, Giacomo; Denham, Susan L; Wennekers, Thomas; Chicca, Elisabetta

    2012-01-01

    Many sounds of ecological importance, such as communication calls, are characterized by time-varying spectra. However, most neuromorphic auditory models to date have focused on distinguishing mainly static patterns, under the assumption that dynamic patterns can be learned as sequences of static ones. In contrast, the emergence of dynamic feature sensitivity through exposure to formative stimuli has been recently modeled in a network of spiking neurons based on the thalamo-cortical architecture. The proposed network models the effect of lateral and recurrent connections between cortical layers, distance-dependent axonal transmission delays, and learning in the form of Spike Timing Dependent Plasticity (STDP), which effects stimulus-driven changes in the pattern of network connectivity. In this paper we demonstrate how these principles can be efficiently implemented in neuromorphic hardware. In doing so we address two principle problems in the design of neuromorphic systems: real-time event-based asynchronous communication in multi-chip systems, and the realization in hybrid analog/digital VLSI technology of neural computational principles that we propose underlie plasticity in neural processing of dynamic stimuli. The result is a hardware neural network that learns in real-time and shows preferential responses, after exposure, to stimuli exhibiting particular spectro-temporal patterns. The availability of hardware on which the model can be implemented, makes this a significant step toward the development of adaptive, neurobiologically plausible, spike-based, artificial sensory systems.

  3. Emergent auditory feature tuning in a real-time neuromorphic VLSI system

    Directory of Open Access Journals (Sweden)

    Sadique eSheik

    2012-02-01

    Full Text Available Many sounds of ecological importance, such as communication calls, are characterised by time-varying spectra. However, most neuromorphic auditory models to date have focused on distinguishing mainly static patterns, under the assumption that dynamic patterns can be learned as sequences of static ones. In contrast, the emergence of dynamic feature sensitivity through exposure to formative stimuli has been recently modeled in a network of spiking neurons based on the thalamocortical architecture. The proposed network models the effect of lateral and recurrent connections between cortical layers, distance-dependent axonal transmission delays, and learning in the form of Spike Timing Dependent Plasticity (STDP, which effects stimulus-driven changes in the pattern of network connectivity. In this paper we demonstrate how these principles can be efficiently implemented in neuromorphic hardware. In doing so we address two principle problems in the design of neuromorphic systems: real-time event-based asynchronous communication in multi-chip systems, and the realization in hybrid analog/digital VLSI technology of neural computational principles that we propose underlie plasticity in neural processing of dynamic stimuli. The result is a hardware neural network that learns in real-time and shows preferential responses, after exposure, to stimuli exhibiting particular spectrotemporal patterns. The availability of hardware on which the model can be implemented, makes this a significant step towards the development of adaptive, neurobiologically plausible, spike-based, artificial sensory systems.

  4. VLSI metallization

    CERN Document Server

    Einspruch, Norman G; Gildenblat, Gennady Sh

    1987-01-01

    VLSI Electronics Microstructure Science, Volume 15: VLSI Metallization discusses the various issues and problems related to VLSI metallization. It details the available solutions and presents emerging trends.This volume is comprised of 10 chapters. The two introductory chapters, Chapter 1 and 2 serve as general references for the electrical and metallurgical properties of thin conducting films. Subsequent chapters review the various aspects of VLSI metallization. The order of presentation has been chosen to follow the common processing sequence. In Chapter 3, some relevant metal deposition tec

  5. VLSI design of 3D display processing chip for binocular stereo displays

    Institute of Scientific and Technical Information of China (English)

    Ge Chenyang; Zheng Nanning

    2010-01-01

    In order to develop the core chip supporting binocular stereo displays for head mounted display(HMD)and glasses-TV,a very large scale integrated(VLSI)design scheme is proposed by using a pipeline architecture for 3D display processing chip(HMD100).Some key techniques including stereo display processing and high precision video scaling based bicubic interpolation,and their hardware implementations which improve the image quality are presented.The proposed HMD100 chip is verified by the field-programmable gate array(FPGA).As one of innovative and high integration SoC chips,HMD100 is designed by a digital and analog mixed circuit.It can support binocular stereo display,has better scaling effect and integration.Hence it is applicable in virtual reality(VR),3D games and other microdisplay domains.

  6. Autonomous navigation of a mobile robot using custom-designed qualitative reasoning VLSI chips and boards

    Energy Technology Data Exchange (ETDEWEB)

    Pin, F.G.; Pattay, R.S. (Oak Ridge National Lab., TN (United States)); Watanabe, H.; Symon, J. (North Carolina Univ., Chapel Hill, NC (United States). Dept. of Computer Science)

    1991-01-01

    Two types of computer boards including custom-designed VLSI chips have been developed to add a qualitative reasoning capability to the real-time control of autonomous mobile robots. The design and operation of these boards are first described and an example of their use for the autonomous navigation of a mobile robot is presented. The development of qualitative reasoning schemes emulating human-like navigation is a-priori unknown environments is discussed. The efficiency of such schemes, which can consist of as little as a dozen qualitative rules, is illustrated in experiments involving an autonomous mobile robot navigating on the basis of very sparse inaccurate sensor data. 17 refs., 6 figs.

  7. Using custom-designed VLSI fuzzy inferencing chips for the autonomous navigation of a mobile robot

    Energy Technology Data Exchange (ETDEWEB)

    Pin, F.G.; Pattay, R.S. (Oak Ridge National Lab., TN (United States)); Watanabe, Hiroyuki; Symon, J. (North Carolina Univ., Chapel Hill, NC (United States). Dept. of Computer Science)

    1991-01-01

    Two types of computer boards including custom-designed VLSI fuzzy inferencing chips have been developed to add a qualitative reasoning capability to the real-time control of autonomous mobile robots. The design and operation of these boards are first described and an example of their use for the autonomous navigation of mobile robot is presented. The development of qualitative reasoning schemes emulating human-like navigation in apriori unknown environments is discussed. An approach using superposition of elemental sensor-based behaviors is shown to alloy easy development and testing of the inferencing rule base, while providing for progressive addition of behaviors to resolve situations of increasing complexity. The efficiency of such schemes, which can consist of as little as a dozen qualitative rules, is illustrated in experiments involving an autonomous mobile robot navigating on the basis of very sparse and inaccurate sensor data. 17 refs., 6 figs.

  8. VLSI Implementation of Encryption and Decryption System Using Hamming Code Algorithm

    Directory of Open Access Journals (Sweden)

    Fazal Noorbasha

    2014-04-01

    Full Text Available In this paper, we propose an optimized VLSI implementation of encryption and decryption system using hamming code algorithm. In the present field of communication has got many applications, and in every field the data is encoded at the transmitter and transfer on a communication channel and receive at the receiver after data is decoded. During the broadcast of data it might get degraded because of some noise on the channel. So it is crucial for the receiver to have some function which can recognize and correct the error in the received data. Hamming code is one of such forward error correcting code which has got many applications. In this paper the algorithm for hamming code is discussed and then implementation of it in verilog is done to get the results. Hamming code is an upgrading over parity check method. Here a code is implemented in verilog in which 4-bit of information data is transmitted with 3-redundancy bits. In order to do that the proposed method uses a Field Programmable Gate Array (FPGA. It is known that FPGA provides quick implementation and fast hardware verification. It gives facilities of reconfiguring the design construct unlimited number of times. The HDL code is written in verilog, Gate Level Circuit and Layout is implemented in CMOS technology.

  9. Implementation of neuromorphic systems: from discrete components to analog VLSI chips (testing and communication issues).

    Science.gov (United States)

    Dante, V; Del Giudice, P; Mattia, M

    2001-01-01

    We review a series of implementations of electronic devices aiming at imitating to some extent structure and function of simple neural systems, with particular emphasis on communication issues. We first provide a short overview of general features of such "neuromorphic" devices and the implications of setting up "tests" for them. We then review the developments directly related to our work at the Istituto Superiore di Sanità (ISS): a pilot electronic neural network implementing a simple classifier, autonomously developing internal representations of incoming stimuli; an output network, collecting information from the previous classifier and extracting the relevant part to be forwarded to the observer; an analog, VLSI (very large scale integration) neural chip implementing a recurrent network of spiking neurons and plastic synapses, and the test setup for it; a board designed to interface the standard PCI (peripheral component interconnect) bus of a PC with a special purpose, asynchronous bus for communication among neuromorphic chips; a short and preliminary account of an application-oriented device, taking advantage of the above communication infrastructure.

  10. VLSI (Very Large Scale Integration) Design Tools Reference Manual - Release 1.0.

    Science.gov (United States)

    1983-10-01

    34" SUBCXT Sabna N1 < N2 N3 ... > 1_V/NW VLSI Release 1 -18- * SPICE User’s Guide UW/NW VLSI Consortium Examples: .SUBCKT OPAMP 12 3 4 A circuit definition... OPAMP This card must be the last one for any subcircuit definition. The subcircuit name, if included, indicates which subcircuit definition is being

  11. Design of a reliable and self-testing VLSI datapath using residue coding techniques

    Science.gov (United States)

    Sayers, I. L.; Kinniment, D. J.; Chester, E. G.

    1986-05-01

    The application of a residue code to check the data-path of a CPU is discussed. The structure of the data-path and the instruction set that it can perform are described, including the data-path registers, ALU, and control. The use of a mode 3 residue code to check the data-path is described in detail, giving logic diagrams and circuit layouts. The results are compared to those that might be obtained using Scan Path or BILBO techniques. The use of the residue code provides fault tolerance in a VLSI design at a small cost compared to triple modular redundancy and duplication techniques. A detailed evaluation of the increase in chip area required to produce a self-testing chip is also given.

  12. VLSI neuroprocessors

    Science.gov (United States)

    Kemeny, Sabrina E.

    1994-01-01

    Electronic and optoelectronic hardware implementations of highly parallel computing architectures address several ill-defined and/or computation-intensive problems not easily solved by conventional computing techniques. The concurrent processing architectures developed are derived from a variety of advanced computing paradigms including neural network models, fuzzy logic, and cellular automata. Hardware implementation technologies range from state-of-the-art digital/analog custom-VLSI to advanced optoelectronic devices such as computer-generated holograms and e-beam fabricated Dammann gratings. JPL's concurrent processing devices group has developed a broad technology base in hardware implementable parallel algorithms, low-power and high-speed VLSI designs and building block VLSI chips, leading to application-specific high-performance embeddable processors. Application areas include high throughput map-data classification using feedforward neural networks, terrain based tactical movement planner using cellular automata, resource optimization (weapon-target assignment) using a multidimensional feedback network with lateral inhibition, and classification of rocks using an inner-product scheme on thematic mapper data. In addition to addressing specific functional needs of DOD and NASA, the JPL-developed concurrent processing device technology is also being customized for a variety of commercial applications (in collaboration with industrial partners), and is being transferred to U.S. industries. This viewgraph p resentation focuses on two application-specific processors which solve the computation intensive tasks of resource allocation (weapon-target assignment) and terrain based tactical movement planning using two extremely different topologies. Resource allocation is implemented as an asynchronous analog competitive assignment architecture inspired by the Hopfield network. Hardware realization leads to a two to four order of magnitude speed-up over conventional

  13. VLSI signal processing technology

    CERN Document Server

    Swartzlander, Earl

    1994-01-01

    This book is the first in a set of forthcoming books focussed on state-of-the-art development in the VLSI Signal Processing area. It is a response to the tremendous research activities taking place in that field. These activities have been driven by two factors: the dramatic increase in demand for high speed signal processing, especially in consumer elec­ tronics, and the evolving microelectronic technologies. The available technology has always been one of the main factors in determining al­ gorithms, architectures, and design strategies to be followed. With every new technology, signal processing systems go through many changes in concepts, design methods, and implementation. The goal of this book is to introduce the reader to the main features of VLSI Signal Processing and the ongoing developments in this area. The focus of this book is on: • Current developments in Digital Signal Processing (DSP) pro­ cessors and architectures - several examples and case studies of existing DSP chips are discussed in...

  14. Neuromorphic VLSI vision system for real-time texture segregation.

    Science.gov (United States)

    Shimonomura, Kazuhiro; Yagi, Tetsuya

    2008-10-01

    The visual system of the brain can perceive an external scene in real-time with extremely low power dissipation, although the response speed of an individual neuron is considerably lower than that of semiconductor devices. The neurons in the visual pathway generate their receptive fields using a parallel and hierarchical architecture. This architecture of the visual cortex is interesting and important for designing a novel perception system from an engineering perspective. The aim of this study is to develop a vision system hardware, which is designed inspired by a hierarchical visual processing in V1, for real time texture segregation. The system consists of a silicon retina, orientation chip, and field programmable gate array (FPGA) circuit. The silicon retina emulates the neural circuits of the vertebrate retina and exhibits a Laplacian-Gaussian-like receptive field. The orientation chip selectively aggregates multiple pixels of the silicon retina in order to produce Gabor-like receptive fields that are tuned to various orientations by mimicking the feed-forward model proposed by Hubel and Wiesel. The FPGA circuit receives the output of the orientation chip and computes the responses of the complex cells. Using this system, the neural images of simple cells were computed in real-time for various orientations and spatial frequencies. Using the orientation-selective outputs obtained from the multi-chip system, a real-time texture segregation was conducted based on a computational model inspired by psychophysics and neurophysiology. The texture image was filtered by the two orthogonally oriented receptive fields of the multi-chip system and the filtered images were combined to segregate the area of different texture orientation with the aid of FPGA. The present system is also useful for the investigation of the functions of the higher-order cells that can be obtained by combining the simple and complex cells.

  15. Interaction of algorithm and implementation for analog VLSI stereo vision

    Science.gov (United States)

    Hakkarainen, J. M.; Little, James J.; Lee, Hae-Seung; Wyatt, John L., Jr.

    1991-07-01

    Design of a high-speed stereo vision system in analog VLSI technology is reported. The goal is to determine how the advantages of analog VLSI--small area, high speed, and low power-- can be exploited, and how the effects of its principal disadvantages--limited accuracy, inflexibility, and lack of storage capacity--can be minimized. Three stereo algorithms are considered, and a simulation study is presented to examine details of the interaction between algorithm and analog VLSI implementation. The Marr-Poggio-Drumheller algorithm is shown to be best suited for analog VLSI implementation. A CCD/CMOS stereo system implementation is proposed, capable of operation at 6000 image frame pairs per second for 48 X 48 images, and faster than frame rate operation on 256 X 256 binocular image pairs.

  16. A VLSI System-on-Chip for Particle Detectors

    CERN Document Server

    AUTHOR|(CDS)2078019

    In this thesis I present a System-on-Chip (SoC) I designed to oer a self- contained, compact data acquisition platform for micromegas detector mon- itoring. I carried on my work within the RD-51 collab oration of CERN. With a companion ADC, my architecture is capable to acquire the signal from a detector electro de, pro cess the data and p erform monitoring tests. The SoC is built around on a custom 8-bit micropro cessor with internal mem- ory resources and emb eds the p eripherals to b e interf...

  17. Optimal Solution for VLSI Physical Design Automation Using Hybrid Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    I. Hameem Shanavas

    2014-01-01

    Full Text Available In Optimization of VLSI Physical Design, area minimization and interconnect length minimization is an important objective in physical design automation of very large scale integration chips. The objective of minimizing the area and interconnect length would scale down the size of integrated chips. To meet the above objective, it is necessary to find an optimal solution for physical design components like partitioning, floorplanning, placement, and routing. This work helps to perform the optimization of the benchmark circuits with the above said components of physical design using hierarchical approach of evolutionary algorithms. The goal of minimizing the delay in partitioning, minimizing the silicon area in floorplanning, minimizing the layout area in placement, minimizing the wirelength in routing has indefinite influence on other criteria like power, clock, speed, cost, and so forth. Hybrid evolutionary algorithm is applied on each of its phases to achieve the objective. Because evolutionary algorithm that includes one or many local search steps within its evolutionary cycles to obtain the minimization of area and interconnect length. This approach combines a hierarchical design like genetic algorithm and simulated annealing to attain the objective. This hybrid approach can quickly produce optimal solutions for the popular benchmarks.

  18. Digital VLSI design with Verilog a textbook from Silicon Valley Polytechnic Institute

    CERN Document Server

    Williams, John Michael

    2014-01-01

    This book is structured as a step-by-step course of study along the lines of a VLSI integrated circuit design project.  The entire Verilog language is presented, from the basics to everything necessary for synthesis of an entire 70,000 transistor, full-duplex serializer-deserializer, including synthesizable PLLs.  The author includes everything an engineer needs for in-depth understanding of the Verilog language:  Syntax, synthesis semantics, simulation, and test. Complete solutions for the 27 labs are provided in the downloadable files that accompany the book.  For readers with access to appropriate electronic design tools, all solutions can be developed, simulated, and synthesized as described in the book.   A partial list of design topics includes design partitioning, hierarchy decomposition, safe coding styles, back annotation, wrapper modules, concurrency, race conditions, assertion-based verification, clock synchronization, and design for test.   A concluding presentation of special topics inclu...

  19. A Design Methodology for Folded, Pipelined Architectures in VLSI Applications using Projective Space Lattices

    CERN Document Server

    Sharma, Hrishikesh

    2011-01-01

    Semi-parallel, or folded, VLSI architectures are used whenever hardware resources need to be saved at design time. Most recent applications that are based on Projective Geometry (PG) based balanced bipartite graph also fall in this category. In this paper, we provide a high-level, top-down design methodology to design optimal semi-parallel architectures for applications, whose Data Flow Graph (DFG) is based on PG bipartite graph. Such applications have been found e.g. in error-control coding and matrix computations. Unlike many other folding schemes, the topology of connections between physical elements does not change in this methodology. Another advantage is the ease of implementation. To lessen the throughput loss due to folding, we also incorporate a pipelining strategy in the design methodology. A complete decoder has been prototyped for proof of concept, and is publicly available. Another specific high-performance design of an LDPC decoder based on this methodology was worked out in past, and has been p...

  20. VLSI design of an RSA encryption/decryption chip using systolic array based architecture

    Science.gov (United States)

    Sun, Chi-Chia; Lin, Bor-Shing; Jan, Gene Eu; Lin, Jheng-Yi

    2016-09-01

    This article presents the VLSI design of a configurable RSA public key cryptosystem supporting the 512-bit, 1024-bit and 2048-bit based on Montgomery algorithm achieving comparable clock cycles of current relevant works but with smaller die size. We use binary method for the modular exponentiation and adopt Montgomery algorithm for the modular multiplication to simplify computational complexity, which, together with the systolic array concept for electric circuit designs effectively, lower the die size. The main architecture of the chip consists of four functional blocks, namely input/output modules, registers module, arithmetic module and control module. We applied the concept of systolic array to design the RSA encryption/decryption chip by using VHDL hardware language and verified using the TSMC/CIC 0.35 m 1P4 M technology. The die area of the 2048-bit RSA chip without the DFT is 3.9 × 3.9 mm2 (4.58 × 4.58 mm2 with DFT). Its average baud rate can reach 10.84 kbps under a 100 MHz clock.

  1. VLSI realization of learning vector quantization with hardware/software co-design for different applications

    Science.gov (United States)

    An, Fengwei; Akazawa, Toshinobu; Yamasaki, Shogo; Chen, Lei; Jürgen Mattausch, Hans

    2015-04-01

    This paper reports a VLSI realization of learning vector quantization (LVQ) with high flexibility for different applications. It is based on a hardware/software (HW/SW) co-design concept for on-chip learning and recognition and designed as a SoC in 180 nm CMOS. The time consuming nearest Euclidean distance search in the LVQ algorithm’s competition layer is efficiently implemented as a pipeline with parallel p-word input. Since neuron number in the competition layer, weight values, input and output number are scalable, the requirements of many different applications can be satisfied without hardware changes. Classification of a d-dimensional input vector is completed in n × \\lceil d/p \\rceil + R clock cycles, where R is the pipeline depth, and n is the number of reference feature vectors (FVs). Adjustment of stored reference FVs during learning is done by the embedded 32-bit RISC CPU, because this operation is not time critical. The high flexibility is verified by the application of human detection with different numbers for the dimensionality of the FVs.

  2. Motion-sensor fusion-based gesture recognition and its VLSI architecture design for mobile devices

    Science.gov (United States)

    Zhu, Wenping; Liu, Leibo; Yin, Shouyi; Hu, Siqi; Tang, Eugene Y.; Wei, Shaojun

    2014-05-01

    With the rapid proliferation of smartphones and tablets, various embedded sensors are incorporated into these platforms to enable multimodal human-computer interfaces. Gesture recognition, as an intuitive interaction approach, has been extensively explored in the mobile computing community. However, most gesture recognition implementations by now are all user-dependent and only rely on accelerometer. In order to achieve competitive accuracy, users are required to hold the devices in predefined manner during the operation. In this paper, a high-accuracy human gesture recognition system is proposed based on multiple motion sensor fusion. Furthermore, to reduce the energy overhead resulted from frequent sensor sampling and data processing, a high energy-efficient VLSI architecture implemented on a Xilinx Virtex-5 FPGA board is also proposed. Compared with the pure software implementation, approximately 45 times speed-up is achieved while operating at 20 MHz. The experiments show that the average accuracy for 10 gestures achieves 93.98% for user-independent case and 96.14% for user-dependent case when subjects hold the device randomly during completing the specified gestures. Although a few percent lower than the conventional best result, it still provides competitive accuracy acceptable for practical usage. Most importantly, the proposed system allows users to hold the device randomly during operating the predefined gestures, which substantially enhances the user experience.

  3. VLSI architecture of a K-best detector for MIMO-OFDM wireless communication systems

    Energy Technology Data Exchange (ETDEWEB)

    Jian Haifang; Shi Yin, E-mail: jhf@semi.ac.c [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2009-07-15

    The K-best detector is considered as a promising technique in the MIMO-OFDM detection because of its good performance and low complexity. In this paper, a new K-best VLSI architecture is presented. In the proposed architecture, the metric computation units (MCUs) expand each surviving path only to its partial branches, based on the novel expansion scheme, which can predetermine the branches' ascending order by their local distances. Then a distributed sorter sorts out the new K surviving paths from the expanded branches in pipelines. Compared to the conventional K-best scheme, the proposed architecture can approximately reduce fundamental operations by 50% and 75% for the 16-QAM and the 64-QAM cases, respectively, and, consequently, lower the demand on the hardware resource significantly. Simulation results prove that the proposed architecture can achieve a performance very similar to conventional K-best detectors. Hence, it is an efficient solution to the K-best detector's VLSI implementation for high-throughput MIMO-OFDM systems.

  4. VLSI placement

    Energy Technology Data Exchange (ETDEWEB)

    Hojat, S.

    1986-01-01

    The placement problem of assigning modules to module sites in a regular array must be addressed in VLSI and WSI. The placement problem of assigning heterogeneous modules to module sites in a regular array is NP-complete. The placement problem could be simplified if one could find a footprint with the property that all modules of the optimum placement occupy locations in the footprint, with no vacancies within the footprint region. If such footprints were known, they could be precomputed for each system size and the optimization problem would be reduced to a search of placements meeting the footprint constraint. The author shows that the placement problem could not be simplified by finding footprints. As result, several heuristic algorithms for the placement problem were developed and compared to each other and other established algorithms with respect to time complexity and performance measured, by the expected distance traversed by an intermodule message. Compared to previous algorithms, one new heuristic algorithm gave better performance in a shorter execution time on all test examples.

  5. Fully-depleted silicon-on-sapphire and its application to advanced VLSI design

    Science.gov (United States)

    Offord, Bruce W.

    1992-01-01

    In addition to the widely recognized advantages of full dielectric isolation, e.g., reduced parasitic capacitance, transient radiation hardness, and processing simplicity, fully-depleted silicon-on-sapphire offers reduced floating body effects and improved thermal characteristics when compared to other silicon-on-insulator technologies. The properties of this technology and its potential impact on advanced VLSI circuitry will be discussed.

  6. The Design, Simulation, and Fabrication of a BiCMOS VLSI Digitally Programmable GIC Filter

    Science.gov (United States)

    2001-09-01

    December 2000. Michael, S., Analog VLSI: Class Notes, Naval Postgraduate School, Monterey, CA, 1999. Sedra , A.S., Smith , K.C., Microelectronic...loop gain for an opamp is defined by the following equation ( Sedra , 1998) The ideal opamp has an infinite open loop gain, which can be seen from...Response (from Lee, 2000). The slew rate is defined by the following equation ( Sedra , 1998) 0 103102 10 104 105 106 107 f (Hz) 20 40 60

  7. The T-Ruby Design System

    DEFF Research Database (Denmark)

    Sharp, Robin; Rasmussen, Ole Steen

    1997-01-01

    This paper describes the T-Ruby system for designing VLSI circuits, starting from formal specifications in which they are described in terms of relational abstractions of their behaviour. The design process involves correctness-preserving transformations based on proved equivalences between...

  8. The T-Ruby design system

    DEFF Research Database (Denmark)

    Sharp, Robin; Rasmussen, Ole

    1995-01-01

    This paper describes the T-Ruby system for designing VLSI circuits, starting from formal specifications in which they are described in terms of relational abstractions of their behaviour. The design process involves correctness-preserving transformations based on proved equivalences between...

  9. VLSI implementation of neural networks.

    Science.gov (United States)

    Wilamowski, B M; Binfet, J; Kaynak, M O

    2000-06-01

    Currently, fuzzy controllers are the most popular choice for hardware implementation of complex control surfaces because they are easy to design. Neural controllers are more complex and hard to train, but provide an outstanding control surface with much less error than that of a fuzzy controller. There are also some problems that have to be solved before the networks can be implemented on VLSI chips. First, an approximation function needs to be developed because CMOS neural networks have an activation function different than any function used in neural network software. Next, this function has to be used to train the network. Finally, the last problem for VLSI designers is the quantization effect caused by discrete values of the channel length (L) and width (W) of MOS transistor geometries. Two neural networks were designed in 1.5 microm technology. Using adequate approximation functions solved the problem of activation function. With this approach, trained networks were characterized by very small errors. Unfortunately, when the weights were quantized, errors were increased by an order of magnitude. However, even though the errors were enlarged, the results obtained from neural network hardware implementations were superior to the results obtained with fuzzy system approach.

  10. A novel reconfigurable optical interconnect architecture using an Opto-VLSI processor and a 4-f imaging system.

    Science.gov (United States)

    Shen, Mingya; Xiao, Feng; Alameh, Kamal

    2009-12-07

    A novel reconfigurable optical interconnect architecture for on-board high-speed data transmission is proposed and experimentally demonstrated. The interconnect architecture is based on the use of an Opto-VLSI processor in conjunction with a 4-f imaging system to achieve reconfigurable chip-to-chip or board-to-board data communications. By reconfiguring the phase hologram of an Opto-VLSI processor, optical data generated by a vertical Cavity Surface Emitting Laser (VCSEL) associated to a chip (or a board) is arbitrarily steered to the photodetector associated to another chip (or another board). Experimental results show that the optical interconnect losses range from 5.8dB to 9.6dB, and that the maximum crosstalk level is below -36dB. The proposed architecture is tested for high-speed data transmission, and measured eye diagrams display good eye opening for data rate of up to 10Gb/s.

  11. A neuromorphic VLSI device for implementing 2-D selective attention systems.

    Science.gov (United States)

    Indiveri, G

    2001-01-01

    Selective attention is a mechanism used to sequentially select and process salient subregions of the input space, while suppressing inputs arriving from nonsalient regions. By processing small amounts of sensory information in a serial fashion, rather than attempting to process all the sensory data in parallel, this mechanism overcomes the problem of flooding limited processing capacity systems with sensory inputs. It is found in many biological systems and can be a useful engineering tool for developing artificial systems that need to process in real-time sensory data. In this paper we present a neuromorphic hardware model of a selective attention mechanism implemented on a very large scale integration (VLSI) chip, using analog circuits. The chip makes use of a spike-based representation for receiving input signals, transmitting output signals and for shifting the selection of the attended input stimulus over time. It can be interfaced to neuromorphic sensors and actuators, for implementing multichip selective attention systems. We describe the characteristics of the circuits used in the architecture and present experimental data measured from the system.

  12. VLSI (Very Large Scale Integration) Design Tools, Reference Manual, Release 3.0.

    Science.gov (United States)

    1985-08-01

    purpose of the Consortium is to advance the state of the art in VLSI technology and to transfer this technology between industry and the university...it is passed to Lyra with the -r switch to indicate a specific ruleset. Otherwise, the current technology is used as the ruleset. sacro < character...symbols art aligned so that the symbolic point n1 on the top of si is adjacent to the symbolic point n2 on the bottom of s2. Both points are taken to be

  13. Computer-aided design of microfluidic very large scale integration (mVLSI) biochips design automation, testing, and design-for-testability

    CERN Document Server

    Hu, Kai; Ho, Tsung-Yi

    2017-01-01

    This book provides a comprehensive overview of flow-based, microfluidic VLSI. The authors describe and solve in a comprehensive and holistic manner practical challenges such as control synthesis, wash optimization, design for testability, and diagnosis of modern flow-based microfluidic biochips. They introduce practical solutions, based on rigorous optimization and formal models. The technical contributions presented in this book will not only shorten the product development cycle, but also accelerate the adoption and further development of modern flow-based microfluidic biochips, by facilitating the full exploitation of design complexities that are possible with current fabrication techniques. Offers the first practical problem formulation for automated control-layer design in flow-based microfluidic biochips and provides a systematic approach for solving this problem; Introduces a wash-optimization method for cross-contamination removal; Presents a design-for-testability (DfT) technique that can achieve 100...

  14. VLSI electronics microstructure science

    CERN Document Server

    1982-01-01

    VLSI Electronics: Microstructure Science, Volume 4 reviews trends for the future of very large scale integration (VLSI) electronics and the scientific base that supports its development.This book discusses the silicon-on-insulator for VLSI and VHSIC, X-ray lithography, and transient response of electron transport in GaAs using the Monte Carlo method. The technology and manufacturing of high-density magnetic-bubble memories, metallic superlattices, challenge of education for VLSI, and impact of VLSI on medical signal processing are also elaborated. This text likewise covers the impact of VLSI t

  15. Synaptic dynamics in analog VLSI.

    Science.gov (United States)

    Bartolozzi, Chiara; Indiveri, Giacomo

    2007-10-01

    Synapses are crucial elements for computation and information transfer in both real and artificial neural systems. Recent experimental findings and theoretical models of pulse-based neural networks suggest that synaptic dynamics can play a crucial role for learning neural codes and encoding spatiotemporal spike patterns. Within the context of hardware implementations of pulse-based neural networks, several analog VLSI circuits modeling synaptic functionality have been proposed. We present an overview of previously proposed circuits and describe a novel analog VLSI synaptic circuit suitable for integration in large VLSI spike-based neural systems. The circuit proposed is based on a computational model that fits the real postsynaptic currents with exponentials. We present experimental data showing how the circuit exhibits realistic dynamics and show how it can be connected to additional modules for implementing a wide range of synaptic properties.

  16. VLSI implementations for image communications

    CERN Document Server

    Pirsch, P

    1993-01-01

    The past few years have seen a rapid growth in image processing and image communication technologies. New video services and multimedia applications are continuously being designed. Essential for all these applications are image and video compression techniques. The purpose of this book is to report on recent advances in VLSI architectures and their implementation for video signal processing applications with emphasis on video coding for bit rate reduction. Efficient VLSI implementation for video signal processing spans a broad range of disciplines involving algorithms, architectures, circuits

  17. VLSI in medicine

    CERN Document Server

    Einspruch, Norman G

    1989-01-01

    VLSI Electronics Microstructure Science, Volume 17: VLSI in Medicine deals with the more important applications of VLSI in medical devices and instruments.This volume is comprised of 11 chapters. It begins with an article about medical electronics. The following three chapters cover diagnostic imaging, focusing on such medical devices as magnetic resonance imaging, neurometric analyzer, and ultrasound. Chapters 5, 6, and 7 present the impact of VLSI in cardiology. The electrocardiograph, implantable cardiac pacemaker, and the use of VLSI in Holter monitoring are detailed in these chapters. The

  18. VLSI Design of Low Power High Speed 4 Bit Resolution Pipeline ADC In Submicron CMOS Technology

    OpenAIRE

    Rita M. Shende; Pritesh R. Gumble

    2012-01-01

    Analog-to-digital converters (ADCs) are key design blocks and are currently adopted in many application fields to improve digital systems, which achieve superior performances with respect to analog solutions. Application such as wireless communication and digital audio and video have created the need for costeffective data converters that will achieve higher speed and resolution. Widespread usage confers great importance to the design activities, which nowadays largely contributes to the prod...

  19. VLSI Design of Low Power High Speed 4 Bit Resolution Pipeline ADC In Submicron CMOS Technology

    Directory of Open Access Journals (Sweden)

    Rita M. Shende

    2012-01-01

    Full Text Available Analog-to-digital converters (ADCs are key design blocks and are currently adopted in many application fields to improve digital systems, which achieve superior performances with respect to analog solutions. Application such as wireless communication and digital audio and video have created the need for costeffective data converters that will achieve higher speed and resolution. Widespread usage confers great importance to the design activities, which nowadays largely contributes to the production cost in integrated circuit devices (ICs. Various examples of ADC applications can be found in data acquisition systems, measurement systems and digital communication systems also imaging, instrumentation systems. Since theADC has a continuous, infinite –valued signal as its input, the important analog points on the transfer curve x-axis for an ADC are the ones that corresponding to changes in the digital output word. These input transitions determine the amount of INL and DNL associated with the converter. Hence, we have to considered all the parameters and improving the associated performance may significantly reduce the industrial cost of an ADC manufacturing process and improved the resolution and design specially powerconsumption . The paper presents a design of 4 bit Pipeline ADC with low power dissipation implemented in <0.18µm.

  20. VLSI circuits for high speed data conversion

    Science.gov (United States)

    Wooley, Bruce A.

    1994-05-01

    The focus of research has been the study of fundamental issues in the design and testing of data conversion interfaces for high performance VLSI signal processing and communications systems. Because of the increased speed and density that accompany the continuing scaling of VLSI technologies, digital means of processing, communicating, and storing information are rapidly displacing their analog counterparts across a broadening spectrum of applications. In such systems, the limitations on system performance generally occur at the interfaces between the digital representation of information and the analog environment in which the system is embedded. Specific results of this research include the design and implementation of low-power BiCMOS comparators and sample-and-hold amplifiers operating at clock rates as high as 200 MHz, the design and integration of a 12-bit, 5 MHz CMOS A/D converter employing a two-step architecture and a novel self-calibrating comparator, the design and integration of an optoelectronic communications receiver front-end in a GaAs-on-Si technology, the initiation of research into the use of an active silicon substrate probe card for fully testing high-performance mixed-signal circuits at the wafer level, and a preliminary study of means for correcting dynamic errors in high-performance A/D converters.

  1. Design and VLSI Implementation of Anticollision Enabled Robot Processor Using RFID Technology

    Directory of Open Access Journals (Sweden)

    Joyashree Bag

    2012-12-01

    Full Text Available RFID is a low power wireless emerging technology which has given rise to highly promising applications in real life. It can be employed for robot navigation. In multi-robot environment, when many robots are moving in the same work space, there is a possibility of their physical collision with themselves as well as with physical objects. In the present work, we have proposed and developed a processor incorporating smart algorithm for avoiding such collisions with the help of RFID technology and implemented it by using VHDL. The design procedure and the simulated results are very useful in designing and implementing a practical RFID system. The RTL schematic view of the processor is achieved by successfully synthesizing the proposed design.KEYWORDS

  2. Spike-based VLSI modeling of the ILD system in the echolocating bat.

    Science.gov (United States)

    Horiuchi, T; Hynna, K

    2001-01-01

    The azimuthal localization of objects by echolocating bats is based on the difference of echo intensity received at the two ears, known as the interaural level difference (ILD). Mimicking the neural circuitry in the bat associated with the computation of ILD, we have constructed a spike-based VLSI model that can produce responses similar to those seen in the lateral superior olive (LSO) and some parts of the inferior colliculus (IC). We further explore some of the interesting computational consequences of the dynamics of both synapses and cellular mechanisms.

  3. VLSI Watermark Implementations and Applications

    OpenAIRE

    Shoshan, Yonatan; Fish, Alexander; Li, Xin; Jullien, Graham,; Yadid-Pecht, Orly

    2008-01-01

    This paper presents an up to date review of digital watermarking (WM) from a VLSI designer point of view. The reader is introduced to basic principles and terms in the field of image watermarking. It goes through a brief survey on WM theory, laying out common classification criterions and discussing important design considerations and trade-offs. Elementary WM properties such as robustness, computational complexity and their influence on image quality are discussed. Common att...

  4. VLSI design of lossless frame recompression using multi-orientation prediction

    Science.gov (United States)

    Lee, Yu-Hsuan; You, Yi-Lun; Chen, Yi-Guo

    2016-01-01

    Pursuing an experience of high-end visual quality drives human to demand a higher display resolution and a higher frame rate. Hence, a lot of powerful coding tools are aggregated together in emerging video coding standards to improve coding efficiency. This also makes video coding standards suffer from two design challenges: heavy computation and tremendous memory bandwidth. The first issue can be properly solved by a careful hardware architecture design with advanced semiconductor processes. Nevertheless, the second one becomes a critical design bottleneck for a modern video coding system. In this article, a lossless frame recompression using multi-orientation prediction technique is proposed to overcome this bottleneck. This work is realised into a silicon chip with the technology of TSMC 0.18 µm CMOS process. Its encoding capability can reach full-HD (1920 × 1080)@48 fps. The chip power consumption is 17.31 mW@100 MHz. Core area and chip area are 0.83 × 0.83 mm2 and 1.20 × 1.20 mm2, respectively. Experiment results demonstrate that this work exhibits an outstanding performance on lossless compression ratio with a competitive hardware performance.

  5. VLSI circuits for bidirectional interface to peripheral and visceral nerves.

    Science.gov (United States)

    Greenwald, Elliot; Wang, Qihong; Thakor, Nitish V

    2015-08-01

    This paper presents an architecture for sensing nerve signals and delivering functional electrical stimulation to peripheral and visceral nerves. The design is based on the very large scale integration (VLSI) technology and amenable to interface to microelectrodes and building a fully implantable system. The proposed stimulator was tested on the vagus nerve and is under further evaluation and testing of various visceral nerves and their functional effects on the innervated organs.

  6. 超大规模集成电路可调试性设计综述%Survey of Design-for-Debug of VLSI

    Institute of Scientific and Technical Information of China (English)

    钱诚; 沈海华; 陈天石; 陈云霁

    2012-01-01

    随着硬件复杂度的不断提高和并行软件调试的需求不断增长,可调试性设计已经成为集成电路设计中的重要内容.一方面,仅靠传统的硅前验证已经无法保证现代超大规模复杂集成电路设计验证的质量,因此作为硅后验证重要支撑技术的可调试性设计日渐成为大规模集成电路设计领域的研究热点.另一方面,并行程序的调试非常困难,很多细微的bug无法直接用传统的单步、断点等方法进行调试,如果没有专门的硬件支持,需要耗费极大的人力和物力.全面分析了现有的可调试性设计,在此基础上归纳总结了可调试性设计技术的主要研究方向并介绍了各个方向的研究进展,深入探讨了可调试性结构设计研究中的热点问题及其产生根源,给出了可调试性结构设计领域的发展趋势.%Design-for-debug (DFD) has become an important feature of modern VLSI. On the one hand, traditional pre-silicon verification methods are not sufficient to enssure the quality of modern complex VLSI designs, thus employing DFD to facilitate post-silicon verification has attracted wide interests from both academia and industry; on the other hand, debugging parallel program is a worldwide difficult problem, which cries out for DFD hardware supports. In this paper, we analyze the existing structures of DFD comprehensively and introduce different fields of DFD for debugging hardware and software. These fields contain various kinds of DFD infrastructures, such as the DFD infrastructure for the pipe line of processor, the system-on-chips (SOC) and the networks on multi-cores processor. We also introduce the recent researches on how to design the DFD infrastructures with certain processor architecture and how to use the DFD infrastructures to solve the debug problems in these different fields. The topologic of the whole infrastructure, the hardware design of components, the methods of analyzing signals, the

  7. Implementation of Plasmonics in VLSI

    Directory of Open Access Journals (Sweden)

    Shreya Bhattacharya

    2012-12-01

    Full Text Available This Paper presents the idea of Very Large Scale Integration (VLSI using Plasmonic Waveguides.Current VLSI techniques are facing challenges with respect to clock frequencies which tend to scale up, making it more difficult for the designers to distribute and maintain low clock skew between these high frequency clocks across the entire chip. Surface Plasmons are light waves that occur at a metal/dielectric interface, where a group of electrons is collectively moving back and forth. These waves are trapped near the surface as they interact with the plasma of electrons near the surface of the metal. The decay length of SPs into the metal is two orders of magnitude smaller than the wavelength of the light in air. This feature of SPs provides the possibility of localization and the guiding of light in sub wavelength metallic structures, and it can be used to construct miniaturized optoelectronic circuits with sub wavelength components. In this paper, various methods of doing the same have been discussed some of which include DLSPPW’s, Plasmon waveguides by self-assembly, Silicon-based plasmonic waveguides etc. Hence by using Plasmonic chips, the speed, size and efficiency of microprocessor chips can be revolutionized thus bringing a whole new dimension to VLSI design.

  8. Implementation of Plasmonics in VLSI

    Directory of Open Access Journals (Sweden)

    Shreya Bhattacharya

    2012-12-01

    Full Text Available This Paper presents the idea of Very Large Scale Integration (VLSI using Plasmonic Waveguides. Current VLSI techniques are facing challenges with respect to clock frequencies which tend to scale up, making it more difficult for the designers to distribute and maintain low clock skew between these high frequency clocks across the entire chip. Surface Plasmons are light waves that occur at a metal/dielectric interface, where a group of electrons is collectively moving back and forth. These waves are trapped near the surface as they interact with the plasma of electrons near the surface of the metal. The decay length of SPs into the metal is two orders of magnitude smaller than the wavelength of the light in air. This feature of SPs provides the possibility of localization and the guiding of light in sub wavelength metallic structures, and it can be used to construct miniaturized optoelectronic circuits with sub wavelength components. In this paper, various methods of doing the same have been discussed some of which include DLSPPW’s, Plasmon waveguides by self-assembly, Silicon-based plasmonic waveguides etc. Hence by using Plasmonic chips, the speed, size and efficiency of microprocessor chips can be revolutionized thus bringing a whole new dimension to VLSI design.

  9. A 124 Mpixels/s VLSI design for histogram-based joint bilateral filtering.

    Science.gov (United States)

    Tseng, Yu-Cheng; Hsu, Po-Hsiung; Chang, Tian-Sheuan

    2011-11-01

    This paper presents an efficient and scalable design for histogram-based bilateral filtering (BF) and joint BF (JBF) by memory reduction methods and architecture design techniques to solve the problems of high memory cost, high computational complexity, high bandwidth, and large range table. The presented memory reduction methods exploit the progressive computing characteristics to reduce the memory cost to 0.003%-0.020%, as compared with the original approach. Furthermore, the architecture design techniques adopt range domain parallelism and take advantage of the computing order and the numerical properties to solve the complexity, bandwidth, and range-table problems. The example design with a 90-nm complementary metal-oxide-semiconductor process can deliver the throughput to 124 Mpixels/s with 356-K gate counts and 23-KB on-chip memory.

  10. Plasma processing for VLSI

    CERN Document Server

    Einspruch, Norman G

    1984-01-01

    VLSI Electronics: Microstructure Science, Volume 8: Plasma Processing for VLSI (Very Large Scale Integration) discusses the utilization of plasmas for general semiconductor processing. It also includes expositions on advanced deposition of materials for metallization, lithographic methods that use plasmas as exposure sources and for multiple resist patterning, and device structures made possible by anisotropic etching.This volume is divided into four sections. It begins with the history of plasma processing, a discussion of some of the early developments and trends for VLSI. The second section

  11. Design of a VLSI charge-coupled device analog delay line

    Science.gov (United States)

    Gedra, David R.

    1995-03-01

    Charge coupled devices (CCD's) are semiconductor devices which can transfer information, represented by a quantity of electrical charge, from one physical location of the semiconductor substrate to another in a controlled manner with the use of properly sequenced clock pulses. These devices can be applied to imaging, signal processing, logic, and digital storage applications. In this thesis, the design of an electrically stimulated CCD analog delay line, using the design tools currently available at the Naval Postgraduate School, is reported on. The major issues addressed are the electrode gate structure and composition, charge confinement techniques, and clocking schemes. Additionally, techniques for inpuning and detecting charge packets from the CCD register are examined. The Metal Oxide Semiconductor Integration Service (MOSIS) design rules only permit Bulk Channel Charge Couple Devices (BCCD's) to be lald out, and not Surface Channel Charge Coupled Devices (SCCD's). Restricted to a die size of 2.24 mm length, the electrode gates were chosen to be polysilicon polysilicon 8 micron length with 2 micron overlap and 20 micron width, giving the BCCD 64 stages. An on chip four phase clocking circuit with output drivers on each phase provides the control voltage for the gate electrodes. The small width of the BCCD delay line utilizes only a small portion of the available 2.22 mm die width. Therefore, four different BCCD's were designed in the layout. Two of the BCCD's have a p-diffusion stop to contain the charge laterally as it propagates along the channel while two BCCD's do not. Additionally, two of the BCCD's utilize the charge partition input technique with three control gates and two BCCD's use the dynamic current injection with one control gate.

  12. A CMOS VLSI IC for real-time opto-electronic two-dimensional histogram generation

    Science.gov (United States)

    Richstein, James K.

    1993-12-01

    Histogram generation, a standard image processing operation, is a record of the intensity distribution in the image. Histogram generation has straightforward implementations on digital computers using high level languages. A prototype of an optical-electronic histogram generator was designed and tested for 1-D objects using wirewrapped MSI TTL components. The system has shown to be fairly modular in design. The aspects of the extension to two dimensions and the VLSI implementation of this design are discussed. In this paper, we report a VLSI design to be used in a two-dimensional real-time histogram generation scheme. The overall system design is such that the electronic signal obtained from the optically scanned two-dimensional semi-opaque image is processed and displayed within a period of one cycle of the scanning process. Specifically, in the VLSI implementation of the two-dimensional histogram generator, modifications were made to the original design. For the two-dimensional application, the output controller was analyzed as a finite state machine. The process used to describe the required timing signals and translate them to a VLSI finite state machine using Computer Aided Design Tools is discussed. In addition, the circuitry for sampling, binning, and display were combined with the timing circuitry on one IC. In the original design, the pulse width of the electronically sampled photodetector is limited with an analog one-shot. The high sampling rates associated with the extension to two dimensions requires significant reduction in the original 1-D prototype's sample pulse width of approximately 75 ns. The alternate design using VLSI logic gates will provide one-shot pulse widths of approximately 3 ns.

  13. VLSI Reliability in Europe

    NARCIS (Netherlands)

    Verweij, Jan F.

    1993-01-01

    Several issue's regarding VLSI reliability research in Europe are discussed. Organizations involved in stimulating the activities on reliability by exchanging information or supporting research programs are described. Within one such program, ESPRIT, a technical interest group on IC reliability was

  14. VLSI systems energy management from a software perspective – A literature survey

    Directory of Open Access Journals (Sweden)

    Prasada Kumari K.S.

    2016-09-01

    Full Text Available The increasing demand for ultra-low power electronic systems has motivated research in device technology and hardware design techniques. Experimental studies have proved that the hardware innovations for power reduction are fully exploited only with the proper design of upper layer software. Also, the software power and energy modelling and analysis – the first step towards energy reduction is complex due to the inter and intra dependencies of processors, operating systems, application software, programming languages and compilers. The subject is too vast; the paper aims to give a consolidated view to researchers in arriving at solutions to power optimization problems from a software perspective. The review emphasizes the fact that software design and implementation is to be viewed from system energy conservation angle rather than as an isolated process. After covering a global view of end to end software based power reduction techniques for micro sensor nodes to High Performance Computing systems, specific design aspects related to battery powered Embedded computing for mobile and portable systems are addressed in detail. The findings are consolidated into 2 major categories – those related to research directions and those related to existing industry practices. The emerging concept of Green Software with specific focus on mainframe computing is also discussed in brief. Empirical results on power saving are included wherever available. The paper concludes that only with the close co-ordination between hardware architect, software architect and system architect low energy systems can be realized.

  15. VLSI Research

    Science.gov (United States)

    1984-04-01

    massive amounts of data pertaining to seismic exploration or weather observation require much more processing power. These scientific calculations...1« IC *• Number of Processors it 3* (a) 5g - *• * C > «i o •• u w »- a • c a. MM , / \\ i i T2C sp«r*ttoni •*l«y > M unit...algorithms can be divided into two categories; namely, single-input single-output (SISO) and multi-input multi- output ( MIMO ) systems. A highly

  16. 用于混合信号VLSI的可扩展JTAG控制器IP核设计%Design of Extendable JTAG Controller IP Core for Mixed-signal VLSI

    Institute of Scientific and Technical Information of China (English)

    段延亮; 魏廷存; 高武; 许望洋

    2012-01-01

    The front-end read-out circuit for Positron Emission Tomography(PET) imaging system is a kind of digital-analog mixed-signal VLSI.Based on the features of multi-channel and high performances of these kinds of chip,the JTAG controller is adopted to realize the initial control and auxiliary test of the chip.An extendable JTAG controller IP core is designed using TSMC 0.18 μm CMOS process,which supports 14 groups of extendable control signal and also supports the reading and writing operations of 16 multi-bits registers scan chains,and joins with the customized substrate driving software.The designed JTAG controller IP core can be also used for the controlling and testing of other mixed-signal VLSI,and has good universality and engineering usage.%正电子发射断层成像系统(PET)前端读出电路是数模混合信号超大规模集成电路芯片.针对多通道高性能PET专用集成电路芯片的特点,采用JTAG控制器对该芯片进行初始控制和辅助测试.采用TSMC 0.18μmCMOS工艺设计实现了一个可扩展的JTAG控制器IP核,支持14组可扩展控制信号和16个多位寄存器扫描链的读/写操作,并配备定制的底层驱动软件.该JTAG控制器IP核还可用于其它混合信号VLSI的控制与测试,具有较强的通用性和工程实用价值.

  17. Statistics on VLSI Designs.

    Science.gov (United States)

    1980-04-17

    been given by Shamos [1978], Bentley and Ottmann [1979] and Bentley and Wood [1980], but they are very complex to code and fail to exploit many of...Research in Integrated Circuits, January, 1980. Bentley, J.L. and T. Ottmann [1979]. "Algorithms for reporting and counting geometric intersections," IEEE

  18. Accurate and Precise Computation Using Analog VLSI, with Applications to Computer Graphics and Neural Networks.

    Science.gov (United States)

    Kirk, David Blair

    This thesis develops an engineering practice and design methodology to enable us to use CMOS analog VLSI chips to perform more accurate and precise computation. These techniques form the basis of an approach that permits us to build computer graphics and neural network applications using analog VLSI. The nature of the design methodology focuses on defining goals for circuit behavior to be met as part of the design process. To increase the accuracy of analog computation, we develop techniques for creating compensated circuit building blocks, where compensation implies the cancellation of device variations, offsets, and nonlinearities. These compensated building blocks can be used as components in larger and more complex circuits, which can then also be compensated. To this end, we develop techniques for automatically determining appropriate parameters for circuits, using constrained optimization. We also fabricate circuits that implement multi-dimensional gradient estimation for a gradient descent optimization technique. The parameter-setting and optimization tools allow us to automatically choose values for compensating our circuit building blocks, based on our goals for the circuit performance. We can also use the techniques to optimize parameters for larger systems, applying the goal-based techniques hierarchically. We also describe a set of thought experiments involving circuit techniques for increasing the precision of analog computation. Our engineering design methodology is a step toward easier use of analog VLSI to solve problems in computer graphics and neural networks. We provide data measured from compensated multipliers built using these design techniques. To demonstrate the feasibility of using analog VLSI for more quantitative computation, we develop small applications using the goal-based design approach and compensated components. Finally, we conclude by discussing the expected significance of this work for the wider use of analog VLSI for

  19. VLSI Processor For Vector Quantization

    Science.gov (United States)

    Tawel, Raoul

    1995-01-01

    Pixel intensities in each kernel compared simultaneously with all code vectors. Prototype high-performance, low-power, very-large-scale integrated (VLSI) circuit designed to perform compression of image data by vector-quantization method. Contains relatively simple analog computational cells operating on direct or buffered outputs of photodetectors grouped into blocks in imaging array, yielding vector-quantization code word for each such block in sequence. Scheme exploits parallel-processing nature of vector-quantization architecture, with consequent increase in speed.

  20. Low-power and area-optimized VLSI implementation of AES coprocessor for Zigbee system

    Institute of Scientific and Technical Information of China (English)

    LI Zhen-rong; ZHUANG Yi-qi; ZHANG Chao; JIN Gang

    2009-01-01

    A low-power and low-cost advanced encryption standard (AES) coprocessor is proposed for Zigbee system-on-a-chip (SoC) design. The cost and power consumption of the proposed AES coprocessor are reduced considerably by optimizing the architectures of SubBytes/InvSubBytes and MixColumns/InvMixColumns, integrating the encryption and deeryption procedures together by the method of resource sharing, and using the hierarchical power management strategy based on finite state machine (FSM) and clock gating (CG) technologies. Based on SMIC 0.18 μm complementary metal oxide semiconductor (CMOS) technology, the scale of the AES coprocessor is only about 10.5 kgate, the corresponding power consumption is 69.1 μW/MHz,and the throughput is 32 Mb/s, which is reasonable and sufficient for Zigbee system. Compared with other designs, the proposed architecture consumes less power and fewer hardware resources, which is conducive to the Zigbee system and other portable devices.

  1. Lithography for VLSI

    CERN Document Server

    Einspruch, Norman G

    1987-01-01

    VLSI Electronics Microstructure Science, Volume 16: Lithography for VLSI treats special topics from each branch of lithography, and also contains general discussion of some lithographic methods.This volume contains 8 chapters that discuss the various aspects of lithography. Chapters 1 and 2 are devoted to optical lithography. Chapter 3 covers electron lithography in general, and Chapter 4 discusses electron resist exposure modeling. Chapter 5 presents the fundamentals of ion-beam lithography. Mask/wafer alignment for x-ray proximity printing and for optical lithography is tackled in Chapter 6.

  2. Analog and VLSI circuits

    CERN Document Server

    Chen, Wai-Kai

    2009-01-01

    Featuring hundreds of illustrations and references, this book provides the information on analog and VLSI circuits. It focuses on analog integrated circuits, presenting the knowledge on monolithic device models, analog circuit cells, high performance analog circuits, RF communication circuits, and PLL circuits.

  3. VLSI architectures for modern error-correcting codes

    CERN Document Server

    Zhang, Xinmiao

    2015-01-01

    Error-correcting codes are ubiquitous. They are adopted in almost every modern digital communication and storage system, such as wireless communications, optical communications, Flash memories, computer hard drives, sensor networks, and deep-space probing. New-generation and emerging applications demand codes with better error-correcting capability. On the other hand, the design and implementation of those high-gain error-correcting codes pose many challenges. They usually involve complex mathematical computations, and mapping them directly to hardware often leads to very high complexity. VLSI

  4. VLSI Circuit Configuration Using Satisfiability Logic in Hopfield Network

    Directory of Open Access Journals (Sweden)

    Mohd Asyraf Mansor

    2016-09-01

    Full Text Available Very large scale integration (VLSI circuit comprises of integrated circuit (IC with transistors in a single chip, widely used in many sophisticated electronic devices. In our paper, we proposed VLSI circuit design by implementing satisfiability problem in Hopfield neural network as circuit verification technique. We restrict our logic construction to 2-Satisfiability (2-SAT and 3- Satisfiability (3-SAT clauses in order to suit with the transistor configuration in VLSI circuit. In addition, we developed VLSI circuit based on Hopfield neural network in order to detect any possible error earlier than the manual circuit design. Microsoft Visual C++ 2013 is used as a platform for training, testing and validating of our proposed design. Hence, the performance of our proposed technique evaluated based on global VLSI configuration, circuit accuracy and the runtime. It has been observed that the VLSI circuits (HNN-2SAT and HNN-3SAT circuit developed by proposed design are better than the conventional circuit due to the early error detection in our circuit.

  5. Power gating of VLSI circuits using MEMS switches in low power applications

    KAUST Repository

    Shobak, Hosam

    2011-12-01

    Power dissipation poses a great challenge for VLSI designers. With the intense down-scaling of technology, the total power consumption of the chip is made up primarily of leakage power dissipation. This paper proposes combining a custom-designed MEMS switch to power gate VLSI circuits, such that leakage power is efficiently reduced while accounting for performance and reliability. The designed MEMS switch is characterized by an 0.1876 ? ON resistance and requires 4.5 V to switch. As a result of implementing this novel power gating technique, a standby leakage power reduction of 99% and energy savings of 33.3% are achieved. Finally the possible effects of surge currents and ground bounce noise are studied. These findings allow longer operation times for battery-operated systems characterized by long standby periods. © 2011 IEEE.

  6. VLSI 'smart' I/O module development

    Science.gov (United States)

    Kirk, Dan

    The developmental history, design, and operation of the MIL-STD-1553A/B discrete and serial module (DSM) for the U.S. Navy AN/AYK-14(V) avionics computer are described and illustrated with diagrams. The ongoing preplanned product improvement for the AN/AYK-14(V) includes five dual-redundant MIL-STD-1553 channels based on DSMs. The DSM is a front-end processor for transferring data to and from a common memory, sharing memory with a host processor to provide improved 'smart' input/output performance. Each DSM comprises three hardware sections: three VLSI-6000 semicustomized CMOS arrays, memory units to support the arrays, and buffers and resynchronization circuits. The DSM hardware module design, VLSI-6000 design tools, controlware and test software, and checkout procedures (using a hardware simulator) are characterized in detail.

  7. VLSI Implementation of OFDM Transceiver for 802.11n systems

    Directory of Open Access Journals (Sweden)

    Shreyas Kulkarni

    2015-05-01

    Full Text Available Orthogonal Frequency Division Multiplexing (OFDM is the most widely used modulation technique for wireless communication network. In this paper, 4 x 4 spatially multiplexed MIMO OFDM transceiver is designed using 1/2 encoder and 64 bit FFT. The implementation has been carried out in hardware using Field Programmable Gate Array (FPGA. Both the transmitter and the receiver are implemented on a single FPGA board with the channel being a wired one. The FPGA board used is Diligent Atlys Xilinx Spartan 6. We have analysed the effect of Bit Error Rate and Data rate with respect to Signal to Noise ratio.

  8. Neuromorphic VLSI Models of Selective Attention: From Single Chip Vision Sensors to Multi-chip Systems

    Directory of Open Access Journals (Sweden)

    Giacomo Indiveri

    2008-09-01

    Full Text Available Biological organisms perform complex selective attention operations continuously and effortlessly. These operations allow them to quickly determine the motor actions to take in response to combinations of external stimuli and internal states, and to pay attention to subsets of sensory inputs suppressing non salient ones. Selective attention strategies are extremely effective in both natural and artificial systems which have to cope with large amounts of input data and have limited computational resources. One of the main computational primitives used to perform these selection operations is the Winner-Take-All (WTA network. These types of networks are formed by arrays of coupled computational nodes that selectively amplify the strongest input signals, and suppress the weaker ones. Neuromorphic circuits are an optimal medium for constructing WTA networks and for implementing efficient hardware models of selective attention systems. In this paper we present an overview of selective attention systems based on neuromorphic WTA circuits ranging from single-chip vision sensors for selecting and tracking the position of salient features, to multi-chip systems implement saliency-map based models of selective attention.

  9. A High-Speed Asynchronous Communication Technique for MOS (Metal-Oxide-Semiconductor) VLSI Systems.

    Science.gov (United States)

    1985-12-01

    by a well controlled amount; rather than use an active delay line the passive delay inherent in the pc board traces could be used. The transmission...in a synchronous system without a detailed analysis of the actual delays involved. The technique provides phase jitter inmunity of close to 1/4 of .~k

  10. 基于GPU的VLSI的DRC加速系统%DRC Accelerated System of VLSI Based on GPU

    Institute of Scientific and Technical Information of China (English)

    池凤彬; 潘日华; 陈扉; 赵冬晖

    2007-01-01

    在超大规模集成电路(VLSI)设计流程中,设计规则检查(DRC)是关键一环.多年来,设计人员为DRC设计了许多硬件加速的方法,但是都局限于成本等诸多原因而不能得到推广.因此提出了基于GPU平台的DRC方法,大幅提高了DRC效率.

  11. Very Large Scale Integration (VLSI).

    Science.gov (United States)

    Yeaman, Andrew R. J.

    Very Large Scale Integration (VLSI), the state-of-the-art production techniques for computer chips, promises such powerful, inexpensive computing that, in the future, people will be able to communicate with computer devices in natural language or even speech. However, before full-scale VLSI implementation can occur, certain salient factors must be…

  12. A Low power and area efficient CLA adder design using Full swing GDI technique

    OpenAIRE

    Matcha Hemanth Kumar; Prof. Dr.S.M.VALI

    2015-01-01

    The low power VLSI design has an important role in designing of many electronic systems. While designing any combinational or sequential circuits, the important parameters like power consumption, implementation area, voltage leakage and performance of the circuit are to be considered. Design of area, high speed and powerefficient data path logic systems forms the largest areas of research in VLSI system design. This paper presents a low power Carry look ahead adder design using Full swing Gat...

  13. VLSI architecture of leading eigenvector generation for on-chip principal component analysis spike sorting system.

    Science.gov (United States)

    Chen, Tung-Chien; Liu, Wentai; Chen, Liang-Gee

    2008-01-01

    On-chip spike detection and principal component analysis (PCA) sorting hardware in an integrated multi-channel neural recording system is highly desired to ease the bandwidth bottleneck from high-density microelectrode array implanted in the cortex. In this paper, we propose the first leading eigenvector generator, the key hardware module of PCA, to enable the whole framework. Based on the iterative eigenvector distilling algorithm, the proposed flipped structure enables the low cost and low power implementation by discarding the division and square root hardware units. Further, the proposed adaptive level shifting scheme optimizes the accuracy and area trade off by dynamically increasing the quantization parameter according to the signal level.With the specification of four principal components/channel, 32 samples/spike, and nine bits/sample, the proposed hardware can train 312 channels per minute with 1MHz operation frequency. 0.13 mm(2) silicon area and 282microW power consumption are required in 90 nm 1P9M CMOS process.

  14. Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems

    Science.gov (United States)

    Giulioni, Massimiliano; Corradi, Federico; Dante, Vittorio; Del Giudice, Paolo

    2015-10-01

    Neuromorphic chips embody computational principles operating in the nervous system, into microelectronic devices. In this domain it is important to identify computational primitives that theory and experiments suggest as generic and reusable cognitive elements. One such element is provided by attractor dynamics in recurrent networks. Point attractors are equilibrium states of the dynamics (up to fluctuations), determined by the synaptic structure of the network; a ‘basin’ of attraction comprises all initial states leading to a given attractor upon relaxation, hence making attractor dynamics suitable to implement robust associative memory. The initial network state is dictated by the stimulus, and relaxation to the attractor state implements the retrieval of the corresponding memorized prototypical pattern. In a previous work we demonstrated that a neuromorphic recurrent network of spiking neurons and suitably chosen, fixed synapses supports attractor dynamics. Here we focus on learning: activating on-chip synaptic plasticity and using a theory-driven strategy for choosing network parameters, we show that autonomous learning, following repeated presentation of simple visual stimuli, shapes a synaptic connectivity supporting stimulus-selective attractors. Associative memory develops on chip as the result of the coupled stimulus-driven neural activity and ensuing synaptic dynamics, with no artificial separation between learning and retrieval phases.

  15. Leak detection utilizing analog binaural (VLSI) techniques

    Science.gov (United States)

    Hartley, Frank T. (Inventor)

    1995-01-01

    A detection method and system utilizing silicon models of the traveling wave structure of the human cochlea to spatially and temporally locate a specific sound source in the presence of high noise pandemonium. The detection system combines two-dimensional stereausis representations, which are output by at least three VLSI binaural hearing chips, to generate a three-dimensional stereausis representation including both binaural and spectral information which is then used to locate the sound source.

  16. Recovery Act - CAREER: Sustainable Silicon -- Energy-Efficient VLSI Interconnect for Extreme-Scale Computing

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Patrick [Oregon State Univ., Corvallis, OR (United States)

    2014-01-31

    The research goal of this CAREER proposal is to develop energy-efficient, VLSI interconnect circuits and systems that will facilitate future massively-parallel, high-performance computing. Extreme-scale computing will exhibit massive parallelism on multiple vertical levels, from thou­ sands of computational units on a single processor to thousands of processors in a single data center. Unfortunately, the energy required to communicate between these units at every level (on­ chip, off-chip, off-rack) will be the critical limitation to energy efficiency. Therefore, the PI's career goal is to become a leading researcher in the design of energy-efficient VLSI interconnect for future computing systems.

  17. VLSI Microsystem for Rapid Bioinformatic Pattern Recognition

    Science.gov (United States)

    Fang, Wai-Chi; Lue, Jaw-Chyng

    2009-01-01

    A system comprising very-large-scale integrated (VLSI) circuits is being developed as a means of bioinformatics-oriented analysis and recognition of patterns of fluorescence generated in a microarray in an advanced, highly miniaturized, portable genetic-expression-assay instrument. Such an instrument implements an on-chip combination of polymerase chain reactions and electrochemical transduction for amplification and detection of deoxyribonucleic acid (DNA).

  18. An Opto-VLSI-based reconfigurable optical adddrop multiplexer employing an off-axis 4-f imaging system.

    Science.gov (United States)

    Shen, Mingya; Xiao, Feng; Ahderom, Selam; Alameh, Kamal

    2009-08-03

    A novel reconfigurable optical add-drop multiplexer (ROADM) structure is proposed and demonstrated experimentally. The ROADM structure employs two arrayed waveguide gratings (AWGs), an array of optical fiber pairs, an array of 4-f imaging microlenses that are offset in relation to the axis of symmetry of the fiber pairs, and a reconfigurable Opto-VLSI processor that switches various wavelength channels between the fiber pairs to achieve add or drop multiplexing. Experimental results are shown, which demonstrate the principle of add/drop multiplexing with crosstalk of less than -27dB and insertion loss of less than 8dB over the Cband for drop and through operation modes.

  19. Self arbitrated VLSI asynchronous sequential circuits

    Science.gov (United States)

    Whitaker, S.; Maki, G.

    1990-01-01

    A new class of asynchronous sequential circuits is introduced in this paper. The new design procedures are oriented towards producing asynchronous sequential circuits that are implemented with CMOS VLSI and take advantage of pass transistor technology. The first design algorithm utilizes a standard Single Transition Time (STT) state assignment. The second method introduces a new class of self synchronizing asynchronous circuits which eliminates the need for critical race free state assignments. These circuits arbitrate the transition path action by forcing the circuit to sequence through proper unstable states. These methods result in near minimum hardware since only the transition paths associated with state variable changes need to be implemented with pass transistor networks.

  20. Radiation tolerant VLSI circuits in standard deep submicron CMOS technologies for the LHC experiments practical design aspects

    CERN Document Server

    Anelli, G; Delmastro, M; Faccio, F; Floria, S; Giraldo, A; Heijne, Erik H M; Jarron, Pierre; Kloukinas, Kostas C; Marchioro, A; Moreira, P; Snoeys, W

    1999-01-01

    We discuss design issues related to the extensive use of Enclosed Layout Transistors (ELT's) and guard rings in deep submicron CMOS technologies in order to improve radiation tolerance of ASIC's designed for the LHC experiments (the Large Hadron Collider at present under construction at CERN). We present novel aspects related to the use of ELT's: noise measured before and after irradiation up to 100 Mrad (SiO/sub 2/), a model to calculate the W/L ratio and matching properties of these devices. Some conclusions concerning the density and the speed of IC's conceived with this design approach are finally drawn. (16 refs).

  1. Design of Dual Dynamic Flip-Flop with Featuring Efficient Embedded Logic for Low Power Cmos Vlsi Circuits

    Directory of Open Access Journals (Sweden)

    Adhiyaman P1 ,

    2014-03-01

    Full Text Available In this paper, we introduce a new dual dynamic node hybrid flip-flop (DDFF and a novel embedded logic module (DDFF-ELM based on DDFF. The proposed designs eliminate the large capacitance present in the pre-charge node of several state-of-the-art designs by following a split dynamic node structure to separately drive the output pull-up and pull down transistors. The aim of the DDFF-ELM is to reduce pipeline overhead. It presents an area, power, and speed efficient method to incorporate complex logic functions into the flip-flop. The performance comparisons made in a 90 nm technology when compared to the Semi dynamic flip-flop, with no degradation in speed performance. The leakage power and process-voltage-temperature variations of various designs are studied in detail and are compared with the proposed designs.

  2. A radial basis function neurocomputer implemented with analog VLSI circuits

    Science.gov (United States)

    Watkins, Steven S.; Chau, Paul M.; Tawel, Raoul

    1992-01-01

    An electronic neurocomputer which implements a radial basis function neural network (RBFNN) is described. The RBFNN is a network that utilizes a radial basis function as the transfer function. The key advantages of RBFNNs over existing neural network architectures include reduced learning time and the ease of VLSI implementation. This neurocomputer is based on an analog/digital hybrid design and has been constructed with both custom analog VLSI circuits and a commercially available digital signal processor. The hybrid architecture is selected because it offers high computational performance while compensating for analog inaccuracies, and it features the ability to model large problems.

  3. VLSI Circuits for High Speed Data Conversion

    Science.gov (United States)

    1994-05-16

    Meeting, pp. 289-292, Sept. 199 1. [4] Behzad Razavi , "High-Speed, Nigh-Resolution Analog-to-Digital Conversion in VLSI Technologies, Ph.D. Thesis... Behzad Razavi and Bruce A. Wooley, "Design Techniques for High-Speed, High- Resolution Comparators," IEEE J. Solid-State Circuits, vol. 27, pp. 1916-192...Dec. 1992. [8] Behzad Razavi and Bruce A. Wooley, "A 12-Bkt 5-MSamplesoc Two-Step CMOS A/D Converter," IEEE J. Solid-State Circuits, vol. 27, pp

  4. Efficient VLSI architecture for training radial basis function networks.

    Science.gov (United States)

    Fan, Zhe-Cheng; Hwang, Wen-Jyi

    2013-03-19

    This paper presents a novel VLSI architecture for the training of radial basis function (RBF) networks. The architecture contains the circuits for fuzzy C-means (FCM) and the recursive Least Mean Square (LMS) operations. The FCM circuit is designed for the training of centers in the hidden layer of the RBF network. The recursive LMS circuit is adopted for the training of connecting weights in the output layer. The architecture is implemented by the field programmable gate array (FPGA). It is used as a hardware accelerator in a system on programmable chip (SOPC) for real-time training and classification. Experimental results reveal that the proposed RBF architecture is an effective alternative for applications where fast and efficient RBF training is desired.

  5. Efficient VLSI Architecture for Training Radial Basis Function Networks

    Directory of Open Access Journals (Sweden)

    Wen-Jyi Hwang

    2013-03-01

    Full Text Available This paper presents a novel VLSI architecture for the training of radial basis function (RBF networks. The architecture contains the circuits for fuzzy C-means (FCM and the recursive Least Mean Square (LMS operations. The FCM circuit is designed for the training of centers in the hidden layer of the RBF network. The recursive LMS circuit is adopted for the training of connecting weights in the output layer. The architecture is implemented by the field programmable gate array (FPGA. It is used as a hardware accelerator in a system on programmable chip (SOPC for real-time training and classification. Experimental results reveal that the proposed RBF architecture is an effective alternative for applications where fast and efficient RBF training is desired.

  6. Application of a Silicon Compiler to VLSI (Very Large Scale Integrated Circuits) Design of Digital Pipelined Multipliers.

    Science.gov (United States)

    1984-06-01

    researchers, McCulloch and Pitts who studied neurological systems from a mathematical and logic stand- point) is a silicon compiler developed at the...point is given the label. Mextra does not recognize the CIF user extension w0. which is us-ed by MIT and Lincoln Labs programs (eg. mac- pitts ) to

  7. Multi-net optimization of VLSI interconnect

    CERN Document Server

    Moiseev, Konstantin; Wimer, Shmuel

    2015-01-01

    This book covers layout design and layout migration methodologies for optimizing multi-net wire structures in advanced VLSI interconnects. Scaling-dependent models for interconnect power, interconnect delay and crosstalk noise are covered in depth, and several design optimization problems are addressed, such as minimization of interconnect power under delay constraints, or design for minimal delay in wire bundles within a given routing area. A handy reference or a guide for design methodologies and layout automation techniques, this book provides a foundation for physical design challenges of interconnect in advanced integrated circuits.  • Describes the evolution of interconnect scaling and provides new techniques for layout migration and optimization, focusing on multi-net optimization; • Presents research results that provide a level of design optimization which does not exist in commercially-available design automation software tools; • Includes mathematical properties and conditions for optimal...

  8. Design methods for fault-tolerant finite state machines

    Science.gov (United States)

    Niranjan, Shailesh; Frenzel, James F.

    1993-01-01

    VLSI electronic circuits are increasingly being used in space-borne applications where high levels of radiation may induce faults, known as single event upsets. In this paper we review the classical methods of designing fault tolerant digital systems, with an emphasis on those methods which are particularly suitable for VLSI-implementation of finite state machines. Four methods are presented and will be compared in terms of design complexity, circuit size, and estimated circuit delay.

  9. CMOS VLSI Hyperbolic Tangent Function & its Derivative Circuits for Neuron Implementation

    Directory of Open Access Journals (Sweden)

    Hussein CHIBLE,

    2013-10-01

    Full Text Available The hyperbolic tangent function and its derivative are key essential element in analog signal processing and especially in analog VLSI implementation of neuron of artificial neural networks. The main conditions of these types of circuits are the small silicon area, and the low power consumption. The objective of this paper is to study and design CMOS VLSI hyperbolic tangent function and its derivative circuit for neural network implementation. A circuit is designed and the results are presented

  10. Noise tolerant voltage-controlled LC oscillator circuits for deep submicron VLSI system-on-a-chip radio circuits

    OpenAIRE

    Typpö, Jukka

    2003-01-01

    This thesis studies the problems with maintaining the spectral purity of fully integrated VCO circuits for radio frequency synthesizers in single-chip system designs. LC tank circuit oscillator circuits are shown to convert amplitude variation in the tank circuit voltage into frequency modulation, if voltage dependent capacitances are present in the tank circuit. Since the parasitic capacitances of the gain transistors and the capacitance of the varactor device in a VCO circuit are voltage de...

  11. Spike timing dependent plasticity (STDP) can ameliorate process variations in neuromorphic VLSI.

    Science.gov (United States)

    Cameron, Katherine; Boonsobhak, Vasin; Murray, Alan; Renshaw, David

    2005-11-01

    A transient-detecting very large scale integration (VLSI) pixel is described, suitable for use in a visual-processing, depth-recovery algorithm based upon spike timing. A small array of pixels is coupled to an adaptive system, based upon spike timing dependent plasticity (STDP), that aims to reduce the effect of VLSI process variations on the algorithm's performance. Results from 0.35 microm CMOS temporal differentiating pixels and STDP circuits show that the system is capable of adapting to substantially reduce the effects of process variations without interrupting the algorithm's natural processes. The concept is generic to all spike timing driven processing algorithms in a VLSI.

  12. A Method of Neural Network Controller Implementation in VLSI Design%将神经网络控制器用于VLSI设计的方法研究

    Institute of Scientific and Technical Information of China (English)

    詹璨铭

    2015-01-01

    This article presents an approach to neural network implementation in VLSI ,which is called as neural network controller based on Petri net .The structure of the neurons in the network is uniform ;it is triggered by external events ,and output place and transition signals of petri net .Two types of neurons are introduced ,one is standing for serial process ,and the other is used in synchronization of processes .The dual types of neurons are chained together by stimulate inputs ,and compose the fabric .The controller is designed to conquer the side effects of state machine ,and improves the performance and reliability .Typically ,the controller is a precise description of the circuits .It is optimized to timing closure against constraints much easier than state machine .Reduplication of each node in neural network decrease single event upset (SEU) .Finally ,the controller is easy to rebuild .The new design flow has applied in practice ,and proved effectively .%探索在超大规模集成电路中应用神经网络控制器的方法.根据Petri网理论,将库所与变迁组合成神经节点,节点通过输入触发信号链接组成复杂控制网络.定义两种类型神经节点,一种是节点组成串行分枝,另外一种用于同步并发分枝.通过两种节点组合,形成三种基本网络结构,三种结构再次组合又可形成任意复杂控制器结构.根据控制器分枝内串行、分枝间并行的特点,设计编译软件,输入更抽象的分枝描述代码,自动生成对应神经网络控制器逻辑电路描述代码.VLSI设计中使用神经网络控制器,能够更接近了寄存器传输级电路,以及更精确地描述电路,还能提高设计性能与可靠性.复制神经节点减小单节点负载,可优化电路时序;复制节点还可构成冗余缓解空间单粒子翻转.神经网络控制器可以处理各种异常情况,提高功能容错性和可维护性.这种方法已经用

  13. A Coherent VLSI Design Environment

    Science.gov (United States)

    1987-12-31

    April 1, L0 A Mastiplexd Switched-Capacitor Filter Bank, Patrick Bosshart, MIT April 8, IM Analog Circuits in DOS PSI, Yannis Tsividis , Columbia...A.I. (Analog Intelligence), Yanni Tsividis , Columbia University, New York, NY December 2,1986 The Semiconductor Industry (Losing Sight of Your Added...Dept. of Elec. Eng. & Comp. Sci. 3:50 Yannis Tsividis and Dimitri A. Antoniadis, "A Mulitproject Chip i Approach to the Teaching of Analog MOS LSI and

  14. A Coherent VLSI Design Environment.

    Science.gov (United States)

    1985-09-30

    85-257, September, 1985. e b . . B% V" 4 pathway in bipolar logic. ii) finding a rational and easily automated method for modeling the driving-point...where the resistors are fixed, there is no internodal coupling capacitance, the pullup and pulldown networks have no internal capacitance, and the

  15. A Coherent VLSI Design Environment.

    Science.gov (United States)

    2014-09-26

    physical devices from which physical circuits are fabricated. By analogy with context-free languages , a class of circuits is generated by a phrase-structure... language called CLU [131. It consists of SPICE interface, minimization, and matrix manipulation program modules. These modules contain 3200, 1800, and...greatly simplify the optimization problem. They reformulated the original problem, a minimization subject to nonlinear constraints, as an

  16. Hybrid VLSI/QCA Architecture for Computing FFTs

    Science.gov (United States)

    Fijany, Amir; Toomarian, Nikzad; Modarres, Katayoon; Spotnitz, Matthew

    2003-01-01

    A data-processor architecture that would incorporate elements of both conventional very-large-scale integrated (VLSI) circuitry and quantum-dot cellular automata (QCA) has been proposed to enable the highly parallel and systolic computation of fast Fourier transforms (FFTs). The proposed circuit would complement the QCA-based circuits described in several prior NASA Tech Briefs articles, namely Implementing Permutation Matrices by Use of Quantum Dots (NPO-20801), Vol. 25, No. 10 (October 2001), page 42; Compact Interconnection Networks Based on Quantum Dots (NPO-20855) Vol. 27, No. 1 (January 2003), page 32; and Bit-Serial Adder Based on Quantum Dots (NPO-20869), Vol. 27, No. 1 (January 2003), page 35. The cited prior articles described the limitations of very-large-scale integrated (VLSI) circuitry and the major potential advantage afforded by QCA. To recapitulate: In a VLSI circuit, signal paths that are required not to interact with each other must not cross in the same plane. In contrast, for reasons too complex to describe in the limited space available for this article, suitably designed and operated QCAbased signal paths that are required not to interact with each other can nevertheless be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes.

  17. Design and Realization of a New Signal Security System for Multimedia Data Transmission

    Directory of Open Access Journals (Sweden)

    Hun-Chen Chen

    2003-12-01

    Full Text Available We propose a new signal security system and its VLSI architecture for real-time multimedia data transmission applications. We first define two bit-circulation functions for one-dimensional binary array transformation. Then, we exploit a chaotic system in generating a binary sequence to control the bit-circulation functions defined for performing the successive transformation on the input data. Each eight 8-bit data elements is regarded as a set and is fed into an 8×8 binary matrix being transformed on each row and each column of the matrix by these two bit-circulation functions such that the signal can be transformed into completely disordered data. The features of the proposed design include low computational complexity, regular operations suitable for low-cost VLSI implementation, high data security, and high feasibility for easy integration with commercial multimedia storage and transmission applications. We have performed Matlab simulation to verify the functional correctness of the proposed system. In implementing the system, a low-cost VLSI architecture has been designed, verified, and physically realized based on a 0.35 μm CMOS technology. The implementation results show that the proposed signal security system can achieve 117 Mbytes/s data throughput rate that is fast enough for real-time data protection in multimedia transmission applications.

  18. An Interactive Multimedia Learning Environment for VLSI Built with COSMOS

    Science.gov (United States)

    Angelides, Marios C.; Agius, Harry W.

    2002-01-01

    This paper presents Bigger Bits, an interactive multimedia learning environment that teaches students about VLSI within the context of computer electronics. The system was built with COSMOS (Content Oriented semantic Modelling Overlay Scheme), which is a modelling scheme that we developed for enabling the semantic content of multimedia to be used…

  19. Fundamentals of Microelectronics Processing (VLSI).

    Science.gov (United States)

    Takoudis, Christos G.

    1987-01-01

    Describes a 15-week course in the fundamentals of microelectronics processing in chemical engineering, which emphasizes the use of very large scale integration (VLSI). Provides a listing of the topics covered in the course outline, along with a sample of some of the final projects done by students. (TW)

  20. An Efficient Circulant MIMO Equalizer for CDMA Downlink: Algorithm and VLSI Architecture

    Directory of Open Access Journals (Sweden)

    Cavallaro Joseph R

    2006-01-01

    Full Text Available We present an efficient circulant approximation-based MIMO equalizer architecture for the CDMA downlink. This reduces the direct matrix inverse (DMI of size with complexity to some FFT operations with complexity and the inverse of some submatrices. We then propose parallel and pipelined VLSI architectures with Hermitian optimization and reduced-state FFT for further complexity optimization. Generic VLSI architectures are derived for the high-order receiver from partitioned submatrices. This leads to more parallel VLSI design with further complexity reduction. Comparative study with both the conjugate-gradient and DMI algorithms shows very promising performance/complexity tradeoff. VLSI design space in terms of area/time efficiency is explored extensively for layered parallelism and pipelining with a Catapult C high-level-synthesis methodology.

  1. Bilinear Interpolation Image Scaling Processor for VLSI

    Directory of Open Access Journals (Sweden)

    Ms. Pawar Ashwini Dilip

    2014-05-01

    Full Text Available We introduce image scaling processor using VLSI technique. It consist of Bilinear interpolation, clamp filter and a sharpening spatial filter. Bilinear interpolation algorithm is popular due to its computational efficiency and image quality. But resultant image consist of blurring edges and aliasing artifacts after scaling. To reduce the blurring and aliasing artifacts sharpening spatial filter and clamp filters are used as pre-filter. These filters are realized by using T-model and inversed T-model convolution kernels. To reduce the memory buffer and computing resources for proposed image processor design two T-model or inversed T-model filters are combined into combined filter which requires only one line buffer memory. Also, to reduce hardware cost Reconfigurable calculation unit (RCUis invented. The VLSI architecture in this work can achieve 280 MHz with 6.08-K gate counts, and its core area is 30 378 μm2 synthesized by a 0.13-μm CMOS process

  2. Analog CMOS Nonlinear Cells and Their Applications in VLSI Signal and Information Processing

    Science.gov (United States)

    Khachab, Nabil Ibrahim

    1990-01-01

    The development of reconfigurable analog CMOS building blocks and their applications in analog VLSI is discussed and introduced in much the same way a logic gate is used in digital VLSI. They simultaneously achieve four -quadrant multiplication and division. These applications include multiplication, signal squaring, division, signal inversion, amplitude modulation. New all MOS implementations of the Hopfield like neural networks are developed by using the new cells. In addition new and novel techniques for sensor linearization and for MOSFET-C programmable-Q and omega_{n} filters are introduced. The new designs are simple, versatile, programmable and make effective use of analog CAD tools. Moreover, they are easily extendable to other technologies such as GaAs and BiCMOS. The objective of these designs is to achieve reduction in Silicon area and power consumption and reduce the interconnections between cells. It is also sought to provide a robust design that is CAD-compatible and make effective use of the standard cell library approach. This will offer more versatility and flexibility for analog signal processing systems and neural networks. Some of these new cells and a 3-neuron neural system are fabricated in a 2mum CMOS process. Experimental results of these circuits verify the validity of this new design approach.

  3. VLSI circuit techniques and technologies for ultrahigh speed data conversion interfaces

    Science.gov (United States)

    Wooley, Bruce A.

    1991-04-01

    The performance of digital VLSI signal processing and communications systems is often limited by the data conversion interfaces between digital system-level components and the analog environment in which those components are embedded. The focus of this program has been research into the fundamental nature of such interfaces in systems that digitally process high-bandwidth signals for purposes such as radar imaging, high-resolution graphics, high-definition video, mobile and fiber-optic communications, and broadband instrumentation. Effort has been devoted to the study of both generic circuit functions, such as sampling and comparison, and architectural alternatives relevant to the implementation of high-speed data converters in present and emerging VLSI technologies. Specific results of the research include the design and realization of novel low-power CMOS and BiCMOS sampled-data comparators operating at rates as high as 200 MHz, the exploration of various design approaches to the implementation of high-speed sample-and-hold circuits in CMOS and BiCMOS technologies, and the design of a subranging CMOS analog-to-digital converter that provides 12-bit resolution at a conversion rate of 10 MHz.

  4. 2-D DCT Algorithm and Its Reduced VLSI Design%二维DCT算法及其精简的VLSI设计

    Institute of Scientific and Technical Information of China (English)

    陈伟; 卢贵主; 郑灵翔

    2008-01-01

    采用了快速算法,并通过矩阵的变化,得到了一维离散余弦变换(Discrete Cosine Transform,DCT)的一种快速实现,并由此提出一种精简的超大规模集成电路(Very-large-scale integration,VLSI)设计架构.使用了一维DCT的复用技术,带符号数的乘法器设计等技术,实现了二维DCT算法的精简的VLSI设计.实验结果表明,所设计的二维DCT设计有效,并能够获得非常精简的电路设计.

  5. Real-time simulation of biologically realistic stochastic neurons in VLSI.

    Science.gov (United States)

    Chen, Hsin; Saighi, Sylvain; Buhry, Laure; Renaud, Sylvie

    2010-09-01

    Neuronal variability has been thought to play an important role in the brain. As the variability mainly comes from the uncertainty in biophysical mechanisms, stochastic neuron models have been proposed for studying how neurons compute with noise. However, most papers are limited to simulating stochastic neurons in a digital computer. The speed and the efficiency are thus limited especially when a large neuronal network is of concern. This brief explores the feasibility of simulating the stochastic behavior of biological neurons in a very large scale integrated (VLSI) system, which implements a programmable and configurable Hodgkin-Huxley model. By simply injecting noise to the VLSI neuron, various stochastic behaviors observed in biological neurons are reproduced realistically in VLSI. The noise-induced variability is further shown to enhance the signal modulation of a neuron. These results point toward the development of analog VLSI systems for exploring the stochastic behaviors of biological neuronal networks in large scale.

  6. Introduction to RIMEP2: A Multi-Expression Programming System for the Design of Reversible Digital Circuits

    OpenAIRE

    Hadjam, Fatima; Moraga, Claudio

    2014-01-01

    Quantum computers are considered as a future alternative to circumvent the heat dissipation problem of VLSI circuits. The synthesis of reversible circuits is a very promising area of study considering the expected further technological advances towards quantum computing. In this report, we propose a linear genetic programming system to design reversible circuits -RIMEP2-. The system has evolved reversible circuits starting from scratch without resorting to a pre-existing library. The results ...

  7. Analog VLSI neural network integrated circuits

    Science.gov (United States)

    Kub, F. J.; Moon, K. K.; Just, E. A.

    1991-01-01

    Two analog very large scale integration (VLSI) vector matrix multiplier integrated circuit chips were designed, fabricated, and partially tested. They can perform both vector-matrix and matrix-matrix multiplication operations at high speeds. The 32 by 32 vector-matrix multiplier chip and the 128 by 64 vector-matrix multiplier chip were designed to perform 300 million and 3 billion multiplications per second, respectively. An additional circuit that has been developed is a continuous-time adaptive learning circuit. The performance achieved thus far for this circuit is an adaptivity of 28 dB at 300 KHz and 11 dB at 15 MHz. This circuit has demonstrated greater than two orders of magnitude higher frequency of operation than any previous adaptive learning circuit.

  8. Relaxation Based Electrical Simulation for VLSI Circuits

    Directory of Open Access Journals (Sweden)

    S. Rajkumar

    2012-06-01

    Full Text Available Electrical circuit simulation was one of the first CAD tools developed for IC design. The conventional circuit simulators like SPICE and ASTAP were designed initially for the cost effective analysis of circuits containing a few hundred transistors or less. A number of approaches have been used to improve the performances of congenital circuit simulators for the analysis of large circuits. Thereafter relaxation methods was proposed to provide more accurate waveforms than standard circuit simulators with up to two orders of magnitude speed improvement for large circuits. In this paper we have tried to highlights recently used waveform and point relaxation techniques for simulation of VLSI circuits. We also propose a simple parallelization technique and experimentally demonstrate that we can solve digital circuits with tens of million transistors in a few hours.

  9. PLA realizations for VLSI state machines

    Science.gov (United States)

    Gopalakrishnan, S.; Whitaker, S.; Maki, G.; Liu, K.

    1990-01-01

    A major problem associated with state assignment procedures for VLSI controllers is obtaining an assignment that produces minimal or near minimal logic. The key item in Programmable Logic Array (PLA) area minimization is the number of unique product terms required by the design equations. This paper presents a state assignment algorithm for minimizing the number of product terms required to implement a finite state machine using a PLA. Partition algebra with predecessor state information is used to derive a near optimal state assignment. A maximum bound on the number of product terms required can be obtained by inspecting the predecessor state information. The state assignment algorithm presented is much simpler than existing procedures and leads to the same number of product terms or less. An area-efficient PLA structure implemented in a 1.0 micron CMOS process is presented along with a summary of the performance for a controller implemented using this design procedure.

  10. Framework for Managing the Very Large Scale Integration Design Process

    Directory of Open Access Journals (Sweden)

    Sabah Al-Fedaghi

    2012-01-01

    Full Text Available Problem statement: The VLSI design cycle was described in terms of successive states and substages; it starts with system specification and ends with packaging. At the next descriptive level, currently known methodologies (e.g., flowchart based, object-oriented based lack a global conceptual representation suitable for managing the VLSI design process. Technical details were intermixed with tool-dependent and implementation issues such as control flow and data structure. It was important to fill the gap between these two levels of description because VLSI chip manufacturing was a complex management project and providing a conceptual detailed depiction of the design process would assist in managing operations on the great number of generated artifacts. Approach: This study introduces a conceptual framework representing flows and transformations of various descriptions (e.g., circuits, technical sketches to be used as a tracking apparatus for directing traffic during the VLSI design process. The proposed methodology views a description as an integral element of a process, called a flow system, constructed from six generic operations and designed to handle descriptions. It draws maps of flows of representations (called flowthings that run through the design flow. These flowthings are created, transformed (processed, transferred, released and received by various functions along the design flow at different levels (a hierarchy. The resultant conceptual framework can be used to support designers with computer-aided tools to organize and manage chains of tasks. Results: The proposed model for managing the VLSI design process was characterized by being conceptual (no technical or implementation details and can be uniformly applied at different levels of design and to various kinds of artifacts. The methodology is applied to describe the VLSI physical design stage that includes partitioning, floorplanning and placement, routing, compaction and extraction

  11. Design and Implementation of a Sort-Free K-Best Sphere Decoder

    KAUST Repository

    Mondal, Sudip

    2012-10-18

    This paper describes the design and VLSI architecture for a 4x4 breadth first K-Best MIMO decoder using a 64 QAM scheme. A novel sort free approach to path extension, as well as quantized metrics result in a high throughput VLSI architecture with lower power and area consumption compared to state of the art published systems. Functionality is confirmed via an FPGA implementation on a Xilinx Virtex II Pro FPGA. Comparison of simulation and measurements are given and FPGA utilization figures are provided. Finally, VLSI architectural tradeoffs are explored for a synthesized ASIC implementation in a 65nm CMOS technology.

  12. Reconfigurable optical power splitter/combiner based on Opto-VLSI processing.

    Science.gov (United States)

    Mustafa, Haithem; Xiao, Feng; Alameh, Kamal

    2011-10-24

    A novel 1×4 reconfigurable optical splitter/combiner structure based on Opto-VLSI processor and 4-f imaging system with high resolution is proposed and experimentally demonstrated. By uploading optimized multicasting phase holograms onto the software-driven Opto-VLSI processor, an input optical signal is dynamically split into different output fiber ports with user-defined splitting ratios. Also, multiple input optical signals are dynamically combined with arbitrary user-defined weights.

  13. Trace-based post-silicon validation for VLSI circuits

    CERN Document Server

    Liu, Xiao

    2014-01-01

    This book first provides a comprehensive coverage of state-of-the-art validation solutions based on real-time signal tracing to guarantee the correctness of VLSI circuits.  The authors discuss several key challenges in post-silicon validation and provide automated solutions that are systematic and cost-effective.  A series of automatic tracing solutions and innovative design for debug (DfD) techniques are described, including techniques for trace signal selection for enhancing visibility of functional errors, a multiplexed signal tracing strategy for improving functional error detection, a tracing solution for debugging electrical errors, an interconnection fabric for increasing data bandwidth and supporting multi-core debug, an interconnection fabric design and optimization technique to increase transfer flexibility and a DfD design and associated tracing solution for improving debug efficiency and expanding tracing window. The solutions presented in this book improve the validation quality of VLSI circuit...

  14. A Circuit Extraction System and Graphical Display for VLSI (Very Large Scale Integrated) Design.

    Science.gov (United States)

    1989-12-01

    drain ?source ? ? ?x ?y) (not (ntrans ? ?gate ?drain ?source ? ?)) (not (ntrans ? ?gate ?source ?drain ? ?)) (retract ?n) (assert (ntrans =( gensym ... gensym ) ?gate ?drain ?source ?x ?y))) ;; del-id-n deletes a n type transistor if it has already been asserted, with the same gate, source and drain...ptrans ? ?gate ?drain ?source ? ?)) (not (ptrans ? ?gate ?source ?drain ? ?)) (retract ?p) (assert (ptrans =( gensym ) ?gate ?drain ?source ?x ?y))) ;; del

  15. Design and Realization of Array Signal Processor VLSI Architecture for Phased Array System

    Directory of Open Access Journals (Sweden)

    D. Govind Rao

    2016-08-01

    Full Text Available A method for implementing an array signal processor for phased array radars. The array signal processor can receive planar array antenna inputs and can process it. It is based on the application of Adaptive Digital beam formers using FPGAs. Adaptive filter algorithm used here is Inverse Q-R Decomposition based Recursive Least Squares (IQRD-RLS [1] algorithm. Array signal processor based on FPGAs is suitable in the areas of Phased Array Radar receiver, where speed, accuracy and numerical stability are of utmost important. Using IQRD-RLS algorithm, optimal weights are calculated in much less time compared to conventional QRD-RLS algorithm. A customized multiple FPGA board comprising three Kintex-7 FPGAs is employed to implement array signal processor. The proposed architecture can form multiple beams from planar array antenna elements

  16. 编码系统研究及VLSI实现%A Study of JPEG2000 Encoding System and Its VLSI Implementation

    Institute of Scientific and Technical Information of China (English)

    马涛; 汶德胜

    2009-01-01

    A system architecture and its VLSI implementation for JPEG2000 were presented. Parallel coding architecture based on wavelet sub-band was introduced in the system. Simplified logic and parallel processing were adopted to optimize arithmetic for JPEG2000 standard, such as 2-line-parallelling 9/7 lifting discrete wavelet transform, strip-paralleling bit plane coding, compacted interval update and parallel renormalization for binary arithmetic coding, etc. All modules are pipelined manner. Especially, asynchronous pipelining implementation was adopted in the BPC and BAC to distribute execution time dynamically. The speed ratio was tested close to pipeline segment 3. Original image is imported by the image data generating board, and the compressed data is send into PC to be truncated and decoded by software. The average difference of PSNR between LuraWave and the proposed system is below 0.8dB, which shows the validity of the improved arithmetic. The input pixel clock can reach to 20MHz.%提出了一种JPEG2000编码系统结构和VLSI方案.该方案以小波子带为单位,多套并行处理.对JPEG2000标准中各个模块的算法进行了逻辑化简、并行编码等优化.如采用双行并行9/7提升小波分解,条带并行的比特平面编码,简化区间更新和并行归一化算术编码等.各模块均以流水线方式工作,其中的比特平面编码和算术编码采用异步流水线方式动态分配执行时间,加速比均接近于流水段数3.以图像信号产生板送入原始图像,编码后送入PC机进行码流截断和解压缩.该系统在各个压缩率下的信噪比与LuraWave商用压缩软件的差距均在0.8 dB之内,可见改进后的算法可行且有效,像元时钟可达20 MHz.

  17. A novel 3D algorithm for VLSI floorplanning

    Science.gov (United States)

    Rani, D. Gracia N.; Rajaram, S.; Sudarasan, Athira

    2013-01-01

    3-D VLSI circuit is becoming a hot issue because of its potential of enhancing performance, while it is also facing challenges such as the increased complexity on floorplanning and placement in VLSI Physical design. Efficient 3-D floorplan representations are needed to handle the placement optimization in new circuit designs. We analyze and categorize some state-of-the-art 3-D representations, and propose a Ternary tree model for 3-D nonslicing floorplans, extending the B*tree from 2D.This paper proposes a novel optimization algorithm for packing of 3D rectangular blocks. The new techniques considered are Differential evolutionary algorithm (DE) is very fast in that it evaluates the feasibility of a Ternary tree representation. Experimental results based on MCNC benchmark with constraints show that our proposed Differential Evolutionary (DE) can quickly produce optimal solutions.

  18. Bat Azimuthal Echolocation Using Interaural Level Differences: Modeling and Implementation by a VLSI-Based Hardware System

    Science.gov (United States)

    2006-01-01

    system ( Tsividis , 1997). Vdd Vτ Vw spkIn isyn v i M1 M4 M5 M2 M3 M6 M8 M7 C vc Iτ Figure 7.2: The basic synapse circuit. The pin “spkIn” receives the...Comput. Neurosci. 20(2):137–152. Tsividis Y (1997) Externally linear, time-invariant systems and their application to companding signal processors

  19. VLSI Implementation of Novel Class of High Speed Pipelined Digital Signal Processing Filter for Wireless Receivers

    Directory of Open Access Journals (Sweden)

    Rozita Teymourzadeh

    2010-01-01

    Full Text Available Problem statement: The need for high performance transceiver with high Signal to Noise Ratio (SNR has driven the communication system to utilize latest technique identified as over sampling systems. It was the most economical modulator and decimation in communication system. It has been proven to increase the SNR and is used in many high performance systems such as in the Analog to Digital Converter (ADC for wireless transceiver. Approach: This research presented the design of the novel class of decimation and its VLSI implementation which was the sub-component in the over sampling technique. The design and realization of main unit of decimation stage that was the Cascaded Integrator Comb (CIC filter, the associated half band filters and the droop correction are also designed. The Verilog HDL code in Xilinx ISE environment has been derived to describe the proposed advanced CIC filter properties. Consequently, Virtex-II FPGA board was used to implement and test the design on the real hardware. The ASIC design implementation was performed accordingly and resulted power and area measurement on chip core layout. Results: The proposed design focused on the trade-off between the high speed and the low power consumption as well as the silicon area and high resolution for the chip implementation which satisfies wireless communication systems. The synthesis report illustrates the maximum clock frequency of 332 MHz with the active core area of 0.308×0.308 mm2. Conclusion: It can be concluded that VLSI implementation of proposed filter architecture is an enabler in solving problems that affect communication capability in DSP application.

  20. A Novel Efficient VLSI Architecture for IEEE 754 Floating point multiplier using Modified CSA

    Directory of Open Access Journals (Sweden)

    Nishi Pandey

    2015-10-01

    Full Text Available Due to advancement of new technology in the field of VLSI and Embedded system, there is an increasing demand of high speed and low power consumption processor. Speed of processor greatly depends on its multiplier as well as adder performance. In spite of complexity involved in floating point arithmetic, its implementation is increasing day by day. Due to which high speed adder architecture become important. Several adder architecture designs have been developed to increase the efficiency of the adder. In this paper, we introduce an architecture that performs high speed IEEE 754 floating point multiplier using modified carry select adder (CSA. Modified CSA depend on booth encoder (BEC Technique. Booth encoder, Mathematics is an ancient Indian system of Mathematics. Here we are introduced two carry select based design. These designs are implementation Xilinx Vertex device family

  1. VLSI ARCHITECTURE OF AN AREA EFFICIENT IMAGE INTERPOLATION

    Directory of Open Access Journals (Sweden)

    John Moses C

    2014-05-01

    Full Text Available Image interpolation is widely used in many image processing applications, such as digital camera, mobile phone, tablet and display devices. Image interpolation is a method of estimating the new data points within the range of discrete set of known data points. Image interpolation can also be referred as image scaling, image resizing, image re-sampling and image zooming. This paper presents VLSI (Very Large Scale Integration architecture of an area efficient image interpolation algorithm for any two dimensional (2-D image scalar. This architecture is implemented in FPGA (Field Programmable Gate Array and the performance of this system is simulated using Xilinx system generator and synthesized using Xilinx ISE smulation tool. Various VLSI parameters such as combinational path delay, CPU time, memory usage, number of LUTs (Look Up Tables are measured from the synthesis report.

  2. New VLSI smart sensor for collision avoidance inspired by insect vision

    Science.gov (United States)

    Abbott, Derek; Moini, Alireza; Yakovleff, Andre; Nguyen, X. Thong; Blanksby, Andrew; Kim, Gyudong; Bouzerdoum, Abdesselam; Bogner, Robert E.; Eshraghian, Kamran

    1995-01-01

    An analog VLSI implementation of a smart microsensor that mimics the early visual processing stage in insects is described with an emphasis on the overall concept and the front- end detection. The system employs the `smart sensor' paradigm in that the detectors and processing circuitry are integrated on the one chip. The integrated circuit is composed of sixty channels of photodetectors and parallel processing elements. The photodetection circuitry includes p-well junction diodes on a 2 micrometers CMOS process and a logarithmic compression to increase the dynamic range of the system. The future possibility of gallium arsenide implementation is discussed. The processing elements behind each photodetector contain a low frequency differentiator where subthreshold design methods have been used. The completed IC is ideal for motion detection, particularly collision avoidance tasks, as it essentially detects distance, speed & bearing of an object. The Horridge Template Model for insect vision has been directly mapped into VLSI and therefore the IC truly exploits the beauty of nature in that the insect eye is so compact with parallel processing, enabling compact motion detection without the computational overhead of intensive imaging, full image extraction and interpretation. This world-first has exciting applications in the areas of automobile anti- collision, IVHS, autonomous robot guidance, aids for the blind, continuous process monitoring/web inspection and automated welding, for example.

  3. A systematic method for configuring VLSI networks of spiking neurons.

    Science.gov (United States)

    Neftci, Emre; Chicca, Elisabetta; Indiveri, Giacomo; Douglas, Rodney

    2011-10-01

    An increasing number of research groups are developing custom hybrid analog/digital very large scale integration (VLSI) chips and systems that implement hundreds to thousands of spiking neurons with biophysically realistic dynamics, with the intention of emulating brainlike real-world behavior in hardware and robotic systems rather than simply simulating their performance on general-purpose digital computers. Although the electronic engineering aspects of these emulation systems is proceeding well, progress toward the actual emulation of brainlike tasks is restricted by the lack of suitable high-level configuration methods of the kind that have already been developed over many decades for simulations on general-purpose computers. The key difficulty is that the dynamics of the CMOS electronic analogs are determined by transistor biases that do not map simply to the parameter types and values used in typical abstract mathematical models of neurons and their networks. Here we provide a general method for resolving this difficulty. We describe a parameter mapping technique that permits an automatic configuration of VLSI neural networks so that their electronic emulation conforms to a higher-level neuronal simulation. We show that the neurons configured by our method exhibit spike timing statistics and temporal dynamics that are the same as those observed in the software simulated neurons and, in particular, that the key parameters of recurrent VLSI neural networks (e.g., implementing soft winner-take-all) can be precisely tuned. The proposed method permits a seamless integration between software simulations with hardware emulations and intertranslatability between the parameters of abstract neuronal models and their emulation counterparts. Most important, our method offers a route toward a high-level task configuration language for neuromorphic VLSI systems.

  4. Surface and interface effects in VLSI

    CERN Document Server

    Einspruch, Norman G

    1985-01-01

    VLSI Electronics Microstructure Science, Volume 10: Surface and Interface Effects in VLSI provides the advances made in the science of semiconductor surface and interface as they relate to electronics. This volume aims to provide a better understanding and control of surface and interface related properties. The book begins with an introductory chapter on the intimate link between interfaces and devices. The book is then divided into two parts. The first part covers the chemical and geometric structures of prototypical VLSI interfaces. Subjects detailed include, the technologically most import

  5. A Coherent VLSI Environment

    Science.gov (United States)

    1987-03-31

    smallest and largest eigenvalues of YH and AminAH and Am,..AH represent the smallest and largest eigenvalues of YAH, respectively. Fig. 3b illustrates a...101, Princeton U. Press, Princeton, NJ, 1970. [17] G. Clark and R. Zippel, "Schema: An Architecture for Knowledge Based Design," International

  6. STEP electronic system design

    Science.gov (United States)

    Couch, R. H.; Johnson, J. W.

    1984-01-01

    The STEP electronic system design is discussed. The purpose of the design is outlined. The electronic system design is summarized and it is found that: an effective conceptual system design is developed; the design represents a unique set of capabilities; makes efficient use of available orbiter resources; the system capabilities exceed identified potential experiment needs.

  7. A multi coding technique to reduce transition activity in VLSI circuits

    Science.gov (United States)

    Vithyalakshmi, N.; Rajaram, M.

    2014-02-01

    Advances in VLSI technology have enabled the implementation of complex digital circuits in a single chip, reducing system size and power consumption. In deep submicron low power CMOS VLSI design, the main cause of energy dissipation is charging and discharging of internal node capacitances due to transition activity. Transition activity is one of the major factors that also affect the dynamic power dissipation. This paper proposes power reduction analyzed through algorithm and logic circuit levels. In algorithm level the key aspect of reducing power dissipation is by minimizing transition activity and is achieved by introducing a data coding technique. So a novel multi coding technique is introduced to improve the efficiency of transition activity up to 52.3% on the bus lines, which will automatically reduce the dynamic power dissipation. In addition, 1 bit full adders are introduced in the Hamming distance estimator block, which reduces the device count. This coding method is implemented using Verilog HDL. The overall performance is analyzed by using Modelsim and Xilinx Tools. In total 38.2% power saving capability is achieved compared to other existing methods.

  8. An Asynchronous Low Power and High Performance VLSI Architecture for Viterbi Decoder Implemented with Quasi Delay Insensitive Templates.

    Science.gov (United States)

    Devi, T Kalavathi; Palaniappan, Sakthivel

    2015-01-01

    Convolutional codes are comprehensively used as Forward Error Correction (FEC) codes in digital communication systems. For decoding of convolutional codes at the receiver end, Viterbi decoder is often used to have high priority. This decoder meets the demand of high speed and low power. At present, the design of a competent system in Very Large Scale Integration (VLSI) technology requires these VLSI parameters to be finely defined. The proposed asynchronous method focuses on reducing the power consumption of Viterbi decoder for various constraint lengths using asynchronous modules. The asynchronous designs are based on commonly used Quasi Delay Insensitive (QDI) templates, namely, Precharge Half Buffer (PCHB) and Weak Conditioned Half Buffer (WCHB). The functionality of the proposed asynchronous design is simulated and verified using Tanner Spice (TSPICE) in 0.25 µm, 65 nm, and 180 nm technologies of Taiwan Semiconductor Manufacture Company (TSMC). The simulation result illustrates that the asynchronous design techniques have 25.21% of power reduction compared to synchronous design and work at a speed of 475 MHz.

  9. Design and implementation of Gbps VLSI architecture of the cipher engine orienting to IEEE 802.11ac%面向802.11ac的安全加速引擎Gbps VLSI架构设计与实现

    Institute of Scientific and Technical Information of China (English)

    潘志鹏; 吴斌; 尉志伟; 叶甜春

    2015-01-01

    针对IEEE 802.11i协议中多种安全协议实现进行研究,结合以IEEE 802.11ac协议为代表的下一代无线局域网( WLAN)系统对高吞吐率的需求,提出了一种支持WEP/TKIP/CCMP协议的多模、高速安全加速引擎的大规模集成电路( VLSI)架构. 提出了基于哈希算法的密钥信息查找算法,缩小了查找时钟延迟. 基于复合域的运算方式实现高级加密标准( AES)算法,提出双AES运算核的并行架构实现计数器与密码分组链接( CCM)模式,提升运算吞吐率的同时也降低了引擎的响应延迟. 经过FPGA实现和ASIC流片验证表明,该安全加速引擎具备可重构性,处理延迟仅为33个时钟周期,在322 MHz工作频率下运算吞吐率可达3.747 Gbit/s.%In this paper, the implementation of multiple security protocols for IEEE 802.11i was researched. A very large scale integration ( VLSI) architecture of the multi-mode cipher engine supporting WEP/TKIP/CCMP proto-cols was presented taking into account the demand for high throughput of the next generation wireless local area net-work ( WLAN) system that is represented by IEEE 802.11ac. A key searching algorithm based on Hash scheme was proposed to reduce the lookup clock latency. For the high throughput hardware implementation of advanced encryp-tion standard ( AES) algorithm, composite field arithmetic was employed. In order to improve the data throughput and reduce the response time, dual AES computing core with parallel structure was used to implement the cipher block chaining message authentication code ( CCM) mode. The proposed design was implemented in both FPGA and ASIC. The results show that the cipher engine with reconfiguration architecture can achieve 33 clock cycles, and the computing throughput is 3.747 Gbit/s when the work frequency is 322 MHz.

  10. Designing information systems

    CERN Document Server

    Blethyn, Stanley G

    2014-01-01

    Designing Information Systems focuses on the processes, methodologies, and approaches involved in designing information systems. The book first describes systems, management and control, and how to design information systems. Discussions focus on documents produced from the functional construction function, users, operators, analysts, programmers and others, process management and control, levels of management, open systems, design of management information systems, and business system description, partitioning, and leveling. The text then takes a look at functional specification and functiona

  11. Pruned Continuous Haar Transform of 2D Polygonal Patterns with Application to VLSI Layouts

    CERN Document Server

    Scheibler, Robin; Chebira, Amina

    2011-01-01

    We introduce an algorithm for the efficient computation of the continuous Haar transform of 2D patterns that can be described by polygons. These patterns are ubiquitous in VLSI processes where they are used to describe design and mask layouts. There, speed is of paramount importance due to the magnitude of the problems to be solved and hence very fast algorithms are needed. We show that by techniques borrowed from computational geometry we are not only able to compute the continuous Haar transform directly, but also to do it quickly. This is achieved by massively pruning the transform tree and thus dramatically decreasing the computational load when the number of vertices is small, as is the case for VLSI layouts. We call this new algorithm the pruned continuous Haar transform. We implement this algorithm and show that for patterns found in VLSI layouts the proposed algorithm was in the worst case as fast as its discrete counterpart and up to 12 times faster.

  12. The GLUEchip: A custom VLSI chip for detectors readout and associative memories circuits

    Energy Technology Data Exchange (ETDEWEB)

    Amendolia, S.R. (Univ. of Sassari and INFN, Pisa (Italy)); Galeotti, S.; Morsani, F.; Passuello, D.; Ristori, L. (Univ. and Scuola Normale Superiore, Pisa (Italy). INFN); Sciacca, G. (Univ. and LNS, Catania (Italy)); Turini, N. (Univ. and INFN, Bologna (Italy))

    1993-08-01

    An associative memory full-custom VLSI chip for pattern recognition has been designed and tested in the past years. It's the AMchip, that contains 128 patterns of 60 bits each. To expand the pattern capacity of an Associative Memory bank, the custom VLSI GLUEchip has been developed. The GLUEchip allows the interconnection of up to 16 AMchips or up to 16 GLUEchips: the resulting tree-like structure works like a single AMchip with an output pipelined structure and a pattern capacity increased by a factor 16 for each GLUEchip used.

  13. A Multiple—Valued Algebra for Modeling MOS VLSI Circuits at Switch—Level

    Institute of Scientific and Technical Information of China (English)

    胡谋

    1992-01-01

    A multiple-valued algebra for modeling MOS VLSI circuits at switch-level is proposed in this paper,Its structure and properties are studied.This algebra can be used to transform a MOS digital circuit to a swith-level algebraic expression so as to generate the truth table for the circuit and to derive a Boolean expression for it.In the paper,methods to construct a switch-level algebraic expression for a circuit and methods to simplify expressions are given.This algebra provides a new tool for MOS VLSI circuit design and analysis.

  14. VLSI digital demodulator co-processor

    Science.gov (United States)

    Stephen, Karen J.; Buznitsky, Mitchell A.; Lindsey, Mark J.

    A demodulation coprocessor that incorporates into a single VLSI package a number of important arithmetic functions commonly encountered in demodulation processing is developed. The LD17 demodulator is designed for use in a digital modem as a companion to any of the commercially available digital signal processing (DSP) microprocessors. The LD17 includes an 8-b complex multiplier-accumulator (MAC), a programmable tone generator, a preintegrator, a dedicated noncoherent differential phase-shift keying (DPSK) calculator, and a program/data sequencer. By using a simple generic interface and small but powerful instruction set, the LD17 has the capability to operate in several architectural schemes with a minimum of glue logic. Speed, size, and power constraints will dictate which of these schemes is best for a particular application. The LD17 will be implemented in a 1.5-micron DLM CMOS gate array and packaged in an 84-pin JLCC. With the LD17 and its memory, the real-time processing compatibility of a typical DSP microprocessor can be extended to sampling rates from hundreds to thousands of kilosamples per second.

  15. A fast neural-network algorithm for VLSI cell placement.

    Science.gov (United States)

    Aykanat, Cevdet; Bultan, Tevfik; Haritaoğlu, Ismail

    1998-12-01

    Cell placement is an important phase of current VLSI circuit design styles such as standard cell, gate array, and Field Programmable Gate Array (FPGA). Although nondeterministic algorithms such as Simulated Annealing (SA) were successful in solving this problem, they are known to be slow. In this paper, a neural network algorithm is proposed that produces solutions as good as SA in substantially less time. This algorithm is based on Mean Field Annealing (MFA) technique, which was successfully applied to various combinatorial optimization problems. A MFA formulation for the cell placement problem is derived which can easily be applied to all VLSI design styles. To demonstrate that the proposed algorithm is applicable in practice, a detailed formulation for the FPGA design style is derived, and the layouts of several benchmark circuits are generated. The performance of the proposed cell placement algorithm is evaluated in comparison with commercial automated circuit design software Xilinx Automatic Place and Route (APR) which uses SA technique. Performance evaluation is conducted using ACM/SIGDA Design Automation benchmark circuits. Experimental results indicate that the proposed MFA algorithm produces comparable results with APR. However, MFA is almost 20 times faster than APR on the average.

  16. High-energy heavy ion testing of VLSI devices for single event upsets and latch up

    Indian Academy of Sciences (India)

    S B Umesh; S R Kulkarni; R Sandhya; G R Joshi; R Damle; M Ravindra

    2005-08-01

    Several very large scale integrated (VLSI) devices which are not available in radiation hardened version are still required to be used in spacecraft systems. Thus these components need to be tested for highenergy heavy ion irradiation to find out their tolerance and suitability in specific space applications. This paper describes the high-energy heavy ion radiation testing of VLSI devices for single event upset (SEU) and single event latch up (SEL). The experimental set up employed to produce low flux of heavy ions viz. silicon (Si), and silver (Ag), for studying single event effects (SEE) is briefly described. The heavy ion testing of a few VLSI devices is performed in the general purpose scattering chamber of the Pelletron facility, available at Nuclear Science Centre, New Delhi. The test results with respect to SEU and SEL are discussed.

  17. Low-power Analog VLSI Implementation of Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jiang-hong

    2009-01-01

    For applications requiring low-power, low-voltage and real-time, a novel analog VLSI implementation of continuous Marr wavelet transform based on CMOS log-domain integrator is proposed.Mart wavelet is approximated by a parameterized class of function and with Levenbery-Marquardt nonlinear least square method,the optimum parameters of this function are obtained.The circuits of implementating Mart wavelet transform are composed of analog filter whose impulse response is the required wavelet.The filter design is based on IFLF structure with CMOS log-domain integrators as the main building blocks.SPICE simulations indicate an excellent approximations of ideal wavelet.

  18. An Efficient VLSI Architecture of the Enhanced Three Step Search Algorithm

    Science.gov (United States)

    Biswas, Baishik; Mukherjee, Rohan; Saha, Priyabrata; Chakrabarti, Indrajit

    2016-09-01

    The intense computational complexity of any video codec is largely due to the motion estimation unit. The Enhanced Three Step Search is a popular technique that can be adopted for fast motion estimation. This paper proposes a novel VLSI architecture for the implementation of the Enhanced Three Step Search Technique. A new addressing mechanism has been introduced which enhances the speed of operation and reduces the area requirements. The proposed architecture when implemented in Verilog HDL on Virtex-5 Technology and synthesized using Xilinx ISE Design Suite 14.1 achieves a critical path delay of 4.8 ns while the area comes out to be 2.9K gate equivalent. It can be incorporated in commercial devices like smart-phones, camcorders, video conferencing systems etc.

  19. High Speed Continuous-Time Bandpass Σ∆ADC for Mixed Signal VLSI Chips

    Directory of Open Access Journals (Sweden)

    P.A.HarshaVardhini

    2012-04-01

    Full Text Available With the unremitting progress in VLSI technology, there is a commensurate increase in performance demand on analog to digital converter and are now being applied to wide band communication systems. sigma Delta (Σ∆ converter is a popular technique for obtaining high resolution with relatively small bandwidth. Σ∆ ADCs which trade sampling speed for resolution can benefit from the speed advantages of nm-CMOS technologies. This paper compares various Band pass sigma Delta ADC architectures, both continuous-time and discrete-time, in respect of power consumption and SNDR. Design of 2nd order multi bit continuous time band pass Σ∆ modulator is discussed with the methods to resolve DAC non-idealities.

  20. High Speed Continuous-Time Bandpass Σ∆ADC for Mixed Signal VLSI Chips

    Directory of Open Access Journals (Sweden)

    M.Madhavi Latha

    2012-05-01

    Full Text Available With the unremitting progress in VLSI technology, there is a commensurate increase in performance demand on analog to digital converter and are now being applied to wideband communication systems. sigma Delta (Σ∆ converter is a popular technique for obtaining high resolution with relatively small bandwidth. Σ∆ ADCs which trade sampling speed for resolution can benefit from the speed advantages of nm-CMOS technologies. This paper compares various Band pass sigma Delta ADC architectures, both continuous-time and discrete-time, in respect of power consumption and SNDR. Design of 2nd order multibit continuous time band pass Σ∆ modulator is discussed with the methods to resolve DAC non-idealities.

  1. A dynamic CMOS multiplier for analog VLSI based on exponential pulse-decay modulation

    Science.gov (United States)

    Massengill, Lloyd W.

    1991-03-01

    A clocked, charge-based, CMOS modulator circuit is presented. The circuit, which performs a semilinear multiplication function, has applications in arrayed analog VLSI architectures such as parallel filters and neural network systems. The design presented is simple in structure, uses no operational amplifiers for the actual multiplication function, and uses no power in the static mode. Two-quadrant weighting of an input signal is accomplished by control of the magnitude and decay time of an exponential current pulse, resulting in the delivery of charge packets to a shared capacitive summing bus. The cell is modular in structure and can be fabricated in a standard CMOS process. An analytical derivation of the operation of the circuit, SPICE simulations, and MOSIS fabrication results are presented. The simulation studies indicate that the circuit is inherently tolerant to temperature effects, absolute device sizing errors, and clock-feedthrough transients.

  2. Real-time motion detection using an analog VLSI zero-crossing chip

    Science.gov (United States)

    Bair, Wyeth; Koch, Christof

    1991-07-01

    The authors have designed and tested a one-dimensional 64 pixel, analog CMOS VLSI chip which localizes intensity edges in real-time. This device exploits on-chip photoreceptors and the natural filtering properties of resistive networks to implement a scheme similar to and motivated by the Difference of Gaussians (DOG) operator proposed by Marr and Hildreth (1980). The chip computes the zero-crossings associated with the difference of two exponential weighting functions and reports only those zero-crossings at which the derivative is above an adjustable threshold. A real-time motion detection system based on the zero- crossing chip and a conventional microprocessor provides linear velocity output over two orders of magnitude of light intensity and target velocity.

  3. VLSI IMPLEMENTATION OF CHANNEL ESTIMATION FOR MIMO-OFDM TRANSCEIVER

    Directory of Open Access Journals (Sweden)

    Joseph Gladwin Sekar

    2013-01-01

    Full Text Available In this study the VLSI architecture for MIMO-OFDM transceiver and the algorithm for the implementation of MMSE detection in MIMO-OFDM system is proposed. The implemented MIMO-OFDM system is capable of transmitting data at high throughput in physical layer and provides optimized hardware resources while achieving the same data rate. The proposed architecture has low latency, high throughput and efficient resource utilization. The result obtained is compared with the MATLAB results for verification. The main aim is to reduce the hardware complexity of the channel estimation.

  4. Control system design guide

    Energy Technology Data Exchange (ETDEWEB)

    Sellers, David; Friedman, Hannah; Haasl, Tudi; Bourassa, Norman; Piette, Mary Ann

    2003-05-01

    The ''Control System Design Guide'' (Design Guide) provides methods and recommendations for the control system design process and control point selection and installation. Control systems are often the most problematic system in a building. A good design process that takes into account maintenance, operation, and commissioning can lead to a smoothly operating and efficient building. To this end, the Design Guide provides a toolbox of templates for improving control system design and specification. HVAC designers are the primary audience for the Design Guide. The control design process it presents will help produce well-designed control systems that achieve efficient and robust operation. The spreadsheet examples for control valve schedules, damper schedules, and points lists can streamline the use of the control system design concepts set forth in the Design Guide by providing convenient starting points from which designers can build. Although each reader brings their own unique questions to the text, the Design Guide contains information that designers, commissioning providers, operators, and owners will find useful.

  5. A VLSI analog pipeline read-out for electrode segmented ionization chambers

    CERN Document Server

    Bonazzola, G C; Cirio, R; Donetti, M; Figus, M; Marchetto, F; Peroni, C; Pernigotti, E; Thénard, J M; Zampieri, A

    1999-01-01

    We report on the design and test of a 32-channel VLSI chip based on the analog pipeline memory concept. The charge from a strip of a ionization chamber, is stored as a function of time in a switched capacitor array. The cell reading can be done in parallel with the writing.

  6. A VLSI analog pipeline read-out for electrode segmented ionization chambers

    Science.gov (United States)

    Bonazzola, G. C.; Bouvier, S.; Cirio, R.; Donetti, M.; Figus, M.; Marchetto, F.; Peroni, C.; Pernigotti, E.; Thenard, J. M.; Zampieri, A.

    1999-05-01

    We report on the design and test of a 32-channel VLSI chip based on the analog pipeline memory concept. The charge from a strip of a ionization chamber, is stored as a function of time in a switched capacitor array. The cell reading can be done in parallel with the writing.

  7. Controlling Underwater Robots with Electronic Nervous Systems

    Directory of Open Access Journals (Sweden)

    Joseph Ayers

    2010-01-01

    Full Text Available We are developing robot controllers based on biomimetic design principles. The goal is to realise the adaptive capabilities of the animal models in natural environments. We report feasibility studies of a hybrid architecture that instantiates a command and coordinating level with computed discrete-time map-based (DTM neuronal networks and the central pattern generators with analogue VLSI (Very Large Scale Integration electronic neuron (aVLSI networks. DTM networks are realised using neurons based on a 1-D or 2-D Map with two additional parameters that define silent, spiking and bursting regimes. Electronic neurons (ENs based on Hindmarsh–Rose (HR dynamics can be instantiated in analogue VLSI and exhibit similar behaviour to those based on discrete components. We have constructed locomotor central pattern generators (CPGs with aVLSI networks that can be modulated to select different behaviours on the basis of selective command input. The two technologies can be fused by interfacing the signals from the DTM circuits directly to the aVLSI CPGs. Using DTMs, we have been able to simulate complex sensory fusion for rheotaxic behaviour based on both hydrodynamic and optical flow senses. We will illustrate aspects of controllers for ambulatory biomimetic robots. These studies indicate that it is feasible to fabricate an electronic nervous system controller integrating both aVLSI CPGs and layered DTM exteroceptive reflexes.

  8. Associative Pattern Recognition In Analog VLSI Circuits

    Science.gov (United States)

    Tawel, Raoul

    1995-01-01

    Winner-take-all circuit selects best-match stored pattern. Prototype cascadable very-large-scale integrated (VLSI) circuit chips built and tested to demonstrate concept of electronic associative pattern recognition. Based on low-power, sub-threshold analog complementary oxide/semiconductor (CMOS) VLSI circuitry, each chip can store 128 sets (vectors) of 16 analog values (vector components), vectors representing known patterns as diverse as spectra, histograms, graphs, or brightnesses of pixels in images. Chips exploit parallel nature of vector quantization architecture to implement highly parallel processing in relatively simple computational cells. Through collective action, cells classify input pattern in fraction of microsecond while consuming power of few microwatts.

  9. State-of-the-art assessment of testing and testability of custom LSI/VLSI circuits. Volume 2: Hardware design verification

    Science.gov (United States)

    Carlan, A. J.; Breuer, M. A.

    1982-10-01

    The complexity of digital circuits requires that more emphasis be placed on design specifications and verification. Specification of design requirements currently advocated is done with formal hardware descriptive languages (HDLs) to describe hardware function. Industry's current use of HDLs is primarily for simulation. Verifying a design is a less mature discipline. Three approaches are considered: simulation, symbolic simulation amd formal proofs. While symbolic simulation shows promise, much research and development is required.

  10. Comparative Performance Analysis of XOR-XNOR Function Based High-Speed CMOS Full Adder Circuits For Low Voltage VLSI Design

    Directory of Open Access Journals (Sweden)

    Sudarshan Tiwari

    2012-05-01

    Full Text Available This paper presents comparative study of high-speed, low-power and low voltage full adder circuits. Our approach is based on XOR-XNOR design full adder circuits in a single unit. A low power and high performance 9T full adder cell using a design style called “XOR (3T” is discussed. The designed circuit commands a high degree of regularity and symmetric higher density than the conventional CMOS design style as well as it lowers power consumption by using XOR (3T logic circuits. Gate Diffusion Input (GDI technique of low-power digital combinatorial circuit design is also described. This technique helps inreducing the power consumption and the area of digital circuits while maintaining low complexity of logic design. This paper analyses, evaluates and compares the performance of various adder circuits. Severalsimulations conducted using different voltage supplies, load capacitors and temperature variation demonstrate the superiority of the XOR (3T based full adder designs in term of delay, power and powerdelay product (PDP compared to the other full adder circuits. Simulation results illustrate the superiority of the designed adder circuits against the conventional CMOS, TG and Hybrid full adder circuits in terms of power, delay and power delay product (PDP.

  11. Clothing Systems Design Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Clothing Systems Design Lab houses facilities for the design and rapid prototyping of military protective apparel.Other focuses include: creation of patterns and...

  12. Microprocessor Design Using Hardware Description Language

    Science.gov (United States)

    Mita, Rosario; Palumbo, Gaetano

    2008-01-01

    The following paper has been conceived to deal with the contents of some lectures aimed at enhancing courses on digital electronic, microelectronic or VLSI systems. Those lectures show how to use a hardware description language (HDL), such as the VHDL, to specify, design and verify a custom microprocessor. The general goal of this work is to teach…

  13. Optical system design

    CERN Document Server

    Fischer, Robert F

    2008-01-01

    Honed for more than 20 years in an SPIE professional course taught by renowned optical systems designer Robert E. Fischer, Optical System Design, Second Edition brings you the latest cutting-edge design techniques and more than 400 detailed diagrams that clearly illustrate every major procedure in optical design. This thoroughly updated resource helps you work better and faster with computer-aided optical design techniques, diffractive optics, and the latest applications, including digital imaging, telecommunications, and machine vision. No need for complex, unnecessary mathematical derivations-instead, you get hundreds of examples that break the techniques down into understandable steps. For twenty-first century optical design without the mystery, the authoritative Optical Systems Design, Second Edition features: Computer-aided design use explained through sample problems Case studies of third-millennium applications in digital imaging, sensors, lasers, machine vision, and more New chapters on optomechanic...

  14. Man-Machine Interface Design for Modeling and Simulation Software

    Directory of Open Access Journals (Sweden)

    Arnstein J. Borstad

    1986-07-01

    Full Text Available Computer aided design (CAD systems, or more generally interactive software, are today being developed for various application areas like VLSI-design, mechanical structure design, avionics design, cartographic design, architectual design, office automation, publishing, etc. Such tools are becoming more and more important in order to be productive and to be able to design quality products. One important part of CAD-software development is the man-machine interface (MMI design.

  15. SSI/MSI/LSI/VLSI/ULSI.

    Science.gov (United States)

    Alexander, George

    1984-01-01

    Discusses small-scale integrated (SSI), medium-scale integrated (MSI), large-scale integrated (LSI), very large-scale integrated (VLSI), and ultra large-scale integrated (ULSI) chips. The development and properties of these chips, uses of gallium arsenide, Josephson devices (two superconducting strips sandwiching a thin insulator), and future…

  16. Review: “Implementation of Feedforward and Feedback Neural Network for Signal Processing Using Analog VLSI Technology”

    Directory of Open Access Journals (Sweden)

    Miss. Rachana R. Patil

    2015-01-01

    Full Text Available Main focus of project is on implementation of Neural Network Architecture (NNA with on chip learning on Analog VLSI Technology for signal processing application. In the proposed paper the analog components like Gilbert Cell Multiplier (GCM, Neuron Activation Function (NAF are used to implement artificial NNA. Analog components used comprises of multiplier, adder and tan sigmoidal function circuit using MOS transistor. This Neural Architecture is trained using Back Propagation (BP Algorithm in analog domain with new techniques of weight storage. Layout design and verification of above design is carried out using VLSI Backend Microwind 3.1 software Tool. The technology used to design layout is 32 nm CMOS Technology

  17. Designing automatic resupply systems.

    Science.gov (United States)

    Harding, M L

    1999-02-01

    This article outlines the process for designing and implementing autoresupply systems. The planning process includes determination of goals and appropriate participation. Different types of autoresupply mechanisms include kanban, breadman, consignment, systems contracts, and direct shipping from an MRP schedule.

  18. A VLSI implementation of DCT using pass transistor technology

    Science.gov (United States)

    Kamath, S.; Lynn, Douglas; Whitaker, Sterling

    1992-01-01

    A VLSI design for performing the Discrete Cosine Transform (DCT) operation on image blocks of size 16 x 16 in a real time fashion operating at 34 MHz (worst case) is presented. The process used was Hewlett-Packard's CMOS26--A 3 metal CMOS process with a minimum feature size of 0.75 micron. The design is based on Multiply-Accumulate (MAC) cells which make use of a modified Booth recoding algorithm for performing multiplication. The design of these cells is straight forward, and the layouts are regular with no complex routing. Two versions of these MAC cells were designed and their layouts completed. Both versions were simulated using SPICE to estimate their performance. One version is slightly faster at the cost of larger silicon area and higher power consumption. An improvement in speed of almost 20 percent is achieved after several iterations of simulation and re-sizing.

  19. A VLSI implementation of DCT using pass transistor technology

    Science.gov (United States)

    Kamath, S.; Lynn, Douglas; Whitaker, Sterling

    A VLSI design for performing the Discrete Cosine Transform (DCT) operation on image blocks of size 16 x 16 in a real time fashion operating at 34 MHz (worst case) is presented. The process used was Hewlett-Packard's CMOS26--A 3 metal CMOS process with a minimum feature size of 0.75 micron. The design is based on Multiply-Accumulate (MAC) cells which make use of a modified Booth recoding algorithm for performing multiplication. The design of these cells is straight forward, and the layouts are regular with no complex routing. Two versions of these MAC cells were designed and their layouts completed. Both versions were simulated using SPICE to estimate their performance. One version is slightly faster at the cost of larger silicon area and higher power consumption. An improvement in speed of almost 20 percent is achieved after several iterations of simulation and re-sizing.

  20. HVAC systems design handbook

    CERN Document Server

    Haines, Roger W

    2010-01-01

    Thoroughly updated with the latest codes, technologies, and practices, this all-in-one resource provides details, calculations, and specifications for designing efficient and effective residential, commercial, and industrial HVAC systems. HVAC Systems Design Handbook, Fifth Edition, features new information on energy conservation and computer usage for design and control, as well as the most recent International Code Council (ICC) Mechanical Code requirements. Detailed illustrations, tables, and essential HVAC equations are also included. This comprehensive guide contains everything you need to design, operate, and maintain peak-performing HVAC systems.

  1. Human Systems Design Criteria

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1982-01-01

    the necessary functional qualities but also the needed human qualities. The author's main argument is, that the design process should be a dialectical synthesis of the two points of view: Man as a System Component, and System as Man's Environment. Based on a man's presentation of the state of the art a set...... of design criteria is suggested and their relevance discussed. The point is to focus on the operator rather than on the computer. The crucial question is not to program the computer to work on its own conditions, but to “program” the operator to function on human conditions.......This paper deals with the problem of designing more humanised computer systems. This problem can be formally described as the need for defining human design criteria, which — if used in the design process - will secure that the systems designed get the relevant qualities. That is not only...

  2. A Logic Design Automation System for Generating Logic Diagram from Hardware Description

    Institute of Scientific and Technical Information of China (English)

    刘明业; 郭书明; 杨淮; 贾良玉; 洪恩宇

    1989-01-01

    This paper discusses a logic design automation system (LODAS) implemented on APOLLO DOMAIN workstation. LODAS can generate VLSI logic diagram from the hardware description. The system accepts many kinds of input description such as DDL or AHPL language description, functinual array (truth table), covering array , Boolean equations or state transition tables. The system first simulates the functional description to verify the functional description of the system designed, then the translator translates the fnnctional descriptong into register transfer equations, Boolean equatinos and state transition equations antomatically.Logic synthesis software partitions the translation result into a series of blocks, and transforma every small block into a mnlti-level NAND/NOR network according to the fan - in and fan - out restriction.

  3. A Logic Design Automation System for Generating Logic Diagram from Hardware Description

    Institute of Scientific and Technical Information of China (English)

    刘明业; 郭书明; 等

    1989-01-01

    This paper discusses a logic design automation system(LODAS) implemented on APOLLO DOMAIN workstation.LODAS can generate VLSI logic diagram from the hardware description.The system accepts many kinds of input description such as DDL or AHPL language description.Functional array(truth table).covering array,Boolean equations or state transition tables,The system first simulates the functional desecription to verify the functional description of the system designed.then translator translates the functional description into resgister transfer equation.Boolean equations and state transition equations automatically.Logic synthesis software partitions the translation result into a series of blocks,and transforms every small block into a multi-level NAND /NOR network according to the fan-in and fan-out restriction.

  4. Applied Control Systems Design

    CERN Document Server

    Mahmoud, Magdi S

    2012-01-01

    Applied Control System Design examines several methods for building up systems models based on real experimental data from typical industrial processes and incorporating system identification techniques. The text takes a comparative approach to the models derived in this way judging their suitability for use in different systems and under different operational circumstances. A broad spectrum of control methods including various forms of filtering, feedback and feedforward control is applied to the models and the guidelines derived from the closed-loop responses are then composed into a concrete self-tested recipe to serve as a check-list for industrial engineers or control designers. System identification and control design are given equal weight in model derivation and testing to reflect their equality of importance in the proper design and optimization of high-performance control systems. Readers’ assimilation of the material discussed is assisted by the provision of problems and examples. Most of these e...

  5. Psychology of system design

    CERN Document Server

    Meister, D

    2014-01-01

    This is a book about systems, including: systems in which humans control machines; systems in which humans interact with humans and the machine component is relatively unimportant; systems which are heavily computerized and those that are not; and governmental, industrial, military and social systems. The book deals with both traditional systems like farming, fishing and the military, and with systems just now tentatively emerging, like the expert and the interactive computer system. The emphasis is on the system concept and its implications for analysis, design and evaluation of these many di

  6. Research in the design of high-performance reconfigurable systems

    Science.gov (United States)

    Slotnick, D. L.; Mcewan, S. D.; Spry, A. J.

    1984-01-01

    An initial design for the Bit Processor (BP) referred to in prior reports as the Processing Element or PE has been completed. Eight BP's, together with their supporting random-access memory, a 64 k x 9 ROM to perform addition, routing logic, and some additional logic, constitute the components of a single stage. An initial stage design is given. Stages may be combined to perform high-speed fixed or floating point arithmetic. Stages can be configured into a range of arithmetic modules that includes bit-serial one or two-dimensional arrays; one or two dimensional arrays fixed or floating point processors; and specialized uniprocessors, such as long-word arithmetic units. One to eight BP's represent a likely initial chip level. The Stage would then correspond to a first-level pluggable module. As both this project and VLSI CAD/CAM progress, however, it is expected that the chip level would migrate upward to the stage and, perhaps, ultimately the box level. The BP RAM, consisting of two banks, holds only operands and indices. Programs are at the box (high-level function) and system level. At the system level initial effort has been concentrated on specifying the tools needed to evaluate design alternatives.

  7. Control system design method

    Science.gov (United States)

    Wilson, David G [Tijeras, NM; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  8. A Single Chip VLSI Implementation of a QPSK/SQPSK Demodulator for a VSAT Receiver Station

    Science.gov (United States)

    Kwatra, S. C.; King, Brent

    1995-01-01

    This thesis presents a VLSI implementation of a QPSK/SQPSK demodulator. It is designed to be employed in a VSAT earth station that utilizes the FDMA/TDM link. A single chip architecture is used to enable this chip to be easily employed in the VSAT system. This demodulator contains lowpass filters, integrate and dump units, unique word detectors, a timing recovery unit, a phase recovery unit and a down conversion unit. The design stages start with a functional representation of the system by using the C programming language. Then it progresses into a register based representation using the VHDL language. The layout components are designed based on these VHDL models and simulated. Component generators are developed for the adder, multiplier, read-only memory and serial access memory in order to shorten the design time. These sub-components are then block routed to form the main components of the system. The main components are block routed to form the final demodulator.

  9. Testing interconnected VLSI circuits in the Big Viterbi Decoder

    Science.gov (United States)

    Onyszchuk, I. M.

    1991-01-01

    The Big Viterbi Decoder (BVD) is a powerful error-correcting hardware device for the Deep Space Network (DSN), in support of the Galileo and Comet Rendezvous Asteroid Flyby (CRAF)/Cassini Missions. Recently, a prototype was completed and run successfully at 400,000 or more decoded bits per second. This prototype is a complex digital system whose core arithmetic unit consists of 256 identical very large scale integration (VLSI) gate-array chips, 16 on each of 16 identical boards which are connected through a 28-layer, printed-circuit backplane using 4416 wires. Special techniques were developed for debugging, testing, and locating faults inside individual chips, on boards, and within the entire decoder. The methods are based upon hierarchical structure in the decoder, and require that chips or boards be wired themselves as Viterbi decoders. The basic procedure consists of sending a small set of known, very noisy channel symbols through a decoder, and matching observables against values computed by a software simulation. Also, tests were devised for finding open and short-circuited wires which connect VLSI chips on the boards and through the backplane.

  10. Implementation of Optimized Reversible Sequential and Combinational Circuits for VLSI Applications

    Directory of Open Access Journals (Sweden)

    P. Mohan Krishna

    2014-04-01

    Full Text Available Reversible logic has emerged as one of the most important approaches for the power optimization with its application in low power VLSI design. They are also the fundamental requirement for the emerging field of the Quantum computing having with applications in the domains like Nano-technology, Digital signal processing, Cryptography, Communications. Implementing the reversible logic has the advantages of reducing gate counts, garbage outputs as well as constant inputs. In this project we present sequential and combinational circuit with reversible logic gates which are simulated in Xilinx ISE and by writing the code in VHDL . we have proposed a new design technique of BCD Adder using newly constructed reversible gates are based on CMOS with pass transistor gates . Here the total reversible Adder is designed using EDA tools. We will analyze the VLSI limitations like power consumption and area of designed circuits.

  11. On the design of multimedia software and future system architectures

    Science.gov (United States)

    de With, Peter H. N.; Jaspers, Egbert G.

    2004-04-01

    A principal challenge for reducing the cost for designing complex systems-on-chip is to pursue more generic systems for a broad range of products. For this purpose, we explore three new architectural concepts for state-of-art video applications. First, we discuss a reusable scalable hardware architecture employing a hierarchical communication network fitting with the natural hierarchy of the application. In a case study, we show that MPEG streaming in DTV occurs at high level, while subsystems communicate at lower levels. The second concept is a software design that scales over a number of processors to enable reuse over a range of VLSI process technologies. We explore this via an H.264 decoder implementation scaling nearly linearly over up to eight processors by applying data partitioning. The third topic is resource-scalability, which is required to satisfy realtime constraints in a system with a high amount of shared resources. An example complexity-scalable MPEG-2 coder scales the required cycle budget with a factor of three, in parallel with a smooth degradation of quality.

  12. BioCMOS Interfaces and Co-Design

    CERN Document Server

    Carrara, Sandro

    2013-01-01

    The application of CMOS circuits and ASIC VLSI systems to problems in medicine and system biology has led to the emergence of Bio/CMOS Interfaces and Co-Design as an exciting and rapidly growing area of research. The mutual inter-relationships between VLSI-CMOS design and the biophysics of molecules interfacing with silicon and/or onto metals has led to the emergence of the interdisciplinary engineering approach to Bio/CMOS interfaces. This new approach, facilitated by 3D circuit design and nanotechnology, has resulted in new concepts and applications for VLSI systems in the bio-world. This book offers an invaluable reference to the state-of-the-art in Bio/CMOS interfaces. It describes leading-edge research in the field of CMOS design and VLSI development for applications requiring integration of biological molecules onto the chip. It provides multidisciplinary content ranging from biochemistry to CMOS design in order to address Bio/CMOS interface co-design in bio-sensing applications.

  13. Resilient computer system design

    CERN Document Server

    Castano, Victor

    2015-01-01

    This book presents a paradigm for designing new generation resilient and evolving computer systems, including their key concepts, elements of supportive theory, methods of analysis and synthesis of ICT with new properties of evolving functioning, as well as implementation schemes and their prototyping. The book explains why new ICT applications require a complete redesign of computer systems to address challenges of extreme reliability, high performance, and power efficiency. The authors present a comprehensive treatment for designing the next generation of computers, especially addressing safety-critical, autonomous, real time, military, banking, and wearable health care systems.   §  Describes design solutions for new computer system - evolving reconfigurable architecture (ERA) that is free from drawbacks inherent in current ICT and related engineering models §  Pursues simplicity, reliability, scalability principles of design implemented through redundancy and re-configurability; targeted for energy-,...

  14. Modeling selective attention using a neuromorphic analog VLSI device.

    Science.gov (United States)

    Indiveri, G

    2000-12-01

    Attentional mechanisms are required to overcome the problem of flooding a limited processing capacity system with information. They are present in biological sensory systems and can be a useful engineering tool for artificial visual systems. In this article we present a hardware model of a selective attention mechanism implemented on a very large-scale integration (VLSI) chip, using analog neuromorphic circuits. The chip exploits a spike-based representation to receive, process, and transmit signals. It can be used as a transceiver module for building multichip neuromorphic vision systems. We describe the circuits that carry out the main processing stages of the selective attention mechanism and provide experimental data for each circuit. We demonstrate the expected behavior of the model at the system level by stimulating the chip with both artificially generated control signals and signals obtained from a saliency map, computed from an image containing several salient features.

  15. Remote Systems Design & Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ

    2009-08-28

    The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNL’s experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNL’s work experiences, and the work of others in the national laboratory complex.

  16. Realistic model of compact VLSI FitzHugh-Nagumo oscillators

    Science.gov (United States)

    Cosp, Jordi; Binczak, Stéphane; Madrenas, Jordi; Fernández, Daniel

    2014-02-01

    In this article, we present a compact analogue VLSI implementation of the FitzHugh-Nagumo neuron model, intended to model large-scale, biologically plausible, oscillator networks. As the model requires a series resistor and a parallel capacitor with the inductor, which is the most complex part of the design, it is possible to greatly simplify the active inductor implementation compared to other implementations of this device as typically found in filters by allowing appreciable, but well modelled, nonidealities. We model and obtain the parameters of the inductor nonideal model as an inductance in series with a parasitic resistor and a second order low-pass filter with a large cut-off frequency. Post-layout simulations for a CMOS 0.35 μm double-poly technology using the MOSFET Spice BSIM3v3 model confirm the proper behaviour of the design.

  17. Modular VLSI Reed-Solomon Decoder

    Science.gov (United States)

    Hsu, In-Shek; Truong, Trieu-Kie

    1991-01-01

    Proposed Reed-Solomon decoder contains multiple very-large-scale integrated (VLSI) circuit chips of same type. Each chip contains sets of logic cells and subcells performing functions from all stages of decoding process. Full decoder assembled by concatenating chips, with selective utilization of cells in particular chips. Cost of development reduced by factor of 5. In addition, decoder programmable in field and switched between 8-bit and 10-bit symbol sizes.

  18. Modular VLSI Reed-Solomon Decoder

    Science.gov (United States)

    Hsu, In-Shek; Truong, Trieu-Kie

    1991-01-01

    Proposed Reed-Solomon decoder contains multiple very-large-scale integrated (VLSI) circuit chips of same type. Each chip contains sets of logic cells and subcells performing functions from all stages of decoding process. Full decoder assembled by concatenating chips, with selective utilization of cells in particular chips. Cost of development reduced by factor of 5. In addition, decoder programmable in field and switched between 8-bit and 10-bit symbol sizes.

  19. Generating Weighted Test Patterns for VLSI Chips

    Science.gov (United States)

    Siavoshi, Fardad

    1990-01-01

    Improved built-in self-testing circuitry for very-large-scale integrated (VLSI) digital circuits based on version of weighted-test-pattern-generation concept, in which ones and zeros in pseudorandom test patterns occur with probabilities weighted to enhance detection of certain kinds of faults. Requires fewer test patterns and less computation time and occupies less area on circuit chips. Easy to relate switching activity in outputs with fault-detection activity by use of probabilistic fault-detection techniques.

  20. Emulated muscle spindle and spiking afferents validates VLSI neuromorphic hardware as a testbed for sensorimotor function and disease.

    Science.gov (United States)

    Niu, Chuanxin M; Nandyala, Sirish K; Sanger, Terence D

    2014-01-01

    The lack of multi-scale empirical measurements (e.g., recording simultaneously from neurons, muscles, whole body, etc.) complicates understanding of sensorimotor function in humans. This is particularly true for the understanding of development during childhood, which requires evaluation of measurements over many years. We have developed a synthetic platform for emulating multi-scale activity of the vertebrate sensorimotor system. Our design benefits from Very Large Scale Integrated-circuit (VLSI) technology to provide considerable scalability and high-speed, as much as 365× faster than real-time. An essential component of our design is the proprioceptive sensor, or muscle spindle. Here we demonstrate an accurate and extremely fast emulation of a muscle spindle and its spiking afferents, which are computationally expensive but fundamental for reflex functions. We implemented a well-known rate-based model of the spindle (Mileusnic et al., 2006) and a simplified spiking sensory neuron model using the Izhikevich approximation to the Hodgkin-Huxley model. The resulting behavior of our afferent sensory system is qualitatively compatible with classic cat soleus recording (Crowe and Matthews, 1964b; Matthews, 1964, 1972). Our results suggest that this simplified structure of the spindle and afferent neuron is sufficient to produce physiologically-realistic behavior. The VLSI technology allows us to accelerate this behavior beyond 365× real-time. Our goal is to use this testbed for predicting years of disease progression with only a few days of emulation. This is the first hardware emulation of the spindle afferent system, and it may have application not only for emulation of human health and disease, but also for the construction of compliant neuromorphic robotic systems.

  1. Area Efficient 3.3GHZ Phase Locked Loop with Four Multiple Output Using 45NM VLSI Technology

    Directory of Open Access Journals (Sweden)

    Ms. Ujwala A. Belorkar

    2011-03-01

    Full Text Available This paper present area efficient layout designs for 3.3GigaHertz (GHz Phase Locked loop (PLL withfour multiple output. Effort has been taken to design Low Power Phase locked loop with multiple output,using VLSI technology. VLSI Technology includes process design, trends, chip fabrication, real circuitparameters, circuit design, electrical characteristics, configuration building blocks, switching circuitry,translation onto silicon, CAD and practical experience in layout design. The proposed PLL is designedusing 45 nm CMOS/VLSI technology with microwind 3.1. This software allows designing and simulatingan integrated circuit at physical description level. The main novelties related to the 45 nm technology arethe high-k gate oxide, metal gate and very low-k interconnect dielectric. The effective gate lengthrequired for 45 nm technology is 25nm. Low Power (0.211miliwatt phase locked loop with four multipleoutputs as PLL8x, PLL4x, PLL2x, & PLL1x of 3.3 GHz, 1.65 GHz, 0.825 GHz, and 0.412 GHzrespectively is obtained using 45 nm VLSI technology.

  2. Parallel optical interconnects utilizing VLSI/FLC spatial light modulators

    Science.gov (United States)

    Genco, Sheryl M.

    1991-12-01

    Interconnection architectures are a cornerstone of parallel computing systems. However, interconnections can be a bottleneck in conventional computer architectures because of queuing structures that are necessary to handle the traffic through a switch at very high data rates and bandwidths. These issues must find new solutions to advance the state of the art in computing beyond the fundamental limit of silicon logic technology. Today's optoelectronic (OE) technology in particular VLSI/FLC spatial light modulators (SLMs) can provide a unique and innovative solution to these issues. This paper reports on the motivations for the system, describes the major areas of architectural requirements, discusses interconnection topologies and processor element alternatives, and documents an optical arbitration (i.e., control) scheme using `smart' SLMs and optical logic gates. The network topology is given in section 2.1 `Architectural Requirements -- Networks,' but it should be noted that the emphasis is on the optical control scheme (section 2.4) and the system.

  3. A VLSI field-programmable mixed-signal array to perform neural signal processing and neural modeling in a prosthetic system.

    Science.gov (United States)

    Bamford, Simeon A; Hogri, Roni; Giovannucci, Andrea; Taub, Aryeh H; Herreros, Ivan; Verschure, Paul F M J; Mintz, Matti; Del Giudice, Paolo

    2012-07-01

    A very-large-scale integration field-programmable mixed-signal array specialized for neural signal processing and neural modeling has been designed. This has been fabricated as a core on a chip prototype intended for use in an implantable closed-loop prosthetic system aimed at rehabilitation of the learning of a discrete motor response. The chosen experimental context is cerebellar classical conditioning of the eye-blink response. The programmable system is based on the intimate mixing of switched capacitor analog techniques with low speed digital computation; power saving innovations within this framework are presented. The utility of the system is demonstrated by the implementation of a motor classical conditioning model applied to eye-blink conditioning in real time with associated neural signal processing. Paired conditioned and unconditioned stimuli were repeatedly presented to an anesthetized rat and recordings were taken simultaneously from two precerebellar nuclei. These paired stimuli were detected in real time from this multichannel data. This resulted in the acquisition of a trigger for a well-timed conditioned eye-blink response, and repetition of unpaired trials constructed from the same data led to the extinction of the conditioned response trigger, compatible with natural cerebellar learning in awake animals.

  4. Training probabilistic VLSI models on-chip to recognise biomedical signals under hardware nonidealities.

    Science.gov (United States)

    Jiang, P C; Chen, H

    2006-01-01

    VLSI implementation of probabilistic models is attractive for many biomedical applications. However, hardware non-idealities can prevent probabilistic VLSI models from modelling data optimally through on-chip learning. This paper investigates the maximum computational errors that a probabilistic VLSI model can tolerate when modelling real biomedical data. VLSI circuits capable of achieving the required precision are also proposed.

  5. Advances in VLSI testing at MultiGb per second rates

    Directory of Open Access Journals (Sweden)

    Topisirović Dragan

    2005-01-01

    Full Text Available Today's high performance manufacturing of digital systems requires VLSI testing at speeds of multigigabits per second (multiGbps. Testing at Gbps needs high transfer rates among channels and functional units, and requires readdressing of data format and communication within a serial mode. This implies that a physical phenomena-jitter, is becoming very essential to tester operation. This establishes functional and design shift, which in turn dictates a corresponding shift in test and DFT (Design for Testability methods. We, here, review various approaches and discuss the tradeoffs in testing actual devices. For industry, volume-production stage and testing of multigigahertz have economic challenges. A particular solution based on the conventional ATE (Automated Test Equipment resources, that will be discussed, allows for accurate testing of ICs with many channels and this systems can test ICs at 2.5 Gbps over 144 cannels, with extensions planned that will have test rates exceeding 5 Gbps. Yield improvement requires understanding failures and identifying potential sources of yield loss. This text focuses on diagnosing of random logic circuits and classifying faults. An interesting scan-based diagnosis flow, which leverages the ATPG (Automatic Test Pattern Generator patterns originally generated for fault coverage, will be described. This flow shows an adequate link between the design automation tools and the testers, and a correlation between the ATPG patterns and the tester failure reports.

  6. Systems biology: experimental design.

    Science.gov (United States)

    Kreutz, Clemens; Timmer, Jens

    2009-02-01

    Experimental design has a long tradition in statistics, engineering and life sciences, dating back to the beginning of the last century when optimal designs for industrial and agricultural trials were considered. In cell biology, the use of mathematical modeling approaches raises new demands on experimental planning. A maximum informative investigation of the dynamic behavior of cellular systems is achieved by an optimal combination of stimulations and observations over time. In this minireview, the existing approaches concerning this optimization for parameter estimation and model discrimination are summarized. Furthermore, the relevant classical aspects of experimental design, such as randomization, replication and confounding, are reviewed.

  7. Analogue VLSI for probabilistic networks and spike-time computation.

    Science.gov (United States)

    Murray, A

    2001-02-01

    The history and some of the methods of analogue neural VLSI are described. The strengths of analogue techniques are described, along with residual problems to be solved. The nature of hardware-friendly and hardware-appropriate algorithms is reviewed and suggestions are offered as to where analogue neural VLSI's future lies.

  8. Trends and challenges in VLSI technology scaling towards 100 nm

    NARCIS (Netherlands)

    Rusu, S.; Sachdev, M.; Svensson, C.; Nauta, Bram

    Summary form only given. Moore's Law drives VLSI technology to continuous increases in transistor densities and higher clock frequencies. This tutorial will review the trends in VLSI technology scaling in the last few years and discuss the challenges facing process and circuit engineers in the 100nm

  9. VLSI-based Video Event Triggering for Image Data Compression

    Science.gov (United States)

    Williams, Glenn L.

    1994-01-01

    Long-duration, on-orbit microgravity experiments require a combination of high resolution and high frame rate video data acquisition. The digitized high-rate video stream presents a difficult data storage problem. Data produced at rates of several hundred million bytes per second may require a total mission video data storage requirement exceeding one terabyte. A NASA-designed, VLSI-based, highly parallel digital state machine generates a digital trigger signal at the onset of a video event. High capacity random access memory storage coupled with newly available fuzzy logic devices permits the monitoring of a video image stream for long term (DC-like) or short term (AC-like) changes caused by spatial translation, dilation, appearance, disappearance, or color change in a video object. Pre-trigger and post-trigger storage techniques are then adaptable to archiving only the significant video images.

  10. Distributed System Design Checklist

    Science.gov (United States)

    Hall, Brendan; Driscoll, Kevin

    2014-01-01

    This report describes a design checklist targeted to fault-tolerant distributed electronic systems. Many of the questions and discussions in this checklist may be generally applicable to the development of any safety-critical system. However, the primary focus of this report covers the issues relating to distributed electronic system design. The questions that comprise this design checklist were created with the intent to stimulate system designers' thought processes in a way that hopefully helps them to establish a broader perspective from which they can assess the system's dependability and fault-tolerance mechanisms. While best effort was expended to make this checklist as comprehensive as possible, it is not (and cannot be) complete. Instead, we expect that this list of questions and the associated rationale for the questions will continue to evolve as lessons are learned and further knowledge is established. In this regard, it is our intent to post the questions of this checklist on a suitable public web-forum, such as the NASA DASHLink AFCS repository. From there, we hope that it can be updated, extended, and maintained after our initial research has been completed.

  11. Novel on chip-interconnection structures for giga-scale integration VLSI ICS

    Science.gov (United States)

    Nelakuditi, Usha R.; Reddy, S. N.

    2013-01-01

    Based on the guidelines of International Technology Roadmap for Semiconductors (ITRS) Intel has already designed and manufactured the next generation product of the Itanium family containing 1.72 billion transistors. In each new technology due to scaling, individual transistors are becoming smaller and faster, and are dissipating low power. The main challenge with these systems is wiring of these billion transistors since wire length interconnect scaling increases the distributed resistance-capacitance product. In addition, high clock frequencies necessitate reverse scaling of global and semi-global interconnects so that they satisfy the timing constraints. Hence, the performances of future GSI systems will be severely restricted by interconnect performance. It is therefore essential to look at interconnect design techniques that will reduce the impact of interconnect networks on the power, performance and cost of the entire system. In this paper a new routing technique called Wave-Pipelined Multiplexed (WPM) Routing similar to Time Division Multiple Access (TDMA) is discussed. This technique is highly useful for the current high density CMOS VLSI ICs. The major advantages of WPM routing technique are flexible, robust, simple to implement, and realized with low area, low power and performance overhead requirements.

  12. Analog VLSI implementation of resonate-and-fire neuron.

    Science.gov (United States)

    Nakada, Kazuki; Asai, Tetsuya; Hayashi, Hatsuo

    2006-12-01

    We propose an analog integrated circuit that implements a resonate-and-fire neuron (RFN) model based on the Lotka-Volterra (LV) system. The RFN model is a spiking neuron model that has second-order membrane dynamics, and thus exhibits fast damped subthreshold oscillation, resulting in the coincidence detection, frequency preference, and post-inhibitory rebound. The RFN circuit has been derived from the LV system to mimic such dynamical behavior of the RFN model. Through circuit simulations, we demonstrate that the RFN circuit can act as a coincidence detector and a band-pass filter at circuit level even in the presence of additive white noise and background random activity. These results show that our circuit is expected to be useful for very large-scale integration (VLSI) implementation of functional spiking neural networks.

  13. An Evolutionary Transition of conventional n MOS VLSI to CMOS considering Scaling, Low Power and Higher Mobility

    Directory of Open Access Journals (Sweden)

    Md Mobarok Hossain Rubel

    2016-07-01

    Full Text Available This paper emphasizes on the gradual revolution of CMOS scaling by delivering the modern concepts of newly explored device structures and new materials. After analyzing the improvements in sources, performance of CMOS technology regarding conventional semiconductor devices has been thoroughly discussed. This has been done by considering the significant semiconductor evolution devices like metal gate electrode, double gate FET, FinFET, high dielectric constant (high k and strained silicon FET. Considering the power level while scaling, the paper showed how nMOS VLSI chips have been gradually replaced by CMOS aiming for the reduction in the growing power of VLSI systems.

  14. Design of combi systems

    DEFF Research Database (Denmark)

    Andersen, Elsa; Shah, Louise Jivan; Furbo, Simon

    2001-01-01

    with constant daily hot water consumption, consumption patterns and space heating demand for all days, and the results are used to validate TrnSys models. Based on simulation models of the combi systems, the thermal behavior is simulated and the thermal performance and the solar fraction of the systems...... is determined. The calculations are based on the simulation program TrnSys [Klein S.A et al. (1996)] and weather data from the Danish Design Reference Year, DRY. The paper will present and compare measured and calculated thermal performances and solar fractions of different combi systems and the main reasons...

  15. BWID System Design Study

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, M.C.; Rudin, M.J.; Morrison, J.L.; Richardson, J.G.

    1991-01-01

    The mission of the Buried Waste Integrated Demonstration (BWID) System Design Study is to identify and evaluate technology process options for the cradle-to-grave remediation of Transuranic (TRU)-Contaminated Waste Pits and Trenches buried at the Idaho National Engineering Laboratory (INEL). Emphasis is placed upon evaluating system configuration options and associated functional and operational requirements for retrieving and treating the buried wastes. A Performance-Based Technology Selection Filter was developed to evaluate the identified remediation systems and their enabling technologies based upon system requirements and quantification of technical Comprehensive Environmental Response, Compensation, and Liability (CERCLA) balancing criteria. Remediation systems will also be evaluated with respect to regulatory and institutional acceptance and cost-effectiveness.

  16. BWID System Design Study

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, M.C.; Rudin, M.J.; Morrison, J.L.; Richardson, J.G.

    1991-12-31

    The mission of the Buried Waste Integrated Demonstration (BWID) System Design Study is to identify and evaluate technology process options for the cradle-to-grave remediation of Transuranic (TRU)-Contaminated Waste Pits and Trenches buried at the Idaho National Engineering Laboratory (INEL). Emphasis is placed upon evaluating system configuration options and associated functional and operational requirements for retrieving and treating the buried wastes. A Performance-Based Technology Selection Filter was developed to evaluate the identified remediation systems and their enabling technologies based upon system requirements and quantification of technical Comprehensive Environmental Response, Compensation, and Liability (CERCLA) balancing criteria. Remediation systems will also be evaluated with respect to regulatory and institutional acceptance and cost-effectiveness.

  17. Design of combi systems

    DEFF Research Database (Denmark)

    Andersen, Elsa; Shah, Louise Jivan; Furbo, Simon

    2001-01-01

    is determined. The calculations are based on the simulation program TrnSys [Klein S.A et al. (1996)] and weather data from the Danish Design Reference Year, DRY. The paper will present and compare measured and calculated thermal performances and solar fractions of different combi systems and the main reasons...... in Denmark correspond to the system illustrated in Figure1. The control system operates the three-way valve in the solar collector circuit so solar heat is supplied either to the storage tank or to the heat exchanger between the collector loop and the space-heating loop. [Ellehauge K, ShahL.J. (2000...... with constant daily hot water consumption, consumption patterns and space heating demand for all days, and the results are used to validate TrnSys models. Based on simulation models of the combi systems, the thermal behavior is simulated and the thermal performance and the solar fraction of the systems...

  18. Event-driven neural integration and synchronicity in analog VLSI.

    Science.gov (United States)

    Yu, Theodore; Park, Jongkil; Joshi, Siddharth; Maier, Christoph; Cauwenberghs, Gert

    2012-01-01

    Synchrony and temporal coding in the central nervous system, as the source of local field potentials and complex neural dynamics, arises from precise timing relationships between spike action population events across neuronal assemblies. Recently it has been shown that coincidence detection based on spike event timing also presents a robust neural code invariant to additive incoherent noise from desynchronized and unrelated inputs. We present spike-based coincidence detection using integrate-and-fire neural membrane dynamics along with pooled conductance-based synaptic dynamics in a hierarchical address-event architecture. Within this architecture, we encode each synaptic event with parameters that govern synaptic connectivity, synaptic strength, and axonal delay with additional global configurable parameters that govern neural and synaptic temporal dynamics. Spike-based coincidence detection is observed and analyzed in measurements on a log-domain analog VLSI implementation of the integrate-and-fire neuron and conductance-based synapse dynamics.

  19. Systems engineering agile design methodologies

    CERN Document Server

    Crowder, James A

    2013-01-01

    This book examines the paradigm of the engineering design process. The authors discuss agile systems and engineering design. The book captures the entire design process (functionbases), context, and requirements to affect real reuse. It provides a methodology for an engineering design process foundation for modern and future systems design. This book captures design patterns with context for actual Systems Engineering Design Reuse and contains a new paradigm in Design Knowledge Management.

  20. VLSI architectures for computing multiplications and inverses in GF(2-m)

    Science.gov (United States)

    Wang, C. C.; Truong, T. K.; Shao, H. M.; Deutsch, L. J.; Omura, J. K.; Reed, I. S.

    1983-01-01

    Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that are easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. A pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal-basis representation used together with this multiplier, a pipeline architecture is also developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.

  1. VLSI architectures for computing multiplications and inverses in GF(2m)

    Science.gov (United States)

    Wang, C. C.; Truong, T. K.; Shao, H. M.; Deutsch, L. J.; Omura, J. K.

    1985-01-01

    Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that are easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. A pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal-basis representation used together with this multiplier, a pipeline architecture is also developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.

  2. An analog VLSI implementation of a visual interneuron: enhanced sensory processing through biophysical modeling.

    Science.gov (United States)

    Harrison, R R; Koch, C

    1999-10-01

    Flies are capable of rapid, coordinated flight through unstructured environments. This flight is guided by visual motion information that is extracted from photoreceptors in a robust manner. One feature of the fly's visual processing that adds to this robustness is the saturation of wide-field motion-sensitive neuron responses with increasing pattern size. This makes the cell's responses less dependent on the sparseness of the optical flow field while retaining motion information. By implementing a compartmental neuronal model in silicon, we add this "gain control" to an existing analog VLSI model of fly vision. This results in enhanced performance in a compact, low-power CMOS motion sensor. Our silicon system also demonstrates that modern, biophysically-detailed models of neural sensory processing systems can be instantiated in VLSI hardware.

  3. Single Spin Logic Implementation of VLSI Adders

    CERN Document Server

    Shukla, Soumitra

    2011-01-01

    Some important VLSI adder circuits are implemented using quantum dots (qd) and Spin Polarized Scanning Tunneling Microscopy (SPSTM) in Single Spin Logic (SSL) paradigm. A simple comparison between these adder circuits shows that the mirror adder implementation in SSL does not carry any advantage over CMOS adder in terms of complexity and number of qds, opposite to the trend observed in their charge-based counterparts. On the contrary, the transmission gate adder, Static and Dynamic Manchester carry gate adders in SSL reduce the complexity and number of qds, in harmony with the trend shown in transistor adders.

  4. Compensating Inhomogeneities of Neuromorphic VLSI Devices Via Short-Term Synaptic Plasticity.

    Science.gov (United States)

    Bill, Johannes; Schuch, Klaus; Brüderle, Daniel; Schemmel, Johannes; Maass, Wolfgang; Meier, Karlheinz

    2010-01-01

    Recent developments in neuromorphic hardware engineering make mixed-signal VLSI neural network models promising candidates for neuroscientific research tools and massively parallel computing devices, especially for tasks which exhaust the computing power of software simulations. Still, like all analog hardware systems, neuromorphic models suffer from a constricted configurability and production-related fluctuations of device characteristics. Since also future systems, involving ever-smaller structures, will inevitably exhibit such inhomogeneities on the unit level, self-regulation properties become a crucial requirement for their successful operation. By applying a cortically inspired self-adjusting network architecture, we show that the activity of generic spiking neural networks emulated on a neuromorphic hardware system can be kept within a biologically realistic firing regime and gain a remarkable robustness against transistor-level variations. As a first approach of this kind in engineering practice, the short-term synaptic depression and facilitation mechanisms implemented within an analog VLSI model of I&F neurons are functionally utilized for the purpose of network level stabilization. We present experimental data acquired both from the hardware model and from comparative software simulations which prove the applicability of the employed paradigm to neuromorphic VLSI devices.

  5. VLSI implementation of a template subtraction algorithm for real-time stimulus artifact rejection.

    Science.gov (United States)

    Limnuson, Kanokwan; Lu, Hui; Chiel, Hillel J; Mohseni, Pedram

    2010-01-01

    In this paper, we present very-large-scale integrated (VLSI) implementation of a template subtraction algorithm for stimulus artifact rejection (SAR) in real time with applicability to closed-loop neuroprostheses. The SAR algorithm is based upon an infinite impulse response (IIR) temporal filtering technique, which can be efficiently implemented in VLSI with reduced power consumption and silicon area. We demonstrate that initialization of the memory within the system architecture using the first recorded stimulus artifact significantly decreases system response time as compared to the case without memory initialization. Two sets of pre-recorded neural data from an Aplysia californica are used to simulate the functionality of the proposed VLSI architecture in AMS 0.35 microm complementary metal-oxide-semiconductor (CMOS) technology. Depending upon the reproducibility in the shape of stimulus artifacts in vivo, the system eliminates virtually all artifacts in real time and recovers the extracellular neural activity with microW-level power consumption from 1.5 V.

  6. VLSI implementation of a nonlinear neuronal model: a "neural prosthesis" to restore hippocampal trisynaptic dynamics.

    Science.gov (United States)

    Hsiao, Min-Chi; Chan, Chiu-Hsien; Srinivasan, Vijay; Ahuja, Ashish; Erinjippurath, Gopal; Zanos, Theodoros P; Gholmieh, Ghassan; Song, Dong; Wills, Jack D; LaCoss, Jeff; Courellis, Spiros; Tanguay, Armand R; Granacki, John J; Marmarelis, Vasilis Z; Berger, Theodore W

    2006-01-01

    We are developing a biomimetic electronic neural prosthesis to replace regions of the hippocampal brain area that have been damaged by disease or insult. We have used the hippocampal slice preparation as the first step in developing such a prosthesis. The major intrinsic circuitry of the hippocampus consists of an excitatory cascade involving the dentate gyrus (DG), CA3, and CA1 subregions; this trisynaptic circuit can be maintained in a transverse slice preparation. Our demonstration of a neural prosthesis for the hippocampal slice involves: (i) surgically removing CA3 function from the trisynaptic circuit by transecting CA3 axons, (ii) replacing biological CA3 function with a hardware VLSI (very large scale integration) model of the nonlinear dynamics of CA3, and (iii) through a specially designed multi-site electrode array, transmitting DG output to the hardware device, and routing the hardware device output to the synaptic inputs of the CA1 subregion, thus by-passing the damaged CA3. Field EPSPs were recorded from the CA1 dendritic zone in intact slices and "hybrid" DG-VLSI-CA1 slices. Results show excellent agreement between data from intact slices and transected slices with the hardware-substituted CA3: propagation of temporal patterns of activity from DG-->VLSI-->CA1 reproduces that observed experimentally in the biological DG-->CA3-->CA1 circuit.

  7. Intelligent Tutoring Systems as Design.

    Science.gov (United States)

    Wu, Albert K. W.; Lee, M. C.

    1998-01-01

    Proposes the notion of intelligent tutoring systems (ITS) as design in order to engage ITS development with more rigor. Topics include engineering design versus ITS design; systems approach; design as problem solving; a hierarchy of paradigms; the emergence of an agent-theoretic approach; and the need for an ITS design notation. (Author/LRW)

  8. Efficient VLSI architecture of CAVLC decoder with power optimized

    Institute of Scientific and Technical Information of China (English)

    CHEN Guang-hua; HU Deng-ji; ZHANG Jin-yi; ZHENG Wei-feng; ZENG Wei-min

    2009-01-01

    This paper presents an efficient VLSI architecture of the contest-based adaptive variable length code (CAVLC) decoder with power optimized for the H.264/advanced video coding (AVC) standard. In the proposed design, according to the regularity of the codewords, the first one detector is used to solve the low efficiency and high power dissipation problem within the traditional method of table-searching. Considering the relevance of the data used in the process of runbefore's decoding,arithmetic operation is combined with finite state machine (FSM), which achieves higher decoding efficiency. According to the CAVLC decoding flow, clock gating is employed in the module level and the register level respectively, which reduces 43% of the overall dynamic power dissipation. The proposed design can decode every syntax element in one clock cycle. When the proposed design is synthesized at the clock constraint of 100 MHz, the synthesis result shows that the design costs 11 300gates under a 0.25 μm CMOS technology, which meets the demand of real time decoding in the H.264/AVC standard.

  9. A Framework for Systemic Design

    Directory of Open Access Journals (Sweden)

    Alex Ryan

    2014-12-01

    Full Text Available As designers move upstream from traditional product and service design to engage with challenges characterised by complexity, uniqueness, value conflict, and ambiguity over objectives, they have increasingly integrated systems approaches into their practice. This synthesis of systems thinking with design thinking is forming a distinct new field of systemic design. This paper presents a framework for systemic design as a mindset, methodology, and set of methods that together enable teams to learn, innovate, and adapt to a complex and dynamic environment. We suggest that a systemic design mindset is inquiring, open, integrative, collaborative, and centred. We propose a systemic design methodology composed of six main activities: framing, formulating, generating, reflecting, inquiring, and facilitating. We view systemic design methods as a flexible and open-ended set of procedures for facilitating group collaboration that are both systemic and designerly.  

  10. Memory Based Machine Intelligence Techniques in VLSI hardware

    OpenAIRE

    James, Alex Pappachen

    2012-01-01

    We briefly introduce the memory based approaches to emulate machine intelligence in VLSI hardware, describing the challenges and advantages. Implementation of artificial intelligence techniques in VLSI hardware is a practical and difficult problem. Deep architectures, hierarchical temporal memories and memory networks are some of the contemporary approaches in this area of research. The techniques attempt to emulate low level intelligence tasks and aim at providing scalable solutions to high ...

  11. Memory Based Machine Intelligence Techniques in VLSI hardware

    CERN Document Server

    James, Alex Pappachen

    2012-01-01

    We briefly introduce the memory based approaches to emulate machine intelligence in VLSI hardware, describing the challenges and advantages. Implementation of artificial intelligence techniques in VLSI hardware is a practical and difficult problem. Deep architectures, hierarchical temporal memories and memory networks are some of the contemporary approaches in this area of research. The techniques attempt to emulate low level intelligence tasks and aim at providing scalable solutions to high level intelligence problems such as sparse coding and contextual processing.

  12. 低成本可调FFT处理器的超大规模集成电路设计%Low Cost VLSI Design of a Flexible FFT Processor

    Institute of Scientific and Technical Information of China (English)

    戴亦奇

    2011-01-01

    In this paper, a radix-22/23 based pipeline structure is presented, in order to implement a low-cost VLSI fast Fourier transform (FFT) processor. As well as reducing the steps of normal complex multiplications, it minimizes the memory words to get the FFT results with the single-path delay feedback (SDF) memory access method. As for the data-path in the pipeline FFT processor, the hybrid floating point data-scaling scheme is adopted to achieve enough signal-to-quantization-noise ratio with minimum data width and RAM requirements.%文章提出了一种以基-22/23为基础的流水线结构,用以实现低成本、超大规模集成电路(VLSI)的快速傅里叶变换(FFT)处理器设计。该处理器在减少普通复数乘法器级数的同时,通过单路延时反馈(SDF)存取方式,以最少的存储字来获得FFT结果。对于数据通路,我们采用了混合浮点的数据缩放方式,在保证信噪比的同时,降低了数据长度和RAM容量的需求。

  13. Statistical design for microwave systems

    Science.gov (United States)

    Cooke, Roland; Purviance, John

    1991-01-01

    This paper presents an introduction to statistical system design. Basic ideas needed to understand statistical design and a method for implementing statistical design are presented. The nonlinear characteristics of the system amplifiers and mixers are accounted for in the given examples. The specification of group delay, signal-to-noise ratio and output power are considered in these statistical designs.

  14. Design inspections for systems undergoing design modifications

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, B.K.; Norkin, D.P.

    1987-01-01

    The US Nuclear Regulatory Commission's (NRC's) Office of Inspection and Enforcement (IE) has conducted direct inspections (integrated design inspections) of the technical aspects of the nuclear plant design process for several plants under construction. It has also evaluated independent design verification programs and engineering assurance programs at a number of other plants under construction. Many of the lessons learned from these construction phase efforts are directly applicable to operating plants undergoing major modifications. This has been confirmed by IE direct inspections of the design aspects of safety systems outage modifications, which have identified significant potential safety-related deficiencies. The paper discusses methodology for design inspections; failure to maintain up-to-date design basis documentation; and lessons learned common to plants under construction and undergoing major modifications.

  15. Design management of EDI systems.

    NARCIS (Netherlands)

    Heck, van E.

    1993-01-01

    This study deals with the management of the design process of Electronic Data Interchange (EDI) systems. Its objectives are (1) to investigate the design process of EDI systems from a practical and theoretical perspective; (2) to develop a model to describe factors relevant to EDI system-design succ

  16. Boolean approaches to graph embeddings related to VLSI

    Institute of Scientific and Technical Information of China (English)

    LIU; Yanpei(

    2001-01-01

    [1]Hu, T. C., Kuh, S. E., Theory and concepts of circuit layout, in VLSI Circuit Layout: Theory and Design, New York:IEEE Press, 1985, 3-18.[2]Liu Yanpei, Embeddability in Graphs, Boston-Beijing: Kluwer Science, 1995.[3]Liu Yanpei, Some combinatorial optimization problems arising from VLSI circuit design, Applied Math. -JCU, 1993, 38:218-235.[4]Liu Yanpei, Marchioro, P. , Petreschi, R., At most single bend embeddings of cubic graphs, Applied Math. -CJU, 1994,39: 127-142.[5]Liu Yanpei, Marchioro, P. , Petreschi, R. et al. , Theoretical results on at most 1-bend embeddability of graphs, Acta Math.Appl. Sinica, 1992, 8: 188-192.[6]Liu Yanpei, Morgana, A., Simeone, B., General theoretical results on rectilinear embeddability of graphs, Acta Math. Ap- pl. Simca, 1991, 7: 187-192.[7]Calamoneri, T., Petreschi, R., Liu Yanpei, Optimally Extending Bistandard Graphs on the Orthogonal Grid, ASCM2000 Symposium, Tailand, Dec.17-21, 2000.[8]Liu Yanpei, Morgana, A., Simeone, B., A graph partition problem, Acta Math. Appl. Sinica, 1996, 12: 393-400.[9]Liu Yanpei, Morgana, A. , Simeone, B. , A linear algorithm for 2-bend embeddings of planar graphs in the two dimensional grid, Discrete Appl. Math., 1998, 81: 69-91.[10]Liu Yanpei, Boolean approach to planar embeddings of a graph, Acta Math. Sinica, New Series, 1989, 5: 64-79.[11]Hammer, P. L., Liu Yanpei, Simeone, B., Boolean approaches to combinatorial optimization, J. Math. Res. Expos.,1990, 10: 300-312, 455-468, 619-628.[12]Liu Yanpei, Boolean planarity characterization of graphs, Acta Math. Sinica, New Series, 1988, 4: 316-329.[13]Liu Yanpei, Boolean characterizations of planarity and planar embeddings of graphs, Ann. O. R., 1990, 24: 165-174.

  17. Systems and Environmental Design.

    Science.gov (United States)

    Broadbent, Geoffrey

    Design, which is basically a decisionmaking process, requires certain information. Although the nature and quantity of information needed vary greatly from task to task, the designer could be greatly assisted if some means were devised to help him decide which information is essential for his particular task. In the design of buildings, the…

  18. Preliminary design review: Brayton Isotope Power System

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1977-03-01

    The design aspects covered include flight system design, design criteria/margins/reliability, GDS design, system analysis, materials, system assembly procedure, and government furnished equipment-BTPS. (TFD)

  19. High performance genetic algorithm for VLSI circuit partitioning

    Science.gov (United States)

    Dinu, Simona

    2016-12-01

    Partitioning is one of the biggest challenges in computer-aided design for VLSI circuits (very large-scale integrated circuits). This work address the min-cut balanced circuit partitioning problem- dividing the graph that models the circuit into almost equal sized k sub-graphs while minimizing the number of edges cut i.e. minimizing the number of edges connecting the sub-graphs. The problem may be formulated as a combinatorial optimization problem. Experimental studies in the literature have shown the problem to be NP-hard and thus it is important to design an efficient heuristic algorithm to solve it. The approach proposed in this study is a parallel implementation of a genetic algorithm, namely an island model. The information exchange between the evolving subpopulations is modeled using a fuzzy controller, which determines an optimal balance between exploration and exploitation of the solution space. The results of simulations show that the proposed algorithm outperforms the standard sequential genetic algorithm both in terms of solution quality and convergence speed. As a direction for future study, this research can be further extended to incorporate local search operators which should include problem-specific knowledge. In addition, the adaptive configuration of mutation and crossover rates is another guidance for future research.

  20. DESIGNING INFORMATION SYSTEM IN ORGANIZATION

    Directory of Open Access Journals (Sweden)

    Joanna WALASEK

    2015-06-01

    Full Text Available This article is an attempt to approach essential issues in designing modern information systems. The key to successful information system is good design. A modern design requires looking from a number of different perspectives. Different people use different information in different contexts. These problems should be analyzed and requirements should be documented before solutions are designed and implemented. Satisfying the business needs is a baseline standard for information system.

  1. DESIGNING INFORMATION SYSTEM IN ORGANIZATION

    OpenAIRE

    Joanna WALASEK

    2015-01-01

    This article is an attempt to approach essential issues in designing modern information systems. The key to successful information system is good design. A modern design requires looking from a number of different perspectives. Different people use different information in different contexts. These problems should be analyzed and requirements should be documented before solutions are designed and implemented. Satisfying the business needs is a baseline standard for information system.

  2. Issues in holistic system design

    DEFF Research Database (Denmark)

    Lawall, Julia L.; Probst, Christian W.; Schultz, Ulrik Pagh

    2006-01-01

    The coordination of layers in computer and software systems is one of the main challenges in designing such systems today. In this paper we consider Holistic System Design as a way of integrating requirements and facilities of different system layers. We also discuss some of the challenges...

  3. A bioinspired collision detection algorithm for VLSI implementation

    Science.gov (United States)

    Cuadri, J.; Linan, G.; Stafford, R.; Keil, M. S.; Roca, E.

    2005-06-01

    In this paper a bioinspired algorithm for collision detection is proposed, based on previous models of the locust (Locusta migratoria) visual system reported by F.C. Rind and her group, in the University of Newcastle-upon-Tyne. The algorithm is suitable for VLSI implementation in standard CMOS technologies as a system-on-chip for automotive applications. The working principle of the algorithm is to process a video stream that represents the current scenario, and to fire an alarm whenever an object approaches on a collision course. Moreover, it establishes a scale of warning states, from no danger to collision alarm, depending on the activity detected in the current scenario. In the worst case, the minimum time before collision at which the model fires the collision alarm is 40 msec (1 frame before, at 25 frames per second). Since the average time to successfully fire an airbag system is 2 msec, even in the worst case, this algorithm would be very helpful to more efficiently arm the airbag system, or even take some kind of collision avoidance countermeasures. Furthermore, two additional modules have been included: a "Topological Feature Estimator" and an "Attention Focusing Algorithm". The former takes into account the shape of the approaching object to decide whether it is a person, a road line or a car. This helps to take more adequate countermeasures and to filter false alarms. The latter centres the processing power into the most active zones of the input frame, thus saving memory and processing time resources.

  4. Computer System Design System-on-Chip

    CERN Document Server

    Flynn, Michael J

    2011-01-01

    The next generation of computer system designers will be less concerned about details of processors and memories, and more concerned about the elements of a system tailored to particular applications. These designers will have a fundamental knowledge of processors and other elements in the system, but the success of their design will depend on the skills in making system-level tradeoffs that optimize the cost, performance and other attributes to meet application requirements. This book provides a new treatment of computer system design, particularly for System-on-Chip (SOC), which addresses th

  5. Satellite system design

    Science.gov (United States)

    1982-01-01

    The design of the MSAT spacecraft for the LMSS is presented. The most important requirement affecting the design of MSAT is that of producing a prescribed number of multiple beams. A conceptual design for MSAT describing most major subsystem individually is developed. The design of the large UHF multiple beam antenna and its associated feed array which are the most singularly prominent features of MSAT is emphasized. The overall design is outlined, and each subsystem is discussed. The design of the feed array and the RF, control, power, propulsion, and thermal subsystem are included. The RF performace of the UHF antenna, including its beam isolation performance, is discussed. The volume and mass properties of MSAT and its Shuttle launch considerations are also included.

  6. Designing Instructional Systems

    Science.gov (United States)

    Furtado, Lorraine T.

    1974-01-01

    The author presents an instructional design model for teachers that evolves around a teacher-manager concept which recognizes management functions of: planning, organizing, leading, and controlling. (EA)

  7. Designing Instructional Systems

    Science.gov (United States)

    Furtado, Lorraine T.

    1974-01-01

    The author presents an instructional design model for teachers that evolves around a teacher-manager concept which recognizes management functions of: planning, organizing, leading, and controlling. (EA)

  8. ROLLING MILL SYSTEM DYNAMIC DESIGN

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    It is studied how the aluminum foil chatter mark is produced and controlledThe stableness of hydraulic AGC system,fluid vibration of capsule system,and electromechanical coupling of AC/AC VVVF system and dec oupling are also studiedIt is shown that rolling mill design should go to syst em dynamic design from traditional designThe framed drawing of system dynamic design program is presented

  9. System Design for Telecommunication Gateways

    CERN Document Server

    Bachmutsky, Alexander

    2010-01-01

    System Design for Telecommunication Gateways provides a thorough review of designing telecommunication network equipment based on the latest hardware designs and software methods available on the market. Focusing on high-end efficient designs that challenge all aspects of the system architecture, this book helps readers to understand a broader view of the system design, analyze all its most critical components, and select the parts that best fit a particular application. In many cases new technology trends, potential future developments, system flexibility and capability extensions are outline

  10. Adaptive WTA with an analog VLSI neuromorphic learning chip.

    Science.gov (United States)

    Häfliger, Philipp

    2007-03-01

    In this paper, we demonstrate how a particular spike-based learning rule (where exact temporal relations between input and output spikes of a spiking model neuron determine the changes of the synaptic weights) can be tuned to express rate-based classical Hebbian learning behavior (where the average input and output spike rates are sufficient to describe the synaptic changes). This shift in behavior is controlled by the input statistic and by a single time constant. The learning rule has been implemented in a neuromorphic very large scale integration (VLSI) chip as part of a neurally inspired spike signal image processing system. The latter is the result of the European Union research project Convolution AER Vision Architecture for Real-Time (CAVIAR). Since it is implemented as a spike-based learning rule (which is most convenient in the overall spike-based system), even if it is tuned to show rate behavior, no explicit long-term average signals are computed on the chip. We show the rule's rate-based Hebbian learning ability in a classification task in both simulation and chip experiment, first with artificial stimuli and then with sensor input from the CAVIAR system.

  11. VLSI Implementation of Hybrid Algorithm Architecture for Speech Enhancement

    Directory of Open Access Journals (Sweden)

    Jigar Shah

    2012-07-01

    Full Text Available The speech enhancement techniques are required to improve the speech signal quality without causing any offshoot in many applications. Recently the growing use of cellular and mobile phones, hands free systems, VoIP phones, voice messaging service, call service centers etc. require efficient real time speech enhancement and detection strategies to make them superior over conventional speech communication systems. The speech enhancement algorithms are required to deal with additive noise and convolutive distortion that occur in any wireless communication system. Also the single channel (one microphone signal is available in real environments. Hence a single channel hybrid algorithm is used which combines minimum mean square error-log spectral amplitude (MMSE-LSA algorithm for additive noise removal and the relative spectral amplitude (RASTA algorithm for reverberation cancellation. The real time and embedded implementation on directly available DSP platforms like TMS320C6713 shows some defects. Hence the VLSI implementation using semi-custom (e.g. FPGA or full-custom approach is required. One such architecture is proposed in this paper.

  12. Flip-flop design in nanometer CMOS from high speed to low energy

    CERN Document Server

    Alioto, Massimo; Palumbo, Gaetano

    2015-01-01

    This book provides a unified treatment of Flip-Flop design and selection in nanometer CMOS VLSI systems. The design aspects related to the energy-delay tradeoff in Flip-Flops are discussed, including their energy-optimal selection according to the targeted application, and the detailed circuit design in nanometer CMOS VLSI systems. Design strategies are derived in a coherent framework that includes explicitly nanometer effects, including leakage, layout parasitics and process/voltage/temperature variations, as main advances over the existing body of work in the field. The related design tradeoffs are explored in a wide range of applications and the related energy-performance targets. A wide range of existing and recently proposed Flip-Flop topologies are discussed. Theoretical foundations are provided to set the stage for the derivation of design guidelines, and emphasis is given on practical aspects and consequences of the presented results. Analytical models and derivations are introduced when needed to gai...

  13. Lofar information system design

    NARCIS (Netherlands)

    Valentijn, E.; Belikov, A. N.

    2009-01-01

    The Lofar Information System is a solution for Lofar Long Term Archive that is capable to store and handle PBs of raw and processed data. The newly created information system is based on Astro-WISE - the information system for wide field astronomy. We review an adaptation of Astro-WISE for the new t

  14. Design automation, languages, and simulations

    CERN Document Server

    Chen, Wai-Kai

    2003-01-01

    As the complexity of electronic systems continues to increase, the micro-electronic industry depends upon automation and simulations to adapt quickly to market changes and new technologies. Compiled from chapters contributed to CRC's best-selling VLSI Handbook, this volume covers a broad range of topics relevant to design automation, languages, and simulations. These include a collaborative framework that coordinates distributed design activities through the Internet, an overview of the Verilog hardware description language and its use in a design environment, hardware/software co-design, syst

  15. Wide-range, picoampere-sensitivity multichannel VLSI potentiostat for neurotransmitter sensing.

    Science.gov (United States)

    Murari, Kartikeya; Thakor, Nitish; Stanacevic, Milutin; Cauwenberghs, Gert

    2004-01-01

    Neurotransmitter sensing is critical in studying nervous pathways and neurological disorders. A 16-channel current-measuring VLSI potentiostat with multiple ranges from picoamperes to microamperes is presented for electrochemical detection of electroactive neurotransmitters like dopamine, nitric oxide etc. The analog-to-digital converter design employs a current-mode, first-order single-bit delta-sigma modulator architecture with a two-stage, digitally reconfigurable oversampling ratio for ranging the conversion scale. An integrated prototype is fabricated in CMOS technology, and experimentally characterized. Real-time multi-channel acquisition of dopamine concentration in vitro is performed with a microfabricated sensor array.

  16. Microwave systems design

    CERN Document Server

    Awang, Zaiki

    2014-01-01

    The aim of this book is to serve as a design reference for students and as an up-to-date reference for researchers. It also acts as an excellent introduction for newcomers to the field and offers established rf/microwave engineers a comprehensive refresher.  The content is roughly classified into two – the first two chapters provide the necessary fundamentals, while the last three chapters focus on design and applications. Chapter 2 covers detailed treatment of transmission lines. The Smith chart is utilized in this chapter as an important tool in the synthesis of matching networks for microwave amplifiers. Chapter 3 contains an exhaustive review of microstrip circuits, culled from various references. Chapter 4 offers practical design information on solid state amplifiers, while Chapter 5 contains topics on the design of modern planar filters, some of which were seldom published previously. A set of problems at the end of each chapter provides the readers with exercises which were compiled from actual uni...

  17. Embedded Systems Design with FPGAs

    CERN Document Server

    Pnevmatikatos, Dionisios; Sklavos, Nicolas

    2013-01-01

    This book presents methodologies for modern applications of embedded systems design, using field programmable gate array (FPGA) devices.  Coverage includes state-of-the-art research from academia and industry on a wide range of topics, including advanced electronic design automation (EDA), novel system architectures, embedded processors, arithmetic, dynamic reconfiguration and applications. Describes a variety of methodologies for modern embedded systems design;  Implements methodologies presented on FPGAs; Covers a wide variety of applications for reconfigurable embedded systems, including Bioinformatics, Communications and networking, Application acceleration, Medical solutions, Experiments for high energy physics, Astronomy, Aerospace, Biologically inspired systems and Computational fluid dynamics (CFD).

  18. Design and Performance Analysis of Various Adders and Multipliers Using GDI Technique

    OpenAIRE

    Simran kaur; Balwinder Singh; Jain, D.K.

    2015-01-01

    With the active development of portable electronic devices, the need for low power dissipation, high speed and compact implementation, give rise to several research intentions. There are several design techniques used for the circuit configuration in VLSI systems but there are very few design techniques that gives the required extensibility. This paper describes the implementation of various adders and multipliers. The design approach proposed in the article is based on the GDI (G...

  19. Software for CCTV systems design

    Directory of Open Access Journals (Sweden)

    Adamek Milan

    2016-01-01

    Full Text Available The article is focused on the software, which is used in the design of the CCTV systems. It shows tools available online, tools for PC and mobile applications. It describes the basic components of the camera systems, their characteristics and current trends in CCTV systems. Moreover, it compares two selected software tools, their features and supported functions. In the practical part, these tools are used for the design of a CCTV system and the whole process is described in detail.

  20. Fundamentals of electronic systems design

    CERN Document Server

    Lienig, Jens

    2017-01-01

    This textbook covers the design of electronic systems from the ground up, from drawing and CAD essentials to recycling requirements. Chapter by chapter, it deals with the challenges any modern system designer faces: the design process and its fundamentals, such as technical drawings and CAD, electronic system levels, assembly and packaging issues and appliance protection classes, reliability analysis, thermal management and cooling, electromagnetic compatibility (EMC), all the way to recycling requirements and environmental-friendly design principles. Enables readers to face various challenges of designing electronic systems, including coverage from various engineering disciplines; Written to be accessible to readers of varying backgrounds; Uses illustrations extensively to reinforce fundamental concepts; Organized to follow essential design process, although chapters are self-contained and can be read in any order.

  1. VLSI IMPLEMENTATION OF FIR FILTER USING COMPUTATIONAL SHARING MULTIPLIER BASED ON HIGH SPEED CARRY SELECT ADDER

    Directory of Open Access Journals (Sweden)

    S. Karunakaran

    2012-01-01

    Full Text Available Recent advances in mobile computing and multimedia applications demand high-performance and low-power VLSI Digital Signal Processing (DSP systems. One of the most widely used operations in DSP is Finite-Impulse Response (FIR filtering. In the existing method FIR filter is designed using array multiplier, which is having higher delay and power dissipation. The proposed method presents a programmable digital Finite Impulse Response (FIR filter for high-performance applications. The architecture is based on a computational sharing multiplier which specifically doing add and shift operation and also targets computation re-use in vector-scalar products. CSHM multiplier can be implemented by Carry Select Adder which is a high speed adder. A Carry-Select Adder (CSA can be implemented by using single ripple carry adder and add-one circuits using the fast all-one finding circuit and low-delay multiplexers to reduce the area and accelerate the speed of CSA. An 8-tap programmable FIR filter was implemented in tanner EDA tool using CMOS 180nm technology based on the proposed CSHM technique. In which the number of transistor, power (mW and clock cycle (ns of the filter using array multiplier are 6000, 3.732 and 9 respectively. The FIR filter using CSHM in which the number of transistor, power (mW and clock cycle (ns are 23500, 2.627 and 4.5 respectively. By adopting the proposed method for the design of FIR filter, the delay is reduced to about 43.2% in comparison with the existing method. The CSHM scheme and circuit-level techniques helped to achieve high-performance FIR filtering operation.

  2. Designing Systems for Environmental Sustainability

    Science.gov (United States)

    Dr. Smith will describe his U.S. EPA research which involves elements of design, from systems as diverse as biofuel supply chains to recycling systems and chemical processes. Design uses models that rate performance as part of a synthesis approach, where steps of analysis and sy...

  3. REC Tracking Systems Design Guide

    Energy Technology Data Exchange (ETDEWEB)

    Meredith Wingate

    2004-02-03

    OAK-B135 The Design Guide is presented in three parts. Section II describes the need for REC tracking, the two principal tracking methods available, and, in simple terms, the operation of certificate-based systems. Section III presents the major issues in the design of certificate-based tracking systems and discusses the advantages and disadvantages of alternative solutions. Finally, Section IV offers design principles or recommendations for most of these issues.

  4. Embedded Systems Design: Optimization Challenges

    DEFF Research Database (Denmark)

    Pop, Paul

    2005-01-01

    of designing such systems is becoming increasingly important and difficult at the same time. New automated design optimization techniques are needed, which are able to: successfully manage the complexity of embedded systems, meet the constraints imposed by the application domain, shorten the time...... in use has become larger than the number of humans on the planet. The complexity of embedded systems is growing at a very high pace and the constraints in terms of functionality, performance, low energy consumption, reliability, cost and time-to-market are getting tighter. Therefore, the task......-to-market, and reduce development and manufacturing costs. In this paper, the author introduces several embedded systems design problems, and shows how they can be formulated as optimization problems. Solving such challenging design optimization problems are the key to the success of the embedded systems design...

  5. Systems design for remote healthcare

    CERN Document Server

    Bonfiglio, Silvio

    2014-01-01

    This book provides a multidisciplinary overview of the design and implementation of systems for remote patient monitoring and healthcare. Readers are guided step-by-step through the components of such a system and shown how they could be integrated in a coherent framework for deployment in practice. The authors explain planning from subsystem design to complete integration and deployment, given particular application constraints. Readers will benefit from descriptions of the clinical requirements underpinning the entire application scenario, physiological parameter sensing techniques, information processing approaches and overall, application dependent system integration. Each chapter ends with a discussion of practical design challenges and two case studies are included to provide practical examples and design methods for two remote healthcare systems with different needs. ·         Provides a multi-disciplinary overview of next-generation mobile healthcare system design; ·         Includes...

  6. VLSI micro- and nanophotonics science, technology, and applications

    CERN Document Server

    Lee, El-Hang; Razeghi, Manijeh; Jagadish, Chennupati

    2011-01-01

    Addressing the growing demand for larger capacity in information technology, VLSI Micro- and Nanophotonics: Science, Technology, and Applications explores issues of science and technology of micro/nano-scale photonics and integration for broad-scale and chip-scale Very Large Scale Integration photonics. This book is a game-changer in the sense that it is quite possibly the first to focus on ""VLSI Photonics"". Very little effort has been made to develop integration technologies for micro/nanoscale photonic devices and applications, so this reference is an important and necessary early-stage pe

  7. AN ALGORITHM FOR ASSEMBLING A COMMON IMAGE OF VLSI LAYOUT

    Directory of Open Access Journals (Sweden)

    Y. Y. Lankevich

    2015-01-01

    Full Text Available We consider problem of assembling a common image of VLSI layout. Common image is composedof frames obtained by electron microscope photographing. Many frames require a lot of computation for positioning each frame inside the common image. Employing graphics processing units enables acceleration of computations. We realize algorithms and programs for assembling a common image of VLSI layout. Specificity of this work is to use abilities of CUDA to reduce computation time. Experimental results show efficiency of the proposed programs.

  8. Reconfigurable system design and verification

    CERN Document Server

    Hsiung, Pao-Ann; Huang, Chun-Hsian

    2009-01-01

    Reconfigurable systems have pervaded nearly all fields of computation and will continue to do so for the foreseeable future. Reconfigurable System Design and Verification provides a compendium of design and verification techniques for reconfigurable systems, allowing you to quickly search for a technique and determine if it is appropriate to the task at hand. It bridges the gap between the need for reconfigurable computing education and the burgeoning development of numerous different techniques in the design and verification of reconfigurable systems in various application domains. The text e

  9. A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity.

    Science.gov (United States)

    Indiveri, Giacomo; Chicca, Elisabetta; Douglas, Rodney

    2006-01-01

    We present a mixed-mode analog/digital VLSI device comprising an array of leaky integrate-and-fire (I&F) neurons, adaptive synapses with spike-timing dependent plasticity, and an asynchronous event based communication infrastructure that allows the user to (re)configure networks of spiking neurons with arbitrary topologies. The asynchronous communication protocol used by the silicon neurons to transmit spikes (events) off-chip and the silicon synapses to receive spikes from the outside is based on the "address-event representation" (AER). We describe the analog circuits designed to implement the silicon neurons and synapses and present experimental data showing the neuron's response properties and the synapses characteristics, in response to AER input spike trains. Our results indicate that these circuits can be used in massively parallel VLSI networks of I&F neurons to simulate real-time complex spike-based learning algorithms.

  10. VLSI Implementation of a Bio-inspired Olfactory Spiking Neural Network

    Science.gov (United States)

    Hsieh, Hung-Yi; Tang, Kea-Tiong

    2011-11-01

    This paper proposes a VLSI circuit implementing a low power, high-resolution spiking neural network (SNN) with STDP synapses, inspired by mammalian olfactory systems. By representing mitral cell action potential by a step function, the power consumption and the chip area can be reduced. By cooperating sub-threshold oscillation and inhibition, the network outputs can be distinct. This circuit was fabricated using the TSMC 0.18 μm 1P6M CMOS process. Post-layout simulation results are reported.

  11. VLSI Structure for an All Digital Receiver for CDMA PABX Handset

    Institute of Scientific and Technical Information of China (English)

    ZhouShidong; BiGuangguo

    1995-01-01

    In this paper,a VLSI architecture of a CDMA receiver is put forward for wirelesss PABX handset.To meet the critically low cost and power consumption requirement with neglectable per-formance degradation,some new techniques are employed to reduce hardware complexity,including base band processing,chip-rate sampling,low ADC resolution,absolute value detector,double branch acquisition ,and modified carrier phase compensation.Performance of experimental system fits well with theoretical predition ,and the practical SNR lose compared with ideal reception is about 2-3dB.

  12. Modular system design and evaluation

    CERN Document Server

    Levin, Mark Sh

    2015-01-01

    This book examines seven key combinatorial engineering frameworks (composite schemes consisting of algorithms and/or interactive procedures) for hierarchical modular (composite) systems. These frameworks are based on combinatorial optimization problems (e.g., knapsack problem, multiple choice problem, assignment problem, morphological clique problem), with the author’s version of morphological design approach – Hierarchical Morphological Multicritieria Design (HMMD) – providing a conceptual lens with which to elucidate the examples discussed. This approach is based on ordinal estimates of design alternatives for systems parts/components, however, the book also puts forward an original version of HMMD that is based on new interval multiset estimates for the design alternatives with special attention paid to the aggregation of modular solutions (system versions). The second part of ‘Modular System Design and Evaluation’ provides ten information technology case studies that enriches understanding of th...

  13. Launch vehicle systems design analysis

    Science.gov (United States)

    Ryan, Robert; Verderaime, V.

    1993-01-01

    Current launch vehicle design emphasis is on low life-cycle cost. This paper applies total quality management (TQM) principles to a conventional systems design analysis process to provide low-cost, high-reliability designs. Suggested TQM techniques include Steward's systems information flow matrix method, quality leverage principle, quality through robustness and function deployment, Pareto's principle, Pugh's selection and enhancement criteria, and other design process procedures. TQM quality performance at least-cost can be realized through competent concurrent engineering teams and brilliance of their technical leadership.

  14. Unattended Monitoring System Design Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Drayer, D.D.; DeLand, S.M.; Harmon, C.D.; Matter, J.C.; Martinez, R.L.; Smith, J.D.

    1999-07-08

    A methodology for designing Unattended Monitoring Systems starting at a systems level has been developed at Sandia National Laboratories. This proven methodology provides a template that describes the process for selecting and applying appropriate technologies to meet unattended system requirements, as well as providing a framework for development of both training courses and workshops associated with unattended monitoring. The design and implementation of unattended monitoring systems is generally intended to respond to some form of policy based requirements resulting from international agreements or domestic regulations. Once the monitoring requirements are established, a review of the associated process and its related facilities enables identification of strategic monitoring locations and development of a conceptual system design. The detailed design effort results in the definition of detection components as well as the supporting communications network and data management scheme. The data analyses then enables a coherent display of the knowledge generated during the monitoring effort. The resultant knowledge is then compared to the original system objectives to ensure that the design adequately addresses the fundamental principles stated in the policy agreements. Implementation of this design methodology will ensure that comprehensive unattended monitoring system designs provide appropriate answers to those critical questions imposed by specific agreements or regulations. This paper describes the main features of the methodology and discusses how it can be applied in real world situations.

  15. Design Theory in Information Systems

    Directory of Open Access Journals (Sweden)

    Shirley Gregor

    2002-11-01

    Full Text Available The aim of this paper is to explore an important category of information systems knowledge that is termed “design theory”. This knowledge is distinguished as the fifth of five types of theory: (i theory for analysing and describing, (ii theory for understanding, (iii theory for predicting, (iv theory for explaining and predicting, and (v theory for design and action. Examples of design theory in information systems are provided, with associated research methods. The limited understanding and recognition of this type of theory in information systems indicates that further debate concerning its nature and role in our discipline is needed.

  16. NASA System Engineering Design Process

    Science.gov (United States)

    Roman, Jose

    2011-01-01

    This slide presentation reviews NASA's use of systems engineering for the complete life cycle of a project. Systems engineering is a methodical, disciplined approach for the design, realization, technical management, operations, and retirement of a system. Each phase of a NASA project is terminated with a Key decision point (KDP), which is supported by major reviews.

  17. General Systems Theory and Instructional Systems Design.

    Science.gov (United States)

    Salisbury, David F.

    1990-01-01

    Describes basic concepts in the field of general systems theory (GST) and identifies commonalities that exist between GST and instructional systems design (ISD). Models and diagrams that depict system elements in ISD are presented, and two matrices that show how GST has been used in ISD literature are included. (11 references) (LRW)

  18. VLSI Floorplanning with Boundary Constraints Based on Single-Sequence Representation

    Science.gov (United States)

    Li, Kang; Yu, Juebang; Li, Jian

    In modern VLSI physical design, huge integration scale necessitates hierarchical design and IP reuse to cope with design complexity. Besides, interconnect delay becomes dominant to overall circuit performance. These critical factors require some modules to be placed along designated boundaries to effectively facilitate hierarchical design and interconnection optimization related problems. In this paper, boundary constraints of general floorplan are solved smoothly based on the novel representation Single-Sequence (SS). Necessary and sufficient conditions of rooms along specified boundaries of a floorplan are proposed and proved. By assigning constrained modules to proper boundary rooms, our proposed algorithm always guarantees a feasible SS code with appropriate boundary constraints in each perturbation. Time complexity of the proposed algorithm is O(n). Experimental results on MCNC benchmarks show effectiveness and efficiency of the proposed method.

  19. RF-TSV DESIGN, MODELING AND APPLICATION FOR 3D MULTI-CORE COMPUTER SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Yu Le; Yang Haigang; Xie Yuanlu

    2012-01-01

    The state-of-the-art multi-core computer systems are based on Very Large Scale three Dimensional (3D) Integrated circuits (VLSI).In order to provide high-speed vertical data transmission in such 3D systems,efficient Through-Silicon Via (TSV) technology is critically important.In this paper,various Radio Frequency (RF) TSV designs and models are proposed.Specifically,the Cu-plug TSV with surrounding ground TSVs is used as the baseline structure.For further improvement,the dielectric coaxial and novel air-gap coaxial TSVs are introduced.Using the empirical parameters of these coaxial TSVs,the simulation results are obtained demonstrating that these coaxial RF-TSVs can provide two-order higher of cut-off frequencies than the Cu-plug TSVs.Based on these new RF-TSV technologies,we propose a novel 3D multi-core computer system as well as new architectures for manipulating the interfaces between RF and baseband circuit.Taking into consideration the scaling down of IC manufacture technologies,predictions for the performance of future generations of circuits are made.With simulation results indicating energy per bit and area per bit being reduced by 7% and 11% respectively,we can conclude that the proposed method is a worthwhile guideline for the design of future multi-core computer ICs.

  20. Design of Enterprise Information Systems

    DEFF Research Database (Denmark)

    Riis, Jens Ove

    2011-01-01

    in their operations, externally imposed uncertainties and even unforeseeable events. Dynamic global operations call for speedy and effective responses to change. As a consequence, enterprises are challenged to adopt new approaches. In view of this call for probing new roads, it seems useful to examine the roots...... of design in an effort to re-interpret many of the original ideas. In this paper, we shall briefly study significant contributions to decision-making, systems theory, project management, behavioral science and organization theory, as well as business aspects. To further understand the nature of design, we...... – An enterprise information system only sets the stage for organizational processes. If adopted in an enterprise, management will be challenged to carry out design activities in a radically different way. Keywords: Roots and nature of design; New approaches to design of enterprise information systems...

  1. Optimal Dynamic Sub-Threshold Technique for Extreme Low Power Consumption for VLSI

    Science.gov (United States)

    Duong, Tuan A.

    2012-01-01

    For miniaturization of electronics systems, power consumption plays a key role in the realm of constraints. Considering the very large scale integration (VLSI) design aspect, as transistor feature size is decreased to 50 nm and below, there is sizable increase in the number of transistors as more functional building blocks are embedded in the same chip. However, the consequent increase in power consumption (dynamic and leakage) will serve as a key constraint to inhibit the advantages of transistor feature size reduction. Power consumption can be reduced by minimizing the voltage supply (for dynamic power consumption) and/or increasing threshold voltage (V(sub th), for reducing leakage power). When the feature size of the transistor is reduced, supply voltage (V(sub dd)) and threshold voltage (V(sub th)) are also reduced accordingly; then, the leakage current becomes a bigger factor of the total power consumption. To maintain low power consumption, operation of electronics at sub-threshold levels can be a potentially strong contender; however, there are two obstacles to be faced: more leakage current per transistor will cause more leakage power consumption, and slow response time when the transistor is operated in weak inversion region. To enable low power consumption and yet obtain high performance, the CMOS (complementary metal oxide semiconductor) transistor as a basic element is viewed and controlled as a four-terminal device: source, drain, gate, and body, as differentiated from the traditional approach with three terminals: i.e., source and body, drain, and gate. This technique features multiple voltage sources to supply the dynamic control, and uses dynamic control to enable low-threshold voltage when the channel (N or P) is active, for speed response enhancement and high threshold voltage, and when the transistor channel (N or P) is inactive, to reduce the leakage current for low-leakage power consumption.

  2. Design of Knight LED system

    Science.gov (United States)

    Zheng, Wen; Lou, Yuna; Xiao, Zhihong

    2010-02-01

    This design introduces a used car on the design of LED decorative light strip. This LED named Knight LED. In This system we use ATMEGA8 as the Master MCU Chip. Through the microcontroller to implement the wireless remote control receiver and the LED lights of different modes of switching, different brightness control. Also we use ULN2803 as the LED driver.

  3. CMOS VLSI Layout and Verification of a SIMD Computer

    Science.gov (United States)

    Zheng, Jianqing

    1996-01-01

    A CMOS VLSI layout and verification of a 3 x 3 processor parallel computer has been completed. The layout was done using the MAGIC tool and the verification using HSPICE. Suggestions for expanding the computer into a million processor network are presented. Many problems that might be encountered when implementing a massively parallel computer are discussed.

  4. An efficient interpolation filter VLSI architecture for HEVC standard

    Science.gov (United States)

    Zhou, Wei; Zhou, Xin; Lian, Xiaocong; Liu, Zhenyu; Liu, Xiaoxiang

    2015-12-01

    The next-generation video coding standard of High-Efficiency Video Coding (HEVC) is especially efficient for coding high-resolution video such as 8K-ultra-high-definition (UHD) video. Fractional motion estimation in HEVC presents a significant challenge in clock latency and area cost as it consumes more than 40 % of the total encoding time and thus results in high computational complexity. With aims at supporting 8K-UHD video applications, an efficient interpolation filter VLSI architecture for HEVC is proposed in this paper. Firstly, a new interpolation filter algorithm based on the 8-pixel interpolation unit is proposed in this paper. It can save 19.7 % processing time on average with acceptable coding quality degradation. Based on the proposed algorithm, an efficient interpolation filter VLSI architecture, composed of a reused data path of interpolation, an efficient memory organization, and a reconfigurable pipeline interpolation filter engine, is presented to reduce the implement hardware area and achieve high throughput. The final VLSI implementation only requires 37.2k gates in a standard 90-nm CMOS technology at an operating frequency of 240 MHz. The proposed architecture can be reused for either half-pixel interpolation or quarter-pixel interpolation, which can reduce the area cost for about 131,040 bits RAM. The processing latency of our proposed VLSI architecture can support the real-time processing of 4:2:0 format 7680 × 4320@78fps video sequences.

  5. Boolean approaches to graph embeddings related to VLSI

    Institute of Scientific and Technical Information of China (English)

    刘彦佩

    2001-01-01

    This paper discusses the development of Boolean methods in some topics on graph em-beddings which are related to VLSI. They are mainly the general theory of graph embeddability, the orientabilities of a graph and the rectilinear layout of an electronic circuit.

  6. Tungsten and other refractory metals for VLSI applications II

    Energy Technology Data Exchange (ETDEWEB)

    Broadbent, E.K.

    1987-01-01

    This book presents papers on tungsten and other refractory metals for VLSI applications. Topics include the following: Selectivity loss and nucleation on insulators, fundamental reaction and growth studies, chemical vapor deposition of tungsten, chemical vapor deposition of molybdenum, reactive ion etching of refractory metal films; and properties of refractory metals deposited by sputtering.

  7. System design for distributed adaptive observation systems

    NARCIS (Netherlands)

    Ditzel, M.; Kester, L.J.H.M.; Broek, S.P. van den

    2011-01-01

    Currently, there is no clear-cut approach or design methodology available for designing distributed adaptive observation systems, partly due to the necessity to combine elements and approaches from several technological and scientific communities. Recently, an effort was made addressing this issue

  8. Design of Enterprise Information Systems

    DEFF Research Database (Denmark)

    Riis, Jens Ove

    2011-01-01

    Abstract. As a scientific and professional discipline, the design of enterprise systems has undergone an impressive development. Today, it has achieved a well-established practice with clearly defined phases, tasks and methods. However, enterprises are challenged by increased complexity......-sustaining informal learning processes •Involving stakeholders – clarifying who wants to see the design succeed •Accepting diversity – working with several perspectives in parallel •Experimenting with new ideas - establishing a playful and creative mood among participants •Enacting key features of new systems design...... – involving users in testing a series of prototypes •Including the organizational context – orchestrating a design effort in view of simultaneous development initiatives and top management’s shifting agenda •Acknowledging that the intentions of an enterprise information system are realized through people...

  9. Robust Bioinformatics Recognition with VLSI Biochip Microsystem

    Science.gov (United States)

    Lue, Jaw-Chyng L.; Fang, Wai-Chi

    2006-01-01

    A microsystem architecture for real-time, on-site, robust bioinformatic patterns recognition and analysis has been proposed. This system is compatible with on-chip DNA analysis means such as polymerase chain reaction (PCR)amplification. A corresponding novel artificial neural network (ANN) learning algorithm using new sigmoid-logarithmic transfer function based on error backpropagation (EBP) algorithm is invented. Our results show the trained new ANN can recognize low fluorescence patterns better than the conventional sigmoidal ANN does. A differential logarithmic imaging chip is designed for calculating logarithm of relative intensities of fluorescence signals. The single-rail logarithmic circuit and a prototype ANN chip are designed, fabricated and characterized.

  10. Cellular pulse-coupled neural network with adaptive weights for image segmentation and its VLSI implementation

    Science.gov (United States)

    Schreiter, Juerg; Ramacher, Ulrich; Heittmann, Arne; Matolin, Daniel; Schuffny, Rene

    2004-05-01

    We present a cellular pulse coupled neural network with adaptive weights and its analog VLSI implementation. The neural network operates on a scalar image feature, such as grey scale or the output of a spatial filter. It detects segments and marks them with synchronous pulses of the corresponding neurons. The network consists of integrate-and-fire neurons, which are coupled to their nearest neighbors via adaptive synaptic weights. Adaptation follows either one of two empirical rules. Both rules lead to spike grouping in wave like patterns. This synchronous activity binds groups of neurons and labels the corresponding image segments. Applications of the network also include feature preserving noise removal, image smoothing, and detection of bright and dark spots. The adaptation rules are insensitive for parameter deviations, mismatch and non-ideal approximation of the implied functions. That makes an analog VLSI implementation feasible. Simulations showed no significant differences in the synchronization properties between networks using the ideal adaptation rules and networks resembling implementation properties such as randomly distributed parameters and roughly implemented adaptation functions. A prototype is currently being designed and fabricated using an Infineon 130nm technology. It comprises a 128 × 128 neuron array, analog image memory, and an address event representation pulse output.

  11. Rapid Industrial Prototyping and SoC Design of 3G/4G Wireless Systems Using an HLS Methodology

    Directory of Open Access Journals (Sweden)

    Cavallaro JosephR

    2006-01-01

    Full Text Available Many very-high-complexity signal processing algorithms are required in future wireless systems, giving tremendous challenges to real-time implementations. In this paper, we present our industrial rapid prototyping experiences on 3G/4G wireless systems using advanced signal processing algorithms in MIMO-CDMA and MIMO-OFDM systems. Core system design issues are studied and advanced receiver algorithms suitable for implementation are proposed for synchronization, MIMO equalization, and detection. We then present VLSI-oriented complexity reduction schemes and demonstrate how to interact these high-complexity algorithms with an HLS-based methodology for extensive design space exploration. This is achieved by abstracting the main effort from hardware iterations to the algorithmic C/C++ fixed-point design. We also analyze the advantages and limitations of the methodology. Our industrial design experience demonstrates that it is possible to enable an extensive architectural analysis in a short-time frame using HLS methodology, which significantly shortens the time to market for wireless systems.

  12. Rapid Industrial Prototyping and SoC Design of 3G/4G Wireless Systems Using an HLS Methodology

    Directory of Open Access Journals (Sweden)

    Andres Takach

    2006-07-01

    Full Text Available Many very-high-complexity signal processing algorithms are required in future wireless systems, giving tremendous challenges to real-time implementations. In this paper, we present our industrial rapid prototyping experiences on 3G/4G wireless systems using advanced signal processing algorithms in MIMO-CDMA and MIMO-OFDM systems. Core system design issues are studied and advanced receiver algorithms suitable for implementation are proposed for synchronization, MIMO equalization, and detection. We then present VLSI-oriented complexity reduction schemes and demonstrate how to interact these high-complexity algorithms with an HLS-based methodology for extensive design space exploration. This is achieved by abstracting the main effort from hardware iterations to the algorithmic C/C++ fixed-point design. We also analyze the advantages and limitations of the methodology. Our industrial design experience demonstrates that it is possible to enable an extensive architectural analysis in a short-time frame using HLS methodology, which significantly shortens the time to market for wireless systems.

  13. Algorithms, architectures and information systems security

    CERN Document Server

    Sur-Kolay, Susmita; Nandy, Subhas C; Bagchi, Aditya

    2008-01-01

    This volume contains articles written by leading researchers in the fields of algorithms, architectures, and information systems security. The first five chapters address several challenging geometric problems and related algorithms. These topics have major applications in pattern recognition, image analysis, digital geometry, surface reconstruction, computer vision and in robotics. The next five chapters focus on various optimization issues in VLSI design and test architectures, and in wireless networks. The last six chapters comprise scholarly articles on information systems security coverin

  14. SMART core protection system design

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. K.; Park, H. Y.; Koo, I. S. [KAERI, Taejon (Korea, Republic of); Park, H. S.; Kim, J. S.; Son, C. H. [Samchang Enterprise Co., Ltd., Taejon (Korea, Republic of)

    2003-10-01

    SMART COre Protection System(SCOPS) is designed with real-tims Digital Signal Processor(DSP) board and Network Interface Card(NIC) board. SCOPS has a Control Rod POSition (CRPOS) software module while Core Protection Calculator System(CPCS) consists of Core Protection Calculators(CPCs) and Control Element Assembly(CEA) Calculators(CEACs) in the commercial nuclear plant. It's not necessary to have a independent cabinets for SCOPS because SCOPS is physically very small. Then SCOPS is designed to share the cabinets with Plant Protection System(PPS) of SMART. Therefor it's very easy to maintain the system because CRPOS module is used instead of the computer with operating system.

  15. Computer-aided system design

    Science.gov (United States)

    Walker, Carrie K.

    1991-01-01

    A technique has been developed for combining features of a systems architecture design and assessment tool and a software development tool. This technique reduces simulation development time and expands simulation detail. The Architecture Design and Assessment System (ADAS), developed at the Research Triangle Institute, is a set of computer-assisted engineering tools for the design and analysis of computer systems. The ADAS system is based on directed graph concepts and supports the synthesis and analysis of software algorithms mapped to candidate hardware implementations. Greater simulation detail is provided by the ADAS functional simulator. With the functional simulator, programs written in either Ada or C can be used to provide a detailed description of graph nodes. A Computer-Aided Software Engineering tool developed at the Charles Stark Draper Laboratory (CSDL CASE) automatically generates Ada or C code from engineering block diagram specifications designed with an interactive graphical interface. A technique to use the tools together has been developed, which further automates the design process.

  16. Networking systems design and development

    CERN Document Server

    Chao, Lee

    2009-01-01

    Effectively integrating theory and hands-on practice, Networking Systems Design and Development provides students and IT professionals with the knowledge and skills needed to design, implement, and manage fully functioning network systems using readily available Linux networking tools. Recognizing that most students are beginners in the field of networking, the text provides step-by-step instruction for setting up a virtual lab environment at home. Grounded in real-world applications, this book provides the ideal blend of conceptual instruction and lab work to give students and IT professional

  17. Real-Time Classification of Complex Patterns Using Spike-Based Learning in Neuromorphic VLSI.

    Science.gov (United States)

    Mitra, S; Fusi, S; Indiveri, G

    2009-02-01

    Real-time classification of patterns of spike trains is a difficult computational problem that both natural and artificial networks of spiking neurons are confronted with. The solution to this problem not only could contribute to understanding the fundamental mechanisms of computation used in the biological brain, but could also lead to efficient hardware implementations of a wide range of applications ranging from autonomous sensory-motor systems to brain-machine interfaces. Here we demonstrate real-time classification of complex patterns of mean firing rates, using a VLSI network of spiking neurons and dynamic synapses which implement a robust spike-driven plasticity mechanism. The learning rule implemented is a supervised one: a teacher signal provides the output neuron with an extra input spike-train during training, in parallel to the spike-trains that represent the input pattern. The teacher signal simply indicates if the neuron should respond to the input pattern with a high rate or with a low one. The learning mechanism modifies the synaptic weights only as long as the current generated by all the stimulated plastic synapses does not match the output desired by the teacher, as in the perceptron learning rule. We describe the implementation of this learning mechanism and present experimental data that demonstrate how the VLSI neural network can learn to classify patterns of neural activities, also in the case in which they are highly correlated.

  18. Consistent Design of Dependable Control Systems

    DEFF Research Database (Denmark)

    Blanke, M.

    1996-01-01

    Design of fault handling in control systems is discussed, and a method for consistent design is presented.......Design of fault handling in control systems is discussed, and a method for consistent design is presented....

  19. Requirements analysis and system design

    CERN Document Server

    Maciaszek, Leszek A

    2007-01-01

    An examination of the methods and techniques used in the analysis and design phases of Information System development. Emphasis is placed upon the application of object technology in enterprise information systems (EIS) with UML being used throughout. Through its excellent balance of practical explanation and theoretical insight the book manages to avoid unnecessary, complicating details without sacrificing rigor. Examples of real-world scenarios are used throughout, giving the reader an understanding of what really goes on within the field of Software Engineering.

  20. Design Trends in Videotex Systems.

    Science.gov (United States)

    Elson, Ila J.

    1984-01-01

    Brief description of videotex systems is followed by recommendations for the design of database structure, command language, and screen format. How users search through the database is described and evaluations of the underlying tree structure are reviewed. Information sources on other aspects of videotex besides usability are listed. (MBR)

  1. Design of interpretable fuzzy systems

    CERN Document Server

    Cpałka, Krzysztof

    2017-01-01

    This book shows that the term “interpretability” goes far beyond the concept of readability of a fuzzy set and fuzzy rules. It focuses on novel and precise operators of aggregation, inference, and defuzzification leading to flexible Mamdani-type and logical-type systems that can achieve the required accuracy using a less complex rule base. The individual chapters describe various aspects of interpretability, including appropriate selection of the structure of a fuzzy system, focusing on improving the interpretability of fuzzy systems designed using both gradient-learning and evolutionary algorithms. It also demonstrates how to eliminate various system components, such as inputs, rules and fuzzy sets, whose reduction does not adversely affect system accuracy. It illustrates the performance of the developed algorithms and methods with commonly used benchmarks. The book provides valuable tools for possible applications in many fields including expert systems, automatic control and robotics.

  2. Embedded Processor Based Automatic Temperature Control of VLSI Chips

    Directory of Open Access Journals (Sweden)

    Narasimha Murthy Yayavaram

    2009-01-01

    Full Text Available This paper presents embedded processor based automatic temperature control of VLSI chips, using temperature sensor LM35 and ARM processor LPC2378. Due to the very high packing density, VLSI chips get heated very soon and if not cooled properly, the performance is very much affected. In the present work, the sensor which is kept very near proximity to the IC will sense the temperature and the speed of the fan arranged near to the IC is controlled based on the PWM signal generated by the ARM processor. A buzzer is also provided with the hardware, to indicate either the failure of the fan or overheating of the IC. The entire process is achieved by developing a suitable embedded C program.

  3. Opto-VLSI-based tunable single-mode fiber laser.

    Science.gov (United States)

    Xiao, Feng; Alameh, Kamal; Lee, Tongtak

    2009-10-12

    A new tunable fiber ring laser structure employing an Opto-VLSI processor and an erbium-doped fiber amplifier (EDFA) is reported. The Opto-VLSI processor is able to dynamically select and couple a waveband from the gain spectrum of the EDFA into a fiber ring, leading to a narrow-linewidth high-quality tunable laser output. Experimental results demonstrate a tunable fiber laser of linewidth 0.05 nm and centre wavelength tuned over the C-band with a 0.05 nm step. The measured side mode suppression ratio (SMSR) is greater than 35 dB and the laser output power uniformity is better than 0.25 dB. The laser output is very stable at room temperature.

  4. Advanced plasma etching processes for dielectric materials in VLSI technology

    Science.gov (United States)

    Wang, Juan Juan

    Manufacturable plasma etching processes for dielectric materials have played an important role in the Integrated Circuits (IC) industry in recent decades. Dielectric materials such as SiO2 and SiN are widely used to electrically isolate the active device regions (like the gate, source and drain from the first level of metallic interconnects) and to isolate different metallic interconnect levels from each other. However, development of new state-of-the-art etching processes is urgently needed for higher aspect ratio (oxide depth/hole diameter---6:1) in Very Large Scale Integrated (VLSI) circuits technology. The smaller features can provide greater packing density of devices on a single chip and greater number of chips on a single wafer. This dissertation focuses on understanding and optimizing of several key aspects of etching processes for dielectric materials. The challenges are how to get higher selectivity of oxide/Si for contact and oxide/TiN for vias; tight Critical Dimension (CD) control; wide process margin (enough over-etch); uniformity and repeatability. By exploring all of the parameters for the plasma etch process, the key variables are found and studied extensively. The parameters investigated here are Power, Pressure, Gas ratio, and Temperature. In particular, the novel gases such as C4F8, C5F8, and C4F6 were studied in order to meet the requirements of the design rules. We also studied CF4 that is used frequently for dielectric material etching in the industry. Advanced etch equipment was used for the above applications: the medium-density plasma tools (like Magnet-Enhanced Reactive Ion Etching (MERIE) tool) and the high-density plasma tools. By applying the Design of Experiments (DOE) method, we found the key factors needed to predict the trend of the etch process (such as how to increase the etch rates, selectivity, etc.; and how to control the stability of the etch process). We used JMP software to analyze the DOE data. The characterization of the

  5. Automating software design system DESTA

    Science.gov (United States)

    Lovitsky, Vladimir A.; Pearce, Patricia D.

    1992-01-01

    'DESTA' is the acronym for the Dialogue Evolutionary Synthesizer of Turnkey Algorithms by means of a natural language (Russian or English) functional specification of algorithms or software being developed. DESTA represents the computer-aided and/or automatic artificial intelligence 'forgiving' system which provides users with software tools support for algorithm and/or structured program development. The DESTA system is intended to provide support for the higher levels and earlier stages of engineering design of software in contrast to conventional Computer Aided Design (CAD) systems which provide low level tools for use at a stage when the major planning and structuring decisions have already been taken. DESTA is a knowledge-intensive system. The main features of the knowledge are procedures, functions, modules, operating system commands, batch files, their natural language specifications, and their interlinks. The specific domain for the DESTA system is a high level programming language like Turbo Pascal 6.0. The DESTA system is operational and runs on an IBM PC computer.

  6. An efficient VLSI implementation of on-line recursive ICA processor for real-time multi-channel EEG signal separation.

    Science.gov (United States)

    Shih, Wei-Yeh; Liao, Jui-Chieh; Huang, Kuan-Ju; Fang, Wai-Chi; Cauwenberghs, Gert; Jung, Tzyy-Ping

    2013-01-01

    This paper presents an efficient VLSI implementation of on-line recursive ICA (ORICA) processor for real-time multi-channel EEG signal separation. The proposed design contains a system control unit, a whitening unit, a singular value decomposition unit, a floating matrix multiply unit and, and an ORICA weight training unit. Because the input sample rate of the ORICA processor is 128 Hz, the ORICA processor should produce independent components before the next sample is input in 1/128 s. Under the timing constraints of commutating multi-channel ORICA in real time, the design of the ORICA processor is a mixed architecture, which is designed as different hardware parallelism according to the complexity of processing units. The shared arithmetic processing unit and shared register can reduce hardware complexity and power consumption. The proposed design is implemented used TSMC 90 nm CMOS technology with 8-channel EEG processing in 128 Hz sample rate of raw data and consumes 2.827 mW at 50 MHz clock rate. The performance of the proposed design is also shown to reach 0.0078125 s latency after each EEG sample time, and the average correlation coefficient between the original source signals and extracted ORICA signals for each 1 s frame is 0.9763.

  7. Opto-VLSI-based N × M wavelength selective switch.

    Science.gov (United States)

    Xiao, Feng; Alameh, Kamal

    2013-07-29

    In this paper, we propose and experimentally demonstrate a novel N × M wavelength selective switch (WSS) architecture based on the use of an Opto-VLSI processor. Through a two-stage beamsteering process, wavelength channels from any input optical fiber port can be switched into any output optical fiber port. A proof-of-concept 2 × 3 WSS structure is developed, demonstrating flexible wavelength selective switching with an insertion loss around 15 dB.

  8. Digital VLSI algorithms and architectures for support vector machines.

    Science.gov (United States)

    Anguita, D; Boni, A; Ridella, S

    2000-06-01

    In this paper, we propose some very simple algorithms and architectures for a digital VLSI implementation of Support Vector Machines. We discuss the main aspects concerning the realization of the learning phase of SVMs, with special attention on the effects of fixed-point math for computing and storing the parameters of the network. Some experiments on two classification problems are described that show the efficiency of the proposed methods in reaching optimal solutions with reasonable hardware requirements.

  9. Diseño digital : una perspectiva VLSI-CMOS

    OpenAIRE

    Alcubilla González, Ramón; Pons Nin, Joan; Bardés Llorensí, Daniel

    1996-01-01

    Bibliografia El presente texto aporta el material necesario para un curso introductorio de Electrónica Digital. Incluye los conceptos fundamentales de diseño clásico de circuitos lógicos combinacionales y secuenciales. Adicionalmente se introducen aspectos de diseño de circuitos integrados con tecnología VLSI-CMOS. Se ha incidido particularmente en los elementos de autoaprendizaje mediante la inclusión de numerosos ejemplos y problemas.

  10. Mixed-Signal VLSI Circuits for Particle Detector Instrumentation in High-Energy Physics Experiments

    Science.gov (United States)

    Loinaz, Marc Joseph

    1995-11-01

    This research is concerned with the circuit design challenges presented by the electronics requirements at future colliding beam facilitates for high-energy physics research. The particle detectors to be used in the next generation of experiments depend on the realization of sophisticated instrumentation electronics that will enable the identification and characterization of the fundamental constituents of matter. The work presented here focuses on the monolithic VLSI integration of multiple, mixed-signal, front-end electronics channels for detector-mounted instrumentation. The use of high levels of integration is driven by the need for compactness, low cost, high reliability, and low power dissipation in the implementation of the hundreds of thousands of sensory channels required for future experiments. The specific application considered in this work is the front -end electronics for straw tube drift chambers. In this context, the function of the front-end electronics is to measure the occurrence time of an input pulse in relation to a system clock. Each front-end channel includes analog circuits that provide amplification and signal conditioning for input pulses as small as 1mV, a timing discriminator, and a time interval digitizer to measure input pulse arrival times with respect to the system clock. Performance requirements for the channel include a timing error less than 0.75ns RMS, average power dissipation in the tens of milliwatts, and event rates in the 50-100MHz range. Circuits must be designed to allow the implementation of high-sensitivity analog and fast digital functions on the same chip. Unwanted coupling between digital and analog circuits must be minimized along with channel-to-channel crosstalk. A multi-channel circuit that measures the occurrence times of input pulses with peak values in the 1-10mV range relative to a 62.5-MHz clock has been monolithically integrated in a 1.2-μm CMOS technology. Each channel includes a wideband amplifier, a

  11. Photovoltaics system design and practice

    CERN Document Server

    Häberlin, Heinrich

    2012-01-01

    With the explosive growth in PV (photovoltaic) installations globally, the sector continues to benefit from important improvements in manufacturing technology and the increasing efficiency of solar cells. this timely handbook brings together all the latest design, layout and construction methods for entire PV plants in a single volume. Coverage includes procedures for the design of both stand-alone and grid-connected systems as well as practical guidance on typical operational scenarios and problems encountered for optimum PV plant performance. Key features:

    • Engineering Design Information System (EDIS)

      Energy Technology Data Exchange (ETDEWEB)

      Smith, P.S.; Short, R.D.; Schwarz, R.K.

      1990-11-01

      This manual is a guide to the use of the Engineering Design Information System (EDIS) Phase I. The system runs on the Martin Marietta Energy Systems, Inc., IBM 3081 unclassified computer. This is the first phase in the implementation of EDIS, which is an index, storage, and retrieval system for engineering documents produced at various plants and laboratories operated by Energy Systems for the Department of Energy. This manual presents on overview of EDIS, describing the system's purpose; the functions it performs; hardware, software, and security requirements; and help and error functions. This manual describes how to access EDIS and how to operate system functions using Database 2 (DB2), Time Sharing Option (TSO), Interactive System Productivity Facility (ISPF), and Soft Master viewing features employed by this system. Appendix A contains a description of the Soft Master viewing capabilities provided through the EDIS View function. Appendix B provides examples of the system error screens and help screens for valid codes used for screen entry. Appendix C contains a dictionary of data elements and descriptions.

    • FPGA-Based Real-Time Motion Detection for Automated Video Surveillance Systems

      Directory of Open Access Journals (Sweden)

      Sanjay Singh

      2016-03-01

      Full Text Available Design of automated video surveillance systems is one of the exigent missions in computer vision community because of their ability to automatically select frames of interest in incoming video streams based on motion detection. This research paper focuses on the real-time hardware implementation of a motion detection algorithm for such vision based automated surveillance systems. A dedicated VLSI architecture has been proposed and designed for clustering-based motion detection scheme. The working prototype of a complete standalone automated video surveillance system, including input camera interface, designed motion detection VLSI architecture, and output display interface, with real-time relevant motion detection capabilities, has been implemented on Xilinx ML510 (Virtex-5 FX130T FPGA platform. The prototyped system robustly detects the relevant motion in real-time in live PAL (720 × 576 resolution video streams directly coming from the camera.

    • Discourse in Systemic Operational Design

      Science.gov (United States)

      2007-05-22

      influence of Foucault’s theories of power, particularly work earlier in his career. At one end of interpretation of Foucault , overarching and...omnipresent impersonal discourses do not allow individual agency, from a resistance point of view or otherwise.60 Another view is that Foucault acknowledges...influence of Foucault on discourse theory related to systemic operational design, it is helpful to look at three particular meanings he attributes to

    • Parachute Recovery Systems Design Manual

      Science.gov (United States)

      1991-03-01

      rule that the extraction force of the pilot chute should be greater than or equal to four times the weight of the unit to be extracted; in this case ...B. Pinnell (2) WL/XOG, G. Loftin (1) 1 Eastern Space and Missile Center, Patrick Air Force Base (ESMC/ROD, B. Loar) 1 Rome Air Development Center...information storage or retrieval system without written permission from the author, except for the inclusion of brief quotations in a review. Design

    • Design of online shopping system

      OpenAIRE

      Li, Yueyuan

      2011-01-01

      E-commerce is a kind of comprehensive activity of management automation, business information network and financial electronic technology. It is a kind of commercial activity accomplished through the information network in all kinds of business activities in the world. As a new marketing model, the emergence of online stores is an epoch-making revolution in the field of product circulation. The thesis focuses on a study of how to design a small online shopping system which is simple and f...

    • DC Magnetics Measurement System Design

      Science.gov (United States)

      Mastny, Timothy

      2012-01-01

      This report will detail the updates to the magnetics measurement system design and testing procedures that are required for performing static (DC) magnetics testing of future flight hardware. An older magnetics testing system had to be integrated with new procedures and hardware to meet the demands of future testing programs and accommodate an upcoming magnetics tests. The next test will be for the Geostationary Operational Environmental Satellite R-Series (GOES-R), which will verify that the SAFT Battery component meets its specifications for magnetic cleanliness. The satellite is scheduled to launch in 2015 with magnetics testing to be completed on the battery in November 2012.

    • Research on Garment Pattern Intelligent Design System

      Institute of Scientific and Technical Information of China (English)

      刘雁; 刘晓刚; 耿兆丰

      2003-01-01

      This article discusses the disadvantages of current computer aided garment design system first, and then brings forward the frame of intelligent garment design system. Based on the analysis of the structure of the intelligent system, it is pointed out that the intelligent pattern design system is the most important module of the whole system. The use of an expert system to realize the intelligent pattern design system is then proposed and the key technique of the system is discussed at last.

    • ProperCAD: A portable object-oriented parallel environment for VLSI CAD

      Science.gov (United States)

      Ramkumar, Balkrishna; Banerjee, Prithviraj

      1993-01-01

      Most parallel algorithms for VLSI CAD proposed to date have one important drawback: they work efficiently only on machines that they were designed for. As a result, algorithms designed to date are dependent on the architecture for which they are developed and do not port easily to other parallel architectures. A new project under way to address this problem is described. A Portable object-oriented parallel environment for CAD algorithms (ProperCAD) is being developed. The objectives of this research are (1) to develop new parallel algorithms that run in a portable object-oriented environment (CAD algorithms using a general purpose platform for portable parallel programming called CARM is being developed and a C++ environment that is truly object-oriented and specialized for CAD applications is also being developed); and (2) to design the parallel algorithms around a good sequential algorithm with a well-defined parallel-sequential interface (permitting the parallel algorithm to benefit from future developments in sequential algorithms). One CAD application that has been implemented as part of the ProperCAD project, flat VLSI circuit extraction, is described. The algorithm, its implementation, and its performance on a range of parallel machines are discussed in detail. It currently runs on an Encore Multimax, a Sequent Symmetry, Intel iPSC/2 and i860 hypercubes, a NCUBE 2 hypercube, and a network of Sun Sparc workstations. Performance data for other applications that were developed are provided: namely test pattern generation for sequential circuits, parallel logic synthesis, and standard cell placement.

    • CMOS VLSI Active-Pixel Sensor for Tracking

      Science.gov (United States)

      Pain, Bedabrata; Sun, Chao; Yang, Guang; Heynssens, Julie

      2004-01-01

      An architecture for a proposed active-pixel sensor (APS) and a design to implement the architecture in a complementary metal oxide semiconductor (CMOS) very-large-scale integrated (VLSI) circuit provide for some advanced features that are expected to be especially desirable for tracking pointlike features of stars. The architecture would also make this APS suitable for robotic- vision and general pointing and tracking applications. CMOS imagers in general are well suited for pointing and tracking because they can be configured for random access to selected pixels and to provide readout from windows of interest within their fields of view. However, until now, the architectures of CMOS imagers have not supported multiwindow operation or low-noise data collection. Moreover, smearing and motion artifacts in collected images have made prior CMOS imagers unsuitable for tracking applications. The proposed CMOS imager (see figure) would include an array of 1,024 by 1,024 pixels containing high-performance photodiode-based APS circuitry. The pixel pitch would be 9 m. The operations of the pixel circuits would be sequenced and otherwise controlled by an on-chip timing and control block, which would enable the collection of image data, during a single frame period, from either the full frame (that is, all 1,024 1,024 pixels) or from within as many as 8 different arbitrarily placed windows as large as 8 by 8 pixels each. A typical prior CMOS APS operates in a row-at-a-time ( grolling-shutter h) readout mode, which gives rise to exposure skew. In contrast, the proposed APS would operate in a sample-first/readlater mode, suppressing rolling-shutter effects. In this mode, the analog readout signals from the pixels corresponding to the windows of the interest (which windows, in the star-tracking application, would presumably contain guide stars) would be sampled rapidly by routing them through a programmable diagonal switch array to an on-chip parallel analog memory array. The

  1. Neuromorphic VLSI realization of the hippocampal formation.

    Science.gov (United States)

    Aggarwal, Anu

    2016-05-01

    The medial entorhinal cortex grid cells, aided by the subicular head direction cells, are thought to provide a matrix which is utilized by the hippocampal place cells for calculation of position of an animal during spatial navigation. The place cells are thought to function as an internal GPS for the brain and provide a spatiotemporal stamp on episodic memories. Several computational neuroscience models have been proposed to explain the place specific firing patterns of the cells of the hippocampal formation - including the GRIDSmap model for grid cells and Bayesian integration for place cells. In this work, we present design and measurement results from a first ever system of silicon circuits which successfully realize the function of the hippocampal formation of brain based on these models.

  2. VLSI digital PSK demodulator for space communication

    Science.gov (United States)

    Hansen, Flemming; Thomsen, Jan H.; Jacobsen, Freddy L.; Olsen, Karsten

    1993-02-01

    This paper describes the design of a BPSK/QPSK demodulator implemented using multirate digital signal processing in a CMOS ASIC. The demodulator is fully programmable via serial and parallel interfaces, and handles symbol rates from 125 sym/s to 4 Msym/s. It performs at less than 0.5 dB degradation from ideal BER vs. E(b)/N(o) characteristics. System design considerations lead to the choice of a complex IF scheme with sampling at four times the intermediate frequency, and a combined analog and digital matched filtering based on the pulselet concept. Signal processing algorithms include the Costas carrier phase error detector, the zero-crossing detector for timing error, and algorithms for lock detection and loop filtering. Simulations of the entire demodulator including the ASIC part is accomplished by proprietary software. The ASIC is manufactured in a radiation tolerant 1-micron CMOS gate array process using 34085 gates. The main application area is spaceborne coherent transponders.

  3. Distributed Persistent Identifiers System Design

    Directory of Open Access Journals (Sweden)

    Pavel Golodoniuc

    2017-06-01

    Full Text Available The need to identify both digital and physical objects is ubiquitous in our society. Past and present persistent identifier (PID systems, of which there is a great variety in terms of technical and social implementation, have evolved with the advent of the Internet, which has allowed for globally unique and globally resolvable identifiers. PID systems have, by in large, catered for identifier uniqueness, integrity, and persistence, regardless of the identifier’s application domain. Trustworthiness of these systems has been measured by the criteria first defined by Bütikofer (2009 and further elaborated by Golodoniuc 'et al'. (2016 and Car 'et al'. (2017. Since many PID systems have been largely conceived and developed by a single organisation they faced challenges for widespread adoption and, most importantly, the ability to survive change of technology. We believe that a cause of PID systems that were once successful fading away is the centralisation of support infrastructure – both organisational and computing and data storage systems. In this paper, we propose a PID system design that implements the pillars of a trustworthy system – ensuring identifiers’ independence of any particular technology or organisation, implementation of core PID system functions, separation from data delivery, and enabling the system to adapt for future change. We propose decentralisation at all levels — persistent identifiers and information objects registration, resolution, and data delivery — using Distributed Hash Tables and traditional peer-to-peer networks with information replication and caching mechanisms, thus eliminating the need for a central PID data store. This will increase overall system fault tolerance thus ensuring its trustworthiness. We also discuss important aspects of the distributed system’s governance, such as the notion of the authoritative source and data integrity

  4. Realization of Integrable Incommensurate-Fractional-Order-Rössler-System Design Using Operational Transconductance Amplifiers (OTAs) and Its Experimental Verification

    Science.gov (United States)

    Dar, Mohammad Rafiq; Kant, Nasir Ali; Khanday, Farooq Ahmad

    In this paper, electronic implementation of fractional-order Rössler system using operational transconductance amplifiers (OTAs) is presented which until now was only being investigated through numerical simulations. The realization offers the benefits of low-voltage implementation, integrability and electronic tunability. In addition, the proposed circuit is a MOS only design (as no BJTs have been used) which contains only grounded components and is therefore suitable for monolithic VLSI design. The chaotic behavior of the fractional-order Rössler system in consideration with the incommensurate orders has been demonstrated which finds many applications in several fields. The theoretical predictions of the proposed implementation have been verified through experimentation and HSPICE simulator using Austrian Micro System (AMS) 0.35μm CMOS process and the obtained results have been found in good agreement with the Matlab simulink theoretical results obtained using FOMCON simulink toolbox. Besides, a secure message communication system has been considered to demonstrate fully the usefulness of the chaotic system.

  5. Sub-Threshold Leakage Current Reduction Techniques In VLSI Circuits -A Survey

    Directory of Open Access Journals (Sweden)

    V.Sri Sai Harsha

    2015-09-01

    Full Text Available There is an increasing demand for portable devices powered up by battery, this led the manufacturers of semiconductor technology to scale down the feature size which results in reduction in threshold voltage and enables the complex functionality on a single chip. By scaling down the feature size the dynamic power dissipation has no effect but the static power dissipation has become equal or more than that of Dynamic power dissipation. So in recent CMOS technologies static power dissipation i.e. power dissipation due to leakage current has become a challenging area for VLSI chip designers. In order to prolong the battery life and maintain reliability of circuit, leakage current reduction is the primary goal. A basic overview of techniques used for reduction of sub-threshold leakages is discussed in this paper. Based on the surveyed techniques, one would be able to choose required and apt leakage reduction technique.

  6. Radiation damage studies of a recycling integrator VLSI chip for dosimetry and control of therapeutical beams

    Science.gov (United States)

    Cirio, R.; Bourhaleb, F.; Degiorgis, P. G.; Donetti, M.; Marchetto, F.; Marletti, M.; Mazza, G.; Peroni, C.; Rizzi, E.; SanzFreire, C.

    2002-04-01

    A VLSI chip based on a recycling integrator has been designed and built to be used as front-end readout of detectors for dosimetry and beam monitoring. The chip is suitable for measurements with both conventional radiotherapy accelerators (photon or electron beams) and with hadron accelerators (proton or light ion beams). As the chips might be located at few centimeters from the irradiation area and they are meant to be used in routine hospital practice, it is mandatory to assert their damage to both electromagnetic and neutron irradiation. We have tested a few chips on a X-ray beam and on thermal and fast neutron beams. Results of the tests are reported and an estimate of the expected lifetime of the chip for routine use is given.

  7. Improved FFSBM Algorithm and Its VLSI Architecture for AVS Video Standard

    Institute of Scientific and Technical Information of China (English)

    Li Zhang; Don Xie; Di Wu

    2006-01-01

    The Video part of AVS (Audio Video Coding Standard) has been finalized recently. It has adopted variable block size motion compensation to improve its coding efficiency. This has brought heavy computation burden when it is applied to compress the HDTV (high definition television) content. Based on the original FFSBM (fast full search blocking matching),this paper proposes an improved FFSBM algorithm to adaptively reduce the complexity of motion estimation according to the actual motion intensity. The main idea of the proposed algorithm is to use the statistical distribution of MVD (motion vector difference). A VLSI (very large scale integration) architecture is also proposed to implement the improved motion estimation algorithm. Experimental results show that this algorithm-hardware co-design gives better tradeoff of gate-count and throughput than the existing ones and is a proper solution for the variable block size motion estimation in AVS.

  8. VLSI architecture of NEO spike detection with noise shaping filter and feature extraction using informative samples.

    Science.gov (United States)

    Hoang, Linh; Yang, Zhi; Liu, Wentai

    2009-01-01

    An emerging class of multi-channel neural recording systems aims to simultaneously monitor the activity of many neurons by miniaturizing and increasing the number of recording channels. Vast volume of data from the recording systems, however, presents a challenge for processing and transmitting wirelessly. An on-chip neural signal processor is needed for filtering uninterested recording samples and performing spike sorting. This paper presents a VLSI architecture of a neural signal processor that can reliably detect spike via a nonlinear energy operator, enhance spike signal over noise ratio by a noise shaping filter, and select meaningful recording samples for clustering by using informative samples. The architecture is implemented in 90-nm CMOS process, occupies 0.2 mm(2), and consumes 0.5 mW of power.

  9. A Model of Stimulus-Specific Adaptation in Neuromorphic Analog VLSI.

    Science.gov (United States)

    Mill, R; Sheik, S; Indiveri, G; Denham, S L

    2011-10-01

    Stimulus-specific adaptation (SSA) is a phenomenon observed in neural systems which occurs when the spike count elicited in a single neuron decreases with repetitions of the same stimulus, and recovers when a different stimulus is presented. SSA therefore effectively highlights rare events in stimulus sequences, and suppresses responses to repetitive ones. In this paper we present a model of SSA based on synaptic depression and describe its implementation in neuromorphic analog very-large-scale integration (VLSI). The hardware system is evaluated using biologically realistic spike trains with parameters chosen to reflect those of the stimuli used in physiological experiments. We examine the effect of input parameters and stimulus history upon SSA and show that the trends apparent in the results obtained in silico compare favorably with those observed in biological neurons.

  10. Content of system design descriptions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    A System Design Description (SDD) describes the requirements and features of a system. This standard provides guidance on the expected technical content of SDDs. The need for such a standard was recognized during efforts to develop SDDs for safety systems at DOE Hazard Category 2 nonreactor nuclear facilities. Existing guidance related to the corresponding documents in other industries is generally not suitable to meet the needs of DOE nuclear facilities. Across the DOE complex, different contractors have guidance documents, but they vary widely from site to site. While such guidance documents are valuable, no single guidance document has all the attributes that DOE considers important, including a reasonable degree of consistency or standardization. This standard is a consolidation of the best of the existing guidance. This standard has been developed with a technical content and level of detail intended to be most applicable to safety systems at DOE Hazard Category 2 nonreactor nuclear facilities. Notwithstanding that primary intent, this standard is recommended for other systems at such facilities, especially those that are important to achieving the programmatic mission of the facility. In addition, application of this standard should be considered for systems at other facilities, including non-nuclear facilities, on the basis that SDDs may be beneficial and cost-effective.

  11. Prototype solar-heating system design package

    Science.gov (United States)

    1979-01-01

    Design package for complete residential solar-heating system is given. Includes documents and drawings describing performance design, verification standards, and analysis of system with sufficient information to assemble working system.

  12. Prototype solar-heating system design package

    Science.gov (United States)

    1979-01-01

    Design package for complete residential solar-heating system is given. Includes documents and drawings describing performance design, verification standards, and analysis of system with sufficient information to assemble working system.

  13. Financial innovation and system design

    Directory of Open Access Journals (Sweden)

    Mario Tonveronachi

    2010-01-01

    Full Text Available The official regulatory responses to the current crisis do not alter the laissez faire approach to the production and allocation of financial risks which characterises the existing regulatory framework. The stated goal remains that of maintaining the freedom for the private sector to introduce financial innovations, whose nature is consistent with the system design pursued by the official authorities. I argue that adopting a systemic perspective the crucial point is not just the nature of innovations but their quantitative dimension and dynamics, which are responsible for the endogenous creation of financial fragility. The new official proposals do not appear capable of changing this picture. A radical revision of the regulatory approach is necessary, of which an outline is presented.

  14. Model, analysis, and evaluation of the effects of analog VLSI arithmetic on linear subspace-based image recognition.

    Science.gov (United States)

    Carvajal, Gonzalo; Figueroa, Miguel

    2014-07-01

    Typical image recognition systems operate in two stages: feature extraction to reduce the dimensionality of the input space, and classification based on the extracted features. Analog Very Large Scale Integration (VLSI) is an attractive technology to achieve compact and low-power implementations of these computationally intensive tasks for portable embedded devices. However, device mismatch limits the resolution of the circuits fabricated with this technology. Traditional layout techniques to reduce the mismatch aim to increase the resolution at the transistor level, without considering the intended application. Relating mismatch parameters to specific effects in the application level would allow designers to apply focalized mismatch compensation techniques according to predefined performance/cost tradeoffs. This paper models, analyzes, and evaluates the effects of mismatched analog arithmetic in both feature extraction and classification circuits. For the feature extraction, we propose analog adaptive linear combiners with on-chip learning for both Least Mean Square (LMS) and Generalized Hebbian Algorithm (GHA). Using mathematical abstractions of analog circuits, we identify mismatch parameters that are naturally compensated during the learning process, and propose cost-effective guidelines to reduce the effect of the rest. For the classification, we derive analog models for the circuits necessary to implement Nearest Neighbor (NN) approach and Radial Basis Function (RBF) networks, and use them to emulate analog classifiers with standard databases of face and hand-writing digits. Formal analysis and experiments show how we can exploit adaptive structures and properties of the input space to compensate the effects of device mismatch at the application level, thus reducing the design overhead of traditional layout techniques. Results are also directly extensible to multiple application domains using linear subspace methods.

  15. Digital system design with VHDL

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jin Gu; Lee, Da Young; Song, Je Chel

    2000-09-15

    This book is comprised of eleven chapters, which are review of basic logic design including combinational logic circuit, KARNAUGH MAPS, Hazard of combinational circuit, Melay order circuit design and synchronous design, introduction of VHDL like VHDL module of Multiplexer and VHDL Function, design with PLD for program, circuit design for arithmetical operation, digital design using SM chart, PGA and CPLD design, Floating-point calculation, extra issues on VHDL, VHDL module for memory and bus,design for hardware test and a testing and examples for design such as UART design and M68HC05 micro controller.

  16. Fermilab Recycler Collimation System Design

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B. C. [Fermilab; Adamson, P. [Fermilab; Ainsworth, R. [Fermilab; Capista, D. [Fermilab; Hazelwood, K. [Fermilab; Kourbanis, I. [Fermilab; Mokhov, N. V. [Fermilab; Morris, D. K. [Fermilab; Murphy, M. [Fermilab; Sidorov, V. [Fermilab; Stern, E. [Fermilab; Tropin, I. [Fermilab; Yang, M-J. [Fermilab

    2016-10-04

    To provide 700 kW proton beams for neutrino production in the NuMI facility, we employ slip stacking in the Recycler with transfer to the Main Injector for recapture and acceleration. Slip stacking with 12 Booster batches per 1.33 sec cycle of the Main Injector has been implemented and briefly tested while extensive operation with 8 batches and 10 batches per MI cycle has been demonstrated. Operation in this mode since 2013 shows that loss localization is an essential component for long term operation. Beam loss in the Recycler will be localized in a collimation region with design capability for absorbing up to 2 kW of lost protons in a pair of 20-Ton collimators (absorbers). This system will employ a two stage collimation with a thin molybdenum scattering foil to define the bottom edge of both the injected and decelerated-for-slipping beams. Optimization and engineering design of the collimator components and radiation shielding are based on comprehensive MARS15 simulations predicting high collimation efficiency as well as tolerable levels of prompt and residual radiation. The system installation during the Fermilab 2016 facility shutdown will permit commissioning in the subsequent operating period.

  17. Isomer Energy System Design Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, D

    2003-09-01

    Isomer energy supplies offer the potential to increase the output power over time to accommodate varying power needs. Other materials with similar energy density (for example isotopic energy sources such as {sup 238}Pu) do not offer the potential to increase power with time. Often the design life of an energy source is significant when compared to the half-life of the isotope. As a result, the conventional isotopic energy supplies operate with significant excess power at start of life to meet the power needs at end-of-life. For example a {sup 238}Pu radioisotope energy supply with a 35-year design life must account for radioactive decay losses of about 25% of the plutonium present at the start of life. This decay loss is significant if the required output power from the device is constant with time. If the required power output from the device increases with time (such as some space applications), significant increases in power supply weight are required to meet design power requirements. Isomer energy supplies offer the potential to increase the output power over time to meet varying power needs, thereby offering a significant advantage over conventional systems. Isomer energy supplies also offer the possibility of being ''turned on'' based on need at a specific time. These characteristics offer distinct advantages to isomer energy supplies. This report examines the basic engineering characteristics of a hypothetical isomer energy supply in order to gain insight into properties of isomers that will make them potentially useful as energy sources in engineered systems. These isomer properties provide a basis for identification of candidate isomers and provide a basis for an isomer search.

  18. VLSI Potentiostat Array With Oversampling Gain Modulation for Wide-Range Neurotransmitter Sensing.

    Science.gov (United States)

    Stanacevic, M; Murari, K; Rege, A; Cauwenberghs, G; Thakor, N V

    2007-03-01

    A 16-channel current-measuring very large-scale integration (VLSI) sensor array system for highly sensitive electrochemical detection of electroactive neurotransmiters like dopamine and nitric-oxide is presented. Each channel embeds a current integrating potentiostat within a switched-capacitor first-order single-bit delta-sigma modulator implementing an incremental analog-to-digital converter. The duty-cycle modulation of current feedback in the delta-sigma loop together with variable oversampling ratio provide a programmable digital range selection of the input current spanning over six orders of magnitude from picoamperes to microamperes. The array offers 100-fA input current sensitivity at 3.4-muW power consumption per channel. The operation of the 3 mm times3 mm chip fabricated in 0.5-mum CMOS technology is demonstrated with real-time multichannel acquisition of neurotransmitter concentration.

  19. An Efficient VLSI Architecture for Multi-Channel Spike Sorting Using a Generalized Hebbian Algorithm.

    Science.gov (United States)

    Chen, Ying-Lun; Hwang, Wen-Jyi; Ke, Chi-En

    2015-08-13

    A novel VLSI architecture for multi-channel online spike sorting is presented in this paper. In the architecture, the spike detection is based on nonlinear energy operator (NEO), and the feature extraction is carried out by the generalized Hebbian algorithm (GHA). To lower the power consumption and area costs of the circuits, all of the channels share the same core for spike detection and feature extraction operations. Each channel has dedicated buffers for storing the detected spikes and the principal components of that channel. The proposed circuit also contains a clock gating system supplying the clock to only the buffers of channels currently using the computation core to further reduce the power consumption. The architecture has been implemented by an application-specific integrated circuit (ASIC) with 90-nm technology. Comparisons to the existing works show that the proposed architecture has lower power consumption and hardware area costs for real-time multi-channel spike detection and feature extraction.

  20. A novel VLSI architecture of arithmetic encoder with reduced memory in SPIHT

    Science.gov (United States)

    Liu, Kai; Li, YunSong; Belyaev, Eugeniy

    2010-08-01

    The paper presents a context-based arithmetic coder's VLSI architecture used in SPIHT with reduced memory, which is used for high speed real-time applications. For hardware implementation, a dedicated context model is proposed for the coder. Each context can be processed in parallel and high speed operators are used for interval calculations. An embedded register array is used for cumulative frequency update. As a result, the coder can consume one symbol at each clock cycle. After FPGA synthesis and simulation, the throughput of our coder is comparable with those of similar hardware architectures used in ASIC technology. Especially, the memory capacity of the coder is smaller than those of corresponding systems.

  1. ERIS adaptive optics system design

    Science.gov (United States)

    Marchetti, Enrico; Le Louarn, Miska; Soenke, Christian; Fedrigo, Enrico; Madec, Pierre-Yves; Hubin, Norbert

    2012-07-01

    The Enhanced Resolution Imager and Spectrograph (ERIS) is the next-generation instrument planned for the Very Large Telescope (VLT) and the Adaptive Optics facility (AOF). It is an AO assisted instrument that will make use of the Deformable Secondary Mirror and the new Laser Guide Star Facility (4LGSF), and it is planned for the Cassegrain focus of the telescope UT4. The project is currently in its Phase A awaiting for approval to continue to the next phases. The Adaptive Optics system of ERIS will include two wavefront sensors (WFS) to maximize the coverage of the proposed sciences cases. The first is a high order 40x40 Pyramid WFS (PWFS) for on axis Natural Guide Star (NGS) observations. The second is a high order 40x40 Shack-Hartmann WFS for single Laser Guide Stars (LGS) observations. The PWFS, with appropriate sub-aperture binning, will serve also as low order NGS WFS in support to the LGS mode with a field of view patrolling capability of 2 arcmin diameter. Both WFSs will be equipped with the very low read-out noise CCD220 based camera developed for the AOF. The real-time reconstruction and control is provided by a SPARTA real-time platform adapted to support both WFS modes. In this paper we will present the ERIS AO system in all its main aspects: opto-mechanical design, real-time computer design, control and calibrations strategy. Particular emphasis will be given to the system performance obtained via dedicated numerical simulations.

  2. Exploring teacher's instructional design practices from a systems design perspective

    NARCIS (Netherlands)

    Hoogveld, Bert; Paas, Fred; Jochems, Wim; Van Merriënboer, Jeroen

    2010-01-01

    Hoogveld, A. W. M., Paas, F., Jochems, W. M. G., & Van Merriënboer, J. J. G. (2002). Exploring teacher's instructional design practices from a systems design perspective. Instructionals Science, 30, 291-305.

  3. Design and components of photovoltaic systems

    NARCIS (Netherlands)

    Sark, W.G.J.H.M. van

    2012-01-01

    This chapter provides an overview of the various aspects of photovoltaic (PV) system components and design. The basic performance of cells, modules, and inverters and how this is used in PV system design is described. Two case studies illustrating PV system design are presented: a hybrid system on t

  4. Imaging with polycrystalline mercuric iodide detectors using VLSI readout

    Energy Technology Data Exchange (ETDEWEB)

    Turchetta, R.; Dulinski, W.; Husson, D.; Riester, J.L.; Schieber, M.; Zuck, A.; Melekhov, L.; Saado, Y.; Hermon, H.; Nissenbaum, J

    1999-06-01

    Potentially low cost and large area polycrystalline mercuric iodide room-temperature radiation detectors, with thickness of 100-600 {mu}m have been successfully tested with dedicated low-noise, low-power mixed signal VLSI electronics which can be used for compact, imaging solutions. The detectors are fabricated by depositing HgI{sub 2} directly on an insulating substrate having electrodes in the form of microstrips and pixels with an upper continuous electrode. The deposition is made either by direct evaporation or by screen printing HgI{sub 2} mixed with glue such as Poly-Vinyl-Butiral. The properties of these first-generation detectors are quite uniform from one detector to another. Also for each single detector the response is quite uniform and no charge loss in the inter-electrode space have been detected. Because of the low cost and of the polycrystallinity, detectors can be potentially fabricated in any size and shape, using standard ceramic technology equipment, which is an attractive feature where low cost and large area applications are needed. The detectors which act as radiation counters have been tested with a beta source as well as in a high-energy beam of 100 GeV muons at CERN, connected to VLSI, low noise electronics. Charge collection efficiency and uniformity have been studied. The charge is efficiently collected even in the space between strips indicating that fill factors of 100% could be reached in imaging applications with direct detection of radiation. Single photon counting capability is reached with VLSI electronics. These results show the potential of this material for applications demanding position sensitive, radiation resistant, room-temperature operating radiation detectors, where position resolution is essential, as it can be found in some applications in high-energy physics, nuclear medicine and astrophysics.

  5. Design and Data Management System

    Science.gov (United States)

    Messer, Elizabeth; Messer, Brad; Carter, Judy; Singletary, Todd; Albasini, Colby; Smith, Tammy

    2007-01-01

    The Design and Data Management System (DDMS) was developed to automate the NASA Engineering Order (EO) and Engineering Change Request (ECR) processes at the Propulsion Test Facilities at Stennis Space Center for efficient and effective Configuration Management (CM). Prior to the development of DDMS, the CM system was a manual, paper-based system that required an EO or ECR submitter to walk the changes through the acceptance process to obtain necessary approval signatures. This approval process could take up to two weeks, and was subject to a variety of human errors. The process also requires that the CM office make copies and distribute them to the Configuration Control Board members for review prior to meetings. At any point, there was a potential for an error or loss of the change records, meaning the configuration of record was not accurate. The new Web-based DDMS eliminates unnecessary copies, reduces the time needed to distribute the paperwork, reduces time to gain the necessary signatures, and prevents the variety of errors inherent in the previous manual system. After implementation of the DDMS, all EOs and ECRs can be automatically checked prior to submittal to ensure that the documentation is complete and accurate. Much of the configuration information can be documented in the DDMS through pull-down forms to ensure consistent entries by the engineers and technicians in the field. The software also can electronically route the documents through the signature process to obtain the necessary approvals needed for work authorization. The workflow of the system allows for backups and timestamps that determine the correct routing and completion of all required authorizations in a more timely manner, as well as assuring the quality and accuracy of the configuration documents.

  6. VLSI implementations of threshold logic-a comprehensive survey.

    Science.gov (United States)

    Beiu, V; Quintana, J M; Avedillo, M J

    2003-01-01

    This paper is an in-depth review on silicon implementations of threshold logic gates that covers several decades. In this paper, we will mention early MOS threshold logic solutions and detail numerous very-large-scale integration (VLSI) implementations including capacitive (switched capacitor and floating gate with their variations), conductance/current (pseudo-nMOS and output-wired-inverters, including a plethora of solutions evolved from them), as well as many differential solutions. At the end, we will briefly mention other implementations, e.g., based on negative resistance devices and on single electron technologies.

  7. Crystal growth and evaluation of silicon for VLSI and ULSI

    CERN Document Server

    Eranna, Golla

    2014-01-01

    PrefaceAbout the AuthorIntroductionSilicon: The SemiconductorWhy Single CrystalsRevolution in Integrated Circuit Fabrication Technology and the Art of Device MiniaturizationUse of Silicon as a SemiconductorSilicon Devices for Boolean ApplicationsIntegration of Silicon Devices and the Art of Circuit MiniaturizationMOS and CMOS Devices for Digital ApplicationsLSI, VLSI, and ULSI Circuits and ApplicationsSilicon for MEMS ApplicationsSummaryReferencesSilicon: The Key Material for Integrated Circuit Fabrication TechnologyIntroductionPreparation of Raw Silicon MaterialMetallurgical-Grade SiliconPuri

  8. A VLSI architecture for simplified arithmetic Fourier transform algorithm

    Science.gov (United States)

    Reed, Irving S.; Shih, Ming-Tang; Truong, T. K.; Hendon, E.; Tufts, D. W.

    1992-01-01

    The arithmetic Fourier transform (AFT) is a number-theoretic approach to Fourier analysis which has been shown to perform competitively with the classical FFT in terms of accuracy, complexity, and speed. Theorems developed in a previous paper for the AFT algorithm are used here to derive the original AFT algorithm which Bruns found in 1903. This is shown to yield an algorithm of less complexity and of improved performance over certain recent AFT algorithms. A VLSI architecture is suggested for this simplified AFT algorithm. This architecture uses a butterfly structure which reduces the number of additions by 25 percent of that used in the direct method.

  9. An adaptive, lossless data compression algorithm and VLSI implementations

    Science.gov (United States)

    Venbrux, Jack; Zweigle, Greg; Gambles, Jody; Wiseman, Don; Miller, Warner H.; Yeh, Pen-Shu

    1993-01-01

    This paper first provides an overview of an adaptive, lossless, data compression algorithm originally devised by Rice in the early '70s. It then reports the development of a VLSI encoder/decoder chip set developed which implements this algorithm. A recent effort in making a space qualified version of the encoder is described along with several enhancements to the algorithm. The performance of the enhanced algorithm is compared with those from other currently available lossless compression techniques on multiple sets of test data. The results favor our implemented technique in many applications.

  10. A VLSI Algorithm for Calculating the Treee to Tree Distance

    Institute of Scientific and Technical Information of China (English)

    徐美瑞; 刘小林

    1993-01-01

    Given two ordered,labeled trees βand α,to find the distance from tree β to tree α is an important problem in many fields,for example,the pattern recognition field.In this paper,a VLSI algorithm for calculating the tree-to-tree distance is presented.The computation structure of the algorithm is a 2-D Mesh with the size m&n.and the time is O(m=n),where m,n are the numbers of nodes of the tree βand tree α,respectively.

  11. Hardware/software co-design and optimization for cyberphysical integration in digital microfluidic biochips

    CERN Document Server

    Luo, Yan; Ho, Tsung-Yi

    2015-01-01

    This book describes a comprehensive framework for hardware/software co-design, optimization, and use of robust, low-cost, and cyberphysical digital microfluidic systems. Readers with a background in electronic design automation will find this book to be a valuable reference for leveraging conventional VLSI CAD techniques for emerging technologies, e.g., biochips or bioMEMS. Readers from the circuit/system design community will benefit from methods presented to extend design and testing techniques from microelectronics to mixed-technology microsystems. For readers from the microfluidics domain,

  12. Ground Bounce Noise Reduction in Vlsi Circuits

    Directory of Open Access Journals (Sweden)

    Vipin Kumar Sharma

    2015-12-01

    Full Text Available : Scaling of devices in CMOS technology leads to increase in parameter like Ground bounce noise, Leakage current, average power dissipation and short channel effect. FinFET are the promising substitute to replace CMOS. Ground bounce noise is produced when power gating circuit goes from SLEEP to ACTIVE mode transition. FinFET based designs are compared with MOSFET based designs on basis of different parameter like Ground bounce noise, leakage current and average power dissipation. HSPICE is the software tool used for simulation and circuit design.

  13. Multidisciplinary systems engineering architecting the design process

    CERN Document Server

    Crowder, James A; Demijohn, Russell

    2016-01-01

    This book presents Systems Engineering from a modern, multidisciplinary engineering approach, providing the understanding that all aspects of systems design, systems, software, test, security, maintenance and the full life-cycle must be factored in to any large-scale system design; up front, not factored in later. It lays out a step-by-step approach to systems-of-systems architectural design, describing in detail the documentation flow throughout the systems engineering design process. It provides a straightforward look and the entire systems engineering process, providing realistic case studies, examples, and design problems that will enable students to gain a firm grasp on the fundamentals of modern systems engineering.  Included is a comprehensive design problem that weaves throughout the entire text book, concluding with a complete top-level systems architecture for a real-world design problem.

  14. On the design of reversible QDCA systems.

    Energy Technology Data Exchange (ETDEWEB)

    DeBenedictis, Erik P.; Frank, Michael P. (Florida State University, Tallahassee, FL); Ottavi, Marco; Frost-Murphy, Sarah E. (University of Notre Dame, Notre Dame, IN)

    2006-10-01

    This work is the first to describe how to go about designing a reversible QDCA system. The design space is substantial, and there are many questions that a designer needs to answer before beginning to design. This document begins to explicate the tradeoffs and assumptions that need to be made and offers a range of approaches as starting points and examples. This design guide is an effective tool for aiding designers in creating the best quality QDCA implementation for a system.

  15. Design and Implementation of the Ephemerizer System

    OpenAIRE

    Xu, Shangjin

    2007-01-01

    This thesis describes the system design and implementation of the secure Ephemerizer System that was first introduced by Radia Perlman in 2005. The system is designed to enable users to keep data for a finite period of time before making the data unrecoverable by destroying the keys with which the data was encrypted. The task of the Ephemerizer System service is to create, advertise, and destroy keys required for the Ephemerizer System's functionalities. We designed the Ephemerizer System Ser...

  16. Campus Information Network Hardware System Design%Campus Information Network Hardware System Design

    Institute of Scientific and Technical Information of China (English)

    刘正勇

    2011-01-01

    The emphasis of constructing and developing the campus information network is how to design and optimize the network hardware system. This paper mainly studies the network system structure design, the server system structure design and the network export

  17. A VLSI design for a trace-back Viterbi decoder

    Science.gov (United States)

    Truong, T. K.; Shih, Ming-Tang; Reed, Irving S.; Satorius, E. H.

    1992-01-01

    A systolic Viterbi decoder for convolutional codes is developed which uses the trace-back method to reduce the amount of data needed to be stored in registers. It is shown that this new algorithm requires a smaller chip size and achieves a faster decoding time than other existing methods.

  18. Design and Implementation of VLSI Prime Factor Algorithm Processor.

    Science.gov (United States)

    1987-12-01

    for A, 1i ’ 1 1 Fh Ai ,,r equjAtIInI. art, ( , 4 10 4,t’ 4 ( - /’ cr tht, (-arr% sur ma% akL, be represented as Figure 36 Carry Select Adder Blocking... Select Adder Blocking .......................................................... 81 Figure 37: ALU Adder Cell...ALU Logic Implementation............................................................ 81 viii J,.. in List of Figures (continued) Figure 36: Carry

  19. VLSI Design Tools, Reference Manual, Release 2.0.

    Science.gov (United States)

    1984-08-01

    xz) -.. ISOCMOS Macros md(x,y); ba(x ,y); Sop(x,y); bm(xy); 8.10. CMOSFW Macrof rgb (z,yl; rb(z,Y); 9. ISOCMOS Example The following is a sample file of...ABC B Y Eqalvalesit: Nodes A I BIC I YI I I I I IInpu Load I I I I I I I I I I mock Diev d 1/0 PWm CAI misb 32 X ~ AC Cherdortas V0 - $ input Imidm...A 1B C YI Input Load III Mek Dlr= o !/O pbS Call Wdtl 5 AC EhmdWdIes VD, - SV bpt 1tmidm TN - Sm .1. Fm Ot FIND One r. mes, Led -I Led -1l

  20. Integrated design for space transportation system

    CERN Document Server

    Suresh, B N

    2015-01-01

    The book addresses the overall integrated design aspects of a space transportation system involving several disciplines like propulsion, vehicle structures, aerodynamics, flight mechanics, navigation, guidance and control systems, stage auxiliary systems, thermal systems etc. and discusses the system approach for design, trade off analysis, system life cycle considerations, important aspects in mission management, the risk assessment, etc. There are several books authored to describe the design aspects of various areas, viz., propulsion, aerodynamics, structures, control, etc., but there is no book which presents space transportation system (STS) design in an integrated manner. This book attempts to fill this gap by addressing systems approach for STS design, highlighting the integrated design aspects, interactions between various subsystems and interdependencies. The main focus is towards the complex integrated design to arrive at an optimum, robust and cost effective space transportation system. The orbit...

  1. Computer support for mechatronic control system design

    NARCIS (Netherlands)

    van Amerongen, J.; Coelingh, H.J.; de Vries, Theodorus J.A.

    2000-01-01

    This paper discusses the demands for proper tools for computer aided control system design of mechatronic systems and identifies a number of tasks in this design process. Real mechatronic design, involving input from specialists from varying disciplines, requires that the system can be represented

  2. Computer Aided Control System Design (CACSD)

    Science.gov (United States)

    Stoner, Frank T.

    1993-01-01

    The design of modern aerospace systems relies on the efficient utilization of computational resources and the availability of computational tools to provide accurate system modeling. This research focuses on the development of a computer aided control system design application which provides a full range of stability analysis and control design capabilities for aerospace vehicles.

  3. Aircraft System Design and Integration

    Directory of Open Access Journals (Sweden)

    D. P. Coldbeck

    2000-01-01

    Full Text Available In the 1980's the British aircraft industry changed its approach to the management of projects from a system where a project office would manage a project and rely on a series of specialist departments to support them to a more process oriented method, using systems engineering models, whose most outwardly visible signs were the introduction of multidisciplinary product teams. One of the problems with the old method was that the individual departments often had different priorities and projects would get uneven support. The change in the system was only made possible for complex designs by the electronic distribution of data giving instantaneous access to all involved in the project. In 1997 the Defence and Aerospace Foresight Panel emphasised the need for a system engineering approach if British industry was to remain competitive. The Royal Academy of Engineering recognised that the change in working practices also changed what was required of a chartered engineer and redefined their requirements in 1997 [1]. The result of this is that engineering degree courses are now judged against new criteria with more emphasis placed on the relevance to industry rather than on purely academic content. At the University of Glasgow it was realized that the students ought to be made aware of current working practices and that there ought to be a review to ensure that the degrees give students the skills required by industry. It was decided to produce a one week introduction course in systems engineering for Masters of Engineering (MEng students to be taught by both university lecturers and practitioners from a range of companies in the aerospace industry with the hope of expanding the course into a module. The reaction of the students was favourable in terms of the content but it seems ironic that the main criticism was that there was not enough discussion involving the students. This paper briefly describes the individual teaching modules and discusses the

  4. New VLSI complexity results for threshold gate comparison

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1996-12-31

    The paper overviews recent developments concerning optimal (from the point of view of size and depth) implementations of COMPARISON using threshold gates. We detail a class of solutions which also covers another particular solution, and spans from constant to logarithmic depths. These circuit complexity results are supplemented by fresh VLSI complexity results having applications to hardware implementations of neural networks and to VLSI-friendly learning algorithms. In order to estimate the area (A) and the delay (T), as well as the classical AT{sup 2}, we shall use the following {open_quote}cost functions{close_quote}: (i) the connectivity (i.e., sum of fan-ins) and the number-of-bits for representing the weights and thresholds are used as closer approximations of the area; while (ii) the fan-ins and the length of the wires are used for closer estimates of the delay. Such approximations allow us to compare the different solutions-which present very interesting fan-in dependent depth-size and area-delay tradeoffs - with respect to AT{sup 2}.

  5. Electromagnetic System Design and Visual Simulation

    Institute of Scientific and Technical Information of China (English)

    ZHANGJing-shu; CHENDe-gui; NIUChun-ping

    2004-01-01

    An electromagnet design system is developed using Visual C++ language and OpenGL technology to visualize parametric 3D model. The system consists of primary design,optimization design, dynamic and static characteristics, and visual simulation. All empirical parameters and curves used in design process are stored in database. Through human-computer interactions, an electromagnetic system can be designed conveniently with the results and characteristics curves displayed in graphic model. Using this system can greatly shorten the process of product design, and the results satisfy technical requirements.

  6. Low complexity VLSI implementation of CORDIC-based exponent calculation for neural networks

    Science.gov (United States)

    Aggarwal, Supriya; Khare, Kavita

    2012-11-01

    This article presents a low hardware complexity for exponent calculations based on CORDIC. The proposed CORDIC algorithm is designed to overcome major drawbacks (scale-factor compensation, low range of convergence and optimal selection of micro-rotations) of the conventional CORDIC in hyperbolic mode of operation. The micro-rotations are identified using leading-one bit detection with uni-direction rotations to eliminate redundant iterations and improve throughput. The efficiency and performance of the processor are independent of the probability of rotation angles being known prior to implementation. The eight-staged pipelined architecture implementation requires an 8 × N ROM in the pre-processing unit for storing the initial coordinate values; it no longer requires the ROM for storing the elementary angles. It provides an area-time efficient design for VLSI implementation for calculating exponents in activation functions and Gaussain Potential Functions (GPF) in neural networks. The proposed CORDIC processor requires 32.68% less adders and 72.23% less registers compared to that of the conventional design. The proposed design when implemented on Virtex 2P (2vp50ff1148-6) device, dissipates 55.58% less power and has 45.09% less total gate count and 16.91% less delay as compared to Xilinx CORDIC Core. The detailed algorithm design along with FPGA implementation and area and time complexities is presented.

  7. Nonfunctional requirements in systems analysis and design

    CERN Document Server

    Adams, Kevin MacG

    2015-01-01

    This book will help readers gain a solid understanding of non-functional requirements inherent in systems design endeavors. It contains essential information for those who design, use, and maintain complex engineered systems, including experienced designers, teachers of design, system stakeholders, and practicing engineers. Coverage approaches non-functional requirements in a novel way by presenting a framework of four systems concerns into which the 27 major non-functional requirements fall: sustainment, design, adaptation, and viability. Within this model, the text proceeds to define each non-functional requirement, to specify how each is treated as an element of the system design process, and to develop an associated metric for their evaluation. Systems are designed to meet specific functional needs. Because non-functional requirements are not directly related to tasks that satisfy these proposed needs, designers and stakeholders often fail to recognize the importance of such attributes as availability, su...

  8. Hybrid robot climbing system design

    Science.gov (United States)

    Purna Irawan, Agustinus; Halim, Agus; Kurniawan, Hengky

    2017-09-01

    This research aims to develop a climbing hybrid robot, especially to design the structure of robot that quite strong and how to build an optimal mechanism for transmitting the motor’s rotation and torque to generate movement up the pole. In this research we use analytical methods using analysis software, simulation, a prototype, and robot trial. The result showed that robot could climb a pole by with maximum velocity 0.33m/s with a 20 kg load. Based on a weight diversity trial between 10 kg and 20 kg we obtained climb up load factor with value 0.970 ± 0.0223 and climb down load factor with value 0.910 ± 0.0163. Displacement of the frame structure was 7.58 mm. To minimize this displacement, the gate system was used so as to optimize the gripper while gripping the pole. The von Misses stress in the roller was 48.49 MPa, with 0.12 mm of displacement. This result could be a reference for robot development in further research.

  9. System level ESD co-design

    CERN Document Server

    Gossner, Harald

    2015-01-01

    An effective and cost efficient protection of electronic system against ESD stress pulses specified by IEC 61000-4-2 is paramount for any system design. This pioneering book presents the collective knowledge of system designers and system testing experts and state-of-the-art techniques for achieving efficient system-level ESD protection, with minimum impact on the system performance. All categories of system failures ranging from ‘hard’ to ‘soft’ types are considered to review simulation and tool applications that can be used. The principal focus of System Level ESD Co-Design is defining and establishing the importance of co-design efforts from both IC supplier and system builder perspectives. ESD designers often face challenges in meeting customers' system-level ESD requirements and, therefore, a clear understanding of the techniques presented here will facilitate effective simulation approaches leading to better solutions without compromising system performance. With contributions from Robert Asht...

  10. ROUTE PLAN DESIGNER FOR TRACTOR GUIDANCE SYSTEMS

    DEFF Research Database (Denmark)

    Sveistrup, Daniel; Jørgensen, Rasmus Nyholm; Green, Ole

    2010-01-01

    Earlier works have shown field trial designs to be very labor extensive, even when combining autoguidancesystems with conventional machinery.Designing routes for semi-automated systems in a controlled manner is both resource demandingand complicated. Different types of auto-guidance systems vary...... was outlined, it took less thanone hour entering the design into the software and generating the auto-guidance files.KeywordsGIS, Auto steering systems, plot trial design, full-scale field trials, Java...

  11. Opto-VLSI-based reconfigurable free-space optical interconnects architecture

    DEFF Research Database (Denmark)

    Aljada, Muhsen; Alameh, Kamal; Chung, Il-Sug;

    2007-01-01

    is the Opto-VLSI processor which can be driven by digital phase steering and multicasting holograms that reconfigure the optical interconnects between the input and output ports. The optical interconnects architecture is experimentally demonstrated at 2.5 Gbps using high-speed 1×3 VCSEL array and 1......This paper presents a short-distance reconfigurable high-speed optical interconnects architecture employing a Vertical Cavity Surface Emitting Laser (VCSEL) array, Opto-very-large-scale-integrated (Opto-VLSI) processors, and a photodetector (PD) array. The core component of the architecture......×3 photoreceiver array in conjunction with two 1×4096 pixel Opto-VLSI processors. The minimisation of the crosstalk between the output ports is achieved by appropriately aligning the VCSEL and PD elements with respect to the Opto-VLSI processors and driving the latter with optimal steering phase holograms....

  12. Microfluidic very large scale integration (VLSI) modeling, simulation, testing, compilation and physical synthesis

    CERN Document Server

    Pop, Paul; Madsen, Jan

    2016-01-01

    This book presents the state-of-the-art techniques for the modeling, simulation, testing, compilation and physical synthesis of mVLSI biochips. The authors describe a top-down modeling and synthesis methodology for the mVLSI biochips, inspired by microelectronics VLSI methodologies. They introduce a modeling framework for the components and the biochip architecture, and a high-level microfluidic protocol language. Coverage includes a topology graph-based model for the biochip architecture, and a sequencing graph to model for biochemical application, showing how the application model can be obtained from the protocol language. The techniques described facilitate programmability and automation, enabling developers in the emerging, large biochip market. · Presents the current models used for the research on compilation and synthesis techniques of mVLSI biochips in a tutorial fashion; · Includes a set of "benchmarks", that are presented in great detail and includes the source code of several of the techniques p...

  13. Vertically Coupled Microring Resonator Filter :Versatile Building Block for VLSI Filter Circuits

    Institute of Scientific and Technical Information of China (English)

    Yasuo; Kokubun

    2003-01-01

    In this review, the recent progress in the development of vertically coupled micro-ring resonator filters is summarized and the potential applications of the filters leading to the development of VLSI photonics are described.

  14. Vertically Coupled Microring Resonator Filter : Versatile Building Block for VLSI Filter Circuits

    Institute of Scientific and Technical Information of China (English)

    Yasuo Kokubun

    2003-01-01

    In this review, the recent progress in the development of vertically coupled micro-ring resonator filters is summarized and the potential applications of the filters leading to the development of VLSI photonics are described.

  15. Human Factors Considerations in System Design

    Science.gov (United States)

    Mitchell, C. M. (Editor); Vanbalen, P. M. (Editor); Moe, K. L. (Editor)

    1983-01-01

    Human factors considerations in systems design was examined. Human factors in automated command and control, in the efficiency of the human computer interface and system effectiveness are outlined. The following topics are discussed: human factors aspects of control room design; design of interactive systems; human computer dialogue, interaction tasks and techniques; guidelines on ergonomic aspects of control rooms and highly automated environments; system engineering for control by humans; conceptual models of information processing; information display and interaction in real time environments.

  16. Natural Resource Information System, design analysis

    Science.gov (United States)

    1972-01-01

    The computer-based system stores, processes, and displays map data relating to natural resources. The system was designed on the basis of requirements established in a user survey and an analysis of decision flow. The design analysis effort is described, and the rationale behind major design decisions, including map processing, cell vs. polygon, choice of classification systems, mapping accuracy, system hardware, and software language is summarized.

  17. Course on System Design (structural approach)

    CERN Document Server

    Levin, Mark Sh

    2011-01-01

    The article describes a course on system design (structural approach) which involves the following: issues of systems engineering; structural models; basic technological problems (structural system modeling, modular design, evaluation/comparison, revelation of bottlenecks, improvement/upgrade, multistage design, modeling of system evolution); solving methods (optimization, combinatorial optimization, multicriteria decision making); design frameworks; and applications. The course contains lectures and a set of special laboratory works. The laboratory works consist in designing and implementing a set of programs to solve multicriteria problems (ranking/selection, multiple choice problem, clustering, assignment). The programs above are used to solve some standard problems (e.g., hierarchical design of a student plan, design of a marketing strategy). Concurrently, each student can examine a unique applied problem from his/her applied domain(s) (e.g., telemetric system, GSM network, integrated security system, tes...

  18. Custom VLSI circuits for high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Parker, S. [Univ. of Hawaii, Honolulu, HI (United States)

    1998-06-01

    This article provides a brief guide to integrated circuits, including their design, fabrication, testing, radiation hardness, and packaging. It was requested by the Panel on Instrumentation, Innovation, and Development of the International Committee for Future Accelerators, as one of a series of articles on instrumentation for future experiments. Their original request emphasized a description of available custom circuits and a set of recommendations for future developments. That has been done, but while traps that stop charge in solid-state devices are well known, those that stop physicists trying to develop the devices are not. Several years spent dodging the former and developing the latter made clear the need for a beginner`s guide through the maze, and that is the main purpose of this text.

  19. POWER DRIVEN SYNTHESIS OF COMBINATIONAL CIRCUITS ON THE BASE OF CMOS VLSI LIBRARY ELEMENTS

    Directory of Open Access Journals (Sweden)

    D. I. Cheremisinov

    2013-01-01

    Full Text Available A problem of synthesis of multi-level logical networks using CMOS VLSI cell library is considered. The networks are optimized with respect to the die size and average dissipated power by CMOS-circuit implemented on a VLSI chip. The suggested approach is based on covering multilevel gate network and on taking into account specific features of the CMOS cell basis.

  20. Learning in Neural Networks: VLSI Implementation Strategies

    Science.gov (United States)

    Duong, Tuan Anh

    1995-01-01

    Fully-parallel hardware neural network implementations may be applied to high-speed recognition, classification, and mapping tasks in areas such as vision, or can be used as low-cost self-contained units for tasks such as error detection in mechanical systems (e.g. autos). Learning is required not only to satisfy application requirements, but also to overcome hardware-imposed limitations such as reduced dynamic range of connections.

  1. Embedded Systems Design: Optimization Challenges

    DEFF Research Database (Denmark)

    Pop, Paul

    2005-01-01

    Summary form only given. Embedded systems are everywhere: from alarm clocks to PDAs, from mobile phones to cars, almost all the devices we use are controlled by embedded systems. Over 99% of the microprocessors produced today are used in embedded systems, and recently the number of embedded systems...

  2. Research on conceptual design of mechatronic systems

    Indian Academy of Sciences (India)

    Xu Yong; Zou Huijun; Li Ruiqin

    2006-12-01

    Based on the fact that function-structure generating and function solving are alternant processes with mutual causality during the conceptual design phase of mechatronic systems, a conceptual design cyclic feedback solving model of a mechatronic system is put forward on the basis of mapping between function layer, effect layer, working principle layer and structure layer. The process of solving single and system functions is analysed. Key technologies of interface matching and function solving are then advanced. Finally, a computer-aided conceptual design automatic software system for mechatronic systems is developed and the conceptual design of a computerised embroidery machine is given as an example.

  3. Designing a new class of distributed systems

    CERN Document Server

    Mikkilineni, Rao

    2011-01-01

    Designing a New Class of Distributed Systems closely examines the Distributed Intelligent Managed Element (DIME) Computing Model, a new model for distributed systems, and provides a guide to implementing Distributed Managed Workflows with High Reliability, Availability, Performance and Security. The book also explores the viability of self-optimizing, self-monitoring autonomous DIME-based computing systems. Designing a New Class of Distributed Systems is designed for practitioners as a reference guide for innovative distributed systems design. Researchers working in a related field will also f

  4. Design of Staff Assessment System

    OpenAIRE

    Vaníček, Josef

    2016-01-01

    This diploma thesis focuses on the topic of working assessment of staff. The objective is to create a new system evaluation and motivation of staff in the factory. The theoretical part of the individual chapters is focused on the evaluation system, evaluation methods, evaluation interview, system implementation, motivation and remuneration. The practical part describes the company and its system of evaluating and remuneration employees. Proposal for a new system was created by collecting info...

  5. Integrated Design of Antibodies for Systems Biology Using Ab Designer.

    Science.gov (United States)

    Pisitkun, Trairak; Dummer, Patrick; Somparn, Poorichaya; Hirankarn, Nattiya; Kopp, Jeffrey B; Knepper, Mark A

    2014-03-24

    In the current era of large-scale biology, systems biology has evolved as a powerful approach to identify complex interactions within biological systems. In addition to high throughput identification and quantification techniques, methods based on high-quality mono-specific antibodies remain an essential element of the approach. To assist the large-scale design and production of peptide-directed antibodies for systems biology studies, we developed a fully integrated online application, AbDesigner (http://helixweb.nih.gov/AbDesigner/), to help researchers select optimal peptide immunogens for antibody generation against relatively disordered regions of target proteins. Here we describe AbDesigner in terms of its features, comparing it to other software tools, and use it to design three antibodies against kidney disease-related proteins in human, viz. nephrin, podocin, and apolipoprotein L1.

  6. Residential solar-heating system - design brochure

    Science.gov (United States)

    1978-01-01

    Design brochure for commercially-available solar-heating system is valuable to architects, engineers, and designers. It contains information on system configuration, system sizing, and mechanical layout. Drawings and specifications of all components and typical installation details are included in appendix.

  7. Introduction to Space Systems Design and Synthesis

    CERN Document Server

    Aguirre, Miguel A

    2013-01-01

    The definition of all space systems starts with the establishment of its fundamental parameters: requirements to be fulfilled, overall system and satellite design, analysis and design of the critical elements, developmental approach, cost, and schedule. There are only a few texts covering early design of space systems and none of them has been specifically dedicated to it. Furthermore all existing space engineering books concentrate on analysis. None of them deal with space system synthesis – with the interrelations between all the elements of the space system. Introduction to Space Systems concentrates on understanding the interaction between all the forces, both technical and non-technical, which influence the definition of a space system. This book refers to the entire system: space and ground segments, mission objectives as well as to cost, risk, and mission success probabilities. Introduction to Space Systems is divided into two parts. The first part analyzes the process of space system design in an ab...

  8. Integrated design of legged mechatronic system

    Institute of Scientific and Technical Information of China (English)

    ChinYin CHEN; IMing CHEN; ChiCheng CHENG

    2009-01-01

    This paper presents a system based on the integrated design and experiment for a one degree-of-freedom (DOF) legged mechatronic system (LMTS). A six-bar linkage mechanism, which is derived from a four-bar linkage with a symmetrical coupler point and pantograph into one, is designed, and common controllers are used to control the velocity and position loops.For system-based dynamic optimization, the design for control (DFC) approach is used to integrate the structure and control for improving dynamic performance with reduced control torque.Finally, for a rapid 3D graphical based implementation of the system, high-level computer-aided rapid system integration (CARSI) technology is used to integrate the structure design, controller design, and system implemen-tation into the design and analytical software environment based on Pro/engineer, XML syntax, Simmechanics, and Simulink. Thus, the development time for the LMTS is reduced.

  9. Vlsi Implementation of Edge Detection for Images

    Directory of Open Access Journals (Sweden)

    T. Mahalakshmi

    2012-12-01

    Full Text Available Edge is the boundary between the image and its background. Edge detection in general is defined as the local maxima obtained from high pass filters, but an optimized edge detector should mark the edges with respect to luminance or brightness changes. It is easy to obtain them in software implementation but for hardware implementation there is an issue with percentage of accuracy and processing time. This study discusses various edge detection algorithms and proposes an optimized edge detector which provides the solution for mentioned above issue. Since FPGA provides practical solutions for most of the image processing problems, the proposed architecture has been developed using Matlab System generator. Experimental results show the accuracy of edge detected using proposed architecture.

  10. OPTIMUM HEAT STORAGE DESIGN FOR SDHW SYSTEMS

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    1997-01-01

    Two simulation models have been used to analyse the heat storage design’s influence on the thermal performance of solar domestic hot water (SDHW) systems. One model is especially designed for traditional SDHW systems based on a heat storage design where the solar heat exchanger is a built-in spiral...... of the tank design’s influence on the thermal performance of the systems is possible. By means of the calculations design rules for the two heat storage types are proposed....

  11. From Design Specification to SystemC

    Directory of Open Access Journals (Sweden)

    Rachid Boudour

    2006-01-01

    Full Text Available In this paper, we present a framework for transforming the design model into SystemC code. Such a framework uses as input UML state machine and object diagrams, which are more and more used as design models in embedded systems. To do this, we have firstly used Poseidon tool for editing the design model and generating the XMI representation, and secondly integrated a transformation module leading to SystemC code. The mapping to SystemC code offers not only a system-level executable specification, but also a means to facilitating the system partitioning in hardware and software parts.

  12. Cascaded VLSI Chips Help Neural Network To Learn

    Science.gov (United States)

    Duong, Tuan A.; Daud, Taher; Thakoor, Anilkumar P.

    1993-01-01

    Cascading provides 12-bit resolution needed for learning. Using conventional silicon chip fabrication technology of VLSI, fully connected architecture consisting of 32 wide-range, variable gain, sigmoidal neurons along one diagonal and 7-bit resolution, electrically programmable, synaptic 32 x 31 weight matrix implemented on neuron-synapse chip. To increase weight nominally from 7 to 13 bits, synapses on chip individually cascaded with respective synapses on another 32 x 32 matrix chip with 7-bit resolution synapses only (without neurons). Cascade correlation algorithm varies number of layers effectively connected into network; adds hidden layers one at a time during learning process in such way as to optimize overall number of neurons and complexity and configuration of network.

  13. Phase-Synchronization Early Epileptic Seizure Detector VLSI Architecture.

    Science.gov (United States)

    Abdelhalim, K; Smolyakov, V; Genov, R

    2011-10-01

    A low-power VLSI processor architecture that computes in real time the magnitude and phase-synchronization of two input neural signals is presented. The processor is a part of an envisioned closed-loop implantable microsystem for adaptive neural stimulation. The architecture uses three CORDIC processing cores that require shift-and-add operations but no multiplication. The 10-bit processor synthesized and prototyped in a standard 1.2 V 0.13 μm CMOS technology utilizes 41,000 logic gates. It dissipates 3.6 μW per input pair, and provides 1.7 kS/s per-channel throughput when clocked at 2.5 MHz. The power scales linearly with the number of input channels or the sampling rate. The efficacy of the processor in early epileptic seizure detection is validated on human intracranial EEG data.

  14. Power Efficient Sub-Array in Reconfigurable VLSI Meshes

    Institute of Scientific and Technical Information of China (English)

    Ji-Gang Wu; Thambipillai Srikanthan

    2005-01-01

    Given an m × n mesh-connected VLSI array with some faulty elements, the reconfiguration problem is to find a maximum-sized fault-free sub-array under the row and column rerouting scheme. This problem has already been shown to be NP-complete. In this paper, new techniques are proposed, based on heuristic strategy, to minimize the number of switches required for the power efficient sub-array. Our algorithm shows that notable improvements in the reduction of the number of long interconnects could be realized in linear time and without sacrificing on the size of the sub-array. Simulations based on several random and clustered fault scenarios clearly reveal the superiority of the proposed techniques.

  15. Participatory simulation in hospital work system design

    DEFF Research Database (Denmark)

    Andersen, Simone Nyholm

    When ergonomic considerations are integrated into the design of work systems, both overall system performance and employee well-being improve. A central part of integrating ergonomics in work system design is to benefit from emplo y-ees’ knowledge of existing work systems. Participatory simulation...... (PS) is a method to access employee knowledge; namely employees are involved in the simulation and design of their own future work systems through the exploration of models representing work system designs. However, only a few studies have investigated PS and the elements of the method. Yet...... understanding the elements is essential when analyzing and planning PS in research and practice. This PhD study investigates PS and the method elements in the context of the Danish hospital sector, where PS is applied in the renewal and design of public hospitals and the work systems within the hospitals...

  16. Assembly design system based on engineering connection

    Science.gov (United States)

    Yin, Wensheng

    2016-12-01

    An assembly design system is an important part of computer-aided design systems, which are important tools for realizing product concept design. The traditional assembly design system does not record the connection information of production on the engineering layer; consequently, the upstream design idea cannot be fully used in the downstream design. An assembly design model based on the relationship of engineering connection is presented. In this model, all nodes are divided into two categories: The component and the connection. Moreover, the product is constructed on the basis of the connection relationship of the components. The model is an And/Or graph and has the ability to record all assembly schemes. This model records only the connection information that has engineering application value in the product design. In addition, this model can significantly reduce the number of combinations, and is very favorable for the assembly sequence planning in the downstream. The system contains a connection knowledge system that can be mapped to the connection node, and the connection knowledge obtained in practice can be returned to the knowledge system. Finally, VC++ 6.0 is used to develop a prototype system called Connect-based Assembly Planning (CAP). The relationship between the CAP system and the commercial assembly design system is also established.

  17. Challenges in Designing Mechatronic Systems

    DEFF Research Database (Denmark)

    Torry-Smith, Jonas; Qamar, Ahsan; Achiche, Sofiane

    2013-01-01

    Development of mechatronic products is traditionally carried out by several design experts from different design domains. Performing development of mechatronic products is thus greatly challenging. In order to tackle this, the critical challenges in mechatronics have to be well understood and well...... supported through applicable methods and tools. This paper aims at identifying the major challenges, by conducting a systematic and thorough survey of the most relevant research work in mechatronic design. Solutions proposed in literature are assessed and illustrated through a case study in order...... to investigate if the challenges can be handled appropriately by the methods, tools, and mindsets suggested by the mechatronic community. Using a real world mechatronics case, the paper identifies the areas where further research is required, by showing a clear connection between the actual problems faced during...

  18. Embedded systems design with special arithmetic and number systems

    CERN Document Server

    Sousa, Leonel; Chang, Chip-Hong

    2017-01-01

    This book introduces readers to alternative approaches to designing efficient embedded systems using unconventional number systems. The authors describe various systems that can be used for designing efficient embedded and application-specific processors, such as Residue Number System, Logarithmic Number System, Redundant Binary Number System Double-Base Number System, Decimal Floating Point Number System and Continuous Valued Number System. Readers will learn the strategies and trade-offs of using unconventional number systems in application-specific processors and be able to apply and design appropriate arithmetic operations from these number systems to boost the performance of digital systems. • Serves as a single-source reference to designing embedded systems with unconventional number systems • Covers theory as well as implementation on application-specific processors • Explains mathematical concepts in a manner accessible to readers with diverse backgrounds.

  19. The design of laser scanning galvanometer system

    Science.gov (United States)

    Sun, Xiaoling; Zhou, Bin; Xie, Weihao; Zhang, Yuangeng

    2015-02-01

    In this paper, we designed the laser scanning galvanometer system according to our requirements. Based on scanning range of our laser scanning galvanometer system, the design parameters of this system were optimized. During this work, we focused on the design of the f-θ field lens. An optical system of patent lens in the optical manual book, which had three glasses structure, was used in our designs. Combining the aberration theory, the aberration corrections and image quality evaluations were finished using Code V optical design software. An optimum f-θ field lens was designed, which had focal length of 434 mm, pupil diameter of 30 mm, scanning range of 160 mm × 160 mm, and half field angle of 18°×18°. At the last, we studied the influences of temperature changes on our system.

  20. Design Knowledge Management System (DKMS)

    Science.gov (United States)

    1990-12-01

    reasoning-- envisionment of courses of events, causality consequences, and enablement relations to determine if the design will "do the right thing...on envisionment or simulation 7) Induction 8) Deduction. An important p, int first made by Ramey 1831 and Friel [881 and substantiated by all of our

  1. Process integration: Cooling water systems design

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-10-01

    Full Text Available This paper presents a technique for grassroot design of cooling water system for wastewater minimization which incorporates the performances of the cooling towers involved. The study focuses mainly on cooling systems consisting of multiple cooling...

  2. An Expert System Approach for Garden Designing

    Directory of Open Access Journals (Sweden)

    NiloofarMozafari

    2012-10-01

    Full Text Available In the recent years, the quality of human life is improved by artificial intelligencetechniques. In artificial intelligence, an expert system is a computer system that emulates thedecision-making ability of a human expert. Expert systems are designed to solve complexproblems by reasoning about knowledge, like an expert. In this paper, we propose an expertsystem with the aim of designing the garden with considering the different taste of thepeople. The proposed system can help people to design their garden themselves. Indeed, it isable to use by architectures to provide decision support system, interactive training tool andexpert advice. The system constitutes part of intelligent system of designing the garden. Aninitial evaluation of the expert system was carried out and a positive feedback was receivedfrom the users.

  3. Operations Monitoring Assistant System Design

    Science.gov (United States)

    1986-07-01

    subsections address these system , tesi ~n issues in tiirn. 3.1 OMA SYSTEM OVERVIEW Figure 3-1 presents the concept in Figure 2-1 in more detail, from an OMA...issues---a local agent cannot realistically Tell -he centralized planner everything about its current situation. and must instead ,t- cide what relevant

  4. Aviation System Analysis Capability Executive Assistant Design

    Science.gov (United States)

    Roberts, Eileen; Villani, James A.; Osman, Mohammed; Godso, David; King, Brent; Ricciardi, Michael

    1998-01-01

    In this technical document, we describe the design developed for the Aviation System Analysis Capability (ASAC) Executive Assistant (EA) Proof of Concept (POC). We describe the genesis and role of the ASAC system, discuss the objectives of the ASAC system and provide an overview of components and models within the ASAC system, and describe the design process and the results of the ASAC EA POC system design. We also describe the evaluation process and results for applicable COTS software. The document has six chapters, a bibliography, three appendices and one attachment.

  5. Cost Optimal System Identification Experiment Design

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning

    the experiment design are not based on obtained experimental data. Instead the decisions are based on the expected experimental data assumed to be obtained from the measurements, estimated based on prior information and engineering judgement. The design method provides a system identification experiment design...

  6. Designing complex systems - a structured activity

    NARCIS (Netherlands)

    van der Veer, Gerrit C.; van Vliet, Johannes C.; Lenting, Bert; Olson, Gary M.; Schuon, Sue

    1995-01-01

    This paper concerns the development of complex systems from the point of view of design as a structure of activities, related both to the clients and the users. Several modeling approaches will be adopted for different aspects of design, and several views on design will be integrated. The proposed

  7. Designing complex systems - a structured activity

    NARCIS (Netherlands)

    van der Veer, Gerrit C.; van Vliet, Johannes C.; Lenting, Bert; Olson, Gary M.; Schuon, Sue

    1995-01-01

    This paper concerns the development of complex systems from the point of view of design as a structure of activities, related both to the clients and the users. Several modeling approaches will be adopted for different aspects of design, and several views on design will be integrated. The proposed a

  8. Preliminary design review report - sludge offload system

    Energy Technology Data Exchange (ETDEWEB)

    Mcwethy, L.M. Westinghouse Hanford

    1996-06-05

    This report documents the conceptual design review of the sludge offload system for the Spent Nuclear Fuel Project. The design description, drawings, available analysis, and safety analysis were reviewed by a peer group. The design review comments and resolutions are documented.

  9. The Analysis and Design of Distributed Systems

    NARCIS (Netherlands)

    Aksit, Mehmet

    1992-01-01

    The design of distributed object-oriented systems involves a number of considerations that rarely arise in sequential object-oriented design or in non-object-oriented languages. The tutorial describes analysis and design techniques for data abstraction, inheritance, delegation, persistence,

  10. VLSI IMPLEMENTATION OF NOVEL ROUND KEYS GENERATION SCHEME FOR CRYPTOGRAPHY APPLICATIONS BY ERROR CONTROL ALGORITHM

    Directory of Open Access Journals (Sweden)

    B. SENTHILKUMAR

    2015-05-01

    Full Text Available A novel implementation of code based cryptography (Cryptocoding technique for multi-layer key distribution scheme is presented. VLSI chip is designed for storing information on generation of round keys. New algorithm is developed for reduced key size with optimal performance. Error Control Algorithm is employed for both generation of round keys and diffusion of non-linearity among them. Two new functions for bit inversion and its reversal are developed for cryptocoding. Probability of retrieving original key from any other round keys is reduced by diffusing nonlinear selective bit inversions on round keys. Randomized selective bit inversions are done on equal length of key bits by Round Constant Feedback Shift Register within the error correction limits of chosen code. Complexity of retrieving the original key from any other round keys is increased by optimal hardware usage. Proposed design is simulated and synthesized using VHDL coding for Spartan3E FPGA and results are shown. Comparative analysis is done between 128 bit Advanced Encryption Standard round keys and proposed round keys for showing security strength of proposed algorithm. This paper concludes that chip based multi-layer key distribution of proposed algorithm is an enhanced solution to the existing threats on cryptography algorithms.

  11. Implantable intraocular pressure monitoring systems: Design considerations

    KAUST Repository

    Arsalan, Muhammad

    2013-12-01

    Design considerations and limitations of implantable Intraocular Pressure Monitoring (IOPM) systems are presented in this paper. Detailed comparison with the state of the art is performed to highlight the benefits and challenges of the proposed design. The system-on-chip, presented here, is battery free and harvests energy from incoming RF signals. This low-cost design, in standard CMOS process, does not require any external components or bond wires to function. This paper provides useful insights to the designers of implantable wireless sensors in terms of design choices and associated tradeoffs. © 2013 IEEE.

  12. Accelerating Science Driven System Design With RAMP

    Energy Technology Data Exchange (ETDEWEB)

    Wawrzynek, John [Univ. of California, Berkeley, CA (United States)

    2015-05-01

    Researchers from UC Berkeley, in collaboration with the Lawrence Berkeley National Lab, are engaged in developing an Infrastructure for Synthesis with Integrated Simulation (ISIS). The ISIS Project was a cooperative effort for “application-driven hardware design” that engages application scientists in the early parts of the hardware design process for future generation supercomputing systems. This project served to foster development of computing systems that are better tuned to the application requirements of demanding scientific applications and result in more cost-effective and efficient HPC system designs. In order to overcome long conventional design-cycle times, we leveraged reconfigurable devices to aid in the design of high-efficiency systems, including conventional multi- and many-core systems. The resulting system emulation/prototyping environment, in conjunction with the appropriate intermediate abstractions, provided both a convenient user programming experience and retained flexibility, and thus efficiency, of a reconfigurable platform. We initially targeted the Berkeley RAMP system (Research Accelerator for Multiple Processors) as that hardware emulation environment to facilitate and ultimately accelerate the iterative process of science-driven system design. Our goal was to develop and demonstrate a design methodology for domain-optimized computer system architectures. The tangible outcome is a methodology and tools for rapid prototyping and design-space exploration, leading to highly optimized and efficient HPC systems.

  13. Simulation systems: design and applications

    Directory of Open Access Journals (Sweden)

    Liudmila Burtseva

    1996-09-01

    Full Text Available In this paper the history of Simulation System Group investigations is presented. Some important achievements in past and present time are marked. The directions of future investigations are discussed in the fourth section of the paper.

  14. Decentralized systems with design constraints

    CERN Document Server

    Mahmoud, Magdi S

    2014-01-01

    This volume provides a rigorous examination of the analysis, stability and control of large-scale systems, and addresses the difficulties that arise because of dimensionality, information structure constraints, parametric uncertainty and time-delays.

  15. System Design of HVDC Project

    Institute of Scientific and Technical Information of China (English)

    Ma Weimin; Yin Weiyang

    2011-01-01

    BackgroundHVDC transmission system is flexible,controllable,economic and environmentfriendly,which has compelling advantages in bulk long-distance power transfer and interconnection of power systems.Since the first HVDC project was put into commercial operation in Gotland in 1954,over 100 HVDC projects have been operating in the world.Currently,there are a number of HVDC projects under being upgraded,constructed or planed in Europe,North America,South America,Africa and Asia.

  16. Optisk Design og Optiske Systemer

    DEFF Research Database (Denmark)

    Dalsgaard, Erik

    1999-01-01

    På basis af geometriske bølgeaberrationer gives et grundlag for dimensionering af optiske systemer. En række numeriske metoder til analyse og optimering, baseret på 4. ordens bølgaberrationer samt endelig raytracing, behandles.......På basis af geometriske bølgeaberrationer gives et grundlag for dimensionering af optiske systemer. En række numeriske metoder til analyse og optimering, baseret på 4. ordens bølgaberrationer samt endelig raytracing, behandles....

  17. Design of a Recruiter Expert System

    Science.gov (United States)

    1989-03-01

    expert system was designed using these characteristics and the minimum requirements for assignment to recruiting duty given in the Navy’s Enlisted...Transfer Manual. A recommended Command Officer’s Screening Form was designed that will have all the data needed to be placed into the expert system . Recommendations

  18. Optimized Experiment Design for Marine Systems Identification

    DEFF Research Database (Denmark)

    Blanke, M.; Knudsen, Morten

    1999-01-01

    Simulation of maneuvring and design of motion controls for marine systems require non-linear mathematical models, which often have more than one-hundred parameters. Model identification is hence an extremely difficult task. This paper discusses experiment design for marine systems identification...

  19. Designing a System for Observation of Teaching

    Science.gov (United States)

    Washer, Peter

    2006-01-01

    Purpose: The purpose of this paper is to review the literature on observation of teaching in a Higher Education (HE) context with a view to proposing some guidelines for the design and practice of institutional systems to observe teaching. Design/methodology/approach: A literature review and a proposed model for a system of observation of teaching…

  20. Design Guidelines for CAI Authoring Systems.

    Science.gov (United States)

    Hunka, S.

    1989-01-01

    Discussion of the use of authoring systems for courseware development focuses on guidelines to be considered when designing authoring systems. Topics discussed include allowing a variety of instructional strategies; interaction with peripheral processes such as student records; the editing process; and human factors in computer interface design,…